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Preface

The growth of biostatistics as a subject has been phenomenal in recent years and has been
marked by a considerable technical innovation in methodology and computational practicality.
One area that has a significant growth is the class of Bayesian methods. This growth has taken
place partly because a growing number of practitioners value the Bayesian paradigm as
matching that of scientific discovery. But the computational advances in the last decade that
have allowed for more complex models to be fitted routinely to realistic data sets have also
led to this growth.

In this book, we explore the Bayesian approach via a great variety of medical application
areas. In effect, from the elementary concepts to the more advanced modeling exercises, the
Bayesian tools will be exemplified using a diversity of applications taken from epidemiology,
exploratory clinical studies, health promotion studies and clinical trials.

This book grew out of a course that the first author has taught for many years (especially)
in the Master programs in (bio)statistics at the universities of Hasselt and Leuven, both in
Belgium. The course material was the inspiration for two out of three parts in the book.
Therefore, the intended readership of this book are Master program students in (bio)statistics,
but we hope that applied researchers with a good statistical background will also find the
book useful. The structure of the book allows it to be used as course material for a course
in Bayesian methods at an undergraduate or early stage postgraduate level. The aim of the
book is to introduce the reader smoothly into Bayesian statistical methods with chapters that
gradually increase in the level of complexity. The book consists of three parts. The first two
parts of this work were the chapters primarily covered by the first author, while the last five
chapters were primarily covered by the second author.

InPartI, we first review the fundamental concepts of the significance test and the associated
P-value and note that frequentist methods, although proved to be quite useful over many years,
are not without conceptual flaws. We also note that there are other methods on the market,
such as the likelihood approach, but more importantly, the Bayesian approach. In addition,
we introduce (an embryonic version of) the Bayes theorem. In Chapter 2, we derive the
general expression of Bayes theorem and illustrate extensively the analytical computations
to arrive at the posterior distribution on the binomial, the Gaussian and the Poisson case. For
this, simple textbook examples are used. In Chapter 3, the reader is introduced to various
posterior summary measures and the predictive distributions. Since sampling is fundamental
to contemporary Bayesian approaches, sampling algorithms are introduced and exemplified in
this chapter. While these sampling procedures will not yet prove their usefulness in practice,
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we believe that the early introduction of relatively simple sampling techniques will prepare
the reader better for the advanced algorithms seen in later chapters. In this chapter, approaches
to Bayesian hypothesis testing are treated and we introduce the Bayes factor. In Chapter 4, we
extend all the concepts and computations seen in the first three chapters for univariate problems
to the multivariate case, introducing also Bayesian regression models. It is then seen that, in
general, no analytical methods to derive the posterior distribution are available, neither are the
classical numerical approaches to integration sufficient. A new approach is then needed. Before
addressing the solution to the problem, we treat in Chapter 5 the choice of the prior distribution.
The prior distribution is the keystone to the Bayesian methodology. Yet, the appropriate choice
of the prior distribution has been the topic of extensive discussions between non-Bayesians
and Bayesians, but also among Bayesians. In this chapter, we extensively treat the various
ways of specifying prior knowledge. In Chapters 6 and 7, we treat the basics of the Markov
chain Monte Carlo methodologies. In Chapter 6, the Gibbs and the Metropolis—Hastings
samplers are introduced again illustrated using a variety of medical examples. Chapter 7 is
devoted to assessing and accelerating the convergence of the Markov chains. In addition, we
cover the extension of the EM-algorithm to the Bayesian context, i.e. the data augmentation
approach is exemplified. It is then time to see how Bayesian analyses can be done in practice.
For this reason, we review in Chapter 8 the Bayesian software. We focus on two software
packages: the most popular WinBUGS and the recently released Bayesian SAS® procedures.
In both cases, a simple regression analysis serves as a guiding example helping the readers in
their first analyzes with these packages. We end this chapter with a review of other Bayesian
software, such as the packages OpenBUGS and JAGS, and also various R packages written
to perform specific analyses.

In Part II, we develop Bayesian tools for statistical modeling. We start in Chapter 9 with
reviewing hierarchical models. To fix ideas, we focus first on two simple two-level hierarchical
models. The first is the Poisson-gamma model applied to a spatial data set on lip cancer cases in
former East Germany. This example serves to introduce the concepts of hierarchical modeling.
Then, we turn to the Gaussian hierarchical model as an introduction to the more general mixed
models. A variety of mixed models are explored and amply exemplified. Also in this chapter
comparisons between frequentist and Bayesian solutions aim to help the reader to see the
differences between the two approaches. Model building and assessment are the topics of
Chapter 10. The aim of this chapter is to see how statistical modeling could be performed
entirely within the Bayesian framework. To this end, we reintroduce the Bayes factor (and
its variants) to select between two statistical models. The Bayes factor is an important tool in
model selection but is also fraught with serious computational difficulties. We then move to
the Deviance Information Criterion (DIC). For a better understanding of this popular model
selection criterion, we introduce at length the classical model selection criteria, i.e. AIC and
BIC and relate them to DIC. The part on model checking describes all classical actions one
would take to construct and evaluate a model, such as checking the residuals for outliers and
influential observations, finding the correct scale of the response and the covariates, choosing
the correct link function, etc. In this chapter, we also elaborate on the posterior predictive
check as a general tool for goodness-of-fit testing. The final chapter, Chapter 11, in Part II
handles Bayesian variable selection. This is a rapidly evolving topic that received a great
impetus from the developments in bioinformatics. A broad overview of possible variable and
model selection approaches and the associated software is given. While in the previous two
chapters, the WinBUGS software and to a lesser extent the Bayesian SAS procedures were
dominant, in this chapter we focus on software packages in R.
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In Part I1I, we address particular application areas for Bayesian modeling. We include the
most important areas from a practical biostatistical standpoint. In Chapter 12, we examine
bioassay, where we consider preclinical testing methods: both Ames and Mouse Lymphoma
in vitro assays and the famous Beetles LD50 toxicity assay are considered. In Chapter 13, we
consider the important and pervasive problem of measurement error and also the misclassi-
fication in biostatistical studies. We discuss Berkson and classical joint models, bias such as
attenuation and the problem of discrete error in the form of misclassification. In Chapter 14,
we examine survival analysis from a Bayesian perspective. In this chapter, we cover basic
survival time models and risk-set-based approaches and extend models to consider contextual
effects within hazards. In Chapter 15, longitudinal analysis is considered in greater depth.
Correlated prior distributions for parameters and also temporally correlated errors are con-
sidered. Missingness mechanisms are discussed and a nonrandom missingness example is
explored. In Chapter 16, two important spatial biostatistical application areas are then con-
sidered: disease mapping and image analysis. In disease mapping, basic Poisson convolution
models that include spatially structured random effects are examined for risk estimation, while
in image analysis a focus on Bayesian fMRI analysis with correlated prior distributions is
presented.

In Chapter 17, we end the book with a brief review of the topics that we did not cover
in this book and give some key references for further reading. Finally, in the appendix, we
provide an overview of the characteristics of most popular distributions used in Bayesian
analyses.

Throughout the book there are numerous examples. In Parts I and II, explicit reference
is made to the programs associated with the examples. These programs can be found at
the website www.wiley.com/go/bayesian methods biostatistics. The pro-
grams used in Part IIT can also be found at this website.
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Notation, terminology and some
guidance for reading the book

Notation and terminology

In this section, we review some notation used in the book. We limit ourselves to outline some
general principles; for precise definitions, we refer to the text.

First, both the random variable and its realization are denoted in this book as y. The vector
of covariates is most often denoted as x. The distribution of a discrete y as well as the density
of a continuous variable will be denoted as p(y), unless otherwise stated. In the text, we make
clear which of the two meanings applies. A sample of observations y1, ..., y, is denoted as
y, but also, a d-dimensional vector will be denoted in bold, i.e. y. We make it clear from
the context what is implied. Further, independent, identically distributed random variables
are indicated as i.i.d. A distribution (density) depending on a parameter vector # is denoted
as p(y | @). The joint distribution of y and z is denoted as p(y,z | #) and the conditional
distribution of y, given z will be denoted as y | z, # ~ p(y | z, #). Alternatively, we use the
notation p(y | z, @). The probability that an event happens will occasionally be denoted as P
for reasons of clarity.

A particular distribution will be addressed in two ways. For example, y ~ Gamma(«, )
indicates that the random variable y has a gamma distribution with parameters « and f, but
to indicate that the distribution is evaluated in y we will use the notation Gamma(y | «, ).
When parameters have been given almost the same notation, say B, B1, 3, then the notation
B is used where * is a place holder for 1, 2, 3.

In the normal case, some Bayesian textbooks use the precision notation while others use the
variance notation. More specifically, if y has a normal distribution with mean p and variance
o2, then instead of y ~ N (i, 02) (classical notation) the alternative notation y ~ N(u, ")
(or even y ~ N(u, )) with the precision T = o2 is used by some. This alternative notation
is inspired by the fact that in Bayesian statistics some key results are better expressed in terms
of the precision rather than the variance. This is also the notation used by WinBUGS. In
this book, we frequently refer to classical, frequentist statistics. The use of precision would
then be more confusing, rather than illuminating. In addition, when it comes to summarizing
the results of a statistical analysis, the standard deviation is a better tool than the precision.
For these reasons, we primarily used in this book the variance notation. But, throughout the
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book (especially in the later chapters) we regularly make the transition from one notation to
the other.

Finally, we use some generally accepted standard notations, such as x always denotes a
column vector, |A| denotes the determinant of a matrix A, tr(A) is the trace of a matrix and AT
denotes the transpose of a matrix A. The sample mean of {y;, y», ..., y,} is denoted as y and
their standard deviation as s, s, or simply SD.

Guidance for reading the book

No particular guidance is needed to read this book. The flow in the book is natural: starting
from elementary Bayesian concepts we gradually introduce the more complex topics. This
book deals, basically, only with parametric Bayesian methods. This means that all our random
variables are assumed to have a particular distribution with a finite number of parameters. In
the Bayesian world, many more distributions are used than in classical statistics. So for the
classical reader (whatever meaning this may have), many of the distributions that pop-up in
the book will be new. A brief characterization of these distributions, together with a graphical
display, can be found in the appendix of the book.

Finally, some of the sections indicated by “*’
reading.

are technical and may be skipped at first
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Modes of statistical inference

The central activity in statistics is inference. Statistical inference is a procedure or a collection
of activities with the aim to extract information from (gathered) data and to generalize the
observed results beyond the data at hand, say to a population or to the future. In this way,
statistical inference may help the researchers in suggesting or verifying scientific hypotheses,
or decision makers in improving their decisions. Inference obviously depends on the collected
data and on the assumed underlying probabilistic model that generated these data, but it also
depends on the approach to generalize from the known (data) to the unknown (population). We
distinguish two mainstream views/paradigms to draw statistical inference, i.e. the frequentist
approach and the Bayesian approach. In-between these two paradigms is the (pure) likelihood
approach.

In most of the empirical research, but definitely in medical research, scientific conclusions
need to be supported by a ‘significant result’ using the classical P-value. Significance testing
belongs to the frequentist paradigm. However, the frequentist approach does not consist of one
unifying theory but is rather the combination of two approaches, i.e. the inductive approach
of Fisher who introduced the null-hypothesis, the P-value and the significance level and the
deductive procedure of Neyman and Pearson who introduced the alternative hypothesis and
the notion of power. First, we review the practice of frequentist significance testing and focus
on the popular P-value. More specifically we look at the value of the P-value in practice.
Second, we treat an approach that is purely based on the likelihood function not involving any
classical significance testing. This approach is based on two fundamental likelihood principles
that are also essential for the Bayesian philosophy. Finally, we end this chapter by introducing
the principles of the Bayesian approach and we give an outlook of what the Bayesian approach
can bring to the statistician. However, at least three more chapters will be needed to fully
develop the Bayesian theory.

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.



4 MODES OF STATISTICAL INFERENCE

1.1 The frequentist approach: A critical reflection

1.1.1 The classical statistical approach

Itis perhaps an oversimplification to speak of a classical statistical approach. Nevertheless, we
mean by this the ensemble of methods that provides statistical inference based on the classical
P-value, the significance level, the power and the confidence interval (CI). To fix ideas, we
now exemplify current statistical practice with a randomized controlled clinical trial (RCT).
In fact, the RCT is the study design that, by excellence, is based on the classical statistical
tool box of inferential procedures. We assume that the reader is familiar with the classical
concepts in inferential statistics.

For those who have never experienced a RCT, here is a brief description. A clinical trial
is an experimental study comparing two (or more) medical treatments on human subjects,
most often patients. When a control group is involved, the trial is called controlled. For a
parallel group design, one group of patients receives one treatment and the other group(s)
receive(s) the other treatment and all groups are followed up in time to measure the effect
of the treatments. In a randomized study, patients are assigned to the treatments in a random
manner. To minimize bias in evaluating the effect of the treatments, patients and/or care givers
are blinded. When only patients are blinded one speaks of a single-blinded study, but when
both patients and care givers are blinded (and everyone involved in running the trial) one
speaks of a double-blinded trial. Finally, when more than one center (e.g. hospital) is involved
one deals with a multicenter study.

Example I.1: Toenail RCT: Evaluation of two oral treatments for toenail infection using
the frequentist approach
A randomized, double-blind, parallel group, multicenter study was set up to compare the
efficacy of two oral treatments for toenail infection (De Backer ef al. 1996). In this study,
two groups of 189 patients were recruited, and each received 12 weeks of treatment (Lamisil:
treatment A and Itraconazol: treatment B), with 48 weeks of follow-up (FU). The significance
level was set at « = 0.05. The primary endpoint (upon which the sample size was based) in
the original study was negative mycology, i.e. a negative microscopy and a negative culture.
Here, we look at another endpoint, i.e. unaffected nail length at week 48 on a subset of patients
for whom the big toenail was the target nail. One hundred and thirty-one patients treated with
A and 133 treated with B were included in this comparison. Note that we only included those
patients present at the end of the study. The observed mean (SD) lengths in millimeter at
week 48 were 9.07 (4.92) and 7.70 (5.33), for treatments A and B, respectively. Suppose
the (population) average for treatment A is p; while for treatment B it is w,. Therefore, the
null-hypothesis is Hy : A = u; — up, = 0 and can be evaluated with an unpaired 7-test at a
two-sided significance level of « = 0.05. Upon completion of the study, the treatment estimate
was A = 1.38 with an observed value of the ¢-statistic equal to 7,5, = 2.19. This result lies
in the rejection region corresponding to o = 0.05 yielding a statistically significant result (at
0.05). Thus, according to the Neyman—Pearson (NP) approach we (can) reject that A and B
are equally effective.

It is common to report also the P-value of the result to indicate the strength of evidence
against the hypothesis of two equally effective treatments. Here, we obtained a two-sided
P-value equal to 0.030, which is a measure of evidence against Hy in a Fisherian sense. [
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In Section 1.1.2, we reflect on what message the P-value can bring to the researcher. We
will also indicate what properties the P-value does not have (but assumed to have).

1.1.2 The P-value as a measure of evidence

Fisher developed the P-value in the context of well-planned limited agricultural experiments
in a time when computations had to be done by hand. Nowadays, a great variety of studies
are undertaken in the medical research usually of an exploratory nature and often evaluating
hundreds to thousands of P-values. The P-value is an intuitively appealing measure against
the null-hypothesis, but that it is not always perceived in the correct manner. Here, we will
further elaborate on the use and misuse of the P-value in practice.

The P-value is not the probability that H, is (not) true A common error is to interpret
the P-value as a probability that Hj is (not) true. However, the P-value only measures the
extremeness of the observed result under Hy. The probability that Hy is true is formally
p(Hy | data), which we shall call the posterior probability of the null-hypothesis in the
following text, given the observed data. This probability is based on Bayes theorem and
depends on the prevalence of Hy (see also Example I.11).

The P-value depends on fictive data The P-value does not express the probability that the
observed result occurred under Hy, but is rather the probability of observing this or a more
extreme result under Hy. This implies that the calculation of the P-value is based not only on
the observed result but also on fictive (never observed) data.

Example 1.2: Toenail RCT: Meaning of P-value

The P-value is equal to the probability that the test statistic exceeds the observed value if the
null-hypothesis were true. The computation of the P-value is done using probability laws, but
could also be represented by a simulation experiment. For instance, in the toenail infection
study the P-value is approximately equal to the proportion of studies, out of (say) 10000
imaginary studies done under H, (two identical treatments), that yield a 7-value more extreme
than #,,s = 2.19. In Figure 1.1, the histogram of imaginary results is displayed together with
the observed result. O

The P-value depends on the sample space The above simulation exercise shows that the
P-value is computed as a probability using the long-run frequency definition, which means that
a probability for an event A is defined as the ultimate proportion of experiments that generated
that event to the total number of experiments. For a P-value, the event A corresponds to a
t-value located in the rejection region. This makes it clear that the P-value depends on the
choice of the fictive studies and, hence, also on the sample space. The particular choice can
have surprising effects, as illustrated in Example 1.3.

Example 1.3: Accounting for interim analyses in a RCT

Suppose that a randomized controlled trial has been set up to compare two treatments and
that four interim analyses for efficacy were planned. An interim analysis for efficacy is a
statistical comparison between the treatment groups prior to the end of the study to see
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Figure 1.1 Graphical representation of the P-value by means of a simulation study under
H.

whether the experimental treatment is better than the control treatment. The purpose is to
stop the trial earlier if possible. When more than one comparison is planned, one needs
to correct in a frequentist approach for multiple testing. A classical correction for multiple
testing is Bonferroni’s rule which dictates that the significance level at each comparison
(nominal significance level) needs to be made more stringent, i.e. «/k where & is the total
number of tests applied, to arrive at an overall (across all comparisons) type I error rate less
or equal to «. Bonferroni’s procedure is approximate; an exact control of the type I error
rate is obtained with a group sequential design (Jennison and Turnbull 2000). With Pocock’s
group sequential method and 5 analyses (4 interim + 1 final analyses), a significance level of
0.016 is handled at each analysis to achieve a global significance level of 0.05. Thus, when
the study ran until the end and at the last analysis a P-value of 0.02 was obtained, then the
result cannot be claimed significant with Pocock’s rule. However, if the same result had been
obtained without planning interim analyses, then this trial produced a significant result! Thus,
in the presence of two identical results, one cannot claim evidence against the null-hypothesis
in one case, while in the other case we would conclude that the two treatments have a
different effect. O

In statistical terminology, the different evidence for the treatment effect in the two RCTs
of Example 1.3 (with an identical P-value) is due to a different sample space (see below) in
the two scenarios. This is further illustrated in Example 1.4.

Example 1.4: Kaldor’ et al. case-control study: Illustration of sample space

In the (matched) case-control study (Kaldor et al. 1990) involving 149 cases (leukaemia
patients) and 411 controls, the purpose was to examine the impact of chemotherapy on
leukaemia in Hodgkin’s survivors (Ashby et al. 1993). The 5-year survival of Hodgkin’s
disease (cancer of the lymph nodes) is about 80%, but the survivors have an excess risk of
developing solid tumors, leukaemia and/or lymphomas. In Table 1.1, the cases and controls
are subdivided according to exposure to chemotherapy or not.
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Table 1.1 Kaldor’ et al. case-control study (Kaldor
et al. 1990): frequency table of cases and controls
subdivided according to their exposure to chemotherapy.

Treatment Controls Cases
No chemo 160 11
Chemo 251 138
Total 411 149

Ignoring the matched character of the data, the analysis of the 2 x 2-contingency table by
a Pearson chi-squared test results in P = 7.8959 x 10~'3 with a chi-squared value of 51.3.
With the Fisher’s exact test, a P-value of 1.487 x 10~'* was obtained. Finally, the estimated
odds ratio is equal to 7.9971 with a 95% CI of [4.19, 15.25]. |

The chi-squared test and the Fisher’s exact test have a different sample space, which is
the space of possible samples considered to calculate the null distribution of the test statistic.
The sample space for the chi-squared test consists of the 2 x 2-contingency tables with the
same total sample size (n), while for Fisher’s exact test the sample space consists of
the subset of 2 x 2-contingency tables with the same row and column marginal totals. The
difference between the two sample spaces explains here partly the difference in the two test
results. In Example 1.3, it is the sole reason for the different evidence from the two RCTs.
The conclusion of a scientific experiment, hence, not only depends on the results of that
experiment but also on the results of experiments that did not and will never happen. This
finding has triggered a lot of debate among statisticians (see Royall 1997).

The P-value is not an absolute measure A small P-value does not necessarily imply a
large difference between two treatments or a strong association among variables. Indeed, as a
measure of evidence the P-value does not take the size of the study into account. There have
been vivid discussions on how a small P-value should be interpreted as a function of the size
of the study (see Royall 1997).

The P-value does not take all evidence into account Let us take the following example
also discussed by Ashby et al. (1993).

Example L5: Merseyside registry results

Ashby et al. (1993) reported on data obtained from a subsequent registry study in UK
(after Kaldor et al.’s case-control study) to check the relationship between chemotherapy and
leukemia among Hodgkin’s survivors. Preliminary results of the Merseyside registry were
reported in Ashby et al. (1993) and are reproduced in Table 1.2. The P-value obtained from
the chi-squared test with continuity correction equals 0.67. Thus, formally there is no reason
to worry that chemotherapy may cause leukemia among Hodgkin’s survivors. Of course,
every epidemiologist would recognize that this study has no chance of finding a relationship
between chemotherapy and leukemia because of the small study size. By simply analyzing
the data of the Merseyside registry, no evidence of a relationship can be established. O
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Table 1.2 Merseyside registry: frequency table
of cases and controls subdivided according to
their exposure to chemotherapy.

Treatment Controls Cases
No chemo 3 0
Chemo 3 2
Total 6 2

Is it reasonable to analyze the results of the Merseyside registry in isolation, not referring
to the previous study of Kaldor et al. (1990)? In other words, should one forget about the
historical data and assume that one cannot learn anything from the past? The answer will
depend on the particular circumstances, but it is not obvious that the past should never play a
role in the analysis of data.

1.1.3 The confidence interval as a measure of evidence

While the P-value has been criticized by many statisticians, it is more the (mis)use of the
P-value that is under fire. Nevertheless, there is a growing preference to replace the P-value
by the (95%) CL.

Example 1.6: Toenail RCT: Illustration of 95% confidence interval

The 95% CI for A is equal to [0.14, 2.62]. Technically speaking we can only say that in the
long run 95% of those intervals will contain the true parameter (the 95% CI is based on the
long-run frequency definition of probability). But for our RCT, the 95% CI will either contain
the true parameter or not (with probability 1)! In our communication to nonstatisticians, we
never use the technical definition of the CI. Rather, we say that the 95% CI [0.14, 2.62]
expresses that we are uncertain about the true value of A and that it most likely lies between
0.14 and 2.62 (with 0.95 probability). O

The 95% CI expresses our uncertainty about the parameter of interest and as such is
considered to give better insight into the relevance of the obtained results than the P-value.
However, the adjective ‘95%’ refers to the procedure of constructing the interval and not to
the interval itself. The interpretation that we give to nonstatisticians has a Bayesian flavor as
will be seen in Chapter 2.

1.1.4 An historical note on the two frequentist paradigms*

In this section, we expand on the difference between the two frequentist paradigms and how
they have been integrated in practice into an apparently one unifying approach. This section
is not essential for the remainder of the book and can be skipped. A more in-depth treatment
of this topic can be found in Hubbard and Bayarri (2003) and the papers of Goodman (1993,
1999a, 1999b) and Royall (1997).



THE FREQUENTIST APPROACH: A CRITICAL REFLECTION 9

The Fisherian and the NP approach are different in nature but are integrated in current
statistical practice. Fisher’s views on statistical inference are elaborated in two of his books:
Statistical Methods for Research Workers (Fisher 1925) and The Design of Experiments (Fisher
1935). He strongly advocated the inductive reasoning to generate new hypotheses. Fisher’s
approach to inductive inference goes via the rejection of the null-hypothesis, say Hy : A = 0.
His significance test constitutes of a statistical procedure based on a test statistic for which
the sampling distribution, given that A = 0 holds, is determined. He called the probability
under H, of obtaining the observed value of that test statistic or a more extreme one, the
P-value. To Fisher, the P-value was just a practical tool for inductive inference whereby the
smaller the P-value implies a greater evidence against A = 0. Further, according to Fisher
the null-hypothesis should be ‘rejected’” when the P-value is small, say less than a prespecified
threshold & = 0.05 called the level of significance. Fisher’s rule for rejecting H is, therefore,
when P < 0.05, but he recognized (Fisher 1959) that rejection may have two meanings: either
that an exceptionally rare chance has occurred or the theory (according to the null-hypothesis)
is not true.

In their approach to statistical testing, Neyman and Pearson (1928a, 1928b, 1933) needed
an alternative hypothesis (H,), say A # 0. Once the data have been observed, the investigator
needs to decide between two actions: reject Hy (and accept H,) or accept Hy (and reject H,). NP
called their procedure an hypothesis test. Their approach to research has a decision theoretic
flavor, i.e. decision makers can commit two errors: (1) type I error with probability P(type I
error) = « (type I error rate) when H is rejected while in fact true and (2) type II error
with probability P(type II error) = B (type Il error rate) when H, is rejected while in fact
true. In this respect they introduced the power of a test, equal to 1 — 8 for an alternative
hypothesis H, : A = A,. NP argued that a statistical test must minimize the probability of
making the wrong decision and demonstrated (Neyman and Pearson 1933) that the well-
known likelihood-ratio test minimizes 8 for given a value for «. The NP approach is in fact
deductive and reasons from the general to the particular and thereby makes claims from the
particular to the general only in the long run. NP strived that one shall not be wrong too
often. In other words, they rather advocated ‘inductive behavior’. Fisher strongly disliked this
viewpoint and both parties ended up in a never-ending debate.

Despite the strong historical disagreement between the proponents of the two approaches,
nowadays the two philosophies are mixed up and presented as a unifying methodology.
Hubbard and Bayarri (2003) (see also references therein) warned for the confusion this
unification might imply, especially for the danger that the P-value is wrongly interpreted as
a type I error rate. Indeed, the P-value was introduced by Fisher as a surprise index vis-a-vis
the null-hypothesis and in the light of the data. It is an a posteriori determined probability.
A problem occurs when the P-value is given the status of an a priori determined error rate.
For example, suppose the significance level is « = 0.05, chosen in advance. Thus, if upon
completion of the study, we obtain P = 0.023 we say that H,, is rejected at 0.05. However, we
cannot say that H, is rejected at the 0.025 level, because in this sense « is chosen after the
facts and P obtains the status of a prespecified level. In medical papers, the P-value is often
given the nature of a prespecified value. For instance when significant results are indicated by
asterisks, e.g. “*’ for P < 0.05, **’ for P < 0.01 and “***’ for P < 0.001, then the impression
is created that for a “**’ result significance at 0.01 can be claimed. Following Carl Popper
(Popper 1959), Fisher claimed that one can never accept the null-hypothesis, only disprove
it. In contrast, according to the NP approach subsequent to the hypothesis test there are two
possible actions: one ‘rejects’ the null-hypothesis (and accepts the alternative hypothesis) or
vice versa. This creates another clash of the two approaches. Namely, if the NP approach
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is the basis for statistical inference, then there is in principle no problem in accepting the
null-hypothesis. However, one of the basic principles in classical statistical practice is never
to accept Hy in case of a nonsignificant result that is in the spirit of Fisher’s significance
testing. Note that in clinical trials the standard approach is the NP approach, but accepting the
null-hypothesis would be a major flaw.

Because of the above difficulties with the P-value and that classical statistical inference
is claimed to be not coherent, Goodman (1993, 1999a, 1999b) and others advocated to use
Bayesian inference tools such as the Bayes factor. Having said this, others still regard it as a
useful tool in some circumstances. For instance, Hill (1996) writes: ‘Like many others, I have
come to regard the classical P-value as a useful diagnostic device, particularly in screening
large numbers of possibly meaningful treatment comparisons.” Further, in some cases (one-
sided hypothesis testing) the P-value and Bayesian inference come close (see Section 3.8.3).
Finally, Weinberg (2001) argues that ‘It is time to stop blaming the tools, and turn our attention
to the investigators who misuse them.’

1.2 Statistical inference based on the likelihood function

1.2.1 The likelihood function

The concept of likelihood was introduced by Fisher (1922). It expresses the plausibility of
the observed data as a function of the parameters of a stochastic model. As a function of the
parameters the likelihood is called the likelihood function. Statistical inference based on the
likelihood function differs fundamentally from inference based on the P-value, although both
approaches were promoted by Fisher as a tool for inductive inference. To fix ideas, let us
look at the likelihood function of a binomial sample. The following example dates back to
Cornfield (1966) but is rephrased in terms of a surgery experiment.

Example 1.7: A surgery experiment

Assume that a new but rather complicated surgical technique was developed in a hospital
with a nonnegligible risk for failure. To evaluate the feasibility of the technique the chief sur-
geon decides to operate on n = 12 patients with this new procedure. Upon completion of the
12 operations, he reports s = 9 successes. Let the outcome of the ith operation be denoted
as y; = 1 for a success and y; = 0 for a failure. The total experiment yields a sample of n
independent binary observations {yy, ..., y,} =y with s successes. Assume that the probabil-
ity of success remains constant over the experiment, i.e. p(y;) =6, (i =1, ..., n). Then the
probability of the observed number of successes is expressed by the binomial distribution, i.e.
the probability that s successes out of n experiments occur when the probability of success in
a single experiment is equal to 6, is given by

fo (s) = (2‘) 0°(1— )" withs =Yy, (1.1)

i=1

where fj (s) is a discrete distribution (as a function of s) with the property that Y f5 (s) = 1.
s=0
When s is kept fixed and 6 is varying, fj (s) becomes a continuous function of €, called

the binomial likelihood function. The likelihood function could be viewed as expressing the
plausibility of 6 in the light of the data and is therefore denoted as L(6 | s). The graphical
representation of the binomial likelihood function is shown in Figure 1.2(a) for s =9 and



STATISTICAL INFERENCE BASED ON THE LIKELIHOOD FUNCTION 11

4 (a) (b)
o
o T
C\!a
° 3
- |
[e]
g £ g
< 0 ®
g o =
o 87
S
B o
u'I),
o
0'4
o T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 1.0
0 0

Figure 1.2 Surgery experiment: likelihood (a) and log-likelihood function (b) corresponding
to s = 9 successes out of n = 12 operations from Example 1.7.

n = 12. The figure shows that values of 6 close to zero and close to one are not supported by
the observed result of 9 successes out of 12 operations. On the other hand, values above 0.5
and below 0.9 are relatively well supported by the data with the value 8 = 9/12 = 0.75 best
supported. O

The value of ot that maximizes L@® | s) is called the maximum likelihood estimate (MLE)
and is denoted as 6. To determine 8, we maximize L (6 | s) with respect to 6. It is equivalent

and easier to maximize the logarithm of L(6 | s), called the log-likelihood, and denoted as
L@@ | s).

Example L.7: (continued)
The log-likelihood for the surgery experiment is given by

£ |s)=c+[slogh+ (n—s)log(l —0)], (1.2)

where c is a constant. The first derivative with respect to 6 gives the expression 5 — ((f:f)))

Equating this expression to zero gives the MLE equal to s/n, and thus, 6 =0.75 (fors=9
and n = 12), which is the sample proportion. Figure 1.2(b) shows £(6 | s) as a function
of 6. O

1.2.2 The likelihood principles

Inference based on the likelihood function naturally adheres to two likelihood principles (LP)
(Berger and Wolpert 1984):

1. Likelihood principle 1: All evidence, which is obtained from an experiment, about an
unknown quantity 6 is contained in the likelihood function of 6 for the given data.

2. Likelihood principle 2: Two likelihood functions for 6 contain the same information
about ¢ if they are proportional to each other.
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Figure 1.3 Surgery experiments: binomial and negative binomial (Pascal) likelihood func-
tions together with MLE and interval of at least 0.5 maximal evidence and the classical
two-sided 95% CI.

The first LP implies that the choice between two values of an unknown parameter is made
via the likelihood function evaluated at those values. This leads to the standardized likelihood
and the interval of evidence, which will be introduced in Example 1.7 (continued) below.

Example 1.7: (continued)

The binomial likelihood for s = 9 and n = 12 is maximal atd = 0.75.Ina frequentist context,
we could test the observed proportion against an a priori chosen value for 6, say 0.5 and we
calculate a 95% CI for 6.

According to the likelihood function, there is maximal evidence for & = 0.75. The ratio
of the likelihood functions at & = 0.5 and at & = 0.75 can be used as a measure of the relative
evidential support given by the data for the two hypotheses. This ratio is called the likelihood
ratio and is here equal to 0.21. The function L(0 | s)/L(0 | s) (here L(6 | s)/L(0.75 | s)) is
called the standardized likelihood. On the standardized likelihood scale, one can read off that
the evidence for & = 0.5 is about 1/5 the maximal evidence. Note that this comparison does
not involve any fictive data, only the observed data play a role.

One can also construct an interval of parameter values that show at least a fraction of the
maximal evidence. For instance, the interval of (at least half of the maximal) evidence consists
of those 6-values that correspond to at least half of L(§ | s),1.e. with a standardized likelihood
of at least 0.5 (see Figure 1.3). This interval provides direct evidence on the parameter of
interest and is related to the highest posterior density interval introduced in Section 3.3.2. On
the same figure, the classical 95% CI [0.505, 0.995] is indicated. In general, the 95% CI only
represents an interval of evidence when the likelihood function is symmetric. O

The second LP states that two likelihood functions for 6 contain the same information
about that parameter if they are proportional to each other. This is called the relative likelihood
principle. Thus, when the likelihood is proportional under two experimental conditions,
irrespective of the way the results were obtained, the information about the unknown parameter
must be the same. Example 1.8 contrasts in this respect the difference between the frequentist
and the likelihood viewpoints.
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Example 1.8: Another surgery experiment

Assume that the chief surgeon of another hospital wished to test the same surgical technique
introduced in Example 1.7 but decided to operate until k failures occur. The probability
of the observed number of successes is now expressed by the negative binomial (Pascal)
distribution. With 0 again the probability of success in a single experiment, the negative
binomial distribution is given by

gg(s):<s+ﬁ_1>95(l—€)k. (1.3)

Since s + k = n represents the total sample size, gq(s) differs from fy(s) only in the
binomial coefficient. The chief surgeon fixed k to 3. Suppose that again 9 successes were
realized. As a result, for both chief surgeons 9 successes and 3 failures were observed but
the mechanism for stopping the experiment (stopping rule) was different. We now show that
the stopping rule does not affect likelihood inference, in contrast to the frequentist approach

(see Example 1.8 (continued)).
n

For the first surgeon, the sum s = Y y; has a binomial distribution. Therefore, the likeli-
i=1
hood function given that s is observed is given by

Li(0]s) = (’;)05(1 —0)=9), (1.4)
On the other hand, for the second surgeon the likelihood is

L@ |s)= (") (1 — ). (1.5)

Since for the two surgery experiments s = 9and k = 3,L, (8 | 9) = (192)99(1 — 0)3 differs
fromL,(60 | 9) = (191)69 (1 — 6)3 only in a factor. According to the second likelihood principle,
the two experiments must, therefore, give us the same information about 6. This can be seen
in Figure 1.3, which shows that the binomial and the negative binomial likelihood result in
the same MLE and in the same intervals of evidence. |

The stopping rule affects, though, frequentist inference as seen in the following text.

Example L.8: (continued)

Suppose that we wish to test null-hypothesis Hy : 6 = 0.5 versus the alternative hypothesis
H, : 6 > 0.5 in a frequentist way. The significance test depends on the null distribution of the
test statistic, which is here the number of successes. For the binomial experiment, we obtain
under Hy:

12

p(s=916=05=) (12> 0.5 (1 —0.5)12. (1.6)

S
s=9

This gives an exact one-sided P-value of 0.0730. On the other hand, for the negative binomial
experiment we obtain under Hy:

p(sz9|9=0.5)=2(s—§2> 0.5 (1 —0.5)%, (1.7)

5s=9
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giving P = 0.0337. Thus, the significance of the test 8 = 0.5 depends on what other results
could have been achieved besides 9 successes and 3 failures. O

The example shows the fundamental difference between the likelihood and frequentist
approaches when dealing with stopping rules. The likelihood function is a central concept
in the two paradigms. But in the likelihood approach only the likelihood function is used,
while in the frequentist approach the likelihood function is used to construct significance tests.
Finally, note that the classical likelihood ratio test for the binomial experiment coincides with
that of the negative binomial experiment (see Exercise 1.1).

1.3 The Bayesian approach: Some basic ideas

1.3.1 Introduction

In Examples 1.7 and 1.8, the surgeons were interested in estimating the true proportion of
successful operations, i.e. 6, in order to decide upon the usefulness of the newly developed
surgical technique. Suppose that in the past the first surgeon experienced another technique
with similar difficulties and recollects that the first 20 operations were the most difficult
(learning curve). In that case, it is conceivable to think that he will implicitly or explicitly
combine this prior information with the outcome of the current experiment to draw his final
conclusions. In other words, he will adjust the obtained proportion of 9/12 in view of the past
experience, a process that is an example of a Bayesian exercise.

Research is not done in isolation. When planning a phase III RCT, comparing a new
treatment for treating breast cancer with a standard treatment, a lot of background information
has already been collected on the two treatments. This information has been incorporated in
the protocol of the trial, but is not explicitly used in the classical statistical analysis of the
trial results afterward. For example, when a small-scale clinical trial shows an unexpectedly
positive result, e.g. P < 0.01 in favor of the new treatment, the first reaction (certainly of the
drug company) might be ‘great’! However, if in the past none of such drugs had a large effect
and the new drug is biologically similar to the standard drug one would probably be cautious
in claiming strong effects. With the Bayesian approach, one can formally incorporate such
prior skepticism as will be seen in Chapter 5.

Take another example. A new mouthwash is introduced into the market and a study is set
up to show its efficacy. The study must evaluate whether daily use of the new mouthwash
before tooth brushing reduces plaque when compared to using tap water alone. The results
were that the new mouthwash reduced 25% of the plaque with a 95% CI = [10%, 40%]. This
seems to be a great result. However, previous trials on similar products showed that the overall
reduction in plaque lies between 5% to 15%, and experts argue that plaque reduction from a
mouthwash will probably not exceed 30%. What to conclude then?

An approach is needed that combines in a natural manner the past experience (call it
prior knowledge) with the results of the current experiment. This can be accomplished with
the Bayesian approach, which is based on Bayes theorem. In this chapter, we introduce the
basic (discrete) version of the theorem. General Bayesian statistical inference as well as its
connection with the likelihood approach will be treated in next chapters.

The central idea of the Bayesian approach is to combine the likelihood (data) with Your
prior knowledge (prior probability) to result in a revised probability (posterior probability).
The adjective “Your’ indicates that the prior knowledge can differ from individual to individual
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and thus might have a subjective flavor. It will imply that probability statements will not
necessarily have a long run frequency interpretation anymore as in the frequentist approach.

Before stating the fundamental theorem of Bayes, we illustrate that the Bayesian way of
thinking is naturally incorporated in our daily life.

Example 1.9: Examples of Bayesian reasoning in daily life
In everyday life, but also in our professional activities, we often reason and act according to
the Bayesian principle.

As a first example, assume that you visit Belgium for the first time. Belgium is a small
country located in Western Europe. It may well be that you never met a Belgian in the past.
Hence, prior to your visit your information (prior knowledge) about Belgians could range from
no information to some information that you gathered from travel books, e.g. that Belgians
produce excellent beers and chocolate. During your visit, you meet Belgians (data) so that
upon your return you have a revised impression (posterior knowledge) of how Belgian people
are. Consequently, your personal impression of Belgians will probably have changed.

Suppose that acompany wishes to launch for the first time an ‘energy’ drink. The marketing
director responsible for launching the product has many years of experience with energy drinks
from his previous job in another company. He believes that the drink will be a success (prior
belief). But, to strengthen his prior belief he conducts a small-field experiment (data), say by
setting up a booth in a shopping area delivering free samples of the drink to the target group
and eliciting their first reactions. After this limited experiment his prior faith in the product
will be reinforced or weakened (posterior belief) depending on the outcome of the experiment.

A cerebral vascular accident (CVA) is a life-threatening event. One of the causes of a
CVA is a blocked brain artery induced by a blood clot. This event is called an ischemic stroke.
Adequate treatment of a patient with an ischemic stroke to prevent lifelong disability is a
difficult task. One possibility is to dissolve the clot by a thrombolytic. However, choosing the
right dose of the drug is not easy. The higher the dose the higher the potency of dissolving
the clot but also the higher the risk of suffering from bleeding accidents. In the worst case,
the ischemic stroke is converted into a hemorrhagic stroke causing a severe bleeding in the
brain. Suppose that a new thrombolytic agent was developed and that there is some evidence
from animal models and experience with other thrombolytic agents that about 20% of the
patients (prior knowledge) might suffer from a severe bleeding accident (SBA) with this new
drug. A small pilot trial resulted in 10% of patients with a SBA (data). What can we conclude
for the true percentage of SBA (posterior knowledge) when combining the current evidence
with the past evidence? Bayes theorem allows us to tackle such prior—posterior questions. [1

1.3.2 Bayes theorem — discrete version for simple events

The simplest case of Bayes theorem occurs when there are only two possible events, say A and
B, which may or may not occur. A typical example is that A represents a positive diagnostic
test and B a diseased patient. When the event does not occur it is denoted as B¢ (patient is not
diseased) or A€ (diagnostic test is negative). Bayes theorem describes the relation between the
probability that A occurs (or not) given that B has occurred and the probability that B occurs
(or not) given that A has occurred.

Bayes theorem is based on the following elementary property in probability theory:
p(A,B) = p(A) - p(B|A) = p(B) - p(A | B), where p(A), p(B) are marginal probabilities
and p(A | B), p(B | A) are conditional probabilities. This leads to the basic form of the Bayes
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theorem (also called Bayes rule), given by

p(A|B)-p(B)
B|lA)=———. 1.8
p(B|A) A (1.8)
Because of the Law of Total Probability
p(A) =p(A|B) - p(B)+ p(A| BY) - p(BY), (1.9)

we can elaborate Bayes theorem in the following way:

p(A|B) - p(B)

B|A) = .
PEID) = By - pB) + p(A | BO) - pBO)

(1.10)

Expressions (1.8) and (1.10) can be read also as p(B | A) & p(A | B), where & means
‘proportional to’. Thus, Bayes theorem allows us to calculate the inverse probability p(B | A)
from p(A | B) and is, therefore, also called the Theorem on Inverse Probability.

In Example 1.10, we show that expression (1.10) has some advantages over expression
(1.8). In the example, we derive the positive and negative predictive value of a diagnostic test
from its sensitivity and specificity. Sensitivity (S,) is the probability of a positive diagnostic test
when the patient is indeed diseased. Specificity (S ) is the probability of a negative diagnostic
test when the patient is indeed not-diseased. When the event ‘diseased’ is represented by B, then
the event ‘nondiseased’ is B¢. Likewise, the event ‘positive diagnostic test’ can be represented
by A and the event ‘negative diagnostic test’ by AC. Thus, the sensitivity (specificity) is equal
to the probability p(A | B) (p(AC | BY)). The positive (negative) predictive value, on the other
hand, is the probability that the person is (not) diseased given a positive (negative) test. So,
in probability terms, the positive (negative) predictive value is equal to p(B | A) (p(B¢ | A9))
and is denoted as pred+ (pred—). In practice, the predictive values of a diagnostic are needed,
because they express the probability that a patient is (not) diseased given a positive (or a
negative test). When a 2 x 2 table of results is provided, pred+ and pred— can be readily
computed. However, often the predictive values are needed in a new population and then
we need Bayes theorem. Indeed, Bayes rule expresses the positive (negative) predictive
value as a function of the sensitivity and the specificity, and the marginal probability that B
happens (p(B)). This marginal probability is known as the prevalence of the disease and is
abbreviated as prev. Hence, Bayes rule offers us a tool to compute the predictive values in
each population once the prevalence in that population is available. The computation assumes
that the sensitivity and specificity are intrinsic qualities of the diagnostic test and do not vary
with the population (see also Example V.6). Example 1.10 is an illustration of the mechanics
of calculating the probability p(B | A) from p(A | B).

Example 1.10: Sensitivity, specificity, prevalence, and their relation to predictive values
Fisher and van Belle (1993) described the results of the Folin-Wu blood test, a screening test
for diabetes, on patients seen in the Boston City hospital. A group of medical consultants
established criteria for the gold standard, so that the true disease status is known. In Table 1.3,
the results on 580 patients are given. From this table, we determine S, = 56/70 = 0.80 and
Sp =461/510 = 0.90. The prevalence of the disease, as recorded in the Boston City hospital,
is equal to prev = 70/580 = 0.12. But we need the predictive values for different populations.
The world prevalence of diabetes is about 3%. Expression (1.10) can easily be transformed
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Table 1.3 Folin-Wu blood test: diagnostic test to detect
diabetes applied to 580 patients seen in the Boston City
Hospital (Fisher and van Belle 1993) split up according to true
disease status and outcome of diagnostic test.

Test Diabetic Nondiabetic Total
+ 56 49 105
— 14 461 475
Total 70 510 580

to an expression relating the predictive values to the intrinsic characteristics of the test and
the prevalence of diabetes. When suffering from diabetes is denoted as D, diabetes-free as
D™, a positive screening test as T+ and a negative screening test as 7, then Bayes theorem
translates into

p(I* | D). p(D)

pDT|TY) = . (1.11)
p(T* | D*) - p(D*) + p(T* | D7) - p(D7)
In terms of sensitivity, specificity and prevalence, Bayes theorem reads as
S, -
pred+ = ey (1.12)

Se-prev+ (1 —S,)- (1 —prev)’

The predictive values for a population are obtained by plugging-in the prevalence for that
population in expression (1.12). For p(B) = 0.03, the positive (negative) predictive value is
equal to 0.20 (0.99). |

The above calculations merely show the mechanics of Bayes theorem. We now show how
Bayes theorem could work in the office of a general practitioner (GP). Suppose an elderly
patient visits his GP for a check-up. The GP wishes to check whether his patient suffers
from diabetes or not. He knows that in his elderly population the prevalence of diabetes is
around 10%. The prior probability for that patient to suffer from diabetes is thus 0.10. The GP
takes a Folin-Wu blood test and a positive result appears. The outcome of this diagnostic test
represents the data. With Bayes theorem the physician can then formally combine his prior
belief with the data obtained from the diagnostic test to arrive at a positive predictive value
of 0.47 (posterior probability). The conclusion is that the patient has a reasonable chance of
suffering from diabetes and it is likely that more tests are needed to give assurance to the
patient. Note that in the above example, the prior probability was based on observed data, but
this is not a must. Indeed, the prior probability could originate from a guess, a hunch, a belief,
etc., from the treating GP. In that case, the prior and posterior probabilities will not have a
long-run frequency interpretation anymore.

We end this section with another illustration of Bayes theorem. In this case, we evaluate the
quality of published research findings in medicine. This example also highlights the difference
between the message a P-value brings us and the probability p(H, | data) (or the probability
of a positive result for the experimental treatment).
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Example I.11: The Bayesian interpretation of published research findings

Many medical research findings prove afterwards to be false and there is a growing concern
about such misreporting. loannidus (2005) examined the publishing behavior in current med-
ical research. More specifically, he calculated the probability of a falsely reported positive
result using Bayes theorem.

Suppose that classical significance tests are employed at significance level « (= P(type I
error)) and with the probability of a type II error equal to 8. Suppose also that the purpose
is to find true relationships between, say, risk indicators (life style, genetic disposition, etc.)
and a particular disease. If there are G (possibly very large) likely relationships to examine
with only one true relationship, then 1/G could be viewed as the prior probability of a true
research finding. Let R = 1/(G — 1) be the prior odds, then for ¢ relationships examined in
an independent manner on average c(1 — B8)R/(R + 1) are truly positive. On the other hand,
the average number of false positive findings is equal to car/(R + 1). Using Bayes theorem,
this results in a positive predictive value for a positive finding equal to

_d-pR (1.13)
(1—-PB)R+«

When (1 — )R > «, the posterior probability of finding a true relationship is higher
than 0.5. Thus, the power to find a positive result needs to be higher than 0.05/R for the
probability of finding a true relationship is relatively high, which is impossible for G large.
Toannidus (2005) then continues to quantify the effect of biased reporting on the probability of
a true scientific result and highlighted the dangers of the current reporting practice in medical
research. O

1.4 Outlook

Bayes theorem will be further developed in Chapter 2 in such a way that it can be used in
statistical practice. A first step will be to reanalyze examples such as those seen in this chapter,
whereby inference will be done without the help of fictive data and whereby prior information
on parameters may be incorporated if we feel the need to do so. But this is just a first step.
From an applied point of view, it is reasonable to ask what more a Bayesian analysis can do
than a classical frequentist analysis. However, to show what extra tools the Bayesian approach
can offer to the practitioner we will need at least six additional chapters. That the Bayesian
methodology has become popular only in the last decades is not without a reason. In the first
230 years, Bayesians were basically only selling their ideas, but could not offer a practical
tool. This situation has changed now. The Bayesian methods can handle far more complex
problems than classical approaches.

To let the reader taste already a bit of the possibilities of Bayesian methods, we
now reanalyze the toenail data of Example I.1. How the analysis was done will become
clear later.

Example 1.12: Toenail RCT: A Bayesian analysis

We reanalyzed the toenail data using the popular package WinBUGS. The aim is to show a
few of the possibilities of Bayesian methods without going into details on how the results were
obtained. The program can be found in ‘chapter 1 toenail.odc’. In the first analysis, we simply
replayed the original analysis. A typical output of WinBUGS is shown in Figure 1.4(a). The
(posterior) density represents what evidence we have on A after having seen the data. For
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Figure 1.4 Toenail RCT: (a) posterior distribution of A, (b) posterior distribution of 11/,
(c) posterior distribution of A, and (d) posterior distribution of o, /o both when taking prior
information into account.

instance, the area under the curve (AUC) on the positive x-axis represents our belief that A is
positive. This was here 0.98. In a classical analysis it would be more difficult to perform a test
on the ratio 1t /i». In a Bayesian analysis, this is just as easy as looking at the difference. The
posterior density on that ratio is shown in Figure 1.4(b) and the area under the curve (AUC)
for the interval [1, 0o) can be easily determined. In a Bayesian analysis, one can also bring in
prior information on the parameters of the model. Suppose we were skeptical about A being
positive and that we rather believed a priori that its value is around —0.5 (with of course some
uncertainty), then this information can be incorporated into our analysis. In the same way, we
can include information about the variance parameters. For instance, suppose that in all past
studies o5 was greater than o7 and that the ratio varied around 2. Then that finding can be
incorporated in the Bayesian estimation procedure. In Figure 1.4(c), we show the evidence
that A is positive taking into account the above-described prior information, which is now
0.95. Figure 1.4(d) shows the ratio of 0, /0, when the prior information on the variances was
taken into account. O

This example just shows a small portion of what nowadays can be done with Bayesian
methodology. In later chapters, we demonstrate the flexibility of the Bayesian methods and
software.

Exercises

Exercise 1.1 Show that the likelihood ratio test for the binomial distribution coincides with
the corresponding likelihood ratio test for the negative binomial distribution.

Exercise 1.2 Prove expression (1.13) based on A = “test is significant at «” and B =
“relationship is true”.



Bayes theorem: Computing
the posterior distribution

2.1 Introduction

In this chapter, we derive the general Bayes theorem and illustrate it with a variety of examples.
Comparisons of the Bayesian solution with the frequentist and the likelihood solution will be
made for a better understanding of the Bayesian concepts. In fact, inference will turn out to
be quite different from the classical case, even probability will get a different flavor in the
Bayesian paradigm.

2.2 Bayes theorem — the binary version

The Bayes theorem will now be applied to statistical models. The first step is to change the
notation in expression (1.11). Let us replace D* and D~ by a parameter 6 assuming two values,
ie. 0 =1 for D™ and & = 0 for D~. The results of the diagnostic test represent data, and
hence, T+ isrecoded asy = 1 and T~ as y = 0, then expression (1.11) can be reformulated as

pO=1]y=1)= py=116=1)-pO =1) @D
py=110=1)-p0 =1 +ply=1[6=0)-p@® =0)
In expression (2.1), p(6 = 1) (p(@ = 0)) represents the prevalence (1-prevalence) of a

disease in the context of Example 1.10, but in general it is called the prior probability that

6 =1 (6 = 0). The probability p(y = 1 | 8 = 1) describes the probability that a positive test

is obtained, given that & = 1. As a function of 0, it is the likelihood for & = 1 with a positive

test. Likewise, p(y = 1 | & = 0) describes the likelihood for & = 0 for a positive test. Here, the
terms p(y =1 |6 = 1) and p(y = 1 | 6 = 0) define completely the likelihood for 6. Finally,

p(@ =1]y=1) is the probability that an individual is diseased upon observing a positive

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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test. This probability is called the posterior probability and is derived from combining the
prior information with the observed data.

By classical probability rules, the denominator of expression (2.1) is p(y), so that a
shorthand notation of expression (2.1) is

p@ |y) = L) 22)
py)
where 6 can stand for 6 = 0 or & = 1. Note also that the rule immediately applies to random
variables y that are categorical or continuous. In the latter case then p(y | ) represents a
density.

Since Bayes theorem follows immediately from probability rules, Cornfield (1967) noted
‘Actually Bayes result follows so directly from the formal definitions of probability and related
concepts that it is perhaps overly solemn to call it a theorem at all.” However, this should not
be interpreted as a criticism to this ingenious result, on the contrary. The ingenious idea Bayes
had 250 years ago is to give parameters a stochastic nature as can be seen from expressions
(2.1) and (2.2). At first sight, this may look bizarre since in classical statistics a parameter
is assumed to be fixed. In the Bayesian paradigm, however, a parameter is stochastic but the
term stochastic does not necessarily imply a classical meaning, as will be seen in Section 2.3.

2.3 Probability in a Bayesian context

When tossing a (honest) coin, two types of probabilities come into play. First, there is the
classical probability that a coin will show heads when tossed up. For an ‘honest’ coin, this
probability is 0.50 since the proportion of times that heads will show converges to 0.50 as the
tossing experiment proceeds. In this case, the probability has a long-run frequency meaning.
Now suppose that a coin is tossed only once but the result is hidden and you are asked about
the probability that it is heads. Suppose you do not believe that there exist honest coins then
you might give it a probability of 0.6. This kind of probability expresses your personal belief
on the outcome of the experiment and is typically an example of a Bayesian probability.

For a medical example, assume that patients are screened for diabetes. The probability that
a patient suffers from diabetes is equal to the prevalence of diabetes in the population. Condi-
tional on a positive screening test, the probability that a patient suffers from diabetes is then
equal to the prevalence of diabetes patients in the subpopulation of positively tested patients.
Both probabilities have a long-run frequency interpretation. Now suppose that a physician
examines a patient for diabetes, then prior to the screening test the patient’s probability for
diabetes is equal to the prevalence of diabetes in the whole population but after the positive
result it changes to the prevalence of diabetes in the subpopulation. Applied to the individual
patient, these probabilities become expressions of the physician’s belief in the patient’s health
status. This is again an example of a Bayesian probability.

Hence when we speak of probabilities they can have two meanings. They might express a
limiting proportion that an event happens in a true or fictive experiment or they might express
a personal belief that this event will happen or has happened. The first type of probability is
called objective, while the second type is called subjective. Subjective probabilities express
our uncertainties in life in a probabilistic language. We can be uncertain about basically all
things in life, but typically these uncertainties exhibit a great range, may change in time and
vary with the individual. For instance, there is always a lot of speculation of the future winner
of the Tour de France. The prior opinion of the fans of a specific cyclist that he will win
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the Tour certainly differs from that of sports journalists and bookmakers and probably also
from the prior opinion of the cyclist himself. In addition, these opinions will change when
the Tour unfolds and definitely become clearer when the mountains stage has been taken.
Another example is the speculation in the past about whether global warming is taking place.
Nowadays there is little doubt about this, but the speculation is now about how fast global
warming will take place and to what extent, and even more importantly how it will affect our
lives. These speculations varied and still vary considerably across individuals and in time.

Hence, subjective probabilities are probabilistic reformulations of our uncertainty. In
order for them to be used in computations, they should have the same properties as classical
probabilities, i.e. those that have the long-run frequency nature. This means that they need
to satisfy the axioms of a probability system. In particular for mutually exclusive events
Ay, Ay, ..., Ax with the total event S (A; or A or ... or Ag), a (subjective) probability p
should have the following properties:

e Foreachevent A (from Ay, A,, ..., Ax): 0 < p(A) < 1.

e The sum of all probabilities should be one: p(S) = p(A; or A, or...or Ax) = 1, and
also p(AjorAjor...orAy) = p(A) + p(Aj) + ...+ p(Ap).

¢ The probability that event A will not happen (event A®) is 1 — the probability that A
will happen: p(A€) = 1 — p(A).

® Suppose By, B», ..., By represent another subdivision of S, then
p(A;, Bj)
p(A;i | B) = ———,
p(B))

with p(A;, B;) the probability that A; and B; happen together and p(A; | B;) the condi-
tional probability that A; happens given that B; has already happened.

In short, subjective probabilities should constitute a coherent system of probabilities. Surely
for pure mathematicians this description of a probability system is too naive. For a more
mathematical description of a probability system and different axiom systems, they could
consult Press (2003).

In his book on understanding uncertainty, Lindley (2006) argues that probability is a totally
different concept from, say, distance. The distance between two points is the same for all of
us, but that is the not case with probability of events since it depends on the person looking at
the world. Therefore, he prefers to talk about your probability instead of the probability.

2.4 Bayes theorem — the categorical version

Suppose a subject can belong to K > 2 diagnostic classes corresponding to K values for 6:
01, 0,, ..., 0k. Assuming that y can take on L different values: yy, ..., y., then Bayes theorem
generalizes to

p(y | 6x) p(6r)
Y PO 6) PO

PO |y) = (2.3)

where y stands for one of the possible values in {y;, ..., y.}.
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In expression (2.3), the parameter is discrete but the data y can be discrete or continuous.
When the observed data are multidimensional, the random variable y is turned into a random
vector y. Expression (2.3) shows that Bayes theorem provides a rule to classify individuals
into one of K diagnostic classes based on the prior belief that they belong to that class and
the observed data. Developing classification models is a broad research area in statistics
covering a great range of applications. Many of the classification techniques are based on
Bayes theorem. For instance, Lesaffre and Willems (1988) examined the ability to predict
a heart-related disease using electrocardiogram measurements and used thereby basically
expression (2.3). The prior probabilities were obtained from the relative proportions of the
diagnostic classes in the population.

2.5 Bayes theorem - the continuous version

Let us now look at how we can learn about a (one-dimensional) continuous parameter 6
based on collected data and given prior information on 6. The data y can again be discrete or
continuous such that p(y | €) represents a distribution function or a density function. Because
in a Bayesian context, parameters are assumed to be stochastic, we assume here that 6 is
a continuous random variable. Let y represent a sample of n i.i.d. observations. The joint
distribution of the sample is given by p(y | 6) = []_, p(yi | 6), which we also denote as
L© |y).

For a discrete parameter, the prior information was expressed as a discrete probability
distribution, but for a continuous parameter, our prior information needs to be specified
differently. Only prior statements that 0 lies in a particular interval make sense. This leads to
a probability density function for 6, which we again denote as p(6).

Bayes theorem or rule can be derived in a similar manner as before. Namely, when the
data and the parameter are stochastic, the joint distribution p(y, 6) can be split up into either
p(y | 0)p0) or p(6 | y)p(y). This yields Bayes rule for continuous parameters, i.e.

L@ |yp®) L@ |y)p®)

2 = = .
PE1y) () TLO | y)p©)do

2.4)

The interpretation of expression (2.4) is as follows: when the prior opinion about the
parameter expressed as a distribution p(@) is combined with the observed data, the opinion
will be updated and is expressed by the posterior distribution p(6 | y). Figure 2.3 shows a
prior distribution that is transformed into a posterior distribution after having observed data y.
Expression (2.4) also tells us that when both the prior and the likelihood support a particular
60, then this 6 is also supported a posteriori. But, if 6 is not supported by either the prior
distribution or the likelihood or both, then neither 6 is supported a posteriori. Finally, the
denominator of Bayes theorem ensures that p(6 | y) is indeed a distribution. Expression (2.4)
shows that the posterior distribution is proportional to the product of the likelihood with the
prior distribution, i.e.

p(@ |y) o< L(O | y)p(0),

since the denominator is depending only on the observed data which is assumed to be fixed
in a Bayesian context.
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The denominator in expression (2.4) is called the averaged likelihood because it is the
weighted average of L(6 | y) over the possible values of 6 with a weight function given by
the prior distribution p(@). Note that expression (2.4) could be viewed as a limiting form of
expression (2.3) when the number of possible parameter values increases to infinity.

Finally, let there be no misunderstanding: it can also be assumed in the Bayesian paradigm
that there is a true parameter value 6. Indeed, we regard 6 as stochastic because we do not
know its true value and, therefore, express our belief on 6y. The ultimate purpose of a
Bayesian analysis is to get a good idea of this true value 6y by combining data and prior
information.

It is now time to show the mechanics of Bayes theorem in more detail. Three cases are
exemplified: the binomial, the normal and the Poisson case. For each of the cases, a medical
example is used as guidance: (a) a stroke clinical trial for the binomial case, (b) a dietary
cross-sectional study for the normal case, and (c) a dental study on caries experience for the
Poisson case. In the remainder of the book, prior and posterior are shorthand notations for
prior and posterior distributions, respectively. For each of the cases, the prior will be specified
on the basis of historical studies possibly combined with ‘expert” knowledge.

2.6 The binomial case

The following example in stroke research illustrates the mechanism of Bayes theorem when
the data are discrete and the parameter is continuous.

Example II.1: Stroke study: Monitoring safety of a thrombolytic drug administered
for ischemic stroke
Patients suffer from a stroke or cerebrovascular accident (CVA), when brain cells die or are
seriously damaged due to ischemia (ischemic stroke) or bleeding (hemorrhagic stroke) im-
pairing the local brain function. About 70% of strokes are ischemic, resulting from blockage
of a blood vessel as a result of atherosclerotic plaques or an embolus from another vessel. An
ischemic stroke is treated with a thrombolytic drug that reperfuses the blocked blood vessel
as quickly as possible. Early attempts with streptokinase given within 6 hours of stroke onset
were terminated prematurely because they resulted in more deaths and bleeding complications
(Donnan et al. 1996). Administration of recombinant tissue plasminogen activator (rt-PA),
a more recent type of thrombolytic, gave more promising results (placebo-controlled RCTs
(randomized controlled clinical trials) ECASS 1 (Hacke et al. 1995) and ECASS 2 (Hacke
et al. 1998)). However, for all thrombolytic drugs, an important bleeding complication is
symptomatic intercerebral hemorrhage (SICH) defined as an intracerebral hemorrhage asso-
ciated with neurological deterioration. A third ECASS study, the ECASS 3 study, was set
up and finalized in 2008 (Hacke et al. 2008) to further document the outcome (efficacy and
safety) of patients with acute ischaemic hemispheric stroke in whom rt-PA can be initiated
between 3 and 4.5 hours after onset of symptoms. The trial ended after 821 patients were
enrolled in the study (418 to rt-PA and 403 to placebo). The result was that significantly
(P = 0.04) more patients had a favorable outcome (absence of disability at 90 days) with
rt-PA than with placebo (52.4% vs. 45.2%). Here, we focus on statistical aspects during the
conduct of the trial, but the data are fictive. Indeed, the study only serves as a motivation for
the statistical developments.

Clinical trials on life-threatening diseases most often have a committee of clinicians and
statisticians, called the Data and Safety Monitoring Board (DSMB), which monitors the
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study at regular time intervals. In this respect, interim analyses reporting on the safety of the
administered treatments are evaluated by the DSMB. In the ECASS 3 study, there was a need
to monitor the incidence of SICH. There existed prior data from ECASS 1 and ECASS 2
and from a meta-analysis of other trials on SICH. For instance, in the ECASS 2 study SICH
occurred in 8.8% in the 409 rt-PA treated patients.

Suppose now that the ECASS 3 DSMB is asked to examine the interim results of rt-PA
treated stroke patients with an emphasis on SICH and in the light of the results of the ECASS
2 study. For ease of exposition, we assume that in the ECASS 2 study 100 patients were
treated with rt-PA and 8 patients suffered from SICH. Assume also that at the first interim
analysis of the ECASS 3 study, 50 patients were treated with rt-PA and that SICH occurred in
10 patients. The DSMB wishes to obtain an accurate picture of the risk for SICH. The results
of the first interim analysis could be viewed in separation of the ECASS 2 data, but it seems
reasonable to informally or formally combine the two sources of information. The decision
to continue or to stop the trial (stopping rule) will then involve the combined ECASS 2 and
ECASS 3 results.

We now (a) compare the different approaches (frequentist, likelihood and Bayesian) to
estimate the incidence of SICH in the first interim analysis of the ECASS 3 study; (b) exemplify
the mechanics of calculating the posterior distribution using Bayes theorem, and (c) compare
various Bayesian analyses differing by the prior distribution.

Let the probability of showing SICH (SICH incidence) under rt-PA be 6 and y;, ..., y, a
sample of 7 i.i.d. Bernoulli random variables with y; = 1 if the ith patient suffered from SICH
and O otherwise. Then the random variable y = Z'f y; has a binomial distribution Bin(n, 0),
given by p(y [ 0) = ()6 (1 — )",

Likelihood and frequentist approach

The information that the data provide on 6 is expressed by the likelihood function. In the
likelihood approach, preference for certain 6-values is given via inspecting the likelihood
function at these values. The MLE of the incidence of SICH in the first interim analysis of
the (fictive) ECASS 3 study, i.e. 0, is equal to y/n = 10/50 = 0.20. The binomial likelihood
function and the MLE are shown in Figure 2.1. The ‘0.05 interval of evidence’, i.e. the interval
that contains 6s with a standardized likelihood of at least 0.05 (Section 1.2.2), is equal to
[0.09, 0.36].

In the frequentist approach, one could test the hypothesis whether 6 = 0.08, which is
the result obtained from the ECASS 2 study, with a binomial test or a Z-test. The classical
95% confidence interval (CI) based on the asymptotic normal distribution of 0 is equal to
[0.089, 0.31].

Bayesian approach: Prior obtained from ECASS 2 study

1. Specifying the (ECASS 2) prior distribution

The data collected in the ECASS 2 study provide valuable information, and it would be a flaw
to ignore them. As mentioned above, in the rt-PA arm of our (fictive) ECASS 2 study 8 (= y¢)
patients out of 100 (= ny) suffered from SICH. The corresponding likelihood is L(0 | yy) =
(;‘: )67 (1 — )™= and yields the most likely value for 6, i.e. 6y = yo/no = 0.08. Figure 2.2
shows that the ECASS 2 data do not support much a proportion (of patients suffering from
SICH) outside the interval [0.02, 0.18]. In fact, the ECASS 2 likelihood expresses our opinion
about 0 based on a study conducted prior to the ECASS 3 study. Thus, the ECASS 2 likelihood
may be used to express our prior belief on 6 for the ECASS 3 study. As a function of 0, the
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Figure 2.1 Stroke study: binomial likelihood for first interim analysis in the (fictive) ECASS
3 study.

likelihood function is not a distribution since the area under L(6 | yo) is not equal to 1. But the
area under the curve (AUC) can easily be turned to 1. For instance, when f L@ |y)do =a,
then p(0) = L(60 | yo)/a (‘proportional to likelihood’ in Figure 2.2) satisfies the requirements
of a prior distribution. The calculation of the AUC involves in general a numerical procedure,
but here analytical calculations are possible which we will now show.

The kernel of the binomial likelihood of the ECASS 2 study, 67 (1 — 0) =y g up to a
constant value, the expression of a beta density, i.e.

1
0) = ———— 0% (1 — o) !, 2.5
p©) Blao. fo) ( ) (2.5)
o |
T Proportional to
likelihood
o
0
Likelihood

0.00 005 0.10 015 020 025 0.30
0

Figure 2.2 Stroke study: binomial likelihood obtained from ECASS 2 study and the rescaled
likelihood (proportional to likelihood) equal to Beta(é | 9, 93).
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with

_ I'(e)l(B) _ a=1,1 _ pyB—1
B(a, B) = —F(a—l—,B) = /9 (1—-0)~"de,

and I'(-) the gamma function. When « is replaced by yo+ 1 and By by nop —yo + 1 in
expression (2.5), the ECASS 2 likelihood is obtained up to a constant. In other words, to turn
the prior likelihood into a distribution of 6 we need to replace the binomial coefficient by
1/B(ag, Bo). Figure 2.2 shows the beta density with ¢g = 9 and By = 100 — 8 + 1 = 93.

The beta distribution with parameters « and § is denoted as Beta(x, §) and represents a
flexible family of distributions defined on the unit interval.

2. Constructing the posterior distribution

The task of the DSMB is to protect the safety of the patients enrolled in the ECASS 3 trial,
and therefore, all the existing evidence about the safety of the drug needs to be taken into
consideration. On the other hand, the DSMB should also be aware of the natural variability
of the statistical information collected in an interim analysis. Especially in an early interim
analysis, the gathered information is limited and prone to high variability. Prior information
obtained from the ECASS 2 study could, therefore, be useful for the first ECASS 3 interim
analysis to yield, when combined with the data obtained from the interim analysis, an updated
estimate of the safety.

The ingredients of expression (2.4) applied to this setting are (a) the prior p(6), here
obtained from the ECASS 2 study; (b) the likelihood L(6 | y), here obtained from the rt-PA
treated patients from the first ECASS 3 interim analysis (remember that y = 10 and n = 50);
and (c) the averaged likelihood f L@@ | y)p(0)do. The numerator of Bayes theorem is the
product of the prior and the likelihood and is equal to

n 1
L6 0) = R 9l¥0+y*1 1—6 ﬁo+n7yfl.
@10 pe) (y) Blao. fo) (-6

The averaged likelihood p(y) = f L0 | y) p(0)de is readily obtained when one realizes
that 6%=1 (1 — )Pot"=y=1 5 the kernel of a beta density with parameters o« + y and By +
n —y. Hence,

P(y) _ <n) B(a0+y, ,30+n—)’)

y B(ap, Bo)

Combining the numerator and the denominator, results in the posterior distribution for 6
and is given by

PO | y) = —— 671 (1 —0)P! (2.6)
B@, B) ’ '

where @ = o + y and B = By + n — y. Then the posterior (2.6) corresponds again to a beta
distribution, i.e. Beta(@, f) with @ = 19 and B = 133. For the first interim analysis of the
ECASS 3 study, the beta prior, the binomial likelihood (scaled to have AUC=1), and the beta
posterior are graphically displayed in Figure 2.3.
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Figure 2.3 Stroke study: beta prior density, binomial likelihood, and beta posterior density.

3. Characteristics of the posterior distribution
Our computations and Figure 2.3 illustrate the following properties of the posterior
distribution:

® The posterior is a compromise of the prior and the likelihood function since the posterior

lies midway between the prior and the likelihood function (Figure 2.3). This can also
be seen numerically as follows: let the prior be obtained from a binomial experiment
with yy successes in ng experiments. The value that maximizes the prior distribution,
i.e. the ‘most plausible’ a priori value of 6 is 8y = yy/no, while for the likelihood it
is the MLE 0= y/n. The value that maximizes the posterior distribution p(6 | y) is
Oy =@ —1)/@+p —2) = (y+yo)/n+ no), then

-~ no n

Oy = 0o + 0. 2.7
= T 2.7

This shows that the most plausible value a posteriori is a weighted average of the
most plausible value a priori and the most plausible value calculated from the data. It
also shows that there is shrinkage toward 6, i.e. 6y < é\M < 5 when yg/ng < y/n. The
reverse inequality holds when y/n < yo/ng.

The posterior contains more information about the parameter of interest than the prior
and the likelihood function separately since the posterior is more concentrated than
the prior and the likelihood function. Consequently, an a posteriori statement about
the parameter 6 will be more precise than the prior statement and the information
represented by the likelihood function. However, when the prior distribution is ‘in
conflict” with the likelihood, the beta posterior might be less concentrated than that of
the beta prior (Exercise 2.1). Note that the prior and the likelihood are in conflict when
they support largely different values for 6.

From the expressions of @ and 8, we conclude that when the study size increases (y and
n increase) the impact of the prior parameters (g and fBy) on the posterior decreases.
This result is classically coined as ‘the likelihood dominates the prior for large sample
sizes’.
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e The posterior is of the same type (beta) as the prior. This property is called conjugacy
and will be treated in more generality in Chapter 5.

Finally, since the prior distribution in the stroke example is based on prior data, the
maximum posterior value for 0, (y+ yo)/(n+ ng), is in fact the MLE of the combined
experiment (data from ECASS 2 and interim analysis data from ECASS 3). This is a reflection
of the implicit assumption that the conditions under which the ECASS 2 and ECASS 3 studies
were conducted are identical, and hence, we in fact assumed that the past data are exchangeable
with the present data. More on exchangeability can be found in Chapter 3.

4. Equivalence of prior information and extra data

The aforementioned reasoning shows that a Beta(x, B) prior is equivalent to a binomial
experiment with (o« — 1) successes in (o + f — 2) experiments. Further, the scaled likelihood
is equal to a Beta(y + 1, n — y + 1)-distribution and adding the Beta(wg, By) prior to the data
yields the Beta(ay + y, Bo + n — y)-distribution. Summarized, the prior corresponds to adding
extra data to the observed data set, (oo — 1) successes and (By — 1) failures. This equivalence
of prior information and ‘imaginary’ data can be used to construct prior distributions that
combine elegantly with the likelihood allowing even to use frequentist software for estimation
purposes (see Chapter 3 and subsequent chapters).

Bayesian approach: Using a subjective prior

Suppose that at the start of the ECASS 3 study, the DSMB neurologists believed that the
incidence of SICH lies probably between 5% and 20%. If their prior belief coincides with
the prior density p(6) as obtained from the ECASS 2 study data, then all posterior inference
would be the same as before. Indeed, nowhere in Bayes theorem is it specified how the prior
information should be collected.

The neurologists could also combine their qualitative prior belief with the data collected
in the ECASS 2 study in order to construct a prior distribution. For instance, suppose that
the patient population in the ECASS 3 study is on average 5 years older than in the ECASS
2 study. In that case, the neurologists might adjust the prior distribution obtained from the
ECASS 2 study toward higher incidences, as done in Figure 2.4.

© ECASS 2
= posterior
Subjective

° posterior

ECASS 2 Subjective
© 4 prior : prior
o — LS TN

0.0 0.1 0.2 0.3 0.4

Figure 2.4 Stroke study: prior and posterior based on the ECASS 2 study data or based on
a subjective prior belief.
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Figure 2.5 Stroke study: prior, likelihood, and posterior based on flat prior.

Bayesian approach: No prior information is available

When there is little prior information available or when one is reluctant to use the available
prior knowledge, a prior distribution is needed that expresses our lack of information. Such
a prior is called a noninformative (NI) prior. Other terms used in the literature are weakly
informative, vague, diffuse, etc.

A popular NI prior for 6 is a uniform distribution, also called a flat prior. Since 6 has
support [0, 1], we take the uniform distribution on the unit interval, i.e. U(0, 1), to express that
we have no preference for any particular value for 8. Why this flat prior may be a good choice is
seen from combining the prior with the data collected in the ECASS 3 study. Using expression
(2.4), we immediately see that this yields a posterior that is equal to the scaled likelihood (see
Figure 2.5). Hence, it appears that the flat prior has done a good job in expressing our lack of
knowledge since the posterior distribution depends only on the likelihood. We also see that
the posterior only depends on the data and not on the prior distribution. Note that a uniform
prior is a beta distribution with parameters « = g = 1. O

2.7 The Gaussian case

The binomial likelihood combined with a beta prior produces a beta posterior. A similar
conjugacy property holds in the Gaussian case, since a normal likelihood combined with a
normal prior gives a normal posterior. As in Section 2.6 the results will be derived by making
use of a motivating example which is now a dietary survey conducted in Belgium about two
decades ago.

Example I1.2: Dietary study: Monitoring dietary behavior in Belgium

There is an increasing awareness that we should improve our life style. In Western Europe,
a variety of campaigns have been set up in the last decades to give up smoking and to
render our diet more healthy, say by lowering our daily consumption of saturated fat. As
a consequence, there is a tendency to lowering the intake of dietary cholesterol in order to
lower the serum cholesterol. Around 1990 a dietary survey, the Inter-regional Belgian Bank
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Employee Nutrition Study (IBBENS) (Den Hond et al. 1994), was set up to compare the
dietary intake in different geographical areas in Belgium, especially in Flanders.

The IBBENS study was performed in eight subsidiaries of one bank situated in seven
Dutch-speaking cities in the north and in one French-speaking city in the south of Belgium.
The food habits of 371 (66%) male and 192 female healthy employees with average age 38.3
years were examined by a 3-day food record with an additional interview. The results showed
regional differences in fat consumption.

Here, we look at the intake of cholesterol. First, we describe the results obtained in the
IBBENS study. These data will then be used to create a prior density for the IBBENS-2 study,
a fictive dietary survey organized 1 year after the IBBENS study to monitor the evolution in
dietary behavior of the Belgian population.

Bayesian approach: Prior obtained from the IBBENS study
1. Specifying the (IBBENS) prior distribution
Figure 2.6(a) shows the histogram of the dietary cholesterol in mg/day (chol) of the 563
bank employees. The approximating Gaussian distribution pinpoints that chol has a slightly
positively skewed distribution. To simplify matters, we will assume that chol has a Gaussian
distribution, but as shown below, this assumption is not crucial for a large sample. The
observed mean chol is 328 mg/day with a standard deviation equal to 120.3 mg/day.

Let the random variable y has a normal distribution with mean p and standard deviation
o, then its density is

1 27 2
exp|—(y—n)/207|. (2.3)
V2w o [ ]
We denote this as y ~ N(u, 02) or N(y | u, 02). To simplify matters, we assume in this
chapter that o is known. For a sample y = {y, ..., y,} of i.i.d. Gaussian random variables,
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Figure 2.6 Dietary study: (a) histogram of dietary cholesterol obtained from the IBBENS
study and approximating normal distribution, and (b) normal likelihood for unknown popu-
lation mean L.
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the likelihood is

1 1 n
Ly = Gy on exp [_ﬁ Z()’i - M)2j| . (2.9
i_1

Because Y (yi — w)? = Y (y; — ¥)> + Y (3 — w)?, with  the sample average of the y;,
we can rewrite expression (2.9) as

1 s 2
L(u | y) o Lk | 3) o exp [—5 ((’I‘N;) } (2.10)

Expression (2.10) is the kernel of a Gaussian distribution with mean y and variance o2 /n.
But, even when y does not have a Gaussian distribution, the likelihood will still have an
(approximately) normal shape for a large sample size according to the classical Central Limit
Theorem (CLT).

In order to use the IBBENS data as prior information for the IBBENS-2 study, we need
to change the notation slightly. Namely, the random variable that expresses the dietary intake
of cholesterol in the IBBENS study will now be denoted as y, the sample of observations of
size ny as yo = {yo,1, - - -, Yo,x,} and the sample mean as y,,.

From expression (2.10) and using the above change in notation, it is immediately seen that,
up to a factor, the likelihood is given by the normal curve N(u | ®o, 002) (see Figure 2.6(b)),
where (o =Y, and og = o //ng is the standard error of the mean. For the IBBENS, o =
120.3/+/563 = 5.072. Thus, the IBBENS prior distribution is

1 1 [ — o 2
Z , 2.11
P = exp[ 2( - )} @.11)

with py =y, and has the same shape as that of Figure 2.6(b).

2. Constructing the posterior distribution

Suppose that, to monitor dietary behavior in Belgium, and more specifically cholesterol
intake, a new dietary survey was set up and finished one year after the IBBENS ended.
Because of budget limitations, the new study was much smaller (n = 50). The average intake
of cholesterol in this IBBENS-2 study was 318 mg/day with SD = 119.5 mg/day with 95%
CI = [284.3, 351.9] mg/day.

The 95% CI is wide because the IBBENS-2 study is small sized. The CI is based on only
the IBBENS-2 data, but is this reasonable? Do we believe that the IBBENS cannot learn us
anything about the mean dietary intake in Belgium? This is, though, the c