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Preface

The growth of biostatistics as a subject has been phenomenal in recent years and has been
marked by a considerable technical innovation in methodology and computational practicality.
One area that has a significant growth is the class of Bayesian methods. This growth has taken
place partly because a growing number of practitioners value the Bayesian paradigm as
matching that of scientific discovery. But the computational advances in the last decade that
have allowed for more complex models to be fitted routinely to realistic data sets have also
led to this growth.

In this book, we explore the Bayesian approach via a great variety of medical application
areas. In effect, from the elementary concepts to the more advanced modeling exercises, the
Bayesian tools will be exemplified using a diversity of applications taken from epidemiology,
exploratory clinical studies, health promotion studies and clinical trials.

This book grew out of a course that the first author has taught for many years (especially)
in the Master programs in (bio)statistics at the universities of Hasselt and Leuven, both in
Belgium. The course material was the inspiration for two out of three parts in the book.
Therefore, the intended readership of this book are Master program students in (bio)statistics,
but we hope that applied researchers with a good statistical background will also find the
book useful. The structure of the book allows it to be used as course material for a course
in Bayesian methods at an undergraduate or early stage postgraduate level. The aim of the
book is to introduce the reader smoothly into Bayesian statistical methods with chapters that
gradually increase in the level of complexity. The book consists of three parts. The first two
parts of this work were the chapters primarily covered by the first author, while the last five
chapters were primarily covered by the second author.

In Part I, we first review the fundamental concepts of the significance test and the associated
P-value and note that frequentist methods, although proved to be quite useful over many years,
are not without conceptual flaws. We also note that there are other methods on the market,
such as the likelihood approach, but more importantly, the Bayesian approach. In addition,
we introduce (an embryonic version of) the Bayes theorem. In Chapter 2, we derive the
general expression of Bayes theorem and illustrate extensively the analytical computations
to arrive at the posterior distribution on the binomial, the Gaussian and the Poisson case. For
this, simple textbook examples are used. In Chapter 3, the reader is introduced to various
posterior summary measures and the predictive distributions. Since sampling is fundamental
to contemporary Bayesian approaches, sampling algorithms are introduced and exemplified in
this chapter. While these sampling procedures will not yet prove their usefulness in practice,
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we believe that the early introduction of relatively simple sampling techniques will prepare
the reader better for the advanced algorithms seen in later chapters. In this chapter, approaches
to Bayesian hypothesis testing are treated and we introduce the Bayes factor. In Chapter 4, we
extend all the concepts and computations seen in the first three chapters for univariate problems
to the multivariate case, introducing also Bayesian regression models. It is then seen that, in
general, no analytical methods to derive the posterior distribution are available, neither are the
classical numerical approaches to integration sufficient. A new approach is then needed. Before
addressing the solution to the problem, we treat in Chapter 5 the choice of the prior distribution.
The prior distribution is the keystone to the Bayesian methodology. Yet, the appropriate choice
of the prior distribution has been the topic of extensive discussions between non-Bayesians
and Bayesians, but also among Bayesians. In this chapter, we extensively treat the various
ways of specifying prior knowledge. In Chapters 6 and 7, we treat the basics of the Markov
chain Monte Carlo methodologies. In Chapter 6, the Gibbs and the Metropolis–Hastings
samplers are introduced again illustrated using a variety of medical examples. Chapter 7 is
devoted to assessing and accelerating the convergence of the Markov chains. In addition, we
cover the extension of the EM-algorithm to the Bayesian context, i.e. the data augmentation
approach is exemplified. It is then time to see how Bayesian analyses can be done in practice.
For this reason, we review in Chapter 8 the Bayesian software. We focus on two software
packages: the most popular WinBUGS and the recently released Bayesian SAS® procedures.
In both cases, a simple regression analysis serves as a guiding example helping the readers in
their first analyzes with these packages. We end this chapter with a review of other Bayesian
software, such as the packages OpenBUGS and JAGS, and also various R packages written
to perform specific analyses.

In Part II, we develop Bayesian tools for statistical modeling. We start in Chapter 9 with
reviewing hierarchical models. To fix ideas, we focus first on two simple two-level hierarchical
models. The first is the Poisson-gamma model applied to a spatial data set on lip cancer cases in
former East Germany. This example serves to introduce the concepts of hierarchical modeling.
Then, we turn to the Gaussian hierarchical model as an introduction to the more general mixed
models. A variety of mixed models are explored and amply exemplified. Also in this chapter
comparisons between frequentist and Bayesian solutions aim to help the reader to see the
differences between the two approaches. Model building and assessment are the topics of
Chapter 10. The aim of this chapter is to see how statistical modeling could be performed
entirely within the Bayesian framework. To this end, we reintroduce the Bayes factor (and
its variants) to select between two statistical models. The Bayes factor is an important tool in
model selection but is also fraught with serious computational difficulties. We then move to
the Deviance Information Criterion (DIC). For a better understanding of this popular model
selection criterion, we introduce at length the classical model selection criteria, i.e. AIC and
BIC and relate them to DIC. The part on model checking describes all classical actions one
would take to construct and evaluate a model, such as checking the residuals for outliers and
influential observations, finding the correct scale of the response and the covariates, choosing
the correct link function, etc. In this chapter, we also elaborate on the posterior predictive
check as a general tool for goodness-of-fit testing. The final chapter, Chapter 11, in Part II
handles Bayesian variable selection. This is a rapidly evolving topic that received a great
impetus from the developments in bioinformatics. A broad overview of possible variable and
model selection approaches and the associated software is given. While in the previous two
chapters, the WinBUGS software and to a lesser extent the Bayesian SAS procedures were
dominant, in this chapter we focus on software packages in R.
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In Part III, we address particular application areas for Bayesian modeling. We include the
most important areas from a practical biostatistical standpoint. In Chapter 12, we examine
bioassay, where we consider preclinical testing methods: both Ames and Mouse Lymphoma
in vitro assays and the famous Beetles LD50 toxicity assay are considered. In Chapter 13, we
consider the important and pervasive problem of measurement error and also the misclassi-
fication in biostatistical studies. We discuss Berkson and classical joint models, bias such as
attenuation and the problem of discrete error in the form of misclassification. In Chapter 14,
we examine survival analysis from a Bayesian perspective. In this chapter, we cover basic
survival time models and risk-set-based approaches and extend models to consider contextual
effects within hazards. In Chapter 15, longitudinal analysis is considered in greater depth.
Correlated prior distributions for parameters and also temporally correlated errors are con-
sidered. Missingness mechanisms are discussed and a nonrandom missingness example is
explored. In Chapter 16, two important spatial biostatistical application areas are then con-
sidered: disease mapping and image analysis. In disease mapping, basic Poisson convolution
models that include spatially structured random effects are examined for risk estimation, while
in image analysis a focus on Bayesian fMRI analysis with correlated prior distributions is
presented.

In Chapter 17, we end the book with a brief review of the topics that we did not cover
in this book and give some key references for further reading. Finally, in the appendix, we
provide an overview of the characteristics of most popular distributions used in Bayesian
analyses.

Throughout the book there are numerous examples. In Parts I and II, explicit reference
is made to the programs associated with the examples. These programs can be found at
the website www.wiley.com/go/bayesian_methods_biostatistics. The pro-
grams used in Part III can also be found at this website.
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Notation, terminology and some
guidance for reading the book

Notation and terminology

In this section, we review some notation used in the book. We limit ourselves to outline some
general principles; for precise definitions, we refer to the text.

First, both the random variable and its realization are denoted in this book as y. The vector
of covariates is most often denoted as x. The distribution of a discrete y as well as the density
of a continuous variable will be denoted as p(y), unless otherwise stated. In the text, we make
clear which of the two meanings applies. A sample of observations y1, . . . , yn is denoted as
y, but also, a d-dimensional vector will be denoted in bold, i.e. y. We make it clear from
the context what is implied. Further, independent, identically distributed random variables
are indicated as i.i.d. A distribution (density) depending on a parameter vector θ is denoted
as p(y | θ). The joint distribution of y and z is denoted as p(y, z | θ) and the conditional
distribution of y, given z will be denoted as y | z, θ ∼ p(y | z, θ). Alternatively, we use the
notation p(y | z, θ). The probability that an event happens will occasionally be denoted as P
for reasons of clarity.

A particular distribution will be addressed in two ways. For example, y ∼ Gamma(α, β)

indicates that the random variable y has a gamma distribution with parameters α and β, but
to indicate that the distribution is evaluated in y we will use the notation Gamma(y | α, β).
When parameters have been given almost the same notation, say β0, β1, β3, then the notation
β∗ is used where ∗ is a place holder for 1, 2, 3.

In the normal case, some Bayesian textbooks use the precision notation while others use the
variance notation. More specifically, if y has a normal distribution with mean µ and variance
σ 2, then instead of y ∼ N(µ, σ 2) (classical notation) the alternative notation y ∼ N(µ, τ−1)

(or even y ∼ N(µ, τ )) with the precision τ = σ−2 is used by some. This alternative notation
is inspired by the fact that in Bayesian statistics some key results are better expressed in terms
of the precision rather than the variance. This is also the notation used by WinBUGS. In
this book, we frequently refer to classical, frequentist statistics. The use of precision would
then be more confusing, rather than illuminating. In addition, when it comes to summarizing
the results of a statistical analysis, the standard deviation is a better tool than the precision.
For these reasons, we primarily used in this book the variance notation. But, throughout the
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xviii NOTATION, TERMINOLOGY AND SOME GUIDANCE FOR READING THE BOOK

book (especially in the later chapters) we regularly make the transition from one notation to
the other.

Finally, we use some generally accepted standard notations, such as x always denotes a
column vector, |A| denotes the determinant of a matrix A, tr(A) is the trace of a matrix and AT

denotes the transpose of a matrix A. The sample mean of {y1, y2, . . . , yn} is denoted as y and
their standard deviation as s, sy or simply SD.

Guidance for reading the book

No particular guidance is needed to read this book. The flow in the book is natural: starting
from elementary Bayesian concepts we gradually introduce the more complex topics. This
book deals, basically, only with parametric Bayesian methods. This means that all our random
variables are assumed to have a particular distribution with a finite number of parameters. In
the Bayesian world, many more distributions are used than in classical statistics. So for the
classical reader (whatever meaning this may have), many of the distributions that pop-up in
the book will be new. A brief characterization of these distributions, together with a graphical
display, can be found in the appendix of the book.

Finally, some of the sections indicated by ‘∗’ are technical and may be skipped at first
reading.
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1

Modes of statistical inference

The central activity in statistics is inference. Statistical inference is a procedure or a collection
of activities with the aim to extract information from (gathered) data and to generalize the
observed results beyond the data at hand, say to a population or to the future. In this way,
statistical inference may help the researchers in suggesting or verifying scientific hypotheses,
or decision makers in improving their decisions. Inference obviously depends on the collected
data and on the assumed underlying probabilistic model that generated these data, but it also
depends on the approach to generalize from the known (data) to the unknown (population). We
distinguish two mainstream views/paradigms to draw statistical inference, i.e. the frequentist
approach and the Bayesian approach. In-between these two paradigms is the (pure) likelihood
approach.

In most of the empirical research, but definitely in medical research, scientific conclusions
need to be supported by a ‘significant result’ using the classical P-value. Significance testing
belongs to the frequentist paradigm. However, the frequentist approach does not consist of one
unifying theory but is rather the combination of two approaches, i.e. the inductive approach
of Fisher who introduced the null-hypothesis, the P-value and the significance level and the
deductive procedure of Neyman and Pearson who introduced the alternative hypothesis and
the notion of power. First, we review the practice of frequentist significance testing and focus
on the popular P-value. More specifically we look at the value of the P-value in practice.
Second, we treat an approach that is purely based on the likelihood function not involving any
classical significance testing. This approach is based on two fundamental likelihood principles
that are also essential for the Bayesian philosophy. Finally, we end this chapter by introducing
the principles of the Bayesian approach and we give an outlook of what the Bayesian approach
can bring to the statistician. However, at least three more chapters will be needed to fully
develop the Bayesian theory.

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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1.1 The frequentist approach: A critical reflection

1.1.1 The classical statistical approach

It is perhaps an oversimplification to speak of a classical statistical approach. Nevertheless, we
mean by this the ensemble of methods that provides statistical inference based on the classical
P-value, the significance level, the power and the confidence interval (CI). To fix ideas, we
now exemplify current statistical practice with a randomized controlled clinical trial (RCT).
In fact, the RCT is the study design that, by excellence, is based on the classical statistical
tool box of inferential procedures. We assume that the reader is familiar with the classical
concepts in inferential statistics.

For those who have never experienced a RCT, here is a brief description. A clinical trial
is an experimental study comparing two (or more) medical treatments on human subjects,
most often patients. When a control group is involved, the trial is called controlled. For a
parallel group design, one group of patients receives one treatment and the other group(s)
receive(s) the other treatment and all groups are followed up in time to measure the effect
of the treatments. In a randomized study, patients are assigned to the treatments in a random
manner. To minimize bias in evaluating the effect of the treatments, patients and/or care givers
are blinded. When only patients are blinded one speaks of a single-blinded study, but when
both patients and care givers are blinded (and everyone involved in running the trial) one
speaks of a double-blinded trial. Finally, when more than one center (e.g. hospital) is involved
one deals with a multicenter study.

Example I.1: Toenail RCT: Evaluation of two oral treatments for toenail infection using
the frequentist approach
A randomized, double-blind, parallel group, multicenter study was set up to compare the
efficacy of two oral treatments for toenail infection (De Backer et al. 1996). In this study,
two groups of 189 patients were recruited, and each received 12 weeks of treatment (Lamisil:
treatment A and Itraconazol: treatment B), with 48 weeks of follow-up (FU). The significance
level was set at α = 0.05. The primary endpoint (upon which the sample size was based) in
the original study was negative mycology, i.e. a negative microscopy and a negative culture.
Here, we look at another endpoint, i.e. unaffected nail length at week 48 on a subset of patients
for whom the big toenail was the target nail. One hundred and thirty-one patients treated with
A and 133 treated with B were included in this comparison. Note that we only included those
patients present at the end of the study. The observed mean (SD) lengths in millimeter at
week 48 were 9.07 (4.92) and 7.70 (5.33), for treatments A and B, respectively. Suppose
the (population) average for treatment A is µ1 while for treatment B it is µ2. Therefore, the
null-hypothesis is H0 : � = µ1 − µ2 = 0 and can be evaluated with an unpaired t-test at a
two-sided significance level of α = 0.05. Upon completion of the study, the treatment estimate
was �̂ = 1.38 with an observed value of the t-statistic equal to tobs = 2.19. This result lies
in the rejection region corresponding to α = 0.05 yielding a statistically significant result (at
0.05). Thus, according to the Neyman–Pearson (NP) approach we (can) reject that A and B
are equally effective.

It is common to report also the P-value of the result to indicate the strength of evidence
against the hypothesis of two equally effective treatments. Here, we obtained a two-sided
P-value equal to 0.030, which is a measure of evidence against H0 in a Fisherian sense.



P1: JYS/XYZ P2: ABC
JWST177-c01 JWST177-Lesaffre May 26, 2012 10:26 Printer Name: Yet to Come Trim: 244mm × 168mm

THE FREQUENTIST APPROACH: A CRITICAL REFLECTION 5

In Section 1.1.2, we reflect on what message the P-value can bring to the researcher. We
will also indicate what properties the P-value does not have (but assumed to have).

1.1.2 The P-value as a measure of evidence

Fisher developed the P-value in the context of well-planned limited agricultural experiments
in a time when computations had to be done by hand. Nowadays, a great variety of studies
are undertaken in the medical research usually of an exploratory nature and often evaluating
hundreds to thousands of P-values. The P-value is an intuitively appealing measure against
the null-hypothesis, but that it is not always perceived in the correct manner. Here, we will
further elaborate on the use and misuse of the P-value in practice.

The P-value is not the probability that H0 is (not) true A common error is to interpret
the P-value as a probability that H0 is (not) true. However, the P-value only measures the
extremeness of the observed result under H0. The probability that H0 is true is formally
p(H0 | data), which we shall call the posterior probability of the null-hypothesis in the
following text, given the observed data. This probability is based on Bayes theorem and
depends on the prevalence of H0 (see also Example I.11).

The P-value depends on fictive data The P-value does not express the probability that the
observed result occurred under H0, but is rather the probability of observing this or a more
extreme result under H0. This implies that the calculation of the P-value is based not only on
the observed result but also on fictive (never observed) data.

Example I.2: Toenail RCT: Meaning of P-value
The P-value is equal to the probability that the test statistic exceeds the observed value if the
null-hypothesis were true. The computation of the P-value is done using probability laws, but
could also be represented by a simulation experiment. For instance, in the toenail infection
study the P-value is approximately equal to the proportion of studies, out of (say) 10 000
imaginary studies done under H0 (two identical treatments), that yield a t-value more extreme
than tobs = 2.19. In Figure 1.1, the histogram of imaginary results is displayed together with
the observed result.

The P-value depends on the sample space The above simulation exercise shows that the
P-value is computed as a probability using the long-run frequency definition, which means that
a probability for an event A is defined as the ultimate proportion of experiments that generated
that event to the total number of experiments. For a P-value, the event A corresponds to a
t-value located in the rejection region. This makes it clear that the P-value depends on the
choice of the fictive studies and, hence, also on the sample space. The particular choice can
have surprising effects, as illustrated in Example I.3.

Example I.3: Accounting for interim analyses in a RCT
Suppose that a randomized controlled trial has been set up to compare two treatments and
that four interim analyses for efficacy were planned. An interim analysis for efficacy is a
statistical comparison between the treatment groups prior to the end of the study to see
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Figure 1.1 Graphical representation of the P-value by means of a simulation study under
H0.

whether the experimental treatment is better than the control treatment. The purpose is to
stop the trial earlier if possible. When more than one comparison is planned, one needs
to correct in a frequentist approach for multiple testing. A classical correction for multiple
testing is Bonferroni’s rule which dictates that the significance level at each comparison
(nominal significance level) needs to be made more stringent, i.e. α/k where k is the total
number of tests applied, to arrive at an overall (across all comparisons) type I error rate less
or equal to α. Bonferroni’s procedure is approximate; an exact control of the type I error
rate is obtained with a group sequential design (Jennison and Turnbull 2000). With Pocock’s
group sequential method and 5 analyses (4 interim + 1 final analyses), a significance level of
0.016 is handled at each analysis to achieve a global significance level of 0.05. Thus, when
the study ran until the end and at the last analysis a P-value of 0.02 was obtained, then the
result cannot be claimed significant with Pocock’s rule. However, if the same result had been
obtained without planning interim analyses, then this trial produced a significant result! Thus,
in the presence of two identical results, one cannot claim evidence against the null-hypothesis
in one case, while in the other case we would conclude that the two treatments have a
different effect.

In statistical terminology, the different evidence for the treatment effect in the two RCTs
of Example I.3 (with an identical P-value) is due to a different sample space (see below) in
the two scenarios. This is further illustrated in Example I.4.

Example I.4: Kaldor’ et al. case-control study: Illustration of sample space
In the (matched) case-control study (Kaldor et al. 1990) involving 149 cases (leukaemia
patients) and 411 controls, the purpose was to examine the impact of chemotherapy on
leukaemia in Hodgkin’s survivors (Ashby et al. 1993). The 5-year survival of Hodgkin’s
disease (cancer of the lymph nodes) is about 80%, but the survivors have an excess risk of
developing solid tumors, leukaemia and/or lymphomas. In Table 1.1, the cases and controls
are subdivided according to exposure to chemotherapy or not.
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Table 1.1 Kaldor’ et al. case-control study (Kaldor
et al. 1990): frequency table of cases and controls
subdivided according to their exposure to chemotherapy.

Treatment Controls Cases

No chemo 160 11
Chemo 251 138

Total 411 149

Ignoring the matched character of the data, the analysis of the 2 × 2-contingency table by
a Pearson chi-squared test results in P = 7.8959 × 10−13 with a chi-squared value of 51.3.
With the Fisher’s exact test, a P-value of 1.487 × 10−14 was obtained. Finally, the estimated
odds ratio is equal to 7.9971 with a 95% CI of [4.19, 15.25].

The chi-squared test and the Fisher’s exact test have a different sample space, which is
the space of possible samples considered to calculate the null distribution of the test statistic.
The sample space for the chi-squared test consists of the 2 × 2-contingency tables with the
same total sample size (n), while for Fisher’s exact test the sample space consists of
the subset of 2 × 2-contingency tables with the same row and column marginal totals. The
difference between the two sample spaces explains here partly the difference in the two test
results. In Example I.3, it is the sole reason for the different evidence from the two RCTs.
The conclusion of a scientific experiment, hence, not only depends on the results of that
experiment but also on the results of experiments that did not and will never happen. This
finding has triggered a lot of debate among statisticians (see Royall 1997).

The P-value is not an absolute measure A small P-value does not necessarily imply a
large difference between two treatments or a strong association among variables. Indeed, as a
measure of evidence the P-value does not take the size of the study into account. There have
been vivid discussions on how a small P-value should be interpreted as a function of the size
of the study (see Royall 1997).

The P-value does not take all evidence into account Let us take the following example
also discussed by Ashby et al. (1993).

Example I.5: Merseyside registry results
Ashby et al. (1993) reported on data obtained from a subsequent registry study in UK
(after Kaldor et al.’s case-control study) to check the relationship between chemotherapy and
leukemia among Hodgkin’s survivors. Preliminary results of the Merseyside registry were
reported in Ashby et al. (1993) and are reproduced in Table 1.2. The P-value obtained from
the chi-squared test with continuity correction equals 0.67. Thus, formally there is no reason
to worry that chemotherapy may cause leukemia among Hodgkin’s survivors. Of course,
every epidemiologist would recognize that this study has no chance of finding a relationship
between chemotherapy and leukemia because of the small study size. By simply analyzing
the data of the Merseyside registry, no evidence of a relationship can be established.
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Table 1.2 Merseyside registry: frequency table
of cases and controls subdivided according to
their exposure to chemotherapy.

Treatment Controls Cases

No chemo 3 0
Chemo 3 2

Total 6 2

Is it reasonable to analyze the results of the Merseyside registry in isolation, not referring
to the previous study of Kaldor et al. (1990)? In other words, should one forget about the
historical data and assume that one cannot learn anything from the past? The answer will
depend on the particular circumstances, but it is not obvious that the past should never play a
role in the analysis of data.

1.1.3 The confidence interval as a measure of evidence

While the P-value has been criticized by many statisticians, it is more the (mis)use of the
P-value that is under fire. Nevertheless, there is a growing preference to replace the P-value
by the (95%) CI.

Example I.6: Toenail RCT: Illustration of 95% confidence interval
The 95% CI for � is equal to [0.14, 2.62]. Technically speaking we can only say that in the
long run 95% of those intervals will contain the true parameter (the 95% CI is based on the
long-run frequency definition of probability). But for our RCT, the 95% CI will either contain
the true parameter or not (with probability 1)! In our communication to nonstatisticians, we
never use the technical definition of the CI. Rather, we say that the 95% CI [0.14, 2.62]
expresses that we are uncertain about the true value of � and that it most likely lies between
0.14 and 2.62 (with 0.95 probability).

The 95% CI expresses our uncertainty about the parameter of interest and as such is
considered to give better insight into the relevance of the obtained results than the P-value.
However, the adjective ‘95%’ refers to the procedure of constructing the interval and not to
the interval itself. The interpretation that we give to nonstatisticians has a Bayesian flavor as
will be seen in Chapter 2.

1.1.4 An historical note on the two frequentist paradigms∗

In this section, we expand on the difference between the two frequentist paradigms and how
they have been integrated in practice into an apparently one unifying approach. This section
is not essential for the remainder of the book and can be skipped. A more in-depth treatment
of this topic can be found in Hubbard and Bayarri (2003) and the papers of Goodman (1993,
1999a, 1999b) and Royall (1997).
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The Fisherian and the NP approach are different in nature but are integrated in current
statistical practice. Fisher’s views on statistical inference are elaborated in two of his books:
Statistical Methods for Research Workers (Fisher 1925) and The Design of Experiments (Fisher
1935). He strongly advocated the inductive reasoning to generate new hypotheses. Fisher’s
approach to inductive inference goes via the rejection of the null-hypothesis, say H0 : � = 0.

His significance test constitutes of a statistical procedure based on a test statistic for which
the sampling distribution, given that � = 0 holds, is determined. He called the probability
under H0 of obtaining the observed value of that test statistic or a more extreme one, the
P-value. To Fisher, the P-value was just a practical tool for inductive inference whereby the
smaller the P-value implies a greater evidence against � = 0. Further, according to Fisher
the null-hypothesis should be ‘rejected’ when the P-value is small, say less than a prespecified
threshold α = 0.05 called the level of significance. Fisher’s rule for rejecting H0 is, therefore,
when P ≤ 0.05, but he recognized (Fisher 1959) that rejection may have two meanings: either
that an exceptionally rare chance has occurred or the theory (according to the null-hypothesis)
is not true.

In their approach to statistical testing, Neyman and Pearson (1928a, 1928b, 1933) needed
an alternative hypothesis (Ha), say � �= 0. Once the data have been observed, the investigator
needs to decide between two actions: reject H0 (and accept Ha) or accept H0 (and reject Ha). NP
called their procedure an hypothesis test. Their approach to research has a decision theoretic
flavor, i.e. decision makers can commit two errors: (1) type I error with probability P(type I
error) = α (type I error rate) when H0 is rejected while in fact true and (2) type II error
with probability P(type II error) = β (type II error rate) when Ha is rejected while in fact
true. In this respect they introduced the power of a test, equal to 1 − β for an alternative
hypothesis Ha : � = �a. NP argued that a statistical test must minimize the probability of
making the wrong decision and demonstrated (Neyman and Pearson 1933) that the well-
known likelihood-ratio test minimizes β for given a value for α. The NP approach is in fact
deductive and reasons from the general to the particular and thereby makes claims from the
particular to the general only in the long run. NP strived that one shall not be wrong too
often. In other words, they rather advocated ‘inductive behavior’. Fisher strongly disliked this
viewpoint and both parties ended up in a never-ending debate.

Despite the strong historical disagreement between the proponents of the two approaches,
nowadays the two philosophies are mixed up and presented as a unifying methodology.
Hubbard and Bayarri (2003) (see also references therein) warned for the confusion this
unification might imply, especially for the danger that the P-value is wrongly interpreted as
a type I error rate. Indeed, the P-value was introduced by Fisher as a surprise index vis-à-vis
the null-hypothesis and in the light of the data. It is an a posteriori determined probability.
A problem occurs when the P-value is given the status of an a priori determined error rate.
For example, suppose the significance level is α = 0.05, chosen in advance. Thus, if upon
completion of the study, we obtain P = 0.023 we say that H0 is rejected at 0.05. However, we
cannot say that H0 is rejected at the 0.025 level, because in this sense α is chosen after the
facts and P obtains the status of a prespecified level. In medical papers, the P-value is often
given the nature of a prespecified value. For instance when significant results are indicated by
asterisks, e.g. ‘∗’ for P < 0.05, ‘∗∗’ for P < 0.01 and ‘∗∗∗’ for P < 0.001, then the impression
is created that for a ‘∗∗’ result significance at 0.01 can be claimed. Following Carl Popper
(Popper 1959), Fisher claimed that one can never accept the null-hypothesis, only disprove
it. In contrast, according to the NP approach subsequent to the hypothesis test there are two
possible actions: one ‘rejects’ the null-hypothesis (and accepts the alternative hypothesis) or
vice versa. This creates another clash of the two approaches. Namely, if the NP approach
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is the basis for statistical inference, then there is in principle no problem in accepting the
null-hypothesis. However, one of the basic principles in classical statistical practice is never
to accept H0 in case of a nonsignificant result that is in the spirit of Fisher’s significance
testing. Note that in clinical trials the standard approach is the NP approach, but accepting the
null-hypothesis would be a major flaw.

Because of the above difficulties with the P-value and that classical statistical inference
is claimed to be not coherent, Goodman (1993, 1999a, 1999b) and others advocated to use
Bayesian inference tools such as the Bayes factor. Having said this, others still regard it as a
useful tool in some circumstances. For instance, Hill (1996) writes: ‘Like many others, I have
come to regard the classical P-value as a useful diagnostic device, particularly in screening
large numbers of possibly meaningful treatment comparisons.’ Further, in some cases (one-
sided hypothesis testing) the P-value and Bayesian inference come close (see Section 3.8.3).
Finally, Weinberg (2001) argues that ‘It is time to stop blaming the tools, and turn our attention
to the investigators who misuse them.’

1.2 Statistical inference based on the likelihood function

1.2.1 The likelihood function

The concept of likelihood was introduced by Fisher (1922). It expresses the plausibility of
the observed data as a function of the parameters of a stochastic model. As a function of the
parameters the likelihood is called the likelihood function. Statistical inference based on the
likelihood function differs fundamentally from inference based on the P-value, although both
approaches were promoted by Fisher as a tool for inductive inference. To fix ideas, let us
look at the likelihood function of a binomial sample. The following example dates back to
Cornfield (1966) but is rephrased in terms of a surgery experiment.

Example I.7: A surgery experiment
Assume that a new but rather complicated surgical technique was developed in a hospital
with a nonnegligible risk for failure. To evaluate the feasibility of the technique the chief sur-
geon decides to operate on n = 12 patients with this new procedure. Upon completion of the
12 operations, he reports s = 9 successes. Let the outcome of the ith operation be denoted
as yi = 1 for a success and yi = 0 for a failure. The total experiment yields a sample of n
independent binary observations {y1, . . . , yn} ≡ y with s successes. Assume that the probabil-
ity of success remains constant over the experiment, i.e. p(yi) = θ , (i = 1, . . . , n). Then the
probability of the observed number of successes is expressed by the binomial distribution, i.e.
the probability that s successes out of n experiments occur when the probability of success in
a single experiment is equal to θ , is given by

fθ (s) =
(

n
s

)
θ s (1 − θ )n−s with s =

n∑
i=1

yi, (1.1)

where fθ (s) is a discrete distribution (as a function of s) with the property that
n∑

s=0
fθ (s) = 1.

When s is kept fixed and θ is varying, fθ (s) becomes a continuous function of θ , called
the binomial likelihood function. The likelihood function could be viewed as expressing the
plausibility of θ in the light of the data and is therefore denoted as L(θ | s). The graphical
representation of the binomial likelihood function is shown in Figure 1.2(a) for s = 9 and
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Figure 1.2 Surgery experiment: likelihood (a) and log-likelihood function (b) corresponding
to s = 9 successes out of n = 12 operations from Example I.7.

n = 12. The figure shows that values of θ close to zero and close to one are not supported by
the observed result of 9 successes out of 12 operations. On the other hand, values above 0.5
and below 0.9 are relatively well supported by the data with the value θ = 9/12 = 0.75 best
supported.

The value of θ that maximizes L(θ | s) is called the maximum likelihood estimate (MLE)
and is denoted as θ̂ . To determine θ̂ , we maximize L(θ | s) with respect to θ . It is equivalent
and easier to maximize the logarithm of L(θ | s), called the log-likelihood, and denoted as
�(θ | s).

Example I.7: (continued)
The log-likelihood for the surgery experiment is given by

�(θ | s) = c + [s log θ + (n − s) log(1 − θ )], (1.2)

where c is a constant. The first derivative with respect to θ gives the expression s
θ

− (n−s)
(1−θ )

.

Equating this expression to zero gives the MLE equal to s/n, and thus, θ̂ = 0.75 (for s = 9
and n = 12), which is the sample proportion. Figure 1.2(b) shows �(θ | s) as a function
of θ .

1.2.2 The likelihood principles

Inference based on the likelihood function naturally adheres to two likelihood principles (LP)
(Berger and Wolpert 1984):

1. Likelihood principle 1: All evidence, which is obtained from an experiment, about an
unknown quantity θ is contained in the likelihood function of θ for the given data.

2. Likelihood principle 2: Two likelihood functions for θ contain the same information
about θ if they are proportional to each other.
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Figure 1.3 Surgery experiments: binomial and negative binomial (Pascal) likelihood func-
tions together with MLE and interval of at least 0.5 maximal evidence and the classical
two-sided 95% CI.

The first LP implies that the choice between two values of an unknown parameter is made
via the likelihood function evaluated at those values. This leads to the standardized likelihood
and the interval of evidence, which will be introduced in Example I.7 (continued) below.

Example I.7: (continued)
The binomial likelihood for s = 9 and n = 12 is maximal at θ̂ = 0.75. In a frequentist context,
we could test the observed proportion against an a priori chosen value for θ , say 0.5 and we
calculate a 95% CI for θ .

According to the likelihood function, there is maximal evidence for θ = 0.75. The ratio
of the likelihood functions at θ = 0.5 and at θ = 0.75 can be used as a measure of the relative
evidential support given by the data for the two hypotheses. This ratio is called the likelihood
ratio and is here equal to 0.21. The function L(θ | s)/L(θ̂ | s) (here L(θ | s)/L(0.75 | s)) is
called the standardized likelihood. On the standardized likelihood scale, one can read off that
the evidence for θ = 0.5 is about 1/5 the maximal evidence. Note that this comparison does
not involve any fictive data, only the observed data play a role.

One can also construct an interval of parameter values that show at least a fraction of the
maximal evidence. For instance, the interval of (at least half of the maximal) evidence consists
of those θ -values that correspond to at least half of L(θ̂ | s), i.e. with a standardized likelihood
of at least 0.5 (see Figure 1.3). This interval provides direct evidence on the parameter of
interest and is related to the highest posterior density interval introduced in Section 3.3.2. On
the same figure, the classical 95% CI [0.505, 0.995] is indicated. In general, the 95% CI only
represents an interval of evidence when the likelihood function is symmetric.

The second LP states that two likelihood functions for θ contain the same information
about that parameter if they are proportional to each other. This is called the relative likelihood
principle. Thus, when the likelihood is proportional under two experimental conditions,
irrespective of the way the results were obtained, the information about the unknown parameter
must be the same. Example I.8 contrasts in this respect the difference between the frequentist
and the likelihood viewpoints.
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Example I.8: Another surgery experiment
Assume that the chief surgeon of another hospital wished to test the same surgical technique
introduced in Example I.7 but decided to operate until k failures occur. The probability
of the observed number of successes is now expressed by the negative binomial (Pascal)
distribution. With θ again the probability of success in a single experiment, the negative
binomial distribution is given by

gθ (s) =
(

s + k − 1
s

)
θ s (1 − θ )k . (1.3)

Since s + k = n represents the total sample size, gθ (s) differs from fθ (s) only in the
binomial coefficient. The chief surgeon fixed k to 3. Suppose that again 9 successes were
realized. As a result, for both chief surgeons 9 successes and 3 failures were observed but
the mechanism for stopping the experiment (stopping rule) was different. We now show that
the stopping rule does not affect likelihood inference, in contrast to the frequentist approach
(see Example I.8 (continued)).

For the first surgeon, the sum s =
n∑

i=1
yi has a binomial distribution. Therefore, the likeli-

hood function given that s is observed is given by

L1(θ | s) = (n
s

)
θ s(1 − θ )(n−s). (1.4)

On the other hand, for the second surgeon the likelihood is

L2(θ | s) = (n−1
s

)
θ s(1 − θ )(n−s). (1.5)

Since for the two surgery experiments s = 9 and k = 3, L1(θ | 9) = (12
9

)
θ9(1 − θ )3 differs

from L2(θ | 9) = (11
9

)
θ9(1 − θ )3 only in a factor. According to the second likelihood principle,

the two experiments must, therefore, give us the same information about θ . This can be seen
in Figure 1.3, which shows that the binomial and the negative binomial likelihood result in
the same MLE and in the same intervals of evidence.

The stopping rule affects, though, frequentist inference as seen in the following text.

Example I.8: (continued)
Suppose that we wish to test null-hypothesis H0 : θ = 0.5 versus the alternative hypothesis
Ha : θ > 0.5 in a frequentist way. The significance test depends on the null distribution of the
test statistic, which is here the number of successes. For the binomial experiment, we obtain
under H0:

p(s ≥ 9 | θ = 0.5) =
12∑

s=9

(
12
s

)
0.5s (1 − 0.5)12−s. (1.6)

This gives an exact one-sided P-value of 0.0730. On the other hand, for the negative binomial
experiment we obtain under H0:

p(s ≥ 9 | θ = 0.5) =
∞∑

s=9

(
s + 2

s

)
0.5s (1 − 0.5)3, (1.7)
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giving P = 0.0337. Thus, the significance of the test θ = 0.5 depends on what other results
could have been achieved besides 9 successes and 3 failures.

The example shows the fundamental difference between the likelihood and frequentist
approaches when dealing with stopping rules. The likelihood function is a central concept
in the two paradigms. But in the likelihood approach only the likelihood function is used,
while in the frequentist approach the likelihood function is used to construct significance tests.
Finally, note that the classical likelihood ratio test for the binomial experiment coincides with
that of the negative binomial experiment (see Exercise 1.1).

1.3 The Bayesian approach: Some basic ideas

1.3.1 Introduction

In Examples I.7 and I.8, the surgeons were interested in estimating the true proportion of
successful operations, i.e. θ , in order to decide upon the usefulness of the newly developed
surgical technique. Suppose that in the past the first surgeon experienced another technique
with similar difficulties and recollects that the first 20 operations were the most difficult
(learning curve). In that case, it is conceivable to think that he will implicitly or explicitly
combine this prior information with the outcome of the current experiment to draw his final
conclusions. In other words, he will adjust the obtained proportion of 9/12 in view of the past
experience, a process that is an example of a Bayesian exercise.

Research is not done in isolation. When planning a phase III RCT, comparing a new
treatment for treating breast cancer with a standard treatment, a lot of background information
has already been collected on the two treatments. This information has been incorporated in
the protocol of the trial, but is not explicitly used in the classical statistical analysis of the
trial results afterward. For example, when a small-scale clinical trial shows an unexpectedly
positive result, e.g. P < 0.01 in favor of the new treatment, the first reaction (certainly of the
drug company) might be ‘great’! However, if in the past none of such drugs had a large effect
and the new drug is biologically similar to the standard drug one would probably be cautious
in claiming strong effects. With the Bayesian approach, one can formally incorporate such
prior skepticism as will be seen in Chapter 5.

Take another example. A new mouthwash is introduced into the market and a study is set
up to show its efficacy. The study must evaluate whether daily use of the new mouthwash
before tooth brushing reduces plaque when compared to using tap water alone. The results
were that the new mouthwash reduced 25% of the plaque with a 95% CI = [10%, 40%]. This
seems to be a great result. However, previous trials on similar products showed that the overall
reduction in plaque lies between 5% to 15%, and experts argue that plaque reduction from a
mouthwash will probably not exceed 30%. What to conclude then?

An approach is needed that combines in a natural manner the past experience (call it
prior knowledge) with the results of the current experiment. This can be accomplished with
the Bayesian approach, which is based on Bayes theorem. In this chapter, we introduce the
basic (discrete) version of the theorem. General Bayesian statistical inference as well as its
connection with the likelihood approach will be treated in next chapters.

The central idea of the Bayesian approach is to combine the likelihood (data) with Your
prior knowledge (prior probability) to result in a revised probability (posterior probability).
The adjective ‘Your’ indicates that the prior knowledge can differ from individual to individual
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and thus might have a subjective flavor. It will imply that probability statements will not
necessarily have a long run frequency interpretation anymore as in the frequentist approach.

Before stating the fundamental theorem of Bayes, we illustrate that the Bayesian way of
thinking is naturally incorporated in our daily life.

Example I.9: Examples of Bayesian reasoning in daily life
In everyday life, but also in our professional activities, we often reason and act according to
the Bayesian principle.

As a first example, assume that you visit Belgium for the first time. Belgium is a small
country located in Western Europe. It may well be that you never met a Belgian in the past.
Hence, prior to your visit your information (prior knowledge) about Belgians could range from
no information to some information that you gathered from travel books, e.g. that Belgians
produce excellent beers and chocolate. During your visit, you meet Belgians (data) so that
upon your return you have a revised impression (posterior knowledge) of how Belgian people
are. Consequently, your personal impression of Belgians will probably have changed.

Suppose that a company wishes to launch for the first time an ‘energy’ drink. The marketing
director responsible for launching the product has many years of experience with energy drinks
from his previous job in another company. He believes that the drink will be a success (prior
belief). But, to strengthen his prior belief he conducts a small-field experiment (data), say by
setting up a booth in a shopping area delivering free samples of the drink to the target group
and eliciting their first reactions. After this limited experiment his prior faith in the product
will be reinforced or weakened (posterior belief) depending on the outcome of the experiment.

A cerebral vascular accident (CVA) is a life-threatening event. One of the causes of a
CVA is a blocked brain artery induced by a blood clot. This event is called an ischemic stroke.
Adequate treatment of a patient with an ischemic stroke to prevent lifelong disability is a
difficult task. One possibility is to dissolve the clot by a thrombolytic. However, choosing the
right dose of the drug is not easy. The higher the dose the higher the potency of dissolving
the clot but also the higher the risk of suffering from bleeding accidents. In the worst case,
the ischemic stroke is converted into a hemorrhagic stroke causing a severe bleeding in the
brain. Suppose that a new thrombolytic agent was developed and that there is some evidence
from animal models and experience with other thrombolytic agents that about 20% of the
patients (prior knowledge) might suffer from a severe bleeding accident (SBA) with this new
drug. A small pilot trial resulted in 10% of patients with a SBA (data). What can we conclude
for the true percentage of SBA (posterior knowledge) when combining the current evidence
with the past evidence? Bayes theorem allows us to tackle such prior–posterior questions.

1.3.2 Bayes theorem – discrete version for simple events

The simplest case of Bayes theorem occurs when there are only two possible events, say A and
B, which may or may not occur. A typical example is that A represents a positive diagnostic
test and B a diseased patient. When the event does not occur it is denoted as BC (patient is not
diseased) or AC (diagnostic test is negative). Bayes theorem describes the relation between the
probability that A occurs (or not) given that B has occurred and the probability that B occurs
(or not) given that A has occurred.

Bayes theorem is based on the following elementary property in probability theory:
p(A, B) = p(A) · p(B | A) = p(B) · p(A | B), where p(A), p(B) are marginal probabilities
and p(A | B), p(B | A) are conditional probabilities. This leads to the basic form of the Bayes



P1: JYS/XYZ P2: ABC
JWST177-c01 JWST177-Lesaffre May 26, 2012 10:26 Printer Name: Yet to Come Trim: 244mm × 168mm

16 MODES OF STATISTICAL INFERENCE

theorem (also called Bayes rule), given by

p(B | A) = p(A | B) · p (B)

p (A)
. (1.8)

Because of the Law of Total Probability

p(A) = p(A | B) · p(B) + p(A | BC) · p(BC), (1.9)

we can elaborate Bayes theorem in the following way:

p(B | A) = p(A | B) · p(B)

p(A | B) · p(B) + p(A | BC) · p(BC)
. (1.10)

Expressions (1.8) and (1.10) can be read also as p(B | A) ∝ p(A | B), where ∝ means
‘proportional to’. Thus, Bayes theorem allows us to calculate the inverse probability p(B | A)

from p(A | B) and is, therefore, also called the Theorem on Inverse Probability.
In Example I.10, we show that expression (1.10) has some advantages over expression

(1.8). In the example, we derive the positive and negative predictive value of a diagnostic test
from its sensitivity and specificity. Sensitivity (Se) is the probability of a positive diagnostic test
when the patient is indeed diseased. Specificity (Sp) is the probability of a negative diagnostic
test when the patient is indeed not-diseased. When the event ‘diseased’ is represented by B, then
the event ‘nondiseased’ is BC. Likewise, the event ‘positive diagnostic test’ can be represented
by A and the event ‘negative diagnostic test’ by AC. Thus, the sensitivity (specificity) is equal
to the probability p(A | B) (p(AC | BC)). The positive (negative) predictive value, on the other
hand, is the probability that the person is (not) diseased given a positive (negative) test. So,
in probability terms, the positive (negative) predictive value is equal to p(B | A) (p(BC | AC))
and is denoted as pred+ (pred−). In practice, the predictive values of a diagnostic are needed,
because they express the probability that a patient is (not) diseased given a positive (or a
negative test). When a 2 × 2 table of results is provided, pred+ and pred− can be readily
computed. However, often the predictive values are needed in a new population and then
we need Bayes theorem. Indeed, Bayes rule expresses the positive (negative) predictive
value as a function of the sensitivity and the specificity, and the marginal probability that B
happens (p(B)). This marginal probability is known as the prevalence of the disease and is
abbreviated as prev. Hence, Bayes rule offers us a tool to compute the predictive values in
each population once the prevalence in that population is available. The computation assumes
that the sensitivity and specificity are intrinsic qualities of the diagnostic test and do not vary
with the population (see also Example V.6). Example I.10 is an illustration of the mechanics
of calculating the probability p(B | A) from p(A | B).

Example I.10: Sensitivity, specificity, prevalence, and their relation to predictive values
Fisher and van Belle (1993) described the results of the Folin-Wu blood test, a screening test
for diabetes, on patients seen in the Boston City hospital. A group of medical consultants
established criteria for the gold standard, so that the true disease status is known. In Table 1.3,
the results on 580 patients are given. From this table, we determine Se = 56/70 = 0.80 and
Sp = 461/510 = 0.90. The prevalence of the disease, as recorded in the Boston City hospital,
is equal to prev = 70/580 = 0.12. But we need the predictive values for different populations.
The world prevalence of diabetes is about 3%. Expression (1.10) can easily be transformed
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Table 1.3 Folin-Wu blood test: diagnostic test to detect
diabetes applied to 580 patients seen in the Boston City
Hospital (Fisher and van Belle 1993) split up according to true
disease status and outcome of diagnostic test.

Test Diabetic Nondiabetic Total

+ 56 49 105
− 14 461 475

Total 70 510 580

to an expression relating the predictive values to the intrinsic characteristics of the test and
the prevalence of diabetes. When suffering from diabetes is denoted as D+, diabetes-free as
D−, a positive screening test as T + and a negative screening test as T −, then Bayes theorem
translates into

p(D+ | T +) = p(T + | D+) · p(D+)

p(T + | D+) · p(D+) + p(T + | D−) · p(D−)
. (1.11)

In terms of sensitivity, specificity and prevalence, Bayes theorem reads as

pred+ = Se · prev

Se · prev + (1 − Sp) · (1 − prev)
. (1.12)

The predictive values for a population are obtained by plugging-in the prevalence for that
population in expression (1.12). For p(B) = 0.03, the positive (negative) predictive value is
equal to 0.20 (0.99).

The above calculations merely show the mechanics of Bayes theorem. We now show how
Bayes theorem could work in the office of a general practitioner (GP). Suppose an elderly
patient visits his GP for a check-up. The GP wishes to check whether his patient suffers
from diabetes or not. He knows that in his elderly population the prevalence of diabetes is
around 10%. The prior probability for that patient to suffer from diabetes is thus 0.10. The GP
takes a Folin-Wu blood test and a positive result appears. The outcome of this diagnostic test
represents the data. With Bayes theorem the physician can then formally combine his prior
belief with the data obtained from the diagnostic test to arrive at a positive predictive value
of 0.47 (posterior probability). The conclusion is that the patient has a reasonable chance of
suffering from diabetes and it is likely that more tests are needed to give assurance to the
patient. Note that in the above example, the prior probability was based on observed data, but
this is not a must. Indeed, the prior probability could originate from a guess, a hunch, a belief,
etc., from the treating GP. In that case, the prior and posterior probabilities will not have a
long-run frequency interpretation anymore.

We end this section with another illustration of Bayes theorem. In this case, we evaluate the
quality of published research findings in medicine. This example also highlights the difference
between the message a P-value brings us and the probability p(Ha | data) (or the probability
of a positive result for the experimental treatment).
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Example I.11: The Bayesian interpretation of published research findings
Many medical research findings prove afterwards to be false and there is a growing concern
about such misreporting. Ioannidus (2005) examined the publishing behavior in current med-
ical research. More specifically, he calculated the probability of a falsely reported positive
result using Bayes theorem.

Suppose that classical significance tests are employed at significance level α (= P(type I
error)) and with the probability of a type II error equal to β. Suppose also that the purpose
is to find true relationships between, say, risk indicators (life style, genetic disposition, etc.)
and a particular disease. If there are G (possibly very large) likely relationships to examine
with only one true relationship, then 1/G could be viewed as the prior probability of a true
research finding. Let R = 1/(G − 1) be the prior odds, then for c relationships examined in
an independent manner on average c(1 − β)R/(R + 1) are truly positive. On the other hand,
the average number of false positive findings is equal to cα/(R + 1). Using Bayes theorem,
this results in a positive predictive value for a positive finding equal to

(1 − β)R

(1 − β)R + α
. (1.13)

When (1 − β)R > α, the posterior probability of finding a true relationship is higher
than 0.5. Thus, the power to find a positive result needs to be higher than 0.05/R for the
probability of finding a true relationship is relatively high, which is impossible for G large.
Ioannidus (2005) then continues to quantify the effect of biased reporting on the probability of
a true scientific result and highlighted the dangers of the current reporting practice in medical
research.

1.4 Outlook

Bayes theorem will be further developed in Chapter 2 in such a way that it can be used in
statistical practice. A first step will be to reanalyze examples such as those seen in this chapter,
whereby inference will be done without the help of fictive data and whereby prior information
on parameters may be incorporated if we feel the need to do so. But this is just a first step.
From an applied point of view, it is reasonable to ask what more a Bayesian analysis can do
than a classical frequentist analysis. However, to show what extra tools the Bayesian approach
can offer to the practitioner we will need at least six additional chapters. That the Bayesian
methodology has become popular only in the last decades is not without a reason. In the first
230 years, Bayesians were basically only selling their ideas, but could not offer a practical
tool. This situation has changed now. The Bayesian methods can handle far more complex
problems than classical approaches.

To let the reader taste already a bit of the possibilities of Bayesian methods, we
now reanalyze the toenail data of Example I.1. How the analysis was done will become
clear later.

Example I.12: Toenail RCT: A Bayesian analysis
We reanalyzed the toenail data using the popular package WinBUGS. The aim is to show a
few of the possibilities of Bayesian methods without going into details on how the results were
obtained. The program can be found in ‘chapter 1 toenail.odc’. In the first analysis, we simply
replayed the original analysis. A typical output of WinBUGS is shown in Figure 1.4(a). The
(posterior) density represents what evidence we have on � after having seen the data. For
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Figure 1.4 Toenail RCT: (a) posterior distribution of �, (b) posterior distribution of µ1/µ2,
(c) posterior distribution of �, and (d) posterior distribution of σ2/σ1 both when taking prior
information into account.

instance, the area under the curve (AUC) on the positive x-axis represents our belief that � is
positive. This was here 0.98. In a classical analysis it would be more difficult to perform a test
on the ratio µ1/µ2. In a Bayesian analysis, this is just as easy as looking at the difference. The
posterior density on that ratio is shown in Figure 1.4(b) and the area under the curve (AUC)
for the interval [1,∞) can be easily determined. In a Bayesian analysis, one can also bring in
prior information on the parameters of the model. Suppose we were skeptical about � being
positive and that we rather believed a priori that its value is around −0.5 (with of course some
uncertainty), then this information can be incorporated into our analysis. In the same way, we
can include information about the variance parameters. For instance, suppose that in all past
studies σ 2

2 was greater than σ 2
1 and that the ratio varied around 2. Then that finding can be

incorporated in the Bayesian estimation procedure. In Figure 1.4(c), we show the evidence
that � is positive taking into account the above-described prior information, which is now
0.95. Figure 1.4(d) shows the ratio of σ2/σ1 when the prior information on the variances was
taken into account.

This example just shows a small portion of what nowadays can be done with Bayesian
methodology. In later chapters, we demonstrate the flexibility of the Bayesian methods and
software.

Exercises

Exercise 1.1 Show that the likelihood ratio test for the binomial distribution coincides with
the corresponding likelihood ratio test for the negative binomial distribution.

Exercise 1.2 Prove expression (1.13) based on A = “test is significant at α” and B =
“relationship is true”.
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Bayes theorem: Computing
the posterior distribution

2.1 Introduction

In this chapter, we derive the general Bayes theorem and illustrate it with a variety of examples.
Comparisons of the Bayesian solution with the frequentist and the likelihood solution will be
made for a better understanding of the Bayesian concepts. In fact, inference will turn out to
be quite different from the classical case, even probability will get a different flavor in the
Bayesian paradigm.

2.2 Bayes theorem – the binary version

The Bayes theorem will now be applied to statistical models. The first step is to change the
notation in expression (1.11). Let us replace D+ and D− by a parameter θ assuming two values,
i.e. θ = 1 for D+ and θ = 0 for D−. The results of the diagnostic test represent data, and
hence, T + is recoded as y = 1 and T − as y = 0, then expression (1.11) can be reformulated as

p(θ = 1 | y = 1) = p(y = 1 | θ = 1) · p(θ = 1)

p(y = 1 | θ = 1) · p(θ = 1) + p(y = 1 | θ = 0) · p(θ = 0)
. (2.1)

In expression (2.1), p(θ = 1) (p(θ = 0)) represents the prevalence (1-prevalence) of a
disease in the context of Example I.10, but in general it is called the prior probability that
θ = 1 (θ = 0). The probability p(y = 1 | θ = 1) describes the probability that a positive test
is obtained, given that θ = 1. As a function of θ , it is the likelihood for θ = 1 with a positive
test. Likewise, p(y = 1 | θ = 0) describes the likelihood for θ = 0 for a positive test. Here, the
terms p(y = 1 | θ = 1) and p(y = 1 | θ = 0) define completely the likelihood for θ . Finally,
p(θ = 1 | y = 1) is the probability that an individual is diseased upon observing a positive

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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test. This probability is called the posterior probability and is derived from combining the
prior information with the observed data.

By classical probability rules, the denominator of expression (2.1) is p(y), so that a
shorthand notation of expression (2.1) is

p(θ | y) = p(y | θ )p(θ )

p(y)
, (2.2)

where θ can stand for θ = 0 or θ = 1. Note also that the rule immediately applies to random
variables y that are categorical or continuous. In the latter case then p(y | θ ) represents a
density.

Since Bayes theorem follows immediately from probability rules, Cornfield (1967) noted
‘Actually Bayes result follows so directly from the formal definitions of probability and related
concepts that it is perhaps overly solemn to call it a theorem at all.’ However, this should not
be interpreted as a criticism to this ingenious result, on the contrary. The ingenious idea Bayes
had 250 years ago is to give parameters a stochastic nature as can be seen from expressions
(2.1) and (2.2). At first sight, this may look bizarre since in classical statistics a parameter
is assumed to be fixed. In the Bayesian paradigm, however, a parameter is stochastic but the
term stochastic does not necessarily imply a classical meaning, as will be seen in Section 2.3.

2.3 Probability in a Bayesian context

When tossing a (honest) coin, two types of probabilities come into play. First, there is the
classical probability that a coin will show heads when tossed up. For an ‘honest’ coin, this
probability is 0.50 since the proportion of times that heads will show converges to 0.50 as the
tossing experiment proceeds. In this case, the probability has a long-run frequency meaning.
Now suppose that a coin is tossed only once but the result is hidden and you are asked about
the probability that it is heads. Suppose you do not believe that there exist honest coins then
you might give it a probability of 0.6. This kind of probability expresses your personal belief
on the outcome of the experiment and is typically an example of a Bayesian probability.

For a medical example, assume that patients are screened for diabetes. The probability that
a patient suffers from diabetes is equal to the prevalence of diabetes in the population. Condi-
tional on a positive screening test, the probability that a patient suffers from diabetes is then
equal to the prevalence of diabetes patients in the subpopulation of positively tested patients.
Both probabilities have a long-run frequency interpretation. Now suppose that a physician
examines a patient for diabetes, then prior to the screening test the patient’s probability for
diabetes is equal to the prevalence of diabetes in the whole population but after the positive
result it changes to the prevalence of diabetes in the subpopulation. Applied to the individual
patient, these probabilities become expressions of the physician’s belief in the patient’s health
status. This is again an example of a Bayesian probability.

Hence when we speak of probabilities they can have two meanings. They might express a
limiting proportion that an event happens in a true or fictive experiment or they might express
a personal belief that this event will happen or has happened. The first type of probability is
called objective, while the second type is called subjective. Subjective probabilities express
our uncertainties in life in a probabilistic language. We can be uncertain about basically all
things in life, but typically these uncertainties exhibit a great range, may change in time and
vary with the individual. For instance, there is always a lot of speculation of the future winner
of the Tour de France. The prior opinion of the fans of a specific cyclist that he will win
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the Tour certainly differs from that of sports journalists and bookmakers and probably also
from the prior opinion of the cyclist himself. In addition, these opinions will change when
the Tour unfolds and definitely become clearer when the mountains stage has been taken.
Another example is the speculation in the past about whether global warming is taking place.
Nowadays there is little doubt about this, but the speculation is now about how fast global
warming will take place and to what extent, and even more importantly how it will affect our
lives. These speculations varied and still vary considerably across individuals and in time.

Hence, subjective probabilities are probabilistic reformulations of our uncertainty. In
order for them to be used in computations, they should have the same properties as classical
probabilities, i.e. those that have the long-run frequency nature. This means that they need
to satisfy the axioms of a probability system. In particular for mutually exclusive events
A1, A2, . . . , AK with the total event S (A1 or A2 or . . . or AK), a (subjective) probability p
should have the following properties:

� For each event A (from A1, A2, . . . , AK): 0 ≤ p(A) ≤ 1.

� The sum of all probabilities should be one: p(S) = p(A1 or A2 or . . . or AK ) = 1, and
also p(Ai or Aj or . . . or Ak) = p(Ai) + p(Aj) + . . . + p(Ak).

� The probability that event A will not happen (event AC) is 1 − the probability that A
will happen: p(AC) = 1 − p(A).

� Suppose B1, B2, . . . , BL represent another subdivision of S, then

p(Ai | Bj) = p(Ai, Bj)

p(Bj)
,

with p(Ai, Bj) the probability that Ai and Bj happen together and p(Ai | Bj) the condi-
tional probability that Ai happens given that Bj has already happened.

In short, subjective probabilities should constitute a coherent system of probabilities. Surely
for pure mathematicians this description of a probability system is too naive. For a more
mathematical description of a probability system and different axiom systems, they could
consult Press (2003).

In his book on understanding uncertainty, Lindley (2006) argues that probability is a totally
different concept from, say, distance. The distance between two points is the same for all of
us, but that is the not case with probability of events since it depends on the person looking at
the world. Therefore, he prefers to talk about your probability instead of the probability.

2.4 Bayes theorem – the categorical version

Suppose a subject can belong to K > 2 diagnostic classes corresponding to K values for θ :
θ1, θ2, . . . , θK . Assuming that y can take on L different values: y1, . . . , yL, then Bayes theorem
generalizes to

p(θk | y) = p(y | θk) p(θk)∑K
m=1 p(y | θm) p(θm)

, (2.3)

where y stands for one of the possible values in {y1, . . . , yL}.
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In expression (2.3), the parameter is discrete but the data y can be discrete or continuous.
When the observed data are multidimensional, the random variable y is turned into a random
vector y. Expression (2.3) shows that Bayes theorem provides a rule to classify individuals
into one of K diagnostic classes based on the prior belief that they belong to that class and
the observed data. Developing classification models is a broad research area in statistics
covering a great range of applications. Many of the classification techniques are based on
Bayes theorem. For instance, Lesaffre and Willems (1988) examined the ability to predict
a heart-related disease using electrocardiogram measurements and used thereby basically
expression (2.3). The prior probabilities were obtained from the relative proportions of the
diagnostic classes in the population.

2.5 Bayes theorem – the continuous version

Let us now look at how we can learn about a (one-dimensional) continuous parameter θ

based on collected data and given prior information on θ . The data y can again be discrete or
continuous such that p(y | θ ) represents a distribution function or a density function. Because
in a Bayesian context, parameters are assumed to be stochastic, we assume here that θ is
a continuous random variable. Let y represent a sample of n i.i.d. observations. The joint
distribution of the sample is given by p(y | θ ) = ∏n

i=1 p(yi | θ ), which we also denote as
L(θ | y).

For a discrete parameter, the prior information was expressed as a discrete probability
distribution, but for a continuous parameter, our prior information needs to be specified
differently. Only prior statements that θ lies in a particular interval make sense. This leads to
a probability density function for θ , which we again denote as p(θ ).

Bayes theorem or rule can be derived in a similar manner as before. Namely, when the
data and the parameter are stochastic, the joint distribution p(y, θ ) can be split up into either
p(y | θ )p(θ ) or p(θ | y)p(y). This yields Bayes rule for continuous parameters, i.e.

p(θ | y) = L(θ | y)p(θ )

p(y)
= L(θ | y)p(θ )∫

L(θ | y)p(θ ) dθ
. (2.4)

The interpretation of expression (2.4) is as follows: when the prior opinion about the
parameter expressed as a distribution p(θ ) is combined with the observed data, the opinion
will be updated and is expressed by the posterior distribution p(θ | y). Figure 2.3 shows a
prior distribution that is transformed into a posterior distribution after having observed data y.
Expression (2.4) also tells us that when both the prior and the likelihood support a particular
θ , then this θ is also supported a posteriori. But, if θ is not supported by either the prior
distribution or the likelihood or both, then neither θ is supported a posteriori. Finally, the
denominator of Bayes theorem ensures that p(θ | y) is indeed a distribution. Expression (2.4)
shows that the posterior distribution is proportional to the product of the likelihood with the
prior distribution, i.e.

p(θ | y) ∝ L(θ | y)p(θ ),

since the denominator is depending only on the observed data which is assumed to be fixed
in a Bayesian context.
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The denominator in expression (2.4) is called the averaged likelihood because it is the
weighted average of L(θ | y) over the possible values of θ with a weight function given by
the prior distribution p(θ ). Note that expression (2.4) could be viewed as a limiting form of
expression (2.3) when the number of possible parameter values increases to infinity.

Finally, let there be no misunderstanding: it can also be assumed in the Bayesian paradigm
that there is a true parameter value θ0. Indeed, we regard θ as stochastic because we do not
know its true value and, therefore, express our belief on θ0. The ultimate purpose of a
Bayesian analysis is to get a good idea of this true value θ0 by combining data and prior
information.

It is now time to show the mechanics of Bayes theorem in more detail. Three cases are
exemplified: the binomial, the normal and the Poisson case. For each of the cases, a medical
example is used as guidance: (a) a stroke clinical trial for the binomial case, (b) a dietary
cross-sectional study for the normal case, and (c) a dental study on caries experience for the
Poisson case. In the remainder of the book, prior and posterior are shorthand notations for
prior and posterior distributions, respectively. For each of the cases, the prior will be specified
on the basis of historical studies possibly combined with ‘expert’ knowledge.

2.6 The binomial case

The following example in stroke research illustrates the mechanism of Bayes theorem when
the data are discrete and the parameter is continuous.

Example II.1: Stroke study: Monitoring safety of a thrombolytic drug administered
for ischemic stroke
Patients suffer from a stroke or cerebrovascular accident (CVA), when brain cells die or are
seriously damaged due to ischemia (ischemic stroke) or bleeding (hemorrhagic stroke) im-
pairing the local brain function. About 70% of strokes are ischemic, resulting from blockage
of a blood vessel as a result of atherosclerotic plaques or an embolus from another vessel. An
ischemic stroke is treated with a thrombolytic drug that reperfuses the blocked blood vessel
as quickly as possible. Early attempts with streptokinase given within 6 hours of stroke onset
were terminated prematurely because they resulted in more deaths and bleeding complications
(Donnan et al. 1996). Administration of recombinant tissue plasminogen activator (rt-PA),
a more recent type of thrombolytic, gave more promising results (placebo-controlled RCTs
(randomized controlled clinical trials) ECASS 1 (Hacke et al. 1995) and ECASS 2 (Hacke
et al. 1998)). However, for all thrombolytic drugs, an important bleeding complication is
symptomatic intercerebral hemorrhage (SICH) defined as an intracerebral hemorrhage asso-
ciated with neurological deterioration. A third ECASS study, the ECASS 3 study, was set
up and finalized in 2008 (Hacke et al. 2008) to further document the outcome (efficacy and
safety) of patients with acute ischaemic hemispheric stroke in whom rt-PA can be initiated
between 3 and 4.5 hours after onset of symptoms. The trial ended after 821 patients were
enrolled in the study (418 to rt-PA and 403 to placebo). The result was that significantly
(P = 0.04) more patients had a favorable outcome (absence of disability at 90 days) with
rt-PA than with placebo (52.4% vs. 45.2%). Here, we focus on statistical aspects during the
conduct of the trial, but the data are fictive. Indeed, the study only serves as a motivation for
the statistical developments.

Clinical trials on life-threatening diseases most often have a committee of clinicians and
statisticians, called the Data and Safety Monitoring Board (DSMB), which monitors the
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study at regular time intervals. In this respect, interim analyses reporting on the safety of the
administered treatments are evaluated by the DSMB. In the ECASS 3 study, there was a need
to monitor the incidence of SICH. There existed prior data from ECASS 1 and ECASS 2
and from a meta-analysis of other trials on SICH. For instance, in the ECASS 2 study SICH
occurred in 8.8% in the 409 rt-PA treated patients.

Suppose now that the ECASS 3 DSMB is asked to examine the interim results of rt-PA
treated stroke patients with an emphasis on SICH and in the light of the results of the ECASS
2 study. For ease of exposition, we assume that in the ECASS 2 study 100 patients were
treated with rt-PA and 8 patients suffered from SICH. Assume also that at the first interim
analysis of the ECASS 3 study, 50 patients were treated with rt-PA and that SICH occurred in
10 patients. The DSMB wishes to obtain an accurate picture of the risk for SICH. The results
of the first interim analysis could be viewed in separation of the ECASS 2 data, but it seems
reasonable to informally or formally combine the two sources of information. The decision
to continue or to stop the trial (stopping rule) will then involve the combined ECASS 2 and
ECASS 3 results.

We now (a) compare the different approaches (frequentist, likelihood and Bayesian) to
estimate the incidence of SICH in the first interim analysis of the ECASS 3 study; (b) exemplify
the mechanics of calculating the posterior distribution using Bayes theorem, and (c) compare
various Bayesian analyses differing by the prior distribution.

Let the probability of showing SICH (SICH incidence) under rt-PA be θ and y1, . . . , yn a
sample of n i.i.d. Bernoulli random variables with yi = 1 if the ith patient suffered from SICH
and 0 otherwise. Then the random variable y = ∑n

1 yi has a binomial distribution Bin(n, θ ),
given by p(y | θ ) = (

n
y )θ y(1 − θ )(n−y).

Likelihood and frequentist approach
The information that the data provide on θ is expressed by the likelihood function. In the
likelihood approach, preference for certain θ -values is given via inspecting the likelihood
function at these values. The MLE of the incidence of SICH in the first interim analysis of
the (fictive) ECASS 3 study, i.e. θ̂ , is equal to y/n = 10/50 = 0.20. The binomial likelihood
function and the MLE are shown in Figure 2.1. The ‘0.05 interval of evidence’, i.e. the interval
that contains θs with a standardized likelihood of at least 0.05 (Section 1.2.2), is equal to
[0.09, 0.36].

In the frequentist approach, one could test the hypothesis whether θ = 0.08, which is
the result obtained from the ECASS 2 study, with a binomial test or a Z-test. The classical
95% confidence interval (CI) based on the asymptotic normal distribution of θ̂ is equal to
[0.089, 0.31].

Bayesian approach: Prior obtained from ECASS 2 study
1. Specifying the (ECASS 2) prior distribution
The data collected in the ECASS 2 study provide valuable information, and it would be a flaw
to ignore them. As mentioned above, in the rt-PA arm of our (fictive) ECASS 2 study 8 (= y0)
patients out of 100 (= n0) suffered from SICH. The corresponding likelihood is L(θ | y0) =
(

n0

y0
)θ y0 (1 − θ )(n0−y0) and yields the most likely value for θ , i.e. θ̂0 = y0/n0 = 0.08. Figure 2.2

shows that the ECASS 2 data do not support much a proportion (of patients suffering from
SICH) outside the interval [0.02, 0.18]. In fact, the ECASS 2 likelihood expresses our opinion
about θ based on a study conducted prior to the ECASS 3 study. Thus, the ECASS 2 likelihood
may be used to express our prior belief on θ for the ECASS 3 study. As a function of θ , the
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Figure 2.1 Stroke study: binomial likelihood for first interim analysis in the (fictive) ECASS
3 study.

likelihood function is not a distribution since the area under L(θ | y0) is not equal to 1. But the
area under the curve (AUC) can easily be turned to 1. For instance, when

∫
L(θ | y0) dθ = a,

then p(θ ) ≡ L(θ | y0)/a (‘proportional to likelihood’ in Figure 2.2) satisfies the requirements
of a prior distribution. The calculation of the AUC involves in general a numerical procedure,
but here analytical calculations are possible which we will now show.

The kernel of the binomial likelihood of the ECASS 2 study, θ y0 (1 − θ )(n0−y0), is up to a
constant value, the expression of a beta density, i.e.

p(θ ) = 1

B(α0, β0)
θα0−1(1 − θ )β0−1, (2.5)
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Figure 2.2 Stroke study: binomial likelihood obtained from ECASS 2 study and the rescaled
likelihood (proportional to likelihood) equal to Beta(θ | 9, 93).
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with

B(α, β) = �(α)�(β)

�(α + β)
=

∫
θα−1(1 − θ )β−1 dθ,

and �(·) the gamma function. When α0 is replaced by y0 + 1 and β0 by n0 − y0 + 1 in
expression (2.5), the ECASS 2 likelihood is obtained up to a constant. In other words, to turn
the prior likelihood into a distribution of θ we need to replace the binomial coefficient by
1/B(α0, β0). Figure 2.2 shows the beta density with α0 = 9 and β0 = 100 − 8 + 1 = 93.

The beta distribution with parameters α and β is denoted as Beta(α, β) and represents a
flexible family of distributions defined on the unit interval.

2. Constructing the posterior distribution
The task of the DSMB is to protect the safety of the patients enrolled in the ECASS 3 trial,
and therefore, all the existing evidence about the safety of the drug needs to be taken into
consideration. On the other hand, the DSMB should also be aware of the natural variability
of the statistical information collected in an interim analysis. Especially in an early interim
analysis, the gathered information is limited and prone to high variability. Prior information
obtained from the ECASS 2 study could, therefore, be useful for the first ECASS 3 interim
analysis to yield, when combined with the data obtained from the interim analysis, an updated
estimate of the safety.

The ingredients of expression (2.4) applied to this setting are (a) the prior p(θ ), here
obtained from the ECASS 2 study; (b) the likelihood L(θ | y), here obtained from the rt-PA
treated patients from the first ECASS 3 interim analysis (remember that y = 10 and n = 50);
and (c) the averaged likelihood

∫
L(θ | y)p(θ ) dθ . The numerator of Bayes theorem is the

product of the prior and the likelihood and is equal to

L(θ | y) p(θ ) =
(

n

y

)
1

B(α0, β0)
θα0+y−1(1 − θ )β0+n−y−1.

The averaged likelihood p(y) = ∫
L(θ | y) p(θ ) dθ is readily obtained when one realizes

that θα0+y−1(1 − θ )β0+n−y−1 is the kernel of a beta density with parameters α0 + y and β0 +
n − y. Hence,

p(y) =
(

n

y

)
B(α0 + y, β0 + n − y)

B(α0, β0)
.

Combining the numerator and the denominator, results in the posterior distribution for θ

and is given by

p(θ | y) = 1

B(α, β)
θα−1(1 − θ )β−1, (2.6)

where α = α0 + y and β = β0 + n − y. Then the posterior (2.6) corresponds again to a beta
distribution, i.e. Beta(α, β) with α = 19 and β = 133. For the first interim analysis of the
ECASS 3 study, the beta prior, the binomial likelihood (scaled to have AUC=1), and the beta
posterior are graphically displayed in Figure 2.3.



P1: JYS/XYZ P2: ABC
JWST177-c02 JWST177-Lesaffre May 18, 2012 7:33 Printer Name: Yet to Come Trim: 244mm × 168mm

28 BAYES THEOREM: COMPUTING THE POSTERIOR DISTRIBUTION

0.40.30.20.10.0

15
10

5
0

θ

Prior
Proportional to

likelihood

Posterior

Figure 2.3 Stroke study: beta prior density, binomial likelihood, and beta posterior density.

3. Characteristics of the posterior distribution
Our computations and Figure 2.3 illustrate the following properties of the posterior
distribution:

� The posterior is a compromise of the prior and the likelihood function since the posterior
lies midway between the prior and the likelihood function (Figure 2.3). This can also
be seen numerically as follows: let the prior be obtained from a binomial experiment
with y0 successes in n0 experiments. The value that maximizes the prior distribution,
i.e. the ‘most plausible’ a priori value of θ is θ0 = y0/n0, while for the likelihood it
is the MLE θ̂ = y/n. The value that maximizes the posterior distribution p(θ | y) is
θ̂M = (α − 1)/(α + β − 2) = (y + y0)/n + n0), then

θ̂M = n0

n0 + n
θ0 + n

n0 + n
θ̂ . (2.7)

This shows that the most plausible value a posteriori is a weighted average of the
most plausible value a priori and the most plausible value calculated from the data. It
also shows that there is shrinkage toward θ0, i.e. θ0 ≤ θ̂M ≤ θ̂ , when y0/n0 ≤ y/n. The
reverse inequality holds when y/n ≤ y0/n0.

� The posterior contains more information about the parameter of interest than the prior
and the likelihood function separately since the posterior is more concentrated than
the prior and the likelihood function. Consequently, an a posteriori statement about
the parameter θ will be more precise than the prior statement and the information
represented by the likelihood function. However, when the prior distribution is ‘in
conflict’ with the likelihood, the beta posterior might be less concentrated than that of
the beta prior (Exercise 2.1). Note that the prior and the likelihood are in conflict when
they support largely different values for θ .

� From the expressions of α and β, we conclude that when the study size increases (y and
n increase) the impact of the prior parameters (α0 and β0) on the posterior decreases.
This result is classically coined as ‘the likelihood dominates the prior for large sample
sizes’.
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� The posterior is of the same type (beta) as the prior. This property is called conjugacy
and will be treated in more generality in Chapter 5.

Finally, since the prior distribution in the stroke example is based on prior data, the
maximum posterior value for θ , (y + y0)/(n + n0), is in fact the MLE of the combined
experiment (data from ECASS 2 and interim analysis data from ECASS 3). This is a reflection
of the implicit assumption that the conditions under which the ECASS 2 and ECASS 3 studies
were conducted are identical, and hence, we in fact assumed that the past data are exchangeable
with the present data. More on exchangeability can be found in Chapter 3.

4. Equivalence of prior information and extra data
The aforementioned reasoning shows that a Beta(α, β) prior is equivalent to a binomial
experiment with (α − 1) successes in (α + β − 2) experiments. Further, the scaled likelihood
is equal to a Beta(y + 1, n − y + 1)-distribution and adding the Beta(α0, β0) prior to the data
yields the Beta(α0 + y, β0 + n − y)-distribution. Summarized, the prior corresponds to adding
extra data to the observed data set, (α0 − 1) successes and (β0 − 1) failures. This equivalence
of prior information and ‘imaginary’ data can be used to construct prior distributions that
combine elegantly with the likelihood allowing even to use frequentist software for estimation
purposes (see Chapter 3 and subsequent chapters).

Bayesian approach: Using a subjective prior
Suppose that at the start of the ECASS 3 study, the DSMB neurologists believed that the
incidence of SICH lies probably between 5% and 20%. If their prior belief coincides with
the prior density p(θ ) as obtained from the ECASS 2 study data, then all posterior inference
would be the same as before. Indeed, nowhere in Bayes theorem is it specified how the prior
information should be collected.

The neurologists could also combine their qualitative prior belief with the data collected
in the ECASS 2 study in order to construct a prior distribution. For instance, suppose that
the patient population in the ECASS 3 study is on average 5 years older than in the ECASS
2 study. In that case, the neurologists might adjust the prior distribution obtained from the
ECASS 2 study toward higher incidences, as done in Figure 2.4.
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ECASS 2 
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 posterior15
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Figure 2.4 Stroke study: prior and posterior based on the ECASS 2 study data or based on
a subjective prior belief.
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Figure 2.5 Stroke study: prior, likelihood, and posterior based on flat prior.

Bayesian approach: No prior information is available
When there is little prior information available or when one is reluctant to use the available
prior knowledge, a prior distribution is needed that expresses our lack of information. Such
a prior is called a noninformative (NI) prior. Other terms used in the literature are weakly
informative, vague, diffuse, etc.

A popular NI prior for θ is a uniform distribution, also called a flat prior. Since θ has
support [0, 1], we take the uniform distribution on the unit interval, i.e. U(0, 1), to express that
we have no preference for any particular value for θ . Why this flat prior may be a good choice is
seen from combining the prior with the data collected in the ECASS 3 study. Using expression
(2.4), we immediately see that this yields a posterior that is equal to the scaled likelihood (see
Figure 2.5). Hence, it appears that the flat prior has done a good job in expressing our lack of
knowledge since the posterior distribution depends only on the likelihood. We also see that
the posterior only depends on the data and not on the prior distribution. Note that a uniform
prior is a beta distribution with parameters α = β = 1.

2.7 The Gaussian case

The binomial likelihood combined with a beta prior produces a beta posterior. A similar
conjugacy property holds in the Gaussian case, since a normal likelihood combined with a
normal prior gives a normal posterior. As in Section 2.6 the results will be derived by making
use of a motivating example which is now a dietary survey conducted in Belgium about two
decades ago.

Example II.2: Dietary study: Monitoring dietary behavior in Belgium
There is an increasing awareness that we should improve our life style. In Western Europe,
a variety of campaigns have been set up in the last decades to give up smoking and to
render our diet more healthy, say by lowering our daily consumption of saturated fat. As
a consequence, there is a tendency to lowering the intake of dietary cholesterol in order to
lower the serum cholesterol. Around 1990 a dietary survey, the Inter-regional Belgian Bank
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Employee Nutrition Study (IBBENS) (Den Hond et al. 1994), was set up to compare the
dietary intake in different geographical areas in Belgium, especially in Flanders.

The IBBENS study was performed in eight subsidiaries of one bank situated in seven
Dutch-speaking cities in the north and in one French-speaking city in the south of Belgium.
The food habits of 371 (66%) male and 192 female healthy employees with average age 38.3
years were examined by a 3-day food record with an additional interview. The results showed
regional differences in fat consumption.

Here, we look at the intake of cholesterol. First, we describe the results obtained in the
IBBENS study. These data will then be used to create a prior density for the IBBENS-2 study,
a fictive dietary survey organized 1 year after the IBBENS study to monitor the evolution in
dietary behavior of the Belgian population.

Bayesian approach: Prior obtained from the IBBENS study
1. Specifying the (IBBENS) prior distribution
Figure 2.6(a) shows the histogram of the dietary cholesterol in mg/day (chol) of the 563
bank employees. The approximating Gaussian distribution pinpoints that chol has a slightly
positively skewed distribution. To simplify matters, we will assume that chol has a Gaussian
distribution, but as shown below, this assumption is not crucial for a large sample. The
observed mean chol is 328 mg/day with a standard deviation equal to 120.3 mg/day.

Let the random variable y has a normal distribution with mean µ and standard deviation
σ , then its density is

1√
2π σ

exp
[−(y − µ)2/2σ 2

]
. (2.8)

We denote this as y ∼ N(µ, σ 2) or N(y | µ, σ 2). To simplify matters, we assume in this
chapter that σ is known. For a sample y ≡ {y1, . . . , yn} of i.i.d. Gaussian random variables,
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Figure 2.6 Dietary study: (a) histogram of dietary cholesterol obtained from the IBBENS
study and approximating normal distribution, and (b) normal likelihood for unknown popu-
lation mean µ.
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the likelihood is

L(µ | y) = 1

(2π)n/2 σ n
exp

[
− 1

2σ 2

n∑
i=1

(yi − µ)2

]
. (2.9)

Because
∑

(yi − µ)2 = ∑
(yi − y)2 + ∑

(y − µ)2, with y the sample average of the yi,
we can rewrite expression (2.9) as

L(µ | y) ∝ L(µ | y) ∝ exp

[
−1

2

(
µ − y

σ/
√

n

)2
]

. (2.10)

Expression (2.10) is the kernel of a Gaussian distribution with mean y and variance σ 2/n.
But, even when y does not have a Gaussian distribution, the likelihood will still have an
(approximately) normal shape for a large sample size according to the classical Central Limit
Theorem (CLT).

In order to use the IBBENS data as prior information for the IBBENS-2 study, we need
to change the notation slightly. Namely, the random variable that expresses the dietary intake
of cholesterol in the IBBENS study will now be denoted as y0, the sample of observations of
size n0 as y0 ≡ {y0,1, . . . , y0,n0} and the sample mean as y0.

From expression (2.10) and using the above change in notation, it is immediately seen that,
up to a factor, the likelihood is given by the normal curve N(µ | µ0, σ

2
0 ) (see Figure 2.6(b)),

where µ0 = y0 and σ0 = σ/
√

n0 is the standard error of the mean. For the IBBENS, σ0 =
120.3/

√
563 = 5.072. Thus, the IBBENS prior distribution is

p(µ) = 1√
2πσ0

exp

[
−1

2

(
µ − µ0

σ0

)2
]

, (2.11)

with µ0 = y0 and has the same shape as that of Figure 2.6(b).

2. Constructing the posterior distribution
Suppose that, to monitor dietary behavior in Belgium, and more specifically cholesterol
intake, a new dietary survey was set up and finished one year after the IBBENS ended.
Because of budget limitations, the new study was much smaller (n = 50). The average intake
of cholesterol in this IBBENS-2 study was 318 mg/day with SD = 119.5 mg/day with 95%
CI = [284.3, 351.9] mg/day.

The 95% CI is wide because the IBBENS-2 study is small sized. The CI is based on only
the IBBENS-2 data, but is this reasonable? Do we believe that the IBBENS cannot learn us
anything about the mean dietary intake in Belgium? This is, though, the consequence of using
a frequentist/likelihood approach. In the Bayesian approach, we believe that information from
the past can be used as prior for the current data.

To obtain the IBBENS-2 posterior, we combine the IBBENS normal prior (2.11) with the
IBBENS-2 normal likelihood. Let y represent the n cholesterol intake values in the IBBENS-2
study with sample average as y producing the IBBENS-2 likelihood L(µ | y). Further, suppose
that we tentatively ‘forget’ how the prior density was constructed and only use the fact that
it is a N(µ | µ0, σ

2
0 ) density. The posterior distribution is then proportional to p(µ)L(µ | y),
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and therefore,

p(µ | y) ∝ p(µ | y) ∝ exp

{
−1

2

[(
µ − µ0

σ0

)2

+
(

µ − y

σ/
√

n

)2
]}

. (2.12)

In the next step, we look for the constant such that expression (2.12) becomes a density.
Instead of tackling this problem directly, we may have a closer look at expression (2.12)
to possibly simplify it. Indeed, the expression behind the exponent is a quadratic function
of µ which, up to a constant (function of y and σ0 only), can be turned into [(µ − µ)/σ ]2

with µ and σ defined below (see also Exercise 2.6). Thus, the posterior distribution for µ

after having observed the IBBENS-2 data and using the IBBENS as prior is given by the
Gaussian density

p(µ | y) = N(µ | µ, σ 2),

with

µ =
1
σ 2

0
µ0 + n

σ 2 y

1
σ 2

0
+ n

σ 2

and σ 2 = 1
1
σ 2

0
+ n

σ 2

. (2.13)

In Figure 2.7, the IBBENS normal prior distribution, the IBBENS-2 normal (scaled) likelihood
and the IBBENS-2 normal posterior distribution are shown. The latter distribution has mean
µ = 327.2 and standard deviation σ = 4.79.

3. Characteristics of the posterior distribution
We note the following properties of the posterior distribution:

� The posterior distribution is a ‘compromise’ between the prior distribution and the
likelihood function (see Figure 2.7). As for the binomial case, there is shrinkage toward
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Figure 2.7 Dietary study: IBBENS normal prior density, IBBENS-2 normal likelihood
(scaled) and IBBENS-2 normal posterior density.
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the prior mean: µ, the mean of the posterior distribution is a weighted average of the
prior and the sample mean, i.e.

µ = w0

w0 + w1
µ0 + w1

w0 + w1
y, (2.14)

with

w0 = 1

σ 2
0

, w1 = 1

σ 2/n
. (2.15)

In Bayesian statistics, it has been customary to work with the inverse of the variance,
called the precision, rather than with the variance. Therefore, the weight w0 is called
the prior precision and the weight w1 the sample precision.

� The posterior precision is the sum of the prior and the sample precision, i.e.

1

σ 2
= w0 + w1. (2.16)

This shows that the posterior is more peaked than the prior and the likelihood function
which means that the posterior contains more information about µ than the prior and the
likelihood function. The property holds even when prior and likelihood are in conflict
(in contrast to the binomial-beta case). This may look counterintuitive since in the
presence of conflicting information, there is more uncertainty a posteriori rather than
less uncertainty. Note that this result only holds for the special, and unrealistic, case of
a known σ (see Example IV.2).

� Expression (2.13) clearly shows that for n large, p(µ | y) ≈ N(µ | y, σ 2/n). This
demonstrates that with the increasing sample size the likelihood dominates the prior.
The same result is obtained under a fixed sample size when σ0 → ∞.

� The posterior is of the same type (normal density) as the prior (normal density). In other
words, the conjugacy property also holds here.

As in the stroke example, the posterior estimate of µ is equal to the MLE of the combined
experiment (data from IBBENS and IBBENS-2 studies). This reflects that, as before, we have
assumed that the conditions under which the two studies were done are identical.

Note that in the Bayesian literature, the Gaussian distribution N(µ, σ 2) is often denoted
as N(µ, 1/σ 2). This notation is also used by WinBUGS, the most popular Bayesian software
on the market. It reflects that in the Bayesian world precision is more popular than variance, at
least in the past. However, we continue using the classical notation to avoid confusion when
making comparisons with frequentist results.

4. Equivalence of prior information and extra data
Suppose that the prior variance σ 2

0 is taken equal to the variance of the data, i.e. equal to σ 2

yielding the unit-information prior. Then the posterior variance is equal to σ 2 = σ 2/(n + 1)

and the prior distribution corresponds to adding one extra observation to the sample. This
finding can be generalized since the prior variance σ 2

0 can always be reexpressed as σ 2/n0,
where n0 is not necessarily an integer. Hence, any prior density with variance σ 2

0 corresponds



P1: JYS/XYZ P2: ABC
JWST177-c02 JWST177-Lesaffre May 18, 2012 7:33 Printer Name: Yet to Come Trim: 244mm × 168mm

THE GAUSSIAN CASE 35

to adding n0 extra data points to the data set. This allows us to reexpress the posterior mean
and variance as

µ = n0

n0 + n
µ0 + n

n0 + n
y, (2.17)

and

σ 2 = σ 2

n0 + n
. (2.18)

Again we can use this result to base our prior distribution on imaginary data and even use
standard frequentist software for the Bayesian estimation of parameters.

Bayesian approach: Using a subjective prior
The IBBENS prior has a large impact on the posterior distribution. We may wish to downplay
this impact by increasing σ 2

0 from 25 (IBBENS prior variance) to say 100. The result-
ing prior is called discounted since the information from the IBBENS is discounted (see
Figure 2.8(a)).

Further, suppose the IBBENS prior is not entirely appropriate for the study at hand, e.g.
when the IBBENS-2 study was performed only in the south of Belgium. A further modification
of the prior can reflect this prior knowledge better. In Figure 2.8(b), the mean of the prior was
changed to µ0 = 340 mg/day mimicking the prior belief that in the south of Belgium there is
somewhat more saturated fat intake and hence also more cholesterol intake.

When a ‘wrong’ choice for the subjective prior is made, e.g. when it is not supported by
evidence, the validity of the Bayesian analysis is low. Luckily, as for the binomial-beta case,
the impact of the prior decreases when the study size increases.
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Figure 2.8 Dietary study: (a) discounted IBBENS normal prior density (variance = 100),
and (b) adapted IBBENS normal prior distribution (variance = 100) both in combination with
IBBENS-2 normal likelihood (scaled).
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Figure 2.9 Dietary study: noninformative normal prior (variance = 10 000) in combination
with IBBENS-2 normal likelihood (scaled).

Bayesian approach: No prior information is available
Had IBBENS-2 study been organized in Asia, the IBBENS prior would be inappropriate,
even a discounted version of it. In that case, one must admit that there is not much prior
information. But, how do we specify our lack of knowledge? In other words, what is the NI
or vague prior here? The answer to this question can be found in expression (2.13). Indeed,
as seen above, when σ 2

0 → ∞, the posterior becomes

N(µ | y, σ 2/n), (2.19)

which appears to be independent of prior information. Thus, putting it loosely, the NI prior
in the normal case is a normal distribution with a very large variance. In the binomial case,
we have chosen the flat prior to express no prior knowledge. Here, a flat prior is obtained as
the limit.

In Figure 2.9, the normal prior with mean 328 and variance 10 000 is combined with the
likelihood. The prior is relatively flat in the interval of plausible µ-values and the posterior is
only slightly more peaked than the scaled likelihood. The posterior mean is equal to 318.3,
close to the observed mean of 318 and the posterior variance is equal to 277.6 a bit lower
than the observed SEM2 of 285.6. If the prior has to have a lower impact on the posterior
estimates, then the prior variance should be further increased.

2.8 The Poisson case

Assume that yi (i = 1, . . . , n) are independent counts. Examples are the number of epileptic
seizures in a month of epilepsy patients, the number of medical errors in hospitals in a year,
the counts of a disease in census tracts, etc. The Poisson distribution is the most popular
model to describe the distribution of counts. The random variable y is said to have a Poisson
distribution with parameter θ , denoted as Poisson(θ ), when

p(y | θ ) = θ y e−θ

y!
. (2.20)
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It is well-known that the mean and variance of the Poisson distribution are equal to θ . Note
that in the above examples the yi are the counts observed in a unit of time, e.g. year, month,
etc. When the time periods differ between the subjects, say the count yi is observed in a time
period of length ti, then the Poisson model is extended to

p(yi | θ ) = (θ ti)yi e−θ ti

yi!
. (2.21)

A Bayesian Poisson analysis of the number of deciduous teeth with caries is shown in
Example II.3.

Example II.3: Caries study: Describing caries experience in Flanders
The Signal-Tandmobiel® (ST) study is a longitudinal oral health intervention study involv-
ing a sample of 4468 children. A stratified cluster random sample was taken by selecting
primary schools at random and therein all children from the first class. Hereby, a sample
was established representative of the 7% of children born in 1989 in Flanders. The children
were examined in 1996 by 16 trained dentists (examiners) and annually thereafter for 6 years.
Data on caries experience (current or past caries) status, oral hygiene and dietary habits were
obtained at yearly intervals, through structured questionnaires. Here, we look at the caries
experience on primary teeth of the first year of the study; hence, the data of 7-year old children
are evaluated here. Caries experience on primary teeth is classically measured by the dmft-
index. This score represents the number of primary teeth that are decayed (d), missing due to
extraction for caries reasons (m) or filled (f) because of caries. It varies from 0 (no caries expe-
rience) to 20 (all primary teeth affected). The dmft-index was available on 4351 children (see
Figure 2.10). Apart from the oral health information, dietary habits and oral hygiene behavior
was also recorded. For a more detailed description of the ST study, we refer to Vanobbergen
et al. (2000).
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Figure 2.10 Caries study: histogram of dmft-index.
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The Poisson likelihood of the dmft-index is the product of terms p(yi | θ ) given by
expression (2.20) resulting in

L(θ | y) ≡
n∏

i=1

p(yi | θ ) =
n∏

i=1

(θ yi/yi!) e−nθ . (2.22)

Maximizing expression (2.22) with respect to θ yields the MLE of θ , i.e. θ̂ = y which is
equal to 2.24 for the ST study. A likelihood-based frequentist 95% CI for θ is equal to
[2.1984, 2.2875].

Bayesian approach: Prior distribution based on historical data
1. Specifying the prior distribution for the ST study
We wish to combine the Poisson likelihood with any available prior information. However,
prior to the ST study there was only limited information available on the degree of caries
experience among 7-year-old children in Flanders. The review paper of Vanobbergen et al.
(2001) reported an average dmft-index of 4.1 obtained in a study based on 109 seven-year-old
children and conducted in Liège in 1983, while an average of 1.39 was obtained around Ghent
on 200 five-year-old children examined in 1994. Further, it is known that oral hygiene had
improved considerably in Flanders in the recent years. Thus, we do not materially restrict
the mean dmft-index when we bound it above by a value around 10. An appropriate prior
distribution for θ should reflect all of the above available knowledge. While in principle any
distribution expressing the prior knowledge in a probabilistic way could do the job, we look
here for a distribution (as for the binomial and normal likelihood) that allows us to determine
the posterior distribution in a relatively easy manner. For a Poisson likelihood, this is the
gamma density, denoted as Gamma(α,β) where α is a shape parameter and β is the inverse
of a scale parameter.

Thus, we assumed here that θ ∼ Gamma(α0, β0) a priori, implying that E(θ ) = α0/β0 and
var(θ ) = α0/β

2
0 . When α0 = 3 and β0 = 1, the knowledge prior to the ST seems adequately

represented (see Figure 2.11).
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Figure 2.11 Caries study: Gamma(3, 1) prior density.
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2. Constructing the posterior distribution
The Gamma(α0, β0) prior distribution as a function of θ is given by

p(θ ) = β
α0
0

�(α0)
θα0−1 e−β0θ . (2.23)

The posterior density is proportional to L(θ | y)p(θ ), which leads to

p(θ | y) ∝ e−nθ

n∏
i=1

(θ yi/yi!)
β

α0
0

�(α0)
θα0−1e−β0θ

∝ θ (
∑

yi+α0)−1e−(n+β0 )θ . (2.24)

Expression (2.24) is the kernel of a Gamma(
∑

yi + α0, n + β0) distribution; hence,

p(θ | y) ≡ p(θ | y) = β
α

�(α)
θα−1 e−βθ , (2.25)

where α = ∑
yi + α0 and β = n + β0. For the ST study, we obtained α = 9758 + 3 = 9761

and β = 4351 + 1 = 4352. Clearly, the effect of the prior on the posterior is minimal here.

3. Characteristics of the posterior distribution
We note the following properties of the posterior distribution:

� The posterior distribution is again a compromise between the prior distribution and the
likelihood function (see Exercise 3.6).

� In the ST study, the posterior distribution is more peaked than the prior distribution and
the likelihood function. However, as in the binomial case, the prior gamma distribution
might sometimes be more concentrated than the posterior gamma distribution (see
Exercise 3.7).

� It can easily be verified that the prior is again dominated by the likelihood when the
sample size is large.

� The posterior distribution belongs to the same class (gamma) as the prior distribution,
providing another example of conjugacy.

4. Equivalence of prior information and extra data
Since the scaled Poisson likelihood (such that AUC = 1) as a function of θ is equal to a
Gamma(

∑
yi + 1, n)-distribution, the Gamma(α0, β0) prior can be viewed as equivalent to

imaginary data corresponding to an experiment of size β0 and where the counts sum up to
(α0 − 1). Applied to the ST study, the prior corresponds to an experiment of size 1 with count
equal to 2.

Bayesian approach: No prior information is available
When there is no prior information available on the mean parameter of the Poisson distribu-
tion, the absence of knowledge should be reflected in the prior distribution. Comparing the
expression of the (scaled) Poisson likelihood and that of the posterior distribution, informs
us that α0 ≈ 1 and β0 ≈ 0 correspond to almost no extra (prior) information added to the
likelihood.
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While the Poisson distribution is usually the first choice to describe the distribution of
counts, in medical applications it is often not the best choice. For the Poisson distribution,
the counts represent the sum of independent events that happen with a constant average. The
dmft-index is the sum of binary responses expressing the caries experience in each of the 20
primary teeth. However, cavities in the same mouth are correlated. This leads to (Poisson-)
overdispersion, which means that the variance is (much) larger than the mean. Here, we
obtained var(dmft)/mean(dmft) = 3.53. In Chapter 10, we will look for more appropriate
distributions to model the dmft-index.

2.9 The prior and posterior distribution of h(θ)

Suppose that h defines a monotone transformation of the parameter θ , i.e. h(θ ) ≡ ψ defines
a new parameter. Since θ is stochastic, also ψ is stochastic and has a prior and a posterior
distribution. By the standard transformation rule for random variables (also called change-of-
variables rule), the (prior or posterior) distribution of ψ is

p(h−1(ψ))

(∣∣∣∣dψ

dθ

∣∣∣∣)−1

, (2.26)

when p(θ ) = p(h−1(ψ)) is the (prior or posterior) distribution of θ . Expression (2.26) involves
the Jacobian when changing from θ to ψ .

Example II.4: Stroke study: Posterior distribution of log(θ )

The probability of developing SICH could be modeled on the log-scale (or logit-scale).
Transformation rule (2.26) yields the posterior distribution of ψ = log(θ ), i.e.

p(ψ | y) = 1

B(α, β)
exp ψα(1 − exp ψ)β−1,

where α = 19 and β = 133. In Figure 3.3, the posterior distribution of ψ is shown.

2.10 Bayesian versus likelihood approach

The Bayesian approach satisfies the relative likelihood principle (second LP). Indeed, take
two proportional likelihoods, i.e. L2(θ | y) = c L1(θ | y), then

p2(θ | y) = L2(θ | y)p(θ )/

∫
L2(θ | y)p(θ )dθ,

= c L1(θ | y)p(θ )/

∫
c L1(θ | y)p(θ )dθ,

= p1(θ | y).

The Bayesian approach also satisfies the first likelihood principle in the sense that it does
not need to generate artificial data (under H0) to make conclusions about the outcome of the
experiment. However, in the Bayesian approach the parameter is stochastic, in contrast to the
likelihood approach. Indeed, the likelihood approach is invariant to a change from θ to h(θ )
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(for a strict monotone function h), but from expression (2.26) we know that with a parameter
change the prior and the posterior also change. A consequence of this is that the outcome
from a Bayesian analysis will change when a flat prior is put on h(θ ) instead of θ (see also
Chapter 5).

2.11 Bayesian versus frequentist approach

In the frequentist approach, inference about a parameter is based on the repeated sampling
behavior of a summary measure while hypothesis testing relies on the repeated sampling
behavior of a test statistic under H0. In Bayesian inference, probability enters via the uncer-
tainty that one has about the parameter conditioned on the observed data. Thus, in frequentist
statistics the parameter is considered fixed and inference is based on repeated sampling, while
in Bayesian statistics the parameter is stochastic and inference is done given the observed
data. Both approaches aim to discover the ‘true’ parameter value of the parameter but take a
different route to achieve this goal. The consequence of this difference is that the computations
for statistical inference differ in important ways. Indeed, many frequentist approaches rely on
asymptotic theory. For example, in logistic regression models the importance of a regressor is
assessed via the Wald, score or likelihood-ratio statistic, all based on their asymptotic distri-
bution. In contrast, Bayesian inference only relies on the posterior distribution that provides
inference for any sample size. A striking illustration of the difference in inferential procedures
is the lack of importance of the CLT in the Bayesian paradigm (see Section 3.6.2). Also, in
a computational sense the two approaches are markedly different. Namely, in frequentist
statistics maximization is the key for drawing statistical inference (see likelihood-ratio test
statistic), while in the Bayesian approach integration is central.

While the Bayesian and frequentist approach differ in their fundament and in computa-
tional aspects, we will illustrate in the book that the approaches can lead to (about) the same
numerical output. For instance, in Section 4.3.1, we show that for the Gaussian distribution
the classical CI coincides with the Bayesian counterpart for a particular choice of the prior.
However, in some cases the two approaches will lead to drastically different conclusions. For
example, when stopping rules are involved the Bayesian approach acts like the likelihood
approach and may, therefore, give drastically different conclusions.

Despite all differences between the two approaches, the Bayesian approach makes use
of frequentist ideas at several places. For instance, the techniques to evaluate the Markov
chain Monte Carlo runs are based on frequentist approaches. In addition, increasingly more
Bayesians believe that their solutions should be evaluated on their long-run frequency prop-
erties. As seen in Chapter 1, there is even a reconciliation possible between the P-value and
Bayesian inference.

2.12 The different modes of the Bayesian approach

The Bayesian approach is often criticized for introducing subjectivism into (medical) research
by allowing probabilities to be subjective. However, the concept that research is objective is a
myth. Those who claim objectivity sweep a lot of their subjective decisions under the carpet
(see Good (1978) and references therein). Indeed, researchers are driven by previous scientific
findings, background knowledge, intuition, etc. When combined in an intelligent manner, it
can lead to great scientific discoveries. Press and Tanur (2001) describe the discoveries of
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great scientists such as Newton, Kepler, Mendel, etc., and how their findings and theories were
lead by subjective decisions. Of course, subjectivity should be not confused with manipulation
of results and cheating. The aim of research is to go for the truth, but the way to the truth runs
over subjective paths. Subjectivity enters research also in a completely other manner. Medical
(and other . . .) research findings are always disseminated to a mix of consumers: medical
colleagues, policy makers, patients, etc., each with their own belief in the result. Therefore,
the appreciation of a research finding will differ between individuals. By combining prior
beliefs (and past results) with results from the present experiment and producing a posterior
belief, the Bayesian approach mimics this behavior. Spiegelhalter et al. (2004) state that
‘Bayesian methods explicitly allow for the possibility that the conclusions of an analysis
may depend on who is conducting it and their available evidence and opinion’. If little or no
information is available, then a Bayesian analysis may yield similar results as the frequentist
procedure.

Bayesians differ in opinion in how to deal with prior information. For a subjective
Bayesian, the prior information always reflects a personal opinion. This opinion may ex-
press the belief of one individual or of a group. The appropriateness of the posterior, and thus
the trustworthiness of the conclusions, depends much on the appropriateness of the prior. For
an objective Bayesian, the prior is chosen by a formal rule expressing lack of knowledge on
the subject. Such a prior is also called a default prior. This approach keeps the appearance
of objectivity, which is necessary, e.g. for phase III controlled trials. But Bayesians may dis-
agree with each other on many other fundamentals. Good (1982) sees at least 46 656 varieties
of Bayesians. Nowadays, many Bayesians may be classified as pragmatic Bayesians. Their
aim is to solve a scientific question and they are willing to combine subjective and objective
Bayesian approaches with frequentist ideas. Another class, perhaps the biggest group, consists
of those who just use Bayesian statistical software to crack their problems, but it is not clear
whether all of them should be called Bayesians.

2.13 An historical note on the Bayesian approach

The cornerstone of the Bayesian approach is Bayes theorem named after its originator, Thomas
Bayes born around 1701 (not exactly known) and died in 1761. He was a Presbyterian minister,
studied logic and theology at Edinburgh University, and had strong mathematical interests.
Immediately after his death, Richard Price, a friend of Thomas Bayes, was asked to look into
Bayes mathematical papers. As a result he submitted the paper An Essay toward a Problem
in the Doctrine of Chances in 1763 to Philosophical Transactions of the Royal Society after
having added personal comments and extensions of his own. Note that a copy of the original
paper can be found in Press (2003).

Bayes appears to be the first to formulate the problem of Inverse Probability. Indeed,
while in the eighteen century great developments in mathematics (the term statistics was
not used then) were seen, e.g. De Moivre (1667–1754) derived the normal approximation to
the binomial in 1733, mathematicians had developed methods only to compute the (direct)
probability. Namely, they could predict that, say, 7 people aged 50 die in a given year out of
a sample of 100 if the probability of any one of them dying was known, but they were not
able to find the (inverse) probability of one 50-year-old dying based on the observation that
7 had died out of 100. Bayes made a start to derive this inverse probability. He also derived
the distribution of the binomial parameter in a two-stage sampling experiment and thereby
discovered the beta distribution.
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Up to 1950, Bayes theorem was called The Theorem of Inverse Probability. However,
attributing this fundamental theorem to Bayes alone is not justified. The fundament of Bayesian
theory is actually due to Laplace (1749–1827). Laplace is also responsible for many other
achievements. In his time, mathematicians used both inverse and direct probability arguments
and chose whatever was more convenient. There was no clear split between the Bayesian and
frequentist approaches. Therefore, results developed in what we now call frequentist statistics
were later picked up to be used in a Bayesian context, and vice versa. For example, Laplace
first proved the asymptotic normality of posterior distributions (see Theorem 3.6.1), which is
called the CLT for inverse probability. From this result, the classical CLT was derived.

At first, Laplace assumed that prior probabilities are uniform that is referred to as the
principle of insufficient reason or the principle of indifference. Later on, he relaxed this
assumption by allowing the prior distribution to be nonuniform and he derived the general
expression (2.3) of Bayes theorem. Hereby, Laplace assigned hypotheses and parameters a
stochastic behavior and, therefore, put them on an equal footing with observations (as of
course Bayes did but in a less formal manner). The fact that with the inverse probability
principle parameters were given a distribution was a thorn in the flesh of many influential
statisticians such as Poisson in the nineteenth century (see especially Chapter 11 in Hald
(2007)). However, the strongest opposition came from Fisher and Jerzy Neyman.

Fisher laid down the fundamentals of current (classical) statistical theory and is probably
the most influential statistician. However, Fisher was also one of the most fervent opposers to
Bayesian theory. His (but also others) main objection was the use of the flat prior to express
ignorance. He argued that the flat prior was not appropriate to express ignorance in most
practical cases, but there was another annoying problem with the flat prior. Namely, Fisher
showed that the inverse probability estimate depends on the chosen parameterization of the
model. Indeed, as seen in Section 2.9, when a flat prior is put on h(θ ) rather than on θ , the
posterior distribution for θ changes and also inference on θ changes. Since it is not clear
on which scale the uniform prior should be specified, Fisher concluded that the Bayesian
approach leads to arbitrary conclusions and, therefore, must be rejected completely. Fisher’s
tool for inductive inference was the likelihood function although he did attempt to mimic the
Bayesian approach with his theory on fiducial inference, without much success though; see also
Edwards (1997) for a historical note on how and when Fisher moved from inverse probability to
likelihood.

Both Fisher, Neyman, and Pearson strongly rejected the Bayesian paradigm, but as seen
above they were also strongly opposed to one another’s viewpoints. Their impact on the
practice of statistical inference is immense and led most applied statisticians to ignore the
Bayesian approach for a long period. Concurrent to the developments of Fisher, Neyman and
Pearson, important theoretical advances in Bayesian theory were made by de Finetti, Jeffreys,
Savage and Lindley. For example, the Representation Theorem proved by Bruno de Finetti
(1906–1985) in 1931 is seen by many Bayesians as one of the most fundamental results in
Bayesian theory (see Section 3.5). Other examples are the developments of Harold Jeffreys
(1891–1989), who suggested a system to define noninformative priors (see Section 5.4.3)
and the Bayes factor, which is a fundamental tool for Bayesian hypothesis testing and model
selection (see Section 3.8.2). Unfortunately, initially the impact of these developments on
applied statistics was limited since the Bayesian approach suffered from serious computational
limitations, making it impossible to provide answers to practical problems. The main obstacle
for the Bayesian approach was the calculation of the denominator in Bayes theorem. It was
only after the introduction of fast computational methods (such as Markov chain Monte Carlo)
into the statistical world in the late 1980s and the implementation of the BUGS package in
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1989) and its Windows version WinBUGS that the Bayesian approach became accessible to
practitioners.

The enthusiasm for the Bayesian paradigm may not be shared by all statisticians, not
even today. But the days are over when frequentists and Bayesians were raging against each
other (especially the frequentists against the Bayesians). To get an idea of this hostility, look
at the discussion part of the seminal paper of Lindley and Smith (1972), but especially at
the comments of Kempthorne and the replies from the authors. Nowadays many Bayesians
would classify themselves merely as pragmatic and dedicated to find solutions to practical
problems.

To end this historical note, we strongly encourage the reader to read the book ‘The
theory that would not die. How Bayes rule cracked the enigma code, hunted down Russian
submarines & emerged triumphant from two centuries of controversy’ by Mc Grayne (2011).
It is an amazing and most entertaining story of the ‘life of the Bayesian paradigm’ and reads
almost as a detective romance novel.

2.14 Closing remarks

In this chapter, we have introduced the reader to the general expression of Bayes theorem. We
have also shown how, in elementary cases, the posterior distribution can be computed. Further,
we have illustrated the impact of choosing different priors on the posterior distribution and
indicated that the prior is the cause of much of the controversy around the Bayesian paradigm.
In Chapter 3, we continue with introducing the fundamental Bayesian concepts, but it will
take until Chapter 6 before practical problems can be tackled.

Exercises

Exercise 2.1 Show by a practical example that when the binomial likelihood is in conflict
with the beta prior, the variance of the posterior may be larger than that of the prior.

Exercise 2.2 Write a program in R, which reproduces Figure 2.1 and calculate the 95%
interval of evidence.

Exercise 2.3 Write a program in R, which reproduces Figure 2.3. Analyze this example also
with FirstBayes (can be downloaded from http://tonyohagan.co.uk/1b/).

Exercise 2.4 Write a program in R, which reproduces Figure 2.7. Analyze this example also
with FirstBayes.

Exercise 2.5 Calculate the posterior distribution for 1/θ , θ2, etc., for the ECASS 3 study.
Show the posterior distributions graphically.

Exercise 2.6 Prove expression (2.13). This is done by observing that the expression behind
the exponent is in fact quadratic in µ and by searching for the extra terms to make the
expression a square. This is called ‘completing the square’.

Exercise 2.7 Suggest for the Signal-Tandmobiel® study a gamma prior distribution, which
has a substantial impact on the posterior distribution. Derive the result using an R program or
FirstBayes.



P1: JYS/XYZ P2: ABC
JWST177-c02 JWST177-Lesaffre May 18, 2012 7:33 Printer Name: Yet to Come Trim: 244mm × 168mm

EXERCISES 45

Exercise 2.8 The negative binomial distribution

p(y | θ, r) =
(

y + r − 1

r − 1

)
θ r (1 − θ )y, y = 0, 1, . . . , (0 < θ < 1)

expresses the distribution of the number of failures until r successes have been observed.
Show that a beta prior distribution combined with a negative binomial likelihood, results in a
beta posterior distribution.

Exercise 2.9 The exponential distribution is a candidate distribution for a positive random
variable y. Show that a gamma prior distribution combined with an exponential likelihood,
results in a gamma posterior distribution.

Exercise 2.10 Show that for the gamma-Poisson case

α

β
= w0

w0 + w1

α0

β0
+ w1

w0 + w1

∑
yi

n
,

with w0 > 0 and w1 > 0.
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Introduction to Bayesian inference

3.1 Introduction

In this chapter, we introduce the Bayesian tools for statistical inference. To focus on concepts
and to minimize computational issues, we treat here only one-parameter models. The extension
of the concepts to multiparameter models is the subject of Chapter 4, but is in fact the topic
of the remainder of the book.

The posterior distribution contains all information of the parameter of interest. Neverthe-
less, it is desirable to summarize the posterior information in a concise manner. In this chapter,
we derive (a) summary measures for location and variability of the posterior distribution; (b)
an interval estimator for the parameter of interest, and (c) the posterior predictive distribution
(PPD) to predict future observations.

We also introduce the concept of exchangeability which is fundamental in the Bayesian
paradigm and extends the notion of independence. Further, we elaborate on the condi-
tions when the posterior distribution can be approximated well by a normal distribution.
This brings us to the Bayesian version of the Central Limit Theorem (CLT). Sampling tech-
niques are introduced in this chapter. They illustrate that sampling can replace analytical
procedures to explore the posterior distribution. Hereby, we prepare the reader for more com-
plex sampling procedures such as the Method of Composition in Chapter 4 and the Markov
chain Monte Carlo (MCMC) procedures treated in the subsequent chapters. At the end of this
chapter, we return to the topic that we started in Chapter 1, i.e. hypothesis testing. In this
respect, we treat a Bayesian version of a P-value and the Bayes factor which is the key tool
for Bayesian hypothesis testing.

3.2 Summarizing the posterior by probabilities

A simple way to characterize the posterior information is by calculating probabilities
P(a < θ < b | y) for various values of a and b. This is illustrated later, on the stroke study of
Example II.1.

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Example III.1: Stroke study: SICH incidence
The posterior distribution of θ (probability of suffering from symptomatic intercerebral hem-
orrhage (SICH)) after observing the data from the first ECASS 3 interim analysis is a Beta(19,
133)-distribution. This enables one to compute the posterior probability P(a < θ < b | y), for
any two values of a and b. For instance, one could compute the probability that the incidence
is greater than 0.20, which is the incidence observed in the first interim analysis. The area
under the curve (AUC) of the interval [0.2, 1] can be readily computed using standard soft-
ware and is equal to 0.0062. Thus, we doubt that the incidence is greater than 0.20. It is also
unlikely that θ is smaller than 0.088, which is the value observed in the ECASS 2 study, since
P(θ < 0.088 | y) = 0.072.

Summarizing the posterior information in probabilities P(a < θ < b | y) is useful, but
more is needed. In the frequentist approach, the results of most statistical analyses consist of
a parameter estimate together with its standard error or 95% confidence interval (CI). Similar
reporting is also useful in a Bayesian context.

3.3 Posterior summary measures

In this section, we review the most frequently used summary measures of the posterior
distribution. It goes without saying that these measures can also be computed for the prior
distribution. In that case, they receive the adjective ‘prior’.

3.3.1 Characterizing the location and variability of the posterior
distribution

The aim is to summarize the posterior distribution by representative values of location and
variability. Three measures for location of the posterior p(θ | y) are in use: (a) the posterior
mode; (b) the posterior mean, and (c) the posterior median.

The posterior mode is defined as

θ̂M = arg maxθ p(θ | y), (3.1)

i.e. it is the value of θ for which p(θ | y) is maximal. The posterior mode has the following
properties:

� The posterior mode only involves maximization and hence to compute θ̂M only
L(θ | y)p(θ ) is involved.

� For a flat prior distribution, i.e. p(θ ) ∝ c, the posterior mode is equal to the MLE of
the likelihood function since then p(θ | y) ∝ L(θ | y).

� The image of the posterior mode under a monotone transformation h is in general not
a posterior mode anymore. In other words, ψ̂M �= h(θ̂M ) for ψ = h(θ ).

The second measure of location is the posterior mean, also referred to as Bayesian estimate,
defined as

θ =
∫

θ p(θ | y) dθ, (3.2)
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with the following properties:

� The posterior mean minimizes the squared loss, i.e. it minimizes∫
(θ − θ̂ )2 p(θ | y) dθ (3.3)

over all estimators θ̂ . It means that θ is closest to all θ as measured by the quadratic
loss function, L(θ, φ) = (θ − φ)2 weighted by the posterior distribution.

� To calculate the posterior mean, integration is needed twice: (a) for the posterior
distribution and (b) for expression (3.2).

� The image of the posterior mean under a monotone transformation h is in general not
a posterior mean anymore, i.e. ψ �= h(θ ).

The third posterior measure of location is the posterior median θM defined by the equation

0.5 =
∫

θM

p(θ | y) dθ. (3.4)

The posterior median has the following properties:

� If the quadratic loss function in expression (3.3) is replaced by a |θ − θ̂ | with a > 0,
the posterior median is obtained.

� The calculation of the posterior median involves one integration and solving an integral
equation.

� The image of a posterior median under a monotone transformation h is again a posterior
median, i.e. ψM = h(θM ).

� For a unimodal symmetric posterior distribution, the posterior median is equal to the
posterior mean and equal to the posterior mode.

The three posterior measures may be useful to characterize what we know a posteriori
about the parameter of interest. The choice between the measures depends, among other
things, on computational considerations and on the shape of the posterior distribution.

The most common posterior measure of variability is the posterior variance:

σ 2 =
∫

(θ − θ )2 p(θ | y) dθ. (3.5)

The square root σ , the posterior standard deviation is a common measure to indicate the
posterior uncertainty about the parameter of interest. To calculate the posterior variance (and
standard deviation), three integrals need to be evaluated.

Example III.2: Stroke study: Posterior summary measures
The posterior distribution of θ (probability of suffering from SICH), based on the data from
the first interim analysis in ECASS 3, i.e. 10 (=y) patients with SICH out of 50 (=n)
patients and using the prior observation obtained from a pilot study is Beta(θ | α, β), with
α(= α0 + y) = 19 and β(= β0 + n − y) = 133 (see Example II.1).
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The posterior mode is obtained by maximizing (α − 1) log(θ ) + (β − 1) log(1 − θ ) with
respect to θ yielding θ̂M = (α − 1)/(α + β − 2). Here, θ̂M is equal to 18/150 = 0.12.

The posterior mean involves the integral 1
B(α,β)

∫ 1
0 θθα−1(1 − θ )β−1dθ =

B(α + 1, β)/B(α, β) = α/(α + β). For the stroke example θ = 19/152 = 0.125.
To compute the posterior median, 0.5 = 1

B(α,β)

∫ 1
θM

θα−1(1 − θ )β−1dθ needs to be solved
for θ . With the R function qbeta, we obtained 0.122 as posterior median for the stroke example.

The variance of the Beta(α, β)-distribution is equal to αβ/
[
(α + β)2(α + β + 1)

]
. For

α = 19 and β = 133, the posterior standard deviation is, therefore, equal to σ = 0.0267.
If no pilot study had been executed prior to the first interim analysis, then no hard facts

would have been available on the binomial parameter θ and one might prefer to express
ignorance. With the uniform prior on [0, 1] as NI prior, the posterior mode is equal to
y/n = 0.20. The posterior mean is (y + 1)/(n + 2) = 0.211 and the posterior median 0.208.
Note that when the posterior mode is chosen as the summary measure for θ the result from a
classical frequentist analysis is reproduced since in that case the posterior measure is equal to
the MLE.

Example III.3: Dietary study: Posterior summary measures
In Chapter 2, we have seen that the posterior distribution for the mean parameter is normal
when a normal prior is combined with a normal likelihood. In this case, µ̂M ≡ µ ≡ µM .
For the Inter-regional Belgian Bank Employee Nutrition Study (IBBENS)-prior combined
with the IBBENS-2 data, the posterior mean for cholesterol-intake is µ = 327.2 mg/day. The
posterior variance is also readily obtained as it is the variance of the normal distribution. For
the IBBENS-2, we obtained σ 2 = 22.99 and hence σ = 4.79.

3.3.2 Posterior interval estimation

From the posterior distribution, one can determine the range (most often the interval) of
parameter values θ that are a posteriori most plausible with probability (1 − α), with α

usually taken equal to 0.05. Such an interval is called a 95% credible (or credibility) in-
terval, abbreviated as 95% CI. Formally, [a, b] is a 100(1 − α)% credible interval for θ if
P(a ≤ θ ≤ b | y) = 1 − α. Denoting the posterior cumulative distribution function (cdf) as
F(θ ), the 100(1 − α) credible interval [a, b] satisfies

P(a ≤ θ ≤ b | y) = 1 − α = F(b) − F(a). (3.6)

Expression (3.6) does not define uniquely a credible interval. Two special cases of a
credible interval are most popular: (a) the equal tail CI and (b) the highest (posterior) density
interval.

The 100(1 − α)% equal tail credible interval [a, b] satisfies the following two properties:
P(θ ≤ a | y) ≡ F(a) = α/2 and P(θ ≥ b | y) ≡ 1 − F(b) = α/2. In the equal tail CI, some
values of θ have a lower value of p(θ | y) than some values outside that interval. Therefore,
a second CI has been defined.

The 100(1 − α)% highest posterior density (HPD) interval [a, b] is a 100(1 − α)%
credible interval with

for all θ1 ∈ [a, b] and for all θ2 /∈ [a, b] : p(θ1 | y) ≥ p(θ2 | y). (3.7)
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Thus, the HPD interval contains the values of θ that are a posteriori most plausible, i.e. p(θ |
y) is higher for all θs inside the HPD interval than for values outside the interval. Graphically,
the HPD interval is constructed by determining the intersection of a horizontal line with the
posterior density. The x-coordinates of the two intersection points define the HPD interval. The
HPD interval obtains the correct size by adjusting the height of the horizontal line until the AUC
is equal to (1 − α). This is the basis for determining the HPD interval numerically (see Exer-
cise 3.8). It is clear that the HPD interval is a kind of interval of evidence but now determined
on the posterior distribution rather than on the likelihood. Note that the HPD interval explic-
itly needs a density, while the equal tail interval only needs the cdf. The following properties
are useful:

� The 100(1 − α)% HPD interval is the shortest interval such that P(a ≤ θ ≤ b | y) =
1 − α; see Press (2003, p. 211) for a proof.

� Some speak of the highest density interval, e.g. in the software FirstBayes, when
referring to the HPD interval computed either for the prior or the posterior distribution.

� The image of an equal tail CI under a monotone transformation h is again an equal tail
CI, but this property does not hold in general for an HPD interval; see Example III.5
and Exercise 3.9 for an illustration.

� For a unimodal symmetric posterior distribution, the equal tail credible interval equals
the corresponding HPD interval.

� For common cdfs (beta, gamma, etc.) software (e.g. in R) is available to readily compute
the equal tail CI. However, to determine the HPD interval numerical optimization is
required. For an illustration of the numerical procedure, we refer to Example III.5.

A 95% credible interval has a natural interpretation not shared by the classical CI in
frequentist statistics. In fact, a 95% credible interval contains the 95% most plausible parameter
values a posteriori, while the 95% CI does or does not contain the true value for a particular
data set y. In the frequentist paradigm, the adjective 95% gets its meaning only in the long
run. Having said this, in practice the classical CI is often interpreted in a Bayesian manner,
especially by clinicians. Historically, the credible and CI were developed in about the same
period. Already in 1812 Laplace derived that the large sample credible interval and CI for the
binomial parameter coincide (Hald 2007).

We now illustrate Bayesian interval estimation using the examples introduced in Chapter 2.

Example III.4: Dietary study: Interval estimation of dietary intake
The posterior distribution of the mean cholesterol intake is given by N(µ, σ 2), with µ and σ

defined by expression (2.13). An obvious choice for a 95% CI is

[µ − 1.96 σ ,µ + 1.96 σ ]. (3.8)

The 95% CI defined in expression (3.8) is both an equal tail CI as well as a HPD interval
because the normal distribution is symmetric. On the basis of the IBBENS prior distribution,
expression (3.8) yields for the IBBENS-2 a 95% CI for µ equal to [317.8, 336.6] mg/day.

For a normal prior with mean 328 and variance 10 000, the 95% CI for µ becomes [285.6,
351.0] mg/day. On the other hand, the classical 95% CI [y − 1.96 SD, y + 1.96 SD] is here
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Figure 3.1 Stroke study: 95% equal tail credible interval.

equal to [284.9, 351.1] mg/day. Hence, the CI is practically equal to the credible interval
and they will become virtually indistinguishable when the prior variance would be increased
further. However, we must realize that the interpretation of the two intervals is drastically
different.

Example III.5: Stroke study: Interval estimation of probability of SICH
The 95% equal tail CI for θ (probability of suffering from SICH due to recombinant tissue
plasminogen activator (rt-PA)) is calculated from the Beta(19, 133)-distribution. This can be
readily done using the R function qbeta and yields here a 95% equal tail CI equal to [0.077,
0.18]; see Figure 3.1 for a graphical presentation.

For the 95% HPD interval, a numerical optimization algorithm is needed. In fact, the 95%
HPD interval is the interval [a, a + h], such that F(a + h) − F(a) = 0.95 and f (a + h) =
f (a), with f the posterior density and F the posterior cdf. The R function optimize yields
both a and h. The result [0.075, 0.18] is shown in Figure 3.2. It is shown that the θ -values
inside the 95% HPD interval have a higher posterior likelihood than those outside that
interval.

The HPD interval is not invariant to (monotone) transformations. As an illustration,
suppose interest lies in log(θ ). The 95% HPD interval of log(θ ) ≡ ψ is not equal to
[log(a), log(b)] when [a, b] is the 95% HPD interval of θ . This is graphically depicted
in Figure 3.2. In other words, the 95% most plausible values of ψ a posteriori do not corre-
spond to the 95% most plausible values of θ . This is due to the introduction of the Jacobian
when the posterior of ψ is determined from the posterior of θ (see Section 2.26).

3.4 Predictive distributions

Let p(y | θ ) be the distribution of y and an i.i.d. sample y ≡ {y1, . . . , yn} be available. Suppose
we wish to predict future observations ỹ or sets of observations ỹ. More formally, we wish to
know the distribution of ỹ that belongs to the same population as the observed sample, i.e.
ỹ ∼ p(y | θ ) and assume that it is independent of y, given θ . The distribution of ỹ is called
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Figure 3.2 Stroke study: (a) 95% HPD interval of θ , and (b) log(95% HPD interval of θ ) on
ψ scale.

a predictive distribution. Since the true value of θ is not known, the aim is to predict the
distribution of ỹ, given y and taking into account the uncertainty about θ .

Prediction is an important issue in all application areas but especially in medicine, since we
hope that our models (most often regression models) are able to deliver an accurate prognosis
of the patient’s status. In addition, comparing predicted to observed responses is the default
approach to model checking. In this section, we introduce the Bayesian approach of deriving
the predictive distribution. In Chapter 4, the ideas are further developed on multiparameter
models, and in Chapter 10, the usefulness of the predictive distribution in a MCMC setting
will be shown.

It is illustrative to contrast the Bayesian approach to prediction with the frequentist
approach. This will be done for three classical cases: (a) Gaussian, (b) binomial, and (c)
Poisson.

3.4.1 The frequentist approach to prediction

On the basis of an estimate of θ , say the MLE θ̂ , the predictive distribution of a new obser-
vation ỹ is taken as p(̃y | θ̂ ). From that distribution one can determine the mean, variance,
etc., all characterizing the behavior of ỹ. The behavior of ỹ can also be represented by a
100(1−α)%-predictive interval (PI), which is an interval that contains 100(1−α)% of the fu-
ture observations. A more popular term is 100(1−α)%-tolerance interval, extensively treated
in Krishnamoorthy and Mathew (2009). In frequentist statistics, one rarely looks at the whole
predictive distribution but rather focuses on the predicted mean and the 95% PI. This is in
contrast to the Bayesian approach.

The above approach is naive since it does not take into account the sampling variability
of θ̂ . Thus, the 95% PI based on p(̃y | θ̂ ) will be too short. A more realistic approach allows
for the sampling distribution of θ̂ . But, apart from the normal case, it is complicated to derive
the predictive distribution that takes the sampling distribution of θ̂ into account.
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3.4.2 The Bayesian approach to prediction

Prediction of future observations in a Bayesian context takes the parameter uncertainty directly
into account. The predictive distribution dates back to Laplace when he was establishing the
probability of a future series of events in the binomial case.

We first give an intuitive derivation of the predictive distribution, then a more formal
argument follows. The posterior distribution p(θ | y) weights the evidence of each θ after
having observed y. When all mass of p(θ | y) is concentrated at the posterior mode θ̂M , then the
distribution of ỹ is in fact p(̃y | θ̂M ). In the case that the posterior mass is concentrated on a
finite number of values of θ , say θ1, . . . , θK , then a reasonable approach is to take a
weighted sum of the possible distributions for the predictive distribution, i.e. to take∑K

k=1 p(̃y | θ k)p(θ k | y) as an estimate for the distribution of ỹ. In the continuous case, sum-
mation is replaced by integration. Therefore, the distribution of ỹ is, given the observed data y,
equal to

p(̃y | y) =
∫

p(̃y | θ )p(θ | y) dθ (3.9)

and is called the posterior predictive distribution. The notation ‘p(̃y | y)’ reflects that the
unknown parameter θ has been integrated out. Indeed, once the uncertainty regarding θ has
been taken into account the resulting expression does not depend on θ anymore. Note that
the PPD expresses what we know about the distribution of the (future) ys.

Expression (3.9) can be derived formally using elementary integration rules. To see this,
write p(̃y | y) as a marginal density of the density of the future observation given a particular
value of the parameter and then integrate out the parameter according to its posterior, given
the data, i.e.

p(̃y | y) =
∫

p(̃y, θ | y) dθ =
∫

p(̃y | θ, y)p(θ | y) dθ. (3.10)

Expression (3.10) leads to (3.9) by using a property that often holds in practice and is
called hierarchical independence, i.e.

p(̃y | θ, y) = p(̃y | θ ). (3.11)

Hierarchical independence implies that, given the true parameter of the model, the past
data cannot teach us anything about the distribution of the future data. In other words, it is
assumed that the future data are independent of the past data, given θ .

Similarly, as for parameters, one could define a credible interval for future observations ỹ.
More specifically, an interval [a, b] is a 100(1−α)%-posterior predictive interval (PPI) when
P(a ≤ ỹ ≤ b | y) = 1 − α, but a more popular term for this is a Bayesian tolerance interval.
Two special cases of a PPI are worth mentioning: (a) equal tail PPI and (b) highest PPI; both
are defined in a similar way as for a parameter. For a discrete PPD, we need to replace the PPI
by a posterior predictive set (PPS).

Finally, suppose that the data come to us in a sequential manner. At the start no data are
available, only prior information. Given only prior information, we replace p(θ | y) by p(θ )

in expression (3.10). This yields the prior predictive distribution p(̃y) = ∫
p(̃y | θ ) p(θ ) dθ .

Clearly, the prior predictive distribution is the averaged likelihood for observation ỹ and it is
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the denominator in expression (2.4) in Bayes theorem. Since the averaged likelihood involves
integration, p(̃y) is also called the integrated or marginal likelihood.

3.4.3 Applications

We illustrate prediction for three special cases: (a) the Gaussian distribution, still assuming
that σ 2 is known, (b) the binomial distribution, and (c) the Poisson distribution. In the first
two examples, we start with the frequentist approach to prediction and show that, apart from
the normal case, taking into account the sampling variability of the parameter is not trivial.

3.4.3.1 The Gaussian case

Diagnostic screening tests aim to distinguish healthy from diseased individuals based on
a medical/laboratory test often measured on the blood or urine. Most medical tests yield
continuous measurements. To have an idea which values of the medical test are indicative
for the disease, we need to know the natural variability of that measurement for a ‘healthy’
population. For this purpose, one uses a 95% reference interval that contains 95% of the
central measurements of the values measured in ‘healthy’ individuals. This interval can
indicate whether a future individual is diseased or not. The 95% reference interval is often
referred to as the (95%) normal range. The adjective ‘normal’ does not refer to the Gaussian
distribution but rather to the belief that ‘normal’ individuals have been included in the sample.
In the case that the lab tests are not normally distributed, often a transformation to normality
can be found.

Example III.6: Serum alkaline phosphatase study: 95% reference interval
After having conducted a retrospective study predicting the incidence of common bile duct
stones in patients with gallstone disease, Topal et al. (2003) measured serum alkaline phos-
phatase (alp) on a prospective set of 250 ‘healthy’ patients.

(a) The frequentist approach
Figure 3.3 shows the histogram of the 250 alp measurements. It was found that yi =
100/

√
alpi (i = 1, . . . , 250) has approximately a Gaussian distribution. For a known

Gaussian distribution, N(µ, σ 2), the 95% reference interval for future observations on the
transformed scale, i.e. ỹ, is given by [µ − 1.96 σ, µ + 1.96 σ ]. The naive approach in deter-
mining the 95% reference interval is to replace µ by y and σ by s in the previous expression.
Since y = 7.11 and s = 1.4, the 95% reference interval on the alp scale is [104.45, 508.95].
However, this interval ignores the sampling variability with which µ is estimated. Note that
we assumed in the above calculations that σ = 1.4.

A more realistic approach acknowledges the sampling distribution of y. This can be
done relatively easy for the Gaussian distribution because (̃y − y)/

√
σ 2(1 + 1/n) is a pivotal

statistic (random variable that does not depend on parameters). Namely, ỹ − y ∼ N[0, σ 2(1 +
1/n)]. Hence, a 95% reference interval that takes into account the estimation of µ is

[y − 1.96 σ
√

1 + 1/n, y + 1.96 σ
√

1 + 1/n].

This approach yields on the y scale a 95% reference range equal to [4.43, 9.79]. Back-
transformed to the alp scale, this gives [104.33, 510.18] as 95% reference interval; see Figure
3.3 for the graphical representation of the interval.
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Figure 3.3 Serum alkaline phosphatase study: histogram of serum alkaline phosphatase
(alp) measurements overlaid with fitted distribution assuming normality of 100/

√
alp and

together with 95% reference interval.

(b) The Bayesian approach
We work again with the transformed alp measurements (y scale), which are assumed to have
a normal distribution N(µ, σ 2). For a normal prior for µ, expression (2.13) shows that the
posterior must be normal too. By a technique similar to that used to derive the normal posterior,
we can show that the PPD is again normal, i.e.

ỹ | y ∼ N(µ, σ 2 + σ 2). (3.12)

In a similar way, the prior predictive distribution is equal to N(µ0, σ
2 + σ 2

0 ).
The PPD leads to a 95% PPI

[µ − 1.96
√

σ 2 + σ 2, µ + 1.96
√

σ 2 + σ 2], (3.13)

which is automatically also an equal tail PPI and a highest PPI. When the prior variance
σ 2

0 is large, µ ≈ y and σ 2 ≈ σ 2/n and expression (3.12) becomes approximately ỹ | y ∼
N

[
y, σ 2(1 + 1/n)

]
. Consequently, the 95% Bayesian reference interval becomes numerically

equal to the frequentist 95% reference interval in the case of no prior information, but of
course its interpretation is different.

Bayesian tolerance intervals were first derived by Aitchison (1964, 1966) for the univariate
normal distribution. However, they seem to be rarely used in medical practice. There are
essentially only a few contributions, with the most important published in 1975 (Krause et al.
1975). In addition, the recent book Krishnamoorthy and Mathew (2009) devotes only 16 pages
to the topic of Bayesian tolerance intervals.
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3.4.3.2 The binomial case

Prior to setting up a new randomized controlled clinical trial (RCT) it is customary to reflect
on a variety of scenarios. For instance, a lot of thinking goes into choosing the inclusion and
exclusion criteria of the new RCT. Therefore, The choice of the most promising scenarios
might involve predictive calculations. For example, prior to the ECASS 3 study, one might
be interested in obtaining an idea of the number of rt-PA treated patients who will suffer
from SICH. More specifically, one might be interested in predicting the number of rt-PA
patients in the first interim analysis if the same type of patients would be recruited as in the
ECASS 2 study.

Example III.7: Stroke study: Predicting SICH incidence in interim analysis

(a) The frequentist approach
The MLE of θ (incidence of suffering from SICH) is equal to 8/100 = 0.08 for the (fictive)
ECASS 2 study. In the naive approach, we assume that the binomial distribution Bin(50, 0.08)
represents the predictive distribution of ỹ well, which is the number of patients with SICH in
a future sample of size 50. Because of the discrete nature of the binomial distribution, one
cannot take an exact 95% predictive set. The set {0, 1, . . . , 7} contains 94% of the future
counts, assuming θ = 0.8. So we should be somewhat worried about the observed (fictive)
result of 10 SICH patients out of 50. However, this approach is too simplistic since it does not
take into account the sampling variability of θ̂ .

The incorporation of the sampling variability of θ̂ is a very old problem already formulated
in 1920 by Karl Pearson. The problem boils down to: Suppose that, given θ , y and ỹ are
independently distributed according to Bin(n, θ ) and Bin(m, θ ), respectively, what is then
the conditional distribution of ỹ given y? This is more difficult to solve for the binomial
than for a Gaussian distribution, since there is no pivotal statistic now. Pawitan (2001, pp.
430–433) suggested to take the profile likelihood of ỹ, i.e. L(̃y) = maxθ L(θ, ỹ) with L(θ, ỹ)

the joint likelihood of the future observation and the parameter based on the observed y.
The result gives a distribution for ỹ very similar to the Bayesian solution described below.
For large n, another possibility is to use the asymptotic normal distribution of θ̂ resulting
in a predictive normal distribution (if θ̂ in the expression of the standard error is assumed
fixed), which allows to take into account the sampling variability of θ̂ in an approximate
manner.

(b) The Bayesian approach
The posterior distribution of θ based on the ECASS 2 study data is the Beta(9, 93)-
distribution. The PPD describes the distribution of ỹ, the number of future rt-PA treated
patients with SICH, in a sample of size m = 50. Expression (3.9) with p(̃y | θ ) replaced by
a Bin(m, θ )-distribution and p(θ | y) by a Beta(α, β)-distribution leads to

p(̃y | y) =
∫ 1

0

(
m

ỹ

)
θ ỹ(1 − θ )(m−ỹ) θ

α−1(1 − θ )β−1

B(α, β)
dθ

(3.14)

=
(

m

ỹ

)
B(̃y + α, m − ỹ + β)

B(α, β)
,
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Figure 3.4 Stroke study: binomial (Bin(50, 0.08)) and beta-binomial distribution (BB(50,
9, 93)) predicting the number of patients with SICH in the first interim analysis based on
50 rt-PA treated patients.

which defines a beta-binomial distribution BB(m, α, β), first derived by Laplace. In Figure 3.4,
we show that BB(m, α, β) exhibits more variability than the binomial distribution Bin(m, θ̂ ),
obtained by the frequentist approach. The 94.4% highest PPS is {0, 1, . . . , 9}, rendering the
observed result of 10 SICH patients out of 50 somewhat less extreme.

Note that the prior predictive distribution is also a beta-binomial distribution, now with
parameters α0 and β0.

3.4.3.3 The Poisson case

Only the Bayesian approach is considered now. Recall that a Poisson likelihood combined
with a gamma prior distribution results in a gamma posterior. Thus, the PPD is a weighted
combination of Poisson distributions, Poisson(̃y | θ ), with a Gamma(α,β)-distribution as
weight function for θ . Applying expression (3.9) using p(̃y | θ ) ≡ θ ỹ e−θ /̃y! and p(θ | y) ≡
βα

�(α)
θα−1e−βθ yields

p(̃y | y) ≡ �(α + ỹ)

�(α) ỹ!

(
β

β + 1

)α (
1

β + 1

)ỹ

, (3.15)

which is the expression of a negative binomial distribution, denoted as NB(α,β). This dis-
tribution is also referred to as the Pólya distribution. It generalizes the negative binomial
distribution given by expression (1.3) where ỹ plays the role of s and by allowing k in ex-
pression (1.3) to be a real value α. The probability of success in a single experiment is
θ = 1/(β + 1).

Example III.8: Caries study: PPD for caries experience
With a Gamma(9761, 4352) posterior distribution, the PPD of a single future count ỹ is given
by a NB(9761, 4352) distribution. In Figure 3.5, we have shown the PPD together with the
observed distribution of the dmft-index. Comparing the two distributions, clearly reveals the
inadequacy of the Poisson assumption for the dmft-index.
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Figure 3.5 Caries study: observed distribution of dmft-index and PPD-distribution
(NB(9761, 4352)-distribution).

In Chapter 10, we will see that the comparison of the observed distribution to the PPD is
the basis of a goodness-of-fit test.

3.5 Exchangeability

The classical assumption of the independence in a sample {y1, y2, . . . , yn} is expressed as
p(y1, y2, . . . , yn | θ ) = ∏n

i=1 p(yi | θ ). Thus, independence is defined conditional on θ and
in the case of independence, the joint distribution of y1, y2, . . . , yn splits up in a product of
marginal distributions.

In practice, we never know θ , but we give it a prior distribution p(θ ) in a Bayesian
context. Averaging over the uncertainty of θ , the marginal or unconditional joint distribution
of {y1, y2, . . . , yn} is obtained, given by

p(y1, y2, . . . , yn) =
∫

θ

p(y1, y2, . . . , yn | θ )p(θ ) dθ,

(3.16)

=
∫

θ

n∏
i=1

p(yi | θ )p(θ ) dθ.

From expression (3.16),

p(y1, y2, . . . , yn) = p(yπ(1), yπ(2), . . . , yπ(n)), (3.17)

with π any permutation on the set {1, 2, . . . , n}. When the above equality holds, we say
that the random variables y1, y2, . . . , yn are exchangeable. Note that exchangeability does
not imply independence since the product and the integral in expression (3.16) cannot be
exchanged, but independence of random variables having the same marginal distribution does
imply exchangeability. In a frequentist context, the same phenomenon occurs when θ is not
constant but has a random distribution. An example of exchangeable but not independent
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random variables is the random vector (y1, y2, . . . , yn), which has a multivariate normal
distribution with mean zero and all correlations equal to ρ (for the covariance matrix to be
positive definite ρ ≥ −1/(n − 1)). In the case where (y1, y2, . . . , yn) ∼ Nn(µ, 
), with µ

and/or 
 general, then y1, y2, . . . , yn are not exchangeable; see Exercise 3.16 for a more basic
probabilistic example that differentiates exchangeability from independence.

Exchangeability is about ‘similar’ random variables. However, it is an assumption that
must follow from the context of the experiment. Suppose that subjects are enrolled in a
clinical trial in a sequential manner. Then the (measurements on the) subjects could be judged
exchangeable if there is no reason to believe that there is a time trend in the type of patients
that are recruited. In practice, one may come up with many reasons why subjects may be
considered nonexchangeable, e.g. patients differ in gender, age, etc. Deciding that subjects
are ‘similar’ depends on the goal of the research. For some research questions, say, gender
might be irrelevant but in others men and women may correspond to different distributions.
Further, exchangeability clearly also depends on how much the researcher is acquainted with
the problem. He will be less inclined to declare subjects exchangeable when he is quite
knowledgeable in the topic; see Draper et al. (1993) for an elaboration on this topic.

Exchangeability is central in prediction. In Section 3.4, we looked for the distribution
of a future observation ỹ assumed to be similar to the past data {y1, . . . , yn}. We assumed
conditional independence of ỹ and {y1, . . . , yn}, but since we did not know the true value of θ ,
the unconditional distribution of {̃y, y1, . . . , yn} is exchangeable but dependent. It is this kind
of dependence that allowed us to learn from the past data. If we knew θ then past data would
not help us in determining the distribution of ỹ because of the conditional independence.

Exchangeability was introduced by de Finetti (1937, 1974) in a more formal manner.
de Finetti called condition expression (3.17) finite exchangeability. He defined infinite ex-
changeability for an infinite sequence of random variables when each finite subsequence
is exchangeable. From above, we know that when we start with conditional independent
random variables, then unconditionally we obtain exchangeable random variables satisfying
expression (3.16). de Finetti also proved the reverse result stated in Theorem 3.5.1.

Theorem 3.5.1 (Representation theorem) Let y1, y2, . . . , yn be an infinitely exchangeable
sequence of binary random variables with (unconditional) cdf F and density p, then there
exists a cdf Q such that

p(y1, y2, . . . , yn) =
∫ 1

0

n∏
i=1

θ yi (1 − θ )1−yi dQ(θ ),

where Q(θ ) = limn→∞ F(sn/n ≤ θ ), with sn = y1 + y2 + . . . + yn and θ = limn→∞ sn/n.

For a proof, see Bernardo and Smith (1994, pp. 172–173). The above theorem says that
when y1, . . . , yn are exchangeable, this is functionally equivalent to assuming that yi are
independent Bern(θ ) (Bernoulli) random variables with θ , given a prior distribution Q(θ ).
It also implies that p(y1, . . . , yn | θ ) = ∏n

i=1 θ yi (1 − θ )1−yi . In other words, exchangeability
is equivalent to a simple hierarchical model where the hyperparameter is given a prior (see
Chapter 9). Therefore, the representation theorem is seen by Bayesians as a plea for the
Bayesian approach in the sense that a natural assumption for random variables immediately
leads to a Bayesian model combining a likelihood with a prior.
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The representation theorem has been extended to multinomial and real-valued random vari-
ables. The theorems and their proofs can be found in Chapter 4 in Bernardo and Smith (1994).

If considered nonexchangeable, subjects can still be exchangeable within a subpopulation.
For instance, women and men might be separately exchangeable. Another example is that the
effect of an antihypertensive treatment might depend on age and gender, but within each age-
gender class patients are considered to be exchangeable. When this happens, then one speaks
of partial or conditional exchangeability. In general, we speak of conditional exchangeability
given a covariate x when two subjects i and j with response yi and y j are exchangeable
conditional on xi and x j, respectively. In Chapter 9, we further extend exchangeability to
hierarchical models.

3.6 A normal approximation to the posterior

In all of the above examples, the choice of the prior allowed the posterior as well as the posterior
summary measures to be derived analytically. If other priors had been chosen, then numerical
procedures would have been needed to compute the necessary posterior information. This can
become quickly involved especially for the multiparameter case because the integral in the
denominator of Bayes theorem needs to be computed numerically.

But even when the problem is numerically complex, the Bayesian analysis can be sim-
plified considerably by using a normal approximation to the posterior distribution for a large
sample size.

3.6.1 A Bayesian analysis based on a normal approximation
to the likelihood

The ML estimator of θ has (approximately) a normal distribution for a large sample size.
Since the MLE is asymptotically sufficient, the likelihood of the data is well approximated by
the normal likelihood of the MLE. When this normal likelihood is combined with a normal
prior, we know that a normal posterior is the result.

In Example III.9, we analyze the case-control study introduced in Example I.3 in a similar
way as in Ashby et al. (1993). In the spirit of the previous examples, we start with the
frequentist approach.

Example III.9: Kaldor’s et al. (1990) case-control study: Posterior inference using
normal approximations
In Table 1.1, the results of the case-control study conducted by Kaldor et al. (1990) were
summarized. As in Ashby et al. (1993), the matched nature of the case-control design is
neglected here.

Let the probability of having the risk factor in the controls (cases) be θ0 (θ1), the total
number of controls (cases) be n0 (n1) and the number of controls (cases) with the risk factor
(chemotherapy) be r0 (r1). The odds ratio expresses the association between the risk factor
and the disease, but for estimation purposes one usually works with the logarithm of the odds
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ratio, i.e.

γ = log

[
θ1/(1 − θ1)

θ0/(1 − θ0)

]
.

The MLE of γ is equal to

γ̂ = log

[
r1 (n0 − r0)

r0 (n1 − r1)

]
,

and has approximately a normal distribution with mean γ and variance

var(γ̂ ) ≡ σ 2
γ̂ = 1

r0
+ 1

n0 − r0
+ 1

r1
+ 1

n1 − r1
.

For small numbers of events, augmenting the cell frequencies with 0.5 improves the normal
approximation (Agresti 1990).

(a) The frequentist approach
Based on γ̂ ∼ N(γ , σ 2

γ̂
) an asymptotic significance test and a 95% CI for γ can be obtained.

This also gives a significance test and a CI for the odds ratio eγ . Here, we obtained γ̂ = 2.08
and eγ̂ = 8.0 (P < 0.0001). The 95% CI for γ is [1.43, 2.72] and for the odds ratio eγ , it is
[4.2, 15.2].

(b) The Bayesian approach
The Bayesian approach does not need a large sample for inference about γ , but the large
sample result for γ̂ simplifies the computations. From Section 2.7, we know that a normal
prior N(γ0, σ

2
0 ) for γ , combined with the normal likelihood of γ̂ , yields a normal posterior

N(γ , σ 2) for γ with

γ =
(

γ̂

σ 2
γ̂

+ γ0

σ 2
0

)
× σ 2,

σ 2 =
(

1

σ 2
γ̂

+ 1

σ 2
0

)−1

.

Figure 3.6(a) shows the prior and posterior distributions of the odds ratio when a weakly
informative normal prior (γ0 = log(5), σ0 = 10 000) is chosen. The posterior summary mea-
sures were computed on the log odds ratio scale (assuming a normal distribution) and then
back-transformed to the odds ratio scale. We found that the posterior summary measures
for γ are (practically) identical to those obtained from the above frequentist analysis, i.e.
the posterior mode/median/mean are equal to the MLE of γ and the 95% CI is equal to the
corresponding CI. On the odds ratio scale, the posterior median is equal to the MLE of eγ ,
but it differs from the posterior mean and mode. Figure 3.6(a) illustrates that the transformed
95% HPD interval on the log odds ratio scale is not an HPD interval anymore on the odds
ratio scale (see Section 3.3.2).

The clinicians (Ashby et al. 1993) assumed that chemotherapy always induces an increase
in risk. Their ‘best guess’ (median) for eγ was 5 with a 95% prior credible interval on the
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Figure 3.6 Kaldor’s et al. case-control study: (a) posterior of eγ based on N(1.6, 10 0002)-
prior for γ and (b) posterior of eγ based on N(1.6, 0.822)-prior for γ .

odds ratio scale of [1, 25]. Thus, loosely speaking, the experts put their 95% belief in a
N(1.6, 0.822)-distribution for γ . The prior and posterior distribution for the odds ratio are
shown in Figure 3.6(b). The posterior median for γ is now slightly lower, i.e. 7.5, reflecting
the belief of the experts that the risk is somewhat lower than that obtained in the data. The
95% CI is [4.1, 13.6].

3.6.2 Asymptotic properties of the posterior distribution

The use of a normal posterior is justified even when the likelihood is combined with a non-
normal prior as long as the sample size is large. In 1785, Laplace proved the CLT for the
inverse probability, i.e. the asymptotic normality of the posterior distribution even before
the classical CLT was proven! However, because the posterior is up to a constant equal to
the likelihood for a uniform prior, the two results are intimately related to each other. In
modern terms, we could say that the asymptotic normality of the posterior follows from the
classical result in likelihood theory together with the fact that ‘the likelihood dominates the
prior for a large sample size’. Only, . . . historically seen the reverse happened (Hald 2007).
We state below the one-parameter version of Bayesian CLT; the multiparameter version is a
straightforward generalization.

Theorem 3.6.1 Let y represent a sample of n i.i.d. observations with joint density
p(y | θ ) ≡ L(θ | y) and p(θ ) > 0 a prior density for θ . Under suitable regularity condi-
tions, the posterior distribution p(θ | y) converges to the normal distribution N(θ̂ , σ 2

θ̂
) when

n → ∞, where θ̂ is the MLE of θ and σ 2
θ̂

= −
(

d2 log L(θ |y)

dθ2 |θ=θ̂

)−1
.

In practice, the regularity conditions are usually met. For instance, one of the regularity
conditions is that the support of the prior distribution should contain the MLE. Gelman et al.
(2004, pp. 108–111) elaborate on the impact of the regularity conditions.

In the frequentist paradigm, the CLT occupies a central role. Indeed, many frequentist
tests have intractable small sample properties so that one needs to rely on asymptotic theory.
This is not the case in the Bayesian approach since exact Bayesian inference can always be



P1: JYS/XYZ P2: ABC
JWST177-c03 JWST177-Lesaffre May 26, 2012 10:36 Printer Name: Yet to Come Trim: 244mm × 168mm

NUMERICAL TECHNIQUES TO DETERMINE THE POSTERIOR 63

obtained simply by exploring the posterior distribution. Theorem 3.6.1 only states that this
exploration becomes simple when n is large.

Example III.10: Caries study: Posterior of mean (dmft-index)
To show that the normal approximation to the posterior can be reasonable even for small sample
sizes, we have selected the dmft-index of the first 10 children. Combining the Gamma(3, 1)
prior with the likelihood (

∑10
i yi = 26) gives a Gamma(29, 11) distribution as posterior for θ .

The normal approximation (computed as in Theorem 3.6.1) to the posterior has, in general,
mean θ̂ = y and variance σ 2

θ̂
= y/n. Here, we obtained y = 2.6 and σ 2

θ̂
= 0.26, respectively.

The normal approximation is remarkably good (not shown). When applied to the whole study,
the normal approximation simply overlays the true posterior distribution (not shown).

Theorem 3.6.1 also implies that for a large sample the choice of the prior is not important
and that the posterior is completely determined by the likelihood. However, for a small to
moderate sample size one cannot rely, in general, on this result and the posterior needs to be
computed explicitly. Analytical determination of the posterior can only be done for a well-
chosen prior, called the conjugate prior. For another choice of the prior, numerical procedures
are necessary. In Section 3.7, we review some (relative simple) numerical techniques to
compute the posterior for any chosen prior.

3.7 Numerical techniques to determine the posterior

In this section, we briefly review two classes of numerical techniques to determine the
posterior distribution and posterior summary measures. The first class consists of numerical
integration techniques to approximate the involved integrals directly. In the second approach,
integration is replaced by sampling from the posterior. We show that sampling has a lot to
offer. Moreover, from Chapter 6 on all posterior computations will be done via sampling
although using more complicated algorithms. In this chapter we focus on one-dimensional
problems, but in principle all techniques can be applied to multidimensional problems in
which case the one-dimensional parameter θ becomes a vector θ.

3.7.1 Numerical integration

There are numerous techniques to approximate integrals in a numerical manner. We start with
some elementary techniques and end with methods that are nowadays intensively used in
random effects models (see also Verbeke and Molenberghs 2000). Let f (θ ) denote a smooth
function that we wish to integrate over a possibly infinite interval [a, b] (when infinite,
the closed interval is replaced by a half-open or open interval). This function represents
t(θ )p(θ | y) or t(θ )p(y | θ )p(θ ) with t(θ ) a summary measure. When t(θ ) = 1 in the latter
expression, we are interested in determining the denominator of Bayes theorem.

The simplest integration techniques involve a grid a ≡ θ0 < θ1 < . . . < θ(M+1) ≡ b
of equidistant grid points with δ = θm − θm−1, (m = 1, . . . , M + 1). A first and sim-
ple technique to compute the integral

∫ θm

θm−1
f (θ ) dθ is to approximate the function f (θ )

in the mth subinterval by the rectangle with base δ and height f (θ∗
m), θ∗

m = (θm−1 +
θm)/2 the midpoint of the mth subinterval. This yields

∫ θm

θm−1
f (θ ) dθ ≈ δ f (θ∗

m). The to-
tal integral is then obtained by summing up all contributions from the subintervals,
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and hence,

∫ b

a
f (θ ) dθ ≈

M+1∑
m=1

wm f (θ∗
m), (3.18)

with wm = δ. For the trapezoidal rule, the piecewise constant function is replaced by a
piecewise linear function passing through f (θm−1) and f (θm). The well-known Simpson’s
rule is a further improvement involving piecewise quadratic polynomials. When f (θ ) is well
approximated by the product of a normal density and a polynomial in θ , efficient computation
of the integral can be done via Gaussian quadrature. Naylor and Smith (1982) introduced this
technique for Bayesian computations. For the Gaussian quadrature rule, the M grid points,
called quadrature points (on the infinite interval (−∞,∞)), are not equidistant anymore,
but are the roots of Mth-degree Hermite polynomials. The weight wm is a function of the
(M − 1)th-degree Hermite polynomial evaluated in the mth grid point. An important property
of the Gaussian quadrature rule is that the integral is exactly reproduced when the above
polynomial is of degree 2M − 1. There are two versions of Gaussian quadrature: nonadaptive
and adaptive. In the nonadaptive case, the grid points do not depend on f (θ ). For the adaptive
case, the grid points are centered around the posterior mode, and the curvature of the posterior
density at the posterior mode determines the distance between the grid points. Typically,
adaptive Gaussian quadrature needs less quadrature points than the nonadaptive version to
achieve the same accuracy. This is shown by Lesaffre and Spiessens (2001) in the context of
a logistic random-effects model.

For one quadrature point, the adaptive Gaussian quadrature reduces to the Laplace method
for integration or Laplace approximation, an important technique both for numerical approx-
imations and for analytical derivations. To perform the Laplace approximation, the integral in
expression (3.18) is rewritten as

∫
exp[h(θ )] dθ,

with h(θ ) = log f (θ ) a smooth, bounded unimodal function. Often h(θ ) is the log-likelihood
function of a sample or the product of the log-likelihood with the prior (see Section 11.4.2
for more details). The method is based on a Taylor series expansion of h(θ ) and yields the
approximation

∫
exp[h(θ )] dθ ≈ (2π)d/2|A|1/2 exp[h(θ̂M )], (3.19)

with θ̂M the value at which h(·) (or f (·)) attains its maximum and A is minus the inverse Hessian
of h evaluated at θ̂M . For alternative formulations of the Laplace method and improvements;
see Tanner (1996, pp. 44–47).

In Example III.11, we replace the gamma prior for the dmft-index in the Signal-
Tandmobiel® study by a lognormal prior. This increases the complexity of the problem
drastically in the sense that the posterior distribution cannot be computed analytically
anymore, i.e. the denominator

∫
p(y | θ )p(θ ) dθ of Bayes theorem needs to be evaluated

numerically as well as all posterior summary measures.
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Example III.11: Caries study: Posterior distribution for a lognormal prior
When the gamma prior in Example III.10 is replaced by a lognormal prior, the posterior
becomes a complicated function and the posterior summary measures are not easily calculated.
More specifically, suppose the prior distribution for θ is

p(θ ) = 1

θσ0

√
2π

e
−

(
log(θ )−µ0

2σ0

)2

, (θ > 0), (3.20)

then the posterior distribution is proportional to

θ
∑n

i=1 yi−1e
−nθ−

(
log(θ )−µ0

2σ0

)2

, (θ > 0). (3.21)

The above posterior distribution is quite complicated. Press (2003, p. 175) showed that the
AUC is not known and that no analytical expressions are available for the posterior. Thus, we
need to rely on a numerical technique.

With parameters for the lognormal prior equal to µ0 = log(2) and σ0 = 0.5, we have
taken the midpoint approach with 10 000 equidistant grid points to produce the solid line
in Figure 3.9. Clearly, this is a grossly inefficient method, but it served our purposes here.
From the grid approach, we also obtained the posterior summary measures, with 2.52 for the
posterior mean and 0.22 for the posterior variance.

3.7.2 Sampling from the posterior

The Monte Carlo method has taken a prominent position in Bayesian statistics nowadays
which will become clear in the following chapters. In the Monte Carlo approach, the expected
value is approximated by the sample mean of simulated random variables.

We first treat Monte Carlo integration which replaces the integral by the average obtained
from sampled values. To sample from standard posterior distributions such as a normal,
beta, and gamma, standard software (S+, R, SAS®, STATA®, etc.) can be employed. For
other posteriors general purpose samplers might be needed, as seen below. We review gen-
eral sampling techniques: the inverse cumulative distribution function (ICDF) method, the
acceptance–rejection algorithm and importance sampling. But the great potential value of
sampling will only become clear in Chapter 6.

3.7.2.1 Monte Carlo integration

The posterior summary
∫

t(θ ) p(θ | y) dθ is the expected value E [t(θ ) | y] of t(θ ) under
the distribution p(θ | y). Assume that we have K independently sampled values {θ1, . . . , θK}
from p(θ | y), then for K large

∫
t(θ ) p(θ | y) dθ ≈ tK = 1

K

K∑
k=1

t(θ k),

according to the classical Strong Law of Large Numbers. The unbiased estimator tK is called
the Monte Carlo estimator of E [t(θ ) | y]. For a discrete θ , the integral is replaced by a sum.
The consequence of the above result is that probabilities, summations and integrals can be
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approximated by the Monte Carlo method. Furthermore, the empirical distribution function
and, hence, the histogram of the sampled values converges to the true posterior as K → ∞.

According to the classical CLT, the precision with which the true summary measure is
estimated may be quantified by the (classical) 95% CI

[tK − 1.96 st/
√

K, tK + 1.96 st/
√

K], (3.22)

with st the standard deviation of the sampled t(θ k)-values and st/
√

K is called the Monte Carlo
error. The first standard deviation is an approximation of the posterior standard deviation,
while the second is an estimate of the uncertainty of the estimated posterior mean. This
interval in expression (3.22) indicates the precision with which the sampling procedure has
determined the true posterior mean.

The 95% equal tail CI can be approximated with a sample from the posterior distribution
simply by determining the 2.5% and 97.5% quantile from that sample. For the HPD interval
based on sampled values, we used the procedure by Tanner (1993, pp. 70–71) that is imple-
mented in the R program to analyze Example III.12 (‘chapter 3 sample from beta distribution
stroke study. R’).

Example III.12: Stroke study: Sampling from the posterior distribution
The posterior information on the probability of developing SICH for rt-PA treated patients
was summarized by a Beta(19, 133)-distribution (see Example II.1). Using the R function
rbeta we sampled 5 000 values of θ from the Beta(19, 133)-distribution. From Figure 3.7(a),
it is clear that the sample histogram and the true posterior are quite close.

Determining the posterior of log(θ ) involves the calculation of the Jacobian, which is easy
here. But it is even quicker to add one extra line to the R program to get the sample histogram
of log(θ ). Figure 3.7(b) illustrates that the sample histogram of log(θ ) is close to the true
posterior. In addition, the sample summary measures of the beta distribution were practically
identical to the true summary measures.

The R function quantile was used to construct an 95% equal tail CI for θ , equal to [0.0780,
0.181], which is virtually identical to that obtained from the true posterior. The 95% equal tail
CI for log(θ ) is [−2.55, −1.71]. On the basis of the algorithm suggested by Tanner (1993,

θ
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Figure 3.7 Stroke study: true and sampled posterior for (a) θ and (b) log(θ ).
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pp. 70–71), an approximate 95% HPD interval for θ is [0.0747, 0.178]. Chen and Shao (1999)
suggested an improvement over the approach of Tanner (1993), which is implemented in the
CODA (and BOA) R packages.

The advantage of sampling is that with a little extra effort the summary measures can be
obtained for log(θ ), θ/(1 − θ ), etc. More (and sometimes laborious) work is needed to derive
the analytical expression of the corresponding posterior distributions.

3.7.2.2 General purpose sampling algorithms

For many classical distributions specific algorithms have been suggested to generate random
variables (see Ripley 1987; Gentle 1998). If no specific sampling technique exists for the
(posterior) distribution at hand, then either a dedicated procedure needs to be developed or
one could make use of a general purpose algorithm. The first general approach is the ICDF
method. Then we introduce two sampling techniques which make use of an instrumental
distribution.

(a) The inverse ICDF method
If the random variable x has a continuous cdf F , then F(x) ∼ U(0, 1). Provided that F−1

exists, this suggests sampling from F by x = F−1(u) with u ∼ U(0, 1). This is denoted as
the ICDF method. There is also a discrete version of the ICDF method which is used by
WinBUGS for discrete parameters.

(b) The accept–reject algorithm
In the accept–reject (AR) algorithm, one first samples from an instrumental distribution q(θ ).
In a second step some of the sampled values are rejected to end up with a sample from
p(θ | y). The distribution q(θ ) is called the proposal distribution and p(θ | y), in this context,
the target distribution. The AR algorithm assumes that p(θ | y) is bounded above by a multiple
of q(θ ), i.e. there is a constant A < ∞ such that p(θ | y) < A q(θ ) for all θ . Therefore, the
distribution q is also called the envelope distribution, A is the envelope constant and Aq is the
envelope function. Sampling proceeds in two stages. In the first stage, θ̃ is drawn from q(θ )

independently from u that is drawn from U(0, 1). In the second stage, θ̃ is either accepted or
rejected according to the following rule:

� Accept: When u ≤ p(θ̃ | y)/A q(θ̃ ), θ̃ is accepted as a value from p(θ | y).

� Reject: When u > p(θ̃ | y)/A q(θ̃ ), θ̃ is rejected.

We now show that, when this sampling algorithm is repeated J times, a sample {θ1, . . . , θK}
(K ≤ J) from p(θ | y) is generated. To prove this, we need to show that

P(θ̃ ≤ θ | θ̃ is accepted) = P(θ̃ ≤ θ | y).

This follows from

P(θ̃ ≤ θ & θ̃ is accepted) =
∫ θ

−∞
P(θ̃ | θ̃ is accepted) P(θ̃ is accepted) dθ̃

=
∫ θ

−∞
q(θ̃ )

p(θ̃ | y)

A q(θ̃ )
dθ̃ =

∫ θ

−∞

p(θ̃ | y)

A
dθ̃
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and

P(θ̃ is accepted) =
∫ ∞

−∞

p(θ̃ | y)

A
dθ̃ = 1

A
.

From the proof, it follows that the AR algorithm produces a sample from the posterior
distribution even if only the product p(θ )p(y | θ ) is available. This property is extremely
useful (see Chapter 6). However, the ARS algorithm will only work properly when the
support of p(θ | y) is contained in the support of q(θ ), i.e. q(θ ) > 0 if p(θ | y) > 0. The
efficiency of the AR algorithm can be measured by the probability that θ̃ is accepted, which
is equal to 1/A. Hence, the closer A is to 1 the greater the efficiency of the AR algorithm.

In general, it is not easy to find the envelope function. For log-concave distributions, Gilks
and Wild (1992) proposed the Adaptive Rejection Sampling (ARS) algorithm that aims to
produce a piecewise linear envelope function in an adaptive manner. In addition, a piecewise
lower bound to p(θ | y), called the squeezing function, is constructed in an adaptive manner.
There are two popular versions of the ARS algorithm: the tangent method of ARS and the
derivative-free method of ARS. We focus here on the first approach. A sketch of the sampling
algorithm goes as follows. Take the logarithm of the posterior, log p(θ | y) ≡ l p(θ ). It is
assumed that l p(θ ) is concave and differentiable on its support. Suppose that l p(θ ) has been
evaluated already at θ1, θ2 and θ3. The envelope function is determined on these three points
by connecting the tangent lines as in Figure 3.8(a). The squeezing function is determined by
connecting the points (θ1, l p(θ1)), (θ2, l p(θ2)), (θ3, l p(θ3)), and the boundary points as in
Figure 3.8(a). Exponentiate and standardize the envelope and squeezing function such that
they have AUC=1 and call these distributions qU and qL, respectively. Then draw θ̃ from qU

and an independent u from U(0, 1). If u ≤ qL(θ̃ ), then accept θ̃ . Thus, the squeezing function
can prevent the evaluation of the log-likelihood. If u > qL(θ̃ ), then evaluate l p(θ̃ ) and accept
θ̃ as done above in the general AR algorithm. If θ̃ is rejected in the first step, add θ̃ to the grid,
compute the tangent at that point and update qU and qL. The advantage of this AR algorithm
is that much less evaluations of l p(θ ) are needed than the sampled values. Namely, for K
sampled points around K1/3 evaluations are needed. Usually between 5 and 10 grid points
are necessary to have a good performance of the ARS algorithm. In Figure 3.8(b), we can
see the envelope and squeezing function of the derivative-free ARS, which differs from the
tangent ARS in the envelope function. The derivative-free ARS is implemented in WinBUGS
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Figure 3.8 ARS algorithm: envelope and squeezing function for (a) tangent ARS, and (b)
derivative-free ARS.
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and is also the most important sampler of the package. Finally, the ARS approach has also
been combined with a Metropolis sampling algorithm (see Chapter 6) to accommodate for
nonlog-concave posteriors (Gilks and Tan 1995). This is called the ARMS algorithm and is
implemented in some of the Bayesian SAS® procedures.

Importance sampling and the SIR algorithm
Now we introduce two sampling procedures which involve sampling from an instrumental
distribution in combination with a corrective action, but without needing to find an envelope
function. For both methods, the posterior distribution needs to be known only up to a constant.

Importance sampling was first suggested by Kahn and Marshall (1953) as a variance
reduction technique to estimate a summary measure of a distribution by sampling from an
instrumental distribution q(θ ). Kloek and van Dijk (1978) introduced the approach into the
Bayesian world. Let the support of p(θ | y) be part of the support of q(θ ). Suppose that we
are interested in the posterior mean of the summary measure t(θ ), then

E [t(θ ) | y] =
∫

t(θ )p(θ | y) dθ

=
∫ [

t(θ )
p(θ | y)

q(θ )

]
q(θ ) dθ (3.23)

= Eq

[
t(θ )

p(θ | y)

q(θ )

]
.

Expression (3.23) provides the following sampling algorithm. Given a sample θ1, . . . , θK

from q(θ ), then an estimator of E [t(θ ) | y] is

1

K

K∑
k=1

t(θ k)p(θ k | y)

q(θ k)
≡ 1

K

K∑
k=1

t(θ k)w(θ k), (3.24)

with importance weights w(θ k) = p(θ k | y)/q(θ k). The expected value of the importance
weights is equal to 1. But this is not the case for the realized weights. Therefore, an alternative
expression based on normalized weights is given by

t̂I,K =
∑K

k=1 t(θ k)w(θ k)∑K
k=1 w(θ k)

. (3.25)

The normalized estimator t̂I,K has the advantage that it can be used when the posterior
distribution is only known up to a constant. t̂I,K converges to E [t(θ ) | y] for basically any
q(θ ) (Geweke 1989), but it can suffer from wild fluctuations unless∫ [

t2(θ )
p2(θ | y)

q2(θ )

]
q(θ ) dθ =

∫ [
t2(θ )

p2(θ | y)

q(θ )

]
dθ < ∞.

This condition implies that the tails of q(θ ) must be heavier than those of p(θ | y).

Clearly, importance sampling does not generate a sample from the posterior distribu-
tion but makes use of the sample generated from q(θ ) to estimate summary measures from
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the true posterior. In contrast, the weighted sampling–resampling method, called SIR (sam-
pling/importance resampling) by Rubin (1988), does produce samples from the posterior. The
algorithm goes as follows:

� First stage: Draw J (with J large) independent values θ ≡ {θ1, . . . , θ J} from q(θ )

and calculate weights wj ≡ w(θ j)( j = 1, . . . , J) as above. This defines a multinomial
distribution, with categories defined by the sampled θ values and associated probabilities
w = (w1, w2, . . . , wJ ).

� Second stage: Take a sample of size K 
 J, from ϑ i.e. draw from Mult(K, w).

Here is a sketch of the proof that the SIR algorithm ultimately samples from the correct
posterior. The probability that the sampled θ̃ is less or equal to θ is equal to

J∑
j: θ j ≤ θ

wj =
∑

j[p(θ j | y)/q(θ j)] I(θ j ≤ θ )∑
j p(θ j | y)/q(θ j)

.

With J → ∞ and a suitable limit operation whereby the θ -range is split up into small intervals
with probability q(θ̃ ) dθ̃ the summation is turned into the integral

∫ θ

−∞[p(θ̃ | y)/q(θ̃ )]I(θ̃ ≤ θ )q(θ̃ ) dθ̃∫ ∞
−∞[p(θ̃ | y)/q(θ̃ )]q(θ̃ ) dθ̃

=
∫ θ

−∞ p(θ̃ | y) dθ̃∫ ∞
−∞ p(θ̃ | y) dθ̃

= P(θ̃ ≤ θ | y).

Both importance sampling approaches have shown to be quite useful in a great variety of
applications. For instance, in Chapter 10 we illustrate their usefulness for detecting influential
observations. We now illustrate the AR algorithm and the SIR algorithm on the posterior of
Example III.11.

Example III.13: Caries study: Sampling from the posterior distribution with
a lognormal prior
Despite the analytical difficulties when replacing the gamma distribution by the lognormal
distribution, the posterior and the summary measures can easily be determined via sampling.

(a) The accept–reject algorithm
The lognormal distribution is maximized when log(θ ) is equal to µ0. This yields

Aq(θ ) = θ
∑n

i=1 yi−1e−nθ .

The expression of Aq(θ ) is up to a constant that of a Gamma(
∑

i yi, n)-distribution.
Thus, to apply the AR algorithm we simply generated a random variable θ̃ from a
gamma distribution, an independent uniform random variable u and evaluated whether
u ≤ p(θ̃ | y)/A q(θ̃ ).

With the same settings as in Example III.11 we applied the AR algorithm and produced
the histogram in Figure 3.9. We sampled 1 000 θ -values, but the algorithm rejected 160 values.
Thus the histogram is based on 840-sampled θ -values. From the sampled values, we easily
derived posterior summary measures. We obtained 2.50 (2.48) as posterior mean (median),
0.21 as posterior variance and [1.66, 3.44] as 95% equal tail CI.
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Figure 3.9 Caries study (subsample of the first 10 children): histogram of random sample
obtained by AR algorithm (size = 840) from the posterior distribution (lognormal prior-
Poisson likelihood). Solid curve is a numerical approximation to the posterior distribution.

(b) The weighted sampling–resampling algorithm
Another approach is to sample first from a posterior gamma distribution obtained by combining
a gamma prior with the Poisson likelihood. In a second step, one (re)samples from these
sampled values with appropriate weights. In this case, the instrumental distribution q is the
posterior based on another prior. This approach was suggested by Smith and Gelfand (1992).
However, q could differ also in the likelihood part. More specifically, if the first posterior
distribution is

p1(θ | y) = L1(θ | y) p1(θ )

p1(y)

and the second posterior distribution is

p2(θ | y) = L2(θ | y) p2(θ )

p2(y)
,

then

p2(θ | y) ∝ L2(θ | y) p2(θ )

L1(θ | y) p1(θ )
p1(θ | y) = v(θ )p1(θ | y).

Here, the SIR method consists in taking first a (large) sample θ1, . . . , θ J from
p1(θ | y). In the second stage, one resamples K (
 J) θ -values with weights wj =
v(θ j)/

∑J
i=1 v(θ i), ( j = 1, . . . , J) resulting in a random sample from p2(θ | y). First, we

have taken a random sample of size J = 10 000 from the Gamma(29, 11) distribution, which
was obtained by combining the Gamma(3, 1) distribution as prior p1(θ ) with the Poisson
likelihood. Second, we have taken a random sample from this sample of size K = 1 000
with weights specified as above and p2(θ ) the above-defined lognormal prior distribution.
The histogram of the sampled values is not shown, because it is quite similar to the one in
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Figure 3.9. The posterior summary measures are also quite similar to those obtained with the
AR algorithm.

The second application in the previous example is attractive for a Bayesian sensitivity
analysis, whereby one can evaluate the effect of omitting an observation from the analysis
by simply resampling with weights wj = L(θ j | y(i))/L(θ j | y) whereby L(θ | y(i)) is the
likelihood based on all observations except the ith. If the effect of the ith observation on the
summary measure t(θ ) is of interest, then the estimator t̂I,J with the above defined weights wj

can be computed for each observation i(= 1, . . . , n) in turn.

3.7.3 Choice of posterior summary measures

Nowadays virtually all Bayesian analyses are based on sampling techniques. In this chapter,
we have reviewed sampling techniques that yield independent samples from a distribution,
while in Chapter 6 we treat sampling techniques that produce dependent samples. However,
the way the posterior summary measures are computed is to a large extent independent of the
sampling technique. The posterior summary measures that are most reported in the literature
are the mean, median and standard deviation. This is because these measures are easily
obtained from a sampling exercise and are the standard output of WinBUGS, which is the
most popular Bayesian software. The mode cannot be directly obtained from WinBUGS and
is, therefore, rarely reported. However, in Chapter 9 we see that the posterior mode might
also be useful, e.g. to compare the Bayesian with the frequentist output (since the MLE is
equal to the posterior mode for a flat prior) for reporting the posterior variance. For interval
estimation, the equal tail CI is most popular again because it is part of the standard output
from WinBUGS. The HPD interval is, though, computed by the R packages CODA and BOA.

3.8 Bayesian hypothesis testing

In this section, we treat two Bayesian tools for hypothesis testing. Recall that, while in the
Bayesian approach the parameter θ is a random variable, a true value of the parameter is
assumed. This justifies the use of a formal hypothesis test also in a Bayesian context.

3.8.1 Inference based on credible intervals

Let the null-hypothesis be H0 : θ = θ0. This hypothesis can be immediately verified with the
help of credible intervals. There are two popular and related ways to do this. In the first
approach, one computes the 95% CI of θ . When θ0 is not included in the interval, then this
is seen as a rejection of the null-hypothesis in a Bayesian way. This approach is popular, e.g.
when evaluating regression coefficients in Bayesian regression models.

Posterior evidence against the null-hypothesis can also be expressed via the contour
probability pB. This probability is calculated from the smallest HPD interval containing θ0,
i.e. the posterior probability that θ lies outside this interval expresses our posterior belief of
how extreme the value θ0 is in the light of the data. Formally, the contour probability pB is
defined as

P (p(θ | y) > p(θ0 | y)) ≡ 1 − pB.
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Graphically, pB is the complement of the AUC that is entertained by the smallest HPD
interval including the null-hypothesis value. If pB is small, then the hypothesis θ = θ0 is not
well-supported a posteriori.

The contour probability was first suggested by Box and Tiao (1973, p. 125) and can be
viewed as the Bayesian counterpart of the two-sided P-value in frequentist statistics. Thus,
one might refer pB to a Bayesian P-value keeping in mind that it is based on only the observed
data and the prior. However, in the literature, the Bayesian P-value refers to a probability
obtained from a posterior predictive check (see Chapter 10).

Example III.14: Cross-over study: Use of credible intervals in Bayesian hypothesis testing
Thirty (= n) patients with systolic hypertension were randomized to two antihypertensive
treatments A and B. The patients were treated for 1 month and then the reduction in their
systolic blood pressure was measured. After a period of no medication (washout period),
patients treated with A (B) in the first period were treated with B (A) for 1 month in the second
period. At the end of the treatment, y = 21 patients treated under A showed a greater systolic
blood pressure reduction than under B. Let θ represent the probability that A is better than
B in lowering systolic blood pressure. In the case that there is no period effect, one may test
H0 : θ = θ0(= 0.5) with a two-sided binomial test. It was found that there were significantly
more patients better off with A than with B (P = 0.043).

In a Bayesian context, one combines a prior (here uniform) with the binomial likelihood.
Since 21 successes (A better than B) out of 30 patients were obtained, a Beta(22, 10) posterior
is the result.

The 95% HPD interval for θ is given by [0.53, 0.84] excluding the value 0.5. Hence, there
is evidence against the null-hypothesis. In Figure 3.10, the smallest HPD interval containing
θ = 0.5 is shown corresponding to pB = 0.0232. Thus, also from a Bayesian viewpoint there
is serious doubt on the null-hypothesis.

When the posterior distribution is established by a sampling technique, pB cannot be
determined exactly. However, the contour probability can be approximated using a posterior

1.00.80.60.40.20.0

θ

Smallest HPDI with 0.5

p
B
 against θ = 0.5 

0.5

Figure 3.10 Cross-over study: contour probability for null-hypothesis θ = 0.5.
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sample {θ1, . . . , θK} by 1 − p̂B, with p̂B the observed proportion of times that p(θ k | y) ≥
p(θ0 | y), (k = 1, . . . , K).

3.8.2 The Bayes factor

The Bayes factor, one of the major contributions of Jeffreys to Bayesian statistics, measures
the change from prior to posterior odds in favor of the null-hypothesis and it is the Bayesian
equivalent of the likelihood ratio test.

We are now interested in the posterior probability that a particular hypothesis H is true
given the observed data y. This probability is denoted as p(H | y). To compute this probability
using Bayes theorem, we need the averaged likelihood under the hypothesis, i.e. p(y | H) =∫

p(y | θ ) p(θ |H) dθ with p(θ |H) the prior for θ under the hypothesis H. Then, under the
settings of Section 3.8.1, we can calculate the posterior probability that H0 is true, i.e.

p(H0 | y) = p(y | H0) p(H0)

p(y | H0) p(H0) + p(y | Ha) p(Ha)
, (3.26)

which follows directly from Bayes theorem. The above expression shows that if p(H0 | y) >

0.5, the null hypothesis is given greater posterior belief and might be opted for. In that case, the
null-hypothesis will be considered more plausible than the alternative hypothesis. However,
such a conclusion is not accepted in a frequentist context.

Since Ha is the complement of H0, p(Ha) = 1 − p(H0) and p(Ha | y) = 1 − p(H0 | y),
we obtain

p(H0 | y)

1 − p(H0 | y)
= p(y | H0)

p(y | Ha)
× p(H0)

1 − p(H0)
. (3.27)

Expression (3.27) states that the prior odds for hypothesis H0 is transformed into a posterior
odds by multiplication with p(y | H0)/p(y | Ha). The latter term is called the Bayes factor and
is denoted as BF(y). The Bayes factor is the ratio of the likelihoods under hypotheses H0 &
Ha and varies between 0 and ∞. For BF(y) greater than 1 (smaller than 1), the posterior odds
for H0 is greater (smaller) than the prior odds and the posterior probability of H0 is greater
(smaller) than its prior probability. So, the Bayes factor expresses the impact of the data on the
odds for H0. Traditionally, the numerator in the Bayes factor pertains to the null-hypothesis,
such that, when small, there is preference for Ha which is in the spirit of a small classical
P-value. Jeffreys (1961, p. 432) classified the Bayes factor (favoring H0 against Ha) into:
‘decisive’ (BF(y) > 100), ‘very strong’ (32 < BF(y) ≤ 100), ‘strong’ (10 < BF(y) ≤ 32),
‘substantial’ (3.2 < BF(y) ≤ 10) and ‘not worth more than a bare mention’ (1 < BF(y) ≤
3.2). As with the frequentist significance level of 0.05, this classification of the Bayes factor
is to some extent arbitrary. To give an idea of the impact of a particular BF(y), suppose that
the prior probability for H0 is equal to 0.10, then for BF(y) = 3.2 the posterior probability
for H0 becomes 0.26, which represents a relatively small change. On the other hand, when
BF(y) = 100, this posterior probability increases to 0.92 that represents a dramatic change.

We now discuss the use of the Bayes factor on three classical hypothesis testing scenarios
in Example III.15.
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Example III.15: Cross-over study: Use of the Bayes factor
Consider the following three scenarios for a parameter θ :

� H0 : θ = 0.5 versus Ha : θ = 0.8 (only 0.5 and 0.8 are possible),

� H0 : θ ≤ 0.5 versus Ha : θ > 0.5,

� H0 : θ = 0.5 versus Ha : θ �= 0.5,

where as before, H0 and Ha represent the null- and alternative hypothesis, respectively. For
each of the three scenarios, the Bayes factor will be derived.

Scenario 1: H0 : θ = 0.5 versus Ha : θ = 0.8
In this scenario θ is discrete assuming only two possible values. Suppose that there is a priori
no preference of either hypothesis so that we are prepared to give them equal prior weight:
p(H0) = p(Ha) = 0.5. The likelihoods under H0 and Ha are

� p(y = 21|H0) = (30
21

)
0.521 0.59 = 0.0133,

� p(y = 21|Ha) = (30
21

)
0.821 0.29 = 0.0676,

respectively. BF(21) is approximately equal to 0.2 such that (according to Jeffreys) there
is ‘substantial’ evidence to prefer θ = 0.8 over θ = 0.5. With equal prior probabilities, the
Bayes factor is equal to the ratio of the two posterior probabilities.

In this scenario, the Bayes factor is exactly equal to the classical likelihood ratio. Unlike
in frequentist statistics, though, inference is only based on the observed data.

Scenario 2: H0 : θ ≤ 0.5 versus Ha : θ > 0.5
In this scenario, θ is continuous. For the calculation of p(H0 | y), p(Ha | y) and the Bayes
factor, we need p(y | H0). This likelihood is a weighted average of values p(y | θ ) with
weights provided by the prior distribution of θ on the interval [0, 0.5]. A similar calculation
results in p(y | Ha). Suppose that investigators give equal prior probabilities to H0 and Ha

with a uniform p(θ | H0) and p(θ | Ha). In that case, the averaged likelihoods under H0 and
Ha are

� p(y = 21 | H0) = ∫ 0.5
0

(30
21

)
θ21 (1 − θ )9 2 dθ = 2

(30
21

)
B(22, 10) 0.01472,

� p(y = 21 | Ha) = ∫ 1
0.5

(30
21

)
θ21 (1 − θ )9 2 dθ = 2

(30
21

)
B(22, 10) (1 − 0.01472),

respectively. In the above calculations, 0.01472 = 1
B(22,10)

∫ 0.5
0 Beta(θ | 22, 10) dθ . For this

scenario, BF(21) (odds of posterior probabilities) is approximately equal to 0.015. In Jeffreys
terminology, there is ‘substantial’ evidence to favor θ > 0.5 over θ ≤ 0.5.

In this scenario, the Bayes factor is not equal to a classical likelihood ratio test. In fact, if
different prior distributions p(θ | H0) and p(θ | Ha) had been chosen, a different Bayes factor
would have been obtained. Goodman (1999b) argues that specifying a particular prior for the
parameter is part of the specification of the hypothesis and therefore should have an impact
on the inference.

The third and last scenario is known as testing a ‘sharp’ null-hypothesis (θ = 0.5) and
represents the most common hypothesis test in practice.
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Scenario 3: H0 : θ = 0.5 versus Ha : θ �= 0.5
In this scenario, we test a sharp or a simple null-hypothesis. Now it is not immediately clear
how to assign prior probabilities to H0 and Ha, since the former is a simple hypothesis, while
the latter is a composite hypothesis. In fact, with a continuous prior distribution the posterior
distribution for θ = 0.5 is zero. To bypass this conceptual difficulty it has been suggested,
but not without controversy, to assign a ‘lump’ prior probability to H0, e.g. 0.5. In that case,
the likelihood under H0 and the averaged likelihood under Ha using a uniform distribution
p(θ | Ha) (and thus also p(θ )) are

� p(y = 21 | H0) = (30
21

)
0.521 0.59 = 0.0133,

� p(y = 21 | Ha) = ∫ 1
0

(30
21

)
θ21 (1 − θ )9 dθ = (30

21

)
B(22, 10),

respectively, such that BF(21) is about 0.41, favoring θ �= 0.5 over θ = 0.5. According to
Jeffreys classification, the preference is, however, ‘Not worth more than a bare mention’.

Compare this result with the likelihood ratio test statistic Z equal to 0.521 0.59

(21/30)21 (9/30)9 =
0.0847, favoring again the alternative hypothesis but now with a P-value of 0.026, expressing
a much stronger statement against the null hypothesis than obtained with the Bayes factor.

The Bayes factor occupies a central position in Bayesian statistics and is indispensable in
Bayesian model and variable selection. This will be shown in Section 10.2.1 and Chapter 11.
However, the use of the Bayes factor in practice is hampered by computational difficulties. In
Section 10.2.1, we elaborate on the pros and cons of using a Bayes factor.

We end this introduction to the Bayes factor with a discussion on its relationship with the
P-value. In this context, we also discuss the Jeffreys–Lindley–Bartlett’s paradox.

3.8.3 Bayesian versus frequentist hypothesis testing

3.8.3.1 P-value, Bayes factor, and posterior probability

The P-value expresses the evidence that the data provided against H0 but it does not express
the probability that H0 is true (or false). Thus when the P-value is, say 0.049, the message is
not that there is about 0.05 probability that H0 is true. However, it is a common interpretation
of this result and Goodman (1999a, 1999b) called this the P-value fallacy. Only the Bayesian
approach allows such statements using the posterior probability p(H0 | y) or the Bayes factor.
But, in some cases the classical P-value comes close to bringing such a message.

Casella and Berger (1987) examined above scenario 2, i.e. H0 : θ ≤ 0 versus Ha : θ > 0
and compared the P-value with p(H0 | y). Note that in any practical computation p(H0 | y)

depends on the choice of the alternative hypothesis, the prior probabilities for the hypotheses
and the sample size, so a comparison between the P-value and p(H0 | y) for each specific case
would be rather complicated and confusing. Therefore, a different approach is needed. Above,
we have seen that the choice of p(θ ) (or p(θ | H0) and p(θ | Ha)) is involved in the hypothesis
test. Hence, any sensible comparison between the P-value and p(H0 | y) must specify this
prior. Instead of looking at specific choices for p(θ ), Casella and Berger (1987) looked at
classes of priors. They demonstrated that if p(θ ) gives equal weight to both hypotheses and
belongs to a reasonable class of priors (unimodal and symmetric around zero) then

min p(H0 | y) = P(y),
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where the minimum is taken over the class of above priors and the dependence of the P-value
on the data is made explicit. The practical message is that when a small P-value is obtained,
it will indeed express a low evidence for H0 in a Bayesian sense if a reasonable prior p(θ ) is
used.

Things are different for the simple hypothesis test (scenario 3). Goodman (1999b) defined
the minimum Bayes factor BFmin(y) as the smallest Bayes factor in favor of the null-hypothesis
when varying over the alternative hypotheses. In the Gaussian case, Goodman (1999b) showed
that BFmin(y) = exp(−0.5z2) with z is the observed test-statistic that yields P(y). This can be
easily seen in the following simple case. Assume y ∼ N(θ, σ 2) with σ 2 known and a sample
of size n is available. Take H0 : θ = θ0 and Ha : θ �= θ0. Then

p(y | θ = θ0, σ )

p(y | θ = y, σ )
=

exp

[
−0.5

(
y−θ0

σ/
√

n

)2
]

exp

[
−0.5

(
y−y

σ/
√

n

)2
] = exp(−0.5z2).

In this case, P(y) = 0.05 corresponds to BFmin(y) = 0.15 and the corresponding minimum
posterior probability (under equal priors for H0 and Ha) is 0.204. This illustrates that there
is much less evidence against H0 than what the observed P-value might suggest. Casella and
Berger (1987) and Berger and Sellke (1987) generalized this result and obtained even less
extreme values. This leads to the now widely accepted viewpoint (among Bayesians) that, in
a simple hypothesis test, P-values exaggerate the evidence against H0. To make their point
more practically appealing, Berger and Sellke (1987) and Sellke et al. (2001) illustrated the
evidence that is contained in the statement ‘P-value is 0.049’ in the context of drug research.
They demonstrated that for studies with P ≈ 0.05, at least 23% (and typically close to 50%)
of the drugs will have a negligible effect. For this reason, suggestions were made to calibrate
the P-value which simply means that P-values should be translated into Bayesian measures
of evidence. Held (2010) recently proposed a graphical approach that translates the prior
probability and P-value to a minimum posterior probability.

Finally, as with the classical P-value, the contour probability also suffers from an ‘exag-
geration’ problem. In the multivariate case, the contour probability is, however, quite useful
in quickly picking up important effects (Section 1.1.4). Its similarity to the P-value may also
stimulate the medical researchers to accept the Bayesian approach (some will now rightfully
think ‘for the wrong reasons’). The same is true for the tradition of providing 95% CIs to the
estimates, they also appear to be the same as classical CIs.

3.8.3.2 Jeffreys–Lindley–Bartlett’s paradox

Lindley (1957) and Bartlett (1957) reported on an apparent paradox where the null hypothesis
is rejected in a frequentist analysis with a small P-value while the Bayes factor favors H0. This
is called the Lindley’s paradox, but also the Bartlett’s paradox, the Lindley–Bartlett’s paradox
and the Lindley–Jeffreys’s paradox. The paradox is caused by the different philosophies in
hypothesis testing in both paradigms. In the frequentist context, hypothesis testing is done by
comparing maximized likelihoods (likelihood ratio statistic), while in the Bayesian approach
one compares averaged likelihoods. We borrow the following theoretical example given in
Press (2003, pp. 222–225) to explain the paradox.
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Example III.16: Illustration of Lindley’s paradox
Supose we wish to test H0 : θ = θ0 versus Ha : θ �= θ0 based on an i.i.d. sample y =
{y1, . . . , yn} with yi ∼ N(θ, σ 2) for a known σ . The large sample test statistic is given by

z = y − θ0

σ/
√

n
.

The P-value equals p = P(|z| > |zobs|) = 2 [1 − 
(zobs)], with zobs the observed z-statistic.
For the calculation of the Bayes factor, assign 0.50 prior probability to H0 and Ha and assume
p(θ ) = N(θ | θ0, σ

2). Then the marginal distribution of y under Ha is N
[
θ0, (1 + 1

n )σ 2
]

and
the posterior probability of H0 given the observed mean y (and test statistic zobs) becomes then

p(H0 | y) = 1/
{

1 + 1√
1+n

exp
[
z2

obs/2(1 + 1/n)
]}

. This allows us to compute the posterior

probability p(H0 | y) for different observed values for the test statistic z and shows that for
zobs = 1.96 (two-sided P-value of 0.05) p(H0 | y) increases from 0.33 to 0.82 when the sample
size increases from 5 to 1000. Thus, for a relatively small P-value, H0 can be accepted in a
Bayesian hypothesis with a relatively high probability and this is called Lindley’s paradox. It
is the result of averaging the likelihood under the alternative hypothesis over a large (infinite)
number of unrealistic values of θ which weakens the evidence for Ha.

Goodman (1999b) argues that the dependence of the Bayes factor on the choice of p(θ ), and
hence also Lindley’s paradox, is a reflection of our prior imprecision in defining the alternative
hypothesis. Thus, a way to avoid Lindley’s paradox is to give the distribution p(θ | Ha) not
too big a spread. This becomes crucially important in Bayesian variable selection (see Chapter
11).

3.8.3.3 Testing versus estimation

Above computations also make it clear that, unlike in frequentist theory, estimation and
testing are not complementary in the Bayesian approach (Kass and Raftery 1995). In testing,
Bayesians put positive probabilities on sharp hypotheses, while in estimation one would
assign a zero probability to θ = θ0. In estimation, the priors often do not have a great impact
on the posterior conclusion, but this is not the case in Bayesian testing where the prior can
affect the Bayes factor considerably; see Section 10.2.1 for more illustrations on this. Finally,
in estimation the model is fitted to the data while in testing only the averaged likelihood is
computed.

3.9 Closing remarks

In this chapter, we have reviewed the basic ingredients of the Bayesian ‘language’. We have
restricted ourselves to the one parameter case, in order to focus on the concepts. The most
interesting practical cases involve more than one parameter. This is the topic of Chapter 4,
and in fact of all subsequent chapters of the book. We will then also realize that, despite its
elegancy, the Bayesian approach also poses great numerical problems.
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Exercises

Exercise 3.1 Show that (a) the posterior mean minimizes expression (3.3), (b) the posterior
median minimizes expression (3.3) whereby the square loss function is replaced by a|θ − θ̂ |
with a > 0, and (c) the posterior mode minimizes expression (3.3) with a penalty of 1 if we
choose the incorrect value and no penalty for the correct value.

Exercise 3.2 Determine the posterior summary measures of Examples III.2 and III.3 using
FirstBayes.

Exercise 3.3 Based on the posterior distribution obtained in Example II.3, derive the posterior
summary measures for the Signal-Tandmobiel study using FirstBayes.

Exercise 3.4 Show that in the binomial case, the posterior mean is a weighted average of the
prior mean and the MLE.

Exercise 3.5 Show that in the binomial case, the variance of the posterior distribution might
be in some situations larger than that of the prior distribution, see also Pham-Gia (2004) for a
general result in this context.

Exercise 3.6 Explore in the Poisson case the relationship of the variance of the posterior
gamma distribution with respect to the variance of the prior gamma distribution.

Exercise 3.7 Show that there is shrinkage of the posterior mode and mean for the gamma-
Poisson case.

Exercise 3.8 Write a function in R to determine the HPD interval in Example II.5 for the
stroke study and check your result using FirstBayes. Repeat this exercise for the dmft-index
in the Signal-Tandmobiel study.

Exercise 3.9 Show that the HPD interval for an odds ratio is not invariant to a switch of
the groups by interchanging in Table 1.1 the two columns. More specifically if [a, b] is the
HPD interval for the odds ratio in the original setting, then [1/b, 1/a] is not the HPD interval
anymore for the odds ratio with the columns switched. However, this property holds for a
classical CI. Note also that there is no such difficulty for γ = log(or).

Exercise 3.10 Show that the PPD of a normal likelihood combined with a normal prior yields
expression (3.12).

Exercise 3.11 Repeat the analysis of Example III.6 using the data set ‘alp.txt’ by making use
of an R program.

Exercise 3.12 Repeat the analysis of Examples III.7 and III.8 using FirstBayes.

Exercise 3.13 Derive the PPD for the sum of n i.i.d. future counts from a Poisson distribution
with a gamma prior for the mean.

Exercise 3.14 Prove the discrete version of expression (3.9). That is, for n possible ‘causes’
Ci suppose that A1 and A2 are two conditionally independent events such that

P(A1 A2 | Ci) = P(A1 | Ci) P(A2 | Ci), i = 1, . . . , n,

and let P(Ci) = 1/n. Then show that

P(A1 | A2) = 
P(A2 | Ci)P(Ci | A1).
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Exercise 3.15 Derive the PPD for the negative binomial likelihood in combination with a
beta prior (see Exercise 2.8).

Exercise 3.16 (see Cordani and Wechsler 2006) Consider random sampling without replace-
ment of marbles from an urn having a known composition, 10 red and 5 white marbles. The
marbles are selected one by one and if Ri is the event that the ith sampled marble is red and
Wi that the ith sampled marble is white, show that R1, R2, . . . , R15 (and W1,W2, . . . ,W15) are
exchangeable but not independent random variables. That is, prove that P(R1) = P(R2) =
. . . = P(R15), P(R1&R2) = P(R1&R3) = . . . , etc., but P(R1, R2, . . . , R15) �= ∏15

i=1 P(Ri).
Show also that if sampling is done with replacement then R1, R2, . . . , R15 are exchangeable
and independent.

Exercise 3.17 Suppose that the experts in Example III.9 assume that chemotherapy is poten-
tially harmful. Their prior belief on the odds ratio scale is summarized by the median odds
ratio equal to 5 and a 95% equal to CI on the odds ratio scale of [1, 25]. Repeat the analysis
in Example III.9.

Exercise 3.18 The GUSTO-1 study is a mega-sized RCT comparing two thrombolytics:
streptokinase (SK) and rt-PA for the treatment of patients with an acute myocardial infarction.
The outcome of the study is 30-day mortality, which is a binary indicator whether the treated
patient died after 30 days or not. The study recruited 41 021 acute infarct patients from 15
countries and 1081 hospitals in the period December 1990–February 1993. The basic analysis
was reported in The GUSTO Investigators (1993) and found a statistically significant lower
30-day mortality rate for rt-PA compared with SK. Brophy and Joseph (1995) reanalyzed the
GUSTO-1 trial results from a Bayesian point of view, leaving out the subset of patients who
were treated with both rt-PA and SK. As prior information, the data from two previous studies
have been used: GISSI-2 and ISIS-3. In Table 3.1, the data from the GUSTO-1 study and
the two historical studies are given. The authors compared the results of streptokinase and
rt-PA using the difference of the two observed proportions, equal to absolute risk reduction
(ar), of death, nonfatal stroke and the combined endpoint of death or nonfatal stroke. Use the
asymptotic normality of ar in the calculations below.

Questions:

1. Determine the normal prior for ar based on the data from (a) the GISSI-2 study, (b) the
ISIS-3 study, and (c) the combined data from the GISSI-2 and ISIS-3 studies.

Table 3.1 Data from GUSTO-1, GISSI-2 and ISIS-3 on the comparison between of
streptokinase and rt-PA.

Trial Drug
Number of

patients
Number of

deaths
Number of

nonfatal strokes
Combined deaths

or strokes

GUSTO SK 20 173 1 473 101 1 574
rt-PA 10 343 652 62 714

GISSI-2 SK 10 396 929 56 985
rt-PA 10 372 993 74 1 067

ISIS-3 SK 13 780 1 455 75 1 530
rt-PA 13 746 1 418 95 1 513
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2. Determine the posterior for ar for the GUSTO-1 study based on the above priors and a
noninformative normal prior.

3. Determine the posterior belief in the better performance of streptokinase or rt-PA based
on the above-derived posterior distributions.

4. Compare the Bayesian analyses to the classical frequentist analyses of comparing the
proportions in the two treatment arms. What do you conclude?

5. Illustrate your results graphically.

Exercise 3.19 Repeat the analysis in Example III.12 using a sampling approach. Show also
the histogram of θ/(1 − θ ).

Exercise 3.20 Repeat the analysis in Example III.12 using a normal prior for θ with prior
mean equal to 0.5 and prior standard deviation equal to 0.05.

Exercise 3.21 Repeat the analysis in Example III.14 with y = 5. Vary also the prior distri-
bution for θ (stay within the beta-family), e.g. try out some more focused priors and evaluate
the change in the Bayes factor.
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4

More than one parameter

4.1 Introduction

The majority of statistical models involves more than one parameter, with the most common
example being the Gaussian distribution N(µ, σ 2). In this chapter, we review multivariate
Bayesian inference involving a statistical model that contains more than one (unknown) pa-
rameter, but the data are allowed to be univariate or multivariate. We treat the multivariate
Gaussian model (and related models) for continuous data and the multinomial model for
categorical data. Finally, we treat the Bayesian linear regression model and the Bayesian gen-
eralized linear model (BGLIM). These and more complex models are the topic of subsequent
chapters and illustrated therein.

This chapter illustrates the complexity of the computations when more than one parameter
is involved. Integration issues will appear almost everywhere in Bayesian calculations. Fur-
thermore, Bayes theorem delivers a multivariate posterior distribution but inference is easier
on each parameter separately, and hence, the marginal posterior distributions are required,
involving again integration. For the Gaussian model with an appropriate prior, all these com-
putations can be done analytically. This is also true for the multinomial model. However, with
a slight glitch in the specification of the prior, the analytical derivations might not be possible
anymore, which occurs for instance when a priori information is provided for the mean and
variance parameter of the Gaussian model separately.

In addition, a sampling procedure called the Method of Composition is treated that allows
sampling from a limited class of multivariate distributions. But we need to wait until Chapter
6 for a general method of sampling.

While this chapter is somewhat more technical than the previous ones, for analytical
derivations we refer to Box and Tiao (1973), O’Hagan and Forster (2004), or Gelman et al.
(2004, Chapter 3). The aim of this chapter is merely to concentrate on the ideas behind the
derivations, thereby illustrating the complexity of the computations. It will become clear that
a different route is needed to tackle practical problems with the Bayesian approach.

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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4.2 Joint versus marginal posterior inference

Let y represent a sample of n i.i.d. observations (univariate or multivariate) with statistical
model characterized by a d-dimensional parameter vector θ = (θ1, θ2, . . . , θd )T . Further, let
the corresponding likelihood be L(θ | y), then Bayes theorem becomes

p(θ | y) = L(θ | y)p(θ)∫
L(θ | y)p(θ) dθ

, (4.1)

with p(θ) now a multivariate prior. Expression (4.1) defines the joint posterior distribution.
As in Chapter 3 one can define the posterior mode θ̂M and the posterior mean θ. Note that
the posterior median is not uniquely defined in higher dimensions; see Niinima and Oja
(1999) for some suggestions. The highest posterior density (HPD) interval can easily be
generalized to d dimensions. Namely, the region R in the parameter space of θ is called an
HPD region of content (1 − α) if (a) P(θ ∈ R | y) = 1 − α and (b) for θ1 ∈ R and θ2 ∈/R:
p(θ1 | y) ≥ p(θ2 | y).

In practice, inference is easier in low dimensions. That is, if θ = {θ1, θ2}, then it is simpler
to work with the marginal posterior distribution of θ1 defined as

p(θ1 | y) =
∫

p(θ1, θ2 | y) dθ2. (4.2)

For a one-dimensional θ1, the graphical display of the marginal posterior is easy and the
posterior summary measures based on p(θ1 | y) are convenient. We note in passing that the
posterior mean of θ consists of the marginal posterior means, but this result does not hold for
the posterior mode.

Expression (4.2) can be rewritten as

p(θ1 | y) =
∫

p(θ1 | θ2, y) p(θ2 | y) dθ2,

which shows that the marginal posterior of θ1 is obtained by averaging the conditional poste-
rior of θ1 given θ2 with a weight function determined by the marginal posterior of θ2. If θ2 con-
sists of nuisance parameters, then taking the marginal posterior of θ1 could be viewed as a way
to get rid of the nuisance parameters when drawing posterior inference on θ1. In other words,
inference about θ1 is obtained by taking into account the uncertainty we have on θ2. Note the
difference with the way nuisance parameters are removed in the likelihood approach using
the profile likelihood approach (Pawitan 2001). For θ = {θ1, θ2} with joint likelihood L(θ),
the profile likelihood is defined as pL(θ1) = maxθ2 L(θ1, θ2). As before we see that the
Bayesian approach deals with uncertainty via integration, while in the classical approach
maximization is the standard approach.

4.3 The normal distribution with µ and σ2 unknown

We now derive the joint posterior of the normal likelihood with both the mean and variance
parameters unknown and based on three different but Gaussian priors. Suppose that y =
{y1, . . . , yn} is a sample of i.i.d. observations from N(µ, σ 2). The joint likelihood of (µ, σ 2)
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given y is

L(µ, σ 2 | y) = 1

(2πσ 2)n/2
exp

[
− 1

2σ 2

n∑
i=1

(yi − µ)2

]
. (4.3)

The above expression can be rewritten as a function of y and s2, the sample mean
and variance, respectively, since

∑n
i=1(yi − µ)2 = [

(n − 1)s2 + n(y − µ)2
]
. This result sim-

ply states that y and s2 are the sufficient statistics for µ and σ 2. The posterior distribution is
obtained upon specification of the prior p(µ, σ 2). We consider three cases: (a) there is no
prior knowledge on µ and σ 2, (b) a previous study is informative about plausible values for
µ and σ 2 and (c) expert knowledge is available on µ and σ 2.

4.3.1 No prior knowledge on µ and σ2 is available

In the absence of prior knowledge on the mean and variance parameter of the normal model,
the popular noninformative joint prior p(µ, σ 2) ∝ σ−2 could be taken. Characteristics of this
prior are discussed in Section 5.4.3. This choice of prior leads to the posterior distribution

p(µ, σ 2 | y) ∝ 1

σ n+2
exp

{
− 1

2σ 2

[
(n − 1)s2 + n(y − µ)2

]}
, (4.4)

shown in Figure 4.1 where n, s and y are obtained from Example IV.1. Note that, while a priori
the parameters µ and σ 2 of the normal distribution are independent, they are not independent
a posteriori anymore.

It is insightful to report the posterior information about the parameters for each parameter
separately. This leads to the marginal posterior distributions p(µ | y) and p(σ 2 | y). They
express what is known about each parameter separately in the light of the data and given
the available information a priori. Both marginal posterior distributions involve an extra

6.8
6.9

7.0
7.1

7.2
7.3

7.4

1.2
1.4

1.6
1.8

2.0
2.2

2.4

µσ 2

Figure 4.1 Serum alkaline phosphatase study (noninformative prior): joint posterior distri-
bution p(µ, σ 2 | y) with yi = 100/

√
alpi (i = 1, . . . , 250).



P1: JYS/XYZ P2: ABC
JWST177-c04 JWST177-Lesaffre May 18, 2012 8:50 Printer Name: Yet to Come Trim: 244mm × 168mm

THE NORMAL DISTRIBUTION WITH µ AND σ 2 UNKNOWN 85

integration, e.g.

p(µ | y) =
∫

p(µ, σ 2 | y) dσ 2 =
∫

p(µ | σ 2, y)p(σ 2 | y) dσ 2.

The above marginal posterior distribution is a weighted average of conditional posterior
distributions p(µ | σ 2, y) with weights p(σ 2 | y). Consequently, the marginal posterior dis-
tribution for µ takes into account the uncertainty we have about σ 2. For a large study or a
strong prior, σ 2 is known with high precision. In that case p(µ | y) ≈ p(µ | σ 2, y) with σ 2

equal to the posterior mode. On the other hand, when there is doubt about the true value of σ 2

the Bayesian way of dealing with this uncertainty is averaging. In a similar manner, the calcu-
lation of the marginal posterior distribution for σ 2 takes into account the uncertainty we have
about µ.

Applying classical integration rules yields for posterior distribution (4.4), the following
results:

� p(µ | σ 2, y) is N(y, σ 2/n), equal to expression (2.19);

� p(µ | y) is a tn−1(y, s2/n) distribution, which means that µ is distributed as y +
t (s/

√
n) with t following a standard tn−1-distribution. Note that this result implies

for µ that, given y,

µ − y

s/
√

n
∼ tn−1; (4.5)

� p(σ 2 | y) is a scaled inverse chi-squared distribution, denoted Inv − χ2(n − 1, s2). It
is illustrative to note that this implies for σ 2 that, given y,

(n − 1)s2

σ 2
∼ χ2(n − 1); (4.6)

which is equivalent to σ 2 = (n − 1)s2/X2, with X2 following a standard χ2(n − 1)

distribution. The above distribution is a special case of an inverse gamma distribution
IG(α, β), with α = (n − 1)/2 and β = 1/2.

Since p(µ, σ 2 | y) = p(µ | σ 2, y) p(σ 2 | y) = N(µ | y, σ 2/n) Inv − χ2(σ 2 | n − 1, s2),
the joint posterior distribution is called a normal-scaled-inverse chi-squared distribution,
denoted by N-Inv-χ2(y, n, (n − 1), s2). We refer to Section 5.3.2 for more details on this
distribution. The above analytical work pays off since it allows us to have explicit mathematical
expressions of the posterior summary measures for µ and σ 2:

� For µ, the marginal posterior distribution is symmetrical and all posterior summary
measures for location are equal to y. The posterior variance is equal to (n−1)

n(n−2)
s2. The

95% equal tail credible and HPD interval are equal to

[y − t(0.025; n − 1) s/
√

n, y + t(0.025; n − 1) s/
√

n], (4.7)

with t(0.025; n − 1) the 97.5% quantile of the classical tn−1-distribution.



P1: JYS/XYZ P2: ABC
JWST177-c04 JWST177-Lesaffre May 18, 2012 8:50 Printer Name: Yet to Come Trim: 244mm × 168mm

86 MORE THAN ONE PARAMETER

� For σ 2, the posterior mean, mode and median are equal to (n−1)

(n−3)
s2, (n−1)

(n+1)
s2, (n−1)

χ2(0.5,n−1)
s2,

respectively, with χ2(0.5, n − 1) the median value of the χ2(n − 1) distribution. Its
posterior variance is equal to 2(n−1)2

(n−3)2(n−5)
s4. Finally, the 95% equal tail CI is

[
(n − 1)s2

χ2(0.975, n − 1)
,

(n − 1)s2

χ2(0.025, n − 1)

]
, (4.8)

with χ2(0.025, n − 1), χ2(0.975, n − 1) the 2.5% and the 97.5% quantile of the χ2(n −
1) distribution, respectively. The 95% HPD interval is computed numerically using the
approach outlined in Section 3.3.2.

The credible intervals (4.7) and (4.8) are the same as the corresponding classical 95%
confidence intervals (CIs). This illustrates that with the appropriate priors, a Bayesian analysis
can reproduce frequentist results.

Suppose now that it is of interest to know the distribution of a future observation ỹ (from
the same normal distribution as y). In other words, we wish to know the posterior predictive
distribution (PPD). The PPD takes into account that we do not know µ and σ 2 and is given by

p(̃y | y) =
∫ ∫

p(̃y | µ, σ 2)p(µ, σ 2 | y) dµ dσ 2, (4.9)

which is equal here to a tn−1-
[
ȳ, s2

(
1 + 1

n

)]
distribution.

The serum alkaline phosphatase data, introduced in Example III.6, are used to illustrate
the above-derived results in Example IV.1.

Example IV.1: Serum alkaline phosphatase study: Noninformative prior
The normal range for serum alkaline phosphatase (alp) based on a prospective set of 250
‘healthy’ patients was derived in Example III.6. But since the calculations ignored the uncer-
tainty of σ 2, the reference range is probably too narrow.

The joint posterior distribution for µ and σ 2 given yi = 100/
√

al pi (i = 1, . . . , 250) is
displayed in Figure 4.1. The marginal posterior distributions for µ and σ 2 are shown in
Figure 4.2.

On the basis of the above-derived expressions, the posterior location measures for µ are
µ = µ̂M = µM = 7.11 with posterior variance σ 2

µ = 0.0075. The 95% (equal tail and HPD)
CI is [6.94, 7.28]. For σ 2, the posterior summary measures are σ 2 = 1.88 (mean), σ̂ 2

M = 1.85
(mode), σ 2

M = 1.87 (median) and σ 2
σ 2 = 0.029 (variance). The 95% equal tail CI for σ 2 is

equal to [1.58, 2.24], while its 95% HPD interval is equal to [1.56, 2.22].
The distribution of a future observation is a t249(7.11, 1.37) distribution. This leads to a

95% normal range for y equal to [4.41, 9.80] leading to a 95% normal range for alp equal to
[104.1, 513.2], which is slightly wider than the reference range of Example III.6.

4.3.2 An historical study is available

The posterior of historical data can be used as a prior to the likelihood of the current data.
Suppose that the historical data were combined with a noninformative prior as done in
Section 4.3.1, then this yields the N-Inv-χ2(µ0, κ0, ν0, σ 2

0 ) prior for the current data where
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Figure 4.2 Serum alkaline phosphatase study: marginal posterior distributions for (a) µ and
(b) σ 2 with a noninformative prior (solid lines) and a data-based informative prior (dashed
lines).

the parameters are determined from the past data. That is,

µ | σ 2 ∼ N(µ0, σ
2/κ0),

σ 2 ∼ Inv − χ2(ν0, σ
2
0 ),

with µ0 = y0, κ0 = n0, ν0 = n0 − 1 and σ 2
0 = s2

0, with y0, s2
0 and n0 the sample mean, sample

variance and size of the historical data, respectively. Note that this prior may also be used
when expert knowledge is specified using the above priors. In both cases, µ0 may be thought
of as a prior mean for µ, κ0 as a prior sample size and ν0 as a prior mean for σ 2. Thus, when
κ0 = 1, then the prior sample size is equal to the information in one observation. Combining
this prior with likelihood (4.3) results in a N-Inv-χ2(µ, κ , ν, σ 2) posterior with

µ = κ0µ0 + ny

κ0 + n
, (4.10)

κ = κ0 + n, (4.11)

ν = ν0 + n, (4.12)

νσ 2 = ν0σ
2
0 + (n − 1)s2 + κ0 n

κ0 + n
(y − µ0)

2. (4.13)

Expression (4.10) is similar to expression (2.14) such that the posterior mean is again a
weighted average of the prior mean and sample mean. Consequently, there is again shrinkage
toward the prior mean. Expression (4.13) shows that the posterior variance is a combination
of the prior variance, the sample variance, and the distance between the sample mean and the
prior mean.

The next step is to derive marginal posterior distributions:

p(µ | σ 2, y) = N(µ | µ, σ 2/κ), (4.14)

p(µ | y) = tν (µ | µ, σ 2/κ), (4.15)

p(σ 2 | y) = Inv − χ2(σ 2 | ν, σ 2). (4.16)
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When κ0 = ν0 = 0, the aforementioned normal-scaled-inverse χ2 prior becomes the
noninformative prior σ−2 and the marginal posteriors reduce to the ones derived in
Section 4.3.1.

From expressions (4.13) and (4.15), we observe that the posterior precision of µ is not
automatically increased by combining the prior information with the sample data, in contrast
to what we have seen in Section 2.7. In fact, if the prior mean is remote from the sample mean,
then the posterior precision is likely to decrease. As a consequence, the posterior variance for
µ with an informative prior that is in conflict with the sample data might be greater than the
one obtained from a noninformative prior. This is illustrated in Example IV.2.

Finally, the PPD is obtained by an extra integration and becomes a tν
[
y, s2

(
1 + 1

κ0+n

)]
-

distribution.

Example IV.2: Serum alkaline phosphatase study: Conjugate prior
Prior to the prospective study, a retrospective study was conducted by Topal et al. (2003) and
delivered data on alp from 65 healthy subjects. The mean value and SD for y = 100/

√
alp

obtained from the retrospective study were 5.25 and 1.66, respectively, leading to a N-Inv-
χ2 (5.25, 65, 64, 2.76) conjugate prior. On the basis of this prior and combining with the
prospective data, the posterior distribution is N-Inv-χ2 (6.72, 315, 314, 2.61). The posterior
mean (median and mode) 6.72 is a weighted combination of the prior mean 5.25 and the
sample mean 7.11. The posterior variance of µ is σ 2

µ = 0.0083 which is greater than the
posterior variance of µ equal to 0.0075 obtained from the noninformative prior specified in
Example IV.1. The reason for this peculiar result is that the prior mean, equal to 5.25, is
relatively remote from the sample mean. The 95% (equal tail and HPD) CI for µ is [6.54,
6.90]. For σ 2, the posterior mean is equal to σ 2 = 2.62 (σ̂ 2

M = 2.59, σ 2
M = 2.61) and the

posterior variance equals σ 2
σ 2 = 0.044. The 95% equal tail CI is equal to [2.24, 3.07] close to

the 95% HPD interval equal to [2.23, 3.04].
The distribution of a future observation is the t314(6.72, 1.62) distribution. This leads to a

95% normal range for y equal to [3.54, 9.91] and corresponds to a 95% normal range for alp
equal to [101.9, 796.7], which is considerably wider than the reference range computed with
the noninformative prior distribution.

The prior information did not have the expected effect of shrinking the posterior uncertainty
because of the conflict of the discrepancy between the prospectively collected data and the
retrospective data. In Figure 4.2, we contrast the posterior from Example IV.1 and the current
posterior.

4.3.3 Expert knowledge is available

In practice, expert knowledge, if any, is typically available on each parameter separately. For
the normal distribution, this means that information is available separately on µ and σ 2. A
possible choice for informative priors is

� µ ∼ N(µ0, σ
2
0 ),

� σ 2 ∼ Inv − χ2(ν0, τ
2
0 ),

with µ0, σ 2
0 , ν0 and τ 2

0 obtained from eliciting prior information from experts separately for
µ and σ 2. If the prior knowledge on µ and σ 2 is obtained independently, then it is reasonable
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to take the prior as the product of p(µ) and p(σ 2), i.e.

N(µ0, σ
2
0 ) Inv − χ2(ν0, τ

2
0 ). (4.17)

This prior is, however, not a normal-scaled-inverse chi-squared distribution. In fact, it is
seen in Section 4.3.1. (see also Sections 5.3.2 and 5.3.4) that the N-Inv-χ2(µ0, κ0, ν0, σ

2
0 )

joint prior implies that the prior for µ is dependent on σ 2, a property that is not satisfied
by the product prior (4.17). Consequently, with prior (4.17) the posterior cannot be derived
analytically. Some partial results are available (Gelman et al. 2004, pp. 81–82), namely

p(µ | σ 2, y) = N(µ, σ 2),

with

µ =
1
σ 2

0
µ0 + n

σ 2 y

1
σ 2

0
+ n

σ 2

and σ 2 = 1
1
σ 2

0
+ n

σ 2

, (4.18)

where both µ and σ 2 vary with σ .
For σ 2, the marginal posterior distribution cannot be determined analytically, i.e. the

integration constant is not known. It can be shown (Gelman et al. 2004) that

p(σ 2 | y) ∝ σ N(µ | µ0, σ
2
0 ) Inv − χ2(σ 2 | ν0, τ

2
0 )

n∏
i=1

N(yi | µ, σ 2). (4.19)

In spite of the absence of analytical results for the posterior distribution, the posterior
distribution can be numerically approximated on a grid. An alternative is to sample from the
posterior distribution, which we illustrate in Section 4.6.

4.4 Multivariate distributions

When the response is multivariate, we speak of a multivariate response model. In the con-
tinuous case, we distinguish the multivariate normal (MVN) distribution, the multivariate
Student’s t-distribution, and the Wishart distribution. In the discrete case, we treat the multi-
nomial distribution.

4.4.1 The multivariate normal and related distributions

The most popular multivariate distribution for a p-dimensional continuous response y is no
doubt the MVN distribution, denoted by N(µ, 
) with mean vector µ and covariance matrix

. We will use the notation Np(µ, 
) when we wish to indicate the dimension of the MVN
distribution. The MVN density for a random vector y is given by

p(y | µ, 
) = 1

(2π)p/2|
|1/2
exp

[
−1

2
(y − µ)T 
−1(y − µ)

]
. (4.20)
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It is well known that all marginal and conditional distributions of an MVN distribution are
again normal, as well as all linear combinations of y1, . . . , yp.

The multivariate Student’s t-distribution allows for heavier tails than the MVN distribution.
The distribution is obtained as a posterior in a classical Bayesian regression model (see Section
4.7), but it is also used as a data distribution. The multivariate t-distribution Tν (µ, 
) for a
random vector y is given by

p(y | ν,µ, 
) = � [(ν + p)/2]

�(ν/2)(kπ)p/2
|
|−1/2

[
1 + 1

ν
(y − µ)T 
−1(y − µ)

]−(ν+p)/2

, (4.21)

which is the multivariate extension of location-scale t-distribution with ν degrees of freedom.
The χ2-distribution is the distribution of a sum-of-squares of independent normally dis-

tributed random variables. In particular, S2/σ 2 ∼ χ2(n − 1) with S2 = ∑n
i=1(yi − y)2. When

S2 is replaced by the matrix S = ∑n
i=1(yi − y)(yi − y)T then the Wishart-distribution is ob-

tained with scale matrix 
 and ν = n − 1 degrees of freedom. Hereby, it is seen that the
Wishart distribution is the multivariate extension of the χ2-distribution. The distribution was
named after John Wishart (1898–1956) and is denoted as Wishart(
, ν). The expression of
the distribution is

p(S|ν,
) = c|
|−ν/2|S|(ν−p−1)/2 exp

[
−1

2
tr (
−1S)

]
, (4.22)

with c−1 = 2νp/2π p(p−1)/4 ∏p
j=1 �

(
ν+1− j

2

)
, and tr(A) is the trace of the matrix A. A related

distribution is the inverse Wishart distribution defined as: R ∼ IW (
, ν) with 
 a precision
matrix if R−1 ∼ Wishart(
, ν).

Illustrations of the use of these distributions are found at many places in the following
sections of the book. For an in-depth treatment of multivariate Bayesian models (with proofs
of the results), we refer to Rowe (2003).

4.4.2 The multinomial distribution

We consider in this section, the application of the multinomial distribution to explore the
association of a row factor with a column factor in a 2 × 2 contingency table. In the second
example, we reanalyze the case-control study of Kaldor et al. (1990).

Suppose y = (y1, . . . , yk)
T represents the vector of frequencies falling into k classes, then

the multinomial distribution Mult(n, θ ) is given by

p(y | θ) = n!

y1!y2! . . . yk!

k∏
j=1

θ
y j

j , (4.23)

with n = ∑k
j=1 y j, θ = (θ1, . . . , θk)

T , θ j > 0, ( j = 1, . . . , k) and
∑k

j=1 θ j = 1. Clearly, the
binomial distribution is a special case of the multinomial distribution with k = 2. Further, the
marginal distribution of y j is a binomial distribution Bin(n,θ j). In addition, the conditional
distribution of y j( j ∈ S, S subset of {1, . . . , k}) given yS = {ym : m ∈ S} is Mult(nS, θS) with
nS = ∑

m∈S ym and θS = {θ j/
∑

m∈S θm : j ∈ S}.



P1: JYS/XYZ P2: ABC
JWST177-c04 JWST177-Lesaffre May 18, 2012 8:50 Printer Name: Yet to Come Trim: 244mm × 168mm

MULTIVARIATE DISTRIBUTIONS 91

Table 4.1 Young adults study: frequency table of
smoking and alcohol consumption.

Smoking

Alcohol No Yes

No-mild 180 41
Moderate-heavy 216 64

Total 396 105

We now use the multinomial model to explore the association between alcohol drinking
and smoking among young adults.

Example IV.3: Young adult study: Association between smoking and alcohol drinking
In Table 4.1, the results are shown of a study examining the life style among young adults.
There was interest in knowing the association between smoking and alcohol-consumption.
The 2 × 2 contingency table can be viewed as a multinomial model with parameters
θ = {θ11, θ12, θ21, θ22 = 1 − θ11 − θ12 − θ21}, whereby the subscripts indicate the rows and
columns, respectively, of the table. More specifically, the multinomial likelihood for observing
cell frequencies y = {y11, y12, y21, y22} with

∑2
i=1

∑2
j=1 yi j = n is

Mult(n, θ) = n!

y11! y12! y21! y22!
θ

y11

11 θ
y12

12 θ
y21

21 θ
y22

22 .

In Section 5.3.3, it is seen that a conjugate prior to this multinomial distribution is given by
the Dirichlet prior, Dir(α):

θ ∼ 1

B(α)

∏
i, j

θ
αi j−1
i j ,

with B(α) = ∏
i, j �(αi j)/�

(∑
i, j αi j

)
and α stands for all α-parameters. When combined

with the multinomial likelihood, the posterior distribution is Dir(α + y); see Chapter 5 for
more details.

The association between smoking and alcohol consumption can be expressed with the
cross-ratio

ψ = θ11 θ22

θ12 θ21
.

The posterior distribution of ψ given the observed cell frequencies is difficult to derive
analytically, but a sampling procedure can be invoked: Let Wi j(i, j = 1, 2) be distributed
independently as Gamma(αi j, 1) and T = ∑

i j Wi j, then one can show that Zi j = Wi j/T has a
Dir(α) distribution (Exercise 4.1).

For the analysis of the contingency table, we used a noninformative Dirichlet prior with
all parameters equal to 1, resulting in a Dir(180+1, 41+1, 216+1, 64+1) posterior. Using
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the above-suggested sampling procedure, 10 000 ψ-values were generated from its posterior.
From the sampled values, we obtained a posterior median for ψ of 1.299 with a 95% equal
tail CI of [0.839, 2.014]. Hence, there is no conclusive evidence of a positive association.
Note that the above estimates were equal up to 2 decimals to the frequentist estimates.

One can show that the one-dimensional marginal posteriors of the Dirichlet distribution
are all beta distributions Beta(αi j,

∑
kl αkl − αi j) (Exercise 5.8). Further, the noninformative

Dirichlet prior Dir(1,1,1,1) corresponds to an approximately normal prior for log(ψ) with
mean zero and SD 2.6 (Exercise 4.2). This prior acts as a diffuse prior for log(ψ).

Example IV.4: Kaldor’s et al. (1990) case-control study: A reanalysis of Example III.9
We reanalyzed the Hodgkin’s survival data using a somewhat different approach to compare
the proportion of patients that received chemotherapy among cases (251/411) and controls
(138/149). We assumed for controls and cases a binomial likelihood, with probability of
receiving chemotherapy denoted as θ1 for controls and as θ2 for cases. The likelihood for the
total sample is given by a product of binomial likelihoods, i.e.

L(θ1, θ2 | y) ∝ θ251
1 (1 − θ1)

160 θ138
2 (1 − θ2)

11,

where y stands for {251, 160, 138, 11}. To test the hypothesis H1 : θ2 ≤ θ1 versus H2 : θ1 < θ2,
we evaluated the posterior distribution of p(θ2 − θ1 | y). As part of a sensitivity analysis, we
varied the priors and considered

� Uniform prior for θ1 and θ2

� Jeffreys prior (see Chapter 5): p(θ1, θ2) ∝ θ
−1/2
1 (1 − θ1)

−1/2 θ
−1/2
2 (1 − θ2)

−1/2

� Haldane prior: p(θ1, θ2) ∝ θ−1
1 (1 − θ1)

−1 θ−1
2 (1 − θ2)

−1

The above priors are products of beta distributions. When combining these priors with
the likelihood, the posterior is again a product of beta distributions. Thus, a posteriori θ1 and
θ2 are independent. To obtain the posterior p(θ2 − θ1 | y), the easiest way is to sample from
p(θ2 | y) and p(θ1 | y) and to take the difference of each sampled value. On the basis of 1000
sample values, the 95% equal tail CIs for θ2 − θ1 for the three priors were [0.249, 0.373],
[0.251, 0.379] and [0.259, 0.381], respectively.

The above analysis follows the approach of Howard (1998) who treated the problem of
comparing the proportions from two independent binomial distributions. Using a variety of
priors, he showed that the classical frequentist tests (Fisher’s Exact test, chi-squared test, etc.)
can be ‘reproduced’ by Bayesian tests. However, Howard (1998) pleads for a dependent prior
p(θ1, θ2) rather than the independent priors we used here.

4.5 Frequentist properties of Bayesian inference

It is not of prime interest to a Bayesian to know the properties of Bayesian estimators in
case the study is repeated (in fact, most often studies in practice are not repeated at all).
It might be, however, important to ascertain when Bayesian estimators give on average the
correct inference. Indeed, the motivation for looking at the long-run operating characteristics
of Bayesian procedures is to assert how frequently a Bayesian procedure will provide a valid
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answer to the scientific problem taking into account that the chosen prior and model are often
not correct. We focus here on objective priors and are interested to know that Bayesian methods
perform well in practice if applied repeatedly. We first note that, because of the Bayesian CLT,
the posterior measures (mean, mode, median) have asymptotically a normal distribution. For
interval estimators, we are interested to know whether they have the correct coverage (Rubin
1984). This can also be interesting from a frequentist point of view. Namely, the Bayesian
approach offers alternative interval estimators, not relying on asymptotic properties of the
estimators. It might, therefore, be of interest to evaluate the performance of these estimators
under the frequentist paradigm and hope for a better coverage in small sample cases than
frequentist estimators.

However, there is nothing in the construction of the 100(1 − α)% credible interval that
guarantees its desired frequentist coverage, at least not for a small sample. For a large sample
the Bayesian CLT proves the asymptotic correct coverage for the case of a finite number of
parameters. Nevertheless we saw in Section 4.3.1 that the credible intervals obtained from a
joint NI prior are exactly the same as the classical 95% CIs. Thus for this case, the coverage
of the Bayesian interval estimators is guaranteed. Of course, 100(1 − α)% coverage should
not be expected anymore when strong subjective priors are taken (but perhaps the coverage is
greater than 100(1 − α)% for a good choice of the prior).

Other examples of correct coverage of Bayesian procedures will turn up in this and
subsequent chapters. For example, when comparing proportions in a 2 × 2 contingency
table, Agresti and Min (2005) explored various noninformative priors on the difference of
proportions π1 − π2, the ratio π1/π2 and the odds ratio [π1/(1 − π1)] / [π2/(1 − π2)]. Their
conclusions were that for the risk difference all considered noninformative priors gave about
the correct frequentist coverage, but that for the risk ratio and the odds ratio the uniform prior
gave too low a coverage (corresponding to a frequentist analysis). Their recommendation was
to use Jeffreys prior for the binomial parameters when a correct coverage in a frequentist
sense is aimed for. Rubin (1984) gave other examples where the Bayesian 100(1 − α)% CI
gives at least 100(1 − α)% coverage even when the prior distribution is chosen incorrectly.

Nowadays it becomes more commonplace to explore the frequentist properties of newly
proposed Bayesian procedures, see also Chapter 5.

4.6 Sampling from the posterior distribution: The
Method of Composition

The Method of Composition is a general step-by-step approach to yield a random sample
of independent observations from a multivariate distribution. The approach is based on the
factorization of the joint distribution into a marginal and one or more conditional distribu-
tions. For d parameters, the following factorization of the joint posterior distribution can be
established:

p(θ1, . . . , θd | y) = p(θd | y) p(θd−1 | θd, y) . . . p(θ1 | θd, . . . , θ2, y).

This factorization yields a natural procedure to sample from the joint posterior distribution. In
fact, we first sample θ̃d from p(θd | y), then sample θ̃(d−1) from p(θ(d−1) | θ̃d, y), etc. until all
parameters have been sampled. When repeated K times, an independent sample of size K is
obtained from the joint posterior distribution but also from all marginal posterior distributions.
The particular ordering of the parameters is, in principle, of no importance, but one ordering
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may be preferred over another when it results in simpler integrations or when it yields a more
elegant sampling procedure. The Method of Composition is particularly useful when a sample
of a particular marginal posterior is difficult to obtain, but sampling is easier from another
marginal posterior and associated conditional posteriors. Finally, the sampling method also
provides a natural and elegant way to sample from a PPD.

As seen in Section 3.7.2, sampling can replace analytical calculations to obtain the pos-
terior distribution and the posterior summary measures. There is, however, a price to pay,
namely, the posterior, and the posterior summary measures can only be determined approx-
imately. The quality of the approximation can be evaluated by the classical 95% CI (3.22).
The attractive feature of sampling is that if the Monte Carlo (standard) error is judged too
large, then the user can simply continue with the sampling until the desired accuracy is
achieved.

The Method of Composition will now be illustrated on the normal posterior p(µ, σ 2 | y).
We consider again the three cases with respect to the available knowledge regarding µ and σ 2:
(a) no prior knowledge, (b) historical data is available, and (c) expert knowledge is available.

Case 1: No prior knowledge on µ and σ2 is available
To sample from p(µ, σ 2 | y), we could first sample from p(σ 2 | y) and then sample from
p(µ | σ 2, y). To sample from p(σ 2 | y), we first sample ν̃k from a χ2(n − 1)-distribution
and then solve (σ̃ 2)k in (n − 1)s2/(σ̃ 2)k = ν̃k. In the second step, we sample µ̃k from a
N(y, (σ̃ 2)k/n)-distribution. The sample µ̃1, . . . , µ̃K is automatically a random sample of
independent observations from the tn−1(y, s2/n)-distribution, which is the marginal posterior
distribution for µ. Note that also the reverse ordering could have been taken, i.e. first sample
µ̃ from p(µ | y) and then sample σ̃ 2 from p(σ 2 | µ, y). It turns out, however, that the first
ordering is much simpler than the second (see Exercise 4.5).

To sample from the PPD p(̃y | y), we could directly sample from a tn−1
[
y, s2

(
1 + 1

n

)]
-

distribution or use the Method of Composition. To sample K values from the PPD using the
Method of Composition, the following three steps are repeated for k = 1, . . . , K:

1. Sample (σ̃ 2)k from Inv-χ2(σ 2 | n − 1, s2)

2. Sample µ̃k from N(µ | y, (σ̃ 2)k/n)

3. Sample ỹk from N(y | µ̃k, (σ̃ 2)k)

The above sampling procedure is applied to the alp data analyzed using the analytical
results in Example IV.1.

Example IV.5: Serum alkaline phosphatase study: Sampling the posterior – non-
informative prior
Sampling from the joint posterior distribution can be done with the Method of Composition.
In Figure 4.3, the sampled posterior distributions are based on K = 1000 values. The estimate
for the posterior mean (95% CI) based on the sample are for µ: 7.11 ([7.106, 7.117]) and for
σ 2: 1.88 ([1.869, 1.890]). The CIs show that these posterior summary measures have been
determined with high accuracy. If higher accuracy is needed, one simply increases K.

The 95% equal tail CI for µ is equal to [6.95, 7.27] and for σ 2 equal to [1.58, 2.23].
Again the estimated interval estimators are quite close to the true posterior intervals. For the
derivation of the PPD using sampling, see Exercise 4.5.
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Figure 4.3 Serum alkaline phosphatase study (noninformative prior): sampled posterior
distributions for (a) σ 2; (b) µ; (c) µ and σ 2; and (d) future observation ỹ. The solid lines are
the true posterior distributions.

Case 2: Historical data are available
The Method of Composition works in exactly the same way as for the noninformative prior
with the appropriate change in the parameters of the posterior distribution (see also Example
IV.6).

Case 3: Expert knowledge is available
The same sampling procedure could be followed as in the previous two cases. However,
p(σ 2 | y) is not a known distribution because of the nonconjugacy of the prior. Hence,
sampling cannot be done using standard routines. We could use expression (4.19) and then
the sampling algorithms of Section III.12 will do the job. Then, for a given σ̃ 2, sampling µ̃ is
straightforward using expression (4.18).

Example IV.6: Serum alkaline phosphatase study: Sampling the posterior – product of
informative priors
In Section 4.3.3, we have based the prior distributions on the historical alp data. That is, the
prior distributions for y = 100/

√
alp are

µ ∼ N(y0, s2
0/n0) and σ 2 ∼ Inv − χ2(n0 − 1, s2

0).
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Figure 4.4 Serum alkaline phosphatase study (product of informative marginal conjugate
prior distributions): sampled marginal posterior distributions for (a) σ 2 and (b) µ. The solid
line corresponds to the standardized version of expression (4.19). The dashed lines correspond
to the joint conjugate normal-scaled-inverse-chi-squared prior distribution with corresponding
parameters.

With the notation of Section 4.3.3, we have µ0 = y0 = 5.25, ν0 = n0 − 1 = 64, σ 2
0 = s2

0/n0 =
0.042 and τ 2

0 = s2
0 = 2.75.

To apply the Method of Composition, a sampling procedure is needed to draw from expres-
sion (4.19). One possibility is to use the weighted resampling method of Section 3.7.2. This
method needs an approximating distribution to expression (4.19). To this end, we evaluated
expression (4.19) on a grid and calculated the mean and variance. An excellent approximat-
ing distribution q(σ 2) is the scaled inverse-chi-squared distribution with the same mean and
variance, i.e. the Inv − χ2(σ 2 | 294.2, 2.12). In Figure 4.4, we show the sampled marginal
posterior distributions for σ 2 and µ. For both parameters, the marginal posterior distribution
is contrasted with the conjugate marginal posterior distribution.

From the difference in posterior distributions (independent priors versus conjugate prior)
shown in Figure 4.4, it is clear that the two priors are quite different although they are based
on the same historical data.

The PPD is obtained by sampling ỹ from N(µ̃, σ̃ 2). The distribution of ỹ gives an
estimate of the 95% normal range for y: [4.05, 9.67] and for alp: [106.84, 609.70].

4.7 Bayesian linear regression models

4.7.1 The frequentist approach to linear regression

The normal linear regression model assumes a linear relationship between a response y and d
regressors x1, x2, . . . , xd . For a sample of n subjects, this model is given by

yi = xT
i β + εi, (i = 1, . . . , n), (4.24)
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with βT = (β0, β1, . . . , βd ), xT
i = (1, xi1, . . . , xid ), and εi ∼ N(0, σ 2). In matrix notation, the

classical normal linear regression model is written as

y = Xβ + ε, (4.25)

with y the n × 1 vector of responses, X the n × (d + 1) design matrix with rows xT
i and ε the

n × 1 vector of random errors assuming N(0, σ 2 I), with I the n × n identity matrix. Under
these assumptions, the likelihood is

L(β, σ 2 | y, X ) = 1

(2πσ 2)n/2
exp

[
− 1

2σ 2
(y − Xβ)T (y − Xβ)

]
. (4.26)

The classical (frequentist) estimate of β is the maximum likelihood estimate (MLE) (also
equal to least-squares estimate (LSE)) β̂ = (XT X )−1Xy. Further, the residual variability of the
observed responses to the fitted responses is expressed by S = (y − Xβ)T (y − Xβ), which is
called the residual sum of squares. The mean residual sum of squares is s2 = S/(n − d − 1).

Example IV.7: Osteoporosis study: A frequentist linear regression analysis
A cross-sectional study was set up (Boonen et al. 1996) to examine 245 healthy elderly women
in a geriatric hospital in order to find determinants for osteoporosis. Osteoporosis is a disease
whereby the bone mineral density is reduced so that the bones become fragile. In this study,
the average age of the women was 75 years with a range of 70–90 years.

The marker for osteoporosis is total body bone mineral content (TBBMC, in kg), measured
for 234 women with dual-energy X-ray absorptiometry. In the original analysis, the regression
model contained many regressors, most of which were known determinants. Here, the purpose
is to illustrate the use of a Bayesian regression model. Therefore, a simple regression model
with only body–mass index (BMI, in kg/m2) as determinant is considered here. Regressing
TBBMC on BMI with a classical frequentist regression analysis gives the following estimates
(SE): β̂0 = 0.813(0.12) and β̂1 = 0.0404(0.0043), both highly significant and s2 = 0.29, with
n − d − 1 = 232; see Figure 4.5 for a graphical depiction of the relationship. The estimated
correlation of the β̂0 and β̂1 is −0.99, which is quite high indicating some kind of collinearity
problem.

4.7.2 A noninformative Bayesian linear regression model

A Bayesian regression linear model combines prior information on the regression parame-
ters and residual variance with the above-derived normal regression likelihood. Again prior
information may be noninformative as well as informative. Here, we primarily treat the
noninformative case.

A common choice for the noninformative prior for (β, σ 2) is p(β, σ 2) ∝ σ−2; see Section
5.6 for a motivation. All models are conditional on the design matrix X , and therefore, X
will be omitted in the notation of the posterior. The joint posterior distribution is (d + 2)-
dimensional: (d + 1) dimensions pertain to the regression parameters β and one dimension
pertains to the residual variance σ 2. With the above choice of the noninformative prior, the
posterior distributions become (see Box and Tiao (1973) for mathematical derivations)
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Figure 4.5 Osteoporosis study: scatterplot of TBBMC versus BMI together with the regres-
sion line obtained from a frequentist regression analysis.

p(β, σ 2 | y) = Nd+1
[
β | β̂, σ 2(XT X )−1

] × Inv − χ2(σ 2 | n − d − 1, s2), (4.27)

p(β | σ 2, y) = Nd+1
[
β | β̂, σ 2(XT X )−1] , (4.28)

p(σ 2 | y) = Inv − χ2(σ 2 | n − d − 1, s2), (4.29)

p(β | y) = Tn−d−1
[
β | β̂, s2(XT X )−1

]
, (4.30)

with β̂ the LSE of the regression vector. The marginal posterior distribution of β is a (d + 1)-
dimensional t-distribution with (n − d − 1) degrees of freedom and mean vector β̂ and scale
of the matrix s2(XT X )−1. Its jth marginal distribution is a univariate tn−d−1-distribution with
location β̂ j and scale s(XT X )

−1/2
j j .

4.7.3 Posterior summary measures for the linear regression model

The posterior summary measures of the (d + 2)-dimensional posterior distribution (4.27) split
up into posterior summary measures for (a) the vector of regression parameters β and (b) the
parameter of residual variability, σ 2. For σ 2, the posterior summary measures of Chapter 3 can
be used and are derived from expression (4.29). When interest lies in each of the regression
parameters separately, the marginal posterior summary statistics can be calculated from the
marginal t-distributions derived from expression (4.30). On the other hand, when interest lies
in the total vector of regression parameters, the multivariate posterior summary measures
are based on the (d + 1)-dimensional marginal posterior (4.30). In that case, multivariate
posterior summary measures are needed.

In the case of the NI prior p(β, σ 2) ∝ σ−2, the following univariate posterior sum-
mary measures can be derived from the above marginal posterior distributions (Box and
Tiao 1973):

� The marginal posterior mean (mode, median) of β j ( j = 0, . . . , d) is equal to
the classical MLE (LSE) β̂ j. The 95% HPD interval for β j is given by β̂ j ±
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s(XT X )
−1/2
j j t(0.025, n − d − 1) ( j = 0, . . . , d), with t(0.025, n − d − 1) the 97.5%

quantile of the tn−d−1-distribution.

� The marginal posterior mode of σ 2 is equal to n−d−1
n−d+1 s2, and thus not equal to the MLE

of σ 2. The posterior mean of σ 2 is equal to n−d−1
n−d−3 s2. The 95% HPD-interval for σ 2

is determined from the Inv − χ2(n − d − 1, s2)-distribution involving a computational
algorithm.

The multivariate posterior summary measures on β are based on the marginal posterior
distribution (4.30):

� The posterior mean (mode) of β is equal to the LSE β̂.

� The 100(1 − α)%-HPD region is a generalization of the 100(1 − α)%-HPD interval to
the multivariate setting and corresponds here to the set:

Cα(β) = {
β : (β − β̂)T (XT X )(β − β̂) ≤ d s2 Fα(d + 1, n − d − 1)

}
, (4.31)

with Fα(d + 1, n − d − 1) the 100(1 − α)% quantile of the Fd+1,n−d−1-distribution.

� The contour probability introduced in Section 3.8.1 for one parameter can be generalized
to a vector of parameters. Letting H0 : β = β0, one can determine the HPD-region for
β with β0 on the edge. When the volume of that HPD-region is 1 − α0, then the contour
probability for β0 is equal to α0.

The PPD of a future observation ỹ with covariate vector x̃ is a tn−d−1-distribution with
location parameter x̃T β̂ and scale parameter s2

[
1 + x̃T (XT X )−1̃x

]
. This is equivalent to,

given y,

ỹ − x̃T β̂

s
√

1 + x̃T (XT X )−1̃x
∼ tn−d−1. (4.32)

For a vector of future observations ỹ with design matrix X̃ the PPD is a Tn−d−1-distribution

with mean X̃
T
β̂ and squared scale matrix s2

[
I + X̃(XT X )−1X̃

T
]
.

On the other hand, the conditional distribution of ỹ given σ 2 is a normal distribution with

mean X̃
T
β̂ and variance σ 2

[
I + X̃(XT X )−1X̃

T
]
. This result can be used to sample future

observations using the Method of Composition.
Note that we now have another example where the frequentist results coincide with the

Bayesian results, of course, with the obvious difference in interpretation. Consequently, in
the noninformative case, credible intervals for the linear regression model have the correct
coverage.

4.7.4 Sampling from the posterior distribution

Expressions (4.27), (4.28) and (4.29) enable the use of the Method of Composition for
sampling from the joint posterior distribution (4.27). The advantage of the Method of Com-
position for sampling from the marginal posterior distribution of the regression coefficients
is now striking. Indeed, since p(β | y) is a multivariate t-distribution, sampling from this
distribution is more complicated (although R functions, such as mvtnorm exist). With the
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Method of Composition, the sampling is done in two relatively easy steps. Note that the R
function rmvt (in mvtnorm) generates multivariate t-distributed random variables.

We illustrate, below, sampling from a Bayesian linear regression model using the
osteoporosis study.

Example IV.8: Osteoporosis study: Sampling from the posterior using the Method of
Composition
We consider the regression problem introduced in Example IV.7. The Method of Composition
works in two steps. First, sample σ̃ 2 from expression (4.29). Given σ̃ 2, sample from β̃ from
expression (4.28) with σ 2 replaced by σ̃ 2. In this way, we sampled 1000 observations from the
marginal posterior distribution of β0 and β1. The histograms of the sampled values are shown
in Figures 4.6(a) and (b). The sampled mean regression vector is equal to (0.816, 0.0403),
which is quite close to the true posterior mean. The 95% equal tail CIs are for β0: [0.594,
1.040] and for β1: [0.0317, 0.0486]. The contour probabilities for H0 : β = 0 are determined
using sampling and all result in very small probabilities (<0.001) (see also Exercise 4.9).

In Figure 4.6(c), one can observe that the marginal posterior of (β0, β1) has a ridge, i.e.
β0 and β1 are highly correlated a posteriori which is also reflected in the high correlation of
−0.99 between the LSEs of the regression coefficients, as computed in Example IV.5.
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Figure 4.6 Osteoporosis study (noninformative prior): sampled posterior distributions for
(a) β0; (b) β1; (c) β0 and β1; and (d) future observation ỹ with BMI = 30.
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The distribution of a future observation at BMI = 30 can be generated by an-
other round of sampling, i.e. based on the sampled σ̃ 2, β̃0 and β̃1, the future observa-

tion ỹ is obtained from sampling from N(µ̃30, σ̃
2
30), where µ̃30 = β̃

T
(1, 30) and σ̃ 2

30 =
σ̃ 2

[
1 + (1, 30)(XT X )−1(1, 30)T

]
. The histogram of sampled values is shown in Figure

4.6(d). The sampled mean and standard deviation are equal to 2.033 and 0.282,
respectively.

Note that simultaneous HPD regions based on Monte Carlo samples can be derived using
the approach of Held (2004).

4.7.5 An informative Bayesian linear regression model

Information from historical studies can be reformulated into a prior distribution. This has
been shown for the normal distribution in Section 4.3.2. In a similar manner, a normal-
inverse-gamma prior (see Section 5.3.2) can be deduced from past data. Another source for
prior information is ‘expert knowledge’. However, it must be admitted that turning expert
knowledge on a regression model into a reasonable prior is not a trivial task. For instance, it is
nonsensical to elicit prior information about a single regression coefficient β j since the value
of β j depends on what other regressors are in the model. In Section 5.5.3, possible ways of
shaping expert knowledge into a conjugate prior are described.

4.8 Bayesian generalized linear models

A generalized linear model (GLIM) provides an extension of the linear regression model
to a wide class of regression models. Formally, a GLIM is composed of three parts: (1) a
distributional part, (2) a link function, and (3) a variance function. In the classical notation
(McCullagh and Nelder 1989), the three parts of a GLIM are as follows:

� Distributional part: Let y be a random variable with density

p(y | θ;φ) = exp

[
y θ − b(θ )

a(φ)
+ c(y;φ)

]
, (4.33)

with a(·), b(·) and c(·) known functions. Often a(φ) = φ/w, with w a prior weight.
For φ known and w = 1, one can show that

−E(y) = µ = d b(θ )

dθ
;

−var(y) = a(φ)V (µ) with V (µ) = d2 b(θ )

d2θ
.

� Link function: The mean µ is related to covariates via a monotone (differentiable)
function g, i.e. g(µ) = η = xT β. When η = θ , the link function is called canonical.
One also works with the inverse function h = g−1. For a binary response model, e.g.
logistic or probit regression, h represents a cumulative distribution function.

� Variance function: The parameter φ plays the role of an ‘extra’ dispersion or ‘scale’
parameter in var(y) = a(φ)V (µ). This expression also shows that the variance can
depend on covariates via µ.
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Note that the distributional part of a GLIM is an example of the one-parameter exponential
family (5.1) expressed in the canonical parameter, but we used a different notation from that
in Section 5.3.1.

For a sample of independent observations yi (i = 1, . . . , n) the GLIM is defined by p(yi |
θi;φ), E(yi) = µi and g(µi) = xT

i β. Examples of a GLIM are (a) the normal linear regression
model with a normal distribution yi ∼ N(µi, σ

2), the identity link (g(µi) = µi), φ = 1 and
V (µi) = σ 2 assumed known; (b) the Poisson regression model with the Poisson distribution
yi ∼ Poisson(µi), the log link (g(µi) = log(µi)), φ = 1 and V (µi) = µi and (c) the logistic
regression model with the Bernoulli (or Binomial) distribution yi ∼ Bern(µi), the logistic
link (g(µi) = logit(µi)), φ = 1 and V (µi) = µi(1 − µi).

Binary response models, especially logistic regression models, constitute the most impor-
tant subclass of GLIMs in medical applications and hence received the most attention in the
literature.

A BGLIM is obtained by providing a prior distribution to all parameters of the GLIM.
However, we defer the discussion of GLIM priors to Chapter 5. We also defer numerical
examples of Bayesian analyses of GLIMs to later chapters.

4.9 More complex regression models

BGLIMs constitute an important class of regression models, but are by no means sufficient to
cover all models needed in practice. Models are required that deal with censoring, truncation,
random effects, etc. Almost invariably there will be no analytical solutions for the posterior
distribution such that at most some (ad hoc) numericals allow the computation of the posterior
summary measures. Gelman et al. (2004) explored a variety of such numerical procedures,
but to really advance in practice, a more general methodology is needed.

4.10 Closing remarks

This chapter ends before it becomes interesting to the applied statistician, i.e. when tackling
nontrivial statistical problems. The reason is that without a powerful numerical framework, it
is not really possible to do Bayesian statistical modeling. Currently, almost the only available
approach is via complicated sampling techniques, that are provided by Markov chain Monte
Carlo methods treated in Chapter 6.

Exercises

Exercise 4.1 Show that when Wi j(i, j = 1, 2) are distributed independently as Gamma(αi j,
1) and T = ∑

i j Wi j, then Zi j = Wi j/T has a Dir(α) distribution.

Exercise 4.2 Show by sampling that the noninformative Dirichlet prior Dir(1,1,1,1) corre-
sponds to an approximately normal prior for log(ψ) with mean zero and SD = 2.6.

Exercise 4.3 Determine in Example IV.4, the contour probability for H0 : θ1 = θ2 by making
use of sampling.
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Exercise 4.4 Use the Method of Composition to sample from (a) a mixture of normal dis-
tributions and (b) from a t-distribution via sampling from normal distributions. Write an R
program to illustrate your procedures.

Exercise 4.5 Serum alkaline phosphatase study: use the Method of Composition to sample
from the posterior distributions based on a noninformative prior using an R program based on
the data in ‘alp.txt’. Sample also from the PPD.

Exercise 4.6 Serum alkaline phosphatase study: reverse the order of sampling in Exercise
4.5. That is, sample first µ and then σ 2.

Exercise 4.7 Serum alkaline phosphatase study: use the Method of Composition to sample
from the posterior distributions based on the prior using historical data, as described in
Example IV.2. Employ for this an R program and use the data in ‘alp.txt’.

Exercise 4.8 Osteoporosis study: based on the data in ‘osteop.txt’ apply the analytical results
of Section 4.7.3 on a regression with response TBBMC and regressors BMI and age.

Exercise 4.9 Osteoporosis study: use the Method of Composition to sample from the regres-
sion model specified in Exercise 4.8. Determine via sampling the contour probabilities that
the regression parameters are equal to zero.

Exercise 4.10 Osteoporosis study: show that β0 and β1 are independent a posteriori in the
regression model regressing TBBMC on BMI–BMI, with BMI, the sample mean of BMI.
Use an R program for this.

Exercise 4.11 Serum alkaline phosphatase study: explain why the reference range calculated
in Example IV.1 is wider than that obtained in Example III.6.
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Choosing the prior distribution

5.1 Introduction

Incorporating prior knowledge in a statistical analysis is to its proponents a unique feature
that makes the Bayesian approach attractive for empirical research. To its critics, the necessity
of specifying a prior makes the Bayesian approach unsuitable for research because of the
possible introduction of subjectivity. This split in opinion, which was quite dominant up to
a few decades ago, is still a point of discussion nowadays and is likely to remain. This has
been addressed in the previous chapters at several occasions. Even among Bayesians, there is
a different opinion about the nature of the prior, namely should we strive for an objective or
for a subjective prior? Other aspects pertaining to the prior have been introduced in passing,
such as conjugacy and the choice of a noninformative prior. In this chapter, our aim is to treat
the prior in a more systematic manner. We first treat in generality the three classes of priors:
conjugate, noninformative and informative. Since regression models constitute an important
class of models requiring a more specific treatment, we will treat these at the end of the chapter.

We start with the sequential nature of Bayes theorem, showing that the Bayesian approach
can imitate the process of acquiring knowledge in life.

5.2 The sequential use of Bayes theorem

When a series of independent experiments are performed, at each step the Bayesian approach
allows us to use the knowledge gathered in the previous step as a prior for the next step.
Namely, the posterior of a parameter obtained in the kth experiment can be used as a prior for
that parameter in the (k + 1)th experiment. The argument for two experiments goes as follows.
When yk represents the data collected in the kth (k = 1, 2) experiment, then p(θ | y1, y2) ∝
L(θ | y1, y2) p(θ ) = L(θ | y1)L(θ | y2)p(θ ) ∝ p(θ | y1)L(θ | y2), with the first equality ob-
tained as a result of the independence of the two experiments. This shows that the Bayesian
approach can mimic our human learning process, i.e. as new information rolls in we combine it
with our knowledge obtained from the past. Further, because for m independent experiments

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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p(θ | y1, . . . , ym) ∝ ∏m
k=1 L(θ | yk)p(θ ) our initial prior knowledge becomes unimportant

when m is large and the prior will be dominated by the data. Note that we have assumed above
that the experiments were done under identical conditions. The sequential rule still remains true
when the experiments have been done under not too grossly different conditions. In that case,
the prior for each step can be adapted to allow for the change in condition (see Section 5.5).

Example V.1: Analysis of Ames/Salmonella mutagenic assay data
A mutagen is an agent that is capable of effecting heritable change in genetic material, from one
specific DNA base-pair to the chromosome level. Mutagens may exert their effects on germ
cells, thereby altering the human gene pool and possibly inducing heritable genetic defects
in future generations. To date, there is no evidence of induced heritable genetic damage in
humans, but ascertainment of these effects is difficult. It has been demonstrated repeatedly in
laboratory animals, however. Mutagens that attack somatic cells may ultimately be implicated
in heart disease, aging and developmental birth defects. Finally, there is growing evidence for
the role of mutagens in carcinogenesis (see Margolin et al. 1989).

The Ames Salmonella/microsome assay was developed to detect mutagenicity. It is used
widely in preclinical screening of drug compounds. The Ames test is founded on the exis-
tence of auxotrophic and prototrophic strains of Salmonella typhimurium. The latter have the
property of synthesizing histidine, an amino acid essential for microbial growth. The former
cannot grow in an histidine-free environment. The auxotrophic strain can back-mutate and
revert to histidine independence. The resulting revertant and its descendants can give rise to
cell division until a colony emerges.

In an Ames test, the response from a single plate is the number of visible colonies that
result from plating 108 microbes. Usually, triplicate plates are examined. For a given condition
(dose level), there will be r × 3 plates where r is the replication used. Margolin et al. (1989)
presents data for an assay of Quinoline where r = 3 given in Table 5.1. These data are further
analyzed in Chapter 12.

The first replication yields y1 = {15, 21, 29}, the second y2 = {19, 21, 24}, and the third
y3 = {14, 19, 22}. The replication of the experiment is made in a sequence (1, 2, 3) and so we
have a sequence of experiments that can lead to the sequential Bayesian learning about the
assay outcome.

The Poisson distribution might be assumed as the distribution for the counts, but it has
been found that it does not provide a good fit to the data. In fact, it appears that the mean
of the Poisson distribution does not remain fixed over the counts but has a distribution. A
common assumption is then to take a Gamma(α, β) distribution for the mean. Initially the
prior distribution would be noninformative and we could assume α = 0.5 and β = 0.025,
which gives a prior mean for the gamma distribution of 20 but with a very large variance of

Table 5.1 Quinoline assay counts: revertant
counts obtained from the Ames test.

Replication Revertant count

1 15 21 29
2 19 21 24
3 14 19 22
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800. For the first experiment, the likelihood is

L(y1 | θ ) =
3∏

i=1

θ yi1 e−θ /yi1!,

where yi1, (i = 1, 2, 3) denote the data from the first experiment. The posterior distribution is
Gamma(�yi1 + α, 3 + β) after seeing y1, so that the posterior mean is (�yi1 + α)/(3 + β) =
21.653. This is close to the maximum likelihood estimator equal to 21.667.

With the inclusion of the second replication, we can use the posterior distribution from
the first replication as our prior distribution for the second. Hence, the posterior distribution
for the second replication is Gamma(�yi2 + 65.5, 3 + 3.025) = Gamma(129.5, 6.025) with
mean 21.494. For the third replication, �yi3 = 55, and so the posterior mean is 20.443, which
is very close to the maximum likelihood estimator for the full set of replications, and this
demonstrates the gradual dominance of the data over the prior distribution as more data are
collected.

The adjective prior in ‘prior distribution’ gives the impression that it should be defined
before data have been collected, but this is not true. The term ‘prior’ means only that the prior
knowledge should be specified independent of the collected data (Cox 1999). The situation
is different for comparative clinical trials. In that case, the recommended strategy is to fix the
prior distribution in advance in order to avoid possible contamination with gathered data. We
address this approach in Section 5.5.4. Finally, note that in the first step of this sequential
process the prior could represent minimal information (noninformative prior), but in the
second step the prior will always be informative.

5.3 Conjugate prior distributions

An important class of prior distributions is the conjugate family first proposed by Raiffa and
Schlaifer (Mc Grayne 2011, p. 125). Conjugate priors can be informative and noninformative
and therefore could be treated also in next sections. However, in this section we focus on the
technical aspects of specifying a conjugate prior distribution.

5.3.1 Univariate data distributions

In Chapter 2, a binomial likelihood was combined with a beta prior resulting in a beta
posterior. Also for the normal likelihood (with σ assumed known or unknown) and the
Poisson likelihood, the prior distributions yielded posterior distributions of the same type.
This property is called closed under sampling. More specifically, suppose that for a random
variable y, p(y | θ) is a distribution or a density (depending on the nature of y) for a given
parameter vector θ = (θ1, . . . , θd )T , then the family � of priors is closed under sampling if
for every prior distribution p(θ) ∈ �, the posterior distribution p(θ | y) also belongs to �.

For an important class of distributions, there exists a recipe of how to choose the class of
priors that is closed under sampling. Suppose that p(y | θ) belongs to the exponential family
with distribution

p(y | θ) = b(y) exp
[
c(θ)T t(y) + d(θ)

]
, (5.1)
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Table 5.2 Common members of the exponential family and their associated (natural)
conjugate prior.

Exponential family member Parameter Conjugate prior

Univariate case

Discrete distributions

Bernoulli Bern(θ ) θ Beta(α0, β0)
Binomial Bin(n, θ ) θ Beta(α0, β0)
Negative binomial NB(k, θ ) θ Beta(α0, β0)
Poisson Poisson(θ ) θ Gamma(α0, β0)

Continuous distributions

Normal-variance fixed N(µ, σ 2)-σ 2 fixed µ N(µ0, σ
2
0 )

Normal-mean fixed N(µ, σ 2)-µ fixed µ IG(α0, β0)
Inv-χ2(ν0, τ

2
0 )

Normal∗ N(µ, σ 2) µ, σ 2 NIG(µ0, κ0, a0, b0)
N-Inv-χ2(µ0, κ0, ν0, τ

2
0 )

Exponential Exp(λ) λ Gamma(α0, β0)

Multivariate case

Discrete distributions

Multinomial Mult(n, θ) θ Dirichlet(α0)

Continuous distributions

Normal-covariance fixed N(µ, �)-� fixed µ N(µ0, �0)
Normal-mean fixed N(µ, �)-µ fixed � IW(�0, ν0)

Normal∗ N(µ, �) µ, � NIW(µ0, κ0, ν0,�0)

IG, inverse-gamma distribution; Inv-χ 2, scaled inverse-chi-squared distribution;
NIG, normal-inverse-gamma distribution; N-Inv-χ 2, normal-scaled-inverse-chi-squared distribution;
IW, inverse Wishart distribution; NIW, normal inverse Wishart distribution.

The distributions indicated with ∗ are an extension of the natural conjugate distribution (O’Hagan and
Forster 2004, pp. 140–141).

with d(θ) is a scalar function of θ, b(y) a scalar function of y, t(y) the d-dimensional sufficient
statistic for θ and c(θ) = (c1(θ), . . . , cd (θ))T . The vector θ is called the canonical parameter.
For a random sample, y = {y1, . . . , yn} of i.i.d. elements expression (5.1) is replaced by

p(y | θ) = b(y) exp
[
c(θ)T t(y) + nd(θ)

]
, (5.2)

with b(y) = ∏n
1 b(yi) and t(y) = ∑n

1 t(yi).
Table 5.2 contains commonly used exponential distributions; see the appendix for the

mathematical expression and characteristics of the distributions. That the binomial and Poisson
distribution belong to this family is seen as follows:
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� Binomial distribution: p(y | θ ) =
(

n
y

)
θ y(1 − θ )(n−y) becomes expression (5.2) for

b(y) =
(

n
y

)
, t(y) = y, c(θ ) = logit(θ ) and d(θ ) = log(1 − θ ).

� Poisson distribution: p(y | θ ) = 1
y!θ

y exp(−θ ) reduces to expression (5.1) for b(y) =
1/y!, c(θ ) = log(θ ), t(y) = y and d(θ ) = −θ . For a random sample of n Poisson
counts, y = {y1, . . . , yn} one obtains: b(y) = ∏

i 1/yi! and t(y) = ∑
i yi.

For a distribution (5.1), the class of prior distributions � closed under sampling is
given by

p(θ | α, β) = k(α, β) exp
[
c(θ)T α + βd(θ)

]
, (5.3)

where α = (α1, . . . , αd )T and β are hyperparameters. Expression (5.3) is that of a (d + 1)-
parameter exponential family. The scalar k(α, β) is the normalizing constant, i.e. it ensures
that expression (5.3) is a distribution:

k(α, β) = 1/

∫
exp

[
c(θ)T α + βd(θ)

]
dθ.

Expression (5.3) defines a prior closed under sampling for expression (5.1), this follows
from the following reasoning. Suppose that the joint density of a random sample y of i.i.d.
elements is given by expression (5.1), then

p(θ | y) ∝ p(y | θ)p(θ)

= exp
[
c(θ)T t(y) + n d(θ)

]
exp

[
c(θ)T α + βd(θ)

]
= exp

[
c(θ)T α∗ + β∗d(θ)

]
, (5.4)

with

α∗ = α + t(y), (5.5)

β∗ = β + n. (5.6)

The family defined by expression (5.3) is called the natural conjugate family. (O’Hagan
and Forster 2004, pp. 140–141) extended this family by adding extra parameters leading to the
conjugate family of distributions which is again closed under sampling (see also Exercise 5.4).
Comparing expression (5.2) with expression (5.3) reveals that the conjugate prior has the same
functional form as the likelihood. In fact, the conjugate prior of a member of the exponential
family is obtained by replacing the data (t(y) and n) by parameters (α and β). Note that a
conjugate prior is model dependent, in fact likelihood dependent.

In Table 5.2, the conjugate distribution of some common choices of the exponential
family is shown, but the list is not exhaustive. A conjugate prior can also be given for,
e.g. the gamma distribution (with or without fixed α), the Pareto distribution with f (y | θ ) =
θyθ

m/yθ+1 for y ≥ ym and f (y | θ ) = 1 for y < 1, the uniform distribution on [0, θ ], the Inverse
Gaussian distribution (Banerjee and Bhattacharyya 1979). Further, conjugate priors can be
specified for regression models (see Section 5.6).
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In Section 5.3.2, we develop the conjugate for the normal distribution. We now show how
the conjugate prior for the binomial and Poisson likelihood can be derived using the above
rule:

� Binomial likelihood: For c(θ ) = logit(θ ) and d(θ ) = log(1 − θ ), p(θ | α, β) ∝
exp[c(θ )α + βd(θ )] = θα(1 − θ )β−α . With α0 = α + 1 and β0 = β − α + 1, the prior
is proportional to θα0−1(1 − θ )β0−1 which is the kernel of a beta distribution. The pos-
terior distribution is obtained from α∗ = α + y and β∗ = β + n, where y is the number
of successes and n the size of the study. This results again in a beta distribution with
parameters α = α0 + y and β = β0 + n − y.

� Poisson likelihood: For c(θ ) = log(θ ) and d(θ ) = −θ , p(θ | α, β) ∝ exp[c(θ )α +
βd(θ )] = θα exp(−βθ ), which is the kernel of a Gamma(α0, β0) distribution with
α0 = α + 1 and β0 = β. It is left to the reader to check that the posterior is again a
gamma distribution (Exercise 5.1).

Taking a (natural) conjugate prior distribution for expression (5.1) is convenient from a
mathematical and a numerical viewpoint, but also from an interpretational point of view and
is, therefore, also referred to as a convenience prior. Namely,

� The likelihood of historical data y can be easily turned into a conjugate prior by
taking α = t(y) and β = n. This was illustrated in Chapter 2 for the binomial, the
normal (with fixed variance) and the Poisson likelihoods. Conversely, one can also
interpret the natural conjugate distribution as equivalent to a fictitious experiment with
characteristics α and β, as exemplified in Chapter 2. The correspondence between the
likelihood and the conjugate prior is also exploited in Section 5.6 to define conjugate
priors in regression models.

� For a natural conjugate prior, the posterior mean is a weighted combination of the prior
mean and a sample estimate. This illustrates the impact of the data as well as that of the
prior parameters on the posterior mean and helps in interpreting the posterior summary
measures; see expressions (2.7), (2.14) and Exercise 2.10 for examples.

Now follows a practical illustration of the convenience of the natural conjugate family
with respect to interpretation of the posterior summary measures.

Example V.2: Dietary study: Normal versus t-prior
In Example II.2, the IBBENS-2 normal likelihood was combined with the N(328 100) prior
distribution. The normal distribution (given σ 2) belongs to the one-parameter exponential
family (see also Section 5.3.4) and the normal prior is the conjugate of the normal likelihood.
The normal posterior has mean and variance given by expression (2.13). Replacing the normal
prior by a t30(128 100)-distribution leaves the posterior distribution practically unchanged,
but we loose three elegant features of the conjugate normal prior. Namely, with the t-prior:
(1) the posterior cannot be determined analytically, (2) the posterior is not of the same class
as the prior and (3) the posterior summary measures are not obvious functions of the prior
and the sample summary measures.

5.3.2 Normal distribution – mean and variance unknown

The Gaussian distribution with unknown µ and σ 2 belongs to the two-parameter exponential
family. A standard application of expression (5.3) yields its natural conjugate (Exercise 5.4).
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However, in the literature one uses a more flexible conjugate prior, namely the normal-inverse-
gamma distribution NIG(µ0, κ0, a0, b0). This prior is derived as follows. Let y = {y1, . . . , yn}
be an i.i.d. sample from N(µ, σ 2), where µ and σ 2 are unknown. The joint density of y is
factorized as

p(y | µ, σ 2) ∝
√

n

(σ 2)1/2
exp

[
−1

2

(y − µ)2

σ 2/n

]
1

(σ 2)ν/2
exp

(
− S2

2σ 2

)
, (5.7)

with S2 = ∑n
i=1(yi − y)2 and ν = n − 1. Thus, the joint likelihood factorizes into the product

of a N(µ, σ 2/n)-likelihood and a χ2(ν, σ 2)-likelihood. Note that the normal likelihood has
only two parameters. Consequently, using expression (5.3) yields a natural conjugate with
only three parameters so that the NIG(µ0, κ0, a0, b0) prior cannot be a natural conjugate.
To arrive at the NIG prior, we exploit expression (5.7) that suggests factorizing the prior as
p(µ | σ 2) p(σ 2), where p(σ 2) is an inverse gamma distribution IG(a0/2, b0/2) given by

(b0/2)(a0/2)

�(a0/2)
(σ 2)−(a0+2)/2 exp

(
− b0

2σ 2

)
. (5.8)

Further, in Section 2.7, p(µ | σ 2) was taken as N(µ0, σ
2
0 ) with σ 2

0 fixed because σ 2 was
known. Here, the prior variance σ 2

0 must depend on σ 2. It is convenient to take σ 2
0 = σ 2/κ0

with κ0 > 0 interpreted as a ‘prior sample size’ and leading to p(µ | σ 2) = N(µ0, σ
2/κ0).

Multiplying the two prior parts yields the conjugate prior NIG(µ0, κ0, a0, b0).
The second part of expression (5.7) can alternatively be written as 1

(σ 2)ν/2 exp(− ν s2

2σ 2 ), with

s2 = S2/ν. In that case, the inverse gamma prior for σ 2 can be reformulated as a scaled inverse
chi-squared distribution, denoted as Inv-χ2(ν0, τ

2
0 )-distribution and is given by

p(σ 2) ∝ (σ 2)−(ν0/2+1) exp

(
−ν0 τ 2

0

2σ 2

)
, (5.9)

obtained from expression (5.8) by taking a0 = ν0 and b0 = ν0 τ 2
0 . In this parameterization, the

joint prior is called a normal-scaled-inverse chi-squared distribution and is denoted as N-Inv-
χ2(µ0, κ0, ν0, τ

2
0 ). The posterior distribution is then N-Inv-χ2(µ, κ , ν, τ 2), with parameters

defined by expressions (4.10), (4.11), (4.12) and (4.13). Finally, when µ is known but σ 2

unknown, the natural conjugate is given by expression (5.8) or (5.9).

5.3.3 Multivariate data distributions

The results in Section 5.3.2 immediately carry over to multivariate distributions by replacing y
by a multivariate vector y. Here, we restrict ourselves to two popular multivariate models: (1)
the multinomial model and (2) the multivariate normal model. Both models (and the related
models) were introduced in Section 4.4.

The multinomial distribution Mult(n, θ) is a member of the exponential family with natural
conjugate

p(θ | α0) =
∏k

j=1 �(α0 j)∑k
j=1 �(α0 j)

k∏
j=1

θ
α0 j−1
j , (5.10)
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known as the Dirichlet distribution Dirichlet(α0) after the German mathematician Peter
Lejeune–Dirichlet (1805–1859) who derived the normalizing constant in expression (5.10)
(Gupta and Richards 2001). It is readily seen that the posterior distribution is again a Dirichlet
distribution with parameters α0 + y (Exercise 5.7). The beta distribution is a special case of a
Dirichlet distribution with k = 2. In addition, the marginal distributions of the Dirichlet distri-
bution are beta distributions (Exercise 5.8). Further, note that the prior Dirichlet (1, 1, . . . , 1)

is the extension of the classical uniform prior Beta(1,1) to higher dimensions. In Section 4.4.2,
this NI prior was linked to a normal noninformative prior of the log odds-ratio in a 2 × 2
contingency table.

The likelihood of a sample {y1, . . . , yn} drawn from a p-dimensional multivariate normal
distribution is given by

p(y1, . . . , yn | µ, �) = 1

(2π)np/2|�|1/2
exp

[
−1

2

n∑
i=1

(yi − µ)T �−1(yi − µ)

]
. (5.11)

When � is known but µ unknown, the conjugate for µ is the normal prior N(µ0, �0).
For µ and � unknown, we need to generalize the procedure of Section 5.3.2. The term
S2 in expression (5.7) is then replaced by S = ∑n

i=1(yi − y)(yi − y)T , which has a Wishart
distribution with ν = n − 1 degrees of freedom denoted as Wishart (�, ν) (see Section 4.4.1
for a mathematical expression). The natural conjugate for the covariance matrix in the normal
case is then the inverse Wishart distribution with ν0 ≥ p degrees of freedom, IW(�0, ν0),
where �0 is a p × p positive definite matrix. For p = 1 the inverse Wishart distribution is
equal to the scaled inverse-chi-squared distribution. The conjugate of N(µ, �) is then the
normal-inverse Wishart distribution NIW(µ0, κ0, ν0,�0), but it is not a natural conjugate (for
similar reasons as in Section 5.3.2).

To obtain a minimally informative inverse Wishart distribution, ν0 ≈ p appears an appro-
priate choice. For ν0 = (p + 1), one can show that the prior distribution of the correlation
is uniform on [−1, 1]. In addition, the scale matrix �0 is often taken diagonal. However,
the literature is not clear about the choice of the diagonal elements. On top of this, we note
that WinBUGS uses a slightly different formulation of the Wishart distribution with now �0

playing the role of a covariance matrix. This would suggest taking large diagonal elements for
�0, but in http://statacumen.com/2009/07/02/wishart-distribution-in-winbugs-nonstandard-
parameterization/ it is shown that one should rather take diagonal elements close to zero in
order to obtain a NI prior.

When µ is known but � unknown, then we need only a (conjugate) prior for the covariance
matrix �. It can be readily seen from the above reasoning that in this case the conjugate prior
of � is again an inverse Wishart distribution.

5.3.4 Conditional conjugate and semiconjugate priors

Suppose the parameter vector θ splits up into φ and ν, then the prior distribution p(φ) ∈ �
is a conditional conjugate for φ if the conditional posterior p(φ | ν, y) belongs to the same
class �. Take for example the normal distribution N(µ, σ 2) with µ and σ 2 unknown. Then
the natural conjugate for µ, for a given σ 2, is the prior N(µ0, σ 2

0 ). In other words, N(µ0, σ 2
0 )

is the conditional conjugate of µ. The conditional conjugate for σ 2 given µ is the prior (5.9).
The product of the prior distributions N(µ0, σ 2

0 ) and Inv-χ2(ν0, τ
2
0 ) is called a semiconjugate

prior for (µ, σ 2) and was our choice in Section 4.3.3 when independent prior information
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about µ and σ 2 was available. While a semiconjugate prior will not lead to analytical solutions
for the posterior, it proves to be quite useful for the Gibbs sampler, a popular Markov chain
Monte Carlo sampling technique.

5.3.5 Hyperpriors

Conjugate prior distributions are restrictive in their ability to represent prior knowledge, but
their flexibility can easily be extended by giving the parameters of the conjugate a prior
distribution. Namely, suppose that the data have a distribution p(y | θ) and the unknown θ is
given a (conjugate) prior p(θ | φ0). Instead of fixing the φ-parameters, we could give them
also a (prior) distribution p(φ | ω0), then φ is called an hyperparameter and p(φ | ω0) a
hyperprior or an hierarchical prior. The effect of an hyperprior is that the actual prior for θ

is the mixture prior

q(θ | ω0) =
∫

p(θ | φ)p(φ | ω0) dφ. (5.12)

It can then be evaluated whether the prior q(θ | ω0) has the desired characteristics. Hyperpriors
are extensively used in Chapter 9 where we treat hierarchical models. For a simple illustration,
assume that the parameters α and β of the gamma distribution in Example II.3 are given
exponential priors p(α | ωα,0) and p(β | ωβ,0), respectively. These exponential priors are
then examples of hyperpriors and α and β are called hyperparameters.

To achieve particular characteristics of the (say shape) of the prior, discrete hyperpriors
may be easier to work with. Let the prior distribution of θ be the finite mixture

q(θ | π) =
K∑

k=1

πk pk(θ), (5.13)

with π = (π1, . . . , πK )T and pk(θ) (k = 1, . . . , K) conjugate for the likelihood. Denote
the class of distributions (5.13) as �M , then the posterior distribution is p(θ | π∗, y) =∑K

k=1 π∗
k pk(θ | y), with p(θ | π∗, y) ∈ �M . The new weights pertaining to the posterior dis-

tribution are

π∗
k = akπk∑K

j=1 a jπ j

,

with ak = ∫
L(θ | y) pk(θ) dθ. In this case, the hyperprior is a discrete distribution and the

probabilities π represents hyperparameters. Thus for conjugate priors pk(θ) also q(θ|π) is
conjugate and p(θ | π∗y) can be determined analytically. Further, the mean of the mixture
prior is simply the weighted sum (with weights π∗

k ) of the mixture components. In addition,
the variance for q(θ | ω0) given by expression (5.12) is

var(θ) = Eφ[var(θ | φ)] + varφ[E(θ | φ)]. (5.14)

Hence, the discrete mixture prior allows for a relatively easy control of the first two moments of
the prior q(θ). Moreover, it can be shown that a rich family of distributions can be approximated
to any degree by a (possibly infinite) mixture of conjugate priors; see Diaconis and Ylvisaker
(1985) and Dalal and Hall (1983). An illustration of this result is provided in Example V.3.
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Figure 5.1 Caries study: lognormal prior (solid line) approximated by a mixture of three
gamma priors (dashed line).

Note that the FirstBayes program allows for specifying discrete mixtures of some popular
conjugate priors.

Example V.3: Caries study: Approximating the lognormal prior
In Example III.11, we have assumed a lognormal prior (see expression (3.20)) for θ repre-
senting the mean of the dmft-index. The disadvantage of this prior is that posterior summary
measures can only be derived by sampling. The above results of Diaconis and Ylvisaker
(1985) and Dalal and Hall (1983) imply that we can approximate to a high degree this prior by
a mixture of (possibly a large number of) gamma distributions. We illustrate the performance
of a well-chosen mixture of three gamma distributions, i.e. K = 3. A grid search minimizing
the distance between the mixture and the lognormal prior gave the following components of
the mixture: (1) π1 = 0.15, α1 = 2.5 and β1 = 1.75; (2) π2 = 0.30, α2 = 3.8 and β2 = 0.67;
and (3) π3 = 0.55, α3 = 6 and β3 = 0.3. In Figure 5.1, it can be seen that the mixture gives
an acceptable approximation to the lognormal prior.

The posterior mean and variance obtained from the mixture of gamma distributions is
equal to 2.66 and 0.27, respectively, using expression (5.14). An additional important feature
of hyperpriors is that they allow for simple full conditional distributions while generalizing
the class of prior distributions. This is seen in Example VI.4 in Chapter 6.

5.4 Noninformative prior distributions

5.4.1 Introduction

The property of allowing prior information into a statistical analysis is a unique feature of
Bayesian methods. However, it often happens that researchers cannot or do not wish to make
use of prior knowledge. For instance, in the case of pioneering research prior knowledge is
largely lacking. Another example is when a drug company seeks for regulatory approval of an
experimental medication on the basis of a phase III trial. Registration of the new drug requires
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the ‘data to speak for themselves’, i.e. only the obtained results from the phase III trial are
allowed to influence the decision.

The prior that expresses lack of information or ignorance was initially called a nonin-
formative (NI) prior distribution with the flat prior as an obvious first candidate. However,
this choice creates confusion for a continuous parameter since a flat prior for θ implies a
nonflat prior for a transformed parameter ψ = h(θ ). This result is particularly disturbing to
non-Bayesians and triggered the Bayesian community to find the ‘best’ noninformative prior.
The review article of Kass and Wasserman (1996) illustrates the enormous effort that Bayesian
researchers entertained in the search for expressing ignorance. Nowadays, one has contended
that a prior always bears some information, even if intended to represent ignorance, and that
at best one can hope that the equivalent information is minimal. Consequently, instead of the
adjective ‘noninformative’ terms such as nonsubjective, objective, default, reference, weak,
diffuse, flat, conventional and minimally informative were used in due time in the literature.

Since each prior implies that some external information creeps into the analysis, one
needs to show in practice that the chosen NI prior is indeed minimally informative. This is
not always easy, especially when dealing with a complex model involving many parameters.
Further, many NI priors are strictly speaking not a distribution and are called improper (see
Section 5.4.4). When an improper prior causes the posterior to be improper the Bayesian
analysis is in trouble, e.g. since the posterior cannot provide summary measures anymore.
Impropriety can be hard to detect, as we show in Chapter 7.

In this section, we aim to explain the difficulties in expressing ignorance that lead to the
richness in NI priors and the confusion around them. Note that by the adjective ‘noninforma-
tive’ we assume in this book its contemporary meaning of ‘weak’, ‘diffuse’, etc.

5.4.2 Expressing ignorance

Bayes and Laplace argued that the principle of insufficient reason also called the principle
of indifference is a logical choice for choosing prior probabilities when one has no prior
information. The principle suggests equal prior probabilities for a discrete event and a flat
prior in the continuous case (in both cases it may be called a flat prior). The principle is also
referred to as the Bayes–Laplace postulate.

The flat prior cannot, however, express ignorance. We illustrate this here for the discrete
case and the continuous parameter case. For the discrete case, suppose that θ can take values
θ1, θ2, and θ3 and that we give equal probabilities p(θk) = 1/3 (k = 1, 2, 3) to express our
ignorance about the choice of θ . If we are ignorant about θ , then we must be also ignorant
about a binary parameter ψ that is equal to ψ1 when θ = θ1 and to ψ2 when θ = θ2 or θ3.
But, if the same principle of indifference is used on ψ , i.e. p(ψk) = 1/2 (k = 1, 2) then we
are in contradiction with the indifference statement on θ . Suppose in the case of a continuous
parameter that you are completely ignorant about microorganisms in your body (so you have
not experienced any training in biology or medicine) and that you are asked to state your
prior probability on (or that you put EUR 100 on either statement) (1) S1: less than (or equal)
50% of the humans carry prokaryotes in their body or (2) S2: more than 50% of the humans
carry prokaryotes in their body. If you are truly ignorant then your answer must be ‘I don’t
know’ equivalent to stating that p(S1) = 0.5 and p(S2) = 0.5 (and betting EUR 50 on each
statement). In the next step, we replace in the question 50% by 80%. What is your answer
then? If your answer is the same (when you are ignorant) then 0.5 must also be attached
to the new statements. But such behavior cannot be turned into a prior distribution. On the
other hand with a flat prior, your answer would be p(S1) = 0.8 and p(S2) = 0.2 (and you put
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EUR 80 on the first statement). Note that prokaryotes represent a particular class of bacteria
present in the gastrointestinal part of your body.

That a flat prior does not express ignorance might still look bizarre given that we showed
in Section 2.6 that, with a uniform prior on the binomial parameter θ , the likelihood and the
posterior coincided completely. To show that some information must have crept in, suppose
that the binomial model was parameterized by ψ = log(θ ) as in Example II.4 and suppose
that a flat prior on ψ was given to express ignorance. Using the transformation rule (2.26), this
flat prior is turned into a nonflat prior for θ and since the likelihood is invariant to monotone
transformations, the resulting posterior for θ is different. Note that part of our confusion is due
to the pointwise interpretation of a density while in fact only statements like P(a < θ < b)

have an interpretation (Edwards 1972).
We conclude that, strictly speaking, there is no prior able to express ignorance and that each

prior must bear some knowledge. Consequently, the term noninformative prior is misleading.
However, claiming that frequentist methods are not based on any prior at all is incorrect
since Bayesian results can reproduce frequentist results under the flat prior, and therefore the
frequentist methods assume implicitly a prior.

5.4.3 General principles to choose noninformative priors

5.4.3.1 Jeffreys priors

Bayes proposal of the flat prior lead to the rejection of the Bayesian approach as a whole
(Mc Grayne 2011). For instance, to Fisher it was unacceptable that the conclusions of a
Bayesian analysis depends on what scale the flat prior was taken on and that there is no clear
choice on what scale to take the flat prior on. For example, in the case of a normal likelihood,
should we take the flat prior on σ or on σ 2? However, inference based on the likelihood alone
does not suffer from this ambiguity.

Thus, in order to preserve the conclusions from a Bayesian analysis when changing from
θ to ψ = h(θ ) the transformation rule, i.e. p(ψ) = p(h−1(ψ))| d h−1(ψ)

d ψ
|, must be applied to

the prior. In that case, p(θ ) dθ = p(ψ) dψ and the conclusions from an analysis based on θ

are the same as those of ψ . Jeffreys (1946, 1961) proposed a recipe/rule to construct priors
that always provide the same conclusion on whatever scale they are specified. His rule is
classically referred to as Jeffreys invariance principle or rule and is given by: Take the prior
proportional to the square root of the Fisher information, i.e.

p(θ ) ∝ �1/2(θ ), (5.15)

where �(θ ) = −E
(

d2 log p(y|θ )

d θ2

)
. Thus Jeffreys choice for the (class of) prior(s) depends on

the likelihood of the data. That it satisfies the invariance property is seen immediately:

p(ψ) ∝ �1/2(ψ) = �1/2(θ )

∣∣∣∣ d θ

d ψ

∣∣∣∣ = p(θ )

∣∣∣∣ d θ

d ψ

∣∣∣∣ . (5.16)

Next, for a given likelihood and assuming that the prior p(ψ) is constructed using expression
(5.16), the rule indicates how to find the scale where a flat prior can be taken. Indeed, from
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p(ψ) dψ = p(θ )d θ and expression (5.16), we infer that the prior p(ψ) becomes flat for

ψ ∝
∫

�1/2(θ ) dθ. (5.17)

Hence, since one can always find a ‘flat’ element belonging to the class given by expression
(5.15) and that the inference from that flat prior is the same as from any other prior of the
same class, we could say that Jeffreys rule provides a rule to construct noninformative priors.
Formally, Jeffreys rule for choosing a NI prior is, therefore, given by the following: The
prior distribution for a single parameter θ is approximately noninformative if it is taken
proportional to the square root of Fisher’s information measure.

Some examples of Jeffreys priors are (except for the binomial model all these priors are
improper, see Section 5.4.4) as follows:

� Binomial model: p(θ ) ∝ θ−1/2(1 − θ )−1/2 corresponding to a flat prior on ψ(θ ) ∝
arcsin

√
θ (Exercise 5.12). This prior is undefined at θ = 0 and 1 and has a higher

variance than the uniform prior.

� Poisson model: p(θ ) ∝ θ−1/2 corresponding to a flat prior on
√

θ (Exercise 5.1).

� Normal model with σ fixed: p(µ) ∝ c.

� Normal model with µ fixed: p(σ 2) ∝ σ−2 corresponding to a flat prior on log(σ ).

Jeffreys extension to multiparameter models was initially to take the prior for θ equal to

p(θ) ∝ |�(θ)|1/2. (5.18)

Applied to the normal model, this rule gives p(µ, σ 2) ∝ σ−3. However, the popular choice is
to take

p(µ, σ 2) ∝ σ−2, (5.19)

which is the product of two independent NI prior distributions. Prior (5.19) reflects that prior
information on µ and σ 2 arrives independently to us, suggesting a priori independence of the
model parameters. In fact, Jeffreys was not too happy himself about his general multiparameter
rule (5.18) and he suggested later to treat the location parameters independently from the scale
parameters in location-scale problems. This adapted rule gives the location parameters a flat
prior and applies the multivariate rule (5.18) to the scale parameters. Jeffreys adapted rule
also leads to prior (5.19) for the normal model. Finally, this prior reproduces some classical
frequentist results, as seen in Chapter 4. Jeffreys multiparameter rule for choosing a NI prior
is, therefore, given by

The prior distribution for a parameter vector (θ,φ) is approximately noninformative if it
is taken proportional to the square root of the determinant of Fisher information measure for
(θ,φ). When θ is a vector of location parameters and φ represents scale parameters, then the
noninformative prior is taken proportional to the product of a flat prior for θ and the square
root of the determinant of Fisher information measure for φ.
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Jeffreys rule can be derived using other principles (data-translated likelihood principle,
prior that maximizes Kullback–Leibler distance between prior and posterior (reference prior),
etc.) and has many attractive properties. However, it has been criticized because of violating
the likelihood principle since the prior depends on the expected value of the log-likelihood
under the experiment (probability model for the data). As an illustration, in Exercise 5.10 it
is shown that Jeffreys prior for the binomial experiment differs from Jeffreys prior for the
negative binomial experiment while the two models have the same conjugate prior.

Jeffreys multiparameter rule has been suggested for many (more complex) models (see
Section 5.6.2), and thus remains an important tool to construct NI priors. However, when used
blindly, it may not have the desired properties. This occurs when Jeffreys rule is applied to
parts of the model. As an example: when the prior for the variance of the level-2 observations
in a (normal) hierarchical model is given the classical Jeffreys prior for variances, i.e. p(σ 2) ∝
σ−2, then the posterior of σ 2 is improper.

5.4.3.2 The data-translated likelihood principle

Jeffreys rule dictates to choose the scale for a flat prior via the invariance principle. Box
and Tiao (1973, pp. 25–60) derived Jeffreys prior for location-scale distributions using the
data-translated likelihood (DTL) principle. Their argument gives a more intuitive explanation
for the scale of the flat prior.

Suppose that for ψ = h(θ ), the effect of the data on the likelihood implies only to shift
the location of that likelihood, then all information in the data about ψ is contained in the
location of that likelihood. Taking an informative prior on this scale would prefer a range of
values and hence the posterior would be greatly affected by this prior. On the other hand,
taking the prior distribution flat on ψ expresses that we are a priori indifferent about ψ . This
is called the DTL principle. One can verify that for the normal likelihood with σ known, this
happens on the original scale of µ (see Exercise 5.9), while for the normal likelihood in σ

with µ known this occurs on the log-scale, as shown in Example V.4.

Example V.4: DTL principle applied to normal likelihood in σ given µ

The normal likelihood for σ with µ given is

L(σ | µ, y) ∝ σ−n exp

(
−n S2

2σ 2

)
, (5.20)

with S2 = ∑n
i=1(yi − µ)2.

Suppose that we have three data sets each of size n = 10, with standard deviations equal
to S = 5, S = 10, and S = 20, respectively. Likelihood (5.20) as a function of σ changes in
location and in shape with varying S, while as a function of log(σ ) the likelihood changes with
S only in location (Figure 5.2). According to the DTL principle, one should take the flat prior
distribution on the log-scale, as it does not prefer any location over another. Using expression
(2.26), a flat prior distribution on log(σ ) is equivalent to a prior distribution p(σ ) ∝ σ−1 and
equivalently to p(σ 2) ∝ σ−2, which are both Jeffreys priors.

If the DTL principle cannot be satisfied exactly, perhaps there exists a scale ψ for which
the likelihood is approximately data-translated. For moderate to large sample sizes, the log-
likelihood of the sample, log(L), is well approximated by a quadratic function around the
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Figure 5.2 Data-translated likelihood principle for N(µ, σ 2)-likelihood given µ. The likeli-
hood is given for three different values of S as a function of (a) log(σ ), and (b) σ .

MLE ψ̂ as follows:

log L(ψ | y) ≈ log L(ψ̂ | y) − n

2
(ψ − ψ̂ )2

(
−1

n

∂2 log(L)

∂ψ2

)
ψ̂

, (5.21)

which is a quadratic function in ψ which changes in location and shape (curvature changes

with ψ̂). Denote −
(

1
n

∂2 log(L)

∂ψ2

)
ψ̂

as J(ψ̂ ), then

J(ψ̂ ) = −
(

1

n

∂2 log(L)

∂ψ2

)
ψ̂

= −
(

1

n

∂2 log(L)

∂θ2

)
θ̂

(
dθ

dψ

)2

θ̂

= J(θ̂ )

(
dθ

dψ

)2

θ̂

, (5.22)

since the first derivative of log L(ψ | y) with respect to ψ , vanishes for ψ̂ . Consequently,
if ψ satisfies

dψ

dθ
∝ J1/2(θ ), (5.23)

the coefficient of the quadratic term in ψ will be constant and the likelihood becomes locally
data-translated on the ψ scale. In this case, a flat prior could be chosen for ψ and the
corresponding NI prior for θ becomes

p(θ ) ∝ J1/2(θ ). (5.24)

The derivation assumes that J(ψ̂ ) depends only on ψ̂ (and equivalently on θ̂ ) and not on the
whole sample {y1, . . . , yn}. If this is not the case, the above arguments are applied to �(θ̂ ),
the Fisher information matrix for a sample.
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5.4.3.3 Formal rules to choose noninformative priors

The invariance principle of Jeffreys is one of many formal rules (but an important and influen-
tial one) that has been suggested in the literature for constructing NI priors. Another important
principle is due to Bernardo (1979) who suggested to take the NI prior that maximizes the
Kullback–Leibler distance (for a definition, see expression (10.5)) between the prior and the
posterior. He called his proposal a reference prior and showed that in important cases, this
prior coincides with Jeffreys prior.

The coverage matching principle dictates that the prior should be chosen such that it has
good frequentist coverage properties. For example, if the 100(1 − α)% CI of the parameters
has the correct coverage, then the Bayesian analysis mimics the frequentist analysis. In
Section 4.3.1, it was seen that the (adapted) Jeffreys prior for the normal distribution with both
parameters unknown, results in credible intervals for the mean and variance that are identical
to the classical confidence intervals (CIs). In the same section we have reported on the findings
of Agresti and Min (2005). They concluded that Jeffreys prior p(θ ) ∝ 1/

√
θ (1 − θ ) on the

binomial parameter θ has better frequentist coverage for the odds ratio than the uniform
prior. Also Berger (2006) reported excellent coverage for the positive predictive value of a
diagnostic test with Jeffreys priors (Exercise 5.14). In addition, he reported that the Bayesian
approach using Jeffreys priors results in shorter CIs than the classical frequentist approaches.

In Kass and Wasserman (1996), a review is given of a variety of other principles that may
lead to a NI prior, but few have found their way into practical applications. Finally, note that
many popular NI priors are particular cases of a conjugate distribution. For example in the
binomial case the uniform prior, Jeffreys prior and Haldane’s prior are special cases of a beta
distribution. Similar findings can be derived for the negative binomial likelihood, the Poisson
likelihood and the (multivariate) normal likelihood.

5.4.4 Improper prior distributions

Many NI priors are not regular distributions. For instance, Jeffreys prior for the mean parameter
µ of a normal distribution, p(µ) ∝ c, has an infinite area under the curve (AUC) for each
value of c > 0. A prior distribution with an infinite AUC is called an improper prior. From
a technical point of view, improper priors are acceptable as long as the resulting posterior is
proper (AUC = 1). For instance, the prior p(µ) = c (for a normal mean with given σ ) gives a
proper posterior distribution:

p(µ | y) = p(y | µ) p(µ)∫
p(y | µ) p(µ) dµ

= p(y | µ) c∫
p(y | µ) c dµ

= 1√
2πσ/

√
n

exp

[
−n

2

(
µ − y

σ

)2
]

.

The same holds when p(σ 2) ∝ σ−2 is taken as prior for the variance parameter of a normal
distribution with a given mean (Exercise 5.13).

However, for complex models it is not immediately clear when an improper prior will
yield a proper posterior. A well-known example is the variance of the level-2 observations in
a Gaussian hierarchical model. In Chapter 9, it is shown that Jeffreys prior p(τ 2) ∝ τ−2 for
the variance of the level-2 observations causes the posterior to be improper, but the improper
prior p(τ ) ∝ c yields a proper posterior (Gelman 2006). When Markov chain Monte Carlo
methods are used to derive the posterior, discovering the impropriety of the posterior may be
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hard (see Chapter 7). To make things even more complex, Ibrahim and Laud (1991) gave an
example (their remark 3) of an improper Jeffreys prior yielding a proper posterior distribution
but with no finite moments.

Even if the improper prior does not cause problems in estimation, problems may occur
elsewhere in a Bayesian analysis. For instance, in Section 10.2.1 it is shown that with improper
priors the Bayes factor is undetermined. The reason for this is seen above, namely the marginal
likelihoods are not normalizable, i.e. cp(θ ) is equivalent to p(θ ). Also the marginal likelihood
p(y) = ∫

p(y | θ)p(θ) dθ is improper when p(θ) is improper.
That priors do not need to be a regular distribution may seem a bit weird. However, it

is not regarded as a real problem in the Bayesian world. Indeed the improper prior is for
Bayesians merely a technical device to express that there is minimal prior information on the
parameters and to also ensure that the prior minimally impacts the posterior. Nevertheless, the
improper prior has been severely criticized from an interpretational point of view. Take for
example a randomized controlled clinical trial (RCT) and suppose that a flat prior is given for
the difference � of the 2 (true) treatment means on [−K, K]. Suppose experts believe that the
true difference cannot exceed [−a, a]. If K >> a then most of the prior probability lies in the
unrealistic part [−K,−a) ∪ (a, K]. Even worse: when K −→ ∞, an improper flat prior is
obtained which puts an infinite mass on unrealistic differences. Greenland (2001) argued that
most NI priors used in epidemiological research entail to such absurdities. Similar criticism
has been ventilated in the clinical trial area.

5.4.5 Weak/vague priors

For practical purposes, the prior does not need to be uniform over the whole range of parameter
values. It is sufficient that the prior is locally uniform which means that it is approximately
constant on the interval where the likelihood is not (close to) zero. That the effect of a locally
uniform prior on the posterior is minimal follows immediately from Bayes theorem, i.e. from
p(θ | y) ∝ p(y | θ )p(θ ) we see that the prior only has impact when p(y | θ ) is not too close
to zero. In Chapter 2, locally uniform priors have been used (see Figure 2.9). Note that Box
and Tiao (1968) considered Jeffreys prior as locally uniform. They wrote (p. 28) that it would
be inappropriate mathematically and meaningless practically to suppose that the prior was
uniform over an infinite range. They then continue and speak of Jeffreys prior as a locally
uniform prior.

Thus to avoid impropriety of the posterior and for interpretation purposes the improper
uniform prior is often replaced in practice by a locally uniform prior that approximates
the improper prior. Examples are a N(0, σ 2

0 ) prior for a location parameter with σ0 large
and an IG(ε, ε) prior for a variance parameter with ε small. In the latter case, the prior
approximates Jeffreys prior p(σ 2) ∝ σ−2 when ε → 0. Such priors are in the literature
loosely referred to as vague or weak. WinBUGS allows only (proper) vague priors. In the
WinBUGS Examples I and II documents, all location parameters are given a N(0, 106) prior
and for the variance parameter of a Gaussian model the IG(10−3, 10−3) prior is taken, except
for hierarchical models where the prior of the level-2 standard deviation is taken as uniform
(Section 9.5.7).

Cautionary note: unlike Jeffreys priors, vague priors are not invariant to a change in scale
of the data. For instance, a N(0, 106) prior for the mean of a measurement that varies in an
interval [0, 10] is vague, but if the scale of that measurement is changed, say multiplied by
1000 (e.g. changing from kilogram to gram) then this prior is not vague anymore.
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5.5 Informative prior distributions

5.5.1 Introduction

The prior distribution describes the available (prior) knowledge about the model parameters.
In basically all research, some prior knowledge is available. Box and Tiao (1973) argued that
we are almost never in a state of absolute ignorance. The challenge is to incorporate that
(possibly little) prior knowledge into a probabilistic framework. The question is whether to
include the beliefs of one expert or of a community of experts. This is not important for the
application of Bayes theorem, but it is important for the acceptance and the usefulness of the
Bayesian analysis.

In this section, we (a) formalize the use of historical data as prior information using
the power prior, (b) review the use of clinical priors, which are prior distributions based on
either historical data or on expert knowledge, and (c) priors that are based on formal rules
expressing prior skepticism and optimism. The ensemble of prior distributions that represent
prior knowledge are called subjective or informative priors.

5.5.2 Data-based prior distributions

In Examples II.1 and II.2, the historical data were used to construct the conjugate prior accord-
ing to expression (5.2). Hereby, we assumed that the historical data were realized under iden-
tical conditions as the present data. Combining the prior information from the historical data
with the likelihood of the current data is then equivalent to pooling the two sets of data. This
assumption is often too strong in practice. In Section 2.7, we downplayed the importance of the
Inter-regional Belgian Bank Employee Nutrition Study (IBBENS) prior data for the IBBENS-
2 likelihood, hereby we kept the location of the IBBENS prior but inflated its variance. This
is called discounting the prior information. Ibrahim and Chen formalized this process in the
power prior distribution (Ibrahim and Chen 2000; Ibrahim et al. 2003). Their approach is quite
general and can be applied to Bayesian generalized linear (mixed) models, survival models,
and nonlinear models. Here, we introduce their approach for simple statistical models.

Let the historical data be y0 = {y01, . . . , y0n0}, θ represent the model parameters and
L(θ | y0) represent the likelihood of the historical data. Ibrahim and Chen (2000) proposed
the following prior based on the historical data

p(θ | y0, a0) ∝ L(θ | y0)
a0 p0(θ | c0), (5.25)

with p0(θ | c0) an initial prior for the historical data with chosen parameters c0. The parameter
a0 is taken between zero and one and is in the first instance assumed known. Further, suppose
that the likelihood of the current data y = {y1, . . . , yn} is given by L(θ | y), then the posterior
obtained from the above power prior is

p(θ | y, y0, a0) ∝ L(θ | y)L(θ | y0)
a0 p0(θ | c0). (5.26)

When a0 = 0, the historical data are ignored, and while for a0 = 1, the historical data are
given the same weight as the current data. When a0 → 0 the tails of the prior become heavier
and more uncertainty is introduced in the prior.

Some special cases of the power prior are (a) binomial case: the power prior is pro-
portional to θa0y0 (1 − θ )a0n0−a0y0 , which is the likelihood of a sample of size a0n0 with
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a0y0 successes, and combined with a uniform initial prior for θ , the power prior becomes
p(θ | y0, a0) = Beta(θ | a0y0 + 1, a0(n0 − y0) + 1); (b) Gaussian case given σ 2: with an ini-
tial flat prior the power prior becomes p(µ | y0, a0) = N

(
µ | y0, a−1

0 σ 2/n0
)
; (c) Poisson

case: with p0(θ ) ∝ θ−1 (limiting gamma prior with α and β → 0) the power prior becomes
Gamma(θ | ny + a0n0, n + a0n0).

It is not immediately clear on what basis a0 should be chosen. The choice could be sub-
jective, or a0 could be given a (beta) prior with the parameters determined from the data.
Applications of the power prior may be found in the use of historical controls in toxicological
studies (Ibrahim et al. 1998) and Bayesian variable selection (Chen et al. 1999) (see also Chap-
ter 11). The power prior does not, however, cover the situation where the historical data have a
different model than the current data, e.g. when secular changes in the society have happened.

5.5.3 Elicitation of prior knowledge

5.5.3.1 Elicitation techniques

Expert knowledge can replace or augment the information that comes from historical data.
The process of extracting information from experts is called elicitation of prior information.
The main activity of the elicitation process is to turn the often qualitative knowledge of the
experts into a probabilistic language. This will be illustrated in Example V.5. An in-depth
treatment of elicitation is found in O’Hagan et al. (2006).

Example V.5: Stroke study: Prior distribution for the first interim analysis from
expert knowledge
Prior to the first interim analysis one wishes to establish the available prior knowledge on the
incidence of SICH (θ ) for rt-PA treated patients, but no historical data were available.

The elicitation of expert knowledge typically collects two pieces of information: (1)
the most likely value for θ (interpreted as a prior mode, mean or median) according to
the expert and (2) the uncertainty of the expert on θ expressed as, e.g. a prior equal-tail
95% CI. Let the expert’s prior mode for θ be 0.10 with 95% prior equal-tail CI equal to
[0.05, 0.20]. A conjugate beta prior distribution could be computed with approximately
the same summary measures. A quick exploration shows that a Beta(7.2, 56.2) density has
roughly the desired characteristics. This prior is displayed in Figure 5.3 as the dashed curve.
Alternatively, the experts could be asked about their prior belief pk on each of the K intervals
Ik ≡ [θk−1, θk) covering [0,1]. Suppose that for our example, the experts produced prior
probabilities equal to 0.025, 0.40, 0.45, 0.10 and 0.025, respectively, for the intervals [0,0.05),
[0.05,0.10), [0.10,0.15), [0.15,0.20) and [0.20,0.25) and zero for the remaining intervals. This
prior is shown in Figure 5.3 as the step function. Again an approximate conjugate prior
distribution was fitted and this exercise produced (on purpose here) the same continuous
prior in Figure 5.3. Note that in the above example the experts are not directly asked for
their opinion about the hyperparameters α and β of the beta distribution since this is a much
harder exercise.

Eliciting expert knowledge in practice is challenging. The following problems have been
reported:

� Turning expert knowledge into probabilistic language: Most experts do not have enough
statistical background which makes the translation of their beliefs into a probabilistic
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Figure 5.3 Stroke study: elicitation of prior knowledge on the incidence of SICH in
rt-PA treated patients. The discrete prior is obtained from elicitation of prior probabil-
ities on intervals. The continuous prior is obtained from elicitation of prior mode and
prior 95% CI.

form a challenging task (Andrews et al. 1993; Chaloner 1996; Kadane and Wolfson
1997).

� The construction of the prior distribution: Details such as whether a best guess of
θ represents prior mode, mean or median, may have an effect on determining the
prior distribution. Also, choosing to express prior uncertainty via extremes (2.5%-ile
and 97.5%-ile) or via a more general description of the prior (quartiles, mean, SD)
may impact the easiness with which the expert knowledge is transformed into a prior.
Chaloner et al. (1993) reported that better results were obtained with extreme quan-
tiles, while O’Hagan (1998) reported the opposite. Finally, Chaloner (1996) mentioned
that some probability statements are easier to elicit than others. This is illustrated in
Example V.6.

A subjective Bayesian analysis is probably better digested if the prior is obtained from
a community of experts rather than from a single expert. A community of priors allows us
to evaluate the robustness of the conclusions based on the posterior distribution. But, the
different prior opinions also allow the construction of a community prior that represents the
(prior) viewpoint of a community of experts. The community prior can be established by
averaging the priors of the experts, leading to a mixture prior distribution as in Example V.7.
Another possibility is that the community prior is established via a consensus process and
then it is called a consensus prior.

In the multiparameter case, the expert’s opinion is needed for each parameter which
requires the elicitation of a multivariate prior. When historical data are available, a multivariate
prior distribution can be constructed as in Example IV.2. But, expressing expert knowledge
jointly for several parameters is quite hard, if not impossible. In Example IV.4, prior knowledge
on the normal mean and variance was treated separately. In practice, priors for a multiparameter
model are often the product of priors of the individual parameters. But, in regression problems
the prior knowledge must be specified jointly as the meaning of a regression coefficient
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depends on which other covariates are in the model. This is treated in Section 5.6. In some
high-dimensional models, elicitation of prior information is basically impossible, for instance
in the case of nonparametric regression models involving splines. In this case, it is absolutely
unclear in which way prior information can be incorporated, hence a default prior appears to
be the only option.

Including prior information in an analysis is one of the selling arguments of the Bayesian
approach. Yet, when browsing through the statistical and medical/epidemiological literature
revealed that Bayesian applications which include available knowledge are rather sparse. One
reason to refrain from including prior information in the analysis, is the difficulty to turn
knowledge into a probabilistic framework. For this reason, Johnson et al. (2010) reviewed
methods published in the medical literature to elicit prior information from clinicians. The
studies were evaluated on, e.g. their validity, reliability and responsiveness of the elicitation
methods. From their review, the authors provided the guidelines to produce better accepted (by
the general community) priors. They suggested: ‘sampling from groups of experts, use clear
instructions and a standardized script, provide examples and/or training exercises, avoid use
of scenarios or anchoring data, ask participants to state the baseline rate in untreated patients,
provide feedback and opportunity for revision of the response, and use simple graphical
methods’.

5.5.3.2 Identifiability issues

A well-chosen informative prior allows for more accurate statements a posteriori about the
parameters of interest than a noninformative prior. In some situations, strong subjective prior
information is indispensable to arrive at posterior estimates. This is illustrated in Example V.6
on diagnostic testing. The model is overspecified, i.e. the data are not sufficient to estimate all
parameters of the model and the model is then called nonidentifiable. By an identifiable model
we mean that it is likelihood-identifiable, i.e. the likelihood is sufficient to provide a unique es-
timate of the model parameters. Strong prior information allows us to obtain reasonably precise
posterior information on all parameters, but some of the parameters will not be updated by col-
lecting data and estimation of these parameters will highly depend on the choice of the priors.

Example V.6: Cysticercosis study: Estimating prevalence in the absence of a
gold standard
Pigs harbor a range of parasites and diseases that can be easily transmitted to humans. These
include cysticercosis. Cysticercosis is the most common parasitic disease in the world affecting
the central nervous system. Relatively accurate estimates of the prevalence of cysticercae in
fattening pigs are essential to appraise the risk for human infection. Several diagnostic tests
are used in practice, but none of them is a gold standard and exact information about test
sensitivity and specificity is unavailable.

A total of 868 pigs were tested in Zambia with an antigen Enzyme-linked Immunosorbent
Assay (Ag-ELISA) diagnostic test (see Dorny et al. 2004). The results of the study are
summarized in Table 5.3. Of the 868 pigs, 496 pigs showed a positive test. The goal of the
study was to estimate the prevalence π of cysticercosis in Zambia among pigs. If an estimate of
the sensitivity α and of the specificity β are available, then the prevalence can be estimated as

π̂ = p+ + β̂ − 1

α̂ + β̂ − 1
, (5.27)
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Table 5.3 Cysticercosis study: theoretical characteristics and observed results of the
Ag-ELISA diagnostic test on pigs collected in Zambia.

Disease (true) Observed
+ −

Test + πα (1 − π)(1 − β) n+ = 496
− π(1 − α) (1 − π)β n− = 372

Total π (1 − π) n = 868

Notes: π is the true prevalence of cysticercosis. α and β are the sensitivity and specificity of the
Ag-ELISA diagnostic test, respectively. n+ (n−) is the observed number of subjects with a positive
(negative) Ag-ELISA test.

where p+ = n+/n is the proportion of subjects with a positive test, and α̂ and β̂ are the
estimated sensitivity and specificity, respectively.

The results in Table 5.3 alone do not allow the estimation of π , α or β. The estimation
needs the 2 × 2 contingency table of test versus true results. In fact, Table 5.3 contains only
the diagnostic test results collapsed over the true disease status. It is customary that prior
to the field experiment, the diagnostic test has been evaluated in the lab yielding estimates
for α and β and hence allowing the use of expression (5.27). There is abundant evidence,
though, that sensitivity and specificity are not intrinsic qualities of a diagnostic test but vary
geographically (see Berkvens et al. 2006). Therefore, only expert knowledge can make the
estimation of π possible. For this, we need to specify a prior distribution on π , α, and β. The
posterior distribution is then

p(π, α, β | n+, n−) ∝
(

n

n+

)
[πα + (1 − π)(1 − β)]n+

× [π(1 − α) + (1 − π)β]n−
p(π )p(α)p(β), (5.28)

with p(π ), p(α), and p(β), the prior distribution for π , α, and β, respectively. Even for beta
priors the marginal posterior distributions cannot be derived analytically. We used WinBUGS
to produce the posterior summary measures and a graphical display of the marginal posterior
distribution of the prevalence.

With uniform prior distributions for π , α and β, we produced Figure 5.4(a) and obtained
[0.03, 0.97] as a 95% equal tail CI for π . Clearly, the uncertainty on the prevalence is
huge. In fact, it must be said that with the above noninformative priors, the parameters
of the model cannot be estimated because of identifiability problems. Extra information
about the parameters is necessary to make the estimation of parameters work. Berkvens
et al. (2006) reported that an additional 65 pigs were slaughtered and yielded estimates for
sensitivity (20/31) and specificity (31/34). This data can be turned into a beta prior distribution
for α (β) equal to Beta(21,12) (Beta(32,4)). The result of combining this prior knowledge
with the likelihood is shown in Figure 5.4(b). Now the 95% equal tail CI for π is reduced
to [0.66,0.99].

Finally, in order to solve the identifiability problem, we initially plugged-in some elicited
values for sensitivity and specificity from experts. However, we discovered that they resulted
in prior distributions that are in conflict with the observed data. This problem was largely
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Figure 5.4 Cysticercosis study: posterior density of π for noninformative priors (a) of the
parameters and informative priors (b).

removed when the experts were elicited in a different manner. That is, instead of directly
asking their opinion on the sensitivity and specificity of the diagnostic test, we elicited their
conditional probability of a positive test result given a positive or negative result on another
test (Berkvens et al. 2006).

Example V.6 showed both the strength and the weakness of the Bayesian approach.
Prior knowledge provides a practical answer to the nonidentifiability problem but there is a
price to pay since the posterior estimates of some of the parameters are dominated by the
prior information. If this prior information is not adequate, then the posterior information
is worthless. There is a vast literature (Gustafson 2009) on the estimation of parameters
(sensitivity, specificity, and prevalence) in studies involving diagnostic tests that lack a gold
standard.

5.5.4 Archetypal prior distributions

Among the different application areas, clinical trials are probably the toughest for the
Bayesian philosophy to penetrate. While the Bayesian methodology has made its entrance
via medical device clinical trials (see the FDA guidance document at http://www.fda/gov/
cdrh/osb/guidance/1601.pdf), it is much harder to find Bayesian applications in phase III
clinical trials. Indeed, such a trial is the pivotal step in convincing the regulatory authorities
about the value of the drug for registration. The process of registering new drugs is (rightly)
conservative and driven by regulatory requirements laid down by the Food and Drug Admin-
istration (FDA) in United States and by the EMEA (European Agency for the Evaluation of
Medicinal Products) in Europe. Hence, despite the fact that at the phase III developmental
stage of the drug there is a lot of information from previous stages (phases I and II) and that
there is often abundant information from other similar drugs, in general, there is skepticism
about the usefulness of that prior knowledge. In a special issue of Clinical Trials (Vols. 2, 4,
2005) reporting on the FDA Conference on the usefulness of Bayesian approaches in studying
new treatments, Dr. Temple (FDA) states on page 302: ‘We have seen many things that were
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“true” turn out not to be true. So it seems difficult to judge how much credit to give for prior
evidence.’ A Bayesian reply to such a statement may be that one should try out a community
of priors and assess the sensitivity of the conclusion to the choice of the prior. However, this
might not be satisfying to everyone, especially when the conclusions vary wildly. There is a
need, as argued in Berger (2006), to keep up the appearance of objectivity. This pleas for an
objective Bayesian analysis in this context. But formal rules can also be given to establish
subjective priors in the context of clinical trials. Spiegelhalter et al. (1994) suggested two
archetypal priors in addition to the vague prior: the skeptical and the enthusiastic prior.

5.5.4.1 The skeptical prior

Suppose that a drug company developed a cure for a disease but that prior to the present
study five trials in a row failed to show any benefit. Even when the present trial turns out to
be positive, the scientific community is likely to remain skeptical especially when there is
no immediate evidence for this positive result. In that case, the scientists will likely combine
their personal negative opinion with the result of the trial and might not accept the claimed
benefit of the drug. This is illustrated below.

Example V.7: The use of a skeptical prior in a phase III randomized trial
Tan et al. (2003) reported on a phase III trial for treating cancer patients with either of
two treatments. The standard treatment for hepatocellular carcinoma is surgical resection. A
randomized trial was set up to compare surgery (standard therapy) with surgery + adjuvant
radioactive iodine treatment (adjuvant therapy) on the rate of recurrence. The trial planned
to recruit 120 patients. Frequentist interim analyses for efficacy were planned and at the
first interim analysis, a significantly better result for the experimental treatment was obtained
(P = 0.01), smaller than specified by a predefined frequentist stopping rule (P < 0.029). De-
spite the significant better performance of the experimental treatment, the scientific community
was skeptical about the claimed effect of the adjuvant therapy. Consequently, a new, larger
multicentric trial (300 patients) was set up to clarify the results of the earlier single-center
trial.

Prior to the start of the subsequent trial, the pretrial opinions of the 14 clinical investigators
were elicited. The prior distributions of each investigator were constructed by eliciting the
prior belief on the treatment effect (adjuvant versus standard) on a grid of intervals. The
average of the prior distributions yielded a community prior, while the average distribution
of the five most skeptical investigators was called a skeptical prior. To exemplify the use of
the skeptical prior, Tan et al. (2003) combined this prior with the interim analysis results of
the previous trial and showed that the one-sided contour probability for superiority of the
experimental treatment was only 0.49. Clearly, if one had combined this skeptical prior with
the interim results, the trial would not have been stopped for efficacy.

The choice of the skeptical prior in the above example depends on the selected investigators
in the trial. In his special Clinical Trials’, Dr. Temple states on page 323: ‘It is a pain in the
neck to have to discuss and agree on your priors every time you do a trial.’ This statement
pleas for a more formal choice of the skeptical prior distribution. The proposal of Spiegelhalter
et al. (1994) for a skeptical prior in the normal case addresses this problem. More specifically,
assume that θ expresses the true effect of treatment (A versus B) and that θ = 0 means that the
two treatments do not differ in performance. A skeptical normal prior could be concentrated
around the (null-hypothesis) value of zero. The choice for the variance of the prior, σ 2

0 , is
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motivated as follows. Suppose that the sample size calculation was done under the alternative
hypothesis θ = θa. Since, the choice of θa is often optimistic, it is assumed that there is a small
prior probability γ that the treatment effect exceeds θa. Then P(θ > θa) = 1 − �( θa

σ0
) = γ

implying that σ0 = −θa/zγ , with γ = �(zγ ).

Example V.8: A lipid-lowering RCT: Use of skeptical prior
The Lescol Intervention Prevention Study (LIPS) study (Serruys et al. 2002) was a placebo-
controlled randomized clinical trial set up to demonstrate that fluvastatin induces a reduction of
major adverse cardiac events (MACE) in patients with coronary artery disease, without major
hypercholesterolemia following successful completion of their first percutaneous coronary
intervention (PCI). The sample size calculation was based on the assumption that after 3 years
following PCI the incidence rate of MACE is 25% in the placebo group and that fluvastatin
reduces this incidence rate by 25% to arrive at 18.75%. While the original study used a survival
technique, we assume here for simplicity that the relative risk (placebo/fluvastatin) at the third
year was taken as the primary endpoint. Let the true log(relative risk) be denoted as θ and
suppose that the log-scale is used to specify prior information on the relative risk. Further, let
the value of θ under the alternative hypothesis (θa) be equal to log(25/18.75) = 0.288.

Using Spiegelhalter’s et al. (1994) suggestion with γ = 0.05, the skeptical prior can be
calculated and is shown in Figure 5.5. This prior assumes that it is unlikely (P = 0.05) that
θ is greater than 0.288. The LIPS study used a frequentist stopping rule while a Bayesian
approach may consist in combining this skeptical prior with the likelihood at each interim
analysis to avoid early stopping in case of an overly optimistic interim result.

In Exercise 5.15, another example of the use of a skeptical prior is given, but now the
variance of the prior is determined by P(θ > θ̂ ) = 1 − �( θ̂

σ0
) = γ . Thus σ0 is computed

using the observed result in the study, rather than a prespecified result.
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Figure 5.5 Lipid-lowering RCT: skeptical (solid line) and enthusiastic prior (dashed line)
corresponding to θa = log(25/18.75).
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5.5.4.2 The enthusiastic prior

Spiegelhalter et al. (1994) also suggested an enthusiastic prior which is the counterbalance
of the skeptical prior defined above. In this case, the normal prior has mean θa and σ 2

0 is
determined such that P(θ < 0) = γ . Thus, the enthusiastic prior specifies that a priori there
is little evidence that the true effect is less or equal to zero.

Example V.9: A lipid-lowering RCT: Use of enthusiastic prior
The first patient was enrolled in the LIPS study in April 1995. At the planning stage of the LIPS
study, the results of the 4S study were made public (The Scandinavian Simvastatin Survival
Study Group (1994)). This study was a major step forward in demonstrating that a statin not
only reduces the serum cholesterol level, but also saves lives in secondary prevention. The
purpose of the LIPS study was similar to that of the 4S study, but now for PCI patients. With
the results of the 4S study in mind, some of the investigators questioned whether the LIPS
study was still needed and ethically feasible given that some patients were put at risk when
allocated to the placebo treatment. After lengthy discussions, it was concluded that there was
an ethical and a scientific basis to conduct the LIPS study. Given the intensive discussions
at the start of the LIPS study, the use of an enthusiastic prior (Figure 5.5) might have been
useful. Indeed, given the historical information from the 4S study and the positive results
with fluvastatin in earlier stages of the development, the enthusiastic prior can protect the
investigators from inadvertently stopping the trial if an early LIPS interim analysis had shown
less promising results for fluvastatin (which was not the case, however).

5.6 Prior distributions for regression models

5.6.1 Normal linear regression

In Section 4.7, the normal linear regression model

y = Xβ + ε

was introduced. We refer to that section for further details.

5.6.1.1 Noninformative priors

A popular NI prior for the linear regression is obtained from Jeffreys multiparameter rule. It is
the product of a flat prior for the regression parameters and the classical Jeffreys prior for the
scale parameter, i.e. p(β, σ 2) ∝ σ−2. In practice, often a normal prior with a large variance
is chosen for the regression coefficients and for σ 2 an IG(ε, ε) prior with ε small.

5.6.1.2 Conjugate priors

The conjugate prior for a normal linear regression model is an extension of the conjugate
prior for the basic normal model with both parameters unknown, seen in Section 5.3.2.
Similar to expression (5.7), the joint density (likelihood) can be factorized into the product of
χ2(s2 | ν, σ 2) and N[̂β | β, σ 2(XT X )−1], with X as the design matrix. The conjugate prior
is therefore the product of a normal prior N(β0, σ

2�0) for the regression coefficients and
an inverse-gamma IG(a0, b0) for the residual variance (or equivalently an Inv-χ2(ν0, τ

2
0 )-
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distribution). The product yields again a normal-inverse-gamma prior NIG(β0, �0, a0, b0) (or
equivalently N-Invχ2(β0, �0, ν0, τ

2
0 )) given by the following complex expression:

(b0/2)(a0/2)

(2π)(d+1)/2 | �0 | 1/2�(a0/2)(σ 2)(a0+d+3)/2
exp

[
− (β − β0)

T �−1
0 (β − β0) + b0

2σ 2

]
.

(5.29)

The posterior based on the above NIG prior and data y is a NIG(β, �, a, b) with

� = (
�−1

0 + XT X
)−1

, (5.30)

β = (
�−1

0 + XT X
)−1 (

�−1
0 β0 + XT y

)
, (5.31)

a = a0 + n, (5.32)

b = b0 + βT
0 �−1

0 β0 + yT y − β
T
�

−1
β. (5.33)

Marginal posteriors are of the same type as described in Section 4.3, e.g. the marginal posterior
distribution of β is a multivariate t-distribution with mean β. Further, as mentioned in Section
4.3.3, the NIG-prior is problematic as a tool to express our (subjective) prior information since
prior knowledge on the regression parameters is related to prior knowledge on the residual
variance.

Despite the difficulties of the NIG prior, a particular NIG-prior has become quite
popular for instance in Bayesian variable selection. Zellner (1986) suggested as priors
β | σ 2, X ∼ N

[
β0, gσ 2 (XT X )−1

]
and σ 2 ∼ IG(a0, b0) which implies that �0 = g(XT X )−1

in the normal prior for β. This is known as Zellner’s g prior (he actually suggested to put
g in the denominator). Zellner’s g prior can be seen as carrying information equivalent to
pseudo-data y0 with the same design matrix as for y (and hence correlation structure) but
with variance σ 2

0 = gσ 2. More precisely, if the pseudo n × 1 data vector y0 = Xβ + ε0 with
ε0 ∼ N(0, σ 2

0 ) is given a flat prior for β and an independent inverse gamma prior for σ 2, then
the conditional posterior p(β | σ 2, y0) is N

[
(XT X )−1XT y0, gσ 2(XT X )−1

]
. For y0 = Xβ0

Zellner’s g prior is obtained. This prior can also be interpreted as a particular case of the
power prior (Chen et al. 2000; Ibrahim and Chen 2000) introduced in Section 5.5 when the
pseudo-data y0 are assumed to have variance σ 2 and the likelihood is raised to a power 1/g.
Note that from expression (5.31) we conclude that the posterior mean of β with Zellner’s g
prior and β0 = 0 is equal to the LSE times a shrinkage factor g/(g + 1). Different values have
been suggested for g, a popular choice being g = n. Other choices of g that offer a vague prior
useful for Bayesian variable selection are reviewed in Chapter 11.

5.6.1.3 Priors based on historical data and expert knowledge

Prior knowledge on a single regression coefficient is rarely meaningful, since its meaning
depends on what other regressors are in the model. Consequently, when prior knowledge is
provided it must be done for the whole vector of regression parameters, but this is quite difficult
in practice. Kadane et al. (1980) and Kadane and Wolfson (1996) proposed a predictive
elicitation process, i.e. they offered the experts a set of design points and asked them to
provide the 50th, 75th and 90th percentiles of the response distribution at these covariate
values. With enough design points, the parameters of the conjugate prior can be computed.
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Zellner’s g prior can also be used to construct a prior based on historical data or expert
knowledge, and is by far the most popular informative prior in regression models.

5.6.2 Generalized linear models

The Bayesian generalized linear model (BGLIM) for a sample y = {y1, . . . , yn} was intro-
duced in Section 4.8 and is given by

p(yi | θi;φ) = exp

[
yi θi − b(θi)

ai(φ)
+ c(yi;φ)

]
, (5.34)

with ai(φ) = φ/wi where wi is a prior weight and b(·) and c(·) known functions. Further,
E(yi) = µi = d b(θi)

dθi
, var(yi) = ai(φ)V (µi) with V (µi) = d2 b(θi)

d2θi
, g(µi) = ηi = xT

i β and for
the canonical link ηi = θi. In addition, all model parameters are given prior distributions.

5.6.2.1 Noninformative priors

A popular diffuse prior for the regression coefficients in any regression model and hence also
for a BGLIM is to take a product of independent normal proper priors with a large variance.
This is probably still the most frequently used NI prior for a BGLIM. For instance such a
prior is used for location parameters in basically all examples in the WinBUGS Examples
volumes I and II. However, for logistic (or other binary outcome) regression models, some
concern has been raised against too dispersed normal priors in Markov chain Monte Carlo
sampling. Indeed, when the prior variance is too large, sampling may occur too often in areas
of low prior probability. Gelman et al. (2008) suggested as default prior a Cauchy density
with center 0 and scale parameter equal to 2.5 for standardized continuous covariates (mean
zero and SD = 0.5). This prior is weakly enough in practice and has good properties in case
of separation problems (see Section 5.7).

Another possibility is to make use of Jeffreys multiparameter rule. For φ known, Ibrahim
and Laud (1991) derived Jeffreys prior for the regression coefficients of a BGLIM. They
suggested to use the following prior:

p(β) ∝ ∣∣XT WV(β)�2(β)X
∣∣ 1/2, (5.35)

with W a n × n diagonal matrix of the weights wi, V(β) a n × n diagonal matrix of vi =
d2b(θi)/dθ2

i and �(β) a n × n diagonal matrix of δi = d b(θi)/dηi (identity matrix for the
canonical link). This prior follows easily from the Fisher information matrix of β which is
expression (5.35) times φ−1 and can be readily computed for each GLIM. For normal linear
regression with known residual variance, p(β) ∝ ∣∣XT X

∣∣ 1/2 which is an improper flat prior
but yielding a Gaussian posterior for β. It is the only GLIM for which the prior does not
depend on β. For logistic regression p(β) ∝ ∣∣XT V(β)X

∣∣ 1/2 with V(β) = diag(v1, . . . , vn)

and vi = µi(1 − µi). For Poisson regression with the canonical link, the same expression for
p(β) is obtained with vi = µi. Ibrahim and Laud (1991) proved the propriety of the posterior
for several BGLIMs. Prior (5.35) has been implemented in two Bayesian SAS procedures
(see Section 5.6.3).
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5.6.2.2 Conjugate priors

Without the regression structure, distribution (4.33) belongs to the one-parameter exponential
family for a(φ) known. Hence, the conjugate prior distribution can be derived from expres-
sion (5.3). However, the covariate structure complicates matters. Chen and Ibrahim (2003)
suggested a conjugate prior for a BGLIM. Applied to the case without a regression structure
and assuming that ai(φ) = 1/φ is known, they specified as joint prior for expression (5.34):

p(θ | y0, a0, φ) ∝
n∏

i=1

exp {a0φ[y0iθi − b(θi)]} = exp
{
a0φ[yT

0 θ − jT b(θ)]
}
, (5.36)

with a0 > 0 a scalar prior parameter, y0 = (y01, . . . , y0n)
T a vector of prior parameters, j a

n × 1 vector of ones, and b(θ) = (b(θ1), . . . , b(θn))
T . That this prior is conjugate to (5.34)

can be readily derived from expression (5.3) with an appropriate change in notation. The
regression structure is introduced by allowing θi = θ (ηi) and ηi = xT

i β, (i = 1, . . . , n). Then
the authors defined the prior D(y0, a0) for β (given φ) as

p(β | y0, a0, φ) ∝ exp
{
a0φ[yT

0 θ(η) − jT b(θ(η))]
} ≡ exp

{
a0φ[yT

0 θ(Xβ) − jT b(θ(Xβ))]
}
.

(5.37)

Chen and Ibrahim (2003) proved the conjugacy of D(y0, a0), i.e. the posterior is equal to
D

( a0y0+y
a0+1 , a0 + 1

)
after combining the prior with the likelihood (5.34) for a sample y. With φ

random, conjugacy can be proved again, but conjugacy is lost when a0 is also random. The
use of D(y0, a0) requires to supply the vector y0 and the parameter a0. The vector y0 could
be elicited as a prior for E(y) with a0 representing the prior sample size. However, y0 must be
of same length as y with the same design matrix. The prior D(y0, a0) can also be seen as
the posterior density of (β | a0, y0, φ) with y0 seen as (pseudo-)data and an initial flat prior
for β | φ. This makes this conjugate prior in principle suitable for use with historical data,
with the limitation that n0 = n.

5.6.2.3 Priors based on historical data and expert knowledge

The power prior introduced in Section 5.5.2 was originally proposed for a regression structure.
It has the advantage that, unlike the above conjugate prior, the historical data do not have to
have the same size as the data at hand.

The next two informative BGLIM priors require that expert prior knowledge is elicited
about the predicted response at k representative covariate vectors x01, . . . , x0k in the sense
of Kadane et al. (1980) and Kadane and Wolfson (1996). The two approaches differ in the
number and the choice of the covariate vectors and in the way the predictive distribution
at the covariate locations is included in the Bayesian model. To fix ideas we will focus on
the logistic regression case. We distinguish between data augmentation prior and conditional
means prior:

� Data augmentation prior (DAP): the number of design points k is equal to the size
of the observed data set. Let x0i (i = 1, . . . , n) denote the design points with pseudo-
observations y0i (in this case, say, prior proportions), which could be elicited from
experts or derived from historical data and given a weight n0i proportional to their impor-
tance (say prior sample size). The pseudo-sample y0 = {y01, . . . , y0n} yields a likelihood
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LP(β | y0) proportional to
∏n

i=1 F(xT
0iβ)n0iy0i [1 − F(xT

0iβ)]n0i(1−y0i ). The DAP is then de-
fined as proportional to LP(β | y0). Further, suppose that the likelihood of the observed
data {(yi, xi, ni), (i = 1, . . . , n)} is L(β | y) ∝ ∏n

i=1 F(xT
i β)niyi [1 − F(xT

i β)]ni(1−yi ).
When xi = x0i, (i = 1, . . . , n), the posterior p(β | y) is proportional to

n∏
i=1

F(xT
i β)n0iy0i+niyi [1 − F(xT

i β)]n0i(1−y0i )+ni(1−yi )

and hence the DAP is conjugate to the logistic likelihood. The posterior mode can be
obtained from a maximum likelihood program, but for other posterior measures sam-
pling algorithms (e.g. Markov chain Monte Carlo) might be needed. The attractiveness
of the prior is that it can be directly interpreted as containing the information from a
pseudo-sample in a similar way as with Zellner’s g prior. Clogg et al. (1991) introduced
the DAP as an alternative to MLE for logistic regression models with sparse data.

Greenland (2001, 2003, 2007) used a DAP for a Bayesian regression analysis of
epidemiological data. For instance, for logistic regression, the normal prior on the
log-odds ratio, β, is turned into a 2 × 2 prior contingency table of pseudo-data with
odds ratio approximately equal to the specified prior mean of β and the sampling
variance of the odds ratio of the pseudo-data equal to the specified prior variance of
β. This approach allows us to use standard frequentist software for the approximate
determination of the posterior for β.

� Conditional means prior (CMP): another approach is suggested by Bedrick et al.
(1996). For logistic regression, they suggested to elicit prior information on
π0i = E(yi0 | x0i) (i = 1, . . . , k) the success probabilities at the design points x0i, e.g.
one might specify beta priors πi0 ∼ Beta(αi, βi). This yields the joint prior for the k
success probabilities, i.e.

p(π0) ∝
k∏

i=1

π
αi−1
0i (1 − π0i)

βi−1.

In their proposal k is equal to d + 1, the number of regression coefficients and the
x0i(i = 1, . . . , d + 1) are linearly independent. The above prior yields the conditional
means prior (CMP) for β by the transformation rule. Bedrick et al. (1996) showed
that the CMP prior is in some cases also a DAP. For example, the above-induced prior
on β is a DAP, which means that it has the functional form of the likelihood. Other
connections between a CMP and a DAP can be found in Bedrick et al. (1996). As for
the DAP sampling techniques are needed to derive posterior inference.

As seen above, eliciting prior knowledge directly on regression parameters does not
work in practice. For a GLIM there is an extra challenge in that the meaning of regression
coefficients changes with the link function. For example, when prior knowledge is available
for logistic regression parameters, then it is not immediately clear how this translates into
prior knowledge on the regression parameters for the complementary log–log link. Despite
the attractiveness of the above data-based priors, their application in practice is still sparse.
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5.6.3 Specification of priors in Bayesian software

As seen in Section 5.4.5, WinBUGS only allows proper priors. Regression coefficients are
given in WinBUGS most often independent normal priors, with a large variance if their impact
must be minimal. For noninformative priors on the variance parameters, the uniform prior
and the inverse gamma IG(ε, ε) prior with ε = 10−3 are the most popular.

The SAS® program offers from version 9.2 on a variety of Bayesian regression models
and the user is allowed to provide a great range of priors including improper priors. The
procedures GENMOD and MCMC allow for the fitting of a BGLIM. Both procedures accept
Jeffreys priors for the regression coefficients and therefore one needs the propriety results
derived by Ibrahim and Laud (1991) to ensure that the posterior is proper. Indeed, SAS leaves
this check up to the responsibility of the user. Other aspects on Bayesian software are dealt
with in Chapter 8.

5.7 Modeling priors

Every informative prior impacts the estimation of the model parameters, but a prior can also
direct the model to address computational difficulties or to achieve computational properties.
We call these modeling priors because their intention is to adapt the characteristics of the
statistical model. We consider here priors that address multicollinearity, convergence issues,
parameter constraints and variable selection.

In the case where there is multicollinearity in the regressors, i.e. XT X is nearly rank-
deficient and regression coefficients and standard errors are inflated. Ridge regression provides
a way to stabilize the estimates, which involves replacing XT X with XT X + λI with λ > 0

the ridge parameter and yields β̂
R
(λ) = (XT X + λI)−1XT y as estimator. The estimator is

obtained by minimizing

(y∗ − Xβ)T (y∗ − Xβ) + λβT β (5.38)

for a given λ, with y∗ = y − y1n. This implies shrinkage of the regression coefficients toward
zero. Note that the centered response is taken such that the intercept is not taking part in
the shrinkage process. The ridge solution can also be obtained from the posterior mode of a
Bayesian normal linear regression analysis with a normal prior N(0, τ 2I) for β and τ 2 = σ 2/λ,
keeping σ and τ fixed. Thus, in the Bayesian formulation, the normal ridge prior restricts
the parameter vector (with high probability) to a sphere of radius determined by λ. Note that
the R function rmvt (in mvtnorm) generates multivariate t-distributed random variables. Note
also that the ridge estimator is the posterior mean in expression (5.30) for β ∼ N(0, σ 2

λ
I).

Ridge regression is easily extended to GLIMs; see Van Houwelingen and Le Cessie (1992)
for an example in logistic regression. We elaborate further on the ridge estimator and other
shrinkage procedures in Chapter 11.

With GLIMs other numerical problems may occur. For instance in binary response models,
the regression coefficient estimates fail to converge (to a finite value) when the diagnostic
classes show a high degree of separation in the covariate space. This problem has been
addressed in Albert and Anderson (1984); Lesaffre and Albert (1989); and Lesaffre and
Kaufmann (1992) and occurs frequently especially with categorical covariates and small
sample sizes. To avoid such numerical difficulties, Gelman et al. (2008) suggested independent
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Figure 5.6 Quasi-complete separation in logistic regression: line of quasi-complete separa-
tion (solid line), estimated discrimination rule obtained from the normal prior with variance
102 (dotted line) and estimated discrimination rule using Gelman et al. (2008) (dashed line).

weakly informative Cauchy priors for the regression parameters and recommended these priors
as a default. In the next example, we illustrate the numerical problems when separation occurs
in a logistic regression model.

Example V.10: Computational difficulties in binary response models
In Figure 5.6, we show a case of quasi-complete separation between two diagnostic classes
involving two regressors x1 and x2. Complete separation means that the two classes can be
separated by a hyperplane in the covariate space, while quasi-complete separation means
that there is complete separation for all observations except for observations lying on the
hyperplane. In both cases, it can be shown that (some of) the regression parameter estimates
diverge. The problem looks similar to that caused by multicollinearity, but there are differences
(Lesaffre and Marx 1993).

A WinBUGS logistic regression analysis with diffuse priors equal to N(0, τ 2) with
τ = 103 for all three regression parameters, aborted immediately. For τ = 10 a stable and
reasonable discrimination rule was obtained and is shown in Figure 5.6. In fact, this is a
ridge-regression solution since we penalize large regression coefficients, a consequence of the
separation problem. In addition, we applied the proposal of Gelman et al. (2008) but had to
use a t(2)-distribution since WinBUGS does not provide a Cauchy distribution. The estimated
discrimination rule is again reasonable and close to the previous one.

When a statistical model has a built-in constraint on the parameters, the estimation of the
parameters needs to be done under this restriction. As a practical example let θk be the prob-
ability of showing caries experience (caries in the past or at present) among Flemish children
in the Signal-Tandmobiel® study at the kth (k = 1, . . . , 6) school year. These probabilities
must satisfy θ1 ≤ θ2 ≤ . . . ≤ θ6 since caries experience is defined in a cumulative manner.
An estimation procedure which takes this constraint into account is isotonic regression. Many
other algorithms have been written to determine the ML estimates under the constraints
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(Barlow et al. 1972; de Leeuw et al. 2009). In a Bayesian approach, inequality constraints
on parameters are easily dealt with by choosing a prior distribution that puts zero weight
on the parameter vectors that are not allowed. For instance, the prior on θ = (θ1, . . . , θ6)

T

in the dental example that maps all θs that violate the constraint to zero, is a good choice.
This ensures that p(θ | y) ∝ p(θ)p(y | θ) will satisfy this constraint. In addition, the Bayesian
constrained theory remains the same as the unconstrained unlike in the frequentist world.
Chen and Deely (1996) used this approach in an agricultural example and concluded that
the Bayesian results look more reasonable than the frequentist solutions. Note that there is
another possible way to deal with the constraint and that is to neglect the values that are not
allowed in the posterior. This can be particularly handy when the posterior summary measures
are obtained by sampling.

Other priors may be specified which direct the model to exhibit a specific characteristic.
For instance when we replace the normal ridge priors p(β j) ∼ N(0, τ 2) for the regression
parameters by double exponential (Laplace) distributions p(β j) ∼ λ

2 exp(−λ|β j|) one obtains
the Bayesian LASSO estimator introduced by Tibshirani (1996) in the frequentist context.
With this prior the regression coefficients of unimportant regressors are more shrunk than
the regression coefficients of unimportant regressors; see Sections 11.2.2 and 11.8 for an
extensive treatment of this topic.

5.8 Other regression models

The literature on priors is extensive and we had to limit here to a few important classes
of models, thereby realizing that we left out other quite important models used in epi-
demiologic research such as the conditional logistic regression model, the Cox propor-
tional hazards model, the generalized linear mixed effects model, etc. Some of the above
approaches for constructing priors have been extended to these models. For instance,
Chaloner et al. (1993) applied the approaches of Kadane et al. (1980) and Kadane and
Wolfson (1996) to proportional hazards models. Further, DAPs and CMPs have been pro-
posed for survival models by Bedrick et al. (1996); Greenland and Christensen (2001) and
Greenland (2003).

5.9 Closing remarks

While the choice of the prior lies at the heart of the Bayesian approach, specifying appropriate
subjective and objective priors may be difficult in complex models. In this chapter, we have
reviewed the Bayesian literature on the choice of the prior. Increasingly, the prior is interacting
with the statistical model, as exemplified in Section 5.7. It illustrates that in a Bayesian model,
both the likelihood and the prior shape the final model.

It has been repeatedly stated that the use of a prior distribution is a major objection to use
Bayesian methods because of the fear that it will pollute inference with subjective information.
But subjectivity is lurking in every statistical analysis, frequentist or Bayesian. A striking
example is the use of smoothing approaches for sparse data. Clearly, when restricting the
behavior of the estimates by penalty constraints (Eilers and Marx 1996) expert knowledge is
incorporated into analysis and the ‘data don’t speak for themselves’ anymore as one regularly
claims in a frequentist approach.
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Exercises

Exercise 5.1 Show that Jeffreys prior for the mean parameter θ of a Poisson likelihood is
given by

√
θ .

Exercise 5.2 Let y be uniformly distributed given θ on [0, θ ], find the conjugate distribution
for f (y | θ ) = θ−1.

Exercise 5.3 Show graphically when the normal prior distribution with mean = 328 and
variance = 100 and a t(ν)-prior distribution for varying ν (but with same mean and variance)
give a noticeably different posterior distribution when combined with the IBBENS likelihood.
Note that to obtain the posterior distribution for a t(ν)-prior distribution one requires numerical
integration.

Exercise 5.4 Show that the normal model with unknown mean and variance belongs to the
two-parameter exponential family. Use expression (5.3) to derive the natural conjugate prior
of the normal distribution. Finally, show that the extended conjugate family is needed

p(θ | α, β, γ ) = k(α, β, γ ) exp
[
c(θ)T α + βd(θ) + γe(θ)

]
, (5.39)

where α, β are hyperparameters as in expression (5.3) and γ an extra set of parameters, to
yield the normal-inverse-gamma prior (O’Hagan and Forster 2004, pp. 140–141).

Exercise 5.5 Derive the posterior mean and variance of the mixture distribution in
Example V.3.

Exercise 5.6 Sample from the mixture distribution in Example V.3 and report the summary
statistics.

Exercise 5.7 Show that the natural conjugate for the multinomial distribution is the Dirichlet
distribution and derive Jeffreys prior and the resulting posterior distribution.

Exercise 5.8 Prove that all one-dimensional marginal distributions of a Dirichlet distribution
are beta distributions.

Exercise 5.9 Show graphically that the data-translated likelihood principle is satisfied on the
original scale of µ for a normal likelihood with σ given.

Exercise 5.10 Show that Jeffreys rule for the negative binomial model gives θ−1(1 − θ )−1/2

and thereby violates the likelihood principle which states that inference should be based only
on the observed data.

Exercise 5.11 Show that for the multinomial model, Jeffreys rule suggests to take for a
noninformative prior p(θ) ∝ (θ1 × . . . × θp)

−1/2.

Exercise 5.12 Show that in the binomial case the arcsin(
√·)-transformation yields an ap-

proximate data-translated likelihood. Show also that this prior is locally uniform in the original
scale for proportions that are not too close to 0 and 1.

Exercise 5.13 Show that Jeffreys prior distribution for σ 2 of a normal distribution with given
mean, results in a proper posterior distribution when there are at least two observations.

Exercise 5.14 Berger (2006) reported on a Bayesian analysis to estimate the positive pre-
dictive value θ of a diagnostic test for a disease from (a) the prevalence of the disease (p0),
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(b) the sensitivity of the diagnostic test (p1) and (c) 1-specificity of the diagnostic test (p2).
Bayes theorem states that

θ = p0 p1

p0 p1 + (1 − p0) p2
.

Suppose that data xi (i = 0, 1, 2) are available with binomial distributions Bin(ni, pi). Show
that an equal tail interval CI for θ based on Jeffreys priors π(pi) ∝ p−1/2

i (1 − pi)
−1/2 enjoys

good coverage properties. Employ sampling for this and compare the 95% equal-tail CI with
a classical 95% CI.

Exercise 5.15 Holzer et al. (2006) analyzed a retrospective cohort study for the efficacy and
safety of endovascular cooling in unselected survivors of cardiac arrest compared to controls.
The authors found that the patients in the endovascular cooling had a 2-fold increased odds
of survival (67/97 patients versus 466/941 patients; odds ratio 2.28, 95% CI, 1.45 to 3.57)
compared to the control group. After adjustment for baseline imbalances, the odds ratio was
1.96 (95% CI = [1.19, 3.23]). In the final step, the authors took account of the fact that their
study was nonrandomized and wished to discount their results for the study design. More
specifically, they discounted their cohort study data by assuming that the observed effect on
the logarithmic scale (log odds ratio) was actually 0 and the probability of exceeding the
observed effect was 5% (skeptical prior). Determine the normal skeptical prior and compute
the posterior distribution assuming that the log odds ratio has a normal likelihood.

Exercise 5.16 Derive the conjugate prior for the distribution (4.33) using the rule explained
in Section 5.3.1.
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Markov chain Monte Carlo
sampling

6.1 Introduction

In Chapter 4, we illustrated that the analytical calculation of the posterior distribution (and its
summary measures) is often not feasible due to the difficulty in determining the integration
constant. Calculating the integral using numerical integration methods is a practical alternative
if only a few parameters are involved, but it becomes prohibitive for real-life applications
where the dimensionality is often high.

In Chapters 3 and 4, we illustrated that sampling from the posterior can be an elegant alter-
native procedure to analytical calculations. To sample from standard univariate distributions
(normal, t, χ2, etc.) routines are available in statistical software such as R, S+ and SAS®. For
nonstandard distributions, general procedures, e.g. the accept–reject algorithm, are required.
To sample from a d-dimensional distribution, the Method of Composition may be used if the
distribution can be factorized into a product of a univariate marginal and conditional distri-
butions of dimensions d − 1, d − 2, etc. But these distributions (except for one) can only be
determined after integration, and therefore, this sampling approach cannot work in most prac-
tical problems.Thus for basically each practical problem, an alternative approach is required.
In this chapter, we explore an attractive class of sampling algorithms, called Markov chain
Monte Carlo (MCMC) methods. Integration is not needed anymore, which makes MCMC
algorithms applicable to virtually all (highly multivariate) problems. The two most important
MCMC procedures are (a) the Gibbs sampler and (b) the Metropolis(–Hastings) algorithm.
No doubt, it is the introduction of these two sampling algorithms that revolutionized Bayesian
statistics and created an immense revival of the Bayesian idea by offering solutions to practical
problems. Without exaggeration, MCMC techniques allow for tackling statistical modeling
problems which are hard (or even impossible) to solve with maximum likelihood procedures,
thereby offering the applied statistician a rich toolbox of statistical modeling techniques.
In addition, the introduction of the MCMC approaches initiated an impressive line of new

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.



P1: JYS/XYZ P2: ABC
JWST177-c06 JWST177-Lesaffre May 18, 2012 9:33 Printer Name: Yet to Come Trim: 244mm × 168mm

140 MARKOV CHAIN MONTE CARLO SAMPLING

statistical research. Historical notes on the development of MCMC can be found in Hitchcock
(2003).

While the Gibbs sampler is mathematically a special case of the Metropolis–Hastings
(MH) algorithm, the two MCMC procedures are treated separately in the literature because
their sampling mechanisms are quite different. The choice between the two methods often
depends on the particular problem at hand as will be illustrated in this chapter.

The aim of this chapter is to introduce the reader to MCMC sampling techniques. Hereby,
we focus on the intuition behind the techniques. A variety of numerical examples serve as first
illustrations, where other more practical illustrations will be given in subsequent chapters.
The justification of the MCMC approaches, i.e. why they give a sample from the posterior
distribution, is treated in Section 6.4. The reader is introduced to Markov Chain terminology
and the most important theorems which justify the MCMC approach as a method to extract
information from the posterior distribution are stated.

6.2 The Gibbs sampler

The Gibbs sampler was introduced by Geman and Geman (1984) in the context of image
processing. They assumed that the intensity of the pixels in an image have a Gibbs distribution,
which is a classical distribution in statistical mechanics. Since this distribution is analytically
intractable involving easily a million unknowns, Geman and Geman developed a sampling
algorithm to explore the distribution. The sampler was called after the distribution. However,
the Gibbs sampler became only popular in the statistical world when Gelfand and Smith
(1990) showed its ability to tackle complex estimation problems in a Bayesian manner.

We first treat the two-dimensional Gibbs sampler and illustrate the method on three
elementary examples.

6.2.1 The bivariate Gibbs sampler

The Method of Composition (Section 4.6) provides a tool to sample from a bivariate poste-
rior distribution p(θ1, θ2 | y). The approach is based on the property that the joint posterior
p(θ1, θ2 | y) is completely determined by the marginal p(θ2 | y) and the conditional posterior
p(θ1 | θ2, y) distribution. A sample from p(θ1, θ2 | y) is then obtained by sampling first from
the marginal posterior distribution p(θ2 | y) yielding a sampled value θ̃2 and then from the
conditional p(θ1 | θ̃2, y) yielding θ̃1 and hence (θ̃1, θ̃2) is also obtained.

The Gibbs sampler, on the other hand, uses the property that (under fairly general regularity
conditions) a multivariate distribution is uniquely determined by its conditional distributions
(Section 6.2.3). In a Bayesian context, this implies for two dimensions that p(θ1, θ2 | y) is
uniquely determined by p(θ1 | θ2, y) and p(θ2 | θ1, y). The sampling approach is initiated
using a starting value for the parameters, say θ0

1 and θ0
2 (in fact only one is needed) and then

‘explores’ the posterior distribution by generating θ k
1 and θ k

2 (k = 1, 2, 3, . . .) in a sequential
manner. Formally, given θ k

1 and θ k
2 at iteration k, the (k + 1)th value for each of the parameters

is generated according to the following iterative scheme:

� Sample θ
(k+1)

1 from p(θ1 | θ k
2 , y)

� Sample θ
(k+1)

2 from p(θ2 | θ
(k+1)

1 , y)
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Hereby, the Gibbs sampler generates a sequence of values θ1
1 , θ1

2 , θ2
1 , θ2

2 , . . . such that
the vectors θk = (θ k

1 , θ k
2 )T , k = 1, 2, . . . are dependent and create a chain. The chain has the

Markov property which means that given θk, θ(k+1) is independent of θ(k−1), θ(k−2), etc. In a
probabilistic notation, p(θ(k+1) | θk, θ(k−1), . . . , y) = p(θ(k+1) | θk, y).

The aim of the Gibbs sampler is to generate samples from the posterior distribution. But
this sampling procedure differs from the sampling techniques seen in the previous chapters.
First, the chain of sampled values depends on a starting value. Second, the generated values are
dependent. Therefore, it is not immediately clear that the Gibbs sampler gives a sample from
the posterior distribution and that the summary measures from the chain estimate consistently
the true summary posterior measures. Because of the Markov property and the fact that Monte
Carlo techniques are used to generate new values, the Gibbs sampler is called a Markov chain
Monte Carlo method. In Section 6.4, it is demonstrated that the Gibbs sampler delivers,
under mild regularity conditions, ultimately samples from the posterior distribution, called
the target distribution. However, an initial portion of the chain, called the burn-in part,
is discarded.

Summarized, the Gibbs sampler generates a Markov chain θ1, θ2, . . . which constitutes
a dependent sample from the posterior distribution starting from a well chosen iteration k0

and the summary measures calculated from the chain consistently estimate the true posterior
measures. In the next three examples, we illustrate the mechanics of the Gibbs sampler. First,
we determine the posterior distribution of Example IV.5 via Gibbs sampling.

Example VI.1: Serum alkaline phosphatase study: Gibbs sampling the posterior – non-
informative prior
In Example IV.5, we sampled from the posterior distribution of the normal likelihood based
on 250 serum alkaline phosphatase (alp) measurements of ‘healthy’ patients. We assumed for
both parameters a noninformative prior. To apply the Gibbs sampler, we need to establish the
two conditional distributions p(µ | σ 2, y) and p(σ 2 | µ, y) from expression (4.4). The first
conditional distribution is equal to N(µ | y, σ 2/n), while p(σ 2 | µ, y) is obtained by fixing µ

in expression (4.4) and verifying that we are dealing with an Inv − χ2(σ 2 | n, s2
µ)-distribution,

with s2
µ = 1

n

∑n
i=1(yi − µ)2.

Upon initialization, the Gibbs sampler explores the posterior distribution (4.4) using the
following iterative scheme at iteration (k + 1):

1. Sample µ(k+1) from N(y, (σ 2)k/n)

2. Sample (σ 2)(k+1) from Inv − χ2(n, s2
µ(k+1) )

One Gibbs step thus consists of two substeps and the sampling procedure creates a zigzag
pattern in the (µ, σ 2)-plane. In the first substep, a move is made from (µk, (σ 2)k) to
(µ(k+1), (σ 2)k). In the second substep, a move is made to (µ(k+1), (σ 2)(k+1)). Note that
only every second generated vector belongs to the chain.

To exemplify the sampling procedure in detail, we describe the first steps of one realized
chain. The starting value for the parameter vector (µ, σ 2) was taken as (6.5, 2). The value µ1 =
7.19 was then generated using N(7.11, 2/250) (y = 7.11, σ 2 = 2) yielding an intermediate
vector (7.19, 2). This constitutes the first substep of the Gibbs chain. In the next substep,
the value (σ 2)1 = 1.78 was generated from Inv − χ2(250, s2

7.19). Therefore, the first genuine
element of the Gibbs chain is (7.19, 1.78). Similarly, the vectors (7.20, 1.74), (7.22, 1.95),
(7.03, 1.62) were generated in three further Gibbs steps (six substeps). The path of the sampled
vectors (µk, (σ 2)k), (k = 1, . . . , 6) is displayed in Figure 6.1(a). The zigzag behavior of the
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Figure 6.1 Serum alkaline phosphatase study (noninformative prior): (a) first six steps when
Gibbs sampling the joint posterior distribution for µ and σ 2 with a noninformative prior. The
squares represent elements of the Gibbs chain, while the diamonds represent intermediate
stages, and (b) last 1000 Gibbs sampled parameter vectors (µ, σ 2) from a chain of total size
equal to 1500.

path illustrates that the chain explores the posterior distribution along the coordinate axes.
In the graph, a square symbol pertains to a genuine element of the chain, while a diamond
indicates an intermediate vector.

We stopped sampling at k = 1500. Except for an initial portion, the elements of the chain
constitute a sample from p(µ, σ 2 | y). We ignored the first 500 sampled parameter vectors,
and hence, the size of the burn-in part is here 500. The remaining 1000 sampled vectors
are displayed in Figure 6.1(b). To demonstrate that the Gibbs sampler delivers a sample
from the correct posterior distribution, we show in Figure 6.2 the histogram of µk and of
(σ 2)k for k ≥ 501 together with the correct marginal posterior distributions determined in an
analytical way.

Note that the choice of the chain length of 1500 and the length of the burn-in part of 500
were not motivated. General guidelines for choosing the chain length and the burn-in part
will be extensively dealt with in Chapter 7. These guidelines indicate that the above-chosen
lengths are appropriate. The following example from Casella and George (1992) illustrates
that the Gibbs sampler is not restricted to the Bayesian context.

Example VI.2: Sampling from a discrete × continuous distribution
Assume that the joint distribution of x and y is given by

f (x, y) ∝
(

n

x

)
yx+α−1(1 − y)(n−x+β−1),

with x a discrete random variable taking values in {0, 1, . . . , n}, y a random variable on the
unit interval and α, β > 0 parameters. To sample from the marginal distribution f (x), one
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Figure 6.2 Serum alkaline phosphatase study (noninformative prior): marginal posterior
distribution of (a) µ and (b) σ 2 corresponding to the generated sample in Figure 6.1(b). The
solid lines pertain to the true posterior distributions.

can use the Gibbs sampler by generating samples from f (x, y) and retaining only the sampled
values for x. To this end, the conditional distributions f (x | y) and f (y | x) are needed. To
establish the conditional distribution f (x | y), it is handy to write f (x, y) as

f (x, y) ∝
(

n

x

)
yx(1 − y)(n−x)yα−1(1 − y)(β−1).

For f (x | y), we remove the part that does not depend on x, which is yα−1(1 − y)(β−1). This
shows that f (x | y) is a Bin(n, y) distribution. Similarly, f (y | x) is Beta(x + α, n − x + β).
The Gibbs iterative sampling scheme is therefore at iteration (k + 1):

1. Sample x(k+1) from Bin(n, yk)

2. Sample y(k+1) from Beta(x(k+1) + α, n − x(k+1) + β)

The true marginal distribution f (x) is equal to the beta-binomial distribution BB(n,α,β)
defined in expression (3.14), allowing us to compare the generated histogram with the true
probability histogram.

We illustrate the Gibbs sampler for n = 30, α = 2 and β = 4. Figure 6.3 is based on
x = 0, y = 0.5 as starting values generating first x and then y. It can be seen from the figure
that the sampled histogram is relatively close to the true distribution even with these extreme
starting values. Further, it can easily be verified that it does not matter which starting values
are chosen or whether (x, y) are generated in the reversed order.

For the third example, we return to the serum alkaline phosphatase study, but now we
assume that there is prior information available, as in Section 4.3.3.
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Figure 6.3 Beta-binomial BB(30, 2, 4)-distribution: histogram of Gibbs sampled x based
on starting values x = 0, y = 0.5, 1500 iterations and burn-in part of 500 iterations; the solid
line shows true distribution.

Example VI.3: Serum alkaline phosphatase study: Gibbs sampling the posterior – semi-
conjugate prior
We repeat here the analysis of Example VI.1 with independent informative priors for the
parameters:

� µ ∼ N(µ0, σ
2
0 )

� σ 2 ∼ Inv − χ2(ν0, τ
2
0 )

The posterior distribution for µ and σ 2 is (up to a proportionality constant) the product of
the likelihood with the two independent priors:

p(µ, σ 2 | y) ∝ 1

σ0
e
− 1

2σ2
0

(µ−µ0)2

× (σ 2)−(ν0/2+1) e−ν0 τ 2
0 /2σ 2

× 1

σ n

n∏
i=1

e− 1
2σ2 (yi−µ)2

∝
n∏

i=1

e− 1
2σ2 (yi−µ)2

e
− 1

2σ2
0

(µ−µ0)2

(σ 2)
−

(
n+ν0

2 +1
)

e−ν0 τ 2
0 /2σ 2

.

To obtain the conditional distribution p(µ | σ 2, y), we remove in the above expression all

terms that do not involve µ. Thus, only the term
∏n

i=1 e− 1
2σ2 (yi−µ)2

e
− 1

2σ2
0

(µ−µ0)2

remains. Then
we recognize that this is the kernel of a density given by expression (2.13). For p(σ 2 | µ, y), we
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find that it is the kernel of Inv − χ2
(
ν0 + n,

∑n
i=1(yi−µ)2+ν0τ

2
0

ν0+n

)
. The Gibbs sampling procedure

at iteration (k + 1), therefore, consists of the following steps:

1. Sample µ(k+1) from N(µk, (σ 2)k), with

µk =
1
σ 2

0
µ0 + n

(σ 2)k y

1
σ 2

0
+ n

(σ 2)k

and (σ 2)k = 1
1
σ 2

0
+ n

(σ 2)k

.

Note that µk does not depend on the generated µ-values despite what the notation
might suggest.

2. Sample (σ 2)(k+1) from

Inv − χ2

(
ν0 + n,

∑n
i=1(yi − µ(k+1))2 + ν0τ

2
0

ν0 + n

)
.

The priors are conditional conjugate distributions, and hence, the product is a semi-
conjugate prior (see Section 5.3.4).

As in Example IV.6, the historical data were used to establish independent priors. One
chain of size 1500 was generated using the above iterative scheme, with starting values (5.5, 3)
and a burn-in part of size 500. The posterior distributions for µ and σ 2 as well as their posterior
means and medians were close to those obtained by the Method of Composition in Example
IV.6. The 95% CIs differed somewhat more, illustrating that extreme quantiles show greater
variability. With the Gibbs sampler, we obtained for the posterior mean (95% equal tail CI)
of µ and σ 2 the values 6.79 ([6.73, 6.85]) and 2.14 ([2.01, 2.25]), respectively, which are
basically the same as obtained from the Method of Composition.

The three examples enjoy the luxury that the output of the Gibbs sampler can be checked
against either an analytical result or a result obtained from another independent sampling
approach. In general, this will not be possible and we need some reassurance that we are
exploring the posterior distribution appropriately. This will be given by the theory in Section
6.4. However, these theoretical results do not tell us how long the chain should be. A chain of
length 1500 may be too short and may have produced an empirical histogram quite different
from the true posterior distribution. To get an idea of how fast the chain explores the posterior
distribution, one uses a simple graphical tool called the trace plot. The trace plot is a time
series plot with the iteration number on the x-axis and the sampled value on the y-axis. In
Figure 6.4, we have shown the trace plots for both parameters of the previous example. The
figure shows (a) that we have chosen extreme starting values and (b) that the chain moves for
both parameters quickly through the distribution. The erratic behavior of these trace plots is
also characteristic for classical (independent) sampling procedures. Strictly speaking, trace
plots cannot prove that the posterior is sampled appropriately, convergence diagnostics are
needed for this (see Section 7.2).
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Figure 6.4 Serum alkaline phosphatase study (informative prior): trace plots for (a) µ and
(b) σ 2 when using a semi-conjugate prior.

6.2.2 The general Gibbs sampler

Given a starting position θ0 = (θ0
1 , . . . , θ0

d )T , the multivariate version of the Gibbs sampler
has the following iterative scheme. At iteration (k + 1), the sampling procedure performs the
following d steps:

1. Sample θ
(k+1)

1 from p(θ1 | θ k
2 , . . . , θ k

(d−1), θ
k
d , y)

2. Sample θ
(k+1)

2 from p(θ2 | θ
(k+1)

1 , θ k
3 , . . . , θ k

d , y)

...

d. Sample θ
(k+1)

d from p(θd | θ
(k+1)

1 , . . . , θ
(k+1)

(d−1)
, y)

The conditional distributions p(θ j | θ k
1 , θ k

2 , . . . , θ k
( j−1), θ

k
( j+1), . . . , θ

k
(d−1), θ

k
d , y) are called

full conditional distributions or shorter full conditionals, because θ j is conditioned on all other
parameters. It is shown in Section 6.4 that, under mild regularity conditions, the generated
values θk, θ(k+1), . . . ultimately can be regarded as observations from the posterior distribution.
Two examples illustrate the mechanism of the multivariate Gibbs sampler. We start with
a well-known, but not biostatistical, example. It is an example of a change-point model.
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Figure 6.5 British coal mining data: frequency of disasters per year.

Change-point models are important in longitudinal studies when the aim is to detect the onset
of a disease.

Example VI.4: British coal mining disasters data: Finding the change point using the
Gibbs sampler
The well-known British coal-mining disasters data set contains the number of severe accidents
in British coal mines from 1851 to 1962. This data set has been analyzed by many; see Tanner
(1993) and references therein. The frequency of disasters per year is plotted in Figure 6.5. This
figure indicates a possible decrease in frequency of disasters from year 40 (+ 1850) onward.
We now wish to see whether there is statistical evidence for this claim.

The count in the ith year, yi, is assumed to have a Poisson distribution with mean θ until
year k, the change point. Afterward, yi has a Poisson distribution with mean λ. Thus, a Poisson
process with a change point at k is assumed, given by

yi ∼ Poisson(θ ) for i = 1, . . . , k and yi ∼ Poisson(λ) for i = k + 1, . . . , n,

with n = 112. Conditional conjugate priors are chosen for θ and λ, i.e.

θ ∼ Gamma(a1, b1) and λ ∼ Gamma(a2, b2),

with a1, a2, b1, b2 parameters. The prior for k is taken as uniform on {1, . . . , n}, i.e. p(k) =
1/n. The a- and b-parameters can be given a hyperprior, but Tanner (1993) assumed only b1

and b2 to be stochastic with distribution

b1 ∼ Gamma(c1, d1) and b2 ∼ Gamma(c2, d2),

and c1, c2, d1, d2 fixed.
The full conditionals are determined as before, i.e. we multiply the likelihood with all

priors and for each parameter we remove the part that does not depend on it. The goal is again
to recognize a standard distribution (at least a distribution from which we can sample). This
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Figure 6.6 British coal mining data: posterior distribution for (a) θ/λ and (b) k.

gives

p(θ | y, λ, b1, b2, k) = Gamma(a1 +
k∑

i=1

yi, k + b1),

p(λ | y, θ, b1, b2, k) = Gamma(a2 +
n−k∑

i=k+1

yi, n − k + b2),

p(b1 | y, θ, λ, b2, k) = Gamma(a1 + c1, θ + d1),

p(b2 | y, θ, λ, b1, k) = Gamma(a2 + c2, λ + d2),

p(k | y, θ, λ, b1, b2) = π(y | k, θ, λ)∑n
j=1 π(y | j, θ, λ)

,

with π(y | k, θ, λ) = exp [k(λ − θ )]

(
θ

λ

)∑k
i=1 yi

.

The full conditional distributions determine the iterative Gibbs sampling scheme together
with a choice for the a, c and d-parameters. Here, we take the values assumed by Tanner, i.e.
a1 = a2 = 0.5, c1 = c2 = 0 and d1 = d2 = 1. One Markov chain was run with length 1500.
The posterior summary measures were based on the last 1000 values. On the basis of this
chain, we can derive the posterior summary measures of original and derived parameters. For
instance, in Figure 6.6(a) the posterior distribution of θ/λ is shown. The posterior distribution
of k shows that most likely in 1891 the frequency of coal mining disasters was drastically
reduced with approximately a factor of 3.5, obtained from the posterior mean for θ/λ equal
to 3.42 with 95% CI = [2.48, 4.59].

In the next example, we reanalyze the osteoporosis study analyzed in Example V.7 with
the Method of Composition.

Example VI.5: Osteoporosis study: Exploring the posterior with the Gibbs sampler
Take the regression model specified in Section 4.7.1 with noninformative priors for the
parameters as in Section 4.7.2. Further, suppose that there is only one regressor x (BMI)
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Table 6.1 Osteoporosis study: posterior summary measures obtained from the Method of
Composition and the Gibbs sampler, both based on 1000 sampled values.

Parameter Method of Composition

2.5% 25% 50% 75% 97.5% Mean SD

β0 0.57 0.74 0.81 0.89 1.05 0.81 0.12
β1 0.032 0.038 0.040 0.043 0.049 0.040 0.004
σ 2 0.069 0.078 0.083 0.088 0.100 0.083 0.008

Gibbs Sampler

2.5% 25% 50% 75% 97.5% Mean SD

β0 0.67 0.77 0.84 0.91 1.10 0.77 0.11
β1 0.030 0.036 0.040 0.042 0.046 0.039 0.0041
σ 2 0.069 0.077 0.083 0.088 0.099 0.083 0.0077

to predict the response y (TBBMC). Both have been measured on n individuals to yield
x = (x1, . . . , xn)

T and y = (y1, . . . , yn)
T . For the three parameters, intercept β0, slope β1 and

residual variance σ 2, the full conditionals are derived in the usual manner and are

p(σ 2 | β0, β1, y) = Inv − χ2(n, s2
β),

p(β0 | σ 2, β1, y) = N(rβ1 , σ
2/n),

p(β1 | σ 2, β0, y) = N(rβ0 , σ
2/xT x),

with s2
β = 1

n

∑
(yi − β0 − β1 xi)

2, rβ1 = 1
n

∑
(yi − β1 xi), and rβ0 = ∑

(yi − β0) xi/xT x.
One Markov chain of size 1500 was generated using the Gibbs iterative scheme making.

The above full conditionals dictate the sampling procedure. An initial 500 iterations were
discarded.

In Table 6.1, the posterior summary measures obtained from the converged Markov chain
are compared with the corresponding measures obtained from the Method of Composition
(based on 1000 independent sampled values). The summary measures for the two sampling
approaches match relatively well, with an even better correspondence for σ 2. An explanation
for this different behavior is found in the trace plots of the parameters.

Figure 6.7 shows the index plots of the sampled values of β1 and σ 2 based on the Method
of Composition. Note that the index has no sequential interpretation here since the values
are sampled independently. This index plot illustrates what graph one may expect in case
of independent sampling. Comparing the index plots in Figure 6.7 with the corresponding
ones obtained with Gibbs sampling (Figure 6.8) highlights that σ 2 is sampled with the
MCMC approach in an almost independent manner, in contrast to β1 (similar for β0) where
sampling with the MCMC approach is quite dependent. Indeed, the trace plot for β1 points to a
relatively high correlation between βk

1 and β
(k−1)

1 , β
(k−2)

1 , . . .. In that case one speaks of a chain
with high autocorrelation(s). In general, more initial iterations must be removed when there
is high autocorrelation. In addition, the remaining part of the Markov chain needs to be longer
to obtain a stable estimate of the marginal posterior distribution. However, upon convergence,
the chain should have forgotten its starting position which evidently takes longer for highly
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Figure 6.7 Osteoporosis study: index plots of 1000 sampled values of (a) β1 and (b) σ 2

obtained using the Method of Composition.

correlated chain values. Hence, the chain for the regression coefficients needs to be longer than
for σ 2. To illustrate this, Figure 6.9 shows two histograms for β1 obtained from different parts
of the same Markov chain. Clearly, the summary measures for β1 obtained from these two parts
are quite different. In contrast, the summary measures for σ 2 do not differ substantially for
the corresponding parts of the chain (results not shown). Further illustrations of the sampling
behavior of the regression parameters, more specifically of the difficulty to converge, are given
in Section 7.2.

6.2.3 Remarks∗

Central to the Gibbs sampler is the property that the full conditionals determine the
joint distribution. This result was shown in Besag (1974) but appears to date back
to an unpublished result of Hammersley and Clifford in 1971. Proofs of this theorem
are given by Robert and Casella (2004) for the bivariate case (Theorem 9.3) and for
the general case (Theorem 10.5). The proof of the bivariate case is reproduced here.
To simplify notation, we omit the dependence on y in the formulas. Since p(θ1, θ2) =
p(θ2 | θ1)p1(θ1) = p(θ1 | θ2)p2(θ2),

∫ p(θ2|θ1)

p(θ1|θ2)
dθ2 = ∫ p2(θ2)

p1(θ1)
dθ2 = 1

p1(θ1)
, p(θ1, θ2) = p(θ2 |

θ1)/
∫

[p(θ2 | θ1)/p(θ1 | θ2)] dθ2 which demonstrates that the joint distribution is determined
by its two conditional distributions. The implicit assumption in the above proof is that the
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Figure 6.8 Osteoporosis study: trace plot of (a) β1 and (b) σ 2 based on 1500 sampled values
using the Gibbs sampler (vertical lines indicate the end of the burn-in part).
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joint distribution exists. It becomes more complicated when is not known whether the joint
distribution exists (Arnold et al. 2001).

Proving the existence of the joint distribution is not enough to determine the distribution.
Casella and George (1992) show for d = 2 that, if the conditional distributions p(θ1 | θ2)

and p(θ2 | θ1) are known, the marginal distribution p1(θ1) and hence the joint distribution
p(θ1, θ2) can be determined. Indeed, by definition, p1(θ1) = ∫

p(θ1, θ2) dθ2, since p(θ1, θ2) =
p(θ1 | θ2)p2(θ2), p1(θ1) = ∫

p(θ1 | θ2)p2(θ2) dθ2. A similar expression holds for θ2 and can
be imputed in the previous expression leading to

p1(θ1) =
∫

p(θ1 | θ2)

[∫
p(θ2 | φ1)p1(φ1) dφ1

]
dθ2

=
∫ [∫

p(θ1 | θ2)p(θ2 | φ1) dθ2

]
p1(φ1) dφ1

=
∫

K1(φ1, θ1) p1(φ1) dφ1, (6.1)

where K1(φ1, θ1) = ∫
p(θ1 | θ2)p(θ2 | φ1) dθ2. This result shows that, if the conditional dis-

tributions are known, the marginal distribution p1(θ1) can be solved by finding the (fixed
point) solution of an integral equation. The Gibbs sampler is a stochastic version of this
iterative algorithm.

The ‘engine’ that generates a move from θ ≡ θk to φ ≡ θ(k+1) is called the transition
kernel or the transition function. The transition kernel expresses the probability (density) of
the move and is given for the Gibbs sampler by

K(θ,φ) = p(φ1 | θ2, . . . , θd ) × p(φ2 | φ1, θ3, . . . , θd ) × p(φd | φ1, . . . , φ(d−1)).

Note that K1(φ1, θ1) in expression (6.1) is also a transition kernel expressing the probability
of a move from φ1 to θ1. The integration in the expression of K1 creeps in because a move from
φ1 to θ1 can be made via all possible values for θ2. The transition kernel is simply a prescription
to generate a Markov chain converging to p(θ | y). For a Gibbs sampler, the transition kernel
is completely determined by the posterior in contrast to the Metropolis(–Hastings) algorithm.

6.2.4 Review of Gibbs sampling approaches

For a given problem, the Gibbs sampler can be combined with different algorithms to sample
from the full conditionals. In the above examples, the full conditionals were classical distribu-
tions, so that sampling was done with standard software. In general, the full conditionals are
known only up to a constant requiring general purpose algorithms, such as those of Section
III.12. The choice of the sampling algorithm depends on the (shape of the) full conditional
but also on the personal preference of the software developer. For instance, the Bayesian SAS
procedures GENMOD, LIFEREG and PHREG all use the ARMS algorithm, while WinBUGS
makes use of a variety of samplers depending on the actual full conditional.

There are several versions of the basic Gibbs sampler depending on how the sampler
travels in the d dimensions. We distinguish these samplers as follows:

� Deterministic- or systematic scan Gibbs sampler: The d dimensions are visited in a
fixed order. This is the standard (above described) Gibbs sampler.
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� Random-scan Gibbs sampler: The d dimensions are visited in a random order.

� Reversible Gibbs sampler: The d dimensions are visited in a particular order and then
the order is reversed. One step consists of (2d − 1) substeps.

� Block Gibbs sampler: The d dimensions are split up into m blocks of parameters with
respective sizes d1, d2, . . . , dm and corresponding parameter vectors θ1, θ2, . . . , θm.
Then the distributions p(θk | θ1, . . . , θk−1, θk+1, . . . , θm), (k = 1, . . . , m) are sampled
in a (most often) fixed order.

Most popular is the deterministic Gibbs sampler. The block Gibbs sampler is especially
useful when the parameters are highly correlated a posteriori. For instance, the Gibbs sampler
in Example VI.5 may be replaced by the block Gibbs sampler, which processes the whole
vector (β0, β1) instead of its components, using the conditional distributions:

1. p(σ 2 | β0, β1, y)

2. p(β0, β1 | σ 2, y)

We show in Chapter 7 that sampling blocks of parameters instead of each of the parameters
separately may speed up the convergence to the target distribution considerably. However, the
time needed to complete each iteration is in general greater. The block Gibbs sampler is imple-
mented in WinBUGS and treats location and scale parameters as separate blocks. The SAS®

procedure MCMC makes intensive use of blocking and allows the user to specify the blocks.

6.2.5 The Slice sampler∗

Suppose that we wish to sample from a density f (x). From f (x) = ∫ f (x)

0 dy, it is seen that f
is the marginal density (in x) of the (bivariate) joint uniform density g(x, y) on the region

(x, y) : 0 < y < f (x). (6.2)

By adding the variable y, the univariate sampling problem is translated into a bivariate sampling
problem. Classically, y is referred to as an auxiliary variable.

Samples from f (x) can be obtained by simulating (x, y) from a uniform density on
the set (6.2). If f (x) is defined on a finite interval [a, b] and is bounded above by a finite
value m, then simulating from f (x) could be done by a uniform simulation from the rectangle
[a, b] × [0, m] and retaining only the pairs (x, y) that satisfy the constraint (6.2). In the general
case, a bivariate Gibbs sampling algorithm may be applied. In the first case, we assume that
f (x) is unimodal. In this case, the Slice sampler consists of repeatedly sampling from two
uniform conditional distributions which satisfy constraint (6.2):

� y | x ∼ U(0, f (x))

� x | y ∼ U(miny, maxy), with miny, maxy are the minimal and maximal x-values, respec-
tively, of the solution y = f (x)

The stochastic intervals S(y) = [miny, maxy] are called slices hereby naming the sampler.
The slice sampler is an example of the Gibbs sampling procedure and hence requires only
the density up to a proportionality factor. In addition, the properties of the Gibbs sampler are
inherited which implies that the sampler will yield (ultimately) samples from f (x). The Slice
sampler is implemented in WinBUGS to sample from (nonstandard) densities with a finite
support. When the density is multimodal, then sampling requires more care. Indeed, for such
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Figure 6.10 Normal density: (a) sampling mechanism of slice sampler and (b) histogram of
5000 sampled values (dashed line = smoothed histogram, solid line = true density).

a density one needs to establish the total set of solutions to the equation y = f (x). In addition,
uniform sampling needs to be done on multiple intervals.

Example VI.6: Slice sampling applied to the normal density
We wish to sample from a standard normal density. The slices are, therefore, S(y) =
[−√−2 log(y),

√−2 log(y)] and sampling involves the following two conditional sampling
steps:

� y | x ∼ U
(

0, e−x2/2
)

� x | y ∼ U
( − √−2 log(y),

√−2 log(y)
)

In Figure 6.10(a), we show two typical intervals in the x- and y-directions which define the
two uniform distributions in the above Gibbs sampling procedure. The histogram based on
5000 sampled values with the Slice sampler is shown in Figure 6.10(b). As one can readily
see, the smoothed histogram and the true density are quite close. In addition, no burn-in values
were removed which illustrates the fast convergence of the algorithm.

6.3 The Metropolis(–Hastings) algorithm

The Metropolis–Hastings (MH) algorithm is a general Markov chain Monte Carlo technique
to sample from the posterior distribution which, in contrast to the Gibbs sampler, does not
require the full conditionals. The Metropolis algorithm is a special case of the MH algorithm.
We refer to both algorithms as the MH algorithm.

The Metropolis algorithm was proposed more than 50 years ago by Metropolis et al.
(1953). Two decades later Hastings (1970) extended the approach to what is now called
the Metropolis–Hastings approach and introduced the method into the statistical world. But,
only after the publication of Gelfand and Smith (1990)’s paper (again two decades later)
this MCMC approach became popular among statisticians. The MH algorithm shows some
similarity with the AR algorithm of Section III.12. Below, it is shown that the Gibbs sampler
is in a mathematical sense a special case of the MH algorithm, but for a variety of reasons,
the two algorithms are treated separately in the literature. We elaborate in this section on
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the philosophy behind the Metropolis and the Metropolis–Hastings approach and on their
properties.

6.3.1 The Metropolis algorithm

Suppose that a Markov chain is at position θk at the kth iteration when exploring the posterior
distribution p(θ | y). The general idea behind the Metropolis algorithm goes as follows. The
next position in the chain, θ̃, is sampled from a density q having typically its central location
at θk. However, θ̃ is only a proposal for the new position (if it were automatically the next
value we would be exploring q and not the posterior). The new position will always be
accepted when it is located in an area of higher posterior mass, otherwise it will be accepted
with a certain probability. Clearly, positions with a lower posterior mass must also be visited
otherwise the algorithm would be searching for the (posterior) mode and not exploring the
posterior distribution. The probability of accepting the proposed position should be taken such
that, at the end of the day, the Markov chain explores p(θ | y). The density q is called the
proposal density and the proposal density evaluated in θ̃ at iteration k is denoted as q(̃θ | θk).
When the proposal density is symmetric, i.e. q(̃θ | θk) = q(θk | θ̃), we speak of the Metropolis
algorithm.

A popular choice for q is the multivariate normal distribution (or the multivariate t-
distribution) with mean equal to the current position θk and a user-chosen covariance matrix �.
In that case, we sample θ̃ from N(θk, �) at the kth iteration to obtain the proposed subsequent
value.Obviously, the location parameter θk of the proposal density changes with k. Further,
just as for the AR algorithm, an appropriate decision rule is needed to accept or reject the
‘proposed’ θ̃. Upon acceptance, θ̃ becomes the next value in the Markov chain, i.e. θ(k+1) = θ̃

and we move to θ̃. If rejected we stay at θk, hence θ(k+1) = θk. The probability of accepting
the proposed value depends on the posterior distribution. When the candidate lies in an area
where the posterior distribution has a higher value, i.e. when p(̃θ | y)/p(θk | y) > 1, then the
move will always be made and hence θ(k+1) = θ̃. In contrast, when the candidate value lies in
an area where the posterior distribution has a lower value, i.e. when p(̃θ | y)/p(θk | y) < 1,
then the move will be made with probability r = p(̃θ | y)/p(θk | y) and then θ(k+1) = θ̃ with
probability r. This procedure ensures that the posterior distribution will be ‘visited’ more
often at locations where the posterior likelihood is relatively higher. The proof that this is
the correct procedure is shown in Section 6.4. The above-described procedure is called the
Metropolis algorithm and satisfies again the Markov property.

Formally, when the chain is at θk, the Metropolis algorithm samples the chain values as
follows:

1. Sample a candidate θ̃ from the symmetric proposal density q(̃θ | θ), with θ = θk.

2. The next value θ(k+1) will be equal to

� θ̃ with probability α(θk, θ̃) (accept proposal),

� θk otherwise (reject proposal),
with

α(θk, θ̃) = min

(
r = p(̃θ | y)

p(θk | y)
, 1

)
. (6.3)

The function α(θk, θ̃) is called the probability of a move.
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Figure 6.11 Serum alkaline phosphatase study (noninformative prior): (a) first 15 steps
when using Metropolis algorithm (τ 2

1 = τ 2
2 = 0.03) to explore the joint posterior distribution

for µ and σ 2 with a noninformative prior, and (b) last 1000 parameter vectors (µ, σ 2) from a
chain of total size equal to 1500.

We now illustrate the Metropolis algorithm using the serum alkaline phosphatase
study. In particular, we replace the Gibbs sampler in Example VI.1 with the Metropolis
algorithm.

Example VI.7: Serum alkaline phosphatase study: Exploring the posterior with the
Metropolis algorithm – noninformative prior
Take the same settings as in Example VI.1. To use the Metropolis algorithm, a pro-
posal density is needed, which should be two-dimensional here since proposals are ex-
pected for µ and σ 2. We have taken the bivariate normal density as the proposal
density. In principle, this choice can present difficulties since negative values for σ 2

might be generated, but this choice of q did not pose problems here. At iteration k
the proposal density is N(θk, �) where θk = (µk, (σ 2)k)T and � = diag(τ 2

1 , τ 2
2 ). First we

have taken τ 2
1 = τ 2

2 = 0.03 for the variances of the proposal density.
With the same starting position as in Example VI.1 and using the proposal density at

θ0, the vector θ̃ = (6.76, 1.94)T was generated yielding a ratio of r = 5.84 × 10−6. Given
such a small ratio the decision was to stay at the starting position (6.5, 2.0), i.e. θ1 = θ0.
In the second iteration, the vector θ̃ = (6.79, 2.41)T was generated, now yielding a ratio of
r = 1, 483, 224 and the move was made. Hence, θ2 = (6.79, 2.41)T . In the third step the
suggested move was again not accepted with r = 0.00049. The positions taken in the plane
up to k = 15 are shown in Figure 6.11(a). In contrast to the Gibbs sampler, now the moves
go in any direction. In Figure 6.11(b), we show the last 1000 values of the Markov chain
(from k ≥ 501).

In Figure 6.12, the marginal posterior distributions based on the retained part of the Markov
chain are shown, together with the true posterior distributions. The fit to the true distributions
appears less satisfactory than with the Gibbs procedure. Nevertheless, the posterior summary
measures were about the same.
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Figure 6.12 Serum alkaline phosphatase study (noninformative prior): marginal posterior
distribution of µ and σ 2 corresponding to the retained part of the Markov chain shown in
Figure 6.11(b). The solid lines represent the true posterior marginals.

The trace plots in Figure 6.13 show horizontal lines indicating when the proposed move
was not accepted. The percentage of accepted moves, i.e. the acceptance rate (or acceptance
probability), was 40%. Thus the posterior measures were based on roughly 400 different
values.

Next, we have taken the variance parameters of the proposal density equal to τ 2
1 = τ 2

2 =
0.001. Consequently, the proposal density can only suggest small steps. On its turn, this
implies a high acceptance rate (steps are small and thus r is often close to 1). We obtained now
an acceptance rate of 84%. The implication is that the Markov chain explores the posterior
distribution slowly, as seen in Figure 6.14(a). The negative effect of this slow exploration is
illustrated in Figure 6.14(b) which shows that the Markov chain provides a poor approximation
to the true marginal distribution.

The above examples illustrate the flexibility of the Metropolis algorithm. But the exam-
ples also stress that one needs to be careful in choosing the proposal density, especially its
dispersion. We will return to this issue in Section 6.3.4.

6.3.2 The Metropolis–Hastings algorithm

For the Metropolis algorithm, the proposal density q(̃θ | θ) is symmetric. In some cases, it
might be more advantageous to choose an asymmetric proposal density. In that case, moving
from θ to θ̃ is not as easy as moving in the opposite direction. To ensure that the posterior
distribution is equally accessible in all corners, the asymmetric nature of the proposal density
needs to be compensated for. Hastings (1970) extended Metropolis’ proposal to an asymmetric
proposal density and the approach is referred to as the MH algorithm.

The first step in the MH algorithm is to suggest a candidate for a move. At the kth step
θ̃ will be sampled from q. As in the Metropolis algorithm, one needs to decide whether to
‘move’ or to ‘stay’. However, in order to ensure that the posterior distribution will be explored
equally well in all directions, one should compensate for the fact that moving from θk to θ̃ is
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Figure 6.13 Serum alkaline phosphatase study (noninformative prior): trace plots for (a) µ

and (b) σ 2 based on the Metropolis algorithm.
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Figure 6.14 Serum alkaline phosphatase study (noninformative prior): (a) first 15 steps when
using Metropolis algorithm (τ 2

1 = τ 2
2 = 0.001) to explore the joint posterior distribution for µ

and σ 2 with a noninformative prior, and (b) marginal posterior distribution of σ 2 corresponding
to the generated sample as in (a). The solid line pertains to the true posterior distribution.



P1: JYS/XYZ P2: ABC
JWST177-c06 JWST177-Lesaffre May 18, 2012 9:33 Printer Name: Yet to Come Trim: 244mm × 168mm

THE METROPOLIS(–HASTINGS) ALGORITHM 159

easier or more difficult than in the opposite direction. This is done by changing the probability
of making a move at the kth iteration, as follows:

1. Sample a candidate θ̃ from the proposal density q(̃θ | θ), with θ = θk.

2. The next value θ(k+1) will be equal to

� θ̃ with probability α(θk, θ̃) (accept proposal),

� θk otherwise (reject proposal),
with

α(θk, θ̃) = min

(
r = p(̃θ | y) q(θk | θ̃)

p(θk | y) q(̃θ | θk)
, 1

)
. (6.4)

The change in acceptance probability was needed in order to ensure that the probability
of moving from θ to θ̃ is equal to the probability of the opposite move. This is called the
reversibility condition, and the resulting chain is called a reversible Markov chain; see Section
6.3.3 for a more formal definition and Section 6.4 for a justification. Note that also the Markov
chain created by the Metropolis algorithm is reversible.

An example of an asymmetric proposal density is one that does not depend on the current
position, i.e. q(̃θ | θk) ≡ q(̃θ), is asymmetric since q(θk) �= q(̃θ) for θk �= θ̃. With this proposal
density the generated value θ̃ does not dependent on the position in the chain and the sampling
algorithm is called the Independent MH algorithm. Note that the proposed values of the
chain are generated independently from one distribution, yet the elements of the chain are
dependent. The reason is that acceptance of θ̃ depends on α(θk, θ̃), which is now equal to

min

(
p(̃θ|y) q(θk )

p(θk|y) q(̃θ )
, 1

)
.

The next example makes use of the MH algorithm to sample from a univariate distribution.
The Gibbs sampler applied to a univariate problem is just a standard one-dimensional sampler.

Example VI.8: Sampling a t-distribution using the Independent MH algorithm
Suppose the target distribution is the t3(3, 22)-distribution. Sampling from this distribution
was done using the Independent MH algorithm with proposal density N(3, 42). 1500 values
were generated and we retained the last 1000 elements. The sampling procedure accepted
48% of the proposed moves. This histogram of sampled values approximated well the true
distribution (Figure 6.15(a)). But when the variance of the proposal density was reduced
to 22, the approximation became quite poor (Figure 6.15(b)). This exercise reinforces the
statement that the MH algorithm needs to be used with care and that its success depends on
(the variability of) the proposal density.

6.3.3 Remarks∗

As with the Gibbs sampler, the MH algorithm only needs the posterior distribution up to a
constant, which can be verified from expression (6.4). In Gelman et al. (2004, p. 293) and
in Chib and Greenberg (1995), it is shown that the Gibbs sampler is a special case of the
MH algorithm. Robert and Casella (2004, p. 381) give a more precise statement, namely
that the Gibbs sampler is equivalent to the composition of d MH algorithms with acceptance
probabilities all equal to 1. The proof in Gelman et al. (2004) is repeated here.
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Figure 6.15 Sampling t3(3, 22)-distribution based on: (a) Independent MH algorithm using
proposal density N(3, 42) and (b) Independent MH algorithm using proposal density N(3, 22).
The solid line pertains to the true t3(3, 22)-distribution.

Define d transition functions

qG
j (̃θ | θk) = p(θ̃ j | θk

− j, y) if θ̃− j = θk
− j (6.5)

= 0 otherwise, (6.6)

with θ− j equal to θ without the jth component. Hence, the only possible jumps are to
parameter vectors θ̃ that match θk on all components other than the jth. Under this transition
function, the ratio r is given in the jth substep by

r = p(̃θ | y)qG
j (θk | θ̃)

p(θk | y)qG
j (̃θ | θk)

= p(̃θ | y)p(θk
j | θ̃− j, y)

p(θk | y)p(θ̃ j | θk
− j, y)

(6.7)

= p(̃θ | y)/p(θ̃ j | θk
− j, y)

p(θk | y)/p(θk
j | θ̃− j, y)

= 1, (6.8)

which implies that each jump is accepted.
Despite the above result, the distinction between the two samplers is still made in the

literature because of their different sampling strategies. In addition, the Gibbs sampler is a
very important specific type of MH algorithm that requires separate mathematical arguments
to establish its performance.

The transition kernel of the MH algorithm expresses the probability to move from θ ≡ θk

to φ ≡ θ(k+1) with θ,φ ∈ �. The jump is done in two steps and the transition kernel therefore
consists of two components. The first component K(θ,φ) = α(θ,φ)q(φ | θ) describes the
move to φ = θ̃, whereby φ is suggested by the proposal density q(φ | θ) and accepted with
probability α(θ,φ). The suggested move is, however, rejected with probability equal to

r(θ) = 1 −
∫

IRd
α(θ,φ)q(φ | θ) dφ,
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and then no move is made, i.e. φ = θ. Thus the probability that φ ∈ B, with B a set in �,
equals

p(θ, B) =
∫

B
K(θ,φ) dφ + r(θ)I(θ ∈ B),

with I(·) the indicator function. This probability is composed of two parts. The first term∫
B K(θ,φ) dφ expresses the probability of moving into B when originally outside B and the

second term expresses the probability of staying in B.
A reversible Markov chain is a sufficient condition (Section 6.4) for the chain to converge

to the posterior distribution. The reversibility condition requires that the probability of moving
from set A to set B is equal to the probability of moving from set B to set A, for any two sets
A and B in �. This is translated into

∫
A

p(θ, B) dθ =
∫

B
p(φ, A) dφ.

The above condition is satisfied when the detailed balance condition is satisfied

∫
A

∫
B

K(θ,φ) dφ dθ =
∫

B

∫
A

K(φ, θ) dθ dφ, (6.9)

for any two sets A and B in �. It can be shown that this condition is achieved optimally by
taking the acceptance probability as in expression (6.4) (Hastings 1970).

Finally, the MH algorithm shows some resemblance with the AR algorithm. Indeed, both
algorithms make use of an instrumental distribution which produces sampled values that are
evaluated and subsequently accepted or rejected. The most important difference is that the AR
algorithm generates independent samples while the MH algorithm generates a Markov chain
and thus dependent samples. Exploring the posterior with an MCMC approach leaves out a
trace of visited positions in the joint posterior space. Hence, when the MH algorithm rejects
a proposal, the chain will stay at the current position and that is recorded. On the other hand,
when the AR algorithm rejects a proposed value no record of that proposal is kept. Thus, the
two methods also differ in the way rejection impacts the generated values.

6.3.4 Review of Metropolis(–Hastings) approaches

A variety of Metropolis(–Hastings) algorithms are in use differing according to the choice of
the proposal density. We review the three most common algorithms which are as follows:

The Random-Walk Metropolis(–Hastings) algorithm: the proposal density satisfies
q(̃θ | θ) = q(̃θ − θ). For q(̃θ − θ) ≡ q(|̃θ − θ|) the proposal density is symmetric and gives
the Metropolis algorithm. Popular choices for the proposal density are the multivariate normal
density Nd (̃θ | θ, c2�) (implemented in WinBUGS and different SAS procedures) and the
multivariate t-distribution (SAS PROC MCMC). The t-proposal density is better for sam-
pling long tailed posterior distributions. Analytical results and simulations in Roberts et al.
(1997) suggested that for a normal proposal density the acceptance rate should be around 45%
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for d = 1 and 23.4% for d > 1. For the normal proposal density the acceptance rate depends
highly on the covariance matrix c2� (� is often taken as the identity matrix) as was illustrated
in Example VI.7. Robert and Casella (2004) suggested adapting the variance of the proposal
density in the iterative process to improve the sampling performance. This procedure is called
tuning the proposal density and is implemented in WinBUGS when the one-dimensional MH
algorithm is used. In that case, the standard deviation of the proposal density is tuned by
default in the first 4000 iterations to produce an acceptance rate between 20% and 40%; see
Figure 8.3 for a graphical illustration. On the other hand, the SAS procedure MCMC tunes
the proposal density in several loops.

The Independent MH algorithm: the proposal density does not depend on the position
in the chain, e.g. q(̃θ | θ) = Nd (̃θ | µ, �), with µ and � fixed or tuned throughout the
MCMC run. The Independent MH algorithm is similar to the AR algorithm but accepts θ̃

when p(̃θ | y)/q(̃θ) > p(θk | y)/q(θk). As for the AR algorithm, a high acceptance rate is
desirable and is obtained when the proposal density q(θ ) is close to the posterior density.
This could be achieved by taking for the proposal density a normal or a t-distribution with the
posterior mode as mean and as covariance matrix the inverse of minus the observed Fisher
information matrix evaluated at the posterior mode. Robert and Casella (2004) showed that
if the proposal density satisfies p(θ | y) ≤ A q(θ ) for all θ , then the Markov chain generated
by the Independent MH algorithm enjoys excellent convergence properties (Theorem 7.8)
and that the expected acceptance probability exceeds that of the AR algorithm (Lemma 7.9).
Note that this condition was not satisfied in Example VI.8. The Independent MH algorithm is
one of the possible samplers of the SAS procedure MCMC.

The Block MH algorithm: In Section 6.2.4, we have introduced the block Gibbs sampler
and mentioned that it can speed up the sampling process considerably. Within the m blocks,
occasionally independent sampling might be applied (as in the osteoporosis regression anal-
ysis) but usually it will be a Metropolis(–Hastings) algorithm. This combination of the Gibbs
and MH algorithm is called Metropolis-within-Gibbs. Chib and Greenberg (1995) showed
that this procedure is valid. In the SAS procedure MCMC, blocks are specified by the user.
WinBUGS puts automatically the regression coefficients into one block (if the blocking option
is not switched off) and the variance parameters in another block.

A sampler of a different nature is the Reversible Jump MCMC (RJMCMC) algorithm (see
Section 6.6). This algorithm is a special case of the MH algorithm whereby the proposal
density suggests moves as with an ordinary MH algorithm, but also jumps between spaces of
different dimensions. RJMCMC is useful, e.g. in Bayesian variable selection.

6.4 Justification of the MCMC approaches∗

The results of this chapter are based on the property that the MCMC techniques generate a
Markov chain that ultimately provides a sample from the posterior distribution and that the
summary measures calculated from this chain consistently estimate the corresponding true
posterior summary measures. The proof of these results is based on Markov chain theory.
Robert and Casella (2004) reviewed in their Chapter 4 the most important results. A rigorous
treatment of the topic is found in Meyn and Tweedie (1993). A detailed treatment of Markov
chain theory is certainly beyond the aim of this book but we believe that it is useful to review
the most important Markov chain concepts and results for a better understanding of (the
terminology used in) the literature on MCMC methods.



P1: JYS/XYZ P2: ABC
JWST177-c06 JWST177-Lesaffre May 18, 2012 9:33 Printer Name: Yet to Come Trim: 244mm × 168mm

JUSTIFICATION OF THE MCMC APPROACHES 163

A Markov chain is a sequence of discrete or continuous random variables θ with the
property that, given the present outcome, the past and future outcomes are independent:

p(θ (k+1) = y | θ k = x, θ (k−1) = xk−1, . . . , θ
0 = x0) = p(θ (k+1) = y | θ k = x).

When the above probabilities do not depend on k, the Markov chain is called homogeneous.
For a homogenous Markov chain, a constant transition kernel K(x, A) describes the prob-
ability of generating a value in A when starting in x, i.e. K(x, A) = p(θ (k+1) ∈ A | θ k =
x) = p(θ1 ∈ A | θ0 = x). In other words, the transition kernel describes how the moves
are made.

What happens with the Markov chain when k goes to infinity? One can show that if the
generated chain has a limiting distribution π , then the distribution is also stationary which
means that further elements of the chain also have π as distribution. Further, we speak of
a reversible Markov chain if the rate at which the Markov chain moves from x to y is the
same as the rate at which it moves from y to x, which is the detailed balance condition
(6.9). Furthermore, we say that a Markov chain satisfies the ergodicity criteria if it satisfies
the following three criteria: (1) irreducibility: the chain can reach each possible outcome
whatever the starting position; (2) aperiodicity: there is no cyclic behavior in the chain and
(c) positive recurrence: the chain visits every possible outcome an infinite number of times
and the expected time to return to a particular outcome, irrespective of where we start in the
chain, is finite. In practical terms, ergodicity means that the chain will explore the posterior
distribution exhaustively.

The Law of Large Numbers (LLN) and the Central Limit Theorem (CLT) are fundamental
to statistical theory and known by all statisticians. But these results are based on i.i.d. random
variables. The central question is how these results carry-over to the case where the random
variables are dependent as in Markov chains. Many results have been proven in the proba-
bilistic and statistical literature that generalize the LLN and the CLT to the dependent case;
see Meyn and Tweedie (1993), Tierney (1994) or Robert and Casella (2004). Below, the three
most important results are given.

Theorem 6.4.1 When (θ k)k is an ergodic Markov chain with stationary distribution π , then
the limiting distribution is also π .

Further, suppose that t(θ ) is function of θ , e.g. t(θ ) = θ , t(θ ) = θ2, t(θ ) = I(θ = x) with
I(a) = 1 if a is true and 0 otherwise, etc. Then the sample average of t(θ ) based on the
Markov chain up to k is called the ergodic average and is defined as

tk = 1

k

k∑
j=1

t(θ j).

One can show the equivalent of the classical Law of Large Numbers but now for dependent
observations.

Theorem 6.4.2 (Markov Chain Law of Large Numbers) For an ergodic Markov chain with
a finite expected value for t(θ ), tk converges to the true mean.
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Theorem 6.4.2 states that for a properly behaving Markov chain the sample average of
the chain can be used to estimate the true mean values. Thus, the sample mean, the sample
median, the standard deviation, etc. estimate their true values and the estimation improves
as k → ∞. Clearly, this is a most important result because it implies that we can use the
converged Markov chain to draw inference about the unknown (stationary) distribution.

Although the elements of a Markov chain are conditionally independent given the imme-
diate past, they are dependent unconditionally. The autocovariance of lag m (m ≥ 0) of the
Markov chain (tk)k ≡ (t(θ )k)k is defined as γm = cov(tk, tk+m). The variance of (tk)k, defined
as the autocovariance for m = 0 and denoted as γ0. Finally, the autocorrelation of lag m is
defined as ρm = γm/γ0.

If the Markov chain is reversible and enjoys an additional property, i.e. when the conver-
gence to the limiting distribution goes quickly enough for all starting positions (geometrical
or uniform ergodicity), then the following CLT for Markov chains holds.

Theorem 6.4.3 (Markov Chain CLT) For a uniformly (or geometrically) ergodic Markov
chain with t2(θ ) (or t2+ε (θ ), for some ε > 0 in the geometric case) integrable with respect to
π then

√
k

tk − Eπ [t(θ )]

τ
converges in distribution to N(0, 1) as k → ∞,

with

τ 2 = γ0

(
1 + 2

∞∑
m=1

ρm

)
. (6.10)

Theorem 6.4.3 allows for the construction of a classical confidence interval for the true
mean of t(θ ) based on tk.

The above results hold for discrete Markov chains. Tierney (1994) proved
Theorems 6.4.2 and 6.4.3 for Markov chains with a general outcome under appropriate
regularity conditions. Further, to know whether these theorems apply in practice, one needs
to verify whether the regularity conditions are satisfied. Luckily, this is most often the case.

6.4.1 Properties of the MH algorithm

The MH algorithm creates a reversible Markov chain, i.e. a Markov chain that satisfies the
detailed balance condition. This will be shown here for the discrete case as an illustration.
The proof of the general case can be found, e.g. in see Chib and Greenberg (1995) or Robert
and Casella (2004, Theorem 7.2). The proof goes as follows: Suppose that π is a discrete
distribution with π j = p(θ = x j) with possible values S = {x1, x2, . . . , xr}. Further, suppose
that Q = (qi j)i j is a matrix that describes the moves, i.e. if the chain is in state xi, then state x j

is drawn with probability qi j. Now, one can either move from xi to a different x j or stay at xi.
The discrete version of the MH algorithm states that the move should happen with probability

αi j = min

(
1,

π j q ji

πi qi j

)
. (6.11)
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The probability to move from xi to x j is therefore pi j = αi jqi j. The detailed balance condition,
which implies here that πi pi j = π j p ji is satisfied because

πi pi j = πi αi jqi j = πi min

(
1,

π j q ji

πi qi j

)
qi j

= min
(
πi qi j, π j q ji

) = min

(
1,

πi qi j

π j q ji

)
π j q ji

= π j p ji.

Further, it can be shown that reversibility of the Markov chain implies that π is the stationary
distribution for that chain. Consequently, the MH algorithm creates a Markov chain where
the target distribution is also the stationary distribution.

Hastings (1970) notes that the above αi j are not the only ones that make the Markov chain
reversible. However, Peskun (1973) proves that the optimal choice (in terms of the sampling
variance of summary measures) is given by expression (6.11).

To apply Theorems 6.4.1 and 6.4.2 for an appropriate function t(θ ), the Markov chain
must be ergodic. A sufficient (and mild) condition for this is that q(φ | θ) is strictly positive
if φ and θ are close (see Lemma 7.6 and Corollary 7.7 in Robert and Casella (2004) for more
formal conditions). It can easily be seen that this condition is satisfied in Examples VI.7 and
VI.8. The above results, however, do not imply that convergence to the target distribution goes
fast. This is illustrated by the second proposal density in Example VI.7.

Theorem 6.4.3 applies to suitable functions t(θ ) when geometric or uniform ergodicity
holds. For the Independent MH algorithm Robert and Casella (2004)(Theorem 7.8) show that
uniform ergodicity holds whenever p(θ | y) ≤ A q(θ ) for all θ and A finite. But apart from
this result, general practical conditions for geometric or uniform ergodicity do not seem to be
available.

6.4.2 Properties of the Gibbs sampler

To show that the Gibbs sampler generates a Markov chain for which Theorems 6.4.1 and
6.4.2 hold (for an appropriate function t(θ )), the target distribution must be equal to the
stationary distribution. This is shown in general in Theorem 10.10 of Robert and Casella
(2004) for ergodic Markov chains generated by the Gibbs sampler. Robert and Casella (2004)
also demonstrate that ergodicity of the chain holds when the full conditionals are strictly
positive (for a formal and less restrictive condition, see Lemma 10.11 in Robert and Casella
(2004)). It can be checked that the necessary conditions for convergence hold in Examples
VI.1 to VI.5.

6.5 Choice of the sampler

With the availability of the Gibbs sampler and the MH algorithm we must choose be-
tween the two algorithms. Some may automatically opt for the Gibbs sampler especially
when the full conditionals are relatively easy to sample from. Others may always prefer a
Metropolis(–Hastings) algorithm because of its generality. For each of the two methods some
further choices need to be made. For example, for the MH algorithm one needs to select a
proposal density while for the Gibbs sampler one needs to pick the sampling algorithms for
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the full conditionals. In practice, the choice will be often dictated by the available software.
But, most likely our ultimate choice of the sampler will depend on its convergence properties,
i.e. how fast the algorithm will provide the posterior summary measures. In fact, even if one
has chosen the Gibbs sampler because the full conditionals are easy to sample, the Gibbs
sampler will not be our choice if is globally inefficient (see osteoporosis example).

In the next example, we illustrate the use of three sampling approaches for a Bayesian
logistic regression problem. The first algorithm is based on a self-written R program, the
second is a WinBUGS program and the third is based on a SAS procedure.

Example VI.9: Caries study: MCMC approaches for a logistic regression problem
We illustrate the Bayesian sampling procedures on a subset of n = 500 children of the Signal-
Tandmobiel® study at their first annual dental examination. Suppose we wish to know whether
girls have a different risk for developing caries experience than boys in the first year of primary
school. For this analysis, we binarized the variable caries experience (CE) which is defined as
dm f t > 0 (CE = 1) or dm f t = 0 (CE = 0). Of the 500 children, 51% were girls and 53.6%
had CE at their first examination. Some analyses (Mwalili et al. 2005) showed that there is
a east-west gradient in CE (higher in the east of Flanders). We wished to confirm also this
result with our analysis. For this reason we added the x-coordinate (of the centroid of the
municipality of the school of the child) to the logistic regression model.

Suppose that the first n1 children have CE=1 and let the binary response (CE) for the
ith child be denoted as yi. For our logistic regression model, there are three covariates: x1i

(constant = 1), x2i (gender) and x3i (x-coordinate). The logistic regression likelihood is,
therefore,

L(β | y) ∝
n1∏

i=1

exp(xT
i β)

n∏
i=1

[
1

1 + exp(xT
i β)

]
, (6.12)

with β = (β1, β2, β3)
T . Independent normal priors for the regression coefficients were chosen,

i.e. β j ∼ N(β j0, σ
2
j0), ( j = 1, 2, 3) (with β j0 = 0 and σ j0 = 10). The jth full conditional is

obtained by considering βk(k �= j) as fixed in the posterior and is equal to

p(β1 | β̃2, β̃3, y) ∝
n1∏

i=1

exp(β1x1i)

n∏
i=1

[
1

1 + exp(β1x1i)ã1i

]
× exp

[
− (β1 − β10)

2

2 σ 2
10

]
,

(6.13)
with ã1i = exp(β̃2x2i) exp(β̃3x3i) and β̃2, β̃3 the parameter values of the two other regression
coefficients obtained at a previous iteration in the MCMC algorithm. The full conditionals
do not correspond to any classical distribution function, hence a general purpose sampler is
needed.

We used three MCMC programs to arrive at the Bayesian solution:

� R program: a self-written R program based on the Gibbs sampler that evaluates the
full conditionals (like in expression (6.13)) on a grid. Function (6.13) is standardized on
the grid to have AUC = 1 and the cdf, say F , is established numerically. To sample from
F we used the ICDF method (see Section III.12). This is a simple but relatively time
consuming approach, since at each iteration the full conditional needs to be computed
at all grid points. For all regression coefficients a 50-point grid was taken on the interval
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[β̂ j − 4 ŜE(β̂ j), β̂ j + 4 ŜE(β̂ j)], with β̂ j the MLE of the jth regression coefficient and
ŜE(β̂ j) its asymptotic frequentist standard error.

� WinBUGS: For a (logistic) regression problem, the default option in WinBUGS is a
multivariate MH algorithm (taken here) which samples all regression coefficients jointly
(blocking mode on). An alternative sampling approach can be invoked by switching off
the blocking mode, then the derivative-free ARS algorithm is used.

� SAS PROC MCMC: The procedure uses the MH algorithm and allows for different
proposal densities. Here the default sampler is the Random-Walk MH algorithm with
a trivariate normal proposal density with mean equal to the current value of the pa-
rameters and a multiple of the identity matrix as covariance matrix, tuned during the
MCMC run.

The covariates are standardized (mean = 0, SD = 1) to improve convergence of the MCMC
algorithm, but the results are reported on the original scale. There was rapid convergence. For
all MCMC analyses 500 burn-in iterations were discarded and the summary measures were
based on 1000 extra iterations. The results of the MCMC analyses are shown in Table 6.2.
Taking into account the posterior SD, the posterior means/medians of the three samplers are
close (to the MLE). However, the precision with which the posterior mean was determined
(high precision = low MCSE, see Section 7.2.5) differs considerably with the SAS algorithm
having the lowest precision and WinBUGS the highest.

Table 6.2 Caries study (random sample of 500 children): comparison of the summary
measures obtained by three Bayesian logistic regression programs predicting caries
experience (CE) from gender and the geographical location of the school to which the child
belongs (x-coord). A comparison is also made with the MLE solution.

Program Parameter Mode Mean SD Median MCSE

Intercept −0.5900 0.2800
MLE gender −0.0379 0.1810

x-coord 0.0052 0.0017

Intercept −0.5880 0.2840 −0.5860 0.0104
R gender −0.0516 0.1850 −0.0578 0.0071

x-coord 0.0052 0.0017 0.0052 6.621E-5

Intercept −0.5800 0.2810 −0.5730 0.0094
WinBUGS gender −0.0379 0.1770 −0.0324 0.0060

x-coord 0.0052 0.0018 0.0053 5.901E-5

Intercept −0.6530 0.2600 −0.6450 0.0317
SAS gender −0.0319 0.1950 −0.0443 0.0208

x-coord 0.0055 0.0016 0.0055 0.00016

MCSE, Monte Carlo standard error.
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The clinical conclusion from our analyses was though the same, i.e. that girls do not show
a different risk for CE than boys and children from the east of Flanders appear to have a higher
risk for CE.

The previous exercise shows that samplers may have quite a different efficiency. It may
be, however, hard to imagine in advance which MCMC sampler to use for a problem at hand;
see Example VII.9 for an example where the choice between the Gibbs sampler and MH
algorithm comes natural.

6.6 The Reversible Jump MCMC algorithm∗

The Reversible Jump MCMC (RJMCMC) algorithm is an extension of the standard MH
algorithm suggested by Green (1995) to allow sampling from target distributions on spaces of
varying dimension. This is called the trans-dimensional case. Examples of problems where
the RJMCMC algorithm is useful are: (a) mixtures with an unknown number of components
and hidden Markov models; (b) change-point problems with an unknown number of change-
points and/or with unknown locations; (c) in model and variable selection problems and (d)
analysis of quantitative trait locus (QTL) data.

In Hastie and Green (2012), the standard MH algorithm is explained to connect better
with the RJMCMC algorithm. This is the approach we adopted here. Another good source is
Waagepetersen and Sorensen (2001).

Standard MH algorithm: The purpose is to sample from p(θ | y) with θ ∈ � of d di-
mensions. When in state θ, the proposal density q(· | θ) generates θ̃ which is accepted with
probability α(θ, θ̃). This sampling process can be described alternatively as follows. Given θ,
a vector u of r (possibly < d) random numbers is generated according to a density g and the
new state θ̃ is obtained by h(θ, u) = θ̃. The function h should have good properties in order
to ensure reversibility. However, defined as earlier, h goes from an (d + r)-dimensional space
to a d-dimensional space. Since reversibility implies that it must be as easy to go from θ to θ̃

as from θ̃ to θ, the function h is taken bijective with h(θ, u) = (θ̃, ũ) and an inverse function
h̃ combined with ũ, a r-dimensional vector of random numbers generated by g̃. For instance,
the Random Walk MH algorithm satisfies θ̃ = θ + u, θ = θ̃ + ũ with ũ = −u and g, g̃ are
normal densities with mean zero and a chosen covariance matrix.

To achieve reversibility condition, expression (6.9) needs to be fulfilled, which translates
here into (d + r)-dimensional integrals that satisfy

∫
(θ,θ̃)∈A×B

p(θ | y)g(u)α(θ, θ̃) dθdu =
∫

(θ,θ̃)∈A×B
p(θ̃ | y)g̃(ũ)α(θ̃, θ) dθdũ. (6.14)

If both h and h̃ are differentiable, then from the change-of-variable trick we know that
condition (6.14) is satisfied when

p(θ | y)g(u)α(θ, θ̃) = p(θ̃ | y)g̃(ũ)α(θ̃, θ)

∣∣∣∣∣∂(θ̃, ũ)

∂(θ, u)

∣∣∣∣∣ ,
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with the last term being the Jacobian of the transformation from(θ, u) to (θ̃, ũ). From Section
6.3.3 we know that this happens when

α(θ, θ̃) = min

(
1,

p(θ̃ | y)g̃(ũ)

p(θ | y)g(u)

∣∣∣∣∣∂(θ̃, ũ)

∂(θ, u)

∣∣∣∣∣
)

. (6.15)

The somewhat different explanation of the standard MH algorithm provides a better basis
for understanding RJMCMC.

Reversible Jump MH algorithm: Suppose that the parameter space is more complex now.
For instance, suppose that there are two (or more) statistical models to choose from. Below,
we examine whether the dmft-index in Signal-Tandmobiel® study has a Poisson distribution
or a negative binomial distribution. The first distribution has one parameter, while the second
has two parameters. Thus the two parameter spaces have unequal dimensions. A sampling
algorithm that needs to sample from both distributions must be able to move between models
of different dimensions.

We now suppose that the parameter space is given by � = ⋃
m(m,�m) and that the

posterior distribution of interest is p(m, θm | y). Thus we wish to draw joint inference on
both the model choice and the parameters of the models. In analogy with the standard MH
algorithm, assume that hm,m̃ : Rd × Rr → Rd̃ × Rr̃transforms the (d + r)-dimensional vector
ψm = (m, θm) into the (d̃ + r̃) = (d + r)-dimensional vector ψ̃m̃ = (m̃, θ̃m̃). It is further
assumed that hm,m̃ is a bijective function with inverse h̃m̃,m and differentiable. The equality
(d̃ + r̃) = (d + r) is called the dimension matching condition. Let the proposal distribution
to move from ψm to ψ̃m̃ be denoted as j(m,m̃)(ψm | ψ̃m̃), then the probability to move from
A to B (both sets in �) involves a sum of terms given by the LHS of expression (6.16) over
the moves (from the different submodels m in A to the different submodels m̃ in B). The
reversibility condition for each of these moves follows from expression (6.14):∫

(ψm,ψ̃m̃)∈A×B
p(ψm | y) j(m,m̃)(ψm | ψ̃m̃)g(u)α(ψm, ψ̃m̃) dψmdu

=
∫

(ψm,ψ̃m̃)∈A×B
p(ψ̃m̃ | y) j(m̃,m)(ψ̃m̃ | ψm)g̃(ũ)α(ψ̃m̃,ψm) dψ̃m̃dũ. (6.16)

The detailed balance condition is then satisfied if the acceptance probability is given by

α(ψm, ψ̃m̃) = min
(

1, Am,m̃(ψm, ψ̃m̃)
)

, (6.17)

with

Am,m̃(ψm, ψ̃m̃) = p(ψ̃m̃ | y) j(m̃,m)(ψ̃m̃ | ψm)g̃(ũ)

p(ψm | y) j(m,m̃)(ψm | ψ̃m̃)g(u)

∣∣∣∣∣∂(θ̃m, ũ)

∂(θm, u)

∣∣∣∣∣ . (6.18)

The Jacobian expresses the transition from ψm to ψ̃m̃ and depends on the move type.
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The above description determines the RJMCMC algorithm, though only partially, since
the function hm,m̃ needs to be chosen. The actual choice of hm,m̃ will greatly impact the
performance of the RJMCMC algorithm.

To fix ideas we now illustrate the RJMCMC algorithm with the example in Hastie and
Green (2012) but applied to the dmft-index in the Signal-Tandmobiel® study of Example II.3.

Example VI.10: Caries study: Choosing between a Poisson and a negative binomial
distribution using RJMCMC
In Example II.3, we analyzed the dmft-index with a Poisson distribution. There is evidence
for overdispersion since the mean dmft is equal to 2.24, while the variance is equal to 7.93.
A candidate for fitting overdispersed counts is the negative binomial distribution. Therefore,
we applied the RJMCMC to choose between the Poisson and negative binomial distribution
based on the dmft-indices.

The Poisson likelihood for the sample of n dmft-indexes is

L(λ | y) =
n∏

i=1

λyi

yi!
exp(−nλ),

derived from expression (2.20). For the negative binomial model, there exist several parame-
terizations, we deviate slightly from expression (3.15) here and express the negative binomial
likelihood as

L(λ, κ | y) =
n∏

i=1

�(1/κ + yi)

�(1/κ) yi!

(
1

1 + κ λ

)1/κ (
λ

1/κ + λ

)yi

, (6.19)

where the above expression is derived from expression (3.15) using the relations κ = 1/α

and λ = α/β. The parameter λ is the mean for both distributions while the variance of the
negative binomial distribution equals λ(1 + κλ). Hence κ measures the overdispersion, and
for κ = 0 the Poisson model is obtained.

We have two models, for m = 1: Poisson(λ) with θ1 ≡ λ and for m = 2: NB(λ,κ) with θ2 =
(θ21, θ22) ≡ (λ, κ). The trans-dimensional moves are thus between ψ1 = (1, θ1) and ψ2 =
(2, θ2). To complete the model specification we need to give priors to the parameters. First,
gamma distributions were assumed for the model parameters: θ1 and θ21 ∼ Gamma(αλ, βλ),
and θ22 ∼ Gamma(ακ, βκ ). Second, the prior probabilities for the models were taken as equal:
p(m = 1) = p(m = 2) = 0.5. The posterior distribution then splits up into two posteriors:

� (m = 1): p(1, θ1 | y) = 0.5 Gamma(αλ, βλ)L(λ | y)

� (m = 2): p(2, θ2 | y) = 0.5 Gamma(αλ, βλ) Gamma(ακ, βκ )L(λ, κ | y)

The choices for the hyperparameters are αλ = y × a = 22.43, βλ = a and ακ = (2/y) × a =
11.69, βκ = a. In this way λ has a prior mean equal to the observed mean dmft-index. The
choice of a for βλ and βκ determines the prior knowledge on the mean parameter λ, we have
taken a = 1 here but varied a from 0.5 to 10 with similar results. Finally, the choice of ακ

takes into account that the observed variance is about three times the observed mean. Further
information and the R program can be found in ‘chapter 6 dmft index Poisson vs negative
bin.R’.
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There are four types of moves: (1) Poisson to Poisson, (2) Poisson to negative
binomial, (3) negative binomial to Poisson, and (4) negative binomial to negative binomial.
Only moves 2 and 3 are trans-dimensional. Moves 1 and 4 are done using standard sampling
approaches.

For move 2, we need to increase the dimension of the parameter vector to jump from one
dimension to two dimensions. Suppose the Markov chain is in state (1, θ1), then jumping to
the negative binomial distribution can be done by generating u from a density g, e.g. N(0, σ 2)

with σ fixed but well chosen combining it with θ1 to propose (2, θ̃2). Hastie and Green (2012)
suggested θ̃2 = (θ̃1, θ̃2) = h1,2(θ1, u) = (θ1, µ exp(u)) with µ fixed. This choice keeps the
parameter λ fixed when switching between models. The overdispersion parameter κ is a
lognormal random variable varying around µ. For the reverse move 3 we go back to the Poisson
space but we need to make sure that the h2,1 is the inverse of h1,2. This is achieved by taking
h2,1(θ̃2) = (θ̃1, log(θ̃2/µ)) = (θ1, u). The Jacobian is equal to µ exp(u). Two acceptance
probabilities are used. For a move 2, it is min(1, A1,2) whereby

A1,2 = p(2, θ̃2 | y)

p(1, θ1 | y)

[
1√

2πσ 2
exp

(
− u2

2σ 2

)]−1

µ exp(u), (6.20)

and for the reciprocal move 3, it is min(1, A2,1) whereby

A2,1 = p(1, θ1 | y)

p(2, θ̃2 | y)

1√
2πσ 2

exp

[
− (log(θ̃2/µ))2

2σ 2

]
1

θ̃2

. (6.21)

For the RJMCMC machinery to be complete we need to choose σ and µ. For move 3,
κ was sampled from a right-skewed distribution varying around µ. The choice of σ and µ

must reflect roughly what is observed in the data, otherwise too many unrealistic κ values are
chosen (both parameters too large) or the sampled negative binomial distribution will not be
much different from the Poisson distribution (both parameters too small). We experimented
with three values of σ : 0.5, 1 and 2. Four combinations were taken with µ, such that the
average value for κ was either equal to that obtained from the data or twice as much. For
each of the four scenarios 10 000 iterations were generated and we removed 2000 initial
iterations.

For each of the four scenarios, the negative binomial distribution was preferred. Preference
was measured by the percentage of times the Markov chain was in model 1 (Poisson) or model
2 (negative binomial). The preference for model 2 varied between 56% and 74%. Surprisingly
for some of the scenarios this preference is not overwhelming. However, with all scenarios a
suggested move from model 1 to model 2 was always accepted. The median value for λ in the
two models is around two, which is close to the observed mean value of the dmft-index. The
median value of κ varied between 0.78 and 1.75 hence exhibiting quite some dependence on
the settings. The percentage of trans-dimensional moves varied between 32% and 55%. The
trace plots and posterior densities of the parameters for the within-space moves for the first
scenario are shown in Figure 6.16. The parameter λ enters twice in the figures, once for the
Poisson model and once for the negative binomial model.
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Figure 6.16 Caries study: choosing between Poisson distribution and negative binomial
distribution using a RJMCMC approach. The trace plots and densities are based on the
converged part of the chains and are model-specific.

We conclude that the negative binomial distribution appears best for the dmft-index, but
surprisingly the evidence is not overwhelming. In addition, the RJMCMC appeared to be
quite sensitive to the choices of σ and µ.

To summarize, the idea behind the RJMCMC algorithm is to replace the jumps between
spaces of different dimensions by jumps of spaces of greater but equal dimension. The
RJMCMC algorithm needs for this reason bijective functions that ensure the reversibility of
each move that is made. In general, a RJMCMC algorithm involves moves within the current
space corresponding to a classical MH algorithm, moves between different spaces of the same
dimension and moves between spaces of different dimensions. In the latter two cases, the
RJMCMC algorithm requires an extension of the classical MH algorithm. The RJMCMC
allows a lot of flexibility in constructing the jumps, e.g. the bijective function hm,m̃ is not
specified, nor the dimension r or the function g. This creates a lot of freedom and at the same
time possibilities for refinements and extensions, but it often requires a lot of tuning to find the
optimal choices. We return to the RJMCMC algorithm for variable selection in Chapter 11.

6.7 Closing remarks

Markov chain Monte Carlo techniques have greatly enlarged the class of problems we can
now tackle with (Bayesian) statistical methods. However, there is a price to pay. Namely, often
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(much) longer execution times are needed and checking the convergence of the algorithm is
more difficult than with likelihood approaches. Nevertheless, many (but not all) are prepared
to pay this price to gain flexibility in fitting models to data.

Exercises

Exercise 6.1 Derive the posterior distribution (with the same NI priors as in the chapter) of
(β0, β1, σ

2) in the osteoporosis study (data are in ‘osteop.txt’) by: (a) Gibbs sampler and (b)
the Random Walk Metropolis Sampler with proposal density N(θk, c2 I) on (β0, β1, log(σ ))

and vary the value of c. Compare the performance of the two samplers.

Exercise 6.2 Derive the full conditionals of Example VI.4 and derive the posterior summary
measures of all parameters and of derived parameters such as θ − λ. Raftery and Akman
(1986) used as priors for θ and λ

θ ∼ Gamma(a1, b1) and λ ∼ Gamma(a2, b2),

with a1 = a2 = 0.5, b1 = b2 = 0. Show that this Bayesian model gives virtually the same
posterior summary measures as the analysis done by Tanner (1993).

Exercise 6.3 Sample from the auto-exponential model of Besag (1974) which is defined for
positive (y1, y2, y3) with density

f (y1, y2, y3) ∝ exp [−(y1 + y2 + y3 + ψ12y1y2 + ψ13y1y3 + ψ23y2y3)] ,

with known ψi j > 0.

Exercise 6.4 Write an R program for the reversible Gibbs sampler introduced in Section
6.2.4. Apply the procedure on the osteoporosis data (see also Exercise 6.1) and compare the
performance of the basic Gibbs sampler to the reversible version.

Exercise 6.5 Program the random-scan Gibbs sampler introduced in Section 6.2.4. Apply the
procedure on the osteoporosis data (see also Exercise 6.1) and compare the performance of
the basic Gibbs sampler to the random scan version.

Exercise 6.6 Apply the block Gibbs sampler introduced in Section 6.2.4 to the osteoporosis
data (see also Exercise 6.1), with blocks (β0, β1) and σ 2. Compare its performance to the
basic Gibbs sampler.

Exercise 6.7 Apply the Slice sampler to a beta distribution. Compare its performance to the
classical R built-in sampler rbeta. Apply the Slice sampler also to a mixture of two beta
distributions whereby the mixture exhibits a bi-modal shape.

Exercise 6.8 Perform a Bayesian logistic regression on the caries data of Example VI.9 (data
in ‘caries.txt’) and with the same priors. Make use of the R function ars to apply the basic
Gibbs sampler. Do the same for probit regression.

Exercise 6.9 Repeat Exercise 6.8 but now employ a Random Walk Metropolis algorithm.
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Exercise 6.10 Perform a Bayesian regression of TBBMC on age, length, weight, and BMI
(data in ‘osteoporosismultiple.txt’) with the classical NI priors using the following:

� Basic Gibbs sampler and block Gibbs sampler with the regression parameters in one
block and the residual variance parameter in another block.

� Block Random Walk Metropolis sampler for the regression parameters. Use a normal
proposal density and look for an appropriate scale parameter. Further, replace the
normal proposal density by a multivariate t3-density.

� Block Independent MH sampler for the regression parameters. Use as proposal density
a normal distribution with mean the MLE and covariance matrix proportional to minus
the inverse of the Hessian matrix at the MLE. Look for an appropriate proportionality
factor.

Exercise 6.11 Vary in the RJMCMC program of Example VI.10 the settings of the prior
distributions and evaluate the sensitivity of the results. Evaluate also the dependence of the
results to the choice of σ and µ.

Exercise 6.12 Consult Waagepetersen and Sorensen (2001) which gives a more elaborate
explanation of the Reversible Jump MCMC approach. In that paper, Example 4.2 describes
the use of RJMCMC to choose between a gamma and a lognormal distribution for a positive-
valued random variable. Adapt the R program of Exercise 6.11 to the above case and apply it
the IBBENS data ‘diet.txt’ of Example 11.2.
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7

Assessing and improving
convergence of the Markov chain

7.1 Introduction

The generality of the MCMC sampling procedures comes with a cost: the sampled values are
not immediately taken from the posterior distribution and assessing convergence of the Markov
chain is more difficult than for the likelihood case. In addition, one needs to monitor the chain
to ensure that the posterior summary measures are computed with enough accuracy. While
the convergence theorems in Chapter 6 ensure that the Markov chain generated by a MCMC
algorithm will (under weak regularity conditions) converge to the posterior distribution, it
might not be immediately clear that the conditions are satisfied for the particular problem at
hand especially when a complex model is involved. Moreover, the convergence theorems do
not tell us when convergence will occur. In the examples of Chapter 6, we did not motivate the
choice of the burn-in size and the total size of the chain. In this chapter, we look at a variety
of graphical and formal diagnostics to assess convergence of the chain.

When convergence is slow, one can either let the MCMC procedure run longer or one could
try to accelerate the algorithm. We explore in this chapter, the general purpose techniques to
speed up the MCMC sampling procedure. In Chapter 9, specific acceleration techniques for
hierarchical models are discussed.

The well-known likelihood-based EM-algorithm introduced by Dempster et al. (1977)
is a particular case of data augmentation. Data augmentation reformulates an original, non-
standard, likelihood into a standard one. By reformulating the problem, data augmentation
can also accelerate the sampling procedure but at the very least it will simplify the sampling
procedure. In this chapter, we look at the Bayesian implementation of data augmentation.

For most of the illustrations, we used WinBUGS in combination with CODA. In some
examples, we used the recently released Bayesian routines in SAS®.

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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7.2 Assessing convergence of a Markov chain

7.2.1 Definition of convergence for a Markov chain

It goes without saying that convergence is not an issue when the posterior is determined
analytically. When numerical procedures as in Section 3.7.1 are involved, then convergence
only deals with the accuracy with which the integrals are computed. It is also important to
see the difference between convergence for likelihood-based procedures and convergence for
a Markov chain. In the first case, convergence has to do with how close we are to the MLE,
while convergence for an MCMC algorithm checks how close we are to the true posterior
distribution.

More formally, convergence in a MCMC context is an asymptotic property which implies
for a Markov chain that pk(θ), the distribution of θk, grows to the target distribution p(θ | y)

for k → ∞. In other words it means that, for k large and small ε, dk ≡ d[pk(θ),

p(θ | y)] < ε, with d( f , g) the distance between two distributions f and g. Theoretical re-
search has focused on establishing conditions under which convergence can be guaranteed.
In some simple cases one can provide an expression for k0 such that dk < ε for k > k0. For
example, Jones and Hobert (2001) showed that for the Gaussian case with µ and σ 2 unknown,
a k0 can be specified for the total variation discrepancy measure between two distributions,
i.e. d( fk, f ) = 1

2

∫ | fk(θ) − f (θ)|dθ. But such theoretical results are hard to establish in most
practical cases (Jones and Hobert 2001). Note that most often evaluating the convergence of
the chain involves checking convergence of the marginal posterior distributions. This means
that we will be looking at one parameter at the time. For notation simplicity we denote this
parameter as θ . The posterior p(θ | y) then refers to the marginal posterior for that parameter
and pk(θ ) refers to the marginal sampling distribution of that component.

A variety of practical procedures have been suggested to check convergence via conver-
gence diagnostics. The diagnostics involve two aspects: checking stationarity of the chain
and verifying the accuracy of the posterior summary measures. In the stationarity step one
determines the iteration k0 such that for k ≥ k0, θ

k is sampled from the correct posterior dis-
tribution. This is equivalent to assessing the burn-in part of the Markov chain (k = 1, . . . , k0).
Most convergence diagnostics (graphical and formal) appeal to the stationarity property of a
converged chain. In the accuracy step it is verified that the posterior summary measures of
interest based on θ k (k = k0 + 1, . . . , n) are computed with the desired accuracy. Note that it
is customary to base the summary measures on only the converged part of the chain (i.e. on
θ k with k > k0). This is strictly speaking not necessary according to the ergodic theorems, but
in practice it is recommended to do so since it results in more stable estimates especially for
variance parameters.

7.2.2 Checking convergence of the Markov chain

The theoretical developments have had a limited impact on practice. Rather procedures based
on the output of the Markov chain(s) (ignoring how this output has been generated) are
in use. These methods verify the stationarity of the chain, in some cases in combination
with checking the accuracy, and were called output analysis techniques by Ripley (1987).
Comparative reviews of the methods can be found in Ripley (1987), Cowles and Carlin
(1996), Brooks and Roberts (1998) and Mengersen et al. (1999). Their conclusions were that
(a) a battery of diagnostics is necessary to assess convergence since none of the methods
are fool-proof; (b) many diagnostics are too complicated for practical use and show too little
evidence of success and (c) only diagnostics that are implemented in readily available software
are likely to be applied in practice. More than 10 years later only a handful of diagnostics
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are in use, namely those that are implemented in WinBUGS (or related software). Both single
chain and multiple chain diagnostics are in use.

We largely restrict ourselves to convergence diagnostics that are implemented in
WinBUGS, CODA, BOA, and the Bayesian SAS procedures. Two sets of divergence di-
agnostics can be distinguished: graphical and formal. Both procedures will be illustrated
using the osteoporosis study introduced in Example VI.5.

We have used θ for the true posterior mean, but when sampling only an estimate of the
posterior mean is available. Therefore the correct notation for the posterior mean obtained

from a MCMC chain should be θ̂ . However, to simplify the notation we will continue to
denote the sampled posterior mean as θ and hence here θ = (1/n)

∑n
k=1 θ k.

7.2.3 Graphical approaches to assess convergence

Trace plot: A simple exploration of the trace plot (Section 6.2) gives a first and insightful
impression of the characteristics of the Markov chain. Trace plots are produced for each
parameter separately and evaluate the chain univariately, but it is also useful to monitor the
Markov chains jointly, i.e. the total parameter vector θ. This can be done by monitoring the
(log) of the likelihood or of the posterior density. In WinBUGS, the deviance, which is equal
to −2× log(likelihood), is automatically created, while in SAS a variable LogPost equal to the
log of the posterior is by default added when an output file with sampled values is requested.
In case of stationarity, the trace plot appears as a horizontal strip and the individual moves
are hardly discernable. This is the basis of the informal thick pen test (Gelfand and Smith
1990). The test involves checking that the trace plot can be covered by a thick pen. The trace
plot in Figure 6.8 passed this test. Gross deviations from stationarity are easily picked up in a
trace plot, such as a dependence of the chain on its initial state by revealing an initial (up- or
downward) trend. Further, the trace plot also shows how fast the chain explores the posterior
distribution, i.e. it shows the mixing rate of the chain. The thick pen test is still a popular way
to claim stationarity, and for some perhaps the only test that they apply in practice.

Autocorrelation plot: When future positions in the chain are highly predictable from the
current position, then the posterior is slowly explored and one says that the chain has a
low mixing rate. The mixing rate is measured by autocorrelations of different lags. The
autocorrelation of lag m, denoted as ρm, is defined as the correlation between θ k and θ (k+m)

(for k = 1, . . .) and can be simply estimated by the Pearson correlation or a time series
approach (see Section 6.4). The autocorrelation function (abbreviated as ACF) is the function
that relates m to ρ̂m (m = 0, 1, . . .) and is graphically depicted in the autocorrelation plot.
When the autocorrelation decreases only slowly with increasing lag, the mixing rate is low.
Note that the autocorrelation plot can also indicate the minimum number of iterations for the
chain to ‘forget’ its starting position.

The autocorrelation plot is a useful tool but cannot be used as a convergence diagnostic.
Indeed, even if ρm is relatively high for large m, this does not imply absence of convergence,
but only slow mixing. In addition, once converged, the ACF does not change anymore,
irrespective of the magnitude of the autocorrelations. When all autocorrelations are close to
zero then MCMC sampling is done in an almost independent manner and stationarity will be
attained quickly.

Running mean plot: Upon stationarity at k0, the mean (and all other characteristics) of
pk(θ ) shows stability for k > k0. The running mean or ergodic mean plot can display this



P1: JYS/XYZ P2: ABC
JWST177-c07 JWST177-Lesaffre May 26, 2012 10:54 Printer Name: Yet to Come Trim: 244mm × 168mm

178 ASSESSING AND IMPROVING CONVERGENCE OF THE MARKOV CHAIN

stability. It is a time-series plot of the running mean θ
k
, i.e. the mean of all sampled values up

to and including iteration k. The initial variability of the running-mean plot is always relatively
high (even when sampling from the correct posterior), but stabilizes with increasing k in case
of stationarity.

Q–Q plot: In the case of stationarity one expects that the distribution of the chain is stable
irrespective at which part one is looking. Gelfand and Smith (1990) suggested a Q–Q plot
with the first half of the chain on the x-axis and the second half of the chain on the y-axis. A
Q–Q plot deviating from the bisecting line is an indication of nonstationarity of the chain.

Brooks plot: Brooks (1998) suggested two plots based on cusums, i.e. cumulative sums, to
assess stationarity. His first suggestion is a time-series plot of the cumulative sum

Tm =
m∑

k=1

(θ k − θ ), (m = 1, 2, . . . , n), (7.1)

with T0 ≡ 0. A smooth plot with large excursions of Tm (before returning to zero) implies a
slowly changing chain and thus low mixing, while hairy plots indicate good mixing (Brooks
1998). Labeling a plot ‘smooth’ is subjective and to give more guidance Brooks suggested a
time-series plot based on Dt = 1

t−k0−1

∑t−1
m=k0+1 dm (k0 + 2 ≤ t ≤ n) with dm = 1 when the

point (m, Tm) corresponds to a local minimum or maximum and 0 otherwise. Dt is the average
number of times θ k has crossed θ up to iteration t. Assuming that the elements of the Markov
chain are i.i.d. and symmetrically distributed around θ , Brooks derived (approximate) bounds
for the plot against which the realized plot of (t, Dt) can be judged. In this way, the Dt-statistic
is approximately a formal diagnostic to assess stationarity.

Cross-correlation plot: The correlation between θ k
1 with θ k

2 (k = 1, . . . , n) is called the
cross-correlation of θ1 with θ2. The scatterplot of θ k

1 versus θ k
2 produces a cross-correlation

plot. This plot is useful in case of convergence problems to indicate if model parameters are
strongly related and thus is a diagnostic for an overspecified model.

Example VII.1: Osteoporosis study: Assessing convergence graphically
Recall that in WinBUGS, the third monitored variable, is practically equivalent to the au-
tomatically computed deviance, while in SAS the variable LogPost provides this infor-
mation. In Example IV.7, TBBMC was regressed on BMI. This analysis involves three
parameters: two regression coefficients β0 (intercept) and β1 (regression coefficient of
BMI) and the residual variance σ 2. We monitored here β1, σ

2 and log
[
p(β, σ 2 | y)

] ∝
−0.5

[
(n + 2) log(σ 2) + (y − βT x)T (y − βT x)/σ 2

]
, the log(posterior). As before, we ne-

glect the intercept for most plots since it shows similar behavior to the slope.
The trace plots in Figure 6.8 show quite a different sampling behavior for the regression

parameters than for the variance parameter. In fact, the trace plots for the regression parameters
exhibit low mixing, but there is rapid mixing for the variance parameter. The posterior
distribution is therefore rapidly explored in the direction of σ 2 but slowly explored in the
(β0, β1)-subspace. The trace plot of log(posterior) in Figure 7.1 behaves somewhat better.
Namely, after a steep rise from its starting values, it evolves to a relatively stable pattern
(although there are some excursions toward areas of low posterior evidence). The cross-
correlation plot is similar to Figure 4.6(c) and highlights collinearity of BMI with the intercept.

The autocorrelation plots in Figure 7.2 confirm the low mixing for β1 and the good
mixing for σ 2. The autocorrelation for β1 is around zero only from m = 200 onward. For σ 2

the autocorrelation drops immediately to zero demonstrating again the almost independent
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Figure 7.1 Osteoporosis study: trace plot for log(posterior) obtained from WinBUGS and
plotted with the CODA function trace plot.

sampling of σ 2. Its initial state is almost immediately forgotten. Thus the burn-in part of
500 initial values looks excessive for σ 2, but not for the regression parameters. However, we
would like to see this confirmed with formal diagnostics. Finally, that the ACFs look the same
after 150 000 iterations illustrates that the autocorrelation plot is itself not an indicator for
convergence.

The running-mean plots show a nonstable behavior for β1 in contrast to the running mean
plot for log(posterior) and σ 2. From the Q–Q plots (not shown), we infer that the sampled
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Figure 7.2 Osteoporosis study: autocorrelation plot and running-mean plot of log(posterior),
β1 and σ 2 obtained from WinBUGS + CODA.
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Figure 7.3 Osteoporosis study: Brooks’ plot for (a) β1 and (b) σ 2.

distribution of both regression parameters is quite different in the first half compared to the
second half illustrating again nonstationarity.

Brooks’ plot shows nonstationarity for β1 but good behavior for σ 2 from the start on (see
Figure 7.3).

We conclude that for the regression parameters stationarity is not quickly achieved, while
it is almost instantly obtained for σ 2. We will postpone our final conclusion until we have
applied more formal diagnostics.

In addition to graphical procedures more formal guidelines are useful to conclude about
the stationarity of the chain and the precision with which the posterior means are determined.

7.2.4 Formal diagnostic tests

Let (θk)k be a Markov chain obtained from a MCMC procedure. Four diagnostic tests for
assessing stationarity and/or accuracy are introduced here. The first three tests assess conver-
gence on a single chain and are based on the time-series or stochastic process properties of
a Markov chain. The fourth diagnostic evaluates the discrepancy between multiple Markov
chains to detect nonstationarity. Two diagnostics evaluate stationarity (size of burn-in part k0)
and accuracy (number of extra iterations k1). All tests can be applied on the total chain or on
the chain whereby an initial portion is removed automatically. Again we apply the diagnostic
tests on the individual parameters denoted as θ .

Geweke diagnostic: This diagnostic test looks only for k0. Geweke (1992) suggests to
formally test the stationarity of a Markov chain by comparing the means of an early and a late
part of the chain using a (frequentist) significance test. If the n values θ k were i.i.d. and split
up into two different parts: A (early part) with nA elements and B (late part) with nB elements,
then their respective (posterior) means θA and θB could be compared with an unpaired Z-test
given by

Z = θA − θB√
s2

A/nA + s2
B/nB

, (7.2)
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with s2
A, s2

B the classical estimates of the respective variances. For nA and nB large, Z would
then be evaluated against a standard normal distribution. However, the elements of the Markov
chain are dependent, which implies that (a) the means θA and θB are dependent and (b) s2

A/nA

(s2
B/nB) underestimates the variance of θA (θB) (Ripley 1987). In fact, var(θ ), the limiting

variance of θ , is equal to τ 2/n with τ 2 given by expression (6.10).
Hence another estimator of var(θ ) is needed in expression (7.2). The method of batch

means is one approach (see Section 7.2.5). Here, we look at an estimator that is based on a time-
series approach. A central concept in time series is the spectral density, which characterizes
the time series f (·) in the frequency domain and is given by

f (ω) = γ0

2π

∞∑
m=−∞

ρm cos(m ω).

One can show that 2π f (0) = τ 2 (Diggle 1990), so that the spectral density at 0 produces
the variance of θ . The spectral density can be estimated from the chain by the periodogram
(Diggle 1990). A time series estimate of τ 2 is then obtained by evaluating the periodogram in
a window around 0, called the spectral window. This is the approach taken by Geweke.

To use test statistic of expression (7.2), the two means θA and θB must be independent
(assertion (a) above). Geweke (1992) suggests to take for A the initial 10% of the iterations
(nA = n/10) and for B the last 50% (nB = n/2) to create a distance between the two parts.

Summarized, with a time series estimate of the denominator in expression (7.2) and
n → ∞ with (nA + nB)/n < 1, the Z-score has a standard normal distribution and can be
used to test stationarity of the Markov chain.

When the overall Z-test is significant at say, α = 0.05, either the burn-in part (i.e. k0) was
taken too small and/or the total chain is too short. A dynamic version of Geweke diagnostic
might also help to find a better value for k0. For the dynamic version of the test, the Z-test
is applied on 100(K − m)/K% (m = 0, . . . , K) last iterations of the chain. This produces
Zm (m = 0, . . . , K) test statistics that are plotted in a time-series plot.

Heidelberger–Welch (HW) diagnostic: Heidelberger and Welch (1983) proposed a fully
automated method that tests the stationarity of the chain (k0) and evaluates whether the
length of the chain is sufficient to guarantee a desired accuracy for the posterior mean of
the parameter(s) (k1). For a multivariate and multiple-chain extension of this test, we refer to
Brooks and Roberts (1998).

Step 1 – Checking stationarity: Let the cumulative sums be Sm = ∑m
k=1 θ k for m =

1, 2, . . . , n and S0 ≡ 0. In the case of stationarity, Sm should fluctuate in a random way
around mθ . This is equivalent to Tm in expression (7.1) fluctuating around zero. This fluctua-
tion varies with m and must, by construction, be zero for m = 0 and m = n. For 0 ≤ t ≤ 1, let
m be equal to [nt] which is the integer part of nt. HW used a standardized version of T[nt], i.e.

Bn(t) = S[nt] − [nt]θ√
nτ

, 0 ≤ t ≤ 1, (7.3)

and is therefore related to Brooks’ plot. Under stationarity Bn = {Bn(t), 0 ≤ t ≤ 1} converges
in distribution to a Brownian bridge B = {B(t), 0 ≤ t ≤ 1} for n → ∞. Briefly, a Brownian
bridge B (Ross 2000, Chapter 10) satisfies that (a) B(t) has Gaussian distribution for each t,
(b) B(0) = B(1) = 0 and (c) cov(B(s), B(t)) = s(1 − t) for s < t < 1.
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To flag nonstationarity, HW suggested to use the Cramer–von Mises statistic given by

∫ 1

0
Bn(t)

2dt = 1

n

n−1∑
m=1

(Sm − mθ )2

nτ 2
, (7.4)

since its asymptotic distribution is known under stationarity. Stationarity will be rejected at,
say significance level α0 = 0.05, which will happen with long excursions away from zero. In
practice, Bn(t) is replaced by

B̂n(t) = S[nt] − [nt]θ√
nτ̂

, 0 ≤ t ≤ 1, (7.5)

with τ̂ obtained from the periodogram.
Step 2 – Determining accuracy: When stationarity is established, the size of (remaining

part of the) chain should be large enough to ensure a desired accuracy of the estimated
posterior means. Thus, we now look for the extra number of iterations k1 beyond k0, but for
notational simplicity we denote the size of the stationary part of the chain by n.

Let d̂(α1, θ ) = z(1−α1/2)τ̂ /
√

n be the estimated width of the 100(1−α1/2)% (classical)
confidence interval for the true posterior mean of θ with z(1−α1/2) equal to 1.96 for α1 = 0.05.
HW suggested to use the relative half-width of this interval,

ERHW(α1, θ ) = 1/2 d̂(α1, θ )

θ
,

to ascertain the accuracy. If the desired accuracy (ERHW< ε) is not met, extra iterations are
needed.

In practice, testing for (initial) nonstationarity is done in steps of, say, 10% of the chain.
First, stationarity is tested on the initial 10% of the chain. If there is evidence of nonstationarity,
the test is repeated on the remaining 90% portion of the chain. This process continues (with
steps of 10%) until the remaining chain passes the test or more than 50% of the iterations have
been discarded. In the first case, the procedure enters the second step. In the second case, the
procedure stops and the Markov chain did not pass the test.

Raftery–Lewis (RL) diagnostic: The above convergence diagnostics were all based on
the posterior mean. But, when the posterior distribution is skewed, the preferred summary
measure is the posterior median. Further, the 95% credible interval requires the computation
of the 0.025 and 0.975 quantile. This motivates to look for a diagnostic that ensures a desired
accuracy of the estimated posterior quantiles.

Raftery and Lewis (1992) suggested a procedure to estimate the posterior quantile uq,
defined by P(θ < uq | y) = q, for a prespecified q with a desired accuracy. Let ûq be the
estimate of uq, then the implemented procedure gives the necessary number of iterations such
that P(θ < ûq | y) = q̂ lies in the interval [q − δ, q + δ] (with δ equal to say 0.005) with (a
frequentist) probability (1 − α) (e.g. 0.95). Note that the desired accuracy is specified on q̂
and not on ûq.

The RL diagnostic is based on two steps. In the first step, the stationarity of the chain is
checked on a binarized chain Zk derived from the original Markov chain using Zk = I(θ k<ûq ).
Since the binary chain (Zk)k does not satisfy the Markov property, the authors suggested
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taking a subchain to again achieve (approximately) the Markov property (see also thinning in
Section 7.3). That is, the smallest value of s is chosen such that for the subchain (Zm)m with
m = 1, 1 + s, 1 + 2s, . . . a first-order Markov model is preferred over a second-order Markov
model with the BIC (see Chapter 10). For this binary subchain one can easily determine n0,
the number of burn-in iterations to be discarded, yielding k0 = s × n0 for the original chain. In
the second step the number of extra iterations (k1) is computed to arrive at a desired accuracy
of the estimated posterior quantile. Based on the asymptotic normality of q̂, the extra k1

iterations are taken such that P(q − δ ≤ q̂ ≤ q + δ) = (1 − α) is satisfied.
Finally, RL calculated the necessary size of the chain for independent Zk to achieve the

desired accuracy. In that case, no iterations need to be discarded (k0 = 0) and no thinning
(s = 1) is required yielding the minimum size of the chain, denoted by nmin. The ratio
(k0 + k1)/nmin is called the dependence factor and quantifies ‘the damage’ of the dependence
in the binary sequence. A dependence factor greater than 5 is, according to the authors, a
sign of problems with the implementation of the chain (bad starting values, high autocorrela-
tions, etc.).

Brooks–Gelman–Rubin (BGR) diagnostic: When the posterior is multi-modal, a single
Markov chain might get stuck for a very long time in an area around a local mode. Convergence
to a local mode is a well-known problem in classical optimization routines. To circumvent
this problem it is advised to start up the optimization routine from various initial positions.
In the same spirit, Gelman and Rubin (1992) suggested a convergence diagnostic based on
multiple chains with ‘overdispersed’ (relative to the posterior distribution) starting positions.
Their diagnostic is based on an ANOVA idea where the chains play the role of groups. We
classified the diagnostic as ‘formal’ but we could also have classified it as ‘graphical’.

The Gelman and Rubin (GR) ANOVA diagnostic: Take M widely dispersed starting points
θ0

m (m = 1, . . . , M) and suppose that M parallel chains are run for 2n iterations. The first n
iterations are discarded and regarded as burn-in. The M chains (θ k

m)k (m = 1, . . . , M) of length
n produce means θm = (1/n)

∑n
k=1 θ k

m (m = 1, . . . , M). The overall mean (across the chains)
is θ = (1/M)

∑
m θm. As in classical ANOVA one calculates the within- and between-chain

variability. Let

W = 1

M

M∑
m=1

s2
m, with s2

m = 1

n

n∑
k=1

(θ k
m − θm)2,

B = n

M − 1

M∑
m=1

(θm − θ )2.

Two estimates of the posterior variance of θ k in the target distribution can be constructed from
W and B. First,

V̂ ≡ v̂ar(θ k | y) = n − 1

n
W + 1

n
B

is an unbiased estimate of the variance when there is stationarity (in which case all θm are
unbiased estimates of the true posterior mean). However, when the M chains are not mixing
well V̂ overestimates var(θ k | y) and W often underestimates this variance as long as the
chains have not yet explored the whole target distribution. When n → ∞ both V̂ and W
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approach var(θ k | y) but from opposite directions. GR suggested therefore the ratio

R̂ = V̂

W

as a convergence diagnostic. R̂ is called the estimated potential scale reduction factor (PSRF)
since if R̂ is substantially greater than 1, further iterations are needed either to reduce V̂
or to increase W . To take the sampling variability of the variance estimates into account, a
corrected version R̂c = (d̂ + 3)/(d̂ + 1)R̂ with d̂ = 2V̂/v̂ar(V̂ ) is suggested. In addition, a
97.5% upper confidence bound of R̂c can be computed. GR advised to continue sampling
until R̂c is smaller than 1.1 or 1.2. In that case, the M chains are mixing well and will have
(hopefully) converged to the posterior distribution. In addition, GR advised that V̂ and W be
monitored, both of which must stabilize. In the case of convergence, the posterior summary
measures are taken from the second half of the total chain.

A dynamic/graphical version of the diagnostic is proposed in Brooks and Gelman (1998).
The M chains are divided into batches of length b and V̂ 1/2(s),W 1/2(s) and R̂c(s) are calculated
based upon the second half of the (cumulative) chains of length 2sb, for s = 1, . . . , [n/b]. In
addition, a 97.5% upper pointwise confidence bound is computed. Note that the GR diagnostic
is implemented in the R packages CODA and BOA. Other versions of the diagnostic including
a multivariate version of R̂ have been proposed by Brooks and Gelman (1998). One of these
extensions is implemented in WinBUGS and is discussed in the next paragraph.

The Brooks–Gelman–Rubin (BGR) interval diagnostic: The ANOVA diagnostic assumes
a Gaussian behavior of the sampled parameter values. For σ 2, the variance of a normal
distribution, a log-transformation is required prior to the application of the GR-diagnostic.
Alternatively one might use a nonparametric version of the GR-diagnostic as follows. We take
from each chain the empirical 100(1−α)% interval, i.e. the 100α/2% and the 100(1−α/2)%
points of the last n iterations of M chains of length 2n. This yields M within-chain intervals. The
average of these M intervals is then contrasted with the empirical total equal-tail 100(1−α)%
interval obtained in a similar way across all chains to yield the interval-based R̂I :

R̂I = length of total-chain interval

average length of the within-chain intervals
≡ V̂I

WI
.

In WinBUGS, a dynamic version of R̂I is implemented. Based on α = 0.20, the chain is
divided into cumulative subchains based on iterations 1–100, 1–200, 1–300, etc. For each
part WinBUGS computes on the second half of the subchain: (a) R̂I , (b) V̂I/max(V̂I ), and (c)
WI/max(WI ). Thereby, three curves are produced. As for the GR-diagnostic the three curves
are monitored and in the case of convergence the posterior summary measures are taken on
the second half of the total chain.

In the remainder of the book, we will refer both multiple-chain diagnostics as the
BGR-diagnostics. In the next example, we apply the formal diagnostic tests to the
osteoporosis data.

Example VII.2: Osteoporosis study: Assessing convergence using formal diagnostic tests
First, we assessed convergence of the chain of length 1500, analyzed in Example VII.1.
For this we used the R package CODA. Under the standard settings of 10% (first part) and
50% (second part), the R program geweke.diag did not converge. With 20% for the
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Figure 7.4 Osteoporosis study: Geweke diagnostic dynamic plot for (a) β1, (b) σ 2 and (c)
log(posterior) obtained from WinBUGS+CODA.

first part, the results of Geweke diagnostic were for β1: Z = 0.057 and for σ 2: Z = 2.00.
Surprisingly, the diagnostic did reject stationarity for σ 2 but not for β1. The dynamic version
of the Geweke diagnostic (with K = 20) is shown in Figure 7.4. Most of the Z-values for
β1 are outside the [−1.96, 1.96] interval indicating nonstationarity. The same is true for
log(posterior), which implies that the behavior seen in the trace plot was not yet stable
enough to conclude stationarity. For σ 2 all values except for the first were within the [−1.96,
1.96] interval.

The HW diagnostic was applied with the R program heidel.diagwith default settings
of α0 = 0.05 and α1 = 0.05 (yielding a 95% confidence interval). The stationary test was
passed only for σ 2 (P = 0.29). In addition, the posterior mean for σ 2 was estimated with the
desired relative accuracy since the half-width test was also passed with the halfwidth equal to
0.000504. Note that the half-width test applied to log(posterior) has no practical value.

The RL diagnostics were calculated for q = 0.025 and q = 0.975 with the standard
settings being δ = 0.005, α = 0.05, and ε = 0.001 (precision with which the burn-in part
is estimated) using the R program raftery.diag. A warning was given that at least
3746 = nmin iterations are needed to achieve the desired accuracy.

For the BGR diagnostics, we used the output of a classical linear regression program to
suggest overdispersed starting values for the parameters, i.e. the eight corners of the 99.9%
confidence intervals of the three parameters were taken as starting positions. For each of
the eight chains 1500 iterations were run. The CODA program gelman.diag produced
R̂c = 1.06 (with 97.5% upper bound equal to 1.12) for β1. Thus, for β1, R̂c is below the
threshold, but the 97.5% upper bound is above 1.1. For σ 2, R̂c = 1.00 with 97.5% upper bound
equal to 1. All of this shows that mixing is worse for the regression parameters. In Figure 7.5,
the dynamic version of the GR ANOVA diagnostic is shown. The plots are based on 20 batches.
The plot of R̂c stabilizes fast for σ 2, but the plot for β1 has not yet stabilized after 1500 iterations
and the 0.975 quantile of R̂ is fluctuating around 1.2. Further iterations appear necessary.

In Figure 7.6, the dynamic version of GR interval diagnostic as obtained from WinBUGS
is displayed. Three curves are given: a top curve representing R̂I , a middle curve representing
the total-chain 80% confidence interval and a bottom curve representing the averaged within-
chain 80% confidence interval. The reported values for the numerator and denominator of
R̂I are standardized in WinBUGS. The values of R̂I (obtained by ctrl-left mouse clicking
on the BGR graph) dropped quickly below 1.1 for β1 with increasing iterations and varied
around 1.03 from iteration 600 onward. Further, from iteration 500 onward the three curves
stabilized. Thus, now no extra iterations appear necessary and posterior summary measures



P1: JYS/XYZ P2: ABC
JWST177-c07 JWST177-Lesaffre May 26, 2012 10:54 Printer Name: Yet to Come Trim: 244mm × 168mm

186 ASSESSING AND IMPROVING CONVERGENCE OF THE MARKOV CHAIN

0 500 1000 1500

1
2

3
4

5
6

7

β1

Last iteration in chain

S
hr

in
k 

fa
ct

or
Median

97.5%

(a)

0 500 1000 15000.
99

5
1.

00
5

1.
01

5 σ2

Last iteration in chain

S
hr

in
k 

fa
ct

or

Median

97.5%

(b)

Figure 7.5 Osteoporosis study: dynamic version of Gelman and Rubin ANOVA diagnostic
plot applied to (a) β1 and (b) σ 2 obtained from WinBUGS+CODA.

can be taken from 500 onward. For σ 2, R̂I was quickly around 1.003 and the curves stabilized
almost immediately.

We conclude that a single chain of length 1500 seemed inadequate for achieving con-
vergence of the regression parameters. Therefore, we increased the number of iterations to
15 000. Convergence was then obtained, but for accurately estimating certain quantiles, the
Markov chain was still not large enough. The convergence problems seem odd given that the
considered model is the simplest one can imagine. The reason for the difficulties is a multi-
collinearity problem in regression which also causes numerical and statistical difficulties in a
classical regression analysis (see also Example IV.7).

7.2.5 Computing the Monte Carlo standard error

MCMC algorithms produce dependent random variables. Thus, we cannot use the classical
standard error of the mean s/

√
n, with s the posterior standard deviation and n the length

of the chain, to estimate the Monte Carlo standard error (MCSE) of the posterior mean. A
correct limiting expression of the Monte Carlo variance of θ is equal to τ 2/n with τ given by
expression (6.10) and estimated with a time series approach.

The method of batch means is another approach to estimate the Monte Carlo variance of
θ . Under the assumption that the Markov chain (θ k)k has converged, we split the chain up into

beta1 chains 1: 8
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1 500 1000

0.0

1.0
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Figure 7.6 Osteoporosis study: Brooks–Gelman–Rubin diagnostic plot for β1 and σ 2 from
WinBUGS.
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b batches each of size m, i.e. {θ1, θ2, . . . , θm}, {θ (m+1), . . . , θ2m},. . . , {θ (b−1)m+1, . . . , θbm},
with bm = n. Taking for each batch the average value of the θ -values in that batch, yields batch

means {θ1
, . . . , θ

b}. Note that the posterior mean θ is also the mean of the b batch means.
The autocorrelation among the batch means is in general lower than that of the original chain
elements and must decrease with the size of the batch. Suppose that m is taken such that the

correlation between θ
k

and θ
(k+1)

is small, say < 0.1. Since these batch means are practically
uncorrelated (and assuming that this implies independence), the standard error of the posterior
mean can be approximated by

sB
θ

=
√∑b

k=1(θ
k − θ )2

(b − 1)b
. (7.6)

The calculation of expression (7.6) involves the choice of m and b. The higher the autocorrela-
tion in the original chain, the greater m must be to satisfy that the correlation < 0.1, the lower
b must be and the less precise the true posterior mean will be estimated. From the classical
95% confidence interval

[θ − 1.96 sB
θ
, θ + 1.96 sB

θ
]

we can compute the length of the chain in order to get the required precision. Note that the
method of batch means is considered less precise than the time-series approach.

To measure the inflation of the Monte Carlo standard error due to dependency in the chain,
the RL diagnostic reports the dependence factor. A high value indicates highly dependent sam-
pling. A measure of the same kind is the effective sample size (ESS). In the case of indepen-
dence v̂ar(θ ) = s2/n. According to expression (6.10), the dependence in the chain increases
this variance to at least v̂ar(θ ) = (s2/n) × (1 + 2

∑∞
m=1 ρm). The effective sample size is

therefore estimated as n/(1 + 2
∑M

m=1 ρ̂m), with M chosen such that |ρ̂M| is small enough.
The Monte Carlo estimate based on the time series approach is implemented in the SAS

procedure MCMC, while the method of batch means is implemented in WinBUGS. CODA
and BOA report both estimates.

Example VII.3: Osteoporosis study: Calculating the Monte Carlo standard error of the
posterior mean
Since the Markov chain converges only slowly, 40 000 iterations were taken in total and we
discarded the first 20 000 iterations. Further, we computed the Monte Carlo standard error
for β1 using three programs: WinBUGS, CODA and SAS. We obtained from (1) WinBUGS:
MCSE = 2.163E−4 (method of batch means), (2) from SAS: MCSE = 6.270E−4 (time
series), and (3) CODA: no estimate for batch means was obtained due to computational
difficulties, but for the time series estimate MCSE = 1.788E−4. The effective sample size
obtained by CODA was 312, while for SAS it was 22.9. Thus in both cases there is an enormous
loss of information by the dependent sampling algorithms compared to independent sampling.

The MCSE and ESS differed considerably between WinBUGS, CODA and SAS. The
explanation for this difference is the different sampling procedures in WinBUGS (Gibbs) and
SAS (Metropolis) in combination with the extremely slow convergence for the regression
parameters. In fact, the HW and the Geweke diagnostic indicated no stationarity for the SAS
run. Only after 500 000 burn-in iterations and an additional 500 000 iterations, stationarity
could be claimed by the two diagnostics (stationarity could have been achieved earlier, but
we were bored running SAS over-and-over again).
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7.2.6 Practical experience with the formal diagnostic procedures

We now summarize our experience with each of the diagnostics, based on many Bayesian
analyses (not only of the osteoporosis data).

Geweke diagnostics: This procedure is popular and easy to understand. However, it suffers
from a high dependence on the choice of the early and late part especially in the presence
of high autocorrelations. For this reason, it is recommended to explore in addition its dy-
namic version. The test can also highly depend on the method to compute spectral window
when determining τ 2, and hence different software implementations might yield different test
outcomes.

HW diagnostics: This procedure determines both k0 and k1 and is relatively easy to use
in practice. Heidelberger and Welch (1983) tested their procedure extensively and concluded
that, when the initial transient part is longer than the run length of the chain, good performance
can be expected.

RL diagnostics: Brooks and Roberts (1999) argued against the RL procedure when the
interest does not lie in a quantile because the method tends to underestimate k0, especially
when the popular 0.025 quantile is used. The criticism on the RL approach is unfortunate,
since we should test extreme quantiles if the 95% CI is the basis for Bayesian hypothesis
testing.

GR diagnostics: There is an animated discussion in the literature whether or not to use
multiple chains to assess convergence. Gelman and coauthors advocate multiple chains with
overdispersed starting values to avoid that a single chain might get stuck in a local mode.
Based on our experience, we believe that the BGR diagnostic should be part of each test for
convergence especially in complex models; see Chapter 9 for additional examples. The only
problem with the approach is that it is not always clear how to pick overdispersed but also
realistic starting values.

It is impossible in practice to prove convergence. Geyer (1992) reported on a MCMC
analysis of a hierarchical model. At the time of publication of his paper he realized, though,
that his NI prior must yield an improper posterior. Only . . . a million iterations were not enough
to discover it. It is not without reason that the WinBUGS manual has the following warning:
MCMC sampling can be dangerous! (although WinBUGS does not allow improper priors).
In the analyses of next chapters, we also occasionally observed that the chains behaved well
until a few thousands iterations and then started to deteriorate. An example of this behavior is
seen in Figure 7.7 that represents the trace plot of one of the regression coefficients in one of
the joint models (but not final) developed in Section 15.4. One can observe an initially well-
behaved Markov chain, followed by an excursion to other parts of the posterior distribution
(this happened with all parameters) and then coming back to the original stable behavior. This
trace plot remained then stable until 500 000 iterations (thinning=10), but it is not guaranteed
that the chain will not start another excursion afterward. This is a frightening idea but reality
(see also Exercise 9.17).

In Section 7.4, we expand on some practical guidelines on testing convergence. We now
explore techniques to accelerate convergence in case convergence is prohibitively low as in
the case of our regression example.
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Figure 7.7 AZT clinical trial: trace plot obtained from WinBUGS of one of the regression
coefficients based on 200 000 iterations (thinning=10).

7.3 Accelerating convergence

7.3.1 Introduction

In this section, we review some simple tricks to speed up convergence. They are not guaranteed
to work in all circumstances, but if applicable they may accelerate convergence considerably.
Approaches to speed up convergence may be classified into (a) choosing better starting values,
(b) transforming the variables, (c) blocking, (d) algorithms that suppress the purely random
behavior of the MCMC sample, and (e) reparameterization of the parameters. We focus here on
techniques that can be used in combination with standard software such as WinBUGS and SAS.
Novel MCMC algorithms as in Green and Han (1990), Gustafson (1998b), and Barone et al.
(2002) illustrate that other, more sophisticated, MCMC algorithms can be developed that could
accelerate convergence greatly. However, these techniques are beyond the scope of this book.

7.3.2 Acceleration techniques

A trivial, but important remark, is that the convergence rate heavily depends on the chosen
model. Indeed, exchanging one model for another can completely alter the mixing rate. This
is illustrated in Exercise 7.3 where the Weibull survival distribution in the Mice example of
WinBUGS Manual Vol I is replaced by a lognormal survival distribution. With the second
distribution the autocorrelations dropped quickly to zero with increasing lag.

The following tricks can accelerate convergence of the Markov chain:

Choosing better starting values: When the starting values are taken in an area where
the posterior probability is low, it may take a long time to escape from the starting
positions and mixing could be low initially. This can be spotted by an initial decreasing
or increasing trend in the trace plot. A simple and obvious remedy is to try out other
starting values.

Transforming the data: When the regressors differ greatly in magnitude, computational
difficulties may be expected in a classical (frequentist) regression analysis. For this
reason, it is recommended to render the regressors unit-free, which can be done by
dividing the regressor values by their sample standard deviation. This trick is also
recommended for MCMC computations. Another problem that affects the speed of
convergence is multicollinearity (in the regressors). Let X be the design matrix of
the regression model, then |XT X| ≈ 0 in case of multicollinearity. It can be seen that
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multicollinearity affects the conditional distribution (4.28) and the marginal posterior
distribution (4.30) of the regression model. But |XT X| ≈ 0 also implies that the posterior
surface has a ridge since one of the eigenvalues of XT X is around zero. In that case the
Gibbs sampler, but also the MH algorithm, will only make small steps when exploring
the posterior distribution. Classical solutions to avoid high correlations are centering or
more generally Gram–Schmidt orthogonalization. These tricks may help to accelerate
convergence of a Markov chain especially in linear regression problems (see Example
VII.4). They might also work in nonlinear regression models (Exercises 7.4 and 8.1) but
care is needed since they might even reduce the speed of convergence (Exercise 8.4).
Another solution to the problem is blocking; see below.

Thinning: The aim of acceleration methods is to lower the autocorrelations. A simple trick
to lower the autocorrelations consists in retaining only every Mth value in the chain,
which is called thinning the chain. In fact, the thinned Markov chain can even be turned
into a chain with all autocorrelations equal to zero for lags greater than one. This is
done by taking the thinning factor equal to the lag for which the original Markov chain
has autocorrelation equal to (roughly) zero. However, the thinned Markov chain has a
higher Monte Carlo error than the original one. In fact, in almost all cases, the gain is
only with respect to computer storage (see Example VII.4).

Blocking: In Section 6.2.3, the block Gibbs sampler was introduced as a Gibbs sampler ap-
plied on blocks of parameters. In a regression model, the regression coefficients are often
put into one block and the variance parameters in another block. The advantage of this
choice is seen in normal linear regression where the conditional posterior of the regres-
sion coefficients (given the residual variance) is a multivariate normal given by expres-
sion (4.30). Sampling the whole vector of regression coefficients from this conditional
distribution is simple and sampling is not affected by the ridge in the posterior surface. In
fact, with the use of a multivariate normal sampler, the vector of regression coefficients is
sampled independently. From this example, it is clear that block sampling may acceler-
ate the convergence of the Gibbs sampler considerably. However, a necessary condition
for an accelerated convergence is that the blocks are well chosen; see Section 8.2.2 for an
example where a bad choice of blocks decreased the convergence rate dramatically. In
WinBUGS, the blocks are chosen by the program when the blocking option is switched
on, while with the SAS procedure MCMC the blocks are specified by the user.

Overrelaxation: When the autocorrelations are high (and positive) the subsequent values
in the Markov chain are highly predictable from the current position and the exploration
of the posterior distribution is slow. Overrelaxation can break up this high positive
dependence. This acceleration technique was introduced by Adler (1981) for Gaussian
distributions. Let the full-conditional of θ be N(µ, σ 2) with current value θ k, then
Adler (1981) suggested to take the subsequent value as: θ k+1 = µ + α(θ k − µ) +
σ (1 − α2)1/2ν, with ν ∼ N(0, 1) and α a parameter between −1 and 1. For α negative,
θ k+1 lies at the other side of µ. For α = 0, the method is equivalent to Gibbs sampling.
The ordered overrelaxation approach of Neal (1995) is based on a similar philosophy but
can be applied to all conditional distributions and is implemented in WinBUGS. At step
(k + 1), M (around 20) values θ k+1,1, θ k+1,2, . . . , θ k+1,M are sampled and the current
value θ k is added to this set. The (M + 1) values are then sorted and are given ranks
0, 1, 2, . . . , M. The next value in the chain, θ k+1, is chosen from this set and is the value
with rank (M − m) when m is the rank of θ k. Hence, the ordered overrelaxation approach
takes in the above set the mirror image of θ k, thereby reducing the correlation with the
current value. Overrelaxation methods leave the conditional distribution invariant, which
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is an essential property otherwise one would be sampling from the wrong distribution.
The effect of overrelaxation is seen in the autocorrelation plot which may exhibit a series
of alternating negative and positive autocorrelations. However, note that overrelaxation
methods imply M times more sampled values, retaining only one of them and therefore
acts as a thinning approach but with the advantage that the positive autocorrelation is
broken. Several extensions of the basic overrelaxation techniques have been proposed in
the literature (Barone et al. 2002). Another approach that induces negative correlations is
based on antithetic sampling, whereby two related values θ k+1 and θ∗,k+1 (e.g. opposite
to µ) are sampled together; see Ripley (1987) for a general treatment of this topic and
Green and Han (1990) and Gustafson (1998b) for some recent developments.

Reparameterization: Centering the regressors in the linear regression model y = β0 +
β1 x + ε implies a change of parameters from θ = (β0, β1, σ )T to θ∗ = (β∗

0 , β1, σ )T ,
with β∗

0 = β0 + β1 x. We say that the model has been reparameterized. Reparameteriza-
tions may be helpful in removing constraints on parameters. For instance, the logarith-
mic transformation maps variance parameters onto the real axis. A logit-transformation
does a similar job for parameters constrained on a finite interval. In the context of Gibbs
sampling, such reparameterizations will have primarily an effect on the ease with which
the full conditional is sampled since up to a transformation the full conditionals remain
the same. For the MH procedure such a reparameterization may simplify sampling (e.g.
allowing a Gaussian or t-like proposal distribution) and may avoid generating impossi-
ble parameter values. But to have an impact on the convergence rate, parameters must
be transformed jointly. Example VII.5 shows that a simple joint reparameterization can
have an important effect on the convergence of the MCMC procedure. Finally, pro-
posals have been made for reparameterizations in normal-like or log-concave posterior
distributions (Hills and Smith 1992), but they are difficult to apply in practice.

Miscellaneous acceleration approaches: Roberts and Sahu (1997) showed that for Gaus-
sian target distributions, the rates of convergence may be different for the various types
of a Gibbs sampler (systematic, reversible, and random scan). Thus, in order to accel-
erate convergence one could opt for a different sampling algorithm instead of trying to
improve upon an existing approach. Unfortunately, Roberts and Sahu (1997) concluded
for Gaussian models that the winning strategy depends on the true correlation structure
of the Gaussian distribution. Wilks and Roberts (1996) described other variations of
the Gibbs sampler such as the hit-and-run algorithm and generalizations, and methods
which modify the stationary distribution such as generalizations of importance sampling
and data augmentation. Most of these refinements imply quite some extra programming
and are therefore beyond the aims of this book.

Finally, we have seen that the acceptance rate for MH algorithms is indicative for the
speed of convergence. In WinBUGS, the Metropolis algorithm is imbedded in the Gibbs
sampler and by default 4000 iterations are used to adjust the proposal density such that the
acceptance rate varies between 20% and 40% (see also Section 8.1.2). The SAS procedure
MCMC dynamically adjusts the proposal density to achieve an optimal acceptance rate.

Example VII.4: Osteoporosis study: Accelerating convergence
Consider again regressing TBBMC on BMI with a simple linear regression model. First, to
illustrate the effect of bad starting values, we have taken the value of 100 as starting value for
both regression coefficients. This has the effect that for about 200 iterations the trace plots of
all parameters showed a monotonic behavior.
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Figure 7.8 Osteoporosis study: 20 initial chain values (starting value indicated by square)
obtained from WinBUGS for Bayesian linear regression based on (a) original Gibbs sampling,
(b) block Gibbs sampling, (c) Gibbs sampling with overrelaxation, and (d) Gibbs sampling
with centered BMI.

In Figure 7.8, we illustrate graphically the exploration of the posterior distributions
for three acceleration techniques. Figure 7.8(a) shows the first 20 iterations obtained from
WinBUGS without an acceleration technique. The posterior density has a ridge caused by a
phenomenon called ‘multicollinearity with the intercept’. The problem is that the regressor
BMI is concentrated between 20 and 30 and thus relatively ‘far away’ from the origin. The
ridge forces the Gibbs sampler to make small steps which creates high correlations between
the subsequent steps. Switching on the blocking mode in WinBUGS produced independent
sampling of the two regression parameters conditional on the sampled value for σ 2. That
sampling is better with the blocking option is seen from the first 20 positions in Figure 7.8(b),
which are more dispersed than in the original graph. The effect of overrelaxation is shown in
Figure 7.8(c). The overrelaxation technique in WinBUGS is based on the approach of Neal
(1995) with M = 16 for this sampler (see also Section 8.1.2). This speeds up the exploration
of the posterior surface. However, the first ten iterations are outside the graph indicating
that the chain might have some uncontrolled explorations. Finally, when the regressor is
centered, the contour plot of the posterior surface turns into a circle and the regression
coefficients were sampled independently (see Figure 7.8(d)). In Figure 7.9, the effect of the
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Figure 7.9 Osteoporosis study: autocorrelation plot based on (a) block Gibbs sampling, (b)
Gibbs sampling with overrelaxation, (c) Gibbs sampling with centered BMI, and (d) using
thinning with factor 10, obtained from WinBUGS.

different acceleration techniques on the autocorrelation function is shown. Clearly, block
Gibbs sampling and centering BMI reduced the autocorrelation the most.

Further, we compared the effect of the acceleration techniques on MCSE. The conclusions
from this exercise are the following. First, centering and blocking had the same effect on the
MCSE of β0 and β1. Second, overrelaxation also reduced the MCSE but to a lesser extent
without needing more time to converge than the original analysis. Finally when thinning was
applied, the MCSE of the regression coefficients increased.

We conclude that simple tricks can speed up the convergence of the chain dramatically
but not all tricks will have the same effect.

The following example illustrates that a simple reparameterization of the model can imply
a drastic change in the rate of convergence.

Example VII.5: Effect of reparameterization on convergence
Consider two exponential distributions: (a) f1(x) = λe−λ x and (b) f2(x) = φe−φ x and suppose
that interest lies in the parameter ψ = λ/φ.

We sampled twenty observations from each of these distributions with λ = 3 and φ = 1,
respectively. Two models were fitted to the data. The first is based on the parameters λ and
φ. For the second model f2(x) is replaced by f ∗

2 (x) = (λ/ψ) e−(λ/ψ) x and the parameters of
interest are now λ and ψ . Thus, the two models differ only in their parameterization. We used
WinBUGS for estimating the parameters. For each model 11 000 iterations were run with
1000 burn-in iterations. Sampling the first model yielded MCSE = 0.01484 for ψ . For the
second model, the posterior summary measures were based only on the 7000 final iterations.
The reason is that WinBUGS uses a Metropolis step within Gibbs and the default number of
iterations to calibrate, the acceptance rate is 4000. Now, we obtained MCSE = 0.07901 for
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ψ which is about five times more than for the first model. When the first model was run for
7000 iterations, we obtained MCSE = 0.01649. This exercise illustrates the importance of a
good parameterization and its impact on the convergence rate of the Markov chain.

7.4 Practical guidelines for assessing and
accelerating convergence

In practice, assessing convergence could be quite laborious. This makes it impractical to check
convergence each time a new model is fitted since for a statistical modeler switching from
one model to another model should go rather smoothly. So we question in this section which
practical procedure can guarantee a reasonable probability that divergence of the Markov
chain does not go undetected. It is illustrative to see in this sense how experienced Bayesians
look upon assessing convergence in practice. Kass et al. (1998) reported on a panel discussion
held in 1996 on checking convergence. At first it is surprising to read that some of the
discussants admitted to monitor the Markov chain by merely inspecting the trace plots and
autocorrelations or made use of only a very limited number of convergence diagnostics. For
instance, Geyer (1992) mentioned that ‘routinely throwing away the initial 1% or 2% of runs
will usually suffice’. Others reported to use only the thick pen test.

When numerous statistical models are tried out, inevitably corners must be cut. There-
fore, we propose below some guidelines which aim to assess and improve convergence
of the Markov chain in a reasonable amount of time. Some of the guidelines have Win-
BUGS/OpenBUGS in mind, since with the Bayesian SAS procedures the convergence checks
come basically for free. We propose the following:

� It is best to start with a pilot run to detect quickly some trivial problems, such as
starting values that were taken too remote. For relatively simple problems a single-chain
analysis may be sufficient, but experience shows that taking multiple (3–5) chains often
highlights the problems faster. When in the second step a longer chain is initiated, the
trace and other graphical plots (such as the BGR plot) should be used as guidance.

� One may check convergence of each parameter separately or jointly. A joint evaluation
of all parameters may be done by monitoring the log(likelihood) (in WinBUGS by the
deviance) or the log(posterior) (in SAS by LogPost).

� Start with a more formal assessment of convergence only when the trace plots show
good mixing, say when they passed the thick pen test. For a single chain use Geweke
and HW diagnostics while for multiple chains it is recommended to use in addition the
BGR diagnostics.

� When convergence is slow, check whether one of the above acceleration tricks may
help. Standardization is one of the tricks one should always have in mind.

� When convergence cannot be achieved despite all tricks, you may need to let the sampler
run longer and apply thinning to reduce the amount of information stored. Or . . . you
may need to change the software or . . . write your own sampler.

� Extensive convergence checking is often impractical in a model building exercise. In
that case, it is often enough to use the thick pen test before the final model is chosen.
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� Establish the MCerror that you wish to attain for the parameters of interest and let the
chain run as long as needed to achieve the accuracy. As a rule of thumb, the Markov
chain is run until the MCerror is at most 5% of the posterior standard deviation.

� When many parameters are involved such as in hierarchical models, it is challenging to
monitor all of them for convergence. In the WinBUGS Manual, it is advised to choose a
random selection of relevant parameters to monitor. For example, rather than checking
convergence for every element of a vector of random effects, one could take a random
subset.

Depending on the chosen model it might be sufficient to focus on the convergence of
only the parameters of interest. For instance, if in the regression analysis of the osteoporosis
data the parameter of interest is the residual variance, then a single chain of maximally 1000
iterations would have been sufficient. The reason is that fast convergence for the variance
parameter irrespective of the poor convergence of the regression coefficients. Whether this
will happen in other models depends on how orthogonal the parameters of interest are to the
nuisance parameters. Further, in Section 9.7, we explore the technique of parameter expansion
to improve the convergence of the Markov chains of interest. To this end extra parameters
are created which are, however, nonestimatble. The chains of the fabricated parameters will
never converge but this not a problem, on the contrary, since the parameters of interest will
converge more rapidly.

7.5 Data augmentation

Data augmentation (DA) is a term that is reserved for estimation techniques (frequentist
or Bayesian) which augment the observed data with fictive data. The fictive data are often
referred to as missing data, although they do not need to be missing in a strict sense. A
DA technique is an iterative procedure that consists of two parts which are repeated until
convergence. In the first part, one assumes that the missing data z are available, and thus that
one can rely on all data (complete data) w = {y, z} with y representing the actually observed
data. In the second part, one takes into account that part of the (complete) vector w is not
available. The motivation for using a DA technique is that it may simplify the estimation
procedure considerably.

The Expectation–Maximization (EM)-algorithm Dempster et al. (1977) is the default
likelihood-based DA procedure. In the case of truly missing data, the iterative procedure
determines plausible values for the data that are missing (E-step), imputes these plausible
values into the likelihood and maximizes the completed likelihood, i.e. the likelihood of all
data (observed and fictive) as if they were observed (M-step). The plausible values of the
missing data are obtained by taking the expectation of the missing data given the observed
data and the current values of the parameters.

In a seminal paper, Tanner and Wong (1987) suggested a DA approach in the Bayesian
context to compute the posterior distribution in an iterative manner. In fact, the term ‘data
augmentation’ was introduced by them. The argument for using a Bayesian DA approach is
similar to using an EM algorithm in the likelihood case, namely sampling from p(θ | y, z)
may often be easier than from p(θ | y). The E-step is replaced here by sampling the missing
data z from the conditional distribution p(z | θ, y), and the M-step by sampling θ from the
completed posterior p(θ | y, z). Thus the DA approach of Tanner and Wong (1987) consists
of repeatedly sampling from p(θ | y, z) and from p(z | θ, y). This is in fact the block Gibbs
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sampler, whereby the missing data are viewed as extra parameters also called auxiliary
variables. In the original approach of Tanner and Wong (1987) more than one value for z were
generated, which combined with one value for θ generates a smooth estimate of the posterior
at convergence.

In a variety of applications the data augmentation approach may be useful. Besides the
obvious case of genuine missing data, the DA approach is recommended, e.g. when the
observations are censored or misclassified, and in mixture models. In the hierarchical models
of Chapter 9, the DA approach enters in a quite natural way via the latent (unobserved) random
effects. While in a frequentist context, the random effects are integrated out to maximize the
marginal likelihood, in a Bayesian context the random effects are sampled from their full
conditionals which take the form of p(z | θ, y). Below, we treat three examples where the
DA approach implies a simplified Gibbs sampling procedure. The first example is the famous
genetic linkage example introduced by Rao (1973) and used by many afterward (see Tanner
1993, p. 368). There are no missing data in this example, but assuming that more data were
available simplifies the Gibbs sampler.

Example VII.6: Genetic linkage model: Estimating the recombination fraction using the
DA approach
If two factors are linked with a recombination fraction π , the intercrosses Ab/aB × Ab/aB
(repulsion) result in the following probabilities: (a) for AB: 0.5 + θ/4, (b) for Ab: (1 − θ )/4,
(c) for aB: (1 − θ )/4, and (d) for ab: θ/4 with θ = π2. Suppose that in a study one has
collected n subjects, which can be classified according to the above four classes and that one
has observed the frequencies y = {y1, y2, y3, y4}, with

∑
k yk = n. The frequencies follows

a multinomial distribution Mult(n, (0.5 + θ/4, (1 − θ )/4, (1 − θ )/4, θ/4)). Based on 197
animals with y = (125, 18, 20, 34)T , Tanner (1993) estimated θ . With a flat prior for θ ,
p(θ | y) is proportional to (2 + θ )y1 (1 − θ )y2+y3θ y4 . Although p(θ | y) is a unimodal function
of θ , it has a nonstandard expression and needs a dedicated sampler to obtain the posterior
distribution.

Imagine that more information was available, namely that the first cell was split up
into two cells with probabilities 1/2 and θ/4 and that we observed the corresponding
frequencies (y1 − z) and z. The (completed) vector of frequencies then becomes w =
(y1 − z, z, y2, y3, y4) = (125 − z, z, 18, 20, 34)T . Assuming that z is known, the posterior
p(θ | w) is proportional to θ z+y4 (1 − θ )y2+y3 which is simply a binomial distribution. On the
other hand, given θ and the observed data the posterior of z is p(z | θ, y) = Bin(y1, θ/(2 + θ )).
These two posteriors are the full conditionals of the posterior obtained from combining the
multinomial likelihood Mult(n, (0.5, θ/4, (1 − θ )/4, (1 − θ )/4, θ/4)) based on frequencies
(125 − z, z, 18, 20 and 34) with a flat prior for θ and a discrete uniform prior for z on the set
{0, 1, . . . , 125}.

The Gibbs sampler follows from the above-derived full conditionals. Using starting values
θ0 = 0.5 and z0 = 50 convergence was quickly obtained. After 100 iterations and leaving out
the first 10 initial iterations the posterior mean for θ and z were 0.6250 (posterior mode
obtained by Tanner (1993) is 0.6268) and 28.63, respectively. In Figure 7.10, the trace plots
of θ and z are shown, together with their marginal posterior densities.

Example VII.7: Cysticercosis study: Estimating the prevalence in the absence of a gold
standard
In Example V.6, we showed that prior information is necessary to estimate the prevalence of
cysticercosis and the sensitivity and specificity of the Ag-ELISA diagnostic test. The analysis
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Figure 7.10 Genetic linkage model: (a) trace plot of θ , (b) trace plot of z, (c) histogram
of θ (overlayed with numerically computed posterior (solid line) and smoothed version of
histogram (dotted line)), and (d) histogram of z.

was done with WinBUGS 1.4.3. Here, we show how data augmentation can simplify the
MCMC procedure.

Recall that in total 868 pigs were tested in Zambia with the Ag-ELISA diagnostic test
and that 496 pigs showed a positive test. Let the prevalence of cysticercosis in Zambia among
pigs be π and the sensitivity and specificity of the Ag-ELISA diagnostic test be α and β,
respectively. In Table 7.1, we reproduced Table 5.3, but (a) added two columns indicating the
missing information, and (b) changed the notation somewhat.

The following beta priors were taken on the parameters: Beta(νπ , ηπ ) for π , Beta(να, ηα)

for α and Beta(νβ, ηβ ) for β. The posterior is the product of the multinomial likelihood with
probabilities given in Table 7.1 with the beta priors. On the other hand, the posterior based on
the completed data is proportional to

π z1+z2+νπ−1(1 − π)n−z1−z2+ηπ −1 αz1+να−1(1 − α)z2+ηα−1 β(n−y)−z2+νβ−1(1 − β)y−z1+ηβ−1,

which results in a marginal posterior for the prevalence equal to Beta(z1 + z2 + νπ , n − z1 −
z2 + ηπ ).
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Table 7.1 Cysticercosis study: theoretical characteristics and observed results of the
Ag-ELISA diagnostic test on pigs collected in Zambia.

Disease (true) Observed

+ − + − Total

Test + πα (1 − π)(1 − β) z1 y − z1 y = 496
− π(1 − α) (1 − π)β z2 (n − y) − z2 n − y = 372

Total π (1 − π) n = 868

Note: π is the true prevalence of cysticercosis. α and β are the sensitivity and specificity of the
Ag-ELISA diagnostic test, respectively. y (n − y) is the observed number of subjects with a positive
(negative) Ag-ELISA test. z1 and z2 are the missing frequencies.

The full conditionals based only on the observed data are complex, while the full condi-
tionals based on the completed data are of a standard type, i.e.

z1 | y, π, α, β ∼ Bin

(
y,

π α

π α + (1 − π)(1 − β)

)
,

z2 | y, π, α, β ∼ Bin

(
n − y,

π (1 − α)

π (1 − α) + (1 − π)β

)
,

α | y, z1, z2, π, να, ηα ∼ Beta(z1 + να, z2 + ηα),

β | y, z1, z2, π, νβ, ηβ ∼ Beta((n − y) − z2 + νβ, y − z1 + ηβ ),

π | y, z1, z2, π, νπ , ηπ ∼ Beta(z1 + z2 + νπ , n − z1 − z2 + ηπ ).

We have taken a Beta(1, 1) prior for π , a Beta(21, 12) prior for α and a Beta(32, 4) prior for
β. 100 000 iterations (burn-in = 10 000) were necessary to achieve convergence with a self-
written R-program. The posterior mean for the prevalence was 0.84 with 95% equal tail CI
of [0.65, 0.99]. For the sensitivity we obtained 0.66 ([0.57, 0.80]) and for the specificity 0.88
([0.76, 0.97]). These are basically the same results as obtained from WinBUGS. However,
the WinBUGS program in Chapter 5 does not make use of the DA technique. As a result, the
samplers were not conjugate. How to detect this, will be seen in Section 8.1.2. One may force
WinBUGS to make use of DA. The file ‘chapter 7 prevalence Ag Elisa test Cysticercosis.odc’
contains two programs: one program using the DA mechanism and one without (used in
Chapter 5). When the DA approach is used all samplers become conjugate.

Note that in this problem another identifiability problem pops up. Namely when π , α, and
β are replaced by 1 − π, 1 − α, and 1 − β it results in the same model but with modified
definitions of ‘diseased’ and ‘positive test’. To avoid this problem one needs to restrict π , α,
and β to one half of the unit interval.

Example VII.8: Caries study: Analysis of interval-censored data
The children of the Signal-Tandmobiel® study were annually examined for their oral health
status. There was interest to document the distribution of the emergences of permanent teeth
of children from Flanders. Here we look at tooth 22 (incisor) located in the upper left part
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of the mouth and we have selected a random sample of 500 children to limit computation
time. However, the true distribution of the emergence times could not be read off from the
observed data since emergence was never recorded exactly. For some children the teeth had
already emerged before their first annual examination (left-censored), for others the teeth
had not emerged at their last examination (right-censored) but most often emergence was
recorded in-between two examinations (interval-censored). Consequently, for the ith child it
was only observed that tooth 22 emerges between Li (annual examination) and Ri (next annual
examination). Hence the true emergence time of tooth 22, yi, must lie in the interval (Li, Ri)

whereby Li is equal to −∞ for left censoring an Ri equal to ∞ for right censoring.
The data augmentation approach is now based on the completed data yi, (i = 1, . . . , n).

Explorative procedures indicated that a normal distribution for the latent true emergence time
is a reasonable choice. Therefore we assumed that for the ith child yi ∼ N(µ, σ 2). The Gibbs
sampler is based on two types of full conditionals. The first type consists of the conditional
distributions of the model parameters assuming that the true emergence times yi are known.
The second type consists of the conditional distributions of yi given (Li, Ri) and the model
parameters, which are in fact truncated normal distributions.

An R program based on the DA principle was written. Note that WinBUGS can also easily
handle this type of data. The censored character (left-, right- or interval) of the emergence
time is specified in WinBUGS by the indicator function I with boundary values given in the
data part of the program.

Initial explorations indicated that mixing was fast. So we decided on a single-chain analysis
with 10 000 iterations and a burn-in part of 2000 iterations. Convergence was checked with
the classical convergence diagnostics. Based on the converged part of the chain the posterior
mean (SD) of µ and σ are 8.03 (0.044) and 0.90 (0.037), respectively. Since the latent data
yi are generated as a by-product of the DA algorithm we obtained predicted emergence times
(and 95% prediction intervals) from the converged part of the chain. In Figure 7.11, we show
these predictions for the first 50 children in the study together with the intervals (Li, Ri).
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Figure 7.11 Caries study: interval-censored emergence times of tooth 22 of first 50 children.
The grey bars represent the intervals (Li, Ri). The symbol • represents the average predicted
emergence time based on the converged part of the chain, the symbols � represent the 2.5%
and 97.5% predicted quantiles of the true emergence time, respectively.
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In the final example, we return to the question of when to choose the Gibbs sampler or
the MH-algorithm. Although this question is largely academic when Bayesian software like
WinBUGS or SAS is used since they employ their own built-in sampler, it becomes important
when the user wishes to write his own sampler. The next example shows that sometimes the
choice comes natural. The example is again an illustration of the DA approach.

Example VII.9: MCMC approaches for a probit regression problem
In Example VI.9, several MCMC approaches were applied to estimate the parameters of a
logistic regression model. Now we focus on a probit regression model and show that the
Gibbs sampler is the natural choice here. For a probit regression model, the probability of
success for the ith subject is P(yi = 1 | xi) = �(xT

i β), with yi the binary response, xi a vector
of covariates and � the standard normal cdf.

Albert and Chib (1993) proposed the DA approach to sample from a probit regression
model using the relationship between a normally distributed latent random variable and the
binary response. Suppose n independent continuous random variables zi = xT

i β + εi, (i =
1, . . . , n), with εi ∼ N(0, 1). Further suppose that yi = 0 (1) for zi ≤ (>) 0. Then P(yi = 1 |
xi) = P(zi > 0) = 1 − �(−xT

i β) = �(xT
i β).

The existence of a latent variable suggests the use of the Gibbs sampler in combination
with the DA approach to explore the posterior distribution. In particular, Albert and Chib
(1993) suggested to sample alternately (1) β given z with (2) z given β. In detail their Gibbs
sampler works as follows:

β given z: Conditional on z = {z1, z2, . . . , zn},β has a Gaussian distribution, i.e. β ∼
N(βLS, (XT X )−1). This is a Bayesian regression analysis with σ 2 = 1 and βLS =
(XT X )−1XT Z where X and Z are the design matrices of the covariates and the la-
tent variables, respectively. This step involves sampling from a multivariate Gaussian
distribution.

z given β: The full conditional of zi on β and yi is proportional to (1) φxT
i β,1(z)I(z ≤ 0)

for yi = 0 and to (2) φxT
i β,1(z)I(z > 0) for yi = 1, with φµ,σ 2 the Gaussian density with

mean µ and variance σ 2 and I(a) = 1 if the condition a is satisfied. In this step sampling
is done from truncated normals.

The above procedure shows that a small change of the model, here replacing the probit
link with the logit link, can affect the choice of the preferred sampler. Indeed for the logit link
the step ‘β given z’ would be more complicated.

7.6 Closing remarks

The Markov chain Monte Carlo methods are nowadays the most popular Bayesian tool to
obtain posterior inference especially with complex statistical problems. However, it is recog-
nized that MCMC methods often imply a long processing time. This asks for faster samplers
or other faster approaches since a statistical modeler must be able to switch swiftly between
models. Rue et al. (2009) suggested the use of an integrated nested Laplace approximation
to directly compute accurate approximations to the posterior marginal distributions and im-
plemented the procedure in the software INLA (see Chapter 8). The approach appears to be
faster for those problems it can tackle. However, the advantage of sampling based approaches
is that they may be applied to virtually each problem. Therefore, likely the MCMC procedures
will remain in the Bayesian toolbox for many years to come.
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Exercises

Exercise 7.1 Take extreme starting values for the parameters of the Bayesian regression anal-
yses of Exercise 6.1, e.g. ‘beta0=100,beta1=100,tau=1/0.05’ and observe the initial monotone
behavior of the trace plots.

Exercise 7.2 Export the Markov chains obtained in Exercise 7.1 to CODA or BOA and
explore the stationarity of the chains. Let the Gibbs sampler run long enough such that, upon
convergence, the MC standard error is at most 5% of the posterior standard deviation of the
regression parameters.

Exercise 7.3 Import the data of the Mice Example of the WinBUGS document Examples Vol I
into R. Write an R program that implements the Gibbs sampler for the model specified in the
Mice Example. Then replace the Weibull distribution with a lognormal distribution. Compare
the autocorrelation functions. Alternatively, use the original WinBUGS program.

Exercise 7.4 Import the data of ‘osteoporosismultiple.txt’ into R and perform a Bayesian
probit regression analysis using the DA approach of Example VII.9 predicting overweight
(BMI > 25) from age and length. Give normal diffuse priors to the regression parameters. As-
sess the convergence of the Markov chains with CODA or BOA and improve their convergence
rate if necessary.

Exercise 7.5 Apply thinning (=10) to the sampling algorithms of Exercise 6.1 and assess
their convergence properties. Assess also their performance when centering BMI.

Exercise 7.6 Assess the convergence properties of the block Gibbs sampler of Exercise 6.6.

Exercise 7.7 Repeat the analysis of Example VII.6 for the intercrosses AB/ab × AB/ab
(coupling). In this case (see Rao (1973)), the probabilities are (a) for AB: (3 − 2π + π2)/4,
(b) for Ab: (2π − π2)/4, (c) for aB: (2π − π2)/4 and (d) for ab: (1 − 2π + π2)/4, where
π is the recombination fraction. Derive the posterior distributions making use of the DA
principle.

Exercise 7.8 Joseph et al. (1995) wished to estimate the prevalence of Strongyloides infection
using data from a survey of all Cambodian refugees who arrived in Montreal during an 8-
month period. The authors considered two diagnostic tests. For the serology diagnostic test,
125 subjects showed a positive test outcome while 37 subjects had a negative outcome.
Information extracted from the literature and expert knowledge gave the 95% equal tail prior
CI for the sensitivity and specificity equal to [0.65, 0.95], [0.35, 1.00], respectively. Derive the
prior distributions and repeat the analysis of Example VII.7 making use of the DA approach.

Exercise 7.9 Apply the Gibbs sampler of Example VII.9 on the caries data set (caries.txt)
analyzed in Example VI.9 and compare your results with the MCMC analyses of Example
VI.9. You can also compare your results with those obtained from the WinBUGS program
‘chapter 7 caries.odc’.
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Software

Twenty years ago Bayesian software was basically nonexistent, but with the introduction
of Bayesian inference Using Gibbs Sampling (BUGS) and, in particular, with WinBUGS
that situation changed drastically. WinBUGS together with the introduction of the MCMC
techniques implied no less than a revolution in the use of Bayesian methods and is, in
fact (together with its related software) still the standard Bayesian software. Apart from
the WinBUGS developments, the last decade has seen a proliferation of dedicated Bayesian
software written mostly in R. Even the big player on the statistical software market, SAS®,
has decided to start developments in Bayesian software. Hence, the Bayesian toolbox for the
practitioner is rapidly expanding. The state of art, as described in this chapter, will therefore
quickly become history.

In this chapter, practical aspects of Bayesian software are discussed. We introduce
WinBUGS, OpenBUGS and related software. In addition, we provide examples on the use
of the recently developed Bayesian SAS procedures, and finally we briefly discuss Bayesian
programs developed in the R language.

The aim of this chapter is to get the reader acquainted with the basics of Bayesian software.
To this end, we will primarily use the osteoporosis regression problem as a guiding example.
In the remainder of the book, additional aspects of the software will be commented upon.
An additional and important source of information are the manuals of the packages. The
WinBUGS manual together with Examples manuals I and II and the SAS manual SAS-STAT
are both excellent sources for further details. For WinBUGS we can also recommend the
books Lawson et al. (2003) and Ntzoufras (2009).

8.1 WinBUGS and related software

WinBUGS is the Windows version of the program BUGS. WinBUGS carries out Bayesian
inference on statistical problems using MCMC methods. Its development started in 1989 in
the MRC Biostatistics Unit at Cambridge with BUGS (Gilks et al. 1994). At the time of
writing this book, there were over 30 000 registered users making WinBUGS definitely the

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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model
{for (i in 1:N){

tbbmc[i] ˜ dnorm(mu[i],tau)
mu[i] <- beta0+beta1*bmi[i]}
sigma2 <- 1/tau
sigma <- sqrt(sigma2)
beta0 ˜ dnorm(0,1.0E-6)
beta1 ˜ dnorm(0,1.0E-6)
tau ˜ dgamma(1.0E-3,1.0E-3)}

list(tbbmc=c(1.798, 2.588, 2.325, 2.236, 1.925, 2.304, 2.183, 2.010,
......

1.728, 2.183, 1.703, 1.505, 1.850),
bmi=c(23.61, 30.48, 27.18, 34.68, 26.72, 25.78, 29.24, 30.76, 21.64,
.....

37.46, 21.79, 18.99, 28.30), N=234)
list(beta0=0.4,beta1=0.025,tau=1/0.05)

Figure 8.1 Osteoporosis study: WinBUGS program.

most popular (but also most versatile) package for performing complex Bayesian analyses.
In Lunn et al. (2009a), the developers of the package give an overview of the history of the
program, its basic philosophy, its future, and also its limitations and dangers. The final version
of WinBUGS is version 1.4.3 but its development has stopped. Its successor OpenBUGS is the
open source variant of WinBUGS. But, since WinBUGS 1.4.3 is still the most popular program
for Bayesian analyses, it is the preferred software in this book. Both software packages are
freely available.

The applications are described in a stepwise manner. We start with the basic WinBUGS
operations.

8.1.1 A first analysis

WinBUGS works with .odc files. These are basically text files containing the program, the
data and the initial values for a MCMC run. But an .odc file can also be a compound document
that contains various types of information (text, tables, formulae, plots, graphs, etc.). To access
such a file, start WinBUGS, click on File and then on Open. . . . WinBUGS commands are
written in a language that is similar but not identical to R. In Figure 8.1, (part of) the WinBUGS
commands to perform a Bayesian regression analysis on the osteoporosis data are given. The
WinBUGS program can be found in ‘chapter 8 osteoporosis.odc’. First, we discuss the three
basic components of a WinBUGS program.

Model: Within the ‘for’ loop the likelihood of the normal linear regression model, re-
gressing TBBMC on BMI, is expressed. The loop runs from 1 to N, the total number of
observations in the study (the value of N is part of the data). The command tbbmc[i] ˜
dnorm(mu[i],tau) means that TBBMC of the ith subject has a normal distribution with
mean mu[i] and precision tau. Note that WinBUGS expresses variability in terms of the
precision (= 1/variance). Further mu[i] <- beta0+beta1*bmi[i] specifies that the
mean is a linear function of BMI. These two commands determine the normal linear regression
likelihood. The BUGS language is declarative which means that the order of the statements
does not matter. This is an important difference with most programming languages where a
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variable must first be defined before it can be used in a formula. Note that WinBUGS will
provide posterior information of a parameter only when it is declared in the program. For
instance, if we wish to obtain posterior summary measures of the residual variance then we
need to add sigma2 <- 1/tau to create this new parameter. If we also specify sigma
<- sqrt(sigma2) then we can monitor both the residual variance, and standard devia-
tion, i.e. MCMC output is also generated for these two extra defined parameters, if requested.
Unfortunately, WinBUGS does not have ‘if-then-else’ commands. Instead, WinBUGS pro-
vides the functions ‘step’ whereby step(x) = 1 if x ≥ 0 and 0 otherwise, and ‘equals’
whereby equals(x1,x2) = 1 if x1 = x2 and 0 otherwise. These two functions can be
used to simulate an if-then-else condition.

The next three lines determine the prior distributions of the regression parameters. With
beta0 ˜ dnorm(0,1.0E-6) we choose a diffuse prior for the intercept, i.e. a Gaussian
distribution with mean 0 and variance 106. The same is done for the slope. WinBUGS does
not allow improper priors for most of its analyses. The only exception is in spatial modeling
with the function ‘dflat’, which represents a uniform distribution. The prior for the precision
is specified with tau ˜ dgamma(1.0E-3,1.0E-3), which is equivalent to assuming
that the prior for σ 2 is IG(10−3, 10−3).

Data: After the model specification, the data are provided in a list statement. Note, we
have replaced part of the data by dots to gain space. Different formats (rectangular, list, etc.)
for providing data are possible in WinBUGS.

Initial values: With list(beta0=0.4,beta1=0.025,tau=1/0.05) the initial
values for the intercept, slope and residual precision are specified.

To obtain posterior samples, one requires three WinBUGS tools: (a) the Specification
Tool, (b) the Sample Monitor Tool, and (c) the Update Tool. The following actions need to
be taken to receive the desired posterior information:

Specification Tool: Click on the Model option of the menu bar and choose Specifica-
tion. . . . The box Specification Tool appears. Place the cursor anywhere in the program and
then click on check model. When there are no syntax errors, WinBUGS sends the message
‘model is syntactically correct’ in the left bottom corner of the screen (where all messages
from WinBUGS appear) otherwise an error message appears. A list of error messages can be
found in the WinBUGS manual in the section Tips and Troubleshooting. To load the data,
highlight the ‘list’ command of the data part and click on load data. WinBUGS sends the
message ‘data loaded’ (or an error message) and the two buttons check model and load data
are deactivated. Then click on compile. When the message data ‘model compiled’ appears,
initial values can be imported by clicking on load inits. Note that only initial values can be
given to stochastic nodes (see below for definition of stochastic node). For instance, in the
regression program, one cannot give a starting value for sigma2, but one can give a starting
value for tau. We can start sampling upon the message ‘model is initialized’. When initial
values have been given for all stochastic nodes, as here, then the buttons load inits and gen
inits are switched off. Otherwise, both buttons remain switched on and by clicking on gen
inits WinBUGS generates initial values for the remaining parameters. This is an interesting
tool especially for hierarchical models where it can be quite laborious to provide starting
values for all random effects. But, it is not advisable to use this option for a variance/precision
parameter. For instance, when no initial value for tau was provided, an error message appeared
when we attempted to generate the starting value. Note, it may take a prohibitively long time
to ask WinBUGS to generate a large number of starting values. If all is fine, WinBUGS is
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Figure 8.2 Osteoporosis study: WinBUGS screen dump after 1000 iterations.

ready to start sampling but it is not guaranteed at this stage that the MCMC sampler will work
properly. Indeed, run-time errors may still occur.

Sample Monitor Tool: To prepare the sampling part of the analysis, we click on the
Inference option of the menu bar and choose Samples. . . , which triggers the box Sample
Monitor Tool to appear. Type next to node only those parameters of interest, e.g. here ‘beta0’
and then click on set. The same was done for ‘beta1’ and for ‘sigma2’. The term ‘node’ is
used because of the intimate connection of WinBUGS with Directed Acyclic Graphs (DAGs)
(see Section 8.1.6). Finally, by typing in ‘*’ and clicking on set, WinBUGS will monitor these
three parameters while sampling. By clicking on trace a dynamic trace plot (empty at this
stage) for each parameter appears on the screen.

Update Tool: To choose the number of MCMC iterations, click on option Model of
the menu bar and choose Update. . . . The box Update Tool appears. Specify the number
of iterations. To effectively start the sampling, click on update and you see some action in
the dynamic trace plot. After having generated, say 1000 samples, a screen as in Figure 8.2
appears.

If extra iterations are needed, click again on update and specify the extra number of
iterations. To ignore the first x burn-in iterations from the chain, type x + 1 in the box beg of
the Sample Monitor Tool. Click on density to look at the densities and stats for posterior
summary measures. From the stats box one can read off the node, the posterior mean and SD,
the MC error, the 2.5%, 50%, 97.5% posterior quantiles, the start (iteration) and sample (the
number iterations considered in the calculations).

A click on auto cor of the Sample Monitor Tool gives the autocorrelation function and
produces a graph as in Figure 7.9. If there is high autocorrelation among the sampled values, a
simple trick to reduce the dependence in the Markov chain (although with loss of information)
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is to apply thinning. WinBUGS allows thinning in two different ways. Suppose that you wish
to retain only 10% of the sampled values then fill in ‘10’ next to thin of the Update Tool. On
the other hand, if you wish to discard 90% of the already sampled values, then fill in ‘10’ next
to thin of the Sample Monitor Tool. Note that in the first thinning operation ten times more
values are sampled than requested.

This completes our first WinBUGS analysis of the osteoporosis data. This exercise was
primarily meant for the reader to get acquainted with the basics of WinBUGS.

8.1.2 Information on samplers

By default WinBUGS uses the block Gibbs sampler. That blocking is in use can be verified by
clicking on Options in the menu bar and then on Blocking options. . . . If in the box Blocking
Options ‘fixed effects’ is switched on, WinBUGS employs the block Gibbs sampler based
on the algorithm of Gamerman (1997). This method samples all regression parameters in one
block. To find out the sampler for a full conditional, click on Info in the main menu and
then on Node Info. . . . The box Node Tool appears. Fill in the node, say ‘beta0’ and click on
methods. In the log file the message ‘beta0 UpdaterGLM.NormalUpdater’ appears specifying
again that the GLM approach of Gamerman is used.

In Section 8.1.1, the blocking option was switched on. To switch off the blocking option,
recompile the program. Then WinBUGS will prompt whether it is ‘ok’ that ‘the new model
will replace the old one’. Click on ‘ok’ and on Options from the menu bar, select Blocking
Options. . . and switch off fixed effects. To sample from the posterior, continue as sketched
in Section 8.1.1. With the Node Info option we can find out if the sampler has been changed.
In the log file the message ‘beta0 UpdaterNormal.StdUpdater’ appears, which means that the
normal sampler is used for each regression parameter separately. When the blocking option is
switched off, the mixing is poor due to a multicollinearity problem (between beta0 and beta1).

The standard settings of each of the univariate samplers used in the WinBUGS program can
be obtained from the Options menu and then by clicking on Update Options. . . . The Updater
options window appears with the default options taken for each sampler. For the osteoporosis
example, two samplers appear in the window: ‘UpdaterGamma’ (the conjugate sampler, used
for σ 2) and ‘UpdaterGLM’ (for the regression parameters jointly when Blocking Options
are switched on). Clicking on each sampler shows the default options for that sampler. For
instance, in the case of ‘UpdaterGLM’, the overrelaxation option (see Section 7.3.2) chooses
from 16 candidates to generate the subsequent value in the chain. One can change these
options in the current run. However, this needs to be done with care. Here, follows an example
that changing these options can have dramatic implications for the convergence of the chain.

In Chapter 12, we look for the most appropriate model to analyze the Ames mutagenic
assay data. Several models were programmed in WinBUGS; see Section 12.3 for details. The
WinBUGS program for the short-term toxicity model with θ = 1 makes use of the Metropolis
sampler. Using the Update Options as indicated above, one can check that WinBUGS needs
4000 iterations to tune the normal sampler. In Figure 8.3 (top), we show the acceptance rate of
the Metropolis sampler when 20 000 iterations were completed. This graph can be obtained
from the Model option on the main menu and then choosing Monitor Met. Clearly, around
4000 iterations, the acceptance rate lies between 20% and 40%. Suppose now that one reduced
this tuning phase to 750 to speed up the initial sampling process. Then Figure 8.3 (bottom)
shows that the acceptance rate is far from optimal. In fact, the history plot of the parameters
then shows that the Markov chains do not converge (not shown).
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Figure 8.3 Ames assay IPCS data (Chapter Bioassay): Metropolis acceptance rate monitor in
WinBUGS based on the short-term toxicity model with θ = 1 obtained from 20 000 iterations,
when based on (top) 4000 tuning iterations and (bottom) 750 tuning iterations.

8.1.3 Assessing and accelerating convergence

We now illustrate how convergence of the Markov chain can be tested with WinBUGS. While
in the first analysis, we used only one set of starting values, now we take multiple starting
values. In the WinBUGS program, eight list statements containing the starting values are given
to initiate eight chains (in practice 2–4 chains are enough). The starting values were chosen in
an ‘overdispersed’ manner (see Example VII.2). Note that before the program is compiled, you
need to fill in ‘8’ in the Specification Tool box. Then one is prompted eight times for starting
values. The history trace plot of the slope in Figure 8.4 shows that the eight chains are mixing
well but the mixing with each chain is slow. Posterior summary measures can be obtained as
in the previous analysis, either based on all chains or on a subset of the chains. Chains are
selected in the Sample Monitor Tool box. The only convergence diagnostic that can be used
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Figure 8.4 Osteoporosis study: history plot obtained from WinBUGS after 1500 iterations
and based on eight overdispersed starting positions.
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with WinBUGS is the Brooks–Gelman–Rubin (BGR) diagnostic. To activate this diagnostic
click on bgr diag of the Sample Monitor Tool. In Figure 7.6, the BGR diagnostic based on
the above eight chains was shown. Numerical values of the numerator and denominator can
be obtained by double clicking with the left mouse when the cursor is in the BGR window and
then clicking with the right mouse while holding the ctrl key. To obtain a formal assessment
of convergence, the chains must be exported to S+ or R. This is done by clicking on button
coda. A window ‘CODA index’ contains the following administrative information about the
stored chain values:

beta0 1 1500
beta1 1501 3000
sigma2 3001 4500

The above three lines simply point to the positions of the parameters in the windows ‘CODA
for chain x’, where x runs from 1 to 8. Save each window as a .txt file by clicking on File
in the main menu and then on Save as. . . . For instance, the contents in the window ‘CODA
index’ may be saved as ‘ind.txt’ while the chain values in the other windows as ‘out8.txt’,
‘out7.txt’, . . ., ‘out1.txt’. These files can then be processed afterward with the R package
CODA.

The CODA functions for assessing the convergence of the osteoporosis regression anal-
ysis can be found in the R program ‘chapter 8 osteoporosis BGR-CODA.R’. Parts of the
CODA output were shown in Chapter 7. A simple trick to improve convergence is to center
(and standardize) the covariate(s). This can be done by replacing the mean model specifica-
tion by mu[i] <- beta0+beta1*(bmi[i]-mean(bmi[]))/sd(bmi[]), where
mean(bmi[]) computes the average BMI and sd(bmi[]) the standard deviation of BMI.
The high posterior correlation between beta0 and beta1 can be highlighted by looking at the
cross-correlations which are delivered by the Correlation Tool from the Inference option on
the main menu, see Figure 8.6. Note the peculiar way of indicating that bmi is a vector, i.e.
bmi[]. In more complicated settings, other tricks might be needed, e.g. overrelaxation may
be invoked in WinBUGS by switching on over relax in the Update Tool.

8.1.4 Vector and matrix manipulations

In Figure 8.5, the WinBUGS program is shown to regress TBBMC on age, weight, length,
BMI, and a measure of muscle strength. We look at the subgroup of 186 elderly women
who have no missing values on these measurements. The file ‘chapter 8 osteomultipleregres-
sion.odc’ is a compound document that contains the WinBUGS commands. The purpose of
this section is to introduce vector and matrix notations and manipulations in WinBUGS.

Now, all data (including constant ‘1’) are collected in a matrix x with 186 rows and
6 columns. The regression coefficients are collected in the vector beta. The command
mu[i] <- inprod(beta[],x[i,]) computes the inner product of the regressor vec-
tor beta[] with the data vector x[i,] and gives the mean value mu[i] (mean of TBBMC
for the ith individual). Further, with for (r in 1:6) {mu.beta[r] <- 0.0} the
prior means of the regression coefficients are fixed at zero. The double ‘for-loop’ defines the
elements of the prior precision matrix of the regression coefficients. Finally, beta[1:6] ∼
dmnorm(mu.beta[], prec.beta[,]) states that a multivariate normal prior
distribution is used for the regression coefficients with mean vector and precision matrix
specified as parameters.
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model{
for (i in 1:N){

tbbmc[i] ˜dnorm(mu[i],tau)
x[i,1]<-1; x[i,2]<-age[i]; x[i,3]<-weight[i]; x[i,4]<-length[i]
x[i,5]<-bmi[i]; x[i,6]<- strength[i]
mu[i] <- inprod(beta[],x[i,])

}
sigma2 <- 1/tau
sigma <- sqrt(sigma2)
for (r in 1:6) { mu.beta[r] <- 0.0}
c <- 1.0E-6
for (r in 1:6) { for (s in 1:6){
prec.beta[r,s] <- equals(r,s)*c
}}
beta[1:6] ˜ dmnorm(mu.beta[], prec.beta[,])
tau ˜ dgamma(1.0E-3,1.0E-3)

}
list(N=186)

age[] length[] weight[] bmi[] strength[] tbbmc[]
71.00 157.00 67.00 27.18 96.25 2.325
73.00 163.00 71.00 26.72 85.25 1.925
..............................
86.00 155.00 68.00 28.30 70.25 1.850
END
list(beta = c(0,0,0,0,0,0), tau=1)

Figure 8.5 Osteoporosis study: regression model in vector and matrix notation.

The data section consists of two parts. The first part consists of a list statement specifying
the number of patients and the second, rectangular part contains the regressor and response
values. The regression data are stored in vector format. The data part ends with an END
statement. Note that, to enter the data in WinBUGS, one needs to click on both parts of the
data structure and each time on load data.

We performed the regression analysis with the blocking mode switched off. Thus, we also
expected a poor convergence rate here. But this did not happen. The reason is that WinBUGS
processes the regression coefficients beta[] as one object and automatically chooses for
the block Gibbs sampler. This can be seen by clicking on Node Info. The message beta[1]
UpdaterMVNormal.Updater means that the regression parameters are handled jointly.
It does not imply, however, that the cross-correlations must be low among the regression
parameters. Figure 8.6(a) demonstrates a high cross-correlation between the intercept and the
regression coefficients of weight, length, and BMI but also that the latter regression coefficients
are highly cross-correlated due to the introduction of weight and length. Despite the high
cross-correlations, convergence can be good. It just depends on the choice of the sampler.

Multicollinearity causes statistical problems (badly estimated regression coefficients).
An approach to deal with multicollinearity is to apply ridge regression. We know from
Section 5.7 that if β is given a normal prior N(0, τ 2I) then this has a similar effect as applying
a classical ridge regression analysis with ridge parameter λ = σ 2/τ 2. Therefore, we replaced
the value for c in Figure 8.5 by 5. Hereby, in fact, we applied a ridge regression analysis.
The posterior median for λ was equal to 0.2 which is an acceptably small value. The matrix
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Figure 8.6 Osteoporosis study: cross-correlation matrix of regression parameters with vague
normal regression prior (LHS) and ridge regression prior (RHS).

of cross-correlations in Figure 8.6(b) shows that the problem of multicollinearity has been
resolved.

In Sections 5.6.1 and 11.5, the usefulness of Zellner’s g-inverse prior in variable selection
is illustrated. This prior is obtained by replacing the commands defining the precision matrix
by those in Figure 8.7 (see ‘chapter 8 osteomultiple-ginverse.odc’)

8.1.5 Working in batch mode

Repeatedly running WinBUGS is laborious. However, it is possible to run WinBUGS without
necessarily having to point and click your way through the commands. This is done by
using WinBUGS scripts. Using this feature, WinBUGS can be called from within other
programs. For instance, the program R2WinBUGS (Sturtz et al. 2005) provides an interface
between R and WinBUGS. The advantage of R2WinBUGS is that it allows for an easy
exchange of objects from WinBUGS to R thereby exploiting the R functionality. Details
on the R2WinBUGS package are found in Sturtz et al. (2005) or the R2WinBUGS manual
(http://cran.r-project.org/).

Figure 8.8 shows how WinBUGS is called from within R with the R2WinBUGS func-
tion bugs to analyze the osteoporosis regression problem. The file ‘chapter 8 osteoporosis-
R2WB.R’ contains the commands. The parameters that are passed to WinBUGS in the bugs
call are now described. The term data refers to a list object with the names of the columns of
the data in the working directory, here data <- list ("tbbmc", "bmi", "N"),
whereby tbbmc and bmi are vectors created in R. The option inits refers to a list object

c <- 1/N
for (r in 1:6) { mu.beta[r] <- 0.0}
for (r in 1:6) { for (s in 1:6){
prec.beta[r,s] <- inprod(x[,r],x[,s])*tau*c
}}

Figure 8.7 Osteoporosis study: WinBUGS commands to specify Zellner’s precision matrix.
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osteo.sim <- bugs(data, inits, parameters, "osteo.model.txt",
n.chains=8, n.iter=1500,
bugs.directory="c:/Program Files/WinBUGS14/",
working.directory=NULL, clearWD=FALSE);

print(osteo.sim)
plot(osteo.sim)

Figure 8.8 Osteoporosis study: call to WinBUGS using R2WinBUGS.

of initial values of the model parameters and parameters is a list object with names of the
parameters. The file osteo.model.txt contains the WinBUGS syntax shown in Example VII.1.
Eight chains were started up with 1500 iterations for each chain. Further, the executable
WinBUGS file resides in bugs.directory="c:/Program Files/WinBUGS14/".
The eight coda files are located in the working directory. The option clearWD=FALSE
indicates that these files are not deleted but can be processed afterward by CODA. With the
function print, a table is produced containing posterior information (mean, median, etc.).
The function plot produces the BGR diagnostic test for assessing convergence of the chains
(see Figure 8.9). A WinBUGS log file is stored containing a list of the executed commands,
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Figure 8.9 Osteoporosis study: graphical output produced by R2WinBUGS.
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posterior summary statistics and a trace plot. Note that only a limited set of plots and analyses
can be obtained directly from R2WinBUGS. For instance, the more formal convergence
diagnostics such as Geweke diagnostic must be obtained by accessing CODA.

8.1.6 Troubleshooting

At each stage: syntax checking, data loading, compilation, providing initial values and running
the sampler, errors may occur. For instance, a trap window will occur when WinBUGS has
discovered a runtime error. In that case, the program stops sampling. The trap window is a
dump of the status of the program when the error occurs. If this happens, try clicking the
update button twice to restart the program. If this does not help, the program or the initial
values need a change. Unfortunately, most of often, the trap window is cryptic and rarely helps
in debugging. In the section Tips and Troubleshooting of the WinBUGS manual common error
messages are listed. In the same section instructions are provided to resolve certain problems.
For instance, it is mentioned that the ‘probit’ function creates often overflow problems. We
encountered similarly numerical overflow problems with the function ‘logit’. It sometimes
helps to replace logit(x) <- p by p <- exp(x)/(1+exp). Another solution is to
combine the logit function with the functions ‘min’ and ‘max’ to constraint the value of ‘x’.

8.1.7 Directed acyclic graphs

A graphical model is a pictorial representation of a statistical model in which nodes repre-
sent random variables and lines represent the dependence between the random variables. A
graphical representation of a statistical model is useful to break up complex models into small
(simple) parts, communicate the essence to nonstatisticians and to provide a basis for local
computations.

In a DAG, also known as a Bayesian network, all links are directed, i.e. the arrows are
added to lines and express that the child’s node depends on the father’s node, but not vice
versa. In addition, no cycles are permitted which means that there is no path (while walking
on the directed lines in the direction of the arrows) that brings you to your starting position.
When the directed local Markov property or conditional independence assumption holds,
each node v is independent of its nondescendants given its parents. For instance, suppose a
probability model V involves random variables A, B, C and D. Suppose also that we represent
the variables graphically in a family tree as in Figure 8.10 with D the child, C the parent

A B

C

D

Figure 8.10 Example of a directed acyclic graph.
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for(i IN 1 : N)

tbbmc[i]

beta1beta0

sigma2

tau

mu[i]

bmi[i]

Figure 8.11 Osteoporosis study: doodle for a simple linear regression with response
TBBMC and regressor BMI.

and A and B the grandparents. The graph represents conditional independence of A, B, and D
given C which is written as: A⊥D | C and B⊥D | C. This conditional independence implies
that p(A, B,C, D) = p(A)p(B)p(C | A, B)p(D | A, B). However, if a direct line connected A
with D then the model is still a DAG but conditional independence would be lost.

For the above DAG with conditional independence, p(V ) = ∏
v∈V p(v | parents[v]) and

the full conditionals are given by

p(v | V\v) = p(v ∈ parents[v])
∏

v∈parents[w]

p(w ∈ parents[w]).

It is this split in the full conditionals that makes a DAG interesting for Bayesian
computations.

The Doodle option in WinBUGS visualizes a (Bayesian) model as a DAG and the as-
sumed conditional independencies. In Figure 8.11, a DAG representation of the osteoporosis
regression model was obtained from the Doodle option. There are three types of nodes: con-
stants (fixed by design), stochastic nodes: variables that are given a distribution (observed
= data or unobserved = parameters), logical nodes: logical functions of other nodes. The
nodes tbbmc[i] and beta0 are stochastic, while sigma2 is a logical node. There are also
two types of directed lines, single and double. The single lines represent stochastic relation-
ships while the double represent logical relationships. Finally, some of these relationships are
repeated over the subjects, i.e. those that are located within the rectangle(s) called plate(s).

What follows are some details on the nodes that are implemented in WinBUGS:

� Stochastic nodes: WinBUGS allows for univariate and multivariate different distribu-
tions, e.g. Bernoulli, exponential, student and multivariate normal, and can be truncated
or censored. WinBUGS provides also multivariate priors.

� Logical nodes: WinBUGS allows for different logical expressions, e.g. abs, cos, logit,
step, and equals. No ‘if-then-else’ statements are allowed in WinBUGS.
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8.1.8 Add-on modules: GeoBUGS and PKBUGS

There are two add-on modules to WinBUGS which we briefly describe here for the sake of
completeness.

GeoBUGS is an add-on module to WinBUGS which provides an interface for produc-
ing maps of the output from disease mapping and other spatial models and creating and
manipulating adjacency matrices that are required as input for carrying out spatial smoothing.

PKBugs is an add-on module to WinBUGS for specifying complex population phar-
macokinetic/pharmacodynamic (PK/PD) models. Due to the complexity of patients’ dosing
histories, the fact that each dose itself typically requires a complex nonlinear model, the pres-
ence of possibly time-varying covariates, censored observations, and outlying observations/
individuals WinBUGS appears to be inefficient for such models. PKBugs aims to provide an
answer to this.

8.1.9 Related software

OpenBUGS: The development of OpenBUGS started in 2004 in Helsinki. Both WinBUGS
and OpenBUGS use the BUGS language which is based on component Pascal. The cur-
rent version of OpenBUGS, OpenBUGS 3.2.1 (http://www.openbugs.info/w/) has a similar
performance as WinBUGS. However, in particular (often difficult to convergence) cases the
two programs can behave quite differently. A major difference between OpenBUGS and
WinBUGS is in the way that the expert system selects the updating algorithm to use for the
class of full conditional distribution of each node, i.e. WinBUGS defines one algorithm for
each possible class whereas there is a greater class of algorithms available in OpenBUGS.
This permits greater flexibility and extensibility from OpenBUGS as compared to Win-
BUGS. OpenBUGS has also improved blocking algorithms, but there is no specific blocking
option.

Several new functions and distributions have been added to OpenBUGS. In addition the
functionality of the different options has been extended compared to WinBUGS. For instance,
in WinBUGS censoring is taken care of by the function I (lower, upper), but truncation could
not be handled. In OpenBUGS censoring is allowed via C (lower, upper) and truncation via
T (lower, upper). In OpenBUGS a dloglik distribution was added for use with the ‘zero’
Poisson trick for generic likelihoods and priors. OpenBUGS provides also more details about
the samplers by default.

JAGS: JAGS is another software which can be used to fit Bayesian models using
Markov chain Monte Carlo methods. JAGS is platform independent and is written in C++.
It was developed by Martyn Plummer. Version 3.1.0 can be downloaded from http://www-
fis.iarc.fr/∼martyn/software/jags/allows. JAGS provides some extra functions like mexp()
(matrix exponential), sort() (for sorting elements) and %*% (matrix multiplication). Just as
with OpenBUGS, truncation and censoring are allowed. WinBUGS and OpenBUGS store data
in row major order whereas JAGS stores values of an array in column major order. The main
advantage of JAGS over the BUGS family is its platform independence. Therefore, it is part
of many repositories of Linux distributions making it easily extendable through user-written
(C++) modules.

Interface with WinBUGS, OpenBUGS and JAGS: For several popular packages an
interface has been developed with WinBUGS. R2WinBUGS is an example of such software,
linking R to WinBUGS. Interfaces have also been written for other packages, such as SAS,
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STATA® and MATLab®. Two programs provide the link between R and OpenBUGS: BRugs
and R2OpenBUGS (http://openbugs.info/w/UserContributedCode). R2jags (http://cran.r-
project.org/web/packages/R2jags/index.html) is an interface between JAGS and R.

8.2 Bayesian analysis using SAS

SAS is a versatile package of programs providing tools for setting up data bases, general
data handling, statistical programming, and statistical analyses. It is the standard tool for
statisticians working in the pharmaceutical industry. Statistical analyses in SAS are done via
procedures (abbreviated as PROC). SAS provides a broad range of statistical procedures but
mainly of a frequentist nature. In SAS version 9.2 Bayesian options were added to exist-
ing frequentist procedures, i.e. in PROC GENMOD (analysis of discrete responses), PROC
LIFEREG (parametric survival models), PROC MI (multiple imputation procedures), PROC
MIXED (linear mixed effects models) and PROC PHREG (proportional hazards regression).
In SAS version 9.2 the procedure MCMC was launched for fitting a wide range of Bayesian
models, but was still experimental. In version 9.3, the MCMC procedure received the status
of an established SAS procedure.

Two SAS procedures allow for a Bayesian regression analysis: PROC GENMOD and
PROC MCMC. As with WinBUGS, we introduce the use of some SAS Bayesian procedures
via a linear regression analysis on the osteoporosis data. The SAS programs are included in
‘chapter 8 osteoporosis.sas’. We have used version 9.3 for all calculations in this section.
More illustrations of the use of SAS can be found in the remainder of the book. For more
details on the SAS statements and options, we refer to the SAS manuals or to the website:
http://support.sas.com/documentation/.

8.2.1 Analysis using procedure GENMOD

Background: The SAS procedure GENMOD allows fitting generalized linear models
(GLIMs) to univariate and correlated data. The Bayesian option in PROC GENMOD is based
on Gibbs sampling and uses the ARS algorithm of Gilks and Wild (1992) for log-concave full
conditionals. For other conditionals, it uses the ARMS algorithm.

Syntax: Figure 8.12 shows a typical PROC GENMOD program to perform a Bayesian
linear regression analysis. The procedure is embedded in an output delivery system
(ODS) environment to produce high-quality graphics. The statement proc genmod
data=osteoporosis; instructs the procedure to search for a data set called ‘osteo-
porosis’ in its working directory. The statement model tbbmc=bmi/dist=normal;

ods graphics on;
proc genmod data=osteoporosis;
model tbbmc = bmi / dist=normal;
bayes seed =777 nbi=5000 nmc=10000 cprior=jeffreys sprior=improper
diagnostics=all plots(fringe smooth) = all outpost=osteout;
run;
ods graphics off;

Figure 8.12 Osteoporosis study: PROC GENMOD statements to perform a Bayesian linear
regression analysis with SAS.
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instructs to regress TBBMC on BMI assuming that the response has a normal distribution.
The next line starts with bayes to invoke the Bayesian option. The option seed=777 ensures
that different runs start with the same seed. Further, nbi=5000 nmc=10000 instructs to
run 5000 burn-in iterations and 10 000 extra iterations. For the regression parameters, we have
chosen a Jeffreys prior (option cprior=jeffreys).

PROC GENMOD offers three types of priors for regression parameters: (a) uniform, i.e.
p(β) ∝ c (cprior=uniform), (b) Gaussian (cprior=normal), i.e. p(β) ∝ N(μ, �)

where μ and � can be defined in various ways and (c) Jeffreys prior, which means that
p(β) ∝ ∣∣φ−1 I(β)

∣∣1/2
where φ is the dispersion parameter of the Bayesian generalized linear

model (BGLIM) (see Section 4.8). One can fix this value to 1 or take the current estimate
of φ in the chain. More details on Jeffreys prior for BGLIMs were given in Section 5.6.2.
Priors for the variance part can be specified on: (a) the dispersion parameter (φ) (dprior),
(b) the scale parameter (φ1/2) (sprior) and (c) the precision parameter (φ−1) (pprior).
With sprior=improper Jeffreys prior p(φ1/2) ≡ p(σ ) ∝ σ−1 for the scale parameter
is specified. In contrast to WinBUGS, now improper priors are allowed. The user should,
therefore, check that improper posteriors are avoided.

The option diagnostics=all in Figure 8.12 instructs to compute the autocorrela-
tions of lags 1, 5, 10, and 50, the effective sample size and the four formal diagnostics
(Geweke, Gelman–Rubin, Heidelberger–Welch and Raftery–Lewis). For all model parame-
ters, a trace plot, an autocorrelation plot and a kernel density plot are produced by the command
plots(fringe smooth) = all. Specifying ‘fringe’ adds the density of points on the
x-axis and the option ‘smooth’ overlays a smoothed trace plot with the actual trace plot.
Furthermore, the instruction outpost=osteout stores the nmc=10000 sampled values
of the parameters together with the logarithm of the posterior in a user-defined file called
osteout. This file can be processed at a later stage to produce posterior summary measures
or plots not supported by PROC GENMOD. Finally, the statement run instructs to execute
the procedure. Additional options can be specified, e.g. thinning=10 instructs to store
only 10% of the Markov chain. If a specific option is not chosen, the default choice is taken.
For example, in our program thinning is taken by default equal to 1.

Output: PROC GENMOD starts with a maximum likelihood procedure, then reports on
the chosen priors and the chosen initial values (output not shown). The program automatically
chooses three initial values for each parameter. Further, the program reports the deviance
information criterion (DIC) and pD values (see Chapter 10) for model evaluation purposes.

Posterior summary measures including an highest posterior density (HPD) interval are
given for each parameter including a posterior correlation matrix of the parameters from
which we can see that the posterior cross-correlation between the intercept and the slope
equals −0.987 (not shown), confirming a multicollinearity problem in the model. In Figure
8.13, the trace plot, the autocorrelation (ACF) plot and the density plot of the slope are
displayed. We expected to see a high autocorrelation for the regression parameters as was
obtained with the WinBUGS analyses without blocking. However, the posterior autocorre-
lations indicate close to independent sampling. The reason is that PROC GENMOD first
centers (automatically) the covariates such that the multicollinearity problem is resolved be-
fore sampling (this is, however, not documented in the manual). For the output, the results are
back-transformed to the original scale.

According to the Gelman–Rubin, Geweke and Heidelberger–Welch diagnostics conver-
gence was not rejected (with the standard settings) but for the Raftery–Lewis diagnostic the
chain was not long enough (output not shown).
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Figure 8.13 Osteoporosis study: trace plot, autocorrelation (ACF) plot, and density plot of
the slope for the Bayesian regression analysis produced by PROC GENMOD.

Figure 8.14 reports that the estimated effective sample sizes (see Section 7.2.5) for the three
parameters are around 10 000. This is the effect of centering BMI. The autocorrelation time can
be thought of as the sum of significant autocorrelations in a Markov chain, with a significant
autocorrelation defined as greater than 0.05. Here, none of the nontrivial autocorrelations
were important and hence the autocorrelation times were all equal to 1. The efficiency
is defined as the ratio of the effective sample size ESS to the Markov chain size n, i.e.
ESS/n. Finally, using the Monte Carlo standard error (MCSE) equal to the standard deviation
of the sampled (Monte Carlo) mean (MCSE = SD/

√
ESS) we can compute a classical

95% confidence interval for the true posterior mean. For example, this interval is equal to
0.0401 ± 1.96 × 0.000043 = [0.0400, 0.0402] for β1. From the ratio MCSE/SD ≈ 1/100 we
infer that only 1% of the posterior variability is due to simulation.

Additional features: PROC GENMOD allows for different distributions such as: bi-
nomial, gamma, geometric, and different link functions such as: identity, log, logit. Since
the bayes option is incorporated in a procedure that originally performed only frequentist
statistical analyses, some (but many not) of the existing options can be combined with the
Bayesian option.

8.2.2 Analysis using procedure MCMC

Background: The procedure MCMC is a versatile program for MCMC sampling suitable to fit
a variety of statistical models in combination with different priors. PROC MCMC also allows
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Effective sample sizes

ESSParameter
Autocorrelation

EfficiencyTime

Intercept 1.03220.968810322.3

BMI 1.03480.966410347.7

Scale 1.00001.000010000.0

Monte Carlo standard errors

MCSEParameter
Standard

MCSE/SDdeviation

Intercept 0.009840.11660.00115

BMI 0.009830.004370.000043

Scale 0.01000.01330.000133

Figure 8.14 Osteoporosis study: precision with which the parameters of the Bayesian
regression analysis were estimated by PROC GENMOD.

for programming of user-defined priors, log-likelihood functions, and samplers. However, the
procedure does not assume that the model is a DAG, hence there is no restriction on using a
symbol (or a node) multiple times. The procedure hinges on the block Metropolis(–Hastings)
sampler combined with a great variety of proposal densities. The RANDOM statement that
was added to PROC MCMC in version 9.3 greatly improved the rate of convergence for fitting
hierarchical models. An illustration of this novel feature is deferred to Chapter 9.

Syntax: Figure 8.15 displays the commands for a Bayesian regression analysis of the
osteoporosis data using PROC MCMC. Like any other SAS procedure, there is an explicit
loop over the input data set. In other words, the MODEL statement, applied to variable

ods graphics on;
proc mcmc data=osteoporosis outpost=osteout nbi=10000 nmc=20000

nthin=10
monitor=(beta0 beta1 beta2 sigma2 sigma) init=pinit
mchist=detailed

diag=all plots=(TRACE AUTOCORR DENSITY) seed=7771;
parms beta0 0 beta1 0 beta2 0 sigma2 1;
prior beta0 beta1 beta2 ˜ normal(0, var = 10000);

prior sigma2 ˜ igamma(0.0001,scale=0.0001);
sigma =sqrt(sigma2);

mu = beta0 + beta1*bmi + beta2*bmi2;
model tbbmc ˜ normal (mean=mu,var= sigma2);

run;
ods graphics off;

Figure 8.15 Osteoporosis study: PROC MCMC commands to perform a Bayesian regression
analysis.
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names, is equivalent to the for-loop over N (in data) in WinBUGS. Because of this assumption
there is no need to use the indexing on each variable (node) as in WinBUGS. From a
statistical point of view, this is equivalent to assuming that all observations are indepen-
dent which can be lifted with the PROC-level option JOINTMODEL but more program-
ming is required then. Multiple MODEL statements are allowed and they can be used to
declare either joint, or marginal+conditional, distributions on the response variables. All
programming statements need to be thought as being enclosed in the for-loop over N in
WinBUGS, that each is processed for every observation in the simulation. If one wishes to
place them outside of the data loop, one needs to use the BEGINNODATA and ENDNODATA
statements.

We now added a quadratic term (bmi2≡ BMI2) to the model. In addition, we divided BMI
by 10 to improve the clarity of the output (to avoid too many zeroes behind the decimal point).
The option outpost=osteout saves the nmc=20000 sampled values of the parameters
(and log of posterior) after nbi=10000 burn-in samples. The option nthin=10 means
that only every 10th value must stored which here implies that only 2000 values of the
chain were actually stored. This is in contrast to WinBUGS where 200 000 values would
have been generated and 20 000 stored. The option monitor=(beta0 beta1 beta2
sigma2 sigma) is specified to monitor the regression parameters, the residual variance
and residual standard deviation, respectively. Note that this statement can be replaced with
monitor=(_parms_ sigma), where _parms_ is a shorthand for all model parameters.
The proposal density is adapted in the tuning phase to achieve an optimal acceptance rate.
The option init=pinit tabulates parameter values after the tuning phase. This option
also tabulates the tuned proposal parameters used by the Metropolis algorithm. The option
mchist=detailed produces detailed output on various aspects of the MCMC sampling
procedure such as the tuning, burn-in, and sampling history tables, including scale values,
acceptance probabilities and blocking information.

The option diag=all asks that all diagnostics (autocorrelations, effective sample
sizes, Monte Carlo errors and the convergence diagnostics of Geweke, Raftery–Lewis and
Heidelberger–Welch) are given. Note that PROC MCMC does not produce the Gelman–Rubin
diagnostic. The option plots=(TRACE AUTOCORR DENSITY) asks for ODS graphs
(trace plots, ACF plots and posterior density plots). The ‘parms’ instruction serves two
purposes: (1) starting values are given for all parameters and (2) it defines the blocks of the
block MH-Sampler except for the parameters that are sampled with a (conditional)-conjugate
sampler. For instance, the statement parms beta0 0 beta1 0 beta2 0 sigma2
1; requests that all parameters are sampled jointly (in one block). However, by default, the
variance parameter is sampled separately with the inverse gamma (conjugate) distribution as
sampler. Therefore, the procedure takes two blocks: one block for all regression parameters and
one block for the variance parameter. The option sigma =sqrt(sigma2); (combined
with the monitor option) instructs to look also at the residual standard deviation. The like-
lihood is specified by two statements: mu = beta0 + beta1*bmi + beta2*bmi2;
and model tbbmc ˜ normal (mean=mu,var= sigma2);. By default, the normal
sampler is used but this can be changed to a multivariate t-distribution with, say, three degrees
of freedom by adding the option propdist = t(3) to the PROC MCMC statement. The
PRIOR statement declares prior distributions, and is equivalent to the ˜ in WinBUGS and
is outside the for-loop over the data. Like the MODEL statement, multiple PRIOR state-
ments can be used in declaring either a joint, or marginal+conditional, distribution over the
parameters.
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Proposal covariance for block 2

beta2beta1beta0Parameter

beta0 0.0361-0.20060.2720

beta1 -0.02710.1493-0.2006

beta2 0.0050-0.02710.0361

Figure 8.16 Osteoporosis study: normal proposal density for the three regression parameters
with PROC MCMC.

Output: The sampling procedure is a blocked Metropolis sampler with one block consist-
ing of the three regression parameters and another block consisting of the variance parameter.
For the first block, a three-dimensional normal proposal density was chosen and the variance
parameter was sampled with an inverse gamma sampler. The proposal density is N3(θ

k | c2�)

whereby c as well as � were adapted in the tuning phase to achieve approximately an ac-
ceptance rate of 0.234. The covariance matrix c2� of the proposal density at the end of the
tuning phase was obtained by the option init=pinit and is shown in Figure 8.16. The
posterior autocorrelations were low for all lags. Again the trace plots showed good mixing for
all parameters. Further, Geweke and Heidelberger–Welch diagnostics indicated good mixing
but the chain was too small for the Raftery–Lewis diagnostic. The effective sample size was
around 1600 for the regression parameters while for the variance parameter it exceeded even
2000. The MC errors were all below 5% of the posterior SD. Finally, the posterior sum-
mary measures indicated a positive regression coefficient for BMI and a negative regression
coefficient for BMI2 with credible intervals that did not encompass zero.

To illustrate the effect of blocking, we repeated the above analysis with two different
parms statements. When the following two parms statements were given: parms beta0
0 beta1 0 beta2 0; parms sigma2 1; nothing changed, as expected. However,
for the following four parms statements: parms beta0; parms beta1 0; parms
beta2 0; parms sigma2 1;, sampling deteriorated. The convergence diagnostics in-
dicated a significant deviation from convergence for the regression parameters (but conver-
gence for the variance parameter). In addition, the effective sample size for the regression
parameters dropped to about 6. This shows the importance of a good choice of the blocks
(in combination with PROC MCMC).

Additional features: Missing data are allowed, as well as truncated and censored data.

8.2.3 Other Bayesian programs

Two extra SAS procedures include a Bayesian option:

1. PROC LIFEREG: allows for parametric survival analysis. The sampler is the same as
that of PROC GENMOD and roughly similar Bayesian options are provided.

2. PROC PHREG: the Bayesian equivalent of the popular semiparametric Cox propor-
tional hazards survival model. The procedure uses Gibbs sampling for the regression
parameters and piecewise hazard model parameters. About the same Bayesian options
as with PROC LIFREG are available.
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The procedures GENMOD, LIFEREG and PHREG allow for multiple chains and the
application of the Gelman–Rubin diagnostic, while the procedure MCMC is based on the
single chain methodology.

Two other SAS procedures have a Bayesian option, i.e. PROC MI and PROC MIXED.
The first procedure imputes missing data using MCMC techniques and assumes multivariate
normality of the observations. The procedure appears to use the Gibbs sampler, but details
are not provided. The second procedure is one of the most popular recent SAS statistical
procedures for fitting mixed effects models to data in a frequentist manner. In SAS version
9.2 a PRIOR statement has been added to the options of PROC MIXED. This novel feature
now allows for a Bayesian analysis to Gaussian hierarchical models. The procedure uses by
default the independent Metropolis–Hastings algorithm (see Section 6.3.4) but offers another
three sampling algorithms.

8.3 Additional Bayesian software and comparisons

8.3.1 Additional Bayesian software

First Bayes is an excellent program for classroom teaching to fresh students in Bayesian
methods. The package has been developed by O’Hagan and can be downloaded from
www.firstbayes.co.uk/ and comes with a manual.

It is impossible to give a comprehensive overview of Bayesian software for the sim-
ple reason that lately we have seen an explosion of Bayesian programs primarily writ-
ten in R and Matlab. For R packages one might consult the CRAN website (http://cran.r-
project.org/). Another possibility is the website of the International Society for Bayesian
Analysis (http://bayesian.org/) or just to Google the web. Below is a personal choice of some
Bayesian software that might be useful for fitting models considered in this book. All these
packages use MCMC techniques to arrive at the Bayesian solution:

� MLwiN package (http://www.bristol.ac.uk/cmm/software/mlwin/) is dedicated software
for modeling hierarchical data. The package has a frequentist and a Bayesian component
based on MCMC algorithms. A good source for this package is Rasbash et al. (2009)
or Lawson et al. (2003).

� MCMCglmm (see CRAN website): R package for fitting Generalised Linear Mixed
Models using MCMC methods. Most commonly used distributions are supported but
also less popular ones like the zero-inflated Poisson and the multinomial. Missing
values and left, right, and interval censoring are accommodated for all traits. The
package allows various residual and random effect variance structures.

� MNP (see CRAN website): R package that fits the Bayesian multinomial probit model.

� MCMCpack (http://mcmcpack.wustl.edu/): R package that fits several models that are
useful for social scientists such as IRT models and change-point models, also useful
for biostatisticians.

� msm (see CRAN website): R package that fits multistate models.

� BACC (http://www2.cirano.qc.ca/∼bacc/bacc2003/index.html): available on different
platforms with R, S+, Matlab versions containing a wide range of programs used by
econometricians but also useful for biostatisticians.
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� BayesX (http://www.stat.uni-muenchen.de/∼bayesx/bayesx.html): R package for
estimating a variety of highly structured additive regression models, such as gener-
alized additive models (GAMs), generalized additive mixed models (GAMM), varying
coefficient models (VCM), etc.

� BNT (http://code.google.com/p/bnt/): Matlab package for directed graphical mod-
els. One may consult also the website http://www.cs.ubc.ca/∼murphyk/Software/
bnsoft.html for a great variety of programs to fit graphical models.

The approach followed in the integrated nested Laplace approximations (INLA) package
(http://www.r-inla.org/home) is drastically different. INLA is based on sophisticated Laplace
approximations (Rue et al. 2009). The package is applicable to (basically) each model that
can be thought of a Gaussian model either immediately, or via a transformation or in a latent
sense. Since no sampling is involved, computations appear to be much faster than with MCMC
algorithms while keeping a high precision on the posterior estimates of the parameters.

A quite useful freely available software tool to access the R packages is RStudio v0.94
(http://rstudio.org/). RStudio is available for all major platforms including Windows, Mac OS
X and Linux. It divides the screen into four subscreens: an editor, a console, a screen showing
the workspace and the history, and a fourth screen that shows the generated plots and allows
to install, load and update R packages.

8.3.2 Comparison of Bayesian software

The programming environments of WinBUGS and SAS are clearly different. WinBUGS has an
open-ended environment similar to the S+/R programming (but with more limitations), while
SAS offers a more procedural environment, some of the procedures also have a programming
environment. An in-depth comparison of WinBUGS and the Bayesian SAS programs needs
to be done with care, since both packages can handle quite a range of statistical models
and experience with the package plays a great role. We have not envisaged such a thorough
comparison here, rather we wished to illustrate by some elementary examples how different the
two programs operate. Nevertheless, for a particular hierarchical model, i.e. a logistic random
effects model (Chapter 9), we have compared several frequentist and Bayesian statistical
packages including WinBUGS 1.4.3, SAS PROC MCMC version 9.2 and MLwiN 2.13
(Li et al. 2011). Two conclusions are important. First, the packages differ considerably
in programming environment and flexibility toward tackling statistical problems whereby
WinBUGS and SAS can handle the greatest variety of problems. Second, the packages also
differ greatly with respect to computational efficiency. Namely, MLwinN was clearly the
winner and SAS PROC MCMC version 9.2 was hopelessly inefficient. With the introduction
of the RANDOM statement in version 9.3, sampling hierarchical models is now much more
efficient and often comparable to WinBUGS.

8.4 Closing remarks

In this chapter, we have focused on the facilities of primarily two Bayesian programs:
WinBUGS and SAS. While at this stage, the majority of the Bayesian analyses are done
using WinBUGS and with dedicated R packages, it is conceivable that the Bayesian SAS
procedures will gain in popularity definitely among SAS users but likely also among a more
general class of applied statisticians.
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Exercises

Exercise 8.1 Perform the analysis of Exercises 7.1 and 7.2 in WinBUGS with blocking
options both switched on and off.

Exercise 8.2 Apply some acceleration techniques to improve the convergence rate in
Exercise 8.1 of the WinBUGS sampler when the blocking options are switched off.

Exercise 8.3 Perform the analysis of Exercises 7.1 and 7.2 in SAS using PROC GENMOD
and PROC MCMC.

Exercise 8.4 Run the Mice Example of the WinBUGS document ‘Examples Vol I’ with
WinBUGS and replace the Weibull distribution with a lognormal distribution. Produce the
autocorrelation function in both cases. Try out also some acceleration techniques.

Exercise 8.5 Run the Mice Example of the WinBUGS document ‘Examples Vol I’ in SAS
using the Bayesian option in PROC LIFEREG and PROC MCMC. Try out different MH
samplers with PROC MCMC. Compare the convergence rates and posterior summary mea-
sures between the SAS procedures but also to that of WinBUGS. Then replace the Weibull
distribution with a lognormal distribution and evaluate again the performance of samplers.

Exercise 8.6 Perform the analysis of Exercise 7.7 using WinBUGS. Repeat the analyses with
PROC MCMC.

Exercise 8.7 Perform the analysis of Exercise 7.8 in SAS using PROC MCMC.

Exercise 8.8 Analyze the caries data of Example VII.9 with PROC GENMOD and PROC
MCMC. Try out different MH samplers with PROC MCMC. Compare the convergence rates
and posterior summary measures between the SAS procedures but also to that of WinBUGS.

Exercise 8.9 Take the Kidney Example of the WinBUGS document ‘Examples Vol I’. Look
only at the first event (i.e. change the model and the data structure). Run the WinBUGS
program and explore whether the convergence rate can be improved.

Exercise 8.10 Analyze the first event in the Kidney Example of the WinBUGS document
‘Examples Vol I’ with the Bayesian option in the SAS procedure LIFEREG and procedure
MCMC.

Exercise 8.11 Analyze the interval-censored data (contained in file ‘chapter 7 interval cen-
soring.R’) with WinBUGS and PROC MCMC.

Exercise 8.12 Take the Dugongs Example of the WinBUGS document ‘Examples Vol II’ and
observe what happens when centering the covariate age. What is your conclusion?

Exercise 8.13 Take the Dugongs Example of the WinBUGS document ‘Examples Vol II’ and
observe what happens when the prior distribution for γ is changed into (a) Beta(1, 3) and (b)
Beta(3, 1).
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9

Hierarchical models

9.1 Introduction

In this chapter, we introduce Bayesian hierarchical models (BHMs). A BHM is a Bayesian
statistical model for data that have an hierarchical structure. Such data are also referred to as
clustered. Clustered data are abundant in the medical literature. Examples are measurements
taken repeatedly over time on the same subject, data that exhibit a spatial hierarchy such as
surfaces on teeth and teeth in a mouth, multi-center clinical data with patients within centers,
cluster randomized trials where centers are randomized to interventions, meta-analyses, etc.

A proper statistical analysis of clustered data must take the correlation in the data into
account. Different frequentist approaches have been proposed to handle correlated data. The
generalized estimating equations (GEEs) technique introduced by Liang and Zeger (1986) is
a popular approach that relies on minimal distributional assumptions treating the correlation
structure among the repeated measures as nuisance. If one is willing to make some distribu-
tional assumptions, insight can be obtained in the correlation structure of the data. A class
of frequentist parametric models that explicitly models the association consists of the mixed
effects models also called multilevel models or (frequentist) hierarchical models. In these
models, one distinguishes fixed from random effects. A fixed effect is a constant parameter
that pertains to a population of subjects and expresses a population effect of the regressor.
On the other hand, random effects are parameters that vary across subjects and express the
subject-specific effects. The alternative term ‘multilevel model’ reflects that for hierarchical
data the subjects are clustered in several levels.

The BHM is a hierarchical model whereby all parameters are given a prior distribution.
It seems unnecessary for a BHM to distinguish between fixed and random effects, since in
a Bayesian context, all parameters are random. Nevertheless, this distinction appears to be
useful and we stick to it here. Many of the properties attributed to the frequentist hierarchical
model also apply to the BHM, but a BHM might offer more to the statistical practitioner.
First, the Bayesian approach takes automatically into account all uncertainty in the model
parameters. Second, the MCMC algorithms offer a great flexibility in relaxing the strong
parametric assumptions prevalent in most frequentist hierarchical models.

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.



P1: JYS/XYZ P2: ABC
JWST177-c09 JWST177-Lesaffre May 29, 2012 10:5 Printer Name: Yet to Come Trim: 244mm × 168mm

228 HIERARCHICAL MODELS

We introduce the BHM via two simple examples, i.e. the Poisson-gamma model and the
Gaussian hierarchical model. Both models have the advantage that (to some extent) analytical
results can be presented, which gives insight in how parameters are estimated. We also contrast
the full Bayesian approach with the frequentist Empirical Bayesian approach. The general
class of Bayesian mixed models governing the Bayesian linear mixed model (BLMM) with the
Gaussian hierarchical model as a particular case, is the next topic. The Bayesian generalized
linear mixed model (BGLMM) constitutes a larger class of BHMs. Further extensions of the
BGLMM have been suggested but, unfortunately, cannot be treated here because of space
limitations. Ensuring that a noninformative BGHLM prior yields a proper posterior may not
be easy. A particular case is the choice of the NI prior for the level-2 variance in a BHM. This
problem has raised quite some interest and is treated in this chapter. Further, we review and
illustrate dedicated techniques that assess and accelerate the convergence of the Markov chain
in an hierarchical context. Finally, we contrast the performance of frequentist and Bayesian
hierarchical modeling approaches.

Most analyses were performed with WinBUGS 1.4.3 and OpenBUGS 3.2.1. For some
examples, we also used the Bayesian SAS® procedure MCMC version (primarily) 9.3. Details
on the syntax of the programs are largely ignored in this chapter, but we rather refer to the
programs at the website of the book. To check convergence of the Markov chain, we visually
inspected the trace plots. We often initiated multiple chains and applied the Brooks–Gelman–
Rubin (BGR) convergence test. In many cases also, the whole battery of convergence diag-
nostics was applied (as an ultimate check). Finally, we let the chain run until the MCerror is
less than 5% of the posterior SD.

9.2 The Poisson-gamma hierarchical model

9.2.1 Introduction

A gentle introduction to the BHM is provided by the Poisson-gamma model. We start with a
model without covariates.

Example IX.1: Lip cancer study: Description
Spatial risk assessment is nowadays one of the major foci in public health. The geographical
distribution of the prevalence and incidence of a disease plays an important role in under-
standing its etiology. An example of such a geographical, also called spatial, epidemiological
study is the study on mortality from lip cancer among males in the former German Democratic
Republic including Berlin (GDR). This area has been under surveillance since 1961 (Möhner
et al. 1994). In 1989, 2342 deaths were recorded from lip cancer among males in 195 regions
of GDR. For each region, the observed frequency of deaths, i.e. yi, (i = 1, . . . , n = 195),

was recorded and an expected count, ei was calculated as follows. A reference population, in
this case the whole of GDR, was split-up into age deciles. In each decile, the observed overall
prevalence of lip cancer mortality among males was computed. The overall prevalence in
each age decile was then multiplied with the population size of each region in the respective
age decile. The sum of the products, i.e. ei, is an estimate of the true count in that region if
the risk of dying from lip cancer for a male were equal across all regions in GDR. The ratio
SMRi = yi/ei is called the standardized mortality rate or morbidity rate in case the prevalence
of a disease is examined. SMRi is an estimate of the true relative risk (RR), i.e. θi for mortality
(or morbidity) in the ith region. In Figure 9.1(a), the histogram is shown of the standardized



P1: JYS/XYZ P2: ABC
JWST177-c09 JWST177-Lesaffre May 29, 2012 10:5 Printer Name: Yet to Come Trim: 244mm × 168mm

THE POISSON-GAMMA HIERARCHICAL MODEL 229

Observed SMR

0 1 2 3

0.
0

0.
4

0.
8

1.
2

(a)

Simulated SMR

0 1 2 3

0.
0

0.
4

0.
8

1.
2

(b)

Figure 9.1 Lip cancer study: histogram of (a) observed SMRs and (b) simulated SMRs
assuming that the 195 regions of GDR have the same risk.

mortality rate for lip cancer among males in GDR across the 195 regions. Since the reference
population is internal (GDR), a region with θi > 1 exhibits an increased risk for dying from
lip cancer (compared to the overall GDR risk), while regions with θi ≤ 1 show no increased
or even a decreased risk. Banuro (1999) applied a variety of spatial Bayesian models to these
data. Here, we consider a simple BHM.

SMRs could be displayed on a (geographical) map, called a disease map, to visually
pinpoint regions with an increased risk for mortality (or morbidity). However, SMRi is an
unreliable estimate of θi for a relatively sparsely populated region and it is recommended to
use a more stable estimate of θi for constructing the disease map. This robust estimate is based
on a BHM, as will be seen now.

9.2.2 Model specification

The lip cancer-mortality data are clustered, i.e. the male subjects are clustered in the regions of
GDR. What assumptions should we make on the regions? More specifically what is reasonable
to assume about yi and θi?

Example IX.2: Lip cancer study: Basic assumptions
The first level data are the mortality counts yi. We assume that yi ∼ Poisson(θi ei),

(i = 1, . . . , n) and that given θi the yi are independent. This implies that the males in each
of the regions contribute independently to the observed counts. This is often a reasonable
assumption but can be relaxed easily in a Bayesian context as will be seen in Section 9.5.

We can make (at least) three assumptions about the second level (latent) data, i.e. the
regions and hence the θis:

A1: The n regions are unique, not related to each other. Under this assumption, information
from region j on θ j ( j �= i) does not provide any information on θi implying that the
maximum likelihood estimate (MLE) of θi is equal to SMRi with asymptotic variance
θi/ei. In that case, SMRi shows a high variability for a sparsely populated region (with
small ei) and the (Bayesian) estimate of θi depends only on yi.
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A2: The counts y1, y2, . . . , yn are a simple random sample of GDR (or a super population)
and hence each SMRi estimates the same risk θ . Since the reference region (GDR) is
internal, this means here that θ1 = . . . = θn = θ = 1. For an external reference region,
i.e. when θ �= 1, and under the Poisson assumption, the MLE of θ is

∑
i yi/

∑
i ei.

A3: The regions share some common environmental conditions, especially when they are
close together geographically. For instance, climatological conditions, air pollution and
life style do not change drastically when crossing the border of a region. This implies
that the θis are related. To express this we assume that {θ1, . . . , θn} is a random sample
from p(θ | ·), which is called the prior distribution of θi.

The choice between assumptions A1 and A3 largely depends on subjective arguments.
For instance, one could always argue that each region is unique. But, then one ignores that
regions share the same climatological conditions, undergo to a large extent the same industrial
pollution, and has inhabitants who exhibit roughly the same dietary behavior.

Assumption A2 can be tested statistically. Here, we verified this assumption informally us-
ing a simple simulation exercise. Namely, to verify assumption A2 for the lip cancer–mortality
data we sampled counts using yi ∼ Poisson(ei) and plotted the sampled SMRs in Figure 9.1(b).
A simple graphical inspection demonstrates that the observed SMRs show considerably more
variation than the sampled ones, suggesting heterogeneity in the true RRs. Assumption A3
appears thus quite reasonable and will be made here.

Assumption A3 is a compromise between A1 and A2 and implies that θ1, . . . , θn have a
common distribution p(θ | ψ), with ψ a vector of hyperparameters. Under this assumption
the set θ = {θ1, . . . , θn} is called exchangeable in the sense of Section 3.5. Further, subjects
within regions are exchangeable but not between regions. Thus exchangeability is applied here
on the two levels of the hierarchy. An implication of exchangeability is that θi are estimated
using information from all regions. This phenomenon is called ‘borrowing strength (from the
other regions)’.

Having chosen assumption A3, which prior p(θ | ψ) should we take? A computationally
convenient choice is the conjugate for the Poisson distribution, i.e. to assume that the θi are
i.i.d. according to Gamma(α, β) (i = 1, . . . , n). Then the a priori mean and variance of the
θis is α/β and α/β2, respectively.

Without specifying a prior distribution for the hyperparameters α and β, the above model
is a frequentist hierarchical model. In general, the choice of the hyperprior p(α, β) depends on
our prior belief about the hyperparameters. Occasionally, historical data are available allowing
to specify an informative prior, but often one chooses a vague prior. Upon the choice of the
hyperprior the specification of the BHM is complete. The hierarchical structure of the model
(and data) is shown in Figure 9.2. Note that the level-1 observations (yi) are observed, while
the level-2 (θi) observations are latent and thus unobserved. The Poisson-gamma model is a
two-level hierarchical model with following levels:

� Level 1: yi | θi ∼ Poisson(θi ei) for i = 1, . . . , n

� Level 2: θi | α, β ∼ Gamma(α, β) for i = 1, . . . , n

� Prior: (α, β) ∼ p(α, β)

The distribution of θi is often referred to as a prior in the Bayesian literature, since in the
paradigm there is no difference between parameters and latent random variables. However,
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Figure 9.2 Lip cancer study: hierarchical structure in the data.

to emphasize the hierarchical structure of the data, we have put here (and will do so in the
remainder of the book) this distribution as part of the model description.

The above Poisson-gamma model is inspired by the lip cancer study. In a more general
setting, we may have mi counts yi j for each θi. In that case, the first level of the above two-level
hierarchical model becomes

� Level 1: yi j | θi ∼ Poisson(θi ei) for j = 1, . . . , mi; i = 1, . . . , n.

9.2.3 Posterior distributions

Based on the distributional assumptions made above, the posterior distribution can be derived.
Let y represent the set of observed counts {y1, . . . , yn}, then the joint posterior distribution is

p(α, β, θ | y) ∝
n∏

i=1

p(yi | θi, α, β)

n∏
i=1

p(θi | α, β) p(α, β).

By assuming that yi ∼ Poisson(θi ei), we implicitly assume hierarchical independence for the
counts, and thus,

p(α, β, θ | y) ∝
n∏

i=1

(θiei)
yi

yi!
exp (−θiei)

n∏
i=1

βα

�(α)
θα−1

i e−βθi p(α, β). (9.1)

A Gibbs sampling approach requires the determination of the full conditionals. In the
following example, we chose independent exponential priors for the hyperparameters: p(α) =
λα exp(−λαα) and p(β) = λβ exp(−λββ). For this choice, the full conditionals are:

p(θi | θ(i), α, β, y) ∝ θ
yi+α−1
i exp [−(ei + β)θi] (i = 1, . . . , n),

p(α | θ, β, y) ∝
(
βn

∏
θi

)α−1

�(α)n
exp(−λαα),

p(β | θ, α, y) ∝ βnα exp
[
−

(∑
θi + λβ

)
β
]
,
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with θ(i) is equal to θ without θi. The DAG of the Poisson-gamma model is given in
Figure 9.4.

The first and third full conditionals are gamma distributions. The first gamma distribution
follows from the fact that the gamma distribution is a conditional conjugate to the Poisson
distribution. Clearly, p(θi | θ(i), α, β, y) ≡ p(θi | α, β, yi) and hence, given the hyperparam-
eters each such full conditional depends only on the count and the RR of the ith region. Note
that also p(α | θ, β, y) ≡ p(α | θ, β) and p(β | θ, α, y) ≡ p(β | θ, α).

Instead of sampling from the full conditionals, a block sampling approach could also be
implemented, alternating between (1) θ | α, β, y and (2) α, β | θ, y. The conditional distribu-
tion of θ is the product of n independent gamma distributions, so here sampling should be no
problem. Sampling from p(α, β | θ, y) cannot be done with standard sampling algorithms,
but a Gibbs sampler helps here (Exercise 9.3).

9.2.4 Estimating the parameters

Since α, β and θ are estimated here using an MCMC approach, there is in principle no need to
look for analytical expressions of the parameter estimates. Nevertheless, if such relationships
exist they may give insight in the obtained MCMC estimates. For the Poisson-gamma model,
some results can be derived:

� Since p(θi | α, β, yi) = Gamma(α + yi, β + ei), the posterior mean of θi (given α and
β) is equal to E(θi | α, β, yi) = (α + yi)/(β + ei). It follows immediately that

α + yi

β + ei
= Bi

α

β
+ (1 − Bi)

yi

ei
, (9.2)

with Bi = β/(β + ei) a shrinkage factor that indicates how much the observed SMRi is
shrunk toward the overall mean by taking the posterior mean instead. This phenomenon
is similar to what we have seen in Chapter 2.

� The marginal posterior distribution of θi is

p(θi | y) =
∫

p(θi | α, β, yi)p(α, β | y) dα dβ, (9.3)

with p(α, β | y) given in expression (9.4). The shrinkage seen in (9.2) for a given α

and β also applies marginalized over the posterior of these parameters. Hence, θ i is
less extreme than the observed SMRi and we say that there is shrinkage toward the
overall mean.

� The marginal posterior distribution of α and β is

p(α, β | y) ∝
n∏

i=1

�(yi + α)

�(α)yi!

(
β

β + ei

)α (
ei

β + ei

)yi

p(α, β). (9.4)

Note that only the posterior distribution p(θi | α, β, yi) can be determined analytically. The
other posterior distributions and posterior summary measures must be calculated numerically.
Besides MCMC techniques, other numerical approaches are possible here. For instance,
Gelman et al. (2004) combined calculations on a grid for α and β with the Method of
Composition for θi.
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model
{
for( i in 1 : n ) {

# Poisson likelihood for observed counts
observe[i]˜dpois(lambda[i]) ; lambda[i] <- theta[i]*expect[i]
smr[i] <- observe[i]/expect[i]
theta[i] ˜dgamma(alpha,beta)

# Shrinkage factor
B[i] <- beta/(beta + expect[i])

# Distribution of future observed counts from region i
predict[i] ˜ dpois(lambda[i])
}

# Distribution of future observed counts for a particular
expected count 100

theta.new ˜dgamma(alpha,beta); lambda.new <- theta.new*100
predict.new ˜ dpois(lambda.new)

# Prior distributions for "population" parameters
alpha ˜ dexp(0.1); beta ˜ dexp(0.1)

# Population mean and population variance
mtheta <- alpha/beta; vartheta <- alpha/pow(beta,2);

sdtheta <- sqrt(vartheta)
}

Figure 9.3 Lip cancer study: WinBUGS program.

Example IX.3: Lip cancer study: A WinBUGS analysis
In Figure 9.3, we show part of the WinBUGS program for analyzing the lip cancer mortality
data corresponding to the model developed above; see the file ‘chapter 9 lip cancer PG.odc’.
The vague prior for the hyperparameters was taken as a product of two exponential distribu-
tions, namely, p(α, β) = 0.1 exp(−0.1α) × 0.1 exp(−0.1β). One can verify that WinBUGS
employs the gamma sampler for the θi and β nodes, while adaptive rejection sampling is used
for the α node (see Section 8.1.2).

Three chains of size 10 000 iterations were initiated. The BGR plots in WinBUGS showed
quick convergence despite that the autocorrelation for the hyperparameters α and β was around
0.5 for lag 20. The θis were sampled basically in an independent manner. Exporting the chains
to CODA allowed to apply a battery of convergence diagnostics. The overall Geweke test was
significant for chain 1. For all chains the dynamic Geweke plot showed several excursions
outside the boundaries of −2 and 2. On the other hand, Heidelberger–Welch tests were passed
for all chains and for both α as well as β. As an extra check we ran a further 10 000 iterations
but the parameter estimates remained basically the same.

The posterior summary measures shown in Table 9.1 were based on iterations
5001–10 000. The average of the θis was estimated as 1.19, accurately determined (Monte
Carlo error = 7.557E−4). The estimated standard deviation of the θis is about 0.5 indicating
the variability of the true risks. Highest posterior density (HPD) intervals were computed in
CODA and we obtained for α [4.275, 7.692] as 95% HPD interval and [4.373, 7.814] as 95%
equal tail interval.

A disease map based on the posterior mean θ i yields a less ragged graph than a disease
map based on SMRi. WinBUGS computes the posterior summary measures of the node θ if



P1: JYS/XYZ P2: ABC
JWST177-c09 JWST177-Lesaffre May 29, 2012 10:5 Printer Name: Yet to Come Trim: 244mm × 168mm

234 HIERARCHICAL MODELS

for(i IN 1 : n)

betaalpha

theta[i]

lambda[i]

expect[i]

observe[i]

Figure 9.4 Lip cancer study: DAG for the Poisson-gamma model created by the Doodle
option in WinBUGS; see Figure 9.3 for an explanation of the nodes.

monitored (via ‘Sample Monitor Tool’). WinBUGS also allows a graphical inspection of the
θis, using a box plot or a caterpillar plot (Option ‘Inference > Comparison Tool’). In Figure
9.5, a caterpillar plot is shown of θ1, . . . , θ30 together with the respective 95% equal-tail CIs.
One could also plot the posterior estimates in a disease map of GDR. This can be done using
the option Map but only when the map of GDR has been imported in WinBUGS. More on
spatial models can be found in Chapter 16.

To illustrate the shrinkage effect we show in Figure 9.6(a) a scatterplot of θ i versus SMRi.
Clearly, the θ is show less variability and are shrunk toward the overall posterior mean. The
shrinkage factor Bi is obtained from B[i] <- beta/(beta+expect[i]). The plot of
the posterior mean of Bi versus log(ei) is shown in Figure 9.6(b). This graph shows that there
is more shrinkage when the expected count is low. In that case, the estimate of the risk very
much depends on the global average and thus on all other regions. This is the meaning of
‘borrowing strength’.

Table 9.1 Lip cancer study: posterior summary measures obtained from an analysis based
on the WinBUGS program of Figure 9.3.

Node Mean sd MC error 2.5% Median 97.5% Start sample

Alpha 5.844 0.8656 0.04197 4.325 5.786 7.712 5001 15000

Beta 4.91 0.7728 0.03763 3.563 4.861 6.573 5001 15000

mtheta 1.193 0.04556 7.557E-4 1.107 1.191 1.287 5001 15000

sdtheta 0.4976 0.04384 0.002051 0.4194 0.4951 0.5906 5001 15000

vartheta 0.2496 0.04443 0.002071 0.1759 0.2451 0.3488 5001 15000
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Caterpillar plot: theta[1:30]

0.0 1.0 2.0 3.0 4.0

Figure 9.5 Lip cancer study: posterior estimates of θ1, . . . , θ30 (caterpillar plot) obtained
from the WinBUGS program of Figure 9.3.

In Section 9.5.7, we explain that care is needed in choosing the hyperprior for the variance
parameter of a Gaussian hierarchical model. Therefore, we have taken here two alternative
hyperpriors as a sensitivity analysis. Namely, we have also considered (1) independent uniform
priors on the interval [0,100] for α and β and (2) the product of a N(0, 103) prior for the mean
α/β and an IG(10−3, 10−3) prior for the variance α/β2 of the θis. No material differences
were observed, though.
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Figure 9.6 Lip cancer study: (a) posterior mean of θi versus SMRi, marginal mean =
posterior mean of α/β, and (b) shrinkage factor versus the logarithm of the expected counts.
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We now look at the Bayesian solutions under assumptions A1 and A2. To analyze the lip
cancer data in WinBUGS under assumption A1, we need to express that all regions are unique.
This can be accomplished by replacing the distributional assumption on the θis by theta[i]
˜ dunif(0,100) and removing the commands that pertain to the hyperparameters α and
β. The posterior means of the θis were close to the observed SMRs, a reflection that there is
no ‘borrowing of strength’. Under assumption A2, the RRs of the different regions estimate
a common θ equal to one since the expected counts are based on the whole of former
East Germany. The WinBUGS program under A2 requires two changes, i.e. lambda[i]
<- theta*expect[i] and the prior for θ , i.e. theta ˜ dunif(0,100) is specified
outside the inner loop. We obtained 0.95 as posterior mean for θ .

The lip cancer data were also analyzed with SAS procedure MCMC version 9.3. Some
of the commands and options were explained and illustrated in Chapter 8 except for the
RANDOM statement. The RANDOM statement declares a symbol as the random effect,
but internally, PROC MCMC generates a vector of random-effects parameters, whose names
are created by concatenating the symbol and values in the SUBJECT = variable. However,
as the symbol appears in the program, PROC MCMC knows which of the random-effects
parameters that it should use and replaces it accordingly. Further, the RANDOM statement
declares distributions on the random effects parameters and it is equivalent to a for-loop in
WinBUGS over an array of random effects parameters. With the RANDOM statement there
is no need for the user to figure out the levels of the clustering (which is handled by the
SUBJECT= field) and the cluster membership does not need to be indexed numerically (from
1 to N) as required in WinBUGS. Once the symbol (in the RANDOM statement) enters the
program, the symbol is automatically associated with the correct random effects parameter
according to the clustering-membership. This is equivalent to the u[index[i]] business in
WinBUGS, where u[] is the array that holds all random effects parameters (declared outside
of the data for-loop), index is a data set variable that declares cluster membership and i is
used in the data-level loop.

Example IX.4: Lip cancer study: A SAS analysis
Figure 9.7 contains the program to analyze the lip cancer mortality data with SAS procedure
MCMC version 9.3. The option subject=index specifies the variable that indexes the
random effect, here theta. The option monitor=(theta_1 - theta_10) asks for
posterior summary and diagnostics (in addition to the plots) for the first ten θ -values. This

proc mcmc data=lipcancer outpost=lipout nmc=15000 nbi=15000 seed=7;
parms alpha beta;
random theta ˜ gamma(shape=alpha,iscale=beta) subject=index
monitor=(theta_1 - theta_10);
prior alpha beta: ˜ expon(iscale=0.1);
mu = e * theta;
model o ˜ poisson(mu);
run;
/* the CATER autocall macro produces caterpillar plot */
%cater(data=lipout, var=theta_:);

Figure 9.7 Lip cancer study: SAS procedure MCMC version 9.3.
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output is automatically generated for the parameters α and β. Finally, the built-in macro
%cater generates a caterpillar plot for θ . The statement theta_ in the %cater macro is
a shorthand notation for all variable(s names) that start with theta_ in the DATA= data set
(which is lipout). The program can be found in ‘chapter 9 lipcancer PG.sas’.

PROC MCMC does not allow for multiple chains. To be compatible with the previous
WinBUGS run, we therefore initiated one run of 30 000 iterations of which 15 000 iterations
served as burn-in. The parameters α and β were sampled in one block using a Normal
Metropolis updater. The random effects were sampled with a univariate Normal Metropolis
sampler. For α and β the Geweke diagnostic was significant. So we increased nmc to 30 000
to achieve convergence. The posterior mean (SD) for α and β were 5.84 (0.89) and 4.91
(0.79), respectively. The 95% equal tail and HPD intervals are automatically provided by
PROC MCMC. They are equal to [4.2462, 7.7176] and [4.1104, 7.5102] for α, while for β

they are [3.4930, 6.6245] and [3.3268, 6.4110]. For all monitored parameters the MCerror
was smaller than 5% of the posterior SD. Due to the relative high autocorrelation for both
hyperparameters (around 0.5 for lag = 10) the relative efficiency was relatively low (around
700) for both parameters.

Finally, we note that the 9.2 version of procedure MCMC was hopelessly inefficient for
hierarchical models. Indeed, the previous version of PROC MCMC did not distinguish fixed
from random effects and hence did not capitalize on the conditional independence in the
Poisson-gamma model. This is a nice illustration of the importance of (not) exploiting the
specific characteristics in the data and the consequences this may have on the performance of
the algorithm.

9.2.5 Posterior predictive distributions

We now wish to predict future counts from a Poisson-gamma model in the light of the observed
counts y. We consider two cases. In the first case, our interest is to predict the future count
of males dying from lip cancer in one of the 195 regions. In the second case, we wish to
predict lip cancer mortality for new regions not considered before. In both cases some kind of
exchangeability is assumed of the future counts with the observed counts. The basic theory
of Bayesian prediction has been introduced in Section 3.4.2.

Example IX.5: Lip cancer study: Posterior predictive distributions
Suppose we wish to predict the number of males dying from lip cancer in the ith (1 ≤ i ≤ 195)
region with expected count ẽi. For this calculation, we assume that the future count ỹi is
exchangeable with the current yi given the expected count. This prediction involves the
computation of p(̃yi | y), which is the posterior predictive distribution (PPD) for the ith
response. By applying hierarchical independence, the PPD is equal to

p(̃yi | y) =
∫

α

∫
β

∫
θi

p(̃yi | θi) p(θi | α, β, y) p(α, β | y) dθi dα dβ, (9.5)

with p(̃yi | θi) = Poisson(̃yi | θi ẽi), p(θi | α, β, y) = Gamma(θi | α + yi, β + ẽi) and
p(α, β | y) given by expression (9.4). There is no analytical solution to the above inte-
gral but sampling can help here. For instance, we could sample from p(̃yi, θi, α, β | y) and
retain only the sampled ỹis. This can be done as in Section 4.6 using independent sam-
pling algorithms, i.e. sample first from p(α, β | y), then sample from p(θi | α, β, y) and
finally sample from p(̃yi | θi). The last two sampling exercises involve standard distributions.
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Sampling α and β could be done from a discrete approximation on a grid as in Gelman et al.
(2004).

Sampling the PPD with expression (9.5) is done here using WinBUGS. The PPD for the
ith region is obtained from the command predict[i] ˜ dpois(lambda[i]). This
results for region 1 (y1 = 5, e1 = 6) in a posterior mean (SD) for ỹ1 of 6.0 (3.0), while for
region 195 (y195 = 110, e195 = 288), we obtained 114.0 (15.4) or ỹ195. In both cases, the
predicted count appears close to the observed count, but a different story emerges when
looking at the differences in a relative manner. Namely, the regions with the smallest expected
counts have the largest relative differences with a maximal value for region 184 with an
observed count of 0 and a predicted count of 3.5. Note that the comparison of ỹi with yi

(i = 1, . . . , n) delivers a goodness-of-fit test for the model (see also Section 10.3.4).
For the second case of prediction, imagine that we wish to predict male lip cancer mortality

in regions of former West Germany. Hereby, we need to assume that the regions of the two
parts of Germany are exchangeable. In that case, we assume that the RR of the new region
belongs to the same (gamma) distribution as that of the 195 original regions. The PPD for ỹ
with expected count ẽ becomes

p(̃y | y) =
∫

α

∫
β

∫
θ̃

p(̃y | θ̃ ) p(θ̃ | α, β) p(α, β | y) dθ̃ dα dβ, (9.6)

with now p(̃y | θ̃ ) = Poisson(̃y | θ̃ ẽ), p(θ̃ | α, β, y) = Gamma(θ̃ | α, β) and p(α, β | y)

again given by expression (9.4). Note that the distribution of θ̃ depends indirectly on the
past data via the marginal posterior of α and β.

Sampling PPD (9.6) can again be done using the Method of Composition, but we chose
here for WinBUGS since it involves only the addition of three extra statements:

theta.new ˜ dgamma(alpha,beta)
lambda.new <- theta.new*100
predict.new ˜ dpois(lambda.new)

For ẽ = 100, we obtained for ỹ as posterior mean (SD) 118.8 (50.7) and posterior median
111.

Also in SAS, only one statement needs to be added to obtain predicted values based on
the PPD. With preddist outpred=lout; one requests the predicted values and store
these in a work file called ‘lout’; see file ‘chapter 9 lipcancer PG.sas’.

9.3 Full versus empirical Bayesian approach

The Bayesian analysis in Section 9.2 is sometimes referred to as a Full Bayesian (FB) analysis
to contrast it with an Empirical Bayesian (EB) analysis. EB estimation is a classical frequentist
approach to estimate (functions of) the ‘random effects’ (level-2 observations) in a hierarchical
context; see Carlin and Louis (2009) for an extensive treatment of the EB approach. Here, we
exemplify its use in the Poisson-gamma case with the lip cancer data and show the difference
with the FB approach.

An Empirical Bayesian analysis of the lip cancer mortality data requires the marginal
maximum likelihood estimate of α and β, which is obtained by integrating out the θis from
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the likelihood. The marginal likelihood is expression (9.4) with a flat prior distribution for
α and β, i.e. p(α, β) ∝ c. The value of (α, β) that maximizes (9.4) denoted (αEB, βEB) is
called a marginal maximum likelihood estimate (MMLE). In a second step, αEB and βEB

are plugged-in the expression of the posterior distribution for the RRs of the regions. Then
p(θi | αEB, βEB, yi) = Gamma(αEB + yi, βEB + ei) delivers all posterior summary measures
for θi (i = 1, . . . , n). The parameters α and β of the gamma distribution are thus in the EB
approach fixed to αEB and βEB, respectively. Since the hyperparameters are estimated from
the empirical results (data), these posterior summary measures are called Empirical Bayes es-
timates. Bayesians’ criticism to the Empirical Bayesian approach is that the hyperparameters
are estimated from the data. Fixing the hyperparameters to their MMLEs in the subsequent cal-
culations implies that a part of the uncertainty in the parameter estimation is ignored. We now
contrast the FB and EB estimates of θi and their 95% credible intervals for the lip cancer data.

Example IX.6: Lip cancer study: Empirical Bayes analysis
We obtained αEB = 5.66 and βEB = 4.81 giving an EB estimate for the mean of the θis equal
to 1.18, which is close to the FB estimate of 1.19 (Table 9.1). The FB (posterior mean) and
EB estimates of the individual θis (point and interval estimates) differ only slightly here.
We then restricted the analysis to the first 30 regions. To better compare the FB results with
the EB results, we used a flat prior on [0, 100] for α and β (then MLE ≈ posterior mode).
The posterior mean (median) for α and β were 9.74 (8.67) and 4.87 (4.30) which are now
somewhat greater than the corresponding EB estimates equal to 7.30 and 3.62, respectively.
The point and interval estimates for the FB and the EB estimates are shown in Figure 9.8.
While, the FB and EB 95% CIs are not too different, the FB posterior SDs were all larger
than the corresponding EB posterior SDs.

Note that bootstrapping is the frequentist approach of taking into account the sampling
variability of the MMLE (Biggeri et al. 1993). But the Bayesian way of incorporating the

50 10 15 20 25 30
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Figure 9.8 Lip cancer study: comparison of Full Bayesian posterior median with Empirical
Bayesian estimate of θi and 95% credible interval based on analyzing first 30 regions (solid
line = FB and dashed line = EB).
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parameter uncertainty is more natural and immediately available as a byproduct of the sam-
pling algorithm.

The main reason for choosing the Poisson-gamma model was that it gives insight into the
estimation of the model parameters. However, in practice this is not sufficient as a motivation.
In Section 9.5.5, other priors for the θis than the gamma are considered. But these priors are
still not sufficient to adequately model the mortality data, since they do not model the spatial
correlation among the θis. This means that the correlation among the θs which correspond to
regions closer in distance should be greater than for θs further away. We address extensions
of the Poisson-gamma model in Section 9.5.5, but spatial models are deferred to Chapter 16.

9.4 Gaussian hierarchical models

9.4.1 Introduction

A Gaussian hierarchical model is a hierarchical model whereby the distribution at each level
is Gaussian. We examine here the case of a variance component model, also called a random
effects model, i.e. when no covariates are involved. When fixed effects (covariates) are also
involved, one speaks of a linear mixed model.

The Bayesian version of the Gaussian hierarchical model is known as the Bayesian linear
model. The seminal papers by Lindley and Smith (Lindley (1971), Lindley and Smith (1972),
Smith (1973b) and Smith (1973a)) are the basis of the current Bayesian Gaussian hierarchical
approach. In fact, expression (9.8) was first derived by Lindley (1971) and generalized in
subsequent papers. We illustrate the derivations on this class of hierarchical models using
the dietary Inter-regional Belgian Bank Employee Nutrition Study (IBBENS) introduced in
Section 2.7.

9.4.2 The Gaussian hierarchical model

The two-level Bayesian Gaussian hierarchical model makes the following distributional as-
sumptions:

� Level 1: yi j | θi, σ
2 ∼ N(θi, σ

2) for j = 1, . . . , mi; i = 1, . . . , n

� Level 2: θi | µ, σ 2
θ ∼ N(µ, σ 2

θ ) for i = 1, . . . , n

� Priors: σ 2 ∼ p(σ 2) and (µ, σ 2
θ ) ∼ p(µ, σ 2

θ )

The hyperparameters µ and σ 2
θ are usually taken independent a priori, such that p(µ, σ 2

θ ) =
p(µ)p(σ 2

θ ). An alternative model formulation is θi = µ + αi, with αi ∼ N(0, σ 2
θ ). Note that

we need to specify a prior for σ 2 too. The choice of the hyperprior p(µ, σ 2
θ ) will be addressed

later. Suppose y = {yi j, j = 1, . . . , mi; i = 1, . . . , n} and θ = {θ1, . . . , θn} then, based on the
above distributional assumptions, the joint posterior distribution is

p(θ, σ 2, µ, σ 2
θ | y) ∝

n∏
i=1

mi∏
j=1

N(yi j | θi, σ
2)

n∏
i=1

N(θi | µ, σ 2
θ ) p(σ 2) p(µ, σ 2

θ ). (9.7)

Hierarchical independence of the yi j and the hyperparameters is again assumed which means
that, given θi and σ 2, the distribution of yi j does not depend on µ and σ 2

θ .
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9.4.3 Estimating the parameters

As for the Poisson-gamma model, it is insightful to know how the θi and the hyperparameters
are estimated from the data and how shrinkage applies here. To this end, we fixed σ 2, which
allows to relate the results obtained here with the results of Section 2.7, i.e. with expression
(2.13). In addition, when fixing σ 2, the joint posterior depends on the observed data only via
the n sample means yi of yi j ( j = 1, . . . , mi). Let σ 2

i = σ 2/mi denote the variance of the ith
sample mean, then using a similar approach as in Section 2.7 the posterior of θi given µ and
σ 2

θ (and also σ 2 and the data) is N(θ i, σ
2
θi
) with

θ i =
1
σ 2

θ

µ + 1
σ 2

i
yi

1
σ 2

θ

+ 1
σ 2

i

and σ 2
θi

= 1
1
σ 2

θ

+ 1
σ 2

i

. (9.8)

The above result shows that θ i = Biµ + (1 − Bi)yi, with Bi a shrinkage factor equal to

Bi = 1
σ 2

θ

/
(

1
σ 2

θ

+ 1
σ 2

i

)
. Shrinkage is, therefore, large for the ith cluster when mi is relatively

small. In that case the posterior uncertainty for θi measured by σ θi is much smaller than when
based on only the data of the ith cluster alone. Moreover, when σθ → ∞ then θ i → yi. The

shrinkage factor is also related to the intraclass correlation defined as ICC = σ 2
θ

σ 2
θ +σ 2 . Because

Bi = σ 2/(σ 2 + miσ
2
θ ) shrinkage will be relatively large for a low ICC especially when mi is

small.
For a flat prior on µ and conditional on σ 2

θ and σ 2, it can be shown (Gelman et al., 2004)
that the posterior of µ marginalized over the distribution of the θis is N(µ, σ 2

µ) with

µ =
∑n

i=1
1

σ 2
i +σ 2

θ

yi∑n
i=1

1
σ 2

i +σ 2
θ

and σ 2
µ =

n∑
i=1

1

σ 2
i + σ 2

θ

,

which shows that the posterior mean µ is dominated by the large clusters.

Example IX.7: Dietary study: A comparison of cholesterol intake between subsidiaries
with WinBUGS
One of the aims of the IBBENS was to examine the variability in food habits between
employees of the eight subsidiaries and to relate this to mortality rates of the corresponding
regions. Here, we contrast the variability of cholesterol intake (chol) in mg/day between
the subsidiaries to the variability within the subsidiaries. There was some deviation from
normality for chol in each subsidiary (significant Shapiro–Wilk normality test), but the normal
probability plots were fairly straight and hence we worked under the assumption of normality.
In Table 9.2, the observed means of chol per subsidiary are given.

We fitted a Bayesian–Gaussian hierarchical model to the cholesterol-intake data of the
8 subsidiaries using the WinBUGS program ‘chapter 9 dietary study chol.odc’. Figure 9.9
shows the DAG of the model from which the assumption of hierarchical independence can
be inferred. The following priors were chosen: µ ∼ N(0, 106), σ 2 ∼ IG(10−3, 10−3) and
σθ ∼ U(0, 100). For a motivation of the variance priors, consult Section 9.5.7. We initiated
three chains each of size 10 000. The BGR diagnostic in WinBUGS indicated convergence
almost instantly. We then exported the chain values to CODA and applied the whole battery
of tests. There were numerical problems in computing the Geweke test (often happened in
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Table 9.2 Dietary study: observed mean (SE) and standard deviation (SD) of cholesterol
intake per sub(sidiary).

Sub mi Mean (SE) SD FBW (SD) FBS (SD) EML (SE) EREML (SE)

1 82 301.5 (10.2) 92.1 311.8 (12.6) 312.0 (12.0) 313.8 (10.3) 312.2 (11.3)
2 51 324.7 (17.1) 122.1 326.4 (12.7) 326.6 (12.7) 327.0 (11.7) 326.7 (12.3)
3 71 342.3 (13.6) 114.5 336.8 (11.7) 336.6 (11.7) 335.6 (10.7) 336.4 (11.6)
4 71 332.5 (13.5) 113.9 330.8 (11.6) 330.9 (11.5) 330.6 (10.7) 330.8 (11.6)
5 62 351.5 (19.0) 150.0 341.2 (12.8) 341.3 (12.6) 339.5 (11.1) 340.9 (11.8)
6 69 292.8 (12.8) 106.4 307.3 (14.2) 307.8 (13.5) 310.7 (10.8) 308.4 (11.6)
7 74 337.7 (14.1) 121.3 334.1 (11.4) 334.2 (11.2) 333.4 (10.6) 333.9 (11.5)
8 83 347.1 (14.5) 132.2 340.0 (11.4) 340.0 (11.4) 338.8 (10.2) 340.0 (11.2)

Notes: FBW (SD), FBS (SD) is the posterior mean (posterior SD) obtained from a Full Bayesian
analysis using WinBUGS, SAS® Proc MIXED, respectively. EML (SE) is the posterior mean (standard
error) calculated using a maximum likelihood Empirical Bayesian approach. EREML (SE) is the
posterior mean (standard error) calculated using a restricted maximum likelihood Empirical Bayesian
approach.

other examples too). But for all other tests convergence was confirmed. Therefore, we based
the posterior summary measures on the last 5000 iterations.

The posterior mean of µ is equal to 328.3 with posterior SD = 9.44. The posterior median
of σ is 119.5 and for σθ we obtained 18.26. The posterior means of θi for (i = 1, . . . , 8) are
shown in Table 9.2. From these values, one can infer that the group means do not vary much

for(i IN 1 : n)

for(j IN 1 : m_i)

y_ij

r

mu_i

tau.mu

tau.i

sigma.i

mu

sigma.mu

Figure 9.9 Dietary study: DAG for the Bayesian Gaussian hierarchical model created by the
Doodle option in WinBUGS. The nodes theta.i, sigma.i, sigma.mu, tau.mu, and r correspond
to θi, σ , 1/σ 2

θ , σθ and ICC, respectively.
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proc mixed data=d.dietary;
class subsidiary;
model chol = / s;
random intercept/subject=subsidiary s;
prior jeffreys / nsample=30000 seed=34875770 out=sample;
run;

Figure 9.10 Dietary study: SAS PROC MIXED program.

relative to the within-subsidiary variability. Consequently, the ICC is rather low, with posterior
median 0.022. Finally, the posterior medians of Bi (i = 1, . . . , 8) vary between 0.33 and 0.45
showing a relatively uniform and moderate shrinkage toward the overall mean, primarily
because all mi are relatively large.

The analysis in Example IX.7 is based on assumption A3. We leave it to the reader to
perform the Bayesian analysis under assumptions A1 and A2 (Exercise 9.5).

While the SAS procedure MIXED is primarily used for maximum likelihood estimation in
a frequentist context, recently it also allows for a Bayesian approach. We applied the Bayesian
option on the dietary study.

Example IX.8: Dietary study: A comparison of cholesterol intake between subsidiaries
with SAS
The SAS procedure MIXED has an option PRIOR that requests for a Bayesian analysis
of the data. In Figure 9.10 (chapter 9 dietary study chol.sas), we show the statements to
perform a Bayesian Gaussian hierarchical analysis on the cholesterol data. The default prior
for the variance parameters is Jeffreys but can be explicitly requested by adding the option
‘Jeffreys’. Other priors are ‘flat’ corresponding to a uniform distribution, or ‘data= ’ when the
prior is determined from historical data. Different sampling algorithms (importance sampling,
rejection sampling and random walk) are available, but the default sampler is the independent
Metropolis–Hastings algorithm with a proposal density matched to the posterior. Various
options are available. In Figure 9.10, we request a chain of size 30 000 and export the sampled
values to the file ‘sample’. In Table 9.2, we provide the posterior mean (SD) of the subsidiary
means. Clearly, the two Bayesian programs (WinBUGS and MIXED) yield similar results.
Note that the acceptance rate was 0.98 as desired (see Section 6.3.4).

9.4.4 Posterior predictive distributions

We now determine the distribution of cholesterol intake of a future bank employee. As for the
Poisson-gamma model, we consider two cases: (1) the bank employee works in one of the
eight subsidiaries or (2) the bank employee works in a new subsidiary from the same bank.
In both cases, the PPD is required and similar computations as in expressions (9.5) and (9.6)
are required (Exercise 9.6). No closed expressions are available and hence we used MCMC
techniques to establish the PPDs.

Example IX.9: Dietary study: Posterior predictive distributions using WinBUGS
There are extra commands needed to produce (1) the PPD of an individual new value as well
as the average of 82 new observations from the first subsidiary and (2) the PPD of observations
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from a new subsidiary (both individual values as well as average of (nnew=) 82 observations).
These commands are found in the WinBUGS file mentioned above. The posterior predictive
mean (SD) of the average of the 1st subsidiary is 312.2 (18) while for the average of 82
observations from a new subsidiary it is 328.6 (27.39). Clearly, the predictive means are close
to the posterior means (which should be the case) but they have a considerable higher SD.

9.4.5 Comparison of FB and EB approach

For the EB approach, we first determined the marginal likelihood in µ and σ 2
θ and then

computed the MMLEs. Given the MMLEs the estimates of θ i are established as posterior
means. When fixing σ 2, we have seen above that analytical expressions are available that
express the θ i as a weighted sum of the overall mean and the sample means. For σ 2 unknown,
no explicit expressions are available. We have used the SAS procedure MIXED in Example
IX.10 to estimate the θ i using an EB approach. In the frequentist literature, the estimates are
referred to as EBLUP estimates, where EBLUP stands for Empirical Best Linear Unbiased
Prediction (Carlin and Louis 2009).

Example IX.10: Dietary study: An EB analysis with SAS PROC MIXED
The SAS procedure MIXED delivers maximum likelihood (ML) and restricted maximum
likelihood (REML) estimates for Gaussian hierarchical models. The estimated random effects
are EBLUP estimates either based on ML or on REML. In Table 9.2, we can see that the
frequentist and Bayesian estimates of θ i are close, but also that the Bayesian posterior SDs
obtained exceed the corresponding EB posterior SDs. We return to the comparison of the
frequentist and the Bayesian solution in Example IX.22.

9.5 Mixed models

9.5.1 Introduction

In this section, we explore a variety of Bayesian mixed models. First we show that the
Bayesian–Gaussian hierarchical model is a special case of the BLMM. An important and rich
class of BHMs is given by the Bayesian generalized linear mixed models (BGLMMs). The
extension is based on the generalized linear model (GLIM) introduced in Section 4.8. We
illustrate the BGLMM for binary and count responses. However, the Poisson-gamma model is
a particular case of another extension of GLIM to hierarchical data, which will be illustrated
here. Finally, we end this section with a further generalization, namely, the Bayesian nonlinear
mixed model.

9.5.2 The linear mixed model

The Gaussian hierarchical model is a particular case of the (Gaussian) linear mixed model
(LMM). The LMM for the jth observation on the ith subject is given by

yi j = xT
i jβ + zT

i jbi + εi j, ( j = 1, . . . , mi; i = 1, . . . , n), (9.9)

which gives in vector notation

yi = X iβ + Zibi + εi, (i = 1, . . . , n) (9.10)
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where yi = (yi1, . . . , yimi )
T is a mi × 1 vector of responses, X i = (xT

i1, . . . , xT
imi

)T the (mi ×
(d + 1)) design matrix, β = (β0, β1, . . . , βd )T a (d + 1) × 1 vector of regression coefficients
also called the fixed effects, Zi = (zT

i1, . . . , zT
imi

)T the (mi × q) design matrix of the ith q × 1
vector of random effects bi and εi = (εi1, . . . , εimi )

T a mi × 1 vector of measurement errors.
Typically, one makes the following distributional assumptions: bi ∼ Nq(0, G) with G

a (q × q) covariance matrix. To highlight that G is related to random effects, its ( j, k)th
element, with j �= k, is denoted as σb j,bk and for j = k as σ 2

b j
. Further, εi ∼ Nmi (0, Ri) with Ri

a (mi × mi) covariance matrix. Often, Ri is taken equal to σ 2Imi and bi is assumed statistically
independent of εi (i = 1, . . . , n). These assumptions imply that

yi | bi ∼ Nmi (X iβ + Zibi, Ri), (9.11)

yi ∼ Nmi (X iβ, ZiGZT
i + Ri). (9.12)

The LMM is popular for analyzing longitudinal studies with irregular time points and
a Gaussian response. In that case, yi represents the mi responses taken repeatedly at time
points ti1, ti2, . . . , timi . The jth row of X i is typically given by xi j = (1, xi j1, xi j2, . . .)

T where
xi j1, xi j2, . . . can be time-independent covariates such as gender, age at baseline and/or time-
dependent covariates such as the time at which the jth measurement is taken, i.e. ti j, or any
other covariate that changes with time. Suppose xi j = (1, ti j)

T , then the jth element of X iβ

is equal to β0 + β1ti j, which represents the average linear evolution of the response of the
population from which the subjects were sampled. Further, if the jth row of Zi is given by
zi j = (1, ti j)

T , then the jth element of Zibi is equal to b0i + b1iti j and represents the linear
deviation of the evolution of the response of the ith subject from the average evolution. Then
the LMM is called the random intercept and slope model. Leaving out b1i leads to a random
intercept model. By providing all parameters of the LMM, a prior distribution a BLMM is
obtained. Summarized, a BLMM with the classical normal distributional assumptions is given
by (we have suppressed the dependence of the distributions on the covariates) the following:

� Level 1: yi j | β, bi, σ
2 ∼ N(xT

i jβ + zT
i jbi, σ

2) ( j = 1, . . . , mi; i = 1, . . . , n)

� Level 2: bi | G ∼ Nq(0, G) (i = 1, . . . , n)

� Priors: σ 2 ∼ p(σ 2),β ∼ p(β) and G ∼ p(G)

The joint posterior distribution for the BLMM is then given by

p(β, G, σ 2, b1, . . . , bn | y1, . . . , yn) ∝
n∏

i=1

mi∏
j=1

p(yi j | bi, σ
2,β)

n∏
i=1

p(bi | G)p(β)p(G)p(σ 2).

(9.13)
Lindley and Smith (1972) and Fearn (1975) showed analytically that for known variances, the
random effects and the fixed effects have a posteriori a normal distribution. When the variances
are unknown no explicit solutions can be given and one has to rely on numerical procedures.
The full conditionals for the fixed effects β, the random effects bi and the variance components
G and σ 2 take simple forms and this is exploited by Gibbs sampling. In a frequentist approach,
the random effects are integrated out giving closed expressions for the LMM. The marginal
likelihood is then maximized to find the MLEs. In the Bayesian approach, the random effects
are sampled together with the fixed-effects parameters. Marginal inference on the fixed-
effects parameters is obtained by ‘forgetting’ the sampled random effects parameters (see
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also Section 9.8). It is easy to see that the Gaussian hierarchical model of Section 9.4.2 is a
particular case of the BLMM.

We now illustrate the BLMM with two examples. First, we include covariates in the dietary
example. The second example is a longitudinal study.

Example IX.11: Dietary study: A comparison of cholesterol intake between subsidiaries
corrected for age and gender
We question here how much of the subsidiary variability in cholesterol intake can be explained
by age and gender. We assume the following model:

yi j = β0 + β1 agei j + β2 genderi j + b0i + εi j,

with yi j the cholesterol intake of the ith subject in the jth subsidiary and gender = 0 for
a female employee. Further, assume b0i ∼ N(0, σ 2

b0
) and εi j ∼ N(0, σ 2). Vague priors were

given for all parameters. The WinBUGS program is found in ‘chapter 9 dietary study chol
age gender.odc’. Three chains were initiated each was run for 10 000 iterations achieving
convergence almost instantly. After removal of 5000 burn-in values, the posterior means (SD)
were −0.69(0.57) for β1 and −62.67(10.67) for β2 demonstrating that age had no major
impact on cholesterol intake in contrast to gender with female employees having an important
lower cholesterol intake than men. Based on the current model, the posterior median for σ

and σb0 is 116.3, 14.16, respectively, while the model without covariates (Example IX.7)
gave 119.5 and 18.3, respectively. Thus the covariates have reduced the between-subsidiary
variability but kept the within-subsidiary variability constant. The posterior mean of the
intraclass correlation decreased to 0.015.

The second example is a clinical trial in dermatology that we briefly introduced in Exam-
ple I.1. In that example we only compared a particular response at the end of the study.
However, the randomized controlled clinical trial (RCT) is an example of a longitudinal
study. We now analyze the study results using a Bayesian random intercept and slope model.

Example IX.12: Toenail RCT: Fitting a Bayesian linear mixed model
In this double-blinded multicentric RCT (36 centers) sportsmen and elderly people were
treated for toenail dermatophyte onychomycosis with either of two oral medications: Itra-
conazol 250 mg daily (treat = 0) or Lamisil 250 mg daily (treat = 1). The patients received
treatment for 12 weeks and were evaluated at 0, 1, 2, 3, 6, 9 and 12 months (De Backer et al.
1996). As response, we have taken the unaffected nail length for the big toenail of a subgroup
of 298 patients. Figure 9.11 shows the individual profiles of the unaffected nail length split
up according to treatment. Looking at the profiles the treatments seem to work on average.
The increase of SD (from about 2.5 to 5 mm) over time suggests a random intercept and slope
model (Verbeke and Molenberghs 2000).

The following random intercept and slope mixed model

yi j = β0 + β1 ti j + β2 ti j × treati + b0i + b1i ti j + εi j

was fitted with WinBUGS (chapter 9 toenail LMM.odc) with yi j the unaffected toenail length,
time ti j = 0, 1, 2, 3, 6, 9 or 12 months and treatment treati. No main effect for treatment
was included in the model since at baseline the effect of treatment must be zero given the
randomized character of the study. The directed acyclic graph (DAG) of the model is shown
in Figure 9.12.
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Figure 9.11 Toenail RCT: profiles of unaffected nail length according to treatment (with
some individual profiles highlighted). The straight (dashed) lines are the average evolutions
in the treatment groups obtained from the posterior means of the fixed effects.

We assumed normal distributions for the random components of the model, as specified
before. The fixed effects parameters were given vague normal priors. The covariance matrix
of the random intercept and slope was given a vague Inverse-Wishart prior with two degrees
of freedom, i.e. IW(D, 2) with D = diag(0.1, 0.1).

for(i IN 1 : n)

for(j IN 1 : m_i)

corr.b0b1

sigma.b1

sigma.eps

tau.eps

eps_ij
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beta_2
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Figure 9.12 Toenail RCT: DAG corresponding to the BLMM of unaffected nail length,
created by the Doodle option in WinBUGS.
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Three chains were initiated each of size 10 000. The mixing rate was immediately good and
the posterior measures were based on the last 5000 iterations. The following posterior means
(SD) for the fixed effects were obtained: β1 : 0.58(0.043) and β2 : 0.057(0.058). For the
variance parameters we obtained as posterior medians: σb0 : 2.71, σb1 : 0.48, corr(b0, b1) =
−0.39 and σ : 1.78. Thus we conclude that over time the average unaffected nail length
increases but that the two treatments have no different effect. A frequentist analysis using the
SAS procedure MIXED yielded MLEs close to the Bayesian estimates.

For the above two examples the frequentist analysis gives basically the same numerical
results as the Bayesian analysis. So, it is not immediately clear what an applied statistician
might gain from a Bayesian approach (apart from the change in philosophy). However, the
generality of the MCMC approach in combination with the WinBUGS package allows for
choosing other distributions for the random effects in the model (see Section 9.5.5).

9.5.3 The generalized linear mixed model

We assume again that the data exhibit a two-level hierarchy, i.e. there are mi subjects in n
clusters with responses yi j. According to Section 4.8, yi j ( j = 1, . . . , mi; i = 1, . . . , n) satisfy
the assumptions of a GLIM when

p(yi j | θi j;φi j) = exp

[
yi j θi j − b(θi j)

a(φi j)
+ c(yi j;φi j)

]
, (9.14)

with a(φi j) > 0 a known scale function and θi j unknown canonical parameters. In the ordi-
nary GLIM, µi j = E(yi j | θi j) is expressed as a function of the covariates xi j via a known
link function g, i.e. g(µi j) = xT

i jβ. For a BGLIM, all parameters are assumed to have prior
distributions. However, the problem with this model is that it ignores the clustering in the
data.

A natural extension of the BLMM is obtained by generalizing the linear model to a GLIM.
Using the notation of Section 9.5.2, the BGLMM is defined as

g(µi j) = xT
i jβ + zT

i jbi ( j = 1, . . . , mi; i = 1, . . . , n). (9.15)

In general, bi (i = 1, . . . , n) are i.i.d., have a distribution Fb, and determine the distribution of
θi j. It is often assumed that the random effects have a normal distribution, say Nq(0, G)

(Molenberghs and Verbeke 2005), then with the canonical link function, θi j ∼
N(xT

i jβ, zT
i jGzi j). Thus, the BGLMM is given by the following:

� Level 1: yi j | θi j, φi j ∼ exp
[

yi j θi j−b(θi j )

a(φi j )
+ c(yi j;φi j)

]
, ( j = 1, . . . , mi; i = 1, . . . , n)

� Level 2: g(µi j) = xT
i jβ + zT

i jbi with i.i.d. bi ∼ Nq(0, G) (i = 1, . . . , n)

� Priors: β ∼ p(β) and G ∼ p(G)

with G a q × q-covariance matrix.
An example of a BGLMM is the logistic-normal-binomial model whereby logit(πi j) =

xT
i jβ + b0i with πi j the probability of success for the ith subject at time ti j and b0i a ran-

dom intercept typically used to model repeated binary responses. This model implies that
E

[
logit(πi j)

] = xT
i jβ. Note that the regression coefficients have a subject-specific interpreta-

tion. Namely, β j expresses the increase in g(µi j) when covariate xi j is increased with one unit
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conditional on b0i. Another interpretation is that expit(xT
i jβ) represents the median relation-

ship of the probability of ‘success’ and xT
i jβ. Full conditionals often take simple forms, such

that the posterior distributions can be obtained relatively easily, especially with the WinBUGS
software.

We illustrate the BGLMM on the lip cancer mortality study with log(RR) modeled as
a linear function of AFF which is the percentage of the population engaged in agriculture,
forestry and fisheries. This variable is included to capture the effect of exposure to sunlight
on the prevalence of the disease. In addition, we include a random intercept representing
unknown covariates characterizing each of the regions.

Example IX.13: Lip cancer study: A Poisson-lognormal model correcting for AFF
We question how much of the spatial variability in lip cancer mortality can be attributed to
AFF. Assume that the mortality counts yi satisfy yi | µi ∼ Poisson(µi), with µi = θi ei. We
assume that the µi related to AFFi as follows:

log(µi/ei) = β0 + β1 AFFi + b0i,

with AFFi centered around its mean and b0i ∼ N(0, σ 2
b0

) a random intercept governing the
correlation among the responses of the different regions. This model can be easily implemented
in WinBUGS (chapter 9 lip cancer PLNT with AFF.odc).

The regression coefficients were given independent vague normal priors and σb0 a uniform
prior in [0,100]. Based on three chains of each 20 000 iterations and removing in total 30 000
burn-in iterations, we obtained as posterior mean (SD) for β1: 2.23 (0.33) with 95% equal tail
CI [1.55, 2.93]. The posterior median for σb0 is equal to 0.38. The conclusion is that AFF is
an important predictor for lip cancer mortality. Further, the model without AFF resulted in
a posterior median for σb0 equal to 0.44. This shows that AFF ‘explains’ about 25% of the
variability of the random intercept.

In the second example, we analyzed the longitudinal toenail data introduced in Example
IX.12 but now with a binary outcome. A logistic random intercept and slope model seems
logical to fit with the random intercept expressing the subject-specific latent level of each of
the patients throughout the study and the random slope the subject-specific evolution of the
disease process. This analysis turned out to be quite challenging. Therefore, we first illustrate
the use of a logistic random intercept model.

Example IX.14: Toenail RCT: A Bayesian logistic random intercept model
One of the secondary endpoints was the degree of separation of the nail plate from the nail
bed (onycholysis) due to the toenail infection. For 294 (out of 298) patients, this response
was measured. We binarized the response: 0 = none or mild, 1 = moderate or severe for the
purpose of our analysis. In Figure 9.13, it is shown that under both treatments, an important
drop of patients with onycholysis is seen, with a somewhat greater effect under Lamisil. The
question is whether this extra decrease in percentage is a genuine effect or random fluctuation.
To answer this question, we fitted the logistic random intercept model given by

logit(πi j) = β0 + β1 ti j + β2 ti j × treati + b0i,

with πi j the probability of showing onycholysis for the ith subject at time ti j and b0i the random
intercept of the ith subject. The standard deviation of b0i was given a U(0,100) vague prior and
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Figure 9.13 Toenail RCT: percentages of patients with onycholysis treated with Itraconazol
or Lamisil during the study period.

vague normal independent priors were given to the regression coefficients. The WinBUGS
program can be found in ‘chapter 9 toenail RI BGLMM.odc’.

Three chains were initiated with 10 000 iterations each. The last 5000 iterations were kept
to compute the posterior summary measures. As posterior means (SD) for the fixed effects we
obtained: β0 : −1.74(0.34), β1 : −0.41(0.045), β2 : −0.17(0.069). The posterior median of
σ 2

b0
was 17.44. The intracluster correlation coefficient (ICC) for the logistic random intercept

model ICC = σ 2
b0

/(σ 2
b0

+ π2/3) (Hedeker and Gibbons 1994) was quite high (0.84) showing
that there was a pronounced tracking in the response. With respect to the clinical results, it
appears that Lamisil induces a greater decrease in disease activity than Itraconazol.

A frequentist analysis using SAS procedure GLIMMIX gave very similar numerical results
as obtained above. The program can be found in ‘chapter 9 toenail binary GLIMMIX and
MCMC.sas’. The file contains also MCMC commands version 9.2. It is illustrative to run this
program and to realize that this sampling approach is quite inefficient for this model. For the
version 9.3 of the SAS program, we refer to the next example.

It was more difficult to fit a logistic random intercept and slope model to the above binary
responses. This is exemplified in the next example.

Example IX.15: Toenail RCT: A Bayesian logistic random intercept and slope model
A potentially more plausible model is the logistic random intercept and slope model whereby
the random slope expresses that the subject-specific evolution is different for each individual.
Using the above notation, this model is given by

logit(πi j) = β0 + β1 ti j + β2 ti j × treati + b0i + b1i ti j,

with b1i the random slope of the ith subject. We considered two cases: independent and
dependent random effects. In the first case the standard deviations of random intercept and
slope were given initially independent U(0, 100) priors, while in the second case we used the
same prior as in Example IX.12. Both WinBUGS programs can be found in ‘chapter 9 toenail
RI+RS BGLMM.odc’.
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It was quite problematic to get started with WinBUGS. We first ran a likelihood based
analysis using SAS PROC GLIMMIX to generate starting positions. Our first WinBUGS
run was based on the MLE of the model parameters. Promptly the error message ‘unde-
fined real result’ appeared, which means numeric overflow. Reducing the starting values
in absolute values did not help. The problem was reduced but not solved when we
replaced logit(p[iobs]) <- beta[1] + beta[2]*time[iobs] + ... with
p[iobs] <- exp(beta[1] + beta[2]*time[iobs] + .... With the func-
tions ‘min’ and ‘max’ we could prevent numerical overflow.

For both the independent and dependent cases, three starting positions were taken and
the chains were run for 10 000 iterations with thinning=10 (thus in fact 100 000 iterations
per chain). We now report only the dependent case. The BGR plot in WinBUGS showed
for β2 relative quick convergence. The posterior summary measures on the last 3 × 5000
iterations. We obtained −0.38 (0.19) as posterior mean (SD) for β2 and a 95% CI equal to
[−0.78, −0.039] with MCerror = 0.0054. Hence we could conclude that the two treatments
seem to differ somewhat in effect. The random intercept and slope were negatively correlated
(posterior median = −0.58, 95% CI = [−0.74,−0.33]), the posterior median (95% CI) of
the variance of the random intercept and slope were 73.61 ([42.93, 127.1]) and 1.18 ([0.62,
2.02]), respectively. Exporting the chains to CODA delivers additional information as seen
above. The autocorrelations were relatively high for the variance parameters but for β2 they
were equal to 0.28 and 0.01 at lags 10 and 50, respectively. Geweke diagnostic for β2 was not
significant and the dynamic version only occasionally exceeded the boundaries, but this was
not the case for all other parameters although overall convergence was not clearly rejected.
Further, β2 passed both Heidelberger–Welch tests.

A SAS analysis using procedure MCMC was also initiated, for the program see ‘chapter
9 toenail RI+RS BGLMM.sas’. Since the procedure MCMC does not allow multiple chains
and to be compatible with the WinBUGS run, we initiated one chain of length 300 000 but
applied thinning=10 (recall the different implication of thinning in SAS versus WinBUGS).
No computational problems were encountered (such as numerical overflow). Again, we left
out half of the chain to compute the posterior summary measures. Now, the autocorrelations
for β2 were 0.93 and 0.70 (even after thinning) at lags 10 and 50, respectively, and thus quite
high. However, all parameters passed the Geweke test and all parameters passed the first of
the two Heidelberger–Welch tests, however, β2 did not pass the second Heidelberger–Welch
test. The posterior mean (SD) of β2 was equal to −0.0110 (0.0227) with equal tail 95% CI =
[−0.055, 0.036] indicating no effect of treatment. Since β2 was estimated with low precision
(effective sample size = 51), we concluded that to obtain a robust result on the effect of
treatment, the SAS procedure needs a longer chain.

The reason why WinBUGS and SAS differ considerably in convergence performance on
this data set is not immediately clear since the programs use the same sampler.

An immediate generalization of the BGLMM is to add a residual term (Sun et al. 2000)
by taking

g(µi j) = xT
i jβ + zT

i jbi + εi j, ( j = 1, . . . , mi; i = 1, . . . , n),

with E(εi j) = 0 or E[exp(εi j)] = 1 and bi independent from εi j. These residual terms are
included to account for lack of fit when there is extra (possibly unexplained) variation and
outliers.
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In case there are no level-1 covariates another modeling approach was suggested by Albert
(1988). In his proposal, the canonical parameters θi have independent distributions belonging
to the exponential family

p(θi | ζi, λ) = exp {λ[θi ζi − b(θi)] + k(ζi; λ)} , (9.16)

with E(µi) = E
[

d b(θi)

dθi

]
= ζi and λ a dispersion parameter. Replacing λ by 1/λ in the above

expression gives the classical expression of a GLIM, but working with (9.16) has analytical
advantages (Albert 1988). ζi is the prior mean of the sampling mean µi. Further, distribution
(9.16) is conjugate to the family defined by (9.14) whereby the subindex j is removed in θ

and φ (Exercise 5.16). Albert (1988) suggested to let ζi, instead of µi, depend on covariates
with

g(ζi) = xT
i β, (i = 1, . . . , n). (9.17)

Summarized, the two-level BHM suggested by Albert (1988) assumes the following:

� Level 1: yi j | θi, φi ∼ exp
[

yi j θi j−b(θi)

a(φi )
+ c(yi j;φi)

]
, ( j = 1, . . . , mi; i = 1, . . . , n)

� Level 2: θi | ζi, λ ∼ exp {λ[θi ζi − b(θi)] + k(ζi; λ)} & g(ζi) = xT
i β, (i = 1, . . . , n)

� Prior: (β, λ) ∼ p(β, λ)

Albert’s model expresses the means of the random effects θi as a function of covariates,
which gives the regression coefficients a population-averaged meaning. That is, β j expresses
the increase in ζi (up to the link function) in the population of subjects when covariate xi is
increased with one unit. For this reason, Albert’s model is called (in the frequentist literature)
a marginal model (Molenberghs and Verbeke 2005).

Kahn and Raftery (1996) used a specific case of Albert’s model to relate covariates xi of
the ith hospital to its discharge probability πi of Medicare stroke patients to skilled nursing
facilities and called it the beta binomial-logit model. An advantage of this model is that
the covariates express a marginal effect on the probability πi namely logit [E(πi)] = xT

i β,
whereas in the above BGLMM case the covariates express a conditional effect since for the
BGLMM E

[
logit(πi)

] = xT
i β. Unfortunately it is not clear how to extend Albert’s model

in the presence of subject-specific covariates. Below, we illustrate Albert’s model on the lip
cancer mortality data.

Example IX.16: Lip cancer study: Correcting for AFF with Albert’s model
We have applied Albert’s Bayesian hierarchical GLIM to the lip cancer–mortality data with
(a centered) AFF as covariate to explain part of the heterogeneity of the log(RR)s. In the
notation introduced earlier, we assumed that the counts yi satisfy yi | µi ∼ Poisson(µi) with
µi = θi ei. Here θi | ζi, λ ∼ Gamma(ζiλ, λ), with λ a dispersion parameter (variance of gamma
distribution is here ζi/λ). Finally, we let

log(ζi) = β0 + β1 AFFi.

The WinBUGS program is given in ‘chapter 9 lip cancer PG Albert with AFF.odc’. We
used vague normal independent priors for the regression coefficients and a U(0,100) prior for
1/

√
λ inspired by the results of Section 9.5.7. To check the impact of this prior, alternative
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vague priors for λ were also considered. Based on three chains of size 10 000 iterations, the
trace plots showed high mixing and the BGR diagnostic plot confirmed quick convergence.
Therefore, we based the posterior summary measures on the last 5000 iterations. We obtained
as posterior mean (SD) for β0: 0.162 (0.035) and for β1: 1.92 (0.31) (95% equal tail CI:
[1.29,2.51]). The posterior median of the scale parameter λ was equal to 6.05 (95% equal tail
CI: [4.35, 8.53]). We checked that the results were robust for other reasonable priors of λ.

Our analysis thus showed again a strong effect of AFF but now on log(mean RR). Note
that the estimate of the slope is smaller for Albert’s model than what was obtained in Example
IX.13. Part of the difference has to do with the choice of the model. But from the frequentist
literature we also know that in absolute value the population-average slope is smaller than the
subject-specific slope, which seems to be the case also here.

In practice, the models need to be more flexible than those described above. For instance,
the assumption of a normal random effects distribution in the classical BGLMM might be
limiting. Some of these extensions can be covered by existing software. For instance, we show
below that the normality assumption of the random effect in the Poisson-lognormal model
can easily be relaxed with WinBUGS. When no software exists for the problem at hand then
dedicated routines need to be developed, but we have seen that the MCMC machinery is of
great help here.

Example IX.17: Lip cancer study: Relaxing the normal distribution in the
lognormal model
Above, we have assumed that on the logarithmic scale the random intercept has a normal
distribution. In most frequentist software this is the only allowable random effects distribution.
With WinBUGS (file ‘chapter 9 lip cancer PLNT with AFF.odc’) it involves changing just
one command to replace the normal distribution with a t3-distribution. Based on this model
and three chains of size 20 000 (burn-in 10 000), the posterior mean (SD) for the regression
coefficients β0, β1 was 0.11 (0.035), 2.20 (0.36), respectively. The posterior median of σb0i =
0.26 must be multiplied with

√
3 (SD of standard t3-distribution) to obtain the standard

deviation of the random intercept resulting in
√

3 × 0.257 = 0.44.
A further generalization of the considered models could consist in letting WinBUGS

determine the degrees of freedom (k) of the t-distribution. For this extension, we assumed a
uniform distribution of k on discrete set of values. The WinBUGS program can be found in
the same file, but basically the same results were found. However, it was difficult to establish
the best value of k since its posterior was rather diffuse (see also Exercise 9.9).

Also other, non-standard distributions distributions for the random effects and/or measure-
ment error are easy to fit in a Bayesian context for instance with WinBUGS (see Arellano-Valle
et al. 2007).

9.5.4 Nonlinear mixed models

Another generalization of the BLMM is the Bayesian nonlinear mixed model for repeated
measurements. In this model, one assumes for the jth observation on the ith subject (using
the notation of previous sections) that

yi j = f (φi, xi j) + εi j, ( j = 1, . . . , mi; i = 1, . . . , n), (9.18)
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with f a nonlinear function of the covariate vector xi j and a parameter vector φi of length r. It
is classically assumed that the measurement error term εi j has a normal distribution N(0, σ 2).
The parameter vector φi depends on the subject. A popular way to describe this dependence
is as follows:

φi = W iβ + Zibi, (9.19)

where W i is a r × (d + 1) design matrix, β a (d + 1) × 1 vector of regression coefficients, Zi

a (r × q) design matrix of the ith q × 1 vector of random effects bi. It is classically assumed
that bi ∼ N(0, G). Note that the design matrix W i is typically used for specifying group
structures in the parameters and is not necessarily the same as the design matrix X i which
pertains to subject-specific covariates. Model (9.18) is more general than the BGLMM, since
the link function g is more restrictive than the function f with the former a function of one
variable (score xT

i β) and the latter a general function.
The nonlinear mixed model has received much attention in the statistical research com-

munity especially after the publication of the seminal paper of Lindstrom and Bates (1990).
Nonlinear mixed models have found their way in a variety of applications. An important appli-
cation area is pharmacokinetics. The aim in pharmacokinetics is to understand the intrasubject
processes of drug absorption, distribution and elimination governing achieved concentrations.
Further, it is of interest to explore how these processes vary across subjects. In HIV research
one uses nonlinear mixed models to characterize the mechanisms underlying the interaction
between the HIV virus and the immune system by describing the decay and rebound of virus
levels following HIV treatment. Other application areas are dairy research, wildlife research,
fisheries research, growth curves, etc. For an up-to-date reference of this class of models, we
refer to Davidian and Giltinan (2003).

The Bayesian nonlinear mixed model (BNLMM) combines a nonlinear mixed model with
priors for all its parameters and is specified as

� level 1: yi j | φi, xi j, σ
2 ∼ N[ f (φi, xi j), σ

2], ( j = 1, . . . , mi; i = 1, . . . , n)

� level 2: φi | W i, Zi,β ∼ N(W iβ, ZiGZT
i ) (i = 1, . . . , n)

� priors: β ∼ p(β), σ 2 ∼ p(σ 2) and G ∼ p(G)

Since the function f can be quite general, it might be sometimes a challenge to fit this
model with WinBUGS, as pointed out by Davidian and Giltinan (2003). However, for certain
standard pharmacokinetics analyses, a WinBUGS interface, PKBugs, is available. We will
illustrate the BNLMM with an experimental study on mice in arteriolosclerosis.

Example IX.18: Arteriosclerosis study: Reperfusion models after femoral artery
occlusion
Collateral artery development is crucial for prevention and recovery of tissue ischemia caused
by arterial occlusive diseases. Since immune responses play a crucial role in arteriogenesis,
van Weel et al. (2007) examined the cellular components of the immune system and their
effects on arteriogenesis.

In van Weel et al. (2007) different genetically modified mice underwent a surgical proce-
dure that blocked one of the main leg arteries. The effect of the surgical induced ischemia was
measured at days 0, 3, 7, 14, 21 and 28. At each of these days, the perfusion in the affected
leg was compared to the perfusion in the unaffected leg resulting in an ischemic/nonischemic
perfusion ratio (IPR) over time. Here we re-analyzed two groups: the C57BL/6 mice and the
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Figure 9.14 Arteriosclerosis study: individual profiles of the perfusion ratio of ischemic to
nonischemic limbs in two groups of mice. The bold lines are obtained from the fixed effects
predictions from the BNLMM, the dotted (dashed) lines correspond to the C57BL/6 WT
(MHC class II−/−) mice.

MHC class II−/− mice. The C57BL/6 mice are the most widely used lab mouse strain as
a model for human diseases, while the mice of the second group were genetically modified
inducing a deficiency of MHC cells of class II. The individual profiles of IPR in the two
groups are shown in Figure 9.14. van Weel et al. (2007) proposed the following nonlinear
mixed model for the response yi j (IPR):

yi j = φ1i
{
1 − exp

[− exp(φ2i t j)
] + εi j

}
, ( j = 1, . . . , 6; i = 1, . . . , n), (9.20)

with t j = 0, 3, 7, 14, 21, 28, φ1i = β1 and φ1i = β2 for mice from the first and second group,
respectively, φ2i = β3 + bi when the ith mouse belongs to the first group or φ2i = β4 + bi

when it belongs to the second group. The first parameter (φ1) expresses the ultimate IPR as
time evolves, while the second parameter (φ2) expresses the rate at which the final ratio is
attained. We assumed heterogeneity in φ2 but not in φ1. Interest lies in the difference between
β3 − β4 = δ.

In matrix notation, the model implies for the ith mouse of the first group

φi = W iβ + bi ≡
(

1 0 0 0
0 0 1 0

) 


β1

β2

β3

β4


 +

(
0
bi

)
,

with φi ≡ (φ1i, φ2i)
T . For a mouse of the second group the row vectors of W i should select

the second and fourth β-parameters. Finally, it was assumed that εi j ∼ N(0, σ 2) and bi ∼
N(0, σ 2

b ).
We have taken independent vague normal priors for the β-parameters and uniform priors

on [0,100] for σ and σb. The WinBUGS program can be found in ‘chapter 9 arterio study.odc’.
Three chains were started up with 10 000 iterations. The mixing was good and based on the
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classical diagnostics we could take the posterior measures on the last 5000 iterations (see also
Exercise 9.17). The posterior mean (SD) of δ is 0.70 (0.37) (95% equal tail: [−0.002, 1.47])
and so we conclude that there is no clear evidence of a difference between the two types
of mice.

9.5.5 Some further extensions

In practice we need many more models than discussed up to now. For instance, the ordinal
logistic random effects model would be needed in the toenail study if we had not discretized
the response. For a Bayesian ordinal random effects model with a flexible random effects
distribution, see Mansourian et al. (2012). When more than one outcome is recorded in a
longitudinal study, we need an extension to a multivariate repeated measurements model (see
Wilks et al. 1993). An important other example constitutes frailty models, which are survival
models with additional random effects. These models are treated in Chapters 14 and 15.

9.5.6 Estimation of the random effects and posterior
predictive distributions

Estimating the random effects in a Bayesian approach is similar to estimating the fixed
effects as both are considered stochastic. In longitudinal studies it is often of interest to
estimate/predict the individual curves. This involves the estimation of linear combinations of
fixed and random effects, i.e.

λT
β β̂ + λT

b b̂i,

with β̂ and b̂i taken as the posterior mean, median or mode of the respective parameters. The
exploration of the random effects is also useful to highlight whether the assumed distribution
is valid or whether there are outliers in the data.

The PPD for the Poisson-gamma model is found in expressions (9.5) and (9.6). These
expressions carry over to the BGLMM with θi replaced by bi. The new observation will now
represent all measurements of a new individual or some future observations of an already
included subject. Fearn (1975) derived explicit expressions for the PPD of a BLMM when the
variance parameters are known. With the availability of the MCMC machinery and software
such as WinBUGS determining the PPD of future observations is easy.

In the next example we explore the random effects in the toenail data for the continu-
ous response. We checked the normality assumption of the random effects and performed
individual predictions.

Example IX.19: Toenail RCT: Exploring the random effects in the Bayesian linear
mixed model
The posterior means of the random intercepts and slopes of the BLMM in Example IX.12 are
shown in Figure 9.15. The histogram of the random intercepts is right skewed casting doubt
on the normality assumption for the random intercept. Deviation from normality may be due
to various reasons, e.g. because an important covariate was omitted. Verbeke and Lesaffre
(1996) showed that the estimated random effects are shrunk, which makes it hard to detect
non-normality. Hence, if non-normality is found in the estimated random effects then this is
a sign that the true random intercept distribution is probably not normal.
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Figure 9.15 Toenail RCT: histograms of estimated random intercept and slope obtained
from BLM.

In the case of a BLMM, the predicted evolution for the ith subject is the linear combination,
i.e. xT

i jβ̂ + zT
i ĵbi ( j = 1, . . . , mi). The predicted profiles for the individuals are obtained simply

from the stats table in WinBUGS, which gives also 95% boundaries of the predicted curves.
This stats table can be exported to R to produce the graphs. However, it is more efficient to
use R2WinBUGS, which allows processing of WinBUGS within R.

To obtain the PPD of future observations of patient, extra lines of coding are needed.
For instance, for the distribution of a future observation from subject id[iobs] we added
the command newresp[iobs] ˜ dnorm(mean[iobs], tau.eps). On the other
hand, to obtain the distribution of profiles from new patients, a different route needs to be
followed since the random effect needs to be sampled directly from its normal prior (similar
to predicting the mortality from new regions in Example IX.5). In Figure 9.16, we plotted the
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Figure 9.16 Toenail RCT: observed profile (solid line), predicted profile (dashed line) and
95% boundary lines (dotted lines) for the predicted mean and 95% boundary lines (dot-
dashed lines) for new responses coming from Itraconazole patient 3 as obtained from the
BLM developed in Example IX.5.
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mean of the future profiles of Itraconazol patient 3 and corresponding 95% boundary profiles
for the individual profiles.

As a final illustration, we predicted the future response yi, j+1 of the ith subject with
covariate vectors xi, j+1 and zi, j+1 given the past responses ym1, . . . , ym j with covariate vectors
xm1, . . . , xm j and zm1, . . . , zm j for m = 1, . . . , n. This is easily done with WinBUGS. Suppose
that we wish to predict the response at month 12 (which is now missing) of the first Itraconazol
patient. To perform the prediction, we augment the vector of responses for that subject with
a missing value ‘NA’. Namely, we enlarge the vector (4, 6, 7, 9, 13, 0) to (4, 6, 7, 9, 13, 0,
NA) and augment the vectors of covariates appropriately. In this way, we obtained 6.073 as
posterior mean with 95% CI equal to [0.92, 11.28].

Note that the correct prediction of individual curves (and hence also the PPD) depends on
the distributional assumptions of the model. The fact that the random intercepts do not have
a Gaussian distribution might affect the correctness of the results.

9.5.7 Choice of the level-2 variance prior

For the Bayesian normal linear regression model, Jeffreys prior p(σ 2) ∝ 1/σ 2 is the classical
choice to express no prior information on the variance parameter. For Gaussian hierarchical
models an appropriate vague prior for the level-2 variance is not immediately clear. Hill (1965)
and Tiao and Tan (1965) proved already more than 40 years ago that Jeffreys prior for the
level-2 variance σ 2

θ in a Gaussian hierarchical model results in an improper posterior. Gelman
(2006) gave an intuitive explanation why this happens. Namely, with prior 1/σ 2

θ , the marginal
p(y | σθ ) approaches a finite nonzero value as σθ approaches zero, but 1/σ 2

θ attains an infinite
mass near zero such that the posterior has infinite mass around zero. In addition, one can never
rule out a zero variance for the latent variable in an hierarchical model, especially when the
number of level-2 observations is low and provide only little information on σθ .

To avoid impropriety of the posterior, WinBUGS only allows the proper approximation
to Jeffreys prior, i.e. IG(ε, ε), with ε small. However, replacing Jeffreys prior by IG(ε, ε)
is not a solution since the posterior distribution of the parameters depends heavily on the
choice of ε (Spiegelhalter et al. 2004). The strong impact of Jeffreys prior (and its approx-
imation) can be seen in the bimodal shape of the posterior distribution of σθ . Triggered by
the poor behavior of Jeffreys prior in this context (and its proper approximation), a variety
of suggestions for an appropriate vague prior p(σθ ) appeared in the literature; see Seltzer
(1993), Seltzer et al. (1996) and Browne and Draper (2006). Liu and Hodges (2003) pointed
out that bi-modality of a posterior is always the result of a conflict between the prior and
the data. Spiegelhalter et al. (2004) explored several proper ‘noninformative’ priors and con-
cluded that the U(0,c) prior for σθ can be recommended, which was also the conclusion of
Gelman (2006).

We now illustrate the problems when using the IG(ε, ε) prior for σ 2
θ and compare its

performance with the uniform U(0,c) prior on σθ . We also illustrate the performance of the
‘parameter expanded’ model suggested by Gelman (2006). Our computations are based on
the IBBENS dietary data which were modified to exemplify better the dependence of the
posterior on the prior.

Example IX.20: Dietary study: Choosing a vague proper prior for the level-2 variance
We have modified the IBBENS dietary cholesterol intake data by adding a normal random
variable with mean = 0 and SD = 20 to the subsidiary means, see ‘chapter 9 dietary study
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Figure 9.17 (Modified) Dietary study: posterior distribution of σθ using IG(10−3, 10−3)-
prior for σ 2

θ and U(0, 100) prior for σθ .

chol2.odc’. In Figure 9.17, we show the posterior of σθ under the IG(10−3, 10−3)-prior for σ 2
θ

and the uniform prior U(0, 100) for σθ . The first prior shrinks the posterior of σθ toward zero
and hence the prior demonstrates a strong effect on the posterior of σθ .

We also examined the dependence of the other parameter estimates on the prior for σθ .
The trace plots in Figure 9.18 of the overall mean of the θis summarize the results. Overall
the sampling of µ is acceptable under the flat prior, but under the inverse gamma prior the
chain regularly got stuck at zero. Note that also the chain under the flat prior occasionally got
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Figure 9.18 (Modified) Dietary study: trace plots of posterior distribution of µ (mu.m) using
top: U(0, 100) prior for σθ and bottom: IG(10−4, 10−4)-prior for σ 2

θ .
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stuck at zero. In addition, the prior of σθ had a great impact on the estimates of the individual
θi values.

Finally, we applied the prior suggested by Gelman (2006), which is explained in Section
9.7 (see that section for details). The WinBUGS program based on this approach is found
in ‘chapter 9 dietary study chol2 fold.odc’. The parameter ξ was given a normal prior with
variance 102, while for σ 2

η an IG(0.5, 0.5)-prior was chosen. This trick produced basically
the same results as with the uniform prior. Note that the posterior mean of µ was largely
unaffected by the choice of the variance prior, as was also concluded from a simulation study
by Browne and Draper (2006).

The above discussion dealt only with the variance of a random intercept. But what if we
have a random intercept and slope? In this context, Natarajan and Kass (2000) reported on a
simulation study and found that taking ‘default’ priors for the variance components (inverse
gamma or inverse Wishart) can lead to misleading inferences. Thus, the vague priors that we
have taken for the random intercept + slope in the previous examples might be problematic.
We have chosen these priors since these are still the standard choice. An appropriate proper
vague prior for a covariance matrix for the higher level observations in an hierarchical model
is needed. But for dimension 2, i.e. with random intercept and slope, one might take a uniform
prior for the standard deviation of the intercept and the slope and combine it with a uniform
prior on the correlation (see Exercise 9.15). The conclusion of the exercise was that, when
the diagonal elements of the scale matrix D in the inverse Wishart IW(D, 2) prior for random
intercept and slope were taken small, then all parameter estimates of the model were close to
the frequentist results and close to the results obtained from uniform priors on the standard
deviations and the correlation of the random effects. However, for large diagonal elements
the estimates of the covariance matrix of the random effects could be quite different. These
results confirm the assertion in Section 5.3.3. A drawback of using the uniform priors (with
WinBUGS) is that sampling from the posterior distribution requires considerably longer time
than with the inverse Wishart prior, which is easily explained since the latter is a conditional
conjugate for Gaussian models. Finally, Gelman et al. (2008) suggested for the general case
to use parameter expansion extending his suggestion of Gelman (2006).

9.6 Propriety of the posterior

The impact of improper priors on the propriety of the posterior has been examined in the
literature in several theoretical papers. These results are important for users of the SAS
procedure MCMC since it allows improper priors. But, even if the prior for σθ is proper
we need to take care that it is not influencing the posterior unduly, as seen in Section 9.5.7.
While proving propriety of the posterior for a general (hierarchical) model is impossible,
restricting to a particular class of hierarchical models allows to derive necessary and sufficient
propriety conditions. Hobert and Casella (1996) derived conditions for the priors of a Gaussian
BLMM, a flat prior for the fixed effects and (σ 2)−(a+1) priors for variance parameters.
They also noticed that an improper posterior can yield proper full conditionals and ‘well-
behaved’ Markov chains. This is quite disturbing since classical convergence diagnostics
will not detect this problem. Sun et al. (2001) generalized these conditions to correlated
random effects. Ghosh et al. (1998), Gelfand and Sahu (1999) and Natarajan and Kass (2000)
looked at the propriety of a BGLMM posterior with improper priors. For logistic or probit
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random effects models, the propriety conditions are relatively easy to verify and relate to
the conditions for separability derived by Albert and Anderson (1984) and Lesaffre and
Albert (1989).

9.7 Assessing and accelerating convergence

In principle, checking the convergence of Markov chains obtained from hierarchical models
is similar to checking convergence in any other model. The only problem is that the intro-
duction of random effects implies a large number of parameters to monitor and to check for
convergence. This may become quickly impractical, and therefore, it is suggested to select a
handful of random effects (bis) and to check convergence of the Markov chain only on this
limited set.

There are, however, some specific tricks to accelerate the convergence of a Markov chain
which apply only for BHMs. We restrict ourselves to those techniques that can be applied
with software such as WinBUGS and SAS. First, note that the tricks seen in Chapter 7,
e.g. centering and standardizing the covariates and overrelaxation, may also be helpful here.
Acceleration tricks that are specific for BHMs are: hierarchical centering, reparameterization
by sweeping and parameter expansion.

(a) Hierarchical centering: In the frequentist GLMM literature (and software) the random
effects are most often centered for convenience around zero, but whether centering is applied
or not is not really important. This is different in the Bayesian case. When the random effects
are centered around zero one refers to an uncentered BHM. It has been shown by Gelfand
et al. (1995) for the BLMM and generalized to the BGLMM by Gelfand et al. (1996) that
centering around zero may seriously deteriorate the rate of mixing.

The uncentered Gaussian hierarchical model is given by

yi j = µ + αi + εi j,

αi ∼ N(0, σ 2
α ),

(9.21)

with j = 1, . . . , mi; i = 1, . . . , n and εi j ∼ N(0, σ 2).
Assume that the variances σ 2, σ 2

α are known and take a flat prior for µ. Then Gelfand et al.
(1995) derived the posterior correlations involving the level-2 observations (random effects
αi) for mi = m, namely,

ρµ,αi = −
(

σ 2
α /n

σ 2
α /n + σ 2/m

) 1
2

, (9.22)

ραi,α j = −
(

σ 2
α /n

σ 2
α /n + σ 2/m

)
, (9.23)

with i �= j. Under hierarchical centering, it is understood that the Gaussian hierarchical model
is expressed as in Section 9.4.2, which is

yi j = θi + εi j, (9.24)

θi ∼ N(µ, σ 2
α ),
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and εi j ∼ N(0, σ 2). In that case, Gelfand et al. (1995) showed that the posterior correlations
are given by

ρµ,θi =
(

σ 2

σ 2 + mn σ 2
α

) 1
2

, (9.25)

ρθi,θ j =
(

σ 2

σ 2 + mn σ 2
α

)
, (9.26)

for i �= j. It can be easily verified that the posterior correlations are lower under hierarchical
centering when σ 2

α > σ 2/m. But since the results in Gelfand et al. (1995) were derived
under known model variances, explorative computations are needed to determine whether
σ 2

α > σ 2/m holds. The conclusion of whether centering is needed might therefore change
once the final estimates of the variances are known. Gelfand et al. (1995) showed that
hierarchical centering might also be beneficial in the multi-level case and for a BLMM. In
Gelfand et al. (1996) they extended their arguments to the BGLMM.

In practice, one estimates the variances using, say, a least-squares technique, and decides
for one of the two centering approaches.

(b) Reparameterization by sweeping: Vines et al. (1996) proposed another method for
reparameterizing Bayesian mixed models. The motivation for their approach is the observation
that model (9.21) is essentially overparameterized since a constant a could be added to µ and
subtracted from each αi without altering the likelihood of the data. With α = 1

n

∑
i αi, they

suggested a reparameterization with φi = αi − α, ν = µ + α and δ = µ − α. The method
is called sweeping since the mean is swept from the random effects onto µ. Further, the
identifiability problem is resolved since

∑
i φi = 0. The following reparameterization was

suggested:

yi j = ν + φi + εi j,

φ−n ∼ Nn−1(0, σ 2
α Kn−1), (9.27)

φn = −
n−1∑
i=1

φi,

with φ−n = (φ1, φ2, . . . , φn−1)
T and Kn−1 a (n − 1) × (n − 1) matrix with 1 − 1

n on the main
diagonal and − 1

n elsewhere. The sweeping operator gives as posterior correlations

ρν,φi = 0, ρφi,φ j = −1

n
,

for i �= j. One can check that the correlations are small for n ≥ 10, which then can improve
the mixing of the chains.

Our experience with this method is that it effectively improves the mixing rate of the chain
but at the cost of speed (each iteration takes more time) and sometimes considerable extra
programming.
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(c) Parameter expansion techniques: Gelman (2006) suggested to reformulate model
(9.21) as

yi j ∼ N(θi, σ
2),

with θi = µ + αi = µ + ξ ηi and ηi ∼ N(θi, σ
2
η ). The parameter ξ is given a diffuse normal

prior. Gelman suggested an IG(0.5, 0.5)-prior for σ 2
η . The method is called parameter expan-

sion since the random effects αi are split up into a parameter ξ and a random effect ηi. The
overparameterization reduces the dependence among the parameters in a hierarchical model
and it improves MCMC convergence. The method is based on earlier work of Liu et al. (1998),
Liu and Wu (1999) and van Dyk and Meng (2001).

Example IX.21: Dietary study: Improving convergence
In all cases below, we ran a single chain of 10 000 iterations and based the estimates on the
last 5000 iterations.

(a) Hierarchical centering: A simple inspection of the data showed that the within-subsidiary
variance σ 2 ≈ 14 500 and the between-subsidiary variance σ 2

α ≈ 450. With an average sub-
sidiary size around 70, σ 2

α > σ 2/70 ≈ 210 and lower posterior correlations are to be expected
with hierarchical centering. Both an uncentered and a hierarchical centered analysis were
performed on the cholesterol intakes of the IBBENS study. Upon convergence, the estimated
values for ρµ,αi and ραi,α j were for the uncentered case −0.48 and 0.26, respectively, and
for the hierarchically centered case 0.35 and 0.081, respectively. In addition, hierarchical
centering lowered the MCerror for µ: MCerror-uncentered = 0.32, MCerror-centered = 0.23.

(b) Reparameterization by sweeping: We applied the sweeping approach of Vines et al.
(1996) and upon convergence obtained a MCerror for µ of 0.15 which represents a great
improvement. The MCerror for ν was even lower and equal to 0.078. However, the price to
pay is that the program needs about 15 times more computation time.

(c) Parameter expansion techniques: The model was specified above and the priors were
specified in Example IX.10. With the same size of the Markov chain, the MCerror for µ was
equal to 0.22, about half of the MCerror for the uncentered case.

9.8 Comparison of Bayesian and frequentist
hierarchical models

At several instances in this chapter we have compared the estimated parameters by Bayesian
and frequentist techniques. In this section we review some analytical and simulation results
that compares the two approaches for Gaussian hierarchical models.

9.8.1 Estimating the level-2 variance

Estimating σ 2
θ can be problematic when the true value is small. This has been noticed in the

frequentist literature, especially when the method of moments (MINVQUE) is used. With this
approach a negative estimate of σ 2

θ may be obtained when the level-2 observations exhibit



P1: JYS/XYZ P2: ABC
JWST177-c09 JWST177-Lesaffre May 29, 2012 10:5 Printer Name: Yet to Come Trim: 244mm × 168mm

264 HIERARCHICAL MODELS

low variation. In that case, the ML estimate and the REML estimate may result in a zero
estimate of the variance. This creates difficulties in hypothesis testing and the calculation
of confidence intervals. Hill (1965), Tiao and Tan (1965), Box and Tiao (1973) derived
analytically the marginal posterior distributions of the random effects ANOVA parameters
based on noninformative priors. They concluded that in the Bayesian context, σ 2

θ � σ 2 does
not create problems whenever the posterior distribution is proper. Indeed, even when the
Bayesian estimate, say mode, is zero the posterior distribution is still well defined and can
easily deliver credible intervals. The downside of the Bayesian procedure is, however, that
the (95%) credible interval for the variance parameter never includes the true value if it is
actually zero. Finally, Browne and Draper (2006) concluded from a large simulation study,
that the posterior mode and median of the variance parameters are preferable in terms of the
Mean-Squared-Error (see also Lambert 2006).

9.8.2 ML and REML estimates compared with Bayesian estimates

When the parameters are given flat priors, the MLE of variance parameters can be obtained
from the mode of a joint posterior. In addition, Harville (1974) proved for the BLMM with
normality of the measurement errors that the REML estimator for the variance components
must be equal to the mode of their marginal posterior distribution when the regression param-
eters are integrated out. Thus, if the posterior of the variance parameters is roughly symmetric
then the mean of the marginal posterior of the variance parameter approximates the REML
solution. This correspondence is only proven for flat priors and a linear model. But, in a
Bayesian exercise the marginal posterior estimates are always obtained by integrating out the
other parameters. Thus, one might expect that the Bayesian approach also delivers REML-like
solutions for other mixed models. There is also a close connection of the frequentist with the
Bayesian estimates of the random effects. In Section 9.3, it is seen that the BLUP estimator is
in fact a particular case of a Bayesian estimator whereby the marginal estimates of the model
parameters are imputed into the model.

Here follows an illustration of some of the correspondences between the frequentist and
Bayesian estimates of variance parameters. For this we use again the cholesterol intake data
of Example IX.13.

Example IX.22: Dietary study: Comparison with frequentist estimation
We now have a closer look at the correspondence between the ML and REML estimates and
the Bayesian estimators of the variance components. Using SAS PROC MIXED the MLE of
σ is 119.4 and the MLE of σθ = 14.4, while for the REML estimates we obtained σ = 119.4
and σθ = 16.3. The Bayesian analysis upon which the values in Table 9.2 were based, has a
vague prior for µ, a uniform prior for σθ and an IG(10−3, 10−3) prior for σ 2. According to
the estimated θi-values in Table 9.2, we conclude that the ML and REML estimates for σθ

must be quite different from the Bayesian estimates. In fact, the posterior median of σθ was
18.26. However, this does not invalidate the above assertion on the equivalence between ML
and REML estimators and the Bayesian estimators, since this result is based on flat priors for
all parameters and on posterior modes. Changing the prior for σ to a uniform on [0, 1000]
confirmed this relationship by graphically determining the posterior mode from a smoothed
density of the sampled values.
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From the above one might conclude that, apart from the different philosophical background
of the two approaches, it does not matter too much which approach is taken to analyze
hierarchical models. This is only partly true. First, we have seen that the Bayesian allows
easier to relax distributional assumptions than the classical approach. Second, in the frequentist
approach, the standard errors of the estimated fixed effects in linear and generalized LMMs
do not take into account that the sampling variability of the matrices G and R. Moreover, it is
quite hard to take this sampling variability into account. For this reason, the SAS procedures
MIXED and GLIMMIX address this problem and use estimated degrees of freedom in their t
and F-statistics. As seen repeatedly, the Bayesian approach takes into account all uncertainty
on the parameters and that without an extra effort. In addition, the frequentist coverage of the
Bayesian 100(1−α)% CIs based on NI priors is often close to 100(1−α)%.

9.9 Closing remarks

This chapter served as an introduction to Bayesian hierarchical/mixed models. This is an
exciting area and there is much more can be done than what is treated here both in practical as
well as in theoretical terms. The reader may consult the book of Dey et al. (2000) to explore
further developments. Furthermore, all considered models are (necessarily) likelihood-based
and then the Bayesian estimation procedure is robust against missing at random mechanisms
(Daniels and Hogan, 2008). We elaborate on missing data mechanisms in Chapter 15 where
we also show an analysis that allows for a particular missing-not-at random mechanism.

Exercises

Exercise 9.1 Show that the MLE of θ under assumption A2 in Section 9.2.2 is given by∑
i yi/

∑
i ei. Derive also the posterior summary measures for different priors on θ , (1) flat

prior, (2) Jeffreys prior, and (3) a normal prior with mean 1 and variance 102.

Exercise 9.2 Write a R function to Gibbs sample from the Poisson-gamma hierarchical model
based on GDR lip cancer data.

Exercise 9.3 Determine the WinBUGS samplers for the nodes µ, θi, σ
2 and σ 2

θ in the
WinBUGS program ‘chapter 9 dietary study chol.odc’.

Exercise 9.4 Perform a WinBUGS analysis of the dietary cholesterol data under assumptions
A1 and A2.

Exercise 9.5 Compare the Bayesian analysis of Example IX.8 to a frequentist analysis and
verify that the results are quite similar.

Exercise 9.6 Compare the analysis of Example IX.12 with an analysis where treatment is
included as main effect.

Exercise 9.7 Example IX.17: In Gelman and Meng (1996, p. 193) it is argued that a uniform
prior on the degrees of freedom (ν) essentially puts all of its mass on infinity. As an alternative,
the authors suggest to take as prior p(ν) ∝ 1/ν2. Implement this suggestion into a WinBUGS
program and evaluate the change in posterior estimates of the parameters. Do you agree with
their statement?
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Exercise 9.8 Compare the analysis of Example IX.14 with an analysis where treatment is
included as main effect.

Exercise 9.9 Show that the random intercept of the logistic random intercept model of
Example IX.14 has a bimodal distribution, with one mode around −2.4. Show also that the
subjects with an estimated random intercept around −2.4 correspond to those cases with zeros
as response over the whole study period.

Exercise 9.10 Determine the predicted profiles and the distribution of future observations for
the BNLMM of Example IX.18. Estimate the one missing response in the data.

Exercise 9.11 Use the WinBUGS program ‘chapter 9 dietary study chol2.odc’ to examine the
dependence of the posterior of σθ on the choice of ε in the inverse gamma ‘noninformative’
prior IG(ε, ε).

Exercise 9.12 In the WinBUGS program ‘chapter 9 generated.odc’ a Bayesian–Gaussian
hierarchical model is given using fictive data from Tiao and Tan (1965). The data were
generated such that the frequentist estimate of σ 2

θ is negative. Check that this is indeed the
case. Further, apply the Bayesian approach to estimate σ 2

θ .

Exercise 9.13 Example IX.12: Check the impact of choosing an Inverse Wishart prior for the
covariance matrix of the random intercept and slope on the estimation of the model parameters,
by varying the parameters of the prior. Compare this solution with the solution obtained from
taking a product of three uniform priors on the standard deviation of the random intercept and
slope, and the correlation, respectively. Use ‘chapter 9 toenail LMM.odc’.

Exercise 9.14 Gelman (2006) suggested to reformulate the Gaussian hierarchical model as

yi j ∼ N(µ + ξ ηi, σ
2)

ξ ∼ N(0, σ 2
η ).

In WinBUGS program ‘chapter 9 dietary study chol folded.odc’ the original IBBENS data are
analyzed according to the above model with a half-Cauchy prior with scale parameter 25 for
σθ using a N(0, 52) prior on ξ and an IG(0.5, 0.5)-prior for σ 2

η . Replay the analysis and vary
the parameters of the priors to examine their impact on the posterior p(σθ | y). In Gelman
(2006), it is claimed that the above reformulation of the Gaussian hierarchical model reduces
the autocorrelation of the sampled parameters. Verify this on the behavior of σθ .

Exercise 9.15 Example IX.18: Although in the first 10 000 iterations the trace plots behaved
well, when running the chains further it became apparent that the variance parameter σ

got stuck at zero for one chain and that for quite some iterations. Apply the parameter
expansion technique of Section 9.7 (adapt the program ‘chapter 9 arterio study.odc’) to
improve convergence of this parameter. Does this change in the program alter your clinical
conclusions?

Exercise 9.16 The R program ‘chapter 9 dietary study-R2WB.R’ uses the R2WinBUGS
program for the analysis of dietary study. Run this program and produce your own trace plots,
histograms, scatter plots, etc.
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Model building and assessment

10.1 Introduction

We now explore Bayesian procedures for model building and model criticism. We assume
that there are just a few good candidate models from which we wish to select. Therefore, the
criteria for model selection that are reviewed in this chapter essentially compare the models
two by two. Model and variable selection techniques involving a large number of candidate
models are the subject of Chapter 11.

Statistical models are typically built by either a top-down approach (from theory to data
when there is a well-developed theory such as in biological and economic research) or by
a bottom-up approach (from data to model what often occurs in medical and epidemiologic
research). However, a recipe to come up with the best statistical model does not exist. It
is even not realistic to assume that the true model will ever be found as Box once argued:
‘all models are wrong but some are useful’. In a statistical analysis, the final model is the
result of variable selection, model choice and model criticism. Models are tested for their
performance in inference and prediction. In this chapter, we focus on the model building and
criticism aspects of the modeling exercise. The issues and problems in statistical modeling
in frequentist methods are similar to those in the Bayesian approach, except for two aspects:
(1) a Bayesian model is the combination of the likelihood and a prior, and therefore model-
ing involves now two choices, and (2) Bayesian inference is (nowadays) based on MCMC
techniques in contrast to frequentist approaches where asymptotic inference is most common.

To build the ultimate statistical model, substantive arguments are combined with modeling
activities such as variable selection, variable transformations, checking the goodness of fit
(GOF) of the model, etc. In addition, and perhaps most importantly, the choice of the final
model depends on who is doing the analysis and for what purposes.

In this chapter, we review criteria to select from a handful of statistical models. The
Bayes factor, introduced in Chapter 3, is an obvious candidate for this task but theoretical
and practical obstacles render its use not straightforward. Nevertheless, it is an indispensable
tool for variable selection (see Chapter 11). Here, we treat two approximations to the Bayes
factor: the pseudo-Bayes factor and the Bayesian Information Criterion (BIC). Together with

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Akaike’s Information Criterion (AIC), the BIC is the most often used frequentist information
theoretic criterion. The AIC is introduced at length to serve as an introduction to the Deviance
Information Criterion (DIC). This criterion is a popular tool for Bayesian model selection
but produces occasionally peculiar results and caused a lot of discussion on the WinBUGS
forum. We also review Bayesian GOF techniques, such as the posterior predictive check, and
methods to locate outliers and influential observations. Finally, we explore GOF procedures
that are based on expanding the model. Summarized, we look in this chapter for explorative
tools that check and improve the fitted model.

10.2 Measures for model selection

In this section, we review and illustrate the use of Bayesian criteria for choosing the most
appropriate model from a handful of candidates, but essentially we will look only at the
comparison of two models.

10.2.1 The Bayes factor

10.2.1.1 Use in model selection

The Bayes factor was introduced in Section 3.8.2 as a Bayesian tool for hypothesis testing
and that for both nested and non-nested models. Here, we illustrate its use in model selection.
Suppose that there are two candidate (classes of) models for the data y: M1 with parameters
θ1 and M2 with parameters θ2. To choose the most appropriate model for the data at hand, one
needs the marginal (averaged) likelihood under each model since the actual values of θ1 and
θ2 are never known. For model Mm one computes

p(y | Mm) =
∫

p(y | θm, Mm) p(θm | Mm) dθm, (m = 1, 2),

which is also the prior predictive distribution for model Mm (Section 3.4.2). The posterior
probability for model Mm

p(Mm | y) = p(y | Mm) p(Mm)

p(y)
= p(y | Mm) p(Mm)

p(y | M1) p(M1) + p(y | M2) p(M2)
, (m = 1, 2)

tells us which of the two models is most supported by the data. Further, the Bayes factor

BF12(y) = p(y | M1)/p(y | M2)

summarizes the evidence in the data for model M1 compared to model M2 irrespective of the
prior probabilities p(M1) and p(M2). (Note that we have changed the notation of the Bayes
factor from that in Chapter 3 to indicate which models are compared.) When BF12(y) is greater
than one, then the posterior odds for M1 is increased compared to the prior odds. For equal
prior probabilities, model choice based on the Bayes factor is the same as model choice based
on the above model posterior probabilities.

In the following example, we compute the Bayes factor to choose between two models
for the dmft-index in the Signal-Tandmobiel® study of Example II.3.
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Example X.1: Caries study: Choosing between a Poisson and a binomial distribution for
the dmft index
Suppose, we wish to check which of the following two models fits best the distribution of
the dmft index: (a) model M1: Poisson(θ1) where θ1 represents the average dmft-index, or
(b) model M2: Bin(20, θ2) with θ2 the probability of caries experience for deciduous teeth in
the mouth. To calculate the averaged likelihoods, we need to choose prior distributions for θ1

and θ2. Suppose, it is justified to take a gamma distribution for θ1 and a beta distribution for
θ2. Then the averaged likelihoods for the sample of n = 4351 children are, respectively,

� p(y | M1) =∏n
i=1

∫
Poisson(yi | θ1) Gamma(θ1 | α1,0, β1,0) dθ1,

� p(y | M2) =∏n
i=1

∫
Bin(yi | 20, θ2) Beta(θ2 | α2,0, β2,0) dθ2.

For the two models, the integrations can be performed analytically. For model M1, the
contribution of the ith child with response yi is NB(yi | α1,0, β1,0) while for model M2 it
is BB(yi | 20, α2,0, β2,0). The values α1,0, β1,0, α2,0 and β2,0 are supplied by the user. For
the Poisson likelihood, we assume θ1 ∼ Gamma(3, 1) (as in Example II.3) to reflect the
prior knowledge of an average dmft-index around 3 with 95% prior uncertainty ranging
from 0.62 to 7.2. For the Poisson distribution, it is assumed that the dmft-values are sums
of independent caries events. In that case θ1/20 should approximately correspond to θ2,
the probability that a tooth shows caries experience. A matching beta prior for θ2 is the
Beta(2.9, 16.5) distribution which overlaps the Gamma(3,1) distribution almost completely
on the θ2 scale. Thus, p(y | M1) is the product of NB(3, 1) likelihoods and p(y | M2) is the
product of BB(20, 2.9, 16.5) likelihoods. With the averaged likelihood under the Poisson
model denoted as L1 and for the binomial model as L2, we obtained log L1 = −9781.793 and
log L2 = −10065.36. This shows that the Poisson model is ‘very strongly’ preferred over the
binomial model with log BF12(y) = 283.57.

That the Bayes factor favors the Poisson distribution does not imply that the Poisson model
is appropriate which we can see in Figure 10.1. In addition, the fit of the Poisson distribution
is only marginally better than the binomial fit, despite the strong preference for the Poisson
model.

dmft−index
151050

0.
4

0.
3

0.
2

0.
1

0.
0

Figure 10.1 Caries study: histogram of dmft index and fitted Poisson (solid line), binomial
(dashed line) and negative binomial (dotted line) distributions.
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Occasionally, the Bayes factor can be determined analytically, but in general, it requires
a numerical algorithm. An illustration of a naive numerical computation is given in next
example.

Example X.2: Caries study: Choosing between three distributions for the dmft index
with the Bayes factor
We now consider a third candidate model M3 for yi, i.e. the negative binomial distribution
NB(yi|α, β) given by expression (3.15). Based on ML, we obtained NB(0.56, 0.25) as best
fitting negative binomial distribution, shown in Figure 10.1. Given the better fit of the negative
binomial distribution, we expect that the Bayes factor favors model M3 over models M1 and
M2. Recall that in Example VI.10, the negative binomial distribution was preferred over the
Poisson distribution using the RJMCMC approach.

Two parameters are involved with model M3, i.e. (θ3, θ4) ≡ (α, β) and thus we need a
bivariate prior distribution. For this exercise, we have taken flat priors for all three models,
i.e. (a) model M1: θ1 ∼ U(0, 20), (b) model M2: θ2 ∼ U(0, 1), and (c) model M3: θ3 ∼
U(0, 1) independently of θ4 ∼ U(0, 1). No analytical expressions are available now, hence
we need to rely on numerical approximations. A brute force method, that only works in
low-dimensional problems, is to randomly sample values θ1

m, . . . , θK
m from the prior p(θm |

Mm) and to approximate the integral as follows:

p(y | Mm) =
∫

p(y | θm, Mm) p(θm | Mm) dθm ≈ 1

K

K∑
k=1

p(y | θk
m, Mm). (10.1)

Based on (10.1), we obtained log L1 = −13040.75, log L2 = −13246.82 and log L3 =
−10499.42. Again, the Poisson model is preferred over the binomial model, but the uni-
form priors produced a different Bayes factor, i.e. log BF12(y) = 206.07. On the other hand,
log BF31(y) = 2541.33 and log BF32(y) = 2747.40 reveal a strong evidence for model M3.

Finally, to further illustrate the dependence of the Bayes factor on the choice of the prior,
we based the marginal likelihood for model M3 on uniform priors on [0,10] for θ3 and θ4. For
this prior log L3 = −15186.84 and apparently now model M3 appears to be the worst of all
three models.

10.2.1.2 Computing the Bayes factor

The Bayes factor requires the calculation of the marginal likelihood which most often involves
a computational procedure. Various approaches for calculating the Bayes factor in a direct
manner have been reviewed in Kass and Raftery (1995). Ntzoufras (2009) provides WinBUGS
programs for some of the simplest algorithms. However, the most promising algorithms
are computationally involved perhaps even more involved than the MCMC algorithms for
estimating the parameters. In Chapter 11, we will see that the Bayes factor can also be
obtained from an indirect computation, namely as a by-product of the MCMC algorithm.
We now briefly review some of these direct approaches. First, there are the general purpose
numerical integration techniques such as the quadrature techniques of Section 3.7.1. They can
achieve good performance up to dimensions 5–10. The second approach is sampling either
from the prior or from the posterior. Sampling from the prior was done in Example X.2, but
since the prior has often a much larger spread than the posterior, sampling from the prior
implies that many sampled θ-values do not contribute much to the sum in equation (10.1)
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since their likelihood contribution is close to zero. Sampling from the posterior allows us to
restrict to primarily realistic values of θ. Using the equality

1

p(y | Mm)
=
∫

1

p(y | θm, Mm)

p(y | θm, Mm)p(θm | Mm)

p(y | Mm)
dθm,

=
∫

1

p(y | θm, Mm)
p(θm | y, Mm) dθm,

Newton and Raftery (1994) suggested as estimate for the marginal likelihood the harmonic
mean of likelihoods given by

(
1

K

K∑
k=1

1

p(y | θk
m, Mm)

)−1

.

However, the estimator has a wild behavior and improvements have been suggested (Ntzoufras
2009). Yet other sampling techniques such as importance sampling, bridge sampling and
MCMC sampling have been proposed; see Ntzoufras (2009) and references therein.

10.2.1.3 Pros and cons of the Bayes factor

The Bayes factor is based on the marginal likelihood of the data whereby the likelihood for θ

is averaged over its uncertainty given by the prior p(θ). Interestingly, the marginal likelihood
does not require fitting the model to the data. This is in sharp contrast to the frequentist
approach where estimation and testing procedures are closely linked. Indeed, while the Bayes
factor is the natural Bayesian equivalent of the frequentist likelihood ratio test for model
testing, it cannot be obtained from a Bayesian modeling exercise whereby two models are fit
to the data. It is, though, a formally correct solution to model choice with, however, a number
of practical limitations. In their review paper, Kass and Raftery (1995) summed up the pros
and cons of the Bayes factor, some of which were already illustrated in Examples X.1 and
X.2 two examples.

Arguments in favor of the Bayes factor are (1) the Bayes factor offers a way of evaluating
evidence in favor of H0, as seen in Chapter 3; (2) external information can be incorporated;
(3) nonstandard models and non-nested models are allowed for, and (4) invariance to parameter
transformation (in contrast to the information-theoretic approaches mentioned later). However,
the use of the Bayes factor in practice is not straightforward because of the difficulty in
choosing an appropriate prior p(θ). As an illustration, see the effect of the change in priors in
Example X.2. The important drop in marginal likelihood for model M3 was caused by the prior
p(θ3, θ4) ∝ U(0, 10) × U(0, 10) which averages the negative binomial likelihood over many
unrealistic θ-values. We have seen in Section 3.8.3 that this causes the Bartlett–Lindley’s
paradox for nested models. The dependence of the Bayes factor on the choice of prior does
not decrease with increasing sample size as with the posterior distribution. In addition, when
comparing models with a different number of parameters or a different kind of parameters, it is
not immediately clear how to choose matching priors as illustrated in Example X.2. For another
example, consider choosing between a gamma distribution and a Box-Cox transformation
model, i.e. (yλ − 1)/λ ∼ N(µ, σ 2), for a positive random variable y. The first model has two
parameters while the second model has three parameters but of a different nature. Even more
problematic is that the Bayes factor cannot be used with improper priors. Indeed, while an
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improper prior may lead to a proper posterior, an improper prior always results in an improper
marginal distribution (see Section 5.4.4). In that case, the Bayes factor becomes undetermined.
A simple example that illustrates this indeterminacy now follows. Suppose that a Gaussian
distribution (M1) and a t3-distribution (M2), both with an unknown location parameter µ and
a known scale parameter, are compared using the Bayes factor. Assume improper flat priors
for µ, then with equal prior probabilities for the two models:

p(M1 | y)

p(M2 | y)
= p(y | M1)

p(y | M2)

p(M1)

p(M2)
=
∫

p(y | µ, M1)p(µ | M1) dµ∫
p(y | µ, M2)p(µ | M2) dµ

=
∫

p(y | µ, M1)c1 dµ∫
p(y | µ, M2)c2 dµ

∝ c1

c2
.

For the improper priors, it does not matter which constants c1 and c2 are taken. Given
the arbitrariness of the choice of constants, the Bayes factor is not defined for such priors.
Moreover, O’Hagan and Forster (2004, p. 179) showed that the Bayes factor is even sensitive
to the choice of the prior when the prior is not particularly weak and the data are strong.

Finally as seen earlier, numerical computation of the Bayes factor is far from trivial.
Therefore, it should not come as a surprise that Bayesians are divided about the value

of the Bayes factor as a tool for model selection. Gelfand (Gilks et al. 1996, p. 149) writes
‘. . . use of Bayes factors often seem inappropriate in real applications’. Gelman et al. (2004)
hardly spent two pages on the Bayes factor in their book, giving an example where the Bayes
factor could be considered useful and another example where it causes confusion. O’Hagan
(2006), on the other hand, argued that ‘Bayes factors are an important part of the applied
Bayesian statistician’s toolkit’. Notwithstanding the problems, Albert (1999) provided an
elegant illustration of the use of the Bayes factor in model building and criticism with a
Poisson-gamma hierarchical model.

Two approximations of the Bayes factor are frequently used in practice: the BIC and the
pseudo-Bayes factor. We first discuss the pseudo-Bayes factor.

10.2.1.4 A variation on the Bayes factor: The pseudo-Bayes factor

A major difficulty with the Bayes factor is that it cannot be used with improper priors.
Various suggestions were made in the literature to bypass this obstacle. One approach is to
use part of the data to update the (improper) prior to a proper posterior and then base the
Bayes factor on this posterior. This goes as follows (Gelfand and Dey 1994): Suppose that
the data y = {y1, . . . , yn} are split up into a learning part yL = {yi (i ∈ L)} and a testing part
yT = {yi (i ∈ T )}, with L and T nonoverlapping parts of {1, . . . , n}. Further, for a subset S of
{1, . . . , n} let

L
(
θm | yS, Mm

) =
∏
i∈S

p(yi | θm, Mm),

and define the conditional density as

p(yT | yL, Mm) =
∫

L
(
θm | yT , Mm

)
p(θm | yL, Mm) dθm

=
∫

L
(
θm | yT , Mm

)
L
(
θm | yL, Mm

)
p(θm | Mm) dθm∫

L
(
θm | yL, Mm

)
p(θm | Mm) dθm

. (10.2)
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Expression (10.2) defines a predictive density which averages the joint density of yT over the
prior for θm updated by yL. When p(y | Mm) is replaced by p(yT | yL, Mm) a variant of the
Bayes factor is obtained

BF∗
12(y) = p(yT | yL, M1)/p(yT | yL, M2), (10.3)

where the Bayes factor evidently depends on the choice of the learning part. Particular choices
of L and T produce some well-known variations of the Bayes factor, such as the intrinsic Bayes
factor and the posterior Bayes factor (Gelfand and Dey 1994). The advantage of BF∗

12(y) over
BF12(y) is that it can be computed with improper priors (as long as the posterior is proper)
but it requires setting apart a learning set and its choice is to a great extent arbitrary.

With the choice of Ti = {i} and Li = {1, . . . , i − 1, i + 1, . . . , n} (1 ≤ i ≤ n), we obtain n
learning and testing sets, i.e. yLi

≡ y(i) = {y1, . . . , yi−1, yi+1, . . . , yn} and yTi
≡ yi. This yields

the cross-validation density p(yi | y(i), Mm) introduced by Geisser (1980), also called the
conditional predictive ordinate (CPOi). Geisser and Eddy (1979) defined the pseudo-Bayes
factor (PSBF) for comparing models M1 and M2 as

PSBF12 =
∏

i p(yi | y(i), M1)∏
i p(yi | y(i), M2)

=
∏

i CPOi(M1)∏
i CPOi(M2)

. (10.4)

It can be noticed that PSBF12 differs from expression (10.3) in that the marginal likelihood
(conditional on yL) in (10.3) is replaced by a product of conditional densities. This follows
from a suggestion of Geisser and Eddy (1979) who used

∏
i p(yi | y(i), Mm) as a surrogate for

p(y | Mm). Gelfand and Dey (1994) showed that the pseudo-Bayes factor is asymptotically
related to AIC and does not suffer from Lindley’s paradox.

For the computation of PSBF12, we need p(yi | y(i), Mm) and compute CPOi(Mm). How
this can be done in combination with MCMC sampling is shown in Section 10.3 where we also
show that WinBUGS (or R2WinBUGS) can be used for this. Here, we assume that CPOi(Mm)

can be computed and denote its estimate as ĈPOi(Mm). PSBF12 is computed by multiplication
of ĈPOi(Mm) over the n observations for m = 1, 2 and taking the ratio. In practice, one reports
log(PSBF12). We now illustrate the use of the PSBF to choose between the three discrete
distributions for the dmft index in the Signal-Tandmobiel study.

Example X.3: Caries study: Choosing between three distributions for the dmft index
with the pseudo-Bayes factor
Under the settings of Example X.2, we compute the PSBF to choose between a Poisson (M1),
binomial (M2) and negative binomial (M3) model. In ‘chapter 10 PSBF dmft index.odc’ we
computed 1/ĈPOi(Mm) (i = 1, . . . , n) for the three count models. The program ‘chapter 10
PSBF dmft index.R’ computes the pseudo-Bayes factor based on the generated output. This
results in

∑
i log[ĈPOi(M1)] = −2.64,

∑
i log[ĈPOi(M2)] = −2.81,

∑
i log[ĈPOi(M1)] =

−1.97 and therefore P̂SBF12 = 1.19, P̂SBF13 = 0.51 and P̂SBF23 = 0.43. The conclusion is
the same as with the ordinary Bayes factors, namely, that the negative binomial distribution
is to be preferred.

The CPO, and in general predictive distributions, are also useful for outlier detection in a
Bayesian manner. We return to that in Section 10.3.
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10.2.2 Information theoretic measures for model selection

The two most popular frequentist information criteria to choose between models are: AIC
and BIC. However, strictly speaking BIC is not based on information-theoretic concepts
(Anderson and Burnham 1999) but is rather a special case of the Bayes factor. That BIC is
treated here and not in Section 1.2.1, has to do with the fact AIC and BIC are often reviewed
together in the literature. Note that, despite BIC is a Bayesian concept, it is more popular in
frequentist applications.

AIC and BIC balance model fit with model complexity defined as the number of free
model parameters also called effective degrees of freedom. The effective degrees of freedom
often coincides with the number of freely varying parameters (p) in the model. In models
involving smoothing and in hierarchical models, the degrees of freedom are less than p. It
will be shown in this section that model complexity also depends on the focus of the model
which determines on its turn the choice of the information criterion. We start with introducing
AIC to serve as background for the Deviance Information Criterion (DIC), which is the most
popular Bayesian criterion in model selection and the Bayesian generalization of AIC.

10.2.2.1 AIC and BIC

The most popular frequentist measure for model selection is AIC developed by Hirotsugu
Akaike who called it ‘another information criterion’ (Akaike 1974). AIC is a measure of
model fit penalized for model complexity and is especially useful to select among non-nested
statistical models. The basis for AIC is the Kullback-Leibler (K-L) distance between two
densities f and g defined as

I( f , g) =
∫

log

[
f (x)

g(x)

]
f (x) dx. (10.5)

The K-L-distance between the true density pt of the distribution of y and pθ (y) ≡ p(y | θ),
which is the proposed model for fitting y parameterized by a p-dimensional parameter vector
θ ∈ � is

I(pt, pθ ) = Et
[
log pt (y)

]− Et
[
log pθ(y)

] ≥ 0.

Et signifies that the expectation is taken with respect to pt . Define θt as the value that minimizes
I(pt, pθ ). The K-L distance is zero only when pt can be written exactly as p(y | θt ).

I(pt, pθt ) measures how well the class of models 	 = {pθ | θ ∈ �} can fit the data. For
two classes 	1, 	2 with respective K-L distances I1, I2 the one with the smallest value is to
be preferred. Note that when comparing I1 with I2, only the second term in the expression of
the K-L distance is needed. In practice θt is not known, but nevertheless, we wish to know
which model fits best the (future) data. One could estimate Et[log p(y | θt )] by log p(y | θ̂(y))

with θ̂(y) the maximum likelihood estimate (MLE) of θ based on the data y. Since under
general regularity conditions θ̂(y) → θt for n → ∞, one might hope for a good performance
of this measure. However, in log p(y | θ̂(y)) the data are doubly used: (1) once to estimate
θ and (2) another time to evaluate the predictive performance of the fitted model. Hence,
this is not the way to estimate the performance of the model on new data. In fact, we need
EtEt∗[log p(y∗ | θ̂(y))], with Et∗ the expectation over new data y∗ independent of y but having
the same distribution pt . The negative bias induced by taking log p(y | θ̂(y)) is the expected
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value (under true model) of

log p(y | θt ) − log p(y | θ̂(y)).

To express the bias of the fitted model we define

d
[
y, θt, θ̂(y)

] = −2 log p
(
y | θt)+ 2 log p(y | θ̂(y)). (10.6)

It can be shown that the expected value of d[y, θt, θ̂(y)] under the true model is equal to

Et
{
d
[
y, θt, θ̂(y)

]} ≈ ρ = tr
[
K(θt )	(θt )−1

]
, (10.7)

with 	(θt ) = −Et[ ∂2 log p(y|θt )

∂θ2 ] and K(θt ) = Et[ ∂ log p(y|θt )

∂θ

∂ log p(y|θt )

∂θ

T
].

When pt (y) = p(y | θt ), then ρ = p and −2 EtEt∗[log p(y∗ | θ̂(y))] (the factor −2 is
classically included in the literature) is estimated by

AIC = −2 log p(y | θ̂(y)) + 2p = −2 log L(̂θ(y) | y) + 2p. (10.8)

AIC is called a penalized model selection criterion since it penalizes the maximized −2(log-
likelihood) with the penalty term 2p for overfitting the data. The model with the lowest AIC
among a set of candidate models is to be preferred. The penalty term is also referred to as
‘model complexity’, since the more parameters are involved the more complex the model is.
In addition, since AIC estimates −2 EtEt∗[log p(y∗ | θ̂(y))] it measures the predictive ability
of the model.

The penalty increases with the number of parameters in the model. In fact, it is simply
a reflection that a complex model has a higher power to provide a good fit to the data than
a simple model. But this fit is specific for the data at hand and most likely the quality of fit
cannot be achieved in future data.

Example X.4: Theoretical example: AIC for a linear regression model
For a Gaussian regression model with (d + 1) regressors (including constant), AIC =
n log(σ̂ 2) + 2p + C, where σ̂ 2 =∑ ε̂2

i /n with ε̂i the estimated residual of the ith individ-
ual. Here p = d + 2, representing the regression coefficients and the residual variance. The
constant C = n log(2π) + n is reported here for use in Example X.5, but is not important in
practice since AIC is only used for comparing models.

Approximation (10.8) is good when the sample size is large and the proposed model is not
too different from the true model. For a small sample, one uses the corrected AICc obtained
from AIC by replacing p by p( n

n−p−1 ). When the class 	 does not contain the true distribution,

the penalty term is equal to 2tr[K(θ)	(θ)−1] and Takeuchi’s Information Criterion (TIC) is
obtained.

The BIC, suggested by Schwarz (1978), is another popular penalized model selection
criterion. The formula for BIC is

BIC = −2 log L(̂θ(y) | y) + p log(n). (10.9)
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As for AIC, models with a smaller value of BIC are preferred. BIC is popular in frequen-
tist statistics but is in fact a Bayesian measure. We now sketch the proof given by Raftery
(1995) and Kuha (2004) that BIC is obtained from a Laplace approximation of the marginal
likelihood. This derivation is useful for the understanding of some variable selection tech-
niques in Chapter 11. For notational simplicity, we omit the subindex m. The expression
g(θ) = log[p(y | θ, M)p(θ | M)] for model M can be expanded around the p-dimensional
posterior mode θM , as follows:

log p(y | M) = log p(y | θM, M) + log p(θM | M) + (p/2) log(2π) − (1/2) log | A | + O(n−1),

with A = −g̈(θM ) whereby g̈ denotes a second derivative with respect to its parameters.
O(n−1) represents a term that goes as fast to zero as 1/n for n → ∞.

For a large sample, θM ≈ θ̂, the MLE and A = 	(̂θ). This yields log p(y | M) =
log p(y | θ̂, M) − (p/2) log n + O(1), with O(1) a term that does not vanish when n → ∞.
A better approximation (of O(n−1/2)) is obtained when the prior p(θ|M) is equal to the unit
information prior given by

N
(
θ | θ̂, nV̂

)
, (10.10)

with V̂ = 	(̂θ)−1 (or replaced by the observed Fisher information matrix). This prior
distribution contains the same amount of information as (on average) a single observa-
tion. Then log p(y | M) = log p(y | θ̂, M) − (p/2) log n + O(n−1/2) and −2 log BF12(y) =
−2{log p(y | M1) − log p(y | M2)} ≈ −2{log p(y | θ̂1, M1) − log p(y | θ̂2, M2)} + (p1 − p2)

log n + O(n−1/2) which is approximately BIC1 − BIC2. Summarized: BIC with a particular
prior is a large sample version of a Bayes factor. Raftery (1995, 1999) advocated the unit
information prior in model and variable selection. Note that AIC can also be seen as a special
case of a Bayes factor, but with a prior comparable to that of the likelihood (Kass and Raftery
1995).

AIC and BIC are derived from two different principles, but both adhere Occam’s Razor
principle derived from a well-known statement of the English logician William Occam
(1285–1347) that ‘entities must not be multiplied beyond necessity’ (see also Forster 2000).
This translates here as: if two models describe the observations equally well, we should
choose the simpler one. In practice, both measures provide only a rough indication of which
model to choose. Classically, only a difference of more than 5 is considered as substantive
evidence for the model with the smallest AIC or BIC, while a difference of more than 10
represents strong evidence. From expressions (10.8) and (10.9), we infer that BIC favors
simpler models than AIC for larger values of n (when n ≥ 8). The performance of AIC
and BIC has been compared in a variety of application areas by means of analyses on real
data sets and simulations (see Kuha 2004; Lin and Dayton 1997; Ward 2008 and references
therein). The conclusion from these papers is mixed in the sense that there is no clear winner,
but all indicate that BIC has a tendency to select simpler models than AIC especially for large
sample sizes. Why there is a greater preference for simpler models (hence conservatism)
with BIC is seen from the fact that BIC is an approximation to the Bayes factor with the unit
information prior, which might be too widespread (and thus does not represent the actual
knowledge one has on the model) such that BIC may suffer from Lindley’s paradox.

For hierarchical models, we need to be careful when determining the effective degrees of
freedom for the computation of AIC. Indeed, in a hierarchical model, there are fixed effects
and random effects, the latter not varying freely. Hence, the effective number of parameters
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in a hierarchical model must be less than the total number of parameters. Further, for a
hierarchical model one may choose between the conditional likelihood (given the random
effects) or the marginal likelihood (integrated over the random effects) as basis for computing
AIC. We illustrate these issues with a Gaussian hierarchical model in the next example.

Example X.5: Theoretical example: Conditional and marginal likelihood of a linear
mixed model
We now look at the Gaussian hierarchical model of Example IX.7 in a frequentist con-
text. Using the assumptions made in that example and with the same notation, the con-
ditional likelihood given the random effects is LC(θ, σ | y) =∏n

i

∏mi
j N(yi j | θi, σ

2). In-
tegrating the conditional likelihood over the random effects produces the marginal likeli-
hood LM . The marginal distribution is determined by: yi j ∼ N(µ, σ 2 + σ 2

θ ), ( j = 1, . . . , mi;
i = 1, . . . , n) and corr(yi j, yi′ j′ ) = σ 2 if j 
= j′, i = i′ and 0 if i 
= i′. For the Gaussian hierar-
chical model, the penalty term in AIC is equal to the number of freely varying parameters.
In the marginal model, this number is 3. In the conditional model, there are n + 2 param-
eters with n parameters pertaining to the random effects. When σθ = 0, their contribution
reduces to one while for σθ = ∞ all clusters are considered to be unrelated and the random
effects imply n free parameters.

Hodges (1998) and Hodges and Sargent (2001) defined the effective number of parameters
in a Gaussian linear mixed model, denoted ρ, as the trace of a (nonorthogonal) projection
matrix. In this way, ρ becomes the effective dimension of the predicted response corresponding
to the traditional interpretation of the effective degrees of freedom. Lu et al. (2007) extended
their proposal to generalized linear mixed models.

Example X.6: Theoretical example: Effective degrees of freedom of a linear mixed model
For the Gaussian hierarchical model in Example X.5 with mi = m (i = 1, . . . , n), Hodges
and Sargent (2001) obtained for the conditional model ρ = 1 + (n − 1)m/(m + ψ) with
ψ = σ 2/σ 2

θ . Hence, ρ depends on the ratio of the within- to between-cluster variability.
When ψ → 0, i.e. when the between-cluster variation is large to the within-cluster variation,
ρ → n. We interpret this limiting case as that the n different θis have no common distribution
(there will be no shrinkage in the EB estimates). When ψ → ∞, the within-cluster variation
(σ 2) is large compared to the between-cluster variation (σ 2

θ ) and the fitted θi shrink to µ

together with ρ → 1.

Next, we need to consider the choice of the likelihood in the computation of the hierarchical
version of AIC. A key question is whether we should take the conditional or the marginal
likelihood for the calculation of AIC. This question turns out to be also relevant for DIC. Note
that this choice reflects our focus with the statistical model. To see this, recall that AIC is a
measure of predictive ability of the statistical model. In the case of a Gaussian hierarchical
model, the marginal likelihood involves only µ, σ 2

θ , σ 2 without explicit reference to the
included clusters. Therefore, AIC based on the marginal likelihood evaluates the predictive
ability of the model when observations from future clusters of the N(µ, σ 2

θ ) distribution are
taken. On the other hand, since the conditional likelihood involves θi (i = 1, . . . , n), AIC
based on the conditional likelihood evaluates prediction of observations from the current
clusters. In Example IX.9, we predicted the cholesterol intake of future individuals of the
same subsidiaries as in the dietary study. To evaluate the predictive ability of the model in
this case, we must use the conditional likelihood. When the cholesterol intake of individuals
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from other subsidiaries (that could have been sampled originally) is of interest, then we
base AIC on the marginal likelihood. Thus, the choice between the conditional and marginal
model for the computation of AIC depends on the focus of the model: here predicting either
future observations from existing clusters or from future clusters (i.e. the population of
clusters). Vaida and Blanchard (2005) provided other illustrations of the inappropriateness of
the classical AIC when the focus is on cluster level. They also derived the conditional AIC
for a Gaussian linear mixed model.

10.2.2.2 Deviance Information Criterion

We now turn to the Bayesian case and treat the DIC proposed by Spiegelhalter et al. (2002) as
a tool for model selection in a Bayesian context. A key question is how to define the effective
number of parameters in a Bayesian context, especially for complex models.

To define the complexity of the model in a Bayesian context, Spiegelhalter et al. (2002)
suggested to replace θt in expression (10.6) by a random variable θ and to take the expectation
of expression (10.6) over the posterior p(θ | y). This produces pD, a Bayesian measure of
complexity. More specifically,

pD = Eθ|y
{

d
[
y, θ, θ(y)

]}
= Eθ|y

[
−2 log p(y | θ) + 2 log p(y | θ(y))

]
, (10.11)

with θ(y) the posterior mean. pD can also be written as

pD = D(θ) − D(θ), (10.12)

with D(θ) = −2 log p(y | θ) + 2 log f (y) called the Bayesian deviance. D(θ) is the posterior
mean of D(θ), while D(θ) is equal to D(θ) evaluated in the posterior mean of the parameters.
The term f (y) is independent of parameters and is introduced to compute DIC. For instance,
for the exponential family with E(y) = µ(θ) the authors propose f (y) = p(y | µ(θ) = y).
However, the term f (y) cancels out from the expression of pD. Note that in WinBUGS the
term f (y) is not computed.

Much of pD’s credibility comes from the fact that it coincides with frequentist measures
of complexity for a normal likelihood combined with a flat prior for the mean parameter
and fixed variance parameters. The analogy with ρ in the development of AIC follows from
comparing expressions (10.7) and (10.11). In fact the frequentist expectation over the true
model is replaced here by a Bayesian expectation over the posterior distribution. In the general
case pD and ρ may differ considerably (Lu et al. 2007).

Spiegelhalter et al. (2002) proposed DIC as a Bayesian model selection criterion,
defined as

DIC = D(θ) + 2pD = D(θ) + pD. (10.13)

While f (y) is included in the computation of DIC (but not in WinBUGS), it plays no role
in model choice. An attractive aspect of pD and DIC is that both can readily be calculated
from an MCMC run by monitoring θ and D(θ). Let θ1, . . . , θK represent a converged Markov
chain, then D(θ) can be approximated by 1

K

∑K
k=1 D(θk) and D(θ) by D( 1

K

∑K
k=1 θk). The

implementation of pD and DIC in WinBUGS has encouraged greatly its use.
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The rule of thumb for using DIC in model selection is roughly the same as for AIC and
BIC, namely, a difference in DIC of more than 10 rules out the model with the higher DIC
while with a difference of less than 5 there is no clear winner. Note that DIC is subject to
sampling variability since it is based on the output of an MCMC procedure.

By means of several examples we now illustrate the use (and) pitfalls of pD and DIC
in choosing the best fitting model. Some of these limitations were already mentioned in the
discussion part of Spiegelhalter et al. (2002). They caused considerable confusion among
WinBUGS users. Especially for novel users we hope that these illustrations are illuminating.
Further explanation and examples can be found at the WinBUGS website. We also illustrate
some theoretical results on the relationship between AIC and DIC, such as the asymptotic
equivalence of AIC and DIC for nonhierarchical models proved by Zhu and Carlin (2000).

Example X.7: Osteoporosis study: pD and DIC compared to p and AIC
The regression model of Example IV.7 with TBBMC regressed on BMI is an example of a
nonhierarchical model. A frequentist regression analysis yields AIC = 85.6, AICc = 85.7 and
BIC = 95.4 since n = 234, p = 3 and σ̂ 2 = 0.082. To obtain pD and DIC with WinBUGS the
chain must have converged. Then one clicks on option Inference of the menu bar and chooses
DIC. The window DIC Tool appears. A click on set prepares WinBUGS for monitoring pD

and DIC. Based on 1000 additional iterations and upon clicking on DIC, WinBUGS showed
a window DIC containing Dbar (D(θ)) = 82.619, Dhat (D(θ)) = 79.582, pD = 3.038 and
DIC = 85.657. These results provide a numerical illustration of the asymptotic relationship
(Zhu and Carlin 2000) between AIC and DIC for nonhierarchical models.

One can also verify that Dhat is the posterior mean of the deviance. For instance, by
monitoring the built-in logical node ‘deviance’ (equal to D(θ)).

The next example is a more extensive application of pD and DIC on a Bayesian linear
mixed model.

Example X.8: Potthoff & Roy growth-curve study: Model selection using pD and DIC
We consider here the well-known data set first analyzed by Potthoff and Roy (1964). Dental
growth measurements of the distance (mm) from the center of the pituitary gland to the
pteryomaxillary fissure were obtained on 11 girls and 16 boys at ages (years) 8, 10, 12 and 14.
The variables are gender (1 = female, 0 = male) and age; see Figure 10.2 for the individual
profiles as a function of age.

We fitted several (Gaussian) linear mixed models to the longitudinal profiles. The differ-
ent WinBUGS programs can be found in ‘chapter 10 Potthoff–Roy growthcurves.odc’. The
following models were explored:

� Model M1: yi j = β0 + β1 age j + β2 genderi + β3 genderi × age j + b0i + b1i age j +
εi j, with yi j the distance measurement for the ith subject at age 2( j + 3) ( j = 1, 2, 3, 4),
bi = (b0i, b1i)

T random intercept and slope with distribution N((0, 0)T , G), G =(
σ 2

b0 ρσb0σb1

ρσb0σb1 σ 2
b1

)
, εi j ∼ N(0, σ 2

0 ) for males and εi j ∼ N(0, σ 2
1 ) for females;

� Model M2: model M1, but assuming ρ = 0;

� Model M3: model M2, but assuming σ0 = σ1;

� Model M4: model M1, but assuming σ0 = σ1;
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Figure 10.2 Potthoff & Roy growth curve study: Profiles of the distance from the center of
the pituitary gland to the pteryomaxillary fissure as a function of age split up according to
gender (solid line = boys, dashed line = girls).

� Model M5: model M1, but the random effects have a bivariate scaled t3-distribution and
measurement error distributions are scaled t3-distributions;

� Model M6: model M1, but only the measurement error distributions are scaled t3-
distributions;

� Model M7: model M1, but the random effects have a bivariate scaled t3-distribution.

The nested model comparisons involve: (a) models M1, M2, M3; (b) models M1, M2, M4,
and (c) models M5, M6, M7. The other model comparisons are not nested. The total number
of parameters for model M1 is 63 which is equal to the sum of 4 fixed effects parameters,
54 random effects parameters, 3 variance parameters for the random effects and 2 variance
parameters for measurement error.

For all parameters, we considered vague priors, namely, for the regression coefficients we
have taken N(0, 106) and IG(10−3, 10−3) was taken for the measurement error variance(s).
In model M1, we tested three choices for the inverse Wishart prior of G. In addition, we
assumed uniform priors for the standard deviation of the random intercept, slope and corre-
lation, i.e. σb0, σb1 ∼ U(0, 100) and ρ ∼ U(−1, 1). Based on our findings in Exercise 10.2
and the simulation results of Natarajan and Kass (2000), we opted for the uniform priors for
all models considered in this example.

For all models, we initiated three chains with 20 000 iterations for each chain. The
Brooks–Gelman–Rubin (BGR) diagnostics implemented in WinBUGS suggested to remove
10 000 burn-in iterations. DIC and pD were calculated on the last 10 000 iterations. Occasion-
ally, we let the chains run longer (e.g. model M5) to verify the stability of the results.

In Table 10.1, we can observe that for model M1 the effective number of parameters is
approximately 34 showing the restrictions among the random effects. Comparing model M1

with M2 shows that there is not much evidence for correlated random effects. This is also seen
from the 95% CI for ρ = [−0.829, 0.931]. From the posterior summary measures of models
M1 to M4, it appeared that boys and girls have a different variance for the measurement error.
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Table 10.1 Potthoff and Roy growth curve study: output WinBUGS for the evaluation of
linear mixed models (see the text for a description) using pD and DIC.

Model Dbar Dhat pD DIC

M1 343.443 308.887 34.556 377.999
M2 344.670 312.216 32.454 377.124
M3 376.519 347.129 29.390 405.909
M4 374.065 342.789 31.276 405.341
M5 328.201 290.650 37.552 365.753
M6 343.834 309.506 34.327 378.161
M7 326.542 288.046 38.047 364.949

This can also observed from Figure 10.1 where we can see that there is one boy with an
unusual profile.

The next question is whether the default normal distribution for the random effects and
measurement error is justified. To explore this, models M5 to M7 were fitted to the data.
From Table 10.1, we observe that a scaled t3-distribution seems more appropriate especially
for the measurement error. It is known that the t-distribution with low degrees of freedom
provides a more robust error distribution in the sense that it accommodates better outlying
observations (see Lange et al. 1989). There is not much difference in DIC between models
M5 and M7. Why pD is different between models M5 to M7 is treated in Example X.7. In
Table 10.2, the posterior summary measures of models M1 and M5 are shown. The choice of
the t-distribution appears to affect the posterior estimates of fixed effects, but even more so
the variance parameters.

Finally, we observed, e.g. in model M7 often the random effects variance parameters
got stuck at zero. To remedy this problem, we applied the parameter expansion approach of
Section 9.7; see model M7b in the WinBUGS file. While this trick accelerated convergence, it
did not alter the posterior summary measures.

Table 10.2 Potthoff and Roy growth curve study: parameter estimates of models M1 and
M5 obtained from WinBUGS.

Model M1 Model M5

Node Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

β0 16.290 1.183 14.010 18.680 17.040 0.987 15.050 18.970
β1 0.789 0.103 0.589 0.989 0.694 0.086 0.526 0.867
β2 1.078 1.453 −1.844 3.883 0.698 1.235 −1.716 3.154
β3 −0.309 0.126 −0.549 −0.058 −0.243 0.106 −0.454 −0.035
σb0 1.786 0.734 0.385 3.381 1.312 0.541 0.341 2.502
σb1 0.139 0.065 0.021 0.280 0.095 0.052 0.007 0.209
ρ −0.143 0.500 −0.829 0.931 −0.001 0.503 −0.792 0.942
σ0 1.674 0.183 1.362 2.074 1.032 0.154 0.764 1.365
σ1 0.726 0.111 0.540 0.976 0.546 0.101 0.382 0.783
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The above models can also be fitted using SAS® procedure MCMC (see Exercise 10.4).
With the same data we now illustrate the meaning of ‘focus’ of a statistical analysis and its
impact on pD and DIC. We also compare pD and DIC to their frequentist counterparts p and
AIC.

Example X.9: Potthoff & Roy growth curve study: Conditional and marginal DIC
All models in Example X.8 were specified conditionally. For instance, for model M4

yi j | bi ∼ N(µi j, σ
2) ( j = 1, . . . , 4; i = 1, . . . , 27)

with

µi j = β0 + β1 age j + β2 genderi + β3 genderi × age j + b0i + b1i age j.

This is a conditional model with deviance

DC(µ, σ 2) ≡ DC(β, b, σ 2) = −2
∑

i

∑
j

log N(yi j | µi j, σ
2),

where µ is the vector of all µi j, β = (β0, β1 β2, β3)
T and b the stacked vector of all bi. In

this model interest lies in the current 27 bi’s, hence we need a conditional DIC, which is the
DIC reported by WinBUGS. Recall that we obtained pD = 31.282 and DIC = 405.444 for
this model.

If we wish a marginal DIC then we first need to marginalize the conditional models over
the distribution of the random effects bi. The marginalized M4 is given by

yi ∼ N4
(
X iβ, ZGZT + R

)
, (i = 1, . . . , 27), (10.14)

with yi = (yi1, yi2, yi3, yi4)
T and

X i =


1 8 genderi 8 × genderi

1 10 genderi 10 × genderi

1 12 genderi 12 × genderi

1 14 genderi 14 × genderi

 , Z =


1 8
1 10
1 12
1 14

 , R = σ 2I4.

The corresponding deviance to this marginal(ized) model is

DM(β, σ 2, G) = −2
∑

i

log N4
(
yi | X iβ, ZGZT + R

)
. (10.15)

In the marginal model the bi’s only serve to model the covariance structure, but there
is no interest in the current bi’s. This marginal DIC can also be obtained from WinBUGS
provided the marginal model (10.14) is used. We obtained pD = 7.072 and DIC = 442.572.
The difference between the conditional and the marginal output highlights the difference in
focus: in the marginal model the focus is on the fixed effects and prediction pertains to the
future children while in the conditional (hierarchical) model the focus is on the random effects
with prediction pertaining to the 27 children involved in this study.
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Finally, a frequentist mixed model analysis with SAS procedure MIXED (see ‘chapter
10 Potthoff-Roy growthcurves.sas’) produced AIC = 443.8 with p = 8 demonstrating again
the correspondence between AIC and DIC for nonhierarchical models. Recall that AIC and
DIC are exactly equal only for noninformative priors, known variance parameters and a large
sample size.

In the previous example, we illustrated the assertion of (Spiegelhalter et al. 2002) that the
use of DIC for selecting a model depends on the focus of the statistical analysis. Millar (2009)
provides another example. Namely, for overdispersed counts one could choose a Poisson-
gamma model. But, averaged over the gamma random effects, this model is just a negative
binomial distribution. This implies that if one chooses in WinBUGS for a Poisson-gamma
model the conditional DIC is obtained, while working with the negative binomial distribution
provides a marginal DIC. Thus, although the fit of the two models to the data is identical, pD

and DIC will be quite different for the two implementations (Exercise 10.5). It is, therefore,
inappropriate to compare the DIC of a Poisson-gamma with that of a negative binomial
distribution (see also Exercise 10.8).

The next example illustrates the dependence of pD on the variability of the random effects.
We also illustrate that, as for AIC, DIC depends on the scale of the response.

Example X.10: Dietary study: Impact of variability of random effects and scale of
response on pD and DIC
The analysis of Example IX.8 yields the first row of Table 10.3 and shows that, while the
total number of parameters is 11, the total effective number of parameters is around 7. The
difference of 4 quantifies the constraints that tie the random effects together. We then fixed
log(σθ ) to prespecified values decreasing from 5 to −1 in steps of one. From Table 10.3, we
see that the ultimate pD must be around 2 what happens when log(σθ ) = −1 forcing all θi

to be equal to µ = 327.3. The WinBUGS programs are provided in ‘chapter 9 dietary study
chol DIC sigmas.odc’.

On the original scale (assuming chol has a normal distribution) pD = 6.928 and DIC =
6991.30. However, the distribution of chol is right skewed. A lognormal distribution may be
fitted to chol in WinBUGS by specifying that it has a lognormal distribution or that log(chol)
has a normal distribution. While irrelevant for statistical modeling, the choice matters for
DIC. In the first case, DIC is based on the likelihood of chol, while in the second case DIC

Table 10.3 Dietary study: dependence of pD and DIC on the variability of
the random effects.

log(σθ ) Dbar Dhat pD DIC

Estimated 6984.150 6977.250 6.902 6991.060
5 6983.430 6974.500 8.937 6992.370
4 6983.100 6974.550 8.546 6991.640
3 6982.860 6976.230 6.632 6989.490
2 6987.900 6984.440 3.459 6991.360
1 6991.780 6989.530 2.248 6994.030
0 6992.530 6990.510 2.018 6994.550
−1 6992.560 6990.680 1.880 6994.440
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is based on the likelihood of log(chol). In the first case, WinBUGS reported pD = 6.285 and
DIC = 6909.670, while in the second case pD = 6.285 and DIC = 457.525 was obtained.
Clearly pD is invariant to the implementation but DIC was much affected (as well as AIC).
But a correction is needed to make DIC comparable to the DIC obtained on the original
scale. The corrected DIC is obtained from expression (10.34). With this correction, we
obtained the same DIC as in the first case. Thus, we can conclude that a Gaussian hierarchical
model with a log-transformed response provides a better fit to the dietary data (see also
Exercise 10.6).

Both pD and DIC seem to do their job properly. Namely, pD is higher for a more complex
model and DIC appears to select the correct model. The measures are quite popular among
WinBUGS users but also caused a lot of confusion. In Spiegelhalter et al. (2002) and at
the WinBUGS website, the authors documented on some potential difficulties with their
proposal:

� pD and DIC depend on the parameterization of the model. That is, when θ is transformed
to ψ = h(θ) with h a nonlinear monotonic transformation then pD and DIC will change
(Spiegelhalter et al. 2002). Note, however, that the deviance (and hence ‘Dbar’) is
invariant to parameter transformation.

� From (10.12) and Jensen’s inequality it follows that if the likelihood is log-concave in
θ and evaluated in θ then pD ≥ 0. A negative pD may occur with a nonlog-concave
likelihood (Example X.11) and when the prior is in conflict with the data (Exercise
10.9). But when the posterior mean is a good summary measure, i.e. when the posterior
is roughly symmetric and unimodal, then a positive pD will likely occur. Suppose that
this occurs on a particular scale, say ψ = h(θ), then ψ might be taken as stochastic
node in WinBUGS. If this is not feasible, then the Markov chain based on θ could be
exported to compute ‘Dhat’ on the posterior mean of ψ.

� pD and DIC are not defined for discrete θ since θ usually fails to take one of these
values. When one of the stochastic nodes is discrete, e.g. when a mixture model is fitted
to the data, DIC is greyed out in WinBUGS; see Exercise 10.7 for an example.

We illustrate the dependence of pD and DIC on the parameterization in the model with
the well-known genetic linkage example analyzed in Rao (1973, pp. 368–369). We further
demonstrate that pD can be negative. This example is inspired by the slides on DIC at the
WinBUGS website.

Example X.11: Linkage study in genetics: Negative pD’s
When two factors are linked with a recombination fraction θ , the intercrosses AB/ab ×
AB/ab (coupling) have expected proportions for AB: (3 − 2θ + θ2)/4, Ab: (2θ − θ2)/4,
aB: (2θ − θ2)/4, ab: (1 − 2θ + θ2)/4. With observed frequencies 125, 18, 20 and 34 the
multinomial log-likelihood is a log-concave function of θ but not for ψ = θα (α ≥ 4). For
prior θ ∼ Beta(1, 1) the prior of ψ = θα is Beta(1/α, 1). For each value of α, we then let
ψ be the stochastic node and ran WinBUGS on this parameterization. Table 10.4 shows the
dependence of pD and DIC on α and hence on the stochastic node. For α large, pD < 0 which
is clearly noninterpretable (see also Exercise 10.10).
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Table 10.4 Linkage study in genetics: pD and DIC as a
function of the power of θ .

Power pD DIC

1 0.963 17.043
5 0.798 16.816

10 0.436 16.494
20 0.047 15.948
30 −0.470 15.752

10.2.2.3 Evaluation of information criteria for model selection
and recent developments

In several papers, the performance of the information criteria for model selection were com-
pared, both theoretically as well as with simulation studies. Zhu and Carlin (2000) proved
the asymptotic equivalence of AIC and marginal DIC for nonhierarchical models, while
Vaida and Blanchard (2005) proved the equivalence of the AIC and DIC for a linear mixed
effects model with known variances. In http://www.mrc-bsu.cam.ac.uk/bugs/
winbugs/DIC-slides.pdf, Spiegelhalter makes use of the correspondence of AIC and
DIC to suggest the use of AIC in a Bayesian context if the interest lies in the marginal model
and thus in predicting the response of future subjects belonging to the same level-2 distri-
butions. Simulation studies can be found in Lin and Dayton (1997), Burnham and Anderson
(2002), some discussants of Spiegelhalter et al. (2002), Ando (2007) and Ward (2008). These
authors concluded that: (a) AIC and DIC tend to choose too complex models in comparison
to BIC and (b) DIC often makes a reasonable model choice but its theoretical foundations
remain puzzling. Ward (2008) experienced that the Bayes factor appeared to select often the
appropriate model and claimed that the Bayes factor penalizes in a natural way too complex
models. This was already mentioned by Dawid (2002) who argued that the penalization comes
from the fact that the marginal likelihood integrates over all uncertainty in the model which
is greater when the model is complex.

Robert and Titterington (2002), Richardson (2002), Ando (2007) and Plummer (2008)
raised concerns on the optimistic nature of DIC caused by making use twice of the observed
data: once to construct the posterior distribution and once to compute the expected log-
likelihood. To remedy this problem, Pourahmadi and Daniels (2002) suggested a BIC variant
of DIC, i.e. DIC = D(θ ) + pD log(n) with n the number of subjects. Ando (2007) worked
from first principles and showed that his Bayesian predictive information criterion (BPIC)
takes the double use of the data into account. Plummer (2008) suggested penalized loss
functions for Bayesian model comparison. With the expected deviance as loss function he
reduced the optimism by making use of a penalized expected deviance (PED). Namely, the
first part in pD, i.e.

De ≡ Eθ|y
[−2 log p(y | θ)

] = −2
n∑

i=1

De
i (yi | y) = −2

n∑
i=1

∫
log p(yi | θ)p(θ | y)dθ,

is overoptimistic (too small). A better estimate is given by

De
CV = −2

n∑
i=1

De
CV,i(yi | y(i)) = −2

n∑
i=1

∫
log p(yi | θ)p(θ | y(i))dθ.
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The difference De − De
CV = popt =∑n

i=1 popt,i expresses the optimism by using the data twice.
The penalized expected deviance is then PED = De + popt. Since popt can be split up according
to the n observations, one estimate of popt could be obtained from n separate MCMC chains,
with a single observation deleted in each run. Since this procedure is quite time consuming,
Plummer suggested an alternative approach using importance sampling. This criterion has
been recently implemented into R2jags.

Another criticism to DIC is that it lacks theoretical foundation outside the generalized
linear models (GLIMs). To address this problem, Celeux et al. (2006) suggested seven versions
of DIC for use in models with missing data, e.g. random effects models and mixture models.
Plummer (2008) showed that for pD � n, DIC can be seen as an approximation to a loss
function based on the deviance. In a series of papers, Hodges and colleagues focused on the
effective degrees of freedom and defined it as the dimension of fitted values. Lu et al. (2007)
illustrated that a poorly fitting model affects pD, so that a given model may give identically
smooth fitted values when fit to two data sets but gives a different pD when the model fits one
of the data sets poorly. Consequently, pD cannot be interpreted as the dimensionality of the
fitted space, which is also our experience. Cui et al. (2010) summed up additional difficulties
of pD as measure for model complexity. They also argued that model complexity and model
comparison should be treated separately (see also Plummer 2008).

Recently, Aitkin (2010) suggested to look at the whole posterior distribution of the differ-
ence in deviances for model comparison. For comparing models M1 and M2, he suggested to
compute {Dk

j = −2 log L(θk
j ), k = 1, . . . , K} with θk

j ( j = 1, 2) a sample from the posterior
distribution p(θ | y, Mj). This gives a sample from the posterior distribution of deviances
under model Mj. Then {Dk

1,2 = Dk
1 − Dk

2, k = 1, . . . , K} is a sample from the posterior dis-
tribution of the difference in deviances. The median of this sample estimates the posterior
probability that model M1 is better than model M2. The 95% CI for Dk

1,2 indicates that model
M1 is ‘significantly better’ than model M2 if this credible interval lies left to 0.

Finally, note that R2WinBUGS reports a different value for DIC than WinBUGS; see the
vignette of R2WinBUGS for further details and Example X.12 for a comparison with the DIC
as reported from WinBUGS.

10.2.3 Model selection based on predictive loss functions

AIC and DIC are measures of predictive ability of the model based on the Kullback-Leibler
measure. There are many other approaches to GOF that compare the observed outcome with
its fitted/predicted value. Suppose that for outcome yi its ‘fitted’ value under a given model is
ŷi, then a simple and quite general approach to model comparison is to construct a distance
measure between yi and ŷi and to average this over the observations. One example that is used
frequently in non-Bayesian approaches is the mean squared error (MSE) which is given for n
observations by

MSE = 1

n

n∑
i=1

(yi − ŷi)
2,

and is just the average squared residual. Within an MCMC analysis, this could be employed
but the posterior variability in ŷi needs to be addressed. For example, we could choose the
posterior mean value of ŷi to represent the model fits. Hence, in a Bayesian context the model
MSE could be defined as

MSE = 1

n

n∑
i=1

(yi − ŷi)
2,
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with ŷi =∑K
k=1 ŷk

i /K and where ŷk
i is the predicted value of yi obtained from a converged

Markov chain (θk)k. An alternative approach is to assess the disparity at each iteration:

MSE = 1

K

1

n

K∑
k=1

n∑
i=1

(yi − ŷk
i )

2 = 1

K

K∑
k=1

MSEk,

where ŷk
i is the fit at the kth iteration, and MSEk is the MSE at the kth iteration.

An alternative measure that is used within a Bayesian approach is based on the posterior
predictive distribution (PPD). The posterior predictive loss (PPL) and mean-square predictive
error (MSPE) were proposed by Laud and Ibrahim (1995) and Gelfand and Ghosh (1998). In
essence, a loss function (squared error or otherwise) could be set up between an observation
and its predicted value. To obtain this predicted value, a simulation from the fitted model is
used, in fact from the PPD, generating ỹi. This value is compared to the observed value via
the PPL function. For squared error loss we have

MSPE = 1

n

n∑
i=1

(yi − ỹi)
2, (10.16)

while for an absolute value loss we have

MAPE = 1

n

n∑
i=1

|yi − ỹi|.

As in the case of the MSE, in an MCMC context a decision must be made as to how to
estimate the predictive value. Usually a measure is computed at each iteration of the sampler
and then averaged over the sample. Hence, the final form would be in that case

MSPE = 1

K

K∑
k=1

MSPEk, (10.17)

with MSPEk calculated using (10.16) at the kth iteration of the MCMC process. Gelfand and
Ghosh (1998) extended their measure to other classes of models such as survival models and
generalized linear (mixed) models.

It is straightforward to generate in WinBUGS a predictive distribution value as it is just a
simulated value from the data distribution given the current parameters sampled. For example,
for a normal data distribution this would lead to the WinBUGS code:

y[i] ˜ dnorm(mu[i],tauy); ytilde[i] ˜ dnorm(mu[i],tauy)

with ytilde[i] the ith element of an n-dimensional unobserved parameter vector which
will be filled with predictive values of y[i] at each iteration.

Note that MSPE is always available as a measure and does not suffer from the negative
pD problem of DIC. However, MSPE does not compensate for model complexity. This was
already alluded to in Spiegelhalter et al. (2002). Banerjee (unpublished note) demonstrated this
for a normal linear regression model when marginalized over the model parameters. Hence,
MSPE is more equivalent to the deviance than the DIC. But as for DIC, MSPE depends on the
scale of the response. Finally, note that MSPE is different from a posterior predictive check
introduced in Section 10.3.4. We now compute MSPE for the osteoporosis data set.
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Example X.12: Osteoporosis study: Predictive evaluation of models
In ‘chapter 10 osteo multiple regression.R’, TBBMC is regressed on age, BMI, weight,
length, caint (calcium intake), creat (serum creatinine), DBP (diastolic blood pressure), menost
(number of years since start of menopause) and igfi (IGF-1 which is a hormone similar in
molecular structure to insulin). Using R2WinBUGS, we fitted four models, model M1: all
regressors, model M2: length and weight removed, model M3: creat and menost removed in
addition and model M4: only BMI included. For each of the models DIC, pD and MSPE
is recorded. Each time we ran a single chain analysis of 15 000 iterations and removed the
first 7500 iterations. The following results were obtained for the four respective models: DIC
(399.02, 395.14, 393.27, 1206.48), pD (12.14, 10.09, 8.07, 3.10) and MSPE (205.06, 202.82,
202.96, 30647.71). We also used WinBUGS to estimate the parameters for model M1 and
obtained DIC = 397.27 and pD = 11.24, both close to the values obtained from R2WinBUGS.

According to DIC, model M3 is best (although not decisively) while according to MSPE
there is no clear preference between models M2 and M3 illustrating that with MSPE there is
(less) penalty for model complexity. Both measures though agree that the model with only
BMI is worst.

Another example of a comparison of MSPE with DIC can be found in Song et al. (2010).

10.3 Model checking

10.3.1 Introduction

The criteria introduced in Section 10.2 help us to choose the best model among a set of candi-
date models. However, the selected model is not necessarily sensible nor does it guarantees a
good fit to the data. Statistical model evaluation typically requires a lot of exploration such as
(i) checking that inference from the chosen model is reasonable, (ii) verifying that the model
can reproduce the data, (iii) sensitivity analyses by varying certain aspects of the model. These
activities apply to a Bayesian and a frequentist approach, but in the Bayesian approach also
the prior needs attention and Bayesian model checking techniques are primarily based on
sampling techniques. We now briefly sketch the Bayesian model checking activities. These
topics will be elaborated on in this section.

(i) Verifying that the model is reasonable is a critical inspection of the posterior output
making use of background knowledge. For instance, we hope that the prior is not in conflict
with the data. In addition, in a Bayesian analysis, it is supposed that we learn from the data.
The first problem can be spotted by checking whether prior and posterior distributions differ
much in location (in view of prior SD). The second problem is diagnosed when the posterior
variance of the parameter is close to the prior variance indicating an identifiability problem
and no learning from the data.

(ii) Adequate prediction of the data at hand is expected for a good probability model.
Stern and Sinharay (2005) call this a self-consistency check. Contrasting the observed data
with the expected data under the considered model for individual observations is akin to
outlier detection techniques. While the early Bayesian approaches to outlier detection are
based on the exact posterior distributions of residuals, the recent procedures are based on
the output of MCMC techniques. In addition, we may be interested in contrasting ob-
served summary measures with those predicted from the model. This leads to posterior
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predictive checks which extend frequentist GOF significance tests and are based on frequen-
tist sampling ideas.

(iii) In a Bayesian sensitivity analysis the prior distribution and the likelihood are
perturbed to see how much this affects inference. A sensitivity analysis was done in Example
IX.17 where we examined the dependence of the parameter estimates on the distribution of the
random effects. Evaluating the impact of varying the link function in a Bayesian generalized
linear model (BGLIM) is another example of a sensitivity analysis. One can also explore
the sensitivity of the parameter estimates when observations are removed or perturbed. This
involves the search for influential observations. Influence diagnostics have been developed for
a variety of models in a frequentist context. For some models, analytical results and good first
order approximations allow for a quick exploration. Unfortunately, this is not the case in the
Bayesian context, where already for the linear case, the computations can become involved.
Importance sampling techniques introduced in Section 3.7.2 are of help here. Finally, model
expansion, i.e. embedding the current model in a larger class of models, is another tool for
model sensitivity.

For many of the model checking tools past-processing of the MCMC output is necessary.
Then it becomes advantageous to perform the analyses in a richer programming environment
than WinBUGS. This can be done by calling WinBUGS from within R using the R2WinBUGS
package or using the Bayesian SAS procedures. We first briefly review frequentist GOF
techniques in linear regression models since they have been the topic of statistical research for
many decades. We then look at various Bayesian techniques for model checking. Examples
are primarily analyzed with WinBUGS and R2WinBUGS, but attention is also paid to SAS
procedures.

10.3.2 Model-checking procedures

10.3.2.1 Frequentist model checking

The classical normal linear regression model assumes (1) a linear relationship of the response
with the covariates, (2) normality of the error term, and (3) equality of variance of the error
terms. Textbooks, such as Myers (1998) and Cook and Weisberg (1982), describe a variety of
formal and graphical techniques to check the appropriateness of these structural (e.g. linearity
in covariates) and distributional (e.g. normality responses) assumptions. For instance, residual
plots may identify the subjects for which their response is badly predicted by the model. The
normality assumption may be checked by formal tests such as the Kolmogorov–Smirnov
test or graphical procedures such as the normal probability plot (NPP). For checking the
structural assumption of linearity in the covariates various graphics have been suggested,
such as: partial regression plots, partial residual plots, augmented partial residual plots, etc.
Influential observations, i.e. observations that have a high impact on the parameter estimation
when deleted or perturbed, may be detected by influence measures such as Cook’s distance
(Cook 1977).

For GLIMs testing structural assumptions additionally involves verifying the link function
(and sometimes the variance function). The Pearson and the deviance residuals are used to
check distributional assumptions. Their finite sample distribution is often not tractable and
sampling techniques, such as bootstrapping, may be needed to deliver confidence envelopes
around NPPs. For binary regression models, even simple graphical checks do not work well
(Albert and Chib 1995). For the exploration of influential observations one-step diagnostics
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have been proposed by Pregibon (1981). Finally, for nonlinear models (Seber and Wild 1989)
and models for correlated and multilevel data (Verbeke and Molenberghs 2000), things become
more complex.

10.3.2.2 Bayesian detection of outlying observations

Checking the fit of a model at each subject in a Bayesian context can be done by exploring the
posterior distribution of the residuals. A subject with a large residual, i.e. an outlier, indicates
that the model falls short in predicting its response properly. Several Bayesian approaches for
outlier detection are available. We start with some early analytical approaches to highlight the
difference between the Bayesian and the frequentist distributional theory.

(i) Bayesian residual analysis: The residual εi = yi − µi measures the deviation of the
observed response yi from the predicted response µi. In practice, µi is unknown and in
a Bayesian context, we derive its posterior expectation. It is preferable to compute this
expectation by making use of an auxiliary data set, say z and take E(yi | z) for µi. But
additional data are rarely available. As an alternative, one may take E(yi | y) and define as a
Bayesian residual

εi = yi − E(yi | y).

For the linear regression model of Section 4.7.1 with Jeffreys prior, E(yi | y) = xT
i β̂ with

β̂ the LSE of β. If ri is large, then the model fits the ith observation poorly. The decision
to flag the ith subject as an outlier depends on the posterior distribution of εi = yi − xT

i β.
With a priori εi ∼ N(0, σ 2), Chaloner and Brant (1988) computed the posterior probability
p(|εi| > kσ | y) with k chosen such that the prior probability of no outliers (in the sample)
is large. An observation will then be flagged as outlier when this probability exceeds the
corresponding prior probability.

Zellner (1975) and Chaloner and Brant (1988) derived that the posterior of εi is a noncentral
tn−d−1-distribution with (posterior) mean ε̂i = yi − xT

i β̂ and squared scale parameter s2hii,
with s2, the classical residual variance and hii = xT

i (XT X )−1xi, the classical measure of
leverage. One may note the difference between the sampling distribution of εi and the posterior
distribution of εi. The former is the distribution of the residual under repeated sampling of
the data (whereby y and β̂ have a sampling distribution) while the latter is the posterior
of the residual (via the posterior of β given y). For instance, for a good fitting model,
ε̂i/s(i)

√
1 − hii, with s(i) the SD based on the sample without ith observation, has a tn−d−1-

sampling distribution. Further, Chaloner and Brant (1988) showed that the joint posterior
distribution of ε = (ε1, . . . , εn)

T has (d + 1) dimensions since it depends on the posterior
of the (d + 1)-dimensional parameter vector β, whereas the sampling distribution of ε̂ has
(n − d − 1) dimensions. Other analytical outlier detection methods were derived by Box and
Tiao (1968) and Abraham and Box (1978).

In practice the decision to flag an outlier is often based on less stringent criteria (inspired
by frequentist arguments) and is decided when the standardized residual

ti = yi − E(yi | y)√
Var(yi | y)

(10.18)
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Figure 10.3 Osteoporosis study: index plot of posterior mean and 95% CI of ti = (yi −
xT

i β)/(σ
√

1 − hii).

exceeds in absolute value, say 2. For a linear regression problem, we might use σ or σ
√

1 − hii

for the denominator in expression (10.18). We now illustrate these results using the osteo-
porosis data.

Example X.13: Osteoporosis study: Detection of outliers
We have computed Bayesian ordinary residuals for the regression model analyzed in Example
VI.5 using R2WinBUGS. The program can be found in ‘chapter 10 osteo study-outliers.R’.
The MCMC results of the posterior mean of εi (i = 1, . . . , n) and the 95% CI are basically
equal to the analytical results of Zellner (1975) and Chaloner and Brant (1988). In Figure 10.3,
we show the posterior distributions of the studentized residuals ti = (yi − xT

i β)/(σ
√

1 − hii)

in an index plot. Roughly 5% of the observations are beyond |2| with the largest residual
corresponding to subject 179 (subject with BMI = 23.23 and TBBMC = 0.579). Some
graphs may be obtained also from within WinBUGS. For instance, index plots of the posterior
means of the ordinary and standardized residuals may be obtained in WinBUGS using the
option ‘caterpillar’ from the menu option Compare. However, to produce the studentized
residuals within WinBUGS requires the hii values and thus an initial classical regression
analysis; see ‘chapter 10 osteo study-outliers.odc’ for an illustration.

In the discrete (binary) case, neither the sampling nor the posterior distribution of the
Pearson and deviance residuals is known. While analytical results are lacking, MCMC com-
putations are still feasible. Albert and Chib (1995) proposed to use a MCMC algorithm
to determine the outliers. Let yi (i = 1, . . . , n) represent the n binary responses and πi =
p(yi = 1) = F(xT

i β) their probability of success with F(·) a known cdf. Suppose a con-
verged Markov chain β1, . . . ,βK from p(β | y) is available then the posterior distribution of
εk

i = yi − π k
i with π k

i = F(xT
i βk) is readily obtained. Plotting the quantiles of εk

i versus the
posterior mean of πi may highlight outlying observations (Exercise 10.12).

In the computation of ti, the observed data y are used twice. Independent data z to compute
E(yi | z) in expression (10.18) are, however, often not available. An alternative is then to use
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a cross-validation approach, i.e. compute r∗
i = yi − E(yi | y(i)), with E(yi | y(i)) the expected

value of the ith response based on the posterior from all observations except the ith. Similarly,
the standardized residuals then become t∗i = [yi − E(yi | y)]/

√
var(yi | y(i)). In a classical

regression, cross-validation residuals are computed fast. However, this simple case is already
computationally demanding in a Bayesian context. For simple models, a trick may allow
WinBUGS to do the job in a reasonable amount of time, but we would not advice to use this
technique in other models or for large data sets.

Example X.14: Osteoporosis study: Cross-validated residuals using WinBUGS
In ‘chapter 10 osteo study-cross validation.odc’, we computed the cross-validation residuals.
First, all data were analyzed. Then a trick was used for parallel processing 234 Markov chains.
These chains correspond to leaving out each observation at a time which is done by creating
an indicator variable for each observation and adding this variable to the linear structure. In
this way, 234 linear regression models are fit in parallel. In addition, 234 copies of the data
are produced within the WinBUGS program. As expected, the cross-validation residuals were
(up to sampling variability) always larger in absolute value than the ordinary residuals (results
not shown).

(ii) Predictive approaches to outlier detection: The PPD (3.9) evaluated in yi is called
the posterior predictive ordinate (PPOi). That is

PPOi = p(yi | y) =
∫

p(yi | θ)p(θ | y) dθ (10.19)

is the value of the PPD at yi. For a low value of PPOi the ith observation is in the tail area of
the density and if judged too low, the ith observation is flagged as an outlier. The PPOi values
cannot easily be calibrated which means that it is difficult to say what is ‘small’. A simple
standardization like rPPOi = PPOi/max{PPOi} might help to spot outlying observations. The
ith PPO can be estimated from an MCMC run by

P̂POi = p̂(yi | y) = 1

K

K∑
k=1

p(yi | θk), (10.20)

with {θ1, . . . , θK} a converged Markov chain from p(θ | y).
The PPO makes use of the data y twice: first in determining the posterior distribution

and second in evaluating the density at yi. To remedy the double use of the observed data,
Geisser (1980) suggested the CPO. It is a cross-validatory measure of extremeness of yi

whereby the density is evaluated in yi with the posterior based on y(i) (sample without yi).
That is, CPOi = p(yi | y(i)) = ∫ p(yi | θ)p(θ | y(i))dθ. The CPO was used in Section 10.2.1 to
construct the pseudo-Bayes factor, here it is used to highlight surprising observations. Geisser
(1985) called the procedure of setting aside a part of the data to estimate the parameters
and evaluating the fitted model on the remaining part of the data, the predictive approach to
outlier detection. The analytical properties of CPO were explored by Pettitt (1990) (see also
references therein) especially for the normal distribution. Weiss (1996) showed that CPOi can
be expressed as a Bayes factor (see Equation (10.23b)) while others developed the CPO for
sets of observations (Pettitt 1990).
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Here, we are interested in computing the CPO using MCMC output. A simple derivation
shows how to compute CPOi:

1

p(yi | y(i))
= p(y(i))

p(y)
=
∫

p(y(i) | θ)p(θ)

p(y)
dθ =

∫
1

p(yi | θ)
p(θ | y)dθ = Eθ|y

(
1

p(yi | θ)

)
.

This derivation makes use of the conditional independence of the yi given θ. This result shows
that CPOi can be estimated as an harmonic mean, i.e.

ĈPOi =
(

1

K

∑
k

1

p(yi | θk)

)−1

. (10.21)

CPOi can be estimated in WinBUGS (Ntzoufras 2009, pp. 359, 375) by monitoring the
stochastic node 1/p(yi | θk) for each i, but the final computation needs post-processing. Pettit
and Smith (1985) and Weiss (1996) suggested to calibrate CPOi. However, if only used to spot
outlying observations, calibration may not be necessary. Indeed 1/ĈPOi will be small for an
outlying observation and easily spotted in an index plot. A problem with the harmonic estimate
(10.21) is that its variance could become infinite which makes it an unreliable estimate of
CPOi. This happens with seriously outlying observations since p(yi | θk) is in the denominator.
For a reliable estimate of CPOi genuine cross-validation, i.e. effectively removing the ith
observation and evaluating the density p(z | y(i)) at z = yi, might be required.

Example X.15: Caries study: Application of posterior predictive ordinate to detect
outliers
The R program ‘chapter 10 caries with residuals.R’ uses R2WinBUGS to fit a Poisson model
to the dmft index of 500 children. The covariates in the model are described in Exercise 10.12.
To compute the PPOis, the command

ppo[i]<-exp(-lambda[i]+dmft[i]* log(lambda[i])-logfact(dmft[i]))

was added to the WinBUGS program. The posterior mean of ppo[i] was imported into R
and additional R commands produced Figure 10.4(a). No particularly outlying subject was
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Figure 10.4 Caries study: (a) index plot of PPO and (b) relative difference of CPO versus
PPO.
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spotted, but many subjects appear to have a relatively low PPO-value possibly indicating a
bad fitting model. The standardized version rPPOi was also computed but did not add any
more insight. With command icpo[i] < −1/ppo[i] the inverse of CPOi was estimated using
its posterior mean and was then exported to R to compute the estimate (10.21). In Figure
10.4(b), it is demonstrated that CPOi is always smaller than PPOi especially for outlying
observations.

(iii) DIC diagnostics: Spiegelhalter et al. (2002) suggested to decompose DIC and pD

into n individual components. The deviance of the sample, i.e. D(θ) = −2 log p(y | θ) +
2 log f (y) can be split up into the contributions of the n subjects as follows:

D(θ) =
n∑

i=1

Di(θ), (10.22)

with Di(θ) = −2 log p(yi | θ) + 2 log f (yi). Similarly, DIC and pD can be split up as DIC =∑n
i=1 DICi and pD =∑n

i=1 pDi, respectively, with DICi = Di(θ) + pDi and pDi = Di(θ) −
Di(θ). DIC is used as an overall model fit diagnostic, with a relatively large value indicating
a bad fit. Hence, if DICi is large then the model is not fitting well for the ith observation.
In addition, pDi can tell us about the leverage of the ith observation. This can be seen for
the normal linear regression model since pD =∑i pDi = tr(H), with H the ‘hat’ matrix
(Spiegelhalter et al. 2002, p. 592). Di(θ) can also indicate outlying observations, but rather

dri = ±
√

Di(θ)i is used with the sign depending on the sign of yi − E(yi | θ). Wheeler et al.
(2010) used the DIC-based diagnostics to explore several (disease mapping) models on an
HIV data set. Below, we apply the diagnostics to the lip cancer study of Example IX.1.

Example X.16: Lip cancer study: Searching for outliers with PPO, CPO and DIC
diagnostics
In Example IX.13, we fitted a Poisson-lognormal distribution to the lip cancer data. The
Poisson-lognormal model is now explored to detect outlying values using various outlier
diagnostics. To illustrate the use of SAS for computing PPO and CPO, we have provided the
program ‘chapter 10 lipcancer P lognormal.sas’. This program contains the MCMC statements
for fitting the model and the SAS commands for pastprocessing the output. The index plots
for PPO, CPO and ICPO are quite the same as obtained from WinBUGS (e.g. Figure 10.5(a)).

While DIC and pD are available in WinBUGS, their individual components are not. By
making use of R2WinBUGS we computed the DICi, dri and pDi diagnostics; see ‘chapter
10 lip cancer with residuals.R’. Again three chains were initiated with each 20 000 iterations
and leaving out half of it for the burn-in part. In Figure 10.5, three diagnostics are shown and
the posterior means of the random intercept. The index plot of 1/ĈPOi clearly points to two
outlying regions, i.e. 118 and 169. Regions 118, 169 have an observed count of 10, 22 and
an expected count of 33.49, 102.16, respectively. These two regions are also outstanding in
the index plot of estimated random intercepts, i.e. b̂0i. The index plots DICi and dri confirm
the outlying character of these regions but to a lesser extent, they point also to other outlying
regions. Nevertheless the DIC diagnostics and the CPO values are highly correlated (Spearman
correlation = 0.95). Finally, neither of the above two regions have a high leverage according
to the pDi values (plot not shown).
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Figure 10.5 Lip cancer study: index plot of (a) 1/ĈPOi, (b) dri, (c) DICi and (d) b̂0i.

10.3.3 Sensitivity analysis

The aim of a sensitivity analysis is to check how much the conclusions of a statistical analysis
change when one deviates from the original statistical model. In a Bayesian context, this
means that the likelihood as well as the prior are perturbed and their effect is evaluated.
Various perturbations may be envisaged. One could change the distributional aspects of
the model. For instance, in a mixed effects model (BLMM or BGLMM) one might vary the
distribution of random effects or of the measurement error. In a BGLMM, one might explore
the effect of choosing different link functions. One might also be interested in measuring the
effect of slightly perturbing the responses or certain covariate values, or of deleting single or
sets of subjects. When only a few alternative models are considered, then it is probably easiest
just to replay the Bayesian analysis with the changed settings as was done in Example X.8 and
in examples in previous chapters. Another possibility to obtain posterior summary measures
from the perturbed model is to reuse the Markov chain by sampling from this chain, as was
illustrated in Section 3.7.2. This approach is also useful when case-deletion diagnostics are
needed.

While a sensitivity analysis should be part of any (Bayesian) statistical analysis, it must be
feasible without too much extra computing efforts and the job should be accomplished fairly
quickly. However, this might not be trivial in a Bayesian context. A variety of computational
procedures have been suggested which will be reviewed now. In all of these procedures, it is
important to combine the basic MCMC software with general statistical software.
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We now outline how importance sampling and importance sampling-resampling can be
applied to perform a sensitivity analysis. Afterward, we treat the detection of influential
observations which makes use of these techniques.

(i) Bayesian sensitivity analysis via perturbation functions: Let the initial model M0

consist of a sampling density p0(y | θ, x) and a prior p0(θ). Assume a sample yi (i = 1, . . . , n)

with covariate vectors xi (i = 1, . . . , n) is available, then the posterior is

p0(θ | y, X ) ∝
n∏

i=1

p0yi | θ, xi)p0(θ),

with X the matrix of covariate values. A Bayesian sensitivity analysis involves assessing
the change in posterior distribution when model M0 is perturbed. A formal approach to
this assessment was suggested by Kass et al. (1989) who proposed the use of perturbation
functions. Different choices of the perturbation function lead to different sensitivity analyses.
The perturbation function h(θ) ≡ h(θ, y, X ) multiplies p0(θ | y, X ) and thereby produces
model M1 and posterior p1(θ | y, X ). Weiss (1996) considered several perturbation functions.
For example, h1i(θ) ∝ 1/p0(yi | θ, xi) corresponds to leaving out the ith observation from
the likelihood. Other examples are: (1) h2(θ) ∝ q(θ)/p0(θ) which corresponds to changing
the prior from p0(θ) to q(θ), (2) the sensitivity to yi-values can be assessed by h3i(θ, δ) ∝
p0(yi + δ | θ, xi)/p0(yi | θ, xi) and (3) for the sensitivity to xi one could take h4i(θ, δ) ∝
p0(yi | θ, xi + δ)/p0(yi | θ, xi). To simplify the notation, we omit from now on the dependence
on covariates. It is readily seen that the perturbed posterior is equal to

p1(θ | y) = p0(θ | y)h(θ)/E0 [h(θ) | y] , (10.23a)

with E0[h(θ) | y] the posterior expectation of h(θ) under p0(θ | y). Weiss (1996) called
equation (10.23) the Bayes theorem for perturbations. Further, Weiss showed that

B(M0, M1) = p(y | M0)

p(y | M1)
=

∫
p0(y | θ)p0(θ)dθ∫

p0(y | θ)p0(θ)h(θ)dθ
= 1

E0 [h(θ) | y]
, (10.23b)

which relates E0[h(θ) | y] to a Bayes factor. In addition, for h1i(θ), B(M0, M1) =
p0(y)/p0(y(i)) which shows that CPOi is a Bayes factor.

The impact of the perturbation can be assessed by a divergence measure between the
two posteriors. A popular choice for such a divergence measure is the Kullback–Leibler (K-
L) distance defined by expression (10.5). The K-L distance I(p0(θ | y), p1(θ | y)) ≡ I0,1(θ)

measures the impact of the perturbation on all parameters while I0,1(τ(θ)) = I(p0(τ(θ) |
y), p1(τ(θ) | y)) evaluates the impact of the perturbation on τ(θ), a part or a function of the
parameter vector. Weiss (1996) showed that I0,1(τ(θ)) ≤ I0,1(θ) which means that the global
influence of a perturbation is always greater than the effect of the perturbation on a part of
the parameters. For the normal linear model, I0,1(θ) can be written in terms of the classical
leverage, residual quantities and influence measures such as Cook’s distance (see Geisser
1985; Guttman and Peña 1993; Johnson and Geisser 1983). However, interpreting I0,1(θ) in
an absolute sense is difficult. Alternatively, one could use the L1-distance or a χ2-divergence
as influence measures (Weiss 1996).
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(ii) Computation of influence measures: As illustrated below, the sensitivity analysis
using the perturbation approach can become computationally involved. A practical, though ad
hoc, approach to avoid these extra computations could be to use classical influence diagnostics
to pinpoint influential observations. For the linear model, Cook (1977) provided closed ex-
pressions to express the influence of individual subjects on the regression estimates while for
GLIMs Pregibon (1981) suggested one-step influence diagnostics. Both types of diagnostics
are available in standard software and could be used to assess the impact of observations on
the likelihood. Of course from a Bayesian viewpoint, this strategy does not appear elegant,
moreover these diagnostics ignore the role of the prior. More importantly, this strategy would
break down for more complex models some of which we do not dare to propose with ML
procedures.

From the Bayes theorem for case deletion (equation (10.23) applied to h1i(θ)) one can
easily show that

p(θ | y)

p(θ | y(i))
= CPOi

p(yi | θ)
= h1i(θ).

Further, the divergence measure I0,1(θ) for p(θ | y) and p(θ | y(i)) based on a converged

Markov chain θ1, . . . , θK is estimated by Îi(h1) = 1
K

∑K
k=1 log h1i(θ

k). This method can
identify globally influential cases, i.e. those that have a great impact on θ. The inequality
I0,1(τ(θ)) ≤ I0,1(θ), shows that we need to explore only globally influential cases. For other
perturbation schemes a similar strategy can be taken.

Diagnostic Îi(h1) depends on ĈPOi which can be quite unstable especially with highly
influential cases, as illustrated below in Example X.17. Importance sampling is an alternative
approach to detect influential cases in combination with MCMC techniques (Hastings 1970).
Suppose θ1, . . . , θK is a (dependent) sample from p(θ | y), then the importance weights for
deleting the ith observation at iteration k are w∗k

i ≡ h1i(θ
k) and the normalized weights are

wk
i = w∗k

i /
∑K

l=1 w∗l
i . The posterior mean of the summary measure t(θ) after deletion of case

i is estimated by the weighted sample mean

t̂(θ)i =
K∑

k=1

wk
i t(θ

k). (10.24)

Obviously when CPOi is badly estimated then this must apply also to these weights. In fact,
this was already mentioned in Section 3.7.2. Sufficient (general) conditions were derived by
Doss (1994) for having finite importance weights based on Markov chains. Peruggia (1997)
provided simple to verify conditions for the Bayesian linear model and showed that for high
leverage points the variance of the weights becomes infinite. Epifani et al. (2008) considered
sufficient conditions for yet some other models.

When the variance of the weights is large, it is likely that a few of the weights wk
i will

dominate t̂(θ)i. Gelman et al. (2004, p. 316) suggested the use of the weighted sampling-
resampling (SIR) algorithm but with resampling without replacement. That is, once a θk has
been selected it is removed from the set in the second sampling stage of the SIR algorithm.
In this way, the impact of a large weight is greatly diminished. Note that all these procedures
benefit greatly from Markov chains with a low autocorrelation, which can be obtained by
thinning. For hierarchical models, Bradlow and Zaslavsky (1997) exploited (the often made
assumption of) conditional independence to suggest alternative weighting schemes and to
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choose the weighting scheme with stable importance weights. In addition, they explored
case-deletion at the different levels of the hierarchy.

We conclude that the detection of influence observations in a Bayesian context is an
active research area (see Millar and Stewart 2007; Peruggia 2007) but also that the procedures
are computational involved which is a burden for their every-day use. We now search for
influential cases in the osteoporosis study.

Example X.17: Osteoporosis study: Detection of influential observations
To better illustrate the Bayesian techniques for detecting influential observations, we have
increased the response (TBBMC) of subject 197 by a value of 2. This subject has a relatively
high leverage of h197,197 = 0.02 (the maximal value of hii in the sample is 0.05) which
in combination with a (fabricated) huge residual ends up in a large Cook’s distance. In
Figure 10.6(a) the scatterplot of BMI versus TBBMC is shown together with the two fitted
regression lines (with and without subject 197). All computations were based on a single
chain of size 1500 leaving out 750 burn-in iterations. The R program is given in ‘chapter 10
osteo-study influence.R’.

First we computed Îi(h1) (i = 1, . . . , 234) to evaluate the global influence of each case.
Clearly subject 197 is identified in Figure 10.6(b) as a high influential case. Figure 10.6(c)
shows that the variance of the importance weights for that subject (across the values of the
Markov chain) is the greatest which might imply that Î197(h1) was not well determined.
In Figure 10.6(d), we see that a handful of importance weights dominate the importance
sampling estimate of the posterior summary measures for subject 197. In Figures 10.6(e)
and (f), the standardized changes of the intercept β0 and slope β1 are shown by leaving out
each observation, i.e. for the slope we computed ̂DFBETA1i = (β1,(i) − β1)/σ β1 where β1

is the estimated posterior mean of the slope based on the total sample, β1,(i) the estimated
posterior mean of β1 when the ith observation is omitted from the sample and σβ1 the estimated
posterior standard deviation of β1 based on the total sample. Note that β1,(i) is computed using
expression (10.24). Again subject 197 stands out. Finally, we compared the estimated change
from importance sampling to the exact change by physically removing each observation with
the trick used in Example X.14. Despite the imbalance in the weights we observed that both
computations produced basically the same estimated changes in regression coefficients (plot
not shown).

Now, we search for influential observations in the arteriosclerosis study. These data have
an hierarchical structure and we should now look for influential subjects and influential
observations (per subject).

Example X.18: Arteriosclerosis study: Detection of influential observations
We might be concerned that the analysis of the nonlinear mixed effects model (9.20), in
Example IX.18, is too much dependent on a single observation. For this reason, it is useful
to check the stability of the model under case deletion. In particular, we are interested in the
sensitivity of estimating δ (see Example IX.18 for an interpretation of δ). Case deletion has
now two meanings. A case can be a whole subject, then one speaks of subject diagnostics
while observation diagnostics measure the effect of deleting single observations. For the
subject diagnostics, CPO and importance weights relate to the whole subject (20 subjects
each with maximally six repeated measures), while the observation diagnostics measure the
impact of removing individual observations (120 − 1 = 119 observations since one subject
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Figure 10.6 Osteoporosis study: (a) scatter plot of BMI versus TBBMC together with the
regression line including subject 197 (solid line) and excluding that subject (dashed line),
(b) index plot of Îi(h1), (c) index plot of var(wi), (d) index plot of importance weights wk

197,
(e) index plot of ̂DFBETA0 and (f) index plot of ̂DFBETA1 (both obtained from importance
sampling).

has a missing value). The R commands are found in ‘chapter 10 arterior study-influence.R’.
While convergence was relatively fast (see also Exercise 9.17) more iterations were needed
for a reliable estimate of the PPO and CPO diagnostics. We ran 3 × 1 000 000 iterations with
thinning of 100 and retained the last half for processing the necessary information.

The influence diagnostics on the original data set did not highlight any particular subject
or observation that is highly influential. Of course, it might be that all subjects/observations
have a high influence, which would not be surprising in a small data set. To illustrate better
the diagnostic procedures we distorted, as in the previous example, one observation. Namely,
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Figure 10.7 Arteriosclerosis study: index plots that show impact on δ by omitting (a) subjects
(DFBETAi) and by omitting, and (b) observations (DFBETAi j).

we increased the 2nd measurement of the 4th subject (observation 20) from 0.76 to 1.76. The
global influence diagnostic correctly indicates the fourth subject as influential and even more
so the 20th observation. The variability of the weights for observation 20 was quite high, but
was not that extreme for the fourth subject. The impact on δ on subject and observation level
can be read off in Figure 10.7. Note that, compared to the original analysis, the distortion of
observation 20 implies an increase of the estimated δ of about half of its standard error, which
is quite appreciable.

We then compared the standardized impact of each subject and observation on δ by
(1) importance sampling, (2) SIR algorithm with replacement, and (3) SIR algorithm without
replacement. For the SIR algorithms, we sampled each time 1000 values from the original
chain. Importance sampling and the SIR algorithm with replacement gave similar results and
indicated the influential character of observation 20, in contrast to the SIR algorithm without
replacement from which no such message could be obtained. No general conclusions can be
drawn from this analysis, but it seems wise to apply the SIR algorithm both with and without
replacement.

(iii) Sensitivity to prior: We focused here on detecting model inadequacy and neglected
that a lack of model fit can be partly due to the wrong choice of the prior. Gelman et al. (1996)
argued that for a reasonably sized study with not a too strong prior the sensitivity of the
conclusions to the choice of prior is likely to be minimal. Nevertheless, since it is not always
clear whether certain choices of a vague prior are indeed noninformative, it is advisable to
vary the prior distributions before making final conclusions.

10.3.4 Posterior predictive checks

We now look at global measures of GOF. Suppose that under the hypothesis H0 we postulate
model M0: p(y | θ) for a sample y = {y1, . . . , yn} whereby the parameters θ ∈ �0 must be
estimated from the data. In a frequentist context, H0 is tested with a GOF test statistic T (y).
Let a large value of T (y) indicate a poor model fit and suppose that, under H0, �0 takes
just one value, i.e. �0 ≡ θ0. In the frequentist case, the GOF test consists of determining the
sampling distribution of T (y) under H0 and computing

pC(y, θ0) = P(T (ỹ) ≥ T (y) | �0, H0), (10.25)
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with ỹ = {ỹ1, . . . , ỹn} a random sample taken from M0. For pC small, H0 will be rejected.
The calculation of pC is often done by making use of (asymptotic) probabilistic theory. But a
simulation experiment generating ỹ under H0 thereby determining the proportion of times T (ỹ)

exceeds T (y) is also possible. However, when �0 contains nuisance parameters then it is not
immediately clear how the simulation should be done (what values of the nuisance parameters
should be taken?) and we rely again on asymptotic arguments to determine pC. For a pivotal
statistic T (y) the sampling distribution of T (y) does not depend on the nuisance parameters and
pC can be again determined (via simulations or using probability theory). For example, suppose
yi (i = 1, . . . , n) are counts with a multinomial distribution Mult(k, η), where

∑
i yi = k

and η represents the n class probabilities. Suppose one is interested in verifying that η

belongs to a lower than n-dimensional space, say η = t(θ) with dim(θ) = d < dim(η) = n.
A popular GOF test to verify this assumption consists of computing the following χ2-test
statistic:

X2(y, θ) =
n∑

i=1

[yi − E(yi | θ)]2

var(yi | θ)
. (10.26)

When θ is estimated via maximum likelihood then X2(y, θ) has asymptotically a χ2(n − d)-
distribution. Thus, X2(y, θ) is asymptotically a pivotal statistic. Similarly, the log-likelihood
ratio test statistic LLR(y) for testing two nested models is under H0 asymptotically pivotal
since for large n LLR(y) has a χ2-distribution for nuisance parameters estimated by maximum
likelihood. When the (asymptotic) distribution of the GOF test statistic is hard to derive,
bootstrapping may be of help.

In this section, we focus on the question of how to test GOF in a Bayesian context. To fix
ideas, suppose that we wish to test the above hypothesis, then we could evaluate

∫
X2(y, θ)p(θ | y) dθ, (10.27)

whereby the χ2-test statistic is averaged over the uncertainty of the parameters. Although this
is a valid Bayesian procedure, the problem with this approach is that a benchmark is difficult
to establish. An alternative approach is to sample from the assumed model and to compare
the extremeness of the observed X2 value to the sampled values under the assumed model.
This is the basic idea behind the so-called posterior predictive P-value (PPP-value) and the
posterior predictive check (PPC).

(i) The predictive approach to testing goodness of fit: The predictive approach to GOF
testing is to contrast T (y) with T (ỹ) whereby ỹ is an i.i.d. sample drawn from the PDD p(ỹ | y)

and to evaluate its extremeness. A preliminary version of this idea is due to Guttman (1967),
but it was Rubin (1984) who formalized the concept of the PPC. Meng (1994) and Gelman
et al. (1996) further developed this proposal into a practical procedure.

A more formal definition of a PPC goes as follows. Assume that T (y) is a classical GOF
test statistic that depends only on the data, for example Tmin = min(y) and Tmax = max(y)

measure how well the model fits remote values. Further, let the data at hand y be generated from
the distribution p(y | θ∗) with θ∗ ∈ �0 a fixed but unknown parameter vector. Suppose that
the future data ỹ, also called replicated data, have been sampled from the same distribution.
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For the PPC one evaluates the posterior predictive P-value defined by

pT = P(T (ỹ) ≥ T (y) | y, H0)

=
∫

I[T (ỹ) ≥ T (y)]p(ỹ | y) dỹ

=
∫ ∫

I[T (ỹ) ≥ T (y)]p(ỹ | θ)p(θ | y) dỹ dθ

=
∫

pC(y, θ)p(θ | y) dθ, (10.28)

with I the indicator function. A small value of pT is an indication of a bad fit of the model to
the data. In the last line of the previous derivation, we made use of expression (10.25) since
if the true parameter is θ then the above evaluation boils down to computing pC. It is also
readily seen that if the posterior distribution is concentrated at θ0, then pT ≈ pC and then the
PPC reduces to a classical GOF test.

If the GOF test statistic depends on nuisance parameters then the previous approach needs
to be adapted. In a Bayesian context, maximization is replaced by integration. Meng (1994)
suggested this approach to extend the PPC to a discrepancy measure D(y, θ) which is a
function of both data and parameters. The PPP-value is now computed as follows:

pD = P(D(ỹ, θ) ≥ D(y, θ) | y, H0)

=
∫ ∫

I[D(ỹ, θ) ≥ D(y, θ)]p(ỹ | θ)p(θ | y) dỹ dθ. (10.29)

The χ2-discrepancy measure defined by expression (10.26) for multinomially distributed
yi (i = 1, . . . , n) is an example of such a discrepancy measure. Applying expression (10.29)
to this measure yields as PPP-value

pX2 =
∫ ∫

I[X2(ỹ, θ) ≥ X2(y, θ)]p(ỹ | θ)p(θ | y) dỹ dθ

≈
∫

P
[
X2 ≥ X2(y, θ)

]
p(θ | y) dθ, (10.30)

with X2 representing a random variable with a χ2(n − d)-distribution. Expression (10.30)
is obtained by integrating over ỹ and the fact that X2(ỹ, θ) has approximately a χ2(n − d)-
distribution under H0. Comparing expression (10.30) with (10.27) shows that defining a
benchmark for the fit of the model to the data is easier with the PPC approach.

The generalization of the PPC to any discrepancy measure allows one to choose test
quantities primarily based on substantive arguments, i.e. we do not have to restrict to pivotal
test statistics as with classical GOF tests. In addition, the PPC allows to fix some aspects of
the data when drawing replicates. For example, in a hierarchical model the replicates could
be restricted to a particular cluster to check the distributional assumptions in that cluster. One
could even fix certain parameters to the estimates obtained from the observed data such as in
the normal distribution where mean and standard deviation are taken from the sample. In that
case, the replicates are not drawn anymore from the posterior distribution.

A variant of the PPC is the prior predictive check (Box 1980) yielding prior predictive
P-value and used to check a data-prior conflict. This approach is not popular as a GOF
procedure since the prior is in many applications too vague causing the discrepancy averaging
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over many unrealistic parameter values. However, if the prior is better tuned to the data, then
this approach may be useful (see below for the calibration of the PPP-value by a double
simulation scheme).

We note that the PPC has gained much popularity because of its flexibility to test any
model deviation of interest and its ease in implementing it with MCMC techniques. The
approach has been widely applied.

(ii) Computation of the PPC: The computation of the PPP-value for a discrepancy
measure D(y, θ) (and for a test statistic T (y)) goes as follows:

1. Let θ1, . . . , θK be a converged Markov chain from p(θ | y).

2. Compute D(y, θk) (k = 1, . . . , K) (for T (y) this needs to be done only once).

3. Sample replicated data ỹk from p(y | θk) (each of size n).

4. Compute D(̃yk, θk) (k = 1, . . . , K).

5. Estimate pD by pD = 1
K

∑K
i=1 I[D(ỹk

, θk) ≥ D(y, θk)].

If pD is small then this is an indication that the model might not fit the data well, as measured
by D(y, θ). ‘Small’ might be again taken as pD ≤ 0.05 as in classical frequentist statistics, but
the choice of 0.05 is only indicative. Gelman promotes the use of graphical output to evaluate
the outcome of a PPC (see Gelman and Meng 1996; Gelman 2003; Gelman 2004). For a test
statistic T (y), a histogram of the replicated values T (ỹk

) can be displayed with the observed
T (y) superimposed. A badly fitting model is immediately recognized by the extremeness of
the observed T (y) on the graph. For a discrepancy measure such a plot is not possible and a
X–Y -plot is suggested augmented with the 45◦ line. The proportion of points above the 45◦

line estimates pD.
We now illustrate the use of PPC with the osteoporosis example.

Example X.19: Osteoporosis study: Checking distributional assumptions with the PPC
We illustrate the difference between a test statistic and a discrepancy measure in checking the
normality of TBBMC. In ‘chapter 10 osteo study-PPC.R’ six PPCs have been programmed.
We focus here on checking the skewness and kurtosis of the data. By fixing the mean and
variance parameters to the sample mean y and variance s2, respectively, two test statistics
appear:

Tskew(y) = 1

n

n∑
i=1

(
yi − y

s

)3

and Tkurt(y) = 1

n

n∑
i=1

(
yi − y

s

)4

− 3.

Discrepancy measures are obtained when the mean and variance are parameters (and thus
random variables in a Bayesian context), i.e.

Dskew(y, θ) = 1

n

n∑
i=1

(
yi − µ

σ

)3

and Dkurt(y, θ) = 1

n

n∑
i=1

(
yi − µ

σ

)4

− 3,

with θ = (µ, σ )T .
For each of these measures is the proportion of times the replicated data give a more

extreme value than the observed data was recorded. The observed skewness and kurtosis
were 0.19 and 0.49. For the PPCs we obtained pTskew

= 0.13, pTkurt
= 0.055, pDskew

= 0.27
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Figure 10.8 Osteoporosis study: (a) histogram of Tkurt (ỹ) with vertical line at observed
kurtosis, and (b) scatterplot of Dkurt (y, θ̃) versus Dkurt (ỹ, θ̃).

and pDkurt
= 0.26. Only Tkurt indicated non-normality but this was not confirmed by Dkurt .

The discrepancy measures Dskew, Dkurt appear more conservative than Tskew, Tkurt, which was
also observed by Ntzoufras (2009, p. 367). This conservatism is caused by the posterior
uncertainty of µ and σ which results in a greater variability of the discrepancy measures. In
Figure 10.8(a), we show the histogram of Tkurt(ỹ) with the observed kurtosis indicated and in
Figure 10.8(b) we show the scatterplot of Dkurt(ỹ, θ̃) versus Dkurt(y, θ̃) with the 45◦ line, with θ̃

any of the generated θ1, . . . , θK and ỹ the corresponding replicated data.
To explore the normality assumption of the residuals from a normal linear regres-

sion regression of TBBMC on covariates, the same discrepancy measures can be applied
on standardized residuals ri = (yi − ŷi)/σ . In addition, Ntzoufras (2009) suggested the
Kolmogorov–Smirnov discrepancy measure

DKS(y, θ) = maxi∈{1,...,n} [�(yi | µ, σ ) − (i − 1)/n, i/n − �(yi | µ, σ )] ,

with �(· | 0, 1) the standard normal cdf and the gap discrepancy measure

Dgap(y, θ) = maxi∈{1,...,(n−1)}(y(i+1) − y(i)),

with y(i) the ith ordered value of y. A simple discrepancy measure is D0.05(y, θ) =∑n
i=1 I(|yi| > 2), which measures the proportion of residuals greater than 2 in absolute value.

With the commands in ‘chapter 10 osteo study2-PPC.R’, one can apply these measures on the
regression analysis of Example X.12. We also searched for outliers using procedures described
in Ntzoufras (2009, pp. 363–364). However, none of the procedures indicated non-normality
of the residuals.

In the next example, we apply PPCs to the lip cancer data.

Example X.20: Lip cancer study: Posterior predictive checking of the Poisson(-gamma)
model
In Figure 9.1, we verified whether the SMRi = yi/ei (i = 1, . . . , n) were generated from a
Poisson distribution for yi with mean µi = θ ei. This was done by sampling counts yi ∼
Poisson(θ ei) and comparing the histogram of one sample of replicates with the observed
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histogram. Under the assumption of θ = 1 this exercise was a kind of PPC although done in
an ad hoc way. Now, we perform a genuine PPC and for this we estimate θ . In ‘chapter 10 lip
cancer PGM PPC.odc’, we have programmed four PPCs to test the appropriateness of a single
Poisson distribution (with offset ei on the log scale for the mean). It is left as an exercise
to the reader to incorporate this program into a R program that calls WinBUGS from R.
First we checked for overdispersion by T1,var(y) = Var(SMR) and D2,var(y, θ ) =∑n

i=1(yi −
µi)

2/µi. The latter measure represents a Pearson test which would be evaluated against a
χ2(n − 1)-distribution in a frequentist context. Next, we used discrepancy measures based
on the deviance: (1) D1,dev(y, θ ) = −2

∑n
i=1[µi + yi log(µi)] which is −2 log L evaluated in

the observed data for the sampled values of θ and (2) D2,dev(y, θ ) = −2
∑n

i=1[(yi − µi) +
yi log(µi/yi)] which consists of the deviance residuals comparing the fitted model with the
saturated model. To compute D2,dev, zero observed/replicated counts must be augmented with
a small value. Finally, we compared the observed variance of SMRi to the theoretical value
equal to

∑n
i=1 µi/ei.

The simple Poisson model was strongly rejected for all PPCs (all PPP-values were ba-
sically zero). In a second step (see same .odc file), we verified whether the hierarchical
Poisson-gamma model assuming θi | α, β ∼ Gamma(α, β) for i = 1, . . . , n is valid. The
discrepancy measures were adapted for this, i.e. we replaced θ by η = (θ1, . . . , θn, α, β)T .
For instance, D1,dev(y, θ ) is equal to D1,dev(y, η) with µi = θi ei. For the Poisson-gamma
model the PPP-values of D1,dev and D2,dev ranged between 0.14 and 0.51, providing
no evidence against this model. Of course, this is not a proof that the Poisson-gamma
model is appropriate, but the Poisson-gamma model appears to address the overdispersion
appropriately.

The discrepancy measures in examples X.19 and X.20 were inspired by frequentist test
statistics, but PPCs can be defined using any discrepancy measure. Although some measures
are not appropriate. For example, sufficient statistics, such as the mean and standard deviation
in a normal model, are a wrong choice because the model fits such a measure exactly. General
guidelines on how to choose the best discrepancy measure, are useful but not available.

(iii) Posterior predictive checks in hierarchical models: The PPCs in the lip can-
cer example evaluate whether the observed data (level-1 data) fit the hierarchical model
well. But in a hierarchical model distributional assumptions are made at each level of
the hierarchy and need dedicated discrepancy measures. For instance, in Example X.20,
we may check the gamma distribution of the level-2 latent observations by a PPC based
on a Kolmogorov–Smirnov discrepancy measure D(θ,φ) with now θ = (θ1, . . . , θn)

T and
φ = (α, β)T (see Exercise 10.24). For a normal hierarchical model, Sinharay and Stern (2003)
suggested DSS(y, θ,φ) = |θmax − θmed| − |θmin − θmed| to test the symmetry of the assumed
Gaussian distribution of the θs. Among other tests, this discrepancy measure was used in the
next example.

Example X.21: Lip cancer study: Posterior predictive checking of the Poisson-lognormal
model
In Example IX.13, we assumed log(µi/ei) = β0 + β1 AFFi + b0i, with b0i ∼ N(0, σ 2

b0
) play-

ing the role of θi. Here, we wish to check the normality assumption of the random inter-
cept. We applied the discrepancy measures Dskew(θ,φ), Dkurt(θ,φ), DKS(θ,φ), Dgap(θ,φ)

and DSS(θ,φ) on b0i. Now θ = (b01, . . . , b0n)
T and φ = (β0, β1, σ

2
b0

)T . We omitted the
dependence on y for notational simplicity, but also because here the PPCs depend only
indirectly on y. In each case we computed the PPP-value as follows: (1) sample φ̃
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from its posterior distribution and θ̃ given φ̃, then compute D(θ̃, φ̃); (2) sample ˜̃b0i from

N(0, σ̃ 2
b0

) resulting in D(̃θ̃, φ̃) and (3) compute the proportion of times D(θ̃, φ̃) is greater than

D(̃θ̃, φ̃). The PPCs were implemented in ‘chapter 10 lip cancer PLN PPC.odc’. None of the
PPP -values indicated non-normality (results not shown).

To test the power of the PPC for latent variables, we created an artificial data set for which
we simulated b0i from a location-scale χ2(2)-distribution with skewness equal to 1.4 and
kurtosis equal to 1.7 and imputed these in the model for log(µi/ei) (look for ‘simulated data’
in previous odc file). To our surprise, none of the discrepancy measures indicated deviation
from normality.

The PPP-values applied to a hierarchical model in the previous example were first sug-
gested by Gelman et al. (2005) and were called extended PPP-values by Steinbakk and Storvik
(2009). Sinharay and Stern (2003) suggested a different extension of the classical PPC to the
hierarchical setting in combination with their discrepancy measure DSS. That is, for each
sampled value of φ they computed the posterior expectation of DSS(y, θ,φ) and obtained
Dm(y,φ) = E[DSS(y, θ,φ) | y]. In a second step, they based the PPP-value on Dm(y,φ), i.e.
using a classical (nonhierarchical) PPC and obtained the marginalized PPP-value according
to Steinbakk and Storvik (2009). In this way, the latent level-2 observations are removed from
the final computation. This approach is computationally quite demanding since it involves a
double sampling scheme: first sampling φ and for each sampled value sampling θ and estab-
lishing its posterior mean. More importantly, also Sinharay and Stern (2003) found in their
example and simulations that the power of Dm(y,φ) to detect non-normality is extremely low.
Dey et al. (1998) noted that this power was low because in the example of Sinharay and Stern
(2003) there is only one observed response yi for each b0i.

The next example is an hierarchical model with multiple observations per level-2 obser-
vations. Again, we wish to test the normality assumption of the random effect.

Example X.22: Toenail RCT: Checking normality of the random intercept in a logistic
random intercept model
We tested the normality assumption of the random intercept of the toenail model of Example
IX.14 using the discrepancy measures defined in previous example. In ‘chapter 10 toenail
study-PPC.R’, we used R2WinBUGS and R functions to compute the discrepancy measures.
None of the discrepancy measures indicated non-normality. This is surprising in view of the
clear non-normality shown in the NPP (of the posterior mean) of the random intercepts in
Figure 10.9(a). In Figure 10.9(b), the NPP is shown of the posterior mean of the simulated
random intercept assuming normality (together with pointwise 95% CIs). As expected, there
is no deviation from normality. However, there is a huge variability in the sampled random
intercepts, which is explained by the fact that the posterior mean of σb0 is about 4. Due to this
high fluctuation, the PPC did not detect deviations from normality in the data.

From Examples X.21 and X.22 it appears that the PPCs may be grossly underpowered for
level-2 observations. We now look at this problem more closely.

(iv) The interpretation of the PPP-value: The classical P-value pC has a uniform
distribution under H0 by construction which implies that for a continuous test statistic P(pC ≤
α) = α for any 0 ≤ α ≤ 1 and that pC ≤ α occurs in α% of hypothetical studies under H0.
In the literature, the PPP-value is also often interpreted as a classical P-value, in fact, it is
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Figure 10.9 Toenail study: (a) normal probability plot of posterior mean of random intercept,
and (b) normal probability plot of simulated random intercept.

referred to as a Bayesian P-value. But this may be not justified. Instead, the PPP-value is an
average of classical P-values over the posterior uncertainty of θ as was illustrated in (10.31).
For a prior predictive P-value, Meng (1994) showed that the distribution of pD is not uniform.
Also the PPP-value does not have a uniform distribution (Robins et al. 2000) which makes it
difficult to calibrate. Steinbakk and Storvik (2009) concluded the same for the extensions of
the PPP-value to an hierarchical setting. A second problem with the PPC is its lack of power
since it makes double use of the data. This was demonstrated in several studies by Steinbakk
and Storvik (2009) who also derived some analytical results in a particular setting. To calibrate
the PPP-value, Steinbakk and Storvik (2009) proposed a double simulation scheme which
produces a Bayesian P-value that has a uniform distribution with a greater power to detect
deviations from the distributional assumptions of the random effects. Their approach goes as
follows:

� Compute the classical PPP-value pD, which we refer to as the ‘observed pD’ to distin-
guish it from the simulated pD’s below;

� Sample from a so-called null–null model. That is, sample φ∗ from the prior p(φ), θ∗

from p(θ | φ∗) and y∗ from p(y | θ∗);
� On each simulated data set compute pD as before and call it p∗. Repeat this S times

yielding p∗
1, . . . , p∗

S;

� Compute pS = 1
S

∑S
s=1 I(p∗

s < pD).

This approach requires a reasonably wide but proper hyperprior p(φ) covering realistic values
of the hyperparameters. Although the proposed approach is quite promising, the next example
shows that the necessary computing effort is formidable.

Example X.23: Toenail RCT: Illustration of approach of Steinbakk and Storvik (2009)
We used a R2jags program to implement the approach of Steinbakk and Storvik. Recall that
none of the classical discrepancy measures indicated violation of the normality assumption.
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Figure 10.10 Toenail study: histogram of simulated PPP-values together with pD = 0.32.

Here, we looked only at the Kolmogorov–Smirnov discrepancy measure. The ‘observed pD’
is equal to 0.32.

We first sampled φ∗
1, . . . ,φ

∗
S, with φ∗

s = (β∗
0s, β

∗
1s, β

∗
2s, β

∗
3s, σ

∗2
0s )T with S = 1000. The

prior for φ∗
s is a product of independent normal priors for the regression coefficients with

mean = 0 and variance = 104 and a uniform prior on [0,100] for σ ∗
0s. The other simulated

values follow from the specified logistic random intercept model. Namely, we additionally
simulated θ∗

1, . . . , θ
∗
S with θ∗

s = (b∗
01s, . . . , b∗

0ns)
T and y∗

1, . . . , y∗
S with y∗

s the sth simulated
response. For the sth generated data set, we applied the Kolmogorov–Smirnov discrepancy
measure DKS(θ

∗
s ,φ

∗
s ) to yield the PPP-value p∗

s . Each of such analyses was based on 2000
iterations omitting 1000 burn-in iterations. In Figure 10.10, the histogram of p∗

1, . . . , p∗
S

together with ‘observed pD’ is shown. Under the null–null model, the pDs are concentrated
around 0.50 quite remote from 0.32 thereby highlighting the strong deviation from normality
of the random intercept.

We note that the computation of the simulated PPP-values was quite time consuming and
took about 24 hours in a cluster-computing environment.

Given the formidable computing power that is needed to calibrate the Bayesian P-value,
the original PPC remains the method of choice in many practical applications. In hierarchical
models, one may also produce diagnostic plots based on the posterior estimates of the random
effects. Alternatively, other simulation-based approaches could be explored (see Marshall and
Spiegelhalter 2007 and Green et al. 2009).

10.3.5 Model expansion

10.3.5.1 Introduction

Enlarging the model with extra parameters or equivalently embedding the current model in a
larger class of models is called model expansion. Model expansion is a way to build a model
but is also a way to test the GOF of a model. In a regression context, examples of model
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expansion are: (1) embedding the assumed distribution of the response in a general class
of distributions, (2) relaxing the linearity assumption of the covariates by adding polynomial
and/or interaction terms to the systematic part or introducing splines in the model, (3) relaxing
the link function, etc. Clearly, the number of ways to expand upon a current model is infinite.
We are only limited by our imagination and the computational power, but of course the final
model must make sense from a substantive point of view.

10.3.5.2 Generalizing the distributional assumption

The distributional assumptions in the model can be relaxed by embedding the distribution
into a larger class of distributions. For example, for a positive random variable y the normal
distribution could be embedded in the modified power transformation family, suggested by
Box and Cox (1964). This implies that we assume that there exists a λ for which

y(λ) = (yλ − 1)/λ (10.31)

has a N(µ, σ 2) distribution. In that case, we say that y has a Box–Cox distribution. The
transformation parameter λ needs to be estimated from the data and hence becomes a random
variable often taking a value between −2 and 2. Normality of y corresponds to λ = 1 and
a lognormal distribution for y is obtained when λ = 0. Other transformation families have
been suggested in the literature, e.g. Bickel and Doksum (1981) suggested the transformation
(|y|λsgn(y) − 1)/λ with λ > 0 for a possibly negative y. Estimating λ together with the other
(regression) parameters reflects better what happens in practice if one is uncertain about the
scale to work on.

The Box–Cox distribution is not supported by WinBUGS nor by SAS. When the distri-
bution is not standard, one can try the zeros trick or the ones trick in WinBUGS. The zeros
trick uses the following decomposition of the total likelihood:

L =
n∏

i=1

Li =
n∏

i=1

exp
[
log(Li)

] =
n∏

i=1

exp − [− log(Li)
] [− log(Li)

]0
0!

, (10.32)

which can be seen as the likelihood of a sample of Poisson distributed random variables with
mean − log(Li) and observed values all zero. Alternatively, one could apply the ones trick.
Namely,

L =
n∏

i=1

Li =
n∏

i=1

Lzi
i (1 − Li)

(1−zi ), (10.33)

with zi = 1 for all i. Now, the likelihood resembles that of a Bernoulli distribution. In both
cases, the sample consists of pseudorandom variables, but the tricks may help to let WinBUGS
do the job. It may be necessary to add a large positive constant to ensure for the zeros
trick that all Li are positive. For the ones trick, one may need to divide by a large positive
constant.

Another, more simplistic, approach to determine the best λ is to perform several Bayesian
analyses with powers chosen from the set {−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}. For each
choice of λ one obtains a DIC, denoted DICλ. However, to compare the different DICλs a
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Figure 10.11 Dietary study: scatterplot of σ k versus λk using WinBUGS.

correction term is needed to bring them back to the original scale of the response. Let the
corrected DIC value be DIC(λ) then

DIC(λ) = DICλ − 2
n∑

i=1

log |Ji(λ)| = DICλ − 2(λ − 1)

n∑
i=1

log(yi), (10.34)

with Ji(λ) is the Jacobian when transforming yi to y(λ)
i . In the next example, we have assumed

a Box–Cox distribution for the response in the dietary study with the aim to estimate the
parameter λ from the data.

Example X.24: Dietary study: Estimating the Box–Cox transformation of the response
From Example X.10, we know that the logarithmic scale for cholesterol intake is preferred
over the original scale since 6909.666 = DIC(0) < DIC(1) = 6991.300.

We applied both the zeros and the ones trick, but we got no convergence with WinBUGS
(and OpenBUGS). Neither did the SAS Markov chain converge. The problem is the posterior
correlation of σ (SD of the measurement error) and λ. In Figure 10.11, the scatterplot of
σ k, λk from one chain shows that there is a strong relation between σ k and λk. This can be
explained by the fact that when λk increases, the variability of the measurement error must
also increase. However, a solution with WinBUGS or SAS does not seem easy.

10.3.5.3 Generalizing the link function

For BGLMs, the commonly used link functions can be embedded into more general classes.
For instance, the log-link g(µ) = log(µ) in the Poisson regression model is a special case of
gλ(µ) = (µ(λ) − 1)/λ for λ = 0. For the binary case, say logistic regression, we can think of
two kinds of generalizations. First, since the inverse of the logistic link is in fact the cumulative
logistic distribution, we can generalize the link function by considering other distributions
and/or embedding the current cdf into a larger class of cdfs. Secondly, we could embed
the logistic link function into a family of link functions, say gλ(π ) = 1

λ
{[π/(1 − π)]λ − 1}
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(Guerrero and Johnson 1982). Note that now there is no need to adjust the different DICλ-
values.

10.3.5.4 Relaxing the linearity assumption

To allow for a nonlinear effect of the covariates polynomial and product terms can be
introduced. One could also apply the Box–Cox transformation to some of the covari-
ates. This is known in the literature as the Box–Tidwell transformation (Box and Tidwell
1962). Royston and Altman (1994) suggested fractional polynomials to discover the cor-
rect scale of a covariate x. A fractional polynomial of degree m in covariate x is a function
φm(x,α, λ) = α0 + α1xλ +∑m

j=2 α jxλ[log(x)] j−1, whereby the parameters α0, . . . , αm are
estimated from the data. This is typically done for all candidate covariates. The model is
gradually made more complex by subsequently replacing each original covariate x j by its
fractional polynomial and estimating its coefficients. An even more general approach to relax
the linearity assumption in the systematic component of the model is smoothing or nonpara-
metric function estimation. Smoothing is a well-established tool for exploratory data analysis
and is treated comprehensively in Green and Silverman (1994), Ruppert et al. (2003) and Lee
et al. (2006, pp. 267–291). For a quick introduction to smoothing and its relationship with
mixed modeling (see expression (10.37) and paragraph below it; Gurrin et al. (2005)). We
first look here at the classical approach.

To fix ideas, take the linear regression model introduced in Section 5.6.1 with one
regressor x:

yi = β0 + β1xi + εi, (i = 1, . . . , n).

Smoothing the relationship implies replacing the linear relationship by

yi = m(xi) + εi, (i = 1, . . . , n), (10.35)

where m(x) is an arbitrary smooth function. The smooth function is often modeled in practice
using splines. There exists a variety of splines, we consider here two types: (a) splines based on
truncated polynomials, and (b) B-splines. For the first type, the smooth function is a piecewise
polynomial of degree d, namely,

m(x;β, b) = β0 + β1x + . . . + βpxd +
K∑

k=1

bk(x − κk)
d
+,

where c+ = c if c > 0 and zero otherwise, cd
+ = (c+)d ; β = (β0, . . . , βd )T and b =

(b1, . . . , bK )T are vectors of regression coefficients. Expression (10.35) is called the low-
rank thin-plate spline representation of m(x). The function m(x;β, b) is constructed on an
interval [a, b] covering the range of x values and is split up into line segments at (inner) knots
κk, i.e. (a <)κ1 < κ2 < . . . < κK (< b). The knots are often taken equidistant with K � n or
at the k/(K + 1) quantiles of the x-values. Note that m(x;β, b) has (d − 1) continuous deriva-
tives. The functions 1, x, . . . , xd, (x − κ1)

d
+, . . . , (x − κK )d

+ are called the basis functions.
Popular choices for d are 2 (quadratic splines) and 3 (cubic splines). One might also assume
a different order for the polynomial and the truncated polynomial part. Simply estimating
all coefficients β and b, say by maximum likelihood, would yield a too wiggly estimated
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function m̂(x;β, b). A standard approach to control the smoothness of m(x;β, b) is to restrict
the coefficients b1, . . . , bK since they represent changes in the gradient between consecutive
line segments [κ(k−1), κk]. This can be done by minimizing the penalized least squares

1

σ 2
ε

n∑
i=1

[yi − m(xi;β, b)]2 + λ

σ 2
ε

bT Db (10.36)

with respect to all parameters. In expression (10.36), we assume that the term σ 2
ε is fixed,

its usefulness becomes clear below. The matrix D describes the penalty. A ridge penalty
is obtained for D = diag(1, . . . , 1), but also other penalties are used. If λ = 0 then there
is no smoothing, producing a possibly wiggly function while for λ → ∞ the solution is a
polynomial of degree (d − 1), which is the smoothest solution. The estimation procedure
depends on λ. To find the optimal λ, one could choose different fixed values of λ and
choose the one that gives the lowest AIC or the one that provides the best prediction of the
responses evaluated by cross-validation. However, there is a more elegant procedure which
uses the connection between smoothing and mixed models. Let y = (y1, . . . , yn)

T , xs =
(xs

1, . . . , xs
n)

T for (s = 1, . . . , d), 1 the vector of 1’s, ε = (ε1, . . . , εn)
T , X = (1, x1, . . . , xp)

(with p possibly different from d) and Z = ((x − κ11)d
+, . . . , (x − κK1)d

+), then model yi =
m(xi;β, b) + εi, (i = 1, . . . , n) can be rewritten as

y = Xβ + Zb + ε. (10.37)

The formal equivalence between a mixed model and smoothing is obtained by interpreting

(10.36) as the log-likelihood of a mixed model whereby b ∼ N(0,
σ 2

ε

λ
D−1). For a ridge penalty

bk ∼ N(0, σ 2
b ) (k = 1, . . . , K) with σ 2

b ≡ σ 2
ε /λ, and hence we obtain a classical linear mixed

model. For other choices of D a reparameterization delivers again a linear mixed model (see
Example X.25). The advantage of reformulating smoothing is that mixed model software can
be used and that the ‘best’ λ can be obtained from (RE)ML. Gurrin et al. (2005) provide an
interesting alternative explanation why the bk should be regarded as random rather than fixed
to obtain a smooth curve. Namely, the estimated bk are BLUPs which are known to shrink to
zero and therefore show less variability.

In Section 5.7, we have established the analogy between ridge regression and a Bayesian
normal linear regression analysis with a normal prior. In the same way, we may link the
mixed model here to a Bayesian model whereby in model (10.37) b is given the normal

prior N(0,
σ 2

ε

λ
D−1) and the other parameters have classical vague priors. We can then employ

MCMC techniques (especially for complex smoothing exercises) to estimate all parameters.
In the next example, we verify the linearity assumption in the osteoporosis data set.

Example X.25: Osteoporosis study: Smoothing the relationship of TBBMC with BMI
using cubic splines
We wish to verify whether the linear regression model assumed in Example IV.7 is appropriate.
In ‘chapter 10 osteo study thin plate.R’, we looked for the smooth relationship between
BMI and TBBMC. For this, we adapted the WinBUGS program developed by Crainiceanu
et al. (2005). Here we assume m(x;β, b) = β0 + β1x +∑K

k=1 bk(x − κk)
3
+. The (r, s)th entry

of the penalty matrix is (D)r,s = |κr − κs|3. With the reparameterization b∗ = D1/2b and
Z∗ = ZD−1/2 a classical linear mixed model is obtained. Twenty knots were chosen so that
each segment contains roughly 100 × (1/21)% of the data. Further details on the program
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Figure 10.12 Osteoporosis study: smoothing the TBBMC–BMI relationship using (a) a
Bayesian truncated cubic splines approach with 20 knots, (b) a Bayesian B-splines approach
with ten inner knots and penalization. The thick line represents the posterior mean of m(x)

and the boundary lines represent the corresponding 95% pointwise equal-tail CIs. The circles
at the bottom indicate the positions of the knots.

settings (number of iterations, burn-in part, number of chains, etc.) can be found in the R
program. The large posterior median for the penalty parameter of λ = 5799 explains the
minimal curvature of the smooth curve in Figure 10.12(a). We conclude that the relationship
between BMI and TBBMC is approximately linear. The effective degrees of freedom of the
smoothing model was estimated as pD = 5.96 with DIC = 78.3.

Another popular choice for spline smoothing makes use of B-splines. The B-spline repre-
sentation of the smooth function m(x) is

m(x; b, r) =
Q∑

q=1

bqBq(x; r),

where the basis functions Bq(x; r) are called B-splines of degree r which are piecewise poly-
nomials of degree r on (most often) equidistant knots covering the range of the data. That is, a
B-spline of degree 1 consists of linear functions that change at the knots, a B-spline of degree 2
consists of quadratic functions, a B-spline of degree 3 consists of cubic functions, etc. Note that
the number of knots and the degree of the B-spline are related. The mathematical description
of the B-spline is somewhat complicated, we therefore refer to de Boor (1978) for technical de-
tails. For a graphical depiction of cubic B-splines (degree = 3) (see Figure 10.12(b)). Smooth-
ing with B-splines can be done by taking Q low without penalizing the regression coefficients
bq. Instead, Eilers and Marx (1996) suggested to take a large number of equidistant knots and to
put a difference penalty on the bq based on rth order differences. This is called the P-splines ap-
proach. For example, a first-order difference in the regression coefficients is �q = bq − bq−1;
a second-order difference is given by �2

q ≡ �q − �q−1 = bq − 2bq−1 − bq−2. The idea is to
penalize large values of these sth-order differences. That is, for the simple regression model,
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we minimize

1

σ 2
ε

n∑
i=1

[yi − m(xi; b, r)]2 + λ

σ 2
ε

bT Dsb, (10.38)

with now Ds a positive semidefinite matrix expressing the sth-order differences. Expression
(10.38) is again recognized as the log-likelihood of a mixed model, i.e. y = Zb + ε (now there
is no X part) and b having a normal distribution with mean zero and precision matrix σ−2

b Ds

and the smoothing parameter λ = σ 2
ε /σ 2

b . The optimal number λ is then determined from the
estimates of the variance parameters.

The Bayesian version of B-splines and P-splines smoothing is obtained in analogy with
cubic splines smoothing. In the next example, we applied both smoothing procedures on the
osteoporosis data.

Example X.26: Osteoporosis study: Smoothing the relationship of TBBMC with BMI
using B-splines
In ‘chapter 10 osteo study B-splines.R’ details can be found about the program settings for B-
spline and P-spline smoothing both of degree 3. For B-spline smoothing with five inner knots,
the relationship between TBBMC and BMI was linear up to BMI = 30 whereafter the curve
bends. The effective degrees of freedom of the smoothing model was estimated as pD = 9.02
with DIC = 80.7. P-spline smoothing with ten inner knots and second-order penalization
produced Figure 10.12(b) which is quite similar as Figure 10.12(a). Now λ = 35.1 and the
effective degrees of freedom were estimated as pD = 5.8 with DIC = 77.6. Thus, the two
penalization approaches produced basically the same smoothed models.

The nonparametric regression model (10.35) has been extended in various ways. For the
semiparametric regression model the response is related to several covariates, some in a lin-
ear manner and others in a smooth way. The extension of a generalized linear model (see
Section 4.8) to include smooth functions of covariates was introduced by Hastie and Tib-
shirani (1986) and is called a generalized linear additive model (GLAM). More specifically,
for a GLAM the linear predictor g(µ) = η = β0 +∑d

j=1 β jx j in model (4.33) is replaced

by g(µ) = η = β0 +∑d
j=1 β jm j(x j), with mj(x j) smooth functions of x j. Crainiceanu et al.

(2004) further extended the GLAM by allowing the variance parameter to depend on co-
variates in a smooth manner. Smoothing can also be applied to hierarchical models. For
instance, Crainiceanu et al. (2005) exemplified the use of a Bayesian longitudinal model
whereby smoothing was applied to the overall curve as a function of time (fixed effect) and
on the individual curves (random effects). Kooperberg et al. (1995) suggested to smooth
the baseline hazard function in semiparametric survival models. Sharef et al. (2010) pro-
posed to apply smoothing in mixed effects survival models, called frailty models. They
smoothed the baseline hazard function as well as the frailty distribution in a frailty Cox
proportional hazards model. Komárek and Lesaffre (2008) applied smoothing in a highly
dimensional survival problem with interval-censored responses. Furthermore, the P-splines
approach of Eilers and Marx (1996) was extended by Lang and Brezger (2004) to spatial
models who also developed the Bayesian R package BayesX (http://www.stat.uni-
muenchen.de/∼bayesx/bayesx.html) for this purpose. This is not the end of the
story. Indeed, smoothing has been and is still a very active area of research tackling increas-
ingly complex problems.
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In next example, we illustrate cubic-spline smoothing on a generalized linear mixed model.

Example X.27: Dietary study: Cubic-spline smoothing in a logistic random effects model
There was interest in exploring the relationship of alcohol consumption with age, gender,
length and weight. In addition, the subsidiary (eight subsidiaries) was given a normal random
distribution. Preliminary data exploration hinted to a possible nonlinear relationship on the
logit scale between the probability of alcohol consumption (pA) and age. To verify this
nonlinear relationship, the following model was fit with WinBUGS:

logit(pAi j ) = β0 + β1agei j + β2malei j + β3lengthi j + β4weighti j +
10∑

k=1

bk(agei j − κk)
3
+ + bsubi ,

with j = 1, . . . , ni; i = 1, . . . , 8. The ten knots κk(k = 1, . . . , 10) were based on the quantiles
of age. The random intercept bsubi ∼ N(0, σ 2

sub) represents the subsidiary effect. As above,
we assume bk ∼ N(0, σ 2

b ). The R2WinBUGS program that performs the Bayesian smoothing
analysis can be found in ‘chapter 10 dietary study cubic-splines.R’.

In the linear model (pD = 7.7 and DIC = 642.9) significantly more males consumed
alcohol, but none of the other covariates have a significant impact. In the next step, we
smoothed the impact of age. In Figure 10.13(a), we plotted the smooth component of age
versus age. There appears to be a slight quadratic effect in age, however, with wide confidence
bands. Again gender was the only significant covariate and for this model: pD = 10.2 and
DIC = 641.7. Thus smoothing was no significantly improvement over the linear model. In
Figure 10.13(b), we show the logit of the (posterior means of) predicted probabilities for
alcohol consumption versus age.
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Figure 10.13 Dietary study: smoothing the relationship of logit(pA) and age using cubic
spline smoothing: (a) display of

∑10
k=1 b̂k(agei j − κk)

3
+ versus age and 95% pointwise equal-

tail CIs, with b̂k the posterior mean of bk. The circles at the bottom indicate the positions of the
knots and (b) predicted probabilities of alcohol consumption, circles correspond to women
and triangles to men.
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In this section, we aimed to relax the assumptions in parametric Bayesian models. Note that
models fit with WinBUGS are basically all parametric. Bayesian models with a nonparametric
flavor, called nonparametric Bayesian methods, are beyond the scope of this book. In
Chapter 17, some key references are given.

10.4 Closing remarks

In this chapter, we reviewed Bayesian exploratory techniques. In fact, we looked at the
Bayesian toolbox for model building and model assessment. We do have to admit that some
of these procedures are still too time consuming for reasonably sized problems. In addition,
despite the existence of flexible Bayesian software such as WinBUGS, Bayesian software
for diagnostic model tests is scattered around. A versatile software package with Bayesian
routines for model checking would, therefore, be welcome.

Exercises

Exercise 10.1 Example X.8: Perform the longitudinal analyses using ‘chapter 10 PotthoffRoy
growthcurves.odc’. Run also the extra analyses in this program. Further, since normality of the
random effects seems reasonable combine a bivariate normal distribution for bi with various
distributions for the measurement error. Evaluate the models with pD and DIC. Report your
final choice of the model.

Exercise 10.2 Example X.8: Assume in model M1 three choices for the inverse Wishart prior
IW(D, 2) for G the covariance matrix of the random effects, varying by the choice of D: (a)

D = diag(0.001, 0.001), (b) D =
(

2 −0.1
−0.1 0.02

)
and (c) D = diag(100, 100). Evaluate the

rate of convergence of the three Gibbs samplers and compare their posterior estimates with
those obtained from a frequentist analysis using the SAS procedure MIXED. Use ‘chapter 10
Pothoff-Roy growthcurves.odc’. What is your conclusion?

Exercise 10.3 Example X.8: Assume in model M1 that (a) variances for random effects grow
to infinity or (b) variances for random effects grow to zero. This can be done by fixing the
respective variances in the WinBUGS to (a) large or (b) small values. Evaluate the models with
pD and DIC. How much evidence is there for the two extreme cases? How do you interpret
these two extreme cases?

Exercise 10.4 Example X.8: Write a SAS program based on procedure MCMC to obtain
parameter estimates for models M1 to M7. Procedure MIXED allows for a Bayesian mixed
analysis. Check when this procedure can be used and compare the output with that of procedure
MCMC.

Exercise 10.5 In ‘chapter 10 dmft scores full data set.odc’ a Poisson-gamma and a negative
binomial distribution are fit to the dmft index of the 4352 seven-year-old children of the
Signal-Tandmobiel study. In the negative binomial model the logical nodes ‘alpha’ and ‘beta’
are created to show the link with the Poisson-gamma model. Verify this correspondence by
making use of formula (3.15) and the WinBUGS Manual. Verify that pD and DIC differ
considerably between the negative binomial and the Poisson-gamma model.



P1: JYS/XYZ P2: ABC
JWST177-c10 JWST177-Lesaffre May 29, 2012 10:8 Printer Name: Yet to Come Trim: 244mm × 168mm

EXERCISES 317

Exercise 10.6 Assume in Example X.10 alternative distributions for θ and choose the best
model in combination with a normal distribution for chol or log(chol) using DIC.

Exercise 10.7 Evaluate which of the four models in ‘chapter 10 Poisson models on dmft
scores.odc’: (1) Poisson model, (2) Poisson-gamma model, (3) zero-inflated Poisson model
and (4) mixture of four Poisson models, fits best the dmft scores. Note that WinBUGS does
not support pD and DIC for models (3) and (4).

Exercise 10.8 Based on the data in Exercise 10.7 and using DIC, select the best fitting model
from the following list: (1) Poisson model, (2) negative binomial model, (3) Poisson-gamma,
(4) Poisson-lognormal, and (5) Poisson-log-logistic.

Exercise 10.9 Choosing a prior distribution in Exercise 10.7 for the Poisson model which is
in conflict with the data and observe the change in pD and DIC.

Exercise 10.10 Example X.11: Suppose that ψ = 1/θα with α > 0. Show that the prior of
ψ is Pareto(α, 1) if the prior for θ is uniform on [0, 1]. Observe the change in pD and DIC
when α is increasing from 1 to 5.

Exercise 10.11 Example X.13: Verify that the posterior of the raw residuals is indeed a
tn−d−1-distribution. Produce also a similar (and additional) graph as Figure 10.3.

Exercise 10.12 In ‘chapter 10 caries with residuals.odc’ a logistic regression model is fitted to
the CE data of the Signal-Tandmobiel study of Example VI.9 with some additional covariates,
i.e. gender of the child (1 = girl), age of the child, whether or not the child takes sweets to
the school and whether or not the children frequently brushed their teeth. Apply the program
and use the option Compare to produce various plots based on εi. Are there outliers? Do the
plots indicate a special pattern of the residuals?

Exercise 10.13 In ‘chapter 10 caries with residuals.R’ the dmft index is fitted with a Poisson
regression model using R2WinBUGS. Use the approach of Exercise 10.12 to find outliers, if
any.

Exercise 10.14 In ‘chapter 10 osteo study-outliers.R’ PPOi and CPOi are computed for the
linear regression applied to the osteoporosis data. Apply this program. In addition, compare
P̂PO179 based on effectively removing subject 179 and ĈPO179.

Exercise 10.15 Example X.13: Perform the various Bayesian residual analyses by making
use of the SAS procedure GENMOD.

Exercise 10.16 Example X.15: Perform the various Bayesian residual analyses by making
use of the SAS procedure GENMOD.

Exercise 10.17 Example X.16: Use ‘chapter 10 lip cancer with residuals.R’ and reproduce
Figure 10.5. Verify whether the graphs change with a log-t regression model.

Exercise 10.18 Example IX.18: Assess the impact of varying the prior of the measure-
ment error variance (σ 2) and the variance of the random intercept (σ 2

b ) in φ2i to (1)
σ 2 ∼ IG(10−3, 10−3), σ 2

b ∼ IG(10−3, 10−3), (2) σ 2 ∼ IG(10−3, 10−3), σb ∼ U(0,10), (3)
σ 2 ∼ IG(10−3, 10−3), 1/σb ∼ U(0,10).

Exercise 10.19 Example IX.18: Assess the impact of varying the distribution of the measure-
ment error. Consider a t-distribution, a logistic distribution, etc. compare these models to the
basic model of Example IX.18. Use R2WinBUGS.
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Exercise 10.20 Show that the caterpillar option in WinBUGS can be used to construct a
normal probability plot and apply it to the osteoporosis data set.

Exercise 10.21 Example X.8: Perform a sensitivity analysis on the seven models. More
specifically, evaluate the effect of varying the distributions of the random effects and mea-
surement error on the parameter estimates. Look also for influential observations and subjects.

Exercise 10.22 Example X.19: Test the normality assumption with the Shapiro–Francia test
(Shapiro and Francia 1972), which consists of computing the Pearson correlation coefficients
between the ordered values and the expected order statistics from a standard normal distri-
bution. Produce also a Q–Q plot of the posterior means of the residuals versus the posterior
means of the simulated residuals.

Exercise 10.23 Exercise 10.12: In ‘chapter 10 caries with residuals.odc’ also a Poisson
model is fitted to the dmft indices. Apply a PPC with the χ2-discrepancy measure to check
the Poisson assumption.

Exercise 10.24 Example X.20: In ‘chapter 10 lip cancer PGM PPC theta.odc’ the gamma
assumption of the θs is checked using a variety of measures. Use R2WinBUGS.

Exercise 10.25 Example X.18: Verify the normality assumption for the measurement error
and the random effects in each of the two groups using a PPC.

Exercise 10.26 Example X.22: Check the choice of the logistic-link function in the toenail
data set using WinBUGS.

Exercise 10.27 Example X.25: Check the linearity of the regression model of TBBMC as a
function of age with or without assuming linearity in BMI. Apply both the B-splines as well
as the cubic splines approach.

Exercise 10.28 Example X.27: Check the linearity of length, weight and age in predicting
the probability of alcohol (consumption) using the B-splines as well as the cubic splines
approach.
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Variable selection

11.1 Introduction

This chapter reviews Bayesian variable selection techniques, also called (Bayesian) subset
selection techniques, in observational studies. In explorative research, one looks for the
explanation or prediction of a response using explanatory variables. When the aim is to
‘explain’ the response, we search for the real but unknown relationship between the response
and the covariates. For a good understanding of the relationship, it is then important to
select only those covariates that matter. When prediction is the aim, the actual choice of the
covariates is of less interest as long as the fit to the data is good. But, also in this case selecting
only the important covariates pays off in terms of prediction error (on future data). Variable
selection is, indeed, in practice a standard first step especially when the number of candidate
variables is large compared to the size of the study. When the sample size is much larger than
the number of predictors, then it might sometimes be better not to select variables at all but to
work with the full model (Draper 1999).

Formally, variable selection in a normal linear regression context is the exercise to prune
the model

yi = α +
d∑

k=1

βkxki + εi, (i = 1, . . . , n), (11.1)

by removing the regression coefficients βk equal to zero. In matrix notation, the linear regres-
sion model is

y = 1nα + Xβ + ε, (11.2)

with y the stacked response vector, 1n the n × 1 vector of ones, X the n × d full rank design
matrix and ε ∼ N(0, σ 2I) the n × 1 vector of error terms. In expression (11.2), the intercept α

is separated from the other regressors. This reflects the classical approach to variable selection
which is to fix the intercept in the model and to focus on the real regressors. Though, some

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Bayesian variable selection algorithms are based on the entire vector of regression coefficients.
In that case, we work with β∗ = (α,βT )T and X∗ = (1n, X ). In addition, it is customary to
standardize the covariates to have mean zero and norm one. In this way, the intercept is
common to all models and XT X becomes the empirical correlation matrix.

Variable selection involves the exploration of submodels. Let γ be the d × 1 indicator
vector with kth element γk = 0 if βk = 0 and γk = 1 if βk �= 0 and let dγ = ∑d

k=1 γk. Further,
let βγ be the dγ -dimensional subvector of β corresponding to γk �= 0 (k = 1, . . . , d) and Xγ

the corresponding design matrix. Let also β∗
γ = (α,βT

γ )T and X∗
γ = (1n, Xγ ). The normal

linear regression model Mγ is then given by y = 1nα + Xγβγ + ε. For γ = 0, the intercept
model is obtained. Denote the number of different γs by K, then with d regressors K = 2d .
Clearly, K becomes quickly large, e.g. with d = 15 K = 32 768 candidate models should be
evaluated. In explorative research, it is not uncommon to have a few hundred regressors. In
genome wide association (GWA) studies, even 2.5 million SNPs need to be explored for their
relationship with phenotypes. Efficient search algorithms are, therefore, needed to explore
all possible models or at least the most promising ones. This leads to automated variable
selection techniques. For the final model, one might also need to consider interaction terms
of the original regressors, look for transformations of the response and/or the covariates,
check the distribution of the measurement error, etc. All of this adds to the complexity of
the problem. In addition, a definition of ‘promising’ is needed, which means that we need an
appropriate criterion that judges the quality of the visited models.

Automated variable selection procedures have received a lot of criticism and many statis-
ticians prefer to build the statistical model that agrees with theory and data, thereby interacting
intensively with the clinical researcher (Gelman and Rubin 1995). This is often possible with
a limited number of covariates, but in clinical research, there are usually too many explanatory
variables that can determine a response without a clear insight of which covariates should be
excluded a priori. That is, in clinical research there is often an abundance of data but not often
a clear theory behind the data. An initial selection is then still required.

In this chapter, we review not only the Bayesian approach to variable selection but also
model selection will be considered. Selection will be based on the criteria introduced in
Chapter 10. We start with a brief review of the classical approaches to variable selection
since the issues encountered there are also relevant for the Bayesian case. Bayesian model
selection, but especially subset selection techniques, have seen an explosion of developments
over the last two decades with a significant impetus coming from genetic research. In the
subsequent sections, various Bayesian strategies for subset selection are reviewed, focusing
on the intuitive ideas behind the approaches rather than on mathematical derivations. Note
that, throughout this chapter, we assume that there are no missing values in the covariate
structure.

11.2 Classical variable selection

A sketch of the variable selection approaches developed in the classical/frequentist paradigm
is given. Only normal linear regression will be treated in this review.

11.2.1 Variable selection techniques

‘Variable selection’ often means ‘automated’ variable selection. That is, a computational
procedure searches through the K models for those models Mγ that exhibit a good performance,
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e.g. predictive ability. Well-known and still often used automated selection procedures are:
forward, backward, stepwise and all subsets selection procedures. Besides F-values or P-
values, other criteria can be used for subset selection such as the mean-squared error (MSE)
for prediction which leads to Mallows statistic Cp and the PRESS residual. Alternatively, one
could use the likelihood or likelihood-based criteria such as Akaike’s Information Criterion
(AIC) and Bayesian Information Criterion (BIC).

We illustrate the classical procedures on the well-known diabetes data set used in Efron
et al. (2004), and make use of the SAS® software.

Example XI.1: Diabetes study: Classical automated selection techniques
Efron et al. (2004) analyzed a diabetes data set to illustrate the performance of shrunken
regression estimators. This data set has been analyzed by many others afterward. In this study,
442 diabetes patients were measured on ten baseline variables: age, gender (0 = female,
1 = male), BMI, blood pressure (bp) and six serum measurements indicated as s1, s2, . . .,
s6. The question was how they relate with a measure of disease progression 1 year after
baseline (response y). It was hoped that the selected model would produce accurate baseline
predictions of the response for future patients and that the expression of the model would
suggest which covariates are important for disease progression. Note that prior to variable
selection the regressors but not the response were standardized.

In Table 11.1, we report the outcome of several regression analyses performed with the
SAS procedure REG. The first analysis is based on all baseline variables, and hence no
selection was applied. This model has an R2 equal to 0.52 and an adjusted R2 (R2

a) equal
to 0.51. Some fairly large variance inflation factors (VIFs) indicate moderate dependencies
between some of the covariates producing correlation coefficients between 0.09 and 0.74.

Table 11.1 Diabetes study: estimates (SE) of regression coefficients.

Cov LSE (SE) VIF FW/BW/SW RI BRI LA BLA

int 152.13 (2.6) 0 152.13 152.13 152.13 152.13 152.13
age −0.48 (2.9) 1.22 −0.17 −0.23 −0.11
gender −11.42 (2.9) 1.28 −10.68 −10.79 −10.75 −9.42 −9.96
BMI 24.75 (3.2) 1.51 25.23 24.34 24.44 24.87 24.93
bp 15.44 (3.1) 1.46 15.58 14.93 15.00 14.15 14.44
s1 −37.72 (19.8) 59.20 −36.09 −7.69 −10.00 −4.95 −8.00
s2 22.70 (16.1) 39.19 25.65 −0.012 0.85 −0.14
s3 4.81 (10.1) 15.40 −7.94 −6.94 −10.66 −7.60
s4 8.43 (7.7) 8.89 5.43 5.68 4.46
s5 35.77 (8.2) 10.08 38.29 23.63 24.65 24.51 24.52
s6 3.22 (3.1) 1.48 3.69 3.58 2.69 3.11

FW, forward selection; BW, backward selection; SW, stepwise selection; RI, Ridge regression; BRI,
Bayesian ridge regression; LA, LASSO regression; BLA, Bayesian LASSO regression. VIF, variance
inflation factor.
Note: The classical LSE solution is based on all baseline covariates and is computed with the SAS
procedure REG. Automated variable selection is done at significance level 0.15 with the procedure
REG as also ridge regression. The SAS procedure GLMSELECT was used for classical LASSO
estimation, but the Bayesian ridge and LASSO estimates are based on the R package ‘monomvn’.
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In addition, we performed automated variable selection techniques: forward, backward and
stepwise (all at significance level 0.15, but the same selection was obtained with 0.05). While
most often the three selection strategies yield different solutions, here all three methods
delivered the same model (see Table 11.1). The all-subsets-variable selection procedure with
R2

a as criterion selected in the best model the variables gender, BMI, bp, s1, s2, s4, s5 and s6
with R2

a = 0.51. But about 20 different models have an almost equal R2
a. The program can be

found in ‘chapter 11 CVS diabetes study.sas’.

Subset selection procedures seek a trade off between bias and variance in order to minimize
the MSE for prediction. However, they select models with a too optimistic fit to the data
(Miller 2002, p. 147). The failure to control the overall (familywise) error rate with automated
selection procedures is well known. With a large study, we can protect ourselves against a too
optimistic model choice by splitting the data set into a training, a validation and a test set.
In the training part, the models can be estimated, the decision to end the variable selection
can be based on the validation part and the performance of the chosen model on new data is
quantified in the test data set. Unfortunately, in practice, the size of the data sets rarely allows
for this ideal procedure.

11.2.2 Frequentist regularization

A different approach to find a compromise between bias and variance is to shrink the individual
regression coefficients. A well-known example of such an approach is ridge regression,

discussed in Section 5.7. According to expression (5.37), the ridge regression estimator β̂
R
(λ)

of β is obtained by minimizing

(y∗ − Xβ)T (y∗ − Xβ) + λ

d∑
k=1

|βk|r, (11.3)

with r = 2 involving the L2-norm, y∗ = y − y1n and λ ≥ 0 a penalty parameter to control the

‘size’ of the regression coefficients. It follows that β̂
R
(λ) = (XT X + λI)−1XT y and α̂ = y

(because covariates are standardized). For λ = 0 the least-squares estimate (LSE) is obtained.
That the ridge regression estimator is constrained in size follows from the fact that minimizing
(11.3) is equivalent to minimizing

(y∗ − Xβ)T (y∗ − Xβ), subject to
d∑

k=1

|βk|r ≤ t (11.4)

with t inversely related to λ. For more background on ridge regression; see Section 3.4
in Hastie et al. (2009). In general, ridge regression decreases the MSE in estimating the
regression coefficients and has good prediction properties.

Another shrinkage method was suggested by Tibshirani (1996) for simultaneous variable
selection and estimation. The estimation method, called LASSO (Least Absolute Shrinkage
and Selection Operator) estimation, is based on taking r = 1 in expressions (11.3) and (11.4)
thereby replacing the L2-norm by the L1-norm. With increasing λ (decreasing t) the constraint
in (11.4) becomes more restrictive and certain regression coefficients will be put effectively
at zero. For λ large a ‘sparse’ model is obtained, which is the main motivation for using this
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approach. Note that for λ large enough, the LASSO technique also delivers estimators with a
MSE for prediction smaller than the LSE estimators (Rosset and Zhu 2004).

The estimated regression coefficients depend on the choice of λ. A common strategy in

ridge regression is to choose λ from the ridge trace (plot of λ versus β̂
R
(λ)) and the plot of VIF

values. Then λ̂ can be taken as the smallest value of λ for which the regression coefficients

become stable with a low value for the VIFs. This gives the ridge regression estimate β̂
R
(̂λ)

for the regression coefficients. Alternatively, one could choose λ̂ that maximizes, say R2 or
BIC, while controlling the VIFs. In general, both regularization approaches produce a biased
estimate of λ because of the double use of the data. Tibshirani (1996) suggested, therefore, to
obtain the LASSO λ̂ from cross-validation (or generalized cross-validation). This renders the
LASSO model selection adaptive.

Although both methods imply shrinkage of the regression coefficients, the L2 penalty
shrinks the regression coefficients uniformly, whereas the L1 penalty implies a differential
shrinkage and thereby puts some regression coefficients at zero especially for λ large. Comput-
ing standard errors of the parameter estimates might pose a problem in the classical approach.
Because of computational difficulties, standard errors may not be available, but there is also
no consensus on whether standard errors of biasedly estimated regression coefficients are
useful (Kyung et al. 2010).

Both ridge and LASSO regression can be used to perform variable selection, but LASSO
regression is definitely more popular for this job since it puts increasingly more regression
coefficients at zero with increasing λ and thereby delivers a forward selection method.

Finally, we note that many variations of the basic LASSO approach have been proposed
especially in the last decade. While these approaches can be applied beyond the linear model
(e.g. generalized linear models (GLIMs) and survival models), most of these developments
were theoretically investigated on the linear regression model. For a recent overview of
frequentist and Bayesian LASSO approaches, we refer to Kyung et al. (2010). In Section
11.8.1, we treat the Bayesian LASSO approach. Now, we illustrate the two shrinkage methods
with the diabetes example.

Example XI.2: Diabetes study: Shrunken regression estimates
With the SAS procedure REG, we performed ridge regression varying λ from 0 to 0.10 with
steps of 0.002. Around λ = 0.04 the regression coefficients and VIFs stabilized (below 7 for
all covariates) (see Figure 11.1). In Table 11.1, we see that the ridge regression coefficients
are smaller in absolute value than the LSE estimates.

The recently released procedure GLMSELECT provides extensive variable selection facil-
ities for linear models with a variety of selection strategies and selection criteria. The LASSO
technique yields a forward selection technique with varying constraints t, but to select the
best performing model, a criterion is needed. With BIC, the variables gender, BMI, bp, s1,
s3, s5 and s6 were selected. As can be seen from Table 11.1, this model differs from the
choice made by FW, BW and SW. In the same table it can be seen that often, but not always,
the LASSO estimates are smaller in absolute value than the corresponding LSE estimates. In
Figure 11.2, the LASSO variable selection procedure is summarized with curves that emanate
at zero when the corresponding regressor is left out of the model. The vertical line indicates
when BIC is maximal and indicates the selected model.

GLMSELECT also offers cross-validation to evaluate the selection procedure, as well
as estimating the selection procedure on a training set and evaluating it on a validation
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and test set. On the other hand, the R software offers a rich scala of procedures to perform
regularized estimation for various regression models (see the R packages lars, penalized
and monomvn).

11.3 Bayesian variable selection: Concepts and questions

The last 20 years have seen an explosion of approaches for Bayesian variable selection (BVS).
A review of the classical and BVS methods up to 2000 can be found in George (2000) and
Miller (2002).

In this section, we focus on the principles of BVS techniques. Here, we are only interested
in selecting variables, but we keep in mind that selecting the best model may also involve
changing other aspects of the model. For sure, we apply selection techniques when we are
uncertain about the statistical model itself.

Let the K models be indexed by γ1, . . . , γK . The vectors γk indicate which variables are
included in the regression model with design matrix Xγk

and corresponding regression vector
βγk

. The following alternative notation may and will also be employed whenever suitable.
Namely, we will denote regression models also as M1, . . . , MK , where Mm ≡ Mm(γ ) ≡ Mγ

with m(γ ) a sequential number that indexes the models. The km-dimensional vector of
parameters of model Mm is denoted as θm, which for linear regression consists of σ 2, α and dm

regression coefficients βm (hence km = dm + 2) which correspond to the design matrix Xm.
In principle, the Bayesian variable (and model) selection problem is relatively straightfor-

ward and only involves the computation of the posterior model probabilities. Let p(Mm) be
the prior probability for model Mm, then its posterior probability is

p(Mm | y) = p(y | Mm)p(Mm)∑K
j=1 p(y | Mj)p(Mj)

, (11.5)

with

p(y | Mm) =
∫

p(y | θm, Mm)p(θm | Mm) dθm, (11.6)

which is the marginal distribution of the mth model averaged over the possible values of model
parameters. The Bayesian principle dictates to choose the model with the highest posterior
probability which is the maximum a posteriori (MAP) model. An alternative expression of
the posterior probability is

p(Mm | y) = BFmk p(Mm)∑K
j=1 BF jk p(Mj)

, (11.7)

where BF jk = p(y | Mj)/p(y | Mk) is the Bayes factor of comparing model Mj to model Mk,
say a reference model (e.g. saturated or null model). Besides the MAP model, it is also of
interest to find all other promising models.

Although Bayes theorem tells us how to select the most promising model(s), we need
to address some issues that are important for the practical implementation of variable (and
model) selection. Namely:

� What do we take as prior probabilities for p(Mm)? Can we use expert knowledge or
should we use automatic priors, such as equal probabilities p(Mm) = 1/K?
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� Expression (11.7) shows that the posterior probability involves the Bayes factor which
is known to depend critically on the prior distributions p(θm | Mm). Therefore, it is
important to reflect on the choice of these priors such that they do not greatly influence
model selection.

� How can we compute the marginal likelihoods p(y | Mm) in an economical manner,
as these integrals are typically high dimensional? We will see that it becomes again
important to choose the priors p(θm | Mm) such that p(y | Mm) can be determined
analytically or well approximated (in a fast numerical sense). This will lead to automatic
priors.

� When K is large, what search strategies can be implemented to quickly find the most
promising models?

In addition, we need to address the problems that were mentioned in the section on classical
variable selection. For instance, does it make sense to base statistical inference on one selected
model? And, if other models should be taken into account, how should this be done?

The next two sections describe BVS techniques that employ the model space approach.
This means that variable selection is directly based on the marginal likelihood. In Section 11.4,
most of the developments are based on the BIC approximation to the marginal likelihood.
That section serves also as an introduction to the various concepts in BVS. In Section 11.5, we
focus on Zellner’s g-prior which is an important conjugate prior to p(y | θm, Mm). Section 11.6
is devoted to the application of Reversible Jump MCMC to variable selection. In Section 11.7,
various hierarchical model-based approaches for BVS are reviewed. Bayesian regularization
approaches including, e.g. the Bayesian LASSO approach, are explored in Section 11.8. In Sec-
tion 11.9, we briefly review the important case when d is large possibly exceeding n. In Section
11.10, it is shown that (Bayesian) variable selection techniques can do more than selecting vari-
ables. Finally, in Section 11.11, we review the Bayesian Model Averaging (BMA) approach.

While in the previous chapters, most of the computations were done with WinBUGS
(or related software) or SAS; in this chapter, extensive use of dedicated R packages proved
necessary. A lot of the illustrations are based on WinBUGS, but dedicated R programs are
often considerably faster and benefit from the rich R programming environment.

11.4 Introduction to Bayesian variable selection

11.4.1 Variable selection for K small

We start the case when K is small, i.e. when a limited number of covariates are involved. In
Section 10.2, the objective was to select ‘the best model(s)’, now the objective is to select mod-
els with a high model probability. To compute the posterior model probability (11.5) we need
p(y | Mm), typically involving the evaluation of large dimensional integrals. Computations
can be speeded up by using the BIC approximation (see paragraph below expression (10.10)),
where BIC is defined in expression (10.9). Since −2 log BF jk ≈ BIC j − BICk, we can rewrite
expression (11.7) as

p(Mm | y) ≈ exp(−�BICm/2)p(Mm)∑K
j=1 exp(−�BIC j/2)p(Mj)

, (11.8)
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with �BIC j = BIC j − BICmin and BICmin is the minimum BIC of the K models. To introduce
the concepts in BVS, we first look at the normal linear regression model defined in expression
(11.2). Note, however, that the BIC approximation works well only for large sample sizes com-
pared to the number of parameters and for relatively simple models (Berger and Pericchi 2001).

In contrast to most variable selection procedures below, the intercept is not given a separate
status here and thus now we work with the vector β∗

m and the corresponding design matrix
X∗

m. Recall that, according to a result in Section 10.2.2, the BIC for a normal linear regression

model Mm is based on assuming p(β∗
m | Mm) = N

(
β̂

∗
m, n σ̂ 2(X∗T

m X∗
m)−1

)
, with β̂

∗
m the MLE

(LSE) of β∗
m and σ̂ 2 the MLE of σ 2. This prior represents the equivalent information of a

sample of size one (with the same design matrix as the observed data) and hence the use of
BIC for model/variable selection corresponds to a particular prior. To compute expression
(11.8) the prior probabilities, p(Mm) must be supplied. A first choice could be to assume that
p(Mm) = 1/2d .

Looking for only the most plausible model a posteriori may be not a good idea since often
many models will do a good job. In the search for good models, it is of interest to have a
unique ordering of the models. The following model indicator transforms the vector of binary
indicators γ to a decimal number (Ntzoufras 2009):

m(γ ) = 1 +
d∑

k=1

γk2k−1. (11.9)

For instance, the model containing only the intercept is put first, m = 1. In the dia-
betes study with d = 10, the indicator vector for the MAP model (see Example XI.3) is
γ = (0, 1, 1, 1, 0, 0, 1, 0, 1, 0)T which corresponds to m = 1 + 2 + 4 + 8 + 64 + 256 =
335. To find the vector γ(m) corresponding to m we used a self-written algorithm (included
in the R software discussed in Example XI.3).

The assumption p(Mm) = 1/2d implies that all models are a priori (1) independent and
(2) equally probable. Both assumptions may be unrealistic in practice. For instance, suppose
that two covariates are highly collinear, like systolic and diastolic blood pressure in predicting
heart failure. When two models contain the same covariates except for blood pressure, then
inserting systolic blood pressure or diastolic blood pressure results in almost the same model.
Another example is when interaction terms are involved. Good statistical practice suggests
that the main effects should be included whenever the interaction terms have been selected,
but this asks for a dependent selection of variables. Equal and independent prior probabilities
may be fine for selecting different models, but for variable selection, we need to pay more
attention. Note first that, if the prior probability assigned to each variable to be in the model
is 1/2, i.e. p(γk = 1) = 0.5 (k = 1, . . . , d) and these probabilities are assumed independent,
the prior probability for each γ is equal to 1/2d . But then the a priori expected size model
size is d/2, because dγ ∼ Bin(d, 0.5). On its turn, this implies that the prior p(Mm) = 1/2d

is informative on the size of the model and prefers a priori models of size d/2 which are
possibly too complicated.

Two alternative suggestions have been proposed for choosing model priors. The first
suggestion is to take the independent Bernoulli prior given by

p(Mm(γ )) ≡ p(γ | ω) = ωdγ (1 − ω)d−dγ , ω ∈ (0, 1) (11.10)

and to impute a prior guess for the proportion of βk �= 0, i.e. for ω. By e.g. choosing ω close
to zero prior preference is expressed for sparse models, useful for GWA studies. Note that
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the uniform distribution p(γ | ω) = 1/2d is again obtained by taking ω = 1/2. Hence the
parameter ω controls the number of covariates in the model. Another suggestion is to give ω a
prior distribution and combine it with expression (11.10); see George and McCulloch (1993);
Scott and Berger (2010). With ω ∼ Beta(αω, βω) the marginal prior for γ becomes

p(γ ) =
∫ 1

0
p(γ | ω)p(ω)dω = B(αω + dγ , βω + d − dγ )

B(αω, βω)
. (11.11)

A popular choice is to take αω = βω = 1, then p(γ ) = 1
d+1

( d
dγ

)−1
. This prior is uniform on the

size of the model. Scott and Berger (2010) called this special case of prior (11.11) the ‘fully
Bayesian’ version of variable selection priors, but it is more referred to as the dependent prior.
Scott and Berger (2010) demonstrated that this prior corrects for ‘multiplicity’. Correction for
multiplicity means classically that the statistical procedure corrects for false positives. Here,
it means that the number of falsely selected variables (those with truly γk = 0) should be
kept under control. For instance, Swartz and Shete (2007) reported an inflated false positive
rate with prior (11.11) with ω = 0.5 (which disappeared when ω = 0.25) when searching for
genetic markers of a disease in the absence of any association.

Finally, from the posterior model probabilities one can derive the marginal probability that
a covariate xk is included in the model. This is the (marginal) posterior inclusion probability
for variable xk given by

qk = p(γk = 1 | y) =
∑

m:γk=1

p(Mm | y). (11.12)

The posterior inclusion probability is a useful summary as often all models will have small
posterior probabilities. These probabilities are used to determine the median probability (MP)
model which is the model consisting of those variables whose posterior inclusion probability
is at least 1/2. Barbieri and Berger (2004) reported that the MP model is often better for
prediction than the MAP model.

In Example XI.3, we illustrate the above concepts with the diabetes data.

Example XI.3: Diabetes study: BVS based on the BIC approximation
We have performed a BVS on the diabetes data and made use of the BIC approximation
with the self-written R program ‘chapter 11 BIC and Zellner diabetes.R’. With equal prior
model probabilities, the MAP model contains gender, BMI, bp, s3 and s5. Note that the MAP
model differs from the best model found with the classical variable selection procedures by
the selection of s3 rather than s1 and s2. However, the models are competitive and differ in
R2

a only in the third decimal.
In addition, our R program delivers all posterior model probabilities. In Figure 11.3(a),

we show (part of the) the posterior model probabilities obtained by computing expression
(11.8) with p(Mm) = 1/210. We highlighted the five models with posterior probability greater
than 0.05. The MAP model corresponds to m = 335 with posterior probability equal to 0.28,
while the model selected by the classical variable selection procedures corresponds to m=319
with posterior probability equal to 0.22. To find the median probability model, the marginal
posterior inclusion probabilities are required. They were for age: 0.05, gender: 0.98, BMI:
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Figure 11.3 Diabetes study: index plot of model posterior probabilities obtained from a BVS
combining the BIC approximation with (a) the independent model prior (ω = 0.5) yielding
equal prior model probabilities, and (b) with ω = 0.01. The size of the model (number of
variables) is indicated to the left of the vertical bar of the model.

1.0, bp: 1.0, s1: 0.57, s2: 0.38, s3: 0.57, s4: 0.20, s5: 1.0, and s6: 0.07. Thus, the MP model
consists of gender, BMI, bp, s1, s3, s5 and is equal to the MAP model.

The first variable selection was based on the prior (11.10) with ω = 0.5. In the next step, we
varied ω to illustrate the effect of the hyperprior p(γ | ω). For small values of ω, a greater prior
weight is put on sparse models, while for large values of ω the reverse happens. For ω = 0.01
the MAP model contains only three covariates (BMI, bp, s5) with posterior probability = 0.61
and the next most plausible model only two covariates (posterior probability = 0.24). For
ω = 0.99, the MAP model contained all covariates (posterior probability = 0.50). In Figure
11.3, the posterior probabilities for two values of ω are shown. With the dependent prior
(11.11) the same MAP model as for ω = 0.5 was obtained.

Further, in Figure 11.4, the effect of the model prior on the posterior probabilities of the
model sizes is illustrated. Clearly, the dependent prior increases the posterior probability for
smaller and larger models, which can be seen by comparing the independent and the dependent
posteriors on the model size.

1086420

0.
8

0.
6

0.
4

0.
2

0.
0

Size of model

P
ri

or
 p

ro
ba

bi
lit

y

w = 0.5
w = 0.1

w = 0.01

DEP

(a)

1086420

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
0

Size of model

Po
st

 p
ro

ba
bi

lit
y

w = 0.5
w = 0.1w = 0.01

DEP

(b)

Figure 11.4 Diabetes study: (a) prior and (b) posterior probabilities of model size for various
model priors (DEP = dependent prior).



P1: JYS/XYZ P2: ABC
JWST177-c11 JWST177-Lesaffre May 26, 2012 11:21 Printer Name: Yet to Come Trim: 244mm × 168mm

330 VARIABLE SELECTION

The BVS principles can be immediately applied to all regression models. With the BIC
approximation to the marginal likelihood the determination of the best models will again
be relatively fast. This is illustrated later for a probit regression model. The choice of the
probit was inspired by software availability and but also by computational difficulties with the
logistic link in WinBUGS (see Chapter 8 and Example XI.7). Another reason for choosing
the probit link is its latent representation of a discretized normal random variable. This was
first suggested in Albert and Chib (1993) and was illustrated in Example VII.9. Sections 11.8
and 11.9 further highlight the usefulness of this representation.

Example XI.4: Rheumatoid arthritis study: BVS based on the BIC approximation
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovial in-
flammation and destruction of cartilage and bone in the joints. The Rotterdam Early CoHort
Study (REACH) was initiated in 2004 to investigate the development of RA in patients with
early manifestations of joint impairment. Information regarding basic patient characteristics,
serological measurements and patterns of disease involvement at baseline have been gathered
in a total number of 681 recruited patients. For more information on the REACH study (see
Geuskens et al. 2008; Alves et al. 2011).

It was of interest to know which of the following 12 factors are associated with the
development of RA (binary outcome): accp (cyclic citrullinated peptide antibody), age, esr
(erythrocyte sedimentation rate), dc (duration of complaints in days), stiffness (duration of
morning stiffness in minutes), rf (rheumatoid factor), gender, sym (symmetrical pattern of
joint inflammation yes/no), sjc (swollen joint count), tjc (tender joint count), bcph (bilateral
compression pain in hands yes/no) and bcpf (bilateral compression pain in feet yes/no). The
Spearman correlations between the covariates were all relatively low (below 0.25 in absolute
value) except for cor(accp,rf ) = 0.67 and cor(sym,sjc) = 0.86. Based on classical probit
regression, the F-to-out backward selection significance level 0.05 yields a model with the
following variables: accp, esr, dc, sym, sjc and bcph. The model with the most favorable
value of the AIC criterion selected after an exhaustive model evaluation contains two extra
variables: rf and stiffness.

The R program ‘chapter 11 BIC and Zellner REACH.R’ selects variables in a probit
regression model using the BIC approximation. We used equal model probabilities for this
exercise. The results are shown in Table 11.3 in the column BF . The MAP model contains
only four variables: accp, esr, sym and bcph. Note that the best model obtained by a classical
backward selection is among the five best models.

To conclude this section, variable selection based on the BIC approximation is achieved
through the evaluation of the following:

� Posterior model probabilities p(Mm | y) ≡ p(γ(m) | y): This gives the MAP model
and all other plausible models in the light of the observed data.

� (Marginal) posterior inclusion probabilities (11.12): This gives the MP model by
inspecting for which of the regressors the posterior inclusion probability exceeds 0.5.

11.4.2 Variable selection for K large

We now look at the case of large model spaces. Exploration of all 2d models is not possible
for d large, even when the marginal likelihood (and the Bayes factor) can be determined
analytically. A search strategy needs to be installed to find the most promising models. We
first review a deterministic strategy which is combined with restricting the set of models.
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We again assume that we can efficiently compute p(y | Mm) for all Mm such that together
with p(Mm) we know p(Mm | y) (up to a constant). Raftery and Madigan (1994) proposed
a deterministic variable selection strategy in the context of Bayesian model averaging (see
Section 11.11) based on two principles. The first principle narrows the selection to models
with a high posterior probability which leads to the set of models satisfying

A′ = {Mm :
p(Mm | y)

maxk p(Mk | y)
≥ C}, (11.13)

where C is a constant chosen by the user. The second principle, known as Occam’s razor
introduced in Section 10.2.2, excludes all models which are less supported by the data than
their simpler versions. That is, models in

B = {Mm : ∃Mk ∈ A′, Mk ⊂ Mm, p(Mk | y) > p(Mm | y)} (11.14)

are excluded from the set, where M ⊂ N means that model N contains at least one extra
covariate. The set of models to be considered is then reduced to A = A′ \ B and it is assumed
that the omitted models are responsible for a small portion of the posterior probability. In
that case, the posterior probabilities p(Mm | y) computed with equation (11.5) and based on
the set of models A are a good approximation to the true posterior probabilities based on all
models.

A conceptual description of the algorithm goes as follows (Hoeting et al. 1999a). When
for two nested models the simpler model is decisively rejected then the algorithm rejects
also submodels of the simpler model. Second, when p(M0 | y)/p(M1 | y) > OR, with M0

a submodel of M1 and OR ≥ 1 then M1 is rejected. When p(M0 | y)/p(M1 | y) < OL with
OL < 1 and small, then M1 is rejected. When OL < p(M0 | y)/p(M1 | y) < OR, then neither
model is rejected. The interval [OL, OR] is called Occam’s window which gives also the name
to the method. Raftery et al. (1996) advised to take OR = 20 and OL = 1/20. More details
are found in Raftery and Madigan (1994) who proposed backward and upward model search
algorithms where models differ only by one variable. The actual search is then run as a
combination of both.

Alternatives to purely deterministic methods such as Occam’s window are those based on
stochastic search. These methods introduce some randomness into the search and, therefore,
are less vulnerable to getting trapped in the model space. The stochastic approach we consider
here was suggested by Madigan et al. (1995) again in the context of Bayesian model averaging.
The approach uses MCMC methods to sample from the posterior model distribution p(Mm | y)

assuming that p(y | Mm) can be determined efficiently for all models. The method has become
known as MC3, which means that it is a ‘Model Composition using MCMC’.

Sampling is done via the classical MH-algorithm on the space of models. The Markov
chain of models {Mk; k = 1, . . .} or equivalently the γs move locally in the neighborhood of
the current model. Given the current position Mm, model Mm∗ is sampled in the neighborhood
of Mm by the proposal distribution q(Mm∗ | Mm) = 1/d. Thus, all models in the neighborhood
are accessible with the same probability and the corresponding γ and γ∗ differ in one position.
The sampled model M∗ is then accepted with probability

min

(
1,

p(Mm∗ | y)

p(Mm | y)

)
, (11.15)
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otherwise the chain stays at model Mm. Although an improvement over Occam’s window
approach, sampling with the MC3 approach still proceeds in small steps and therefore the
mixing of the chain might not be ideal.

The MC3 algorithm provides an empirical estimate of p(Mm | y) by taking the proportion
of times model Mm is selected over the total number of visited models, i.e.

p̂(Mm | y) = 1

L

L∑
l=1

I(Ml = Mm), (11.16)

with Ml the model visited in iteration l of the Markov chain, I(·) the indicator function and
L the total number of MCMC iterations. Further, the posterior inclusion probabilities (11.12)
are computed by replacing p(Mm | y) with (11.16).

The R package BMA provides functions for variable selection based on Occam’s window
and MC3 in the context of Bayesian model averaging. For linear models, the conjugate
NIG-prior for regression coefficients is taken with minimally informative priors (Raftery
et al. 1997). For GLIMs, Raftery (1996) applies a Laplace approximation (3.19) on h(θm) =
log{p(y | θm, Mm) p(θm | Mm)} (see Section 10.2.2). Hereby an approximation to the marginal
likelihood and the Bayes factor against the null model (βm = 0) is obtained for a user-defined
but minimally informative prior. A further approximation is based on GLIM output. We now
illustrate the use of the package BMA with the diabetes data.

Example XI.5: Diabetes study: BVS based on Occam’s window and the MC3 approach
The R packageBMA hosts several BVS functions with, however, limited options for prior model
probabilities. In this example we applied the functions bic.glm and MC3.REG. The first
function is based on Occam’s window in combination with the classical BIC approximation
to the Bayes factor and provides variable selection in GLIMs. MC3.REG is based on MC3 but
can only be used with linear models and is based on the NIG conjugate prior for p(β∗

m | Mm).
Both programs provide model averaging tools, but here we focus on the variable selection
algorithms.

The program ‘chapter 11 Occam diabetes.R’ performs BVS on the diabetes data and is
based on bic.glm and MC3.REG. The results of this exercise are given in Table 11.2 and

Table 11.2 Diabetes study: selection of the best models.

Covariates BF BO B MC3 G

2,3,4,7,9 0.278 0.326 0.286 0.381 0.281
2,3,4,5,6,9 0.224 0.253 0.223 0.269 0.224
2,3,4,5,8,9 0.116 0.133 0.117 0.080 0.116
2,3,4,5,7,9 0.105 0.120 0.106 0.063 0.105
2,3,4,7,8,9 0.023 0.027 0.023 0.019 0.022

Note: Five best linear regression models according to their posterior model probability obtained from
BIC-approximation with full exploration of all models (BF), BIC-approximation with Occam’s
window (OR = 20) (BO) and without Occam’s window (B) (both using ‘bic.glm’), MC3 based on
2000 iterations using MC3.REG, Zellner’s g-prior (G). The variables are abbreviated with numbers as
follows: age (1), sex (2), BMI (3), bp (4), s1 (5), s2 (6), s3 (7), s4 (8), s5 (9), s6 (10).
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Models selected by BMA

Model #
3371118654321

s6

s5

s4

s3
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s1

BP

BMI

Sex

Age

Figure 11.5 Diabetes study: included covariates in selected models obtained from ‘bic.glm’
(Occam’s window option switched off). The models are sorted (on x-axis) in decreasing
posterior probability. The horizontal strips indicate the variables that are included in the
model with a positive/negative regression coefficient (grey/black).

tell us that (a) the posterior model probabilities for the five best models satisfy the inequality
BO ≥ B ≥ BF (for explanation of symbols, see Table 11.2), which is explained by the fact
that the set of considered models increases from BO to BF and (b) the MC3 estimates of
p(Mm | y) differentiate more the best fitting models. Despite some differences in the posterior
model probabilities, the relative ranking of the five best models is the same. A graphical
display of the selected variables for the respective models is given in Figure 11.5 (obtained
from bic.glm).

To conclude, variable selection based on Occam’s window and MC3 is achieved through
the evaluation of p̂(Mm | y) which delivers the MAP model. From the posterior inclusion
probabilities computed with expression (11.16) the MP model is obtained.

11.5 Variable selection based on Zellner’s g-prior

From Sections 3.8.3 and 10.2.1 it follows that for variable selection the prior p(θm | Mm) needs
to be chosen with care. In fact, while an improper prior leads to an indeterminate Bayes factor,
with an informative prior there is the risk that prior considerations dictate the model choice.
Thus, an appropriate prior needs to balance between a noninformative and an informative
prior. Moreover, calculating the Bayes factor is often computationally demanding since it
requires the marginal likelihood. A popular prior for the regression coefficients of a normal
linear regression model in the context of BVS is the conjugate NIG-prior of Section 5.6.1,
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despite the problems mentioned there. This prior gives an analytical expression of the marginal
likelihoods. More specifically, given σ 2, the conjugate prior for β∗ is N(β∗

0, gσ 2	∗
0 ). Popular

choices for 	∗
0 are the identity matrix and (X∗T

m X∗
m)−1. The latter choice corresponds to

Zellner’s g-prior when combined with σ 2 ∼ IG(a0, b0). Zellner’s g-prior enjoys an attractive
property that it can be interpreted as the posterior from the analysis of an imaginary sample
y0 (for β∗

0 = 0 it is y0 = 0) with the same design X∗
m as in the current sample and variance

gσ 2, as shown in Section 5.6.1.
Working with the total vector β∗ would shrink all regression coefficients, also the intercept

α. Often, and certainly in GLIMs, we do not wish to shrink α. Therefore it is common to treat
the intercept different from the other regression coefficients. This leads to using the model
y = 1α + Xmβm + ε. Further, we assume that α is common to all models what happens when
the covariates are centered since then the columns of Xm are orthogonal to the vector 1. The
popular version of the g-prior in BVS (Liang et al. 2008) is given by

p(α, σ 2) ∝ σ−2, (11.17)

p(βm | σ 2, Mm) = N
(
0, gσ 2(XT

mXm)−1
)
. (11.18)

Note that in expression (11.18) g controls the size of the βm parameters. The prior for σ 2 can
be taken the same for all models since the regression parameters are orthogonal to the variance
in a linear model (Berger and Pericchi 2001). This version of the g-prior is not (conditionally)
conjugate anymore but still leads to a closed expression of the marginal likelihood, namely,

p(y | Mm, g) = 

(

n−1
2

)
(πn)(n−1)/2

1(∑n
i=1(yi − y)2

)(n−1)/2

(1 + g)(n−1−dm )/2

(1 + g(1 − R2
m))(n−1)/2

, (11.19)

where R2
m is the ordinary coefficient of determination of model Mm. When the null model Mk

is the reference, R2
k = 0 and dk = 0, the Bayes factor comparing model Mm to Mk is

BFmk = p(y | Mm)

p(y | Mk)
= (1 + g)(n−dm−1)/2

[
1 + g(1 − R2

m)
]−(n−1)/2 ; (11.20)

see Liang et al. (2008) for more details on how to derive expressions (11.19) and (11.20).
Zellner’s g-prior needs a value for g. A popular choice is g = n which leads to the unit
information prior (Kass and Wasserman 1996), but other values have been proposed, see
below. To arrive at the posterior model probabilities, Zellner’s g-prior can be combined with
the model prior (11.10) for a particular choice of ω or the dependent prior (11.11). When the
number of variables is relatively small, BVS based on Zellner’s g-prior can be combined with
an exhaustive model search, otherwise a stochastic search algorithm should be used.

To define minimally informative Zellner’s g-priors, many looked for the ‘optimal’ choice
of g. In general, small values of g will result in a too strong prior, while very large values of g
would favor the null model and thus induce the Lindley–Bartlett’s paradox (Smith and Kohn
(1996)). But, Smith and Kohn (1996) reported that the results were insensitive to values of g
between 10 and 1000. George and Foster (2000) showed, that for σ 2 fixed, one can tune g and
ω in (11.10) such that the MAP model obtained from Zellner’s g-prior corresponds to the best
model from a variable selection procedure based on popular model selection criteria such as
AIC (e.g. ω = 0.5 and g ≈ 3.92) and BIC (e.g. ω = 0.5 and g = n). Motivated by theoretical
considerations and simulations, Fernandez et al. (2001) showed that g = max(n, d2) leads to
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asymptotically selecting the correct model. This property is called model selection consistency.
George and Foster (2000) argued that it is hard to make an a priori choice of ω and g and
suggested to estimate these from the data using an empirical Bayes method. Instead, Liang
et al. (2008) suggested a prior distribution for g and showed that for well-chosen priors, the
BVS procedure achieves model selection consistency. These variable selection procedures
appear to have better operational procedures. Finally, Krishna et al. (2009) suggested the
prior N

(
0, gσ 2(XT

mXm)λ
)

as a replacement of expression (11.18). This extension yields again
analytical results and allows to have control over correlated predictors, i.e. λ > 0 forces
highly collinear predictors entering or exiting the model simultaneously, while λ < 0 has the
reverse effect.

Extensions of Zellner’s g-prior have been defined for other models such as GLIMs.
Fouskakis et al. (2009) suggested p(βm | Mm) = N

(
0dm , g
(0dm )−1

)
with g = n, 
(βm) the

Fisher (expected) information matrix evaluated in βm and 0dm the vector of zeros of dimension
dm. This leads to p(βm | Mm) = N

(
0dm , 4n(XT

mXm)−1
)

for logistic regression. Other proposals
differ in the choice of the information matrix (observed versus expected) and in the vector
wherein 
 is evaluated; see Sabanés Bové and Held (2011b) for a review and additional
references. These authors proposed a modification of the conjugate prior (5.35) of Chen and
Ibrahim (2003) and suggested (in the notation of Section 5.6.2)

p(βm | y0, g, Mm) ∝ exp

{
1

gφ

n∑
i=1

[h(0)wiθi − wib(θi)]

}
, (11.21)

with h(0) = db/dθ (0) and wi are weights. For n → ∞ this prior converges to a generalized
Zellner’s g-prior

βm | g, Mm ∼ N
(

0dm , gφc
(
XT

mWXm
)−1

)
, (11.22)

with c = d2b/dθ2(and (db/dθ )−1) evaluated at zero and W = diag(w). This boils down to
the logistic regression g-prior of Fouskakis et al. (2009) when g = n and c = 4, while for
probit regression c = π/2. Fixing g to a particular value would imply that variable selection
may not enjoy the model consistency property. Instead Sabanés Bové and Held (2011b)
specified a hyperprior p(g) for g and called therefore the resulting prior the generalized
hyper-g-prior, which still needs to be completed with a prior for γ . Their BVS algorithm,
implemented in the R package glmBfp, is based on the following steps. First, the marginal
likelihood p(y | Mm) ≡ p(y | γ ) is approximated with Laplace approximations combined with
adaptive Gaussian quadrature. A MH-algorithm based on p(y | γ ) then yields a sequence
γ1, . . . , γk, . . .. In addition (but not part of the BVS procedure), given γ , an independent
proposal density for log(g) is combined with a proposal density to sample α,β.

Example XI.6: Rheumatoid arthritis study: BVS based on a generalized Zellner’s g-prior
With the R package glmBfp variable selection can be done in a Bayesian generalized linear
model (BGLIM). We used the package to select important covariates in a probit regression
model for the REACH data. The package is based on prior (11.22) in combination with a
variety of hyperpriors p(g). Here, we have taken IG(0.1,0.1). In addition, different priors are
allowed for γ . We chose prior (11.10) with ω = 0.5 and prior (11.11) with αω = βω = 1.
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Table 11.3 Rheumatoid arthritis study: selection of best models.

Covariates BF BO B L G RJ SVSS2 SVSS4

1,3,8,11 0.250 0.316 0.255 0.273 0.027 0.170 0.310 0.058
1,3,8,9,11 0.133 0.168 0.136 0.115 0.046 0.139 0.168 0.061
1,3,4,8,11 0.105 0.133 0.107 0.109 0.033 0.074 0.077 0.029
1,3,6,8,11 0.059 0.075 0.060 0.076 0.019 0.043 0.069 0.043
1,3,5,8,11 0.051 0.065 0.053 0.055 0.016 0.036 0.048 0.022

Note: Five best probit regression models according to their posterior probability obtained from BIC
approximation with full exploration of all models (BF); BIC approximation with Occam’s window
(OR = 20) (BO) and without (B) (both using ‘bic.glm’); Raftery’s Laplace approximation (L) using
‘glib’; Generalized hyper-g-prior (G) using ‘glmBfp’; RJMCMC (RJ) using the Jump Interface to
WinBUGS; SSVS approach based on scenarios 2 (SVSS2) and 4 (SSVS4). The variables are
abbreviated with numbers as follows: accp (1), age (2), esr (3), dc (4), stiffness (5), rf (6), gender (7),
sym (8), sjc (9), tjc (10), bcph (11), bcpf (12).

Finally, we compared the solution based on an exhaustive search with the solution based on
stochastic search. The commands can be found in the R program ‘chapter 11 BIC and Zellner
REACH.R’ which incorporates the package glmBfp. The five best models with prior (11.10)
are given in Table 11.3.

To compare the best models found by the hyper-g-prior, we applied the BMA routine
bic.glm which is based on a BIC approximation with or without the use of Occam’s
window. The variable selection results are shown in the columns BF , BO and B of Table 11.3.
Note that again BO ≥ B ≥ BF with always the same MAP model (equal to that of Example
XI.4). The BMA routine glib is based on a more accurate Laplace approximation to the
marginal likelihood (Raftery 1996), applied to the REACH data produced column L. All
programs can be found in ‘chapter 11 BMA REACH.R’.

Compared with the other BVS algorithms, the posterior model probabilities are less out-
spoken with the hyper g-prior but nevertheless the algorithm gave the same five best models
irrespective of whether a stochastic or an exhaustive search was done. Both search proce-
dures gave also the same posterior model probabilities. Further, it is readily seen that, when
switching from prior (11.10) to prior (11.11) with αω = βω = 1 the posterior probabilities are
proportional with a factor that depends on the model size. The posterior median of g was 28.3
(95% CI = [21.5, 39.7]) which is about 20 times lower than with the unit-information prior
(g = 681).

11.6 Variable selection based on Reversible Jump Markov
chain Monte Carlo

The MC3 method produces an MCMC chain which moves only within the model space, i.e.
it moves from model Mm to model Mm∗ bypassing the choice of regression coefficients since
the MH-algorithm is based on p(y | Mm). Hence after selecting the model Mm∗ , one needs
to estimate the parameters θm∗ . One could generalize the MC3 approach by jointly sampling
the parameters θm and the model Mm using, say, a MH-approach. That is, given the current
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value (θm, Mm) a proposal (θm∗ , Mm∗ ) could be generated from the proposal distribution
q(θm∗ , Mm∗ | θm, Mm) which takes values in the combined space of parameter vectors and
model identifiers. The proposal is then accepted with probability

αMH = min

(
1,

p(θm∗ , Mm∗ | y)q(θm, Mm | θm∗ , Mm∗ )

p(θm, Mm | y)q(θm∗ , Mm∗ | θm, Mm)

)
,

= min

(
1,

p(y | θm∗ , Mm∗ )p(θm∗ | Mm∗ )p(Mm∗ )q(θm, Mm | θm∗ , Mm∗ )

p(y | θm, Mm)p(θm | Mm)p(Mm)q(θm∗ , Mm∗ | θm, Mm)

)
,

where the second line follows from Bayes theorem. The proposal is done in 2 steps with first
a proposal for Mm∗ and then a proposal for θm∗ which implies that q(θm∗ , Mm∗ | θm, Mm) =
q(Mm∗ | θm, Mm)q(θm∗ | θm, Mm∗ , Mm). The challenge is to ensure that the detailed balance
condition (see Section 6.4) holds which means that the move from model (θm, Mm) to model
(θm∗ , Mm∗ ) should be as easy as the opposite move. It is, however, not immediately clear how to
guarantee this condition when the dimensions of the models change which occurs with variable
selection. Reversibility is guaranteed by the Reversible Jump MCMC approach (Green 1995)
introduced in Section 6.6. Here, we describe the reversible jump strategy sketched in Lunn
et al. (2009b) and implemented in the Reversible Jump to WinBUGS Interface (abbreviated as
RJWinBUGS). The attractiveness of the procedure is its link with WinBUGS making it quite
general. For specific applications, other RJMCMC algorithms for variable selection might be
preferred. For instance, the R package monomvn is an efficient RJMCMC-based procedure
for BVS in linear regression (Gramacy and Pantaleoy 2010). The RJWinBUGS strategy is to
some extent also typical for many other RJMCMC algorithms (see Chen et al. 2011).

General strategy Let θm be the km-dimensional vector of parameters of model Mm. The
key element of the algorithm is the specification of a suitable proposal distribution to move
from (θm, Mm) to (θm∗ , Mm∗ ). When the dimensions change (km �= km∗), the construction of
the proposal distribution needs careful attention to assure reversibility. For the MC3 method
and the original RJMCMC approach, the moves were confined to only adding or deleting one
variable, which correspond to the ‘birth’ and ‘death’ moves in the original paper of Green
(1995). To allow for a quicker exploration of the spaces, Lunn et al. (2009b) generalized
the RJMCMC algorithm and proposed three types of moves: (1) ‘dimension moves’ which
represent the two transdimensional moves, i.e. ‘birth’ and ‘death’ but where the change in
dimension is in general greater than one; (2) ‘configuration moves’ which randomly pick up
several variables and replace them by the same number of other variables; and (3) ‘coefficient
moves’ which update the model coefficients via standard sampling methods.

The moves Only the dimension moves are transdimensional. RJWinBUGS uses a MH-
algorithm for this. First, it is proposed to update the dimension by adding a randomly chosen
integer δ to (or subtracting from) km. Here, we concentrate on selecting variables and hence the
relevant part to consider are the dm regression coefficients such that km is in fact dm. In a second
step, a new regression vector is proposed by sampling from its full conditional distribution
(only conjugate full conditionals are allowed). With the full conditional as proposal density
the authors show that the acceptance probability becomes independent of the regression
coefficients, but remains dependent on the prior covariance matrix. This latter dependence
makes the sampling procedure dependent on the choice of the prior precision of the regression
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coefficients, and thus it is important to choose an appropriate value. In the configuration
moves the dimensions remain the same but a new regression vector is sampled. Finally, in the
coefficient moves only the regression coefficients are updated. In all of the moves, a bijective
function h, as defined in Section 6.6, is explicitly or implicitly constructed.

The interface RJWinBUGS must first be installed to allow WinBUGS to perform a RJM-
CMC variable selection approach. The instructions for installing the interface can be found in
http://www.winbugs-development.org.uk/rjmcmc.html. An option Jump
is added to the menu to obtain summaries of the RJMCMC analysis. Note that RJWinBUGS
uses new commands, beyond those available in WinBUGS.

Example XI.7: Rheumatoid arthritis study: BVS using RJMCMC
The WinBUGS program ‘chapter 11 RJMCMC REACH.odc’ contains the commands to
select the important variables from the REACH study in a probit regression model using the
RJMCMC approach. For an R program based on R2WinBUGS, see Exercise 11.4. Note that
the software does not support the logistic regression model (no full conditionals are available),
only the probit model can be used with the response expressed as a binarized latent normal
random variable. We initiated five chains with initial values for the number of covariates: 0,
3, 6, 9 and 12. Each chain was run for 10 000 iterations with a burn-in of 5000 iterations.
We monitored two aspects of the variable selection procedure (see WinBUGS program): the
model indicator id and the estimated regression coefficients vector e. The posterior summary
measures are obtained from the option Jump. The option ‘table’ in the box Jump Summary
Tool shows the most promising models. The output of our analysis is shown in Figure 11.6.
Note that the user can limit the display of the visited models by modifying the variable ‘razor’.

It is important to take an appropriate value for the precision of the regression coefficients
to provide a minimally informative prior. We have taken as prior precision for the regression
coefficients, the common diagonal element of the precision matrix 2

nπ

(
XT

mXm
)

in expression
(11.22), here equal to τ 2

β = 0.64. Thus we assumed independent priors N(0, 1/τ 2
β ) for the

βks. The most often visited models are shown in Figure 11.6. In more than 17% of the times
the chains visited model 101000010010 (variables 1, 3, 8 and 11) which makes it the MAP
model. From the second part of the output we conclude that it is also the MP model. The
posterior model probabilities were less outspoken than those of the other BVS techniques. In
addition, we performed a sensitivity analysis by applying the BVS for τ 2

β = 0.2, 0.4, 0.8. We
found that the best models were basically the same for the different values of τ 2

β , but that the
posterior model probabilities were less pronounced with increasing τ 2

β always yielding the
same MAP and MP model.

The Jump facilities can be combined with the standard WinBUGS facilities. For instance,
trace plots illustrate the mixing of the chains and the transdimensional moves. Density plots
summarize the posterior information. Figure 11.7 shows the marginal (posterior) density
of the regression coefficient of sjc. The bimodal density is generated by the jumps when
including and excluding the regressor. This is an example of Bayesian model averaging (see
Section 11.11).

Finally, checking convergence of a chain created by a RJMCMC algorithm is more com-
plicated than with a standard MCMC algorithm due to the changing dimensions. Algorithms
that generalize the Brooks–Gelman diagnostic can be found in Brooks and Giudici (2000);
Castelloe and Zimmerman (2002), but software does not seem to be available yet.
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Model structure Posterior prob. Cumulative prob. 

101000010010 0.16984 0.16984 

101000011010 0.1388 0.30864 

101100010010 0.07436 0.383 

101100011010 0.07364 0.45664 

101001011010 0.07044 0.52708 

101001010010 0.04256 0.56964 

101010010010 0.03616 0.6058 

Variable no. Marginal prob.  

1 1.0 

2 0.0446 

3 0.99668 

4 0.30388 

5 0.17468 

6 0.27052 

7 0.04212 

8 1.0 

9 0.4708 

10 0.06724 

11 0.99796 

12 0.10688 

Figure 11.6 Rheumatoid arthritis study: output from RJWinBUGS when the prior precision
of βks is equal to τ 2

β = 0.64, with ‘razor = 0.60’. The output is based on (in total) 25 000
iterations (five chains with 5000 iterations).

With RJMCMC, BVS is based on purely exploring the MCMC output. Since sampling is
done in the combined space of model and regression coefficients, posterior information of the
regression coefficients is directly available.

11.7 Spike and slab priors

An increasingly popular approach to combine variable selection with estimation of the re-
gression parameters makes use of variable selection priors, better known as spike and slab

e[9] chains 1:5

Iteration
5001 6000 8000 10000

−0.2

 0.0

 0.2

 0.4

e[9] chains 1:5 sample: 25000

   −0.2     0.0     0.2     0.4

    0.0

    5.0

  10.0

  15.0

  20.0

Figure 11.7 Rheumatoid arthritis study: trace plot and marginal posterior density of the
regression coefficient of sjc using RJWinBUGS.
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Figure 11.8 Spike and slab priors: the dashed lines correspond to the original approach of
Mitchell and Beauchamp (1988), the solid lines correspond to the Gaussian mixture of George
and McCulloch (1993).

priors. These priors were first suggested by Mitchell and Beauchamp (1988) for BVS with
normal linear regression models. Spike and slab priors induce a positive prior probabil-
ity on the hypotheses H0 : βk = 0 (k = 1, . . . , d). In the original formulation by Mitchell
and Beauchamp (1988), the spike and slab distribution is defined as a mixture of a Dirac
measure concentrated at zero and a uniform diffuse component. This mixture is shown in
Figure 11.8 by the dashed lines. Here, we focus on an alternative spike and slab formulation
due to George and McCulloch (1993). This choice of prior has computational advantages and
can easily be implemented by the Gibbs sampler. Below, we elaborate on two BVS procedures
based on spike and slab priors: Stochastic Search Variable Selection and Gibbs Variable Se-
lection. For all approaches, we assumed that the intercept α has a flat prior or a vague normal
prior N(0, σ 2

α ) with σ 2
α large.

11.7.1 Stochastic Search Variable Selection

Stochastic Search Variable Selection (SSVS) was proposed by George and McCulloch (1993)
for variable selection in the context of linear regression. Two versions of their variable selection
procedure are circulating. In the first version, the linear predictor is given by

α +
d∑

k=1

βkxk. (11.23)

Further, the regression coefficients βk are assumed to have a mixture prior of spike and
slab Gaussian components. The spike element is concentrated closely around zero, reflecting
the actual absence of the variable in the model (γk equals zero) and can be regarded as an
approximation to the point mass prior in Mitchell and Beauchamp (1988). The slab component
has a sufficiently large variance to allow for the ‘nonzero’ coefficients to be spread over larger
values (γk equals one). The degree of separation between the two components is regulated
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by two tuning parameters τk and ck, where τ 2
k > 0 is the variance in the spike component

and c2
kτ

2
k > 0 is the variance in the slab component (see Figure 11.8). In order to guide the

choice of τk and ck, it helps to note that the two Gaussian densities intersect at the points

±εk = τkδk, where δk =
√

2(log ck)c2
k/(c

2
k − 1). The point εk can be regarded as a threshold

for declaring ‘practical significance’ in that all coefficients falling into the interval [−εk, εk]
can be interpreted as zero. Given the parameter ck, the variance τ 2

k can be selected such
that the intersection point reflects our perception of practical significance. The mathematical
formulation of the SSVS hierarchical prior setup is then defined for k = 1, . . . , d by

βk | σ 2
βk

∼ N(0, σ 2
βk

), (11.24)

σ 2
βk

| τ 2
0k, τ

2
1k, γk ∼ (1 − γk)δτ 2

0k
(·) + γkδτ 2

1k
(·), (11.25)

σ 2 ∼ IG(a0, b0), (11.26)

γk | ωk ∼ Bern(ωk), (11.27)

ωk ∼ U (0,1), (11.28)

with a0 = νγ/2 and b0 = νγςγ/2. Further, τ 2
0k = τ 2

k and τ 2
1k = c2

kτ
2
k ; γk indicates the compo-

nent of the mixture (for γk = 0 the kth regressor is ‘practically zero’); δx(·) is the Kronecker
delta concentrated at point x; νγ and ςγ are possibly depending on γ and ωk is the prior
probability that βk is considered nonzero.

To construct the prior for the regression coefficients (combination of expressions (11.24)
and (11.25)), George and McCulloch (1993) used a multivariate normal prior for β:

β | γ ∼ N(0, DγRDγ ), (11.29)

with γ = (γ1, . . . , γd )T , R the prior correlation matrix and Dγ = diag(a1τ1, . . . , adτd ), with
ak = 1 if γk = 0 and ak = ck if γk = 1. The correlation matrix R can be taken as the identity
matrix (what is used in the examples below) or R ∝ (XT X )−1 which is a generalization of
Zellner’s g-prior.

Note that specifying priors (11.27) and (11.28) is equivalent to assuming the dependent
prior (11.11). While prior (11.11) is preferred (see Section 11.4.1) George and McCulloch
(1997) argued that model prior based on ω = 0.5 (11.10) often yields sensible results and
substantially reduces computational requirements. Most of our examples are, therefore, based
on the latter prior, but some comparisons with the dependent prior were done.

It is important to notice that with SSVS the model is always maximal and hence there are
no transdimensional jumps as with RJMCMC. Strictly speaking one could argue that SSVS
is not a variable selection procedure as all variables remain in the model, but the γks induce a
differential shrinkage toward zero.

Due to the nonconjugacy of the priors, the analytical simplification of posterior distri-
butions p(βk | y) and p(γk | y) is not tractable. George and McCulloch (1993) suggested an
MCMC approximation to the posteriors using the Gibbs sampler, which yields a Markov
chain of regression coefficients and visited models (β0, σ 0, γ0), . . . , (βK, σ K, γK ).

Ishwaran and Rao (2003) suggested to move the spike and slab element down in the
hierarchy and place it on the variances rather than on the regression coefficients to diminish
the sensitivity toward the tuning of hyperparameters. Their approach, referred to as NMIG
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(Normal Mixture of Inverse Gammas), is equivalent to a spike and slab prior with scaled

t-distributions (with 2a degrees of freedom and respective scales s1 =
√

bv0
a and s2 =

√
bv1
a )

as components; see Exercises 11.7 and 11.8 for practical examples.
SSVS can be extended to GLIMs without much difficulty (George et al. 1996). Indeed, the

extension of the SSVS prior to a model f (y | Xβ, � ) with � additional parameters involves
replacing p(σ 2) in the hierarchical prior by a suitable prior on � . But all other priors remain
the same. We now illustrate the application of the SSVS approach to a probit regression model
on the REACH data set.

Example XI.8: Rheumatoid arthritis study: BVS using SSVS
In ‘chapter 11 SVVS REACH.R’, we applied the SSVS approach to a probit regression
model to select variables from the REACH data. In addition to the original 12 covariates,
8 standardized noise variables were added for selection (see file for details). Four settings
were implemented: (1) ε = 0.01, τ 2 = 1.1 × 10−05, c2τ 2 = 0.11, (2) ε = 0.05, τ 2 = 0.00027,
c2τ 2 = 2.7, (3) ε = 0.10, τ 2 = 0.001, c2τ 2 = 10, and (4) ε = 0.10, τ 2 = 0.0021, c2τ 2 =
0.21. The first case represents a close approximation to a mass prior at zero. Mixing was good
for all scenarios, 10 000 iterations were needed with 5000 burn-in iterations. The inclusion
probabilities for the four scenarios are shown in Figure 11.9. It can be observed that in
none of the scenarios the noise variables belonged to the MP model. Furthermore, only in
scenario 1 the variables rf and sjc were selected in the MP model. In this scenario ε is the
smallest, rendering it relatively easy for a variable enter the model. In Table 11.3 we show
the model posterior probabilities based on scenarios 2 and 4 but based only on the 12 original
variables.

We conclude that the posterior model probabilities of a SSVS variable selection procedure
show dependence on the choice of the spike and slab variances. This was also the conclusion
of Rockova et al. (2012) in their simulation study. However, the marginal posterior inclusion
probabilities, the marginal posterior summary measures of the regression coefficients and the
MP model appear to be stable across the settings.

George and McCulloch (1997) introduced a variant of their SSVS procedure by setting
the spike variance to zero (τ 2

0k = 0) and turning the spike prior into a point mass prior. For
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Figure 11.9 Rheumatoid arthritis study: comparison of (a) marginal posterior inclusion
probabilities, and (b) posterior means of regression coefficients obtained from SSVS based
on four scenarios (for details see Example XI.8).
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such a prior the kth regressor is effectively removed from model (11.23) when γk = 0 such
that in fact model (11.30) applies. Further, the authors suggested a conjugate version of the
spike and slab algorithm by assuming βk | σ 2

βk
, σ 2 ∼ N(0, σ 2 σ 2

βk
). With an inverse gamma

prior for σ 2 the marginal prior βk | σ 2
βk

becomes a mixture of t-distributions. The advantage
of this approach is that β and σ 2 can be integrated out from the joint posterior to yield
p(γ | y) up to a constant. Based on this marginal posterior, a Gibbs-sampling algorithm can
be constructed that yields a MCMC sequence γ1, . . . , γK . Alternatively, they suggested to
use the MC3 algorithm whereby regressors are randomly selected or deleted from the current
model. The parameters βγ , σ 2 can be sampled in an extra step given γ . This SSVS version
received recently quite some attention when many variables are involved (see Section 11.9)).
In the nonconjugate case the authors suggested the sampling approaches of Carlin and Chib
(1995) (see Section 11.7.2) or the RJMCMC algorithm.

In both SSVS implementations, BVS is achieved through the evaluation of the MCMC
output as with RJMCMC but there are some differences especially with the first version.
In the first version of SSVS no matter the value of γ , all regressors remain in the model.
Regressors corresponding to γk = 0 are considered to be practically zero implying thereby
a change in definition of a MAP and a MP model. However, while a regressor is never
removed from the model the marginal posterior of βk might still be bimodal as with
RJMCMC. When there is strong evidence against the inclusion of a variable, the spike
will dominate the posterior and the posterior mean will be shrunk toward zero. Note that
the decision on whether or not a variable enters the model (practical significance) can be done
by hard thresholding/selection shrinkage where variables are only included if the absolute
value of the estimated coefficient (e.g. posterior mean) exceeds some threshold value (say the
intersection point ε). Finally, we have seen that the second implementation of SSVS has a
similar flavor as RJMCMC.

11.7.2 Gibbs Variable Selection

Another approach for BVS based on a spike and slab prior was suggested by Dellaportas
et al. (2002). In their approach, called Gibbs Variable Selection (GVS), the variable indicator
is introduced into the model. That is, the linear predictor of the model is equal to

α +
d∑

k=1

γkβkxk. (11.30)

Related variable selection techniques that allow for exclusion of regressors were proposed
by George and McCulloch (1997) (second SSVS version), Carlin and Chib (1995), Kuo and
Mallick (1998). It is now instructive to have a closer inspection of the full conditionals of
the different spike and slab algorithms. First, we treat the regression parameters (neglecting
additional parameters such as σ 2). For βk we can write

p(y,β, γ ) = p(y, βk,β(k), γ ),

= p(y | β, γ )p(βk | β(k), γ )p(β(k) | γ )p(γ ), (11.31)

with β(k) the vector of regression coefficients without βk.
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For the first version of SSVS, it is assumed that p(βk | β(k), γ ) = p(βk | γk) and, ir-
respective of γk = 1 or γk = 0, βk is always contained in p(y | β, γ ). By removing the
constant terms in expression (11.31) the full conditionals for the regression parameters are:
p(βk | y, γ,β(k)) ∝ p(y | β, γ )p(βk | γk).

Kuo and Mallick (1998) assumed that the prior of β is independent of γ , i.e. p(β) such that
p(βk | β(k), γ ) = p(βk | β(k)). Now, p(y | β, γ ) only contains βk when γk = 1. Removing the
constant terms then yields two expressions:

p(βk | y, γ,β(k)) ∝
{

p(y | β, γ )p(βk | β(k)) if γk = 1,

p(βk | β(k)) if γk = 0.
(11.32)

For GVS, it is again assumed that βk depends only on γk, i.e. p(βk | β(k), γ ) = p(βk | γk).
Further, Dellaportas et al. (2002) suggested to take

p(βk | γk) = (1 − γk)N(µ0k, τ
2
0k) + γkN(µ1k, τ

2
1k), (11.33)

for appropriate choices of τ 2
0k � τ 2

1k and µ0k, µ1k. When µ0k = µ1k = 0 expression (11.33)
is equivalent to expressions (11.24, 11.25).

Note that p(y | β, γ ) contains βk only when γk = 1 and combined with prior (11.33), the
full conditional for βk becomes

p(βk | y, γ,β(k)) ∝
{

p(y | β, γ )N(µ1k, τ
2
1k) if γk = 1,

N(µ0k, τ
2
0k) if γk = 0.

(11.34)

The distribution N(µ0k, τ
2
0k) is the prior p(βk | γk = 0) and is called a pseudo-prior. This

prior does not affect the posterior distribution but is regarded as a ‘linking density’ to increase
the efficiency of the sampler (Carlin and Chib 1995). In principle, this linking density should
be chosen such that sampling is optimized, e.g. here by choosing optimal values for µ1k and
τ 2

1k. But, in practice, such an exercise is considered impractical. In the WinBUGS program of
Ntzoufras, µ1k = 0 while the spike and slab variances were taken as in the SSVS approach.

Finally, the full conditional for γk is Bernoulli with success probability Ok/(1 + Ok) with
the odds Ok equal to

p(γk = 1 | γ (k),β, y)

p(γk = 0 | γ (k),β, y)
= p(y | β, γk = 1, γ (k))

p(y | β, γk = 0, γ (k))

p(β | γk = 1, γ (k))

p(β | γk = 0, γ (k))

p(γk = 1, γ (k))

p(γk = 0, γ (k))
.

(11.35)

Expression (11.35) again illustrates the difference between the approaches. For instance for
the SSVS approach, the first term on the RHS in expression (11.35) cancels out while for
the approach of Kuo and Mallick (1998) the second term cancels out. Only for the GVS the
whole expression is needed.

From the full conditionals we may conclude that, although regressors are effectively
removed from the model by the γks, the dimensionality of the model remains constant since
all βks remain in the MCMC process. This is important for the computational procedure. In
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Exercise 11.9, the REACH data are analyzed using the GVS approach. In Exercise 11.10, the
approach of Kuo and Mallick (1998) is applied.

11.7.3 Dependent variable selection using SSVS

In Section 11.4, the dependent prior (11.11) was introduced to correct for multiplicity but this
prior does not regulate the selection procedure when a particular ordering of the variables
included in the model should be respected. Chipman (1996) suggested a mathematical way of
expressing beliefs about the relationships between regressors. More specifically, he suggested
priors that assign degrees of beliefs on including interactions and higher order polynomials,
grouped regressors, competing regressors and restrictions on the number of regressors in
the model. Prior (11.11) is an example of the last class where p(γ ) is in fact a function of
dγ = ∑d

k=1 γk, the size of the model.
Good statistical practice instructs to include interaction terms in a model only when main

effects are included and that when rth˜ order polynomial terms are in the model then also
(r − 1)th, (r − 2)th, . . . order polynomial terms should be included. None of the BVS algo-
rithms forces variable selection to adhere to these principles. Chipman (1996) shows how to
factorize the prior p(γ ) such that a particular selection ordering is respected. More specifi-
cally, when there are two regressors x1 (γ1 = 1), x2 (γ2 = 1) and their interaction x3 = x1 × x2

(γ3 = 1), he suggested

p(γ1, γ2, γ3) = p(γ1, γ2) p(γ3 | γ1, γ2) = p(γ1)p(γ2) p(γ3 | γ1, γ2), (11.36)

assuming independence for the main effects but dependence of the interaction term on
the main effects. For p(γ3 | γ1, γ2) there are four probabilities for including an interac-
tion term: p(γ3 = 1 | γ1 = 0, γ2 = 0) = π00, p(γ3 = 1 | γ1 = 1, γ2 = 0) = π10, p(γ3 = 1 |
γ1 = 0, γ2 = 1) = π01 and p(γ3 = 1 | γ1 = 1, γ2 = 1) = π11. Good statistical practice dic-
tates: π00 = π01 = π10 = 0 and π11 = π , but Chipman (1996) also considers other cases.
This prior can be implemented in WinBUGS by the inclusion of some extra commands.
Namely, γ1 and γ2 could be given independent Bernoulli distributions with probability ω

(say) = 0.5, while γ3 could be given a Bernoulli distribution with probability 0.5γ1γ2. Kuo
and Mallick (1998) suggested another solution. That is, by choosing as regression coefficients
β1 [1 − (1 − γ1)(1 − γ3)], β2 [1 − (1 − γ2)(1 − γ3)] and β3γ3, respectively, the regressors
x1 and x2 are in the model once the product term is chosen; see Exercise 11.12 for testing
interaction terms in the probit regression model on the REACH data. In addition, Chipman
(1996) suggested prior distributions to select regressors in groups or competing regressors.
This can be easily implemented in WinBUGS (see Exercise 11.13).

At the end of this chapter, we report on more recent approaches to perform dependent
variable selection.

11.8 Bayesian regularization

The classical LASSO approach delivers L1-penalized estimates of the regression coefficients
and turns into a forward variable selection by gradually increasing the penalty term λ. BVS is
computationally demanding primarily because the model space needs to be explored to find
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the most promising models. If this exploration could be replaced by an estimation technique,
a considerable gain in computation time might be achieved.

11.8.1 Bayesian LASSO regression

The link between the classical ridge estimator and the MAP of a normal linear regression
model with a Gaussian prior (Section 5.7) suggests that such a link also exists for the LASSO
method. Indeed, Tibshirani (1996) noticed that, given σ 2 and λ, the LASSO estimate is the
MAP of a normal linear regression model with independent and identical Laplace priors for
the regression coefficients. Park and Casella (2008) built on this result but proposed a slightly
different prior. They suggested to take the following conditional Laplace prior

p(β | σ 2) =
d∏

k=1

λ

2σ
e−λ|βk|/σ . (11.37)

This prior differs from the prior of Tibshirani by the inclusion of σ . Conditioning on σ

guarantees the unimodality of the posterior of βk (k = 1, . . . , d).
However, Gibbs sampling based on this prior yields unfamiliar full conditionals due to

the absolute values |βk| in expression (11.37). Using a latent parameter τ 2 one can rewrite the
prior (11.37) as a scale mixture of normals with an exponential distribution as mixing density
(Andrews and Mallows 1974):

λ

2
e−λ|y| =

∫ ∞

0

1√
2πτ 2

e−y2/(2τ 2) λ2

2
e−λ2τ 2/2dτ 2, λ > 0. (11.38)

This leads to an hierarchical representation of the prior structure, namely,

βk | σ 2
βk

∼ N(0, σ 2
βk

), (k = 1, . . . , d)

σ 2
βk

= σ 2τ 2
k , (11.39)

τ 2
k ∼ λ2

2
e−λ2τ 2

k /2, (k = 1, . . . , d)

σ 2 ∼ p(σ 2), (11.40)

which, together with the normal linear regression likelihood given by expression (11.2), is
the basis for the Bayesian LASSO. Park and Casella (2008) suggested to use a Jeffreys prior
or an inverse-gamma prior for σ 2. With these priors and for fixed λ, the Bayesian LASSO
posterior mode is equal to the classical LASSO MLE. This follows from the derivations in
Section 5.6.1.

Both the LASSO prior and the spike and slab prior are normal mixtures: the first prior
is a continuous mixture of normal distributions while the second prior is a discrete mixture
on the variances. Figure 11.10 shows that the LASSO prior provides an approximation to the
spike and slab prior. One can, therefore, expect that the LASSO prior induces shrinkage of
the regression coefficients toward zero. However, while the classical LASSO shrinks some of
the coefficients to exactly zero, this happens with the Bayesian LASSO only with the posterior
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Figure 11.10 Comparison (Gaussian mixture) spike and slab prior with approximating
Laplace prior.

mode (with σ fixed). Thus, Figure 11.2 can only show up with the Bayesian LASSO for the
posterior mode and not for the posterior mean or median.

Which value of λ should be taken? For the classical LASSO the optimal λ is obtained
from cross-validation, but for the Bayesian LASSO a more natural procedure is to give λ

a hyperprior. Park and Casella (2008) suggested to give λ2 the following vague gamma
hyperprior

p(λ2) = δr


(r)
(λ2)r−1e−δλ2

, r > 0, δ > 0. (11.41)

The choice of the gamma hyperprior for λ2 ensures a conditional conjugate prior for λ2 together
with (11.40). The authors suggested small values for r and δ. For the posterior estimates of
the regression coefficients one averages over the posterior distribution of λ, which produces
more stable parameter estimates.

We have seen that for the classical LASSO approach there are computational problems
(standard error is often estimated as zero) and statistical issues that prevent them to be
reported, e.g. the R package penalized does not provide standard errors. However, Kyung
et al. (2010) argued that standard errors are needed for prediction. From a numerical viewpoint,
there is no reason why not to calculate standard errors with the Bayesian LASSO approach
since the MCMC methods provide automatically posterior estimates of the standard errors
with good behavior (Kyung et al. 2010).

We now illustrate Bayesian LASSO regression with the diabetes data. There are several
R packages that offer classical LASSO regression, but only a few that do Bayesian LASSO
regression. Here, we illustrate the use of the R package monomvn.

Example XI.9: Diabetes study: BVS using Bayesian LASSO
In ‘chapter 11 Lasso and Blasso diabetes.R’, penalized estimation approaches are applied
with the R package monomvn. The blasso program is part of the R package and provides
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Figure 11.11 Diabetes study: Bayesian LASSO estimates (MAP) of regression coefficients
compared to LSE, classical LASSO, Bayesian ridge (Bridge, posterior mean) and Bayesian
Elastic Net (BEN, posterior mean) estimates.‘mu’ stands for intercept, ‘b.x’ represents the xth
regression coefficient.

Bayesian LASSO regression using the approach of Park and Casella (2008). The package also
provides classical and Bayesian ridge regression.

We performed here Bayesian ridge regression, classical and Bayesian LASSO regression
on the diabetes data. The estimated regression coefficients are found in Table 11.1.

The classical LASSO solution was obtained by leave-one-out cross-validation based on the
Cp-Mallows statistic; we obtained λ̂ = 224. For the Bayesian LASSO, we applied blasso
and a WinBUGS program with compatible settings for the prior distributions. In both cases a
single chain was taken of length 10 000 with 2000 burn-in sample. In Figure 11.11, the ridge,
LASSO and OLS estimates are contrasted with the Bayesian estimates. In this figure also the
response is centered to enhance the legibility of the graph. The LASSO MAP is based on
the marginal posterior mode of the regression coefficients (marginalized over the λ2 posterior
distribution). The following conclusions could be drawn: (1) the Bayesian LASSO estimates
are often close to the classical LASSO estimates, (2) classical and Bayesian LASSO estimates
may deviate considerably from the OLS estimate, and (3) more uniform shrinkage is seen with
the ridge procedure. The MAP of the Bayesian LASSO (marginal mode) does not coincide
with the classical LASSO estimate as it never shrinks to exactly zero. The posterior median
of λ2 is 0.081 with 95% CI = [0.052, 0.11]. A comparison of the classical and the Bayesian λ

estimates is, however, not useful because of the different settings in the programs. In addition,
we have implemented Bayesian LASSO in WinBUGS (‘chapter 11 Blasso diabetes.odc’). The
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Figure 11.12 Diabetes study: paths of (a) classical LASSO estimates (MLE) and (b)
Bayesian LASSO estimates (median) for varying values of λ.

posterior regression estimates were about the same as those from blasso, but the processing
time for WinBUGS was 763 seconds compared to 5 seconds for blasso.

In Section 11.2.2, we have seen that the LASSO approach offers a variable selection
procedure by varying λ (see Figure 11.2). A similar graph can be constructed with the
Bayesian LASSO approach, but this option is not supported by monomvn. A self-written
R program produced the graph in Figure 11.12(b) based on the posterior median value of
the regression estimates. There is here a remarkable correspondence with the LASSO graph
in Figure 11.12(a) produced by the R package lars. Note that, in general, the plot of the
Bayesian LASSO path is more smooth when based on posterior medians or posterior means.

Finally, to evaluate the impact of the settings on the gamma hyperprior of λ2 on the
estimated λ, we varied the parameters of p(λ2) since their choice is not intuitively clear,
besides that they should be small to ensure vagueness. We chose 16 combinations of r and δ

from the set {0.01, 0.05, 0.5, 1}. The conclusion of our exercise was that the posterior median
of λ showed more stability than the other posterior summary measures and hence appears
preferable.

We may be enthusiastic that the classical LASSO has been extended to the Bayesian
LASSO. But, what is the advantage using the Bayesian version since it may take considerable
more time to produce the solution? The advantage cannot be judged from our examples but
should be deduced from simulation studies or analytical calculations. This was done by Kyung
et al. (2010) who showed that the mean squared prediction errors evaluated on test data were
often lower for the Bayesian LASSO (and variants).

The classical LASSO approach performs simultaneously variable selection and parameter
estimation. Zou (2006) and Zhao and Yu (2006) showed that the classical LASSO procedure
does not possess the oracle property which means it is not guaranteed that, when n → ∞,
the correct model is chosen with estimated regression coefficients that converge to the true
values. The reason for this is that some regression coefficients need much more shrinkage
(corresponding to unimportant regressors) than others. To resolve this problem, Zou (2006)
suggested the adaptive LASSO approach which replaces λ

∑d
k=1 |βk| in expression (11.3) by
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λ
∑d

k=1 wk|βk| with wk = 1/|β̂ν
k | and β̂k the OLS estimate of βk and ν > 0 a user-chosen

constant. He proved that (under some regularity conditions) the adaptive LASSO satisfies the
oracle property. The adaptive Bayesian LASSO follows immediately by allowing τ 2

k to have
different priors, i.e. to replace expression (11.40) by

τ 2
k ∼ λ2

k

2
e−λ2

kτ
2
k /2 (k = 1, . . . , d)

(Leng et al. 2009). A large posterior value of λk is then associated with a relatively larger
shrinkage of βk. Leng et al. (2009) noted important improvements in terms of variable selection
in some of their examples.

There appears to be no R package that performs adaptive Bayesian LASSO, but it is quite
easy to adapt a Bayesian LASSO WinBUGS program to the adaptive version; see Exercise
11.14 for an example. An extension of the Bayesian LASSO to probit regression can be found
in Bae and Mallick (2004). They used the latent representation of the probit model whereby
Y = 1 ⇔ Z > 0 and Z ∼ N(xT β, 1) in combination with the settings of Park and Casella
(2008) for σ = 1. In a similar manner the adaptive Bayesian LASSO can be extended to
GLIMs. Again, no software appears to be available, though a WinBUGS program can easily
be implemented.

11.8.2 Elastic Net and further extensions of the Bayesian LASSO

Recent efforts in generalizing the penalization methodology to more complex data structures
crystalized in several innovations of the LASSO approach. Often these new approaches
are first developed in classical statistics and then given a Bayesian analogue. In the linear
regression setting, Tibshirani et al. (2005) proposed the Fused LASSO for predictors that
have a natural ordering, where the penalty is a linear combination of a L1 penalty on the
coefficients and a L1 penalty on their first order differences. Such a penalty induces similarity
between neighboring regression coefficients. In case grouping among regression coefficients
is suspected but unknown, Zou and Hastie (2005) suggested Elastic Net, which combines the
LASSO and ridge penalties into one penalty and as such tends to keep the related variables in
the model as a group with estimated coefficients nearly equal. This behavior is appreciated in
modeling, for instance, with gene expression data where related genes should enter the model
as a group.

When the groups of predictors are known (e.g. group of dummy variables or spline coeffi-
cients), Yuan and Lin (2006) proposed the Grouped LASSO, which penalizes elliptical norms
of the coefficients for each group. The Bayesian counterparts of these LASSO alternatives
emerge by adapting the prior (11.37) to the various penalties and reexpressing these priors as
scale mixtures of normals (Kyung et al. 2010; Li and Lin 2010).

The Bayesian elastic net (BEN), proposed by Zou and Hastie (2005) and Li and Lin
(2010) in the context of linear regression, constitutes a compromise between LASSO and
ridge regression enjoying the advantages of the two. The elastic net prior inherits the sparsity
property from the LASSO, since it is also not differentiable at zero, and at the same time
encourages grouping which is typical for the ridge prior.

The frequentist penalty term Lnet for the ‘naive’ Elastic Net of Zou and Hastie (2005) is
the linear combination of L1 and L2 penalties, i.e. Lnet (β) = λ1

∑d
k=1 |βk| + λ2

∑d
k=1 β2

k . For
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BEN, the prior for β should depend on σ for the same reason as with the Bayesian LASSO:

p(β | σ 2) ∝ exp

{
−λ1

σ

d∑
k=1

|βk| − λ2

2σ 2

d∑
k=1

β2
k

}
. (11.42)

Using latent parameters τ 2
1 , . . . , τ 2

d and identity (11.38), we obtain the hierarchical represen-
tation of the prior structure:

βk | σ 2
βk

∼ N
(
0, σ 2

βk

)
, (k = 1, . . . , d)

σ 2
βk

= σ 2(τ−2
k + λ2)

−1, (k = 1, . . . , d)

τ 2
k ∼ λ2

1

2
e−λ2

1τ
2
k /2, (k = 1, . . . , d)

σ 2 ∼ p(σ 2). (11.43)

Diffuse hyperpriors for the two penalization parameters λ1 and λ2 are added in the
formulation to circumvent the uncertainty in their selection. As λ1 pertains to the LASSO
part, λ2

1 is given a gamma prior while λ2 is given a gamma prior since it acts as a rate (σ 2/λ2

plays the role of the prior variance of βk). Ghosh (2007) raised concerns about the Elastic Net
approach because it is based on the ordinary Bayesian LASSO on therefore cannot satisfy the
oracle properties. He suggested, therefore, the adaptive Elastic Net. The Bayesian adaptive
Elastic Net is constructed by replacing λ1 in (11.43) with d different λs pertaining to the d
regressors.

Finally, recently hybrid algorithms combining LASSO priors with MCMC procedures
have been suggested. For instance, Hans (2009) complemented the LASSO prior with the
point mass at zero and provided Gibbs sampling schemes (combined with RJMCMC) as an
alternative to the approach of Park and Casella (2008). Also, the R package monomvn offers
an hybrid sampling algorithm.

Example XI.10: Diabetes study: BVS using extensions of the Bayesian LASSO approach
The results from the Bayesian Elastic Net displayed in Figure 11.9 can be obtained from the
WinBUGS program ‘chapter 11 BEN diabetes.odc’. The posterior means of most regression
coefficients are close to the ridge estimates, but for the important regressors the BEN estimates
show more shrinkage. The two penalty parameters were estimated as λ̂1 = 3.94 and λ̂2 = 8.94
(posterior median).

We also applied the option in the R package monomvn which combines the Bayesian
LASSO procedure with RJMCMC, but obtained basically the same posterior summary mea-
sures. Due to the RJMCMC option, variables are now effectively selected and dropped from
the model.

11.9 The many regressors case

Applications with many regressors (d large) pose computational and statistical challenges,
especially when d > n. Examples of such applications are: (1) GWA studies where several
thousands of genome variables are to be related with phenotypes (physical characteristics,
the presence or absence of diseases in humans, animals, plants, etc); (2) functional Magnetic
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Resonance Imaging (fMRI) data, where one aims to model brain effective connectivity from
neuroimaging data and the number of nodes are small; (3) adverse event monitoring based on
huge data bases, etc. For such applications the (classical and Bayesian) BVS techniques cannot
be immediately applied, but a (slight) twist in the computational procedure could make them
again suitable. That computational difficulties occur can be easily inferred for Gibbs-based
sampling procedures from the full conditionals. With Bayesian LASSO the full conditionals
of the regression coefficients involve the inversion of the covariance matrix pertaining to (a
block of) regression coefficients (Kyung et al. 2010). When hundreds or more of variables
are involved, either computational instability is implied (d ≈ n) or sampling is impossible
(d � n). Chen et al. (2011) suggested to combine the Bayesian LASSO approach with the
RJMCMC procedure whereby the size of the model is given a truncated Poisson prior on the
range 0 − d. Nevertheless, variable selection is possible even when d > n since in each step
only part of the variable set is active. Another example of a combined LASSO-RJMCMC
approach is provided by the R package monomvn.

Much of the recent developments in variable selection techniques have been inspired by
studies involving DNA microarrays where the purpose is to classify and predict phenotypes
from (a huge number of) gene expression profiles. Examples can be found in Lee et al. (2003),
Sha et al. (2004), Yi et al. (2005), Tadesse et al. (2005), Swartz et al. (2006) and Pikkuhookana
and Silanpää (2009).

Two recent contributions that are based on the probit regression model using the latent
normal representation are from Yang and Song (2010) and Kwon et al. (2011). The approach
of Yang and Song (2010) is an extension of the SSVS approach of George and McCulloch
(1997) with a mass prior and it is based on a prior first proposed by West (2000). It can
be verified (George and McCulloch 1993) that the full conditional of βγ involves the in-
verse of XT

γ Xγ . Hence, this computation collapses when dγ > n, which also happens with
Zellner’s g-prior for βγ . The extension of Yang and Song (2010) consists of replacing the
classical inverse (XT

γ Xγ )−1 by the Moore–Penrose generalized inverse (XT
γ Xγ )+. Another

generalization is proposed by Kwon et al. (2011) who suggested a Correlation-Based Search
algorithm, the hybrid-CBS, which extends SSVS to high-dimensional correlated regressors.
Variable addition, deletion and swapping are done as in SSVS except that now correlation of
the regressors is taken into account. That is, the added regressor is chosen such that it shows
a low correlation with a (randomly chosen) regressor already in the model while the deleted
regressor has a large correlation with a (randomly chosen) regressor already in the model. It
is clear that these recent developments are algorithms that combine existing algorithms (in a
clever manner) such as SSVS (or GVS), RJMCMC or Bayesian LASSO.

Example XI.11: Glioma study: BVS when d > n
Gliomas are the most common primary brain tumors with heterogeneous morphology and
variable prognosis. Treatment decisions in patients rely mainly on histologic classification and
clinical parameters. However, differences between histologic subclasses and grades are sub-
tle, and classifying gliomas is subject to a large interobserver variability. To improve current
classification standards, Gravendeel et al. (2009) have performed gene expression profiling
on a cohort of glioma samples from 276 patients undergoing surgery at Erasmus University
Medical Center (Rotterdam, the Netherlands) between 1989 and 2005 of all histologic sub-
types and grades and related it to the patient’s survival time (defined as time between death
and surgery). We have selected for this exercise a subset of 100 patients which were analyzed
for an expression of 115 selected genes which showed relatively high variability among the
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100 samples. Note that each measurement quantifies the abundance of the corresponding
messenger RNA transcript and thereby the intensity with which the gene is expressed.

Because censoring occurred in only 15% of the subjects it was ignored. In our sample
for only 1 patient there was censoring. Further, we assumed that on the log-scale the survival
time has a normal distribution in a regression model with the gene expression variables as
covariates. The aim of this exercise is to determine the subset of genes associated with the
survival time. To this end, we applied three variable selection techniques (see R program
‘chapter 11 glioma data analysis.R’):

LASSO: Classical LASSO variable selection was performed with the R package penal-
ized. The penalty parameter λ̂ = 1.09 was found by locating the maximum of the
cross-validated profile likelihood evaluated on a dense grid. Despite its appeal, LASSO
variable selection possesses several deficiencies: in d > n settings it is not possible to
select more than n variables in the model (which is a problem, however, in extreme
cases), the selection of the optimal penalty parameter is time consuming and the com-
putation of the standard errors is not straightforward (if required). The variables selected
by LASSO with λ̂ = 1.09 were X11075, X55800, X2861, X81031, X117154, X166752,
X10643, X25834 and X158763.

Bayesian LASSO: Bayesian LASSO variable selection was performed with the R package
monomvn using the RJMCMC option. Based on 10 000 iterations with a burn-in period
of length 1000, the posterior inclusion probabilities have been computed and plotted in
Figure 11.13. Based on the MP model criterion, we selected 42 genes. The Bayesian
LASSO model estimates (posterior means without the RJMCMC facility) are plotted
in Figure 11.13.

Spike and slab: Spike and slab models were obtained from the spikeslab R package
which provides BMA estimates. The BMA estimates are based on a rescaled spike and
slab model, a variant of the spike and slab model that induces a nonvanishing penalization
effect independent of the sample size (Ishwaran and Rao 2005). In the classical spike and
slab models, the penalty effect becomes swamped by the likelihood as the sample size
n increases, reducing the ability of the prior to impact model selection. Instead, in the
rescaled spike and slab model the y responses are replaced with

√
n rescaled values. This

makes it possible for the prior to retain a nonvanishing effect with increasing sample
size. First, the BMA estimates are computed using the rescaled spike and slab model. In
the second step, d penalty parameters (unique to each coefficient) are determined such
that the corresponding generalized ridge estimates are close to the BMA estimates. In
the third step, the L1 regularization path is determined using the R package lars. The
optimal L1 penalty parameter λ1 is obtained as a value that minimizes the AIC criterion.
This penalty leads to the inclusion of the genes X11075, X55800, X81031, X166752,
X10643, X25834, X158763, X9118 and X358, and hence shows quite some overlap
with the other two solutions.

Further testing is usually needed to find the real putative genes, but this was not the aim
of this exercise (which was only based on part of the data).

It must be clear from our exposition that the area of BVS is progressing fast. Over the
last decade, there has been an explosion of new developments. That this is not going to stop
quickly is illustrated below where we describe yet other original approaches to optimize BVS.
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Population-based MCMC: The limitations of the classical Metropolis–Hastings- or Gibbs-
based stochastic variable selection procedures are the inability to escape from steep
local posterior peaks or to discover relevant but isolated parts of the model space. The
difficulties with multimodal posterior landscapes can be overcome with the assistance of
population-based MCMC algorithms (Jasra et al. 2007b). The idea is to run a population
of chains in parallel, each chain being associated with one particular ‘heated/tempered
version’ of the target distribution. In the model selection context, the target distribution
is the posterior over the model space. Using the BIC approximation of Bayes factors, the
posterior model probabilities p(γ | y) are approximately proportional to exp(− 1

2 BICγ ),
where BICγ stands for the BIC of a model γ . The heated distribution pi(γ | y) for a
given temperature ti is then defined to be proportional to

exp

(
− 1

2ti
BICγ

)
.

The tempering has the effect of flattening the peaks of the true target distribution. The
greater the temperature ti of the tempered target density, the easier it is for the chain to
escape from the abrupt peaks. Furthermore, the parallel chains interact and learn from
each other making the exploration of the model space fluent and more efficient. The
interaction is achieved by altering/swapping model configurations between/within the
chains with different temperatures at each MCMC iteration. An extension of population-
based MCMC to settings of varying dimension was considered by Jasra et al. (2007a)
and Fouskakis et al. (2009). Liang and Wong (2000) suggested a hybrid procedure that
combines the idea of parallel tempering together with genetic algorithms in the method
called Evolutionary MCMC (EMC); see also Bottolo and Richardson (2010) for the
application of EMC in Bayesian model selection.

Parallel tempering is closely related to simulated annealing (Kirkpatrick et al. 1983),
where only a single chain is used to sample from a joint distribution of the temperatures
and target distribution, where only values with ‘zero’ temperature are recorded.

Shotgun stochastic search: As an alternative to parallel tempering techniques Hans et al.
(2007) suggested the Shotgun Stochastic Search (SSS) that is capable of sampling from
vast discrete spaces of regression models. SSS can be regarded as a hybrid procedure
that combines Occam’s razor principle with Metropolis–Hastings MCMC ingredients.
Similar to the Occam’s window, SSS neither focuses on finding a point estimate nor
it aims at closely approximating the posterior model distribution. The goal is rather to
determine a bigger set of best models. As opposed to Occam’s window the search is not
entirely deterministic, since the explored models are subject to a randomized proposal
mechanism (similarly as in the MH routines). In comparison to MC3, in SSS all models
from the neighborhood of the current state are evaluated and multiple models are stored
at each iteration. In direct parallel to Occam’s window, at each iteration the set of best
models is deterministically updated by better models found in the neighborhood.

11.10 Bayesian model selection

Models may differ in more than just the set of included of covariates. For instance, GLIMs
may differ in the choice of the link function and the distributional component. Ntzoufras
et al. (2003) considered model selection in GLIMs whereby the link function and the
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included covariates are unknown. They suggested a RJMCMC algorithm for selecting the
link function, the covariates and the regression coefficients in any order. The specification
of the prior distribution needs some extra attention here since the meaning of the regression
coefficients changes when the link function changes. The prior is specified hierarchically as
p(β∗

γ,L, γ, L) = p(β∗
γ,L | γ, L)p(γ | L)p(L), where β∗ = (α,βT )T and p(L) is uniform on the

considered link functions L. The prior p(γ | L) can be any of the previously described prior
model functions (independent, dependent, etc). The problem lies in specifying p(β∗

γ,L | γ, L).
Indeed, suppose the prior is taken β∗

γ,L | γ, L ∼ N(β∗
0γ,L, 	γ,L) then the question is how does

this relate to a prior β∗
γ,L′ | γ, L′ ∼ N(β∗

0γ,L′ , 	γ,L′ ). Ntzoufras et al. (2003) developed trans-
formation rules for the nonzero intercept α when changing the link function. Since β∗

0γ,L is
usually taken zero, the transformation rule for the genuine regression coefficients is defined
on the prior covariance structure of βγ,L. Software for doing the job does not seem to be
available, though.

Sabanés Bové and Held (2011a) described an approach to combine variable selection with
choosing appropriate scales for the covariates using fractional polynomials (Royston and Alt-
man 1994) (see also Section 10.3.5). For each covariate xk, at most two powers are chosen from
the set {−2,−1,−1/2, 0, 1/2, 1, 2, 3} (with x0

k ≡ log(xk)) and collected in pk = (pk1, pk2)
T .

The corresponding coefficients are collected in the vector αk and this yields a term αT
k xpk

k . For
instance, x{2,0}

k represents two regressors x2
k and log(xk) and αT

k x(2,0)

k = αk1x2
k + αk2 log(xk).

When pk1 = pk2 then αT
k x(2,2)

k = αk1x2
k + αk2x2

k log(xk). Variable selection is embedded in the
framework because xk is not included in the model when pk = 0. Then each model is defined
by γ = (pT

1 , . . . , pT
d )T , the covariates are xp1

1 , . . . , xpd
d and the vector of regression coeffi-

cients is given by βγ = (αT
1 , . . . ,αT

d )T . This combined procedure for selecting covariates and
finding their appropriate scale is illustrated with the REACH data.

Example XI.12: Rheumatoid arthritis study: BVS and choosing the appropriate scale of
the covariates
The R package glmBfp allows to check for nonlinear dependence of the covariates in the
REACH data. In the variable selection step, the posterior model probabilities are determined
allowing for fractional polynomials. However, of the first 50 most plausible models a pos-
teriori only five models indicate some nonlinearity. Namely, there is some (minor) evidence
for DC−2 log(dc) and esr3. Note that first the variables need to undergo a linear transfor-
mation to make sure that logarithms can be computed. The program provides also graphical
output to display the (non)linear relationship; see ‘chapter 11 Zellner REACH FP.R’ for the
commands.

Examples of other approaches that perform simultaneously variable selection and model
verification can be found, e.g. Hoeting et al. (2002) who suggested to combine variable se-
lection and transformation of both the response as well as the covariates in linear regression
or in Gottardo and Raftery (2009). Hoeting et al. (1996) proposed a method for simulta-
neous variable selection and outlier detection (implemented in the BMA package with the
function MC3.REG). The recently developed R package spikeSlabGAM is currently the
most advanced and versatile model selection software, but restricted to the d < n case.
The package implements BVS and model selection with a spike and slab prior structure
extending the approach of Ishwaran and Rao (2005) and allows to select single coefficients
as well as blocks of coefficients for generalized additive mixed models. Gaussian, binomial
and Poisson responses can be modeled as a function of smooth functions of covariates in
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the presence of random effects and their interactions, but the package also allows for fitting
spatial models (Scheipl 2011).

11.11 Bayesian model averaging

It is a myth to assume that one can ultimately find the true model. Still in practice this is
often hoped for. The different examples illustrate that searching for a true model is a use-
less exercise, at most one can find some good models. To base the final conclusions on
one model may, therefore, not be a good strategy since hereby one neglects model uncer-
tainty. An alternative strategy is to consider many models, estimate the measure of interest
for each model, average this measure over the considered models and determine its statis-
tical variability. This exercise is called model averaging. Specifically, suppose that the total
set of possible models is {M1, . . . , MK} and that one is interested in estimating a measure
�, e.g. the response of a future observation. Further, suppose that the model probabilities
p(Mm | y), (k = 1, . . . , K) are available, then the posterior distribution of � is

p(� | y) =
K∑

m=1

p(� | y, Mm)p(Mm | y), (11.44)

with p(� | y, Mm) determined from the posterior of the model parameters p(θm | y, Mm) by
marginalization. Often only the posterior mean and variance of � are needed:

E(� | y) =
K∑

m=1

�̂m p(Mm | y), (11.45)

Var(� | y) =
K∑

m=1

[
Var(� | y, Mm) + �̂2

m

]
p(Mm | y) − E(� | y)2, (11.46)

with �̂m = E(� | y, Mm) = ∫
�(θm)p(θm | y, Mm)dθm (Raftery et al. 1997). Expression

(11.46) follows from the factorization var(x) = Ey[var(x | y)] + vary[E(x | y)] with y
discrete (also seen in expression (5.13)).

Model averaging has been suggested both under the frequentist (Claeskens and Hjort
2008) as well as under the Bayesian paradigm. In the latter case, it is called BMA. In the
frequentist world, the model probabilities p(Mm | y) are typically taken as in (11.8) using
either AIC, BIC or some other information criterion. This is only possible when the number
of models is not too large. For large d, one needs to restrict to models with the highest
model probabilities since they will have the most impact in the computation of the mean and
variance of �. In the Bayesian context, a stochastic search algorithm will determine the most
promising models. The mean and variance of � are then just a byproduct of the variable
selection exercise, i.e. � is estimated in each visited model and the mean and variance are
computed across the visited models. It must be said, however, that the average of regression
coefficients across models is fraught with interpretation problems (see Draper 1999). Indeed,
it is known from each classical regression textbook that the interpretation of a regression
coefficient is conditional on the other regressors in the model. In a BMA exercise, we average
βk over models (a) with xk, but where the other regressors vary in the model and (b) without
xk. In an MCMC context, the omission of xk is seen in the density of the sampled β̃k as a
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Figure 11.14 Diabetes study: marginal posterior densities of three regression coefficients
obtained from bic.glm.

spike like in Figure 11.14. Hoeting et al. (1999b), though, gave arguments for taking BMA of
regression coefficients and computed summary measures of individual regression coefficients
in several publications (Gottardo and Raftery 2009; Hoeting et al. 1996, 2002). The posterior
inclusion probability is easier to interpret and has been used above to determine the median
probability model. It could even replace the classical P-value as it expresses how many times
a regressor is considered necessary in the model.

There are no issues when � represents the predicted response of a new subject. In fact,
much of the motivation for basing inference on BMA is that the technique provides better
predictive ability as measured by the logarithmic scoring rule than for any single model Ml

which implies:

− E

{
log

[
K∑

m=1

p(� | y, Mm)p(Mm | y)

]}
≤ −E

[
log(p(� | y, Ml )

]
, (l = 1, . . . , K),

(11.47)

which follows from the Kullback–Leibler inequality (Raftery et al. 1997). An appealing
feature of the Bayesian approach to model averaging is its complete generality. For instance,
one can generalize the concept of the posterior predictive distribution to account for model
uncertainty (Clyde and George 2004), i.e

p(̃y | y) =
∑

m

p(̃y | y, Mm)p(Mm | y).

Example XI.13: Diabetes study: Bayesian model averaging
We now return to the analysis of Example XI.5. The R function bic.glm in the package
BMA allows for Bayesian model averaging for a linear regression problem. With an exhaustive
search 36 models were visited. Figure 11.14 shows part of the graphical output obtained from
bic.glm. The figure shows the marginal densities of three regression coefficients. For bp the
density is unimodal since bp is in all models. For the two other regression coefficients, there
is a vertical bar at zero with height equal to the proportion of models that does not contain
the corresponding regressor in the model. Thus, the regressors s1 and s2 are not included
in all models and when they are included in the model their regression coefficients change
dramatically depending on which other regressors are in the model.

Posterior means and standard errors of the regression coefficients can also be obtained
from bic.glm. Both unconditional (marginal over all selected models) as well as conditional
(restricted to the models containing the regressor) posterior summary measures are available.
In Table 11.4, we compared the marginal mean and SE of all regression coefficients based
on two runs of the program: one with Occam’s window switched on (nine models) and one
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Table 11.4 Diabetes study: Bayesian model averaging using bic.glm based on Occam’s
window and exhaustive search.

Occam’s window on (OR = 20) Occam’s window off

xk E(β | y) SD(β | y) P(β �= 0 | y) E(β | y) SD(β | y) P(β �= 0 | y)

int 0.000 2.576 1.00 0.000 2.576 1.00
age 0.000 0.000 0.0 −0.012 0.584 0.04
gender −10.958 2.877 1.00 −10.761 3.175 0.98
BMI 25.294 3.139 1.00 25.355 3.161 1.00
bp 15.599 3.002 1.00 15.546 3.024 1.00
s1 −13.317 15.962 0.55 −13.244 15.793 0.57
s2 7.065 12.464 0.37 6.748 12.477 0.38
s3 −7.633 7.119 0.57 −7.414 7.140 0.57
s4 1.787 5.004 0.18 1.950 5.202 0.20
s5 28.253 7.394 1.00 28.232 7.346 1.00
s6 0.132 0.898 0.04 0.216 1.141 0.07

where this feature is switched off. It is argued that these estimates are preferable above
estimates based on a single ‘best’ model. However, most often researchers wish to discover
a unique best model whereby the importance of the individual covariates are indicated by
P-values. We further computed the mean-squared prediction error (MSPE) defined here as
1
n

∑n
i=1(yi − ŷi)

2, where the predicted value ŷi is obtained from either the MLE of the selected
model (note that this definition of MSPE is different from that in Section 10.2.3) or is a BMA
prediction. In Figure 11.15, we see that the BMA estimated model has a small MSPE but is
not the smallest across the models. This does not contradict, however, result (11.47) since we
are using a different metric here, and most importantly the MSPE is too optimistic for the
individual models since the data are used twice. The R program can be found in ‘chapter 11
BMA diabetes.R’.

11.12 Closing remarks

Variable and model selection has always been one of the most complicated problems in
statistics. This is also true in the Bayesian paradigm although the Bayesian approach has a
lot to offer. Indeed, in the Bayesian world candidate models can be elegantly compared using
posterior model probabilities if appropriate priors are specified.

In addition, the multitude of (new) developments offers a rich toolbox of BVS methods
certainly when d < n. But with a variety of approaches practitioners will need guidance,
otherwise they might fall back to the old standards such as forward, backward and stepwise
selection techniques. It appears that a lot of empirical research is needed to find the trustworthy
approaches. In Rockova et al. (2011), a simulation study was undertaken to compare Bayesian
regularization approaches and the spike and slab approaches. Besides the observation that the
performance of the considered approaches is vulnerable to prior settings, practical conclusions
did not yet emerge.

Despite the wide overview of BVS procedure, this review is not comprehensive. For
instance, we have omitted here the predictive approach to variable selection; see Gelfand and
Ghosh (1998), and also variable model selection using the CART approach. A refinement of
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Figure 11.15 Diabetes study: MSPE for 36 models obtained from bic.glm with Occam’s
window switched off and MSPE based on the BMA estimate.

the CART approach (BART, see Chipman et al. 2010) does not assume any particular statistical
model when selecting important covariates that relate to the response. The approach has been
implemented in the R package Bayes Tree and appears to have excellent variable selection
properties.

We did not discuss the many software developments, such as the approach of Kiiveri
(2003). Some of these developments are described in some review papers such as (Chipman
et al. 2001; Clyde and George 2004; Kadane and Lazar 2004; O’Hara and Sillanpää 2009).
Finally, we refer to Ando (2010) for a somewhat more mathematical treatment of the Bayesian
model selection techniques.

Exercises

Exercise 11.1 Dietary study: Predict body-mass index (kg/m2) from age, gender, length (cm),
weight (kg), and the food intake variables measuring the daily consumption of: alcohol (g/day),
calcium (mg/day), cholesterol (mg/day), protein (g/day), iron (mg/day), potassium (mg/day),
carbohydrates (g/day) containing mono and disachharides (g/day) and polysachharide (g/day),
several parameters measuring fat intake (total fat intake (g/day), mono-unsaturated fat (g/day),
poly-unsaturated fat (g/day), saturated fate intake (g/day), ratio poly-unsat/sat fat (PS), ratio
mono+poly-unsat/sat fat (US)), sodium (mg/day), phosphorus (mg/day), fibres (mg/day) and
energy intake (kcal/day); see excel file ‘IBBENS.xls’ for the data. In addition to a full linear
regression analysis by making use of all variables, use as classical variable selection ap-
proaches: Forward, backward and stepwise selection techniques, ridge and LASSO shrinkage
techniques. Determine the best fitting model(s) to the data. Search for appropriate R functions
to do the job.

Exercise 11.2 Diabetes study: Find the MP models using the R functions bic.glm and
MC3.REG.

Exercise 11.3 Rheumatoid arthritis study: Find the MP models using the R functions
bic.glm and glib.
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Exercise 11.4 Rheumatoid arthritis study: Use WinBUGS program ‘chapter 11 RJMCMC
REACH.odc’ to check the dependence of the solution on the precision of the regression
coefficients, i.e. MAP and MP model, marginal probabilities, posterior summary measures
for the regression coefficients. Then call WinBUGS from within R to do the job.

Exercise 11.5 Diabetes study: Use R2WinBUGS to select the most important variables using
a RJMCMC approach and compare it to the solution when applying the R program monomvn.
Extend the set of covariates by adding all (45) double products and 9 quadratic terms and
apply the R program monomvn.

Exercise 11.6 Diabetes study: Adapt WinBUGS program ‘chapter 11 SSVS REACH.R’ to
select variables in a linear regression model and apply it to the diabetes data. Perform a
sensitivity analysis by varying the spike and slab variances.

Exercise 11.7 Rheumatoid arthritis study: Use R2WinBUGS based on ‘chapter 11 NMIG
REACH.odc’ to select variables in a logistic and a probit regression model using the approach
of Ishwaran and Rao (2003). Perform a sensitivity analysis by varying the spike and slab
variances.

Exercise 11.8 Diabetes study: Apply Exercise 11.7 to the diabetes data and compare the
selected models from those selected with other BVS approaches.

Exercise 11.9 Rheumatoid arthritis study: Apply the WinBUGS program ‘chapter 11 GVS
REACH.odc’ to select variables in a probit regression model using the GVS approach. Com-
pare the selected models from those selected with other BVS approaches.

Exercise 11.10 Rheumatoid arthritis study: Adapt the WinBUGS program ‘chapter 11 GVS
REACH.odc’ with the approach of Kuo and Mallick (1998).

Exercise 11.11 Diabetes study: Apply Exercise 11.9 to the diabetes data.

Exercise 11.12 Rheumatoid arthritis study: Adapt the WinBUGS program ‘chapter 11 GVS
REACH.odc’ to check the importance of the product terms of all regressors with dc (duration
of complaints in days). Use the approach of Chipman (1996).

Exercise 11.13 Rheumatoid arthritis study: Adapt the WinBUGS program ‘chapter 11 GVS
REACH.odc’ to check whether sjc (swollen joint count) should be transformed with log, sqrt
or inverse by making use of a variable selection technique suggested by Chipman (1996).

Exercise 11.14 Diabetes study: Apply the WinBUGS program ‘chapter 11 blasso adaptive
diabetes.odc’ to perform Bayesian adaptive LASSO estimation on the diabetes data.

Exercise 11.15 Rheumatoid arthritis study: Apply the following Bayesian shrinkage regres-
sion approaches: ridge, LASSO, adaptive LASSO and Elastic Net to the REACH data. Use
the latent representation of the probit model for this. Show that these approaches exhibit
more shrinkage than SSVS and GVS. Further, show ridge regression induces more uniform
shrinkage, while BL, ABL and BEN result in more differential shrinkage.

Exercise 11.16 Rheumatoid arthritis study: Apply Exercise 11.14 to the REACH data.

Exercise 11.17 Diabetes study: Apply the R program glmBfp to find nonlinear associations
with the response y.

Exercise 11.18 Diabetes study: Apply any of the BVS techniques to produce the model
averages of the regression coefficients and the predicted values of the responses. Compare
your results to the results obtained from bic.glm.
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Bioassay

Bioassay, short for ‘biological assay’, is a type of scientific experiment where a substance
of interest is introduced to a living organism to assess the effects of the substance. A classic
example would be the introduction of a new drug or compound into a plated cell line to
see if the product causes changes in the cells (e.g. mutation). Quantification of the effects
of the substance leads to quantitative bioassay and its application lies mainly in the area
of drug development and environmental pollution assessment. Environmental bioassays are
generally a broad-range survey of toxicity, whereas in drug development, the focus may be on
mutagenesis, carcinogenesis, teratogenesis as well as toxicity. In the latter field, early stage
preclinical drug testing can require the use of assays that attempt to detect mutation in cell
lines, cancer induction (carcinogenesis) or the detection of reproductive defects (teratology).
In what follows, we focus on the aspects of bioassay that arise mainly in drug-development
environments. Environmental bioassay is reviewed in Piegorsch and Bailer (2005).

12.1 Bioassay essentials

The basic idea of bioassay is very simple. A controlled experiment is set up where different
dosages of a compound are administered to a biological agent. Over the progression of the
experiment, changes to the biological agent are monitored.

12.1.1 Cell assays

The biological agent could be a cell line, and in that case, the monitored end point would be
changes to cells. Such an assay is often called in vitro as it involves experiments within test
tubes or plated cultures. A well-known example of such an assay is the Ames Salmonella
assay (SAL) (Mortelmans and Zeiger 2000). The end point tested within the assay could be
mutagenesis (mutation of the cell) which may be an indicator of carcinogenic potential, or the
carcinogenesis (cancer causing) potential could be analyzed directly. There are many variants
of these forms depending on the end point of interest. In what follows, we will consider
two particular assays: the Ames salmonella mutagenicity assay and the mouse lymphoma

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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mutagenic assay. These assays have different foci in that the Ames assay focuses on short-
term bacterial reversal mutagenesis whereas the mouse lymphoma focuses on mutation in
mammalian cells.

12.1.2 Animal assays

Animal assays are termed in vivo as they are carried out in full life forms, such as mammals.
These assays often follow in vitro assays and are scaled up to be relevant to larger life forms
(such as humans). Once a compound passes a battery of in vitro assays, it may then be tested
via animal assay. Animal assays are usually carried out on target drugs or compounds which
may be of use in human or veterinary applications. Hence, they must be chosen with care
toward matching the assay host to the target life form. For example, due to an inappropriate
animal model to test the drug Thalidomide, the subsequent use of that drug in humans led to
birth defects.

While it is not the purpose here to describe in detail the regulatory requirements for
assays, we note that there are three broad classes of assays that are important in applications:
lethal dose assays (such as LD50) used for toxicity testing, teratogenicity testing where
the compounds are examined for their potential to yield birth defects and carcinogenicity
testing where large scale long-term longitudinal animal studies are established to monitor the
appearance of tumors. Here, we will focus solely on toxicity testing.

A particular assay arises from the need to establish toxicity of a compound prior to testing
for other effects (such as mutagenic or carcinogenic potential). Toxicity is often established
by setting up an experiment where different dose levels of a compound are administered to
a biological entity (e.g. animal) and for each dose level the count of subjects that died is
recorded after a fixed period of time. A survival curve is computed from these data which
provides an estimate of the lethal dose that kills 50% of the subjects (LD50). A variant of this
is the ED50, or the effective dose at which 50% of subjects reach an endpoint (ED 50%). The
end point could be ‘cured’ or another state of improvement. The ED50 is used in dose finding
in clinical trials whereas LD50 is used preclinically for toxicity testing.

Here, we examine a famous early example of LD50 testing: the beetle mortality data
of Bliss (1935). In this, example sets of beetles (Tribolium confusum) were given different
concentrations of carbon disulphide. Each of the dose groups consists of different numbers of
beetles (ranging from 56 to 63), and out of these numbers, a proportion that died during the
5-hour exposure to the toxic agent was recorded. In this experiment, the number of beetles that
died is assumed to be binomially distributed. There are N = 8 groups. Define ri as the number
of beetles killed out of ni in each group, with subscript i denoting group (i = 1, . . . , N). The
dose level xi is a covariate measured at group level. Notice that as the dose increases then
more deaths occurred until at the highest dose all beetles have died. Table 12.1 displays these
data. Figure 12.1 displays the proportion killed (ri/ni) for these data.

Assume the following model for the number of deaths:

ri ∼ Bin(ni, pi),

where pi is the probability of death in the ith group. We want to relate this probability to
the dose level and hence we employ a link function to relate pi to xi. The choice of the link
function is quite important in this example and we will look at three different link functions:
the logit, the probit and the complimentary-log-log (c-loglog). The link functions differ mainly
in their tail behavior (at low or high doses) and can lead to quite different measures of GOF.
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Figure 12.1 Bliss beetle mortality data: plot of proportion killed versus dose. Curve of
predicted probabilities based on logit link (dashed line), probit link (dotted line) and c-loglog
link (dot-dashed line).

The considered models are:

logit(pi) = β0 + β1xi, (12.1)

probit(pi) = β0 + β1xi, (12.2)

cloglog(pi) = β0 + β1xi. (12.3)

In model (12.1), we have pi = exp(β0 + β1xi)/[1 + exp(β0 + β1xi)], in model (12.2) we
have pi = �(β0 + β1xi), where �(.) is the standard normal cdf, and in (12.3) pi =
1 − exp[− exp(β0 + β1xi)]. In Figure 12.2, we show the WinBUGS code for the logit bioas-
say model. The statement logit(p[i]) <- alpha.star + beta * (x[i] -

Table 12.1 Bliss beetle mortality data: dose
concentration of carbon disulphide (xi) and beetle
mortality, with ni is the number of beetles
exposed and ri is the number of beetles died.

xi ni ri

1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 52
1.8610 62 61
1.8839 60 60
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model
{
for (i in 1:N ) {
r[i] ˜ dbin(p[i],n[i])
logit(p[i]) <- alpha.star + beta*(x[i] - mean(x[]))
rhat[i] <- n[i]*p[i]
}

alpha <- alpha.star - beta*mean(x[])
beta ˜ dnorm(0.0,tauB)
alpha.star ˜ dnorm(0.0,tauA)
tauB <- pow(sdB,-2)
sdB ˜ dunif(0,5)
tauA <- pow(sdA,-2)
sdA ˜ dunif(0,5)

}

Figure 12.2 Bliss beetle mortality data: WinBUGS model code for the logit bioassay model.

mean(x[])) specifies the logit model. The code for the probit link is obtained by re-
placing logit(p[i]) by probit(p[i]), and for the c-loglog link, we replace it by
cloglog(p[i]). Further, in the WinBUGS code a derived variable rhat[i] is com-
puted which represents the fitted value of r at different levels of dose.

Two chains were initiated with burn-in of 12 000 and sample size 5000. The convergence
diagnostics suggested convergence and good chain mixing. The results of the fit are displayed
in Table 12.2 along with the results of fitting the probit and c-loglog models. Clearly, the choice
of the link function affects the GOF. We compared the models using Deviance Information
Criterion (DIC) and obtained: (1) for the logit model: DIC = 48.95, pD = 1.809 and (2) probit
model: DIC = 41.46, pD = 1.957 and for the c-loglog model: DIC = 35.02, pD = 1.727. It
is clear that the c-loglog model yields the best overall GOF. Table 12.2 demonstrates the ability
of the c-loglog model to closely match the observed data. This is confirmed in the graphical
representation of the three models in Figure 12.1, which also shows that the three fitted curves
still deviate modestly from the observed data at moderate to low doses. For the c-loglog model

Table 12.2 Bliss beetle mortality data: comparison
of estimated rhat with r for different link models.

r Logit Probit c-loglog

6 6.45 4.50 7.28
13 13.73 12.14 13.39
18 24.99 24.28 22.95
28 33.24 33.50 31.22
52 47.26 48.49 47.26
52 50.47 52.18 52.98
61 56.9 58.78 60.34
60 57.19 58.73 59.76
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the LD50 is solved in log(− log(0.5)) = β0 + β1xi, i.e. β0 + β1xi = −0.3665. In this case,
the posterior mean of LD50 is 1.776 (95% CI: [1.768, 1.784]). Note that the plug-in value
using the posterior mean estimates for β0 (−35.28), β1(19.66) is very close to this value:
1.7758.

Various Bayesian developments have been proposed in bioassay. Gelfand and Kuo
(1991) proposed a general nonparametric Bayesian approach (see also final chapter) to
the estimation of the tolerance distribution instead of assuming parametric forms. In that
work, the ordered Dirichlet and product-beta prior distributions were explored for the mortal
probability. Ramgopal et al. (1993) extended this work with constrained non-parametric prior
distributions which address specific features of the tolerance distribution. For example, one
might consider a threshold model for toxicity where a dose must reach a certain level before
toxic effects are seen. Equally, there could be multiple levels of threshold that should be
accounted for. Multivariate testing and multiple end points with competing risks are obvious
extensions.

12.2 A generic in vitro example

A preclinical in vitro mutagenicity experiment is carried out to assess the mutagenic potential
of a new drug (drug A). A dosage (L mg/L) of the drug is applied to a N = 1, 000 cells in vitro.
The cells are left for a defined time period (T ) and then assessed for mutagenic transformation.
The binary random variable yi is defined as the cell state (0: untransformed; 1: transformed)
of the ith cell after time T . The sum of these independent cell states is a binomial random
variable (r = ∑N

i=1 yi) with transformation probability p. The maximum likelihood estimate
of p is simply p̂ = r/N. In this case, it was found that, r = 9 and so p̂ = 0.009. Hence, drug
A appeared to have a very low mutagenic potential.

In a Bayesian analysis, p is given a prior distribution and often this is assumed to be
a beta distribution, i.e. p ∼ Beta(α, β). The posterior expectation of p is then E(p | r) =
(r + α)/(N + α + β). For the indifferent prior with α = β = 1, we obtain 10/1002 =
0.00998. An alternative might be to assume a more sophisticated model for p. If covari-
ates are to be included then a link to a linear predictor may be required. The commonest of
these would be a logit link to a simple intercept parameter (α0), which in turn has a hyperprior
distribution, so that

logit(p) = α0

α0 ∼ N
(
0, σ 2

α0

)
,

with precision τα0 = σ−2
α0

. This suggests the hierarchical model described by a directed acyclic
graph as in Figure 12.3.

Note that a more general formulation can be suggested where the α0 parameter is re-
placed by a linear predictor consisting of parameters (and possibly also covariates or ran-
dom effects). Denote the dose response parameters for a single dose predictor as α0 and
α1, and the associated variances (precisions) for the Gaussian prior distributions as σ 2

β0

(τ−1
β0

) and σ 2
β1

(τ−1
β1

), respectively. The linear predictor with single dose predictor (Di) is
logit(pi) = β0 + β1Di. Further extensions of this example could be made in different set-
tings. First, we could consider changes to the prior distributions for both regression param-
eters and precisions. Sensitivity to the prior specification is important and so we would be
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Figure 12.3 Generic in vitro study: directed acyclic graph of the generic binomial logit
bioassay model.

concerned whether the Gaussian specification (for β0 and β1) or the fixed nature of σ 2
∗ would

be appropriate. Variants of the Gaussian could be the zero-mean t distribution or asymmetric
alternatives such as the skewed Gaussian (see O’Hagan and Leonhard 1976) or the asymmetric
Laplace. Hyperprior specification for the variance parameters (σ 2

∗ ) would also be important
to consider. Additionally, the link function chosen (in this case the logit) might be changed
as it was found that the c-loglog link performed better in some examples (e.g. the beetle
example above).

In other situations, the context may dictate further modifications to the procedures. For
example, historical and active controls might need to be included in a study. Alternatively,
multiple control groups are sometimes recommended (as in the Mouse Lymphoma assay
(MLA)). The historical data may update the prior distributions and their parameters as in
Section 5.6. Such dynamic updating is a fundamental feature of the Bayesian paradigm.

Finally, there is always the need to compare the effects of different drugs/substances in
relation to dosage, either as new tests on the same drug (repeated testing) or simply making
a comparison between aspects of the toxicity of one drug/substance to the other. Bivariate
Bayesian generalized linear model (BGLM) and Bayesian generalized linear mixed model
(BGLMM) models (see Sections 4.8 and 9.5.3) can be proposed whereby a count outcome
for the ith subject with the jth drug is given by yi j and then

E(yi j) = µi j,

g(µi j) = β0 j + β1 jDi j (BGLM),

or

g(µi j) = β0 j + β1 jDi j + γi j (BGLMM),

with γi j ∼ N(γ j, σ
2
γ j

) a random effect of the combined effect of dose level and drug. Drug
comparison could be made via the examination of the posterior functionals such as di =
µi1 − µi2, β01 − β02 or β11 − β12, for example. The comparison of multiple drugs/substances
would lead naturally to the consideration of multivariate models.

In the following sections, we briefly discuss two specific assays and their analysis: the
SAL and the MLA.
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12.3 Ames/Salmonella mutagenic assay

In Chapter 5, we introduced the Ames/Salmonella assay in Example V.1 and discussed a
simple analysis of replicate counts within that assay. The Ames/Salmonella microsome assay
was developed to detect mutagenicity (Breslow 1984; Kim and Margolin 1999; Krewski et al.
1993; Margolin et al. 1989; Tarone 1982).

Various researchers have examined dose-response data for the Ames assay, where a dose
level of a compound is given to a set of replicated plates and the resulting count of revertant
colonies is the outcome. At the data level, we have

yi j | µi j ∼ Poisson[µi j(Di)], (i = 1, . . . , N; j = 1, . . . , ni)

where yi j is the revertant count in the ith plate/dose level, jth replication, with ni replications.
The model chosen for the expected count can be structured in a variety of ways and is assumed
to be a function of dose Di. Using biological considerations, Krewski et al. (1993) suggested
using hit theory to propose two different models:

1. Short-term toxicity: µi j(Di) = (β0i + β1Di) exp(−β2Dθ
i )

2. Long-term toxicity: µi j(Di) = (β0i + β1Di)[2 − exp(β2Dθ
i )]

The parameter θ is a low-dose adjustment to allow for a threshold. It is assumed to be θ > 1,

but the value θ = 2 is often assumed.
Krewski et al. (1993) used quasi-likelihood to allow for a mean-variance relationship but

no more parametric assumptions. Here, we assume, at the data level, a conditional independent
Poisson distribution for the ijth level. We assumed initially that β0i = β0 is fixed. Of course,
to allow for overdispersion in the model, we allow prior distributions at higher levels of
the hierarchy and hence are not limited by the Poisson data level assumption. To compare
the Bayesian results to those of Krewski et al. (1993), we have examined the data for 1-
Nitropyrene, TA 100-S9, Laboratory 10, Round 3 (dose in µg), reported from a collaborative
trial by the International Programme on Chemical Safety (IPCS). Table 12.3 and Figure 12.4
display these data. In this case, n1 = n2 = 2 replications, and N = 6 dose levels.

The above two models were fitted for fixed values of θ and for a random θ . For the
random model, we have assumed an Exp(1) prior distribution truncated at 1 for θ . Further,
we have assumed zero mean Gaussian prior distributions for the β parameters with uniform
hyperpriors for the standard deviations (see Section 5.7, Chapter 9).

Table 12.3 Ames assay IPCS data: dose and
replication counts.

Dose Rep 1 Rep 2

0.00 169 159
0.75 359 426
1.50 679 571
3.00 572 716
4.50 649 423
6.00 299 129
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Figure 12.4 Ames assay IPCS data: scatter plot of replications 1 and 2. Left panel displays
both replications with no smoothing, right panel displays a kernel regression smoothing of
each replication superimposed on replication 1 data only.

Table 12.4 and Figure 12.5 display the results of fitting a range of models to the IPCS
data. It is clear that the short-term toxicity model provides the lowest DIC and mean-square
predictive error (MSPE) with the fixed θ = 2. This model yields a considerably lower DIC
than the other models. Note that this corresponds to a Gaussian-like decline with dose. On the
other hand, for the long-term toxicity model and based on MSPE, θ = 1 or a random θ seem
most appropriate for these data.

The posterior median regression parameter estimates (and standard errors) for the short-
term toxicity model with θ = 2 are β̂0 = 120.1 (3.534), β̂1 = 144.6 (3.498), β̂2 = 0.02883
(0.00115). The posterior mean and median estimates are identical for this model fit. The
estimated dose-response curve using the posterior median values from a sample of K iterations,
µ̂i j(Di) = medK[(βk

0i + βk
1Di) exp(−βk

2D2
i )] are displayed in Figure 12.6.

Table 12.4 Ames assay IPCS data: comparison of overall
goodness-of-fit via DIC, pD, and MSPE for short-term and
long-term models for the IPCS data.

Model: short term pD DIC MSPE

θ = 1 1.77 1984.6 59990.0
θ = 2 1.98 1309.9 38960.0
θ random 1.57 6613.8 141300.0

Model: long term pD DIC MSPE

θ = 1 1.50 13300.5 170500.0
θ = 2 1.41 13355.5 170600.0
θ random 1.62 13306.7 170500.0
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Node Mean sd MC error 2.5% Median 97.5% start sample

b0 120.1 3.534 0.06278 112.9 120.1 127.2 10001 20000

b1 144.6 3.498 0.07987 137.8 144.6 151.4 10001 20000

b2 0.02883 0.001148 1.89E-05 0.02657 0.02883 0.03109 10001 20000

Deviance 1308 41.42 0.7515 1228 1308 1391 10001 20000

Figure 12.5 Ames assay IPCS data: posterior estimates of regression parameters based on
the short-term toxicity model with θ = 2, obtained from WinBUGS.
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Figure 12.6 Ames assay IPCS data: posterior average estimate of the mean revertant level
with associated 95% CI based on the short-term toxicity model with θ = 2.

In conclusion, for the IPCS data the short-term model seems to describe the variation
reasonably well and certainly leads to a much improved DIC. The resulting estimated average
revertant-dose relation has a relatively narrow 95% credible interval.

12.4 Mouse lymphoma assay (L5178Y TK+/−)

A different assay arises when the focus is on changes in DNA cell structure. The MLA
focuses on thymidine kinase locus mutation caused by base pair changes, frameshift and
small deletions (Clements 2000; Moore et al. 2003). Thymidine kinase is part of a system that
recycles free thymidine that is eventually incorporated into DNA. Trifluorothymidine (TFT)
is a toxic analog of thymidine and interferes with DNA metabolism, killing the cell. However,
if the functional copy of the TK gene is lost through mutation, the TFT is not metabolized
and is no longer toxic.

L5178Y cell cultures are treated with various concentrations of a test compound in both
the presence and the absence of a metabolite production enhancer. Duplicate cultures are used
at each experimental point. Usually, at least four dose levels of the compound are assessed
with the highest dose level being either that expected to reduced survival by 80–90% based on
a scaled down preliminary test or, for nontoxic compounds, the standard limit of 5 mg/mL or
to the limit of solubility. The treated cells are grown for an expression period to allow fixation
of mutations.
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Many of the statistical modeling principles already discussed above apply to this assay
(and indeed many variants). Usually, we observe counts of cells at fixed dosage and we wish
to estimate the underlying dose-response behavior of the test substance. For the MLA, the
outcomes are often expressed as mutation frequency (MF) (per 104 survivors) and this can be
considered as a count. MF can be modeled with concentration of test substance as predictor,
as in other assays. Often both positive and negative controls are employed and these can be
modeled via factor effects.

Finally it is worth noting that many of these mutational assays are considered to provide
evidence of carcinogenicity also and can be used in combination as preliminary tests for
cancer agents. Comparisons of these tests in this regard is given in Tennant et al. (1987) and
an account of general statistical methods for a range of cell assays is provided in Kirkland
(2008).

12.5 Closing remarks

In this short review, we have attempted to provide an introduction to the issues found in the
analysis of biological assay data. We have not attempted to cover all aspects of the subject
and indeed we did not consider more complex problems, for example, as found in litter-
based teratology studies. However, from a practical viewpoint, the important topics of LD50
estimation was approached in the beetle assay as was evaluation of goodness of link, repeated
dosage updating for the Ames assay, and long- and short-term toxicity via hit theory was
examined for the Ames assay also. We believe that this should motivate those who work in
preclinical testing (both in vitro and in vivo) to consider the benefits of Bayesian approaches.

All analyses were done with WinBUGS but could have been done also using SAS®

procedures. More specifically, the procedure GENMOD can be used to analyze the beetle
data while the procedure MCMC is needed for the Ames assay.
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Measurement error

In a wide range of biostatistical applications, the modeling approach adopted can depend on
the specification of the degree of error observed in variables of interest. In the simplest case,
for example, a random sample of a normally distributed random variable (y) with mean µ and
precision τ , can be assumed to be described by a first-level model hierarchy such as

yi ∼ N(µ, σ 2),

where the precision is given by τ = σ−2. Hence, the error in the random variable can be
plainly seen from the relation

yi = µ + vi,

where vi ∼ N(0, σ 2). In this simple case, the true value of yi, µ, is contaminated by the
zero-mean error term which is assumed to be additive. This illustrates a basic concept of
measurement error: any variable deemed to be observed with error can be expressed as a
combination of a true value and an error term. The importance of this idea will become clearer
with more advanced examples in the following sections. In Section 13.1, the continuous
measurement error case is considered. In the subsequent section, discrete measurement error
models are treated. For reviews of this area see Gustafson (2004), Carroll et al. (2006) and
Buonaccorsi (2010).

13.1 Continuous measurement error

In Chapter 4, we considered a simple hierarchical regression model. Here, we initially examine
the extension of this model to the situation where the predictor x is measured with error.

13.1.1 Measurement error in a variable

Assume that a variable is measured with error, i.e. x∗
i = xi + ui, with xi the true value for

the variable measured at the ith subject and ui the error made when recording the variable.

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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xstar_i

u_ixi_i

Figure 13.1 A graphical model (DAG) representation of the classical measurement error
problem with continuous data. Here, the model is x∗

i = xi + ui.

Classically one assumes that ui ∼ N(0, σ 2
u ). This assumption can be rewritten as the follow-

ing model:

x∗
i ∼ N(xi, σ

2
u ). (13.1)

Hence, E(x∗
i ) = xi. Thus, the observed value is assumed to be a contaminated version of

the true value. The observed variable is, therefore, also called a surrogate measurement.
The contamination is assumed to be symmetric with variance σ 2

u . This is known as classical
measurement error. Figure 13.1 displays a DAG for the classical measurement error problem.

Note that we could extend this model by assuming different forms of error besides ui. For
example, when subjects are examined repeatedly two kinds of error may appear: a subject
specific and a pure measurement error. Such a dual decomposition of error has been proposed
by Kipnis and coworkers in the analysis of food frequency questionnaires (FFQ) in nutritional
studies (Kipnis et al. 1999, 2001, 2003). Their model for the variable obtained from the ith
subject at the jth repeated administration of an FFQ is given by

x∗
i j = α0 + α1xi + νi j,

νi j = ui + ui j

with ui representing the subject-specific measurement error and ui j the pure measurement
error both having a normal distribution. Alternative proposals involving non-normal and
asymmetric errors have been made for FFQ data (Song et al. 2010).

13.1.2 Two types of measurement error on the predictor in linear and
nonlinear models

If we now assume that x∗
i is a variate that is included in a regression model as an explanatory

predictor then we must consider how to include the measurement error on xi within the model
formulation. We first consider the classical measurement error model and then the Berkson
error model.

Let us first assume that there is no measurement error and that a dependent variable yi is
thought to relate to xi via a simple linear regression model:

yi = β0 + β1xi + εi, (13.2)
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with εi ∼ N(0, σ 2
y ) representing the variability of the yi around the regression line. Suppose

now that there is measurement error in yi and xi and we replace yi by y∗
i = yi + vi and xi by

x∗
i = xi + ui. Further, suppose that we again assume a linear regression model relating the

response and the predictor yielding the model

y∗
i = β∗

0 + β∗
1 x∗

i + ε∗
i , (13.3)

with ε∗
i ∼ N(0, σ ∗2

y ). Then the slope, β∗
1 , in the above model does not represent the true

relationship between the response and the predictor, which we would like to know.
To fix ideas, let us take the following example taken from the IRAS multicenter study,

introduced below. Blood is taken from a patient and high-density cholesterol hdl) and blood
low-density cholesterol (ldl) are measured. Most likely, both hdl and ldl are measured with
error. A natural assumption is that the true underlying relation between hdl and ldl will be
based on the true value of ldl (xi) and hdl(yi) and not on their observed values. In Figure
13.2, a scatterplot of these data together with the least-squares estimate (LSE) solution
is shown.

From model (13.2), we can see that if there was only measurement error on yi, then the
induced extra variability can be incorporated into the variance of εi. The question is, therefore,
what effect the error on the predictor has on the estimated slope. In other words, what does β∗

1
in model (13.3) estimate? To see the effect of measurement error on the estimated regression
coefficients, one can compute the MLE of a bivariate normal model with responses y∗

i and
x∗

i (Carroll et al. 2006). This computation shows that the estimated slope in model (13.3) is
attenuated compared to the estimated slope in model (13.2). Namely, not β1 is estimated but
β∗

1 = λβ1, where

λ = σ 2
x

σ 2
x + σ 2

u

, (13.4)
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Figure 13.2 Hdl–ldl example: scatterplot of blood cholesterol measurements (hdl, ldl) for
254 study participants. The LSE (solid line) and the corrected (for measurement error) regres-
sion line (dashed line) are added.
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with σ 2
x the inter-subject variability of the predictor. Thus, error in the prediction variable

creates a bias in the estimated regression coefficient. This bias is known as the attenuation bias.

Further, one can show that the residual variance has increased from σ 2
y to σ 2

y + β2
1σ 2

u

(
σ 2

x
σ 2

u +σ 2
x

)
.

Thus, measurement error in the predictor will also cause a decrease in power, due to an
increased residual variance.

Measurement error can appear also in another way. Namely, Berkson error occurs when
xi = x∗

i + uBi where uBi ∼ N(0, σ 2
Bu). In other words, in the case of Berkson error, E(xi) = x∗

i ,
which is just the reversed situation of the classical measurement error model. This occurs for
instance when, in an industrial process, one wishes to control the temperature or pressure at
a particular level (x∗

i ) but the actual level (xi) fluctuates around it (Carroll et al. 2006). Notice
that model (13.3) can then be written as (error in response is integrated in ε∗):

yi = β0 + β1x∗
i + β1uBi + ε∗

i .

Since E(uBi) = 0, there is no attenuation bias in the Berkson error model, but the residual
variance will increase to σ 2

y + β2
1σ 2

Bu.
If more than one predictor with measurement error is included in the model, then things

become more complex. Namely, if there are two predictors in the model with x measured with
error and z perfectly measured, then there is again attenuation in the regression coefficient of
x, but also the regression coefficient of z may be distorted.

The effects of classical measurement error in nonlinear models are roughly the same as
in the normal linear model, i.e. reduced power for testing associations and bias in the estimation
of the regression coefficients. However, while Berkson error does lead to unbiased estimation
of the regression coefficients in the linear case, in general, this will not be true anymore
in the nonlinear case. In addition, the impact of measurement error on other parameters in the
regression model (such as shape parameters) will not be straightforward.

13.1.3 Accommodation of predictor measurement error

There are two basic ways to accommodate for the error in a single predictor xi:

1. Structural modeling: Given that we have two sources of observed data yi and x∗
i , we

can consider two models that are linked: (1) a structural model (13.3), which links yi to
xi and (2) a measurement error model (13.1), which links the observed value x∗

i to xi.
These two models would now be fitted simultaneously and xi would be estimated as a
latent variable. This is an example of a structural equation model with two components:

Structural model: yi ∼ N(β0 + β1xi, σ
2
y ),

Measurement error model: x∗
i ∼ N(xi, σ

2
u ).

In order to make the parameters estimable, several strategies could be adopted de-
pending on the available data and/or prior information. For instance, substantive
considerations could lead to strong prior information on σ 2

u or to fix this variance
as done in, e.g. Gössl and Küchenhoff (2001). If validation data relating x∗

i to xi are
available as in Section 13.2.3, then a joint modeling exercise is involved. If no extra
information is available, the model can still be identifiable for particular choices of the
prior distribution p(xi | γ ). It is usually not advisable to assume a Gaussian prior dis-
tribution for xi unless highly constrained, as this may allow for nonpositive values. But
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Figure 13.3 Graphical model for the structural equation model with latent variable xi.

this choice may also lead to an unidentifiable model when combined with the Gaussian
error model. Instead, if a gamma prior distribution is realistic for the true covariate
values, such as xi ∼ Gamma(γ 2, cγ ) with mean equal to γ /c and variance equal to
1/c2, then the parameters of the measurement error model as well as the parameters of
the structural model are estimable. Hyperparameters can also be specified. Figure 13.3
displays the graphical model for the structural equation.

2. Random effects modeling: Another approach is to simply add a random effect to the
linear relation yi = β∗

0 + β∗
1 x∗

i + ε∗
i so that the model becomes:

yi = β0 + β1x∗
i + ui + εi,

where ui ∼ N(0, σ 2
u ) and εi ∼ N(0, σ 2

y ).
In this model, there are now two components of variation that need to be estimated.

In addition, the identification of these two components may be of concern at the
individual level as the total noise variation for any unit could be swapped between
the two errors. Note that the Kipnis model is essentially the same but has a repeated
measure error term (ui j) and this may help identification.

13.1.3.1 Analysis of the hdl–ldl example

We have analyzed the hdl–ldl data for the 254 study participants of the cholesterol study,
which were collected in the context of the IRAS multicenter study. Figure 13.4 displays the
WinBUGS code for analyzing the hdl–ldl data with the structural modeling approach. In
this case, relatively diffuse prior distributions were assumed for the hyperparameters of the
variance components as well as for the gamma parameter gamma2. A single chain was run for
70 000 iterations with 30 000 burn-in iterations. Figure 13.6 displays the posterior expected
sample results for several main parameters for the model in Figure 13.4. From Figure 13.6,
we learn that the posterior mean of λ is 0.9834 with SD = 0.03488, hence the attenuation
bias is minimal. In fact, the uncorrected posterior mean of β1 was 0.0478 while the corrected
posterior mean increased to only 0.0451. Figure 13.5 displays the posterior marginal density
estimate of the attenuation bias and confirms that the attenuation bias is quite close to 1. This
suggests that the error in the overall model is quite large (sdldl) compared to the error in the
ldl predictor (sdldlu). In Figure 13.2, we observe that the corrected regression line is close
to the LSE. The estimated true ldl appears to be well estimated with low standard deviations
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model
{

for (i in 1:N) {
hdl[i] ˜ dnorm(mu[i], tau.e)
mu[i] <- beta0 + beta1*ldl[i]
ldlstar[i] ˜ dnorm(ldl[i],tau.u)
ldl[i] ˜ dgamma(gamma2,cgamma)
}

gamma2 <-gamma*gamma
cgamma <- c*gamma
c2 <- tau.ldl
c <- pow(c2,0.5)
gamma ˜ dgamma(0.05,0.005)
tau.e ˜ dgamma( 0.05,0.005)
tau.u ˜ dgamma(0.05,0.005)
tau.ldl ˜ dgamma(0.05,0.005)
sige <- 1/tau.e
sigldlu <- 1/tau.u
sigldl <- 1/tau.ldl
sde <- pow(sige,0.5)
sdldlu <- pow(sigldlu,0.5)
sdldl <- pow(sigldl,0.5)
lambda <- sigldl/(sigldl+sigldlu)
beta0 ˜ dnorm(0,0.00001)
beta1 ˜ dnorm(0,0.001)
}

Figure 13.4 Hdl–ldl example: WinBUGS code for structural modeling.

for each observation in the posterior sample. Figure 13.7 displays the density estimate of the
posterior expected value of ldl.

The WinBUGS code for the random effects approach is given in Figure 13.8. The results
of this analysis (not shown) suggest that the general random variation is much larger than the
overall model error. However, there is an additional issue that should be considered in this
case, i.e. the nonidentifiability of the two different additive errors at the same level within
the hierarchy (unit level). Hence, while the posterior expected value of Rat is very small
(0.00119), suggesting a very large random effect variance, it should be borne in mind that the

lambda sample: 40000
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Figure 13.5 Hdl–ldl example: attenuation bias for structural modeling.
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Node Mean sd MC error 2.5% Median 97.5% Start Sample
beta0 45.79 2.801 0.017 40.26 45.81 51.23 30001 40000
beta1 0.04511 0.02709 1.637E-4 -0.007479 0.045 0.0986 30001 40000
lambda 0.9834 0.03488 0.002154 0.8814 0.996 1.0 30001 40000
sde 11.96 0.5319 0.002729 10.97 11.94 13.06 30001 40000
sdldl 27.99 1.472 0.04518 25.13 27.97 30.94 30001 40000
sdldlu 2.566 2.545 0.1678 0.09351 1.789 9.61 30001 40000

Figure 13.6 Hdl–ldl example: WinBUGS posterior summary measures for the main param-
eters of the model in Figure 13.4.
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Figure 13.7 Hdl–ldl example: density estimate of the posterior expected value of the latent
(true) variable ldl over the 254 participants.

model
{
for (i in 1:N) {
hdl[i] ˜ dnorm(mu1[i],tau.e)
mu1[i] <- beta0 + beta1*ldl[i]+eps[i]
eps[i] ˜ dnorm(0,tau.eps)
}

tau.e ˜ dgamma( 0.05,0.005)
tau.eps ˜ dgamma(0.05,0.005)
sige <- 1/tau.e
sigeps <- 1/tau.eps
Rat <- sige/(sige+sigeps)
beta0 ˜ dnorm(0,0.00001)
beta1 ˜ dnorm(0,0.001)

}

Figure 13.8 Hdl–ldl example: unit level random effect model for the cholesterol data.
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nonidentification of the effects may influence this result. Identification is discussed further in
Chapter 9.

13.1.4 Nonadditive errors and other extensions

In the previous discussion, attention has been placed solely on additive error. In many situa-
tions, this a natural assumption. However, it is quite possible that errors are not additive. For
example, it could easily be that the error depends on the level of the measured variable and so
an error such as

x∗
i = xi × ui

or even

x∗
i = xui

i

is quite possible. Indeed, a model could be formulated to allow different forms such as

x∗
i = l(xi), where l(z) = β0 + β1zγ .

Nonlinearity in the error can cause problems in the analysis, especially if additive error is
assumed but was misspecified.

Finally, in many studies, ME is not independent between responses within sampling units
and so the assumption of independent prior distributions for error may not be appropriate. For
example, in a questionnaire survey there may be correlation between responses to different
questions and so joint prior distributions may need to be assumed. Further, ME may also
be correlated between sampling units. For example, underlying but unobserved stratification
could cause correlated response errors within strata. Further discussion of these problems,
however, is beyond the scope of this book.

13.2 Discrete measurement error

13.2.1 Sources of misclassification

Discrete measurement error arises when outcomes or predictors are measured with error on
discrete scales. In that case, measurement error is sometimes also called misclassification.
Perhaps the commonest example of this would be found in questionnaire responses where a
finite set of possible responses yields integer values. These response outcomes may be ordered
(ordinal) or not (nominal). When a response is not correct then some form of error is found. A
simple example of this would be a question which has a yes/no answer. In this case, an error
is introduced if the correct (true) answer were yes (1) but the respondent answered no (0).
More generally, for a multilevel response with k levels, if the true response were l then any
response l∗ �= l has error. Note that when the binary response is possibly misclassified, then
correction for misclassification is explicitly needed and cannot be ignored as in the continuous
case where the y-measurement error is assumed to be part of the model.

Errors in discrete variates could be ascribable to a number of causes. There may simply
be a recording error that leads to the wrong response. In the case of questionnaire surveys,
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this could be due to interviewer bias, or in the case of switching systems, operator error. In
many cases this could be a relatively random error as it may be assumed that the error is
not intentional. However, there could also be systematic bias in these errors. For example,
recording of a particular respondent could be affected by their speech patterns and so multiple
errors could arise across surveys. Equally systematic errors could occur in switching systems
if they were operated differently at different times. For example, weather conditions might
affect the operation of some systems and might produce a systematic bias.

Another error source arises when self-reported information is sought, but the responses
may be biased due to perceptual errors or even intentional errors. For example, a respondent
in a survey may perceive that they eat low amounts of high fat food, when in fact they
eat large amounts. Alternatively, due to their wish to be seen as eating nutritiously they may
underestimate high-fat foods. This underestimation of ‘bad’ food and overestimation of ‘good’
food relates to theories of social desirability (Crowne and Marlowe 1960; Fisher 1993). Social
desirability is the need to appear socially acceptable in the eyes of others and so this produces
distortions in responses to certain questions.

Ultimately various sources of bias could lead to misspecification bias in the variables and
they might be combined in one study. For example, self-report of dietary intake may have error
due to social desirability concerns, and then recorded by an interviewee who then induces
further bias. In the context of regression models, the effect of such misclassification errors is
a distorted picture of the relationship between the response and the predictor (see Neuhaus
1999; Mwalili et al. 2005).

13.2.2 Misclassification in the binary predictor

Here, we examine a simple case where a discrete binary covariate is included in a linear model
with continuous outcome. More complex scenarios can be found in Gustafson (2004).

Define the independent binary variable as xi, and assume model (13.2). This implies that
E(y | x) = β0 + β1xi. Assume now that the observed predictor is x∗

i . We also assume that the
distribution of x∗

i only depends on xi, and not on yi. In that case we speak of a nondifferential
measurement error. Based on this assumption, we can summarize the misclassification by
Sn = p(x∗ = 1 | x = 1) and Sp = p(x∗ = 0 | x = 0), which are the sensitivity and specificity
of the classification, respectively. Note that under the above linear model it can be shown
that E(y | x∗) = β∗

0 + β∗
1 x∗

i where β∗
0 = β0 + β1 p(x = 1 | x∗ = 0) and the attenuation bias

(expressed as a proportion) is

β∗
1

β1
= 1 − p(x = 0 | x∗ = 1) − p(x = 1 | x∗ = 0). (13.5)

Expression (13.5) demonstrates that the degree of bias depends on the degree of misclassi-
fication given the apparent classification. In terms of sensitivity and specificity, expression
(13.5) can be written as

β∗
1

β1
= (Sn + Sp − 1)

ψ(1 − ψ)

ψ∗(1 − ψ∗)
,
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where ψ = p(x = 1) and ψ∗ = p(x∗ = 1) = (1 − Sp) + (Sn + Sp − 1)ψ . The interpretation
of these results follows immediately in that when Sn = Sp = 1 then the attenuation proportion
is 0, and increases when Sn or Sp increases.

Bayesian approaches to accommodating discrete measurement error usually involve the
assumption of certain distributional forms for model components. We now look at an example
of such an approach with an outcome variable y and a vector of continuous predictor variables
(z) and a binary exposure variable x. A simple example could be a logistic regression for a
binary outcome y so that for a single observation

logit p(y = 1 | x, z) = β0 + β1x + βT
2 z (13.6)

and

logit p(x = 1 | z) = ρ0 + ρT
1 z, (13.7)

with β2 and ρ1 regression vectors pertaining to the continuous covariates. These two relations
define the joint distribution of y, x | z and the conditional distribution of x given y, z. It is also
straightforward to show that

logit p(x = 1 | y, z) = ρ0 + β1y + ρT
1 z + h(z,β), (13.8)

which frames the problem in terms of an ‘exposure given outcome’ model. One simplification
then is to ignore the final nonlinear term h(z, β), and so we have a linear model in y and z. We
could use either expression (13.6) with expression (13.7) or use the simpler exposure given
outcome model based on expression (13.8).

13.2.2.1 Example: The IRAS multicenter study

In the IRAS multicenter study (Insulin Resistance and Atherosclerosis Study) (Liese et al.
2004), the relationship between insulin resistance and cardiovascular disease (CVD) and its
risk factors in a tri-ethnic (African–American, Hispanic, and non-Hispanic white) population
aged 40–69 years at baseline was examined. In addition, it was the aim to identify the genetic
determinants of insulin resistance and visceral adiposity.

Here we look at the relationship between blood pressure (CurrBPMd) and nutrition and
exercise. Participants were asked to respond to two binary questions of current activity: the
first of these was the current healthy diet (CurrD: yes(2)/no(1)) and the second was the
current physical activity level (CurrE: low(1)/high(2)). These questions were self-assessed
and so may be prone to misclassification. The outcome of interest for subjects was current
blood pressure state (CurrBPMd: high (2)/low(1)) and a continuous blood chemistry covariate
(FG: fasting glucose ×10−1) was also measured.

There were 152 participants. Table 13.1 displays a partial listing of the data. We regard
CurrD and CurrE as surrogate measures for ‘healthy lifestyle’ behavior. Hence, they both
represent an aspect of ‘healthy’ lifestyle behavior and could be regarded as reasonable surro-
gates. In this example we have 53/152 exposed to exercise and 63/152 have healthy diet. We
also have high blood pressure registered for 29/152 participants. The first ratios are estimates
of proportion ‘exposed’ in the study. Figure 13.9 displays various marginal and conditional
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Table 13.1 IRAS study: blood pressure (CurrBPMd) measured with a covariate Glychem
(FG = Fasting Glucose ×10−1) and discrete possibly misclassified covariates consisting of
self-reported dietary intake (CurrD) and exercise (CurrE).

CurrD CurrE FG CurrBPMd

1 1 10.90 1
1 1 7.56 1
1 1 9.18 1
2 1 7.72 1
2 1 12.92 2
1 1 6.02 1

plots of the variables in the data set. Fasting glucose seems to show a slight relation with level
of CurrBPMd whereas the conditioning plots also show some relationship.

We have fitted two models to this data example using WinBUGS. For simplicity we
have only examined a single exposure surrogate (current diet). However, the analysis can be
extended to incorporate more surrogates (as in this case). The first model is the joint surrogate
model with

logit p(y = 1 | x, z) = β0 + β1x + β2z,

logit p(x∗ = 1 | x, z) = α0 + α1x + α2z,

1
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Figure 13.9 IRAS study: (1) top left: box plots of glucose against CurrBPMd and (2) three
conditional plots of the discrete predictors and outcome against glucose.
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Table 13.2 IRAS study: posterior estimates of model parameters from a converged MCMC
sampler for models 1 and 2: median and 95% credible interval.

Model 1 Estimate (95% CI) Model 2 Estimate (95% CI)

β0 −0.5394 (−1.796, 0.3486) β0 −0.10230 (−0.7467, 0.2606)
β1 −0.2069 (−1.775, 0.8136) β1 −0.04419 (−0.7472, 0.4456)
β2 −0.0759 (−0.179, 0.0440) β2 −0.06642 (−0.6505, 0.2793)

β3 −0.00496 (−0.0560, 0.0561)
α0 −0.3898 (−1.447, 0.4475) α0 5.27E-4 (−0.6365, 0.6475)
α1 0.1590 (−1.712, 0.9114) α1 0.00105 (−0.6194, 0.6359)
α2 0.0185 (−0.071, 0.1231) α2 0.00259 (−0.6208, 0.6138)

with x as the true current diet (acting as a latent variable), x∗ is the observed current diet, y is
the current blood pressure level, and z is the continuous fasting glucose ×10−1. The second
model is the exposure given outcome model. In particular, we considered

logit p(x∗ = 1 | x, y, z) = β0 + β1x + β2y + β3z,

logit p(x = 1 | y, z) = α0 + α1y + α2z,

as a joint exposure given outcome model variant. The results of fitting these two models to the
data are displayed in Table 13.2. For both models, not only convergence of the deviance was
attained by 20 000 iterations but also for the individual parameters convergence was found.
The posterior median parameter estimates for the converged samples from both models are
displayed in Table 13.2. In either model there is little evidence of significant relations between
the outcome and the continuous covariate, although in model 1 there is stronger evidence of
association between blood pressure and glucose and diet and glucose, given the values of β2

and α2.

13.2.3 Misclassification in a binary response

When a categorical response is suspected to have misclassification error then this will also
affect the relationship between the response and the covariate(s). We will now illustrate this
with the Signal-Tandmobiel® study.

13.2.3.1 Example: Misclassification error in scoring caries experience in the
Signal-Tandmobiel® study

The Signal-Tandmobiel® study was introduced in Example II.3. Here, we consider data
collected in the last year (2001) on 100 children, randomly selected from the total sample.
One of the purposes of this study was to search for predictors of caries experience (CE). CE
can be analyzed on mouth level, i.e. whether there is caries (yes = 1, 0 = no) in the mouth
somewhere. However, of more interest to the dentists is to look for predictors of CE on the
surface level, i.e. whether there is CE on the surface. The data have a three-level structure: (1)
surfaces, (2) within teeth, and (3) within mouths. Therefore, a multilevel logistic regression
model was considered to explore the effect of predictors at subject level, tooth level and
surface level. The covariates at subject level were age at examination (note there was still
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considerable age variation despite that the children were examined around the age of 11 years)
and gender. We considered one covariate at tooth level, i.e. whether the tooth is deciduous
or permanent. At surface level, we have included four binary covariates: (1) lingual surface
(surface where the tongue would be), (2) mesial surface (surface visible from the side closest
to where the middle line of the face would be), distal surface (surface visible from the side
furthest from where the middle line of the face would be), and (3) occlusal surface (surface
of a tooth that occludes with or contacts an opposing surface of a tooth in the opposing jaw).
The buccal (frontal) surface was chosen as baseline surface. Note that only premolars and
molars have five surfaces, the other teeth have four surfaces.

In oral health surveys, the detection of CE is prone to misclassification for several reasons,
thereby affecting the quality of the obtained data. For this reason, calibration exercises, which
aim to assess and improve the scoring behavior of dental raters, were organized. During a
calibration exercise, a sample of children is examined by the benchmark scorer and the dental
examiners allowing the estimation of misclassification probabilities. This misclassification
information can be used for correction purposes in the main data.

In this sample, there were 53 boys with a mean (SD) age of 11.6 (0.36) years. There
were 311 surfaces with CE from a total of 10 800 surfaces. Most caries were found on the
occlusal surface (162/311). To simplify matters, we assumed here that there was only one
dental examiner (hence lumping together all 16 dental examiners into one). The misclas-
sification Table 13.3 obtained from the calibration exercises, allows us to estimate the Sn

(=428/(428+146)=0.75) and the Sp (=4684/(4684+146)=0.98). We assumed nondifferential
misclassification, which means that the probability of misclassification only depends on the
true status of the surface.

The multilevel logistic regression model at surface level is defined as follows. Let ymts

denote the true binary CE outcome obtained from the benchmark scorer for surface s =
1, . . . , S in tooth t = 1, . . . , T of subject m = 1, . . . , M. This model involves two random
effects: bm ∼ N(0, σ 2

m) for the mouth level and bt ∼ N(0, σ 2
t ) for the tooth level. Without

misclassification, the multilevel logistic regression model is given by

logit [p(ymts = 1 | xmts, b)] = xT
mts β + bm + bt,

where β represents the fixed effects. Denote the possibly corrupted binary score obtained
from the dental examiner as y∗

mts. From the above misclassification table Sn and Sp are avail-
able. The corrected multilevel logistic regression model (corrected for misclassification) is
given by

p(y∗
mts = 1 | xmts, b) = (1 − Sp) + [Sn + Sp − 1][expit(xT

mts β + bm + bt )],

Table 13.3 Signal-Tandmobiel study: misclassification table.

Benchmark
0 1

Examiner 0 4684 146
1 87 428
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Table 13.4 Signal-Tandmobiel study: parameter estimates of corrected and uncorrected
multilevel logistic models.

Uncorrected Corrected
Parameter estimate (SD) 95% CI estimate (SD) 95% CI

Fixed effects
Intercept −5.973 (0.558) [−7.250, −5.112] −9.378 (1.205) [−11.592, −6.894]

Gender
Girls −0.043 (0.476) [−1.024, 0.851] −0.266 (0.885) [−1.951, 1.374]
Boys . . . . . . . . . . . .

Age 0.370 (0.273) [−0.161, 0.879] 0.600 (0.571) [−0.536, 1.790]

Dentition type
Permanent −2.550 (0.308) [−3.151, −1.969] −4.273 (0.610) [−5.588, −3.169]
Deciduous . . . . . . . . . . . .

Surface type
Distal 0.407 (0.299) [−0.162, 0.997] 1.107 (0.626) [−0.027, 2.440]
Mesial 0.847 (0.291) [0.299, 1.435] 2.153 (0.618) [1.062, 3.517]
Lingual 0.294 (0.297) [−0.265, 0.868] 1.093 (0.617) [−0.041, 2.429]
Occlusal 3.755 (0.286) [3.224, 4.322] 6.806 (0.837) [5.313, 8.505]
Buccal . . . . . . . . . . . .

Random effects
σ 2

m 4.946 (1.530) [2.810, 8.747] 16.836 (5.632) [8.275, 30.907]
σ 2

t 4.450 (0.730) [3.226, 6.114] 11.540 (2.646) [7.194, 16.879]

where expit represents the inverse of the logit function. Plugging in the obtained values for Sn

and Sp allows us to estimate the regression coefficients, β, expressing the relationship between
the true CE outcome and the covariates.

For the regression coefficients β, we assumed vague normal priors, i.e. with mean 0 and
variance 106. The prior distribution for the standard deviations of the random effects was taken
as uniform, i.e. σm ∼ U(0, 100) and σt ∼ U(0, 100). The analysis was performed using JAGS
3.1.0. Three MCMC chains each of 2000 iterations were run with 200 burn-in iterations for
both models. Convergence was assessed using Brooks, Gelman and Rubin’s (BGR) diagnostic
(R̂) which was close to 1 for all the parameters. In Table 13.4, we show the posterior estimates
of the parameters.

We found that age and gender do not contribute significantly to CE. Permanent teeth
show less CE than deciduous teeth, which can be explained from the fact that deciduous teeth
have been exposed for a longer period to acid-producing bacteria. Further, compared to the
buccal surface there is more CE on the mesial and occlusal surfaces. Further, there appears
to be an important mouth and tooth variability. Finally, one can observe that all corrected
regression coefficients are greater in absolute value than the corresponding uncorrected ones,
which again illustrate the attenuation effect due to measurement error.

Note that we have assumed in our analysis that the misclassification probabilities Sn and
Sp are known. However, a proper analysis should take into account the uncertainty with which
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these correction terms are estimated. This can be easily done by an appropriate change in the
(WinBUGS, JAGS, etc.) program. For details on how this could be done and for correction for
misclassification in other categorical models we refer to Mwalili et al. (2005), Lesaffre et al.
(2004), Mwalili et al. (2008), Lesaffre et al. (2009), Mutsvari et al. (2010), and Garcia-Zattera
et al. (2010).

13.3 Closing remarks

In this brief overview of measurement error, we have deliberately demonstrated simple ex-
amples with simple models for outcomes. Measurement error, and in particular Bayesian
approaches to measurement error, is a broad topic with a relatively large literature associated
with it. The reader is directed to Gustafson (2004), Carroll et al. (2006) and Buonaccorsi
(2010) for more detailed coverage of this important topic area. Finally, it should be stated
that, for many problems involving measurement error, the Bayesian paradigm in combination
with powerful software such as WinBUGS provides an ideal approach or set of methods, not
only for handling unobserved or latent effects, but also for allowing the use of prior distri-
butions and the ability to control the estimation of effects appropriately. Many measurement
error problems cannot be approached easily via the use of conventional frequentist methods.
Finally, note that all examples can also be analyzed with the SAS procedure MCMC.
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14

Survival analysis

Survival analysis is a fundamental part of modern biostatistics. It is focused on the analysis of
‘time to event’ type of data where the variable or outcome of interest is time itself. Examples
abound of this kind of data come from reliability testing (where the time to failure of a device
is of interest), finance (time to maturity), clinical trials (time to cure or adverse outcome), etc.
In biostatistical practice, time to an event is common in a clinical trial setting where groups
of subjects are given treatments and then the subjects are followed up in time. In the clinical
setting, it is often a concern to monitor patient survival under different treatment regimes and
relate this to other treatment outcomes.

At the population level, survival data can be found in cancer registries, where each case
is logged with date of diagnosis and also (possibly) vital outcome. Many countries now
have registries for diseases such as cancer. Cancer occurrence is commonly found in national
registries. Cancer-registry data usually consist of unique individual records where date of
diagnosis, cancer type and severity and basic individual demographic data are lodged. In
addition, the individual record can often be linked to vital outcome so that duration of illness
may also be recorded. In this type of data, date of diagnosis can be regarded as an endpoint,
as well as date of vital outcome.

14.1 Basic terminology

Define the random variable t as the time to an end point (death, cure, changed state etc.).
We will focus on the failure or endpoint density denoted by f (t) and related quantities. The
function f (t) is a probability density on the times to endpoint. There are various special
functions related to this density that are useful in survival analysis.

We can define the cumulative distribution function of failure times as F(t) = ∫ t
0 f (u)du

and the survivor function as S(t) = 1 − F(t), which is the probability of failure/endpoint
given no failure endpoint prior to t. Other important relations follow: f (t) = −dS(t)/dt and
the hazard function defining the instantaneous failure rate conditional on surviving to t is
defined by the ratio

h(t) = f (t)/S(t).

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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The hazard function can be derived directly from the survivor function as h(t) =
−d log(S(t))/dt. A cumulative hazard can also be defined by H(t) = ∫ t

0 h(u)du =
− log(S(t)). These relations lead to further important identities:

S(t) = exp[−H(t)] = exp

[
−

∫ t

0
h(u) du

]
,

f (t) = h(t).S(t) = h(t). exp

[
−

∫ t

0
h(u) du

]
.

Assume that a sample of individuals have associated endpoint times {ti}, (i = 1, . . . , n).
For now assume that these times are all observed exactly. In addition to these ingredients, each
observation unit can have covariates associated and, for the ith unit/person these are denoted
by the vector xi. These covariates could be individual or contextual/ecological. Reviews of
Bayesian survival methods can be found in Gustafson (1998a) and Ibrahim et al. (2000). For
Bayesian proportional hazard modeling see Carlin and Hodges (1999).

14.1.1 Endpoint distributions

Often a failure time or endpoint distribution is specified for the time to endpoint and this is
often chosen from distributions on the R+ line. Common choices are among the Weibull or
extreme value, lognormal or gamma families. Hence, for a parametric survival model, at the
first level of the hierarchy, the data model consists of an endpoint distribution. For flexibility,
we will initially assume a Weibull distribution in the following. The probability of an endpoint
at time ti under a Weibull distribution is specified by

f (ti) = ρμtρ−1
i exp(−μtρi ), (14.1)

where ρ > 0 and μ > 0. The survival and hazard functions derived from this specification
are

S(ti) = 1 −
ti∫

0

f (u) du = exp(−μtρi ),

h(ti) = f (ti)/S(ti) = ρμtρ−1
i .

The parameterization emphasizes the modeling of a function of the mean of the distribution
via μ. Note that this allows a straightforward interpretation of the model component for this
distribution: covariates (and contextual effects, see Section 14.1.3) can be included within
μ and the parameter ρ provides the shape of the distribution. Often modeling proceeds via
the hazard function, rather than the density, and for the Weibull this decomposes into two
components:

h(ti) = h0(ti) × h1(ti) = ρtρ−1
i × μi.

Here h0(ti) is regarded as a baseline hazard, while h1(ti) is a nonbaseline component which
is most often the focus of modeling. Usually, it is assumed that a predictor term is linked to
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the parameter μi and each unit will have a different μi depending on covariates. A log-linear
specification is often assumed, for example,

log(μi) = xT
i β, (14.2)

where xi is the vector of individual unit-level covariates and β the corresponding parameter
vector. This leads to a hazard, modulated by covariates, where the baseline risk is decreasing
for ρ < 1, constant for ρ = 1 and increasing for ρ > 1:

h(ti) = ρtρ−1
i . exp(xT

i β).

Note that the Weibull model displays a feature termed proportionality of hazard, whereby the
baseline hazard is modulated by the covariates in a multiplicative (log-linear) relation. This is
an example of a proportional hazards (PH) model, and these models are discussed more fully
in Section 14.1.5.

While the Weibull is a flexible distribution, there are many alternatives, some of which
do not impose the constraints of proportionality of hazard. A wider class of models is the
accelerated failure time (AFT) models. These models replace the ti within the survival and
hazard functions with a modulated function of covariates: ti exp(xT

i β). This leads to a covariate
acceleration/deceleration of risk. The Weibull is a special case of this general class. Note that
the AFT model is in fact a linear model in the log of time:

log(ti) = α + xT
i β + εi,

where εi is an error term independent of xi (not necessarily zero centered) and α is an intercept.

14.1.2 Censoring

Censoring occurs when the time of event endpoint is not observed exactly. Censoring is always
an important issue in survival analysis as it is often the case that times are not observed exactly.
For example, the most common form of censoring is right censoring where a study ends but
individual observation units have not experienced the endpoint. This leads to two forms of
data: observations with exact uncensored times {tu} and observations with censored times {tc}.
Under right censoring the censored times will be a time beyond which no observation was
made. This could be a time of drop out or study end. For parametric models, this can be treated
via a survivor function term product in the likelihood. For example, for right censoring we
can assume

L =
∏

u

f (tu)
∏

c

S(tc),

where u denotes uncensored and c denotes right censored, and S(·) is the probability of
surviving beyond a censoring time tc. Note that this likelihood simplifies if you assume a
censoring indicator γ which takes 0 for censored and 1 for uncensored, as

L =
∏
all t

h(t)γ S(t).

Other likelihood forms can similarly be derived for alternative censoring mechanisms.



P1: JYS/XYZ P2: ABC
JWST177-c14 JWST177-Lesaffre May 18, 2012 11:59 Printer Name: Yet to Come Trim: 244mm × 168mm

BASIC TERMINOLOGY 393

14.1.3 Random effect specification

As most survival data are observed at the individual unit level, there could be either individual
covariates or random or contextual effects relating to the individual. For example, the age of
an individual could be a personal covariate and the location coordinates of the individual’s
address could be regarded as personal covariates also. In addition, there could be an individual
level random effect which allows for frailty among individuals. This could be correlated or
uncorrelated. The correlation could be induced by a grouping in the data, e.g. a common
region or stratum. Survival models that involve individual frailties are called frailty models.

An example of a frailty model is obtained by adding a random intercept to expression
(14.2), i.e.

log(μi) = xT
i β + vi, (14.3)

with vi an uncorrelated random effect given a prior distribution, i.e. vi ∼ N(0, σ 2
v ) where

σ 2
v = τ−1

v . This model was suggested by Carlin and Hodges (1999). We can extend this
formulation by consideration of additional effects within the log-linear predictor. For example,
we could specify

log(μi) = xT
i β + �i

�i = vi + ui + . . . , (14.4)

where �i contains the unit specific random effect terms. These effects could be individual
unit level or they could be contextual in that they could relate to population groups, regions
or other strata within the hierarchy. Note that, in this case, the PH assumption is not satisfied
anymore.

The AFT model can also be extended to a frailty version by the addition of random effects
which are individual or contextual in the form of

log(ti) = α + xT
i β + �i + εi,

where �i is a random effect term (as in expression (14.4) above).

14.1.4 A general hazard model

In the context of cancer registry data, Banerjee and Carlin (2003) proposed a relaxation of the
Weibull model to allow a semiparametric formulation whereby, with subject i (i = 1, . . . , nj)

in the jth (county) group:

h(tij|xij) = h0 j(tij) exp(xT
ij β + v j),

where h0 j denotes the county-specific baseline hazard. For an individual with censoring
indicator γij (0 if alive, and 1 if dead), the likelihood contribution is then

h(tij; xij)
γij exp[−H0 j(tij) exp(xT

ij β + v j)],

where H0 j(tij) = ∫ tij
0 h0 j(u)du is a county-specific cumulative baseline hazard and the covari-

ates are assumed to be time independent. The baseline hazard appears in this likelihood and so
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must be estimated. Different approaches have been proposed for the estimation of the baseline
hazard. One approach assumes a gamma process which is a function of a parametric cumu-
lative hazard (see Ibrahim et al. 2000; Lawson and Song 2010). Another approach involves
the use of beta mixtures (Banerjee and Carlin 2003). A related spatial model was developed
by Bastos and Gamerman (2006) whereby they assumed time-dependent covariates which
are fixed within small time periods and a correlated spatial frailty. They assumed no separate
baseline risk, however.

14.1.5 Proportional hazards

Proportionality of the hazard is a common assumption in basic survival applications. For
ordered times {t(1), . . . , t(m)} with no censoring, Cox (1972) derived a partial likelihood which
is free of the baseline hazard. It is given by∏

i

exp(xT
(i)β)/

∑
j∈Ri

exp(xT
j β),

where Ri is the set of those individuals at risk just before the ith event time. This approach
allows the estimation of regression parameters without estimating the baseline hazard function
because the baseline hazard is factored out of the likelihood. This semiparametric approach
is often referred to as the Cox model. If, in addition, also the baseline hazard needs to be
estimated then a nonparametric estimator can be used. For the PH model, we can further
estimate the survivor function for a given covariate pattern via the identity

S(t|xi) = S0(t)
exp(xT

i β),

where S0(t) must be estimated separately.

14.1.6 The Cox model with random effects

The Cox proportional hazards model has been applied in a spatially correlated context by
Henderson et al. (2002). Note that contextual effects can be included by extending the
specification of the intensity term exp(xT

i β) to include random effects

exp(xT
i β + vi), (14.5)

where vi are random contextual effects which could be at an aggregate level such as strata,
geographic region or other grouping unit. In addition, these effects could also be purely
individual (in the sense of frailty rather than context).

14.2 The Bayesian model formulation

For a Bayesian model formulation, it is common to assume a full likelihood (rather than a
partial likelihood) as h0(t) and hence S0(t) can be modeled via flexible prior distributional
specifications. For example, gamma processes can be assumed or a mixture of beta distri-
butions for the hazard (Banerjee and Carlin 2003; Dunson and Herring 2005; Ibrahim et al.
2000). Two examples of Bayesian models with such a form are a Weibull model with random
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effects at the individual level and a nonproportional competitor: the AFT model with random
effects.

14.2.1 A Weibull survival model

Let us take the general formulation of the Weibull model introduced above. The hazard is of
the form

h(tij|xij) = ρtρ−1
ij exp(xT

ij β + �i),

where �i can have a range of effects included depending on the application. For example, in
the situation where individual and treatment group effects are important then a form such as
�i = vi + λi(i∈ j) might be considered where vi is an individual effect and λi(i∈ j) is a group
effect shared by all individuals within the jth group.

There is a facility in WinBUGS for the specification of a censoring mechanism within
the definition of a distribution. This facility allows the use of a censoring variable to denote
censoring times and can be used for different types of censoring (e.g. right, left and interval).
The format is defined, in general, for a time variable t[i] and distribution dist() as

t[i]˜dist()I(,)
.

The indicator notation is used to define limits for the censoring mechanism. I (lower, upper)
specifies the lower and upper limits for the observed quantity. For example, right censored
data with a censoring vector Tlow would have I(Tlow,) specified. An example of the type
of specification for a Weibull distribution with right censoring would be

t[i]˜dweib(rho,lambda[i])I(tcen[i],).

Here, rho is the shape parameter of the distribution, lambda[i] is the nonbaseline param-
eterized hazard, and tcen is a vector of censored observation times. An example of some
code for a simple Weibull model is

for(i in 1: n)
t[i] ˜ dweib(rho,lambda[i])I(tcen[i],)
lambda[i] <- exp(beta0+v[i])
v[i] ˜ dnorm(0,tauv)
median[i] <- pow((log(2) /lambda[i]), 1/rho)
log(surv[i]) <- -lambda[i]*pow(t[i],rho)

Here, the n subjects have noncensored times (t[i]) or censored times (tcen[i]).
The nonbaseline hazard is log linear and defined to have a constant term (beta0) and an
individual level random effect (v[i]), which is assumed to have a zero mean Gaussian prior
distribution: v[i] ˜ dnorm(0,tauv). For the Weibull distribution, the median survival
time and the survivor function have closed forms and can be computed within a MCMC
sampler. The median survival time is given by med(Si) = [log(2)/ exp(xT

ij β + �i)]1/ρ for
linear predictor xT

ij β + �i and this is given by code

median[i] <- pow((log(2) /lambda[i]), 1/rho).
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The survivor function or log survivor function can also be specified for a linear predictor
and is given simply by log(Sij) = −[exp(xT

ij β + �i)]t
ρ
i j, and in terms of code, is specified

as log(surv[i])<- -lambda[i]*pow(t[i],rho). The censoring mechanism re-
quires that two different vectors are specified for the censoring. We demonstrate this with
a simple example of ten individuals with two censored observations (items 3 and 4) and
eight uncensored observations. In WinBUGS, any censored or missing observation must be
specified as NA, and then in the censored vector, the time of censoring is specified for all the
data. In the case of uncensored data, the censoring time would be 0 for right censoring. The
censoring time for the censored data is 6.0 in this example. Hence, in list format, we could
read data in as

list(t=c(2.3,2.3,NA,NA,3.5,4.1,4.5,4.5,5.4,5.6),
tcen=c(0,0,6.0,6.0,0,0,0,0,0,0),...)

In the initialization, however, missing values of the vector t must be given ‘credible’
initial values. If the censoring time is 6.0 then the initial values must be ≥ 6.0. Hence in the
inits statement in WinBUGS we could have

list(...,t=c(NA,NA,7.0,7.0,NA,NA,NA,NA,NA,NA),...),

where the observed data are denoted NA and the censored data are given an initial value.
A full WinBUGS program for this arbitrary example is given in Figure 14.1. In this

program, the prior distributions for the parameters are taken relatively noninformative: ρ ∼
Gamma(1.0, 1.0 × 10−4), β0 ∼ N(0, 1.0 × 10−4), vi ∼ N(0, σ 2

v ), τv = σ−2
v , σv ∼ U(0, 10).

model{
for (i in 1:10){
t[i] ˜ dweib(rho,lambda[i])I(tcen[i],)
lambda[i] <- exp(beta0+v[i])
v[i] ˜ dnorm(0,tauv)
median[i] <- pow((log(2) /lambda[i]), 1/rho)
log(surv[i]) <- -lambda[i]*pow(t[i],rho)
}

beta0 ˜ dnorm(0,0.0001)
rho ˜ dgamma(1.0,0.0001)
tauv <- pow(sdv,-2)
sdv ˜ dunif(0,10)
}
# data
list(t=c(2.3,2.3,NA,NA,3.5,4.1,4.5,4.5,5.4,5.6),
tcen=c(0,0,6.0,6.0,0,0,0,0,0,0))
# inits
list(v=c(0,0,0,0,0,0,0,0,0,0),
t=c(NA,NA,7.0,7.0,NA,NA,NA,NA,NA,NA),
sdv=0.1,rho=0.1,beta0=0.1)

Figure 14.1 A WinBUGS program for the arbitrary survival example with log linear
predictor with intercept and zero mean Gaussian random effect.
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14.2.2 A Bayesian AFT model

Alternative specifications which do not require proportionality of hazard assumptions are
sometimes favored. One such is the AFT model. This model provides a simple option for this
and is specified as

log(tij) = α + xT
ij β + �ij + σεi,

where α + xT
ij β is a linear predictor subset with intercept and linear combination of regression

predictors and parameters, �ij is a set of random effects, and finally εi is the error term. Let
f (·) denote the density function of t and f0(·) denote the density function of ε. S(·) and S0(·)
denote the survival functions and h0(·) and h(·) represent the hazard functions corresponding
to f0(·) and f (·), respectively. Then, we have

f (tij|λij) = 1

σ tij
f0

(
log(tij) − λij

σ

)
,

S(tij|λij) = S0

(
log(tij) − λij

σ

)
,

h(tij|λij) = 1

σ tij
h0

(
log(tij) − λij

σ

)
.

This leads to the following likelihood

L =
n∏

i=1

ni∏
j=1

[
1

σ tij
f0

(
log(tij) − λij

σ

)]δij

S0

(
log(tij) − λij

σ

)1−δij

, (14.6)

where λij = α + xT
ij β + �ij, f0(·) and S0(·) are the base failure distribution and correspond-

ing survival distribution. The choice of f0(·) is varied and target distributions include the
Gaussian distribution, the logistic distribution and the extreme value distribution. For the lo-

gistic model, we have that S0(ε) = 1
1+exp(ε)

and so S(tij|λij) = S0

(
log(tij)−λij

σ

)
= 1

1+[tij exp(−λij)]1/σ

and f (tij|λij) = S0

(
log(tij)−λij

σ

)2
exp

(
log(tij)−λij

σ

)
. The logistic AFT model will be applied to a

gastric cancer data set in Section 14.3.1.

14.3 Examples

14.3.1 The gastric cancer study

In this example, we examine a data set analyzed originally by Moreau et al. (1985)
and provided at http://cancercenter.mayo.edu/mayo/research/biostat/
therneau-book.cfm by T. Therneau. This consists of survival times of 90 patients suf-
fering from gastric cancer. In addition to a covariate for two treatment modalities (treatment:
chemotherapy, OR chemotherapy and radiation), the data are censored individually (outcome:
death = 1, censored = 0). Figure 14.2 displays box plots for treatment group and an over-
all histogram of the survival times. There is a clear median difference between the groups
although the overall variability is similar. Figure 14.3 displays the empirical Kaplan-Meier
survival curves for the two treatments.
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Figure 14.2 Gastric cancer study: comparison of treatment groups in terms of survival times.

There appears to be an effect of treatment, particularly in the early stages. To model this
effect we have examined both Weibull and AFT models with relevant treatment effects and
also variants with different specifications for random effects and survival rates. Table 14.1
displays the results in terms of DIC, D, effective number of parameters (pD) and MSPE
for different Weibull model fits to the gastric cancer data. The first model (model 1) is a
simple specification with ti ∼ Weibull(ρ, λi) where the rate parameter is defined as log(λi) =
β0 + μ j(i∈ j), ( j = 1, 2) which is an overall rate with a treatment effect for the jth group (in
which the ith person lies). The remainder of the hierarchical model is specified as follows:

β0 ∼ N(0, σ 2
β ),

μ j ∼ N(0, σ 2
μ), ∀ j

log(ρ) ∼ N(0, σ 2
ρ ),

1.
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Figure 14.3 Gastric cancer study: Kaplan–Meier nonparametric survival curve estimates for
the treatment groups plotted as separate curves.
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Table 14.1 Gastric cancer study: Weibull model goodness of fit, with
model 1: intercept + treatment effect, model 2: as model 1 + random
effect and model 3: as model 2 but with individual scale parameters.

Model pD D DIC MSPE

1 3.00 1043.60 1046.54 213900.0
2 12.03 1035.40 1047.04 204200.0
3 4.50 1053.70 1058.30 453800.0
4 3.55 1043.00 1046.55 230800.0

with all precisions specified with the σ -uniform prior distributions (Gelman 2006), i.e. σ∗ ∼
U(0, c), with c = 5. The second model (model 2) extends model 1 by adding an individual
frailty (random) effect. Here, log(λi) = β0 + μ j(i∈ j) + vi and νi ∼ N(0, σ 2

v ) and τv = σ−2
v ,

σv ∼ U(0, c), with c = 5. It is clear from Table 14.1 that this addition lowers the average
deviance (D) but due to the increased parameterization leads to a slightly higher DIC than
model 1. It does have a lower MSPE. The next model considered allows the shape parameter
ρ to vary with the individual so that ti ∼ Weibull(ρi, λi). In this model, we assumed that the
prior distribution for ρi is lognormal so that log(ρi) ∼ N(0, σ 2

ρ ) and excluded the individual
level random effect. This model allows for a variation in shape. Applied to our data leads
to a higher D, and DIC and also MSPE, hence would not be favored as a parsimonious
description of the data. Finally, we considered a model (model 4) where the shape parameter
is a function of the treatment group: ti ∼ Weibull(ρ j(i∈ j), λi). In this case, DIC is close to that
of the model 1 with a slightly lower D but a slightly higher pD. The MSPE is higher than for
model 1 or 2. Hence, based on DIC, models 1, 2 and 4 are to be favored. Model 1 is favored
based on parsimony, although model 3 has a lower D. From a predictive view point, model 2
would be favored due to its relatively low MSPE.

Figure 14.4 displays for Weibull model 1 (lowest DIC) the posterior mean of the estimated
uncensored survival times. It should be noted that the posterior mean estimates of the μ j are
not well estimated under this model. However, under the competing model (model 4) where
the shape parameter is modeled by group, the separate group shape parameters are well
estimated: ρ̂1 :1.525 (SD = 0.2073) and ρ̂2 :1.19 (SD = 0.137).

There is a possibility that the hazards are nonproportional in this example and so we also
considered an AFT model. We assumed here a logistic base distribution for f0(·) and so the
survival probability will be 1

1+[tij exp(−λij)]1/σ . Further, we assumed that the likelihood (14.6) is
relevant. To fit this model within the WinBUGS framework, we can use a a programming trick
that is available for arbitrary likelihoods (the zeros or ones trick). This trick was explained
in Section 10.3.5. The zeros trick for this example is shown in Figure 14.5. The arbitrary
likelihood is defined in L[i], the survival probability is s[i] and indic[i] is the binary
censoring indicator. A log-linear model is taken for the rate (lam[i]) with β0 + μ j(i∈ j) and
with σ ∼ U(0, 5).

The next model considered is one with a frailty term included for individuals (vi ∼
N(0, σ 2

v )). We already noted that this was not a competitive model when a Weibull distribution
was used, and in this case, we have found little change in the overall DIC. In addition we
examined the pseudo-marginal likelihood which is a cross-validated measure of goodness of
fit and can be estimated via Mpl = ∑

i log(CPOi), where CPOi is the conditional predictive
ordinate for the ith observation (see Section 10.2.1 and Ibrahim et al. 2000, Chapter 6.3). In
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Figure 14.4 Gastric cancer study: Weibull model fit (model 1): posterior mean estimated
survival with 95% credible interval (dashed line) (uncensored data only shown).

general, the larger the value of Mpl the more favored is the model. For different data sets, an
averaged value can be used (Mpl/n). For the AFT models of the gastric cancer data set, we have
the following results for Mpl/n: model 1: −466.1, model 2: −527.1, model 3: −527.1. Based
on these results, it appears that model 1 remains the best model in terms of cross-validatory
prediction. Assuming this model, we derived the posterior mean survival probability and 95%
credible intervals from the posterior sampler.

Figure 14.6 displays the results for model 1 for a posterior sampler based on MH updating.
The estimated mean rate parameters for the treatment groups (μ j(i∈ j)) are 2.132 (SD = 1.151)

C <- 10000
for (i in 1:90) {
temp[i] <- (log(timeF[i]+0.01)-log(lam[i]))/sigma
log(lam[i]) <- beta0+mu[treat[i]]

#logistic
s[i]<-1/(1+exp(temp[i]))
f[i]<-exp(temp[i])*pow(s[i],2)

# log likelihood
L[i]<-indic[i]*log(f[i]/(sigma*(timeF[i]+0.01)))+(1-indic[i])*

log(s[i])
# Poisson zeroes trick

zeros[i] <- 0
new[i] <- -L[i]+C
zeros[i] ˜ dpois(new[i])
}

Figure 14.5 Gastric cancer study: WinBUGS code which uses a zeros trick to allow sampling
of a arbitrary AFT survival density with censoring.
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Figure 14.6 Gastric cancer study: posterior sample estimates for the mean survival proba-
bility 1/[1 + (tij exp(−λij))

1/σ ] and sample-based pointwise 2.5% and 97.5% credible limits
using an AFT model.

and 1.652 (SD = 1.129) and so it seems that the overall posterior mean treatment difference
(μ1 − μ2) is 0.4969 (SD = 0.1964) and this demonstrates that we have an average treatment
effect.

In both the Weibull and AFT model versions, we can see that the treatment regimes do
affect the survival probability with chemotherapy alone seeming to lengthen survival in this
comparison.

14.3.2 Prostate cancer in Louisiana: A spatial AFT model

In the US, a number of states have designated Surveillance, Epidemiology and End Results
(SEER) cancer registries which are federally standardized registries for all reported cancers.
In these state-based registries any new diagnosis of cancer is logged with relevant basic patient
information such as date of diagnosis, age, gender, marital status, cancer severity (grade,
stage) and residential address. The registries can sometimes be linked to vital outcomes also
and so in some cases there is also data on whether and when a patient died.

A SEER registry has existed from 2001 for the state of Louisiana and is continuously
operational up to the present. In this example, we demonstrate the possibility of contex-
tual modeling of survival outcomes. In particular, we demonstrate that geographical context
(county of residence) can be incorporated in a survival setting to explain spatial variations in
survival risk. Some of the model components presented here were introduced in Chapter 16.
A fuller description of this example is given in Zhang and Lawson (2011).

Let tij denote the survival time after diagnosis for patient i in county j, and xij denotes
possible risk effects corresponding to tij, where i = 1, · · · , nj, j = 1, · · · , n. The AFT model
can be expressed as:

log(tij) = μ + xT
ij β + σεij ,
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where β is the unknown coefficient vector, μ and σ are the shape parameter and the scale
parameter, respectively, and the εij’s are independent random errors.

The spatial structure and models are discussed in detail in Chapter 16. In this application,
a spatial structure can be considered by adding a random effect reflecting the location or
county of residence to the AFT model. The AFT spatial model is specified as

log(tij) = μ + xT
ij β + Wj + σεij, (14.7)

where the Wjs are spatial random effects Wj ≡ Wj(i∈ j). The advantage of the AFT spatial
model is that interpretation of risk/spatial effects on the failure time are easy since the AFT
spatial model simply regresses the logarithm of the survival time over covariates and random
spatial effects.

Then, we have

f (tij|Wj) = 1

σ tij
f0

(
log(tij) − μ − xT

ij β − Wj

σ

)
,

S(tij|Wj) = S0

(
log(tij) − μ − xT

ij β − Wj

σ

)
.

From the relationship between the survival functions, we can see that the spatial random effects
have a direct effect on the survival probability. Note that the hazard rate keeps changing over
time even when the spatial random effect is fixed, while it keeps changing at the same rate
given the specific region in the proportional hazard model. It is more reasonable to assume
the hazard rate changes over time even in the same location.

It is common to assume that S0(·) comes from the standard normal distribution, the
standard extreme value distribution or the logistic distribution. More general distributions
are suggested by Komárek et al. (2005). The S0(·) expressions and their corresponding S(·)s
are summarized in Table 14.2, where λ = μ + xT

ij β + Wj, and 
(·) denotes the cumulative
density function from the standard normal distribution.

Corresponding to the distribution of ε, the survival distribution of t follows the lognormal
distribution, Weibull distribution or the log-logistic distribution with parameters λ and σ .

We consider survival data (tij, δij, xij), where δij is the censoring indicator. We assume
that censoring is independent and noninformative. Let W = (W1, . . . ,Wn), and φ = {μ, σ,β}

Table 14.2 Common distributions in the AFT spatial model,
where λ = μ + xT

ij β + Wj.

Distribution S0(·) S(·)

Normal 1 − 
(ε) 1 − 

(

log(t)−λ

σ

)
Extreme value exp(− exp(ε)) exp

[− exp(−λ)t
] 1

σ

Logistic 1
1+exp(ε)

1
1+[exp(−λ)t ]1/σ
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denote the parameters to be estimated. Given the spatial random effect, the likelihood function
can be written as

L(t|φ, W) =
n∏

j=1

n j∏
i=1

f (tij)
δij S(tij)

1−δij .

The spatial random errors can be correlated among counties. We refer to mutually uncor-
related county-specific effects as spatially uncorrelated heterogeneity and model this situation
with independent Gaussian distributions defined as W1 j ∼ N(0, σ 2

v ). It is worthwhile point-
ing out that the AFT spatial model under independence is similar to the AFT frailty model
with normal random effects, albeit with frailty effects at the county level rather than individ-
ual level. In the correlated situation, we can consider the conditional autoregressive (CAR)
model, which is discussed more fully in Chapter 16 and is widely used for smoothing in
disease mapping. This formulation permits correlation among the random effects according
to a neighborhood structure:

W2 j|
({W2k}, σ 2

s

) ∼ N
(
W 2δ j , σ

2
s /nδ j

)
,

where W 2δ j is the mean over the neighborhood (δ j) of the jth area. The number of neighbors is
nδ j . With this CAR model prior specification, we call W2 j spatially correlated heterogeneous.
We also include both spatially correlated and uncorrelated random effects in a single model
(Wj = W1 j + W2 j) to permit a trade-off between independence and a purely local spatially
structured dependence of the random effects (Besag et al. 1991). This combined spatially
correlated and uncorrelated heterogeneity yields a convolution prior with spatially varying
variance: σ 2

s /nδ j .
In the AFT spatial model, we considered three different cases according to different spatial

correlation, which are summarized as follows:

� Case 1:Wj is spatial uncorrelated. That is,Wj follows a zero mean Gaussian distribution.

� Case 2: Wj is spatially correlated. That is, Wj follows the CAR model.

� Case 3: Wj = W1 j + W2 j, where W1 j is the spatial uncorrelated random effect and W2 j

denotes the spatial correlated random effect. This case considers both spatial correlated
and uncorrelated effects.

Multiple chains were run and the first 10 000 iterations used as preconvergence burn-in,
retaining 10 000 iterations as the posterior sample. The DIC and pD for the models are listed
in Table 14.3.

Table 14.3 displays results for the normal error AFT model only. From this table, we
can see that the model with spatially correlated random effects under the normal baseline is
the best among these cases, which has the smallest DIC value and pD value. The estimated
parameters for case 2 is summarized in Table 14.4.

From Table 14.4, we can see that age, race and stage have significant influence on the
survival probability of the PrCA (as indicated by * in the table). Marital status does not
display significance. More than 75% of patients in this study are married, so there may not be
enough evidence to show the effect of marital status.
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Table 14.3 Prostate cancer example: a comparison of
goodness of fit (DIC, pD) for the AFT model and the three
cases of the AFT spatial model.

Distribution of S0(·) DIC pD

Normal AFT 11950.0 6.133
Normal+case 1 11960.0 65.42
Normal+case 2 11930.0 17.59
Normal+case 3 12000.0 85.01

Table 14.4 Prostate cancer study: the best fitting AFT spatial model (case 2): posterior
means and SDs, and quantiles.

Mean SD MC error 2.5% 50% 97.5%

Age −0.0336* 0.00184 0.0001 −0.0374 −0.0335 −0.0301
Marital −0.0096 0.0299 0.0016 −0.0688 −0.0100 0.0494
Race 0.1843* 0.0360 0.0019 0.1171 0.1835 0.2553
Stage −0.9643* 0.0569 0.0025 −1.080 −0.9617 −0.8578

In order to show the spatial effect, we present the median of the posterior spatial random
effect in Figure 14.7, which displays considerable spatial structure in the middle eastern area
of the state.

For illustration purposes, we compare the estimated survival curves for the five regions
indicated in Figure 14.7 since the survival curve on each region will be affected by the spatial
random effects. The estimated survival curves for the different race based on the AFT spatial
model and the Kaplan–Meier approach according to the different regions are displayed for
regions 1 and 5. In the Kaplan–Meier approach, we only considered the race effect. In the

(10)< –0.05 region 1

(22) –0.05 – 0.0 region 2

(24) 0.0 – 0.05 region 3

(7) 0.05 – 0.1 region 4

(1) 01 0.1 region 5

Median for W

2.0 km

N

Figure 14.7 Prostate cancer study: median value of spatial random effects from fitted AFT
spatial model (case 2), Louisiana counties.
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Figure 14.8 Prostate cancer study: fitted survival curve from the KM approach and AFT
spatial model, region 1.

AFT spatial model, we considered the median value of age, marital status and the stage for
each race and median of the estimated spatial random effects in each region. The survival
curves for regions 1 and 5 are illustrated in Figures 14.8 and 14.9.

We conclude first that the survival curves from the AFT spatial model are similar to
those from the KM approach, which indicates that the AFT spatial model fits the data set
well. Second, we can see that the survival probability for white men is higher than that for
the blacks in all regions, which is consistent with PrCA being more aggressive in the black
than the white racial group. Finally, we find that the survival probability is affected by the
geographical region. For example, the survival rate for black men at 60 months is around 0.6
in region 1 from the AFT spatial model, 0.67 from the KM approach, while in region 5 it is
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Figure 14.9 Prostate cancer study: fitted survival curve from the KM approach and AFT
spatial model, region 5.
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around 0.8 from the AFT spatial model and 0.83 from the KM approach. Similar effects can
be found in other regions.

14.4 Closing remarks

In this chapter, we have examined a range of survival models applied in different contexts
both clinical and observational. These modeling scenarios could be extended in a number
of ways. First, more complex censoring structures could be encountered. Second, we could
have considered hierarchies of contextual effects in different strata or groupings. We only
considered individual and county level effects here. Finally, some smoothing terms rather
than linear terms could be allowed for covariate modeling and hence semiparametric forms
could be employed.

Finally, note that for some of the above Bayesian analyses also the SAS® procedures
LIFEREG, PHGLM and MCMC could be used.
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Longitudinal analysis

Longitudinal data arise in many biostatistical applications, both in clinical settings and at
the population level. Here, we define ‘longitudinal’ as meaning any data that is repeatedly
measured over time on individual study units (e.g. patients, regions and images). Usually the
focus of the study is to determine whether changes over time have occurred, perhaps between
groups, as in the clinical trial setting, or to simply model the system behavior over time. At
the simplest level, the comparison of a marker in a group of patients between two time periods
is an example of an analysis of a longitudinal problem. More complexity arises both when
multiple time points are envisaged or when the observation time is a random variable itself. In
this chapter, we focus on Bayesian methods for longitudinal data analysis. We examine both
Gaussian and non-Gaussian response models. In addition, we address point referenced event
data. We also treat missing data in generality. A practical example is given for the complex
case of a not-at-random missingness process. This will be done by joint modeling longitudinal
and a dropout process.

With respect to general references in this area, we refer the reader to Gelfand et al. (1990),
Gelfand et al. (1992), Lange et al. (1992), Chib and Carlin (1999), Daniels and Hogan (2008),
Clayton (1994), Ishawaran and James (2004), and Cook and Lawless (2007). In what follows,
we give exemplars of analyses that represent typical applications of longitudinal methods.

In Chapter 9, we examined some examples of longitudinal studies. In this chapter, we
examine additional examples some of a more advanced nature.

15.1 Fixed time periods

15.1.1 Introduction

Assume that individual (observational) units have been repeatedly measured. Denote these
measurements as yi j where i refers to the individual label and j to the time label. Define i =
1, . . . , n units and j = 1, . . . , mi time periods. In this section, we assume that the evaluations
were done at preplanned time periods ti j. Here, we assume that all subjects in the study

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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are evaluated at the same time periods, i.e. ti j ≡ t j. If there are no missing responses then
m1 = m2 = . . . = mn. In this case, we call the data set balanced. Imbalance in the repeated
data can occur because some subjects were no measured at some occasions, or dropped out
after some time. Another reason is that subjects come at different time periods. The latter case
will be considered in Section 15.2.

The sequence of {yi j} j=1,...,mi forms a time series of repeated measurements for each
individual unit. Let the mean parameter associated with each observation be denoted as µi j.
In the longitudinal setting, the focus is on modeling the mean structure µi j as a function of
time-independent and time-dependent covariates. Examples of time-independent covariates
are age (at entry of the study), gender, treatment, etc., while a straightforward example of
a time-dependent covariate is time, but all covariates that vary during the study also belong
to this class. Models for µi j will vary depending on the application. For example, in a two-
period study ( j = 1, 2) estimation of µi1, µi2 will usually be of interest and a simple linear
relation between the time points may be assumed: µi j = αµi, j−1. Alternatively, the focus
might be on the difference between period 1 and period 2, i.e. on δµi = µi2 − µi1. When
averaged over the sample, this difference mimics the paired two-group comparison often
found in a clinical setting. A further subdivision of the individual units within a study is
often of interest. For example, in clinical trials we would usually have dose groups. With
grouping included within the analysis, there are then two possible foci: between-group effects
and temporal effects. These effects could be averaged or be group specific. When additional
covariates are put into the model the treatment effect is estimated conditional on the values
of the covariates. While the main interest lies in the mean structure, modeling the covariance
matrix of the responses, Vi, is also of importance in a longitudinal setting. For instance, an
appropriate covariance structure may increase the power of the study. Moreover, establishing
the appropriate covariance increases in importance when missing data are involved (see
Section 15.3).

We will mainly consider mixed models introduced in Chapter 9. Recall that this involves
the following model:

yi j | µi j ∼ N(µi j, σ
2),

µi j = xT
i jβ + zT

i jbi,

with xT
i jβ a linear predictor, zT

i jbi a set of random effects for the ith individual at the jth time.
While the random effects act on the linear structure they also imply a particular shape of the
covariance matrix Vi. Apart from the variability due to inter-subject variability governed by
the random effects, also the intrasubject variability contributes to the covariance matrix and is
expressed by the covariance matrix of the residual term. We will explore in this section how
the modeling of longitudinal studies is typically done via the well-known growth curve data
first analyzed in Gelfand et al. (1990).

15.1.2 A classical growth-curve example

Previous examples of a growth-curve analysis appeared in Example IX.18 and X.8. Gelfand
et al. (1990) looked at a weight gain experiment where 30 rats in each of two groups (control
and treatment) were weighted repeatedly over a period of 36 days. There were five obser-
vation points in time (8, 15, 22, 29 and 36 days), and thus, ti j ≡ t j ( j = 1, . . . , 5). Since
m1 = . . . , m5 = 30, the data set is balanced. We will only partly exploit the balanced nature
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Figure 15.1 Rats study: weight profiles of the 30 rats (five rats randomly highlighted) from
control and treatment groups (Gelfand et al. 1990).

of the data here. Indeed, most of the techniques we consider in this analysis can also be applied
to unbalanced repeated measurements data sets.

In this example, the outcome of interest is the temporal weight progression. Figure 15.1
displays the temporal weight profiles for the rats in the experimental control group and the
treatment group.

Assume that the outcome has a Gaussian distribution centered on the mean weight µi j,
so that

yi j | µi j ∼ N(µi j, σ
2).

Below, we look for the appropriate mean and variance structure of the repeated
measurements.

15.1.2.1 The linear structure

At first, we assume that the gain in weight is approximately linear in time. Figure 15.2 shows
that the variance increases with time. According to Section 9.5.2, this may hint to a linear
mixed model with a random intercept and a random slope. Therefore, as a first model we
could take

yi j = µi j + εi j = β0 + β1t j + b0i + b1it j + εi j,

where b0i is the deviation of the intercept of the ith rat to the population intercept, and b1i

is the deviation of the slope of the ith rat to the population slope. Note that we subtracted 8
from the time variable to give β0 the meaning of the population intercept at day 8. Hence,
each rat has a different intercept at day 8 equal to β0i = β0 + b0i and a different slope equal
to β1i = β1 + b1i. However, this model assumes that the two groups (control, treatment) have
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Figure 15.2 Rats study: variance weight of the measurements at each examination in the
control (solid line) and the treatment group (dashed line).

the same population intercept and slope, which does not appear to be the case here according
to Figure 15.1. Therefore, we prefer to take for the mean structure:

µi j = β01 + �0treati + β11t j + �1treati × t j + b0i + b1it j, (15.1)

where treati = 1 for the treatment group, and 0 elsewhere. Let β02 = β01 + �0 and β12 =
β11 + �1, then the mean of β0i is β01 for rats from the control group and β02 for rats from the
treatment group, and similarly for the slopes.

The linear dependence on time in model (15.1) can be relaxed. For instance, in the fixed
effects part of the model polynomial terms could be introduced. This could also be done in the
random effects part, or in both parts. We have considered here a cubic polynomial relationship
in each group, but only in the fixed part. Graphical explorations showed that linearity in the
random effects structure can be assumed for the Rats data.

Model (15.1) could be expanded even further, as shown in Section 10.3.5. For instance,
one could fit a fractional polynomial model in each group in the fixed and/or the random
effects part. Alternatively, one could model the mean structure using splines. However, the
Rats data set is balanced and only five time points are involved and thus not enough degrees
of freedom are available to apply a smoothing approach.

15.1.2.2 The covariance structure

The above linear structure does not specify any distributional assumptions of the random
effects nor of the residual error term. In Section 9.5.2, we have seen that the classical distri-
butional assumptions for a linear mixed model is

bi ≡
(

b0i

b1i

)
∼ N(0, G) (i = 1, . . . , n),

where G is the covariance matrix of the random intercept and slope, with elements G11 = σ 2
β0

,
G22 = σ 2

β1
and G12 = σβ0,β1 . In addition, it is assumed that the residual error is independent of

the random effects and has a normal distribution, i.e. εi j ∼ N(0, σ 2). As seen in Section 9.5.2,
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these assumptions imply that the variance of the response increases quadratically over time.
However, in Figure 15.2, we rather observe a linear trend for the Rats data. Therefore, one
might look for further extensions of the classical BLMM.

The first extension is to assume that b has a different covariance matrix in the two groups,
i.e. G1 for the control group and G2 for the treatment group. Another extension could be to
assume that there are two residual variances: σ 2

1 for the control group and σ 2
2 for the treatment

group. Further extensions could be assumed, such as letting the residual variance also change
over time and different in the two groups. However, we did not pursue this generalization.

In all of the above models, it has been assumed that the error terms are uncorrelated. This
assumption may not be appropriate for all forms of longitudinal data. That is why we may wish
to allow for correlated errors. The simplest correlation model corresponds to independence
of the residuals, which was assumed in the above models. Let the covariance matrix for the
error term be R, then for the independence model a simple diagonal form is obtained, shown
here for four time points:

R = σ 2 C =




σ 2 0 0 0
0 σ 2 0 0
0 0 σ 2 0
0 0 0 σ 2


 ,

where C is the (independence) correlation matrix of the residuals. In general, the off-diagonal
elements of the correlation model are nonzero. There are two popular correlation models in
longitudinal analyses. The first assumes an autoregressive dependence on previous errors:

yi j = µi j + εi j,

εi j ∼ N(ψεi, j−1, σ
2
ψ ),

with 0 ≤ ψ < 1. Note that if ψ = 1, a Gaussian random walk prior distribution arises. This
autoregressive lag 1 assumption gives the AR(1) correlation model with correlation matrix

C =




1 ψ ψ2 ψ3

ψ 1 ψ ψ2

ψ2 ψ 1 ψ

ψ3 ψ2 ψ 1


 .

Thus, for the AR(1) model the correlation of the residuals decreases with lag time in a
geometrical manner. In the compound symmetry (CS) correlation model, it is assumed that the
correlation remains the same irrespective of the lag time. In that case, the correlation matrix
for four time points is

C =




1 ψ ψ ψ

ψ 1 ψ ψ

ψ ψ 1 ψ

ψ ψ ψ 1


 ,

with 0 ≤ ψ < 1. Note that the combination of a general covariance matrix G with a cor-
related error structure is often challenging to fit, both in the frequentist as well as in the
Bayesian way.

We could go even further in modeling the covariance matrix. For instance, we could let
the correlation matrix and the residual variance(s) depend on continuous covariates. However,
this extension is beyond the scope of this chapter and we refer to Pourahmadi and Daniels
(2002), and Daniels and Pourahmadi (2002) for such models.
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Finally, in Chapter 10, it is seen that the normality assumption of random effects and/or
the residual term can be easily relaxed with Bayesian software. However, we did not pursue
this further relaxation of the model.

15.1.2.3 Prior distributions

The distribution of the random effects, in a Bayesian context, is often referred to as a prior
distribution. However, this prior belongs in fact to the likelihood part of the model and was,
therefore, treated above. In the models that we consider for the Rats data, we need prior
distributions for: the regression coefficients, the covariance matrix of the random effects, the
variance(s) of the residuals and, if applicable, the correlation structure of the residuals.

Vague priors were assigned to the regression coefficients, i.e. N(0, 106). For the residual
standard deviations, we have taken uniform priors on [0, 20]. For correlated errors, we
assumed for the AR(1) and the CS model that ψ ∼ U(0, 1). For the covariance matrix of
the random effects, we looked at two ways to specify the prior for G. First, one could
assume a noninformative Wishart prior distribution for the precision matrix (G−1), i.e. G−1 ∼
Wishart(D, ν0). According to Section 5.3.3, ν0 must be small for a NI prior. We have taken for
the Rats data ν0 = 2, equal to the rank of the matrix. In addition, the matrix D was taken as ε

times the identity matrix, with ε small. We have taken here ε = 10−6. A second possibility is
to give separate priors for the diagonal elements of D and for the correlation matrix C. For the
Rats data, G is a 2 × 2 matrix. We have chosen as priors for the variance part: σβ0 ∼ U(0, 20)

and σβ1 ∼ U(0, 20), which are the standard deviations of the random intercept and slope,
respectively. For the correlation of the random terms we assumed ρ ∼ U(−1, 1)

15.1.2.4 Application to the Rats data

We explored a variety of models and tested their appropriateness to fit the data. For all models,
we ran a single chain for 30 000 iterations leaving out 10 000 burn-in iterations and determined
DIC and pD on the last 10 000 iterations. In addition, we computed MSPE defined here as
ave

∑
i j(yi j − ỹi j)

2.
First we considered model (15.1), which we call model 1. We obtained for this model:

DIC = 1950.75, pD = 104.2 and MSPE = 16 580. In model 2, we allow the covariance matrix
of the random effects to be group dependent, i.e. G1 for the control rats and G2 for the treated
rats. This resulted in DIC = 1952.18, pD = 105.0 and MSPE = 16 670. Clearly, model 2
is not an improvement over model 1 and hence we assumed that G1 = G2. In model 3, we
allowed the residual variances to differ between the two groups and obtained DIC = 1952.18,
pD = 105.0 and MSPE = 16 750. According to DIC, model 3 is an improvement over model 1,
but its MSPE is higher than that of model 1. This apparent contradiction can be explained by
the different way the outlyingness of an observation is taken into account in the two prediction
measures. In model 4, we added an AR(1) correlation model to model 3. However, immediately
a trap error occurred. The same was true for model 5 where we combined model 3 with a
CS correlation model. The reason for this bad behavior is that the off-diagonal elements
of the random effects part in the covariance matrix of the ith response, Vi = ZiGZT

i + R,
are competing with the residual correlation part. To illustrate this, we have fitted a model
whereby the random intercept and slope were assumed to be independent and combined it
with an AR(1) correlation model. No computational problems occurred now. But this model
is worse than the previous one, with DIC = 2108.6 with pD = 39.6. The same is true for
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the model with a CS correlation part. So, neither of these two models were considered any
further.

It is generally advised to make at the start the mean structure as complex as possible. Here,
we chose to start with a simple linear structure, which was inspired by the profiles shown in
Figure 15.1. Nevertheless, we decided to check the linear structure of model 3 by expanded
the mean model with quadratic and cubic terms. In model 6, we assumed these extra terms
to have a different impact in the two groups. With DIC = 1775.5 and pD = 115.7, MSPE =
9231, this model has the best fit up to now. The regression estimates of model 6 suggest to
keep only the quadratic and cubic term for the treatment group, which results in model 7. This
model gave a worse fit (DIC = 1870.5 with pD = 109.5 and MSPE = 14 600) than model 6
and was therefore not kept. The correlation of the random intercept and random slope was
low in model 6, with posterior mean (SD) equal to −0.13 (0.14). Therefore, we assumed in
model 8 independence of the random effects and obtained: DIC = 1775.4 with pD = 114.2
and MSPE = 9290.0. Consequently, model 8 is our choice.

The parameter estimates (SD) for this model are shown in Table 15.1. Apart from the
model parameters we also estimated the difference in means of the weight response at the five
time points (�x with x = 8, 15, 22, 29, 36).

Table 15.1 Rats study: posterior mean estimates and SDs of the final model.

Parameter Estimate SD

Control group

β01 (intercept) 95.65 5.207
β11 (linear) 7.106 0.819
β21 (quadratic) 0.0037 0.0407
β31 (cubic) −6.62E−4 6.13E−4
σ1 4.373 0.332

Treatment group

β02 (intercept) 81.97 4.317
β12 (linear) 7.235 0.645
β22 (quadratic) −0.0915 0.0320
β32 (cubic) 0.0010 4.81E−4
σ2 3.453 0.262

Random effects

σb0 (intercept) 0.5455 0.0568
σb1 (slope) 12.78 1.319

Comparison means

�8 −13.68 6.731
�15 −27.47 3.906
�22 −38.97 4.495
�29 −48.91 5.268
�36 −53.82 6.099
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Figure 15.3 Rats study: normal probability plots of (the posterior mean of) the intercept and
slope estimates for the control and the treatment group.

Finally, we checked for the final model the distributional assumptions of the random
effects and of the residual term. In Figure 15.3, we show the normal probability plots based
on the posterior means of the random intercept and slope in each group. We conclude that
the random effects appear to have a normal distribution in each group. The same could be
concluded for the residual errors, εi j (plot not shown)

15.1.3 Alternate data models

So far, we have assumed that the response has a Gaussian distribution. With Bayesian software
such as WinBUGS and the Bayesian SAS® procedures, alternate response distributions are
readily available. For instance, for a positive response, we might consider a gamma distributed
error such as

yi j ∼ Gamma(α, β).

Thus, E(yi j) = α/β and the variance is equal to α/β2 = E(yi j)/β. Hence, specifying the
mean also involves the variance. Other possible data models could be considered instead,
such as an asymmetric or skew Gaussian distribution (Song et al. 2010). As seen in Chapter 9,
a variety of data models and hence likelihoods can be specified within a Bayesian framework,
not limited to continuous data.
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For discrete outcomes, typically Poisson or binomial data models are assumed and these
fall within the Bayesian generalized linear model (BGLM) framework. Note that overdisper-
sion or extra variation within these models does not necessarily require alteration of the data
model (to negative binomial or beta-binomial) as such overdispersion can be accommodated
within higher levels of the model hierarchy. In addition, nonlinear models can be considered
for longitudinal data (Bennett et al. 1996).

15.1.3.1 Epilepsy example

An example of discrete longitudinal data is the epilepsy trial first examined by Thall and
Vail (1990). In this clinical trial, 59 patients suffering from epilepsy were given two dif-
ferent treatments: 28 patients were given placebo and 31 patients were given an anti-
convulsant therapy. The seizure count for each patient was monitored at four visits: yi j,
(i = 1, . . . , 59, j = 1, . . . , 4). Hence, yi j is a discrete outcome. Also measured was the base-
line seizure count (x1i: included as zi = log(x1i/4)), treatment (x2i) and age (x3i). The indi-
vidual profiles of seizure counts are given per treatment group in Figure 15.4.

In this case, we could assume that the seizure count at any time is Poisson distributed and
so yi j ∼ Poisson(µi j) with

log(µi j) = β0 + β1zi + β2x2i + β3x3i + β4zix2i + bi j.

We included an interaction between baseline count and group (zix2i). Here, the random
effect term, bi j, consists of an individual frailty term κi and an individual-visit interaction
term ψi j. The prior distributions assumed for the parameters are as follows: β∗ ∼ N(0, σ 2

∗ ),
σ∗ ∼ U(0, c) and zero mean Gaussian random effect prior specifications as follows:

κi ∼ N(0, σ 2
κ ),

ψi j ∼ N(0, σ 2
ψ ).

This model can be extended by allowing the individual random intercept to have a temporal
correlation. For example,

γ j ∼ N(λγ j−1, σ
2
γ ), (15.2)
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Figure 15.4 Epilepsy study: individual profiles of seizure counts per treatment group.
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Table 15.2 Epilepsy study: posterior average parameter estimates and SDs
for the model with individual and interaction random effects (RE) only.

Parameter Estimate SD

β0 (intercept) −1.403 1.262
β1 (log baseline seizure) 0.884 0.138
β2 (treatment) −0.939 0.413
β3 (log age) 0.342 0.210
β4 (base-treat interaction) 0.476 0.371
σκ (SD individual RE) 0.372 0.0434
σψ (SD interaction RE) 0.507 0.0727

with an additive effect. Hence: bi j = κi + γ j + ψi j, which is an AR(1) random effect. We
considered the above model with and without such an effect and compared the goodness of
fit using the DIC criterion.

We initiated for each model three chains of each 40 000 iterations and left out 3 × 20 000
iterations. DIC was based on the last 3 × 10 000 iterations. The model without the AR(1)
effect has a marginally lower DIC equal to 1156.0 with pD = 121.3 than the AR(1) effect
model with DIC equal to 1156.5 and pD = 122.0. Therefore, we have opted for the model
without the AR(1) correlation part; see Table 15.2 for the parameter estimates.

It is noticeable that the baseline seizure and the base line seizure-treatment interaction
are significant. Furthermore, the effect of treatment is significant and negative suggesting that
over the study period the therapy has significantly reduced the number of seizures compared
to the placebo treatment while allowing for the baseline level of seizure counts.

We then checked the distributional assumption of the individual random effects (κi) and the
individual-visit interaction random effects (ψi j). In Figure 15.5, we show the NPPs of κi. There
appears no deviation from the normality assumption. The same was done for ψi j (plot not
shown). Now there was a bit more deviation from normality, but not alarming. To examine the
itemwise fit of the model, we also examined the posterior average standardized residuals from
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Figure 15.5 Epilepsy study: normal probability plots of the individual random effects (κi)
in the two treatment groups.
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Figure 15.6 Epilepsy study: density plots of the standardized residuals based on the model
with individual and interaction random effects only. The solid line represents the placebo
group, the dashed line corresponds to the therapy group. The bottom ticks correspond to the
placebo group and the top ticks to the therapy group.

this model for each visit. Figure 15.6 displays these residuals (ri j = avek[(yi j − µk
i j)/

√
µk

i j]).
Overall, the fit seems reasonable across groups. At each visit, there is always a deviating
patient, but there seems to be no systematic behavior.

15.2 Random event times

In the previous section, the examination times were considered taken at fixed and regular
time points. In many applications, these examination times are irregular and should be treated
also as such. An example is the Jimma Infant study. This is an Ethiopian study conducted
between 11-9-1992 and 10-9-1993, set up to establish risk factors affecting infant survival
and to investigate socioeconomic, maternal and infant-rearing factors that contribute most to
the child’s early survival. There was also interest in documenting the growth of the child in
the first year measured by its length, weight and other anthropometric measurements such as
arm circumference.

The 1501 singleton live births from the town Jimma were examined each 2 months during
the first year of their life. In Lesaffre et al. (1999) a subgroup of 495 children was examined
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Figure 15.7 Jimma Infant study: weight measurements versus age and the profiles of some
randomly selected children together with a LOESS smoother (dashed line) to express the
average relationship.

for their first year’s weight gain. However, there was quite some variation in the actual times
of examination. Ignoring this variation by assuming fixed time points at 0, 2, . . ., 12 months
would produce a too rough analysis since children in this age period evolve rapidly. The
weight profiles in the first year of the babies are plotted in Figure 15.7. One can observe
the variability of actual times of examinations. However, the irregularity of the measurement
times had no relationship with the physical condition of the children. Mixed effects models
involving a random intercept and slope are, therefore, the first choice for the analysis of these
weight profiles in combination with the smoothing techniques of Section 10.3.5.

In the above growth study, the timing of the visits was regulated by the examiners, and
not by the children nor by the parents of the children. It is a different situation when the
subjects themselves regulate their visits. In this case, the pattern of examination times could
bear itself information on the response, and the timing of events could then become the focus
of interest. An example is the pattern of visits to a general practitioner. The timing and amount
of visits are indicative for the subject’s health status. In general, a point process of events
will then occur for each individual observation unit and hence for an individual unit a time
series of events is available. Note that these data are just the finest level of resolution and, in
fact, when observation units are aggregated into fixed time periods then data in the form of
counts would arise. Hence, with aggregation the resulting data could be analyzed via standard
discrete data BGLMMs, such as a random effects Poisson or binomial model. The means of
these distributions could then also be made dependent on covariates, such as treatment, to
verify whether with one treatment there on average more examination times than with another
treatment.

With random times, there are no fixed observation points or intervals and hence binary
time series do not arise (like when there is intermittent missingness, see Section 15.3). Instead,
the data are the event times themselves: {ti j} (i = 1, . . . , n; j = 1, . . . , mi), and most often
the mi are different.

A basic model for such data, is a Poisson process (PP) model where the intensity of events
is governed by an intensity function λ(t), which is allowed to vary with time. This intensity
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represents the local rate of the process and is the focus of most modeling. Assuming a PP
model, the event times are independently distributed. Conditional on mi events in T (= fixed
total time), the probability of an event at a given time t is just λ(t)/

∫
T λ(u) du. If we are

not willing to condition on mi but wish to model the event counts as well as the times, then
an unconditional probability is also available. Define the normalized conditional density as
pi(t | mi) = λi(t)/

∫
T λi(u) du for the ith observation unit. We can define a joint likelihood

for this model as

L(t | m) =
n∏

i=1

mi∏
j=1

pi(ti j | mi),

with log-likelihood


(t | m) =
n∑

i=1


 mi∑

j=1

log λi(ti j) − mi log(�i)


 ,

with �i = ∫
T λi(u)du. This likelihood depends on the definition of λi(ti j) and on the evaluation

of the integral �i. While this form is not a standard distribution, it is reasonably simple to
evaluate. First the integral can be approximated either by a numerical scheme whereby a fixed
weighted sum is assumed (i.e. �i ≈ ∑

wikλik where λik is the value of λi(t) at the kth evaluation
point and wik is the corresponding integration weight), or by Monte Carlo integration whereby
values of λi(u) are simulated and averaged. Note that a simple quadrature rule could be used
for the evaluation of �i and with the arbitrary likelihood model facility on WinBUGS (zeroes
or ones trick) this likelihood could be easily evaluated.

The specification of λi(ti j) remains. It is common to consider a log link for this specification
to a linear or nonlinear predictor. Hence, for example, we might assume

λi(ti j) = exp
[
xT

i jβ + fi(ti j) + bi j
]
,

where xi j are individual level predictors (possibly time varying), β a parameter vector, fi(ti j)

a function of time, and bi j a set of random effects. Note that a common group effect can be
incorporated via nested indexing across individuals. It should also be clear in this situation
that we are modeling the internal structure of the event times and do not have any baseline
behavior to contrast with in this specification. Instead, we might wish to include an overall
baseline intensity within the specification so that

λi(ti j) = λ0(ti j) exp
[
xT

i jβ + fi(ti j) + bi j
]
. (15.3)

Without additional information or data concerning the baseline effect, we must assume a prior
distribution which allows for temporal variation. The gamma process is a convenient tool
for this specification (Ibrahim et al. 2000), whereby the increments of the baseline effect are
gamma distributed with the scaling dependent on the time gap:

λ0(s + t) − λ0(s) ∼ Gamma(α, β).
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Note that the parameters α, β can have hyperprior distributions and hence can be estimated.
An alternative would be to assume that log(λ0(ti j)) followed a Gaussian random walk so that
log[λ0(s + t)] ∼ N

[
log[λ0(s)], σ 2

λ t
]

which would also allow the variance to increase with
time. Other considerations besides, the functional form of expression (15.3) could follow as
defined for ordinary BGLMMs, with the caveat that any time dependent effects must be scaled
per unit time as the times are not fixed intervals. We do not pursue these models here, but for
further discussion of these and more advanced model variants, we refer to Clayton (1994),
Ishawaran and James (2004), and Cook and Lawless (2007).

15.3 Dealing with missing data

15.3.1 Introduction

In this section, we discuss in more detail the issue of missing observations and their impact
on the analysis of longitudinal data. Missing data occur in almost every longitudinal study.
For example, patients enrolled in a clinical trial may fail to return for assessment. Hence,
over (say) a five period trial, we may have some patients who attend all assessments called
completers, some who dropout from the study which means that they stopped attending the
assessments and some who miss an assessment but then return to the study (intermittent
missingness). In some cases, one can even have subjects that drop-in the study. In the previous
chapters, we have managed to analyze many studies that involved missing data, such as the
toenail randomized controlled clinical trial (RCT) study, the Signal-Tandmobiel® study and
the Jimma Infant study. Each time there was an appreciable number of subjects that missed a
visit or that dropped out from the study and for a variety of reasons.

Most often, if not always, it is important to utilize as much of the data that is available. In
fact, the principle of Intent to Treat (ITT) (Fisher et al. 1990) as employed in RCTs requires
that all valid data available from the trial should be used, even when dropout happens. When
a patient missed an examination, then all data are missing but data may be missing also for
other reasons. For instance, when subjects are asked to fill in a questionnaire they might refuse
to answer some sensitive questions. In that case part of the data are missing.

In the literature, missing data is dealt with in a variety of ways. The default in almost all
statistical packages is to leave out in an analysis those subjects with somewhere a missing
value. This is clearly an inefficient procedure, but may create also bias in the estimation
process. This is called a complete-case analysis. Other approaches try to get rid of the missing
data by imputing values for the missing data. An ad hoc and still often used technique in
longitudinal studies, and especially in clinical trials, is the Last Observation Carried Forward
(LOCF) approach. In this approach the missing response is replaced by the last observed
value for that response. This can be regarded as a simple form of imputation. However,
the method assumes a constant profile for the outcome, an assumption which is usually
too strong within a clinical trial setting and underestimates the variability of the response.
There are more intelligent imputation methods on the market. In the frequentist world a
well accepted procedure is multiple imputation (Little and Rubin 2002). In the multiple
imputation approach, a rich statistical model (not necessarily related to the longitudinal
model) is used to impute M multiple values for the missing data. In practice, often M = 3 to
M = 5 times a value is imputed for each missing value, hereby one emulates the variability
of the observed data. Afterward one has to perform M times the statistical analysis on the
(M) completed data sets and use expression (5.13) to compute the standard errors of the
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parameter estimates. The above imputation approaches perform explicit imputation. Here, we
will look at implicit imputation approaches. Depending on whether the response is missing
or the predictor is missing, the missingness process is called response/outcome missingness
or covariate/predictor missingness.

15.3.2 Response missingness

Let the response for the ith unit and jth time be yi j. We also need a missingness indicator
ri j with

ri j =
{

1 if yi j is observed,

0 otherwise.

In vector notation we have for the ith individual, the vector of responses: yi and the indicator
vector of missingness: ri. The full data consists of all responses (missing and observed) and
the information on the missingness. Therefore, the full data density is given by

p(yi, ri | xi, zi, wi, θ,ψ), (15.4)

where xi, zi, wi are the covariates for the fixed effects part, the random effects part and the
missingness mechanism, respectively, of the ith subject. Furthermore, θ contains the fixed and
random parameters and ψ is the set of missingness parameters.

Depending on how the full data density is split up, we distinguish between a selection
model and a pattern-mixture model:

� Selection model:

p(yi, ri | xi, zi, wi, θ,ψ) = p(yi | xi, zi, θ) p(ri | yi, wi,ψ),

where p(yi | xi, zi, θ) describes the longitudinal model. Hence, this is the model we have
used in the above examples to fit the longitudinal data. The function p(ri | yi, wi,ψ)

describes the mechanism for missingness. Note that this is a function of yi.

� Pattern mixture model:

p(yi, ri | xi, zi, wi, θ,ψ) = p(yi | ri, xi, zi, θ) p(ri | wi,ψ).

Note that now the missingness is modelled directly without involving the responses,
and that the response is modeled conditional on the missingness pattern. Hence, the
modeling is quite different from before.

Finally, there is also a shared parameter model. In this case, it is assumed that the joint
model (15.4) can be written as

p(yi, ri | xi, zi, wi, θ,ψ) =
∫

p(yi | xi, zi, θ, bi)p(ri | wi,ψ, bi) dbi. (15.5)

In other words, in this model it is assumed that the measurement process is independent
from the missingness process given some latent random structure defined by bi. Despite the
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attractiveness of the latter two approaches, we will not pursue them any further but refer to
Daniels and Hogan (2008).

It is important to distinguish between the observed part of yi, namely yo
i and the missing

part, namely ym
i . Then, for the selection model,

p(ri | yi, wi,ψ) = p(ri | yo
i , ym

i , wi,ψ).

Further, we assume that the parameters in the measurement model and the missingness model
have nothing in common. In Bayesian terms, it is reformulated as that θ and ψ are a priori
independent, i.e. p(θ,ψ) = p(θ)p(ψ).

15.3.3 Missingness mechanisms

15.3.3.1 Missing completely at random

We speak of a missing completely at random (MCAR) mechanism when the response is not
related to the missingness mechanism, so that

p(ri | yi, wi,ψ) = p(ri | wi,ψ).

In this case, the outcomes are not related to the missingness process and so

p(yi, ri | xi, zi, wi, θ,ψ) = p(yi | xi, zi, θ) p(ri | wi,ψ).

Hence, the observed data are independent of the missingness process and thus

p(yo
i , ri | xi, zi, wi, θ,ψ) = p(yo

i | xi, zi, θ) p(ri | wi,ψ). (15.6)

This implies that the missingness mechanism can be ignored in the analysis of the observed
outcomes, given the predictors in the model. In fact, one can show that the only effect of the
missing data generated by a MCAR mechanism is a loss of efficiency. Descriptive statistics
and basing the statistical analysis on p(yo

i | xi, zi, θ) are appropriate. For a practical example of
a MCAR missingness process, take an RCT to compare (say) the effect of two lipid-lowering
medications on serum cholesterol then examples of a MCAR mechanism are: (a) the patient’s
blood tube has been dropped and consequently no value was recorded at that visit, (b) a
patient missed a visit because he stayed at home with a broken leg, etc. These examples
are straightforward illustrations. However, another less obvious example is when there is an
unequal dropout rate in the two arms of the study, but in each arm the reason for dropping out
has nothing to do with the response.

Although one can never be sure about the missingness mechanism, it appears reasonable
to assume that missing data in the Signal-Tandmobiel study have been generated by a MCAR
process. Indeed, the reasons for the children to miss an examination time were: they moved
to another geographical location, left the school or were ill at the day of the examination, but
it is unlikely that they were absent because of a tooth problem.
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15.3.3.2 Missing at random

In this case, the probability of missingness is conditionally independent of the unobserved
data, given the observed data

p(ri | yi, wi,ψ) = p(ri | yo
i , wi,ψ),

so that

p(yo
i , ri | xi, zi, wi, θ,ψ) = p(yo

i | xi, zi, θ) p(ri | yo
i , wi,ψ). (15.7)

Since the two parameter vectors θ and ψ have nothing in common, the missingness process
is called ignorable and then a likelihood or a Bayesian analysis on only the observed data
gives a valid answer. Note that now the descriptive statistics give a distorted picture of the
parameters. For an example of a missing at random (MAR) process take again the randomized
controlled clinical trial (RCT) on lipid lowering medications. Suppose that the study physician
removes the patient from the study because his past profile does not show any decline in serum
cholesterol. In that case, the missingness mechanism is MAR.

Notice that if the missingness process is MCAR but the longitudinal model is misspecified,
say a covariate has been omitted, then the missingness mechanism can look more like an MAR
process. The same is true for a process that is MAR under the correct model. If an incorrect
model is fitted to the data then the missingness process can resemble more the MNAR process
below. For this reason, it is important to model carefully the longitudinal process, i.e. the
mean and the variance structure. The longitudinal models that we have fitted in Chapter 9
were based on the MAR assumption.

Most often one cannot be sure that the missingness mechanism is only MAR and not the
more complicated MNAR as described in the following text. However, all classical mixed
effects analyses are based on the MAR assumption and this was assumed, e.g. in the toenail
RCT analyses. A motivation for assuming MAR in the toenail study is that the disease slowly
evolves and the failure or success of the treatment, and hence also the probability of dropout,
may be easily predicted from the patient’s profile in the past.

15.3.3.3 Missing not at random

In this case the probability of a missing outcome is dependent on the unobserved response
ym. In general, the observed data and missingness process are convolved as

p(yo
i , ri | xi, zi, wi, θ,ψ) =

∫
p(yi | xi, zi, θ) p(ri | yi, wi,ψ) dym

i . (15.8)

In this case, the missingness must be modeled. Again in the context of the lipid lowering
study, an example of a missing not at random (MNAR) mechanism is when the general
practitioner of the patient, not involved in the conduct of the trial, suggests the patient to
leave the study. When this is done without notifying the study physician (and the last patient’s
serum cholesterol was not recorded) then the patient dropped out because of a nonobserved
response.

Most likely in practice the reasons for missing data and for dropping out are various, some
have nothing to do with the response (MCAR), some can be predicted from the past (MAR)
and some not (MNAR). In the Jimma Infant study children missed a visit or dropped out
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from the study for a variety of reasons: their parents were simply not present at the time the
examiner arrived at their home, the parents moved to a different area or, more dramatically,
the child died. From the 1501 live births involved at the start of the study, only 1152 children
were still in the study at 12 months of which 141 died during the first year. Looking at the
weight profiles of the children, some of the deaths are predictable but not all, rendering the
dropout process MNAR. In addition, death is an absorbing state and in the classical statistical
models that are used for the analysis of incomplete data, such as mixed models, the missing
data are implicitly imputed. In the case of death, such imputation is not natural. We will not
handle this problem here, however, but refer to Daniels and Hogan (2008).

The statistical analysis under MNAR is far more complex than under MAR. In Sec-
tion 15.4, we treat a possible approach for analyzing longitudinal data involving a MNAR
dropout mechanism. The approach is based on jointly analyzing the longitudinal data and
assuming a survival model for the dropout times. However, it is important to stress that this
is only one possible approach. In general, one recommends to perform a sensitivity analysis
varying various aspects of the missingness model and evaluate their effect.

15.3.4 Bayesian considerations

The classification of the missing data mechanisms was described above in a largely classical
context. However, the Bayesian approach to missing data problems is quite similar and differs
only in the addition of prior distributions for the parameters. A full discussion of Bayesian
issues in missing data problems can be found in Daniels and Hogan (2008).

Finally, in the Bayesian approach, it is straightforward to generate the missing values
under the assumed model via the posterior predictive distribution. As seen before, this is also
quickly done with WinBUGS and SAS.

15.3.5 Predictor missingness

Predictor missingness is common to many kinds of analyses besides longitudinal studies.
As most analytical models assume conditioning on predictors, we usually do not consider
predictors as having random variation. However, when missingness appears in predictors a
mechanism is needed to allow for the estimation of the missing data. This can be achieved
within the Bayesian paradigm by assuming a prior distribution for the predictor variable,
which is justified in the same way that any parameter that is unobserved within a Bayesian
model must be assigned a prior distribution. Consequently, this allows the missing predictor
values to be imputed as parameters within a posterior sampling algorithm. For further details
(see Daniels and Hogan 2008).

15.4 Joint modeling of longitudinal and survival responses

15.4.1 Introduction

Joint modeling is a statistical technique to estimate common parameters of two or more models
jointly. The first approaches on joint modeling were primarily developed in AIDS clinical
trials in the 1990’s and combined longitudinal data with survival data (see Tsiatis et al. 1995;
Wulfsohn and Tsiatis 1997). The method was proposed in the context of survival analysis in
the presence of time-dependent covariates which were measured only periodically and with
measurement error. However, it can also be seen as an approach to model informative dropouts
where the survival time is taken to be the time to dropout (Guo and Carlin 2004; Ibrahim
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et al. 2001). Joint modeling offers less biased and more efficient estimates of treatment effects
in the survival part of the model but equally so in the longitudinal part when the survival
endpoint is the time for dropping out (see also Ibrahim et al. 2001).

We apply here a joint modeling approach to longitudinal data of which we suspect that
the missing data process, in fact here the dropout process, is MNAR. We assume that the joint
model of observed longitudinal and survival data is given by

p(yo
i , di | xi, zi, wi, θ,ψ) =

∫ ∫
p(yi | xi, zi, θ, bi) p(di | wi,ψ, bi) d ym

i d bi,

=
∫

p(yo
i | xi, zi, θ, bi) p(di | wi,ψ, bi) d bi, (15.9)

where di indicates the time of dropout, e.g. di = 3 when ri = (1, 1, 0, 0, . . .). In expression
(15.9), we assumed that, conditional on a latent vector bi the measurement and dropout process
are independent.

15.4.2 An example

The example considered here was first analyzed by Guo and Carlin (2004). They combined
a longitudinal model for treatment with a model for the survival experience of the patient
during treatment. In a clinical trial to compare the efficacy and safety of two antiretroviral
drugs in treating patients who had failed or were intolerant of zidovudine (AZT) therapy. In
this example, 467 HIV-infected patients were enrolled (who met the inclusion and exclusion
criteria), and randomly assigned to two treatment groups: didanosine (ddI) or zalcitabine
(ddC). CD4 counts were recorded at five time points: baseline, 2, 6, 12 and 18 months.
Figure 15.8 shows the individual longitudinal profiles of the response over time. Figure 15.9
displays the Kaplan–Meier survival curves for the two treatments groups (ddI and ddC).

We denote the
√

CD4 count for the ith individual at time j as yi j (i = 1, . . . , n = 467;
j = 1, . . . , mi). There are four explanatory variables which were included in the analysis:
drug (ddI = 1, ddC = 0), gender (male = 1, female = −1), previous infection at study entry
( prev = 1 when AIDS was diagnosed and −1 otherwise), and stratum (AZT failure = 1, AZT
intolerance = −1).

We now separately discuss the used longitudinal and survival model.
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Figure 15.8 AZT clinical trial: individual longitudinal profiles of
√

CD4.
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Figure 15.9 AZT clinical trial: Kaplan–Meier survival curves for the two treatment groups
(ddI and ddC).

15.4.2.1 The longitudinal model

Assume that the longitudinal model is given by

yi j | µi j ∼ N(µi j, σ
2),

with µi j = xT
i jβ + zT

i jbi, which corresponds to a linear mixed model described in Chapter 9.
Denote the times of observation for the ith individual as si j. Then we have here

xT
i jβ = β10 + β11si j + β12si j × drugi + β13genderi + β14previ + β15stratumi,

zT
i jbi = W1i(si j),

withW1i(si j) = b0i + b1isi j. The two random effects represent a random intercept and a random
slope for time. They are classically assumed to have a bivariate normal prior distribution with
covariance G, i.e. bi ∼ N(0, G).

The regression parameters were assumed to have a noninformative zero mean multivariate
normal prior distribution, whereas an inverse gamma distribution was assumed for σ 2 ∼
IG(0.1, 0.1). With respect to the prior of G, we have evaluated three choices: (a) IW(D,2),
with D = diag(0.001, 0.001); (b) IW(D,2), with D = diag(100, 100), which is the choice in
Guo and Carlin (2004); and (c) uniform priors for the standard deviations of random intercept
and slope, and their correlation: σb0 ∼ U(0, 20), σb1 ∼ U(0, 20) and ρ ∼ U(−1, 1). In all
analyses that we performed the uniform priors resulted in a lower DIC value followed by
choice (b). Hence, we report here only the results based on the uniform priors.

15.4.2.2 The survival model

For the survival model, we considered a general Weibull model for the baseline distribution of
the time of death, denoted for the ith individual as ti, in combination with a Cox proportional
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hazards model to analyze the time-to-event data. This model was discussed in Chapter 14. A
Weibull distribution has two parameters: φ the scale and a mean level ψi,

ti ∼ Weibull(φ,ψi).

Note that when φ = 1 an exponential model results which implies a constant hazard model
over time. We also consider a log intensity specification so that

log(ψi) = xT
2iβ2 + W2i,

where the linear predictor is xT
2iβ2 = β20 + β21 drugi + β22 genderi + β23previ + β24 stratumi,

and the random effect term is defined as W2i = γ0b0i + γ1b1i.
Similar to the longitudinal part, the regression parameters are assumed to have a noninfor-

mative zero mean multivariate normal prior distribution. The Weibull parameter φ was given
a Gamma(1, 1) prior. We also fitted an exponential distribution to the survival data.

15.4.2.3 The joint model

Linkage between the two models is accommodated from two separate sources. First we have
included common covariates in each model. Hence, both survival and CD4 count is thought
to be related to drug, gender, prev and stratum. The second source of linkage is the use of
common random effect terms. In this case, we have assumed that b0i and b1i appear in both
models but in the survival model they are scaled by parameters γ0 and γ1. This does imply
that these effects are jointly estimated within the two models.

For each joint model, we initiated one chain of total length 200 000 with thinning’s
factor = 10 and removed the first 100 000 iterations.

15.4.2.4 Modeling results

The models reported here consist of a linear mixed model for the longitudinal data fitted
jointly with a survival model, first the Weibull model (φ estimated) and then the exponential
model (φ = 1). WinBUGS was used for the analysis. We only considered model XI of Guo
and Carlin.

Table 15.3 displays the overall goodness-of-fit results in terms of DIC. In the original
paper, Guo and Carlin only reported the exponential model results as they found a negative
correlation between the φ parameter and a regression parameter in the full Weibull model.
Hence, a constant hazard was assumed. In this analysis, we have found that the full Weibull

Table 15.3 AZT clinical trial: comparison of goodness of fit of joint models based on
Weibull and exponential survival model. The subindex ‘L’ refers to the GOF measures of the
longitudinal part of the model, ‘S’ refers to the survival part of the model and ‘T’ represents
the total.

Model DICL pD,L DICS pD,S DICT pD,T

Weibull 6128 517.6 931 204.4 7059 722.1
Exponential 6115 545.8 1665 82.5 7780 628.3
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Table 15.4 AZT clinical trial: posterior means estimates and 95% credible intervals for the
joint model with Weibull part.

Parameter Estimate 95% CI

Longitudinal analysis

Intercept 7.979 (7.264, 8.692)
Time −0.2426 (−0.2855, −0.2011)
Time × drug −0.00153 (−0.0591, 0.0557)
Gender −0.05209 (−0.6975, 0.6072)
Prev −2.367 (−2.835, −1.889)
Stratum −0.1331 (−0.6087, 0.3453)
G11 16.07 (13.9, 18.56)
G22 0.04304 (0.02989, 0.05757)
ρ = G12/

√
G11G22 −0.01534 (−0.1626, 0.1348)

σ 2 3.152 (2.846, 3.486)

Survival analysis

Intercept −21.64 (−26.39, −16.06)
Drug 1.106 (−0.3265, 2.695)
Gender −1.013 (−2.479, 0.3493)
Prev 3.556 (2.275, 4.991)
Stratum 0.1696 (−0.7694, 1.005)
γ0 −1.035 (−1.417, −0.6713)
γ1 −33.67 (−43.77, −23.44)
φ 6.238 (4.552, 7.672)

yields a lower DIC than the exponential. In Table 15.4, we present the posterior average
parameter estimates for the full Weibull model.

For the longitudinal part of this model, we found that time and prev have a significant
negative effect on CD4 cell count, whereby ‘significance’ should be interpreted in a Bayesian
sense (95% CI excludes zero). This implies that the CD4 cell count is lower for patients
diagnosed at baseline with AIDS and it further decreases with time. No significant effects
were established for the drug by time interaction. The posterior correlation estimate of the
random effects was basically zero. For the survival part of the model, only prev is positive and
significant indicating that patients who enter the study with AIDS diagnosis have a lower life
expectancy. Both linking parameters γ0 and γ1 are negative and significant, providing strong
evidence of an association between the two submodels and indicating that both the initial
level and slope of CD4 count is negatively associated with the hazard of death. Finally, the
scale parameter of the Weibull distribution is large and excludes the exponential model. In
contrast to the original analysis, our model converged although at the expense of many more
iterations than in Guo and Carlin (2004).

We further explored the distributional assumptions of the model. For instance, we checked
the distribution of the random intercept and slope, by plotting their posterior means in a normal
probability plot. For each of the treatment groups, we found that normality was achieved.
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15.5 Closing remarks

This final longitudinal example served to highlight the great flexibility of joint modeling and
the ability of WinBUGS to accommodate complex data structures within its programming
capability. It is also a great feature of this package that sensitivity to model specification
(in particular, prior specification) can be easily tested. For these more complex models it is
always important to consider such sensitivity when assumptions cannot be directly tested in
analysis. It must also be stated that similar sensitivity analyses are as easily possible with the
SAS procedure MCMC. It will depend on the programming skills of the user which package
will be used for the task.

Finally, we note that the area of longitudinal analyses is quite rich. Further complexity can
be introduced without great difficulties. For instance, the following models have been analyzed
in the literature: longitudinal models with a multivariate response (say not exceeding three to
four dimensions), longitudinal models embedded in an extra multilevel structure, longitudinal
models with censored responses, amongst others.
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Spatial applications: Disease
mapping and image analysis

16.1 Introduction

In this chapter, we outline approaches to two areas of study that feature spatial models and
that have received considerable attention within the fields of Bayesian analysis: Disease
Mapping and Image Analysis. These two areas have both featured in the early development of
both modeling in Bayesian analysis and also in the development of algorithms for posterior
sampling of Bayesian models. In fact, the earliest statistical applications of the Gibbs sampler
were in image segmentation problems (see Geman and Geman 1984; Besag et al. 1991).

16.2 Disease mapping

Bayesian disease mapping is a wide subject and encompasses a range of topics where the
geographical or spatial distribution of a disease is of importance. In what follows there is an
emphasis on disease analysis as opposed to other aspects of public health sciences (such as
health services research, health promotion or education). There is a need to employ particular
spatial statistical methods which are designed for such data. The basic characteristic of data
encountered in this application area is its discrete nature, whether in the form of spatial
locations of cases of a disease, or counts of a disease within defined geographical regions.
Hence, methods developed for continuous spatial processes, such as Kriging (Schabenberger
and Gotway 2004, Chapter 5), are not directly applicable or only approximately valid. Often
geographical hypotheses of interest focus on whether the residential address of cases of disease
yields insight into etiology of the disease, or, whether adverse environmental health hazards
exist locally within a region (as exemplified by local increases in disease risk). For example,
in a study of the relationship between malaria endemicity and diabetes in Sardinia, a strong
negative relationship was found (Bernardinelli et al. 1995; Lawson 2006, Chapter 9). This
relation had a spatial expression and the geographical distribution of malaria was important in

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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generating explanatory models for the relation. In public health practice, it is of considerable
importance to be able to assess whether localized areas, which have larger than expected
numbers of cases of disease are related to any underlying environmental cause. Here, spatial
evidence of a link between cases and a source is fundamental in the analysis. Evidence of
such as a decline in risk with distance from the putative source of hazard or elevation of risk
in a preferred direction is important in this regard.

16.2.1 Some general spatial epidemiological issues

Before considering the study of the spatial distribution of disease, there are some fundamental
epidemiological ideas that should be considered.

16.2.1.1 Relative risk

Within any geographical area, the local density of cases of disease can be studied. We often
want to examine this as it gives information about local variations in disease. If we have
census tracts, then the counts of cases of a particular disease could be the data of interest.
These crude counts of disease cannot be used on their own as the density of cases will be
affected by the variation in the population of the area. This is true whether we observe case
addresses (the residential address of a disease case) or the aggregated count of cases within
small areas.

Hence, underlying the disease incidence is the variation in the population ‘at-risk’ of the
disease. This background population will vary in its composition (age, gender, susceptibility
groups) and in its density with spatial location. Hence, this variation should be accounted
for in any analysis of the disease occurrence. Clearly, if areas of high susceptibility (with
frail population groups) coincide with areas of high disease occurrence then there is likely to
be less interest in these areas (in terms of adverse disease presence), than areas where there
is high disease occurrence and a low number of susceptibles. Local occurrence of disease
(counting of cases within areas) within short time spans (e.g. individual months or years)
is termed incidence. Longer term accumulation of disease cases is often termed prevalence.
Here, the term incidence is used throughout. In general, prevalence can be analyzed as for
incidence.

To simplify discussion, initially, we will assume that we have a small administrative area
(such as a census tract, postcode, zip code, county, etc.) within which we observe the disease
incidence. Often we want to compare the observed counts of disease with what would have
arisen from the underlying population. This will tell us if there is any excess disease risk in
the local area. Let us assume that there are i = 1, . . . , n tracts or small areas in a study area.
Often a ratio of the observed count yi, in the ith tract to the expected count ei derived from
the background population is used to examine excess risk: the relative risk of a disease within
the ith area can be estimated by yi/ei. This ratio represents the relative risk compared to
that the local population suggests should be seen in the area. Often, we consider this to be
given by a parameter θi and so the crude estimate of relative risk in an area is θ̂i = yi/ei.
Usually, the count yi will be available from government public health data sources and the
expected count (or rate) is usually computed from known rates for the disease in population
subgroups (broken by age and gender). This is known as standardization. The calculation
of expected rates can be very important and different methods of calculation could lead
to different conclusions about disease risk. Note that this relative risk definition implies a
multiplicative model for risk. This is a common assumption in epidemiology.
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16.2.1.2 Standardization

Expected rates in the small areas or tracts {ei} are calculated (estimated) from the local
population structure. We do not consider different methods of standardization of expected
rates here, but we assume that they are fixed in the further discussion. The reader is referred to
Elliott et al. (2000) for more details. Expected rates are commonly used to allow for population
effects when count data are observed. Count data are often available readily from government
sources. However, for some purposes, there is a need to examine the spatial distribution of
cases at finer spatial resolution. Commonly the residential address of cases is the finest level
of resolution that can be found. Usually, this is only relevant if a small geographic study
region is examined. In this case, the data form a spatial point process. As for count data, there
is a need take the population variation into account when examining the risk at this spatial
resolution level.

Expected rates are usually only available at aggregated geographic scales (census tracts
or such like areas) and cannot be used effectively at fine resolutions to control for population
variations. An alternative is to use the incidence of a control disease within the study region.
A control disease is matched closely to the risk structure of the disease of interest, but must
not display the incidence effect under investigation. For example, we could use live births
as a control for childhood leukemia in clustering studies. In that case the address locations
of all births would be used as a population surrogate. This leads to two point processes:
(1) the leukemia case distribution, and (2) the live birth distribution. Of course, live birth
is not a disease, but in this case, is a population indicator. Note that this control disease is
a geographical control and is not matched to specific cases. The common feature of each
control disease is that it should not be related to the effect of interest. There is some debate
about use of these controls as opposed to expected rates from external sources.

16.2.1.3 Confounders and deprivation indices

All disease maps contain the influence of variables affecting the local population which are
not accounted for in standardized rates or control diseases. We can try to allow for these
effects in two ways:

1. Include as many known explanatory variables in the expected rate or regression model
to allow for these effects. These variables are called known confounders.

2. Include the effect of unmeasured confounders via the use of random effects.

In the first case, the solution is to include in the study as many known variables that
affect the outcome so that extra variation is explained. Of course, it may not be feasible to
include all know confounders simply due to (realistic) study limitations. To make allowance
for unmeasured confounders (whether known or unknown), it is possible to admit random
effects into any regression model. These are additional unobserved variates that will soak up
extra variation of various kinds.

Often adverse disease incidence is known to be related to a range of poverty-related ex-
planatory variables, e.g. unemployment, housing type, welfare status and car ownership. That
is, we expect that there is measurable adverse risk in areas where these variates indicate low
income and poverty. These variables are often available from a national census. There has been
some effort to combine such variables in composite measures known as deprivation indices
(Carstairs 1981). In North America, these are often termed urbanicity indices. Deprivation
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indices are now routinely available from government census data organizations and can be
incorporated directly into a disease map as a covariate or as an offset term.

16.2.2 Some spatial statistical issues

A fundamental feature of geo-referenced data available for analysis is that it is usually discrete
(either in the form of a point process or counting process), and the cases of concern arise
from within a local human population which varies in spatial density and in susceptibility
to the disease of interest. Hence, any model or test procedure must make allowance for this
background (nuisance) population effect. The background population effect can be allowed
for in a variety of ways. For count data, it is commonplace to obtain expected rates for the
disease of interest based on the age–sex structure of the local population (see Elliott et al.
2000, Chapter 3), and some crude estimates of local relative risk are often computed from the
ratio of observed to expected counts (e.g. standardized mortality/incidence ratios: SMRs). For
case event data, expected rates are not available at the resolution of the case locations and the
use of the spatial distribution of a control disease has been advocated. In that case, the spatial
variation in the case disease is compared to the spatial variation in the control disease. A major
issue in this approach is the correct choice of the control disease. It is important to choose a
control which is matched to the age–sex structure of the case disease but is unaffected by the
feature of interest. For example, in the analysis of cases around a putative health hazard, a
control disease should not be affected by the health hazard. Counts of control disease cases
could also be used instead of expected rates when analyzing count data. In the following, we
focus on count data models and their Bayesian implementation. Case event data are considered
in more detail in Lawson (2009) and Lawson and Banerjee (2010).

16.2.3 Count data models

Figure 16.1 displays a typical count data example: male lip cancer mortality in the Landkreise
of the former East Germany. Displayed is the SMR map for the 195 Landkreise (administrative
regions). This example first appeared in Chapter 9.

A considerable literature has developed concerning the analysis of count data in spatial
epidemiology (see reviews in Banerjee et al. 2004; Lawson 2006; Lawson and Banerjee 2010).

The usual model adopted for the analysis of region counts {yi, i = 1, . . . , n} assumes that
they are independent Poisson random variables with parameters {λi, i = 1, . . . , n}. Often the
λis are assumed to be constant within areas. Usually, the expected count is modeled as

E(yi) = λi = eiθi, (i = 1, . . . , n),

and so the data level model is

yi ∼ Poisson(eiθi).

Note that the parameter of interest in this model is the relative risk (θi). This model may be
extended to include unobserved heterogeneity between regions by introducing a prior distri-
bution for the log relative risks (log(θi), i = 1, . . . , n). Incorporation of such heterogeneity
has become a common approach and the Besag, York and Mollié (BY M) convolution model
is now a standard model (Mollié 1999). A full Bayesian analysis using this model is available
in WinBUGS.
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Figure 16.1 Lip cancer study: graphical display of standardized mortality ratios for male lip
cancer in 1989 within the Landkriese of Eastern Germany.

16.2.4 A special application area: Disease mapping/risk estimation

In this area, focus is on the processing of the disease map to take out the random noise. Often
applications in health services research require the production of an ‘accurate’ map of relative
risks. Models for relative risk range from simple SMRs to posterior expected estimates from
Bayesian models. In the count data situation, define the model for the observed counts as

yi ∼ Poisson(eiθi)

log(θi) = xT
i β + random terms,

where xT
i is the ith row of a covariate design matrix and β is a regression parameter vector.

The simplest model assumes no linkages to covariates or random terms and the ML
estimator of θi is the SMR: i.e. θ̂i = yi/ei. More often, and more generally, log(θi) is as-
sumed to be equal to a linear predictor involving covariates and regression parameters (xT

i β).
The final extension includes random effect terms to allow for overdispersion (uncorrelated
heterogeneity UH: vi) and spatially correlated heterogeneity (CH: ui). The model would then
take the form

log(θi) = xT
i β + vi + ui.

In applications without covariates, when simple smoothing of rates is required, a simpler
intercept random effect model would be used:

log(θi) = α0 + vi + ui.
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This model assigns noise to two components: UH and CH, while identifying the overall rate
via α0. Both random components are usually fitted to capture all the noise components thought
to be present. This is often termed the BYM convolution model. To be able to estimate these
components, prior distributions are assumed for each component. Usually, these consist of an
uncorrelated zero mean normal distribution for the overdispersion:

vi ∼ N
(
0, σ 2

v

)
, (16.1)

where τv = σ−2
v is the precision, and a spatial correlation prior distribution for the CH

component. This could be chosen in a variety of ways. Commonly a Markov random field
(MRF) is assumed. The intrinsic singular Gaussian distribution (Besag et al. 1991; Kunsch
1987; Rue and Held 2005) is used where the conditional mean of the region effect is based
only on a neighborhood of the region:

ui| . . . ∼ N
(
uδi , σ

2
u /nδi

)
(16.2)

where δi is a neighborhood of the ith area, nδi is the number of regions in the ith neighborhood,
and σ 2

u = τ−1
u is a variance parameter that controls the degree of smoothing. This distribution

can be relatively simply sampled using a posterior distribution sampling algorithm. An alter-
native to this specification is to assume a fully parameterized covariance and a multivariate
normal distribution for CH:

u ∼ Nn(0,�)

where the elements of � are σi j = cov(ui, u j). This is a joint model for the u, more heavily
parameterized than the MRF model above and the model also requires the inversion of a n × n
covariance matrix. This, of course, allows for more detailed covariance modeling.

In a Bayesian analysis, all parameters (β, u, v, σ ∗, . . .) would be assigned prior distribu-
tions and posterior sampling of these parameters, usually via MCMC algorithms, would be
required.

For the lip cancer example above, we have fitted a range of basic models to exemplify
these approaches. Table 16.1 displays the results of fitting a range of models to these data that
are typical of models assumed for such small area health data. The models were run for an
initial burn-in period of 10 000 iterations and convergence was checked on the deviance as
an overall measure as well as on individual parameters, using Brooks–Gelman–Rubin (BGR)
statistics. A sample of 5000 was then taken to compute Deviance Information Criterion (DIC).
An mean-square predictive error (MSPE) could also be computed in this example but we did

Table 16.1 Lip cancer study: goodness of fit of a variety of models.

Model for log(θi) DIC pD

(1) α0 + vi 1122.19 125.6
(2) α0 + ui 1090.08 103.6
(3) α0 + vi + ui 1092.96 107.5
(4) α0 + vi + α1(xi − x) 1109.90 114.8
(5) α0 + vi + ui + α1(xi − x) 1091.25 100.3
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not pursue this here as we are simply interested in overall goodness of fit and adjustment for
parameterization.

Our philosophy in defining these models is that we would want to provide a parsimonious
description of the relative risk variation on the map. To this end, we included different random
effect terms and also considered the inclusion of a covariate AFF (% population employed in
agriculture, Fisheries, and Forestry). This covariate would be thought a priori to be associated
with sunlight exposure and hence enhancing lip cancer risk. The first model (UH only) has
relative risk defined by log(θi) = α0 + vi, with prior distributions defined as α0 ∼ N(0, c),

with c = 106, and vi ∼ N(0, σ 2) where σ ∼ U(0, 10). In this model, an overall rate is assumed
(eα0 ) and an exchangeable random effect is defined. Both the intercept and random effect have
zero mean Gaussian distributions. The intercept has a fixed but large variance, whereas the
variance of the random effect is parameterized and the standard deviation is assumed to have
a uniform distribution on a large range. Other models consist of different combinations of
random effects and the covariate. In model 2, a spatially correlated random effect is assumed
where an intrinsic Gaussian prior distribution is introduced (as defined in 16.2). This prior
distribution is zero centered but allows for correlation and smoothing via neighborhood effects.
The variance is σ 2

u and σu ∼ U(0, 10). Model 3 is an example of a convolution model where
an uncorrelated and correlated random effect are additively included. Finally, models 4 and
5 both include the covariate (AFF: xi) as a mean-centered effect. This centering often allows
for faster convergence within the sampler, as seen in Section 7.3. The prior distribution for α1

is also assumed to be zero mean Gaussian where α1 ∼ N(0, c). Overall, it is apparent from
Table 16.1 that the models with the lowest DIC are models 2, 3 and 5. They are all within three
DIC units, with the lowest being the ‘CAR only model’, followed closely by the ‘convolution
with covariate model’. It is notable that the covariate itself does not provide a good model and
the model with AFF only included and no random effects yielded a DIC of 1424.49 with pD

of 2.03. Hence, from the point of view of DIC this is not a competitive model for describing
the relative risk variation and AFF does not add to the degree of explanation of true risk in
this case. For the lowest DIC model (model 2), the box plots for a posterior sample of size
5000 of the standardized residuals (ri = (yi − λ̂)/

√
λ̂ ) are shown in Figure 16.2. A map of

Figure 16.2 Lip cancer study: box plots of the standardized residuals from a posterior sample
of size 5000 for the conditional autoregressive (CAR) only model.
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N (1) <–2.0

(14)  1.0–2.0

(0) ≥ 2.0

(98)  0.0–1.0

(73)  –1.0–0.0

(9)  –2.0 to –1.0

Figure 16.3 Lip cancer study: map of posterior averaged standardized residuals.

the posterior averaged standardized residuals is displayed in Figure 16.3. The spatial pattern
of residuals seems to show a reasonable random pattern although there is some suggestion
that northern areas have higher positive residuals.

The WinBUGS code for this model is displayed in Figure 16.4. Note that the improper
CAR model is defined for an multivariate node within a single statement:

b1[1:n] ˜ car.normal(adj[],weights[],num[],tau.u).

This statement defines the CAR prior distribution with neighborhood adjacencies defined
in the vectoradjwith the number of neighbors specified innum. A weight matrix (weights)
is also included and in this case set to 1 for all neighbor pairs. Further examples of the use of
this model can be found in the GeoBUGS user manual in WinBUGS.

Another approach that could be taken to this analysis is to focus on whether a covariate
is related to the health outcome at the aggregate level. In that case, the emphasis is not on
the model that yields the best goodness of fit or describes best the ‘true’ relative risk, but
on whether the parameter α1 is well estimated, while allowing for confounding via random
effects. Often evidence for this is taken from the 95% credible interval. An interval straddling
a zero value suggesting that parameter values have been sampled at negative and positive
levels and hence little evidence of a predictor effect, whereas an interval completely positive
or completely negative suggesting stronger evidence for a predictor effect. In the model (5)
above, the best fitting model including the AFF predictor, the posterior mean estimate was
0.831 with 95% credible interval limits: (0.0982, 1.536). This suggests that there is consistent
evidence for a positive relation between the AFF predictor and lip cancer at the Landkreise
level even allowing for a spatially correlated random effect. Of course, this model is not the
best fitting model in terms of DIC.
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model
{
for (i in 1:n ) {
# Poisson likelihood for observed counts
observe[i] ˜ dpois(lambda[i])
lambda[i] <- theta[i]*expect[i]
# SMR
smr[i] <- observe[i]/expect[i]
aff1[i] <- aff[i]
# Relative risk without hierarchical centering
log(theta[i]) <- ab[i]
ab[i] <- beta0+b1[i]
pex[i] <- step(theta[i]-1)
r[i] <- (observe[i]-lambda[i])/sqrt(lambda[i])
}

b1[1:n] ˜ car.normal(adj[],weights[],num[],tau.u)
for(k in 1:sumNumNeigh)
{weights[k] <- 1}

tau.u <- pow(sdu,-2)
sdu ˜ dunif(0,10)
# Prior distributions for "population" parameters
beta0 ˜ dnorm(0,1.0E-6)
}

Figure 16.4 Lip cancer study: WinBUGS code for the CAR only model (model 2).

16.2.5 A special application area: Disease clustering

In this area, the focus is not on reduction of noise, per se, but rather the assessment of
the clustering tendency of the map and in particular the assessment of which areas of a
map display clustering. Here, clustering could be around a known putative source of hazard
(focused clustering) or have no known locations of clustering (nonfocussed clustering).

It is possible to consider Bayesian models for clusters. In general, the model formulation
may not differ greatly from that of relative risk estimation, depending largely on the definition
of clusters and clustering.

16.2.5.1 Focused clustering

Focused clustering is the simplest case and usually assumes that some form of distance
decrease in risk happens around a (known) fixed point or points(putative source(s) of hazard).
For example, the count data model can be defined as

yi ∼ Poisson(eiθi)

log(θi) = log[1 + exp(−αdi)] + xT
i β + zT

i γ ,

where di is a distance measured to the small area from the focus point(such as a chimney,
mobile phone mast, or waste dump site). Here, the extra covariates appear in xi while zi

represents the random effects and γ is a unit vector. In this case, focus is on inference
concerning α, as this defines the distance relation. Within xi, there could also be directional



P1: JYS/XYZ P2: ABC
JWST177-c16 JWST177-Lesaffre May 18, 2012 12:12 Printer Name: Yet to Come Trim: 244mm × 168mm

DISEASE MAPPING 439

terms such as cos(φ) and sin(φ), where φ is the angle between the area (centroid) and the
focus point. This can be used to detect any directional concentration of risk (which could
be important particularly if an air pollution risk is possible). Details of this type of approach
appear in Wakefield and Morris (2001), and Lawson (2009), Chapter 7.

All parameters (α,β, etc.) have prior distributions and the resulting posterior distribution
would usually be sampled. Some examples of prior distributions used would typically be zero
mean Gaussian for the regression parameters and uniform for the standard deviations:

α ∼ N
(
0, σ 2

α

)
,

σα ∼ U(0, 10),

β∗ ∼ N
(
0, σ 2

β∗

)
,

σβ∗ ∼ U(0, 10).

16.2.5.2 Nonfocused clustering

When locations of clusters are unknown then the statistical task becomes more difficult. Not
only are the locations of putative clusters unknown but their number and size are also not
predefined. This area can be further divided into general clustering, where the overall tendency
of an area to cluster is assessed, and specific clustering where the locations of clusters are to
be assessed. Here, we examine only specific clustering.

Non-Bayesian approaches to this problem often focus on testing procedures (such as
SatScan: Kulldorff and Nagarwalla 1995). Bayesian modeling of specific clustering can be
approached in a variety of ways. First, if clustering of excess risk is simply and liberally
regarded as significant excess risk found anywhere on a map then pointwise determination of
excess can be pursued. This is known as hotspot clustering. For example, for count data we
could assume

yi ∼ Poisson(eiθi)

as before, and examine either (i) estimates of θi for unusual features (usually significantly
elevated values) or (ii) the residuals from a fitted model:

r̂i = yi − eiθ̂i

to find out if, after model fitting, whether there are areas of excess unexplained by the
model.

The first approach assumes a model for risk and under that model some form of cluster
identification may take place. Alternatively a model which simply cleans noise out may be
considered i.e. a model for log(θi) is assumed such as log(θi) = xT

i β + vi. This model allows
for covariate adjustment and some extra variation but does not model CH (smoothing) as
this may reduce its ability to detect aberrations in risk at the single-region level. Following
the model fit, an assessment of the significance of θ̂i could be made. Often, counting ex-
ceedences (θi > 1) from posterior converged samples will provide an estimate of P(θi > 1).
Figure 16.5 displays an example of this approach where the posterior averaged value of
I(θi > 1), computed from the sample as

∑G
g=1 I(θg > 1)/G, can be used as an estimate of
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N
(96) <0.5

(21)  0.5–0.7

(23)  0.7–0.9

(12)  0.9–0.95

(15)  0.95–0.99

(28) ≥ 0.99

Figure 16.5 Lip cancer study: posterior average exceedence probability map for the CAR
only model (model 2).

exceedence probability. It is notable that a number of northern areas (28) have a probability
>0.99 suggesting very high risk in northern areas.

This approach to hotspot detection has been advocated by Richardson et al. (2004) and
Abellan et al. (2008). There are concerns about the use of these exceedence probabilities,
however. As they are estimated from the upper tail areas of the relative risk distribution
they are very sensitive to model assumptions (see Ugarte et al. 2009). In fact, in some
cases different models can yield markedly different spatial distributions of exceedence. As an
example of this problem, we present below another data example. In this case, we examine
county level congenital abnormality mortality within the 46 counties of South Carolina,
USA. Figure 16.6 displays the standardized mortality ratio for 1990 for this example with
expected counts computed from the 1990 statewide abnormality rate. Figure 16.7 displays the
marginal histogram and box plot for these data. The pattern suggests that there is one area
with particularly elevated risk (>4.0) and two other areas with relative risk in excess of 2.0 in
the upper area of the state.

Figure 16.8 displays the spatial distribution of exceedence probabilities from a converged
sampler for the model with a simple spatial trend in the (x, y) coordinates of the centroids of
the counties: log(θi) = α0 + α1xi + α2yi where α0 ∼ N(0.0, 1000), α1 ∼ N(0.0, 1000), α2 ∼
N(0.0, 1000). The areas with highest exceedence are areas in the north west where the highest
values of relative risk are found. Figure 16.9 displays the exceedence map for a model with only
an uncorrelated random effect (log(θi) = α0 + vi; α0 ∼ N(0.0, 1000), vi ∼ N(0, σ 2), σ ∼
U(0, 10)). Now the relative risk is assumed to be randomly varying across the study area
with no trend assumed. In this case, the exceedence map shows markedly different spatial
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(25) <1.0N

(18) 1.0–2.0

(2) 2.0–3.0

(0) 3.0–4.0

(1) ≥ 4.0

Figure 16.6 South Carolina study: county level congenital abnormality mortality in 1990,
standardized Mortality Ratio (SMR) map using the total statewide rate with no age × gender
stratification.

patterning than under the trend model. Figure 16.10 displays the resulting exceedence map for a
convolution model with additive uncorrelated and correlated effects (log(θi) = α0 + vi +
ui; α0 ∼ N(0.0, 1000), vi ∼ N(0, σ 2

v ), σv ∼ U(0, 10), ui ∼ CAR(τu), τu = σ−2
u and σu ∼

U(0, 10)). This map display is similar to the uncorrelated map in that a more random dis-
tribution of higher exceedences is found. Note that, as shown in Table 16.2, these different
models were all within three DIC values of each other and the trend only model (model 1) has
lowest DIC and pD overall (170.9, 2.42). The concern about this effect is clear: exceedences
are highly model dependent and the choice of a convolution model may not lead to stable
estimates of clustering behavior. If a simple trend model were included in the possible models
considered here then it would fit best and yield a different exceedence map.

4
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Figure 16.7 South Carolina study: histogram and box plot of the standardized mortality
ratio.
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(2) <0.4N

(9) 0.4–0.5

(11) 0.5–0.6

(8) 0.6–0.7

(9) 0.7–0.8

(7) ≥ 0.8

Figure 16.8 South Carolina study: map of p(θi > 1) for model with trend only components.

(0) <0.4
N

(1) 0.4–0.5

(23) 0.5–0.6

(17) 0.6–0.7

(4) 0.7–0.8

(1) ≥ 0.8

Figure 16.9 South Carolina study: map of p(θi > 1) for an uncorrelated heterogeneity model
with no trend.

(2) <0.4N

(13) 0.4–0.5

(17) 0.5–0.6

(8) 0.6–0.7

(5) 0.7–0.8

(1) ≥ 0.8

Figure 16.10 South Carolina study: map of p(θi > 1) under a convolution model.
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Table 16.2 South Carolina study: model DIC results.

Model DIC pD

(1) x + y 170.9 2.42
(2) x + y + vi 173.3 7.60
(3) vi 170.9 4.98
(4) vi + ui 172.6 7.90

16.2.5.3 Formal models

If, on the other hand, a specific structure for clusters is assumed then a formal clustering
model may be assumed. There is a gray area between relative risk estimation (which focuses
on the estimation of θi) and examining estimates of θi for significant excess. If some form
of cluster identification is included into the model then that can be checked for location and
size of clusters. This can be useful when data are sparse and other global CH models can not
describe the cluster form. One proposal is for risk to be related to a set of hidden (unobserved)
cluster locations:

log(θi) = xT
i β +vi + log

[
1 +

K∑
k=1

h(si; ξk)

]
,

where there are K unknown clusters with locations {ξk}, si is the centroid of the ith small
area and h(si; ξk) is a cluster distribution function that describes the relation of any point to
a cluster location. Usually, h(si; ξk) is designed to have a decline in risk with distance from
ξk, but a range of forms are available. Unfortunately, given that K is unknown, a number of
assumptions must be imposed on the analysis to allow for estimation of parameters. Often,
reversible jump MCMC is employed here (see Gangnon 2006; Lawson and Clark 1999;
Lawson and Denison 2002).

The second approach, that of examining residuals such as r̂i = yi − eiθ̂i, may be useful if a
noise reduction model is used in the estimation of θ̂i. However, the residual will always include
some form of noise unrelated to clustering. Even a perfect model will always have Poisson
noise around the true risk: eiθi. Hence, it would be important to specify the risk model carefully
to allow for only clustering effects to appear in the residual as far as possible. ‘Unusual’
residuals can be examined via Monte Carlo procedures using the predictive distribution.

Finally, alternative approaches that assume that clusters are defined within areas or neigh-
borhoods (as opposed to single regions) can be considered and diagnostics for these have been
proposed (Hossain and Lawson 2006).

16.2.6 A special application area: Ecological analysis

In this area, the relation between disease incidence and explanatory variables is the focus,
and this is usually carried out at an aggregate level, such as with counts in small areas. Many
issues of bias and misclassification error can arise with ecological data and the interested
reader is referred to Wakefield (2004), Wakefield and Shaddick (2006) and Gustafson (2004)
for further insights.
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Two important areas of concern are related to scale aggregation issues: MAUP and MIDP.
The Modifiable Areal Unit Problem (MAUP) concerns the scalability of models and whether,
at different spatial scales, a model is valid. In general, this is unlikely to be the case as far
as covariance structure is concerned as this would lead to fractal covariances which are not
found commonly. However, the labeling of scales of relevance of models is important and the
extent to which a model can be scaled is relevant in many applications. A related but different
issue is how to use different scales of data within one analysis, i.e. should individual level data
be used in preference to aggregated data or can they be combined. This is a focus of current
research.

The MIDP is related to the last issue, but specifically addresses the issue of combining data
from different spatial scales to provide analysis at one level. For example, health outcomes
(disease incidence, etc.) may be observed within census tracts and we may have available
pollution measurements at monitoring sites around the study area. To make inferences about
the health outcomes, we want to use the pollution data relevant to the census tracts. One simple
solution would be to block Krige the pollution data to provide block estimates for each of the
tracts (see Banerjee et al. 2004, Chapter 6). This would ignore the error in the interpolation
of the pollution data of course and a better approach is to consider a model where the true
exposure is modeled within the health model but the pollution model is jointly estimated (see
Kim et al. 2010).

16.3 Image analysis

Bayesian models for images have a relatively long history. In recent decades, methods have
been developed linked to technological innovations in image technology. In the 1980s, much
attention was focused on Bayesian modeling of Positron emission tomography (PET) and
Single photon emission computerized tomography (SPECT) (see Green 1990). More recently,
functional magnetic resonance imaging (fMRI) has been developed and achieves good spatial
resolution. fMRI is used to measure hemodynamic response (blood flow) related to neural
activity in the brain and spinal cord. It is a cornerstone of modern neuroimaging. It has become
popular in part because it is less invasive and does not require radiation exposure of patients
unlike tomography procedures (CAT, PET and SPECT).

Images provide a regular array of data which can be analyzed as a lattice. Various features
could be of interest on an image. For example, we might simply want to clean up noise to
yield the ‘true’ underlying scene. Much early Bayesian modeling was focused on this aspect
of imaging (Besag 1974, Besag 1977, Besag 1986, Ripley 1988, Molina and Ripley 1989,
Besag and Green 1993). In addition, it might be important to identify objects in images.
This might require some form of boundary or edge detection or special prior distributions
relating to the objects of interest, such as template priors (Hansen et al. 2002), Markov
inhibition priors (Baddeley and M. van Lieshout 1993) or landmark models (Dryden and
Mardia 1997).

One of the major challenges of image data is the fact that correlation between array ele-
ments or sites (pixels or voxels) naturally arises and so models usually must allow for such
correlation. At the likelihood level, this is a complication as the joint density of observa-
tions cannot be formulated as a simple product of sample point densities. Usually awkward
normalizing constants arise when correlated models are assumed at this level of the hierar-
chy. A common solution to this problem is to assume that features of interest in the image
can be specified completely via prior distributions at higher levels and thereby allowing the
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assumption of conditional independence at the data level. In this way a conventional likelihood
model can be assumed with component correlation confined to higher levels, and conditional
independence assumed at the data level.

Often the correlation model is described by special spatially defined prior distributions.
One general model is to assume that the hidden structure (x say) has its values governed
by a multivariate normal distribution such as x ∼ N(μx, �) where the correlation between
sites depends on distance between them. Hence, an element of �, the covariance σi j say,
is defined as σi j = f (di j) where di j is the intersite distance. A common example of such a
spatial covariance would be the exponential where σi j = τ exp(−ρdi j). Here, τ describes the
variability of the field and ρ the distance dependence or correlation. This type of model is
often assumed for continuous fields especially in environmental and agricultural applications
(see the spBayes and geoRglm packages in R). In these applications there is usually a
relatively small number of measurement sites, which is an important consideration as this full
multivariate normal model requires the inversion of the covariance matrix during estimation.
In fact, this would be required at each iteration of an MCMC sampler if a Bayesian model
were assumed. To reduce the computational burden for these models, various alternative
formulations have been proposed: predictive process models (Banerjee et al. 2008), process
convolutions (Higdon 2002), reduced rank Kriging or splines (Kim et al. 2010). For images,
resort is usually made to Markov random field (MRF) models which assume only local
dependence on neighborhoods. Figure 16.11 displays a 25 site mesh where site 13 has 8
(immediately) adjacent neighbors and 4 main neighbors and 24 second-order neighbors. In
MRF models, dependence is purely defined conditionally via neighborhood values.

For example, a Gaussian first-order MRF could be defined for a component {ui} as

ui|{u j} j �=i ∼ N
(
γ uδi , σ

2
τ /nδi

)
,

where σ 2
τ = τ−1, δi, the neighborhood of the ith site, nδi the number of neighbors of the

ith site, and uδi the mean of values for the neighborhood of the ith site. For regular arrays
of pixels/voxels, nδi = 8 for first order except at edges where nδi = 5 and censoring occurs.
Hence, the edge area sites would have greater variability. The parameter γ is a measure

1 2 3 3 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 16.11 Grid mesh of 25 sites: site 13 has 8 adjacent neighbors (first order): {7, 8, 9,
12, 14, 17, 18, 19}, and 24 second-order neighbors (including all other sites).
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of neighborhood correlation. Notice that the component is defined conditionally and only
depends on the average of neighboring values. If γ = 1, an improper CAR model arises
which has a major advantage over other models in that it does not require the inversion of a
covariance matrix during estimation. This model is commonly assumed in disease mapping
applications also (see Section 16.2). We denote this model as CAR(γ , τ ). A general review
of these models is available in Rue and Held (2005). A review of MRF models for images is
available in Winkler (2006).

There is a range of applications for Bayesian modeling of images which have their own
special requirements. For example, PET is used to detect brain glucose dynamics (early
detection of Alzheimer’s disease) and also for tumor form detection in oncology. PET data
yields counts of photons emitted from a light source activated by a radio-labeled tracer.
Early Bayesian work in this area focused on EM algorithm solutions (see Green 1990). More
recently MRI has become more prominent particularly in neuroscience applications and next
we discuss modeling issues related to fMRI.

16.3.1 fMRI modeling

Here, we examine a few issues related to the analysis of fMRI images from a Bayesian
modeling perspective. There is a wide and growing literature in the analysis of fMRI data
and for a recent review of statistical issues the reader is referred to Lazar (2008). Functional
MRI has become an important tool in diagnostic medicine and, in particular, in neuroscience.
In the discussion here, we assume that postprocessing of the fMRI image has taken place
and the resulting BOLD voxel image or sequences of BOLD images or time series are to be
analyzed. We do not discuss the details and issues of image postprocessing here although in
any substantive analysis these would have to be considered in relation to the models assumed.
BOLD stands for blood oxygenation level dependent and there is a direct link between
magnetic susceptibility of blood and oxygenation. BOLD response as measured in fMRI
reflects pooled local neuronal activity (which reflects behavioral or cognitive activity). Hence,
sites of elevated BOLD values reflect higher neuronal activity. A general comprehensive
source for analysis in functional brain imaging is found in Friston et al. (2007) and Part 5 of
that work focuses on Bayesian approaches.

We assume that the BOLD image consists of a t × p × m × n set of voxels where p
represents slices through the brain area, t represents time, and the spatial voxel array has
dimension m × n for an individual subject. Further, it is assumed that time is fixed at the t = 1
period in the next section. Later, we will also consider temporal models.

Figure 16.12 displays a single slice BOLD image from a finger tapping experiment. Areas
of activation (signal) are shown as darker areas, while lighter areas show less or no activation.
This image consists of an array of 69 × 79 voxels.

16.3.1.1 Spatial models

BOLD values are continuous measures and bounded away from zero and so the assumption
of a Gaussian model for BOLD data is a reasonable first assumption. A simple spatial model
for a slice (e.g. p = 1) and time (t = 1) could take the form, for j-kth site/voxel,

y jk = β0 + wjk + e jk.
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Figure 16.12 Finger-tapping experiment.

Here we assume a Gaussian error with e jk ∼ N(0, σ 2
y ), with an intercept and a random effect

term (wjk) which can consist both of uncorrelated (unstructured salt and pepper) noise and
correlated (spatially structured) noise. A convolution assumption is often made for the random
effects so that wjk = v jk + u jk where v jk ∼ N(0, σ 2

v ) and u jk|{ulm}l.m�= j,k ∼ CAR(γ , τu) so
that we have

y jk = β0 + v jk + u jk + e jk (16.3)

as the basic model for a single-slice image. Such models have been assumed by Gossl et al.
(2001), albeit in a spatio-temporal (ST) context. Note that so far we have only considered
smoothing models and have not included either individual effects or stimulus effects.

More general models will include individual level data and also grouped data (Lange
2003). We assume, first, that the ith subject scanned has a single slice with a voxel array
of m × n elements. Define the BOLD response at the j-kth voxel as yi jk, (i = 1, . . . , N;
j = 1, . . . , m; k = 1, . . . , n). Hence,

yi jk = μi jk + ei jk.

We assume that the error term at this level is uncorrelated random noise and so we assume

ei ∼ N(0, σ 2I).
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In addition, we assume that the underlying mean level μi jk is a smoothed representation of
the data yi jk. In that case, we could have a model for the ith individual and lth group:

yi jkl = xT
i jklβ + zT

i jkbil + ei jkl, (16.4)

where xi jkl is a predictor vector indexed by individual, voxel and group, with associated
parameter vector β, and zT

i jkbil, an individual and group level random effect term, and an
overall error term ei jkl ∼ N(0, σ 2

y ).
We now assume a model for the mean BOLD level for the ith subject. We assume a general

form of a mixed model where

μi jk = xT
i jkβ + zT

i jkbi.

When covariates are present, they may be spatially varying or they may be simply baseline
measures (such as demographic information for individuals). Specifically, when a stimulus is
present which is spatially referenced, then a link function is usually employed that can match
the stimulus to the BOLD signal. Often a hemodynamic response function is used for this
purpose (h(s, θ )). Assume that the stimulus value obtained at a lagged time is zi jks, then the
link is often x∗

i jk = ∑
s h(s, θ )zi jks where the lag is s. Then x∗

i jk could be added linearly or
nonlinearly into the model for μi jk.

In what follows, we assume that there are no covariates and so our linear predictor
xT

i jkβ = β0, is a constant intercept term representing the overall average level. The second
term includes random effects and can include spatial correlation. A range of models of varying
complexity are now possible:

1. Uncorrelated voxel noise model: μi jk = β0 + v jk; v jk ∼ N(0, σ 2
v )

2. Uncorrelated individual voxel-level model: μi jk = β0 + bi + v jk; bi ∼ N(0, σ 2
b ), v jk ∼

N(0, σ 2
v )

3. Uncorrelated and correlated voxel noise model: μi jk = β0 + v jk + u jk; v jk ∼
N(0, σ 2

ψ ); u jk ∼ CAR(γ , τu)

4. Weighted mixture model: μi jk = β0 + p jkv jk + (1 − p jk)u jk; p jk ∼ Beta(1, 1)

5. Extended weighted mixture with jump honoring: μi jk = β0 + p jkv jk + (1 −
p jk){q jk[u jk] + (1 − q jk)[u∗

jk]}; q jk ∼ Beta(1, 1) and u∗
jk|{u∗

lm}l,m�= jk ∼ CAR.L1(u∗
jk)

Model 1 is the least important as it does not include any structural assumptions. Model
2 contains both individual level effects and voxel-based effects. Model 3 is commonly
termed a convolution model and provides a parsimonious description of the spatial variation.
Figure 16.13 displays the posterior average of μi jk for a single subject for the finger data
for model 3. For model 3, we also obtain the posterior average of the spatial heterogeneity
component (u jk).

Figures 16.14 and 16.15 display these random effects. Model 4 shows the mixing parameter
field pjk (between uncorrelated and correlated effects) which reflects the edge areas mainly
where random noise is highest perhaps as edge effects (Figure 16.16).

For the extended mixture model (model 5) we display both p and q fields and the overall
μi jk estimate (Figures 16.17, 16.18 and 16.19). Note that we use a posterior functional
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(Samples)means for μ (0) <0.0

(677) 250.0–500.0

(507) 500.0–750.0

(1172) 750.0–1.00E+3

(1541) 1.00E+3–1100.0

(256) ≥ 1100.0

(1298) 0.0–250.0

Figure 16.13 Finger tapping experiment: posterior mean estimate of μi jk under a convolution
model for a single slice and single time.

(exceedence probability) to display the probability fields (see also Section 16.2.5). From
the posterior sample {pg

1,1, . . . , pg
m,n}, g = 1, . . . , G we have for each voxel Pjk = P̂r(p jk >

0.5) = ∑G
g=1 I(pg

jk > 0.5)/G. Suitable threshold values of Pjk,such as 0.95 or 0.99 could be
employed. This idea can be used more generally to isolate areas of highest BOLD activity or
to detect clusters of high activation.

(419) < –600.0)

(1178)  –600.0 to –300.0

(766)  –300.0–0.0

(605)  0.0–200.0

(1136)  200.0–350.0

(1347)  350.0–500.0

(0) ≥ 500.0

Figure 16.14 Finger-tapping experiment: posterior mean estimate of ujk under a convolution
model for a single slice and single time.
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(3) < –100.0

(406)  –100.0 to –50.0

(708)  –50.0 to –25.0

(1773)  –25.0–0.0

(1446)  0.0 –25.0

(684)  25.0–50.0

(431)  ≥ 50.0

Figure 16.15 Finger-tapping experiment: posterior mean estimate of v jk under a convolution
model for a single slice and single time.

(4930) <0.25

(296)  0.25–0.5

(58)  0.5 –0.75

(167) ≥ 0.75

Figure 16.16 Finger-tapping experiment: posterior average field estimate of pjk for the
mixture model (model 4).



P1: JYS/XYZ P2: ABC
JWST177-c16 JWST177-Lesaffre May 18, 2012 12:12 Printer Name: Yet to Come Trim: 244mm × 168mm

IMAGE ANALYSIS 451

Probability of p greater than 0.5 (3712) <0.25

(999)  0.25–0.5

(563)  0.5–0.75

(177) ≥  0.75

Figure 16.17 Finger-tapping experiment: posterior exceedence probability of pjk > 0.5 for
the extended mixture model (model 5).

Probability of q greater than 0.5 (174) <0.25

(627) 0.25–0.5

(1119)  0.5–0.75

(3531) ≥ 0.75

Figure 16.18 Finger-tapping experiment: posterior exceedence probability of qjk > 0.5 for
the extended mixture model (model 5).
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(1451) <250.0

(547)  250.0–500.0

(425)  500.0–750.0

(1920)  750.0–1050.0

(658)  1050.0–1100.0

(405)  1100.0–1150.0

(45) ≥1150.0

Figure 16.19 Finger-tapping experiment: posterior average of the smoothed mean field, μi jk

for the extended mixture model (model 5).

More sophisticated Bayesian models have recently been proposed based on mixtures (Xu
et al. 2009; Zhang et al. 2010). Alternative approaches to Bayesian spatial modeling have also
been suggested based on exchangeable assumptions (Bowman et al. 2008) and predefined
regions in connectivity applications (Derado et al. 2010).

Functional connectivity is a major area of concern in neuroimaging (Lange 2003). This
concerns the connection or correlation between areas of the brain. Hence, correlation of
activity level is a focus, but this may not be spatially defined as some areas may signal
synchronously because of functional dependence but may be separated by some distance.
Clearly lagged temporal effects could play a major role in the complexity of connectivity. It
is beyond the scope of this chapter to further examine this topic, although we will examine
some related areas in the next sections. Regions of Interest (ROIs) are areas of the brain that
are of specific interest in connection with functional behavior. In the next sections, we will
briefly examine modeling approaches associated with these regions. For further information
about functional connectivity, the interested reader is referred to Lange (2003), Stanberry
et al. (2008), and more generally to Lazar (2008).

16.3.1.2 Temporal models

Figure 16.20 displays time series of BOLD values for a set of four adjacent voxels.
A range of models can be considered for time series, similar to those found for longitudinal

studies (see Chapter 15). Unlike longitudinal studies, however, these series are likely to be
spatially correlated especially if the voxels are close neighbors. Of course, greater separation
will reduce such correlation, but functional connectivity could also mean that distant voxels
are correlated due to functional connections.
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Figure 16.20 Finger-tapping experiment: multiple plot of four adjacent voxel time series
for the finger data (slice = 20).

For the set of four voxel time series, we have considered a model that can capture much
of the variation as follows. Let yi jk denote the BOLD response at the ith time point and j–kth
voxel and assume an autoregressive dependence model as follows:

yi jk ∼ N(μi jk, σ
2); μi jk = α0 + c jk + gi jk,

α0 ∼ N
(
0, σ 2

0

)
,

gi jk ∼ N
(
ρgi−1, jk, σ

2
g

)
,

c jk ∼ N
(
cT , σ 2

c

); cT ∼ N
(
0, σ 2

ct

)
,

σ∗ ∼ U(0, c), ρ ∼ Beta(1, 1).

The parameters α0 and c jk represent overall and series specific intercepts, whereas the
temporal correlation is modeled via an AR(1) (autoregressive model with lag 1) model on
gi jk. The temporal correlation parameter is ρ. For the example in Figure 16.20, we show the
posterior average estimates (and standard deviations) in Table 16.3.

Hence, for this model we can see that the AR(1) model is virtually a random walk with
common correlation close to ρ ≈ 1.0. The series specific components range from 126.7 to
130.7 with common mean 133.90. More sophisticated models could be envisaged which allow
for more complex temporal and spatial dependence. However, the latter leads into space–time
(ST) analysis.

16.3.1.3 Spatio-temporal models

Sequences of images can be analyzed via space–time (ST) models. ROIs are often the focus
when ST models are to be examined, and so a spatial subset of the image is used. There is a
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Table 16.3 Four voxel time series: posterior mean estimates of
parameters in a model.

Parameter Estimate SD

α0 772.1 14.44
c1 126.7 23.68
c2 128.4 23.39
c3 133.1 23.36
c4 130.7 22.98
cT 133.9 28.20
ρ 0.997 0.002

growing literature on the Bayesian analysis of ST image sequences (see Woolrich et al. 2004;
Gossl et al. 2001; Quiros et al. 2010; Derado et al. 2010). Here, we do not intend to provide an
exhaustive review of this area. Instead, we note that some modeling principles which can be
applied within disease mapping can also be considered relevant to image analysis. Denote the
BOLD value for the j-kth voxel at the ith time as yi jk. One approach to modeling assumes that
we can consider a mixed model where we have spatial (S), temporal (T) and ST components.
We can think of S and T as main effects and ST as interaction. Define the model for a sequence
of images, excluding fixed effects, as

yi jk ∼ N
(
μi jk, σ

2
y

)
,

μi jk = α0 + S + T + ST,

where

S = v jk + u jk,

T = gi + hi,

ST = ψi jk.

Hence a parsimonious description of the space-time behavior can have temporal structure
(uncorrelated or correlated) via gi ∼ N(0, σ 2

g ) and hi ∼ N(ρhi−1, σ
2
h ) and spatial structure

(uncorrelated or correlated) via v jk ∼ N(0, σ 2
v ) and u jk ∼ CAR(γ , τu) and interaction defined

by ψi jk ∼ N(0, σ 2
ψ ). In this model, we regard interaction as a kind of residual after having

fitted the main S and T components. Many issues arise in definitions of neighborhoods: once
the temporal domain is admitted to the spatial analysis then neighborhoods can (1) extend
back in time and (2) dynamically change with time, and dependencies could be defined based
on flow dynamics or gradients of flow. Hence, much complexity could be included within
these extended models. A recent example of this kind of modeling can be found in Quiros
et al. (2010). We do not pursue this here.

As one can imagine, there is much potential for the development of Bayesian methods
applied in imaging, not only from the point of view of models for the image itself, but also
when individuals are grouped into treatment and then treatments are monitored over time.
Hence, ultimately we could have a longitudinal-ST treatment group analysis of images. Many
of the issues related to these extensions are as yet unexplored.
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16.3.2 A note on software

Bayesian fMRI analysis is hindered by the large data arrays that must be processed. Because
of this computationally intensive MCMC has not been used to any great extent until recently.
Hence, it is common for analyses to be performed either on purpose written platforms: Matlab
is commonly used as is the Matlab-based statistical parameter mapping (SPM) package.
Purpose written code is often found also.

FMRIB software library (FSL) is also available for some analyses. The R package does
have some functionality for Bayesian imaging. Namely, the packageAnalyseFMRI is useful
for handling ANALYSE and NIFTI format image files and does provide some limited Bayesian
capabilities (e.g. the mixture model of Hartvig and Jensen 2000).

WinBUGS would be an ideal platform but for the fact that the array sizes are very large
and posterior sampling is slow. The basic spatial convolution model discussed above fitted
to a single fMRI slice (5451 voxels) took 564 seconds for 10 000 updates on a standard Dell
Latitude 830 running WinBUGS 1.4.3 under Windows XP.
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Final chapter

17.1 What this book covered

In the first eleven chapters (Part I and II), we have reviewed Bayesian methodology: its phi-
losophy, the language, the computational machinery, and their implementation for statistical
modeling. To this end, a great variety of examples were used: cross-sectional studies, longi-
tudinal studies, elementary spatial epidemiological studies and some basic controlled clinical
trials. In addition, some elementary examples were taken of growth curve modeling, diagnostic
testing research and bioinformatics. The application areas were taken from dietary research,
rheumatology, stroke research, oral health research, animal research, diabetic research and
oncology. In the subsequent five chapters (Part III), we have gone in more depth into the ap-
plication of Bayesian methods in bioassay, measurement error and misclassification, disease
mapping and image analysis, survival models and longitudinal studies.

This noted, the Bayesian approach has seen an explosion of new developments in basically
every area of medical research. Hence, what this book covers both from a theoretical as well as
applied perspective is a core of topics more fundamental to an understanding of the Bayesian
approach to Biostatistics. Additional Bayesian developments and topics not addressed in detail
here are briefly reviewed with key references for further reading.

17.2 Additional Bayesian developments

Methodological developments may be inspired by a particular class of applications. Other de-
velopments are more driven by theoretical considerations and cover basically every application
area. We review both kinds of developments, but we have no ambition to be comprehensive.

17.2.1 Medical decision making

Medical decision making aims at rationalizing and improving the decision making process in
health care, as well as improving patient outcomes as a consequence. The Bayesian approach
is particularly appealing here since optimal decision making often needs a variety of sources

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.



P1: JYS/XYZ P2: ABC
JWST177-c17 JWST177-Lesaffre May 29, 2012 10:1 Printer Name: Yet to Come Trim: 244mm × 168mm

ADDITIONAL BAYESIAN DEVELOPMENTS 457

to choose an action and not all of that information may be quantified in data. Parmigiani
(2002) treats modeling in medical decision making from a Bayesian perspective. The covered
topics are: individual prediction as seen in Section 1.3.2, simulation models that generate
synthetic individual-based data of hypothetical cohorts to evaluate the cost effectiveness of,
say, cancer-screening programs using Bayesian decision making approaches, quality of life
research and meta-analyses. Spiegelhalter et al. (2004) deal with similar applications but
focus more on clinical trial methodologies.

We have omitted the treatment of meta-analyses, an important source for medical decision
making. Note, however, that a Bayesian meta-analysis is only a Bayesian hierarchical model
whereby level-2 observations are obtained from individual studies, most often RCTs. For
a tutorial on meta-analyses including Bayesian approaches; see Arends et al. (2008) and
references therein.

Another source for decision making are diagnostic tests. When a gold standard is avail-
able, but too costly or too time consuming then an imperfect test needs to be used in practice.
Diagnostic testing deals with the evaluation of imperfect measurement devices. The perfor-
mance of the imperfect device can be expressed by sensitivity and specificity in the presence
of a gold standard, otherwise it is evaluated with agreement tests such as the kappa statistic.
The Bayesian approach in combination with the MCMC machinery, can compute better these
performance measures in some nonstandard situations, such as in a multilevel context (see
Section 13.2.3) or when prior information needs to be imputed; see Broemeling (2007) for a
general Bayesian treatment of this subject.

17.2.2 Clinical trials

About 20 years ago, O’Quigley et al. (1990) introduced the Bayesian approach into phase
I studies. But beyond dose-finding applications, the incorporation of Bayesian methods in
clinical trials evolved only slow especially in phase III trials. This was illustrated in Chap-
ter 5. Bayesian methods are, though, well integrated in the evaluation of medical devices.
There are FDA websites containing guidelines for the evaluation of medical devices using a
Bayesian approach:

http://www.accessdata.fda.gov/cdrh_docs/pdf/P970033b.pdf

http://www.accessdata.fda.gov/cdrh_docs/pdf/P970015b.pdf

http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments
/ucm106757.htm

http://www.accessdata.fda.gov/cdrh_docs/pdf/P980048b.pdf

The resistance to using Bayesian methodology in phase II and phase III trials may slowly
disappear with the advent of adaptive trials. Loosely spoken, adaptive trials allow for much
more freedom in trial designs. For instance, one of the ambitions of adaptive designs is to
make the transition between phase II and phase III smoother and quicker. This area has seen a
lot of developments in the frequentist literature. Lately, this area of research has also attracted
the Bayesian world; see Berry et al. (2011) for a general review of the Bayesian adaptive
methods for clinical trials.

17.2.3 Bayesian networks

A Bayesian network is another term for a directed acyclic graphical model. Recall that
Directed Acyclic Graphs (DAGs) are the basis for WinBUGS. From Chapter 5 we know that
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a DAG is a probabilistic graphical model that represents a set of random variables and their
conditional dependencies. For example, a Bayesian network could represent the probabilistic
relationships between diseases and symptoms. Given symptoms, the network can be used to
compute the probabilities of the presence of various diseases. Thus, a Bayesian network can
be used to learn about causal relationships, and hence may help in understanding about a
problem domain and to predict the consequences of intervention. More background on this
topic can be found in Neal (1996), Borgelt and Kruse (2002), Korb and Nicholson (2004) and
Williamson (2005).

17.2.4 Bioinformatics

The analysis of high-throughput genetic data has seen a tremendous evolution in the last
decade. In Chapter 11, we have applied some Bayesian variable selection techniques to gene
expression data. The fact that in genetic studies, a large number of genes need to be explored,
stimulated the development of fast variable selection techniques. But this is just one of the
statistical techniques that has seen an impetus due to genetic studies. We refer to Do et al.
(2006), Sorensen and Gianola (2002), Mallick et al. (2009) and Dey et al. (2011) for an
in-depth treatment of the Bayesian methods in bioinformatics.

17.2.5 Missing data

Many, if not all, studies are plagued with missing data. In general, a proper analysis of data in
the presence of missing data is not straightforward. In Chapter 15, we have briefly outlined
the basic issues in dealing with missingness applied to longitudinal studies and we have seen
some analyses that take missing values and dropout into account. However, there is a large
variety of possible approaches which deal with missing data some of which may be preferable
above the ones we have used. In addition, it might be necessary to perform sensitivity analyses,
varying the assumptions about the missing-data process. In Daniels and Hogan (2008) several
Bayesian modeling approaches that deal with missing data are treated. The Bayesian approach
is well suited for performing sensitivity analyses, since it allows the inclusion of all kinds of
prior information into the estimation process. For yet another source of Bayesian methods for
missing data, see Tan et al. 2010.

17.2.6 Mixture models

Mixture modeling is an important but advanced area in statistics, both from theoretical as
from computational point of view. It covers, for instance, cluster analysis and change-point
modeling. The approach of reversible jump MCMC, treated in Chapter 6, is one of the
Bayesian approaches to deal with mixture distributions. So to some extent, we have covered
mixture models in this book, but our treatment was not in-depth. For instance, we ignored
the well-known problem of ‘label-switching’ in MCMC computations. An example of this
problem is seen in Example VII.7 where there was ambiguity in the definition of prevalence,
sensitivity and specificity. For a general overview of how to deal with this problem, we refer
to Jasra et al. (2005). The standard reference to mixture modeling is McLachlan and Peel
(2000) or Böhning (2003), although the focus in these books is on the frequentist approach.
In a Bayesian context, there is the book on classification by Denison et al. (2002).
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17.2.7 Nonparametric Bayesian methods

All approaches that we have dealt with in this book are parametric. But because the Bayesian
approach, together with the MCMC approach and the Bayesian software, offers a flexible tool
to fit a great variety of parametric models of increasing complexity we may not immediately
have experienced this as a limitation. Nevertheless, a class of Bayesian approaches offers an
even greater flexibility, called nonparametric Bayesian methods. They constitute a rapidly
evolving class of Bayesian methods that provides a richer and potentially more realistic class
of models. The term ‘nonparametric’ should not mislead. This class of Bayesian methods is
still parametric, but the number of parameters grows with the sample size. A nonparametric
Bayesian model is in fact a probability model on an infinite-dimensional space. This approach
allows the statistical model to be specified in a flexible manner and its different components,
such as the random effects distribution, the link function, etc. are estimated from the data.
However, the mathematical background of this approach is quite evolved and is, therefore,
beyond the scope of this textbook. Interested readers may consult the special issue of Sta-
tistical Modelling, Volume 8, Number 1, 2008 or the more technical sources by Ghosh and
Ramamoorthi (2003) and Hjort et al. (2010). Another possibility is to watch the two videos
featuring an introduction by Peter Orbanz at http://videolectures.net/mlss09uk_orbanz_fnbm/.

17.3 Alternative reading

There are numerous books on Bayesian methods. Some of them were already referred to in
earlier chapters. But for the interested reader, here is a list of some additional books:

� The book of Marin and Robert (2007) gives an overview of the computational procedures
in Bayesian methods applied to a variety of statistical models, such as generalized linear
models (GLIM), capture–recapture experiments, mixture models, dynamic models and
image analysis. Mathematical and statistical background is provided but is limited to
the essential facts. R programs are provided.

� In an impressive series of books (Congdon 2003, 2006, 2007, 2010), the author describes
an enormous amount of statistical modeling applications and provides WinBUGS code
for their analyses.

� For those who need a more elementary book than this one, or for those who wish to
recommend biomedical researchers to grasp the concepts of Bayesian methods, here is
a list of references: Moyé (2008) for a general elementary introduction into Bayesian
methods in biostatistics, McCarthy (2007) for an introduction of Bayesian methods in
ecology, King et al. (2009) for a more advanced text in that area, Taroni et al. (2010) for
an introduction of Bayesian methods in forensic science and Colosimo and del Castillo
(2006) for Bayesian process control and surveillance-related topics.
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Distributions

A.1 Introduction

We review in this appendix the most common distributions used in parametric Bayesian
methods. For the univariate distributions, we provide a graphical representation. For some
distributions, such as the inverse gamma, we show on the same graph also the better known
gamma distribution with the same parameter values. Further, we provide the commands in R,
WinBUGS, JAGS and the SAS procedure MCMC to invoke the distributions. A symbol ‘-’
indicates that the distribution does not exist in the software.

In most of the cases, the command in WinBUGS is the same as for JAGS, but some-
times they differ. JAGS also offers a few extra distributions, namely the F-distribution, the
noncentral χ2-distribution, the beta-binomial distribution and the noncentral hypergeometric
distribution. For these distributions, we basically refer to the JAGS manual. SAS also offers
extra distributions. For instance, the exponential version of a variety of distributions is avail-
able, such as the exponential gamma distribution which is the distribution of log(θ ) when θ

has a gamma distribution; see the SAS manual on the procedure MCMC.
For various distributions, there exists two versions: one parameterized in scale and one

in rate=1/scale. We chose one, the other one can be deduced by replacing in the expression
everywhere scale in 1/rate or vice versa. In the calls to the functions, the inverse of the
parameter param is indicated by iparam. Finally, JAGS and SAS have aliases for several
distributions to avoid confusion with other statistical software; see the respective software
manuals for more details.

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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A.2 Continuous univariate distributions

Table A.1 Beta distribution: Beta(α, β).

Model Examples

p(θ ) = 1

B(α, β)
θα−1(1 − θ )β−1

with B(α, β) = �(α)�(β)

�(α + β)

Condition: α > 0, β > 0
Range: [0,1]
Parameters:
α, β: shape

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

θ

D
en

si
ty

α =3, β = 3

α = 4, β =1

α = 1, β =1

α = 0.7, β = 0.7

α = 0.2, β = 6

Moments Program commands

Mean:
α

(α + β)
R: dbeta(theta,alpha,beta)

Mode:
α − 1

(α + β − 2)
WB/JAGS: theta ˜ dbeta(alpha,beta)

Variance:
α β

(α + β)2(α + β + 1)
SAS: theta ˜ beta(alpha,beta)
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Table A.2 Cauchy distribution: Cauchy(µ, σ ).

Model Examples

p(θ ) = 1

π

(
σ

σ 2 + (θ − µ)2

)

Condition: σ > 0
Range: (−∞,∞)

Parameters:
µ location, σ : scale

1086420
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

θ

D
en

si
ty

µ = 5, σ =1

µ = 4, σ =2

µ = 7, σ = 1

N(µ = 5, σ = 1)

Moments Program commands

Mean: - R: dcauchy(theta,mu,sigma)

Mode: µ WB/JAGS: -
Variance: - SAS: theta ˜ cauchy(mu,sigma)

Note:
Cauchy distribution is a special case of location-scale t-distribution:
Cauchy(µ, σ ) = t1(µ, σ ).
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Table A.3 Chi-squared distribution: χ2(ν).

Model Examples

p(θ ) = 1

�(ν/2)2ν/2
θ (ν/2)−1e−θ/2

Condition: ν > 0
Range: ν = 2 : [0,∞)

otherwise : (0,∞)

Parameters:
ν: degrees of freedom

86420
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
θ

D
en
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ty

ν = 1

ν = 5
ν = 0.01 ν = 10

Moments Program commands

Mean: ν R: dchisq(theta,nu)

Mode: ν − 2 (ν ≥ 2), otherwise – WB/JAGS: theta ˜ dchisqr(nu)
Variance: 2ν SAS: theta ˜ chisq(nu)

Note:
Chi-squared is a special case of a gamma distribution:
χ2(ν) = Gamma(α = ν/2, β = 1/2) (rate).

JAGS offers a noncentral χ2-distribution:
‘theta ∼ dnchisqr(nu,delta)’, δ > 0 noncentrality parameter.

JAGS offers an F-distribution (ratio of two independent χ2s):
‘theta ∼ df(nu1, nu2)’, with nu1, nu2 = dfs of numerator and denominator, respectively.
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Table A.4 Exponential distribution: exp(λ).

Model Examples

p(θ ) = λe−λθ

Condition: λ > 0
Range: [0,∞)

Parameters:
λ: rate

86420
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
θ

D
en
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ty

λ = 1

λ = 2

λ = 4

λ = 0.1

Rate = λ 

Moments Program commands

Rate: λ

Mean:
1

λ
R: dexp(theta,lambda)

Mode: 0 WB/JAGS: theta ˜ dexp(lambda)

Variance:
1

λ2
SAS: theta ˜ expon(iscale=lambda)

(scale) theta ˜ expon(scale=ilambda)

Note:
Exponential is special case of gamma distribution:
exp(λ)= Gamma(α = 1, λ).
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Table A.5 Gamma distribution: Gamma(α, β).

Model Examples

p(θ ) = βα

�(α)
θ (α−1) e−βθ

Condition: α > 0, β > 0
Range: α = 1 : (0,∞)

otherwise : [0,∞)

Parameters:
α: shape, β: rate

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

θ
D
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ty

α = 4, β = 1

α = 0.1, β = 0.1

α = 20, β = 20

α = 1, β = 1

Rate = β

Moments Program commands

Rate: β

Mean:
α

β
R: dgamma(theta,alpha,rate=beta)

(scale) dgamma(theta,alpha,scale=ibeta)

Mode:
α − 1

β
(α ≥ 1) WB/JAGS: theta ˜ dgamma(alpha,beta)

Variance:
α

β2
SAS: theta ˜ gamma(alpha,iscale=beta)

(scale) theta ˜ gamma(alpha,scale=ibeta)

Note:
WB and JAGS offer a generalized gamma distribution GenGamma:
θ ∼ GenGamma(α, β∗, λ) ⇔ θ1/λ ∼ Gamma(α, β), with β∗ = β1/λ.
WB/JAGS command: ‘theta ∼ dgen.gamma(alpha, beta, lambda)’.
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Table A.6 Inverse chi-squared distribution: Inv − χ2(ν).

Model Examples

p(θ ) = 1

�(ν/2)2ν/2
θ−(ν/2+1)e−1/(2θ )

Condition: ν > 0
Range: (0,∞)

Parameters:
ν: degrees of freedom

151050
0

1
2

3
4

θ

D
en

si
ty

ν = 1

ν = 3

ν = 5

Moments Program commands

Mean:
1

ν − 2
(ν > 2) R: dchisq(1/theta,nu)/thetaˆ2

Mode:
1

ν + 2
WB/JAGS:theta <- 1/itheta;

itheta ˜ dchisqr(nu)

Variance:
2

(ν − 2)2(ν − 4)
(ν > 4) SAS: theta ˜ ichisq(nu)

Note:
Inverse χ2 is a special case of the inverse gamma-distribution: (rate).
Inv − χ2(ν) = IG(α = ν/2, β = 1/2) (rate).
Inverse χ2 is a special case of the scaled inverse χ2-distribution with ν s2 = 1.
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Table A.7 Inverse gamma distribution: IG(α, β).

Model Examples

p(θ ) = 1

βα�(α)
θ−(α+1) e−β/θ

Condition: α > 0, β > 0
Range: (0,∞)

Parameters:
α: shape, β: rate

86420
0

1
2
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θ
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α = 1, β = 1

α = 4, β = 1

α = 20, β = 20

gamma( α = 4, β = 1)

Rate = β

Moments Program commands

Rate: β

Mean:
β

(α − 1)
R: dgamma(1/theta,alpha,rate=beta)/

thetaˆ2
(scale) dgamma(1/theta,alpha,scale=beta)/

thetaˆ2

Mode:
β

(α + 1)
WB/JAGS:theta <- 1/itheta;

itheta ˜ dgamma(alpha,beta)

Variance:
β2

(α − 1)2(α − 2)
SAS: theta ˜ igamma(alpha,iscale=beta)

(scale) theta ˜ igamma(alpha,scale=ibeta)

Note:
θ ∼ IG(α, β) ⇔ 1/θ ∼ Gamma(α, β).
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Table A.8 Laplace distribution: Laplace(µ, σ ).

Model Examples

p(θ ) = 1

2σ
e−(θ−µ)/σ

Condition: σ > 0
Range: (−∞,∞)

Parameters:
µ: location, σ : scale

1086420
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θ
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µ = 5, σ = 1

µ = 4, σ = 2

µ = 7, σ = 1

Moments Program commands

Scale: σ

Mean: µ R: dlaplace(theta,mu,sigma)
Mode: µ WB/JAGS: -

(rate) theta ˜ ddexp(isigma)
Variance: 2σ 2 SAS: theta ˜ laplace(mu,scale=sigma)

(rate) theta ˜ laplace(mu,iscale=isigma)

Note:
Laplace distribution is also called double exponential distribution.
R function dlaplace is available from R package ‘VGAM’.
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Table A.9 Logistic distribution: Logistic(µ, σ ).

Model Examples

p(θ ) = exp

(
−θ − µ

σ

) [
σ exp

(
−θ − µ

σ

)]2

Condition: σ > 0
Range: (−∞,∞)

Parameters:
µ: location, σ : scale

1086420
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µ = 5, σ = 1

µ = 4, σ = 2

µ = 7, σ = 1

N(µ = 5, σ = 1)

Moments Program commands

Mean: µ R: dlogis(theta,mu,sigma)

Mode: µ WB/JAGS: theta ˜ dlogis(mu,isigma) (rate)

Variance:
π2σ 2

3
SAS: theta ˜ logistic(mu,sigma)



P1: JYS/XYZ P2: ABC
JWST177-bapp JWST177-Lesaffre May 18, 2012 13:14 Printer Name: Yet to Come Trim: 244mm × 168mm

470 APPENDIX: DISTRIBUTIONS

Table A.10 Lognormal distribution: LN(µ, σ 2).

Model Examples

p(θ ) = 1

θσ
√

2π
exp

(
− (log(θ ) − µ)2

2σ 2

)

Condition: σ > 0
Range: (0,∞)

Parameters:
µ: location, σ : scale

1086420
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7
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µ = 0, σ = 1

µ = 2, σ = 1

µ = 0, σ = 2

µ = 4, σ = 2

Moments Program commands

Mean: exp(µ + σ 2) R: dlnorm(theta,mu,sigma)

Mode: exp(µ − σ 2) WB/JAGS: theta˜dlnorm(mu,isigma2)

Variance:
exp(2(µ + σ 2)) − exp(2µ + σ 2) SAS: theta˜lognormal(mu,sd=sigma)

theta˜lognormal(mu,var=sigma2)
theta˜lognormal(mu,prec=isigma2)
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Table A.11 Normal distribution: N(µ, σ 2).

Model Examples

p(θ ) = 1

σ
√

2π
exp

(
− (θ − µ)2

2σ 2

)

Condition: σ > 0
Range: (−∞,∞)

Parameters:
µ: location, σ : scale

1086420
0.

0
0.

1
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µ = 5, σ = 1

µ = 4, σ = 2

µ = 7, σ = 1

Moments Program commands

Mean: µ R: dnorm(theta,mu,sigma)

Mode: µ WB/JAGS: theta ˜ dnorm(mu,isigma2)
Variance: σ 2 SAS: theta ˜ normal(mu,sd=sigma)

theta ˜ normal(mu,var=sigma2)
theta ˜ normal(mu,prec=isigma2)
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Table A.12 Location-scale t-distribution: tν (µ, σ ).

Model Examples

p(θ ) =
�

(
ν + 1

2

)

�
(ν

2

)
σ

√
νπ

(
1 + (θ − µ)2

νσ 2

)− ν+1
2

Condition: σ > 0, ν > 0
Range: (−∞,∞)

Parameters:
µ: location, σ : scale
ν: degrees of freedom

1086420
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ν = 2, µ =5, σ =1
ν = 20, µ = 5, σ = 1

ν = 10, µ = 4, σ = 2

N( µ = 5, σ = 1)

Moments Program commands

Mean: µ (if ν > 1) R: dt(nu,(theta-mu)/sigma)/sigma

Mode: µ WB/JAGS: theta ˜ dt(mu,isigma2,nu)

Variance:
ν

ν − 2
σ 2 (if ν > 2) SAS: theta ˜ t(mu,sd=sigma,nu)

theta ˜ t(mu,var=sigma2,nu)
theta ˜ t(mu,prec=isigma2,nu)
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Table A.13 Pareto distribution: Pareto(α, β).

Model Examples

p(θ ) = α

β

(
β

θ

)α+1

Condition: α > 0, β > 0
Range: (β,∞)

Parameters:
α: shape, β: location

87654321
0

1
2

3
4

θ
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α = 1, β = 1

α = 4, β = 1

α = 4, β = 4

Moments Program commands

Mean:
αβ

α − 1
(if α > 1) R: dpareto(theta,beta,alpha)

Mode: β WB/JAGS:theta˜dpareto(alpha,beta)

Variance:
αβ2

(α − 1)2(α − 2)
(if α > 2) SAS: theta˜pareto(alpha,beta)

Note:
R function dpareto is available from R package ‘VGAM’.
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Table A.14 Scaled inverse chi-squared density: Inv − χ2(ν, s2).

Model Examples

p(θ ) = (ν/2)ν/2

�(ν/2)
sνθ−(ν/2+1)e−νs2/(2θ )

Condition: ν > 0, s > 0
Range: (0,∞)

Parameters:
ν: degrees of freedom, s2: scale

151050
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ν = 5, s2 = 1

ν = 3, s2 = 1

ν = 3, s2 = 5

Moments Program commands

Mean:
ν

ν − 2
s2 (ν > 2) R: dchisq(nu*sˆ2/theta,nu)

Mode:
ν

ν + 2
s2 WB/JAGS: theta <- nu*sˆ2/itheta;

itheta ˜ dchisqr(nu)

Variance:
2ν2

(ν − 2)2(ν − 4)
s4 (ν > 4) SAS: theta ˜ sichisq(nu,s)

Note:
Scaled inverse chi-squared is a special case of the inverse gamma distribution:
Inv − χ2(ν, s2) = IG(α = ν/2, β = ν s2/2) (rate).
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Table A.15 Weibull distribution: Weibull(α, β).

Model Examples

p(θ ) = α

β

(
θ

β

)(α−1)

exp (−(θ/β)α )

Condition: α > 0, β > 0
Range: α = 1 : [0,∞)

otherwise: (0,∞)

Parameters:
α: shape, β: scale

1086420
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α = 1, β = 1

α = 2, β = 1

α = 2, β = 2

α = 2, β = 4

Moments Program commands

Mean: β�(1 + 1/α) R: dweibull(theta,alpha,beta)

Mode: β(1 − 1/α)1/α (if α > 1) WB/JAGS: theta ˜ dweib(alpha,ibeta)

Variance:
β2

[
�(1 + 2/α) − �2(1 + 2/α)

]
SAS: theta ˜ weibull(0,alpha,beta)

Note:
SAS: more general Weibull distribution with additional µ > 0 = lower limit of range:
‘weibull(mu,alpha,beta)’, with θ/β in Weibull distribution replaced by (θ − µ)/β.
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Table A.16 Uniform distribution: U(α, β).

Model Examples

p(θ ) = 1

β − α

Condition: β > α

Range: [α, β]
Parameters:
α: lower limit, β: upper limit

543210
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α = 1, β = 2

α = 2, β = 5

Moments Program commands

Mean:
α + β

2
R: dunif(theta,alpha,beta)

Mode: – WB/JAGS: theta ˜ dunif(alpha,beta)

Variance:
(β − α)2

12
SAS: theta ˜ uniform(alpha,beta)

Note:
Uniform is a special case of the beta distribution: U(0, 1) = Beta(1, 1).
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A.3 Discrete univariate distributions

Table A.17 Binomial distribution: Bin(n, π ).

Model Examples

p(θ ) =
(

n

θ

)
πθ (1 − π)n−θ

Conditions:
n = 0, 1, 2, . . .

0 ≤ π ≤ 1
Range: θ ∈ {0, 1, . . . , n}
Parameters:
n: sample size
π : probability of success

1086420

0.
0

0.
1

0.
2

0.
3

0.
4

θ

D
is

tr
ib

ut
io

n n = 10, π = 0.5
n = 10, π = 0.7

n = 10, π = 0.1

Moments Program commands

Mean: nπ R: dbinom(theta,n,pi)

Mode: 	(n + 1)π
 WB/JAGS: theta ˜ dbin(pi,n)

Variance: nπ(1 − π) SAS: theta ˜ binomial(n,pi)

Note:
	(n + 1)π
 = greatest integer in value.
Special case: Bernoulli distribution = Bern(π ) = Bin(1, π ).
Commands Bernoulli dist: R: dbern(pi), WB: dbern(pi), SAS: binary(pi).
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Table A.18 Categorical distribution: Cat(π ).

Model Examples

p(θ ) = πθ

Conditions:
πθ > 0,

∑
πθ = 1

Range: θ ∈ {0, 1, . . . , n}
Parameters:
πθ : class probabilities

543210
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n

π  = (0.1,0.4,0.2,0.3)

Moments Program commands

Mean: – R: dmultinom(theta,size=1,pi)
Mode: – WB/JAGS: theta ˜ dcat(pi)
Variance: – SAS: theta ˜ multinom(pi)

Note:
Categorical is a special case of the multinomial distribution with n = 1.
JAGS only requires that πθ is positive, they must not add up to 1.
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Table A.19 Negative binomial distribution: NB(n, π ).

Model Examples

p(θ ) =
(

θ + n − 1

θ

)
πn(1 − π)θ

Conditions:
n = 0, 1, 2, . . .

0 ≤ π ≤ 1
Range: θ ∈ {0, 1, . . . , n}
Parameters:
n: number of successes
π : probability of success

20151050
0.

00
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n = 5, π = 0.5

n = 5, π = 0.7

n = 5, π = 0.2

Moments Program commands

Mean: round

(
n(1 − π)

π

)
R: dnbinom(theta,n,pi)

Mode: round

(
(n − 1)(1 − π)

π

)
WB/JAGS: theta ˜ dnbinom(pi,n)

Variance:
n(1 − π)

π2
SAS: theta ˜ negbin(n,pi)

Note:
Special case: Geometric distribution: geom(p) = NB(1, π ).
We have seen alternative parameterizations of the negative binomial distribution in the book:
Expression (3.15): π = β/(1 + β) and n = α a real value.
Expression (6.19): π = 1/(1 + κλ) and n = 1/κ a real value.
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Table A.20 Poisson distribution: Poisson(λ).

Model Examples

p(θ ) = λθ

θ !
exp(−λ)

Condition: λ ≥ 0
Range: θ ∈ {0, 1, . . . ,∞}
Parameters:
λ: average number of counts

θ

λ =

λ =

λ =

Moments Program commands

Mean: λ R: dpois(theta,lambda)

Mode: round(λ) WB/JAGS: theta ˜ dpois(lambda)

Variance: λ SAS: theta ˜ poisson(lambda)
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A.4 Multivariate distributions

Table A.21 Dirichlet distribution: Dirichlet(α).

Model Program commands

p(θ) =
�

(∑J
j=1 α j

)
∏J

j=1 �(α j)

J∏
j=1

θ
α j−1
j R: ddirichlet(vtheta,valpha)

Condition: α j > 0 ( j = 1, . . . , J) WB/JAGS: vtheta[] ˜ ddirich
(valpha[])

Range: θ j > 0,
∑J

j=1 θ j = 1 SAS: vtheta ˜ dirich(valpha)

Parameters:
α j: probabilities

Moments

Mean: α j/
∑J

j=1 α j Mode: (α j − 1)/
∑J

j=1 α j

Variances:
α j

(∑
m αm − α j

)
(∑

m αm
)2 (∑

m αm − α j
) Covariances: − α jαk(∑

m αm
)2 (∑

m αm + 1
)

Table A.22 Inverse Wishart distribution: IW(R, k).

Model Program commands

p(�) = c det(R)k/2 det(�)−(k+p+1)/2 R: diwish(Sigma, k, Rinv)

exp

[
−1

2
tr (�−1R)

]
(Rinv = R−1 in MCMCpack)

with

c−1 = 2kp/2π p(p−1)/4 ∏p
j=1 �

(
k + 1 − j

2

)

Condition: R pos definite, k > 0 WB/JAGS: –
Range: � symmetric SAS: Sigma ˜ iwishart(k,R)

Parameters:
k: degrees of freedom &
R: inverse of cov matrix

Moments

Mean: R/(k − p − 1) (if k > p + 1) Mode: R/(k + p + 1)
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Table A.23 Multinomial distribution: Mult(n,π).

Model Program commands

p(θ) = n!

θ1!θ2! . . . θk!

k∏
j=1

π
θ j

j , R: dmultinom(theta,size=n,prob=vpi)

Condition: WB/JAGS: vtheta[] ˜ dmulti(pi[],n)∑k
j=1 π j = 1

Range: θ j ∈ {0, . . . , n} SAS: vtheta ˜ multinom(vpi)
with

∑k
j=1 θ j = n

Parameters:
π j: probabilities

Moments

Mean: n · π

Variances: nπ j(1 − π j) Covariances: −nπ jπk

Table A.24 Multivariate normal distribution: Np(µ, �).

Model Program commands

p(θ) = 1

(2π)p/2 det(�)1/2
R: mvrnorm(vtheta,vmu,S) (MASS)

× exp

[
−1

2
(θ − µ)T �−1(θ − µ)

]

Condition: WB/JAGS: vtheta[] ˜
� positive definite dmnorm(vmu[],S[,])
Range: −∞ < θ j < ∞ SAS: vtheta ˜ mvn(vmu,S)

Parameters:
µ: mean vector &
�: p × p covariance matrix

Moments

Mean: µ Mode: µ

Variances: � j j Covariances: � jk
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Table A.25 Multivariate t-distribution: Tν (µ, �).

Model Program commands

p(θ) = c det(�)−1/2 R: –

×
[

1 + 1

ν
(θ − µ)T �−1(θ − µ)

]−(ν+p)/2

with c = � [(ν + p)/2]

�(ν/2)(kπ)p/2

Condition: WB/JAGS: vtheta[] ˜
� positive definite, ν > 0 dmt(vmu[],S[,],nu)
Range: −∞ < θ j < ∞ SAS: –

Parameters:
µ: mean vector
�: p × p covariance matrix
ν: degrees of freedom

Moments

Mean: µ (if ν > 1) Mode: µ

Variances:
ν

ν − 2
� j j (if ν > 2) Covariances:

ν

ν − 2
� jk (if ν > 2)

Table A.26 Wishart distribution: Wishart(R, k).

Model Program commands

p(�) = c det(R)−k/2 det(�)(k−p−1)/2 R: dwish(Sigma, k, Rinv)

× exp

[
−1

2
tr (R−1�)

]
(Rinv = R−1 in MCMCpack)

with c−1 = 2kp/2π p(p−1)/4

∏p
j=1 �

(
k + 1 − j

2

)

Condition: R pos definite, k > 0 WB/JAGS: Sigma[,] ˜ dwish(R[,],k)
Range: � symmetric SAS: –

Parameters:
k: degrees of freedom & R: covariance matrix

Moments

Mean: kR Mode: (k − p − 1)R (if k > p + 1)
Variances: Covariances:
Var(�i j) = k(r2

i j + riir j j) Cov(�i j, �kl ) = k(rikr jl + rilr jk)

Note:
WinBUGS uses an alternative expression of the Wishart distribution: in the above
expression R is replaced by R−1 and hence represents a covariance matrix in WinBUGS.
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accept–reject algorithm
see sampling algorithms

acceptance rate
see MCMC

Akaike Information Criterion (AIC), 274–8
AR algorithm

see sampling algorithms
ARMS algorithm

see sampling algorithms
ARS algorithm

see sampling algorithms
autocorrelation

see Markov chain
auxiliary variable

see data augmentation
corrected (AICc), 275
TIC, 275

Bayes estimate, 47
Bayes factor, 74–6, 269–73, 326

computing, 270–71
intrinsic, 273
Jeffreys classification, 76
minimum, 77
posterior, 273
pros and cons, 271–2
pseudo-Bayes, 272–3

Bayes–Laplace postulate, 114
Bayes theorem

categorical, 22–3
continuous, 23–4

discrete, 15–18
historical note, 42–4
sequential use, 104–6
Theorem of Inverse Probability, 43

Bayesian
measure of complexity

see effective degrees of freedom
objective, 42
pragmatic, 42
subjective, 42

Bayesian Central Limit Theorem, 62–3
Bayesian Information Criterion (BIC),

267
approximation, 326–7

Bayesian network
see Directed Acyclic Graph

bioassay
Ames Salmonella, 371–3
beetle mortality (LD50), 366
mouse lymphoma, 373–4

BRUGS
see software

BUGS
see software

burn-in part
see MCMC
WinBUGS

closed under sampling
see conjugate prior distribution

clustered data, 227

Bayesian Biostatistics, First Edition. Emmanuel Lesaffre and Andrew B. Lawson.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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conditional autoregressive model (CAR),
436

conditional predictive ordinate (CPO), 273,
292–3

computation of, 293
confidence interval, 4
conjugate distribution, 106–13

conditional, 111–12
natural, 108
semi, 111–12

contour probability, 73, 99
see P-value

convergence
accelerating, 189–94, 261–3

blocking, 190
hierarchical centering, 261–2
overrelaxation, 190–91
parameter expansion, 263
reparameterization, 191
starting values, 189
sweeping, 262–3
thinning, 190, 206
transformation of data, 189–90

assessing, 176–89, 261–3
accuracy, 176
autocorrelation plot, 177, 216
autocorrelation time, 217
Brooks plot, 178
Brooks–Gelman–Rubin, 183–4,

208
cross-correlation plot, 178, 208
cusums, 178
effective sample size, 187
ergodic mean plot, 177
Gelman and Rubin, 183,
Geweke, 180–81, 216
Heidelberger–Welch, 181–2, 216
output analysis, 176
Q–Q plot, 178
Raftery–Lewis, 182–3, 216
running mean, 177
running mean plot, 177–8
spectral density, 181
thick pen test, 177
trace plot, 145, 177, 205, 216

dependence factor, 183
practical experience and guidelines,

188–9, 194–5

coverage matching principle, 119
credible (credibility) interval, 49–51

equal tail, 49
HPD, 49

data augmentation
auxiliary variable, 153, 196
Bayesian, 195–6
completed likelihood, 195
EM algorithm, 195

data translated likelihood principle
see Jeffreys prior

datasets
see studies
AZT therapy trial, 425–8
Bliss beetle LD50, 366–9
congenital abnormality deaths, 440–41
East Germany lip cancer (see also lip

cancer), 228–31, 433–8
epilepsy trial, 415–17
finger tapping fMRI, 446–54
finger tapping time series, 453–4
gastric cancer survival, 397–401
IPCS Ames, 371
IRAS cholesterol, 377, 379, 384–6
Jimma Infant study, 417–20
prostate cancer SEER, 401–6
rats weight gain, 408–14

detailed balance condition
see Markov chain

deviance
Bayesian, 278
penalized expected, 286

Deviance Information Central Limit
Theorem, 216, 274, 278–84

Bayesian, 62
Deviance Information Criterion (DIC), 216,

274, 278–84
conditional, 283
diagnostics, 294
marginal, 283
on transformed scale, 284
pD, 279

Directed Acyclic Graph (DAG), 205,
212–13

Doodle option in WinBUGS, 213
directed local Markov property

see independence



P1: JYS/XYZ P2: ABC
JWST177-bind JWST177-Lesaffre May 29, 2012 15:47 Printer Name: Yet to Come Trim: 244mm × 168mm

INDEX 511

Dirichlet process, 481
discrepancy measure, 303

gap, 305
Kolmogorov–Smirnov, 305

disease mapping
BYM (convolution) model, 435
East Germany lip cancer, 229
Poisson-gamma model, 228

distributions
beta, 27, 109, 461
beta-binomial, 57
binomial, 10, 107, 477
Box–Cox, 309, 310
categorical, 478
Cauchy, 462
chi-squared, 463

scaled inverse, 85, 110, 474
Dirichlet, 92, 111, 481
envelope, 67
exponential, 107, 464
gamma, 108, 465
Gaussian

multivariate, 59, 89–92, 110–11,
483

univariate, 55, 106–9, 461
Gibbs, 140
inverse chi-squared, 466
inverse gamma, 85, 467
inverse Gaussian, 108
Laplace, 468
logistic, 310, 469
lognormal, 470
multinomial, 90, 110, 482
multivariate, 89–92, 110–11
negative binomial, 57, 107, 479
normal (see also Gaussian)
normal-inverse gamma, 107
normal-inverse Wishart, 90, 107, 111
normal-scaled-inverse chi-squared, 85,

110
Pareto, 108, 473
Poisson, 36–7, 107, 480
Pólya

see negative binomial
proposal, 67

multivariate, 89–92, 481
univariate, 106–9, 477

uniform, 30, 76, 476

Weibull, 189, 391–5, 399, 475
Wishart, 90, 107, 111, 483

inverse, 107, 111
dominated by the data, 105

effective degrees of freedom, 274, 277
empirical Bayesian approach, 228, 238–40,

242
envelope

constant, 67
distribution, 67
function, 67

ergodic
see Markov chain

ergodic mean plot
see convergence

exchangeable, 29, 58–60, 230
conditional, 60
partial, 60
representation theorem, 59

fixed effect, 227
fractional polynomials, 311
frequentist paradigm, 8–10
full Bayesian approach, 228, 238–40,

242
full conditional, 147
function

squeezing, 68

Gaussian quadrature
see numerical integration

generalized additive model, 222
generalized linear mixed model, 248–53
generalized linear model, 101, 131–3
Gibbs distribution, 140
Gibbs sampler

see MCMC

hierarchical independence
see independence

hierarchical model
Bayesian, 227–66

Albert’s model, 252–3
beta-binomial logit model, 252
Gaussian, 240–44
generalized linear mixed model,

248–54



P1: JYS/XYZ P2: ABC
JWST177-bind JWST177-Lesaffre May 29, 2012 15:47 Printer Name: Yet to Come Trim: 244mm × 168mm

512 INDEX

hierarchical model (continued )
linear mixed model, 244–8
nonlinear mixed model, 253–6
Poisson-gamma, 228–38

effective degrees of freedom, 274
posterior predictive check,

300–308
hyper

parameter, 112
prior

see prior
hypothesis testing

Bayesian, 72–8
frequentist, 4–10

ICDF algorithm
see sampling algorithms

identifiability, 124–6
ignorance

see NI prior
image analysis

finger tapping, 446–54
importance sampling, 69, 298
inclusion probability

marginal posterior, 328
independence

conditional/hierarchical, 53, 212
inference

fiducial, 43
influential diagnostics, 298

observation diagnostics, 298
subject diagnostics, 298

information-theoretic measures,
274–86

AIC, 274–8
BIC, 274–8
BPIC, 285
DIC, 278–84

integration
Laplace approximation, 64
numerical, 63–5

interval
confidence, 4
credible/credibility, 49–51

equal-tail, 49
HPD, 49

evidence, 4
predictive, 52

posterior, 53
prior, 53

tolerance, 52–3
intra-class correlation, 241

Jeffreys, 43, 74
Lindley–Bartlett’s paradox, 77–8, 334
multiparameter rule, 116
prior

see prior

Kullback–Leibler distance, 296

Laplace method/approximation, 64, 276
LASSO, 136
likelihood

averaged, 24
conditional, 277
function, 10–11
integrated, 54
marginal, 54, 278
maximum, 11
principles, 11–14
standardized, 12

linear mixed model, 244–8
effective degrees of freedom, 274

link function, 289, 295, 309–11
longitudinal models

covariance
AR1, 411
general, 411
compound symmetry, 411

MVN
parameter prior distribution, 10

marginal maximum likelihood, 238–9
marginal predictive likelihood

MPL (see also pseudo-Bayes factor),
272–3, 292

Markov chain
aperiodicity, 163
autocorrelation, 149, 164, 177
autocorrelation function, 177
autocovariance, 164
detailed balance condition, 161, 163–5
ergodicity criterion, 163–5
homogeneous, 163
irreducibility, 163
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Markov chain CLT, 164
Markov Chain Law of Large Numbers,

163–4
positive recurrence, 163
reversibility condition, 159
reversible, 159, 163
stationary, 163, 185
transition function, 152
transition kernel, 152, 160, 163

Markov chain Monte Carlo
see MCMC

MCMC
burn-in part, 141
convergence
see convergence
full conditional, 147
Gibbs sampler, 140–54

block, 153, 162
deterministic scan, 153
random scan, 153
reversible, 153
reversible jump, 162, 168–72,

336–40
slice sampler, 153–4
special case of MH algorithm, 159–60
systematic scan, 152
see deterministic scan

Metropolis–Hastings, 157–9
acceptance rate/probability, 157
independent, 159, 162
metropolis, 155–7
proposal density, 155
random walk, 161–2
trace plot
see convergence

transdimensional case
see reversible jump

MC3, 331–2
mean squared error, 264, 286, 321

predictive error, 287
method of composition

see sampling algorithms
Metropolis algorithm

see MCMC
Metropolis–Hastings algorithm

see MCMC
MH algorithm

see MCMC

missingness, 420–24
MAR, 423
MCAR, 422
MNAR, 423–4

mixed effects model
see hierarchical model

model
averaging, 332, 357–9
checking, 289
expansion, 308–16
maximum a posteriori, 325
selection, 355–7
selection consistency, 335

Monte Carlo
estimator, 65
integration, 419

see numerical integration
standard error, 56, 186, 217

effective sample size, 187
method of batch means, 186

multi-level model
see hierarchical model

nonlinear mixed model, 253–6
numerical integration, 63–5

Gaussian quadrature, 64
Laplace approximation integration, 64,

276
Monte Carlo integration, 65
nonadaptive, 64

adaptive, 64

Occam
razor principle, 276
window, 331–2

Ones trick, 309
OpenBUGS

see software

penalized model selection criterion, 275
posterior

distribution, 26–30, 33–5
conditional, 21
marginal, 7

mean, 47
median, 48
mode, 47
predictive, 51–8, 237–8, 243–4
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posterior (continued )
check (PPC), 301
loss (PPL), 287
ordinate (PPO), 292
P-value (PPP), 301

probability, 17, 20
SD, 50
summary measures, 47–51
variance, 48

posterior sampling
convergence
MCMC

PPC, 304
PPO, 292
PPP, 301–3

extended, 306
precision
predictive approach to outlier detection,

292
predictive loss function, 286–8

prior, 34
sample, 34

principle
of indifference, 43
of insufficient reason, 43

prior
default, 42
dependent, 328
distribution

archetypal, 126–9
community, 123
conditional conjugate, 111–12
conditional means, 132–3
conjugate, 3, 106–13, 129–30, 132–3
consensus, 123
convenience, 109
conventional (see also NI)
data-augmentation, 132–3
data-based, 121–2
default (see also NI)
diffuse (see also NI)
discounted, 35, 138
elicitation, 122–4, 130
enthusiastic, 129
generalized hyper-g-prior, 335–6
g-prior (see also Zellner’s g-prior)
hierarchical, 112

hyper, 112
improper, 119
Jeffreys, 119
level-2 variance, 258–63
locally uniform, 120
modeling, 134–6
monotone transformation, 40–41
natural conjugate, 108
noninformative (NI), 30, 97, 113–20,

129–31
objective, 21, 42, 93, 136
power, 121
predictive check, 73
propriety, 260
pseudo, 133
reference (see also NI)
ridge, 134
semiconjugate, 111–12
skeptical, 127–8
spike and slab, 339–40
subjective, 29, 35, 41–2, 121–30
unit information, 276
vague (see also NI)
weak (see also NI)
Zellner’s g-prior, 333–6, 352

information, equivalent to data, 29, 39, 59
meaning, 114
predictive, 16
probability, 20

objective, 21, 41
probability

axioms, 22
P-value

Bayesian, 73
contour probability, 72–3, 99
see PPP, 308
fallacy, 76
frequentist, 6–8
posterior predictive (PPP), 301
prior predictive, 302

random effect, 227
randomized controlled trial (RCT), 5
regression

frequentist, 322–3
generalized linear

Bayesian, 101–2
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LASSO, 321, 323
linear

Bayesian, 97–101
frequentist, 97–8

probit, 101
ridge, 134, 209, 323

regularization, 322–5, 345–6
residual analysis, 290
reversibility condition

see Markov chain
reversible Jump MCMC, 162, 168–72,

336–9

sampling algorithms
accept–reject algorithm, 67, 70, 139
AR algorithm, 67–8, 70–72, 155, 161–2

see accept–reject algorithm
ARMS algorithm, 69, 152, 215

tangent method, 68
derivative-free, 68

ARS algorithm, 68, 167, 215
Gibbs sampler

see MCMC algorithms
ICDF, 67
importance sampling, 69
importance weights, 69
Method of Composition, 93–4, 149
Metropolis

see MCMC algorithms
Metropolis–Hastings

see MCMC algorithms
sensitivity analysis, 72, 289–90, 295

perturbation function, 296
set

predictive
posterior, 53
prior, 53

shrinkage, 28, 232
slice sampler, 153–4

see MCMC
weighted sampling-resampling (SIR)

method, 70, 297
SIR, 69, 297
SIR algorithm

see sampling algorithms
smoothing, 311–15
SMR, 229

software
BUGS, 202
CODA, 208
FirstBayes, 221
INLA, 200, 222
JAGS, 214
MLwiN, 221
OpenBUGS, 203, 214
R packages

BACC, 221
BayesX, 222, 314
BMA, 326, 336, 353, 358
BNT, 222
BOA, 67, 72, 177, 201
BRugs, 215
CODA, 7, 72, 177, 208
glmBfp, 356
lars, 349
MCMCglmm, 221
MCMCpack, 221
MNP, 221
monomvn, 337, 349, 351, 353, 361
msm, 221
penalized, 347, 353
Rstudio, 222
R2jags, 215
R2OpenBUGS, 215
R2WinBUGS, 210–12
spikeslab, 353
spikeSlabGAM, 356

SAS procedures, 215–21
GENMOD, 215–17
GLIMMIX, 250
GLMSELECT, 323
LIFEREG, 215, 220
MCMC, 215, 217–21, 236–7, 250
MI, 215, 221
MIXED, 215, 221
PHREG, 215, 220

WinBUGS, 202–16
GeoBUGS, 214
PKBUGS, 214
RJWinBUGS, 337

splines
B-spline, 313
cubic spline, 311
P-spline, 313
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studies
Ames/Salmonella mutagenic assay,

105–6, 371–3
arteriosclerosis, 255–6, 298–300
AZT clinical trial, 189
British coal mining disasters, 147–8
caries (Signal-Tandmobiel

®
), 37–40, 63,

65, 70–71, 113, 166–7, 170–72,
198–201, 273, 293, 386–7

cross-over, 73, 75
cysticercosis, 124–6, 196–8
diabetes, 323–4, 328–9, 332–3, 347–50,

358–60
dietary, 31–7, 49–50, 109, 240–44, 246,

258–60, 263–6, 283–4, 310, 315
genetic linkage, 196, 284
glioma, 352–3
IRAS multicenter, 377–84
Jimma Infant study, 417–20
Kaldor et al. (1990) case-control study,

6–8, 60, 62, 90
lip cancer, 228–231, 233–9, 249, 252–3,

294–5, 304–6
Merseyside registry, 7–8
osteoporosis, 97, 100, 148–51, 166,

173–4, 179–80, 185–7, 191–3,
203–20, 279, 287–8, 291–2, 298–9,
312–14, 317

Potthoff & Roy growth curve study,
279–82

rheumatoid arthritis study, 330, 335–6,
338–40, 342, 356–7

serum alkaline phosphatase, 54–5, 84,
86–7, 94–6, 103, 141–58

stroke, 24–30, 46, 48, 51, 56–7, 66–7,
122

surgery, 10–13, 127
toenail, 5, 8, 18–19, 246–8, 249–50,

256–7, 306–8
young adult, 9

survival models
accelerated failure time, 392

spatial, 401–6
Cox regression, 394
proportional hazards, 392
Weibull, 391–402

trace plot
see MCMC

variable selection
Bayesian, 325–26
classical, 320–25
dependent, 346
elastic net, 350–51
GVS, 343–5

pseudo-prior, 344
hybrid-CBS, 352
LASSO, 347–52

adaptive, 350–51
adaptive elastic net, 351
elastic net, 351
fused, 350
grouped, 350

MC3, 332
oracle property, 349
population-based MCMC, 355
RJMCMC, 336–9

dimension moves, 337
Shotgun stochastic search, 355
SSVS, 341–5

hard thresholding, 343

weighted sampling-resampling method, 70
see sampling algorithms

WinBUGS package
DoodleBUGS, 213
GeoBUGS, 437

zeros trick, 309




