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PREFACE

The idea to write a Handbook of Continued fractions for Special functions
originated more than 15 years ago, but the project only got started end
of 2001 when a pair of Belgian and a pair of Norwegian authors agreed to
join forces with the initiator W.B. Jones. The book splits naturally into
three parts: Part I discussing the concept, correspondence and conver-
gence of continued fractions as well as the relation to Padé approximants
and orthogonal polynomials, Part II on the numerical computation of the
continued fraction elements and approximants, the truncation and round-
off error bounds and finally Part III on the families of special functions for
which we present continued fraction representations.
Special functions are pervasive in all fields of science and industry. The
most well-known application areas are in physics, engineering, chemistry,
computer science and statistics. Because of their importance, several books
and websites (see for instance functions.wolfram.com) and a large col-
lection of papers have been devoted to these functions. Of the standard
work on the subject, the Handbook of mathematical functions with for-
mulas, graphs and mathematical tables edited by Milton Abramowitz and
Irene Stegun, the American National Institute of Standards and Technol-
ogy claims to have sold over 700 000 copies (over 150 000 directly and more
than fourfold that number through commercial publishers)! But so far no
project has been devoted to the systematic study of continued fraction
representations for these functions. This handbook is the result of such
an endeavour. We emphasise that only 10% of the continued fractions
contained in this book, can also be found in the Abramowitz and Stegun
project or at the Wolfram website!
The fact that the Belgian and Norwegian authors could collaborate in pairs
at their respective home institutes in Antwerp (Belgium) and Trondheim
(Norway) offered clear advantages. Nevertheless, most progress with the
manuscript was booked during the so-called handbook workshops which
were organised at regular intervals, three to four times a year, by the first
four authors A. Cuyt, V. B. Petersen, B. Verdonk and H. Waadeland. They
got together a staggering 16 times, at different host institutes, for a total of
28 weeks to compose, streamline and discuss the contents of the different
chapters.
The Belgian and Norwegian pair were also welcomed for two or more weeks
at the MFO (Oberwolfach, Germany), CWI (Amsterdam, The Nether-
lands), University of La Laguna (Tenerife, Spain), the University of Stel-
lenbosch (South-Africa) and last, but certainly not least, the University of

xi



xii PREFACE

Antwerp and the Norwegian University of Science and Technology. With-
out the inspiring environment and marvellous library facilities offered by
our supportive colleagues G.-M. Greuel, N. Temme, P. Gonzalez-Vera and
J.A.C. Weideman a lot of the work contained in this book would not have
been possible. In addition, three meetings were held at hotels, in 2002 in
Montelupo Fiorentino (Italy) and in 2003 and 2005 in Røros (Norway). At
the occasion of the first two of these meetings W.B. Jones joined his Eu-
ropean colleagues. In addition to his input and encouragement, his former
student Cathy Bonan-Hamada contributed to the handbook as a principal
author of Chapter 5 and to a lesser extent in a few chapters on special
functions.
Several collaborators at the University of Antwerp have also been extremely
helpful. The authors have greatly benefitted from the input of S. Becuwe
with respect to several TEX-issues, the spell checking, the proof reading
and especially, the generation of the tables and numerical verification of
all formulas in the book. For the latter, use was made of a Maple library
for continued fractions developed by F. Backeljauw [BC07]. Thanks are
due to T. Docx for the help with the graphics, for which software was
made available by J. Tupper [BCJ+05]. My daughter A. Van Soom was an
invaluable help with the entering and management of almost 4600 BIBTEX
entries, from which only a selection is printed in the reference list.
Financial support was received from the FWO-Flanders (Fonds voor Weten-
schappelijk Onderzoek, Belgium) and its Scientific Research Network Ad-
vanced numerical methods for mathematical modelling, the Department
of Mathematics of the Norwegian University of Science and Technology
(Trondheim), the Sør Trondelag University College (Trondheim), the Royal
Norwegian Society of Science and Letters, and the National Science Foun-
dation (USA).
Thanks are also due to our patient publisher: after many promises the
team finally met its own requirements and turned in the manuscript. We
apologise to our dear readers: any mistakes found in the book are ours and
we take joint responsibility for them.

Annie Cuyt
February 2007

University of Antwerp
Belgium



NOTATION

AS continued fraction also available in [AS64]
– – –
– – –
– – – relative truncation error is tabulated

error is reliably graphed
◦ composition
≡ equivalent continued fractions
�≡ not identically equal to
≈ asymptotic expansion
�·� floor function
|| · || norm
〈·, ·〉 inner product
{·n} sequence
| · |s signed modulus
An nth numerator
am mth partial numerator
(a)k Pochhammer symbol
(a; q)k generalised Pochhammer symbol
Arg z argument, − π < Arg z ≤ π
arg z Arg z ± 2kπ, k ∈ N0

(a, b) open interval a < x < b
[a, b] closed interval a ≤ x ≤ b
B(a, b) beta function
Bq(a, b) q-beta function
Bx(a, b) incomplete beta function
Bn nth denominator
bm mth partial denominator
C set of complex numbers
Ĉ C ∪ {∞}
C(z) Fresnel cosine integral
Ci(z) cosine integral
C

(α)
n (x) Gegenbauer (or ultraspherical) polynomial

Ĉ
(α)
n (x) monic Gegenbauer polynomial

cdf cumulative distribution function
CMP, CSMP, CHMP classical moment problems
Γ(z) gamma function
Γ(a, z) complementary incomplete gamma function
Γq(z) q-gamma function
γ(a, z) (lower) incomplete gamma function

xiii



xiv NOTATION

Dν(z) parabolic cylinder function
∂ degree
Ei(z) exponential integral
Ein(z) exponential integral
En(z) exponential integral (n ∈ N0)
Eν(z) exponential integral (ν ∈ C)
E[X] expectation value of X
erf(z) error function
erfc(z) complementary error function
F, F(β, t, L, U) set of floating-point numbers
pFq(. . . , ap; . . . , bq; z) hypergeometric series
2F1(a, b; c; z) Gauss hypergeometric series
1F1(a; b; z) confluent hypergeometric function
2F0(a, b; z) confluent hypergeometric series
0F1(; b; z) confluent hypergeometric limit function
Fn(z; wn) computed approximation of fn(z; wn)
fn, fn(z) nth approximant
fn(wn), fn(z; wn) nth modified approximant
f

(M)
n nth approximant of M th tail

f (n), g(n), . . . nth tail
FLS formal Laurent series
FPS, FTS formal power series, formal Taylor series
Φ(t) distribution function
φ(t) weight function
rφs(. . . , ar; . . . , bs; q; z) basic hypergeometric series
2φ1(qα, qβ ; qγ ; q; z) Heine series
ϕ�[z0, . . . , z�] inverse difference
g
(1)
ν (z), g(2)

ν (z) modified spherical Bessel function 3rd kind
Hn(x) Hermite polynomial
Ĥn(x) monic Hermite polynomial
H

(m)
k (c) Hankel determinant for the (bi)sequence c

H
(1)
ν (z),H(2)

ν (z) Hankel function, Bessel function 3rd kind
h

(1)
ν (z), h(2)

ν (z) spherical Bessel function 3rd kind
Ik(x) repeated integral of the probability integral
Ix(a, b) regularised (incomplete) beta function
Iν(z) modified Bessel function 1st kind
Ik erfc(z) repeated integral of erfc(z) for k ≥ −1
iν(z) modified spherical Bessel function 1st kind
i imaginary number

√−1
�z imaginary part of z
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J(z) Binet function
Jν(z) Bessel function 1st kind
jν(z) spherical Bessel function 1st kind
Kν(z) modified Bessel function 2nd kind
K (am/bm) continued fraction
kν(z) modified spherical Bessel function 2nd kind
Ln(z) principal branch of natural logarithm
L

(α)
n (x) generalised Laguerre polynomial

L̂
(α)
n (x) monic generalised Laguerre polynomial

li(x) logarithmic integral
λ(L) order of FPS L(z)
Λ0(f) = f(0)(z) Laurent expansion in deleted neighbourhood of 0
Λ∞(f) = f(∞)(z) Laurent expansion in deleted neighbourhood of ∞
M(a, b, z) Kummer function 1st kind
Mκ,μ(z) Whittaker function
μk kth moment
μ′

k kth central moment
N {1, 2, 3, . . . }
N0 {0, 1, 2, 3, . . . }
N(μ, σ2) normal distribution
[n]q q-analogue of n
[n]q! q-factorial
Pn(x) Legendre polynomial
P̂n(x) monic Legendre polynomial
P

(α,β)
n (x) Jacobi polynomial

P̂
(α,β)
n (x) monic Jacobi polynomial

pdf probability density function
Pn(L) partial sum of degree n of FTS L(z)
ψk(z) polygamma functions (k ≥ 0)
R set of real numbers
R[x] ring of polynomials with coefficients in R

R(x) Mills ratio
�z real part of z
rm,n(z) Padé approximant
r
(2)
k,�(z) two-point Padé approximant

ρ�[z0, . . . , z�] reciprocal difference
S(z) Fresnel sine integral
Si(z) sine integral
Sn(wn), Sn(z; wn) modified approximant
sn(wn), sn(z; wn) linear fractional transformation
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SSMP, SHMP strong moment problems
σ standard deviation
σ2 variance
Tn(x) Chebyshev polynomial 1st kind
T̂n(x) monic Chebyshev polynomial 1st kind
TMP trigonometric moment problem
Un(x) Chebyshev polynomial 2nd kind
Ûn(x) monic Chebyshev polynomial 2nd kind
U(a, b, z) Kummer function 2nd kind
ulp unit in the last place
V set closure
Vn value set
Wκ,μ(z) Whittaker function
wn(z) nth modification for K∞

m=1 (am/1)
w̃n(z) nth modification for K∞

m=1 (am/bm)
w

(1)
n (z) improved nth modification for K∞

m=1 (am/1)
w̃

(1)
n (z) improved nth modification for K∞

m=1 (am/bm)
Yν(z) Bessel function 2nd kind
yν(z) spherical Bessel function 2nd kind
z complex conjugate of z
Z {. . . ,−2,−1, 0, 1, 2, . . . }
Z− {−1,−2,−3, . . . }
Z−

0 {0,−1,−2,−3, . . . }
ζ(z) Riemann zeta function



0
General considerations

The purpose of this chapter is to explain the general organisation of the
book, despite the fact that we hope the handbook is accessible to an unpre-
pared reader. For the customary mathematical notations used throughout
the book we refer to the list of notations following the preface.
To scientists novice in the subject of continued fractions we recommend
the following order of reading in Part I and Part II:

first the Chapters 1 through 3 on the fundamental theory of continued
fractions,
then Chapter 6, with excursions to Chapter 4, on algorithms to con-
struct continued fraction representations,
and finally the Chapters 7 and 8, with Chapter 5 as background ma-
terial, for truncation and round-off error bounds.

0.1 Part one

Part I comprises the necessary theoretic background about continued frac-
tions, when used as a tool to approximate functions. Its concepts and
theorems are heavily used later on in the handbook. We deal with three
term recurrence relations, linear fractional transformations, equivalence
transformations, limit periodicity, continued fraction tails and minimal so-
lutions. The connection between continued fractions and series is worked
out in detail, especially the correspondence with formal power series at 0
and ∞.
The continued fraction representations of functions are grouped into several
families, the main ones being the S-fractions, C-fractions, P-fractions, J-
fractions, T-fractions, M-fractions and Thiele interpolating continued frac-
tions. Most classical convergence results are given, formulated in terms
of element and value regions. The connection between C- and P-fractions
and Padé approximants on the one hand, and between M-fractions and
two-point Padé approximants on the other hand is discussed. To conclude,

1
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several moment problems, their link with Stieltjes integral transform rep-
resentations and the concept of orthogonality are presented.

0.2 Part two

In Part II the reader is offered algorithms to construct different continued
fraction representations of functions, known either by one or more formal
series representations or by a set of function values. The qd-algorithm
constructs C-fractions, the αβ- and FG-algorithms respectively deliver J-
and T-fraction representations, and inverse or reciprocal differences serve
to construct Thiele interpolating fractions. Also Thiele continued fraction
expansions can be obtained as a limiting form.
When evaluating a continued fraction representation, only a finite part
of the fraction can be taken into account. Several algorithms exist to
compute continued fraction approximants. Each of them can make use of
an estimate of the continued fraction tail to improve the convergence. A
priori and a posteriori truncation error bounds are developed and accurate
round-off error bounds are given.

0.3 Part three

The families of special functions discussed in the separate chapters in Part
III are the bulk of the handbook and its main goal. We present series and
continued fraction representations for several mathematical constants, the
elementary functions, functions related to the gamma function, the error
function, the exponential integrals, the Bessel functions and also several
probability functions. All can be formulated in terms of either hyperge-
ometric or confluent hypergeometric functions. We conclude with a brief
discussion of the q-hypergeometric function and its continued fraction rep-
resentations.
Each chapter in Part III is more or less structured in the same way, de-
pending on the availability of the material. We now discuss the general
organisation of such a chapter and the conventions adopted in the presen-
tation of the formulas.
All tables and graphs in Part III are labelled and preceded by an extensive
caption. Detailed information on their use and interpretation is given in
the Sections 9.2 and 9.3, respectively.

Definitions and elementary properties. The nomenclature of the spe-
cial functions is not unique. In the first section of each chapter the reader
is presented with the different names attached to a single function. The
variable z is consistently used to denote a complex argument and x for a
real argument.
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In a function definition the sign := is used to indicate that the left hand
side denotes the function expression at the right hand side, on the domain
given in the equation:

J(z) := Ln(Γ(z))−
(

z − 1
2

)
Ln(z) + z − ln(

√
2π).

Here the principal branch of a multivalued complex function is indicated
with a capital letter, as in Ln, while the real-valued and multivalued func-
tion are indicated with lower case letters, as in ln. The function definition
is complemented with symmetry properties, such as mirror, reflection or
translation formulas:

Ln(z̄) = Ln(z).

Recurrence relations. Continued fractions are closely related to three-
term recurrence relations, also called second order linear difference equa-
tions. Hence these are almost omnipresent, as in:

A−1 := 1, A0 := 0,

An := anAn−1 + bnAn−2, n = 1, 2, 3, . . .

or

2F1(a, b; c + 1; z) = −c(c− 1− (2c− a− b− 1)z)
(c− a)(c− b)z 2F1(a, b; c; z)

− c(c− 1)(z − 1)
(c− a)(c− b)z 2F1(a, b; c− 1; z).

The recurrence relations immediately connected to continued fraction the-
ory are listed. Other recurrences may be found in the literature, but may
not serve our purpose.

Series expansion. Representations as infinite series are given with the
associated domain of convergence. Often these series are power series as
in (2.2.2) or (2.2.6). The series in the right hand side and the function in
the left hand side coincide, denoted by the equality sign =, on the domain
given in the right hand side:

tan(z) =
∞∑

k=1

4k(4k − 1)|B2k|
(2k)!

z2k−1, |z| < π/2.
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Asymptotic series expansion. Asymptotic expansions of the form
(2.2.4) or (2.2.8) are given, if available, with the set of arguments where
they are valid. Now the equation sign is replaced by the sign ≈:

J(z) ≈ z−1
∞∑

k=0

B2k+2

(2k + 1)(2k + 2)
z−2k, z →∞, | arg z| < π

2
.

Stieltjes transform. For functions that can be represented as Stieltjes
integral transforms, or equivalently as convergent S-fractions, positive T-
fractions or real J-fractions, specific sharp truncation error estimates exist
and the relative round-off error exhibits a slow growth rate when evaluat-
ing the continued fraction representation of the function by means of the
backward algorithm.
Hence, if possible, the function under consideration or a closely related
function is written as a Stieltjes integral transform:

Γ(a, z)
zae−z

=
1

Γ(1− a)

∫ ∞

0

e−tt−a

z + t
dt, | arg z| < π, −∞ < a < 1.

The conditions on the right hand side of the integral representation, here
| arg z| < π,−∞ < a < 1, are inherited from the function definition.

S-fraction, regular C-fraction and Padé approximants. S-fraction
representations are usually found from the solution of the classical Stieltjes
moment problem:

ezEn(z) =
1/z

1 +

∞

K
m=2

(
am/z

1

)
, a2k = n + k − 1, a2k+1 = k,

| arg z| < π, n ∈ N.

The equality sign = between the left and right hand sides here has to
be interpreted in the following way. The convergence of the continued
fraction in the right hand side is uniform on compact subsets of the given
convergence domain, here | arg z| < π, excluding the poles of the function in
the left hand side. When the convergence domain of the continued fraction
in the right hand side is larger than the domain of the function in the left
hand side, it may be regarded as an analytic continuation of that function.
C-fractions can be obtained for instance, by dropping some conditions that
ensure the positivity of the coefficients am:

ezEν(z) =
∞

K
m=1

(
am(ν)z−1

1

)
, | arg z| < π, ν ∈ C,

a1(ν) = 1, a2j(ν) = j + ν − 1, a2j+1(ν) = j, j ∈ N.
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A C-fraction is intimately connected with Padé approximants, since its
successive approximants equal Padé approximants on a staircase in the
Padé table. When available, explicit formulas for the Padé approximants
in part or all of the table are given. With the operator Pk defined as in
(15.4.1),

rm+1,n(z) =
z−1Pm+n

(
2F0(ν, 1;−z−1) 2F0(−ν −m,−n; z−1)

)
2F0(−ν −m,−n; z−1)

,

m + 1 ≥ n.

T-fraction, M-fraction and two-point Padé approximants. M-
fractions correspond simultaneously to series expansions at 0 and at ∞.
For instance, the fraction in the right hand side of

1F1(a + 1; b + 1; z)
1F1(a; b; z)

=
b

b− z +

∞

K
m=1

(
(a + m)z
b + m− z

)
, z ∈ C,

a ∈ C, b ∈ C \ Z−
0

corresponds at 0 to the series representation of the function in the left hand
side and corresponds at z = ∞ to the series representation of

− b

z
2F0(a + 1, a− b + 1;−1/z)

2F0(a, a− b + 1;−1/z)
.

The two-point Padé approximants r
(2)
n+k,n−k(z) corresponding to the same

series at z = 0 and at z = ∞, are given by

r
(2)
n+k,n−k(z) =

Pn−1,k(∞, a + 1, b, z)
Pn,k(∞, a, b, z)

, 0 ≤ k ≤ n,

where

Pn,k(∞, b, c, z) := lim
a→∞Pn,k(a, b, c, z/a), 0 ≤ k ≤ n,

= Pn(1F1(b; c; z) 1F1(−b− n; 1− c− k − n;−z)),

for Pn,k(a, b, c, z) given by (15.4.9) and the operator Pn defined in (15.4.1).

Real J-fraction and other continued fractions. Contractions of some
continued fractions may result in J-fraction representations. Or minimal
solutions of some recurrence relation may lead to yet another continued
fraction representation. If closed formulas exist for the partial numerators
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and denominators of these fractions, these are listed after the usual fam-
ilies of S-, C- and T- or M-fractions. In general, we do not list different
equivalent forms of a continued fraction.

Significant digits. Traditionally, the goal in designing mathematical
approximations for use in function evaluations or implementations is to
minimise the computation time. Our emphasis is on accuracy instead of
speed. Therefore our numerical and graphical illustrations essentially focus
on the presentation of the number of significant digits achieved by the series
and continued fraction approximants. All output is reliable and correctly
rounded.
By the presentation of tables and graphs for different approximants, also
the speed of convergence in different regions of the complex plane is illus-
trated. More information on the tables and graphs in this handbook can
be found in Chapter 9.

Reliability. All series and continued fraction representations in the hand-
book were verified numerically. So when encountering a slightly different
formula from the one given in the original reference, it was corrected be-
cause the original work most probably contained a typo.

Further reading

Similar formula books for different families of functions are [AS64; Ext78;
SO87; GR00].
Books discussing some of the special functions treated in this work are
[Luk75; Luk69; AAR99].



Part I

BASIC THEORY



1
Basics

We develop some basic tools to handle continued fractions with com-
plex numbers as elements. These include recurrence relations, equivalence
transformations, the Euler connection with series, and a study of the tail
behaviour of continued fractions which is quite different from that of series.
Starting Section 1.10 we also deal with continued fractions in which the
elements depend on a complex variable z. The representation of functions
is further developed from Chapter 2 on.

1.1 Symbols and notation
The expression

b0 +
a1

b1 +
a2

b2 +
a3

b3 + .. .

(1.1.1a)

is called a continued fraction, where am and bm are complex numbers and
am �= 0 for all m. More recently, for convenience, other symbols are used
to denote the same continued fraction. These include the following:

b0 +
a1

b1
+

a2

b2
+

a3

b3
+ . . . , (1.1.1b)

b0 +
a1

b1 +
a2

b2 +
a3

b3 + . . .
(1.1.1c)

and

b0 +
∞

K
m=1

(
am

bm

)
, (1.1.1d)

or for short

b0 +K
(

am

bm

)
. (1.1.1e)

9
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The symbol K in (1.1.1d) and (1.1.1e) for (infinite) fraction, from the
German word Kettenbruch, is the analogue of Σ for (infinite) sum.
Correspondingly the nth approximant fn of the continued fraction is ex-
pressed by

fn = b0 +
a1

b1 +
a2

b2 +
a3

b3 + .. .
+

an

bn

, (1.1.2a)

fn = b0 +
a1

b1
+

a2

b2
+

a3

b3
+ · · ·+ an

bn
, (1.1.2b)

fn = b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · · +
an

bn
(1.1.2c)

and

fn = b0 +
n

K
m=1

(
am

bm

)
. (1.1.2d)

Only the symbols (1.1.1c), (1.1.1d), (1.1.1e) and (1.1.2c), (1.1.2d) are used
in the present book.
The continued fraction (1.1.1) is more than just the sequence of approxi-
mants {fn} or the limit of this sequence, if it exists. In fact, the continued
fraction is the mapping of the ordered pair of sequences ({am}, {bm}) onto
the sequence {fn}. This concept is made more precise in the definition of
continued fraction in the following section.

1.2 Definitions
The complex plane is denoted by C and the extended complex plane by

Ĉ := C ∪ {∞} .

The symbols N and N0 denote the sets

N := {1, 2, 3, . . . }, N0 := {0, 1, 2, 3, . . . }.

Continued fraction. An ordered pair of sequences ({am}m∈N, {bm}m∈N0)
of complex numbers, with am �= 0 for m ≥ 1, gives rise to sequences
{sn(w)}n∈N0 and {Sn(w)}n∈N0 of linear fractional transformations

s0(w) := b0 + w, sn(w) :=
an

bn + w
, n = 1, 2, 3, . . . , (1.2.1a)
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S0(w) := s0(w), Sn(w) := Sn−1(sn(w)), n = 1, 2, 3, . . . (1.2.1b)

and to a sequence {fn}, given by

fn = Sn(0) ∈ Ĉ, n = 0, 1, 2, . . . . (1.2.2)

The ordered pair [Hen77, p. 474]

(({am}, {bm}), {fn}) (1.2.3)

is the continued fraction denoted by the five symbols in (1.1.1). The num-
bers am and bm are called mth partial numerator and partial denominator,
respectively, of the continued fraction. The value fn is called the nth ap-
proximant and is denoted by the four symbols (1.1.2). Some authors use the
term convergent where we use approximant. A common name for partial
numerator and denominator is element.
The linear fractional transformation Sn(w) can be expressed as

Sn(w) = b0 +
a1

b1 +
a2

b2 +
a3

b3 + .. .
+

an

bn + w

, (1.2.4a)

or more conveniently as

Sn(w) = b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · · +
an−1

bn−1 +
an

bn + w
. (1.2.4b)

Equivalently,
Sn(w) = s0 ◦ s1 ◦ s2 ◦ · · · ◦ sn(w), (1.2.5)

where ◦ denotes composition such as in

s0 ◦ s1(w) := s0(s1(w)) .

In particular,
sn(w) := s ◦ · · · ◦ s︸ ︷︷ ︸

n times

(w) .

For a given sequence {wn}n∈N0 , the number

Sn(wn) ∈ Ĉ (1.2.6)



12 1. BASICS

is called an nth modified approximant.

Convergence. A continued fraction b0 + K (am/bm) is said to converge if
and only if the sequence of approximants {fn} = {Sn(0)} converges to a
limit f ∈ Ĉ. In this case f is called the value of the continued fraction. Note
that convergence to ∞ is accepted. If the continued fraction is convergent
to f , then the symbols (1.1.1) are used to represent both the ordered pair
(1.2.3) and the value f . That is, we may write

f = lim
n→∞Sn(0) = b0 +

∞

K
m=1

(
am

bm

)
. (1.2.7)

Sometimes (1.2.7) is called classical convergence.

General convergence. A continued fraction converges generally [Jac86;
LW92, p. 43] to an extended complex number f if and only if there exist
two sequences {vn} and {wn} in Ĉ such that

lim inf
n→∞ d(vn, wn) > 0

and
lim

n→∞Sn(vn) = lim
n→∞Sn(wn) = f.

Here d(z, w) denotes the chordal metric defined by

d(z, w) :=
|z − w|√

1 + |z|2√1 + |w|2 , z, w ∈ C

and
d(∞, w) :=

1√
1 + |w|2 , w ∈ C .

The value f is unique. Convergence to f implies general convergence to f
since

Sn(∞) = Sn−1(0)

but general convergence does not imply convergence.

Example 1.2.1: The continued fraction

2
1 +

1
1 +

−1
1 +

2
1 +

1
1 +

−1
1 + . . .
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diverges. By using the recurrence relations (1.3.1), we find for n ≥ 1 that

A3n−2 = 2n,

B3n−2 = 2n+1 − 3,

A3n−1 = 2n,

B3n−1 = 2n+1 − 2,

A3n = 0,

B3n = 1.

For the modified approximants Sn(wn) we find from (1.3.2) that

S3n−2(w3n−2) =
2n + w3n−2 · 0

(2n+1 − 3) + w3n−2 · 1 ,

which converges to 1/2 if the sequence {w3n−2} is bounded. Similarly, we
find that the sequence

S3n−1(w3n−1) =
2n + w3n−1 · 2n

(2n+1 − 2) + w3n−1(2n+1 − 3)

converges to 1/2 if the sequence {w3n−1} is bounded away from −1 and
the sequence

S3n(w3n) =
0 + w3n · 2n

1 + w3n(2n+1 − 2)

converges to 1/2 if the sequence {w3n} is bounded away from 0. Hence we
have that the continued fraction converges generally.

1.3 Recurrence relations

The nth numerator An and the nth denominator Bn of a continued fraction
b0 +K (am/bm) are defined by the recurrence relations (second order linear
difference equations)[

An

Bn

]
:= bn

[
An−1

Bn−1

]
+ an

[
An−2

Bn−2

]
, n = 1, 2, 3, . . . (1.3.1a)

with initial conditions

A−1 := 1, B−1 := 0, A0 := b0, B0 := 1 . (1.3.1b)

The modified approximant Sn(wn) in (1.2.6) can then be written as

Sn(wn) =
An + An−1wn

Bn + Bn−1wn
, n = 0, 1, 2, . . . (1.3.2)
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and hence for the nth approximant fn we have

fn = Sn(0) =
An

Bn
, fn−1 = Sn(∞) =

An−1

Bn−1
. (1.3.3)

Determinant formula. The nth numerator and denominator satisfy the
determinant formula∣∣∣∣An An−1

Bn Bn−1

∣∣∣∣ = AnBn−1 −An−1Bn

= (−1)n−1
n∏

m=1

am, n = 1, 2, 3, . . . .

(1.3.4)

Matrix connection with continued fractions. Let K (am/bm) be a
given continued fraction with nth numerator An and nth denominator Bn.
Let

sm(w) :=
am

bm + w
, xm :=

(
0 am

1 bm

)
, m = 1, 2, 3, . . . .

Then the linear fractional transformation Sn(w) given by (1.2.5) and (1.3.2)
leads to

Xn := x1x2x3 · · ·xn =
(

An−1 An

Bn−1 Bn

)
, n = 1, 2, 3, . . . .

Therefore multiplication of 2 × 2 matrices can be used to construct the
sequences {An}, {Bn} and {fn}, where fn is given by (1.2.2) and (1.3.3).
More generally, if

tm(w) :=
am + cmw

bm + dmw
, ym :=

(
cm am

dm bm

)
, m = 1, 2, 3, . . .

then

Tn(w) := t1 ◦ t2 ◦ t3 ◦ · · · ◦ tn(w) =
An + Cnw

Bn + Dnw
, n = 1, 2, 3, . . .

and

Yn := y1y2y3 · · · yn =
(

Cn An

Dn Bn

)
, n = 1, 2, 3, . . . .
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1.4 Equivalence transformations

Two continued fractions b0 + K (am/bm) and d0 + K (cm/dm) are said to
be equivalent if and only if they have the same sequence of approximants.
This is written

b0 +
∞

K
m=1

(am/bm) ≡ d0 +
∞

K
m=1

(cm/dm). (1.4.1)

The equivalence (1.4.1) holds if and only if there exists a sequence of com-
plex numbers {rm}, with r0 = 1 and rm �= 0 for m ≥ 1, such that

d0 = b0, cm = rmrm−1am, dm = rmbm, m = 1, 2, 3, . . . . (1.4.2)

Equations (1.4.2) define an equivalence transformation. Since am �= 0 for
m ≥ 1, one can always choose

rm =
m∏

k=1

a
(−1)m+1−k

k =

⎛⎜⎜⎜⎝
�m/2�∏
k=1

a2k

�(m+1)/2�∏
k=1

a2k−1

⎞⎟⎟⎟⎠
(−1)m−1

, m = 1, 2, 3, . . . ,

which yields the equivalence transformation

b0 +
∞

K
m=1

(
am

bm

)
≡ b0 +

∞

K
m=1

(
1

dm

)
= b0 +

1
b1/a1 +

1
b2a1/a2 +

1
b3a2/(a1a3) + . . .

,

where in general

d1 =
b1

a1
,

d2m = b2m
a1a3 · · · a2m−1

a2a4 · · · a2m
, m = 1, 2, 3, . . . ,

d2m+1 = b2m+1
a2a4 · · · a2m

a1a3 · · · a2m+1
, m = 1, 2, 3, . . . .

Hence, in studying continued fractions there is no loss of generality in the
restriction to continued fractions K (1/dm). On the other hand, if

bm �= 0, m = 1, 2, 3, . . . ,
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then one can obtain an equivalence transformation of the form

b0 +
∞

K
m=1

(
am

bm

)
≡ b0 +

∞

K
m=1

(cm

1

)
= b0 +

a1/b1

1 +
a2/(b1b2)

1 +
a3/(b2b3)

1 + . . .
,

where in general

rm =
1

bm
, m = 1, 2, 3, . . . ,

c1 =
a1

b1
, cm =

am

bm−1bm
, m = 2, 3, 4, . . . .

Hence, in studying continued fractions there is only little loss of generality
in the restriction to continued fractions K (cm/1).

1.5 Contractions and extensions
In this section we let An, Bn and fn denote the nth numerator, denomina-
tor and approximant, respectively of a continued fraction b0 + K (am/bm)
and we let Cn, Dn and gn denote the nth numerator, denominator and
approximant, respectively, of a continued fraction d0 + K (cm/dm). Then
d0 + K (cm/dm) is called a contraction of b0 + K (am/bm) if and only if
there exists a sequence {nk} such that

gk = fnk
, k = 0, 1, 2, . . . . (1.5.1)

The continued fraction b0 + K (am/bm) is then called an extension of d0 +
K (cm/dm).

Canonical contraction. If in addition to (1.5.1) there exists a sequence
{nk} such that

Ck = Ank
, Dk = Bnk

, k = 0, 1, 2, . . . , (1.5.2)

then d0 + K (cm/dm) is called a canonical contraction of b0 + K (am/bm).

Even contraction. A continued fraction d0+K (cm/dm) is called an even
contraction or even part of b0 + K (am/bm) if and only if

gn = f2n, n = 0, 1, 2, . . .

and it is called the even canonical contraction of b0 + K (am/bm) if and
only if

Cn = A2n, Dn = B2n, n = 0, 1, 2, . . . .
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An even canonical contraction of b0 + K (am/bm) exists if and only if

b2k �= 0, k = 1, 2, 3, . . . .

When it exists, the even canonical contraction of b0 + K (am/bm) is given
by

d0 +
∞

K
m=1

(
cm

dm

)
= b0 +

a1b2

a2 + b1b2 −
a2a3b4/b2

a4 + b3b4 + a3b4/b2

−
a4a5b6/b4

a6 + b5b6 + a5b6/b4 − . . .
(1.5.3a)

where

d0 = b0, c1 = a1b2, d1 = a2 + b1b2,

cm = −a2m−2a2m−1b2m

b2m−2
, m = 2, 3, 4, . . . ,

dm = a2m + b2m−1b2m +
a2m−1b2m

b2m−2
, m = 2, 3, 4, . . . .

(1.5.3b)

Odd contraction. A continued fraction d0 + K (cm/dm) is called an odd
contraction or odd part of b0 + K (am/bm) if and only if

gn = f2n+1, n = 0, 1, 2, . . .

and it is called an odd canonical contraction if and only if

C0 =
A1

B1
, D0 = 1,

Cn = A2n+1, Dn = B2n+1, n = 1, 2, 3, . . . .

An odd canonical contraction of b0 + K (am/bm) exists if and only if

b2k+1 �= 0, k = 0, 1, 2, . . . .

If it exists, an odd canonical contraction of b0 + K (am/bm) is given by

d0 +
∞

K
m=1

(
cm

dm

)
=

a1 + b0b1

b1
− a1a2b3/b1

b1(a3 + b2b3) + a2b3

−
a3a4b1b5/b3

a5 + b4b5 + a4b5/b3 −
a5a6b7/b5

a7 + b6b7 + a6b7/b5 − . . .
(1.5.4a)
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where

c1 = −a1a2b3

b1
, c2 = −a3a4b1b5

b3
,

d0 =
a1 + b0b1

b1
, d1 = b1(a3 + b2b3) + a2b3,

cm = −a2m−1a2mb2m+1

b2m−1
, m = 3, 4, 5, . . . ,

dm = a2m+1 + b2mb2m+1 + a2mb2m+1/b2m−1, m = 2, 3, 4, . . . .
(1.5.4b)

1.6 Continued fractions with prescribed approximants

A sequence {fn} in Ĉ can be the sequence of approximants of a continued
fraction if and only if

f0 �= ∞, fn �= fn−1, n = 1, 2, 3, . . . . (1.6.1)

A sequence {fn} in Ĉ can be the sequence of approximants of a continued
fraction of the form b0 + K (am/1) if and only if

f0 �= ∞, fn �= fn−1, fn+1 �= fn−1, n = 1, 2, 3, . . . . (1.6.2)

Let {An} and {Bn} be given sequences in C. Then there exists a continued
fraction b0 + K (am/bm) with nth numerator An and nth denominator Bn,
for n ≥ 0, if and only if

B0 = 1, AnBn−1 −An−1Bn �= 0, n = 1, 2, 3, . . . . (1.6.3)

If (1.6.3) holds then the elements am and bm of b0 + K (am/bm) are given
by

b0 = A0, a1 = A1 −A0B1, b1 = B1, (1.6.4a)

am =
Am−1Bm −AmBm−1

Am−1Bm−2 −Am−2Bm−1
, m = 2, 3, 4, . . . , (1.6.4b)

bm =
AmBm−2 −Am−2Bm

Am−1Bm−2 −Am−2Bm−1
, m = 2, 3, 4, . . . . (1.6.4c)
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1.7 Connection between continued fractions and series

The Euler connection. Let {ck} be a sequence in C\{0} and

fn =
n∑

k=0

ck, n = 0, 1, 2, . . . . (1.7.1)

Since fn �= fn−1 for n ≥ 1, it follows from (1.6.1) that there exists a contin-
ued fraction b0 + K (am/bm) with nth approximant fn for all n. Applying
(1.6.4), we find that this continued fraction is given by

c0 +
c1

1 +
−c2/c1

1 + c2/c1 + · · · +
−cm/cm−1

1 + cm/cm−1 + . . .
. (1.7.2)

Example 1.7.1: For ck = (−1)k/(k + 1), k ≥ 0, we have that the nth

partial sum of

ln(2) =
∞∑

k=0

(−1)k

k + 1
(1.7.3)

and the nth approximant of

ln(2) = 1 +
− 1

2

1 +

2
3

1− 2
3

+

3
4

1− 3
4

+ · · · +

m
m+1

1− m
m+1 + . . .

(1.7.4)

are equal.

Conversely, suppose that b0 +K (am/bm) is a given continued fraction with
finite approximants. Let the sequence {ck} be defined by

c0 := b0, ck :=
(−1)k−1

∏k
j=1 aj

BkBk−1
, k = 1, 2, 3, . . . , (1.7.5)

where Bk denotes the kth denominator of the continued fraction. Then
the nth approximant fn of b0 + K (am/bm) satisfies (1.7.1) [Eul48]. The
connection between continued fractions and series described above is only
of limited interest, since in this situation both have exactly the same ap-
proximants and hence the same convergence or divergence behaviour.
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The method of Viskovatov. Let {c0k} and {c1k} be sequences in C and
consider the quotient

c10 + c11 + c12 + . . .

c00 + c01 + c02 + . . .
. (1.7.6)

This can be rewritten as

c10 + c11 + c12 + . . .

c00 + c01 + c02 + . . .
=

1
c00

c10
+

c00 + c01 + c02 + . . .

c10 + c11 + c12 + . . .
− c00

c10

=
c10

c00 +
(c10c01 − c00c11) + (c10c02 − c00c12) + . . .

c10 + c11 + c12 + . . .

=
c10

c00 +
c20 + c21 + c22 + . . .

c10 + c11 + c12 + . . .

where c2i = c10c0,i+1− c00c1,i+1 for i ≥ 0. If we repeat this process and let

ckj = ck−1,0ck−2,j+1 − ck−2,0ck−1,j+1, k ≥ 2, j ≥ 0, (1.7.7)

we obtain the continued fraction [Vis06]

∞

K
m=1

(
cm0

cm−1,0

)
. (1.7.8)

If in (1.7.6) we consider the special case c00 = 1, c0k = 0 for k ≥ 1, then
the method of Viskovatov is a means of connecting continued fractions and
series. The difference with the Euler connection is that, in general, the nth

approximant of (1.7.8) is not equal to

fn =
n∑

k=0

c1k .

As is indicated in more detail in Chapter 6, the method of Viskovatov
often permits the convergence of the continued fraction (1.7.8) to be more
favourable than that of the corresponding series.
In case c00 = 1 and c0k = 0 for k ≥ 1, it may also be more convenient to
start the Viskovatov algorithm in a slightly different way:

c10 + c11 + c12 + . . . = c10 +
c11

1 +
−c12 − c13 − . . .

c11 + c12 + c13 + . . .
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Applying the Viskovatov algorithm (1.7.7) to the sequences {c̃0k} and {c̃1k}
given by

c̃00 := 1, c̃0k := 0, k > 0,

c̃1k := c1,k+1, k ≥ 0,
(1.7.9)

leads to the continued fraction

c10 +
∞

K
m=1

(
c̃m,0

c̃m−1,0

)
. (1.7.10)

Example 1.7.2: Consider again the series (1.7.3). If we start the method
of Viskovatov with c1k = (−1)k/(k + 1) for k ≥ 0, c00 = 1, c0k = 0 for
k ≥ 1, we obtain the continued fraction

1
1 +

1/2

1 +

1/12
1/2 +

1/72
1/12 + . . .

. (1.7.11)

Observe that the first few approximants of (1.7.11) indicate faster conver-
gence to ln(2) than the approximants of (1.7.4). For the given series, the
alternative form (1.7.10) looks like

1 +
−1/2

1 +

−1/3
−1/2 +

1/72
−1/3 + . . .

.

1.8 Periodic and limit periodic continued fractions

Periodic continued fractions. The very simplest periodic continued
fraction is the 1-periodic continued fraction, where the period starts at the
beginning. It has the form

a

b +
a

b +
a

b + · · · +
a

b + . . .
, a �= 0.

A related continued fraction is the 1-periodic continued fraction where the
period starts later:

a1

b1 +
a2

b2 + · · · +
am

bm +
a

b +
a

b +
a

b + . . .
.
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More generally we may have periods of any length. If the continued fraction
has a period of length k which starts at the beginning, it has the form

a1

b1 + · · · +
ak

bk +
a1

b1 + · · · +
ak

bk +
a1

b1 + · · · +
ak

bk + . . .
,

and is called a k-periodic continued fraction. Also here we may have a
later start of the period.
More formally, a continued fraction K (am/bm) is called periodic with period
k or k-periodic if the sequences of elements {am} and {bm} are k-periodic
after the first N elements. That is

aN+pk+q = aN+q =: a∗
q , bN+pk+q = bN+q =: b∗q (1.8.1)

where N is a fixed non-negative integer, k is a fixed positive integer, p ≥ 1
and q = 1, 2, . . . , k.
Usually N and k are taken to be the minimal numbers for which (1.8.1)
holds. The linear fractional transformation Sn(w) of a k-periodic continued
fraction K (am/bm) of the form (1.8.1) is given by

SN+pk+q(w) = SN ◦ T p
k ◦ Tq(w), p = 1, 2, 3, . . . , q = 1, 2, . . . , k,

(1.8.2a)
where

Tq(w) :=
a∗
1

b∗1 +
a∗
2

b∗2 + · · · +
a∗

q−1

b∗q−1 +
a∗

q

b∗q + w
, q = 1, 2, . . . , k. (1.8.2b)

Example 1.8.1: A special case of a 1-periodic continued fraction, with
N = 0, am = bm = 1 is given by

∞

K
m=1

(
1
1

)
=

1
1 +

1
1 +

1
1 + . . .

. (1.8.3)

If fn denotes the nth approximant of (1.8.3), then we obtain the inverse of
the golden ratio

lim
n→∞ fn = φ̃ :=

√
5− 1
2

=
1
1 +

1
1 +

1
1 + . . .

.
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Limit periodic continued fractions. A continued fraction K (am/bm)
is called limit periodic with period k if the sequences of elements {am} and
{bm} are limit k-periodic. That is, the limits

lim
p→∞ apk+q = a∗

q , lim
p→∞ bpk+q = b∗q (1.8.4)

exist in Ĉ. Here again k is a fixed positive integer and 1 ≤ q ≤ k.

Example 1.8.2: A special case of a limit periodic continued fraction with
period k = 1 is given by

ln(2) =
1
1 +

1/2

1 +

1/6

1 +

2/6

1 +

2/10

1 +

3/10

1 + · · · +
am

1 + . . .
, (1.8.5a)

where

a1 = 1, a2m =
m

2(2m− 1)
, a2m+1 =

m

2(2m + 1)
, m = 1, 2, 3, . . . ,

(1.8.5b)
and

lim
m→∞ am =

1
4

.

Observe that the continued fraction (1.8.5) is equivalent to the continued
fraction (1.7.11) constructed by the method of Viskovatov in Example 1.7.2.

1.9 Tails of continued fractions
The M th tail of a continued fraction K (am/bm) is the continued fraction

∞

K
m=1

(
aM+m

bM+m

)
=

∞

K
m=M+1

(
am

bm

)
=

aM+1

bM+1 +
aM+2

bM+2 +
aM+3

bM+3 + . . .
, M = 0, 1, 2, . . . .

(1.9.1)

The nth numerator, nth denominator and nth approximant of the M th

tail are denoted by A
(M)
n , B

(M)
n and f

(M)
n . If (1.9.1) converges, its value is

denoted by f (M). The same linear recurrence relations hold, only with b0 =
0 in the initial conditions, an additional superscript (M) on all numerators
and denominators, and am, bm replaced by aM+m, bM+m. The determinant
formula holds, with the same obvious adjustments.
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Tails of convergent continued fractions. Let K (am/bm) be a contin-
ued fraction converging to a value f ∈ Ĉ so that

f = lim
n→∞ fn = lim

n→∞Sn(0) =
∞

K
m=1

(
am

bm

)
. (1.9.2)

Then, for M ≥ 0, the M th tail of K (am/bm) converges to a value f (M) ∈ Ĉ

where

f (M) =
aM+1

bM+1 + f (M+1)
=

∞

K
m=M+1

(
am

bm

)
, M = 0, 1, 2, . . . (1.9.3)

and hence
f = f (0) = SM (f (M)), M = 0, 1, 2, . . . . (1.9.4)

By determining an approximation f̂ (M) of the M th tail f (M), it is some-
times possible to have

lim
M→∞

|f − SM (f̂ (M))|
|f − SM (0)| = 0,

which means that the sequence {SM (f̂ (M))} of modified approximants con-
verges to f faster than {SM (0)}. Hence appropriate choices for f̂ (M) can
accelerate the convergence to f .
Note that the sequence {f (M)} of tails of a convergent continued fraction
may not converge at all, and if it converges, the limit is 0 only in very special
cases [Syl89]. This is in sharp contrast with convergent series where

lim
n→∞

∞∑
k=n+1

ck = 0,

and convergent infinite products where

lim
n→∞

∞∏
k=n+1

pk = 1.

Example 1.9.1: Consider the convergent 2-periodic continued fraction

√
2− 1 =

∞

K
m=1

(
(3 + (−1)m)/2

1

)
=

1
1 +

2
1 +

1
1 +

2
1 + . . .

.
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It can easily be seen that

f (2M) =
√

2− 1, f (2M+1) =
√

2, M = 0, 1, 2, . . .

and hence the sequence {f (M)} does not converge.

Example 1.9.2: We study the continued fraction

∞

K
m=1

(
m(m + 2)

1

)
=

1 · 3
1 +

2 · 4
1 +

3 · 5
1 + . . .

. (1.9.5)

Since all the elements in (1.9.5) are positive, we have

f2 < f4 < f6 < · · · < f5 < f3 < f1.

Moreover f2n+1 − f2n → 0 as n → ∞. Hence the continued fraction
converges. One can prove that the value of (1.9.5) is f = f (0) = 1. From
f (0) = 3/(1 + f (1)) we find f (1) = 2. By induction it follows that the M th

tail equals M + 1. Hence the sequence of tails {f (M)} converges to ∞.

The tails of 1-periodic continued fractions are the simplest ones. For the
convergent continued fraction

a

1 +
a

1 +
a

1 + . . .
, a > 0, (1.9.6)

the tail f (1) is given by
f (0) =

a

1 + f (1)
.

Since f (0) = f (1), the tail f (1) and all further tails satisfy

f (n) =
a

1 + f (n)
, n = 0, 1, 2, . . . .

Since a > 0 in (1.9.6), it follows that

f (n) =
√

1 + 4a− 1
2

, n = 0, 1, 2, . . . .

Tail sequence. A sequence {tn} in Ĉ is called a tail sequence of a contin-
ued fraction K (am/bm) if and only if, for a starting value t0 ∈ Ĉ,

tn−1 = sn(tn) =
an

bn + tn
, n = 1, 2, 3, . . . . (1.9.7)
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In other words,
t0 = s1 ◦ s2 ◦ · · · ◦ sn(tn) = Sn(tn) (1.9.8)

and hence

tn = S−1
n (t0) = s−1

n ◦ s−1
n−1 ◦ · · · ◦ s−1

1 (t0)

= −
(

bn +
an

bn−1 + · · · +
a2

b1 +
a1

(−t0)

)
, n = 1, 2, 3, . . . .

(1.9.9)

It follows from (1.9.3) that the sequence of tails {f (M)} is a particular tail
sequence of K (am/bm) and in view of (1.9.4) we call {f (M)} the right tail
sequence.
Another tail sequence of particular importance is given by {−hn}, where

hn := −S−1
n (∞) =

Bn

Bn−1

= bn +
an

bn−1 +
an−1

bn−2 + · · · +
a2

b1
, n = 1, 2, 3, . . .

(1.9.10)

and Bn denotes the nth denominator of K (am/bm). The sequence {−hn},
which has starting value∞, is called the critical tail sequence of K (am/bm),
because of the following theorem.

Theorem 1.9.1: [LW92, p. 67]

The continued fraction b0 +K (am/bm) converges generally to f if and only
if limSn(un) = f for every sequence {un} in Ĉ satisfying

lim inf
n→∞ d(un,−hn) > 0

when f �= ∞ and
lim inf
n→∞ d(un,−An/An−1) > 0

when f = ∞.

1.10 Continued fractions over normed fields
The definition of continued fraction in Section 1.2 is extended to include
continued fractions

b0 +
∞

K
m=1

(
am

bm

)
in which the elements am and bm belong to a normed field, for instance
when they are certain types of complex valued functions of a complex



1.10 CONTINUED FRACTIONS OVER NORMED FIELDS 27

variable z. Of primary interest is the special case in which am and bm are
polynomials in z. Let us recall the notion of a normed field.

Normed field. Let F denote a field and let us adjoin to F an additional
element called infinity and denote it by ∞. The extended field F̂ is given
by

F̂ := F ∪ {∞} .

We denote by 0 the neutral element for addition in F. Operations + and ·
on F̂ involving ∞ are defined as follows. For all a, b ∈ F with a �= 0,

a · ∞ :=∞,
a

∞ := 0,
a

0
:=∞, b +∞ :=∞.

The field F is called a normed field if, for each x ∈ F, there is defined a
unique real number designated by ‖x‖ with the following properties. For
x, y ∈ F,

‖x‖ ≥ 0, (1.10.1a)

‖x‖ = 0 ⇔ x = 0, (1.10.1b)

‖xy‖ ≤ ‖x‖ · ‖y‖, (1.10.1c)

‖x + y‖ ≤ ‖x‖+ ‖y‖. (1.10.1d)

The number ‖x‖ is called the norm of x. If z ∈ C, then ‖z‖ := |z|, the
absolute value or modulus of z.

Convergence in F̂. A sequence {xn} in F̂ is said to converge to x ∈ F if,
for n sufficiently large, xn ∈ F and

lim
n→∞ ‖x− xn‖ = 0.

A sequence {xn} in F is said to converge to ∞ ∈ F̂ if, for all n sufficiently
large, 1/xn ∈ F and

lim
n→∞ ‖1/xn‖ = 0.

If a sequence {xn} in F̂ converges to x ∈ F̂, this is designated by writing

lim
n→∞xn = x.

The following rules for limits hold. If {xn}, {yn}, {un} are convergent
sequences in F to elements in F and if limn→∞ un �= 0, then

lim
n→∞(xn + yn) = lim

n→∞xn + lim
n→∞ yn,

lim
n→∞(xnyn) =

(
lim

n→∞xn

)(
lim

n→∞ yn

)
,

lim
n→∞

(
1
un

)
=

1
lim

n→∞un
.
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A continued fraction over a normed field F,

b0 +
∞

K
m=1

(
am

bm

)
, am ∈ F \ {0}, bm ∈ F

is defined in a manner completely analogous to the definition of contin-
ued fraction over C given in Section 1.2. Analogues of properties given
in Section 1.1 to Section 1.9 for continued fractions over C also hold for
continued fractions over a normed field F.

1.11 Generalisations of continued fractions
Generalisations arise when the partial numerators and denominators of the
continued fraction are:

vectors in Cn [AK87; BGM96; dBJ87; LF96; LVBB94; Par87; Rob02;
Smi02],
square matrices with complex elements [BB83; BB80; BVB90; Chu01;
Fie84; Gu03; LB96; SVI99],
operators in a Hilbert space [BF79; Cuy84; Fai72; Hay74; Sch96],
multivariate expressions and/or continued fractions themselves [Cha86;
Cuy83; Cuy88; CV88a; CV88b; GS81; HS84; KS87; Kuc78; Kuc87;
MO78; O’D74; Sem78; Sie80].

These multidimensional and multivariate generalisations are not straight-
forward because non-commutativity and division may cause problems. The
generalisation where the partial numerators and denominators of the con-
tinued fraction are themselves continued fractions gives rise to so-called
branched continued fractions.
When replacing the second-order linear difference equations (1.3.1) by nth-
order linear difference equations, the recurrence yields generalised contin-
ued fractions. The approximants in this case are n-dimensional vectors.
In the same way as there is a close relation between the theory of contin-
ued fractions and that of Padé approximation (see Chapter 4), generalised
continued fractions are connected to Padé-Hermite approximation.

Further reading

Basic references on the topic of continued fractions are, among others,
[Per29; Wal48; Per54; Khi56; Per57; Old63; Kho63; Hen77; JT80; LW92;
BGM96].
Several volumes in the series Lecture Notes in Mathematics are devoted
to the proceedings of conferences and workshops on continued fractions
and related topics.
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Continued fraction

representation of functions

To represent functions of a complex variable z in continued fraction form,
we need to have continued fractions with elements am(z) and bm(z) that
depend on z. In Section 2.3 the most important families of continued
fractions are described. Most of them are so-called corresponding contin-
ued fractions, either to series developments at one point or at two points.
These correspondence properties are further detailed in Section 2.4 and
Section 4.3 for C-fractions, in Section 2.5 and Section 4.4 for P-fractions,
in Section 2.6 and Section 4.6 for T-fractions and in Section 2.6 for J-
fractions.

2.1 Symbols and notation

Let the functions f(z) and g(z) be defined for z ∈ D where D is a subset
of the complex plane and let u ∈ D. We write for z tending to the limit
point u,

f(z) ∼ g(z) ⇔ lim
z→u

f(z)/g(z) = 1. (2.1.1a)

The symbols o() and O() are used to denote

f(z) = o(g(z)) ⇔ lim
z→u

f(z)/g(z) = 0, (2.1.1b)

f(z) = O(g(z)) ⇔ ∃K ∈ R+ : |f(z)/g(z)| ≤ K, z → u. (2.1.1c)

The symbol O() can also apply to the whole set D instead of to z → u.

Example 2.1.1: For f(z) = tanh(z), D = C, u = 0 and g(z) = z we find

tanh(z) ∼ z, z → 0 .

29
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For f(z) = exp(−z), D = R, u = +∞ and g(z) = 1 we can write

exp(−z) = o(1), z → +∞ .

For f(z) = sin(z), D = R, u = 0 and g(z) = z we have

sin(z) = O(z), z → 0 .

2.2 Correspondence
An important application of continued fractions is the representation of
holomorphic functions of a complex variable z by continued fractions

b0(z) +
∞

K
m=1

(
am(z)
bm(z)

)
, (2.2.1)

where the elements am(z) and bm(z) are polynomials in z or 1/z. To
indicate the dependence on z, we denote the nth approximant of (2.2.1) by
fn(z), the nth numerator and denominator by An(z) and Bn(z) and the
nth modified approximant by Sn(z; w).

Formal power series at z = 0. A series L(z) is called a formal power
series (FPS) at z = 0 if and only if L(z) has the form

L(z) =
∞∑

k=m

ckzk, ck ∈ C, m ∈ Z, (2.2.2)

where cm �= 0 or all ck = 0. The neutral element for the addition of FPS is
denoted by the symbol 0 as usual. The set L0 of all FPS at z = 0 is a field
over C with the usual operations of addition and multiplication. A series
(2.2.2) is called a formal Taylor series (FTS) at z = 0 if m ≥ 0 and it is
called a formal Laurent series (FLS) at z = 0 if m < 0.
For all L(z) ∈ L0 we define λ(L) by

λ(L) :=

⎧⎪⎨⎪⎩m, L(z) =
∞∑

k=m

ckzk, cm �= 0,

∞, L(z) = 0 .

(2.2.3)

A norm ‖ · ‖ defined on L0 is given by

‖L‖ := 2−λ(L), L(z) ∈ L0
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where 2−∞ = 0. In fact it is readily shown that ‖ · ‖ verifies the properties
(1.10.1), with equality in (1.10.1c). Hence L0 is a normed field and, by
Section 1.10, a continued fraction of the form (2.2.1) is defined if its ele-
ments am(z) and bm(z) are in L0 and am(z) �= 0. The approximants are
all in L0 or equal ∞.
A FTS is an asymptotic expansion of a function f(z) at z = 0, with respect
to a region D in C with 0 ∈ D, if

∀n ∈ N0,∃ρn > 0, ηn > 0 :

∣∣∣∣∣f(z)−
n∑

k=m

ckzk

∣∣∣∣∣ ≤ ηn|z|n+1,

|z| < ρn, z ∈ D, m ≥ 0,

or equivalently

∀n ∈ N0,∃ρn > 0 : f(z)−
n∑

k=m

ckzk = O
(
zn+1

)
,

|z| < ρn, z ∈ D, m ≥ 0.

This is denoted by

f(z) ≈
∞∑

k=m

ckzk, z → 0. (2.2.4)

Correspondence to a FPS at z = 0. Although our interest is mainly in
the case where L(z) is the convergent or asymptotic expansion of a function
f(z), we begin by assuming L(z) is an arbitrary non-zero FPS at z = 0, as
in (2.2.2). Let R(z) be a function meromorphic at z = 0. Let the mapping

Λ0 : R(z) → Λ0(R)

associate with R(z) its Laurent expansion in a deleted neighbourhood of
the origin. A sequence {Rn(z)} of functions meromorphic at the origin is
said to correspond to a FPS L(z) at z = 0 if and only if

νn := λ(L− Λ0(Rn)) →∞. (2.2.5)

By the definition of λ in (2.2.3), the series L and Λ0(Rn) agree term-by-
term up to and including the term involving zνn−1. We can write this
as

L(z)− Λ0(Rn(z)) = O (zνn) .
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The integer νn is called the order of correspondence of Rn(z) to L(z).
A continued fraction of the form (2.2.1) is said to correspond to L(z) at
z = 0 if and only if the sequence of its approximants {fn(z)} corresponds
to L(z) at z = 0.

Correspondence to a function at z = 0. A sequence {Rn(z)} or a
continued fraction (2.2.1), is said to correspond at z = 0 to a function f(z)
meromorphic at the origin if and only if it corresponds to the FPS Λ0(f(z))
at z = 0.

Formal power series at z = ∞. A series L(z) is called a formal power
series at z = ∞ if and only if L(z) has the form

L(z) =
∞∑

k=m

c−kz−k, c−k ∈ C, m ∈ Z, (2.2.6)

where c−m �= 0 or all c−k = 0. The set L∞ of all FPS at z = ∞ is a field
over C with the usual operations of addition and multiplication. A series
(2.2.6) is called a formal Taylor series at z = ∞ if m ≥ 0 and it is called
a formal Laurent series at z = ∞ if m < 0.
For all L(z) ∈ L∞ we define

λ(L) :=

⎧⎪⎨⎪⎩m, L(z) =
∞∑

k=m

c−kz−k, c−m �= 0,

∞, L(z) = 0 .

(2.2.7)

Note that when c−m �= 0, then λ(L) is the degree in 1/z of the first non-zero
term of L(z). A norm ‖ · ‖ defined on L∞ is given by

‖L‖ := 2−λ(L), L(z) ∈ L∞

with 2−∞ = 0. It is easy to show that ‖ · ‖ verifies the same properties as
the norm on L0. Therefore L∞ is a normed field and a continued fraction
(2.2.1) is defined if its elements am(z) and bm(z) are in L∞ and am(z) �= 0.
The approximants are all in L∞ or equal ∞.
A FTS is an asymptotic expansion of a function f(z) at z = ∞, with respect
to a region D in C, if

∀n ∈ N0,∃ρn > 0, ηn > 0 :

∣∣∣∣∣f(z)−
n∑

k=m

c−kz−k

∣∣∣∣∣ ≤ ηn|z|−n−1,

|z| > ρn, z ∈ D, m ≥ 0,
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or equivalently

∀n ∈ N0,∃ρn > 0 : f(z)−
n∑

k=m

c−kz−k = O
(
z−n−1

)
,

|z| > ρn, z ∈ D, m ≥ 0.

We denote this by

f(z) ≈
∞∑

k=m

c−kz−k, z →∞. (2.2.8)

Correspondence to a FPS at z =∞. For a function R(z) meromorphic
at z = ∞, we denote its Laurent expansion in a deleted neighbourhood
of z = ∞ by Λ∞(R). A sequence of functions {Rn(z)} meromorphic at
z = ∞ is said to correspond to a FPS L(z) at z = ∞ if the sequence
{Rn(1/w)} corresponds at w = 0 to the FPS L(1/w). A continued fraction
corresponds at z = ∞ to a FPS L(z) at z = ∞ if and only if the sequence
of approximants corresponds to L(z) at z = ∞.
In a similar manner correspondence at z = a where a ∈ C, can be defined
by considering z = w + a which gives rise to a FPS in z − a.

Correspondence to a function at z = ∞. A sequence {Rn(z)} or
a continued fraction is said to correspond at z = ∞ to a function f(z)
meromorphic at infinity, if and only if it corresponds to Λ∞(f(z)) at z = ∞.

Simultaneous correspondence at 0 and∞. Consider the FPS Λ0(f(z))
and Λ∞(f(z)) at z = 0 and z = ∞ of a function f(z) meromorphic at the
origin and at infinity. A sequence {Rn(z)} of functions meromorphic at
the origin and at infinity is said to correspond simultaneously to Λ0(f(z))
and Λ∞(f(z)) if and only if both

λ (Λ0(f −Rn)) →∞,

λ (Λ∞(f −Rn)) →∞.

A continued fraction is said to correspond simultaneously to Λ0(f(z)) and
Λ∞(f(z)) if its sequence of approximants corresponds simultaneously to
Λ0(f(z)) and Λ∞(f(z)).

Criteria for correspondence. Theorems stated in this chapter help to
answer the following questions.

For a given continued fraction, does there exist a FPS L(z) to which the
continued fraction corresponds?
For a given FPS L(z), can we find a corresponding continued fraction of
the form (2.2.1)?
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The theorems and examples apply to correspondence at z = 0. Related
results hold for correspondence at z = ∞. Theorem 2.2.1 asserts the exis-
tence of a FPS L(z) corresponding at z = 0 to a given sequence {fn(z)} of
functions meromorphic at z = 0. In the special case where {fn(z)} is the
sequence of approximants of a continued fraction, we find a FPS to which
it corresponds.
The construction of a corresponding continued fraction for a given FPS
L(z) is treated in the Sections 2.4 through 2.7.

Theorem 2.2.1: [JT80, pp. 151–152]

Let {fn(z)} be a sequence of functions meromorphic at z = 0. Then:
(A) There exists a FPS L(z) at z = 0 such that {fn(z)} corresponds to

L(z) at z = 0 if and only if for kn := λ (Λ0(fn+1 − fn))

lim
n→∞ kn = ∞. (2.2.9)

(B) If (2.2.9) holds then the FPS L(z) to which {fn(z)} corresponds is
uniquely determined and the order of correspondence νn of fn(z) as
defined in (2.2.5) satisfies

kn ≤ νn, n = 1, 2, 3, . . . . (2.2.10)

(C) Moreover, if the sequence {kn} tends monotonically to ∞, then

νn = kn, n = 1, 2, 3, . . . . (2.2.11)

The inequality (2.2.10) follows immediately from

kn = λ(Λ0(fn+1 − fn)) ≤ λ(Λ0(L− fn)) = νn, n = 1, 2, 3, . . . .

Let fn(z), An(z), Bn(z) denote the nth approximant, numerator and de-
nominator, respectively, of a continued fraction (2.2.1) where the elements
am(z) and bm(z) are FPS at z = 0. Then by the determinant formulas
(1.3.4)

fn+1(z)− fn(z) =
An+1(z)Bn(z)−An(z)Bn+1(z)

Bn(z)Bn+1(z)

=
(−1)n

∏n+1
m=1 am(z)

Bn(z)Bn+1(z)
, n = 0, 1, 2, . . . .

(2.2.12)

In many cases enough information is known about the functions am(z),
Bn(z) and Bn+1(z) in (2.2.12) so that a sequence {kn} can be determined
such that (2.2.9) follows from (2.2.12).
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Example 2.2.1: Consider the 1-periodic continued fraction

1 +
z

1 +
z

1 +
z

1 + . . .
,

so that am(z) = z and bm(z) = 1. From the recurrence formulas (1.3.1) one
can verify that the nth numerator An(z) and the nth denominator Bn(z)
are polynomials in z of the forms

A2n−1(z) = B2n(z) = zn + · · ·+ 1, n = 1, 2, 3, . . . ,

A2n(z) = B2n+1(z) = (n + 1)zn + · · ·+ 1, n = 1, 2, 3, . . . .
(2.2.13)

It follows readily from (2.2.12) and (2.2.13) that

kn = λ (Λ0(fn+1 − fn)) = n + 1, n = 1, 2, 3, . . . ,

and hence there exists a unique FPS L(z) ∈ L0 such that

νn = λ (L− Λ0(fn)) = n + 1, n = 1, 2, 3, . . . .

2.3 Families of continued fractions

C-fractions. A continued fraction of the form

b0 +
∞

K
m=1

(
amzαm

1

)
, am ∈ C \ {0}, αm ∈ N (2.3.1)

is called a C-fraction [LS39]. The name C-fraction comes from the property
of these fractions to correspond to FPS at z = 0. If αm = 1 for m ≥ 1,
then (2.3.1) is called a regular C-fraction. More information on regular
C-factions can be found in Section 2.4 and in Chapter 4.

S-fractions. A continued fraction of the form

F (z) =
∞

K
m=1

(amz

1

)
, am > 0 (2.3.2)

is called a Stieltjes fraction or S-fraction and any continued fraction that
is equivalent to (2.3.2) is also called an S-fraction [Sti95]. For example

E(z) =
∞

K
m=1

(
z

bm

)
, bm > 0
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is an S-fraction since with a1 = 1/b1 and am = 1/(bm−1bm) for m > 1, one
finds F (z) ≡ E(z).
A continued fraction C(z) is called a modified S-fraction if there exist trans-
formations C(z) → B(C(z)) and z → a(z) such that the resulting contin-
ued fraction B(C(a(z))) is an S-fraction. In the sequel the term modified
is given the same meaning when applied to other families of continued
fractions.
Examples of modified S-fractions are

G(z) =
a1

z +
a2

1 +
a3

z +
a4

1 + . . .
, am > 0, (2.3.3a)

H(z) =
a1

1 +
a2

z +
a3

1 +
a4

z + . . .
, am > 0, (2.3.3b)

D(z) =
a1

z +
a2

z +
a3

z +
a4

z + . . .
, am > 0. (2.3.3c)

In case of convergence we find the relationships

F (z) ≡ G(1/z) ≡ zH(1/z) ≡ √zD(1/
√

z), | arg z| < π. (2.3.4)

Associated continued fractions. A continued fraction of the form

α1z

1 + β1z +

∞

K
m=2

( −αmz2

1 + βmz

)
, αm ∈ C\{0}, βm ∈ C (2.3.5)

is called an associated continued fraction. The even part of a regular C-
fraction is an associated continued fraction, but the converse does not
always hold.

P-fractions. Continued fractions of the form

b0(z) +
∞

K
m=1

(
1

bm(z)

)
, (2.3.6)

where each bm(z) is a polynomial in 1/z,

bm(z) =
0∑

k=−Nm

c
(m)
k zk, c

(m)
−Nm

�= 0, N0 ≥ 0, Nm ≥ 1, m ∈ N,

(2.3.7)
are called P-fractions [Mag62a; Mag62b]. The name P-fraction stands for
principal part continued fraction expansion, as we explain in Section 2.5.



2.3 FAMILIES OF CONTINUED FRACTIONS 37

J-fractions. Continued fractions of the form

α1

β1 + z +

∞

K
m=2

( −αm

βm + z

)
, αm ∈ C\{0}, βm ∈ C, (2.3.8)

are called J-fractions and were introduced by Jacobi. The even contraction
of a modified regular C-fraction

a1

z +
a2

1 +
a3

z +
a4

1 + . . .
(2.3.9)

is a J-fraction, but the converse does not always hold. The continued
fraction (2.3.8) is called a real J-fraction if αm > 0 and βm is real. These
conditions on the coefficients αm and βm are satisfied if the modified regular
C-fraction (2.3.9) is a modified S-fraction (2.3.3a). J-fractions play an
important role in moment theory for which we refer to Chapter 5.

T-fractions. Continued fractions of the form

∞

K
m=1

(
Fmz

1 + Gmz

)
, Fm ∈ C\{0}, Gm ∈ C, (2.3.10)

are called Thron fractions or general T-fractions [Thr48; Per57]. If all
Gm �= 0 the general T-fraction corresponds simultaneously to FPS at 0
and ∞ as is explained in Section 2.6 and Chapter 4. Equivalent forms of
general T-fractions are

∞

K
m=1

(
cmz

em + dmz

)
, cm, em ∈ C\{0}, dm ∈ C, (2.3.11)

and

λ1
1

β0z + β1 +
λ2

z
β1

+ β2 +
λ3

1
β2z + β3 +

λ4
z
β3

+ β4 + . . .
,

λm, βm ∈ C\{0}. (2.3.12)

If all Fm = 1 in (2.3.10) then it is called a T-fraction, without further
specification.
Following are several important subfamilies of general T-fractions. When
all Fm and Gm are strictly positive then the general T-fraction is called
a positive T-fraction. When all Fm and Gm are real and nonzero and in
addition

F2m−1F2m > 0, F2m−1/G2m−1 > 0, (2.3.13)
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the general T-fraction is called an APT-fraction, which stands for alternat-
ing positive term fraction [JNT83b]. The conditions (2.3.13) formulated in
terms of the coefficients λm and βm in (2.3.12) are

λmβm−1

βm
> 0, m ∈ N.

M-fractions. When F1z in (2.3.10) is replaced by F1, we obtain the
continued fraction

F1

1 + G1z +

∞

K
m=2

(
Fmz

1 + Gmz

)
, Fm ∈ C\{0}, Gm ∈ C, (2.3.14)

which is called an M-fraction after Murphy and Mc Cabe [Mur71; MC75;
MCM76]. Observe that the special case

1
1 +

∞

K
m=1

(
Fmz

1− Fmz

)
of the M-fraction (2.3.14) is the Euler continued fraction (1.7.2) for the
sequence of approximants

fn = 1 +
n∑

k=0

⎛⎝ k∏
j=1

(−Fj)

⎞⎠ zk.

PC-fractions. Perron-Carathéodory or PC-fractions are of the form

β0 +
α1

β1 +
1

β2z +
α3z

β3 +
1

β4z +
α5z

β5 +
1

β6z + . . .
,

α2m+1, βm ∈ C, α2m+1 = 1− β2mβ2m+1 �= 0.

The special case of the form

δ0 − 2δ0

1 +
1

δ̄1z +
(1− |δ1|2)z

δ1 +
1

δ̄2z +
(1− |δ2|2)z

δ2 + . . .
,

δ0 > 0, δm ∈ C, |δm| < 1 (2.3.15)

is called a positive Perron–Carathéodory continued fraction or a PPC-
fraction. It naturally arises in the solution of the trigonometric moment
problem [JNT86a; JNT89] which is discussed in Section 5.1.

Thiele continued fractions. A Thiele interpolating continued fraction
[Thi09] is of the form

b0 +
∞

K
m=1

(
z − zm−1

bm

)
, bm ∈ C, zm ∈ C. (2.3.16)

Rather than being a corresponding continued fraction, it interpolates func-
tion data. The computation of the bm from the interpolation conditions is
given in Chapter 6.
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2.4 Correspondence of C-fractions
There is a one-to-one correspondence between the set of all C-fractions,
including terminating C-fractions, and the set of FTS L(z) at z = 0.

Theorem 2.4.1: [LS39; JT80, pp. 156–157; LW92, p. 253]

(A) Every C-fraction (2.3.1) corresponds to a unique FTS L(z) at z = 0
and the order of correspondence of the nth approximant fn(z) is

νn =
n+1∑
k=1

αk. (2.4.1)

(B) Let L(z) be a given FTS at z = 0 with L(0) = c0. Then either there
exists a C-fraction (2.3.1) corresponding to L(z) at z = 0, or for some
n ∈ N there exists a terminating C-fraction

fn(z) = c0 +
n

K
m=1

(
amzαm

1

)
, (2.4.2)

such that
L(z) = Λ0(fn(z)). (2.4.3)

(C) If f(z) is a rational function holomorphic at z = 0 and if L(z) =
Λ0(f(z)) is the Taylor series expansion of f(z) about z = 0, then
there exists a terminating C-fraction fn(z) of the form (2.4.2) such
that (2.4.3) holds.

It follows from Theorem 2.4.1 that the S-fraction (2.3.2) corresponds to the
unique series

Λ0(F (z)) =
∞∑

k=0

ckzk+1 (2.4.4a)

with order of correspondence νn = n + 1. Then the correspondence and
order of correspondence of the modified S-fractions G(z), H(z) and D(z)
introduced in (2.3.3) are respectively given by

Λ∞(G(z)) =
∞∑

k=0

ckz−k−1, νn = n + 1, (2.4.4b)

Λ∞(H(z)) =
∞∑

k=0

ckz−k, νn = n, (2.4.4c)

Λ∞(D(z)) =
∞∑

k=0

ckz−2k−1, νn = 2n + 1. (2.4.4d)
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2.5 Correspondence of P-fractions
Let L0(z) be a FPS as in (2.2.2) which we write in the form

L0(z) =
∞∑

k=−N0

c
(0)
k zk = b0(z) +

1
L1(z)

,

where

b0(z) =
0∑

k=−N0

c
(0)
k zk

and

L1(z) = Λ0

⎛⎜⎜⎝ 1
∞∑

k=1

c
(0)
k zk

⎞⎟⎟⎠ .

We note that b0(z) is the principal part of L0(z) plus the constant term
c
(0)
0 and that L1(z) is a new FPS. Now write the FPS L1(z) in the form

L1(z) = b1(z) +
1

L2(z)

where

b1(z) =
0∑

k=−N1

c
(1)
k zk, c

(1)
−N1

�= 0, N1 ≥ 1,

is the principal part of L1(z) and L2(z) is again a FPS. By continuing in
this manner one obtains the P-fraction representation of L0(z).

Theorem 2.5.1: [Mag74; JT80, pp. 159–160]

(A) Every P-fraction (2.3.6) corresponds at z = 0 to a unique FPS L0(z).
The order of correspondence of the nth approximant fn(z) is

νn = 2
n∑

k=1

Nk + Nn+1, n = 0, 1, 2, . . . . (2.5.1)

(B) Conversely, let L0(z) be a given FPS. Then either there exists a P-
fraction (2.3.6) corresponding to L0(z) at z = 0, or else there exists
a terminating P-fraction

fn(z) = b0(z) +
1

b1(z) +
1

b2(z) + · · · +
1

bn(z)
, n = 0, 1, 2, . . . ,

(2.5.2)



2.6 CORRESPONDENCE OF J-FRACTIONS AND T-FRACTIONS 41

such that
L0(z) = Λ0(fn(z)) (2.5.3)

where each bm(z) is a polynomial in 1/z.

From Theorem 2.5.1 it follows that there is a one-to-one correspondence
between the set of FPS at z = 0 and the set of all P-fractions, including
terminating P-fractions.

2.6 Correspondence of J-fractions and T-fractions

Theorem 2.6.1: [JT80, pp. 249–250; LW92, p. 346]

Every J-fraction of the form (2.3.8) corresponds to a FPS at z = ∞. The
order of correspondence of the nth approximant fn(z) is

νn = 2n + 1.

The existence of a J-fraction corresponding to an arbitrary FPS at z = ∞
is not guaranteed. Necessary conditions on the coefficients of the FPS are
given in Theorem 6.5.1 for associated continued fractions.

Theorem 2.6.2: [JT80, pp. 259–261]

Every T-fraction (2.3.10) corresponds to a unique FTS L0(z) at z = 0 and
the order of correspondence of the nth approximant fn(z) is

νn = n + 1.

If, in addition, all Gn �= 0 in (2.3.10), the T-fraction (2.3.10) also corre-
sponds to a unique FTS L∞(z) at z = ∞. The order of correspondence of
the nth approximant fn(z) is

νn = n.

The existence of a T-fraction corresponding to an arbitrary pair of FPS
at z = 0 and at z = ∞ is only guaranteed under certain conditions on
the coefficients of the pair of FPS. These conditions are made explicit in
Chapter 6 for M-fractions.

Example 2.6.1: For the T-fraction
∞

K
m=1

(
z

1− z

)
(2.6.1)
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it can be proved by induction that the nth approximant of (2.6.1) is given
by

fn(z) =
z(1− (−z)n)
1− (−z)n+1

.

Since

Λ0(fn(z)) = z + O(zn+1),

Λ∞(fn(z)) = −1 + O(z−n),

the continued fraction (2.6.1) corresponds simultaneously to L0(z) = z and
L∞(z) = −1.

2.7 Correspondence and three-term recurrences
Three-term recurrence relations are used in Section 1.3 to define the nth

numerator An and nth denominator Bn of a continued fraction. In this
section such recurrence relations play a basic role in continued fraction
correspondence to FPS and continued fraction representations of functions.

Theorem 2.7.1: [JT80, pp. 160–161]

Let {am(z)}, {bm(z)} and {Pm(z)} be sequences in L0 such that

am(z) �≡ 0, m ≥ 1, Pm(z) �≡ 0, m ≥ 0 (2.7.1a)

and

Pm(z) = bm(z)Pm+1(z) + am+1(z)Pm+2(z), m = 0, 1, 2, . . . . (2.7.1b)

Let

Lm(z) := Λ0

(
Pm

Pm+1
(z)
)

, m = 0, 1, 2, . . . .

Then the continued fraction (2.2.1) corresponds at z = 0 to the FPS L0(z)
provided

λ(am(z)) ≥ 1, λ(bm−1(z)) ≤ 0, λ(Lm(z)) ≤ 0, m = 1, 2, 3, . . .

or

λ(am(z)) ≥ 0, λ(bm−1(z)) ≤ −1, λ(Lm(z)) ≤ 0, m = 1, 2, 3, . . . .
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The order of correspondence νn of the nth approximant of (2.2.1) is given
by

ν0 = λ(a1(z))− λ(L1(z)),

νn =
n+1∑
k=1

λ(ak(z))− 2
n∑

k=1

λ(bk(z))− λ(Ln+1(z)), n = 1, 2, 3, . . . .

(2.7.2)

Example 2.7.1: Let

b0(z) = 1, am(z) = z, bm(z) = 1, m = 1, 2, 3, . . . .

Then one solution of the three-term recurrence relation (2.7.1b) is

{Pm(z)} =

{(√
1 + 4z − 1

2z

)m
}

with

Lm(z) = Λ0

(
Pm

Pm+1
(z)
)

=
2z√

1 + 4z − 1
= 1 + z + . . . .

Since

λ(am(z)) = λ(z) = 1, m = 1, 2, 3, . . . ,

λ(bm(z)) = λ(1) = 0, m = 1, 2, 3, . . . ,

λ(Lm(z)) = λ(1 + z + . . . ) = 0, m = 1, 2, 3, . . . ,

the conditions of Theorem 2.7.1 are satisfied and the continued fraction

b0(z) +
∞

K
m=1

(
am(z)
bm(z)

)
= 1 +

∞

K
m=1

(z

1

)
corresponds at z = 0 to the FPS L0(z) = 1 + z + . . . .



3
Convergence criteria

Since a continued fraction is a non-terminating expression, it is important
to know if it converges and at which rate. For a continued fraction with
elements am(z) and bm(z) which are functions of z, it is also important
to know where in the complex plane it converges. The issue of the speed
of convergence and the development of sharp truncation error bounds are
dealt with in Chapter 7. The latter is in a way the dual of the convergence
problem: while we want to obtain convergence in as wide a region as
possible and for as many fractions as possible, truncation error bounds are
only useful if they are as specific and sharp as we can get them.

3.1 Some classical theorems

We refer to Section 1.2 for the definitions of convergence and general con-
vergence. We recall that convergence to ∞ is accepted.

Theorem 3.1.1: Worpitzky [Wor65; JT80, p. 94; LW92, p. 35]

Let |am| ≤ 1/4 for all m ∈ N. Then the continued fraction

K
(am

1

)
=

a1

1 +
a2

1 + · · · +
am

1 + . . .

converges, all approximants fn are in the disk |w| < 1/2, and the value f
is in the disk |w| ≤ 1/2.

Theorem 3.1.2: Śleszyński-Pringsheim [Sle88; Pri99; JT80, p. 92;
LW92, p. 30]

The continued fraction

K
(

am

bm

)
=

a1

b1 +
a2

b2 + · · · +
am

bm + . . .

45
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converges if
|bm| ≥ |am|+ 1, m ≥ 1.

Under the same condition the property |fn| < 1 holds for all approximants
fn, and |f | ≤ 1 for the value of the continued fraction.

Theorem 3.1.3: Van Vleck [VV01; JT80, pp. 88–89; LW92, pp. 32–33]

Let 0 < ε < π/2 and let bm satisfy

−π

2
+ ε < arg bm <

π

2
− ε, m ≥ 1.

Then all approximants fn of the continued fraction

K
(

1
bm

)
=

1
b1 +

1
b2 + · · · +

1
bm + . . .

are finite and in the angular domain

−π

2
+ ε < arg fn <

π

2
− ε .

The sequences {f2n} and {f2n+1} converge to finite values. The continued
fraction K (1/bm) converges if and only if, in addition,

∞∑
m=1

|bm| = ∞.

When convergent, the value f is finite and satisfies | arg f | < π/2.

The Stern-Stolz series of a continued fraction K (am/bm), given by

∞∑
m=1

∣∣∣bm

m∏
k=1

a
(−1)m−k+1

k

∣∣∣ (3.1.1)

plays an important role in establishing convergence. The divergence of the
Stern-Stolz series (3.1.1) is a necessary condition for the convergence of
K (am/bm). The series (3.1.1) is invariant under equivalence transforma-
tions. The following theorem shows that for continued fractions K (am/1),
the divergence of the Stern-Stolz series may be replaced by a simpler con-
dition.
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Theorem 3.1.4:

Let {am} be a sequence of complex numbers. If

|am| < M, m ≥ 1, (3.1.2)

or ∞∑
m=1

(m|am|)−1 = ∞ (3.1.3)

then the Stern-Stolz series with all bm = 1 diverges.

A convergence result for S-fractions. Many of the important functions
used in applications are S-fractions, which are defined in Section 2.3.

Theorem 3.1.5:

An S-fraction K (amz/1) corresponding at z = 0 to L(z) =
∑∞

k=1 ckzk is
convergent in {z ∈ C : | arg z| < π} if one of the following conditions holds:
(A)

am ≤M, m = 1, 2, 3, . . . , (3.1.4)

(B)
∞∑

m=1

1√
am

= ∞, (3.1.5)

(C) Carleman criterion
∞∑

k=1

1
|ck| 1

2k

= ∞. (3.1.6)

If the S-fraction K (amz/1) is convergent, then it converges to a finite value.

Proofs of the above results can be found respectively in [JT80, p. 136;
Per57, p. 77; Wal48, p. 330]. The convergence of S-fractions to a finite
value follows from Theorem 3.4.2.

3.2 Convergence sets and value sets

A convergence set is a subset Ω of C× C such that the continued fraction

K
(

am

bm

)
=

a1

b1 +
a2

b2 + · · · +
am

bm + . . .
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converges whenever all (am, bm) ∈ Ω. Examples are

Ω = {(a, b) ∈ C× C : |b| ≥ |a|+ 1} (3.2.1)

in Ślesyński-Pringsheim’s theorem and

Ω = {a ∈ C : |a| ≤ 1/4} × {1} (3.2.2)

in Worpitzky’s theorem.
A set Ω ∈ C×C is called a conditional convergence set if K (am/bm) with
(am, bm) ∈ Ω converges if and only if the Stern-Stolz series (3.1.1) diverges.
The set Ω is called a uniform convergence set if the convergence is uniform
with respect to the family of continued fractions defined by (am, bm) ∈ Ω.
If, in the definitions, convergence is replaced by general convergence, we
get general convergence sets and uniform general convergence sets [Jac86].
Sometimes we need a sequence {Ωm} of convergence sets rather than merely
a single convergence set.
The sequence {Vn} is a sequence of value sets for K (am/bm) [JT80, p. 64;
LW92, p. 110] if all sets Vn are non-empty subsets of the extended complex
plane and

sn(Vn) =
an

bn + Vn
⊆ Vn−1, n = 1, 2, 3, . . . . (3.2.3)

If (3.2.3) holds for (an, bn) ∈ En, the sequence {En} is called a sequence
of element sets corresponding to the sequence {Vn} of value sets. The
sequence {En} may or may not be a sequence of convergence sets. An
important special case is when all Vn are equal to V for all n, in which
case we say that V is a value set. Similarly E is an element set, possi-
bly a convergence set, if all En = E. The following are some important
properties of value sets for K (am/bm):

for m ≥ 0, k ≥ 1 and all wm+k ∈ Vm+k we have

S
(m)
k (wm+k) =

am+1

bm+1 +
am+2

bm+2 + · · · +
am+k

bm+k + wm+k
∈ Vm;

for any n all approximants of the nth tail are located in Vn;
in case of convergence the value of the nth tail is in the closure V n;
in particular the value of the continued fraction itself is in V 0.
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3.3 Parabola and oval theorems

Theorem 3.3.1: Parabola theorem [Thr43; Thr63; LW92, pp. 130–
135]

Let α ∈ (−π/2, π/2) be fixed and let Pα be the parabolic region given by

Pα := {a ∈ C : |a| − �(ae−2αi) ≤ 1/2 cos2(α)}. (3.3.1)

Let {am} be such that all am are in Pα. Then the even and odd parts of
the continued fraction

K
(am

1

)
=

a1

1 +
a2

1 + · · · +
am

1 + . . .

converge to finite values. The continued fraction itself converges if and
only if the Stern-Stolz series (3.1.1) with all bm = 1 diverges. This holds
in particular if either (3.1.2) or (3.1.3) hold. The approximants fn = Sn(0)
of the continued fraction are in the half plane

Vα := {w ∈ C : �(we−iα) > −1/2 cos(α)}. (3.3.2)

In case of convergence, the value f is in the closure of the half plane.

Alternative versions of the parabola theorem are given in [JT80, pp. 105–
106; LW92, pp. 130–131].
Observe that the theorem also covers the case an ∈ Pα, an →∞.
In the simplest case α = 0, the parabolic region P0 as well as the half-
plane V0 are symmetric with respect to the real axis. If, in addition, all
am are real, the element set is the ray [−1/4,∞) of the real axis, and the
value set is the ray [−1/2,∞). In the parabola theorem we have in case
of convergence that for any sequence {wn} ⊂ V α the sequence {Sn(wn)}
converges to the value f of the continued fraction. An upper bound for
the truncation error |f − Sn(wn)| is given in Theorem 7.1.1.

Theorem 3.3.2: Uniform parabola theorem [Thr58; JT80, p. 99]

Let Pα be given by (3.3.1) and assume that the continued fraction

K
(am

1

)
=

a1

1 +
a2

1 + · · · +
am

1 + . . .
, am ∈ Pα, m ≥ 1, (3.3.3)

converges to f �= ∞. Then with wn ∈ Vα given by (3.3.2), the modi-
fied approximants Sn(wn) of the continued fraction are all located in V α.
Moreover,

lim
n→∞Sn(wn) = f, wn ∈ Vα,
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and
|f − Sn(wn)| ≤ λn → 0,

where λn is independent of the choice of wn ∈ Vα.

This independence indicates uniformity with respect to wn. Also, any
bounded set |am| ≤M of the parabolic region Pα is a uniform convergence
set.

Theorem 3.3.3: Oval theorem [JT86; LW92, p. 141]

Let C ∈ C with �C > −1/2 and r ∈ R such that 0 < r < |1 + C|. Then the
set

E :=
{
a ∈ C : |a(1 + C)− C(|1 + C|2 − r2)|+ r|a| ≤ r(|1 + C|2 − r2)

}
(3.3.4)

is a convergence set for the continued fractions K (am/1), and

V := {w ∈ C : |w − C| < r} (3.3.5)

is a value set for E. Moreover, with

M := max
w∈V

∣∣∣∣ w

1 + w

∣∣∣∣
we have

|f − Sn(w)| ≤ 2r
|C|+ r

|1 + C| − r
Mn−1, w ∈ V (3.3.6)

for every continued fraction K (am/1) with am ∈ E, where f is the value
of K (am/1).

Some important remarks can be made about the oval theorem.

The boundary of E is a Cartesian oval. For C = 0 the set E is the disk
|a| ≤ r(1−r) and the set V the disk |w| < r. With r = 1/2, Theorem 3.3.3
reduces to Worpitzky’s theorem.
For real C we have symmetry with respect to the real axis for E as well
as for V . If in addition we have a continued fraction with real elements,
we can replace the oval E and the disk V by intervals on the real axis.
With 0 < p < q and

X :=
p

1 +
q

1 +
p

1 +
q

1 + . . .

=
1
2

(√
(1 + p + q)2 − 4pq − 1− q + p

)
,

Y :=
q

1 +
p

1 +
q

1 +
p

1 + . . .

=
1
2

(√
(1 + p + q)2 − 4pq − 1− p + q

)
(3.3.7)
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it follows from the oval theorem that the interval [p, q] is the convergence
set E corresponding to the value set [X, Y ]. Here we have X = r − C,
Y = r + C and for all w ∈ [X, Y ],

|f − Sn(w)| ≤ (Y −X)
Y

1 + X

(
Y

1 + Y

)n−1

. (3.3.8)

If in addition to (3.3.7), we have Y < 2X, then for all f and any u ∈
[X, Y ] we find

|f − Sn(0)| > |f − Sn(u)|.

Theorem 3.3.4: Oval sequence theorem [LW92, p. 145]

Let Cn ∈ C and rn ∈ R, with

0 < rn < |1 + Cn|, n = 0, 1, 2, . . . (3.3.9a)

|Cn−1|rn ≤ |1 + Cn|rn−1, n = 1, 2, 3, . . . . (3.3.9b)

Then

Vn := {w ∈ C : |w − Cn| < rn}, n = 0, 1, 2, . . . (3.3.10)

defines a sequence of value sets for the sequence of element sets defined by

En :=
{
a ∈ C : |a(1 + Cn)− Cn−1(|1 + Cn|2 − r2

n)|+ rn|a|
≤ rn−1(|1 + Cn|2 − r2

n)
}

, n = 1, 2, 3, . . . . (3.3.11)

For all continued fractions K (am/1) with am ∈ Em and for all wk ∈ V k,

|Sn+j(wn+j)− Sn(wn)| ≤ 2rn
|C0|+ r0

|1 + Cn| − rn

n−1∏
k=1

Mk,

n = 1, 2, 3, . . . , j = 1, 2, 3, . . . , (3.3.12)

where

Mk := max
w∈V k

∣∣∣∣ w

1 + w

∣∣∣∣ .
We remark that condition (3.3.9b) is equivalent with En �= ∅.
The oval sequence theorem is very useful, in particular for limit periodic
continued fractions, where we have shrinking En and Vn. We see this
theorem in use in Chapter 7.
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3.4 Correspondence and uniform convergence
We now deal with continued fractions of the form

b0(z) +
∞

K
m=1

(
am(z)
bm(z)

)
, (3.4.1)

where am and bm are polynomials with complex coefficients and z is a
complex variable.
A set D ⊆ C is called a domain if and only if D is open and connected.
A sequence {fn(z)} of functions meromorphic in a domain D is said to
converge uniformly on a compact subset K of D if and only if:

there exists NK ∈ N such that fn(z) is holomorphic in some domain
containing K for all n ≥ NK , and
given ε > 0, there exists Nε > NK such that

sup
z∈K

|fn+m(z)− fn(z)| < ε, n ≥ Nε, m = 0, 1, 2, . . . .

A continued fraction with nth approximant fn(z) is said to converge uni-
formly on a compact subset K of a domain D if and only if {fn(z)} satisfies
the conditions above.
A sequence {fn(z)} of functions meromorphic in a domain D is said to be
uniformly bounded on a compact subset K of D if and only if there exist
NK and BK such that

sup
z∈K

|fn(z)| ≤ BK , n ≥ NK .

Theorem 3.4.1: A correspondence/convergence theorem [JT80,
p. 181]

Assume that the continued fraction (3.4.1) corresponds at 0 to a FTS L(z).
Let D be a domain containing the origin z = 0. Then the continued fraction
(3.4.1) converges uniformly on any compact subset of D to a holomorphic
function f(z) if and only if the sequence of approximants of (3.4.1) is
uniformly bounded on every compact subset of D. The series L(z) is the
FTS at z = 0 of f(z).

If D is properly larger than the disk of convergence for L(z), then the
continued fraction provides an analytic continuation of f(z) to D. An
analogous result holds when the role of z = 0 is replaced by z = ∞.
Correspondence alone does not imply convergence. But, as seen in Theo-
rem 3.4.1, a certain boundedness property in addition to correspondence
leads to convergence.
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Theorem 3.4.2: [Sti95; LW92, p. 138]

Let K (amz/1) be an S-fraction and let D = {z : | arg z| < π} be the complex
plane cut along the negative real axis. Then the following statements hold.

(A) The even and odd parts of the S-fraction converge locally uniformly in
D to holomorphic functions.

(B) The continued fraction itself converges to a holomorphic function in
D if and only if either (3.1.4), (3.1.5) or the Stern-Stolz series with
all bm = 1 diverges.

(C) The continued fraction diverges for all z ∈ D if the Stern-Stolz series
(3.1.1) converges.

3.5 Periodic and limit periodic continued fractions

We refer to Section 1.8 for definitions and notation.

Convergence of 1-periodic continued fractions. The continued frac-
tion

z

1 +
z

1 +
z

1 + · · · +
z

1 + . . .
(3.5.1)

converges for all complex z except for those on the ray (−∞,−1/4) of the
negative real axis. The value is

f =
√

1 + 4z − 1
2

, (3.5.2)

where the branch of the root is the one with positive real part. The value
f is the root of

f =
z

1 + f

of smallest modulus. A generalisation of this result for k-periodic continued
fractions is given in Theorem 3.5.1. We know from Section 1.4 that by an
equivalence transformation we can restrict ourselves to K (a/1) rather than
K (a/b), without any loss of generality.
In case the period starts later, as in

a1

1 +
a2

1 + · · · +
aN

1 +
z

1 +
z

1 + · · · +
z

1 + . . .
,

the continued fraction converges under the same condition. The value is

F = SN (f) =
AN + AN−1f

BN + BN−1f
, (3.5.3)
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where f is as in (3.5.2).

Linear fractional transformations. We need to recall some known facts
about linear fractional transformations

T (w) :=
Dw + E

Fw + G
, DG− FE �= 0. (3.5.4)

The fixpoints of T (w) are the solutions w1 and w2 of the quadratic equation
w = T (w). If F = 0 the equation is not properly quadratic, and one of the
fixpoints is ∞. Assume first that we have two distinct, finite fixpoints w1

and w2. If ∣∣∣Fw1 + G

Fw2 + G

∣∣∣ > 1 (3.5.5)

we have for any w �= w2 that

lim
n→∞Tn(w) = w1. (3.5.6)

In this case w1 is called the attractive fixpoint, and w2 is called the repulsive
fixpoint. If the absolute value of the ratio in (3.5.5) is 1, the limit in (3.5.6)
does not exist.
In case w1 = w2 in (3.5.4) the limit exists and is equal to w1.

Convergence of k-periodic continued fractions.

Theorem 3.5.1: [JT80, p. 53]

Consider a k-periodic continued fraction with b0 = 0 and with the period
starting at a1/b1,

a1

b1 +
a2

b2 + · · · +
ak

bk +
a1

b1 +
a2

b2 + · · · +
ak

bk + . . .
,

and let Sk(w) equal

Sk(w) =
Ak + Ak−1w

Bk + Bk−1w
=

a1

b1 +
a2

b2 + · · · +
ak

bk + w

with fixpoints w1 and w2. Then the following statements hold.
(A) If Sk is the identity transformation, the continued fraction diverges.
(B) If w1 = w2, then the transformation Sk is called parabolic. The con-

tinued fraction converges to w1.
(C) If w1 �= w2 and ∣∣∣∣∣Bk + Bk−1w1

Bk + Bk−1w2

∣∣∣∣∣ = 1, (3.5.7)
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then the transformation is called elliptic and the continued fraction
diverges.

(D) If w1 �= w2 and ∣∣∣∣∣Bk + Bk−1w1

Bk + Bk−1w2

∣∣∣∣∣ > 1, (3.5.8)

then the transformation is called loxodromic. The continued fraction
converges to the attractive fixpoint w1.

Convergence of limit periodic continued fractions.

Theorem 3.5.2: [Per57, p. 93; LW92, p. 151]

Let K (am/1) be a continued fraction where

lim
m→∞ am = a �= ∞.

Then the following holds.
(A) If ∣∣∣arg(a + 1/4)

∣∣∣ < π, a �= −1
4
,

then the continued fraction converges, possibly to ∞.
(B) The sequence f (N) of tails converges to

lim
N→∞

f (N) = lim
N→∞

( ∞

K
m=N+1

(am

1

))
= K

(a

1

)
=
√

1 + 4a− 1
2

,

which is the attractive fixpoint of the transformation w → a/(1 + w),
or equivalently, the root of w(1 + w)− a = 0 of smallest modulus.

The case an → ∞ is covered by Theorem 3.3.1 under the additional con-
dition that an ∈ Pα given by (3.3.1) from a certain n on. A simple con-
sequence of Theorem 3.5.2 is the following result for limit periodic regular
C-fractions.

Corollary 3.5.1: [Per57, p. 95]

Consider ∞

K
m=1

(amz

1

)
(3.5.9)

with
lim

m→∞ am = a �= ∞
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and let Ra be defined by

Ra := {z ∈ C : |arg(az + 1/4)| < π} . (3.5.10)

Then the continued fraction (3.5.9) converges to a function f(z), mero-
morphic in Ra. The convergence is uniform on any compact subset of Ra

without poles of f(z). The function is holomorphic at z = 0.

The region Ra is the complement of the ray from −1/(4a) to ∞, which is
part of the ray from 0 to ∞ through −1/(4a).
In case a = 0 the continued fraction converges to a function f(z) which
is meromorphic. To any r > 0 there is an nr, such that the continued
fraction

anr+1z

1 +
anr+2z

1 +
anr+3z

1 + . . .

converges to a holomorphic function on |z| < r, uniformly on any compact
subset of that disk [JT80, p. 131].

3.6 Convergence and minimal solutions
In this section a connection is established between the set of solutions of
a system of three-term recurrence relations and convergence properties of
continued fractions.
Let {an} and {bn} be sequences in a normed field F with an �= 0 for n ≥ 1.
Here 0 denotes the zero element of F. Of interest to us are the cases where
F is either C of Lc, the set of formal power series at z = c. The set of
solutions {yn} in F of the system of three-term recurrence relations

yn = bnyn−1 + anyn−2, n = 1, 2, 3, . . . (3.6.1)

is a linear vector space V of dimension 2 over the field F. From (1.3.1)
we know that the sequence of numerators {An} and denominators {Bn} of
the continued fraction K (am/bm) are solutions of the three-term recurrence
relations (3.6.1). They form a basis for the linear space V [LW92, p. 192].
We say that {un} is a minimal solution of (3.6.1) if {un} �= {0} and there
exists a solution {vn} of (3.6.1) such that

lim
n→∞

un

vn
= 0. (3.6.2)

The solution {vn} is called a dominant solution of (3.6.1). In general a
system (3.6.1) may not have a minimal solution. If {un} is a minimal
solution and {vn} is a dominant solution of (3.6.1), then the sequences
{un} and {vn} form a basis for V and all solutions c{un}, c ∈ F \ {0}, are
also minimal solutions.
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Theorem 3.6.1: Pincherle generalised [JT80, p. 164; LW92, p. 202]

Let {an} and {bn} be sequences in a normed field F with an �= 0 for n ≥ 1.
Then:
(A) The system of three-term recurrence relations (3.6.1) has a minimal

solution if and only if the continued fraction K (am/bm) over the field
F converges to a value in F̂ = F ∪ {∞}.

(B) Suppose that there exists a minimal solution {un} of (3.6.1) in F.
Then

−un−1

un−2
=

an

bn +
an+1

bn+1 + . . .
, n = 1, 2, 3, . . . . (3.6.3)

By (3.6.3) we mean the following.

If un−2 = 0, then un−1 �= 0 and the continued fraction in (3.6.3) con-
verges to ∞.
If un−2 �= 0, then the continued fraction in (3.6.3) converges to the finite
limit −un−1/un−2 ∈ F.

Example 3.6.1: For the continued fraction

K
(

am(z)
bm(z)

)
=

z + 1
z − 1 +

z + 2
z +

z + 3
z + 1 + . . .

, z ∈ C \ {−1}, (3.6.4)

where

am(z) = z + m, bm(z) = z + m− 2, m = 1, 2, 3, . . . ,

the three-term recurrence relation (3.6.1) has the solution

un = (−1)n(z + n + 2), n = −1, 0, 1, . . . .

This solution can be proved to be a minimal solution. Hence, by Pincherle’s
theorem, the continued fraction (3.6.4) converges to −u0/u−1. In other
words,

z + 2
z + 1

=
z + 1
z − 1 +

z + 2
z +

z + 3
z + 1 + . . .

, z ∈ C \ {−1} .
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Theorem 3.6.2: Auric generalised [JT80, p. 173; LW92, p. 207]

Let {an} and {bn} be sequences in a normed field F with an �= 0 for all n.
Let An and Bn denote the nth numerator and denominator, respectively,
of the continued fraction K (am/bm) over F. Let the sequence {yn} in F

be a solution of the system of three-term recurrence relations (3.6.1). If
yn �= 0 for all n ≥ −1, the continued fraction K (am/bm) converges to the
finite limit

− y0

y−1
= lim

n→∞
An

Bn

if and only if

lim
n→∞ ‖Rn‖ = ∞, Rn =

n∑
k=1

(−1)k
∏k

m=1 am

ykyk−1
∈ F .



4
Padé approximants

Padé approximants, either at one finite point or at ∞ and a finite point,
are closely related to continued fractions, since Padé approximants are
rational functions satisfying some order of correspondence and can be ob-
tained as continued fraction approximants. For this matter we refer to the
Sections 4.3, 4.4 and 4.6.
The convergence of a sequence of Padé approximants is detailed in a num-
ber of additional theorems, which are most useful for functions meromor-
phic in a substantial region of the complex plane.
Padé approximation theory is also connected to the theory of orthogonal
polynomials which is further developed in Chapter 5. This connection is
explained in Section 4.8.

4.1 Definition and notation

Let the FTS

f(z) =
∞∑

j=0

cjz
j , cj ∈ C, c0 �= 0 (4.1.1)

be given. For simplicity, the symbol f(z) denotes both the FTS Λ0(f) and
its limit function f when it exists, unless otherwise indicated. The Padé
approximant of order (m,n) for f(z) is the irreducible form rm,n(z) =
pm,n(z)/qm,n(z) with qm,n(0) = 1 of the rational function p(z)/q(z) satis-
fying

p(z) =
m∑

j=0

ajz
j , aj ∈ C,

q(z) =
n∑

j=0

bjz
j , bj ∈ C,

λ(fq − p) ≥ m + n + 1. (4.1.2)

59
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Because different solutions p/q and p̃/q̃ of (4.1.2) are equivalent in the sense
that pq̃ = p̃q, the Padé approximant rm,n(z) is unique. Usually rm,n(z)
is normalised such that qm,n(0) = 1. This is always possible because by
(4.1.2),

λ(p) ≥ λ(q).

Let ∂p denote the exact degree of the polynomial p(z). For pm,n(z) and
qm,n(z) the exact order of correspondence is given by

λ(fqm,n − pm,n) = ∂pm,n + ∂qm,n + t + 1, t ≥ 0 . (4.1.3)

Possibly ∂pm,n+∂qm,n+t+1 < m+n+1 and then pm,n(z) and qm,n(z) not
necessarily satisfy (4.1.2), although p(z) and q(z) do. Nevertheless for pm,n

and qm,n there exists an integer s with 0 ≤ s ≤ min(m−∂pm,n, n−∂qm,n)
such that p(z) = zspm,n(z) and q(z) = zsqm,n(z) satisfy (4.1.2). On the
other hand, while p(z) and q(z) may start with higher order terms in z, we
deduce from (4.1.3) that the exact order of correspondence of rm,n(z) is

λ

(
f − pm,n

qm,n

)
= ∂pm,n + ∂qm,n + t + 1, t ≥ 0.

When the FTS of f(z) is given at a finite point u different from the origin,
then in all of the above z is replaced by z − u.
We introduce the notation

Tm,n+1 :=

⎛⎜⎝ cm . . . cm−n

...
. . .

...
cm+n . . . cm

⎞⎟⎠ , n = 0, 1, . . . , m = 0, 1, . . .

(4.1.4)
for the (n + 1) × (n + 1) Toeplitz matrix, which is fully determined by its
first row (cm, . . . , cm−n) and its first column (cm, . . . , cm+n)T . Here ck = 0
for k < 0. The (n + 1)× (n + 1) Toeplitz determinant, is denoted by

T
(m)
n+1 := det Tm,n+1. (4.1.5)

4.2 Fundamental properties
The Padé approximants rm,n(z) for f(z) are arranged in the Padé table as
follows:

r0,0 r0,1 r0,2 r0,3 . . .

r1,0 r1,1 r1,2 . . .

r2,0 r2,1
. . .

r3,0

...
...
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The first column {rm,0} of this table contains the successive partial sums
of the series (4.1.1).

Reciprocal covariance. Let rm,n(z) = pm,n(z)/qm,n(z) be the Padé
approximant of order (m,n) for f(z). If c0 �= 0, then

qm,n(z)/c0

pm,n(z)/c0

is the Padé approximant of order (n, m) for 1/f(z). Hence, when c0 �= 0,
the first row {r0,m} of the Padé table consists of the reciprocals of the
partial sums of 1/f(z).

Block structure of the Padé table. A remarkable property of the Padé
table is that identical entries in the table always appear in a single coherent
square block. An entry does never reappear in the table outside its block.

Theorem 4.2.1: [Pad92]

With t defined by (4.1.3), the Padé approximants rk,�(z) for f(z) with
∂pm,n ≤ k ≤ ∂pm,n + t and ∂qm,n ≤ � ≤ ∂qm,n + t satisfy

rk,�(z) = rm,n(z)

and hence appear in square blocks of size

t + 1 = λ(fqm,n − pm,n)− ∂pm,n − ∂qm,n .

Also m ≤ ∂pm,n + t and n ≤ ∂qm,n + t and hence rm,n(z) itself belongs to
the above block.

Example 4.2.1: Let

f(z) = 1 + sin(z) = 1 +
∞∑

k=0

(−1)k z2k+1

(2k + 1)!
.

For m = 2k and n = 0 we find that

∂p2k,0 = 2k − 1,

λ(fq2k,0 − p2k,0) = 2k + 1 .

Hence for all k:

r2k−1,0(z) = r2k,0(z) = r2k−1,1(z) = r2k,1(z), k ≥ 1 .

Normality. A Padé approximant rm,n(z) is called normal if it occurs only
once in the Padé table. In other words, its block in the Padé table is of
size t + 1 = 1.
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Theorem 4.2.2: [Pad92]

Let rm,n(z) be the Padé approximant of order (m,n) for a FTS f(z) given
by (4.1.1). The following statements, where T

(m)
n is defined by (4.1.5), are

equivalent:
(A) rm,n(z) is normal;
(B) ∂pm,n = m,∂qm,n = n and λ(fqm,n − pm,n) = m + n + 1;
(C) T

(m)
n T

(m+1)
n T

(m)
n+1 T

(m+1)
n+1 �= 0.

Example 4.2.2: Let

f(z) = exp(z) =
∞∑

j=0

zj

j!
.

In [Per57, p. 432] explicit formulas for the Padé numerator and denomina-
tor for the exponential function are given:

pm,n(z) =
m∑

j=0

m(m− 1) · · · (m− j + 1)
(m + n)(m + n− 1) · · · (m + n− j + 1)

zj

j!
,

(4.2.1)

qm,n(z) =
n∑

j=0

(−1)j n(n− 1) · · · (n− j + 1)
(m + n)(m + n− 1) · · · (m + n− j + 1)

zj

j!
.
(4.2.2)

Here the products appearing in the coefficients equal 1 when empty. All
Padé approximants rm,n(z) for the exponential function are normal as can
be seen from (B) in Theorem 4.2.2. From (4.2.1) and (4.2.2) it is imme-
diately clear that ∂pm,n = m and ∂qm,n = n. The remaining condition
λ(fqm,n − pm,n) = m + n + 1 is easy to verify.

Let f(z) be defined by

f(z) =
∫ ∞

0

dΦ(t)
1 + zt

, | arg z| < π, (4.2.3)

where Φ(t) is a classical moment distribution function on (0,∞) as defined
in Section 5.1. Here it suffices to note that

Λ0(f) =
∞∑

j=0

(−1)j

(∫ ∞

0

tj dΦ(t)
)

zj .

For functions of the form (4.2.3), which are called Stieltjes functions, the
following remarkable theorem holds.
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Theorem 4.2.3: [Gra74]

Let f(z) be a Stieltjes function, as in (4.2.3). Then for all m,n ≥ 0, the
Padé approximant rm,n(z) for f(z) is normal.

Normality of the Padé table highly simplifies the computation of C-fraction
representations, as can be seen in Chapter 6. Because of the following
result, normality can be achieved by approximating f(z) from its power
series at some shifted origin u near zero.

Theorem 4.2.4: Shifting origin Kronecker theorem [Lub88]

Let f(z) be analytic in an open connected set D containing the origin and
let f(z) not be a rational function. Then there exists an at most countable
set S such that if u ∈ D \ S:

T (m)
n (u) �= 0, m, n = 0, 1, 2, . . .

where T
(m)
n (u) is defined as T

(m)
n but at the shifted origin u.

Recurrence relations. A well-known recurrence relation for Padé ap-
proximants is the 5-term star identity (4.2.4e) [Fro81]. We list it here
together with some three-term relations. The fact that the numerators
and denominators of neighbouring approximants in the Padé table obey
the same recurrence relations, is the key to the connection with the theory
of continued fractions.

Theorem 4.2.5: [BGM96, pp. 81–89]

Let rm,n = pm,n/qm,n be the Padé approximant of order (m,n) for a FTS
f(z) given by (4.1.1). If all of the involved Padé approximants are normal,
then:
(A)

(−1)n−1 T
(m+1)
n−1 pm,n = T (m)

n pm+1,n−1 − z T (m+1)
n pm,n−1,

(−1)n−1 T
(m+1)
n−1 qm,n = T (m)

n qm+1,n−1 − z T (m+1)
n qm,n−1 .

(4.2.4a)

(B)

(−1)n−1 T
(m)
n−1 pm,n = T (m+1)

n pm,n−1 − z T (m+1)
n pm−1,n−1,

(−1)n−1 T
(m)
n−1 qm,n = T (m+1)

n qm,n−1 − z T (m+1)
n qm−1,n−1 .

(4.2.4b)



64 4. PADÉ APPROXIMANTS

(C)

T (m)
n pm,n = T (m+1)

n pm−1,n − (−1)n T
(m)
n+1pm,n−1,

T (m)
n qm,n = T (m+1)

n qm−1,n − (−1)n T
(m)
n+1qm,n−1 .

(4.2.4c)

(D)

T (m−1)
n pm,n = T (m)

n pm−1,n − (−1)n z T
(m)
n+1pm−1,n−1,

T (m−1)
n qm,n = T (m)

n qm−1,n − (−1)n z T
(m)
n+1qm−1,n−1 .

(4.2.4d)

(E)

(rm+1,n − rm,n)−1 + (rm−1,n − rm,n)−1 =

(rm,n+1 − rm,n)−1 + (rm,n−1 − rm,n)−1 . (4.2.4e)

Identities involving normal Padé approximants on downward or upward
sloping diagonals in the Padé table are obtained by applying the three-term
identities repeatedly. An easy way to remember (4.2.4e) is to associate each
of the Padé approximants with a geographical direction:

rm−1,n(z) = N

rm,n−1(z) = W rm,n(z) = C rm,n+1(z) = E

rm+1,n(z) = S

Then the 5-term star identity (4.2.4e) becomes

(N − C)−1 + (S − C)−1 = (E − C)−1 + (W − C)−1 .

4.3 Connection with regular C-fractions
We consider the descending staircase

Tk := {rk,0(z), rk+1,0(z), rk+1,1(z), rk+2,1(z), . . . }, k ≥ 0 (4.3.1)

of approximants in the Padé table. The following result generalises Theo-
rem 2.4.1 which holds for k = 0.
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Theorem 4.3.1: [CW87, p. 77]

Let f(z) be a given FTS as in (4.1.1). If every three consecutive elements
in the sequence Tk, given by (4.3.1), of Padé approximants for f(z) are
distinct, then there exists a continued fraction of the form

rk,0(z) + zk
∞

K
m=1

(
a
(k)
m z

1

)
, a(k)

m �= 0, k ≥ 0 (4.3.2)

such that the nth approximant of (4.3.2) equals the (n + 1)th element of
Tk.

Continued fractions of the form (4.3.2) relate to the Padé approximants
on or below the main diagonal in the Padé table. For the right upper
half of the table one can use the reciprocal covariance property given in
Section 4.2. Because the elements of Tk satisfy (4.1.2), a particular result
is obtained for T0.

Corollary 4.3.1: [CW87, p. 78]

Let f(z) be a given FTS as in (4.1.1). If every three consecutive elements
in the sequence T0, given by (4.3.1), of Padé approximants for f(z) are
distinct, then there exists a regular C-fraction

c0 +
∞

K
m=1

(
a
(0)
m z

1

)
, a(0)

m �= 0 (4.3.3)

corresponding to f(z).

The algorithm for the computation of the coefficients a
(k)
m , both for k > 0

and k = 0 is given in Chapter 6.

4.4 Connection with P-fractions

Let for s ∈ Z,

b
(s)
0 (z) +

∞

K
m=1

(
1

b
(s)
m (z)

)
(4.4.1)

be the P-fraction representation of zsf(z) with f(z) given by (4.1.1) where
b
(s)
m (z) and N

(s)
m for m ≥ 0 are as in (2.3.7).
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Example 4.4.1: For f(z) = exp(z) and s = 0 the P-fraction representa-
tion is given by

b
(0)
0 (z) = 1,

b
(0)
1 (z) =

1
z
− 1

2
,

b
(0)
2k (z) =

4(4k − 1)
z

, k ≥ 1,

b
(0)
2k+1(z) =

4k + 1
z

, k ≥ 1.

Let A
(s)
n (z) and B

(s)
n (z) denote the nth numerator and denominator of

(4.4.1). After multiplication by a suitable power of z, these are polynomials
in z. For A

(s)
n /B

(s)
n a more general result than the one formulated in

Theorem 2.5.1, which covers the case s = 0, can be formulated.

Theorem 4.4.1: [Mag62b; Mag62a]

Let A
(s)
n (z)/B

(s)
n (z) be the nth approximant of the P-fraction (4.4.1). Then:

(A) for s > 0,

r0,s(z) =
A

(s)
1 (z)

zN
(s)
1 B

(s)
1 (z)

,

r
N

(s)
2 +···+N

(s)
n , s+N

(s)
2 +···+N

(s)
n

(z) =
zN

(s)
2 +···+N(s)

n A
(s)
n (z)

zN
(s)
1 +···+N

(s)
n B

(s)
n (z)

, (4.4.2)

(B) for s ≤ 0,

r−s,0(z) =
zN

(s)
0 A

(s)
0 (z)

B
(s)
0 (z)

,

r−s+N
(s)
1 +···+N

(s)
n , N

(s)
1 +···+N

(s)
n

(z) =
zN

(s)
0 +···+N(s)

n A
(s)
n (z)

zN
(s)
1 +···+N

(s)
n B

(s)
n (z)

. (4.4.3)

Note that in (2.5.1) N
(0)
n+1 stands for the size t+1 of the block in the Padé

table that contains A
(0)
n /B

(0)
n , while νn −N

(0)
n+1 = 2

∑n
k=1 N

(0)
k is the sum

of the numerator and denominator degrees of the Padé approximant. It
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is now easily shown that every distinct entry in the Padé table of f(z) is
one of the entries constructed in Theorem 4.4.1. So, while the entries in a
normal Padé table are closely connected to regular C-fractions, the different
entries in a non-normal Padé table are retrieved by the P-fractions (4.4.1).

4.5 Extension of the Padé table
Approximants of continued fractions of the form (4.3.2) which correspond
to a single FPS, given at a point, are Padé approximants. Continued frac-
tions which correspond simultaneously to FPS at two points, give rise to
two-point Padé approximants, which we formally define here. We restrict
ourselves to the points 0 and∞ because the application of a bilinear trans-
formation to the variable z leads to analogous results for expansions about
two finite points.
Let the FPS L0(z) at 0 equal

L0(z) = Λ0(f(z)) =
∞∑

j=0

cjz
j , cj ∈ C, c0 �= 0 (4.5.1)

while the FPS L∞(z) at ∞ is given by

L∞(z) = Λ∞(f(z)) = −
∞∑

j=1

c−jz
−j , c−j ∈ C, c−1 �= 0. (4.5.2)

Clearly, to have any agreement of rational functions with (4.5.2), the nu-
merator degree must be one less than the denominator degree. The two-
point Padé approximant r

(2)
k,�(z) is the unique irreducible form of the ratio-

nal function p(z)/q(z) satisfying

p(z) =
m−1∑
j=0

ajz
j ,

q(z) =
m∑

j=0

bjz
j ,

λ(L0q − p) ≥ k,

λ(L∞q − p) ≥ � + 1−m,

k + � = 2m. (4.5.3)

Hence the 2m+1 coefficients of p/q are such that when L0q−p is expanded
as a FPS in z, there is agreement with the terms cjz

j up to and including
j = k−1, and when L∞q−p is expanded as a FPS in 1/z there is agreement
with the terms c−jz

−j up to and including j = � − m. If bm �= 0, then
r
(2)
k,�(z) has order of correspondence k to L0(z) and order of correspondence

� + 1 to L∞(z).
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4.6 Connection with M-fractions and the M-table
Let L0(z) and L∞(z) be given by (4.5.1) and (4.5.2). Then coefficients F

(0)
i

and G
(0)
i can be computed [MCM76] such that successive approximants of

the M-fraction

M0(z) =
F

(0)
1

1 + G
(0)
1 z +

∞

K
j=2

(
F

(0)
j z

1 + G
(0)
j z

)

fit equal numbers of terms of L0 and L∞. More generally, consider the
expressions

Ms(z) =
s−1∑
j=0

cjz
j +

F
(s)
1 zs

1 + G
(s)
1 z +

∞

K
j=2

(
F

(s)
j z

1 + G
(s)
j z

)
, s ≥ 0,

(4.6.1)

M−s(z) = −
s∑

j=1

c−jz
−j +

F
(−s)
1 z−s

1 + d
(−s)
1 z +

∞

K
j=2

(
F

(−s)
j z

1 + G
(−s)
j z

)
, s > 0

(4.6.2)

involving M-fractions. Denote by Ms,n(z) the nth approximants of the
continued fractions (4.6.1) and (4.6.2) respectively, where M0,0(z) = 0.
The entries Ms,n(z) are arranged in a table as

...
... · · ·

M−2,0(z) M−2,1(z) . . .

M−1,0(z) M−1,1(z) M−1,2(z) . . .

M0,0(z) M0,1(z) M0,2(z) M0,3(z) . . .

M1,0(z) M1,1(z) M1,2(z) . . .

M2,0(z) M2,1(z) M2,2(z) . . .
...

...
. . .

Theorem 4.6.1: [MC75]

Let L0(z) and L∞(z) be given by (4.5.1) and (4.5.2) respectively. Under the
conditions of Theorem 6.6.1, there exist M-fractions (4.6.1) and (4.6.2),
such that the approximants Ms,n(z) of these continued fractions satisfy the
following properties. For s ∈ Z and n > |s|, Ms,n(z) equals the two-point
Padé approximant r

(2)
n+s,n−s(z) of degree n − 1 in the numerator and n in
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the denominator. For s ≥ 0 and n ≤ s, the rational function Ms,n(z)
equals the Padé approximant rs−1,n(z) of (4.5.1).

The table of rational functions Ms,n(z) satisfying the properties stated in
Theorem 4.6.1 is referred to as the M-table.

Example 4.6.1: Consider

L0(z) = 1− z

2!
+

z2

3!
− z3

4!
+ . . . ,

L∞(z) =
1
z
.

For s = 1, the entries M1,0(z) and M1,1(z) equal the Padé approximants
r0,0(z) and r0,1(z) of L0(z). For s = 2, we need the Padé approximants
r1,0, r1,1 and r1,2 of (4.5.1) to fill the positions M2,0,M2,1 and M2,2. Fur-
ther, the entries M0,1,M1,2 and M2,3 are obtained as the first, second and
third approximant of the respective M-fractions

M0(z) =
1

1 + z + . . .
,

M1(z) = 1− z/2
1 + z/2 −

z/6
1 + z/3 + . . .

,

M2(z) = 1− z

2
+

z2/6
1 + z/3 −

z/12
1 + z/4 −

z/10
1 + z/5 + . . .

,

of which the computation is fully detailed in Chapter 6. The approximants
M0,1,M1,2 and M2,3 respectively equal the two-point Padé approximants
r
(2)
1,1, r

(2)
3,1 and r

(2)
5,1 for L0(z) and L∞(z). So far the M-table, starting with

the row M0,n, looks like:

...
...

... . . .

s = 0 0
1

1 + z
· · ·

s = 1 1
2

2 + z

6 + z

6 + 4z + z2
· · ·

s = 2 1− z

2
6− z

6 + 2z

12
12 + 6z + z2

60 + 6z + z2

60 + 36z + 9z2 + z3
· · ·

...
...

...
...

...
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4.7 Convergence of Padé approximants
If the limit of a sequence of Padé approximants is to be at all useful, this
limit has to be meromorphic in some substantial region of the complex
plane. We consider two different cases:

the convergence of sequences {rm,N} with N fixed,
the convergence of paradiagonal sequences {rm+j,m} with j ∈ Z fixed
and ray sequences {rm,n} with m/n = K and 0 < K < ∞.

Especially the paradiagonal sequences are closely connected with continued
fractions, because of Theorem 4.3.1.

Theorem 4.7.1: de Montessus de Ballore [dM05]

Let f(z) be meromorphic in B(0, r) with distinct poles zj of total multiplic-
ity N arranged in order of increasing modulus:

0 < |z1| ≤ · · · ≤ |zk| < r .

Then the sequence {rm,N} converges uniformly to f on every closed and
bounded subset of B(0, r) \ {z1, . . . , zk}.

Example 4.7.1: Let

f(z) =
(

1
1− z3

+
1

(2eiπ/4 − z)2
+

1
2i− z

)
exp(z),

which is a meromorphic function with 3 simple poles of modulus 1 and 3
poles of modulus 2, one simple and one double. From Theorem 4.7.1 we
find that

lim
m→∞ rm,3(z) = f(z), |z| < 2, z3 �= 1,

lim
m→∞ rm,6(z) = f(z), z /∈

{
1, ei 2π

3 , ei 4π
3 , 2ei π

4 , 2i
}

.

We say that a sequence of Padé approximants {rmk,nk
} converges to f(z)

in measure on B(0, r) if, for given small positive ε and δ, there exists a K
such that for k ≥ K and for all z in B(0, r) \ Dk, where Dk is a set of
points of measure less than δ,

|f(z)− rmk,nk
(z)| < ε, z ∈ B(0, r) \Dk, k ≥ K .

In the next theorem we denote the multiplicity of the pole zj by μj .
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Theorem 4.7.2: Zinn-Justin [ZJ71]

Let f(z) be meromorphic in B(0, r) with distinct poles zj of total multiplic-
ity N arranged in order of increasing modulus:

0 < |z1| ≤ · · · ≤ |zk| < r .

For fixed M > N the sequence {rm,M} converges to f(z) in measure on
B(0, r).

One may wonder whether sequences {rm,N} with N fixed, of Padé ap-
proximants for a function f(z) analytic in the disk B(0, r) but not in any
larger disk, converge in B(0, r). The following counterexample illustrates
that convergence in this case cannot be secured. Theorem 4.7.1 guaran-
tees the convergence of the sequence {rm,0} since N = 0 in this case. By
Theorem 4.7.2 only convergence in measure of {rm,N} is guaranteed for
N > 0.

Example 4.7.2: Let f(z) be given by

f(z) =
1 + 3

√
2z

1− z3
,

Λ0(f) = 1 + 3
√

2z + z3 + 3
√

2z4 + . . . ,

which is analytic in |z| < 1. Despite the analyticity of f(z) in B(0, 1),
every approximant rm,2(z) has a pole in B(0, 1) [BGS84]:

m = 3k : qm,2(z1,2) = 0, z1,2 =
(

1
2 ± i

√
3

2

)
/ 3
√

2, |z1,2| < 1,

m = 3k + 1 : qm,2(z1) = 0, z1 = −1/ 3
√

2, |z1| < 1,

m = 3k + 2 : qm,2(z1) = 0, z1 =
− 3
√

4 +
√

6 6
√

2
2

, |z1| < 1.

Because Padé approximants are constructed from a FTS given at a point,
the following question arises. Does there always exist a small neighbour-
hood of that point in which a sequence of Padé approximants converges?
The answer is no, not even when f(z) defined by the FTS (4.1.1) is an
entire function.
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Example 4.7.3: Let {zn} be a sequence of complex points and let the FTS
f(z) be given by (4.1.1) with the cj defined in triples by [Per29, p. 467]

|zj | ≤ 1 ⇒

⎧⎪⎨⎪⎩
c3j = zj/(3j + 2)!

c3j+1 = 1/(3j + 2)!

c3j+2 = 1/(3j + 2)!
, |zj | > 1 ⇒

⎧⎪⎨⎪⎩
c3j = 1/(3j + 2)!

c3j+1 = 1/(3j + 2)!

c3j+2 = z−1
j /(3j + 2)!

.

The FTS f(z) defined in this way represents an entire function. And either
r3n,1(z) or r3n+1,1(z) has a pole at z = zn. Since the {zn} can be chosen
dense in C, the {rn,1} cannot converge in any open set in C, however small.

For paradiagonals and rays in the Padé table the following results hold.

Theorem 4.7.3: [Bak75, pp. 213–217]

The sequence {rm+j,m} with j ≥ −1 of Padé approximants to a Stieltjes
series analytic in |z| < r, converges uniformly to f(z) on Δδ where Δδ is a
bounded region of the complex plane which is at least at a distance δ from
the cut −∞ < z ≤ 0 along the negative real axis.

Theorem 4.7.4: Nuttall-Pommerenke [Nut70; Pom73]

Let f(z) be analytic at the origin and in the entire complex plane, except
for at most a countable number of poles and isolated essential singularities.
Then the sequence {rm,n} with m/n = K and 0 < K < ∞, converges in
measure to f(z) on any closed and bounded subset of the complex plane.

4.8 Formal orthogonality property

If we associate with (4.1.1) a linear functional c, defined on the space C[t]
of polynomials in the variable t with complex coefficients, by

c(tj) = cj , j = 0, 1, . . . ,

then f(z) can formally be viewed as

f(z) =
∞∑

j=0

c(tj)zj = c

(
1

1− tz

)
.
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For instance, when

cj =
∫ +∞

−∞
tj dΦ(t)

then, at least formally, f(z) is the integral transform

f(z) =
∫ +∞

−∞

dΦ(t)
1− zt

.

This choice for c coincides with the inner product

c(g(t)) = 〈1, g(t)〉Φ =
∫ +∞

−∞
g(t) dΦ(t)

introduced in Section 5.4. When the polynomial q̃(z) of degree m satisfies
the orthogonality conditions

c
(
tj q̃(t)

)
= 0, j = 0, . . . ,m− 1 (4.8.1)

and the polynomial p̃(z) of degree m− 1 is defined by

p̃(z) = c

(
q̃(t)− q̃(z)

t− z

)
, (4.8.2)

then for
p(z) = zm−1p̃(1/z),

q(z) = zmq̃(1/z),
(4.8.3)

the conditions
λ(fq − p) ≥ 2m

hold. In other words, the irreducible form of p/q computed from p̃ and
q̃ satisfying (4.8.1) and (4.8.2), is the Padé approximant of order (m −
1,m) for f(z) [Bre80, pp. 32–39]. The polynomial p̃(z) in (4.8.2) is called
the associated polynomial in Section 5.5, while the polynomial q̃(z) is the
orthogonal polynomial of degree m for the distribution function Φ.

Example 4.8.1: For cj =
∫ 1

−1
uj du, the orthogonality conditions (4.8.1)

amount to ∫ 1

−1

q̃(t)tj dt = 0, j < m, (4.8.4)

where the left hand side of (4.8.4) equals the inner product of q̃(t) and tj

as defined in (5.4.1). The polynomial q̃(z) of degree m satisfying (4.8.4)
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is the Legendre polynomial of degree m for which further properties are
given in (5.5.19a) and (5.5.19b). Thus the Legendre polynomials are the
Padé denominators of rm−1,m(z) for the function

∞∑
j=0

(∫ 1

−1

tj dt

)
zj =

∫ 1

−1

dt

1− zt
=

1
z

Ln
(

1 + z

1− z

)
.

The construction of the Padé approximant of order (m+k, m) with k ≥ −1,
follows the same lines. Note that the Padé approximants rm+k,m(z) are
also the even-numbered entries on the descending staircase Tk given in
(4.3.1). The formal power series (4.1.1) can be rewritten as

f(z) =
k∑

j=0

cjz
j + zk+1f̃(z)

with

f̃(z) =
∞∑

j=0

ck+1+jz
j .

If we define the functional c(k+1) by

c(k+1)(tj) = ck+1+j

and the polynomials q̃(z) and p̃(z) by

c(k+1)
(
tj q̃(t)

)
= 0, j = 0, . . . ,m− 1, (4.8.5)

p̃(z) = c(k+1)

(
q̃(t)− q̃(z)

t− z

)
,

then for p(z) and q(z) given by (4.8.3) the conditions

λ(f̃ q − p) ≥ 2m

are satisfied. The Padé approximant rm+k,m(z) is the irreducible form of

k∑
j=0

cjz
j + zk+1 p(z)

q(z)
.
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For instance, when

c(k+1)(tj) =
∫ +∞

−∞
tk+j+1 dΦ(t)

the orthogonality conditions (4.8.5) result from multiplying the weight
function dΦ(t) in (4.8.1) by tk+1. Put another way, the denominators of the
sequence {rm−1,m}m∈N of Padé approximants are orthogonal to each other
with respect to the weight function dΦ(t) which produces the sequence
{cj}j∈N, and the denominators of the sequence {rm+k,m}m∈N for k ≥ −1
are also orthogonal but now relative to the weight function tk+1 dΦ(t).

Further reading

Simple proofs of several of the above properties are given in [CW87].
Additional information on Padé approximants can be found in the en-
cyclopedic volume [BGM96].
Generalisations of the notion of Padé approximant to matrix-valued and
multivariate functions are extensively described in [XB90; Cuy99].



5
Moment theory and

orthogonal functions

5.1 Moment theory
A function Φ is called a distribution function on an interval (a, b) where
−∞ ≤ a < b ≤ ∞ if Φ is bounded and non-decreasing with infinitely many
points of increase on (a, b). If Φ is a distribution function on (a, b), we say
the kth moment for Φ exists if the Riemann–Stieltjes integral∫ b

a

tk dΦ(t) (5.1.1)

converges. In that case (5.1.1) is called the kth moment for Φ.

Example 5.1.1: It is straight forward to verify that the distribution func-
tion Φ(t) = t on the interval (0, 1) generates the sequence of moments
{1/(k + 1)}∞k=0.

A moment problem is to determine when a sequence of numbers is the
sequence of moments for some distribution function. More specifically,
a moment problem for a sequence {μk}∞k=0 or a bisequence {μk}∞k=−∞ of
real numbers is to find conditions on {μk}∞k=0 or {μk}∞k=−∞ to ensure the
existence of a distribution function Φ on (a, b) such that the kth moment
(5.1.1) for Φ exists for all k ∈ N0 or k ∈ Z, respectively, and equals the kth

term in the sequence or bisequence. That is, for all k ∈ N0 or k ∈ Z, as
appropriate,

μk =
∫ b

a

tk dΦ(t). (5.1.2)

77
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When a = 0 and b = ∞, the moment problem for the sequence {μk}∞k=0

of real numbers is called the classical Stieltjes moment problem (CSMP),
and the moment problem for the bisequence {μk}∞k=−∞ of real numbers is
called the strong Stieltjes moment problem (SSMP).
When a = −∞ and b = ∞, the moment problem for the sequence {μk}∞k=0

of real numbers is called the classical Hamburger moment problem (CHMP),
and the moment problem for the bisequence {μk}∞k=−∞ of real numbers is
called the strong Hamburger moment problem (SHMP).
When a = 0 and b = 1, the moment problem for the sequence {μk}∞k=0 is
called the Hausdorff moment problem (HDMP). When a and b are finite
but different from 0 and 1 respectively, the moment problem is related to
the Hausdorff moment problem.
A distribution function Φ satisfying (5.1.2) for all k ∈ N0 is called a solution
to the classical moment problem for the sequence {μk}∞k=0 on (a, b). In that
case Φ is called a classical moment distribution function on (a, b). If Φ is
a classical moment distribution function on (a, b) and if Φ is absolutely
continuous then we call

φ(x) := Φ′(x) ≥ 0, x ∈ (a, b)

a weight function on (a, b).
A distribution function Φ satisfying (5.1.2) for all k ∈ Z is called a solution
to the strong moment problem for the bisequence {μk}∞k=−∞ on (a, b). In
that case Φ is called a strong moment distribution function on (a, b).
The term strong is used to describe moment problems for bisequences since
the requirements for a solution to a moment problem for a bisequence are
stronger than the requirements for a solution to a moment problem for the
associated sequence.
A distribution function Φ that solves the moment problem for {μk}∞k=0 on
(a, b) is also a solution of the CHMP for the sequence {μk}∞k=0. It suffices
to set dΦ(t) = 0 for −∞ < t < a and b < t < ∞. In addition, if a is
nonnegative and b is positive, the distribution function Φ is also a solution
of the CSMP for the sequence {μk}∞k=0.
One can also look at moment problems on the unit circle. The trigonomet-
ric moment problem (TMP) for a sequence {μk}∞k=0 of complex numbers
is to find conditions on the sequence {μk}∞k=0 to ensure the existence of a
distribution function function Φ on (−π, π) such that

μk =
∫ π

−π

e−ikθ dΦ(θ), k ∈ N0. (5.1.3)

A distribution function Φ satisfying (5.1.3) is called a solution to the TMP
for {μk}∞k=0.
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Two solutions of a moment problem are considered equivalent if their differ-
ence is a constant at the set of all points where the difference is continuous.
A solvable moment problem is called determinate if all solutions to the mo-
ment problem are equivalent. If a moment problem is determinate, we call
its solution unique. It is called indeterminate if there exist non-equivalent
solutions. Note that if Φ1 and Φ2 are two distinct solutions of a moment
problem, then

Φ(t) := αΦ1(t) + (1− α)Φ2(t), 0 < α < 1,

is also a solution and hence there exist infinitely many solutions.

Existence and uniqueness results for moment problems. Existence
and uniqueness results for solutions to several moment problems can be
expressed in terms of conditions on continued fractions. We present such
results for the CSMP, HDMP, CHMP, SSMP and TMP. However, there is
no known simple family of continued fractions that can be used to deter-
mine existence and uniqueness results for the SHMP.

Theorem 5.1.1: Existence/Uniqueness of solutions of CSMP

[Sti95; LW92, p. 357]

The CSMP for a sequence {μk}∞k=0 of real numbers has a solution if and
only if there exists a modified S-fraction of the form

a1

z +
a2

1 +
a3

z +
a4

1 + . . .
, am > 0, m ∈ N, (5.1.4)

which corresponds to the FTS

L(z) = z−1
∞∑

k=0

(−1)kμkz−k (5.1.5)

at z = ∞ with order of correspondence n+1. The solution is unique if and
only if (5.1.4) converges to a function G(z) holomorphic in the cut plane
| arg z| < π.

The condition on the modified S-fraction in Theorem 5.1.1 can also be
expressed in terms of the S-fraction F (z) and modified S-fractions H(z)
and D(z)

F (z) =
a1z

1 +
a2z

1 +
a3z

1 +
a4z

1 + . . .
, am > 0, (5.1.6a)

H(z) =
a1

1 +
a2

z +
a3

1 +
a4

z + . . .
, am > 0, (5.1.6b)

D(z) =
a1

z +
a2

z +
a3

z +
a4

z + . . .
, am > 0, (5.1.6c)
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introduced in Section 2.3, corresponding respectively to the FTS

z
∞∑

k=0

(−1)kμkzk, (5.1.7a)

∞∑
k=0

(−1)kμkz−k, (5.1.7b)

z−1
∞∑

k=0

(−1)kμkz−2k, (5.1.7c)

with order of correspondence n + 1 at z = 0, n at z = ∞ and 2n + 1 at
z = ∞, respectively.

Theorem 5.1.2: Existence/Uniqueness of solutions of HDMP

[Wal48, p. 263]

The HDMP for a sequence {μk}∞k=0 of real numbers has a solution if and
only if there exists a modified S-fraction of the form

μ0

z +
(1− g0)g1

1 +
(1− g1)g2

z +
(1− g2)g3

1 + . . .
,

μ0 > 0, 0 ≤ gm ≤ 1,

which corresponds to the FTS

L(z) = z−1
∞∑

k=0

(−1)kμkz−k

at z = ∞ with order of correspondence n + 1. The solution of a solvable
HDMP is unique.

Theorem 5.1.3: Existence/Uniqueness of solutions of CHMP

[Ham21]

The CHMP for a sequence {μk}∞k=0 of real numbers has a solution if and
only if there exists a real J-fraction of the form

α1

β1 + z +

∞

K
m=2

( −αm

βm + z

)
, αm > 0, βm ∈ R, m ∈ N, (5.1.8)

which corresponds to the FTS

L(z) = z−1
∞∑

k=0

(−1)kμkz−k
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at z = ∞ with order of correspondence 2n + 1. The solution is unique if
and only if the coefficients of the real J-fraction satisfy

∞∑
m=1

P 2
m(0)

α1α2 · · ·αm+1
= ∞ or

∞∑
m=1

Q2
m(0)

α1α2 · · ·αm+1
= ∞ (5.1.9)

where Pm(z) and Qm(z) denote the mth numerator and the mth denomi-
nator, respectively, of (5.1.8).

Note that convergence of the real J-fraction (5.1.8) in the cut complex
plane | arg z| < π does not imply uniqueness of a solution of the CHMP.
Also note [Per57, p. 234] that there are cases where the CSMP is determi-
nate, but the CHMP for the same sequence is indeterminate.

Theorem 5.1.4: Existence/Uniqueness of solutions of SSMP

[JTW80]

The SSMP for a bisequence {μk}∞k=−∞ of real numbers has a solution if
and only if there exists a positive T-fraction of the form

∞

K
m=1

(
z

em + dmz

)
, em > 0, dm > 0, m ∈ N, (5.1.10)

which corresponds to the pair of FTS

L0(z) = −
∞∑

k=1

(−1)kμ−kzk, L∞(z) =
∞∑

k=0

(−1)kμkz−k

at z = 0 and z = ∞ with orders of correspondence n+1 and n, respectively.
The solution is unique if and only if (5.1.10) converges to a function G(z)
holomorphic in the cut plane | arg z| < π, in which case the convergence is
locally uniform.

A positive T-fraction of the form (5.1.10) converges if and only if the co-
efficients em and dm satisfy

∞∑
m=1

(em + dm) =∞.



82 5. MOMENT THEORY AND ORTHOGONAL FUNCTIONS

Theorem 5.1.5: Existence/Uniqueness of solutions of the TMP

[JNT89]

The TMP for a sequence {μk}∞k=0 of complex numbers has a solution if and
only if there exists a PPC-fraction of the form

δ0 − 2δ0

1 +
1

δ̄1z +
(1− |δ1|2)z

δ1 +
1

δ̄2z +
(1− |δ2|2)z

δ2 + . . .
,

δ0 > 0, δm ∈ C, |δm| < 1, m ∈ N, (5.1.11)

which corresponds to the pair of FTS

L0(z) = μ0 + 2
∞∑

k=1

μkzk, L∞(z) = −μ0 − 2
∞∑

k=1

μkz−k

at z = 0 and z = ∞, both with order of correspondence n+1. The solution
of a solvable TMP is unique.

The continued fraction occurring in each of the above theorems is said
to correspond to the distribution function Φ determined by the sequence
{μk}∞k=0 or {μk}∞k=−∞.
Necessary and sufficient conditions for existence of solutions to the clas-
sical, strong, and trigonometric moment problems can be given in terms
of Hankel determinants H

(m)
k (μ) associated with the sequence {μk}∞k=0 or

bisequence {μk}∞k=−∞, where

H
(m)
0 (μ) := 1, H

(m)
k (μ) :=

∣∣∣∣∣∣∣∣
μm μm+1 . . . μm+k−1

μm+1 μm+2 . . . μm+k

...
...

...
μm+k−1 μm+k . . . μm+2k−2

∣∣∣∣∣∣∣∣ ,
m ∈ Z, k ∈ N. (5.1.12)

If the Hankel determinant H
(m)
k (μ) is associated with the sequence {μk}∞k=0

and m ∈ Z−, then it is assumed that μi = 0 for i < 0.

Theorem 5.1.6: Hankel determinant conditions [Sti95; Ham21;
JTW80; JTN84; JNT86b; JNT83b]

(A) The CSMP for a sequence {μk}∞k=0 of real numbers has a solution if
and only if the Hankel determinants associated with {μk}∞k=0 satisfy

H(0)
n (μ) > 0, H(1)

n (μ) > 0, n ∈ N.
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(B) The CHMP for a sequence {μk}∞k=0 of real numbers has a solution if
and only if the Hankel determinants associated with {μk}∞k=0 satisfy

H(0)
n (μ) > 0, n ∈ N.

(C) The SSMP for a bisequence {μk}∞k=−∞ of real numbers has a solution
if and only if the Hankel determinants associated with {μk}∞k=−∞ sat-
isfy

H
(−2n)
2n (μ) > 0, H

(−2n)
2n+1 (μ) > 0, n ∈ N0,

H
(−2n+1)
2n (μ) > 0, H

(−2n−1)
2n+1 (μ) > 0, n ∈ N0.

(D) The SHMP for a bisequence {μk}∞k=−∞ of real numbers has a solu-
tion if and only if the Hankel determinants associated with {μk}∞k=−∞
satisfy

H
(−2n)
2n (μ) > 0, H

(−2n)
2n+1 (μ) > 0, n ∈ N0.

(E) The TMP for a sequence {μk}∞k=0 of complex numbers has a solution
if and only if the Hankel determinants associated with {μk}∞k=0 satisfy

(−1)n(n+1)/2H
(−n)
n+1 (μ) > 0, n ∈ N,

where we define
μ−k := μk, k ∈ N.

Observe that the Hankel determinant conditions (A) through (E) ensure
the existence of continued fractions corresponding to FTS in the respective
theorems 5.1.1 through 5.1.5. For (A) this is elaborated upon in Section 6.3
where conditions for the existence of a corresponding S-fraction are given
for a FTS with a constant term:

∞∑
k=0

ckzk = c0 + z
∞∑

k=0

(−1)kμkzk, ck := (−1)k−1μk−1, k ∈ N

(5.1.13a)
or

∞∑
k=0

(−1)kγkzk = γ0 + z
∞∑

k=0

(−1)k−1μkzk γk := μk−1, k ∈ N.

(5.1.13b)
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When the sequences {ck}∞k=1 and {γk}∞k=1 are related to the sequence
{μk}∞k=0 as in (5.1.13), then

H
(2m+1)
k (c) = H

(2m)
k (μ),

H
(2m+2)
k (c) = (−1)kH

(2m+1)
k (μ),

H
(m+1)
k (γ) = H

(m)
k (μ),

m ∈ N0, k ∈ N0. (5.1.14)

The conditions in part (C) of Theorem 5.1.6 ensure the existence of a
positive T-fraction corresponding to two power series at z = 0 and at
z = ∞. In Section 6.7 these conditions are also given, there in terms of
Hankel determinants for the sequence {μk}∞k=−∞ = {(−1)kck}∞k=−∞. We
have

H
(2m)
k (c) = H

(2m)
k (μ),

H
(2m+1)
k (c) = (−1)kH

(2m+1)
k (μ),

m ∈ Z, k ≥ 0. (5.1.15)

Uniqueness results for classical and strong moment problems can be given
in terms of conditions on the associated sequences of moments.

Theorem 5.1.7: Carleman criteria for moment problems [Car23;
Wal48, p. 330; Car26; Wal48, p. 330; Ald87]

(A) If {μk}∞k=0 is a sequence of real numbers for which the CSMP has a
solution, then this moment problem is determinate if

∞∑
k=1

(
1
μk

)1/(2k)

= ∞. (5.1.16a)

(B) If {μk}∞k=0 is a sequence of real numbers for which the CHMP has a
solution, then this moment problem is determinate if

∞∑
k=1

(
1

μ2k

)1/(2k)

= ∞. (5.1.16b)

(C) If {μk}∞k=−∞ is a bisequence of real numbers for which the SSMP has
a solution, then this moment problem is determinate if

∞∑
k=−∞

k �=0

(
1
μk

)1/(2|k|)
= ∞. (5.1.16c)
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(D) If {μk}∞k=−∞ is a bisequence of real numbers for which the SHMP has
a solution, then this moment problem is determinate if

∞∑
k=−∞

k �=0

(
1

μ2k

)1/(2|k|)
= ∞. (5.1.16d)

Example 5.1.2: Let {μk}∞k=0 be defined by

μk := k!, k ∈ N0.

Since ∫ ∞

0

tke−t dt = k!, k ∈ N0,

the CSMP for {k!}∞k=0 has a solution,

Φ(t) = −e−t, 0 ≤ t <∞.

By Carleman’s criterion (5.1.16a), the CSMP is determinate since

∞∑
k=0

(
1
k!

)1/(2k)

= ∞.

Theorem 5.1.8: [Wal48, p. 267]

The HDMP has a unique solution if and only if the sequence {μk}∞k=0 is a
totally monotone sequence, meaning that

μk ≥ 0, �μk = μk − μk+1 ≥ 0, k = 0, 1, 2, . . .

�nμk = �n−1μk −�n−1μk+1 ≥ 0, �0μk = μk, k = 0, 1, 2, . . . .

5.2 Stieltjes transforms

For certain moment problems, the continued fraction related to the moment
problem can be represented by a Stieltjes integral transform.
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Theorem 5.2.1:

Let Φ be a classical moment distribution function on (0,∞) for the sequence
{μk}∞k=0. Then:
(A) The Stieltjes integral transform∫ ∞

0

dΦ(t)
z + t

(5.2.1)

is a holomorphic function in the cut plane | arg z| < π.
(B) If the modified S-fraction (5.1.4) corresponding at z = ∞ to the FTS

(5.1.5) is convergent, then its limit is represented by the Stieltjes in-
tegral transform

a1

z +
a2

1 +
a3

z +
a4

1 + . . .
=
∫ ∞

0

dΦ(t)
z + t

, | arg z| < π. (5.2.2)

A truncation error bound for the nth partial sum of (5.1.5) is given
by ∣∣∣∣∣
∫ ∞

0

dΦ(t)
z + t

−
n−1∑
k=0

(−1)kμkz−k−1

∣∣∣∣∣ ≤⎧⎪⎨⎪⎩
μn|z|−n−1, | arg z| ≤ π

2
,

μn|z|−n−1

| sin(arg z)| ,
π

2
< | arg z| < π,

n ≥ 1. (5.2.3)

References for the results in Theorem 5.2.1 are [Cop62, pp. 110–115] for
(A) and [Hen77, p. 617] for (B). A truncation error bound for the nth

approximant of (5.1.4) is given in Theorem 7.5.3.
If the modified S-fraction (5.1.4) is convergent, then it can be expressed as
the Stieltjes integral transform (5.2.2). In that case we also have for the
S-fractions (5.1.6) that

F (z) =
∫ ∞

0

z dΦ(t)
1 + zt

, | arg z| < π, (5.2.4a)

H(z) =
∫ ∞

0

z dΦ(t)
z + t

, | arg z| < π, (5.2.4b)

D(z) =
∫ ∞

0

z dΦ(t)
z2 + t

, | arg z| < π

2
(5.2.4c)
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and∣∣∣∣∣
∫ ∞

0

z dΦ(t)
1 + zt

− z
n−1∑
k=0

(−1)kμkzk

∣∣∣∣∣ ≤
⎧⎪⎨⎪⎩

μn|z|n+1, | arg z| ≤ π

2
,

μn|z|n+1

| sin(arg z)| ,
π

2
< | arg z| < π,

n ≥ 1, (5.2.5a)

∣∣∣∣∣
∫ ∞

0

z dΦ(t)
z + t

−
n−1∑
k=0

(−1)kμkz−k

∣∣∣∣∣ ≤
⎧⎪⎨⎪⎩

μn|z|−n, | arg z| ≤ π

2
,

μn|z|−n

| sin(arg z)| ,
π

2
< | arg z| < π,

n ≥ 1, (5.2.5b)

∣∣∣∣∣
∫ ∞

0

z dΦ(t)
z2 + t

− z−1
n−1∑
k=0

(−1)kμkz−2k

∣∣∣∣∣ ≤ μn|z|−2n−1, | arg z| < π

2
,

n ≥ 1. (5.2.5c)

Example 5.2.1: Since∫ ∞

0

tke−t dt = k!, k ∈ N0,

the CSMP for the sequence {k!}∞k=0 has a solution Φ that satisfies dΦ(t) =
e−t dt. The modified S-fraction corresponding to the FTS

L(z) = z−1
∞∑

k=0

(−1)kk! z−k

at z = ∞ with order of correspondence n + 1 is given by

1
z +

1
1 +

1
z +

2
1 +

2
z +

3
1 +

3
z +

4
1 +

4
z + . . .

, | arg z| < π.

The coefficients of the continued fraction satisfy (3.1.5) and so the contin-
ued fraction converges by Theorem 3.1.5. It follows from Theorem 5.2.1
that its limit is represented by the Stieltjes integral transform

1
z +

1
1 +

1
z +

2
1 +

2
z +

3
1 +

3
z + . . .

=
∫ ∞

0

e−t

z + t
dt, | arg z| < π.
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According to Theorem 5.1.1 the solution to the CSMP for the sequence
{k!}∞k=0 is unique.

We include here a result valid for a particular family of distribution func-
tions. For the purpose of defining this family, we consider real valued, even
functions Q(x) with x ∈ R and derivatives for x > 0 up to and including
order 3. Moreover the following is required:

there exist numbers M > 0 and ε > 0 such that

|xQ′(x)| ≤M, 0 < x < ε;

there exist numbers X > 0 and B > 0 such that, for all x > X

Q′(x) > 0,

∣∣∣∣x2Q′′′(x)
Q′(x)

∣∣∣∣ ≤ B;

the limit

lim
x→∞

xQ′′(x)
Q′(x)

exists.

For α > 0, δ > 0 and c > 0 the class Q(α, δ, c) is defined as all Q(x) for
which

Q′(x) = cxα−1 + O(xα−δ−1), x→∞.

For α ≥ 1 the O-term may be replaced by o(1).

Theorem 5.2.2: [JVA98; JS99]

Let f(z) be defined by a Stieltjes transform

f(z) =
∫ ∞

0

zφ(t)
1 + zt

dt, | arg z| < π,

where φ(t) is a positive weight function on (0,∞) such that, for some α > 0,
δ > 0 and c > 0, the function

Q(x) := −Ln(|x|φ(x2)), x ∈ R\{0}

belongs to the class Q(α, δ, c). Then:
(A) The moments

μk =
∫ ∞

0

tkφ(t) dt, k = 0, 1, 2, . . .
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exist.
(B) The coefficients am of the S-fraction K (amz/1) corresponding to the

sequence {μk}∞k=0 satisfy

am ∼ dm2/α, m→∞, d =
1
4

(
α
√

πΓ(α
2 )

cΓ(α+1
2 )

)2/α

.

(C) If α ≥ 1, then K (amz/1) is convergent and

f(z) =
∞

K
m=1

(amz

1

)
, | arg z| < π.

Analogous statements can be made for modified S-fractions introduced in
(2.3.3).

Theorem 5.2.3:

Let Φ be a classical moment distribution function for the sequence {μk}∞k=0

on (a, b) where −∞ ≤ a < b ≤ +∞. Then:
(A) The Stieltjes transform ∫ b

a

dΦ(t)
z + t

represents holomorphic functions F+(z) in {z ∈ C : �z > 0} and
F−(z) in {z ∈ C : �z < 0}.

(B) If (5.1.8) is the real J-fraction corresponding to

L(z) = z−1
∞∑

k=0

(−1)kμkz−k

at z = ∞ and if (5.1.9) holds, then the real J-fraction converges to
the holomorphic function F+(z) for �z > 0 and to F−(z) for �z < 0.

(C) If (5.1.8) is the real J-fraction corresponding to L(z) at z = ∞ and
if (a, b) is a finite interval, then the real J-fraction converges to a
function holomorphic in the region C \ [−b,−a] and

α1

β1 + z +

∞

K
m=2

( −αm

βm + z

)
=
∫ b

a

dΦ(t)
z + t

, z ∈ C \ [−b,−a].

References are [Wal48, p. 247] for (A), [Wal48, p. 114] for (B) and [Mar95]
for (C). A truncation error bound for the nth approximant fn(z) of the
real J-fraction is given in Theorem 7.5.4.
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Theorem 5.2.4: [JTW80]

Let Φ be a strong moment distribution function for {μk}∞k=−∞ on (a, b)
where 0 ≤ a < b ≤ +∞ and let (5.1.10) be the positive T-fraction corre-
sponding to the pair of FTS

L0(z) = −
∞∑

k=1

(−1)kμ−kzk, L∞(z) =
∞∑

k=0

(−1)kμkz−k

at z = 0 and z = ∞. If the continued fraction (5.1.10) converges, then its
limit is represented by

∞

K
m=1

(
z

em + dmz

)
=
∫ b

a

z dΦ(t)
z + t

, z ∈ C \ [−b,−a],

the convergence being locally uniform on C \ [−b,−a].

A truncation error bound for the nth approximant fn of the positive T-
fraction is given in Theorem 7.5.5. Some examples to illustrate Theo-
rem 5.2.4 are given in [JNT83a].

5.3 Construction of solutions
One technique that may be utilised to construct a solution to a solvable
moment problem uses approximants of the corresponding continued frac-
tion. We do not discuss this technique in general but outline it here only
for the SSMP. Suppose the SSMP for a bisequence {μk}∞k=−∞ has a solu-
tion. Let An(z) and Bn(z) denote the nth numerator and denominator of
the corresponding positive T-fraction (5.1.10). Then An(z) and Bn(z) are
polynomials in z of degree n and the zeros r

(n)
m of Bn(z) are all distinct

and negative and can be arranged in order such that

0 < −r
(n)
1 < −r

(n)
2 < · · · < −r(n)

n .

The nth approximant An(z)/Bn(z) has the partial fraction decomposition

An(z)
Bn(z)

=
n∑

m=1

zp
(n)
m

z − r
(n)
m

, n ∈ N,

where p
(n)
m > 0 for m ≥ 1 and

∑n
m=1 p

(n)
m = 1/d1 where d1 is a coefficient

of the positive T-fraction (5.1.10). Define

Φn(t) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ t ≤ −r
(n)
1 ,

k∑
m=1

p(n)
m , −r

(n)
k < t ≤ −r

(n)
k+1, 1 ≤ k ≤ n,

1
d1

, −r(n)
n < t < ∞.
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Then
An(z)
Bn(z)

=
∫ ∞

0

z dΦn(t)
z + t

, n ∈ N. (5.3.1)

If the positive T-fraction (5.1.10) converges, then (5.3.1) converges to

G(z) =
∫ ∞

0

z dΦ(t)
z + t

(5.3.2)

where Φ(t) is the unique solution of the SSMP. The solution Φ(t) can be
determined from (5.3.2) by using the Stieltjes inversion formula [Chi78,
p. 90]

Φ(t)− Φ(s) = − 1
π

lim
y→0+

∫ t

s

�(G(x + iy)) dx.

If the positive T-fraction does not converge, then the SSMP has infinitely
many solutions. Using the fact that the even and odd parts of the positive
T-fraction converge, the above procedure can be applied to A2n(z)/B2n(z)
and to A2n+1(z)/B2n+1(z) separately to find two, and hence infinitely
many, solutions.

5.4 Orthogonal polynomials
The origins of the field of orthogonal polynomials can be found in the
theory of continued fractions [Tch58; Sti95]. It is the purpose of this and
the next section to indicate some of the connections between orthogonal
polynomials and continued fractions.
Let Φ be a classical moment distribution function on an interval (a, b)
where −∞ ≤ a < b ≤ +∞. Then an inner product 〈·, ·〉Φ over the space
R[x] of real polynomials is defined by

〈f, g〉Φ :=
∫ b

a

f(x)g(x) dΦ(x), f, g ∈ R[x]. (5.4.1)

The norm of R ∈ R[x] is given by

‖R‖Φ := (〈R,R〉Φ)1/2.

A sequence of real polynomials {Rn(x)}∞n=0 is called an orthogonal polyno-
mial sequence for Φ if, for m,n ∈ N0,

∂Rn = n,

〈Rm, Rn〉Φ = 0, m �= n,

〈Rn, Rn〉Φ = ‖Rn‖2Φ > 0.
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Using the notation

Rn(x) = kn,nxn + kn,n−1x
n−1 + · · ·+ kn,0, kn,n �= 0, n ∈ N0,

an orthogonal polynomial sequence {Rn(x)}∞n=0 satisfies a recurrence rela-
tion of the form

R−1(x) = 0, R0(x) = k0,0 > 0, (5.4.2a)

Rn+1(x) = (bn + cnx)Rn(x)− anRn−1(x), n ∈ N0, (5.4.2b)

where the connection between the coefficients an, bn, cn and kn,i is given
by

c0 =
k1,1

k0,0
, b0 =

k1,0

k0,0
, a0 = 0,

cn =
kn+1,n+1

kn,n
, bn = cn

(
kn+1,n

kn+1,n+1
− kn,n−1

kn,n

)
, n ∈ N,

an =
kn+1,n+1kn−1,n−1‖Rn‖2Φ

k2
n,n‖Rn−1‖2Φ

, n ∈ N.

5.5 Monic orthogonal polynomials on R and J-fractions
An orthogonal polynomial sequence {Qn(x)}∞n=0 is called monic if each
polynomial Qn(x) in the sequence has leading coefficient 1. Given an
orthogonal polynomial sequence {Rn(x)}∞n=0, a related monic orthogonal
polynomial sequence {Qn(x)}∞n=0 can be constructed by setting

Qn(x) =
(

1
kn,n

)
Rn(x), n ∈ N0.

From the following two theorems it is seen that every monic orthogonal
polynomial sequence on the real line is the sequence of denominators of a
real J-fraction (5.1.8). Conversely, the sequence of denominators of any real
J-fraction is a monic orthogonal polynomial sequence for some distribution
function Φ on (−∞,∞).

Theorem 5.5.1: [Chi78, pp. 85–86]

Let {Qn(x)}∞n=0 be a monic orthogonal polynomial sequence with respect to
a classical moment distribution function Φ on (a, b). Then {Qn(x)}∞n=0 is
the sequence of denominators of the real J-fraction

α1

β1 + x +

∞

K
m=2

( −αm

βm + x

)
(5.5.1)
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with coefficients
α1 = 1, β1 = k1,0,

αn =
‖Qn−1‖2Φ
‖Qn−2‖2Φ

> 0, βn = kn,n−1 − kn−1,n−2 ∈ R, n ≥ 2,

where km,m−1 is the coefficient of xm−1 for Qm(x).

Theorem 5.5.2: [JT80, pp. 252–253]

Let Qn(x) denote the nth denominator of the real J-fraction (5.5.1) and
let Φ denote a corresponding classical moment distribution function. Then
{Qn(x)}∞n=0 is the monic orthogonal polynomial sequence for Φ.

Since the orthogonal polynomials Qn(x) in Theorem 5.5.2 are the denomi-
nators of the real J-fraction (5.5.1) they can be constructed using the basic
recurrence relations (1.3.1)

Q−1(x) = 0, Q0(x) = 1,

Qn(x) = (βn + x)Qn−1(x)− αnQn−2(x), n ∈ N,
(5.5.2)

where the αn and βn are the coefficients of the real J-fraction (5.5.1).
We remark that Theorem 5.5.2 follows from a more general theorem called
Favard’s theorem.

Theorem 5.5.3: Favard [Fav35]

Let {αm}∞m=1 and {βm}∞m=1 be any sequences that satisfy

αm > 0, βm ∈ R, m ∈ N, (5.5.3)

and let {Qn(x)}∞n=0 be defined by the three-term recurrence relations (5.5.2).
Then there exists a classical moment distribution function Φ on (a, b) such
that {Qn(x)}∞n=0 is the monic orthogonal polynomial sequence for Φ.

The polynomials Qn(x) in Theorem 5.5.2 can also be represented by the
determinant formulas

Q0(x) = 1,

Qn(x) =
1

H
(0)
n (μ)

∣∣∣∣∣∣∣∣∣∣

μ0 μ1 · · · μn

μ1 μ2 · · · μn+1

...
...

...
μn−1 μn · · · μ2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣
, n ∈ N,
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where the μk are the moments for Φ given in (5.1.2) and the H
(0)
n (μ) are

Hankel determinants (5.1.12) associated with the sequence {μk}∞k=0.
The sequence of numerators of a real J-fraction can also be used to define a
monic orthogonal polynomial sequence. Let Pn(x) denote the nth numer-
ator of the real J-fraction (5.5.1) corresponding to a moment distribution
function Φ. Let {P̃n(x)}∞n=0 be defined by

P̃n(x) := α−1
1 Pn+1(x), n ≥ −1.

Then the sequence {P̃n(x)}∞n=0 satisfies

P̃−1(x) = 0, P̃0(x) = 1,

P̃n(x) = (βn+1 + x)P̃n−1(x)− αn+1P̃n−2(x), n ≥ 1,

and the coefficients βn+1 and αn+1 of the J-fraction satisfy (5.5.3). Hence
by Theorem 5.5.3 there exists a moment distribution function Ψ such that
{P̃n(x)}∞n=0 is the monic orthogonal polynomial sequence for Ψ.
If Φ is the classical moment distribution function corresponding to a real
J-fraction, the polynomial numerators Pn(x) of the real J-fraction can be
expressed in terms of the polynomial denominators Qn(x) by

Pn(x) =
∫ b

a

Qn(x)−Qn(t)
x− t

dΦ(t), n ≥ 0.

The numerator polynomials are often called the associated polynomials.
Next we deal with certain properties of so-called classical orthogonal poly-
nomial sequences, named after Hermite, Laguerre and Jacobi, and their
connection to a special family of continued fractions, the J-fractions. Spe-
cial cases of Jacobi polynomials are Legendre, Chebyshev and Gegenbauer
polynomials.
Let {Rn(x)}∞n=0 be an orthogonal polynomial sequence for a classical mo-
ment distribution function Φ on the interval (a, b). If Φ is absolutely contin-
uous, then φ(x) = Φ′(x) is a weight function and we say that {Rn(x)}∞n=0

is an orthogonal polynomial sequence for the weight function φ(x) on (a, b).

Hermite polynomials. The sequence {Hn(x)}∞n=0 of Hermite polynomi-
als is an orthogonal polynomial sequence for the weight function φ(x) =
e−x2

on the interval (−∞,∞).
The Hermite polynomials satisfy the three-term recurrence relations

H−1(x) = 0, H0(x) = 1, (5.5.4a)

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x), n ∈ N. (5.5.4b)
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An explicit formula is

Hn(x) = n!
�n

2 �∑
m=0

(−1)m (2x)n−2m

m! (n− 2m)!
, n ∈ N0. (5.5.5)

The monic Hermite polynomials Ĥn(x) given by

Ĥn(x) = 2−nHn(x), n ∈ N0, (5.5.6)

satisfy the recurrence relations

Ĥ−1(x) = 0, Ĥ0(x) = 1, (5.5.7a)

Ĥn(x) = xĤn−1(x)− n− 1
2

Ĥn−2(x), n ∈ N. (5.5.7b)

The monic orthogonal Hermite polynomial sequence {Ĥn(x)}∞n=1 forms the
sequence of denominators of the real J-fraction

1
x +

∞

K
m=2

(−(m− 1)/2
x

)
. (5.5.8)

Laguerre polynomials. For fixed α > −1, the sequence {L(α)
n (x)}∞n=0

of generalised Laguerre polynomials is an orthogonal polynomial sequence
for the weight function φ(x) = e−xxα on the interval [0,∞).
The generalised Laguerre polynomials satisfy the three-term recurrence
relations

L
(α)
−1 (x) = 0, L

(α)
0 (x) = 1, (5.5.9a)

L(α)
n (x) =

(2n + α− 1− x)
n

L
(α)
n−1(x)− (n + α− 1)

n
L

(α)
n−2(x), n ∈ N.

(5.5.9b)

An explicit formula is

L(α)
n (x) =

n∑
m=0

(−1)m

(
n + α

n−m

)
xm

m!
, n ∈ N0. (5.5.10)

The monic generalised Laguerre polynomials L̂
(α)
n (x) given by the formula

L̂(α)
n (x) = (−1)nn! L(α)

n (x), n ∈ N0, (5.5.11)



96 5. MOMENT THEORY AND ORTHOGONAL FUNCTIONS

satisfy the recurrence relations

L̂
(α)
−1 (x) = 0, L̂

(α)
0 (x) = 1, (5.5.12a)

L̂(α)
n (x) = (1− 2n− α + x)L̂(α)

n−1(x)− (n− 1)(n + α− 1)L̂(α)
n−2(x), n ∈ N.

(5.5.12b)

The monic orthogonal Laguerre polynomial sequence {L̂(α)
n (x)}∞n=1 forms

the sequence of denominators of the real J-fraction

1
−1− α + x +

∞

K
m=2

(−(m− 1)(m− 1 + α)
1− 2m− α + x

)
. (5.5.13)

Jacobi polynomials. For fixed α > −1 and β > −1, the sequence
{P (α,β)

n (x)}∞n=0 of Jacobi polynomials is an orthogonal polynomial sequence
for the weight function φ(x) = (1− x)α(1 + x)β on the interval [−1, 1].
The Jacobi polynomials satisfy the three-term recurrence relations

P
(α,β)
−1 (x) = 0, P

(α,β)
0 (x) = 1, (5.5.14a)

P (α,β)
n (x) = (bn + cnx)P (α,β)

n−1 (x)− anP
(α,β)
n−2 (x), n ≥ 1,

(5.5.14b)

where

bn =
(α2 − β2)(2n + α + β − 1)

2n(n + α + β)(2n + α + β − 2)
, n ≥ 1,(5.5.14c)

cn =
(2n + α + β)(2n + α + β − 1)

2n(n + α + β)
, n ≥ 1, (5.5.14d)

a1 = 1, an =
(n + α− 1)(n + β − 1)(2n + α + β)

n(n + α + β)(2n + α + β − 2)
, n ≥ 2.

(5.5.14e)

An explicit formula is

P (α,β)
n (x) =

1
2n

n∑
m=0

(
n + α

m

)(
n + β

n−m

)
(x− 1)n−m(x + 1)m, n ∈ N0.

(5.5.15)
The monic Jacobi polynomials P̂

(α,β)
n (x) given by

P̂ (α,β)
n (x) =

2n(
2n+α+β

n

)P (α,β)
n (x), n ∈ N0, (5.5.16)
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satisfy the recurrence relations

P̂
(α,β)
−1 (x) = 0, P̂

(α,β)
0 (x) = 1, (5.5.17a)

P̂ (α,β)
n (x) = (βn + x)P̂ (α,β)

n−1 (x)− αnP̂
(α,β)
n−2 (x), n ∈ N,

(5.5.17b)

where

βn =
α2 − β2

(2n + α + β − 2)(2n + α + β)
, n ∈ N, (5.5.17c)

α1 = 1, α2 =
4(α + 1)(β + 1)

(α + β + 2)2(α + β + 3)
, (5.5.17d)

αn =
4(n− 1)(n + α− 1)(n + β − 1)(n + α + β − 1)

(2n + α + β − 2)2(2n + α + β − 1)(2n + α + β − 3)
, n ≥ 3,

(5.5.17e)

except that when α = −β we have β1 = (α− β)/(α + β + 2).
The monic Jacobi polynomial sequence {P̂ (α,β)

n (x)}∞n=1 forms the sequence
of denominators of the real J-fraction

1
β1 + x +

∞

K
m=2

( −αm

βm + x

)
, (5.5.18)

where the αn and βn are given by (5.5.17).

Legendre polynomials. In the case α = β = 0, the Jacobi polynomials
P

(0,0)
n (x) are called the Legendre polynomials and are denoted Pn(x). The

monic Legendre polynomials P̂n(x) are orthogonal on the interval [−1, 1]
with respect to the weight function φ(x) = 1. They satisfy the three term
recurrence relations

P̂−1(x) = 0, P̂0(x) = 1, (5.5.19a)

P̂n(x) = xP̂n−1(x)− (n− 1)2

(2n− 1)(2n− 3)
P̂n−2(x), n ∈ N,

(5.5.19b)

and {P̂n(x)}∞n=1 forms the sequence of denominators of the real J-fraction

1
x +

∞

K
m=2

⎛⎝− (m−1)2

(2m−1)(2m−3)

x

⎞⎠ . (5.5.20)
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Chebyshev polynomials of the first kind. In the case α = β =
−1/2, the Jacobi polynomials P

(−1/2,−1/2)
n (x) are called the Chebyshev

polynomials of the first kind and are denoted Tn(x). The monic Chebyshev
polynomials of the first kind T̂n(x) are orthogonal on the interval [−1, 1]
with respect to the weight function φ(x) = (1− x2)−1/2. They satisfy the
three term recurrence relations

T̂−1(x) = 0, T̂0(x) = 1, (5.5.21a)

T̂n(x) = xT̂n−1(x)− αnT̂n−2(x), n ∈ N, (5.5.21b)

where
α1 = 1, α2 =

1
2
, αn =

1
4
, n ≥ 3, (5.5.21c)

and form the sequence of denominators of the real J-fraction

1
x +

−1/2
x +

∞

K
m=1

(−1/4
x

)
. (5.5.22)

Chebyshev polynomials of the second kind. In the case α = β = 1/2,
the Jacobi polynomials P

(1/2,1/2)
n (x) are called the Chebyshev polynomials

of the second kind and are denoted Un(x). The monic Chebyshev polyno-
mials of the second kind Ûn(x) are orthogonal on the interval [−1, 1] with
respect to the weight function φ(x) = (1 − x2)1/2. They satisfy the three
term recurrence relations

Û−1(x) = 0, Û0(x) = 1, (5.5.23a)

Ûn(x) = xÛn−1(x)− αnÛn−2(x), n ∈ N, (5.5.23b)

where
α1 = 1, αn =

1
4
, n ≥ 2, (5.5.23c)

and form the sequence of denominators of the real J-fraction

1
x +

∞

K
m=1

(−1/4
x

)
. (5.5.24)

Ultraspherical or Gegenbauer polynomials. In the case β = α, the
Jacobi polynomials P

(α,α)
n (x) are called the ultraspherical polynomials or

Gegenbauer polynomials and are denoted C
(α)
n (x). The monic Gegenbauer

polynomials Ĉ
(α)
n (x) are orthogonal on the interval [−1, 1] with respect
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to the weight function φ(x) = (1 − x2)α. They satisfy the three term
recurrence relations

Ĉ
(α)
−1 (x) = 0, Ĉ

(α)
0 (x) = 1, (5.5.25a)

Ĉ(α)
n (x) = xĈ

(α)
n−1(x)− (n− 1)(n + 2α− 2)

4(α + n− 1)(α + n− 2)
Ĉ

(α)
n−2(x), n ∈ N,

(5.5.25b)

and form the sequence of denominators of the real J-fraction

1
x +

∞

K
m=2

⎛⎝− (m−1)(m+2α−2)
4(α+m−1)(α+m−2)

x

⎞⎠ . (5.5.26)

Gaussian quadrature. The Gaussian quadrature formula described in
the next theorem provides an efficient method for the numerical approx-
imation of integrals. Choosing the n zeros of the nth denominator of a
real J-fraction as the nodes in the quadrature formula results in a greater
degree of exactness than for other choices of the nodes.

Theorem 5.5.4: Gaussian quadrature

Let Φ be a classical moment distribution function on (a, b) and let Pn(z)
and Qn(z) denote the nth numerator and denominator, respectively, of the
real J-fraction (5.1.8) corresponding to Φ. Then:
(A) The n zeros x

(n)
k , 1 ≤ k ≤ n, of Qn(z) are real, simple and contained

in the interval (a, b).
(B) The error term En(f) in the quadrature formula

∫ b

a

f(x) dΦ(x) =
n∑

k=1

λ
(n)
k f(x(n)

k ) + En(f), (5.5.27a)

satisfies

En(f) = 0, f ∈ R[x], ∂f ≤ 2n− 1, (5.5.27b)

where the constants λ
(n)
k are called the Christoffel numbers and are

given by

λ
(n)
k :=

Pn(x(n)
k )

Q′
n(x(n)

k )
> 0, 1 ≤ k ≤ n, (5.5.27c)
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and
n∑

k=1

λ
(n)
k = μ0 =

∫ b

a

dΦ(x). (5.5.27d)

The number 2n− 1 in (5.5.27b), called the degree of exactness, is the best
result possible with n nodes. Numerically stable algorithms for computing
the zeros x

(n)
k , 1 ≤ k ≤ n, are given in [SD72; Gau81; GW69].

5.6 Szegő polynomials and PPC-fractions
Szegő polynomials arise as the denominators of PPC-fractions (5.1.11) and
are closely related to the trigonometric moment problem discussed in Sec-
tion 5.1. Let Φ be a distribution function on (−π, π). Then an inner
product 〈·, ·〉Φ over the space C[z] of complex polynomials is given by

〈f, g〉Φ :=
1
2π

∫ π

−π

f(eiθ)g(eiθ) dΦ(θ), f, g ∈ C[z]. (5.6.1)

Theorem 5.6.1: [JNT89]

Let Qn(z) denote the nth denominator of the PPC-fraction (5.1.11) and
let Φ denote the corresponding distribution function on (−π, π). Then
{Q2n+1(z)}∞n=0 is a monic polynomial sequence orthogonal with respect to
the inner product (5.6.1).

The denominator polynomials Q2n+1(z) and Q2n(z) of the PPC-fraction
in Theorem 5.6.1 are called, respectively, the nth Szegő polynomial and nth

reciprocal polynomial for Φ. We use the notation

ρn(z) := Q2n+1(z), ρ∗n(z) := Q2n(z), n ∈ N0. (5.6.2)

The Szegő and reciprocal polynomials (5.6.2) satisfy the relations

ρ∗n(z) = znρn(1/z̄), n ∈ N0,

and the recurrence relations

ρ0(z) = 1, ρ∗0(z) = 1,

ρn(z) = zρn−1(z) + δnρ∗n−1(z), n ∈ N,

ρ∗n(z) = δ̄nzρn−1(z) + ρ∗n−1(z), n ∈ N,

where the δn, which are called the reflection coefficients, are the coefficients
of the PPC-fraction in (5.1.11).
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We recall from Chapter 4 the notation T
(m)
k for the Toeplitz determinant

associated with a sequence {μk}∞k=0:

T
(m)
k =

∣∣∣∣∣∣∣∣
μm μm+1 · · · μm+k−1

μm−1 μm · · · μm+k−2

...
...

...
μm−k+1 μm−k+2 · · · μm

∣∣∣∣∣∣∣∣ , k ∈ N, m ∈ Z,

where
μ−k = μk, k ∈ N.

The Szegő polynomials and the reciprocal polynomials (5.6.2) can also be
expressed by the determinant formulas

ρn(z) =
1

T
(0)
n

∣∣∣∣∣∣∣∣∣∣

μ0 μ−1 · · · μ−n

μ1 μ0 · · · μ−n+1

...
...

...
μn−1 μn−2 · · · μ−1

1 z · · · zn

∣∣∣∣∣∣∣∣∣∣
, n ∈ N0,

ρ∗n(z) =
1

T
(0)
n

∣∣∣∣∣∣∣∣∣∣

μ0 μ1 · · · μn

μ−1 μ0 · · · μn−1

...
...

...
μ−n+1 μ−n+2 · · · μ1

zn zn−1 · · · 1

∣∣∣∣∣∣∣∣∣∣
, n ∈ N0,

where for k = 0, 1, 2, . . . the μk are the moments for the distribution func-
tion Φ on (−π, π).
For all n ∈ N, the Szegő polynomials and the reciprocal polynomials (5.6.2)
satisfy the orthogonality conditions

〈ρn, zm〉Φ =

{
0, 0 ≤ m ≤ n− 1,

T
(0)
n+1/T (0)

n , m = n,

〈ρ∗n, zm〉Φ =

{
T

(0)
n+1/T (0)

n , m = 0,

0, 1 ≤ m ≤ n.

Using the relation

Bn(z) = ρn(z) + τρ∗n(z), |τ | = 1

we obtain the para-orthogonal polynomials. Since the n zeros of ρn(z) lie
in the open disk |z| < 1, the zeros of Bn(z) lie on the unit circle. This
property can be used to obtain a quadrature formula on the unit circle
[JNT89].
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5.7 Orthogonal Laurent polynomials and APT-fractions

Let Λ denote the space of real Laurent polynomials (L-polynomials) given
by

Λ :=

⎧⎨⎩
q∑

j=p

cjx
j : cj ∈ R, p, q ∈ Z, p ≤ q

⎫⎬⎭ ,

and let Λ2n and Λ2n+1 denote the subsets of Λ given by

Λ2n :=

⎧⎨⎩
n∑

j=−n

cjx
j : cn �= 0

⎫⎬⎭ , n ∈ N0,

Λ2n+1 :=

⎧⎨⎩
n∑

j=−n−1

cjx
j : c−n−1 �= 0

⎫⎬⎭ , n ∈ N0.

For an L-polynomial
∑n

j=−n cjx
j in Λ2n we call cn the leading coefficient

and c−n the trailing coefficient. For an L-polynomial
∑n

j=−n−1 cjx
j in

Λ2n+1 we call c−n−1 the leading coefficient and cn the trailing coefficient.
An L-polynomial is called monic if its leading coefficient is one. If the
trailing coefficient of an L-polynomial is nonzero the L-polynomial is called
regular. Otherwise it is called singular.
An L-polynomial is said to have L-degree n if the L-polynomial is in Λn.
We denote the L-degree of an L-polynomial R by L∂(R).
Two methods are widely used to define an inner product on Λ. One is by
means of a positive definite strong linear functional and the other by means
of a strong moment distribution function. The latter method is used here.
Let Φ be a strong moment distribution function on (a, b), −∞ ≤ a < b ≤
∞. An inner product 〈·, ·〉Φ over the space Λ of L-polynomials is defined
by

〈f, g〉Φ :=
∫ b

a

f(t)g(t) dΦ(t), f, g ∈ Λ. (5.7.1)

The norm of R ∈ Λ is given by

‖R‖Φ := (〈R,R〉Φ)1/2.

A sequence of real L-polynomials {Qn(x)}∞n=0 is called an orthogonal L-
polynomial sequence for a strong distribution function Φ on (a, b) if, for
m,n ∈ N0,
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L∂(Qn) = n,

〈Qn, Qm〉Φ = 0, m �= n,

〈Qn, Qn〉Φ = ‖Qn‖2Φ > 0.

An orthogonal L-polynomial sequence {Qn(x)}∞n=0 for a strong moment
distribution function Φ on (a, b) is said to be monic if Qn(x) is monic for
each n ∈ N0. It can be shown that if Φ is a strong moment distribution
function on (a, b) with moments {μk}∞k=−∞ given by (5.1.2), then there
exists a monic orthogonal L-polynomial sequence {Qn(x)}∞n=0 for Φ. For-
mulas for the L-polynomials in terms of the moments μk, and associated
Hankel determinants can be found in [JN99].
The possible occurrence of singular L-polynomials in an orthogonal L-
polynomial sequence renders the theories of orthogonal polynomials and
orthogonal L-polynomials significantly different. For instance while ev-
ery orthogonal polynomial sequence satisfies a system of three-term re-
currence relations of the form (5.4.2), there exist sequences of orthogonal
L-polynomials that only satisfy four or five-term recurrence relations and
other orthogonal L-polynomial sequences that satisfy three-term recurrence
relations. There are, however, similarities between the theories of orthogo-
nal polynomial sequences and regular orthogonal L-polynomial sequences.
In particular, a monic orthogonal L-polynomial sequence {Qn(x)}∞n=0 sat-
isfies a system of three-term recurrence relations if and only if {Qn(x)}∞n=0

is regular. Two more similarities can be seen by comparing Theorem 5.5.1
and Theorem 5.5.2 to the next two theorems.

Theorem 5.7.1:

Let {Qn(x)}∞n=0 be a regular monic orthogonal L-polynomial sequence for
a strong moment distribution function Φ. Then, for n ∈ N, Qn(x) is the
nth denominator of the modified APT-fraction

λ1
1

β0x + β1 +
λ2

x
β1

+ β2 +
λ3

1
β2x + β3 +

λ4
x
β3

+ β4 + . . .
, (5.7.2a)

λnβn−1

βn
> 0, n ∈ N, (5.7.2b)
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with coefficients given by

β0 := 1, λ1 := −μ−1 = −H
(−1)
1 (μ),

β2m :=
H

(−2m+1)
2m (μ)

H
(−2m)
2m (μ)

�= 0, m ≥ 1,

β2m+1 := −H
(−2m−1)
2m+1 (μ)

H
(−2m)
2m+1 (μ)

�= 0, m ≥ 0,

λ2m+1 :=
−H

(−2m−1)
2m+1 (μ)H(−2m+2)

2m−1 (μ)

H
(−2m)
2m−1 (μ)H(−2m+1)

2m (μ)
�= 0, m ≥ 1,

λ2m+2 :=
−H

(−2m−1)
2m+2 (μ)H(−2m)

2m (μ)

H
(−2m)
2m+1 (μ)H(−2m−1)

2m+1

(μ) �= 0, m ≥ 0.

(5.7.2c)

Recall that the H
(n)
k (μ) are the Hankel determinants (5.1.12) associated

with the bisequence of moments {μk}∞k=−∞ given by (5.1.2) for the strong
moment distribution function Φ.

Theorem 5.7.2:

Let Qn(x) denote the nth denominator of a modified APT-fraction (5.7.2).
Then there exists a strong moment distribution function Φ such that the
sequence {Qn(x)}∞n=0 of denominators of (5.7.2) is the monic orthogonal
L-polynomial sequence for Φ.

L-polynomial analogues of the classical orthogonal polynomials and Gauss-
ian quadrature can be found in [dAD98; HJT98; Hen90; JT81; Nj̊a89].

Further reading

Basic references on classical moment problems include [Akh65; ST43;
Per57; Wal48; BGM96; Chi78].
Basic references on strong moment problems include [JN99; Nj̊a96].
Basic references on the trigonometric moment problem include [Akh65;
Fra71; Ger61; GS58; JNT89].
Basic references on orthogonal polynomials include [Sze67; Sze68; Fra71;
Chi78; VA87; NT89].
Basic references on orthogonal Laurent polynomials include [HvR86;
JN99].
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6
Continued fraction construction

Algorithms are developed to construct different continued fraction repre-
sentations of functions, known either by one or more formal series repre-
sentations or by a set of function values. The qd-algorithm constructs C-
fractions, the αβ- and FG-algorithms respectively deliver J- and M-fraction
representations, and inverse or reciprocal differences serve to construct
Thiele interpolating fractions. Also Thiele continued fraction expansions
can be obtained as a limiting form.

6.1 Regular C-fractions

Consider the FTS

L0(z) =
∞∑

k=0

ckzk, ck ∈ C (6.1.1)

and the regular C-fraction

f(z) = c0 +
∞

K
m=1

(amz

1

)
, c0 ∈ C, am ∈ C\{0}, m ≥ 1. (6.1.2)

In the Hankel determinants H
(m)
k (c) defined by (5.1.12) we put ck = 0 for

k < 0.

Theorem 6.1.1: [JT80, p. 223]

For the FTS L0(z) given by (6.1.1) there exists a regular C-fraction (6.1.2)
corresponding to L0(z) at z = 0 if and only if

H
(1)
k (c) �= 0, H

(2)
k (c) �= 0, k ≥ 1. (6.1.3)

As indicated in Theorem 6.1.2, the coefficients am can be obtained from the
series coefficients ck using Rutishauser’s qd-algorithm which we give here in

107
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two basic forms: a standard form which is unstable and a progressive form
which is more stable. A variant of the Viskovatov algorithm in Section 1.7,
called the normalised Viskovatov algorithm, can also be used.

The qd-algorithm. The qd-table consists of values q
(k)
� and e

(k)
� where

the superscript indicates a downward sloping diagonal and the subscript a
column:

q
(0)
1 q

(−1)
2 q

(−2)
3 . . .

e
(1)
0 e

(0)
1 e

(−1)
2 e

(−2)
3 . . .

q
(1)
1 q

(0)
2 q

(−1)
3

. . .
e
(2)
0 e

(1)
1 e

(0)
2 e

(−1)
3

q
(2)
1 q

(1)
2 q

(0)
3

. . .
e
(3)
0 e

(2)
1 e

(1)
2 e

(0)
3

q
(3)
1 q

(2)
2

. . . . . .

e
(4)
0

... e
(3)
1

... e
(2)
2

...
...

...
. . .

(6.1.4)

In its standard form, the qd-algorithm or quotient-difference algorithm
[Hen74, p. 609] associates with the FTS L0(z) given by (6.1.1), the values

e
(k+1)
0 = 0, k ≥ 0, (6.1.5a)

q
(k)
1 =

ck+1

ck
, k ≥ 0, (6.1.5b)

e
(k)
� = q

(k+1)
� − q

(k)
� + e

(k+1)
�−1 , � ≥ 1, k ≥ 1, (6.1.5c)

q
(k)
�+1 =

e
(k+1)
�

e
(k)
�

q
(k+1)
� , � ≥ 1, k ≥ 1 (6.1.5d)

which are computed from left to right and fill up the lower left half of table
(6.1.4), meaning under the principal diagonal with superscript (1). The
starting values (6.1.5b) and (6.1.5c) fill the first two columns. Equations
(6.1.5c) and (6.1.5d) are called the rhombus rules for the qd-algorithm be-
cause each connects four elements, either by addition or by multiplication,
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which form a rhombus in the qd-table:

q
(k)
�

+
e
(k+1)
�−1 e

(k)
�

+
×

q
(k+1)
� q

(k)
�+1

×
e
(k+1)
�

(6.1.6)

The rhombus rules are used to compute the elements e
(k)
� and q

(k)
�+1 in the

furthermost right corner of each rhombus.

Example 6.1.1: In some of the following examples we consider the expo-
nential function,

ez =
∞∑

k=0

zk

k!
, z ∈ C. (6.1.7)

Initialising e
(k+1)
0 = 0 and q

(k)
1 = 1/(k + 1) for k ≥ 0 and using (6.1.5)

delivers the following elements in the qd-table on and below the diagonal
with superscript (1):

0
1
2

0 − 1
6

1
3

1
6

0 − 1
12 − 1

10

1
4

3
20

. . .

0 − 1
20

...

1
5

...

0
...

...

Each additional value q
(k)
1 allows to compute one more upward sloping

diagonal in the qd-table.
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In its progressive form, which is numerically more stable, the qd-algorithm
fills up the upper right half of the table instead of the lower left half and
computes all values in the table from top to bottom. This form needs the
coefficients in the FTS of 1/L0(z). With

Λ0(1/L0) =
∞∑

k=0

dkzk, (6.1.8a)

the progressive form of the qd-algorithm [Hen74, p. 614] associates with
the FTS L0(z) given by (6.1.1), the values

q
(0)
1 = −d1

d0
, q

(−k)
k+1 = 0, k ≥ 1, (6.1.8b)

e
(−1)
0 = 0, e

(0)
1 =

d2

d1
, e

(−k)
k+1 =

dk+2

dk+1
, k ≥ 1, (6.1.8c)

e
(k+1)
� =

q
(k)
�+1

q
(k+1)
�

e
(k)
� , � ≥ 1, k ≥ 1, (6.1.8d)

q
(k+1)
� = q

(k)
� + e

(k)
� − e

(k+1)
�−1 , � ≥ 1, k ≥ 1. (6.1.8e)

The starting values (6.1.8b) and (6.1.8c) fill the first two rows.

Example 6.1.2: We continue Example 6.1.1. Initialising the qd-algorithm
with q

(−k)
k+1 = 0 and e

(−k)
k+1 = dk+2/dk+1 where L0(z) = Λ0(exp(z)), delivers

the following part of the qd-table:

1 0 0 0 0 . . .
0 − 1

2 − 1
3 − 1

4 − 1
5 . . .

1
2

1
6

1
12

1
20 . . .

− 1
6 − 1

6 − 3
20 . . .

1
6

1
10 . . .

− 1
10 . . .

. . .

The bottom downward sloping diagonal now contains the elements with
superscript (1).
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Theorem 6.1.2: [JT80, p. 229]

Let L0(z) be a given FTS (6.1.1). If (6.1.3) holds and if e
(k)
� , q

(k)
� satisfy

(6.1.5) or (6.1.8), then the coefficients of the regular C-fraction (6.1.2)
corresponding to L0(z), are given by

a1 = c1, a2� = −q
(1)
� , a2�+1 = −e

(1)
� , � ≥ 1. (6.1.9)

The following result explains why condition (6.1.3) is required in Theo-
rem 6.1.2: it guarantees that the qd-algorithm doesn’t break down.

Theorem 6.1.3: [Hen74, p. 610]

Let (6.1.1) be given. If there exists a positive integer n such that H
(m)
k (c) �=

0 for k = 0, 1, . . . , n and m ≥ 0, then the values q
(m)
� and e

(m)
� exist for

� = 0, 1, . . . , n and m ≥ 0 and they are given by

q
(m)
� =

H
(m)
�−1(c)H(m+1)

� (c)

H
(m)
� (c)H(m+1)

�−1 (c)
, e

(m)
� =

H
(m)
�+1 (c)H(m+1)

�−1 (c)

H
(m)
� (c)H(m+1)

� (c)
, � ≥ 1.

(6.1.10)

Taking m = 1, we find that the values q
(1)
� and e

(1)
� in (6.1.10) exist under

the condition (6.1.3) and we obtain a determinant representation for the
coefficients in (6.1.2).

Example 6.1.3: For

ez =
∞∑

k=0

zk

k!
, z ∈ C

we have ck = 1/k! and find that, for k ≥ 0 and � ≥ 1,

q
(k)
� =

k + �− 1
(k + 2�− 2)(k + 2�− 1)

, e
(k)
� =

−�

(k + 2�− 1)(k + 2�)
.

The regular C-fraction representation of exp(z) is

exp(z) = 1 +
z

1 +
−q

(1)
1 z

1 +
−e

(1)
1 z

1 +
−q

(1)
2 z

1 + . . .
, z ∈ C.
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Example 6.1.4: Applying the qd-algorithm to

√
z Arctan

(√
z
)

=
∞∑

k=1

(−1)k−1

2k − 1
zk, |z| ≤ 1, z �= −1,

yields a corresponding regular C-fraction

∞

K
m=1

(amz

1

)
,

√
z /∈ (−∞,−1) ∪ (1, +∞),

a1 = 1, am =
(m− 1)2

(2m− 3)(2m− 1)
, m ≥ 2.

(6.1.11)

Since all am > 0, (6.1.11) is actually an S-fraction.

Explicit formulas for q
(k)
� and e

(k)
� with more general expressions for ck can

be found in [BGM96, pp. 150–152].

The normalised Viskovatov algorithm. Let us adapt the method of
Viskovatov given in (1.7.7) and (1.7.9) as follows. From the FTS (6.1.1),
one defines

c̃0j =
{ 1, j = 0,

0, j > 0,
(6.1.12a)

c̃1j = cj+1z
j+1, j ≥ 0, (6.1.12b)

and computes

c̃m,j =
c̃m−2,j+1

c̃m−2,0
− c̃m−1,j+1

c̃m−1,0
, m ≥ 2, j ≥ 0. (6.1.12c)

The new values c̃m,j differ from the partial numerators in (1.7.10) only by
an equivalence transformation chosen such that the partial denominators
equal 1.

Theorem 6.1.4: [BGM96, pp. 133–134]

Let L0(z) be a given FTS (6.1.1). If (6.1.3) holds and if the coefficients
c̃m,j satisfy (6.1.12) with c̃m0 �= 0 for m ≥ 1, then the partial numerators
of the regular C-fraction (6.1.2) corresponding to L0(z), are given by

amz = c̃m0, m ≥ 1 .
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6.2 C-fractions

If in Theorem 6.1.4 some of the c̃m0 equal zero, Viskovatov’s method gen-
erates [BGM96, pp. 134–135] a C-fraction of the form

b0 +
a1z

α1

1 +
a2z

α2

1 +
a3z

α3

1 + . . .
. (6.2.1)

Let

L0(z) = c0 +
∞∑

j=1

ckj z
kj , kj+1 ≥ kj

and put

c̃0j =
{ 1, j = 0,

0, j > 0,

c̃10 = ck1 ,

c̃1j = ckj+1z
kj+1−k1 , j > 0.

The normalised Viskovatov algorithm (6.1.12c) now leads to a C-fraction
with

b0 = c0, a1z
α1 = c̃10z

k1 , amzαm = c̃m0, m ≥ 2.

Example 6.2.1: Consider f(z) = 1 + sin(z). From

L0(z) = 1 + z − 1
3!

z3 +
1
5!

z5 − . . . , z ∈ C (6.2.2)

we initialise

c̃10 = 1, c̃11 = −z2/6, c̃12 = z4/120, . . .

and from (6.1.12c),

1 + sin(z) = 1 +
z

1 +
z2/6

1 +
−7z2/60

1 + . . .
.
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6.3 S-fractions

Let us consider the S-fraction

f(z) =
∞

K
m=1

(amz

1

)
, am > 0, m ≥ 1. (6.3.1)

Since the S-fraction is a special case of a regular C-fraction, all theorems
of Section 6.1 apply to S-fractions, but more can be said. It is easier to
use the coefficients γk in the expansion

L0(z) =
∞∑

k=0

(−1)kck(−z)k =
∞∑

k=0

γk(−z)k, (6.3.2)

rather than the standard ck because the following determinant conditions
take on a simpler form.

Theorem 6.3.1: [BGM96, pp. 197–199]

Let L0(z) be a FTS of the form (6.1.1) with c0 = 0. Then there exists an
S-fraction (6.3.1) corresponding to L0(z) if and only if the Hankel deter-
minants associated with {γk} satisfy

H
(1)
k (γ) > 0, H

(2)
k (γ) > 0, k ≥ 1. (6.3.3)

The determinants H
(m)
k (c) and H

(m)
k (γ) are related as in (5.1.14) and the

conditions on the Hankel determinants in Theorem 6.3.1 therefore coincide
with the conditions in part (A) of Theorem 5.1.6.

6.4 P-fractions

Condition (6.1.3) expresses that all elements in the sequence T0, defined
in (4.3.1), of Padé approximants to L0(z) are distinct. If (6.1.3) does not
hold, then the Padé table contains square blocks of equal elements that are
traversed by the staircase T0. In that case the qd-algorithm breaks down
and the representation of L0(z) by (6.1.2) does not hold anymore.

Example 6.4.1: We reconsider (6.2.2) for f(z) = 1 + sin(z). The qd-
algorithm cannot be initialised because (6.1.5b) breaks down. For the
purpose of the subsequent examples we give part of the Padé table for
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f(z):

1
1

1− z

1
1− z + z2

. . .

1 + z 1 + z
1 + 5

6z

1− 1
6z + 1

6z2
. . .

1 + z 1 + z
1 + z + 1

6z2

1 + 1
6z2

. . .

1 + z − 1
6z3 1 + z − 1

6z3
1 + z + 1

20z2 − 7
60z3

1 + 1
20z2

. . .

1 + z − 1
6z3 1 + z − 1

6z3 . . .

1 + z − 1
6z3 + 1

120z5
...

...

(6.4.1)

From Theorem 4.4.1 we know that the sequence of P-fraction approximants
picks up one Padé approximant per block in the Padé table. But P-fractions
cannot directly be constructed using the qd-algorithm. We first construct
a related continued fraction.

The qd-algorithm revisited. It is possible to define staircases, that
jump over square blocks in the Padé table and of which the elements can
be obtained as successive approximants of a continued fraction [CW79].
When the staircase T0 traverses a block of size t + 1 with corner elements
rm,n, rm,n+t, rm+t,n and rm+t,n+t, and all other elements in the Padé table
are distinct, then we consider the adapted staircase

T ∗
0 = {r0,0, r1,0, . . . , rn+t−k+1,n+t−k, rn+t−k+1,n+t+1,

rn+t−k+2,n+t+1, . . . , rn+t+2,n+t+1, rn+t+2,n+t+2, . . . } , 1 ≤ k ≤ t
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Figure 6.4.1: Adapted staircase T ∗
0 with k = 3.

rm+t,n rm+t,n+t

rm,n rm,n+t

and a continued fraction of the form

c0 +
c1z

1 +
−q

(1)
1 z

1 +
−e

(1)
1 z

1 + · · · +
−q

(1)
m−1z

1 +
−e

(1)
m−1z

1 +

−v
(t+1)
k,1 zk+1

1− v
(t+1)
k,k+1z − · · · − v

(t+1)
k,2 zk +

−v
(t+1)
k,k+2z

1 +

k

K
i=1

(
−v

(t+1)
k,k+i+2z

1 + v
(t+1)
k,k+i+2z

)
+

−q
(1)
n+t+2z

1 +
−e

(1)
n+t+2z

1 +
−q

(1)
n+t+3z

1 +
−e

(1)
n+t+3z

1 + . . .
. (6.4.2)

This staircase hits the block in the Padé table from above at the entry
rm,n+t−k with m = n + t − k + 1, then skips the other block entries and
goes down column n+t+1 to recapture the old staircase T0 at rm+k+1,n+t.
It is this vertical movement down column n + t + 1 that introduces the v-
values in (6.4.2). Similar continued fractions can be constructed of which
the convergents are the elements on a special staircase hitting the block of
equal entries from the left, and passing below the block to move horizontally
along row m + t + 1 while introducing h-values [CW79].

Example 6.4.2: With f(z) = 1 + sin(z) the staircase T0 hits a block in
the Padé table (6.4.1) for n = 0, t = 1 and k = 1. The adapted staircase
T ∗

0 proceeds via

T ∗
0 = {r0,0, r1,0, r1,2, r2,2, r3,2, r3,3, . . . } .
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Since the qd-algorithm breaks down when (6.1.3) does not hold, we need
new rules to compute q

(m−n−t)
n+t , e

(m−n−t)
n+t and q

(m−n−t+i−1)
n+t+2 for 1 ≤ i ≤

t + 1. These are:

q
(m−n−t)
n+t+1

t+1∏
j=1

e
(m−n−j+1)
n+j−1 = e(m−n+t+1)

n

t+1∏
j=1

q(m−n+j)
n , (6.4.3a)

q
(m−n−t)
n+t+1 + e

(m−n−t)
n+t+1 = e(m−n+t+1)

n + q
(m−n+t+1)
n+1 , (6.4.3b)

and for k = 1, 2, . . . , t,

q
(m−n−t)
n+t+1

k∏
j=1

e
(m−n−t+j−1)
n+t−j+1 + e

(m−n+t+2)
n+t+1

k∏
j=1

q
(m−n−t+j−1)
n+t+2 =

e(m−n+t+1)
n

k∏
j=1

q(m−n+t−j+2)
n + q

(m−n+t+1)
n+1

k∏
j=1

e
(m−n+t−j+2)
n+j , (6.4.3c)

e
(m−n+t+2)
n+t+1

t+1∏
j=1

q
(m−n−t+j−1)
n+t+2 = q

(m−n+t+1)
n+1

t+1∏
j=1

e
(m−n+t−j+2)
n+j . (6.4.3d)

We now identify the new values v
(t+1)
k,i in (6.4.2).

Theorem 6.4.1: [CW79]

Let the Padé table for L0(z) contain a block of size t+1 with corners rm,n,
rm,n+t, rm+t,n and rm+t,n+t. Then

v
(t+1)
1,1 = e

(m−n−t)
n+t q

(m−n−t)
n+t+1 , (6.4.4a)

v
(t+1)
1,2 = q

(m−n−t)
n+t+1 , (6.4.4b)

v
(t+1)
1,3 = e

(m−n−t)
n+t+1 , (6.4.4c)

v
(t+1)
1,4 = q

(m−n−t)
n+t+2 , (6.4.4d)

and for k > 1 and i = 2, 3, . . . , 2k + 1:

v
(t+1)
k,1 = e

(m−n−t+k−1)
n+t−k+1 v

(t+1)
k−1,1, (6.4.4e)

v
(t+1)
k,i = v

(t+1)
k−1,i−1, (6.4.4f)

v
(t+1)
k,2k+2 = q

(m−n−t+k−1)
n+t+2 . (6.4.4g)



118 6. CONTINUED FRACTION CONSTRUCTION

Example 6.4.3: We recall from Example 6.4.2 that for f(z) = 1 + sin(z)
we have n = 0, t = 1, k = 1 and hence m = 1. Its continued fraction
representation of the form (6.4.2) is given by

1 + sin(z) = 1 +
z

1 +
z2/6

1− z/6 +
z/6
1 +

7z/10
1− 7z/10 +

−q
(1)
3 z

1 + . . .

and the first few approximants are

f0 = 1,

f1 = 1 + z,

f2 =
1 + 5

6z

1− 1
6z + 1

6z2
,

f3 =
1 + z + 1

6z2

1 + 1
6z2

,

f4 =
1 + z + 1

20z2 − 7
60z3

1 + 1
20z2

.

(6.4.5)

Obtaining the P-fraction. By means of the formulas (1.5.1) and (1.6.4),
a suitable contraction of the continued fraction that picks up one element
per block in the Padé table along the staircase-like path T ∗

0 , delivers the
P-fraction representation of L0(z).

Example 6.4.4: The P-fraction representation of f(z) = 1 + sin(z) is
given by

f(z) = 1 +
1

1/z +
1

6/z +
1

−10/7z + . . .
.

Its first four approximants equal r0,0, r1,0, r2,2 and r3,2 of (6.4.1), respec-
tively. They also equal the approximants f0, f1, f3 and f4 of (6.4.2) given
in (6.4.5).

Generalised Viskovatov algorithm. P-fractions are equivalent to frac-
tions of the form

π0(z) +
∞

K
m=1

(
zαm

πm(z)

)
(6.4.6)
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where for m ≥ 0 the πm(z) are polynomials in z of degree βm and where
αm ≥ 0. A continued fraction of the form (6.4.6), corresponding to (6.1.1),
can be constructed using a generalised form of Viskovatov’s algorithm
(1.7.9) [BGM96, p. 135; Mag62b]. Define L1(z) = 1, choose β0 ≥ 0 and
denote the partial sum of degree n of a FTS L(z) by Pn(L(z)). We recall
that the order of a FTS L(z), which is the degree of its first non-zero term,
is denoted by λ(L) and defined in (2.2.7). Start with

π0(z) = Pβ0 (L0/L1) ,

α1 = λ (L0 − π0L1) ,

β1 = α1 − β0,

(6.4.7a)

and compute for m ≥ 1,

Lm+1(z) = z−αm (Lm−1 − πm−1Lm) (z),

πm(z) = Pβm
(Lm/Lm+1) ,

αm+1 = λ (Lm − πmLm+1) ,

βm+1 = αm+1 − βm .

(6.4.7b)

The nth approximant of (6.4.6) is the Padé approximant of degree β0 +∑n
m=1 βm in the numerator and degree

∑n
m=1 βm in the denominator.

Example 6.4.5: We reconsider f(z) = 1 + sin(z) for which

L0(z) = 1 + z − z3

6
+

z5

120
− . . . .

From (6.4.7) we find for β0 = 1 and L1(z) = 1,

π0(z) = 1 + z, α1 = 3, β1 = 2

π1(z) = −6− 3
10

z2, α2 = 2, β2 = 0

resulting in the corresponding continued fraction

f(z) = 1 + z +
z3

−6− 3
10z2 + . . .

.

Its first two approximants are the Padé approximants r1,0(z) and r3,2(z)
of (6.4.1).
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6.5 J-fractions
J-fractions can be obtained through their relationship with associated con-
tinued fractions: if in the associated continued fraction (6.5.1) we let
z = 1/w, omit the initial term c0 and make an equivalence transformation,
we obtain the J-fraction (2.3.8). A necessary condition for the existence of
an associated continued fraction is weaker than for regular C-fractions.

Theorem 6.5.1: [JT80, p. 244]

If for a given FTS L0(z) there exists an associated continued fraction

c0 +
α1z

1 + β1z +

∞

K
m=2

( −αmz2

1 + βmz

)
, αm ∈ C\{0}, βm ∈ C, (6.5.1)

which corresponds to L0(z), then

H
(1)
k (c) �= 0, k ≥ 1. (6.5.2)

The coefficients αm and βm in the associated continued fraction (6.5.1),
can be computed as follows. Set [JT80, p. 248]

γ−1 = 1, δ−1 = 0, b0,0 = 1 (6.5.3a)

and compute for m ≥ 0 the values

γm =
m∑

j=0

bm,jc2m+1−j , (6.5.3b)

δm =
1

γm

⎛⎝ m∑
j=0

bm,jc2m+2−j

⎞⎠ , (6.5.3c)

αm+1 =
γm

γm−1
, (6.5.3d)

βm+1 = δm−1 − δm, (6.5.3e)

bm−1,−1 = 0, bm,m+1 = 0, bm+1,0 = 1, (6.5.3f)
bm+1,j = bm,j + βm+1bm,j−1 − αm+1bm−1,j−2, j = 1, 2, . . . ,m + 1.

(6.5.3g)

Algorithm (6.5.3) is more general than the qd-algorithm and only requires
condition (6.5.2). But in practice it turns out that the values αm and βm

are ill-conditioned functions of the sequence of coefficients ck.
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Example 6.5.1: The function

f(z) = 1 +
√

z Arctan
(√

z
)

has a FTS given by

L0(z) = 1 + z − z2

3
+

z3

5
− z4

7
+

z5

9
− . . . , |z| ≤ 1, z �= −1.

Algorithm (6.5.3) delivers the following coefficients:

m αm βm γm δm bm,0 bm,1 bm,2

−1 1 0
0 1 − 1

3 1
1 1 1

3
4
45 − 6

7 1 1
3

2 4
45

11
21

64
11025 − 15

11 1 6
7

3
35

3 16
245

39
77 . . .

...
...

...
...

The J-fraction representation of f(z) is

f(z) = 1 +
1

1 + z/3 +
−4z2/45

1 + 11z/21 + . . .
.

For a determinant representation of αm and βm we introduce the values

h
(1)
0 = 0, h

(1)
1 = c1, h

(1)
k =

∣∣∣∣∣∣∣∣
c1 c2 . . . ck−1 ck+1

...
...

...
...

ck ck+1 . . . c2k−2 c2k

∣∣∣∣∣∣∣∣ , k ≥ 2.

(6.5.4)

Theorem 6.5.2: [JT80, p. 245]

Let L0(z) be given by (6.1.1). If (6.5.2) holds then the coefficients αm and
βm of the associated continued fraction (6.5.1) are given by

αm =
H

(1)
m (c)H(1)

m−2(c)(
H

(1)
m−1(c)

)2 , βm =
h

(1)
m−1

H
(1)
m−1

(c)− h
(1)
m

H
(1)
m

(c), m ≥ 1.

(6.5.5)
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6.6 M-fractions
We now study the case where the continued fraction approximant corre-
sponds to two given power series, one at z = 0 and one at z = ∞. An
appealing situation is that the order of correspondence of the nth approxi-
mant equals n at z = 0 and n + 1 at z = ∞. We assume that we are given
a pair of FPS

L0(z) =
∞∑

k=0

ckzk, (6.6.1a)

L∞(z) = −
∞∑

k=1

c−kz−k. (6.6.1b)

The Hankel determinants H
(m)
k (c) introduced in (5.1.12) are now associ-

ated with the bisequence {ck}∞k=−∞.

Theorem 6.6.1: [BGM96, pp. 359–360]

Let (6.6.1) be given. An M-fraction representation (2.3.14) corresponding
to L0(z) and L∞(z) with Fm �= 0 and Gm �= 0 can be constructed if

H(−m+1)
m (c) �= 0, H(−m)

m (c) �= 0, m ≥ 1. (6.6.2)

The FG-algorithm. Under the conditions of Theorem 6.6.1, the follow-
ing qd-type algorithm developed in [MCM76] computes the elements of
the corresponding M-fraction [BGM96, p. 359]. The FG-table consists of
entries arranged as

...
...

...
...

F
(−1)
1 G

(−1)
1 F

(−1)
2 G

(−1)
2 . . .

F
(0)
1 G

(0)
1 F

(0)
2 G

(0)
2 . . .

F
(1)
1 G

(1)
1 F

(1)
2 G

(1)
2 . . .

...
...

...
...

(6.6.3)

As can be seen from Theorem 6.6.2, the principal row in the table is the
one with superscript (0). The first three columns are determined by the
initialisation

F
(s)
1 = cs, G

(s)
1 = −cs/cs−1, F

(s)
2 = G

(s+1)
1 −G

(s)
1 , s = 0,±1,±2, . . .

(6.6.4a)
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and the remaining columns by the recursions

G
(s+1)
j+1 = F

(s+1)
j+1 G

(s)
j /F

(s)
j+1, j ≥ 1, (6.6.4b)

s = 0,±1,±2, . . . .

F
(s)
j+1 = F

(s+1)
j + G

(s+1)
j −G

(s)
j , j ≥ 2, (6.6.4c)

Theorem 6.6.2: [BGM96, pp. 359–360]

Let the FTS L0(z) and L∞(z) be given by (6.6.1). If (6.6.2) holds and if
F

(s)
m and G

(s)
m satisfy (6.6.4), then the coefficients in the M-fraction repre-

sentation (2.3.14) corresponding to L0(z) with order of correspondence n
and to L∞(z) with order of correspondence n + 1, are given by

Fm = F (0)
m , Gm = G(0)

m , m ≥ 1.

In addition, the entries F
(s)
m and G

(s)
m with s �= 0 are the coefficients in the

M-fractions (4.6.1) and (4.6.2), of which the correspondence properties to
L0(z) and L∞(z) are detailed in Theorem 4.6.1.
The determinant representation for F

(s)
m and G

(s)
m explains why we need

condition (6.6.2) for Theorem 6.6.2.

Theorem 6.6.3: [BGM96, p. 360]

If (6.6.2) holds, then

F (s)
m =

−H
(s−m+1)
m (c)H(s−m+2)

m−2 (c)

H
(s−m+2)
m−1 (c)H(s−m+1)

m−1 (c)
, (6.6.5a)

G(s)
m =

−H
(s−m+1)
m (c)H(s−m+1)

m−1 (c)

H
(s−m+2)
m−1 (c)H(s−m)

m (c)
, (6.6.5b)

for all m ≥ 1 and s ∈ Z, where H
(s)
−1 = 1.

Example 6.6.1: Let 1F1(a; b; z) be defined as in (16.1.2). An M-fraction
expansion for 1F1(a; b + 1; z)/1F1(a; b; z) is given in [Dij77]:

1F1(a; b + 1; z)
1F1(a; b; z)

=
b

b + z −
z(b + 1− a)
b + 1 + z − · · · −

z(b + n− a)
b + n + z − . . .

,

a, b ≥ 0, z ≥ 0 .
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It corresponds to the FTS about z = 0 and to the asymptotic expansion
about z = +∞ of the left-hand side, and converges to the left-hand side
on the positive real axis. The special case with b = a is

1F1(a; a + 1; z)
exp(z)

=
a

a− z −
z

a + 1 + z − · · · −
nz

a + n + z − . . .
,

a ≥ 0, z ≥ 0 .

Example 6.6.2: The following illustrates that condition (6.6.2) is suffi-
cient but not necessary. For

L0(z) = 1, |z| < 1,

L∞(z) = −1/z, |z| > 1

we obtain the M-fraction

1
1− z +

z

1− z +
z

1− z + . . .
.

All the poles and zeroes of its approximants lie on the unit circle.

6.7 Positive T-fractions
When considering correspondence to two power series, the roles of 0 and
∞ are sometimes interchanged. Instead of (6.6.1), we then consider

L̃0(z) = −
∞∑

k=1

c−kzk, (6.7.1a)

L̃∞(z) =
∑∞

k=0
ckz−k. (6.7.1b)

Theorem 6.7.1: [JTW80]

Let L̃0(z) and L̃∞(z) be given by (6.7.1). There exists a positive T-fraction
of the form (2.3.10) with

Fm > 0, Gm > 0, m ≥ 1,

corresponding to L̃0(z) at z = 0 and to L̃∞(z) at z = ∞ if and only if the
Hankel determinants satisfy
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H(−m+1)
m (c) > 0, m ≥ 1,

H
(−2m)
2m (c) > 0, m ≥ 1,

H
(−2m+1)
2m−1 (c) < 0, m ≥ 1.

(6.7.2)

The Hankel determinants H
(m)
k (c) are related to the Hankel determinants

for the sequence {μk}∞k=−∞ = {(−1)kck}∞k=−∞ by (5.1.15). The conditions
on the Hankel determinants in Theorem 6.7.1 therefore coincide with the
conditions in part (C) of Theorem 5.1.6.

6.8 Thiele fractions

Let f(z) be known at the distinct points {z0, z1, z2, . . . }. Inverse differences
for f(z) are given by

ϕ0[zk] := f(zk), k ≥ 0, (6.8.1a)

ϕ1[zk, z�] :=
z� − zk

ϕ0[z�]− ϕ0[zk]
, � > k ≥ 0, (6.8.1b)

ϕ�[z0, . . . , z�] :=
z� − z�−1

ϕ�−1[z0, . . . , z�−2, z�]− ϕ�−1[z0, . . . , z�−1]
, � ≥ 1 .

(6.8.1c)

The continued fraction

t(z) = ϕ0[z0] +
∞

K
m=1

(
z − zm−1

ϕm[z0, . . . , zm]

)
(6.8.2)

is a Thiele interpolating continued fraction for f(z) [Thi06; BGM96, pp. 343–
344], satisfying

t(zk) = f(zk), k = 0, 1, . . . .

Instead of inverse differences one can also compute reciprocal differences
for f(z):

ρ0[zk] := f(zk), k ≥ 0, (6.8.3a)

ρ1[zk, z�] :=
z� − zk

f(z�)− f(zk)
, k ≥ 0, � ≥ 0, k �= �, (6.8.3b)

ρ�[z0, . . . , z�] := ρ�−2[z0, . . . , z�−2]+
z� − z�−1

ρ�−1[z0, . . . , z�−2, z�]− ρ�−1[z0, . . . , z�−1]
, � ≥ 2.

(6.8.3c)
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The reciprocal differences are related to the inverse differences by

ϕ0[zk] = ρ0[zk], k ≥ 0,

ϕ1[zk, z�] = ρ1[zk, z�], k ≥ 0, � ≥ 0, k �= �,

ϕ�[z0, . . . , z�] = ρ�[z0, . . . , z�]− ρ�−2[z0, . . . , z�−2], � ≥ 2.

Theorem 6.8.1: [MT51, p. 111]

A determinant formula for the reciprocal differences is given for � ≥ 1, by

ρ2�−1[z0, . . . , z2�−1] = (6.8.4a)∣∣∣∣∣∣∣
1 f(z0) . . . z�−2

0 z�−2
0 f(z0) z�−1

0 z�
0

...
...

...
...

1 f(z2�−1) . . . z�−2
2�−1 z�−2

2�−1f(z2�−1) z�−1
2�−1 z�

2�−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 f(z0) . . . z�−2

0 z�−2
0 f(z0) z�−1

0 z�−1
0 f(z0)

...
...

...
...

1 f(z2�−1) . . . z�−2
2�−1 z�−2

2�−1f(z2�−1) z�−1
2�−1 z�−1

2�−1f(z2�−1)

∣∣∣∣∣∣∣
,

ρ2�[z0, . . . , z2�] = (6.8.4b)∣∣∣∣∣∣∣
1 f(z0) . . . z�−1

0 z�−1
0 f(z0) z�

0f(z0)
...

...
...

1 f(z2�) . . . z�−1
2� z�−1

2� f(z2�) z�
2�f(z2�)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 f(z0) . . . z�−1

0 z�−1
0 f(z0) z�

0
...

...
...

1 f(z2�) . . . z�−1
2� z�−1

2� f(z2�) z�
2�

∣∣∣∣∣∣∣
.

We can see from Theorem 6.8.1 that the reciprocal differences offer the
advantage that they do not depend on the numbering of their arguments
z0, . . . , z�.
A continued fraction expansion for f(z) at z = u is obtained as the limiting
value of (6.8.2) where all zk → u [MT51, pp. 120–121]:

lim
zk→u
k≥0

t(z) = ϕ0(u) +
∞

K
m=1

(
z − u

ϕm(u)

)
. (6.8.5)

Here
ϕm(u) := lim

zi→u
i=0,...,m

ϕm[z0, . . . , zm], m ≥ 0.
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The recursive scheme for the values ϕ�(u) is given by [MT51, pp. 117–119]

ϕ0(u) = f(u) =: ρ0(u) (6.8.6a)

ϕ1(u) =
(

df

dz

)−1

z=u

=: ρ1(u) (6.8.6b)

ϕ�(u) = �

(
dρ�−1(z)

dz

)−1

z=u

, � ≥ 2, (6.8.6c)

where
ρ�(z) := lim

zi→z
i=0,...,�

ρ�[z0, . . . , z�],

and hence
ρ�(z) = ϕ�(z) + ρ�−2(z), � ≥ 2. (6.8.6d)

An alternative to this scheme for the construction of a Thiele continued
fraction expansion is based on Viskovatov’s algorithm. From the FTS of
f(z) at u,

f(z) = c
(0)
0 + c

(0)
1 (z − u) + c

(0)
2 (z − u)2 + . . .

the coefficients ϕ�(u) in (6.8.6) can numerically be computed as follows

ϕ0(u) = c
(0)
0 , (6.8.7a)

ϕ1(u) = 1/c
(0)
1 , (6.8.7b)

c
(1)
k = −ϕ1(u)c(0)

k+1, k ≥ 1, (6.8.7c)

ϕ�(u) = c
(�−2)
1 /c

(�−1)
1 , � ≥ 2, (6.8.7d)

c
(�)
k = c

(�−2)
k+1 − ϕ�(u)c(�−1)

k+1 , k ≥ 1, � ≥ 2. (6.8.7e)

For instance, ϕ2(u) and ϕ3(u) are given by

ϕ2(u) =
−
(
c
(0)
1

)2

c
(0)
2

,

ϕ3(u) =
−
(
c
(0)
2

)2

/c
(0)
1(

c
(0)
2

)2

− c
(0)
1 c

(0)
3

.
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Example 6.8.1: Take

f(z) =
Ln(1 + z)

z
=

∞∑
k=0

(−1)k

k + 1
zk .

Applying (6.8.7) to the FTS of f(z) at z = 0 delivers the Thiele continued
fraction expansion of f(z) at z = 0,

Ln(1 + z)
z

= 1 +
z

−2 +
z

−3/4 +
z

−16 +
z

−5/36 + . . .

= 1 +
−z/2

1 +

∞

K
m=2

⎛⎜⎝
amz

m(m + 1)
1

⎞⎟⎠,

a2k = (k + 1)2, a2k+1 = k2, k = 1, 2, . . . .

(6.8.8)
– – –
– – –
– – –



7
Truncation error bounds

When investigating the convergence of continued fractions for functions
f(z), as in Chapter 3, the goal is to find largest possible convergence sets.
In the present chapter the approach is different. Starting from a given
continued fraction, the aim is to obtain smallest possible truncation error
bounds for |f(z) − Sn(z; wn)|. The truncation error bounds are often de-
rived for a convergence set which contains the elements of the given contin-
ued fraction. The smaller this convergence set, the sharper the truncation
error bounds.
There are two types of truncation error bounds. The a priori bound de-
pends upon the elements of the continued fraction, whereas the a posteriori
bound depends upon fn − fn−1, where fn is the nth approximant. In this
chapter the main emphasis is on a priori bounds, even though a posteriori
bounds can be sharper because they exploit the information contained in
computed approximants.

7.1 Parabola theorems
We recall the parabola theorem from Section 3.3 now emphasising the trun-
cation error bound. The parabola theorem deals with continued fractions
K(am/1) where all elements am are located in a parabolic region

Pα =
{
a ∈ C : |a| − �(ae−2αi) ≤ 1/2 cos2(α)

}
, |α| < π/2. (7.1.1)

Theorem 7.1.1: Parabola theorem [LW92, p. 131]

The even and odd parts of K(am/1) with all am ∈ Pα converge to finite
values. The half plane Vα given by

Vα =
{
w ∈ C : �(we−αi) > −1/2 cos(α)

}
is a value set for Pα. If, in addition, the continued fraction converges to a
value f then

|f − Sn(wn)| ≤ 2|a1|/ cos(α)
n∏

k=2

(
1 +

cos2(α)
4(k − 1)|ak|

) , wn ∈ V α . (7.1.2)

129
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The bound (7.1.2) holds for all wn in the half plane, in particular for wn = 0
which is always in Vα.

Example 7.1.1: We apply the parabola theorem to

z cot(z)− 1 =
∞

K
m=1

(−z2/(4m2 − 1)
1

)
=
−z2/3

1 +
−z2/15

1 +
−z2/35

1 + . . .
(7.1.3)

with z = 1/2. For any α ∈ (−π/2, π/2), all the elements of (7.1.3) are
in Pα. For α = 0 all elements of (7.1.3) are on the axis of the parabola,
more specifically in the interval (−1/12, 0) of the negative real axis, and
the error bound (7.1.2) is minimal. For the fifth approximant of (7.1.3),
the truncation error bound (7.1.2) gives for z = 1/2

|(z cot(z)− 1)− S5(z; w)| ≤ 0.994× 10−6, �w > −1/2 (7.1.4)

while
(z cot(z)− 1)− S5(z; 0) = −0.185 . . .× 10−12 .

The error bound is a rather rough estimate.

Example 7.1.2: Let z = 1.17(1 − i) in (7.1.3). Then we cannot choose
α = 0 in (7.1.1). We observe that if a1 = −z2/3 = 0.9126i ∈ Pα, then
also am ∈ Pα for m ≥ 1. We therefore determine α such that a1 ∈ Pα

and such that cos(α) is large in order to minimise (7.1.2). The value
α = π/12 satisfies these conditions. For the fifth approximant of (7.1.3),
the truncation error bound (7.1.2) for z = 1.17(1− i) gives

|(z cot(z)− 1)− S5(z; 0)| < 0.385× 10−1,

while
|(z cot(z)− 1)− S5(z; 0)| = 0.277 . . .× 10−6 .

The error bound again largely overestimates the true error.

There exists a generalisation of Theorem 7.1.1 where a single parabola is
replaced by a sequence of parabolas determined by parameters gn ∈ (0, 1)
for n ≥ 1 [LW92, pp. 136–137]. In (7.1.1) 1/2 cos2(α) is then replaced
by 2gn−1(1 − gn) cos2(α). This influences the width of the parabolas. If
gn → 0 the parabolas degenerate to a ray from the origin at the angle 2α.
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7.2 The oval sequence theorem
We recall from Section 3.3 that {Vn} with

Vn = {w ∈ C : |w − Cn| < rn} , n = 0, 1, 2, . . . (7.2.1)

is a sequence of value sets for the sequence {En} of element sets given by

En =
{
a ∈ C : |a(1 + Cn)− Cn−1(|1 + Cn|2 − r2

n)|+ rn|a| ≤
rn−1(|1 + Cn|2 − r2

n)
}

, n = 1, 2, 3, . . . (7.2.2)

if

0 < rn < |1 + Cn|, n = 0, 1, 2, . . . (7.2.3a)

|Cn−1|rn ≤ |1 + Cn|rn−1, n = 1, 2, 3, . . . . (7.2.3b)

The sets Vn in (7.2.1) are disks, the sets En in (7.2.2) are Cartesian ovals.

Theorem 7.2.1: Oval sequence theorem [LW92, pp. 145–146]

Let K(am/1) converge to the finite value f . If an ∈ En for n ∈ N and
wn ∈ V n for n ∈ N0, then

|f − Sn(wn)| ≤ 2rn
|C0|+ r0

|1 + Cn| − rn

n−1∏
k=1

Mk, n ≥ 1, (7.2.4)

where

Mk = max
w∈V k

∣∣∣∣ w

1 + w

∣∣∣∣ .

Note that, while the true truncation error f − Sn(wn) varies with wn, the
truncation error upper bound in Theorem 7.2.1 holds for all wn ∈ Vn. The
proof of the oval sequence theorem can be adapted to deliver a relative
truncation error:∣∣∣∣f − Sn(wn)

f

∣∣∣∣ ≤ 2rn

|1 + Cn| − rn

n−1∏
k=1

Mk, n ≥ 1. (7.2.5)

The bound in Theorem 7.2.1 is an upper bound for |f−Sn(0)| if 0 ∈ Vn from
a certain n on. If not, nothing can be inferred about |f−Sn(0)| from (7.2.4).
Enlarging Vn such that 0 ∈ Vn yields less sharp truncation error bounds if
the tails f (n) ∈ V n are not close to zero. However, a truncation error bound
for Sn(0) can be obtained from a truncation error bound for Sn(w) and
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vice versa. Based on (1.3.2), (1.3.3) and the determinant formula (1.3.4),
we have

Sn(w)− Sn(0) =
(−1)nw

∏n
k=1 ak

(Bn + wBn−1)Bn
.

where Bn is the nth denominator of K(am/1).
We now give an explicit formula for Mk in (7.2.4), obtained directly from
basic properties of linear fractional transformations.

Lemma 7.2.1:

If 0 < r and C ∈ C with r < |1 + C|, then

max
w∈V

∣∣∣∣ w

1 + w

∣∣∣∣ =
∣∣C + |C|2 − r2

∣∣+ r

|1 + C|2 − r2
, (7.2.6)

where V = {w : |w − C| < r}.

For a given continued fraction, the sharpness of the truncation error bound
(7.2.4) in the oval sequence theorem depends on the choice of Cn and rn.
The smaller the element set En containing the partial numerator an, the
sharper the truncation error bound becomes. The difficulty in applying
Theorem 7.2.1 is to find good values of Cn and rn. We now discuss this
issue in more detail.
When all an are in (−1/4, +∞), the oval and the disk are reduced to inter-
vals on the real axis, and we can in many cases obtain the best oval. This
important special case is discussed in Section 7.3.
In the other cases, there is no general rule for how to proceed in order to
find best possible Cn and rn. The following can be said.

We know from Section 3.2 that, in case of convergence, the nth tail
of the continued fraction is in V n, and that all approximants of the
nth tail are located in Vn. So it is natural to choose the centre Cn

of Vn to be an approximant or an approximation of the nth tail. Let
{f (n)} be the sequence of tails for the continued fraction K(am/1).
Then f (n−1) = an/(1 + f (n)) for all n, or equivalently, if we exclude
the case f (n) = −1, it holds that f (n−1)(1 + f (n)) − an = 0. This
suggests to choose {Cn}n∈N such that Cn−1(1 + Cn)− an is small. In
the special case that we have a convergent limit periodic continued
fraction K(am/1) with limm→∞ am = a, we know from Theorem 3.5.2
that the sequence {f (n)} converges to c = (

√
1 + 4a− 1)/2. Thus we

can choose Cn = c.
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Example 7.2.1: Let f be defined by the limit periodic S-fraction

f(z) =
∞

K
m=1

(amz

1

)
, am = 1 + δm, δm ≥ 0, lim

m→∞ δm = 0 . (7.2.7)

For z = −4+2i, the sequence of tails of (7.2.7) converges to c = (
√

1 + 4z−
1)/2 = 2i. When choosing all Cn = 2i, the sets Vn shrink in the limit to
the point 2i because of the limit periodicity and the factor Mk in (7.2.4)
tends to |2i/(1 + 2i)| = 2/

√
5 � 0.894. The rate at which am tends to

limm→∞ am is not crucial. The determining factors in the truncation error
upper bound (7.2.4) are Cn = c and rn, as can be seen from (7.2.6).

Remains to determine, for chosen Cn, the values rn such that an ∈ En

given by (7.2.2) and such that the conditions (7.2.3) are satisfied. The
following lemma helps to find a suitable sequence {rn}.

Lemma 7.2.2: [Lor03]

Let K(am/1) be given and let {Cn} be a sequence of complex numbers such
that |1 + Cn| − |Cn−1| > 0 for all n ∈ N. If

r0 = r1, rn = sup
m≥n

2
∣∣∣∣Cm−1 − am

1 + Cm

∣∣∣∣
1−

∣∣∣∣ Cm−1

1 + Cm

∣∣∣∣ , n ∈ N,

satisfies

rn ≤ |1 + Cn| − |Cn−1|
2

, n ∈ N, (7.2.8)

then an ∈ En for all n ∈ N with En defined by (7.2.2), and (7.2.3) holds.
Automatically {Vn} with Vn given by (7.2.1) is a sequence of value sets for
{En}.

Example 7.2.2: We reconsider the continued fraction in Example 7.2.1 in
order to illustrate Lemma 7.2.2. With z = −4 + 2i and Cn = c = 2i the
values rn are given by

r0 = r1, rn =
4
√

5√
5− 2

δn, n = 1, 2, 3, . . . .
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If

δn ≤ (
√

5− 2)2
√

5
40

, n = 1, 2, 3, . . . (7.2.9)

we find

rn ≤ |1 + c| − |c|
2

=
√

5− 2
2

, n = 1, 2, 3, . . .

and (7.2.8) is satisfied. With Cn = c = 2i and rn = r = 1/2(
√

5 − 2), we
obtain from Lemma 7.2.1,

Mn =

∣∣c + |c|2 − r2
∣∣+ r

|1 + c|2 − r2
= 0.918 . . . , n ≥ 1.

Finally, we obtain from the oval sequence theorem for z = −4 + 2i,

|f(z)− S11(z; w11)| < 2r
|c|+ r

|1 + c| − r
M10

1 < 0.1005,

|w11 − 2i| ≤ 1/2(
√

5− 2) . (7.2.10)

This bound holds for all continued fractions (7.2.7) for which (7.2.9) holds.
In case all δm = 0 and f(z) = 2i, the true truncation error, for a few
choices of w11, equals∣∣∣f(z)− S11

(
z; 2i + 1/2(

√
5− 2)

)∣∣∣ � 0.0346,∣∣∣f(z)− S11

(
z; 2i + 1/2(

√
5− 2)i

)∣∣∣ � 0.0335 .

Note that (7.2.10) does not yield an upper bound for the approximant
S11(z; 0).

The following result is a corollary of Theorem 7.2.1 for the choice Cn = c,
where c is the limit value of the tails of K(am/1).

Corollary 7.2.1: [LW92, pp. 151–154]

Let K(am/1) be a limit periodic continued fraction converging to the finite
value f with limm→∞ am = a and c = 1/2

(√
1 + 4a− 1

)
. Let

Δ = |1 + c| − |c|,
dn = sup {|am − a| : m ≥ n} , n ≥ 1.
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If d2 < Δ2/4, and

r0 =
2d1 + |c|(Δ−√Δ2 − 4d2)
|1 + c|+ |c|+√Δ2 − 4d2

,

rn = (Δ−
√

Δ2 − 4dn+1)/2, n ≥ 1,

Cn = c, n ≥ 0,

then for En and Vn given by (7.2.2) and (7.2.1) we have

|f − Sn(wn)| ≤ 2rn
|c|+ r0

|1 + c|+ |c|+√Δ2 − 4dn+1

n−1∏
k=1

Mk,

|wn − c| ≤ rn, n ≥ 1,

where

Mk = max
{∣∣∣∣ w

1 + w

∣∣∣∣ : |w − c| ≤ rk

}
≤ |1 + c|+ |c| −√Δ2 − 4dk+1

|1 + c|+ |c|+√Δ2 − 4dk+1

, k ≥ 1 .

The choice Cn = 0 for a = 0 leads to the following corollary of the oval
sequence theorem.

Corollary 7.2.2:

Let 0 < r0 < 1 and let {rn}∞n=0 be a non-increasing sequence of positive
numbers, then the disks Vn = {w : |w| < rn} form a sequence of value sets
for the element sets En = {a : |a| ≤ rn−1(1− rn)}. Any continued fraction
K(am/1) with |am| ≤ rm−1(1− rm) converges to a finite value f and

|f − Sn(wn)| ≤ 2rn
r0

1− rn

n−1∏
k=1

rk

1− rk
, |wn| < rn. (7.2.11)

The Corollary 7.2.2 is particularly useful in case limm→∞ am = a with
a = 0 or |a| sufficiently small.

Example 7.2.3: We reconsider the continued fraction (7.1.3) for z = 1/2.
The partial numerators satisfy

|am| = 1
4(4m2 − 1)

m ≥ 1 .
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Since limm→∞ am = 0, we choose all Cn = 0. By an application of
Lemma 7.2.2 we find

r0 = r1 = 2|a1| = 1
6
, rn = 2|an| = 1

2(4n2 − 1)
, n ≥ 1 .

It follows from (7.2.11) that for z = 1/2

|(z cot(z)− 1)− S5(z; w5)| ≤ 0.136× 10−8, |w5| ≤ r5 .

This bound is significantly sharper than the bound (7.1.4) obtained from
the parabola theorem.

7.3 The interval sequence theorem
The oval sequence theorem can be simplified when formulated for continued
fractions with real elements larger than −1/4.

Theorem 7.3.1: Interval sequence theorem [CVW06]

Let the real numbers Ln and Rn satisfy

−1/2 ≤ Ln ≤ Rn <∞, n ∈ N0,

and let

bn := (1 + sgn(Ln) max(|Ln|, |Rn|))Ln−1,

cn := (1 + sgn(Ln) min(|Ln|, |Rn|))Rn−1,
n ∈ N,

be such that
bn ≤ cn, 0 ≤ bncn, n ∈ N.

Then
Vn := [Ln, Rn], n ∈ N0,

defines a sequence of value sets for the sequence of element sets

En := [bn, cn] =

{
[(1 + Rn)Ln−1, (1 + Ln)Rn−1],

[(1 + Ln)Ln−1, (1 + Rn)Rn−1],

bn ≥ 0,

bn ≤ 0,
n ∈ N.

If the continued fraction K (am/1) with am ∈ Em converges to f , we have

|f − Sn(wn)| ≤ (Rn − Ln)
R0

1 + Ln

n−1∏
k=1

Mk, wn ∈ Vn, (7.3.1)
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where

Mk = max
{∣∣∣∣ Lk

1 + Lk

∣∣∣∣ , ∣∣∣∣ Rk

1 + Rk

∣∣∣∣} , k ∈ N. (7.3.2)

In the same way a bound on the relative truncation error can be proved:∣∣∣∣f − Sn(wn)
f

∣∣∣∣ ≤ Rn − Ln

1 + Ln

n−1∏
k=1

Mk, wn ∈ Vn. (7.3.3)

In Theorem 7.3.1 the element sets En are determined from the value sets
Vn = [Ln, Rn]. It is also possible, starting from given sets En = [bn, cn],
to determine the bounds Ln and Rn of the value sets Vn [CVW06]. For
simplicity we assume that the sign of bn is identical for all n. In the more
general case, the principle remains the same and the formulas for Ln and
Rn only become notationally more complicated. In case all bn ≥ 0,

Ln =
bn+1

1 +
cn+2

1 +
bn+3

1 +
cn+4

1 + . . .
,

Rn =
cn+1

1 +
bn+2

1 +
cn+3

1 +
bn+4

1 + . . .
,

and when all bn ≤ 0,

Ln =
bn+1

1 +
bn+2

1 +
bn+3

1 +
bn+4

1 + . . .
,

Rn =
cn+1

1 +
cn+2

1 +
cn+3

1 +
cn+4

1 + . . .
.

Observe that Ln and Rn are tails of

D̂ =
b1

1 +
c2

1 +
b3

1 +
c4

1 + . . .
,

Û =
c1

1 +
b2

1 +
c3

1 +
b4

1 + . . .
,

Ď =
b1

1 +
b2

1 +
b3

1 +
b4

1 + . . .
,

Ǔ =
c1

1 +
c2

1 +
c3

1 +
c4

1 + . . .
.

More precisely, for bn ≥ 0 we have

L2k = D(2k), L2k+1 = U (2k+1), k ≥ 0,

R2k = U (2k), R2k+1 = D(2k+1), k ≥ 0,
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and for bn ≤ 0 we have

Ln = Ď(n), Rn = Ǔ (n), n ≥ 0.

In the special case that En = E = [p, q] with p ≥ 0, the bounds Ln and Rn

reduce to the closed form expressions X and Y given by (3.3.7). In general,
the bounds Ln and Rn in (7.3.1) are not computable because they are
infinite expressions. We therefore have to compute suitable approximants
of Ln and Rn which themselves bound Ln and Rn from below or above
[CVW06].

7.4 Specific a priori bounds for S-fractions
Truncation error bounds as stated in the parabola and oval theorems ap-
ply to continued fractions of the form K(am(z)/1) and hence certainly to
regular C-fractions K(amz/1) and to S-fractions K(amz/1) with am > 0.
Specific truncation error bounds for S-fractions only hold for the classical
approximants fn = Sn(0).
Truncation error bounds for continued fractions which are contractions
of S-fractions, in particular real J-fractions, can be obtained from results
given for S-fractions. The same holds for modified S-fractions. Necessary
and sufficient conditions for the convergence of S-fractions are given in
Theorem 3.1.5.

Theorem 7.4.1: Thron/Gragg-Warner bound [GW83; Thr81]

Let K(amz/1) be an S-fraction converging to f(z) and let z = ρe2αi with
|α| < π/2. Then

|f(z)−fn(z)| ≤ 2
a1ρ

cos(α)

n∏
k=2

√
1 + 4akρ/ cos2(α)− 1√
1 + 4akρ/ cos2(α) + 1

, n ≥ 2 . (7.4.1)

Corollary 7.4.1: [BHJ05]

Let K (amz/1) be an S-fraction converging to f(z) and let the coefficients
am satisfy

am ∼ bm, m →∞,

or
am ∼ bm2, m→∞

for some constant b > 0. Then there exist constants A > 0, B > 0 and
C > 1 such that for n ≥ 1,

|f(z)− fn(z)| ≤

⎧⎪⎨⎪⎩
A

C
√

n
, am ∼ bm, m→∞, | arg z| < π,

A

nB
, am ∼ bm2, m→∞, | arg z| < π.

(7.4.2)
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If the S-fraction is limit periodic and if the S-fraction coefficients satisfy
certain monotonicity properties, the product in (7.4.1) can be replaced by a
power. This is useful to determine in advance which approximant satisfies

|f(z)− fn(z)| ≤ ε,

but in doing so the truncation error bound becomes less sharp.

Corollary 7.4.2:

Let K (amz/1) be a convergent S-fraction where limm→∞ am = a < ∞.
Then for any p ∈ N and n ∈ N, n ≥ p the following holds.
(A) If {am} is an increasing sequence, then

|f(z)− fn(z)| ≤ 2a1ρ

cos(α)

p∏
k=2

√
1 + 4akρ

cos2(α) − 1√
1 + 4akρ

cos2(α) + 1

(√1 + 4a ρ
cos2(α) − 1√

1 + 4a ρ
cos2(α) + 1

)n−p

(B) If {am} is a decreasing sequence, then

|f(z)−fn(z)| ≤ 2a1ρ

cos(α)

p∏
k=2

√
1 + 4akρ

cos2(α) − 1√
1 + 4akρ

cos2(α) + 1

(√1 + 4ap+1
ρ

cos2(α) − 1√
1 + 4ap+1

ρ
cos2(α) + 1

)n−p

Example 7.4.1: We consider the S-fraction of Example 7.2.1 and let
δm = 0 for all m. For z = −4 + 2i we have f(z) = 2i, ρ =

√
20 and

1/ cos2(α) = 10 + 4
√

5. We find from Theorem 7.4.1 for n = 11,

|f(z)− S11(z; 0)| = |f(z)− f11(z)| < 38.93× (0.897)10 ≤ 13.143

while |f(z)−f11(z)| � 1.316. Compared to Example 7.2.2, the modified ap-
proximants S11(z; w11) do a better job, but in both cases the error bounds
are of the correct magnitude.
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7.5 A posteriori truncation error bounds
An a posteriori truncation error bound

|f − fn| ≤ Kn|fn − fn−1| (7.5.1)

can be determined only after the approximants fn and fn−1 are computed.
There is a difference in use between a priori and a posteriori error bounds.
With a priori bounds we can determine in advance the index n for which
fn achieves a desired accuracy. We then only have to compute fn for the
particular index n. An a posteriori bound is a stopping criterion. One
computes f1, f2, f3, . . . until the right hand side of (7.5.1) is sufficiently
small. In some cases the a posteriori bound is more accurate, and stops
the process at a lower value than the one determined by the a priori bound.
A simple a posteriori error bound can be given for continued fractions with
positive elements.

Theorem 7.5.1: [LW92, p. 97]

Let K(am/1) be a convergent continued fraction and let am > 0 for all m.
Then the sequence {f2k+1} of odd order approximants is decreasing, and
the sequence {f2k} of even order approximants is increasing. Every odd
order approximant is larger than any even order approximant and hence∣∣∣∣f − fn−1 + fn

2

∣∣∣∣ ≤ |fn − fn−1|
2

, n ≥ 2 .

Example 7.5.1: Consider a continued fraction coming from an evaluation
of the complementary incomplete gamma function,

f = 1/ (eΓ(0, 1))− 1

=
1
1 +

1
1 +

2
1 +

2
1 +

3
1 +

3
1 +

4
1 +

4
1 + . . .

= 0.676875028 . . . .

This continued fraction satisfies the conditions of Theorem 7.5.1. We find

f10 = 0.67396 . . . < f < f11 = 0.67846 . . .

which leads to the approximation (f10 +f11)/2 � 0.676 and the truncation
error bound (f11 − f10)/2 � 0.00225.

The next result deals with continued fractions with elements in the Wor-
pitzky disk.
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Theorem 7.5.2: [JT88]

If the elements of K(am/1) satisfy |am| ≤ 1/4− ε, where 0 < ε < 1/4, then
the continued fraction converges to a finite limit f and

|f − fn| ≤ 1− 2
√

ε

4
√

ε
|fn − fn−1|, n ≥ 2 .

For S-fractions the following particular result can be given.

Theorem 7.5.3: Henrici-Pfluger bound [HP66]

Let K(amz/1) be an S-fraction converging to a finite value f(z). Then

|f(z)− fn(z)| ≤
⎧⎨⎩
|fn(z)− fn−1(z)| , | arg z| ≤ π/2,∣∣∣∣fn(z)− fn−1(z)

sin(arg z)

∣∣∣∣ , π/2 < | arg z| ≤ π.
(7.5.2)

Example 7.5.2: Consider

Ln(1 + z) =
z

1 +

∞

K
m=2

(amz

1

)
, |Arg(1 + z)| < π

where
a2k =

k

2(2k − 1)
, a2k+1 =

k

2(2k + 1)
, k ≥ 0.

We find for n = 5 and z = (1 + i)/2

|f(z)− f5(z)| = 5.27 . . .× 10−5

≤ |f5(z)− f4(z)| < 3.454× 10−4

and for z = (−1 + i)/2

|f(z)− f5(z)| = 6.87 . . .× 10−4

≤
√

2|f5(z)− f4(z)| < 3.545× 10−3.

For real J-fractions and positive T-fractions converging to functions repre-
sented by Stieltjes transforms, specific a posteriori bounds can be given.
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Theorem 7.5.4: [CJT93]

Let the real J-fraction

α1

β1 + z +

∞

K
m=2

( −αm

βm + z

)
, αm > 0, βm ∈ R, m ∈ N

converge to ∫ b

a

dΦ(t)
z + t

, −∞ ≤ a < b ≤ +∞

which represents holomorphic functions F+(z) in {z ∈ C : �z > 0} and
F−(z) in {z ∈ C : �z < 0}. Then∣∣∣∣∣

∫ b

a

dΦ(t)
z + t

− fn(z)

∣∣∣∣∣ ≤ α1|hn(z)|
|�(hn(z))| |fn(z)− fn−1(z)|, n ≥ 2,

where fn(z) is the nth approximant of the real J-fraction, Bn(z) its nth

denominator and hn(z) = Bn(z)/Bn−1(z).

Theorem 7.5.5: [Jon77; Gra80]

Let the positive T-fraction

∞

K
m=1

(
z

em + dmz

)
converge to ∫ b

a

z

z + t
dΦ(t)

in z ∈ C \ [−b,−a]. Then

∣∣∣∣∣
∫ b

a

z

z + t
dΦ(t)− fn(z)

∣∣∣∣∣ ≤
⎧⎪⎨⎪⎩
|fn(z)− fn−1(z)| , | arg z| ≤ π

2
,∣∣∣∣fn(z)− fn−1(z)

sin(arg z)

∣∣∣∣ , π

2
< | arg z| < π,

n ≥ 2,

where fn(z) denotes the nth approximant of the positive T-fraction.



7.7 CHOICE OF MODIFICATION 143

7.6 Tails and truncation error bounds
From the truncation error bound for a tail of a continued fraction, a bound
for the fraction itself can be inferred. We assume that all fractions in
question are converging to finite values, and that n ≥ k + 1:

f (k) =
ak+1

1 +
ak+2

1 + · · · +
an

1 + . . .
, f (0) = f

S
(k)
n−k(w) =

ak+1

1 +
ak+2

1 + · · · +
an

1 + w
, S(0)

n (w) = Sn(w) .

Then, from (1.3.2), (1.3.3) and the determinant formula (1.3.4) we obtain

f − Sn(w) =
(−1)k

∏k
j=1 aj

(Bk + Bk−1f (k))(Bk + Bk−1S
(k)
n−k(w))

(f (k) − S
(k)
n−k(w)),

(7.6.1)
where Bk is the kth denominator of f . Formula (7.6.1) can also be expressed
in terms of the critical tail sequence {−hn} = {−Bn/Bn−1} introduced in
(1.9.10):

f − Sn(w) =
(−1)k

∏k
j=1 aj

B2
k−1(hk + f (k))(hk + S

(k)
n−k(w))

(f (k) − S
(k)
n−k(w)) . (7.6.2)

In (7.6.1) and (7.6.2) the parameters a1, . . . , ak, Bk, Bk−1, hk and S
(k)
n−k(w)

are known or can be computed. From the oval sequence theorem we obtain
an upper bound for |f (k) − S

(k)
n−k(w)| and we know that f (k) and S

(k)
n−k(w)

are in the value set Vk. Therefore, using the notation of Theorem 7.2.1,
expression (7.6.2) becomes

|f − Sn(w)| ≤
∏k

j=1 |aj |
|B2

k−1|( min
u∈V k

|hk + u|)2
2rn(|Ck|+ rk)
|1 + Cn| − rn

n−1∏
j=k+1

Mj ,

n ≥ k + 1 ≥ 2 .

7.7 Choice of modification
To minimise the truncation error, we want the index n of the approximant
to be large. To minimise the rounding error and for efficiency, we want the
computation to be stable and n to be small. As we have already indicated
in the Chapters 1 and 3, with a good modification w the truncation error
for Sn(w) is smaller than the truncation error for Sn(0). Alternatively,
both Sn(0) and Sm(w) with m < n yield the same truncation error. When
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w is chosen instead of 0, computing Sn(w) involves one more addition than
Sn(0) and requires the same number of operations as Sn+1(0) if bn+1 = 1
when using the backward recurrence algorithm described in Section 8.2. In
this section we discuss several choices for the modification w.

General case. To quantify the improvement obtained by different modi-
fications, we recall from Section 1.3 that

f − Sn(w) =
(−1)n

∏n
k=1 ak

(Bn + wBn−1)(Bn + f (n)Bn−1)
(f (n) − w) . (7.7.1)

Hence
f − Sn(w)
f − Sn(u)

=
Bn + uBn−1

Bn + wBn−1

f (n) − w

f (n) − u
. (7.7.2)

Writing this in terms of the critical tail sequence {−hn} = {−Bn/Bn−1}
defined by (1.9.10), we find

f − Sn(w)
f − Sn(u)

=
hn + u

hn + w

f (n) − w

f (n) − u
. (7.7.3)

Useful upperbounds for the left hand side of (7.7.3) are given in (7.7.7),
(7.7.9) and (7.7.11).
For continued fractions of the form K(cm/dm), a suitable modification can
be obtained by setting

w̃n = dnwn, n ≥ 1, (7.7.4)

where wn is a modification for the continued fraction K(am/1) which is
equivalent to K(cm/dm), as described in Section 1.4. This follows from the
fact that the tails of K(cm/dm) and K(am/1) satisfy

∞

K
m=n+1

(
cm

dm

)
= dn

∞

K
m=n+1

(
cm/(dmdm−1)

1

)
= dn

∞

K
m=n+1

(am

1

)
.

For w̃n given by (7.7.4), the nth modified approximant of K(cm/dm) with
modification w̃n equals the nth modified approximant of K(am/1) with
modification wn.

Limit periodic case. Since many of the special functions have limit
periodic continued fraction expansions, we discuss modifications only for
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limit periodic continued fractions K(am/1). We distinguish between three
cases.

Since limm→∞ am = a, we can replace the nth tail by the value of the
periodic continued fraction K(a/1),

wn = w :=
a

1 +
a

1 +
a

1 + . . .
=
√

1 + 4a− 1
2

, a /∈ (−∞,−1/4).

(7.7.5)
Here we choose

√
1 + 4a with � (√1 + 4a

)
> 0. When a /∈ (−∞,−1/4]∪

{0,∞} and

|an − a| ≤ min
( |1/4 + a|+ 1/4− |a|

2
, |a|
)

, (7.7.6)

it is proved in [TW80a] that∣∣∣∣f − Sn(w)
f − Sn(0)

∣∣∣∣ ≤ max
m≥n

|am − a| 2|a|+ ∣∣1 + 2a +
√

1 + 4a
∣∣

|a| (|1/4 + a|+ 1/4− |a|) . (7.7.7)

For a limit periodic continued fraction, condition (7.7.6) is always satis-
fied from a certain n on. Replacing Sn(0) by Sn((

√
1 + 4a− 1)/2) then

accelerates the convergence.
For a = 0 we get w = 0 in (7.7.5). The case a = −1/4 is more compli-
cated and discussed in [TW80a]. For a = ∞, the choice (7.7.5) does not
make sense since Sn(∞) = Sn−1(0).
As an alternative to (7.7.5) we can choose

wn :=
an+1

1 +
an+1

1 +
an+1

1 + . . .
=
√

1 + 4an+1 − 1
2

,

an+1 /∈ (−∞,−1/4). (7.7.8)

Again we take
√

1 + 4an+1 with � (
√

1 + 4an+1) > 0. This modifica-
tion, called the square root modification, improves the convergence as
follows [JJW87]. Under the conditions that the partial numerators an

are eventually contained in some parabolic region

Pα :=
{
z ∈ C : |z| − � (ze−2αi

) ≤ 1/2 cos2(α)
}

, |α| < π/2

and that the sequence {an+1−an}n∈N is bounded and has its limit points
contained in some disk{

z ∈ C :
∣∣z − 2ρ2e2αi

∣∣ ≤ 2R
}

, 0 < R < ρ cos(α),



146 7. TRUNCATION ERROR BOUNDS

then∣∣∣∣f − Sn (1/2(
√

1 + 4an+1 − 1))
f − Sn(0)

∣∣∣∣ ≤ 4ρ√
4an+1 + 1− 2ρ− 1

. (7.7.9)

This choice for wn may be of use when an →∞.
Finally, we can improve the modification w given in (7.7.5) as follows.
Let K (am/1) be limit periodic and let limm→∞ am = a ∈ C. If

s = lim
n→∞

an+1 − a

an − a

exists, then the modification

w(1)
n = w +

an+1 − a

1 + (s + 1)w
(7.7.10)

accelerates the convergence under the following conditions [JW88]. Let
for

d := |1 + w| − |sw|,
e := |1 + w| − |w|,

εn := max
m≥n

∣∣∣∣am+1 − a

am − a
− s

∣∣∣∣ ,
δn := |a|εn + 2|w|(εn + |s|) an+1 − a

e +
√

e2 − 4(an+1 − a)
,

γn := |w|εn + 2
an+1 − a

e +
√

e2 − 4(an+1 − a)

the inequalities

αn+2 := max
m≥n+2

|am − a| ≤ e2/4,

βn := min
(√

d2 − 8δn+1, d− 2γn+1 − 2
√

γ2
n+1 + 4γn+1|ws|

)
≥ 0

be satisfied, which in case of limit periodicity always hold from a certain
n on. Then

∣∣∣∣∣f − Sn(w(1)
n )

f − Sn(w)

∣∣∣∣∣ ≤
∣∣∣∣∣ hn + w

hn + w
(1)
n

∣∣∣∣∣
d− βn +

2αn+2

e +
√

e2 − 4αn+2

4(1 + (1 + s)w)
. (7.7.11)
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The results (7.7.7), (7.7.9) and (7.7.11) emphasise the importance of trun-
cation error bounds for modified approximants rather than for classical
approximants.

Example 7.7.1: We reconsider the continued fraction of Example 7.5.1,
which is limit periodic with an →∞ and converges to f = 0.676875028 . . . .
Formula (7.7.8) recommends the modification

w2n−2 = w2n−1 =
√

4n + 1− 1
2

, n ≥ 1

for the evaluation of the continued fraction. Indeed the modified approxi-
mant clearly yields better results. For n = 6 we get S10(w10) = S10(2) �
0.67670 while S10(0) � 0.67396, and for n = 20 we find S38(w38) =
S38(4) � 0.67687501 while S38(0) � 0.67687417.

Example 7.7.2: Consider

f(x) =
Γ(x + 1)

Γ (x + 1/2)
=

∞

K
m=1

(am

1

)
, x + 1 ∈ R \ Z−

0

with

a2k+1 =
−k(k − x)

2(x + 2k − 1)(x + 2k)
,

a2k+2 =
−(x + k)(2x + k)

2(x + 2k)(x + 2k + 1)
,

k = 0, 1, 2, . . . .

Use of the modifications w and w
(1)
n is illustrated in the Tables 15.3.4 and

15.3.6. Here a = −1/8. For x = 1 condition (7.7.6) holds from n = 7 on
because

|a2k+1 − a| = |a2k+2 − a| = 3
8(2k + 1)

, k = 0, 1, 2, . . . .

For x = 100 though, condition (7.7.6) is only satisfied from n = 771 on.
The lack of improvement by plugging in the modification w in that region
for x is also noticeable from the tables.

More general types of modification exist. Assume that we want to compute
the value of a continued fraction K (am/1), which is near a well-known
continued fraction K(bm/1) in the sense that am − bm → 0 when m →∞.
If we know the value g and the values of all the tails g(n) of K (bm/1), then
we can use the tails of the latter as modifications in the computation of
the former [Jac87].



8
Continued fraction evaluation

After selecting an appropriate continued fraction approximant, the effect
of finite precision machine arithmetic comes into play when programming
the evaluation of this approximant. Let fn(wn) or Sn(z; wn) denote the
nth modified approximant of the continued fraction representation of the
function f(z) and let Fn(z; wn) denote the value obtained for fn(wn) from
the evaluation where all operations are replaced by their respective machine
operations. Algorithms for the computation of fn(wn) can be selected from
Section 8.2. A detailed round-off error analysis is presented in Section 8.4.

8.1 The effect of finite precision arithmetic

Standard IEEE arithmetic. With respect to the underlying machine
arithmetic, we assume that it is fully compliant with the IEEE 754-854
standard [Flo87] for floating-point arithmetic, by which we mean the fol-
lowing.

Let us denote by β the base, by t the precision and by [L,U ] the
exponent range of the IEEE floating-point arithmetic in use. The set
F(β, t, L, U) of finite precision floating-point numbers, often denoted
by F, is then given by

F(β, t, L, U) := {±d0 . d1 . . . dt−1 × βe : d0 �= 0, 0 ≤ di ≤ β − 1, L ≤ e ≤ U}
∪ {±0 . d1 . . . dt−1 × βL : 0 ≤ di ≤ β − 1}
∪ {+0,−0, +∞,−∞, NaN}.

Here NaN denotes the pattern that is returned for an undefined or
irrepresentable result.
Each of the four (nearest, upward, downward, toward zero) possible
rounding functions

© : R → F : x→©(x)

149
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satisfies

x ∈ F ⇒©(x) = x,

x ≤ y ⇒©(x) ≤ ©(y) .

The rounding is either to the nearest floating-point neighbour, in
which case |x−©(x)|

|x| ≤ 1
2
β−t+1, x �= 0, (8.1.1)

or is consistently upward, downward or toward zero, with

|x−©(x)|
|x| ≤ β−t+1, x �= 0. (8.1.2)

The quantity β−t+1 is also called 1 ulp or unit in the last place.
For maximal accuracy, each of the binary operations ∗ ∈ {+,−,×,÷,
mod} is implemented such that

x � y = ©(x ∗ y), x, y ∈ F, (8.1.3)

where � denotes the machine version of the mathematical operation
∗. Again either (8.1.1) or (8.1.2) apply, depending on the rounding
function, now with x replaced by x ∗ y.
Let d2b (decimal-to-base) and b2d (base-to-decimal) denote the con-
versions between decimal and base β representations. Each of the
unary operations ∗ ∈ {√ , mod, b2d} is supported such that

�(x) =© (∗x) , x ∈ F, (8.1.4)

while (8.1.4) is somewhat relaxed for the operation d2b in the sense
that it does not have to hold for the entire range of real decimal
numbers. Either (8.1.1) or (8.1.2) apply to ∗x, depending on the
rounding function.

Error build-up. When evaluating the nth approximant, plugging in the
continued fraction’s tail estimate wn and replacing all mathematical oper-
ations by machine operations, several errors come into play. The relative
truncation error εT and round-off error εR are defined by

εT :=
|f(z)− Sn(z; wn)|

|f(z)| , (8.1.5a)

εR :=
|Sn(z; wn)− Fn(z; wn)|

|f(z)| . (8.1.5b)
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Both εT and εR depend on several parameters, among which f, z, n, wn and
the parameters of the floating-point arithmetic in use. For the compound
error we write

εC(f, z, n, wn, F) :=
|f(z)− Fn(z; wn)|

|f(z)| ≤ εT + εR . (8.1.5c)

When n increases in (8.1.5a), the truncation error εT decreases, but the
number of operations in the computation of fn(wn) = Sn(z; wn) and hence
also the accumulated round-off error εR increase. A typical situation is
illustrated in Figure 8.1.1. For simplicity we assume that the argument z
is an exact floating-point number.

Figure 8.1.1: Typical evolution of truncation and round-off error.
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n
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When targeting a composite error threshold ε ≥ εC , the following approach
is used. It is based on the fact that the round-off error εR does not only
depend on n but also very much on the finite floating-point precision t. An
increase in t implies a decrease in εR over all n. In practice, in order to
guarantee a maximal relative error of ε:

1. we determine n such that εT ≤ ε/2;
2. we specify a precision t for the computation of fn(w) to guarantee

εR ≤ ε/2.

Significant digits. When f̂ = ±d0 . d1 . . . dt−1×βe is a computed floating-
point approximation for a nonzero value f , then the kth digit dk−1 of f̂ is
called a significant digit for f if

|f̂ − f |
|f | ≤ β

2
β−k =

1
2
β−k+1.

Usually f̂ is subject to some truncation and round-off error and f is not
known. Then one can only get some information on the number of sig-
nificant digits in f̂ from the knowledge of truncation and round-off error
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upperbounds. Of course, since these bounds are mostly pessimistic, in this
way one underestimates the correct number of significant digits.

8.2 Evaluation of approximants
In many applications of continued fractions K (am/bm) the elements am

and bm are given and one must evaluate the nth approximant

fn(0) =
a1

b1 +
a2

b2 + · · · +
an

bn
, am ∈ C\{0}, bm ∈ C.

Based on the fact that the nth approximant fn equals the first unknown
x1 of the linear system [Mik76]⎛⎜⎜⎜⎜⎜⎜⎝

b1 −1 0 . . . 0
a2 b2 −1 0 . . . 0
0 a3 b3 −1 0 . . .
...

. . . . . . . . . . . .
an−1 bn−1 −1

0 . . . 0 an bn

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎝ x1

...
xn

⎞⎠ =

⎛⎜⎜⎝
a1

0
...
0

⎞⎟⎟⎠ , (8.2.1)

several algorithms can be devised for the computation of fn. Four al-
gorithms for computing fn are described here, of which the forward and
backward recurrence are the most popular.

Euler-Minding summation. Reducing the tridiagonal matrix in (8.2.1)
to an upper triangular form by Gaussian elimination, is equivalent to using
the series representation (1.7.5) of fn [Bla64]:

h1 = b1,

hk = bk +
ak

hk−1
, k ≥ 2,

f1 = a1/b1,

fn =
n∑

k=1

(−1)k−1 a1 · · · ak

h2
1 · · ·h2

k−1hk
, n > 1.

Here {hn}n∈N coincides with the critical tail sequence (1.9.10). If ω(fn)
denotes the number of basic operations (addition, multiplication and divi-
sion) required to compute fn, and ω(f1, . . . , fn−1 → fn) denotes the num-
ber of operations required to obtain fn from f1, . . . , fn−1, then ω(f1) =
1, ω(f2) = 6 and

ω(fi−2, fi−1 → fi) = 5, i ≥ 3.
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Hence
ω(f1, . . . , fn) = 5n− 3, n ≥ 2. (8.2.2)

Backward recurrence. Reducing the tridiagonal matrix in (8.2.1) to
a lower triangular form by Gaussian elimination, leads to a very efficient
algorithm to compute a single approximant:

F
(n)
n+1 = 0

F
(n)
k =

ak

bk + F
(n)
k+1

, k = n, n− 1, . . . , 1 (8.2.3)

fn = F
(n)
1 .

The arithmetic complexity of the backward algorithm is

ω(f1) = 1, ω(fn) = 2n− 1, n ≥ 2

and

ω(f1, . . . , fn) =
n∑

k=1

ω(fk) = n2, n ≥ 1.

When computing a modified approximant fn(wn) instead of a classical
approximant fn(0), then F

(n)
n+1 = wn.

Forward recurrence. Let An and Bn denote the nth numerator and nth

denominator, respectively, of K (am/bm). Then by the recurrence relations
(1.3.1) one computes A1, B1, A2, B2, . . . , An, Bn and

fn =
An

Bn
. (8.2.4)

It is readily seen that ω(f1) = 1, ω(f2) = 4, and

ω(fn) = 6n− 8, n ≥ 3.

This assumes that we set A1 = a1, B1 = b1, A2 = b2A1 and B2 = a2+b2B1.
The number of operations required to compute f1, f2, . . . , fn equals the
number of operations required to get An and Bn and the additional n
divisions An/Bn:

ω(f1, . . . , fn) = (6n− 9) + n = 7n− 9, n ≥ 3.

From the approximants An−1/Bn−1 and An/Bn the modified approximant
fn(wn) can be obtained by using (1.3.2). Thus in terms of the number of



154 8. CONTINUED FRACTION EVALUATION

arithmetic operations required, the backward recurrence is more efficient
than the forward recurrence if one computes a single approximant fn.

Product form. Introducing the related linear system⎛⎜⎜⎜⎜⎜⎜⎜⎝

b2 −1 0 . . . 0
a3 b3 −1 0 . . . 0

0
. . . . . . . . .

...
. . .

an−1 bn−1 −1
0 . . . 0 an bn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎝ y1

...
yn−1

⎞⎟⎠ =

⎛⎜⎜⎝
a2

0
...
0

⎞⎟⎟⎠ , (8.2.5)

allows to write fn = xn/yn−1. Reducing the coefficient matrices in both
(8.2.1) and (8.2.5) to upper triangular form, leads to [CVDC85]:

g1 = a1, g2 = b2

gk = bk + ak/gk−1, k > 2
h1 = b1,

hk = bk + ak/hk−1, k > 1

fn =
n∏

k=1

gk

hk

where one implicitly makes use of the critical tail sequence {hn}n∈N (1.9.10).
Assuming that one stores a1/b1 during the computation of f2, we obtain
ω(f1) = 1, ω(f2) = 4 and ω(fn) = 6n− 8 for n ≥ 3, just as for the forward
algorithm. Moreover,

ω(fn−1 → fn) = 6, n ≥ 3

and hence
ω(f1, . . . , fn) = 6n− 7.

8.3 The forward recurrence and minimal solutions
As explained in Section 3.6, the forward recurrence algorithm

yn = bnyn−1 + anyn−2, n = 1, 2, 3, . . . (8.3.1)

where we start with initial values y−1 and y0 and compute y1, y2, y3, . . .
using (8.3.1), is numerically stable for the computation of dominant solu-
tions {vn} of (8.3.1), but numerically unstable for minimal solutions {un},
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meaning that small errors in the initial terms may lead to unbounded er-
rors in later terms. We denote by ŷ1, ŷ2, . . . , the numbers obtained when
replacing y−1 and y0 by approximations ŷ−1 and ŷ0 and executing (8.3.1)
in finite precision. Since, in general, {ŷn} is not proportional to {yn}, it is
a dominant solution and so

lim
n→∞

yn

ŷn
= 0

and hence

lim
n→∞

∣∣∣∣ ŷn − yn

yn

∣∣∣∣ = ∞ .

This implies that the forward recurrence is unstable for the computation
of minimal solutions.
A stable algorithm for computing minimal solutions of the system of three-
term recurrence relations (8.3.1) is based on continued fractions. If {un}
is a minimal solution with u−1 �= 0, we have from Theorem 3.6.1 that

un = u−1

n∏
j=0

uj

uj−1
= u−1

n∏
j=0

(−f (j)), n = 0, 1, 2, . . .

with
f = − u0

u−1
=

a1

b1 +
a2

b2 + . . .

and its tails f (j) defined in (1.9.3). To approximate un we start with
one initial approximation û−1 of u−1 and approximate successive ratios
uj/uj−1 by

−f
(j)
k = −aj+1

bj+1 +
aj+2

bj+2 + · · · +
aj+k

bj+k
, j = 0, 1, . . . , k = 1, 2, . . . .

Then, for any k ∈ N, an approximation ûn of un is given by

ûn = û−1

n∏
j=0

(−f
(j)
k ), n = 0, 1, 2, . . . .

The quality of the approximation ûn depends on how well f
(n)
k approxi-

mates −un/un−1 and on the stability and precision of the computation of
f

(n)
k .

In [PFTV92, p. 181] is explained how an initial approximation û−1 can be
obtained from a so-called normalisation, such as a formula for the sum of
the un’s. The technique is often referred to as Miller’s algorithm. Assume
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that besides the three-term recurrence and the continued fraction (3.6.3)
for −un−1/un−2 we also have at our disposal some information of the form

ω−1u−1 +
∞∑

j=0

ωjuj = ω. (8.3.2)

If we put

ω(n) =
1
un

∞∑
j=n+1

ωjuj ,

then
f (n−1) =

an

bn + f (n)
,

ω(n−1) = −f (n)
(
ωn + ω(n)

)
.

(8.3.3)

Starting with an approximation ω̂(n) = 0 and applying the backward
scheme (8.3.3) ultimately delivers f (0) and ω̂(−1) and from there

û−1 =
ω

ω̂(−1) + ω−1
.

A computed version of the minimal solution {un} is then again obtained
from

ûn = −f
(n)
kn

ûn−1, n = 0, 1, 2, . . . , kn ≥ 0.

8.4 Round-off error in the backward recurrence

Round-off error occurs in the computation of an approximant

fn =
a1

b1 +
a2

b2 + · · · +
an

bn
, am, bm ∈ C \ {0}

in the context of finite precision arithmetic. The relative round-off error
in the computed approximation f̂n = Fn(z; wn) of fn is denoted by

εn :=
|fn − f̂n|
|fn| . (8.4.1)

Note that εR = εn|fn/f |.
In this section we give some rigorous error bounds for εn. Fortunately,
for some of the most important families of continued fractions, such as
S-fractions, positive T-fractions and real J-fractions, the relative round-off
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error εn has a slow rate of growth when the backward recurrence (8.2.3) is
used to compute f̂n [JT74].

Relative round-off error bounds. Serious problems arise if one at-
tempts to compute a minimal solution of the recurrence relation (1.3.1). If
we compute such a solution {An}, using only approximate starting values
A1 and A2, due to rounding for example, we obtain a solution {Ân} that
is, in general, linearly independent of {An}. Hence limn→∞ An/Ân = 0
and

lim
n→∞

∣∣∣∣∣ Ân −An

An

∣∣∣∣∣ = ∞

meaning that the relative error of the computed Ân, the intended approxi-
mation to An, becomes arbitrarily large. Therefore the forward recurrence
is not guaranteed to be a stable procedure [Gau67].
When implementing fn(w), we need to take into account that each basic
operation � ∈ {+,−,×,÷} is being replaced by a machine operation � ∈
{⊕,!,⊗,#} and hence subject to a relative error as indicated in (8.1.1)
or (8.1.2). Also each partial numerator am and denominator bm needs to
be converted to machine numbers âm and b̂m, thereby entailing relative
rounding errors ε

(a)
m and ε

(b)
m given by

âm = am(1 + ε(a)
m ),

b̂m = bm(1 + ε(b)m ).

Here |ε(a)
m | and |ε(b)m | are bounded by 1/2 ulp in round-to-nearest and only

if am and bm are not compound expressions. Otherwise they may be some-
what larger. Without loss of generality, we assume that w is a machine
number estimating the tail tn. When executing the backward recurrence,
each computed F̂

(n)
k differs from the true F

(n)
k by a relative rounding error

ε
(n)
k , and this for k = n, . . . , 1:

F̂
(n)
n+1 = w, ε

(n)
n+1 = 0,

F̂
(n)
k = âk #

(
b̂k ⊕ F̂

(n)
k+1

)
=

âk

b̂k + F̂
(n)
k+1

(1 + δk)

= F
(n)
k (1 + ε

(n)
k ), k = n, . . . , 1,

F̂
(n)
1 = F

(n)
1 (1 + ε

(n)
1 ).
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Here δk is the relative rounding error introduced in step k of the algorithm.
The main question is: how large is |ε(n)

1 |? This question is answered in
Theorem 8.4.1, the latter being a slight generalisation of a result proved in
[JT74] where F

(n)
n+1 = 0. Let us introduce the notation

γ
(n)
k = F

(n)
k+1/(bk + F

(n)
k+1), k = 1, . . . , n. (8.4.2)

Theorem 8.4.1: [JT74]

Let F
(n)
n+1 = w be a machine number and let for k = 1, . . . , n

|ε(a)
k | ≤ ε(a) ulp,

|ε(b)k | ≤ ε(b) ulp,

|δk| ≤ δ ulp,

|γ(n)
k | ≤ γn, G(n) =

n−1∑
j=0

γj
n.

Let the base β and precision t of the IEEE arithmetic in use satisfy

(
1 + 2ε(b)(1 + γn) + (1 + 2ε(a) + 2ε(b)(1 + γn) + 2δ)(G(n)− 1)

)2

< βt−1.

Then

|ε(n)
1 | ≤ 1 + 2ε(a) + 2ε(b)(1 + γn) + 2δ

2
G(n) ulp . (8.4.3)

It is clear that applications of Theorem 8.4.1 require realistic estimates of
the quantities γ

(k)
n defined by (8.4.2). In the remainder of this section we

describe how to obtain upper bounds of |γ(n)
k |.

Methods for estimating γ
(n)
k . It is important to note that the quantity

γ
(k)
n is invariant under equivalence transformations of continued fractions.

The significance of this is that we do not need to search for an optimal
form of a continued fraction from a point of view of minimising the γ

(k)
n .

The following is a slight improvement of a result found in [JT74] in the
sense that we do not assume 0 ∈ Vn.
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Theorem 8.4.2: [JT74]

Let the subsets V1, . . . , Vn of the extended complex plane satisfy

f (n) ∈ Vn,
ak

bk + Vk
⊆ Vk−1, k = 2, 3, . . . , n

and let

A(n) = max
2≤m≤n

|am|,

B(n) = min
1≤m≤n

d(−bm, Vm),

M (n) = sup {|w| : w ∈ Vm/(bm + Vm)} .

Then
(A) |γ(n)

k | ≤ A(n)/(B(n))2, and
(B) |γ(n)

k | ≤M (n).
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SPECIAL FUNCTIONS



9
On tables and graphs

In the Chapters 10 to 19, we study several families of special functions and
their various series and continued fraction representations. Only a small
number of these representations is also found in [AS64]. The latter are
marked with the symbol AS in the margin.
The collected formulas are further illustrated numerically and graphically.
We now explain how to interpret and use the tables and graphs. In the
sequel we consistently use z for a complex argument and x for a real argu-
ment.

9.1 Introduction

While we mention the domain of convergence with every continued fraction
in the next chapters, the precise convergence behaviour is not described.
Since, in practice, it is the initial convergence behaviour that matters and
not the asymptotic one, we illustrate the convergence rate empirically.
This is done,

either numerically, in tables, where we evaluate different continued
fraction representations for a large range of arguments,
or graphically, by presenting level curves of significant digits, or graph-
ing the evolution of the approximants’ accuracy.

The former is detailed in Section 9.2 and the latter in Section 9.3. All
tables and graphs are labelled and preceded by an extensive caption.

9.2 Comparative tables

In the next chapters all formulas which are evaluated in one of the tables,
are marked with the symbol

– – –
– – –
– – – in the right margin. For formulas that are

not marked in that way no numerical illustration of their behaviour is given.
All tables are composed in the same way. The two leftmost columns contain
the function argument and the function value. The function value is the
correctly rounded mathematical value, verified in a variety of programming

163
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environments. In case the function value f(z) is a complex value, only its
signed modulus

|f(z)|s = sgn (�f(z)) |f(z)| (9.2.1)

is returned. The sign of �(f(z)) indicates whether the complex value f(z)
lies in the right or the left half-plane. The other columns contain the
relative truncation error ∣∣∣∣f(z)− fn(z)

f(z)

∣∣∣∣ (9.2.2)

incurred when using a certain partial sum or continued fraction approxi-
mant fn(z) instead of the function f(z) under investigation. The continued
fraction approximant fn(z) can be either a classical approximant fn(z; 0)
or a modified approximant fn(z; wn).
The evaluation of the special function for the selected arguments is exactly
rounded to 7 decimal digits and the truncation errors are upward rounded
to 2 decimal digits. Since the modulus of the truncation error (9.2.2) is
always positive, the sign is omitted here.
The approximant number n doesn’t appear in the table but is mentioned
in the caption. By tabulating the truncation error for different n, also the
speed of convergence is illustrated.
The function arguments are selected in the intersection of the domains
associated with each of the formulas evaluated in the table (with a slight
exception for some series representations). The resulting set of arguments
is traversed in the following way, if applicable: from the positive real axis
over the first quadrant to the positive imaginary axis, then through the
second quadrant of the complex plane to the negative real axis and so on.
As a rule templates of all possible function arguments are tabulated, for
increasing modulus, except when function evaluations for different argu-
ments are related by symmetry relations. The numerical illustration of the
elementary functions forms an exception: since these are thoroughly illus-
trated graphically, evaluations in the tables are restricted to real arguments
only.
When evaluating the approximants of a limit periodic continued fraction
K∞

m=1 (am/1) of which the partial numerators do not tend to zero, use of
one or more modifications may be appropriate. In that case the evalua-
tions without modification and with use of the different modifications are
tabulated. We clearly indicate in the caption of the table which column in
the table illustrates which modification.
When the upward rounded relative truncation error satisfies

C = �
(∣∣∣∣f(z)− fn(z)

f(z)

∣∣∣∣) ≤ 5× 10−s, s ∈ N, (9.2.3)
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then the approximation fn(z) guarantees s significant decimal digits com-
pared to the exact value f(z). When C � 10k with k ≥ 0, care must
be taken in interpreting the quality of the approximation fn(z). For
k > 1 we find |fn(z)| � 10k|f(z)|, while for k = 0 we can very well
have |fn(z)| $ |f(z)|. In both cases fn(z) can be way off, even missing to
predict the magnitude of f(z). In general

|f(z)− fn(z)| ≤ C|f(z)| =⇒ |fn(z)| ∈ |f(z)| [1− C, 1 + C].

All printed values in the tables are verified and therefore reliable. Where
IEEE 754 arithmetic was insufficient because of overflow or underflow,
multiprecision interval arithmetic or high precision computer algebra im-
plementations were used.

Example 9.2.1: Consider

2F1 (1/2, 1; 3/2; z) =
1

2
√

z
Ln
(

1 +
√

z

1−√z

)
,

which has the regular C-fraction representation (15.3.7) given by

z 2F1 (1/2, 1; 3/2; z) =
∞

K
m=1

(cmz

1

)
, z ∈ C \ [1, +∞),

c1 = 1, cm =
−(m− 1)2

4(m− 1)2 − 1
, m ≥ 2.

The function also has the M-fraction representation (15.3.12) given by

1/2
1/2 + z/2 −

z

3/2 + 3z/2 −
4z

5/2 + 5z/2 − . . .
, |z| < 1

and the so-called Nörlund fraction representation (15.3.17) given by

1
1− z +

z(1− z)
3/2 − 5/2z +

∞

K
m=2

(
m(m− 1/2)z(1− z)

(m + 1/2)− (2m + 1/2)z

)
, �z < 1/2.

The intersection of the domain of f(z) = 2F1(1/2, 1; 3/2; z) with the conver-
gence domains of the three continued fractions is the set

({z : |z| < 1} ∩ {z : �z < 1/2}) \ {z : Arg z = π}.
So we can choose arguments:

on the positive real axis in the interval [0, 1/2),
in all four quadrants as long as we remain inside the unit circle and
have the real part less than 1/2,
and on the imaginary axis in the interval (−i, i).
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Table 9.2.1: Because of the symmetry property f(x + ix) = f(x − ix),
we can restrict ourselves to the upper half-plane, which we traverse in
counterclockwise direction as explained. We evaluate the 20th classical
approximant f20(z; 0) of each fraction and compare it to the function eval-
uation at the argument. Remember that for complex arguments only the
signed modulus |f(z)|s, as defined in (9.2.1), is displayed instead of the
complex function value f(z).

x 2F1(1/2, 1; 3/2; x) (15.1.4) (15.3.7) (15.3.12) (15.3.17)
0.1 1.035488e+00 2.5e−23 4.0e−32 1.5e−20 1.5e−20

0.2 1.076022e+00 5.6e−17 1.3e−25 1.5e−14 1.7e−13

0.3 1.123054e+00 3.0e−13 1.4e−21 4.8e−11 7.6e−09

0.4 1.178736e+00 1.4e−10 1.8e−18 1.4e−08 5.0e−05

x |2F1(1/2, 1; 3/2; x + ix)|s (15.1.4) (15.3.7) (15.3.12) (15.3.17)
0.1 1.033684e+00 3.6e−20 3.9e−29 1.5e−17 1.4e−17

0.2 1.066938e+00 8.0e−14 1.1e−22 1.6e−11 9.3e−11

0.3 1.097258e+00 4.2e−10 8.4e−19 5.0e−08 1.5e−06

0.4 1.121184e+00 1.8e−07 5.5e−16 1.6e−05 1.4e−03

x |2F1(1/2, 1; 3/2; ix)|s (15.1.4) (15.3.7) (15.3.12) (15.3.17)
0.1 9.985628e−01 2.3e−23 1.4e−32 1.6e−20 1.8e−21

0.3 9.875589e−01 2.4e−13 3.6e−23 5.5e−11 2.9e−12

0.5 9.678199e−01 1.0e−08 5.8e−19 1.5e−06 2.1e−08

0.7 9.425900e−01 1.1e−05 2.4e−16 1.3e−03 3.1e−06

0.9 9.147830e−01 2.1e−03 1.6e−14 1.9e−01 6.8e−05

x |2F1(1/2, 1; 3/2; x− ix)|s (15.1.4) (15.3.7) (15.3.12) (15.3.17)
−0.1 9.673650e−01 3.2e−20 5.4e−30 1.6e−17 2.8e−19

−0.3 9.077224e−01 2.9e−10 2.8e−21 6.1e−08 2.4e−11

−0.5 8.563213e−01 1.2e−05 1.3e−17 1.8e−03 2.3e−08

−0.7 8.123036e−01 1.3e−02 2.1e−15 3.9e+00 9.9e−07

We see that, for the real argument x = 0.3, the 20th approximant f20(x; 0)
of the C-fraction (15.3.7) ensures 21 significant decimal digits because

∣∣∣∣ 2F1(1/2, 1; 3/2; x)− f20(x; 0)
2F1(1/2, 1; 3/2; x)

∣∣∣∣ ≤ 1.4× 10−21, x = 0.3 .
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Clearly, here the C-fraction delivers the better approximant. The evalua-
tion of (15.3.7) can further be improved with the use of the modifications
(15.3.5), w(z) = 1/2

(√
1− z − 1

)
, and (15.3.6),

w(1)
n (z) = w(z) +

cn+1z + z/4
1 + 2w(z)

.

Table 9.2.2: The approximant f20(x) of (15.3.7) is first evaluated without
modification and subsequently with the mentioned modifications. Note
that the first truncation error column equals the first truncation error
column of Table 9.2.1 for real arguments x, since both concern the classical
approximant f20(x; 0) of the C-fraction.

x 2F1(1/2, 1; 3/2; x) (15.3.7) (15.3.7) (15.3.7)
0.1 1.035488e+00 4.0e−32 2.6e−35 6.5e−38

0.2 1.076022e+00 1.3e−25 8.8e−29 4.8e−31

0.3 1.123054e+00 1.4e−21 1.1e−24 9.6e−27

0.4 1.178736e+00 1.8e−18 1.4e−21 1.9e−23

With use of the modifications, the truncation error in x = 0.3 decreases to∣∣∣∣ 2F1(1/2, 1; 3/2; x)− f20(x; w(x))
2F1(1/2, 1; 3/2; x)

∣∣∣∣ ≤ 1.1× 10−24, x = 0.3,∣∣∣∣∣ 2F1(1/2, 1; 3/2; x)− f20(x; w(1)
20 (x))

2F1(1/2, 1; 3/2; x)

∣∣∣∣∣ ≤ 9.6× 10−27, x = 0.3,

respectively ensuring 21, 24 and 26 significant decimal digits.

Example 9.2.2: The ratio of parabolic cylinder functions U(1, x)/U(0, x)
has the C-fraction representation (16.5.7),

U(1, x)
U(0, x)

=
1
x +

∞

K
m=2

(
m− 1

2

x

)
, x > 0.

Since the partial numerators tend to infinity, use of the modification

w̃n(x) =
−x +

√
4(n + 1/2) + x2

2

is recommended when evaluating the approximants.
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Table 9.2.3: We tabulate the relative error of the 5th approximants f5(x)
which are first evaluated without modification and then with the modifi-
cation w5(x).

x U(a, x)/U(a− 1, x) (16.5.7) (16.5.7)
0.25 8.329323e−01 1.4e+00 2.0e−02

0.75 6.485192e−01 1.8e−01 4.4e−03

1.25 5.211635e−01 4.0e−02 1.0e−03

5.25 1.813514e−01 7.3e−06 1.2e−07

20.25 4.920381e−02 2.6e−11 5.9e−14

50.25 1.988869e−02 3.1e−15 1.2e−18

100.25 9.973574e−03 3.2e−18 3.1e−22

The tables in the handbook are not discussed, only presented, because the
conclusions are obvious most of the times. The speed of convergence can be
observed. The variation in the magnitude of the truncation error through-
out the complex plane is clear. Specific observations, such as extremely
slow convergence, are confirmed in the existing literature.
Other counter-intuitive behaviour can be understood by taking a closer
look at the formulas involved. For instance, while T-fractions correspond
to series developments both for small and large z (around 0 and ∞), this
behaviour is not confirmed (at first sight) in the evaluation of (17.1.48).
Take a look at the approximation of Jν(x) in the Tables 17.1.1 and 17.1.2.
For real-valued arguments the Bessel function is real-valued. But here the
T-fraction (exceptionally) introduces an imaginary part in the approxima-
tion of Jν+1(x)/Jν(x). Of course, this disturbs the quality of the approx-
imation on the real axis. Because of (17.2.2) a similar observation can be
made for the Bessel function Iν(ix) evaluated on the imaginary axis. In
other parts of the complex plane the behaviour is as expected.

9.3 Reliable graphs

For graphical illustrations of the specific behaviour of special functions in
subsets of their domain, we refer to [AS64] and [SO87]. Also several web-
sites are devoted to the visualisation of special functions, both for real and
complex variables. Our interest is in the approximation power of series
representations and continued fraction representations and hence in the
visualisation of the truncation error incurred when using these approxima-
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tions. We therefore show level curves of s such that∣∣∣∣f(z)− fn(z)
f(z)

∣∣∣∣ ≤ 5× 10−s, z ∈ C, s ∈ N (9.3.1)

or ∣∣∣∣f(x)− fn(x)
f(x)

∣∣∣∣ = 5× 10−s, x ∈ R, s ∈ R+
0 (9.3.2)

where fn(z) is the nth approximant of a series or continued fraction rep-
resentation for the function f(z). Continued fraction representations de-
picted in graphs are marked throughout the chapters with in the right
margin.
In all our plots the grid lines are drawn one unit apart, both in the hor-
izontal and the vertical direction (aspect ratio 1 for each unit square). If
the x- or y-axis belong to the plot, they are shown as a solid line. For
instance, in the area [1, 19] × [0, 9] only the x-axis is shown, while in the
area [−2, 2]×[−2, 2] both axes appear. Since the axes do not always appear
in the picture, we have preferred not to label them. The caption provides
sufficient information on the plotted area.
So all our graphs show implicit relations Rs,t(x, y) = 0 involving at most
two real unknowns x and y and some real parameters s and/or t. Given
that this kind of graphing problem has been discussed for centuries, it is
unsurprising that there is an abundance of (partial) solutions to it. It
is, however, surprising that until recently [Tup91] there was no computer
method capable of reliably solving this problem.
The algorithm implemented in GrafEq (pronounced “graphic”) correctly
graphs mathematical formulas involving the basic operations, inequalities
and known elementary functions [Tup04]. When applied to a difficult for-
mula that is beyond its capabilities, the algorithm clearly marks the pixels
that it cannot decide to belong to the graph, as uncertain. At no point
does the algorithm use any approximations that may cause it to produce
an incorrect graph. We summarise the internal workings of GrafEq below.
In order for GrafEq to be useful in the context of the continued fraction
handbook, two extensions were developed [BCJ+05]:

since expressions in a complex variable z may get quite complicated
when manually converted to a relation in x = �z and y = �z, it is
necessary to add the direct handling of complex variables to GrafEq’s
interface;
since GrafEq only has implementations of the elementary functions
and none of the special functions, we need to be able to dynamically
extend the list of functions known by GrafEq by providing their im-
plementation.
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Internal working of GrafEq. Any formula R(x, y), when evaluated with
specific real numbers x and y, is always either false (F) or true (T). Given
a mathematical formula R(x, y) and a rectangular region [L,R]× [B, T ] of
the Cartesian plane R2, GrafEq produces an illustration that consists of a
W ×H rectangular array of pixels. Each pixel herein represents a closed
rectangular region of the plane. Since no algorithm can produce correct
black and white graphs, black meaning that there is at least one solution
of R(x, y) within the pixel and white meaning that there are no solutions
within the pixel, we allow to color some pixels “uncertain”, meaning that
there may or may not be solutions of R(x, y) within the pixel.
Even if the bounds L,R,B and T of the graphing area are given as ma-
chine numbers, the bounds of individual pixels may not be representable
exactly. Therefore GrafEq uses inner and outer bounds of the rectangular
region corresponding to the pixel. The inner bounds are used to show the
guaranteed existence of solutions and the outer bounds to show the ab-
sence of solutions. Further GrafEq makes use of interval arithmetic with
boolean values to represent and process the result of formula evaluations.
Three boolean intervals are possible, 〈F, F〉, 〈F, T〉, 〈T, T〉 with F < T.
The boolean intervals provide:

domain tracking, by keeping track of whether or not a quantity such
as
√

x with x < 0, is well-defined,
continuity tracking, by providing information on whether a quantity
is continuous or not within the given bounds,
branch tracking, by tracing to which branch each piece belongs when
breaking a discontinuous evaluation apart into pieces.

Plotting special functions. Additional function implementations must
also return interval evaluations and support the domain and continuity
boolean intervals required by GrafEq’s internal engine. To guarantee the
reliability of the function evaluations, the results in [CVW06] on the im-
plementation of special functions are used.

Example 9.3.1: We show a simple illustration of (9.3.1) for a T-fraction
approximant of the exponential function, namely

f(z) = exp(z)− 1,

fn(z) =
z

1− z +

n

K
m=2

(
(m− 1)z
m− z

)
, n = 8,

|f(z)− fn(z)|
|f(z)| ≤ 5× 10−s, s = 6, 7, 8.
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T-fractions have the property that, besides being useful for relatively small
z, they approximate well for small 1/z at the same time.

Figure 9.3.1: We consider the region −30 ≤ �z ≤ 5, |�z| ≤ 35 (excep-
tionally, in this figure the grid-lines are 10 units apart) and zoom in on
the regions |�z| ≤ 2, |�z| ≤ 2 and −20 ≤ �z ≤ −10, 10 ≤ �z ≤ 20 (in
these figures the grid-lines are 1 unit apart, as usual). The regions corre-
sponding to s = 6, 7, 8 are respectively coloured light-grey, medium-grey
and dark-grey, respectively. Axes and grid-lines are coloured black.

Note the very small isolated regions in the left half-plane of the larger draw-
ing, which are impossible to locate without a reliable graphing method.
The resolution of the small insets is 192 × 192 pixels while that of the
larger figure is 192 × 384 pixels. With the same number of 73728 plot-
points for the latter, the computer algebra system Maple (version 10) is
unable to produce the correct graph for s = 8.
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Example 9.3.2: The following is an illustration of (9.3.2) taken from
Chapter 14. In contrast to the above example where s ∈ N, here s can take
on all positive real values. Let the exponential integrals En(z) be defined
in �z > 0 by

En(z) :=
∫ ∞

1

e−zt

tn
dt, n ∈ N.

Analytic continuation of En(z) to the cut plane | arg z| < π extends the
definition and yields a single-valued function. Except on the negative real
axis, they can be represented by the series representation (14.1.11), the
asymptotic series expansion (14.1.13), the S-fraction (14.1.16),

ezEn(z) =
1
z +

n

1 +
1
z +

n + 1
1 +

2
z +

n + 2
1 + . . .

, n ∈ N,

=
1/z

1 +

∞

K
m=2

(
am/z

1

)
, a2k = n + k − 1, a2k+1 = k,

| arg z| < π

and the real J-fraction representation (14.1.23),

ezEn(z) =
1

n + z +

∞

K
m=2

(
(2−m)(n + m− 2)

n + 2m− 2 + z

)
, | arg z| < π.

Figure 9.3.2: On the vertical axis we display the value s in (9.3.2) in
the range 0 ≤ s ≤ 12, where fn(z) respectively equals the 5th partial sum
of the series development (14.1.11) (lightest), the 5th partial sum of the
asymptotic series (14.1.13) (second lightest), the 5th approximant of the
S-fraction (second darkest) and the 5th approximant of the real J-fraction
(darkest) of f(z) = E3(z), all for real z = x with 1 ≤ x ≤ 25.
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It is easy to see how the continued fraction representations outperform the
series developments. From Table 14.1.1 one also sees that in the interval
[1, 25] the 5th modified approximant of the S-fraction guarantees on average
one more significant decimal digit than the classical 5th approximant.

Besides the graphs shown in Example 9.3.1, for which we needed reliable
graphing software, it is also interesting to take a look at the next figure,
in which we show the number of significant digits delivered by successive
approximants fn(x) of the Thiele interpolating continued fraction (11.3.9)

tan(z) =
z

1 +
−4π−2z2

1 +

∞

K
m=1

(
m4 − 4π−2m2z2

2m + 1

)
,

z ∈ C \ {π/2 + kπ : k ∈ Z}

for real arguments x, where from light to dark n = 5, 6 and 7. At the
interpolation points ±mπ/2, m ∈ N0, the accuracy and hence the number
of significant digits is infinite, but in the neighbourhood of the interpola-
tion points the peaks in the graph are so steep that the traditional device
independent graphing tools miss each of them. Fortunately GrafEq does
not!
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Mathematical constants

The calculation of mathematical constants has been a topic of investiga-
tion for mathematicians throughout the centuries. Several methods are
developed, such as integral representations, series, products and continued
fractions. In this chapter we show how continued fractions can be relevant
in connection with some of the important mathematical constants.

10.1 Regular continued fractions
A continued fraction of the form

b0 +K
(

1
bm

)
= b0 +

1
b1 +

1
b2 +

1
b3 +

1
b4 + . . .

, bm ∈ N (10.1.1)

is called a regular continued fraction [Per54, p. 23]. When using a large
number of elements, it can be denoted by

[b0, b1, b2, b3, b4, . . . ] := b0 +K
(

1
bm

)
, bm ∈ N . (10.1.2)

For any positive irrational number x, there exists a unique regular contin-
ued fraction converging to x, which is called the regular continued fraction
expansion of x. Since a continued fraction with positive elements oscillates
as formulated in Theorem 7.5.1, it provides bounds for its value as well as
truncation error estimates.
Let x be a positive irrational number represented by its regular contin-
ued fraction f . Then each approximant fn = An/Bn is a best rational
approximant to x in the sense that [Per54, p. 44; MK85]

∀p, q ∈ N, q ≤ Bn, pBn − qAn �= 0 :
∣∣∣∣x− p

q

∣∣∣∣ > ∣∣∣∣x− An

Bn

∣∣∣∣ .

175
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10.2 Archimedes’ constant, symbol π

The number π is one of the most important mathematical constants. It is
defined as the area enclosed by the unit circle,

π := 4
∫ 1

0

√
1− x2 dx = 3.141592653589793238 . . . .

By calculating the areas of regular inscribed and circumscribed polygons
with 96 sides, Archimedes established the inequalities [Sha93, p. 140]

10
71

< π − 3 <
10
70

.

In the sixteenth century the mathematician Ludolph van Ceulen devoted
much of his life to the calculation of π, and he was able to determine 35 cor-
rect digits. The number π is sometimes called Ludolph’s constant [Huy95,
pp. 60–61], but a more frequently used name is Archimedes’ constant. The
number π was proved to be irrational by Lambert (1767) [Lam68] and
transcendental by Lindemann (1882) [Lin82, pp. 213–225].

Leibniz’ formula. A famous expression for π is the simple series repre-
sentation [EP98, p. 656]

π

4
=

∞∑
k=0

(−1)k

2k + 1
= 1− 1

3
+

1
5
− 1

7
+

1
9
− . . . , (10.2.1)

called Leibniz’ formula.

Machin’s formula. A simple formula based upon the fact that the ex-
pression 4 arctan(1/5) is close to π/4, is a formula commonly known as
Machin’s formula [Jon06, p. 263; EP98, p. 656]:

π

4
= 4 arctan(1/5)− arctan(1/239) . (10.2.2)

Using the partial sum of degree 7 of the FTS (11.3.3) for arctan(z) we get
only six correct digits,

π = 3.14159177 . . . .

Machin was the first to calculate the 100 initial digits of π. Currently π
is computed to more than a trillion hexadecimal and decimal digits. The
number π appears in many connections, among others in Buffon’s needle
experiment in probability theory [Sch74, pp. 183–186].
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Wallis’ formula. A well-known product representation of π is Wallis’
formula [Wal56; AS64, p. 258]

π = 2
∞∏

k=1

4k2

(2k − 1)(2k + 1)
. (10.2.3)

Here the partial products increase very slowly towards π. With k running
up to 15 in the partial product we obtain the rather poor result

π = 3.0913 . . . .

Regular continued fraction. The regular continued fraction expansion
f for π is given by [Per54, pp. 35–36]

π = 3 +
1
7 +

1
15 +

1
1 +

1
292 +

1
1 +

1
1 +

1
1 +

1
2 + . . .

= [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, . . . ] .
(10.2.4)

The value π is enclosed by

3.141592653 < f4 =
103993
33102

< π < f5 =
104348
33215

< 3.141592654 .

The fact that b4 = 292 is large implies that f4 is a very good approximant,
with

|f4 − f5| ≤ 9.1× 10−10 .

The same accuracy using Leibniz’ formula is only achieved after more than
2700 terms. Often, a disadvantage of regular continued fraction expansions
is the lack of a known pattern.

Special cases of S-fractions. The expression

π =
4
1 +

12

3 +
22

5 +
32

7 + . . .
(10.2.5)

follows immediately from the modified S-fraction expansion

√
z arctan(

√
z) =

∞

K
m=2

(
amz

bm

)
, | arg z| < π,

a1 = b1 = 1, am = (m− 1)2, bm = 2m− 1, m ≥ 2
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for z = 1 [JT80, p. 202; LW92, p. 561]. Here the value π is enclosed by

3.1415925404 < f10 =
4317632
1374345

< π < f9 =
3763456
1197945

< 3.1415933119

with
|f9 − f10| ≤ 7.8× 10−7 .

If we consider the S-fraction (12.1.12) for a special ratio of two gamma
values and let z = 4k + 1, then we obtain(

(2k)!
k!2

)2
π

24k
=

4
4k + 1 +

∞

K
m=2

(
(2m− 1)2

8k + 2

)
, k ∈ N0.

The special cases k = 0 [Lan99] and k = 1 yield

π =
4
1 +

∞

K
m=1

(
(2m− 1)2

2

)
,

π =
16
5 +

∞

K
m=1

(
(2m− 1)2

10

)
.

If we let z = 3 in (12.1.12), we obtain the slowly converging and not regular
continued fraction

3 +
∞

K
m=1

(
(2m− 1)2

6

)
= 3 +

12

6 +
32

6 +
52

6 +
72

6 +
92

6 + . . .
. (10.2.6)

For the approximants f9 and f10 we obtain

3.1414067 < f10 =
45706007
14549535

< π < f9 =
91424611
29099070

< 3.14183962,

with
|f9 − f10| ≤ 4.4× 10−4.

10.3 Euler’s number, base of the natural logarithm
The base of the natural logarithm, named e for Euler, sometimes known
as Euler’s number, is given by

e := lim
n→∞

(
1 +

1
n

)n

(10.3.1a)

=
∞∑

n=0

1
n!

(10.3.1b)

= 2.7182818284590 . . . . (10.3.1c)
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Using (10.3.1a) with n = 100 we obtain only two significant digits:(
1 +

1
100

)100

= 2.7048138294 . . . .

With n = 10 in (10.3.1b) we obtain seven significant digits:

10∑
n=0

1
n!

=
9864101
362880

= 2.718281801 . . . .

The number e is irrational (Euler, 1737) [Eul48; HW79] and transcenden-
tal (Hermite, 1873) [Her73]. It is related to the trigonometric functions
through

eiθ = cos(θ) + i sin(θ) . (10.3.2)

Euler’s simple relationship is

eiπ = −1 . (10.3.3)

An interesting example of the appearance of e occurs in probability theory.
If real numbers are selected at random from the interval (0,1) until the sum
exceeds 1, the expected number of selections is e [Fin03, p. 13].

An unusual limit representation. A limit formula for e is given by
[BK98, pp. 25–29]

e = lim
n→∞

[
(n + 1)n+1

nn
− nn

(n− 1)n−1

]
. (10.3.4)

With n = 100 we get five significant digits:

101101

100100
− 100100

9999
= 2.718293155 . . . .

Regular continued fractions. The regular continued fraction represen-
tation f of e is [LW92, p. 562]

e = 2 +
∞

K
m=1

(
1

bm

)
, b3j−2 = 1, b3j−1 =

1
2j

, b3j = 1

= [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . . ] . (10.3.5)

The value e is enclosed by

2.718281828445 < f14 =
517656
190435

< e < f13 =
49171
18089

< 2.718281828736
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with
|f13 − f14| ≤ 3.0× 10−10 .

This continued fraction does not converge fast since it has no large terms.
Another regular continued fraction involving e is [Old63, pp. 135–136]

e− 1
e + 1

=
∞

K
m=1

(
1

4m− 2

)
= [0, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, . . . ] .

(10.3.6)
The approximants f5 and f6 produce the inequalities

342762
741721

= f6 <
e− 1
e + 1

< f5 =
15541
33630

,

and hence
2.71828182845 < e < 2.71828182874.

10.4 Integer powers and roots of π and e

It turns out that powers and roots of e enjoy regular continued fraction
representations with very nice patterns. For instance,

√
e = 1 +

1
1 +

∞

K
m=2

(
1

bm

)
, b3j−1 = 1, b3j = 1, b3j+1 = 4j + 1

= [1, 1, 1, 1, 5, 1, 1, 9, 1, 1, 13, 1, 1, 17, . . . ], (10.4.1)
– – –
– – –
– – –

or more generally [Per54, p. 124]

e
1
k = 1 +

∞

K
m=1

(
1

bm

)
, b3j−2 = (2j − 1)k − 1, b3j−1 = 1, b3j = 1

= [1, k − 1, 1, 1, 3k − 1, 1, 1, 5k − 1, 1, . . . ], k > 1 . (10.4.2)

Faster converging continued fractions for integer roots of e are [Hur96]

e
1
k =

k + 1
k

+
1
k

∞

K
m=1

(
1

bm

)
, k > 1,

b3j−2 = 2k − 1, b3j−1 = 2j, b3j = 1, (10.4.3)
– – –
– – –
– – –

=
k

k − 1 +
1
2k +

∞

K
m=3

(
1

bm

)
, k > 1,

b3j = 1, b3j+1 = 2j, b3j+2 = 2k − 1. (10.4.4)
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Furthermore we have [Per54, p. 125]

e2 = 7 +
∞

K
m=1

(
1

bm

)
,

b5j−4 = 3j − 1, b5j−3 = b5j−2 = 1, b5j−1 = 3j, b5j = 12j + 6. (10.4.5)
– – –
– – –
– – –

The regular continued fraction for
√

π is
√

π = [1, 1, 3, 2, 1, 1, 6, 1, 28, 13, 1, 1, 2, 18, . . . ],

which unfortunately has no special pattern.
The constant π2/12 however, which equals ζ(2)/2 where ζ(z) is the Rie-
mann zeta function (10.11.1), can be obtained from [Ber89, p. 150]

π2

12
=

1
1 +

∞

K
m=1

(
m4

2m + 1

)
. (10.4.6)

– – –
– – –
– – –

An alternating continued fraction for π2/12 is given in Example 15.6.1.
A continued fraction with a very nice pattern [Per57, p. 157] is

e
2k
� − 1

e
2k
� + 1

=
k

� +

∞

K
m=1

(
k2

(2m + 1)�

)
, k, � ∈ Z \ {0} . (10.4.7)

– – –
– – –
– – –

With � = 2k an equivalence transformation returns (10.3.6).

Table 10.4.1: In tabulating approximants for powers and roots of π and
e we choose k = 3 in (10.4.3) and k = 3, � = 2 in (10.4.7). The relative
errors for the 5th, 10th, 15th, 20th and 25th approximants are given.

exact f5 f10 f15 f20 f25

(10.4.1) 1.648721e+00 7.8e−04 3.0e−09 4.9e−14 4.0e−19 2.5e−26

(10.4.3) 1.395612e+00 1.2e−06 2.0e−12 8.3e−18 9.2e−25 1.5e−31

(10.4.5) 7.389056e+00 2.2e−07 3.0e−14 4.8e−22 1.6e−30 1.5e−39

(10.4.6) 8.224670e−01 2.0e−02 5.5e−03 2.5e−03 1.4e−03 9.3e−04

(10.4.7) 9.051483e−01 2.2e−06 1.2e−16 5.2e−29 8.3e−43 1.1e−57

10.5 The natural logarithm, ln(2)
The logarithm having base e is defined by

ln(x) :=
∫ x

1

1
t

dt, x > 0 . (10.5.1)
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It is called the natural logarithm. Substituting x = 2 in the integral
representation gives

ln(2) = 0.6931471805599 . . . .

The number ln(2) is transcendental (Weierstrass, 1885) [HW79, p. 162].

Taylor series. A FTS for ln(x) is the alternating series [Mer68]

ln(1 + x) =
∞∑

k=1

(−1)kxk−1

k
, −1 < x ≤ 1, (10.5.2)

called the Mercator series. For x = 1 the sum converges very slowly.

Continued fraction. A continued fraction representation discovered by
Euler is [Eul48]

ln(2) =
1
1 +

∞

K
m=1

(
m2

1

)
=

1
1 +

12

1 +
22

1 +
32

1 +
42

1 +
52

1 + . . .
(10.5.3)

which also converges slowly. Another continued fraction f for ln(2) arises
from the representation of ln (1 + x) with x = 1 [LW92, pp. 17–18]:

K
(am

1

)
=

1
1 +

1/2
1 +

1/6
1 +

2/6
1 +

2/10
1 +

3/10
1 + . . .

(10.5.4)

with
a1 = 1, a2k =

k

2(2k − 1)
, a2k+1 =

k

2(2k + 1)
. (10.5.5)

Approximant f7 equals

1073
1548

= 0.69315245478 . . . .

Since limm→∞ am = 1/4, the tail of (10.5.4) converges to

1/4
1 +

1/4
1 +

1/4
1 +

1/4
1 + . . .

=
√

2− 1
2

. (10.5.6)

The 6th modified approximant S6(w) with w given by (10.5.6) equals

S6

(√
2− 1
2

)
=

1
1 +

1/2
1 +

1/6
1 +

2/6
1 +

2/10
1 +

3/10

1 +
√

2−1
2

= 0.69315156969 . . . . (10.5.7)
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10.6 Pythagoras’ constant, the square root of two
An important irrational number is the diagonal

√
2 of a unit square, some-

times called Pythagoras’ constant. The numerical value of this algebraic
number is √

2 = 1.414213562373 . . . .

Regular continued fraction and Pell numbers. Pythagoras’ constant
is connected to the Pell numbers, which are defined by the three-term
recurrence relation [McD96, pp. 105–107]

Pn = 2Pn−1 + Pn−2, P0 = 0, P1 = 1, n ≥ 2. (10.6.1)

The relation entails the limit

lim
n→∞

Pn+1

Pn
=
√

2 + 1. (10.6.2)

The regular continued fraction f associated with the three term recurrence
relation (10.6.1) is [LW92, p. 10; Wei03, p. 971]

√
2 + 1 = 2 +K

(
1
2

)
= 2 +

1
2 +

1
2 +

1
2 +

1
2 + . . .

. (10.6.3)

The approximants f9 and f10 yield

2.414213551 <
13860
5741

= f10 <
√

2 + 1 < f9 =
5741
2378

< 2.414213625

where
|f10 − f11| ≤ 7.4× 10−8 .

Several non-regular continued fractions represent the same constant.

10.7 The cube root of two
The numerical value of the algebraic number 3

√
2 is

3
√

2 = 1.25992104989 . . . .

Regular continued fraction. The cube root of two is represented by the
regular continued fraction [LT72, pp. 112–134]

[1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, . . . ] (10.7.1)

which converges rather slowly.
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Branched continued fraction. The number 2 + 3
√

2 can be represented
by a branched continued fraction. One way of describing it is as follows.
Let

C = 3 +
1
3 +

C

3 +
C

3 +
C

3 + . . .

where C is again the same continued fraction, such that we may write

2 + 3
√

2 = C = 3 +
1
3 +

3 + 1
3 +

C
3 +

C
3 + ...

3 + . . .
.

The approximants are recursively defined by

C0 = 3,

C1 = 3 +
1
3
,

Cn = 3 +
1
3 +

Cn−2

3 + · · · +
C0

3
= 3 +

1
3 + Cn−2(Cn−1 − 3)

.

We have in particular

C4 =
577
177

= 3.2598870 . . . ,

C5 =
740
227

= 3.25991189 . . . ,

C6 =
8541
2620

= 3.25992366 . . . .

The sequence {Cn}n∈N is known to converge and the limit is given by

C = 3 +
1
3 +

C

3 +
C

3 +
C

3 + . . .
= 3 +

1
3 + U

where

U =
−3
2

+

√
9
4

+ C.

This leads to an algebraic equation of degree 4 for C. Since the constant
term is missing, the degree can be reduced to 3. Substituting T = C − 2
then leads to the equation T 3 = 2.
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10.8 Euler’s constant, symbol γ

Euler’s constant was first introduced by Euler in 1734 as the limit [Eul48]

γ := lim
n→∞

(
n∑

k=1

1
k
− ln(n)

)
= 0.57721566490153 . . . . (10.8.1)

It is also known as the Euler-Mascheroni constant. It is closely related to
the gamma function Γ(z) discussed in Chapter 12, through the Weierstrass
product formula [Hen77, p. 25]

1
Γ(z)

= z eγz
∞∏

n=1

(
(1 + z/n)e−z/n

)
, z ∈ C . (10.8.2)

From this formula, which is also referred to as Euler’s infinite product, we
obtain the relation

γ = −dΓ(x)
dx |x=1

. (10.8.3)

It is not known whether γ is irrational or transcendental.

Regular continued fraction. The regular continued fraction f for γ
converges slowly [Knu62]:

γ = [0, 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, . . . ] .

Euler’s constant plays an important role in analysis through its relation to
the gamma function, the Bessel functions and number theory.

10.9 Golden ratio, symbol φ

The golden ratio is also known as the golden mean, the golden section or
the divine proportion because of its relation to geometric figures, natural
phenomena and art. The geometric property can be described as follows.
The golden ratio is the division of a given unit of length into two parts such
that the ratio of the shorter to the longer equals the ratio of the longer
part to the whole. Calling the longer part φ and accordingly the shorter
part 1− φ, we get

1
φ

=
φ

1− φ

and
φ2 + φ− 1 = 0

where the positive root is called the golden ratio [Hen77, p. 25],

φ =
√

5 + 1
2

= 1.61803398874989 . . . . (10.9.1)



186 10. MATHEMATICAL CONSTANTS

The golden ratio and the Fibonacci sequence. In the way Pythago-
ras’ constant is closely related to the Pell numbers, the golden ratio is
connected to the Fibonacci sequence [Fin03, pp. 5–6]

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1, n ≥ 2 (10.9.2)

with
φ = lim

n→∞
Fn+1

Fn
. (10.9.3)

Regular continued fraction. The continued fraction f for φ,

φ = 1 +
1
1 +

1
1 +

1
1 +

1
1 + . . .

(10.9.4)

is already introduced in Example 1.8.1. The approximants f14 and f15

yield the bounds

1.6180327 <
987
610

= f14 < φ < f15 =
1597
987

< 1.6180345

where
|f14 − f15| ≤ 1.7× 10−6 .

The convergence is rather slow due to the small values of the partial de-
nominators.

10.10 The rabbit constant, symbol ρ

The original problem investigated by Fibonacci in 1202 was about how fast
a rabbit breeds under ideal and hypothetical circumstances where the rab-
bits reproduce and never die. The reproduction is given by the recurrence
relation (10.9.2) which generates the Fibonacci sequence. The Fibonacci
sequence is also called the golden sequence because of its relation to the
golden ratio. Let the substitution

0 → 1

correspond to young rabbits growing old and

1 → 10

to old rabbits producing young rabbits. Starting with 0 and iterating, we
get the sequence

1, 10, 101, 10110, 10110101, 1011010110110, . . . .
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When input as binary numbers, this sequence equals

1, 2, 5, 22, 181, . . .

with the nth term given by the recurrence relation

Rn = 2Fn−1Rn−1 + Rn−2, R0 = 0, R1 = 1 (10.10.1)

where Fn is the nth Fibonacci number. Considering limn→∞ Rn as the
binary fraction of a number, defines the rabbit constant ρ:

ρ = 0.1011010110110 . . .

= 0.709803442861291 . . .

=
∞∑

k=1

2−ak (10.10.2)

with [Gar89; Sch91]

ak = �kφ� =

⌊
k

√
5 + 1
2

⌋
= �k × (1.61803398874989 . . . )� . (10.10.3)

The rabbit constant is a transcendental number (Böhmer, 1926) [Böh26].
From ak ≥ k follows that

∞∑
k=n+1

2−ak ≤
∞∑

k=n+1

2−k =
1
2n

(10.10.4)

which gives a rough error estimate. The partial sum using 12 terms of
(10.10.2) equals

ρ = 0.709802627563 . . .

with an error of less than
1

212
< 2.5× 10−4 .

Regular continued fraction. Another interesting property is that the
rabbit constant can be expressed by the regular continued fraction f given
by [Sch91; Gar89]

∞

K
m=1

(
1

2Fm

)
=

1
2F0 +

1
2F1 +

1
2F2 +

1
2F3 +

1
2F4 +

1
2F5 +

1
2F6 + . . .

(10.10.5)
where Fn is the nth Fibonacci number. Approximant f11 equals

f11 = 0.70980344286129 . . . .

Approximant f12 produces the same initial digits. A closer investigation
shows a difference of only

3.3× 10−114.
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10.11 Apéry’s constant, ζ(3)

The value of the Riemann zeta function

ζ(z) =
∞∑

k=1

1
kz

(10.11.1)

at z = 3,

ζ(3) = 1.202056903159594285399738 . . . (10.11.2)

is called Apéry’s constant. The number is irrational (Apéry, 1979) [Apé79;
vdP79] but it is not known whether it is transcendental.

Series representation. A rapidly converging series for ζ(3) is [AZ97]

ζ(3) =
∞∑

n=0

(−1)n (n!)10(205n2 + 250n + 77)
64((2n + 1)!)5

. (10.11.3)

The sum of the first five terms is 1.20205690315959428 . . . which has as
good as 16 significant digits.

Continued fraction representations. The number ζ(3) can be ex-
pressed by the regular continued fraction f [AZ97] given by

ζ(3) = 1 +
1
4 +

1
1 +

1
18 +

1
1 +

1
1 +

1
1 +

1
4 + . . .

(10.11.4)

= [1, 4, 1, 18, 1, 1, 1, 4, 1, 9, 9, 2, 1, 1, 1, 2, 7, 1, 1, 7, 11, . . . ] .

To obtain the same number of correct digits as with (10.11.3), using the
continued fraction (10.11.4), we need approximant f17.
Another continued fraction representation is the remarkable [vdP79]

ζ(3) =
6
5 +

∞

K
m=1

( −m6

34m3 + 51m2 + 27m + 5

)
. (10.11.5)

In addition, Apéry’s constant has the following property. Given three
integers chosen at random, the probability that no common factor divides
them all is 1/ζ(3) [Wei03, p. 94].
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10.12 Catalan’s constant, symbol C

Catalan’s constant is defined by [Ber89, p. 153]

C :=
∞∑

n=0

(−1)n

(2n + 1)2
= 0.915965594 . . . (10.12.1)

and equals the value β(2) of Dirichlet’s beta function

β(x) =
∞∑

n=0

(−1)n

(2n + 1)x
. (10.12.2)

Sometimes Dirichlet’s beta function is called Catalan’s beta function. It is
an open question if Catalan’s constant is irrational.

Continued fractions. The continued fraction [Ber89, p. 153]

2C = 1 +
1

1/2 +
12

1/2 +
1 · 2
1/2 +

22

1/2 +
2 · 3
1/2 +

32

1/2 +
3 · 4
1/2 + . . .

(10.12.3)

converges very slowly. The regular continued fraction f has no special
pattern and it starts with

[0, 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, . . . ] . (10.12.4)

The value C of the regular continued fraction is enclosed by

0.91596559399 < f8 =
48559
53014

< C < f7 =
38869
42435

< 0.91596559444

with
|f7 − f8| ≤ 4.5× 10−10 .

A rapidly converging continued fraction for Catalan’s constant is given by
[Zud03]

C =
13/2

q(0) +

∞

K
m=1

(
(2m− 1)4(2m)4p(m− 1)p(m + 1)

q(m)

)
,

p(m) = 20m2 − 8m + 1,

q(m) = 3520m6 + 5632m5 + 2064m4 − 384m3 − 156m2 + 16m + 7 .
(10.12.5)

Using (10.12.5) we can enclose C by

0.91596559417721898 < f8 < C < f7 < 0.91596559417722331

with
|f7 − f8| ≤ 4.4× 10−15 .

In statistical mechanics C arises as part of the exact solution of the so-
called dimer problem [Bec64, p. 105].
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10.13 Gompertz’ constant, symbol G

The integral

G :=
∫ ∞

0

e−u

1 + u
du = eE1(1) = −eEi(−1) = 0.596347362 . . .

where E1(x) and Ei(x) are the exponential integrals discussed in Chap-
ter 14, is called Gompertz’ constant [LL83, p. 29].

Continued fraction. Stieltjes showed that the continued fraction expan-
sion f of Gompertz constant is given by [Wei03, p. 1213]

G =
1
2 +

∞

K
m=1

( −m2

2(m + 1)

)
=

1
2 +

−12

4 +
−22

6 +
−32

8 + . . .
. (10.13.1)

The approximants f20 and f21 equal

f20 =
60588676286095139260
101599675414361566913

and
f21 =

13284301413562196499820
22176118581346469557141

with
0.59634714 < f20 < G < f21 < 0.59634723

and
|f22 − f21| ≤ 0.8× 10−7.

10.14 Khinchin’s constant, symbol K

Let x be a positive number and

x = [a0, a1, a2, . . . ]

be its regular continued fraction representation. We assume that x is ir-
rational, otherwise the continued fraction terminates. Khinchin (1934)
[Khi34] considered the following problem. For almost every x the limit of
the geometric mean

Kn(x) = lim
n→∞(a1a2 · · · an)1/n (10.14.1)

exists and is surprisingly enough independent of x [JT80, pp. 4–5]. The
value of Khinchin’s constant is

K = 2.685452001 . . . .
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It is not known if K is irrational.
There are several representations for K. We just mention explicitly [SW59,
p. 93; Khi97, pp. 86–94]

K =
∞∏

n=1

[
1 +

1
n(n + 2)

]ln(n)/ ln(2)

. (10.14.2)

Other representations involve, for instance, the Riemann zeta function ζ(k)
[BBC97],

K = exp

(
1

ln(2)

∞∑
k=1

H ′
2k−1 (ζ(2k)− 1)

k

)
, (10.14.3)

and the kth alternating harmonic number H ′
k defined by

H ′
k =

k∑
j=1

(−1)j+1

j
.

The start of the regular continued fraction of K is

[2, 1, 2, 5, 1, 1, 2, 1, 1, . . . ] .



11
Elementary functions

The elementary functions are grouped into a number of smaller families.
For every function we list several continued fraction representations, each
with their domain of convergence in the complex plane. Most continued
fraction representations are limit periodic. The speed of convergence of
each listed continued fraction formula is illustrated with some typical eval-
uations.
In the sequel we consistently use z for a complex argument and x for a real
argument.

11.1 The exponential function

The exponential function is an entire function without zeroes. For z ∈ C,

exp(z) = exp(|z|) (cos(arg z) + i sin(arg z)) .

Formal series expansion.

exp(z) =
∞∑

k=0

1
k!

zk, z ∈ C. (11.1.1)
– – –
– – –
– – –

Continued fraction representations. A regular C-fraction [Wal48,
p. 348] is given in (11.1.3) and a general T-fraction for exp(z)− 1 [Kho63,
p. 113] in (11.1.4). The related function −2 + z + 2z/(exp(z)− 1) [Kho63,
p. 114], when viewed as a function of z2, gives rise to the S-fraction (11.1.2).

193
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All converge throughout the entire complex plane:

exp(z) = 1 +
2z

2− z +
z2/6

1 +

∞

K
m=3

(
amz2

1

)
, z ∈ C, (11.1.2)

– – –
– – –
– – – AS

am =
1

4(2m− 3)(2m− 1)

= 1 +
∞

K
m=1

(amz

1

)
, z ∈ C, (11.1.3)

– – –
– – –
– – – AS

a1 = 1, a2k =
−1

2(2k − 1)
, a2k+1 =

1
2(2k + 1)

= 1 +
z

1− z +

∞

K
m=2

(
(m− 1)z
m− z

)
, z ∈ C. (11.1.4)

– – –
– – –
– – –

Table 11.1.1: Relative error of 5th partial sum and 5th approximants.

x exp(x) (11.1.1) (11.1.2) (11.1.3) (11.1.4)
−30 9.357623e−14 1.8e+18 1.5e+12 6.1e+13 4.4e+07

−10 4.539993e−05 1.2e+07 8.3e+01 1.5e+04 1.4e+01

−5 6.737947e−03 1.8e+03 8.6e−03 1.3e+01 6.2e−01

1 2.718282e+00 5.9e−04 1.0e−10 1.2e−04 3.3e−03

2 7.389056e+00 1.7e−02 2.2e−07 7.5e−03 1.0e+00

5 1.484132e+02 3.8e−01 8.6e−03 7.3e−01 1.0e+00

15 3.269017e+06 1.0e+00 1.0e+00 1.0e+00 1.0e+00

Table 11.1.2: Relative error of 20th partial sum and 20th approximants.

x exp(x) (11.1.1) (11.1.2) (11.1.3) (11.1.4)
−30 9.357623e−14 9.1e+23 1.4e+02 9.0e+09 2.7e+01

−10 4.539993e−05 3.0e+05 4.0e−20 3.4e−04 1.6e−03

−5 6.737947e−03 1.1e−03 1.1e−32 6.8e−11 8.1e−08

1 2.718282e+00 7.5e−21 2.2e−61 1.1e−25 5.1e−20

2 7.389056e+00 6.1e−15 4.9e−49 2.3e−19 2.8e−13

5 1.484132e+02 8.1e−08 1.1e−32 6.8e−11 1.1e−03

15 3.269017e+06 8.3e−02 1.4e−12 8.7e−01 1.0e+00
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Figure 11.1.1: Complex region where f8(z; 0) of (11.1.2) guarantees k
significant digits for exp(z) (from light to dark k = 6, 7, 8, 9).

Figure 11.1.2: Complex region where f8(z; 0) − 1 of (11.1.4) guarantees
k significant digits for exp(z) − 1 (from light to dark k = 6, 7, 8, 9). Ex-
ceptionally the grid lines are 5 units apart on the real and imaginary axis.
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11.2 The natural logarithm
The logarithmic function is a many-valued function. Its principal value or
branch is given by

Ln(z) = ln(|z|) + i Arg z, Arg z ∈ (−π, π], z �= 0.

Formal series expansion.

Ln(1 + z) =
∞∑

k=1

(−1)k+1

k
zk, |z| < 1. (11.2.1)

– – –
– – –
– – –

Continued fraction representations. An S-fraction for Ln(1 + z) is
given in (11.2.2) [Wal48, p. 342]. Formula (11.2.3) [Kho63, p. 111] is the
even contraction of the continued fraction that can be constructed from the
series (11.2.1) through the Euler connection (1.7.2). An S-fraction for the
related function −1+2z/ Ln ((1 + z)/(1− z)) in the variable (iz)2 [Wal48,
p. 343] can be found in (11.2.4):

Ln(1 + z) =
z

1 +

∞

K
m=2

(amz

1

)
, |Arg(1 + z)| < π, (11.2.2)

– – –
– – –
– – – AS

a2k =
k

2(2k − 1)
, a2k+1 =

k

2(2k + 1)

=
2z

2 + z +

∞

K
m=2

( −(m− 1)2z2

(2m− 1)(2 + z)

)
, (11.2.3)

– – –
– – –
– – –

|Arg
(
1− z2/(2 + z)2

) | < π

Ln
(

1 + z

1− z

)
=

2z

1 +

∞

K
m=1

(
amz2

1

)
, |Arg(1− z2)| < π, (11.2.4)

– – –
– – –
– – – AS

am =
−m2

(2m− 1)(2m + 1)
.

Since in (11.2.2), limm→∞ amz = z/4 and

lim
m→∞

am+1 − 1
4

am − 1
4

= −1,

the modifications (7.7.5) and (7.7.10), given here by

w(z) =
−1 +

√
1 + z

2
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and ⎧⎪⎪⎨⎪⎪⎩
w

(1)
2k (z) = w(z) +

kz

2(2k + 1)
− z

4
,

w
(1)
2k+1(z) = w(z) +

(k + 1)z
2(2k + 1)

− z

4
,

can be used. In the same way, the respective modifications

w̃n(z) = (2n− 1)
−(2 + z) + 2

√
1 + z

2
,

w̃(1)
n (z) = w̃n(z)− z2

8(2n + 1)
√

1 + z

can be used for the evaluation of (11.2.3). The results are displayed in
the Tables 11.2.2 and 11.2.4, where they can also be compared to the
unmodified approximants copied from the Tables 11.2.1 and 11.2.3. A
numerical illustration of (11.2.4) is given in the Tables 15.3.1 and 15.3.2 in
Chapter 15.
A Thiele continued fraction expansion for Ln(1 + z) is given in (6.8.8)
and compared with in the Tables 11.2.1 and 11.2.3. Its evaluation can be
combined with the modification

w(z) =
−1 +

√
z + 1

2
. (11.2.5)

Table 11.2.1: Relative error of 5th partial sum and 5th approximants.

x Ln(1 + x) (11.2.1) (11.2.2) (11.2.3) (6.8.8)
−0.9 −2.302585e+00 1.7e−01 4.8e−02 1.9e−03 2.9e−02

−0.4 −5.108256e−01 7.1e−04 5.4e−05 1.6e−09 9.5e−06

0.1 9.531018e−02 1.4e−07 1.3e−08 8.8e−17 4.9e−10

0.5 4.054651e−01 1.9e−03 1.9e−05 1.7e−10 3.1e−06

1.1 7.419373e−01 1.9e−01 3.8e−04 6.4e−08 1.3e−04

5 1.791759e+00 1.2e+03 2.6e−02 2.4e−04 3.0e−02

10 2.397895e+00 6.2e+04 9.9e−02 2.6e−03 2.0e−01

100 4.615121e+00 3.6e+10 1.8e+00 1.2e−01 2.6e+01
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Table 11.2.2: Relative error of 5th (modified) approximants.

x Ln(1 + x) (11.2.2) (11.2.2) (11.2.2)
−0.9 −2.302585e+00 4.8e−02 1.2e−02 1.1e−03

−0.4 −5.108256e−01 5.4e−05 9.4e−06 1.7e−07

0.1 9.531018e−02 1.3e−08 2.2e−09 7.4e−12

0.5 4.054651e−01 1.9e−05 3.0e−06 4.4e−08

1.1 7.419373e−01 3.8e−04 6.1e−05 1.6e−06

5 1.791759e+00 2.6e−02 4.3e−03 2.7e−04

10 2.397895e+00 9.9e−02 1.6e−02 1.4e−03

100 4.615121e+00 1.8e+00 2.4e−01 3.4e−02

x Ln(1 + x) (11.2.3) (11.2.3) (11.2.3)
−0.9 −2.302585e+00 1.9e−03 3.2e−05 3.4e−06

−0.4 −5.108256e−01 1.6e−09 1.7e−11 8.2e−14

0.1 9.531018e−02 8.8e−17 8.8e−19 1.5e−22

0.5 4.054651e−01 1.7e−10 1.7e−12 5.2e−15

1.1 7.419373e−01 6.4e−08 6.7e−10 7.0e−12

5 1.791759e+00 2.4e−04 3.3e−06 2.1e−07

10 2.397895e+00 2.6e−03 4.5e−05 5.3e−06

100 4.615121e+00 1.2e−01 7.2e−03 4.1e−03

Table 11.2.3: Relative error of 20th partial sum and 20th approximants.

x Ln(1 + x) (11.2.1) (11.2.2) (11.2.3) (6.8.8)
−0.9 −2.302585e+00 1.5e−02 2.8e−06 5.8e−12 1.5e−06

−0.4 −5.108256e−01 2.5e−10 1.8e−18 2.2e−36 2.4e−19

0.1 9.531018e−02 4.4e−23 5.3e−33 1.9e−65 1.3e−34

0.5 4.054651e−01 1.8e−08 1.9e−20 2.3e−40 2.0e−21

1.1 7.419373e−01 2.4e−01 2.8e−15 5.3e−30 5.5e−16

5 1.791759e+00 1.0e+13 4.2e−08 1.3e−15 2.0e−08

10 2.397895e+00 1.8e+19 5.3e−06 2.1e−11 3.3e−06

100 4.615121e+00 1.0e+40 1.8e−02 3.6e−04 2.5e−02
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Table 11.2.4: Relative error of 20th (modified) approximants.

x Ln(1 + x) (11.2.2) (11.2.2) (11.2.2)
−0.9 −2.302585e+00 2.8e−06 1.9e−07 2.9e−10

−0.4 −5.108256e−01 1.8e−18 9.3e−20 4.3e−22

0.1 9.531018e−02 5.3e−33 2.7e−34 3.2e−37

0.5 4.054651e−01 1.9e−20 9.5e−22 5.5e−24

1.1 7.419373e−01 2.8e−15 1.5e−16 1.8e−18

5 1.791759e+00 4.2e−08 2.6e−09 1.1e−10

10 2.397895e+00 5.3e−06 3.7e−07 2.8e−08

100 4.615121e+00 1.8e−02 2.9e−03 9.2e−04

x Ln(1 + x) (11.2.3) (11.2.3) (11.2.3)
−0.9 −2.302585e+00 5.8e−12 6.6e−15 2.2e−16

−0.4 −5.108256e−01 2.2e−36 1.4e−39 2.2e−42

0.1 9.531018e−02 1.9e−65 1.2e−68 6.1e−73

0.5 4.054651e−01 2.3e−40 1.5e−43 1.4e−46

1.1 7.419373e−01 5.3e−30 3.5e−33 1.1e−35

5 1.791759e+00 1.3e−15 1.1e−18 2.2e−20

10 2.397895e+00 2.1e−11 2.5e−14 9.3e−16

100 4.615121e+00 3.6e−04 1.7e−06 3.1e−07

Figure 11.2.1: Complex region where f8(z; 0) of (11.2.2) guarantees k
significant digits for Ln(1 + z) (from light to dark k = 6, 7, 8, 9).
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Figure 11.2.2: Number of significant digits guaranteed by the nth classical
approximant of (11.2.2) (from light to dark n = 5, 6, 7) and the 5th modified
approximant evaluated with w

(1)
5 (z) (darkest).

11.3 Trigonometric functions

Of the six trigonometric functions we discuss only three, namely the sine,
cosine and tangent functions:

sin(z) =
exp(iz)− exp(−iz)

2i
,

sin(x + iy) = sin(x) cosh(y) + i cos(x) sinh(y),

cos(z) =
exp(iz) + exp(−iz)

2
,

cos(x + iy) = cos(x) cosh(y)− i sin(x) sinh(y),

tan(z) =
sin(z)
cos(z)

, cos(z) �= 0,

tan(x + iy) =
sin(2x) + i sinh(2y)
cos(2x) + cosh(2y)

.

The other three functions are the reciprocals of these:

sec(z) = 1/ cos(z),

csc(z) = 1/ sin(z),

cot(z) = 1/ tan(z),

cos(z) �= 0,

sin(z) �= 0,

sin(z) �= 0.
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Formal series expansion.

sin(z) =
∞∑

k=1

(−1)k+1

(2k − 1)!
z2k−1, z ∈ C, (11.3.1)

cos(z) =
∞∑

k=0

(−1)k

(2k)!
z2k, z ∈ C, (11.3.2)

tan(z) =
∞∑

k=1

4k(4k − 1)|B2k|
(2k)!

z2k−1, |z| < π/2. (11.3.3)
– – –
– – –
– – –

where B2k is the (2k)th Bernoulli number given by the recursion

B0 = 1, B1 = −1/2,

B2m =
1
2
− 1

2m + 1

m−1∑
k=0

(
2m + 1

2k

)
B2k, m ≥ 1

=
1
2
− 1

2m + 1
− 1

2m + 1

m−1∑
k=0

(
2m + 1

k

)
B2k,

B2m+1 = 0, m ≥ 1.

(11.3.4)

The Bernoulli numbers B2m also satisfy

2(2m)!
(2π)2m

< (−1)m+1B2m <
2(2m)!
(2π)2m

(
1

1− 21−2m

)
, m ≥ 1 (11.3.5)

and hence

|B2m| ∼ 2(2m)!
(2π)2m

, m →∞. (11.3.6)

Continued fraction representations. Using the Euler connection (1.7.2)
general T-fractions can be obtained for sin(z) and cos(z). They do how-
ever not offer any advantage over the series representations (11.3.1) and
(11.3.2). For tan(z) several Thiele interpolating continued fractions exist
[Per54, p. 35; ABJL92, p. 50], as well as the S-fraction (11.3.7) in −z2 for
−1 + z/ tan(z) [Wal48, p. 349]. All converge everywhere tan(z) is defined:
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tan(z) =
z

1 +

∞

K
m=2

(−amz2

1

)
, am =

1
(2m− 3)(2m− 1)

,

z ∈ C \ {π/2 + kπ : k ∈ Z} (11.3.7)
– – –
– – –
– – – AS

tan(πz/4) =
z

1 +

∞

K
m=1

(
(2m− 1)2 − z2

2

)
,

z ∈ C \ {π/2 + kπ : k ∈ Z} (11.3.8)

tan(z) =
z

1 +
−4π−2z2

1 +

∞

K
m=1

(
m4 − 4π−2m2z2

2m + 1

)
,

z ∈ C \ {π/2 + kπ : k ∈ Z}. (11.3.9)
– – –
– – –
– – –

Note that the satisfaction of more interpolation conditions by higher ap-
proximants of (11.3.9) does not guarantee any additional significant digits
in the immediate neighbourhood of the interpolation points ±mπ/2 (see
Figure 11.3.2) when compared to previous approximants. At the interpo-
lation points the number of significant digits is infinite.

Table 11.3.1: Relative error of 5th partial sum and 5th approximants.

x tan(x) (11.3.3) (11.3.7) (11.3.9)
−1.5 −1.410142e+01 5.6e−01 1.0e−04 2.2e−02

−0.75 −9.315965e−01 1.2e−04 8.2e−09 5.5e−03

−0.25 −2.553419e−01 2.2e−10 1.0e−13 6.0e−04

0.1 1.003347e−01 3.6e−15 1.0e−17 9.7e−05

0.3 3.093362e−01 1.9e−09 6.3e−13 8.7e−04

0.6 6.841368e−01 8.0e−06 7.7e−10 3.5e−03

1 1.557408e+00 3.9e−03 2.0e−07 9.7e−03
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Table 11.3.2: Relative error of 20th partial sum and 20th approximants.

x tan(x) (11.3.3) (11.3.7) (11.3.9)
−1.5 −1.410142e+01 1.4e−01 5.3e−41 1.2e−03

−0.75 −9.315965e−01 2.8e−14 3.6e−54 3.0e−04

−0.25 −2.553419e−01 2.4e−34 2.1e−73 3.3e−05

0.1 1.003347e−01 4.7e−51 2.4e−89 5.3e−06

0.3 3.093362e−01 5.2e−31 3.1e−70 4.8e−05

0.6 6.841368e−01 2.3e−18 4.1e−58 1.9e−04

1 1.557408e+00 5.1e−09 5.1e−49 5.3e−04

Figure 11.3.1: Complex region where f8(z; 0) of (11.3.7) guarantees k
significant digits for tan(z) (from light to dark k = 6, 7, 8, 9).

Figure 11.3.2: Number of significant digits guaranteed by the nth approx-
imant of (11.3.9) (from light to dark n = 5, 6, 7).
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11.4 Inverse trigonometric functions

A variety of ways exists to extend the inverse trigonometric functions to
multi-valued functions of a complex argument. They can be expressed in
terms of the natural logarithm function as follows:

Arcsin(z) =
1
i

Ln
(
iz +

√
1− z2

)
,

Arccos(z) =
1
i

Ln
(
z +

√
z2 − 1

)
,

Arctan(z) =
1
2i

Ln
(

1 + iz
1− iz

)
,

Arccot(z) =
1
2i

Ln
(

z + i
z − i

)
.

They are closely related to the principal branch of the inverse hyperbolic
functions by

Asinh(iz) = i Arcsin(z),

Acosh(z) = i Arccos(z),

Atanh(iz) = i Arctan(z),

Acoth(iz) = −i Arccot(z).

In addition, a lot of relationships exist among the six inverse trigonometric
functions. We therefore only present the FTS for Arcsin(z) and Arctan(z).

Formal series expansion.

Arcsin(z) = z +
∞∑

k=1

(2k − 1)!!
(2k)!! (2k + 1)

z2k+1, |z| < 1, (11.4.1)
– – –
– – –
– – –

Arccos(z) =
π

2
−Arcsin(z), |z| < 1, (11.4.2)

– – –
– – –
– – –

Arctan(z) =
∞∑

k=1

(−1)k+1

2k − 1
z2k−1, |z| < 1, (11.4.3)

– – –
– – –
– – –

Arccot(z) = Arctan(1/z),

Arcsec(z) = Arccos(1/z),

Arccsc(z) = Arcsin(1/z).
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where the double factorial is defined by

0!! = 1,

(2k)!! =
k∏

j=1

(2j),

(2k + 1)!! =
k∏

j=0

(2j + 1).

Continued fraction representations. Several S-fraction like represen-
tations can be given [Kho63, pp. 118–121; Wal48, pp. 343–345]. Note that
the even contractions of (11.4.4) and (11.4.5) are equal:

Arcsin(z) =
z/
√

1− z2

1 +

∞

K
m=1

(
m2z2/(1− z2)

2m + 1

)
,

|Arg(1− z2)| < π (11.4.4)
– – –
– – –
– – –

=
z
√

1− z2

1 +

∞

K
m=2

(
amz2

1

)
, |Arg(1− z2)| < π,

a2k =
−2k(2k − 1)

(4k − 1)(4k − 3)
, a2k+1 =

−2k(2k − 1)
(4k + 1)(4k − 1)

.

(11.4.5)
– – –
– – –
– – – AS

Table 11.4.1: Relative error of 5th partial sum and 5th approximants.

x Arcsin(x) (11.4.1) (11.4.4) (11.4.5)
−0.9 −1.119770e+00 1.2e−02 1.6e−02 1.7e−02

−0.5 −5.235988e−01 5.1e−06 2.9e−06 3.5e−06

−0.2 −2.013579e−01 7.3e−11 1.7e−10 2.0e−10

0.1 1.001674e−01 1.7e−14 1.5e−13 1.8e−13

0.3 3.046927e−01 9.8e−09 1.1e−08 1.3e−08

0.6 6.435011e−01 5.0e−05 2.7e−05 3.1e−05

0.8 9.272952e−01 2.2e−03 1.6e−03 1.8e−03
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Table 11.4.2: Relative error of 20th partial sum and 20th approximants.

x Arcsin(x) (11.4.1) (11.4.4) (11.4.5)
−0.9 −1.119770e+00 1.2e−04 1.3e−08 1.3e−08

−0.5 −5.235988e−01 8.1e−16 2.1e−23 2.1e−23

−0.2 −2.013579e−01 1.3e−32 2.3e−40 2.3e−40

0.1 1.001674e−01 2.9e−45 1.6e−52 1.6e−52

0.3 3.046927e−01 3.3e−25 4.4e−33 4.4e−33

0.6 6.435011e−01 1.9e−12 1.3e−19 1.3e−19

0.8 9.272952e−01 5.2e−07 1.5e−12 1.5e−12

Similarly, the even contractions of (11.4.6) and (11.4.7) are equal, and those
of the continued fractions (11.4.8) and (11.4.9) too:

Arccos(z) =
√

1− z2/z

1 +

∞

K
m=1

(
m2(1− z2)/z2

2m + 1

)
,

�z > 0, (1− z2)/z2 /∈ (−∞,−1]
(11.4.6)

– – –
– – –
– – –

=
z
√

1− z2

1 +

∞

K
m=2

(−am(1− z2)
1

)
, �z > 0,

a2k =
2k(2k − 1)

(4k − 1)(4k − 3)
, a2k+1 =

2k(2k − 1)
(4k + 1)(4k − 1)

.

(11.4.7)
– – –
– – –
– – –

Table 11.4.3: Relative error of 5th partial sum and 5th approximants.

x Arccos(x) (11.4.2) (11.4.6) (11.4.7)
0.1 1.470629e+00 1.2e−15 1.1e+00 5.4e−01

0.3 1.266104e+00 2.4e−09 8.4e−02 8.3e−02

0.5 1.047198e+00 2.5e−06 7.0e−03 7.6e−03

0.7 7.953988e−01 3.5e−04 2.8e−04 3.1e−04

0.9 4.510268e−01 3.1e−02 6.2e−07 7.3e−07
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Table 11.4.4: Relative error of 20th partial sum and 20th approximants.

x Arccos(x) (11.4.2) (11.4.6) (11.4.7)
0.1 1.470629e+00 2.0e−46 3.4e−02 3.4e−02

0.3 1.266104e+00 8.1e−26 7.6e−06 7.6e−06

0.5 1.047198e+00 4.0e−16 4.9e−10 4.9e−10

0.7 7.953988e−01 1.4e−09 1.4e−15 1.4e−15

0.9 4.510268e−01 2.9e−04 4.2e−26 4.2e−26

Arctan(z) =
z

1 +

∞

K
m=2

(
(m− 1)2z2

2m− 1

)
,

iz /∈ (−∞,−1) ∪ (1, +∞) (11.4.8)
– – –
– – –
– – – AS

=
z/(1 + z2)

1 +

∞

K
m=2

(−amz2/(1 + z2)
1

)
,

a2k =
2k(2k − 1)

(4k − 3)(4k − 1)
, a2k+1 =

2k(2k − 1)
(4k − 1)(4k + 1)

,

iz /∈ (−∞,−1) ∪ (1, +∞). (11.4.9)
– – –
– – –
– – –

Both (11.4.8) and (11.4.9) are limit periodic and hence the modification
(7.7.5), given respectively by

w̃n(z) =
2n− 1

2

(
−1 +

√
1 + z2

)
and

w(z) =
1
2

(
−1 +

√
1− z2

1 + z2

)
can be used. For (11.4.8) and (11.4.9) we respectively have

lim
m→∞

m2

4m2−1 − 1
4

(m−1)2

(2m−1)(2m−3) − 1
4

= 1

and

lim
m→∞

−am+1 + 1
4

−am + 1
4

= −1,
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and then the improved modification (7.7.10), given here by

w̃(1)
n (z) = w̃n(z) +

z2

4(2n + 1)
√

1 + z2

and

w
(1)
2k−1(z) = w(z) +

−2k + 3
4

16k2 − 16k + 3
z2

1 + z2
,

w
(1)
2k (z) = w(z) +

2k − 1
4

16k2 − 1
z2

1 + z2

respectively, is useful. In the Tables 11.4.6 and 11.4.8 the continued fraction
representations (11.4.8) and (11.4.9) are first evaluated with w = 0 and
subsequently with the modifications w(z) and w

(1)
n (z). In the Tables 11.4.5

and 11.4.7 all approximants are evaluated without any use of modification.

Table 11.4.5: Relative error of 5th partial sum and 5th approximants.

x Arctan(x) (11.4.3) (11.4.8) (11.4.9)
−0.9 −7.328151e−01 1.6e−02 1.1e−04 1.3e−04

−0.5 −4.636476e−01 1.7e−05 8.3e−07 9.7e−07

−0.2 −1.973956e−01 3.1e−10 1.4e−10 1.6e−10

0.1 9.966865e−02 7.7e−14 1.4e−13 1.7e−13

0.3 2.914568e−01 3.9e−08 7.0e−09 8.4e−09

0.7 6.107260e−01 8.6e−04 1.5e−05 1.8e−05

Table 11.4.6: Relative error of 5th (modified) approximants.

x Arctan(x) (11.4.8) (11.4.8) (11.4.8)
−0.9 −7.328151e−01 1.1e−04 8.7e−07 3.4e−08

−0.5 −4.636476e−01 8.3e−07 7.5e−09 1.2e−10

−0.2 −1.973956e−01 1.4e−10 1.3e−12 3.9e−15

0.1 9.966865e−02 1.4e−13 1.4e−15 1.1e−18

0.3 2.914568e−01 7.0e−09 6.8e−11 4.3e−13

0.7 6.107260e−01 1.5e−05 1.3e−07 3.5e−09
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x Arctan(x) (11.4.9) (11.4.9) (11.4.9)
−0.9 −7.328151e−01 1.3e−04 2.3e−05 2.5e−07

−0.5 −4.636476e−01 9.7e−07 1.7e−07 7.5e−10

−0.2 −1.973956e−01 1.6e−10 2.9e−11 2.3e−14

0.1 9.966865e−02 1.7e−13 3.0e−14 6.0e−18

0.3 2.914568e−01 8.4e−09 1.5e−09 2.5e−12

0.7 6.107260e−01 1.8e−05 3.2e−06 2.4e−08

Table 11.4.7: Relative error of 20th partial sum and 20th approximants.

x Arctan(x) (11.4.3) (11.4.8) (11.4.9)
−0.9 −7.328151e−01 1.9e−04 3.7e−17 3.7e−17

−0.5 −4.636476e−01 4.6e−15 1.3e−25 1.3e−25

−0.2 −1.973956e−01 1.0e−31 1.0e−40 1.0e−40

0.1 9.966865e−02 2.3e−44 1.3e−52 1.3e−52

0.3 2.914568e−01 2.4e−24 7.2e−34 7.2e−34

0.7 6.107260e−01 5.7e−09 1.4e−20 1.4e−20

Table 11.4.8: Relative error of 20th (modified) approximants.

x Arctan(x) (11.4.8) (11.4.8) (11.4.8)
−0.9 −7.328151e−01 3.7e−17 1.8e−20 2.1e−22

−0.5 −4.636476e−01 1.3e−25 7.4e−29 3.6e−31

−0.2 −1.973956e−01 1.0e−40 6.4e−44 5.8e−47

0.1 9.966865e−02 1.3e−52 8.0e−56 1.8e−59

0.3 2.914568e−01 7.2e−34 4.3e−37 8.5e−40

0.7 6.107260e−01 1.4e−20 7.4e−24 6.2e−26

x Arctan(x) (11.4.9) (11.4.9) (11.4.9)
−0.9 −7.328151e−01 3.7e−17 2.0e−18 1.8e−20

−0.5 −4.636476e−01 1.3e−25 6.9e−27 2.6e−29

−0.2 −1.973956e−01 1.0e−40 5.5e−42 3.8e−45

0.1 9.966865e−02 1.3e−52 6.6e−54 1.2e−57

0.3 2.914568e−01 7.2e−34 3.8e−35 5.7e−38

0.7 6.107260e−01 1.4e−20 7.4e−22 4.9e−24
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Figure 11.4.1: Complex region where f8(z; 0) of (11.4.8) guarantees k
significant digits for Arctan(z) (from light to dark k = 6, 7, 8, 9).

11.5 Hyperbolic functions

The hyperbolic sine, cosine, tangent and cotangent functions are defined in
terms of the exponential function:

sinh(z) =
exp(z)− exp(−z)

2
,

sinh(x + iy) = sinh(x) cos(y) + i cosh(x) sin(y),

cosh(z) =
exp(z) + exp(−z)

2
,

cosh(x + iy) = cosh(x) cos(y) + i sinh(x) sin(y),

tanh(z) =
exp(2z)− 1
exp(2z) + 1

,

tanh(x + iy) =
sinh(2x) + i sin(2y)
cosh(2x) + cos(2y)

,

coth(z) =
exp(2z) + 1
exp(2z)− 1

,

coth(x + iy) =
sinh(2x)− i sin(2y)
cosh(2x)− cos(2y)

.
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Formal series expansion.

sinh(z) =
∞∑

k=1

1
(2k − 1)!

z2k−1, z ∈ C, (11.5.1)

cosh(z) =
∞∑

k=0

1
(2k)!

z2k, z ∈ C, (11.5.2)

tanh(z) =
∞∑

k=1

4k(4k − 1)B2k

(2k)!
z2k−1, |z| < π/2, (11.5.3)

– – –
– – –
– – –

coth(z) =
∞∑

k=0

4kB2k

(2k)!
z2k−1, |z| < π. (11.5.4)

– – –
– – –
– – –

Continued fraction representations. From the Euler connection (1.7.2)
we can obtain general T-fractions for sinh(z) and cosh(z), which have
the same convergence behaviour as (11.5.1) and (11.5.2) though. For
−1 + z/ tanh(z) an S-fraction in z2 [Kho63, p. 123] is given in (11.5.5)
and for z coth(z) − 1 a Thiele interpolating continued fraction [ABJL92,
p. 50] in (11.5.6):

tanh(z) =
z

1 +

∞

K
m=1

(
amz2

1

)
, am =

1
(2m− 1)(2m + 1)

, (11.5.5)
– – –
– – –
– – – AS

z ∈ C \ {i(π/2 + kπ) : k ∈ Z},

coth(z) =
1
z

+
4π−2z

1 +

∞

K
m=1

(
m2(m2 + 4π−2z2)

(2m + 1)

)
, z ∈ C. (11.5.6)

– – –
– – –
– – –

In (11.5.6) am(z)/(bm−1bm) → ∞. In that case the modification (7.7.8)
combined with (7.7.4) is recommended:

w̃n(z) =
2n− 1

2

(
−1 +

√
4

n2 (n2 + 4π−2z2)
4n2 − 1

+ 1

)
.

Since

w̃n(z) � ŵn(z) =
2n− 1

2

(
−1 +

√
n2 + 4π−2z2 + 1

)
(11.5.7)

we also show the results when using (11.5.7). In the Tables 11.5.3 and 11.5.4
the continued fraction approximants are evaluated with w = 0, w = w̃n(z)
and w = ŵn(z) respectively.
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Table 11.5.1: Relative error of 5th partial sum and 5th approximants.

x tanh(x) (11.5.3) (11.5.5)
−20 −1.000000e+00 1.8e+12 5.8e−01

−12 −1.000000e+00 6.5e+09 1.9e−01

−5 −9.999092e−01 3.9e+05 7.5e−03

−1.6 −9.216686e−01 8.6e−01 3.7e−06

−0.4 −3.799490e−01 6.0e−08 9.8e−12

−0.2 −1.973753e−01 1.5e−11 1.0e−14

0.1 9.966799e−02 3.6e−15 1.0e−17

0.3 2.913126e−01 1.9e−09 5.7e−13

0.8 6.640368e−01 2.4e−04 7.8e−09

3 9.950548e−01 1.2e+03 4.0e−04

10 1.000000e+00 8.6e+08 1.1e−01

15 1.000000e+00 7.6e+10 3.2e−01

Table 11.5.2: Relative error of 20th partial sum and 20th approximants.

x tanh(x) (11.5.3) (11.5.5)
−20 −1.000000e+00 2.5e+45 6.3e−09

−12 −1.000000e+00 2.0e+36 1.9e−13

−5 −9.999092e−01 4.8e+20 3.6e−24

−1.6 −9.216686e−01 1.5e+00 9.7e−42

−0.4 −3.799490e−01 9.0e−26 2.6e−65

−0.2 −1.973753e−01 2.1e−38 2.6e−77

0.1 9.966799e−02 4.7e−51 2.4e−89

0.3 2.913126e−01 5.1e−31 2.7e−70

0.8 6.640368e−01 3.8e−13 2.2e−53

3 9.950548e−01 3.3e+11 1.1e−31

10 1.000000e+00 1.1e+33 2.1e−15

15 1.000000e+00 1.9e+40 2.6e−11
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Figure 11.5.1: Complex region where f8(z; 0) of (11.5.5) guarantees k
significant digits for tanh(z) (from light to dark k = 6, 7, 8, 9).

Table 11.5.3: Relative error of 5th partial sum and 5th approximants.

x coth(x) (11.5.4) (11.5.6) (11.5.6) (11.5.6)
−20 −1.000000e+00 1.1e+07 1.5e+00 5.7e−03 1.9e−03

−1.6 −1.084989e+00 2.8e−04 1.7e−02 8.8e−04 5.9e−04

0.1 1.003331e+01 2.2e−18 6.5e−05 3.6e−06 2.4e−06

0.4 2.631932e+00 3.4e−11 1.0e−03 5.8e−05 3.9e−05

3.2 1.003329e+00 3.8e−01 6.5e−02 3.0e−03 2.0e−03

10 1.000000e+00 1.9e+04 5.2e−01 8.5e−03 5.2e−03

Table 11.5.4: Relative error of 20th partial sum and 20th approximants.

x coth(x) (11.5.4) (11.5.6) (11.5.6) (11.5.6)
−20 −1.000000e+00 1.4e+31 1.5e−01 1.5e−03 1.4e−03

−1.6 −1.084989e+00 4.5e−13 1.2e−03 1.6e−05 1.5e−05

0.1 1.003331e+01 2.6e−63 4.8e−06 6.3e−08 5.9e−08

0.4 2.631932e+00 4.8e−38 7.7e−05 1.0e−06 9.4e−07

3.2 1.003329e+00 6.6e−01 4.9e−03 6.3e−05 5.9e−05

10 1.000000e+00 2.4e+19 4.5e−02 5.4e−04 5.1e−04

11.6 Inverse hyperbolic functions

The prefix “a” actually means “area” and its pertinence can be appreciated
by reference to the relation between the inverse hyperbolic functions and
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the logarithm function, which leads to integral representations for these
functions:

Asinh(z) = Ln
(
z +

√
z2 + 1

)
,

Acosh(z) = Ln
(
z +

√
z2 − 1

)
,

Atanh(z) =
1
2

(Ln(1 + z)− Ln(1− z)) ,

Acoth(z) =
1
2

(Ln(z + 1)− Ln(z − 1)) .

Formal series expansion.

Asinh(z) = z +
∞∑

k=1

(−1)k(2k − 1)!!
(2k)!! (2k + 1)

z2k+1, |z| < 1, (11.6.1)
– – –
– – –
– – –

Acosh(1/z) = Ln(2/z) +
∞∑

k=1

−(2k − 1)!!
(2k)!! (2k)

z2k, |z| < 1, (11.6.2)
– – –
– – –
– – –

Atanh(z) =
∞∑

k=1

1
2k − 1

z2k−1, |z| < 1, (11.6.3)
– – –
– – –
– – –

Acoth(z) = Atanh(1/z).

Continued fraction representations. Several S-fraction like represen-
tations can be given [Kho63, pp. 117–122]. Pairwise the even contractions
of the fractions (11.6.4) and (11.6.5) for Asinh, (11.6.6) and (11.6.7) for
Acosh, and (11.6.8) and (11.6.9) for Atanh are equal:

Asinh(z) =
z
√

1 + z2

1 +

∞

K
m=2

(
amz2

1

)
, iz /∈ (−∞,−1) ∪ (1, +∞),

a2k =
2k(2k − 1)

(4k − 3)(4k − 1)
, a2k+1 =

2k(2k − 1)
(4k − 1)(4k + 1)

(11.6.4)
– – –
– – –
– – – AS

=
z/
√

1 + z2

1 +

∞

K
m=1

(−amz2/(1 + z2)
1

)
,

am =
m2

(2m− 1)(2m + 1)
, iz /∈ (−∞,−1) ∪ (1, +∞).

(11.6.5)
– – –
– – –
– – –
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Table 11.6.1: Relative error of 5th partial sum and 5th approximants.

x Asinh(x) (11.6.1) (11.6.4) (11.6.5)
−4 −2.094713e+00 4.1e+04 1.9e−01 8.0e−02

−2 −1.443635e+00 2.4e+01 1.5e−02 9.8e−03

−0.8 −7.326683e−01 8.6e−04 5.1e−05 4.0e−05

−0.2 −1.986901e−01 6.9e−11 1.6e−10 1.4e−10

0.1 9.983408e−02 1.7e−14 1.7e−13 1.4e−13

0.5 4.812118e−01 3.7e−06 9.7e−07 7.9e−07

1 8.813736e−01 1.1e−02 2.7e−04 2.1e−04

3 1.818446e+00 1.9e+03 7.7e−02 4.0e−02

Table 11.6.2: Relative error of 20th partial sum and 20th approximants.

x Asinh(x) (11.6.1) (11.6.4) (11.6.5)
−4 −2.094713e+00 6.6e+21 5.6e−05 5.6e−05

−2 −1.443635e+00 3.7e+09 5.7e−09 5.7e−09

−0.8 −7.326683e−01 1.7e−07 9.4e−19 9.4e−19

−0.2 −1.986901e−01 1.2e−32 1.0e−40 1.0e−40

0.1 9.983408e−02 2.8e−45 1.3e−52 1.3e−52

0.5 4.812118e−01 5.5e−16 1.3e−25 1.3e−25

1 8.813736e−01 1.7e−03 7.1e−16 7.1e−16

3 1.818446e+00 5.5e+16 2.5e−06 2.5e−06

Acosh(z) =
z
√

z2 − 1
1 +

∞

K
m=2

(
am(z2 − 1)

1

)
, �z > 0, (11.6.6)

– – –
– – –
– – –

a2k =
2k(2k − 1)

(4k − 3)(4k − 1)
, a2k+1 =

2k(2k − 1)
(4k − 1)(4k + 1)

=
√

z2 − 1/z

1 +

∞

K
m=1

(−am(z2 − 1)/z2

1

)
, (11.6.7)

– – –
– – –
– – –

am =
m2

(2m− 1)(2m + 1)
, |Arg(1/z2)| < π.
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Table 11.6.3: Relative error of 5th partial sum and 5th approximants.

x Acosh(x) (11.6.2) (11.6.6) (11.6.7)
1.1 4.435683e−01 4.4e−02 4.4e−07 3.6e−07

2 1.316958e+00 4.4e−06 7.6e−03 5.1e−03

4 2.063437e+00 5.7e−10 1.8e−01 7.5e−02

10 2.993223e+00 6.3e−15 1.7e+00 2.6e−01

Table 11.6.4: Relative error of 20th partial sum and 20th approximants.

x Acosh(x) (11.6.2) (11.6.6) (11.6.7)
1.1 4.435683e−01 5.4e−04 5.5e−27 5.5e−27

2 1.316958e+00 6.6e−16 3.9e−10 3.9e−10

4 2.063437e+00 7.8e−29 4.1e−05 4.1e−05

10 2.993223e+00 9.8e−46 1.5e−02 1.5e−02

Atanh(z) =
z/(1− z2)

1 +

∞

K
m=2

(
amz2/(1− z2)

1

)
, |Arg(1− z2)| < π,

a2k =
2k(2k − 1)

(4k − 3)(4k − 1)
, a2k+1 =

2k(2k − 1)
(4k − 1)(4k + 1)

(11.6.8)
– – –
– – –
– – –

=
z

1 +

∞

K
m=1

(−m2z2/(4m2 − 1)
1

)
, |Arg(1− z2)| < π.

(11.6.9)
– – –
– – –
– – – AS

Table 11.6.5: Relative error of 5th partial sum and 5th approximants.

x Atanh(x) (11.6.3) (11.6.8) (11.6.9)
−0.9 −1.472219e+00 4.8e−02 1.8e−02 1.1e−02

−0.5 −5.493061e−01 2.2e−05 3.4e−06 2.8e−06

0.1 1.003353e−01 7.7e−14 1.8e−13 1.5e−13

0.3 3.095196e−01 4.3e−08 1.3e−08 1.1e−08

0.7 8.673005e−01 1.5e−03 2.3e−04 1.8e−04
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Table 11.6.6: Relative error of 20th partial sum and 20th approximants.

x Atanh(x) (11.6.3) (11.6.8) (11.6.9)
−0.9 −1.472219e+00 7.7e−04 1.0e−08 1.0e−08

−0.5 −5.493061e−01 6.3e−15 2.0e−23 2.0e−23

0.1 1.003353e−01 2.3e−44 1.6e−52 1.6e−52

0.3 3.095196e−01 2.7e−24 4.3e−33 4.3e−33

0.7 8.673005e−01 1.1e−08 4.0e−16 4.0e−16

The continued fraction representations (11.6.4) through (11.6.9), when
viewed with positive am, all have am → 1/4, but different limits for their
partial numerators. As illustrated before, the modifications (7.7.5) and
(7.7.10) can be used.

Figure 11.6.1: Complex region where f8(z; 0) of (11.6.8) guarantees k
significant digits for Atanh(z) (from light to dark k = 6, 7, 8, 9).

11.7 The power function

The power function or general binomial function (1+z)α equals the hyper-
geometric function 2F1(−α, 1; 1;−z) which is further discussed in Chap-
ter 15.



218 11. ELEMENTARY FUNCTIONS

Continued fraction representations. Regular C-fraction representa-
tions for (1 + z)α are [Per29, p. 348]:

(1 + z)α = 1 +
αz

1 +

∞

K
m=2

(amz

1

)
, |Arg(z + 1)| < π, (11.7.1)

– – –
– – –
– – –

a2k =
(k − α)

2(2k − 1)
, a2k+1 =

(k + α)
2(2k + 1)

=
1
1 +

−αz

1 +

∞

K
m=3

(amz

1

)
, |Arg(z + 1)| < π, (11.7.2)

– – –
– – –
– – –

a2k =
k − 1− α

2(2k − 1)
, a2k+1 =

k + α

2(2k − 1)

=
1
1 +

−αz/(1 + z)
1 +

∞

K
m=3

(am

1

)
, |Arg(z + 1)| < π,

a2k =
(−α− k + 1)z

2(2k − 1)(1 + z)
, a2k+1 =

(α− k)z
2(2k − 1)(1 + z)

.

(11.7.3)
– – –
– – –
– – –

For the continued fractions (11.7.2) and (11.7.3) we find from (7.7.5) that
the respective modifications

w(z) =
1
2
(−1 +

√
1 + z

)

and

w(z) =
1
2

(
−1 +

1√
1 + z

)

may be useful. Their use is illustrated in the Tables 11.7.1 and 11.7.2,
where the tabulated continued fraction approximants are first evaluated
with w = 0 and subsequently with w = w(z).
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Table 11.7.1: Relative error of 5th partial sum and 5th approximants for
α = 2.5 and α = 9.5.

x (x + 1)α (11.7.1) (11.7.2) (11.7.2) (11.7.3) (11.7.3)
0.001 1.002502e+00 2.0e−21 4.1e−17 2.5e−16 4.1e−17 1.8e−17

0.1 1.269059e+00 1.5e−09 3.2e−07 1.9e−06 3.2e−07 1.4e−07

0.5 2.755676e+00 8.0e−06 4.7e−04 2.9e−03 4.7e−04 2.1e−04

1.1 6.390697e+00 2.7e−04 1.0e−02 6.6e−02 1.0e−02 4.5e−03

5 8.818163e+01 4.6e−02 6.1e−01 9.4e−01 6.1e−01 3.6e−01

x (x + 1)α (11.7.1) (11.7.2) (11.7.2) (11.7.3) (11.7.3)
0.001 1.009540e+00 6.6e−17 1.0e−13 1.4e−13 1.0e−13 7.9e−14

0.1 2.473036e+00 4.4e−05 8.4e−04 1.1e−03 8.4e−04 6.5e−04

0.5 4.708331e+01 2.2e−01 7.0e−01 7.7e−01 7.0e−01 6.3e−01

1.1 1.151021e+03 9.6e−01 9.9e−01 1.0e+00 9.9e−01 9.9e−01

5 2.468521e+07 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

Table 11.7.2: Relative error of 20th partial sum and 20th approximants
for α = 2.5 and α = 9.5.

x (x + 1)α (11.7.1) (11.7.2) (11.7.2) (11.7.3) (11.7.3)
0.001 1.002502e+00 8.0e−76 4.5e−72 1.1e−72 2.7e−72 7.2e−73

0.1 1.269059e+00 2.9e−34 1.8e−32 4.2e−33 1.0e−32 2.8e−33

0.5 2.755676e+00 4.5e−21 6.6e−20 1.6e−20 3.8e−20 1.1e−20

1.1 6.390697e+00 1.3e−15 1.1e−14 2.6e−15 6.1e−15 1.7e−15

5 8.818163e+01 5.6e−08 2.9e−07 7.2e−08 1.3e−07 4.7e−08

x (x + 1)α (11.7.1) (11.7.2) (11.7.2) (11.7.3) (11.7.3)
0.001 1.009540e+00 1.6e−71 1.3e−66 6.9e−67 3.4e−68 6.2e−67

0.1 2.473036e+00 5.9e−30 5.5e−27 2.8e−27 1.4e−28 2.5e−27

0.5 4.708331e+01 1.1e−16 2.8e−14 1.4e−14 6.7e−16 1.2e−14

1.1 1.151021e+03 4.4e−11 8.0e−09 3.9e−09 1.7e−10 3.5e−09

5 2.468521e+07 2.7e−02 8.4e−01 6.9e−01 6.8e−02 6.5e−01
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A regular C-fraction representation in 1/z2 for a function related to the
power ((z + 1)/(z − 1))α is given by [Per29, p. 350]:(

z + 1
z − 1

)α

= 1 +
2α/z

1− α/z +

∞

K
m=1

(
am/z2

1

)
, z ∈ C \ [−1, 1],

am =
α2 −m2

(2m− 1)(2m + 1)
. (11.7.4)

– – –
– – –
– – –

Table 11.7.3: Relative error of 5th approximants for α = 2.5 and α = 9.5.

x
(

x+1
x−1

)α

(11.7.4)

1.1 2.020916e+03 1.7e−01

5 2.755676e+00 7.1e−11

15 1.396304e+00 3.5e−16

50 1.105186e+00 6.2e−22

90 1.057130e+00 9.6e−25

x
(

x+1
x−1

)α

(11.7.4)

1.1 3.639848e+12 1.0e+00

5 4.708331e+01 1.9e−04

15 3.555687e+00 7.1e−10

50 1.462359e+00 1.2e−15

90 1.235060e+00 1.9e−18

Table 11.7.4: Relative error of 20th approximants for α = 2.5 and α = 9.5.

x
(

x+1
x−1

)α

(11.7.4)

1.1 2.020916e+03 5.1e−08

5 2.755676e+00 4.1e−41

15 1.396304e+00 7.7e−61

50 1.105186e+00 2.7e−82

90 1.057130e+00 9.2e−93

x
(

x+1
x−1

)α

(11.7.4)

1.1 3.639848e+12 6.9e−04

5 4.708331e+01 3.2e−39

15 3.555687e+00 5.6e−59

50 1.462359e+00 1.9e−80

90 1.235060e+00 6.6e−91



12
Gamma function and

related functions

The gamma function Γ(z) is the most important special function of classi-
cal analysis after the so-called elementary functions. It is an extension of
the factorial n! to real and complex arguments. It is related to the facto-
rial by Γ(n) = (n − 1)!. The present chapter contains continued fraction
representations of functions related to the gamma function, its logarithmic
derivatives ψk(z), also called the polygamma functions, and the incomplete
gamma functions γ(a, z) and Γ(a, z).
We often derive approximations for the function γ(a, z)z−a/Γ(a), which is a
single-valued analytic function of a and z possessing no finite singularities.

12.1 Gamma function

Definitions and elementary properties. The gamma function Γ(z) is
defined by the Euler integral

Γ(z) :=
∫ ∞

0

tz−1e−t dt, �z > 0. (12.1.1)

It is continued analytically by Euler’s formula

Γ(z) = lim
n→∞

n! nz

z(z + 1) · · · (z + n)
, z ∈ C\Z−

0 (12.1.2)

and by Euler’s infinite product (10.8.2), repeated here for convenience,

1
Γ(z)

= zeγz
∞∏

n=1

((
1 +

z

n

)
e−z/n

)
, z ∈ C (12.1.3)

221
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where γ is the Euler constant defined in (10.8.1). The function Γ(z) is
meromorphic in C with poles at z = −n for n ∈ N0, all of which are
simple. The residue of Γ(z) at z = −n is given by

Res(Γ(z); z = −n) =
(−1)n

n!
, n = 0, 1, 2, . . . . (12.1.4)

From the recurrence formula

Γ(z + 1) = zΓ(z), z ∈ C\Z−
0 , (12.1.5)

and Γ(1) = 1, Γ(1/2) =
√

π and 0! = 1, we obtain

Γ(n + 1) = n!, n = 0, 1, 2, . . . , (12.1.6a)

Γ(n + z) = (z)nΓ(z), n = 0, 1, 2, . . . , (12.1.6b)

Γ(n + 1/2) =
√

π (1/2)n , n = 0, 1, 2, . . . , (12.1.6c)

where (a)n is the Pochhammer symbol or shifted factorial defined by

(a)0 := 1,

(a)n := a(a + 1) · · · (a + n− 1), n = 1, 2, 3, . . . .
(12.1.7)

The gamma function Γ(z) is related to the Riemann zeta function ζ(z) of
(10.11.1) by [Hav03, p. 60]

Γ(z)ζ(z) =
∫ ∞

0

uz−1

eu − 1
du, �z > 1. (12.1.8)

The gamma function also satisfies the mirror property

Γ(z̄) = Γ(z). (12.1.9)

Series expansion. The coefficients in the series expansion of Γ(z +1) are
obtained from

Γ(z + 1) =
∞∑

k=0

ckzk, |z| < 1, (12.1.10)

c0 = 1, ck = −1
k

k∑
j=1

(−1)j+1bjck−j ,

b1 = γ, bk = ζ(k) =
∞∑

j=1

j−k, k > 1.
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Series expansions for 1/Γ(z), 1/Γ(z +1) and Ln(Γ(z +1)) can also be given
[Luk75, pp. 1–7].

Asymptotic series expansion. From the definition of the gamma func-
tion we obtain

Γ(z) ≈ e−zzz− 1
2
√

2π
∞∑

k=0

dkz−k, z →∞, | arg z| < π (12.1.11)

where the values for dk have been given in [Wre68; Spi71].

S-fraction. A special ratio of two Γ-values has the modified S-fraction
representation [Bau72; BR95, p. 47]

(
Γ
(

z+1
4

)
Γ
(

z+3
4

))2

=
4
z +

∞

K
m=2

(
(2m− 1)2

2z

)
, z ∈ C. (12.1.12)

C-fraction. Making use of (12.6.1), (12.6.17) and (12.6.23) the gamma
function Γ(z) can be written as the sum of two regular C-fractions. The
separate C-fractions do not have the same speed of convergence and some
care needs to be taken when using this relationship to approximate Γ(z)
[Luk75, p. 100].

Other rational approximations. The following expansion for Γ(z + 1)
is due to [Lan64]:

Γ(z + 1) =
√

2π (z + σ + 1/2)
z+ 1

2 exp (−z − σ − 1/2)×
∞∑

k=0

dk
z(z − 1) · · · (z − k + 1)

(z + 1)(z + 2) · · · (z + k)
, � (z + σ + 1/2) > 0,

d0 =
exp(σ)√

2π

√
e

σ + 1/2
,

dk = 2
(−1)k exp(σ)√

2π

k∑
j=0

(−1)j

(
k

j

)
(k)j

(
e

j + σ + 1/2

)j+ 1
2

,

k = 1, 2, . . . .

The infinite series portion behaves like a partial fraction decomposition.
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12.2 Binet function

Definition and elementary properties. The Binet function J(z) is
closely related to Γ(z) and defined by [Hen77, p. 39]

J(z) := ln(Γ(z))−
(

z − 1
2

)
ln(z) + z − ln(

√
2π), (12.2.1)

or, equivalently, by
Γ(z) =

√
2π zz− 1

2 e−zeJ(z). (12.2.2)

The function ln(Γ(z)) in definition (12.2.1) is called the log-gamma func-
tion. Throughout this chapter principal branches are taken for multiple
valued functions. From (12.2.2) Stirling’s approximation of n! for large n
is obtained,

n! ∼
√

2π(n + 1)n+ 1
2 e−(n+1), n →∞, (12.2.3)

by setting z = n + 1 and replacing J(n + 1) by 0 since

J(x) ≤ 1
12x

, 0 < x <∞.

More generally, (12.2.2) yields the approximation

Γ(z) ∼
√

2πzz− 1
2 e−z, z →∞, | arg z| ≤ θ < π (12.2.4)

since for every θ with 0 ≤ θ < π, there exists a constant κ(θ) such that
[Hen77, p. 39]

|J(z)| ≤ κ(θ)
|z| , | arg z| ≤ θ < π. (12.2.5)

Asymptotic series expansion. For the Binet function J(z) we have
[AS64, p. 257]

J(z) ≈ z−1
∞∑

k=0

B2k+2

(2k + 1)(2k + 2)
z−2k, z →∞, | arg z| < π (12.2.6)

– – –
– – –
– – –

where B2n denotes the 2nth Bernoulli number, defined in (11.3.4).

Stieltjes transform. It can be shown [Hen77, p. 624] that

J(
√

z)√
z

=
∫ ∞

0

φ(t)
z + t

dt, | arg z| < π (12.2.7a)
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where

φ(t) :=
1
2π

∫ t

0

1√
t
Ln
(

1
1− e−2π

√
t

)
dt, 0 < t < ∞. (12.2.7b)

The kth moment μk with respect to the weight function φ(t) is given by

μk =
∫ ∞

0

tkφ(t) dt =
(−1)kB2k+2

(2k + 1)(2k + 2)
, k = 0, 1, 2, . . . . (12.2.8)

S-fraction. Since the classical Stieltjes moment problem has a solution
φ(t) for μk given by (12.2.8), it follows from Theorem 5.1.1 that there exists
a modified S-fraction of the form

a1

z +
a2

1 +
a3

z +
a4

1 + . . .
, am > 0, m ∈ N, (12.2.9)

corresponding at z = ∞ to the FPS

L(z) = z−1
∞∑

k=0

(−1)kμkz−k = z−1
∞∑

k=0

B2k+2

(2k + 1)(2k + 2)
z−k.

It follows from the asymptotic behaviour (11.3.6) of the Bernoulli numbers
B2n that the moments μk given by (12.2.8) satisfy Carleman’s criterion
(5.1.16a). Hence the solution φ(t) of the classical Stieltjes moment problem
for the sequence {μk} is unique. Thus by Theorem 5.2.1 the modified S-
fraction (12.2.9) converges to (12.2.7a):

J(
√

z)√
z

=
a1

z +
a2

1 +
a3

z +
a4

1 + . . .
, | arg z| < π. (12.2.10)

A transformation of the form (2.3.4) yields the S-fraction representation
[Sti95]

J(z) =
∞

K
m=1

(am

z

)
=
∫ ∞

0

zφ(t)
z2 + t

dt, | arg z| < π, (12.2.11)
– – –
– – –
– – –

and also the S-fraction representation

√
zJ

(
1√
z

)
=

∞

K
m=1

(amz

1

)
=
∫ ∞

0

zφ(t)
1 + zt

dt, | arg z| < π, (12.2.12)
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where φ(t) is given by (12.2.7b). There is no known closed-form expression
for the coefficients am in (12.2.10) through (12.2.12). The first few are
given by

a1 =
1
12

, a2 =
1
30

, a3 =
53
210

, a4 =
195
371

, . . . .

By applying Theorem 5.2.2 to (12.2.7b) with α = δ = 1, c = 2π and
d = 1/16, it is shown in [ČV82; JVA98] that the coefficients am of the
continued fractions (12.2.10) through (12.2.12) satisfy

am ∼ m2

16
, m →∞. (12.2.13)

– – –
– – –
– – –

Table 12.2.1: Illustration of (12.2.13).

m am am/(m2/16)
10 5.002768e+00 8.004429e−01

20 2.247047e+01 8.988189e−01

30 5.244129e+01 9.322896e−01

40 9.491384e+01 9.491384e−01

50 1.498876e+02 9.592803e−01

100 6.122662e+02 9.796259e−01

150 1.387154e+03 9.864208e−01

200 2.474548e+03 9.898191e−01

250 3.874445e+03 9.918579e−01

300 5.586845e+03 9.932168e−01

400 9.949151e+03 9.949151e−01

500 1.556146e+04 9.959336e−01

600 2.242378e+04 9.966125e−01

700 3.053610e+04 9.970972e−01

800 3.989842e+04 9.974606e−01

900 5.051075e+04 9.977432e−01

1000 6.237308e+04 9.979693e−01

1500 1.404348e+05 9.986471e−01

2000 2.497465e+05 9.989858e−01

2500 3.903082e+05 9.991889e−01
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Table 12.2.2: Comparison of the 5th partial sum of the asymptotic se-
ries (12.2.6), in | arg z| < π, with the 5th approximant of the S-fraction
(12.2.11). The partial numerators are computed using the qd-algorithm
from Chapter 6. Making use of (12.1.9) it suffices to explore only the first
and second quadrant.

x J(x) (12.2.6) (12.2.11)
1 8.106147e−02 1.7e−02 2.4e−04

5 1.664469e−02 2.7e−10 5.3e−10

50 1.666644e−03 3.1e−22 6.9e−20

100 8.333306e−04 7.7e−26 6.8e−23

500 1.666666e−04 3.2e−34 6.9e−30

x |J(x + ix)|s (12.2.6) (12.2.11)
1 5.881245e−02 5.4e−04 6.4e−05

5 1.178507e−02 4.9e−12 2.2e−11

50 1.178511e−03 4.9e−24 2.2e−21

100 5.892557e−04 1.2e−27 2.1e−24

500 1.178511e−04 4.9e−36 2.2e−31

x |J(ix)|s (12.2.6) (12.2.11)
1 8.704350e−02 3.9e−02 1.4e−02

5 1.668915e−02 3.9e−10 9.7e−10

50 1.666689e−03 3.2e−22 7.0e−20

100 8.333361e−04 7.7e−26 6.8e−23

500 1.666667e−04 3.2e−34 7.0e−30

x |J(x− ix)|s (12.2.6) (12.2.11)
1 5.881245e−02 5.4e−04 6.4e−05

5 1.178507e−02 4.9e−12 2.2e−11

50 1.178511e−03 4.9e−24 2.2e−21

100 5.892557e−04 1.2e−27 2.1e−24

500 1.178511e−04 4.9e−36 2.2e−31
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Table 12.2.3: Comparison of the 20th partial sum of the asymptotic se-
ries (12.2.6), in | arg z| < π, with the 20th approximant of the S-fraction
(12.2.11). The partial numerators are computed using the qd-algorithm
from Chapter 6. Making use of (12.1.9) it suffices to explore only the first
and second quadrant.

x J(x) (12.2.6) (12.2.11)
1 8.106147e−02 5.9e+15 1.4e−06

5 1.664469e−02 4.0e−13 4.8e−20

50 1.666644e−03 1.1e−54 2.3e−56

100 8.333306e−04 2.5e−67 2.3e−68

500 1.666666e−04 1.1e−96 2.6e−96

x |J(x + ix)|s (12.2.6) (12.2.11)
1 5.881245e−02 5.6e+09 3.2e−07

5 1.178507e−02 3.9e−19 3.0e−23

50 1.178511e−03 5.4e−61 2.5e−62

100 5.892557e−04 1.2e−73 2.3e−74

500 1.178511e−04 5.4e−103 2.5e−102

x |J(ix)|s (12.2.6) (12.2.11)
1 8.704350e−02 5.8e+15 4.6e−02

5 1.668915e−02 1.9e−12 2.0e−12

50 1.666689e−03 1.1e−54 3.0e−56

100 8.333361e−04 2.6e−67 2.5e−68

500 1.666667e−04 1.1e−96 2.6e−96

x |J(x− ix)|s (12.2.6) (12.2.11)
1 5.881245e−02 5.6e+09 3.2e−07

5 1.178507e−02 3.9e−19 3.0e−23

50 1.178511e−03 5.4e−61 2.5e−62

100 5.892557e−04 1.2e−73 2.3e−74

500 1.178511e−04 5.4e−103 2.5e−102
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12.3 Polygamma functions

Definition and representations. The (k + 1)th derivative of the log-
gamma function is called the polygamma function ψk(z):

ψk(z) :=
dk+1

dzk+1
ln(Γ(z)), k ∈ N0. (12.3.1)

The polygamma functions have the representation

ψ0(z) = −γ +
∞∑

m=0

(
1

m + 1
− 1

z + m

)
, z /∈ Z−

0 ,

ψk(z) = (−1)k+1k!
∞∑

m=0

1
(z + m)k+1

, z /∈ Z−
0 , k ∈ N

(12.3.2)

where γ is the Euler constant (10.8.1). The function ψ0(z) is referred to
as the digamma or psi function and often denoted Ψ(z) instead of ψ0(z).
It follows from (12.3.2) that

ψk(n + 1) = (−1)kk!
[
−ζ(k + 1) + 1 +

1
2k+1

+ · · ·+ 1
nk+1

]
, k ≥ 1

(12.3.3)
where ζ(z) denotes the Riemann zeta function (10.11.1).
The polygamma functions satisfy

ψk(z) = ψk(z), (12.3.4)

the recurrence relation

ψk(z + 1) = ψk(z) +
(−1)kk!

zk+1
, k = 1, 2, 3, . . . (12.3.5)

and the reflection formula

ψk(1− z) + (−1)k+1ψk(z) = (−1)kπ
dk

dzk
cot(πz), k = 1, 2, 3, . . . .

(12.3.6)

Asymptotic series expansion. We have [AS64, p. 260]

ψ0(z) ≈ ln(z)− 1
2z
− z−2

∞∑
m=0

B2m+2

2m + 2
z−2m, z →∞, | arg z| < π,

(12.3.7)

ψk(z) ≈ (−1)k−1

(
(k − 1)!

zk
+

k!
2zk+1

+

z−2
∞∑

m=0

B2m+2(2m + k + 1)!
(2m + 2)!

z−(2m+k)

)
,

z →∞, | arg z| < π, k ≥ 1,
(12.3.8)

– – –
– – –
– – –
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where B2n are the Bernoulli numbers. Some special values of ψk(z) are

ψk(1) = (−1)k+1k! ζ(k + 1), k ≥ 1, (12.3.9)

ψk (1/2) = (−1)k+1k! (2k+1 − 1)ζ(k + 1), k ≥ 1. (12.3.10)

Stieltjes transform. A Stieltjes transform for a function related to the
polygamma function ψk(z) can be given [SB71]. Let

ψ0(z) = ln(z)− 1
2z
− g0(z), (12.3.11)

ψk(z) = (−1)k−1

(
(k − 1)!

zk
+

k!
2zk+1

+
(

2π

z

)k

gk(z)

)
, k ≥ 1.

(12.3.12)

From (12.3.7) and (12.3.8) we have

g0(z) ≈ z−2
∞∑

m=0

B2m+2

2m + 2
z−2m, z →∞, | arg z| < π,

(12.3.13)

gk(z) ≈
(

1
2π

)k

z−2
∞∑

m=0

B2m+2(2m + k + 1)!
(2m + 2)!

z−2m,

z →∞, | arg z| < π, k ≥ 1. (12.3.14)

The function gk(z) has the Stieltjes transform representation

gk(z) =
∫ ∞

0

φk(t)
z2 + t

dt, | arg z| < π

2
, k ≥ 0 (12.3.15)

where the weight function is given by

φk(t) :=
t

k
2 φk(u)

(u− 1)k+1
, u = e2π

√
t, 0 < t < ∞. (12.3.16)

Here the functions φk(u) satisfy

φ0(u) = 1, (12.3.17a)

φk(u) = u(1− u)
d

du
φk−1(u) + kuφk−1(u), k ≥ 1. (12.3.17b)

For every k ≥ 1 the function φk(u) is a monic polynomial in u of degree
k, with φk(0) = 0. Its coefficients p

(k)
� are positive and symmetric in the

sense that

p
(k)
1 = p

(k)
k = 1, p

(k)
k−� = p

(k)
�+1, � = 0, 1, . . . , �(k − 1)/2�. (12.3.18)
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The first few polynomials are

φ1(u) = u, φ2(u) = u + u2, φ3(u) = u + 4u2 + u3. (12.3.19)

The moments μ
(k)
m for φk(t) are given by

μ(k)
m =

∫ ∞

0

tmφk(t) dt =
(−1)m(2m + k + 1)!B2m+2

(2π)k(2m + 2)!
, m ≥ 0.

(12.3.20)

S-fractions. Since the classical Stieltjes moment problem for μ
(k)
m given by

(12.3.20) has a solution φk(t) for each k ≥ 0, it follows from Theorem 5.1.1
that there exists a modified S-fraction of the form

a
(k)
1

z2 +
a
(k)
2

1 +
a
(k)
3

z2 +
a
(k)
4

1 + . . .
, a(k)

m > 0, (12.3.21)

corresponding to the series

Lk(z) = z−2
∞∑

m=0

(−1)mμ(k)
m z−2m, k ≥ 0. (12.3.22)

The moments (12.3.20) satisfy Carleman’s criterion (5.1.16a) and thus the
solution of the classical Stieltjes moment problem for the sequence {μ(k)

m }
with k fixed, is unique. Hence from Theorem 5.2.1, the modified S-fraction
(12.3.21) is convergent and

gk(z) =
a
(k)
1

z2 +
a
(k)
2

1 +
a
(k)
3

z2 +
a
(k)
4

1 + . . .
, | arg z| < π

2
, k ≥ 0.

(12.3.23)
In general, there is no known closed-form expression for the coefficients
a
(k)
m of the modified S-fractions (12.3.23). By applying Theorem 5.2.2 with

α = δ = 1, c = 2π and d = 1/16, we find the following asymptotic
behaviour of the coefficients of (12.3.23):

a(k)
m ∼ m2

16
, m →∞, k ≥ 0. (12.3.24)

There are two special cases of the polygamma functions, the trigamma
function ψ1(z) and the tetragamma function ψ2(z), for which there exist
explicit formulas for the partial numerators a

(k)
m . Since a

(k)
m → ∞, the

modification (7.7.8) given by

w̃n(z) = bn

−1 +
√

4a
(k)
n+1z

−2 + 1

2
, b2k−1 = z2, b2k = 1, k ≥ 1

(12.3.25)
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can be useful when evaluating (12.3.23). For ψ1(z) and ψ2(z) this is illus-
trated in the Tables 12.4.1, 12.4.2, 12.5.1 and 12.5.2.
It is proved in [Ber98, pp. 50–51] that

ψ0(z + 1)− ψ0(1 + z/3) +
1
z
− ln(3)

=
a1

b1z2 +
a2

b2 +
a3

b3z2 +
a4

b4 +
a5

b5z2 + . . .
, �z > 0, (12.3.26)

where the coefficients am and bm equal

a1 =
2
3
, a2k = a2k+1 = k3 − k, k ≥ 1,

b2k−1 = k, b2k = 6, k ≥ 1.

12.4 Trigamma function

S-fraction. From (12.3.12) we find [Rog07; Lan94, pp. 241–243]

ψ1(z) =
1
z

+
1

2z2
+

2π

z
g1(z). (12.4.1a)

– – –
– – –
– – –

The coefficients in the modified S-fraction representation (12.3.23) for the
function g1(z) can be given explicitly. We have

g1(z) =
a
(1)
1

z2 +
a
(1)
2

1 +
a
(1)
3

z2 +
a
(1)
4

1 + . . .
, | arg z| < π

2
(12.4.1b)

where

a
(1)
1 =

1
12π

, a(1)
m =

m2(m2 − 1)
4(4m2 − 1)

, m ≥ 2. (12.4.1c)

In the Tables 12.4.1 and 12.4.2 the S-fraction representation (12.4.1) is
first evaluated without modification and afterwards with the modification
(12.3.25).

C-fraction. The C-fraction representation in 1/z for ψ1(z) is given by
[Lan94, pp. 241–245] ,

ψ1(z) =
∞

K
m=1

(
cmz−1

1

)
, �z >

1
2

(12.4.2a)
– – –
– – –
– – –

with

c1 = 1, c2j =
−j2

2(2j − 1)
, c2j+1 =

j2

2(2j + 1)
, j ≥ 1. (12.4.2b)
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J-fraction. A J-fraction representation in 1/z for ψ1(z) can be obtained
[Sti90, p. 387; Wal48, p. 373; Lan94, pp. 240–242] by an even contraction
of (12.4.2)

ψ1(z) =
∞

K
m=1

(
αm

− 1
2 + z

)
, �z >

1
2
, (12.4.3a)

– – –
– – –
– – –

where

α1 = 1, αm =
(m− 1)4

4(2m− 3)(2m− 1)
, m ≥ 2. (12.4.3b)

We note that (12.4.3) is also a modified S-fraction in w = z − 1/2.

Table 12.4.1: In combination with property (12.3.4), the following se-
quence of tables describes the relative error of the 5th approximants and
the 5th partial sum throughout the region �z > 1/2. The S-fraction rep-
resentation (12.4.1) is first evaluated without modification and afterwards
with the modification (12.3.25).

x ψ1(x) (12.4.1) (12.4.1) (12.4.2) (12.4.3) (12.3.8)
0.6 3.636210e+00 5.4e−03 2.6e−04 1.6e−01 8.8e−01 5.0e+00

1.1 1.433299e+00 1.8e−04 8.6e−06 1.3e−02 9.3e−03 1.3e−02

5 2.213230e−01 1.3e−10 2.8e−12 7.4e−06 4.3e−09 8.0e−10

10 1.051663e−01 4.6e−14 3.3e−16 2.2e−07 3.2e−12 2.3e−13

20 5.127082e−02 1.3e−17 2.5e−20 6.5e−09 2.5e−15 6.0e−17

50 2.020133e−02 2.2e−22 7.1e−26 6.5e−11 2.3e−19 1.0e−21

95 1.058191e−02 1.0e−25 9.0e−30 2.6e−12 3.6e−22 4.7e−25

x |ψ1(x + ix)|s (12.4.1) (12.4.1) (12.4.2) (12.4.3) (12.3.8)
0.6 1.867764e+00 3.0e−03 1.5e−04 6.2e−02 2.0e−01 2.3e−01

1.1 8.145666e−01 4.4e−05 2.5e−06 3.1e−03 1.1e−03 5.1e−04

5 1.486857e−01 3.3e−12 5.1e−14 1.2e−06 1.1e−10 1.5e−11

10 7.250152e−02 8.3e−16 3.4e−18 3.7e−08 8.3e−14 3.9e−15

20 3.580010e−02 2.1e−19 2.1e−22 1.1e−09 7.1e−17 9.5e−19

50 1.421302e−02 3.5e−24 5.6e−28 1.1e−11 6.9e−21 1.6e−23

95 7.462843e−03 1.6e−27 7.1e−32 4.6e−13 1.1e−23 7.3e−27
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x |ψ1(1 + ix)|s (12.4.1) (12.4.1) (12.4.2) (12.4.3) (12.3.8)
0.6 1.255548e+00 2.1e−04 1.1e−05 1.2e−02 9.0e−03 8.2e−03

1.1 8.525365e−01 7.4e−05 4.3e−06 3.9e−03 2.0e−03 8.6e−04

5 1.996599e−01 2.7e−10 1.5e−11 6.3e−06 2.8e−09 9.7e−10

10 9.995813e−02 5.7e−14 5.3e−16 2.0e−07 2.2e−12 2.5e−13

20 4.999479e−02 1.3e−17 2.8e−20 6.2e−09 2.0e−15 6.2e−17

50 1.999967e−02 2.2e−22 7.3e−26 6.4e−11 2.1e−19 1.0e−21

95 1.052627e−02 1.0e−25 9.1e−30 2.6e−12 3.4e−22 4.7e−25

Table 12.4.2: In combination with property (12.3.4), the following se-
quence of tables describes the relative error of the 20th approximants and
the 20th partial sum throughout the region �z > 1/2. The S-fraction rep-
resentation (12.4.1) is first evaluated without modification and afterwards
with the modification (12.3.25).

x ψ1(x) (12.4.1) (12.4.1) (12.4.2) (12.4.3) (12.3.8)
0.6 3.636210e+00 3.1e−04 3.9e−06 4.5e−01 3.6e−01 6.6e+24

1.1 1.433299e+00 9.4e−07 1.2e−08 2.0e−03 4.1e−04 2.6e+14

5 2.213230e−01 6.0e−20 8.2e−22 2.3e−13 2.7e−18 1.2e−12

10 1.051663e−01 7.1e−30 7.5e−32 3.1e−19 2.3e−28 5.5e−25

20 5.127082e−02 1.8e−41 9.0e−44 2.6e−25 7.8e−40 1.7e−37

50 2.020133e−02 8.1e−58 8.2e−61 2.3e−33 1.1e−55 3.6e−54

95 1.058191e−02 1.8e−69 5.3e−73 5.7e−39 7.0e−67 7.2e−66

x |ψ1(x + ix)|s (12.4.1) (12.4.1) (12.4.2) (12.4.3) (12.3.8)
0.6 1.867764e+00 1.7e−04 2.1e−06 1.9e−01 1.2e−01 8.7e+18

1.1 8.145666e−01 2.1e−07 2.8e−09 2.3e−04 4.5e−05 3.2e+08

5 1.486857e−01 3.5e−23 6.0e−25 4.9e−16 8.3e−22 1.2e−18

10 7.250152e−02 7.9e−35 8.8e−37 3.0e−22 1.7e−33 3.8e−31

20 3.580010e−02 2.3e−47 7.7e−50 2.2e−28 1.1e−45 9.0e−44

50 1.421302e−02 4.6e−64 2.5e−67 2.1e−36 9.7e−62 1.8e−60

95 7.462843e−03 9.0e−76 1.3e−79 5.3e−42 6.3e−73 3.5e−72
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x |ψ1(1 + ix)|s (12.4.1) (12.4.1) (12.4.2) (12.4.3) (12.3.8)
0.6 1.255548e+00 1.7e−06 2.3e−08 2.5e−03 6.5e−04 2.8e+13

1.1 8.525365e−01 5.8e−07 7.6e−09 5.2e−04 1.3e−04 2.0e+09

5 1.996599e−01 1.7e−14 3.2e−16 1.9e−12 3.2e−13 1.8e−12

10 9.995813e−02 3.4e−26 4.6e−27 3.1e−19 1.1e−25 1.3e−24

20 4.999479e−02 1.4e−40 1.5e−42 2.0e−25 1.8e−39 2.1e−37

50 1.999967e−02 1.1e−57 1.3e−60 2.0e−33 9.6e−56 3.7e−54

95 1.052627e−02 2.0e−69 6.0e−73 5.2e−39 6.2e−67 7.3e−66

12.5 Tetragamma function

S-fraction. From (12.3.12) we have [Lan94, pp. 245–249]

ψ2(z) = − 1
z2
− 1

z3
−
(

2π

z

)2

g2(z). (12.5.1a)
– – –
– – –
– – –

The coefficients in the modified S-fraction representation (12.3.23) for the
function g2(z) can be given explicitly. We have

g2(z) =
a
(2)
1

z2 +
a
(2)
2

1 +
a
(2)
3

z2 +
a
(2)
4

1 + . . .
, | arg z| < π

2
(12.5.1b)

where

a
(2)
1 =

1
8π2

, a
(2)
2j =

j2(j + 1)
2(2j + 1)

, a
(2)
2j+1 =

j(j + 1)2

2(2j + 1)
, j ≥ 1. (12.5.1c)

An S-fraction representation for −ψ2(z) in 1/z(z−1) [Lan94, pp. 245–249]
is given by

−ψ2(z) =
∞

K
m=1

(
am/z(z − 1)

m

)
, �z > 1/2, z /∈ (1/2, 1], (12.5.2a)

– – –
– – –
– – –

where
a1 = 1, a2j = a2j+1 = j4, j ≥ 1. (12.5.2b)

In the Tables 12.5.1 and 12.5.2, the S-fraction representation (12.5.1) is
first evaluated without modification and afterwards with the modification
(12.3.25).
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C-fraction. From the asymptotic series expansion (12.3.8) we obtain the
regular C-fraction representation in 1/z for ψ2(z) [Lan94, pp. 245–249],

ψ2(z) = −1
z

+
∞

K
m=1

(
cmz−1

1

)
, �z > 1, (12.5.3a)

– – –
– – –
– – –

where

c1 = 1, c4j−2 = c4j−1 − 1 =
j2 − 2j + 2

2j − 1
,

c4j = −c4j+1 =
j3

2(j2 + 1)
, j ≥ 1.

(12.5.3b)

Table 12.5.1: In combination with property (12.3.4), the following se-
quence of tables describes the relative error of the 5th approximants and
the 5th partial sum throughout the region �z > 1. The S-fraction rep-
resentation (12.5.1) is first evaluated without modification and afterwards
with the modification (12.3.25).

x ψ2(x) (12.5.1) (12.5.1) (12.5.2) (12.5.3) (12.3.8)
1.1 −1.861457e+00 7.8e−04 3.4e−05 2.8e−01 1.2e−01 1.0e−01

2 −4.041138e−01 1.0e−05 4.2e−07 5.1e−04 1.0e−02 2.3e−04

5 −4.878973e−02 1.3e−09 2.7e−11 4.9e−08 1.9e−04 9.2e−09

10 −1.104983e−02 4.9e−13 3.6e−15 3.7e−11 1.0e−05 2.8e−12

20 −2.628122e−03 1.4e−16 2.9e−19 3.0e−14 5.7e−07 7.5e−16

50 −4.080800e−04 2.5e−21 8.4e−25 2.7e−18 1.4e−08 1.3e−20

95 −1.119758e−04 1.1e−24 1.1e−28 4.2e−21 1.0e−09 6.0e−24

x |ψ2(x + ix)|s (12.5.1) (12.5.1) (12.5.2) (12.5.3) (12.3.8)
1.1 6.678989e−01 2.7e−04 1.4e−05 9.1e−03 3.4e−02 4.7e−03

2 1.613576e−01 1.2e−06 5.9e−08 2.3e−05 2.2e−03 7.9e−06

5 2.211105e−02 3.5e−11 5.8e−13 1.3e−09 4.1e−05 1.9e−10

10 5.256579e−03 9.2e−15 3.9e−17 9.6e−13 2.3e−06 4.9e−14

20 1.281651e−03 2.3e−18 2.5e−21 8.3e−16 1.4e−07 1.2e−17

50 2.020101e−04 3.9e−23 6.7e−27 8.1e−20 3.4e−09 2.1e−22

95 5.569402e−05 1.8e−26 8.4e−31 1.3e−22 2.6e−10 9.5e−26
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x |ψ2(1.5 + ix)|s (12.5.1) (12.5.1) (12.5.2) (12.5.3) (12.3.8)
1.1 −4.482870e−01 4.1e−05 2.0e−06 1.4e−03 1.5e−02 6.4e−04

2 2.055887e−01 6.3e−06 3.8e−07 1.0e−04 3.8e−03 3.7e−05

5 3.880917e−02 2.2e−09 1.1e−10 2.8e−08 1.3e−04 9.0e−09

10 9.925145e−03 6.1e−13 5.9e−15 2.5e−11 8.3e−06 3.0e−12

20 2.495315e−03 1.5e−16 3.3e−19 2.4e−14 5.2e−07 7.8e−16

50 3.998800e−04 2.5e−21 8.7e−25 2.5e−18 1.3e−08 1.3e−20

95 1.107941e−04 1.1e−24 1.1e−28 4.0e−21 1.0e−09 6.1e−24

Table 12.5.2: In combination with property (12.3.4), the following se-
quence of tables describes the relative error of the 20th approximants and
the 20th partial sum throughout the region �z > 1. The S-fraction rep-
resentation (12.5.1) is first evaluated without modification and afterwards
with the modification (12.3.25).

x ψ2(x) (12.5.1) (12.5.1) (12.5.2) (12.5.3) (12.3.8)
1.1 −1.861457e+00 5.2e−06 6.6e−08 1.3e−03 1.1e−03 7.5e+15

2 −4.041138e−01 1.3e−09 1.7e−11 1.5e−07 2.1e−06 4.1e+05

5 −4.878973e−02 1.2e−18 1.6e−20 4.8e−17 2.8e−12 4.5e−11

10 −1.104983e−02 1.9e−28 2.0e−30 5.8e−27 1.2e−17 2.2e−23

20 −2.628122e−03 5.9e−40 2.9e−42 2.3e−38 2.6e−23 7.0e−36

50 −4.080800e−04 2.8e−56 2.9e−59 3.4e−54 7.0e−31 1.5e−52

95 −1.119758e−04 6.2e−68 1.9e−71 2.2e−65 3.5e−36 3.1e−64

x |ψ2(x + ix)|s (12.5.1) (12.5.1) (12.5.2) (12.5.3) (12.3.8)
1.1 6.678989e−01 1.6e−06 2.1e−08 3.0e−04 2.7e−04 1.0e+10

2 1.613576e−01 8.7e−11 1.2e−12 6.1e−09 1.3e−07 5.2e−01

5 2.211105e−02 9.5e−22 1.6e−23 2.1e−20 1.3e−14 4.8e−17

10 5.256579e−03 2.6e−33 2.9e−35 5.3e−32 2.1e−20 1.6e−29

20 1.281651e−03 8.0e−46 2.7e−48 3.4e−44 3.7e−26 3.8e−42

50 2.020101e−04 1.6e−62 8.8e−66 3.1e−60 9.5e−34 7.5e−59

95 5.569402e−05 3.1e−74 4.8e−78 2.0e−71 4.7e−39 1.5e−70
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x |ψ2(1.5 + ix)|s (12.5.1) (12.5.1) (12.5.2) (12.5.3) (12.3.8)
1.1 −4.482870e−01 4.0e−08 5.3e−10 5.4e−06 1.8e−05 8.2e+06

2 2.055887e−01 4.6e−09 6.4e−11 3.8e−07 1.8e−06 7.7e+01

5 3.880917e−02 3.1e−14 5.7e−16 6.0e−13 1.8e−11 2.3e−11

10 9.925145e−03 7.1e−25 6.0e−26 2.7e−24 1.8e−17 4.1e−23

20 2.495315e−03 5.0e−39 5.3e−41 5.9e−38 2.6e−23 8.3e−36

50 3.998800e−04 4.0e−56 4.6e−59 3.1e−54 6.7e−31 1.6e−52

95 1.107941e−04 6.9e−68 2.1e−71 2.0e−65 3.3e−36 3.1e−64

12.6 Incomplete gamma functions

Definitions and elementary properties. The gamma function Γ(z)
can be generalised to the incomplete gamma function γ(a, z) and the com-
plementary incomplete gamma function Γ(a, z). The generalisations satisfy
the relation

Γ(a, z) + γ(a, z) = Γ(a), �a > 0, | arg z| < π. (12.6.1)

The incomplete gamma function γ(a, z) is defined by

γ(a, z) :=
∫ z

0

e−tta−1 dt, �a > 0, z ∈ C, (12.6.2)

where the path of integration is the line segment t = zτ , 0 < τ < 1.
Therefore

γ(a, z) = za

∫ 1

0

e−ztta−1 dt, �a > 0, z ∈ C. (12.6.3)

The complementary incomplete gamma function Γ(a, z) is defined by

Γ(a, z) :=
∫ ∞

z

e−tta−1 dt, a ∈ C, | arg z| < π, (12.6.4)

where the path of integration is t = z + τ , 0 ≤ τ < ∞. Hence

Γ(a, z) = e−z

∫ ∞

0

e−t

(z + t)1−a
dt, a ∈ C, | arg z| < π. (12.6.5)

Both incomplete gamma functions satisfy the same symmetry relations

γ(a, z) = γ(a, z),

Γ(a, z) = Γ(a, z).
(12.6.6)
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Series expansions. The incomplete gamma function is closely related
to the confluent hypergeometric function or Kummer’s confluent hyperge-
ometric function of the first kind 1F1(a; b; z), also denoted M(a, b, z) and
introduced in (16.1.2). We have

γ(a, z) = za
∞∑

k=0

(−z)k

(a + k)k!
, �a > 0, z ∈ C

=
za

a
1F1(a; a + 1;−z). (12.6.7)

– – –
– – –
– – –

An alternative series representation for γ(a, z) is given by

γ(a, z) =
zae−z

a

∞∑
k=0

zk

(1 + a)k
, �a > 0, z ∈ C

=
zae−z

a
1F1(1; 1 + a; z). (12.6.8)

– – –
– – –
– – –

The complementary incomplete gamma function is closely related to Kum-
mer’s confluent hypergeometric function of the second kind U(a, b, z) in-
troduced in (16.1.4):

Γ(a, z) = e−zU(1− a, 1− a, z), a ∈ C, | arg z| < π. (12.6.9)

Asymptotic series expansions. The asymptotic expansion for the com-
plementary incomplete gamma function is given by [AS64, p. 263]

Γ(a, z)
zae−z

≈ z−1
∞∑

k=0

(−1)k(1− a)kz−k, a ∈ C, z →∞, | arg z| < π,

= z−1
2F0(1, 1− a;−z−1), (12.6.10)

– – –
– – –
– – –

where (a)k is the Pochhammer symbol and 2F0(a, b; z) is the confluent hy-
pergeometric series introduced in (16.1.12). Formula (12.6.10) also follows
from the asymptotic expansion (16.1.11) for the function U(a, b, z).

Stieltjes transform. For the complementary incomplete gamma function
we obtain a Stieltjes transform representation [LW92, p. 576] by applying
the identity

zα

Γ(β)

∫ ∞

0

e−ttβ−1

(z + t)α
dt =

zβ

Γ(α)

∫ ∞

0

e−ttα−1

(z + t)β
dt, α > 0, β > 0,

(12.6.11)
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to (12.6.5). This gives

Γ(a, z)
zae−z

=
1

Γ(1− a)

∫ ∞

0

e−tt−a

z + t
dt, | arg z| < π, −∞ < a < 1,

(12.6.12)
with the weight function defined by

φa(t) :=
e−tt−a

Γ(1− a)
, 0 < t < ∞, −∞ < a < 1. (12.6.13)

The moments μk(a) for φa(t) are given by

μk(a) =
∫ ∞

0

tkφa(t) dt = (1− a)k, k ≥ 0. (12.6.14)

S-fraction. Since the classical Stieltjes moment problem has a solution
φa(t) for μk(a) given by (12.6.14), it follows from Theorem 5.1.1 that there
exists a modified S-fraction of the form

a1(a)
z +

a2(a)
1 +

a3(a)
z +

a4(a)
1 + . . .

, −∞ < a < 1 (12.6.15a) AS

corresponding to the asymptotic series (12.6.10). The coefficients are given
by [Wal48, p. 356]

a1(a) = 1, a2j(a) = j − a, a2j+1(a) = j, j ≥ 1. (12.6.15b)

Since the coefficients am(a) satisfy

am(a) ∼ m

2
, m →∞ (12.6.16)

it follows from Theorem 3.1.5 that the S-fraction (12.6.15) is convergent.

C-fractions. When dropping the condition −∞ < a < 1, the continued
fraction in (12.6.15) becomes a corresponding modified C-fraction. After
an equivalence transformation we find

Γ(a, z)
zae−z

=
∞

K
m=1

(
am(a)/z

1

)
, a ∈ C, | arg z| < π (12.6.17)

– – –
– – –
– – –

with am(a) given by (12.6.15b). Again am(a) → ∞ in which case use of
the modification (7.7.8) can be recommended. For (12.6.17) wn(z) equals

w2j−1(z) =
−1 +

√
4(j − a)/z + 1

2
, w2j(z) =

−1 +
√

4j/z + 1
2

, j ≥ 1.

(12.6.18)
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In the Tables 12.6.3 and 12.6.4 the C-fraction (12.6.17) is evaluated with
wn(z) = 0 and wn(z) given by (12.6.18) respectively.
A more general result follows from the relations in [JT85]:

Γ(a, z)
zae−z

= −
�−1∑
k=0

zk

(a)k+1
+

z�

(a)�

Γ(a + �, z)
za+�e−z

,

| arg z| < π, a ∈ C, (a)� �= 0, � ∈ N0 (12.6.19)

and

Γ(a, z)
zae−z

= −
�∑

k=1

(1− a)k−1

(−z)k
+

(1− a)�

(−z)�

Γ(a− �, z)
za−�e−z

,

| arg z| < π, a ∈ C, � ∈ N0. (12.6.20)

Applying (12.6.17) to (12.6.19) and (12.6.20) we find

Γ(a, z)
zae−z

= −
�−1∑
k=0

zk

(a)k+1
+

z�

(a)�

∞

K
m=1

(
am(a + �)/z

1

)
,

| arg z| < π, (a)� �= 0, � ∈ N0, (12.6.21)

Γ(a, z)
zae−z

= −
�∑

k=1

(1− a)k−1

(−z)k
+

(1− a)�

(−z)�

∞

K
m=1

(
am(a− �)/z

1

)
,

| arg z| < π, � ∈ N0, (12.6.22)

where am(a + �) and am(a − �) are given by (12.6.15b). If w = 1/z then
the successive approximants of (12.6.22) are the Padé approximants of the
function Γ(a, 1/w)e1/wwa−1 on the staircase T�−1 defined in (4.3.1).
From the series representation (12.6.8) for γ(a, z) and (16.1.14), we obtain
the corresponding regular C-fraction [Wal48, p. 347]

γ(a, z)
zae−z

=
1
z

∞

K
m=1

(
cm(a)z

1

)
, z ∈ C, �a > 0, (12.6.23a)

– – –
– – –
– – –

where the coefficients are given by

c1(a) =
1
a
, c2j(a) =

−(a + j − 1)
(a + 2j − 2)(a + 2j − 1)

, j ≥ 1,

c2j+1(a) =
j

(a + 2j − 1)(a + 2j)
, j ≥ 1.

(12.6.23b)
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Since
|cm(a)| ∼ 1

2m
, m →∞,

it follows from Corollary 3.5.1 that the C-fraction converges to a function
holomorphic at z = 0 and meromorphic in C, for each a ∈ C\Z−

0 . It follows
from Theorem 3.4.1 that this function equals γ(a, z)z−aez if �a > 0 and
z ∈ C. Therefore the right hand side of (12.6.23a) provides the analytic
continuation of γ(a, z)z−aez from �a > 0 to a ∈ C\Z−

0 .
Another regular C-fraction expansion for the complementary incomplete
gamma function Γ(a, z) is

Γ(a, z)
zae−z

=
Γ(a)
zae−z

− 1
z

∞

K
m=1

(
cm(a)z

1

)
, | arg z| < π, a ∈ C\Z−

0 ,

(12.6.24)
where the coefficients cm(a) are defined by (12.6.23b). In the same way
as above, the function Γ(a, z)z−aez is continued analytically to z ∈ C\{0}
for a ∈ C\Z−

0 by the right hand side of (12.6.24). Applying (12.6.24) to
(12.6.19) and (12.6.20) yields

Γ(a, z)
zae−z

=
Γ(a + �)

(a)�zae−z
−

�−1∑
k=0

zk

(a)k+1
− z�−1

(a)�

∞

K
m=1

(
cm(a + �)z

1

)
,

| arg z| < π, a ∈ C\Z−
0 , � ∈ N0, (12.6.25)

Γ(a, z)
zae−z

=
(1− a)�Γ(a− �)

(−1)�zae−z
−

�∑
k=1

(1− a)k−1

(−z)k
−

(1− a)�

(−1)�z�+1

∞

K
m=1

(
cm(a− �)z

1

)
,

| arg z| < π, a ∈ C\Z−
0 , � ∈ N0, (12.6.26)

where the coefficients cm(a+ �) and cm(a− �) are given by (12.6.23b). The
right hand side of both (12.6.25) and (12.6.26) is an analytic continuation
of Γ(a, z)z−aez from | arg z| < π to z ∈ C \ {0} for a ∈ C\Z−

0 .
The successive approximants of (12.6.25) are the Padé approximants of the
function

Γ(a, z)
zae−z

− Γ(a)
zae−z

on the staircase T�−1 defined in (4.3.1).
The analytic continuations (12.6.23) for γ(a, z) from �a > 0 to a ∈ C \Z−

0

and (12.6.24) for Γ(a, z) from | arg z| < π to z ∈ C \ {0} allow us to
generalise (12.6.1) to

Γ(a, z) + γ(a, z) = Γ(a), z ∈ C \ {0}, a ∈ C \ Z−
0 . (12.6.27)
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Padé approximants. As a special case of (16.2.5), explicit formulas can
be given for Padé approximants of Γ(a, z)z1−aez at z = ∞:

rm,n(z) =
Pm+n(2F0(1− a, 1;−z−1) 2F0(a−m− 1,−n, z−1))

2F0(a−m− 1,−n, z−1)
,

m ≥ n− 1, (12.6.28)

where the operator Pk is defined in (15.4.1). In [Luk75, pp. 82–83] more
explicit formulas for the numerator of rm,n are given in case m = n or
m = n− 1, in terms of hypergeometric series 2F2.
Similarly, as a special case of (16.1.15), explicit formulas can be given for
Padé approximants of aγ(a, z)z−aez at z = 0:

rm,n(z) =
Pm+n(1F1(1; a + 1; z) 1F1(−n;−a−m− n;−z))

1F1(−n;−a−m− n;−z)
,

m ≥ n− 1. (12.6.29)

In [Luk75, pp. 79–80] more explicit formulas for the numerator of rm,n are
given in case m = n or m = n− 1, in terms of hypergeometric series 3F1.

M-fractions. From the series representation (12.6.8) and (16.1.17) we
obtain the M-fraction representation of the form (2.3.14) [JT85],

γ(a, z)
zae−z

=
1

a− z +

∞

K
m=1

(
mz

a + m− z

)
, z ∈ C, a ∈ C\Z−

0 . (12.6.30)
– – –
– – –
– – –

The continued fraction corresponds at z = 0 to the series representation

1
a

1F1(1; a + 1; z)

and at z = ∞ to

−1
z

2F0(1, 1− a;−1/z).

An M-fraction representation for Γ(a, z) follows from (12.6.1) and (12.6.30),

Γ(a, z)
zae−z

=
Γ(a)
zae−z

− 1
a− z +

∞

K
m=1

(
mz

a + m− z

)
,

| arg z| < π, �a > 0. (12.6.31)
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Applying (12.6.31) to (12.6.19) and (12.6.20) yields [JT85]

Γ(a, z)
zae−z

=
Γ(a + �)

(a)�zae−z
−

�−1∑
k=0

zk

(a)k+1
−

z�

(a)�

(
1

a + �− z +

∞

K
m=1

(
mz

a + � + m− z

))
,

| arg z| < π, �a > 0, � ∈ N0,
(12.6.32)

Γ(a, z)
zae−z

=
(1− a)�Γ(a− �)

(−1)�zae−z
−

�∑
k=1

(1− a)k−1

(−z)k
−

(1− a)�

(−1)�z�

(
1

a− �− z +

∞

K
m=1

(
mz

a− � + m− z

))
,

| arg z| < π, �a > 0, a /∈ {1, 2, . . . , �}, � ∈ N0.
(12.6.33)

The right hand sides of (12.6.31), (12.6.32) and (12.6.33) are also analytic
continuations of Γ(a, z)z−aez from | arg z| < π to z ∈ C \ {0}.

J-fractions. The even part of the modified C-fraction (12.6.17) is the
J-fraction [JT88, p. 195]

Γ(a, z)
zae−z

=
1

1 + z − a +

∞

K
m=2

(
(1−m)(m− 1− a)
(2m− 1) + z − a

)
,

a ∈ C, | arg z| < π. (12.6.34)
– – –
– – –
– – –

The odd part of the modified C-fraction (12.6.17) is also a J-fraction and
is given by

Γ(a, z)
zae−z

=
1
z

(
1 +

a− 1
2 + z − a +

∞

K
m=1

(
(1−m)(m− a)

2m + z − a

))
,

a ∈ C, | arg z| < π. (12.6.35)
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Table 12.6.1: In combination with property (12.6.6) the following se-
quence of tables describes the relative error of the 5th partial sums and 5th

approximants in case a = 3/2.

x γ(a, x) (12.6.7) (12.6.8) (12.6.23) (12.6.30)
0.01 6.626809e−04 2.8e−16 9.4e−17 5.8e−15 2.7e−14

0.1 1.986097e−02 2.9e−10 9.2e−11 6.0e−10 3.0e−09

0.5 1.761359e−01 5.5e−06 1.3e−06 2.2e−06 1.6e−05

1 3.789447e−01 4.3e−04 6.9e−05 8.3e−05 9.5e−04

2 6.545104e−01 4.1e−02 3.1e−03 3.9e−03 1.2e−01

3 7.873149e−01 6.4e−01 2.3e−02 4.2e−02 1.9e+00

5 8.697731e−01 2.2e+01 1.8e−01 5.7e−01 1.0e+00

15 8.862257e−01 4.5e+04 9.9e−01 1.0e+00 1.0e+00

x |γ(a, x + ix)|s (12.6.7) (12.6.8) (12.6.23) (12.6.30)
0.01 1.114488e−03 2.2e−15 7.6e−16 3.3e−14 1.5e−13

0.1 3.339048e−02 2.3e−09 7.4e−10 3.4e−09 1.7e−08

0.5 2.936018e−01 4.4e−05 1.0e−05 1.2e−05 8.9e−05

1 6.145774e−01 3.6e−03 5.7e−04 4.7e−04 5.5e−03

2 9.533397e−01 3.7e−01 2.7e−02 2.1e−02 1.6e+00

3 9.867346e−01 6.6e+00 2.3e−01 2.0e−01 9.1e−01

5 8.875841e−01 2.7e+02 1.8e+00 8.5e−01 1.0e+00

15 8.862276e−01 5.0e+05 1.1e+00 1.0e+00 1.0e+00

x |γ(a, ix)|s (12.6.7) (12.6.8) (12.6.23) (12.6.30)
0.01 −6.666644e−04 2.8e−16 9.5e−17 5.7e−15 2.6e−14

0.1 −2.107462e−02 2.8e−10 9.5e−11 5.7e−10 2.6e−09

0.5 −2.336879e−01 4.4e−06 1.5e−06 1.8e−06 8.2e−06

1 −6.440760e−01 2.9e−04 9.8e−05 5.7e−05 2.7e−04

2 1.638901e+00 2.0e−02 6.8e−03 1.8e−03 9.1e−03

3 2.503061e+00 2.7e−01 9.1e−02 1.3e−02 9.6e−02

5 2.737259e+00 1.0e+01 3.5e+00 1.9e−01 3.3e−01

15 4.073550e+00 1.3e+04 4.8e+03 2.0e+00 2.2e−01
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x |γ(a, x− ix)|s (12.6.7) (12.6.8) (12.6.23) (12.6.30)
−0.01 −1.127943e−03 2.2e−15 7.6e−16 3.2e−14 1.5e−13

−0.1 −3.764782e−02 2.1e−09 7.8e−10 3.1e−09 1.3e−08

−0.5 −5.352469e−01 2.7e−05 1.4e−05 8.5e−06 2.4e−05

−1 −2.048481e+00 1.4e−03 1.0e−03 2.3e−04 4.0e−04

−2 −1.080189e+01 5.3e−02 8.3e−02 5.0e−03 3.1e−03

−3 3.869274e+01 3.5e−01 1.2e+00 2.6e−02 5.2e−03

−5 3.766683e+02 1.9e+00 3.4e+01 1.5e−01 3.1e−03

−15 −1.480821e+07 1.0e+00 3.5e+04 1.7e+00 2.0e−05

Table 12.6.2: In combination with property (12.6.6) the following se-
quence of tables describes the relative error of the 20th partial sums and
20th approximants in case a = 3/2.

x γ(a, x) (12.6.7) (12.6.8) (12.6.23) (12.6.30)
0.01 6.626809e−04 1.3e−63 2.5e−64 2.2e−66 1.1e−61

0.1 1.986097e−02 1.4e−42 2.4e−43 2.3e−46 1.3e−41

0.5 1.761359e−01 8.1e−28 9.8e−29 2.7e−32 2.2e−27

1 3.789447e−01 2.2e−21 1.7e−22 3.8e−26 4.7e−21

2 6.545104e−01 7.3e−15 2.2e−16 6.6e−20 2.0e−14

3 7.873149e−01 5.3e−11 6.5e−13 3.5e−16 2.6e−10

5 8.697731e−01 4.4e−06 8.6e−09 2.1e−11 8.7e−05

15 8.862257e−01 1.7e+05 4.2e−02 7.3e−01 1.0e+00

x |γ(a, x + ix)|s (12.6.7) (12.6.8) (12.6.23) (12.6.30)
0.01 1.114488e−03 1.9e−60 3.6e−61 2.2e−63 1.1e−58

0.1 3.339048e−02 2.0e−39 3.5e−40 2.4e−43 1.3e−38

0.5 2.936018e−01 1.2e−24 1.4e−25 2.8e−29 2.3e−24

1 6.145774e−01 3.3e−18 2.5e−19 4.0e−23 5.0e−18

2 9.533397e−01 1.2e−11 3.7e−13 7.4e−17 2.4e−11

3 9.867346e−01 1.0e−07 1.3e−09 4.3e−13 3.5e−07

5 8.875841e−01 1.0e−02 2.0e−05 2.7e−08 1.6e−01

15 8.862276e−01 3.9e+08 5.9e+01 1.0e+00 1.0e+00
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x |γ(a, ix)|s (12.6.7) (12.6.8) (12.6.23) (12.6.30)
0.01 −6.666644e−04 1.3e−63 2.5e−64 2.2e−66 1.1e−61

0.1 −2.107462e−02 1.3e−42 2.5e−43 2.2e−46 1.1e−41

0.5 −2.336879e−01 6.3e−28 1.2e−28 2.1e−32 1.0e−27

1 −6.440760e−01 1.3e−21 2.6e−22 2.2e−26 1.1e−21

2 1.638901e+00 3.1e−15 6.0e−16 2.5e−20 1.3e−15

3 2.503061e+00 1.9e−11 3.6e−12 9.4e−17 5.1e−12

5 2.737259e+00 1.7e−06 3.2e−07 4.2e−12 2.7e−07

15 4.073550e+00 5.2e+04 1.0e+04 3.9e−03 2.2e−01

x |γ(a, x− ix)|s (12.6.7) (12.6.8) (12.6.23) (12.6.30)
−0.01 −1.127943e−03 1.9e−60 3.6e−61 2.2e−63 1.1e−58

−0.1 −3.764782e−02 1.8e−39 3.7e−40 2.1e−43 9.6e−39

−0.5 −5.352469e−01 6.8e−25 2.0e−25 1.6e−29 5.0e−25

−1 −2.048481e+00 1.1e−18 5.1e−19 1.2e−23 2.5e−19

−2 −1.080189e+01 1.3e−12 1.5e−12 7.2e−18 5.5e−14

−3 3.869274e+01 3.4e−09 1.0e−08 1.3e−14 3.8e−11

−5 3.766683e+02 3.7e−05 6.9e−04 8.0e−11 3.7e−08

−15 −1.480821e+07 6.0e+01 1.5e+07 8.5e−05 5.7e−08

Table 12.6.3: In combination with property (12.6.6), the following tables
describe the relative error of the 5th approximants and 5th partial sum in
| arg z| < π for a = 1/2. The C-fraction (12.6.17) is first evaluated without
modification and then with wn(z) given by (12.6.18).

x Γ(a, x) (12.6.17) (12.6.17) (12.6.34) (12.6.10)
0.01 1.573119e+00 2.4e+00 9.7e−03 6.4e−01 1.9e+12

0.1 1.160462e+00 4.2e−01 1.4e−02 1.6e−01 7.1e+06

0.5 5.624182e−01 5.6e−02 9.1e−03 9.4e−03 1.3e+03

2 8.064712e−02 2.8e−03 1.6e−03 8.4e−05 7.7e−01

10 1.372627e−05 1.1e−05 3.7e−05 7.6e−09 1.1e−04

50 2.701168e−23 9.0e−09 1.7e−07 1.3e−14 9.3e−09

100 3.701748e−45 3.2e−10 1.3e−08 2.1e−17 1.5e−10

500 3.183031e−219 1.2e−13 2.3e−11 3.3e−24 1.0e−14
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x |Γ(a, x + ix)|s (12.6.17) (12.6.17) (12.6.34) (12.6.10)
0.01 1.555753e+00 2.0e+00 1.2e−02 6.2e−01 2.8e+11

0.1 1.121398e+00 3.3e−01 1.8e−02 1.3e−01 1.1e+06

0.5 5.242904e−01 3.8e−02 8.3e−03 5.4e−03 2.1e+02

2 −7.200584e−02 1.3e−03 1.1e−03 2.8e−05 1.2e−01

10 −1.177770e−05 3.2e−06 1.6e−05 9.2e−10 1.5e−05

50 2.282250e−23 1.8e−09 5.0e−08 6.6e−16 1.2e−09

100 3.120389e−45 6.2e−11 3.4e−09 8.4e−19 2.0e−11

500 −2.677931e−219 2.1e−14 5.9e−12 1.1e−25 1.3e−15

x |Γ(a, ix)|s (12.6.17) (12.6.17) (12.6.34) (12.6.10)
0.01 1.636643e+00 2.6e+00 2.5e−02 7.8e−01 1.8e+12

0.1 1.380103e+00 5.8e−01 2.9e−02 3.5e−01 6.8e+06

0.5 1.029521e+00 1.2e−01 2.0e−02 3.6e−02 1.3e+03

2 −6.541871e−01 8.5e−03 4.4e−03 6.5e−04 9.0e−01

10 −3.143992e−01 2.6e−05 8.6e−05 6.2e−08 1.3e−04

50 1.413861e−01 1.2e−08 2.3e−07 3.2e−14 1.0e−08

100 9.999376e−02 3.7e−10 1.5e−08 3.4e−17 1.6e−10

500 −4.472125e−02 1.2e−13 2.4e−11 3.6e−24 1.0e−14

x |Γ(a, x− ix)|s (12.6.17) (12.6.17) (12.6.34) (12.6.10)
−0.01 1.694757e+00 2.3e+00 4.1e−02 9.4e−01 2.6e+11

−0.1 1.613954e+00 6.6e−01 5.8e−02 8.0e−01 9.7e+05

−0.5 1.792530e+00 2.6e−01 4.4e−02 1.0e−01 2.0e+02

−2 −4.684326e+00 1.6e−02 9.2e−03 2.9e−03 1.9e−01

−10 6.002169e+03 1.2e−05 7.3e−05 5.5e−08 2.5e−05

−50 6.196574e+20 2.5e−09 7.2e−08 2.0e−15 1.4e−09

−100 2.266085e+42 7.1e−11 4.1e−09 1.5e−18 2.1e−11

−500 5.280993e+215 2.2e−14 6.1e−12 1.2e−25 1.3e−15
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Table 12.6.4: In combination with property (12.6.6), the following tables
describe the relative error of the 20th approximants and 20th partial sum in
| arg z| < π for a = 1/2. The C-fraction (12.6.17) is first evaluated without
modification and then with wn(z) given by (12.6.18).

x Γ(a, x) (12.6.17) (12.6.17) (12.6.34) (12.6.10)
0.01 1.573119e+00 4.9e−01 1.2e−03 3.2e−01 1.9e+58

0.1 1.160462e+00 5.2e−02 1.2e−03 1.0e−02 7.5e+37

0.5 5.624182e−01 7.2e−04 4.8e−05 1.8e−05 4.8e+23

2 8.064712e−02 5.2e−07 9.5e−08 3.5e−10 3.1e+11

10 1.372627e−05 1.4e−13 1.0e−13 1.6e−20 2.1e−03

50 2.701168e−23 7.0e−24 2.9e−23 3.9e−38 9.3e−18

100 3.701748e−45 3.4e−29 3.0e−28 7.2e−48 5.2e−24

500 3.183031e−219 1.6e−42 7.8e−41 1.7e−73 1.3e−38

x |Γ(a, x + ix)|s (12.6.17) (12.6.17) (12.6.34) (12.6.10)
0.01 1.555753e+00 4.6e−01 2.6e−03 2.9e−01 1.6e+55

0.1 1.121398e+00 3.7e−02 1.0e−03 6.1e−03 6.4e+34

0.5 5.242904e−01 3.2e−04 2.7e−05 5.7e−06 4.2e+20

2 −7.200584e−02 1.0e−07 2.4e−08 3.3e−11 2.9e+08

10 −1.177770e−05 4.7e−15 4.8e−15 9.6e−23 1.9e−06

50 2.282250e−23 3.1e−26 1.8e−25 3.6e−42 7.4e−21

100 3.120389e−45 8.0e−32 1.0e−30 1.3e−52 3.9e−27

500 −2.677931e−219 1.9e−45 1.3e−43 3.4e−79 8.9e−42

x |Γ(a, ix)|s (12.6.17) (12.6.17) (12.6.34) (12.6.10)
0.01 1.636643e+00 6.8e−01 5.1e−03 5.4e−01 1.9e+58

0.1 1.380103e+00 1.6e−01 3.5e−03 4.6e−02 7.0e+37

0.5 1.029521e+00 5.8e−03 3.7e−04 4.3e−04 4.4e+23

2 −6.541871e−01 1.6e−05 2.7e−06 8.9e−08 3.1e+11

10 −3.143992e−01 1.3e−11 7.9e−12 8.4e−17 2.7e−03

50 1.413861e−01 1.1e−22 4.7e−22 8.1e−35 1.2e−17

100 9.999376e−02 1.9e−28 1.8e−27 1.7e−45 6.1e−24

500 −4.472125e−02 2.4e−42 1.2e−40 7.6e−73 1.3e−38
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x |Γ(a, x− ix)|s (12.6.17) (12.6.17) (12.6.34) (12.6.10)
−0.01 1.694757e+00 9.6e−01 1.1e−02 1.0e+00 1.5e+55

−0.1 1.613954e+00 3.6e−01 1.1e−02 1.5e−01 5.5e+34

−0.5 1.792530e+00 3.3e−02 2.5e−03 6.2e−03 3.5e+20

−2 −4.684326e+00 2.5e−04 4.4e−05 8.3e−06 2.9e+08

−10 6.002169e+03 8.6e−11 5.7e−11 2.1e−14 3.9e−06

−50 6.196574e+20 1.7e−24 1.3e−23 3.7e−36 1.1e−20

−100 2.266085e+42 6.4e−31 9.8e−30 3.5e−49 4.8e−27

−500 5.280993e+215 2.9e−45 2.1e−43 1.8e−78 9.2e−42

Convergence speed. The difference in speed of convergence between the
continued fractions (12.6.15) and (12.6.23) is explained by the following
truncation error upper bounds.

Let fn(a, z; 0) denote the nth approximant of the regular C-fraction (12.6.23)
for γ(a, z)z−aez. Then by [JT88, p. 195] there exist constants A(z) > 0
and B(z) > 0 dependent on z, such that

∣∣∣∣γ(a, z)
zae−z

− fn(a, z; 0)
∣∣∣∣ ≤ A(z)

(
B(z)

n

)n+ 3
2

, n ≥ 2,

z ∈ C, a ∈ C\Z−
0 . (12.6.36)

This implies fast convergence of (12.6.23), as illustrated in the Tables 12.6.1
and 12.6.2.

Let fn(a, z; 0) denote the nth approximant of the S-fraction (12.6.15) for
Γ(a, z)z−aez. Since the coefficients satisfy (12.6.16), it follows from Corol-
lary 7.4.1 that there exist constants A(z) > 0 and C(z) > 1 dependent on
z such that

∣∣∣∣Γ(a, z)
zae−z

− fn(a, z; 0)
∣∣∣∣ ≤ A(z)/C(z)

√
n, n ≥ 1,

| arg z| < π, −∞ < a < 1. (12.6.37)

This bound explains the slow convergence of (12.6.15) shown in the Ta-
bles 12.6.3 and 12.6.4.
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Figure 12.6.1: Significant digits guaranteed by the nth classical approx-
imant of (12.6.17) (from light to dark n = 5, 6, 7) and the 5th modified
approximant with w5(z) given by (12.6.18) (darkest), for a = −7.9, 0.5 and
2.5 respectively. On the horizontal axis we have real z, 1 ≤ z ≤ 19 and on
the vertical axis we find the number of significant digits (from 0 to 9).



13
Error function and

related integrals

In this chapter we deal with some special functions defined by integrals
which cannot be evaluated in closed form in terms of elementary functions.
These include the error function, the complementary and complex error
function, repeated integrals of the error function, Dawson’s integral and
the Fresnel integrals. All are entire functions defined in the whole complex
plane.
The error functions and Dawson’s integral are special cases of the in-
complete and complementary incomplete gamma functions γ(1/2, z) and
Γ(1/2, z).

13.1 Error function and Dawson’s integral

Definitions and elementary properties. The error function erf(z) is
an entire function and is defined by

erf(z) :=
2√
π

∫ z

0

e−t2 dt, z ∈ C (13.1.1)

and the related Dawson’s integral by

e−z2
∫ z

0

et2 dt :=
i
√

π

2
e−z2

erf(−iz), z ∈ C. (13.1.2)

The path of integration in both (13.1.1) and (13.1.2) is a straight line
segment from 0 to z. We have the symmetry relations

erf(−z) = − erf(z), (13.1.3a)

erf(z̄) = erf(z), (13.1.3b)

253
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and the property

erf(z) → 1, z →∞, | arg z| < π

4
. (13.1.4)

The error function and Dawson’s integral are special instances of the in-
complete gamma function γ(a, z) introduced in Section 12.6:

erf(z) =
1√
π

γ
(

1/2, z
2
)
, (13.1.5)

e−z2
∫ z

0

et2 dt =
i
2
e−z2

γ
(

1/2,−z2
)
. (13.1.6)

The relationship with the incomplete gamma function is crucial in deriving
all the representations for the error function and for Dawson’s integral given
in this section.

Series expansions. From (13.1.5) and the series expansion for γ(a, z)
given in Section 12.6 we find two alternative series representations for the
error function:

erf(z) =
2√
π

∞∑
k=0

(−1)kz2k+1

(2k + 1)k!
=

2z√
π

1F1

(
1
2
;
3
2
;−z2

)
, z ∈ C

(13.1.7)
– – –
– – –
– – –

and

erf(z) =
2√
π

e−z2
∞∑

k=0

z2k+1

( 3
2 )k

=
2z√
π

e−z2

1F1

(
1;

3
2
; z2

)
, z ∈ C

(13.1.8)
– – –
– – –
– – –

where 1F1(a; b; z) is the confluent hypergeometric series (16.1.2). Similarly,
from (13.1.6) we find for Dawson’s integral

e−z2
∫ z

0

et2 dt = e−z2
∞∑

k=0

z2k+1

(2k + 1)k!

= ze−z2

1F1

(
1
2
;
3
2
; z2

)
, z ∈ C, (13.1.9)

– – –
– – –
– – –

or alternatively

e−z2
∫ z

0

et2 dt =
∞∑

k=0

(−1)kz2k+1

( 3
2 )k

= z 1F1

(
1;

3
2
;−z2

)
, z ∈ C. (13.1.10)

– – –
– – –
– – –
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C-fractions. We obtain the regular C-fraction representation in z2 [Wal48,
p. 348] for the error function and Dawson’s integral as a special case of
(12.6.23):

√
πzez2

erf(z) =
∞

K
m=1

(
cmz2

1

)
, z ∈ C, (13.1.11a)

– – –
– – –
– – –

−2ze−z2
∫ z

0

et2 dt =
∞

K
m=1

(−cmz2

1

)
, z ∈ C, (13.1.11b)

– – –
– – –
– – –

where the coefficients cm are given by

c1 = 2, c2k =
−2(2k − 1)

(4k − 3)(4k − 1)
, c2k+1 =

4k

(4k − 1)(4k + 1)
, k ≥ 1.

(13.1.11c)

Padé approximants. The series expansions (13.1.8) for the error function
and (13.1.10) for Dawson’s integral allows us to write down explicit formu-
las for the Padé approximants of these respective functions as a special case
of (16.1.15). The Padé approximants rm,n(z2) for (

√
π/2)z−1ez2

erf(z) are
given by

rm,n(z2) =
Pm+n

(
1F1(1; 3/2; z2) 1F1(−n;−m− n− 1/2;−z2)

)
1F1(−n;−m− n− 1/2;−z2)

,

m ≥ n− 1. (13.1.12)

When replacing z2 by −z2 in (13.1.12), we obtain the Padé approximants
rm,n(−z2) for z−1e−z2 ∫ z

0
et2 dt.

T-fractions. We obtain the general T-fraction representation in z2 [JT80,
p. 282; Dij77] for the error function and Dawson’s integral as a special case
of (12.6.30):

√
πzez2

erf(z) =
∞

K
m=1

(
Fmz2

1 + Gmz2

)
, z ∈ C, (13.1.13a)

– – –
– – –
– – –

−2ze−z2
∫ z

0

et2 dt =
∞

K
m=1

( −Fmz2

1−Gmz2

)
, z ∈ C, (13.1.13b)

– – –
– – –
– – –

where

F1 = 2, Fm =
4(m− 1)

(2m− 3)(2m− 1)
, m ≥ 2,

Gm =
−2

2m− 1
, m ≥ 1.

(13.1.13c)
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Table 13.1.1: The symmetry properties (13.1.3) reduce an investigation
of approximations for the error function in the complex plane to the first
quadrant. The following tables give the relative error of the 5th partial
sums and 5th approximants.

x erf(x) (13.1.7) (13.1.8) (13.1.11) (13.1.13)
0.05 5.637198e−02 2.6e−20 1.2e−19 3.8e−17 1.2e−15

0.1 1.124629e−01 1.1e−16 4.7e−16 3.9e−14 1.3e−12

0.25 2.763264e−01 6.5e−12 2.7e−11 3.8e−10 1.3e−08

0.5 5.204999e−01 2.7e−08 1.0e−07 4.1e−07 1.7e−05

0.75 7.111556e−01 3.8e−06 1.1e−05 2.5e−05 1.5e−03

1 8.427008e−01 1.3e−04 2.7e−04 5.0e−04 4.9e−02

1.5 9.661051e−01 1.9e−02 1.6e−02 4.0e−02 1.1e+00

2 9.953223e−01 6.5e−01 1.6e−01 5.8e−01 1.0e+00

2.5 9.995930e−01 9.9e+00 5.1e−01 9.7e−01 1.0e+00

5 1.000000e+00 3.3e+04 1.0e+00 1.0e+00 1.0e+00

10 1.000000e+00 8.1e+07 1.0e+00 1.0e+00 1.0e+00

50 1.000000e+00 4.2e+15 1.0e+00 1.0e+00 1.0e+00

x | erf(x + ix)|s (13.1.7) (13.1.8) (13.1.11) (13.1.13)
0.05 7.978837e−02 1.7e−18 7.4e−18 1.2e−15 3.9e−14

0.1 1.595741e−01 6.8e−15 3.0e−14 1.3e−12 4.0e−11

0.25 3.986653e−01 4.1e−10 1.8e−09 1.2e−08 3.8e−07

0.5 7.890543e−01 1.7e−06 7.5e−06 1.2e−05 4.0e−04

0.75 1.130852e+00 2.3e−04 1.0e−03 7.0e−04 2.4e−02

1 1.329860e+00 8.0e−03 3.5e−02 1.2e−02 3.7e−01

1.5 9.115563e−01 2.1e+00 9.1e+00 6.6e−01 1.1e+00

2 1.158326e+00 5.5e+01 2.4e+02 2.2e+00 8.6e−01

2.5 8.820421e−01 9.6e+02 4.0e+03 1.3e+00 1.1e+00

5 9.311940e−01 2.0e+06 8.2e+06 3.9e+00 1.1e+00

10 9.617121e−01 4.0e+09 1.6e+10 9.1e+00 1.0e+00

50 9.935650e−01 1.9e+17 7.7e+17 4.3e+01 1.0e+00
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x | erf(ix)|s (13.1.7) (13.1.8) (13.1.11) (13.1.13)
0.05 5.646601e−02 2.6e−20 1.2e−19 3.8e−17 1.2e−15

0.1 1.132152e−01 1.1e−16 4.8e−16 3.9e−14 1.2e−12

0.25 2.880836e−01 6.3e−12 2.9e−11 3.7e−10 1.1e−08

0.5 6.149521e−01 2.5e−08 1.3e−07 3.6e−07 8.6e−06

0.75 1.035757e+00 3.0e−06 2.0e−05 1.9e−05 3.2e−04

1 1.650426e+00 8.3e−05 7.8e−04 3.1e−04 3.0e−03

1.5 4.584733e+00 7.0e−03 1.6e−01 1.3e−02 2.4e−02

2 1.856480e+01 9.8e−02 8.3e+00 1.4e−01 2.7e−02

2.5 1.303958e+02 4.1e−01 1.7e+02 6.7e−01 1.0e−02

5 8.298274e+09 1.0e+00 1.2e+06 1.5e+01 1.2e−05

10 1.524307e+42 1.0e+00 5.8e+09 9.2e+01 1.2e−08

50 6.148182e+1083 1.0e+00 1.5e+18 2.7e+03 1.2e−15

Table 13.1.2: The symmetry properties (13.1.3) reduce an investigation
of approximations for the error function in the complex plane to the first
quadrant. The following tables give the relative error of the 20th par-
tial sums and 20th approximants. Note that, despite the convergence of
(13.1.7) throughout the entire complex plain, the value of n from where on
the relative truncation error of the nth partial sum of (13.1.7) decreases,
depends on x.

x erf(x) (13.1.7) (13.1.8) (13.1.11) (13.1.13)
0.05 5.637198e−02 1.0e−76 8.4e−76 5.5e−77 5.8e−71

0.1 1.124629e−01 4.6e−64 3.7e−63 6.1e−65 6.5e−59

0.25 2.763264e−01 2.4e−47 1.8e−46 5.1e−49 5.7e−43

0.5 5.204999e−01 1.1e−34 7.2e−34 6.0e−37 8.1e−31

0.75 7.111556e−01 3.0e−27 1.5e−26 7.4e−30 1.3e−23

1 8.427008e−01 5.8e−22 1.9e−21 8.4e−25 2.3e−18

1.5 9.661051e−01 1.8e−14 1.9e−14 1.3e−17 1.2e−10

2 9.953223e−01 3.9e−09 8.2e−10 2.0e−12 8.7e−05

2.5 9.995930e−01 5.2e−05 1.4e−06 2.7e−08 8.9e−01

5 1.000000e+00 2.8e+08 7.8e−01 1.0e+00 1.0e+00

10 1.000000e+00 9.3e+20 1.0e+00 1.0e+00 1.0e+00

50 1.000000e+00 5.1e+49 1.0e+00 1.0e+00 1.0e+00
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x | erf(x + ix)|s (13.1.7) (13.1.8) (13.1.11) (13.1.13)
0.05 7.978837e−02 2.2e−70 1.8e−69 5.8e−71 6.1e−65

0.1 1.595741e−01 9.5e−58 7.8e−57 6.4e−59 6.7e−53

0.25 3.986653e−01 4.9e−41 4.0e−40 5.3e−43 5.5e−37

0.5 7.890543e−01 2.2e−28 1.8e−27 5.8e−31 6.2e−25

0.75 1.130852e+00 5.7e−21 4.7e−20 6.7e−24 7.1e−18

1 1.329860e+00 1.1e−15 9.3e−15 7.3e−19 8.0e−13

1.5 9.115563e−01 6.1e−08 5.0e−07 1.4e−11 1.9e−05

2 1.158326e+00 1.1e−02 8.9e−02 8.6e−07 1.2e+00

2.5 8.820421e−01 2.0e+02 1.6e+03 3.1e−03 1.1e+00

5 9.311940e−01 7.6e+14 6.1e+15 1.2e+00 1.1e+00

10 9.617121e−01 1.7e+27 1.4e+28 8.9e−01 1.0e+00

50 9.935650e−01 7.7e+55 6.1e+56 9.7e−01 1.0e+00

x | erf(ix)|s (13.1.7) (13.1.8) (13.1.11) (13.1.13)
0.05 5.646601e−02 1.0e−76 8.5e−76 5.5e−77 5.8e−71

0.1 1.132152e−01 4.5e−64 3.7e−63 6.1e−65 6.3e−59

0.25 2.880836e−01 2.3e−47 2.0e−46 4.9e−49 4.9e−43

0.5 6.149521e−01 9.6e−35 9.9e−34 5.0e−37 4.1e−31

0.75 1.035757e+00 2.2e−27 2.9e−26 4.9e−30 3.0e−24

1 1.650426e+00 3.3e−22 6.6e−21 4.1e−25 1.6e−19

1.5 4.584733e+00 4.6e−15 2.9e−13 2.5e−18 2.7e−13

2 1.856480e+01 2.9e−10 9.2e−08 9.0e−14 1.5e−09

2.5 1.303958e+02 7.0e−07 1.7e−03 1.5e−10 2.1e−07

5 8.298274e+09 7.5e−01 1.9e+10 1.7e−03 3.1e−10

10 1.524307e+42 1.0e+00 1.3e+23 7.0e−01 2.4e−22

50 6.148182e+1083 1.0e+00 3.6e+52 5.2e+00 2.7e−50
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Table 13.1.3: Dawson’s integral satisfies the same symmetry properties
(13.1.3) and therefore an investigation of approximations in the complex
plane can be reduced to the first quadrant. The following tables give the
relative error of the 5th partial sums and 5th approximants.

x Dawson(x) (13.1.9) (13.1.10) (13.1.11) (13.1.13)
0.25 2.398392e−01 6.3e−12 2.9e−11 3.7e−10 1.1e−08

0.5 4.244364e−01 2.5e−08 1.3e−07 3.6e−07 8.6e−06

1 5.380795e−01 8.3e−05 7.8e−04 3.1e−04 3.0e−03

1.5 4.282491e−01 7.0e−03 1.6e−01 1.3e−02 2.4e−02

2 3.013404e−01 9.8e−02 8.3e+00 1.4e−01 2.7e−02

2.5 2.230837e−01 4.1e−01 1.7e+02 6.7e−01 1.0e−02

5 1.021341e−01 1.0e+00 1.2e+06 1.5e+01 1.2e−05

10 5.025385e−02 1.0e+00 5.8e+09 9.2e+01 1.2e−08

x |Dawson(x + ix)|s (13.1.9) (13.1.10) (13.1.11) (13.1.13)
0.25 3.533079e−01 4.1e−10 1.8e−09 1.2e−08 3.8e−07

0.5 6.992812e−01 1.7e−06 7.5e−06 1.2e−05 4.0e−04

1 1.178557e+00 8.0e−03 3.5e−02 1.2e−02 3.7e−01

1.5 −8.078457e−01 2.1e+00 9.1e+00 6.6e−01 1.1e+00

2 1.026540e+00 5.5e+01 2.4e+02 2.2e+00 8.6e−01

2.5 7.816894e−01 9.6e+02 4.0e+03 1.3e+00 1.1e+00

5 −8.252492e−01 2.0e+06 8.2e+06 3.9e+00 1.1e+00

10 −8.522952e−01 4.0e+09 1.6e+10 9.1e+00 1.0e+00

x |Dawson(ix)|s (13.1.9) (13.1.10) (13.1.11) (13.1.13)
0.25 2.606818e−01 6.5e−12 2.7e−11 3.8e−10 1.3e−08

0.5 5.922965e−01 2.7e−08 1.0e−07 4.1e−07 1.7e−05

1 2.030078e+00 1.3e−04 2.7e−04 5.0e−04 4.9e−02

1.5 8.123289e+00 1.9e−02 1.6e−02 4.0e−02 1.1e+00

2 4.816001e+01 6.5e−01 1.6e−01 5.8e−01 1.0e+00

2.5 4.588901e+02 9.9e+00 5.1e−01 9.7e−01 1.0e+00

5 6.381268e+10 3.3e+04 1.0e+00 1.0e+00 1.0e+00

10 2.382282e+43 8.1e+07 1.0e+00 1.0e+00 1.0e+00
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Table 13.1.4: Dawson’s integral satisfies the same symmetry properties
(13.1.3) and therefore an investigation of approximations in the complex
plane can be reduced to the first quadrant. The following tables give the
relative error of the 20th partial sums and 20th approximants.

x Dawson(x) (13.1.9) (13.1.10) (13.1.11) (13.1.13)
0.25 2.398392e−01 2.3e−47 2.0e−46 4.9e−49 4.9e−43

0.5 4.244364e−01 9.6e−35 9.9e−34 5.0e−37 4.1e−31

1 5.380795e−01 3.3e−22 6.6e−21 4.1e−25 1.6e−19

1.5 4.282491e−01 4.6e−15 2.9e−13 2.5e−18 2.7e−13

2 3.013404e−01 2.9e−10 9.2e−08 9.0e−14 1.5e−09

2.5 2.230837e−01 7.0e−07 1.7e−03 1.5e−10 2.1e−07

5 1.021341e−01 7.5e−01 1.9e+10 1.7e−03 3.1e−10

10 5.025385e−02 1.0e+00 1.3e+23 7.0e−01 2.4e−22

x |Dawson(x + ix)|s (13.1.9) (13.1.10) (13.1.11) (13.1.13)
0.25 3.533079e−01 4.9e−41 4.0e−40 5.3e−43 5.5e−37

0.5 6.992812e−01 2.2e−28 1.8e−27 5.8e−31 6.2e−25

1 1.178557e+00 1.1e−15 9.3e−15 7.3e−19 8.0e−13

1.5 −8.078457e−01 6.1e−08 5.0e−07 1.4e−11 1.9e−05

2 1.026540e+00 1.1e−02 8.9e−02 8.6e−07 1.2e+00

2.5 7.816894e−01 2.0e+02 1.6e+03 3.1e−03 1.1e+00

5 −8.252492e−01 7.6e+14 6.1e+15 1.2e+00 1.1e+00

10 −8.522952e−01 1.7e+27 1.4e+28 8.9e−01 1.0e+00

x |Dawson(ix)|s (13.1.9) (13.1.10) (13.1.11) (13.1.13)
0.25 2.606818e−01 2.4e−47 1.8e−46 5.1e−49 5.7e−43

0.5 5.922965e−01 1.1e−34 7.2e−34 6.0e−37 8.1e−31

1 2.030078e+00 5.8e−22 1.9e−21 8.4e−25 2.3e−18

1.5 8.123289e+00 1.8e−14 1.9e−14 1.3e−17 1.2e−10

2 4.816001e+01 3.9e−09 8.2e−10 2.0e−12 8.7e−05

2.5 4.588901e+02 5.2e−05 1.4e−06 2.7e−08 8.9e−01

5 6.381268e+10 2.8e+08 7.8e−01 1.0e+00 1.0e+00

10 2.382282e+43 9.3e+20 1.0e+00 1.0e+00 1.0e+00
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13.2 Complementary and complex error function

Definitions and elementary properties. The complementary error
function erfc(z) is defined by

erfc(z) :=
2√
π

∫ ∞

z

e−t2 dt, z ∈ C, (13.2.1)

where the path of integration is subject to the restriction arg t → α with
|α| < π/4 as t →∞ along the path. The value α = π/4 is allowed if there
exists a constant M > 0 such that �(t2) > −M on the path of integration.
These conditions are satisfied if the path of integration is the horizontal
line t = z + τ , 0 ≤ τ < ∞. The error function and the complementary
error function are related by

erfc(z) = 1− erf(z). (13.2.2)

The complex error function w(z) defined by

w(z) := e−z2
(

1 +
2i√
π

∫ z

0

et2 dt

)
, z ∈ C, (13.2.3)

is related to the complementary error function by

w(z) = e−z2
erfc(−iz). (13.2.4)

We have the symmetry properties

erfc(z̄) = erfc(z) (13.2.5)

and

w(−z) = 2e−z2 − w(z), (13.2.6a)

w(z̄) = w(−z). (13.2.6b)

The complementary and the complex error function are special cases of the
complementary incomplete gamma function introduced in Section 12.6:

erfc(z) =
1√
π

Γ
(

1/2, z
2
)
, (13.2.7)

w(z) =
e−z2

√
π

Γ
(

1/2,−z2
)
. (13.2.8)
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The relationship with Γ(a, z) is essential in deriving the representations for
the complementary error function and for the function w(z) given in this
section.

Series expansion. From (13.2.4) and the series expansion (13.1.8) for the
error function, we find

erfc(z) = e−z2
∞∑

k=0

(−z)k

Γ(k
2 + 1)

, z ∈ C, (13.2.9)
– – –
– – –
– – –

w(z) =
∞∑

k=0

(iz)k

Γ(k
2 + 1)

, z ∈ C. (13.2.10)

Asymptotic series expansion. From (13.2.7) and the asymptotic ex-
pansion (12.6.10) for Γ(a, z) given in Section 12.6 we find [Hen77, p. 393]

√
πzez2

erfc(z) ≈ 1 +
∞∑

k=1

(−1)k 1 · 3 · 5 · · · (2k − 1)
(2z2)k

=
1√
π

∞∑
k=0

(−1)kΓ
(

k +
1
2

)
z−2k

= 2F0

(
1, 1/2;−z−2

)
, z →∞, | arg z| < 3π/4,

(13.2.11)
– – –
– – –
– – –

−i
√

πzw(z) ≈ 2F0

(
1, 1/2; z−2

)
, z →∞, | arg(−iz)| < 3π/4

(13.2.12)

where 2F0(a, b; z) is the confluent hypergeometric series defined in (16.1.12).

Stieltjes transforms. Based on (13.2.7) and the Stieltjes transform
(12.6.12) for Γ(a, z) we find

erfc(z) =
ze−z2

π

∫ ∞

0

e−t

√
t(z2 + t)

dt, �z > 0, (13.2.13)

w(z) =
−iz
π

∫ ∞

0

e−t

√
t(−z2 + t)

dt, �z > 0. (13.2.14)

The weight function

φ(t) =
e−t

√
t
, 0 < t < ∞, (13.2.15)
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is a solution to the Stieltjes moment problem for the sequence of moments
μk given by

μk =
∫ ∞

0

tk
e−t

√
t

dt

= Γ
(

k +
1
2

)
, k = 0, 1, 2, . . . . (13.2.16)

The integral representation (13.2.14) can also be written as

w(z) =
i
π

∫ ∞

−∞

e−t2

z + t
dt, �z > 0. (13.2.17)

The weight function

φ(t) = e−t2 , −∞ < t < ∞, (13.2.18)

is a solution to the Hamburger moment problem for the sequence of mo-
ments μk given by

μk =
∫ ∞

−∞
tke−t2 dt

which are known explicitly by

μ2j = Γ
(

j +
1
2

)
, μ2j+1 = 0, j ≥ 0. (13.2.19)

Using Stirling’s approximation (12.2.4) for Γ(z) we find

2j

√
μ2j ∼

√
j

e
, j →∞.

This implies that Carleman’s criterion (5.1.16b) is satisfied for the sequence
{μk}∞k=0 and hence the classical Hamburger moment problem for {μk}∞k=0

is determinate. Its unique solution is given by φ(t).

S-fractions. Based on (13.2.7) and the modified S-fraction representa-
tion for the complementary incomplete gamma function (12.6.15), we find
[Wal48, p. 356]

erfc(z) =
z√
π

e−z2
(

a1

z2 +
a2

1 +
a3

z2 +
a4

1 + . . .

)
, �z > 0,

(13.2.20a)
– – –
– – –
– – – AS

w(z) = − iz√
π

(
a1

−z2 +
a2

1 +
a3

−z2 +
a4

1 + . . .

)
, �z > 0,

(13.2.20b)

where the coefficients are given by

a1 = 1, am =
m− 1

2
, m ≥ 2. (13.2.20c)
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With am →∞, the modification

w̃n(z) = bn
−1 +

√
1 + 2nz−2

2
(13.2.21)

can be used, where for erfc(z) we have b2k−1 = z2 and b2k = 1 with k ≥ 1
and for w(z) we have b2k−1 = −z2 and b2k = 1 with k ≥ 1.

Example 13.2.1: For z = 1/√2, we find from (13.2.20) after an equivalence
transformation

erfc(1/√2) =

√
2
eπ

(
1
1 +

∞

K
m=1

(m

1

))
.

Padé approximants. The asymptotic expansion (13.2.11) for the com-
plementary error function allows us to obtain explicit formulas for the Padé
approximants of erfc(z) as a special case of (16.2.5). The Padé approxi-
mants rm,n(z2) at z = ∞ for

√
πzez2

erfc(z) are given by

rm,n(z2) =
Pm+n(2F0(1, 1/2;−z−2) 2F0(−m− 1/2,−n; z−2))

2F0(−m− 1/2,−n; z−2)
, m ≥ n−1.

(13.2.22)
When replacing z2 by −z2 in (13.2.22) we obtain the Padé approximants
rm,n(−z2) for the function i

√
πzw(z).

J-fractions. A real J-fraction representation for the complementary error
function can be obtained by an even contraction of (13.2.20a):

erfc(z) =
e−z2

√
π

(
2z

1 + 2z2 +

∞

K
m=2

(−(2m− 3)(2m− 2)
4m− 3 + 2z2

))
, �z > 0.

(13.2.23a)
– – –
– – –
– – –

For the complex error function it is obtained by an even contraction of
(13.2.20b):

w(z) =
1√
π

iz
z2 − 1

2
+

∞

K
m=2

(−(m− 3
2 )(m− 1)

2m− 3
2 − z2

)
, �z > 0. (13.2.23b)
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Table 13.2.1: Combined with property (13.2.5), the following tables give
the relative error of the 5th approximants and 5th partial sum in the right
half-plane. The continued fraction approximants of (13.2.20) are first eval-
uated without modification and next with the modification (13.2.21).

x erfc(x) (13.2.9) (13.2.20) (13.2.20) (13.2.23) (13.2.11)
0.01 9.887166e−01 1.7e−13 2.9e+01 4.6e−02 9.7e−01 1.7e+23

0.05 9.436280e−01 2.7e−09 5.4e+00 3.8e−02 8.2e−01 3.6e+15

0.25 7.236736e−01 4.7e−05 6.5e−01 1.4e−02 2.5e−01 8.9e+07

0.5 4.795001e−01 3.4e−03 1.5e−01 4.1e−03 4.2e−02 5.3e+04

0.75 2.888444e−01 4.2e−02 4.6e−02 1.3e−03 6.9e−03 6.9e+02

1 1.572992e−01 2.6e−01 1.5e−02 4.3e−04 1.2e−03 3.2e+01

1.5 3.389485e−02 3.3e+00 2.0e−03 5.6e−05 4.9e−05 4.1e−01

2 4.677735e−03 2.0e+01 3.4e−04 8.9e−06 2.6e−06 1.8e−02

2.5 4.069520e−04 8.2e+01 7.0e−05 1.7e−06 1.8e−07 1.5e−03

5 1.537460e−12 6.3e+03 2.2e−07 2.9e−09 5.9e−12 5.4e−07

10 2.088488e−45 4.6e+05 3.2e−10 1.4e−12 2.1e−17 1.5e−10

50 2.070921e−1088 8.1e+09 3.8e−17 7.6e−21 3.6e−31 6.6e−19

x | erfc(x + ix)|s (13.2.9) (13.2.20) (13.2.20) (13.2.23) (13.2.11)
0.01 9.887798e−01 1.3e−12 2.1e+01 4.6e−02 9.7e−01 3.7e+21

0.05 9.451669e−01 2.1e−08 3.8e+00 3.8e−02 8.4e−01 8.0e+13

0.25 7.564018e−01 3.8e−04 4.9e−01 1.3e−02 2.9e−01 2.0e+06

0.5 5.808450e−01 2.8e−02 1.2e−01 3.6e−03 3.6e−02 1.3e+03

0.75 −4.568231e−01 3.6e−01 3.3e−02 9.9e−04 4.8e−03 1.8e+01

1 −3.690856e−01 2.2e+00 8.5e−03 2.8e−04 6.5e−04 9.0e−01

1.5 2.597263e−01 3.0e+01 6.7e−04 2.3e−05 1.3e−05 1.2e−02

2 −1.977325e−01 1.9e+02 6.9e−05 2.2e−06 3.3e−07 4.8e−04

2.5 1.589711e−01 7.6e+02 9.6e−06 2.7e−07 1.1e−08 3.7e−05

5 7.976858e−02 5.7e+04 1.2e−08 1.1e−10 3.2e−14 1.0e−08

10 3.989360e−02 3.9e+06 1.2e−11 2.9e−14 3.4e−20 2.5e−12

50 7.978845e−03 6.6e+10 1.2e−18 1.2e−22 3.6e−34 1.0e−20
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x | erfc(1 + ix)|s (13.2.9) (13.2.20) (13.2.20) (13.2.23) (13.2.11)
0.01 1.573125e−01 2.6e−01 1.5e−02 4.3e−04 1.2e−03 3.2e+01

0.05 1.576311e−01 2.6e−01 1.5e−02 4.3e−04 1.2e−03 3.2e+01

0.25 1.658167e−01 3.1e−01 1.4e−02 4.2e−04 1.2e−03 2.3e+01

0.5 1.943285e−01 5.1e−01 1.3e−02 3.8e−04 1.1e−03 1.0e+01

0.75 −2.535415e−01 1.0e+00 1.1e−02 3.3e−04 8.6e−04 3.2e+00

1 −3.690856e−01 2.2e+00 8.5e−03 2.8e−04 6.5e−04 9.0e−01

1.5 −1.099560e+00 1.1e+01 4.2e−03 1.6e−04 2.9e−04 7.8e−02

2 5.277796e+00 4.3e+01 1.5e−03 7.1e−05 8.9e−05 9.0e−03

2.5 4.180092e+01 1.4e+02 4.2e−04 2.6e−05 1.9e−05 1.3e−03

5 2.985464e+09 8.3e+03 5.7e−07 1.9e−08 2.4e−10 6.7e−07

10 −5.578925e+41 5.3e+05 4.1e−10 2.4e−12 5.6e−17 1.6e−10

50 2.261337e+1083 8.3e+09 3.9e−17 7.7e−21 3.8e−31 6.7e−19

Table 13.2.2: Combined with property (13.2.5), the following tables give
the relative error of the 20th approximants and 20th partial sum in the
right half-plane. The continued fraction approximants of (13.2.20) are first
evaluated without modification and next with the modification (13.2.21).

x erfc(x) (13.2.9) (13.2.20) (13.2.20) (13.2.23) (13.2.11)
0.01 9.887166e−01 8.5e−50 9.5e−01 1.1e−02 9.2e−01 1.7e+99

0.05 9.436280e−01 4.2e−35 7.3e−01 7.1e−03 6.1e−01 4.0e+70

0.25 7.236736e−01 2.3e−20 1.1e−01 7.3e−04 3.0e−02 1.1e+42

0.5 4.795001e−01 5.7e−14 6.8e−03 4.6e−05 5.1e−04 6.1e+29

0.75 2.888444e−01 3.2e−10 4.6e−04 3.1e−06 9.3e−06 4.4e+22

1 1.572992e−01 1.5e−07 3.3e−05 2.3e−07 1.9e−07 3.8e+17

1.5 3.389485e−02 9.0e−04 2.2e−07 1.6e−09 9.8e−11 2.9e+10

2 4.677735e−03 4.3e−01 2.1e−09 1.6e−11 7.4e−14 2.5e+05

2.5 4.069520e−04 5.2e+01 2.8e−11 2.0e−13 7.9e−17 3.0e+01

5 1.537460e−12 1.4e+08 4.9e−19 3.0e−21 1.3e−29 1.5e−11

10 2.088488e−45 3.7e+14 3.4e−29 1.1e−31 7.2e−48 5.2e−24

50 2.070921e−1088 2.2e+29 2.3e−56 4.6e−60 6.5e−101 2.7e−53
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x | erfc(x + ix)|s (13.2.9) (13.2.20) (13.2.20) (13.2.23) (13.2.11)
0.01 9.887798e−01 1.2e−46 9.5e−01 1.1e−02 9.2e−01 1.2e+93

0.05 9.451669e−01 6.0e−32 7.7e−01 7.0e−03 6.7e−01 2.7e+64

0.25 7.564018e−01 3.4e−17 1.1e−01 7.0e−04 2.9e−02 7.4e+35

0.5 5.808450e−01 8.6e−11 5.8e−03 3.9e−05 4.3e−04 4.4e+23

0.75 −4.568231e−01 5.1e−07 3.1e−04 2.2e−06 6.2e−06 3.4e+16

1 −3.690856e−01 2.5e−04 1.6e−05 1.2e−07 8.9e−08 3.1e+11

1.5 2.597263e−01 1.5e+00 4.9e−08 3.9e−10 1.9e−11 2.6e+04

2 −1.977325e−01 7.5e+02 1.7e−10 1.4e−12 4.2e−15 2.5e−01

2.5 1.589711e−01 9.1e+04 7.3e−13 6.4e−15 1.1e−18 3.0e−05

5 7.976858e−02 2.5e+11 1.1e−22 8.1e−25 8.1e−35 1.2e−17

10 3.989360e−02 6.0e+17 2.1e−34 5.1e−37 4.5e−57 3.0e−30

50 7.978845e−03 3.3e+32 2.4e−62 2.4e−66 8.2e−113 1.3e−59

x | erfc(1 + ix)|s (13.2.9) (13.2.20) (13.2.20) (13.2.23) (13.2.11)
0.01 1.573125e−01 1.5e−07 3.3e−05 2.3e−07 1.9e−07 3.8e+17

0.05 1.576311e−01 1.6e−07 3.3e−05 2.3e−07 1.9e−07 3.6e+17

0.25 1.658167e−01 2.9e−07 3.2e−05 2.2e−07 1.8e−07 1.1e+17

0.5 1.943285e−01 1.6e−06 2.8e−05 2.0e−07 1.6e−07 4.1e+15

0.75 −2.535415e−01 1.8e−05 2.2e−05 1.6e−07 1.2e−07 4.5e+13

1 −3.690856e−01 2.5e−04 1.6e−05 1.2e−07 8.9e−08 3.1e+11

1.5 −1.099560e+00 4.6e−02 6.7e−06 5.1e−08 3.4e−08 1.8e+07

2 5.277796e+00 4.9e+00 1.9e−06 1.5e−08 8.7e−09 3.5e+03

2.5 4.180092e+01 2.8e+02 3.4e−07 3.0e−09 1.4e−09 2.3e+00

5 2.985464e+09 2.7e+08 1.8e−13 4.2e−15 2.0e−16 2.6e−11

10 −5.578925e+41 5.0e+14 1.8e−27 1.7e−29 1.3e−40 6.4e−24

50 2.261337e+1083 2.3e+29 2.8e−56 5.6e−60 1.2e−100 2.8e−53
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Figure 13.2.1: Number of significant digits (between 0 and 12) guaranteed
by the nth classical approximant of (13.2.20) (from light to dark n = 5, 6, 7)
and the 5th modified approximant with w5(z) given by (13.2.21) (darkest).
On the horizontal axis we have z real, 0 ≤ z ≤ 12.

13.3 Repeated integrals

Definition and elementary properties. The repeated integrals of the
complementary error function are defined recursively as follows

I−1 erfc(z) :=
2√
π

e−z2
, (13.3.1a)

I0 erfc(z) := erfc(z), (13.3.1b)

Ik erfc(z) :=
∫ ∞

z

Ik−1 erfc(t) dt, k = 1, 2, . . . . (13.3.1c)

An explicit formula for Ik erfc(z) for k ≥ 1 is

Ik erfc(z) =
2

k!
√

π

∫ ∞

z

(t− z)ke−t2 dt, z ∈ C.

Asymptotic series expansion. We have [AS64, p. 300]

Ik erfc(z) ≈ 2√
π

e−z2

(2z)k+1

∞∑
m=0

(−1)m(2m + k)!
k! m! (2z)2m

,

z →∞, | arg z| < 3π/4. (13.3.2)
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S-fraction. The sequence

ez2
Ik erfc(z), k = −1, 0, 1, 2, . . . , (13.3.3)

is a minimal solution of the system of three-term recurrence relations
[Gau67]

yk = − z

k
yk−1 +

1
2k

yk−2, k = 1, 2, . . . . (13.3.4)

Hence by Pincherle’s Theorem 3.6.1 we obtain the modified S-fraction

Ik erfc(z)
Ik−1 erfc(z)

=
∞

K
m=1

(
a
(k)
m

z

)
, �z > 0, k ≥ 0, (13.3.5a)

where the coefficients are given by

a
(k)
1 =

1
2
, a(k)

m =
k + m− 1

2
, m ≥ 2, k ≥ 0. (13.3.5b)

13.4 Fresnel integrals

Definitions and elementary properties. The Fresnel cosine and sine
integral functions are defined by

C(z) :=
∫ z

0

cos
(π

2
t2
)

dt, z ∈ C, (13.4.1a)

S(z) :=
∫ z

0

sin
(π

2
t2
)

dt, z ∈ C, (13.4.1b)

where the path of integration is the straight line segment from 0 to z.
We have the symmetry properties

C(−z) = −C(z), S(−z) = −S(z), (13.4.2a)

C(iz) = iC(z), S(iz) = −iS(z), (13.4.2b)

C(z̄) = C(z), S(z̄) = S(z). (13.4.2c)

Also
lim

x→+∞C(x) = lim
x→+∞S(x) =

1
2
. (13.4.3)

The Fresnel integral functions C(z) and S(z) are related to the error func-
tion by

C(z) + iS(z) =
1 + i

2
erf
(√

π

2
(1− i)z

)
, (13.4.4)

C(z)− iS(z) =
1− i

2
erf
(√

π

2
(1 + i)z

)
. (13.4.5)
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The relationship with the error function, in particular the connection be-
tween the series representations (13.1.8) and (13.4.8), is crucial in deriving
all the representations for C(z) + iS(z) given in this section. Likewise rep-
resentations for C(z)− iS(z) can be derived and hence the Fresnel integral
functions can also be represented as sums of continued fractions [LS62].

Series expansions. We have

C(z) =
∞∑

k=0

(−1)k(π/2)2k

(2k)! (4k + 1)
z4k+1, z ∈ C, (13.4.6a)

– – –
– – –
– – –

S(z) =
∞∑

k=0

(−1)k(π/2)2k+1

(2k + 1)! (4k + 3)
z4k+3, z ∈ C, (13.4.6b)

– – –
– – –
– – –

and

C(z) + iS(z) = z 1F1

(
1
2
;
3
2
; i

π

2
z2

)
, (13.4.7)

or alternatively

C(z) + iS(z) = zeiπz2/2
1F1

(
1;

3
2
;−i

π

2
z2

)
. (13.4.8)

C-fractions. From (13.1.11) we obtain the modified regular C-fraction

C(z) + iS(z) =
eiπz2/2

z

∞

K
m=1

(
cmz2

1

)
, z ∈ C, (13.4.9a)

– – –
– – –
– – –

where

c1 = 1, c2k =
iπ(2k − 1)

(4k − 3)(4k − 1)
, k ≥ 1,

c2k+1 =
−iπ2k

(4k − 1)(4k + 1)
, k ≥ 1.

(13.4.9b)

T-fractions. From (13.1.13) we find

C(z) + iS(z) =
eiz2π/2

z

∞

K
m=1

(
Fmz2

1 + Gmz2

)
, z ∈ C, (13.4.10a)

– – –
– – –
– – –

where

F1 = 1, Fm =
−2iπ(m− 1)

(2m− 3)(2m− 1)
, m ≥ 2,

Gm =
iπ

2m− 1
, m ≥ 1. (13.4.10b)



13.4 FRESNEL INTEGRALS 271

Table 13.4.1: Because of the symmetry properties (13.4.2) it is sufficient
to study the approximations in the first quadrant of the complex plane
(excluding the imaginary axis). The following tables give the relative error
of the 5th partial sum and 5th approximants.

x C(x) (13.4.6) (13.4.9) (13.4.10)
0.05 4.999992e−02 1.1e−39 1.3e−19 4.7e−17

0.1 9.999753e−02 1.9e−32 5.5e−16 1.9e−13

0.2 1.999211e−01 3.2e−25 2.3e−12 8.0e−10

0.5 4.923442e−01 1.1e−15 1.4e−07 4.7e−05

1 7.798934e−01 2.4e−08 6.5e−04 1.4e−01

2 4.882534e−01 1.1e+00 2.4e+00 1.0e+00

4 4.984260e−01 8.9e+06 2.6e+00 1.0e+00

x |C(x + ix)|s (13.4.6) (13.4.9) (13.4.10)
0.05 7.071111e−02 4.6e−36 7.1e−01 7.1e−01

0.1 1.414353e−01 7.7e−29 7.1e−01 7.1e−01

0.2 2.832897e−01 1.3e−21 7.1e−01 7.1e−01

0.5 7.519882e−01 4.3e−12 7.3e−01 7.3e−01

1 3.614438e+00 3.2e−05 9.3e−01 1.0e+00

2 1.687705e+04 5.4e−01 1.0e+00 1.0e+00

4 1.921763e+20 1.0e+00 1.0e+00 1.0e+00

Table 13.4.2: Because of the symmetry properties (13.4.2) it is sufficient
to study the approximations in the first quadrant of the complex plane
(excluding the imaginary axis). The following tables give the relative error
of the 20th partial sum and 20th approximants.

x C(x) (13.4.6) (13.4.9) (13.4.10)
0.05 4.999992e−02 7.5e−155 4.6e−73 4.9e−67

0.1 9.999753e−02 1.4e−129 5.1e−61 5.3e−55

0.2 1.999211e−01 2.8e−104 5.6e−49 5.9e−43

0.5 4.923442e−01 7.6e−71 4.7e−33 4.6e−27

1 7.798934e−01 1.9e−45 6.3e−21 2.5e−17

2 4.882534e−01 1.1e−19 1.4e−08 2.4e−02

4 4.984260e−01 3.3e+06 1.6e+00 1.0e+00
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x |C(x + ix)|s (13.4.6) (13.4.9) (13.4.10)
0.05 7.071111e−02 3.3e−142 7.1e−01 7.1e−01

0.1 1.414353e−01 6.4e−117 7.1e−01 7.1e−01

0.2 2.832897e−01 1.2e−91 7.1e−01 7.1e−01

0.5 7.519882e−01 3.1e−58 7.3e−01 7.3e−01

1 3.614438e+00 2.5e−33 9.1e−01 9.1e−01

2 1.687705e+04 2.2e−11 1.0e+00 1.0e+00

4 1.921763e+20 8.8e−01 1.0e+00 1.0e+00

Table 13.4.3: Because of the symmetry properties (13.4.2) it is sufficient
to study the approximations in the first quadrant of the complex plane
(excluding the imaginary axis). The following tables give the relative error
of the 5th partial sum and 5th approximants.

x S(x) (13.4.6) (13.4.9) (13.4.10)
0.05 6.544977e−05 2.4e−40 2.8e−13 8.9e−12

0.1 5.235895e−04 4.0e−33 7.1e−11 2.3e−09

0.2 4.187609e−03 6.8e−26 1.8e−08 5.8e−07

0.5 6.473243e−02 2.4e−16 2.8e−05 8.3e−04

1 4.382591e−01 4.8e−09 7.4e−03 1.8e−02

2 3.434157e−01 7.0e−01 7.6e−01 1.5e+00

4 4.205158e−01 2.1e+07 1.6e+00 1.2e+00

x |S(x + ix)|s (13.4.6) (13.4.9) (13.4.10)
0.05 −1.851209e−04 9.8e−37 2.7e+02 2.7e+02

0.1 −1.481065e−03 1.6e−29 6.8e+01 6.8e+01

0.2 −1.186106e−02 2.8e−22 1.7e+01 1.7e+01

0.5 −1.934385e−01 9.4e−13 2.8e+00 2.9e+00

1 −2.915950e+00 8.7e−06 1.1e+00 1.0e+00

2 −1.687634e+04 4.3e−01 1.0e+00 1.0e+00

4 −1.921763e+20 1.0e+00 1.0e+00 1.0e+00
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Table 13.4.4: Because of the symmetry properties (13.4.2) it is sufficient
to study the approximations in the first quadrant of the complex plane
(excluding the imaginary axis). The following tables give the relative error
of the 20th partial sum and 20th approximants.

x S(x) (13.4.6) (13.4.9) (13.4.10)
0.05 6.544977e−05 5.1e−156 3.4e−74 1.5e−66

0.1 5.235895e−04 9.9e−131 3.7e−62 1.6e−54

0.2 4.187609e−03 1.9e−105 4.1e−50 1.8e−42

0.5 6.473243e−02 5.1e−72 3.4e−34 1.4e−26

1 4.382591e−01 1.2e−46 4.3e−22 1.2e−14

2 3.434157e−01 2.3e−20 3.1e−09 1.9e−06

4 4.205158e−01 2.2e+06 2.2e+00 1.2e+00

x |S(x + ix)|s (13.4.6) (13.4.9) (13.4.10)
0.05 −1.851209e−04 2.2e−143 2.7e+02 2.7e+02

0.1 −1.481065e−03 4.3e−118 6.8e+01 6.8e+01

0.2 −1.186106e−02 8.4e−93 1.7e+01 1.7e+01

0.5 −1.934385e−01 2.1e−59 2.8e+00 2.8e+00

1 −2.915950e+00 2.2e−34 1.1e+00 1.1e+00

2 −1.687634e+04 6.4e−12 1.0e+00 1.0e+00

4 −1.921763e+20 8.5e−01 1.0e+00 1.0e+00



14
Exponential integrals and

related functions

The exponential integrals En(z) and Ei(z), and the logarithmic, sine and
cosine integral form another family of special hypergeometric functions.
They are closely related to the complementary incomplete gamma functions
Γ(1−n, z) and Γ(0, z) and hence to the confluent hypergeometric functions.
The analytic continuation Eν(z) for complex ν is an entire function of ν
for fixed z.

14.1 Exponential integrals

Definitions and representations. The exponential integrals En(z) are
defined by

En(z) :=
∫ ∞

1

e−zt

tn
dt, �z > 0, n ∈ N. (14.1.1)

Analytic continuation of En(z) to the cut plane | arg z| < π extends the
definition and yields a single-valued function. The functions En(z) are re-
lated to the complementary incomplete gamma function Γ(a, z) introduced
in (12.6.4) by

En(z) = zn−1Γ(1− n, z), | arg z| < π, n ∈ N, (14.1.2)

= zn−1

∫ ∞

z

e−t

tn
dt. (14.1.3)

The relationship with the complementary incomplete gamma function is
crucial in deriving all representations for the exponential integrals and
related functions. Since Γ(a, z) is defined for all a ∈ C, the exponential
integrals En(z) can be continued analytically by

Eν(z) = zν−1Γ(1− ν, z), | arg z| < π, ν ∈ C. (14.1.4)

275
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Combining (12.6.27) and (14.1.4) gives

Eν(z) = zν−1Γ(1− ν)− zν−1γ(1− ν, z), z ∈ C\{0}, ν ∈ C\N.
(14.1.5)

Here γ(1−ν, z) denotes the analytic continuation of the incomplete gamma
function to ν ∈ C\N for z ∈ C\{0}. For (14.1.1) and the analytic continu-
ation (14.1.4) we have

En(z̄) = En(z), n ∈ N, (14.1.6)

Eν̄(z̄) = Eν(z), ν ∈ C. (14.1.7)

Recurrence relations. The functions En(z) satisfy the recurrence rela-
tion

En+1(z) =
e−z

n
− z

n
En(z), n ∈ N, (14.1.8)

and the relation

En(z) = e−z
r−1∑
k=0

(−1)k(n)k

zk+1
+

(−1)r(n)r

zr
En+r(z), n ∈ N, r ∈ N,

(14.1.9)
where (n)r denotes the Pochhammer symbol introduced in (12.1.7).

Series expansions. The exponential integrals have the series expansion

E1(z) = −γ − Ln(z)−
∞∑

k=1

(−1)kzk

(k!)k
, | arg z| < π, (14.1.10)

– – –
– – –
– – –

En(z) =
(−1)n−1zn−1

(n− 1)!

(
−γ − Ln(z) +

n−1∑
k=1

1
k

)
−

∞∑
k=0

k �=n−1

(−1)kzk

k! (k − n + 1)
,

| arg z| < π, n ∈ N, (14.1.11)
– – –
– – –
– – –

where γ is Euler’s constant (10.8.1). From (14.1.5) and the series repre-
sentation (12.6.7) for γ(a, z) we find

Eν(z) = Γ(1− ν)zν−1 −
∞∑

k=0

(−1)kzk

(1− ν + k)k!
, z ∈ C \ {0}, ν ∈ C \ N.

(14.1.12)
– – –
– – –
– – –

Asymptotic series expansion. From the relation (14.1.4) and the as-
ymptotic expansion (12.6.10) we find an asymptotic representation for
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Eν(z):

Eν(z) ≈ e−zz−1
∞∑

k=0

(−1)k(ν)kz−k, z →∞, | arg z| < π, ν ∈ C,

= z−1e−z
2F0(1, ν;−z−1) (14.1.13)

– – –
– – –
– – –

where 2F0(a, b; z) is the confluent hypergeometric series (16.1.12).

Stieltjes transform. From (12.6.12) we obtain the Stieltjes transform
[Hen77, p. 622]

ezEn(z) =
∫ ∞

0

φn(t)
z + t

dt, | arg z| < π, n ∈ N, (14.1.14a)

where the weight function φn(t) is given by

φn(t) =
e−ttn−1

(n− 1)!
, 0 < t < ∞, n ∈ N. (14.1.14b)

The weight function (14.1.14b) is the solution to the Stieltjes moment
problem for the sequence of moments μk(n) given by

μk(n) =
1

(n− 1)!

∫ ∞

0

e−ttk+n−1 dt =
(k + n− 1)!

(n− 1)!
= (n)k,

k ∈ N0, n ∈ N. (14.1.15)

The formulas (14.1.14) and (14.1.15) also hold when n ∈ R+.

S-fractions. Based on the S-fraction representation for the incomplete
gamma function (12.6.15), we get the modified S-fraction representation
[Sti95, p. 721]

ezEn(z) =
1
z +

n

1 +
1
z +

n + 1
1 +

2
z +

n + 2
1 + . . .

,

| arg z| < π, n ∈ N,

=
1/z

1 +

∞

K
m=2

(
am/z

1

)
, | arg z| < π, n ∈ N,

a2j = j + n− 1, a2j+1 = j, j ≥ 1. (14.1.16)
– – –
– – –
– – – AS

Since limm→∞ am = +∞, the modification

w2k(z) =
−1 +

√
4kz−1 + 1
2

, w2k+1(z) =
−1 +

√
4(n + k)z−1 + 1

2
(14.1.17)
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can be useful in the evaluation of the approximants of (14.1.16). In the
Tables 14.1.3 and 14.1.4 the approximants of (14.1.16) are first evaluated
without modification and afterwards with the use of (14.1.17).
Combining (14.1.9) and (14.1.16) yields

ezEn(z) = z−1
r−1∑
k=0

(−1)k(n)kz−k

+ (−1)r(n)rz
−r

(
1
z +

n + r

1 +
1
z +

n + r + 1
1 +

2
z + . . .

)
,

| arg z| < π, n ∈ N, r ∈ N. (14.1.18)

The continued fraction representations (14.1.16) and (14.1.18) also hold
when n ∈ R+.

C-fractions. From (14.1.4) and the C-fraction representation (12.6.17)
for Γ(a, z) we obtain [Gau13; Wal48, p. 348]

Eν(z) = e−z
∞

K
m=1

(
am(ν)z−1

1

)
, | arg z| < π, ν ∈ C, (14.1.19a)

– – –
– – –
– – –

where the coefficients are given by

a1(ν) = 1, a2j(ν) = j + ν − 1, a2j+1(ν) = j, j ∈ N. (14.1.19b)

The same modification (14.1.17) applies with n replaced by ν.
Regular C-fractions can also be obtained for Eν(z) by substituting the
C-fraction (12.6.23) for the incomplete gamma function into (14.1.5). An
additional equivalence transformation leads to

Eν(z) = zν−1Γ(1−ν)−e−zz−1
∞

K
k=1

(
ak(ν)z
k − ν

)
, z ∈ C\{0}, ν ∈ C\N,

(14.1.20a)
– – –
– – –
– – –

where

a1(ν) = 1, a2j(ν) = ν − j, a2j+1(ν) = j, j ∈ N. (14.1.20b)

In a similar way as for the complementary incomplete gamma function,
other regular C-fraction representations can be obtained by setting a =
1− ν in (12.6.21), (12.6.22), (12.6.25) and (12.6.26).

Padé approximants. By replacing a by 1 − ν in (12.6.28) we obtain
explicit formulas for the Padé approximants of ezEν(z) at z = ∞:

rm+1,n(z) =
z−1Pm+n(2F0(ν, 1;−z−1) 2F0(−ν −m,−n; z−1))

2F0(−ν −m,−n; z−1)
,

m + 1 ≥ n. (14.1.21)
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The operator Pk is defined in (15.4.1). We recall that the (2n)th approxi-
mant of the continued fraction in (14.1.19) equals rn,n(z) and its (2n+1)th

approximant equals rn+1,n(z).

M-fractions. Using (14.1.5), we obtain M-fractions for Eν(z) in the same
way as C-fractions are obtained. From (12.6.30) we find

Eν(z) = zν−1Γ(1− ν)− e−z

(
1

1− ν − z +

∞

K
m=2

(
(m− 1)z
m− ν − z

))
,

z ∈ C\{0}, ν ∈ C \ N. (14.1.22)
– – –
– – –
– – –

As for the regular C-fractions, other M-fraction representations can be
obtained by setting a = 1− ν in (12.6.32) and (12.6.33).

J-fractions. A J-fraction representation can be obtained by taking the
even part of the C-fraction (14.1.19), or equivalently, by using the rela-
tion (14.1.2) and the J-fraction representation for the incomplete gamma
function (12.6.34). It is given by [Gau73]

ezEν(z) =
1

ν + z +

∞

K
m=2

(
(1−m)(ν + m− 2)

ν + 2m− 2 + z

)
,

| arg z| < π, ν ∈ C. (14.1.23)
– – –
– – –
– – –

Another J-fraction representation can be obtained by taking the odd part
of the C-fraction (14.1.19). The resulting J-fraction is a special case of
(12.6.35) and is given by [Gau73]

ezEν(z) =
1
z

(
1− ν

ν + 1 + z +

∞

K
m=2

(
(1−m)(ν + m− 1)

ν + 2m− 1 + z

))
,

| arg z| < π, ν ∈ C. (14.1.24)

For n ∈ R+ the fractions (14.1.23) and (14.1.24) are real J-fractions.
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Table 14.1.1: Together with the symmetry property (14.1.6) the following
tables let us investigate the relative error of the 5th partial sum and the 5th

approximants throughout the cut complex plane for n = 3. The fraction
(14.1.16) is first evaluated without modification and afterwards with.

x En(x) (14.1.11) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
0.1 4.162915e−01 9.8e−14 1.8e+00 2.5e−01 2.9e−02 5.4e+09

0.5 2.216044e−01 7.0e−08 2.5e−01 4.3e−02 7.4e−03 4.1e+05

1 1.096920e−01 3.4e−05 8.2e−02 1.4e−02 2.1e−03 7.4e+03

2.5 1.629537e−02 3.1e−01 1.2e−02 1.8e−03 1.5e−04 3.9e+01

5 8.778009e−04 1.2e+03 1.9e−03 2.3e−04 7.8e−06 7.4e−01

15 1.714014e−08 2.5e+11 4.2e−05 3.1e−06 1.1e−08 1.3e−03

50 3.642909e−24 7.2e+30 2.4e−07 7.7e−09 7.5e−13 1.2e−06

x |En(x + ix)|s (14.1.11) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
0.1 4.136467e−01 1.6e−12 1.3e+00 2.0e−01 2.8e−02 6.8e+08

0.5 2.131214e−01 1.2e−06 1.7e−01 3.1e−02 6.0e−03 5.3e+04

1 1.020957e−01 5.9e−04 5.3e−02 9.2e−03 1.4e−03 9.9e+02

2.5 −1.423028e−02 5.6e+00 6.7e−03 9.6e−04 6.9e−05 5.4e+00

5 7.242069e−04 2.3e+04 8.4e−04 9.5e−05 2.3e−06 1.0e−01

15 −1.307015e−08 4.4e+12 1.3e−05 7.9e−07 1.4e−09 1.8e−04

50 2.647205e−24 1.2e+32 5.3e−08 1.3e−09 4.4e−14 1.5e−07

x |En(ix)|s (14.1.11) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
0.1 4.925981e−01 8.4e−14 2.0e+00 3.2e−01 4.2e−02 5.1e+09

0.5 4.396266e−01 3.7e−08 3.8e−01 8.1e−02 2.3e−02 3.7e+05

1 3.789634e−01 1.1e−05 1.6e−01 3.4e−02 1.1e−02 6.6e+03

2.5 −2.607690e−01 2.4e−02 3.6e−02 6.5e−03 1.4e−03 3.7e+01

5 1.667005e−01 8.8e+00 6.3e−03 9.5e−04 9.9e−05 7.8e−01

15 −6.468238e−02 9.2e+04 1.1e−04 1.0e−05 1.1e−07 1.5e−03

50 1.994070e−02 1.5e+09 3.7e−07 1.4e−08 2.5e−12 1.3e−06
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x |En(x− ix)|s (14.1.11) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
−0.1 5.909108e−01 1.1e−12 1.6e+00 3.4e−01 6.6e−02 6.0e+08

−0.5 9.012207e−01 3.0e−07 4.5e−01 1.3e−01 9.1e−02 4.0e+04

−1 −1.328200e+00 5.5e−05 2.8e−01 7.5e−02 6.5e−02 7.4e+02

−2.5 −3.834542e+00 3.3e−02 9.1e−02 1.8e−02 1.2e−02 5.2e+00

−5 2.543372e+01 1.5e+00 1.2e−02 2.2e−03 7.0e−04 1.4e−01

−15 −1.697030e+05 1.6e+00 5.8e−05 7.1e−06 1.1e−07 2.6e−04

−50 −7.555020e+19 1.0e+00 8.7e−08 2.8e−09 2.1e−13 1.7e−07

Table 14.1.2: Together with the symmetry property (14.1.6) the following
tables let us investigate the relative error of the 20th partial sum and the
20th approximants throughout the cut complex plane for n = 3. The
fraction (14.1.16) is first evaluated without modification and afterwards
with.

x En(x) (14.1.11) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
0.1 4.162915e−01 4.4e−47 5.9e−03 7.0e−03 7.7e−04 1.2e+42

0.5 2.216044e−01 9.7e−31 5.2e−04 2.3e−04 1.3e−05 3.2e+27

1 1.096920e−01 1.6e−23 6.1e−05 1.8e−05 3.7e−07 1.8e+21

2.5 1.629537e−02 1.5e−13 6.9e−07 1.2e−07 2.5e−10 1.1e+13

5 8.778009e−04 2.1e−05 4.5e−09 5.8e−10 7.0e−14 7.4e+06

15 1.714014e−08 7.5e+10 4.8e−14 3.6e−15 3.8e−22 1.2e−03

50 3.642909e−24 2.0e+38 1.2e−21 4.6e−23 2.0e−35 1.9e−14

x |En(x + ix)|s (14.1.11) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
0.1 4.136467e−01 1.3e−43 5.4e−03 5.2e−03 6.6e−04 8.5e+38

0.5 2.131214e−01 2.9e−27 3.6e−04 1.2e−04 6.3e−06 2.3e+24

1 1.020957e−01 5.0e−20 3.1e−05 7.3e−06 1.2e−07 1.3e+18

2.5 −1.423028e−02 4.8e−10 1.9e−07 2.8e−08 3.1e−11 8.8e+09

5 7.242069e−04 7.2e−02 6.2e−10 6.7e−11 3.1e−15 6.1e+03

15 −1.307015e−08 2.7e+14 1.5e−15 9.9e−17 1.6e−24 1.0e−06

50 2.647205e−24 6.5e+41 7.1e−24 2.2e−25 2.8e−39 1.5e−17
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x |En(ix)|s (14.1.11) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
0.1 4.925981e−01 3.7e−47 1.2e−02 1.4e−02 2.5e−03 1.1e+42

0.5 4.396266e−01 5.0e−31 3.6e−03 1.4e−03 2.5e−04 2.7e+27

1 3.789634e−01 4.9e−24 8.7e−04 2.3e−04 2.3e−05 1.5e+21

2.5 −2.607690e−01 1.0e−14 2.9e−05 4.8e−06 9.9e−08 9.4e+12

5 1.667005e−01 1.3e−07 4.0e−07 4.9e−08 1.3e−10 6.9e+06

15 −6.468238e−02 2.8e+04 6.1e−12 5.0e−13 4.3e−18 1.4e−03

50 1.994070e−02 4.9e+16 3.2e−20 1.5e−21 7.2e−32 2.4e−14

x |En(x− ix)|s (14.1.11) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
−0.1 5.909108e−01 9.1e−44 2.6e−02 2.5e−02 1.0e−02 7.3e+38

−0.5 9.012207e−01 7.2e−28 3.0e−02 8.2e−03 5.4e−03 1.5e+24

−1 −1.328200e+00 4.2e−21 1.3e−02 2.5e−03 1.2e−03 8.3e+17

−2.5 −3.834542e+00 2.2e−12 9.0e−04 1.2e−04 2.2e−05 6.1e+09

−5 2.543372e+01 3.0e−06 1.6e−05 1.7e−06 7.8e−08 5.9e+03

−15 −1.697030e+05 5.2e+01 4.2e−11 3.7e−12 1.6e−15 1.9e−06

−50 −7.555020e+19 9.7e−01 9.9e−22 5.4e−23 1.1e−32 2.3e−17

Figure 14.1.1: Number of significant digits (between 0 and 12) guaranteed
by the 5th partial sum of (14.1.11) (lightest), the 5th partial sum of (14.1.13)
(second lightest), the 5th approximant of (14.1.16) (second darkest) and the
5th approximant of (14.1.23) (darkest) of E3(x), in the region 1 ≤ x ≤ 25.
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Table 14.1.3: Together with the symmetry property (14.1.7) the following
tables let us investigate the relative error of the 5th partial sum and the
5th approximants for Eν(z) with z = 9 and ν ∈ C \ N.

x |Ex+ix(9)|s (14.1.12) (14.1.19) (14.1.19) (14.1.20) (14.1.22)
0.5 1.303847e−05 4.0e+06 2.6e−05 1.0e−06 2.9e+04 2.9e+04

1.5 1.180128e−05 5.1e+06 1.6e−04 1.4e−05 3.8e+04 3.8e+04

5.5 8.206623e−06 6.8e+06 1.4e−03 2.9e−04 1.2e+02 1.2e+02

20 3.577491e−06 3.6e+06 2.9e−03 7.5e−04 6.8e−06 5.2e−09

40 1.974316e−06 3.0e+06 2.4e−03 5.5e−04 5.8e−08 1.1e−11

60 1.360663e−06 2.8e+06 1.9e−03 3.9e−04 3.5e−09 2.3e−13

x |Eix(9)|s (14.1.12) (14.1.19) (14.1.19) (14.1.20) (14.1.22)
0.5 1.369754e−05 3.5e+06 1.2e−05 8.4e−07 6.7e+03 6.7e+03

1.5 1.358139e−05 3.4e+06 7.1e−05 8.2e−06 2.4e+03 2.4e+03

5.5 1.214787e−05 3.0e+06 1.5e−03 4.1e−04 9.3e+00 9.5e+00

20 5.815821e−06 2.5e+06 7.2e−03 2.5e−03 1.0e−04 9.1e−07

40 3.040867e−06 2.5e+06 5.0e−03 1.5e−03 7.4e−07 7.2e−10

60 2.043685e−06 2.5e+06 3.5e−03 9.2e−04 4.3e−08 1.2e−11

x |Ex−ix(9)|s (14.1.12) (14.1.19) (14.1.19) (14.1.20) (14.1.22)
−0.5 1.442067e−05 3.1e+06 1.0e−05 1.1e−06 2.0e+03 2.0e+03

−1.5 1.592640e−05 2.4e+06 9.0e−05 2.2e−05 2.1e+02 2.1e+02

−5.5 2.135553e−05 1.1e+06 1.7e−02 1.3e−02 2.2e−01 6.4e−01

−20 5.279119e−06 1.8e+06 7.9e−01 7.8e−01 9.9e−06 9.1e−08

−40 −1.735177e+01 2.9e−01 1.0e+00 1.0e+00 9.7e−15 5.9e−18

−60 −2.246944e+12 1.5e−12 1.0e+00 1.0e+00 2.7e−27 4.0e−31

x Ex(9) (14.1.12) (14.1.19) (14.1.19) (14.1.20) (14.1.22)
−0.5 1.443728e−05 3.1e+06 4.7e−06 4.8e−07 2.3e+03 2.3e+03

−1.5 1.611841e−05 2.4e+06 6.6e−06 1.5e−06 3.3e+02 3.4e+02

−5.5 2.844313e−05 9.1e+05 7.2e−03 1.7e−02 1.9e+00 7.3e+00

−20 2.222497e−02 5.2e+02 1.0e+00 1.0e+00 5.1e−08 3.0e−09

−40 6.133413e+08 1.1e−08 1.0e+00 1.0e+00 5.2e−21 1.5e−23

−60 5.144957e+23 9.0e−24 1.0e+00 1.0e+00 2.2e−37 1.3e−40
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Table 14.1.4: Together with the symmetry property (14.1.7) the following
tables let us investigate the relative error of the 20th partial sum and the
20th approximants for Eν(z) with z = 9 and ν ∈ C \ N.

x |Ex+ix(9)|s (14.1.12) (14.1.19) (14.1.19) (14.1.20) (14.1.22)
0.5 1.303847e−05 5.5e+03 7.4e−13 1.3e−14 2.3e+00 2.9e+04

1.5 1.180128e−05 6.3e+03 7.9e−12 5.2e−13 2.3e+01 3.8e+04

5.5 8.206623e−06 1.1e+04 1.8e−10 5.2e−11 5.4e+01 1.2e+02

20 3.577491e−06 2.1e+04 4.0e−11 5.6e−11 4.2e−16 7.8e−17

40 1.974316e−06 1.7e+04 6.4e−13 2.1e−12 1.6e−26 7.1e−33

60 1.360663e−06 1.6e+04 2.9e−14 1.5e−13 3.4e−32 4.3e−40

x |Eix(9)|s (14.1.12) (14.1.19) (14.1.19) (14.1.20) (14.1.22)
0.5 1.369754e−05 5.1e+03 2.6e−13 4.9e−15 2.0e−01 6.7e+03

1.5 1.358139e−05 5.1e+03 2.0e−12 9.7e−14 6.8e−02 2.4e+03

5.5 1.214787e−05 5.6e+03 3.2e−10 5.8e−11 1.7e−04 9.6e+00

20 5.815821e−06 8.8e+03 2.2e−08 2.0e−08 2.7e−14 2.6e−13

40 3.040867e−06 1.1e+04 2.0e−10 4.9e−10 4.2e−23 1.6e−26

60 2.043685e−06 1.2e+04 4.8e−12 1.8e−11 2.1e−28 5.2e−34

x |Ex−ix(9)|s (14.1.12) (14.1.19) (14.1.19) (14.1.20) (14.1.22)
−0.5 1.442067e−05 4.7e+03 1.5e−13 4.4e−15 2.2e−02 2.0e+03

−1.5 1.592640e−05 4.1e+03 9.2e−13 6.7e−14 3.1e−04 1.9e+02

−5.5 2.135553e−05 2.6e+03 2.4e−08 5.3e−09 5.9e−10 3.5e−06

−20 5.279119e−06 6.2e+03 7.7e−01 7.7e−01 6.1e−21 1.4e−22

−40 −1.735177e+01 1.2e−03 1.0e+00 1.0e+00 1.2e−35 1.0e−40

−60 −2.246944e+12 6.6e−15 1.0e+00 1.0e+00 7.5e−52 7.2e−59

x Ex(9) (14.1.12) (14.1.19) (14.1.19) (14.1.20) (14.1.22)
−0.5 1.443728e−05 4.7e+03 6.7e−14 1.7e−15 2.5e−02 2.3e+03

−1.5 1.611841e−05 4.0e+03 3.3e−14 1.8e−15 5.3e−04 3.2e+02

−5.5 2.844313e−05 2.0e+03 4.8e−13 7.6e−14 4.7e−09 1.2e−04

−20 2.222497e−02 1.6e+00 1.0e+00 1.0e+00 8.7e−22 4.7e−22

−40 6.133413e+08 4.0e−11 1.0e+00 1.0e+00 1.4e−39 5.4e−43

−60 5.144957e+23 3.6e−26 1.0e+00 1.0e+00 3.0e−59 1.4e−64
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Figure 14.1.2: Number of significant digits (between 0 and 14) guaranteed
by (from light to dark) the 5th partial sum of (14.1.12), the 5th approximant
of (14.1.19), the 5th approximant of (14.1.20) and the 5th approximant of
(14.1.22) of Eν(9), in the region −30 ≤ ν ≤ −2.

14.2 Related functions

Definitions and elementary properties. The function Ei(x) defined
by

Ei(x) := −−
∫ ∞

−x

e−t

t
dt, x > 0, (14.2.1)

where −
∫

denotes the principal value of the integral, is often also called an
exponential integral. It is extended to the negative real axis by

Ei(−x) := −E1(x), x > 0. (14.2.2)

We recall from Section 10.13 that Gompertz’ constant equals −eEi(−1).
The logarithmic integral li(x) is defined by the principal value of the integral

li(x) := −
∫ x

0

dt

ln(t)
, x > 1, (14.2.3)

and is related to the exponential integrals Ei(x) by

li(x) = Ei(ln(x)), x > 1. (14.2.4)

The entire function Ein(z) defined by

Ein(z) :=
∫ z

0

1− e−t

t
dt, z ∈ C, (14.2.5)
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is related to the exponential integral E1(z) by

Ein(z) = E1(z) + γ + Ln(z), | arg z| < π (14.2.6)

where γ is Euler’s constant (10.8.1).
The entire functions sine integral Si(z) and cosine integral Ci(z), are defined
by

Si(z) :=
∫ z

0

sin(t)
t

dt, z ∈ C, (14.2.7)

Ci(z) := γ + Ln(z) +
∫ z

0

cos(t)− 1
t

dt, | arg z| < π, (14.2.8)

where again γ is Euler’s constant (10.8.1). The sine integral (14.2.7) is
related to the exponential integrals E1(z) and Ei(z) by

Si(z) =
1
2i

(E1(iz)− E1(−iz)) +
π

2
, | arg z| < π

2
, (14.2.9)

Si(ix) =
i
2

(Ei(x) + E1(x)) , x > 0 (14.2.10)

and the cosine integral (14.2.8) satisfies the relations

Ci(z) = −1
2

(E1(iz) + E1(−iz)) , | arg z| < π

2
, (14.2.11)

Ci(ix) =
1
2

(Ei(x)− E1(x)) +
iπ
2

, x > 0. (14.2.12)

From (14.2.9) and (14.2.11) it is easily seen that

E1(iz) = −Ci(z) + i
(
Si(z)− π

2

)
, | arg z| < π/2. (14.2.13)

Series expansions. From the relations above, we obtain the series repre-
sentations

Ei(x) = γ + ln(x) +
∞∑

k=1

xk

(k!)k
, x > 0, (14.2.14)

li(x) = γ + ln(ln(x)) +
∞∑

k=1

(ln(x))k

(k!)k
, x > 1, (14.2.15)

Ein(z) = −
∞∑

k=1

(−1)kzk

(k!)k
, z ∈ C, (14.2.16)

Si(z) =
∞∑

k=0

(−1)kz2k+1

(2k + 1)(2k + 1)!
, z ∈ C, (14.2.17)

Ci(z) = γ + Ln(z) +
∞∑

k=0

(−1)kz2k

(2k)(2k)!
, | arg z| < π, (14.2.18)
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where γ is Euler’s constant (10.8.1).

Asymptotic expansion. From (14.2.2) and the asymptotic expansion
(14.1.13) we find

Ei(x) ≈ exx−1
∞∑

k=0

k! x−k, x→∞. (14.2.19)

S-fractions. From (14.1.10) and (14.2.14) we find

Ei(x) = 2
∞∑

k=0

x2k+1

(2k + 1)(2k + 1)!
− E1(x), x > 0. (14.2.20)

Combined with the modified S-fraction representation (14.1.16) for E1(z),
this gives

Ei(x) = 2
∞∑

k=0

x2k+1

(2k + 1)(2k + 1)!
− e−x

(
x−1

1 +

∞

K
m=2

(�m
2 �x−1

1

))
,

x > 0. (14.2.21)

Since the infinite series in (14.2.21) converges for z ∈ C and the S-fraction
converges to E1(z) for | arg z| < π, the function Ei(x) can be continued
analytically from R+ to the cut plane | arg z| < π by the right hand side
of (14.2.21).
By replacing x by ln(x) in (14.2.21), we find

li(x) = 2
∞∑

k=0

(ln(x))2k+1

(2k + 1)(2k + 1)!
− 1

x

(
(ln(x))−1

1 +

∞

K
m=2

(�m
2 �(ln(x))−1

1

))
,

x > 1. (14.2.22)

As for Ei(x), the function li(x) can be continued analytically into that part
of C for which | arg(Ln(z))| < π by the right hand side of (14.2.22).
From (14.2.6) and (14.1.16) we have

Ein(z) = γ + Ln(z) + e−z

(
z−1

1 +

∞

K
m=2

(�m
2 �z−1

1

))
,

| arg z| < π. (14.2.23)

With limm→∞�m
2 � = +∞ in (14.2.23), the modification

w2k(z) =
−1 +

√
4kz−1 + 1
2

, w2k+1(z) =
−1 +

√
4(k + 1)z−1 + 1

2
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can be useful when evaluating the approximants of (14.2.23).
Additional S-fraction expansions of Ei(z), li(z) and Ein(z) can be obtained
from (14.1.18) with n = 1.

C-fraction. From (14.2.2) and the S-fraction representation (14.1.16) for
the exponential integral E1(z), we obtain a C-fraction representation for
the continuation of the function Ei(x) on the negative real axis:

Ei(−x) =
x−1e−x

1 +

∞

K
m=2

(�m
2 �x−1

1

)
, x > 0. (14.2.24)

Table 14.2.1: Together with the symmetry property (14.1.6) the following
tables let us investigate the relative error of the 5th partial sum and the 5th

approximants of E1(x), which is at the heart of all functions in Section 14.2,
throughout the cut complex plane. The fraction (14.1.16) is first evaluated
without modification and afterwards with.

x E1(x) (14.1.10) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
0.1 1.822924e+00 1.3e−10 8.8e−01 8.0e−02 1.5e−01 5.8e+07

0.5 5.597736e−01 6.1e−06 1.1e−01 7.2e−03 1.3e−02 7.6e+03

1 2.193839e−01 9.4e−04 3.2e−02 1.5e−03 2.1e−03 1.7e+02

2.5 2.491492e−02 1.7e+00 3.5e−03 1.0e−04 6.6e−05 1.1e+00

5 1.148296e−03 1.9e+03 4.1e−04 6.8e−06 1.9e−06 2.4e−02

15 1.918628e−08 4.6e+10 6.1e−06 3.2e−08 1.2e−09 4.6e−05

50 3.783264e−24 1.2e+29 2.8e−08 2.3e−11 5.0e−14 4.1e−08

90 9.005474e−42 1.0e+48 1.7e−09 5.1e−13 2.2e−16 1.3e−09

x |E1(x + ix)|s (14.1.10) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
0.1 1.631875e+00 1.1e−09 6.6e−01 6.0e−02 1.3e−01 8.2e+06

0.5 4.731368e−01 5.8e−05 7.6e−02 4.5e−03 8.4e−03 1.1e+03

1 1.793248e−01 9.1e−03 1.9e−02 8.2e−04 1.1e−03 2.5e+01

2.5 −1.941653e−02 1.7e+01 1.7e−03 4.0e−05 2.2e−05 1.7e−01

5 8.659610e−04 1.9e+04 1.5e−04 2.1e−06 4.1e−07 3.5e−03

15 −1.395107e−08 4.2e+11 1.6e−06 5.8e−09 1.2e−10 6.5e−06

50 2.700545e−24 1.0e+30 5.7e−09 2.8e−12 2.5e−15 5.4e−09

90 −6.402167e−42 8.4e+48 3.3e−10 5.4e−14 9.3e−18 1.6e−10
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x |E1(ix)|s (14.1.10) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
0.1 2.269126e+00 1.0e−10 1.1e+00 1.2e−01 2.8e−01 5.3e+07

0.5 1.092255e+00 3.3e−06 2.2e−01 1.7e−02 5.1e−02 7.0e+03

1 −7.100057e−01 3.2e−04 8.1e−02 4.8e−03 1.2e−02 1.6e+02

2.5 −3.533717e−01 1.5e−01 1.1e−02 4.2e−04 5.8e−04 1.2e+00

5 1.911718e−01 1.6e+01 1.2e−03 3.2e−05 2.0e−05 2.9e−02

15 −6.624423e−02 1.8e+04 1.3e−05 1.1e−07 8.5e−09 5.7e−05

50 1.998806e−02 2.6e+07 3.8e−08 4.3e−11 1.3e−13 4.6e−08

90 −1.110906e−02 8.8e+08 2.0e−09 7.4e−13 4.0e−16 1.3e−09

x |E1(x− ix)|s (14.1.10) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
−0.1 2.589013e+00 7.2e−10 1.1e+00 1.5e−01 5.9e−01 6.5e+06

−0.5 −1.860020e+00 1.7e−05 3.9e−01 3.3e−02 1.6e−01 9.4e+02

−1 −1.918894e+00 1.1e−03 1.8e−01 1.1e−02 5.1e−02 2.5e+01

−2.5 −3.832519e+00 1.6e−01 2.1e−02 1.0e−03 3.0e−03 2.4e−01

−5 2.285582e+01 2.1e+00 1.5e−03 6.0e−05 7.0e−05 6.1e−03

−15 1.592592e+05 1.0e+00 4.7e−06 5.1e−08 3.7e−09 9.4e−06

−50 −7.405902e+19 1.0e+00 8.0e−09 5.9e−12 8.3e−15 6.1e−09

−90 −9.641796e+36 1.0e+00 3.9e−10 8.2e−14 1.8e−17 1.8e−10

Table 14.2.2: Together with the symmetry property (14.1.6) the follow-
ing tables let us investigate the relative error of the 20th partial sum and
the 20th approximants of E1(x) which is at the heart of all functions in
Section 14.2, throughout the cut complex plane. The fraction (14.1.16) is
first evaluated without modification and afterwards with.

x E1(x) (14.1.10) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
0.1 1.822924e+00 5.1e−43 5.0e−02 7.3e−03 1.0e−02 1.2e+39

0.5 5.597736e−01 7.8e−28 1.1e−03 7.5e−05 2.9e−05 5.4e+24

1 2.193839e−01 4.1e−21 6.1e−05 3.2e−06 3.7e−07 3.9e+18

2.5 2.491492e−02 7.7e−12 2.5e−07 9.4e−09 7.8e−11 3.1e+10

5 1.148296e−03 3.2e−04 7.9e−10 2.3e−11 9.3e−15 2.4e+04

15 1.918628e−08 1.5e+11 3.0e−15 5.9e−17 1.4e−23 4.5e−06

50 3.783264e−24 3.6e+37 3.4e−23 3.9e−25 2.4e−37 7.6e−17

90 9.005474e−42 2.2e+60 1.2e−27 9.2e−30 1.7e−45 3.8e−22
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x |E1(x + ix)|s (14.1.10) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
0.1 1.631875e+00 8.2e−40 3.8e−02 4.6e−03 6.6e−03 9.3e+35

0.5 4.731368e−01 1.3e−24 5.3e−04 3.1e−05 9.9e−06 4.4e+21

1 1.793248e−01 7.2e−18 2.1e−05 9.7e−07 7.6e−08 3.3e+15

2.5 −1.941653e−02 1.4e−08 4.6e−08 1.5e−09 6.3e−12 2.8e+07

5 8.659610e−04 6.0e−01 7.2e−11 1.9e−12 2.6e−16 2.2e+01

15 −1.395107e−08 2.7e+14 6.6e−17 1.2e−18 3.7e−26 3.9e−09

50 2.700545e−24 6.0e+40 1.6e−25 1.5e−27 2.4e−41 6.0e−20

90 −6.402167e−42 3.6e+63 3.2e−30 2.0e−32 4.1e−50 2.9e−25

x |E1(ix)|s (14.1.10) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
0.1 2.269126e+00 4.1e−43 1.4e−01 1.9e−02 4.6e−02 1.1e+39

0.5 1.092255e+00 4.1e−28 8.6e−03 5.6e−04 6.6e−04 4.7e+24

1 −7.100057e−01 1.3e−21 9.3e−04 4.6e−05 2.4e−05 3.4e+18

2.5 −3.533717e−01 6.0e−13 1.0e−05 3.6e−07 3.1e−08 3.0e+10

5 1.911718e−01 2.3e−06 6.1e−08 1.8e−09 1.6e−11 2.6e+04

15 −6.624423e−02 5.9e+04 2.6e−13 5.9e−15 1.2e−19 5.9e−06

50 1.998806e−02 9.1e+15 6.1e−22 9.2e−24 5.6e−34 9.8e−17

90 −1.110906e−02 2.2e+21 8.2e−27 8.2e−29 6.4e−43 4.5e−22

x |E1(x− ix)|s (14.1.10) (14.1.16) (14.1.16) (14.1.23) (14.1.13)
−0.1 2.589013e+00 5.2e−40 4.2e−01 3.9e−02 1.8e−01 7.2e+35

−0.5 −1.860020e+00 3.5e−25 5.3e−02 2.8e−03 1.0e−02 3.2e+21

−1 −1.918894e+00 7.3e−19 9.6e−03 3.8e−04 9.0e−04 2.5e+15

−2.5 −3.832519e+00 8.9e−11 2.0e−04 5.8e−06 4.5e−06 2.7e+07

−5 2.285582e+01 3.5e−05 1.3e−06 3.2e−08 5.2e−09 2.9e+01

−15 1.592592e+05 6.2e+01 7.0e−13 1.9e−14 1.7e−17 8.4e−09

−50 −7.405902e+19 1.0e+00 1.1e−23 2.1e−25 3.3e−35 9.0e−20

−90 −9.641796e+36 1.0e+00 3.5e−29 3.4e−31 3.0e−46 3.6e−25



15
Hypergeometric functions

A hypergeometric series or function is a series for which the ratio of suc-
cessive terms in the series is a rational function of the index of the term.
The function 2F1(a, b; c; x) is the first hypergeometric function to be stud-
ied and, in general, arises the most frequently in physical problems. It is
generally known as Gauss’s hypergeometric function.
Many of the special functions in mathematics, physics and engineering are
hypergeometric functions, or can be expressed in terms of them. We show
how the contiguous relations for the 2F1 functions lead to several continued
fraction representations.

15.1 Definition and basic properties
The hypergeometric series is defined by

pFq(a1, . . . , ap; b1, . . . , bq; z) :=
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
, (15.1.1)

ai ∈ C, bj ∈ C \ Z−
0 , 1 ≤ i ≤ p, 1 ≤ j ≤ q

where

(a)0 = 1, (a)k = a(a + 1)(a + 2) · · · (a + k − 1), a ∈ C, k ∈ N

is the Pochhammer symbol or shifted factorial defined in (12.1.7). The
subscripts p and q indicate the number of parameters in numerator and
denominator of the coefficients. Assuming that also all aj ∈ C \ Z−

0 , the
following holds for the convergence of (15.1.1):

p < q + 1: the series converges absolutely for z ∈ C,
p = q + 1: the series converges absolutely for |z| < 1 and diverges
for |z| > 1, and for |z| = 1 it converges absolutely for �(

∑q
k=1 bk −∑p

k=1 ak) > 0,
p > q + 1: the series converges only for z = 0.

291
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The hypergeometric series (15.1.1) is a solution of the differential equation
[AAR99, p. 188]

z
d

dz

q∏
j=1

(
z
dy

dz
+ (bj − 1)y

)
− z

p∏
j=1

(
z
dy

dz
+ ajy

)
= 0. (15.1.2)

For p = 2 and q = 1, the differential equation (15.1.2) is the second-order
differential equation

z(1− z)
d2y

dz2
+ (c− (a + b + 1)z)

dy

dz
− aby = 0 (15.1.3)

which is called the hypergeometric differential equation. Equation (15.1.3)
has three regular singular points at z = 0, z = 1 and z = ∞. The solution
of (15.1.3) with initial conditions y(0) = 1 and (dy/dz)(0) = ab/c is called
the Gauss hypergeometric series 2F1(a, b; c; z) and is given by [Gau12]

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
, a, b ∈ C, c ∈ C \ Z−

0 . (15.1.4)
– – –
– – –
– – –

The series 2F1(a, b; c; z) converges for |z| < 1 and diverges for |z| > 1. In
case of convergence we use the term Gauss hypergeometric function. The
Gauss hypergeometric function is an analytical function of a, b, c and z.
For fixed b, c and z it is an entire function of a. For fixed a, c and z it is an
entire function of b. If a ∈ Z−

0 or b ∈ Z−
0 , (15.1.4) reduces to a polynomial

in z. In particular,

2F1(0, b; c; z) = 2F1(a, 0; c; z) = 1. (15.1.5)

If the parameters a, b, c satisfy

c ∈ C \ Z, c− a− b ∈ C \ Z, a− b ∈ C \ Z,

there are three sets of two linearly independent solutions of (15.1.3) corre-
sponding to z = 0, z = 1 and z = ∞. They are given by [AS64, p. 563]

2F1(a, b; c; z), (15.1.6)

z1−c
2F1(b + 1− c, a + 1− c; 2− c; z), (15.1.7)

2F1(a, b; a + b + 1− c; 1− z), (15.1.8)

(1− z)c−a−b
2F1(c− a, c− b; c + 1− a− b; 1− z), (15.1.9)

z−a
2F1(a, a + 1− c; a + 1− b; z−1), (15.1.10)

z−b
2F1(b + 1− c, b; b + 1− a; z−1). (15.1.11)
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Many elementary and special functions can be expressed in terms of hy-
pergeometric functions [AS64, p. 556].

Example 15.1.1:

2F1(1, 1; 2; z) = −z−1 Ln(1− z),

2F1(1/2, 1; 3/2; z2) =
1
2z

Ln
(

1 + z

1− z

)
,

2F1(1/2, 1; 3/2;−z2) = z−1 Arctan(z),

2F1(1/2, 1/2; 3/2;−z2) =
√

1 + z2
2F1(1, 1; 3/2;−z2) = z−1 Ln

(
z +

√
1 + z2

)
,

z 2F1(1/n, 1; 1 + 1/n;−zn) =
∫ z

0

dt

1 + tn
, zn ∈ C \ (−∞,−1],

2F1(1/2,−1/2; 1/2; z2)
2F1(1/2, 1/2; 3/2; z2)

=
z
√

1− z2

Arcsin(z)
,

xa

a
2F1(a, 1− b; a + 1;x) = Bx(a, b) =

∫ x

0

ta−1(1− t)b−1 dt,

a, b ∈ R+, 0 ≤ x ≤ 1

where Bx(a, b) is the incomplete beta function introduced in (18.5.3).

The derivative of the hypergeometric series 2F1(a, b; c; z) is given by

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a + 1, b + 1; c + 1; z).

Contiguous and recurrence relations. Two hypergeometric series pFq

of the same variable and whose corresponding parameters differ by inte-
gers, are called contiguous and are linearly related. Three-term recurrence
relations are examples of contiguous relations.
For a fixed triplet (s1, s2, s3) with si ∈ {−1, 0, 1} and not all si zero, the
Gauss hypergeometric functions

yn = 2F1(a + s1n, b + s2n; c + s3n; z), n ∈ N, (15.1.12)

satisfy a three-term recurrence relation of the form

Anyn+1 = Bnyn + Cnyn−1. (15.1.13)
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There exist 26 triplets of this kind and hence 26 three-term recurrence rela-
tions of the form (15.1.13). These can be reduced to four basic recurrence
relations [GST06a] by using the symmetry relation

2F1(a, b; c; z) = 2F1(b, a; c; z) (15.1.14a)

and the transformation formulas [AS64, p. 563]

2F1(a, b; c; z) = (1− z)−a
2F1

(
a, c− b; c;

z

z − 1

)
, (15.1.14b)

2F1(a, b; c; z) = (1− z)−b
2F1

(
c− a, b; c;

z

z − 1

)
, (15.1.14c)

2F1(a, b; c; z) = (1− z)c−a−b
2F1 (c− a, c− b; c; z) . (15.1.14d)

Formulas (15.1.14b) and (15.1.14c) are referred to as Pfaff’s transformation
and (15.1.14d) is referred to as Euler’s transformation.
All continued fraction representations for the Gauss hypergeometric func-
tion given in this chapter are derived from either the contiguous relation
[AAR99, p. 97]

2F1(a, b; c; z) = 2F1(a, b + 1; c + 1; z)− a(c− b)
c(c + 1) 2F1(a + 1, b + 1; c + 2; z)

(15.1.15)
or the basic form [GST06a]

2F1(a, b; c + 1; z) = −c(c− 1− (2c− a− b− 1)z)
(c− a)(c− b)z 2F1(a, b; c; z)

− c(c− 1)(z − 1)
(c− a)(c− b)z 2F1(a, b; c− 1; z) (15.1.16a)

associated with the triplet (0, 0, 1), where we have taken n = 0. By
means of (15.1.14) the following recurrence relations can be obtained from
(15.1.16a) [AAR99, p. 94]:

2F1(a, b + 1; c + 1; z) =
c(c− 1 + (b− a)z)

b(c− a)z 2F1(a, b; c; z)

− c(c− 1)
b(c− a)z 2F1(a, b− 1; c− 1; z),

(15.1.16b)

2F1(a + 1, b + 1; c + 1; z) =
c(−c + 1 + (a + b− 1)z)

abz(1− z) 2F1(a, b; c; z)

+
c(c− 1)

abz(1− z) 2F1(a− 1, b− 1; c− 1; z)
(15.1.16c)
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and another relation in which the roles of a and b in (15.1.16b) are switched.
All recurrence relations in (15.1.16) can be associated with triplets of the
form (s1, s2, 1) where s1, s2 �= −1.

15.2 Stieltjes transform

The Gauss hypergeometric series (15.1.4) has the following integral repre-
sentation due to Euler [AAR99, p. 65]:

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)−a+c−1(1− tz)−b dt,

z ∈ C \ [1,∞), b, c− a ∈ C \ Z−
0 , �c > �a > 0. (15.2.1)

Observe that 2F1(a, b; c; z) is symmetric in a and b, but the right-hand side
of (15.2.1) is not. For the remainder of the section we assume a, b, c ∈ R+

and c > a. If b = 1 and z is replaced by −z, we find

z 2F1(a, 1; c;−z) =
∫ 1

0

zφ(t)
1 + tz

dt, z ∈ C \ (−∞,−1], (15.2.2)

where

φ(t) =
Γ(c)

Γ(a)Γ(c− a)
ta−1(1− t)−a+c−1. (15.2.3)

From the conditions on the parameters a and c, it follows that φ(t) is
well-defined and positive, and (15.2.2) is the Stieltjes integral transform
(5.2.4a). From the expansion

z 2F1(a, 1; c;−z) =
∞∑

k=0

(−1)k (a)k

(c)k
zk+1, (15.2.4)

we obtain the moments

μ0 = 1, μk =
∫ 1

0

tkφ(t) dt =
(a)k

(c)k
, k = 1, 2, 3, . . . . (15.2.5)

15.3 Continued fraction representations

In this section continued fraction representations are given for ratios of
hypergeometric functions of the form 2F1(a, b; c; z)/2F1(a, b + 1; c + 1; z).
Continued fraction representations for other ratios of hypergeometric func-
tions can be obtained from these by applying the transformation formu-
las (15.1.14). As an example, we give the Nörlund fraction for the ratio



296 15. HYPERGEOMETRIC FUNCTIONS

2F1(a, b; c; z)/2F1(a + 1, b + 1; c + 1; z), which is related to the T-fraction
for 2F1(a, b; c; z)/2F1(a, b + 1; c + 1; z) by (15.1.14c).

S-fraction. Since the classical Stieltjes moment problem has a solution
φ(t) for μk given by (15.2.5), it follows from Theorem 5.1.1 that there exists
an S-fraction of the form

∞

K
m=1

(
dmz

1

)
, dm > 0, (15.3.1)

corresponding to the asymptotic series (15.2.4).
The moments μk satisfy Carleman’s criterion (5.1.16a) and thus the solu-
tion to the Stieltjes moment problem for the sequence μk is unique. Hence
from Theorem 5.2.1, the S-fraction (15.3.1) is convergent, and

z 2F1(a, 1; c;−z) =
∫ ∞

0

zφ(t)
1 + zt

dt =
∞

K
m=1

(
dmz

1

)
,

z ∈ C \ (−∞,−1], c > a > 0. (15.3.2)

Observe that we here have a larger domain of convergence than in The-
orem 5.2.1. Explicit formulas for the coefficients dm can be obtained by
considering (15.3.2) for −z 2F1(a, 1; c + 1; z) and comparing it to (15.3.4).

C-fractions. From (15.1.15) we obtain the regular C-fraction [AAR99,
pp. 97–98; JT80, pp. 199–201]

2F1(a, b; c; z)
2F1(a, b + 1; c + 1; z)

= 1 +
∞

K
m=1

(amz

1

)
, z ∈ C \ [1, +∞),

a, b ∈ C, c ∈ C \ Z−
0 , (15.3.3a)

where the coefficients am are given by

a2k+1 =
−(a + k)(c− b + k)
(c + 2k)(c + 2k + 1)

, k ∈ N0, (15.3.3b)

a2k =
−(b + k)(c− a + k)
(c + 2k − 1)(c + 2k)

, k ∈ N. (15.3.3c)

The continued fraction (15.3.3) is called the Gauss continued fraction. For
a, b, c ∈ R in (15.3.3), the continued fraction is an S-fraction in (−z) from
a certain m on. From (15.1.5) and (15.3.3) we obtain the C-fraction rep-
resentation

z 2F1(a, 1; c + 1; z) =
∞

K
m=1

(cmz

1

)
, z ∈ C \ [1, +∞),

a ∈ C, c ∈ C \ Z−
0 , (15.3.4a)

– – –
– – –
– – –
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where the coefficients cm are given by

c1 = 1, c2k+2 =
−(a + k)(c + k)

(c + 2k)(c + 2k + 1)
, k ∈ N0, (15.3.4b)

c2k+1 =
−k(c− a + k)

(c + 2k − 1)(c + 2k)
, k ∈ N. (15.3.4c)

The continued fractions (15.3.3) and (15.3.4) are limit periodic with

lim
m→∞ am = −1

4
= lim

m→∞ cm.

We recall from (7.7.7) that the modification

w(z) =
√

1− z − 1
2

(15.3.5)

may be useful. From (7.7.11) we also find that w(z) can be improved if

r = lim
n→∞

an+1 + 1/4
an + 1/4

exists. Then use of the modification

w(1)
n (z) = w(z) +

an+1z + z/4
1 + (r + 1)w(z)

(15.3.6)

is recommended. For (15.3.3) we find r = −1 if a − b �= 1/2 and r = 1
if a − b = 1/2. The modification w(z) can also be used for (15.3.4). The
modification w

(n)
1 (z) applies with an+1 replaced by cn+1 and r = −1 if

a �= 1/2 and r = 1 if a = 1/2.

Example 15.3.1: Consider

2F1 (1/2, 1; 3/2; z) =
1

2
√

z
Ln
(

1 +
√

z

1−√z

)
,

which by (15.3.4) has the regular C-fraction representation

z 2F1 (1/2, 1; 3/2; z) =
∞

K
m=1

(cmz

1

)
, z ∈ C \ [1, +∞) (15.3.7a)

– – –
– – –
– – –
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with

c1 = 1, cm =
−(m− 1)2

4(m− 1)2 − 1
, m ≥ 2. (15.3.7b)

Use of the modifications w(z) = 1/2
(√

1− z − 1
)

and, with r = 1,

w(1)
n (z) = w(z) +

cn+1z + z/4
1 + 2w(z)

is illustrated in the Tables 15.3.1 and 15.3.2. The approximants of (15.3.4)
are first evaluated without modification and subsequently with the modi-
fications given by (15.3.5) and (15.3.6).

T-fractions. For the ratio of hypergeometric series in (15.3.3) a T-fraction
representation, already found by Euler, can be obtained from the recur-
rence relation (15.1.16b) [AAR99, p. 98]. The correspondence and conver-
gence of this general T-fraction are given in [CJM88]:

2F1(a, b; c; z)
2F1(a, b + 1; c + 1; z)

=
c + (b− a + 1)z

c
+

1
c

∞

K
m=1

(
cmz

em + dmz

)
,

|z| < 1, a, b ∈ C, c ∈ C \ Z−
0 , (15.3.8a)

(b− a + 1)z
c

2F1(b− c + 1, b; b− a + 1; 1/z)
2F1(b− c + 1, b + 1; b− a + 2; 1/z)

=

c + (b− a + 1)z
c

+
1
c

∞

K
m=1

(
cmz

em + dmz

)
,

|z| > 1, b− a �= −2,−3, . . . , c �= 0, (15.3.8b)

where

cm = −(c− a + m)(b + m), em = c + m, dm = b− a + m + 1, m ≥ 1.
(15.3.8c)

For b = 0 in (15.3.8) we find the M-fraction representation

2F1(a, 1; c + 1; z) =
c

c + (1− a)z +

∞

K
m=1

(
cmz

em + dmz

)
,

|z| < 1, a ∈ C, c ∈ C \ Z−
0 , (15.3.9a)

– – –
– – –
– – –

cz−1

(1−a) 2F1(1− c, 1; 2− a; 1/z) =
c

c + (1− a)z +

∞

K
m=1

(
cmz

em + dmz

)
,

|z| > 1, a �= 2, 3, 4, . . . , c ∈ C, (15.3.9b)
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where

cm = −m(c−a+m), em = c+m, dm = m+1−a, m ≥ 1. (15.3.9c)

The infinite fraction parts in (15.3.8) and (15.3.9) are limit periodic. A
suitable modification is found by combining (7.7.4) and (7.7.5), and is
given by

w̃n(z) = (en + dnz)w(z) (15.3.10a)

with

w(z) = K
(−z/(1 + z)2

1

)
=

⎧⎪⎨⎪⎩
−z

1 + z
, |z| < 1,

−1
1 + z

, |z| > 1.
(15.3.10b)

For |z| = 1 the continued fraction in (15.3.10b) diverges, except for z = 1,
where it converges to −1/2. The modification (15.3.10) for the continued
fractions in (15.3.8) and (15.3.9) can be improved by combining (7.7.4) and
(7.7.10) into

w̃(1)
n (z) = (en + dnz)

(
w(z) +

cn+1z
(en+1+dn+1z)(en+dnz) + z

(1+z)2

1 + (r + 1)w(z)

)
, r = 1.

(15.3.11)

Example 15.3.2: With a = c = 1/2 in (15.3.9) we find the M-fraction
representation

1/2
1/2 + z/2 −

z

3/2 + 3z/2 −
4z

5/2 + 5z/2 − . . .
, |z| < 1, (15.3.12)

– – –
– – –
– – –

which corresponds at z = 0 to

2F1(1/2, 1; 3/2; z) =
1

2
√

z
Ln
(

1 +
√

z

1−√z

)
and at z = ∞ to

z−1
2F1(1/2, 1; 3/2; z−1).

In the Tables 15.3.1 and 15.3.2 the approximants of (15.3.12) are first eval-
uated without modification and then with the modifications (15.3.10) and
(15.3.11), respectively.
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Another T-fraction for the ratio 2F1(a, b; c; z)/2F1(a, b+1; c+1; z) which is
given in [Fra56; CJM88] reduces to an Euler fraction (1.7.2) for 2F1(a, 1; c+
1; z) when b = 0. In [Fra56] T-fraction representations are given for several
other ratios of hypergeometric functions. All these T-fractions can be
derived from (15.3.8) and the transformation formulas (15.1.14).

Nörlund fractions. By applying (15.1.14c) to the T-fraction (15.3.8),
we obtain the fraction (15.3.13) for 2F1(a, b; c; z)/2F1(a + 1, b + 1; c + 1; z).
This continued fraction can also be obtained from the recurrence relation
(15.1.16c) [Nör24; LW92, pp. 304–306]:

2F1(a, b; c; z)
2F1(a + 1, b + 1; c + 1; z)

=
c− (a + b + 1)z

c
+

1
c

∞

K
m=1

(
cm(z − z2)
em + dmz

)
,

�z < 1/2, a, b ∈ C, c ∈ C \ Z−
0 , (15.3.13a)

where

cm = (a + m)(b + m), em = c + m, dm = −(a + b + 2m + 1), m ≥ 1.
(15.3.13b)

The continued fraction (15.3.13) is called the Nörlund fraction. It corre-
sponds at z = 0 to the left-hand side of (15.3.13) with order of correspon-
dence n.
From (15.1.5) and (15.3.13), we obtain the continued fraction representa-
tion

2F1(a + 1, 1; c + 1; z) =
c

c− (a + 1)z +

∞

K
m=1

(
cm(z − z2)
em + dmz

)
(15.3.14a)

– – –
– – –
– – –

where

cm = (a+m)m, em = c+m, dm = −(a+2m+1), m ≥ 1. (15.3.14b)

The infinite fraction parts in (15.3.13) and (15.3.14) are limit periodic.
Hence, by combining (7.7.4) and (7.7.5), we find for (15.3.13) and (15.3.14)
the modification

w̃n(z) = (en + dnz)w(z) (15.3.15a)
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with

w(z) = K
(

(z − z2)/(1− 2z)2

1

)
=

⎧⎪⎨⎪⎩
z

1− 2z
, �z < 1/2,

z − 1
1− 2z

, �z > 1/2.

(15.3.15b)
The above modification can be improved by combining (7.7.4) and (7.7.10)
into

w̃(1)
n (z) = (en+dnz)

⎛⎝w(z) +
cn+1(z−z2)

(en+1+dn+1z)(en+dnz) − z−z2

(1−2z)2

1 + (r + 1)w(z)

⎞⎠ , r = 1.

(15.3.16)
Applying the transformation formula (15.1.14d), a Nörlund-like fraction
can be obtained for the ratio 2F1(a, b; c; z)/2F1(a, b; c+ 1; z). Another way
to derive this continued fraction is based on the fact that the sequence
{2F1(a, b; c + n; z)}n is a minimal solution of (15.1.16a) for �z < 1/2
[GST06a] and on Pincherle’s Theorem 3.6.1.

Example 15.3.3: For a = −1/2 and c = 1/2 we find from (15.3.14) and
(15.1.14d) that

2F1(1/2, 1; 3/2; z) =
1

1− z
2F1(1, 1/2; 3/2; z)
2F1(1, 1/2; 1/2; z)

=
1

2
√

z
Ln
(

1 +
√

z

1−√z

)
=

1
1− z +

z(1− z)
3/2 − 5/2z +

∞

K
m=2

(
m(m− 1/2)z(1− z)

(m + 1/2)− (2m + 1/2)z

)
,

�z < 1/2.
(15.3.17)

– – –
– – –
– – –
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In the Tables 15.3.1 and 15.3.2 the fractions (15.3.7), (15.3.12) and (15.3.17),
which are special cases of

the C-fraction (15.3.4),
the M-fraction (15.3.9) and
the Nörlund fraction (15.3.14),

respectively, are evaluated without and with the suggested modifications.

Table 15.3.1: Relative error of the 5th partial sum and 5th (modified)
approximants. More details can be found in the Examples 15.3.1, 15.3.2
and 15.3.3.

x 2F1(1/2, 1; 3/2; x) (15.3.7) (15.3.12) (15.3.17)
0.1 1.035488e+00 1.9e−08 1.4e−05 6.1e−06

0.2 1.076022e+00 7.9e−07 4.4e−04 3.4e−04

0.3 1.123054e+00 8.0e−06 3.1e−03 4.9e−03

0.4 1.178736e+00 4.7e−05 1.2e−02 4.3e−02

x 2F1(1/2, 1; 3/2; x) (15.3.7) (15.3.7) (15.3.7)
0.1 1.035488e+00 1.9e−08 2.0e−10 1.6e−12

0.2 1.076022e+00 7.9e−07 8.7e−09 1.5e−10

0.3 1.123054e+00 8.0e−06 9.4e−08 2.7e−09

0.4 1.178736e+00 4.7e−05 5.9e−07 2.5e−08

x 2F1(1/2, 1; 3/2; x) (15.3.12) (15.3.12) (15.3.12)
0.1 1.035488e+00 1.4e−05 1.7e−07 5.7e−09

0.2 1.076022e+00 4.4e−04 6.3e−06 4.7e−07

0.3 1.123054e+00 3.1e−03 5.7e−05 7.0e−06

0.4 1.178736e+00 1.2e−02 2.9e−04 5.5e−05

x 2F1(1/2, 1; 3/2; x) (15.3.17) (15.3.17) (15.3.17)
0.1 1.035488e+00 6.1e−06 6.4e−07 1.6e−08

0.2 1.076022e+00 3.4e−04 3.9e−05 2.1e−06

0.3 1.123054e+00 4.9e−03 6.6e−04 6.1e−05

0.4 1.178736e+00 4.3e−02 8.3e−03 1.4e−03
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Table 15.3.2: Relative error of the 20th partial sum and 20th (modified)
approximants. More details can be found in the Examples 15.3.1, 15.3.2
and 15.3.3.

x 2F1(1/2, 1; 3/2; x) (15.3.7) (15.3.12) (15.3.17)
0.1 1.035488e+00 4.0e−32 1.5e−20 1.5e−20

0.2 1.076022e+00 1.3e−25 1.5e−14 1.7e−13

0.3 1.123054e+00 1.4e−21 4.8e−11 7.6e−09

0.4 1.178736e+00 1.8e−18 1.4e−08 5.0e−05

x 2F1(1/2, 1; 3/2; x) (15.3.7) (15.3.7) (15.3.7)
0.1 1.035488e+00 4.0e−32 2.6e−35 6.5e−38

0.2 1.076022e+00 1.3e−25 8.8e−29 4.8e−31

0.3 1.123054e+00 1.4e−21 1.1e−24 9.6e−27

0.4 1.178736e+00 1.8e−18 1.4e−21 1.9e−23

x 2F1(1/2, 1; 3/2; x) (15.3.12) (15.3.12) (15.3.12)
0.1 1.035488e+00 1.5e−20 1.1e−23 1.2e−25

0.2 1.076022e+00 1.5e−14 1.4e−17 3.3e−19

0.3 1.123054e+00 4.8e−11 5.9e−14 2.3e−15

0.4 1.178736e+00 1.4e−08 2.3e−11 1.4e−12

x 2F1(1/2, 1; 3/2; x) (15.3.17) (15.3.17) (15.3.17)
0.1 1.035488e+00 1.5e−20 4.0e−22 2.9e−24

0.2 1.076022e+00 1.7e−13 4.5e−15 7.1e−17

0.3 1.123054e+00 7.6e−09 2.4e−10 6.4e−12

0.4 1.178736e+00 5.0e−05 2.3e−06 1.1e−07

Example 15.3.4: One of the special values of the Gauss hypergeometric
function is

2F1(2a, 1; a + 1; 1/2) =
√

π
Γ(a + 1)

Γ (a + 1/2)
, a + 1 ∈ C \ Z−

0 .

It is illustrated in the Tables 15.3.3, 15.3.4, 15.3.5 and 15.3.6.
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Table 15.3.3: Relative error of the 5th partial sum and 5th approximants
for Example 15.3.4.

x 2F1(2x, 1; x + 1; 1/2) (15.1.4) (15.3.4) (15.3.9)
−400.25 3.544908e+01 8.3e−01 7.1e−01 3.3e+00

−100.25 1.772457e+01 6.5e−01 3.7e−01 1.9e+00

−50.25 1.253322e+01 4.8e−01 2.2e−02 1.5e+00

−10.25 5.605866e+00 9.8e−01 5.9e+00 5.1e−03

−3.25 3.075227e+00 3.9e+00 8.4e−01 2.9e+00

−1.25 1.797210e+00 2.8e−03 2.9e−02 1.0e+00

0.25 1.311029e+00 2.8e−03 2.6e−04 7.8e−02

2.25 2.809347e+00 4.6e−02 2.9e−04 2.6e−05

5.25 4.158909e+00 1.2e−01 1.3e−02 2.3e−05

20.25 8.025424e+00 3.7e−01 1.5e−01 4.0e−02

40.25 1.127993e+01 5.2e−01 2.9e−01 1.4e−01

200.25 2.509761e+01 7.7e−01 6.2e−01 8.9e−01

500.25 3.965309e+01 8.5e−01 7.5e−01 1.8e+00

x |2F1(2(ix), 1; ix + 1; 1/2)|s (15.1.4) (15.3.4) (15.3.9)
−400.25 3.546015e+01 8.9e−01 8.2e−01 1.8e+00

−100.25 1.774668e+01 7.9e−01 6.7e−01 6.7e−01

−50.25 1.256444e+01 7.1e−01 5.5e−01 3.8e−01

−10.25 5.674621e+00 4.0e−01 1.8e−01 7.9e−02

−3.25 3.195337e+00 1.0e−01 2.8e−02 3.4e−02

−1.25 1.982433e+00 1.9e−02 4.3e−03 4.8e−02

0.25 1.094362e+00 2.4e−03 4.4e−04 2.9e−01

2.25 2.658683e+00 5.5e−02 1.3e−02 3.4e−02

5.25 4.061202e+00 2.1e−01 6.6e−02 4.3e−02

20.25 7.976042e+00 5.6e−01 3.5e−01 1.6e−01

40.25 1.124496e+01 6.8e−01 5.1e−01 3.1e−01

200.25 2.508194e+01 8.4e−01 7.5e−01 1.1e+00

500.25 3.964318e+01 9.0e−01 8.4e−01 2.1e+00
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Table 15.3.4: Relative error of the 5th (modified) approximants for Exam-
ple 15.3.4. For (15.3.4) the modifications (15.3.5) and (15.3.6) are used, in
that order. For (15.3.9) we show the modifications (15.3.10) and (15.3.11).

x 2F1(2x, 1; x + 1; 1/2) (15.3.4) (15.3.4) (15.3.4)
−400.25 3.544908e+01 7.1e−01 7.0e−01 2.1e+00

−100.25 1.772457e+01 3.7e−01 3.4e−01 1.7e+00

−50.25 1.253322e+01 2.2e−02 7.6e−02 1.4e+00

−10.25 5.605866e+00 5.9e+00 5.0e+00 2.8e−01

−3.25 3.075227e+00 8.4e−01 8.8e−01 1.2e+00

−1.25 1.797210e+00 2.9e−02 2.6e−01 3.3e−02

0.25 1.311029e+00 2.6e−04 2.9e−06 7.3e−07

2.25 2.809347e+00 2.9e−04 1.8e−04 1.8e−05

5.25 4.158909e+00 1.3e−02 1.1e−02 2.4e−03

20.25 8.025424e+00 1.5e−01 1.4e−01 7.9e−02

40.25 1.127993e+01 2.9e−01 2.7e−01 2.5e−01

200.25 2.509761e+01 6.2e−01 6.1e−01 2.6e+00

500.25 3.965309e+01 7.5e−01 7.4e−01 1.4e+01

x |2F1(2(ix), 1; ix + 1; 1/2)|s (15.3.4) (15.3.4) (15.3.4)
−400.25 3.546015e+01 8.2e−01 8.1e−01 1.9e+00

−100.25 1.774668e+01 6.7e−01 6.6e−01 8.7e−01

−50.25 1.256444e+01 5.5e−01 5.4e−01 4.8e−01

−10.25 5.674621e+00 1.8e−01 1.7e−01 7.0e−02

−3.25 3.195337e+00 2.8e−02 2.6e−02 5.8e−03

−1.25 1.982433e+00 4.3e−03 3.5e−03 3.6e−04

0.25 1.094362e+00 4.4e−04 1.6e−04 6.5e−06

2.25 2.658683e+00 1.3e−02 1.2e−02 2.1e−03

5.25 4.061202e+00 6.6e−02 6.1e−02 1.9e−02

20.25 7.976042e+00 3.5e−01 3.3e−01 1.8e−01

40.25 1.124496e+01 5.1e−01 4.9e−01 3.9e−01

200.25 2.508194e+01 7.5e−01 7.5e−01 1.4e+00

500.25 3.964318e+01 8.4e−01 8.3e−01 2.0e+00
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x 2F1(2x, 1; x + 1; 1/2) (15.3.9) (15.3.9) (15.3.9)
−400.25 3.544908e+01 3.3e+00 3.8e+00 6.0e−01

−100.25 1.772457e+01 1.9e+00 2.2e+00 5.7e−02

−50.25 1.253322e+01 1.5e+00 1.7e+00 7.8e−01

−10.25 5.605866e+00 5.1e−03 5.5e−01 2.3e+00

−3.25 3.075227e+00 2.9e+00 5.6e+01 5.1e−01

−1.25 1.797210e+00 1.0e+00 1.5e+00 4.1e+00

0.25 1.311029e+00 7.8e−02 7.6e−03 1.4e−03

2.25 2.809347e+00 2.6e−05 4.4e−05 1.7e−05

5.25 4.158909e+00 2.3e−05 9.2e−04 4.9e−04

20.25 8.025424e+00 4.0e−02 8.6e−02 5.7e−02

40.25 1.127993e+01 1.4e−01 2.5e−01 1.6e−01

200.25 2.509761e+01 8.9e−01 1.2e+00 5.1e−01

500.25 3.965309e+01 1.8e+00 2.4e+00 6.7e−01

x |2F1(2(ix), 1; ix + 1; 1/2)|s (15.3.9) (15.3.9) (15.3.9)
−400.25 3.546015e+01 1.8e+00 2.3e+00 7.6e−01

−100.25 1.774668e+01 6.7e−01 9.0e−01 5.7e−01

−50.25 1.256444e+01 3.8e−01 5.3e−01 4.3e−01

−10.25 5.674621e+00 7.9e−02 1.2e−01 9.5e−02

−3.25 3.195337e+00 3.4e−02 4.4e−02 2.3e−02

−1.25 1.982433e+00 4.8e−02 3.5e−02 1.3e−02

0.25 1.094362e+00 2.9e−01 8.7e−02 1.0e−02

2.25 2.658683e+00 3.4e−02 3.7e−02 1.7e−02

5.25 4.061202e+00 4.3e−02 6.3e−02 3.9e−02

20.25 7.976042e+00 1.6e−01 2.3e−01 2.2e−01

40.25 1.124496e+01 3.1e−01 4.4e−01 3.8e−01

200.25 2.508194e+01 1.1e+00 1.5e+00 6.8e−01

500.25 3.964318e+01 2.1e+00 2.6e+00 7.9e−01
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Table 15.3.5: Relative error of the 20th partial sum and 20th approximants
for Example 15.3.4.

x 2F1(2x, 1; x + 1; 1/2) (15.1.4) (15.3.4) (15.3.9)
−400.25 3.544908e+01 3.4e−01 2.1e+00 9.7e−01

−100.25 1.772457e+01 1.0e+00 6.3e+00 1.1e+00

−50.25 1.253322e+01 5.9e+00 8.1e−01 2.6e+00

−10.25 5.605866e+00 1.7e−01 1.3e+00 1.1e+00

−3.25 3.075227e+00 2.0e−09 1.4e−11 1.5e+00

−1.25 1.797210e+00 3.3e−09 2.2e−14 1.0e−01

0.25 1.311029e+00 3.6e−08 8.8e−16 4.0e−06

2.25 2.809347e+00 4.2e−06 5.2e−17 1.0e−12

5.25 4.158909e+00 7.1e−05 1.0e−17 1.9e−17

20.25 8.025424e+00 6.4e−03 1.5e−09 4.6e−19

40.25 1.127993e+01 3.6e−02 9.2e−07 2.5e−10

200.25 2.509761e+01 3.1e−01 3.0e−03 1.9e−04

500.25 3.965309e+01 5.1e−01 3.3e−02 6.2e−03

x |2F1(2(ix), 1; ix + 1; 1/2)|s (15.1.4) (15.3.4) (15.3.9)
−400.25 3.546015e+01 6.6e−01 8.2e−02 2.3e−02

−100.25 1.774668e+01 4.1e−01 3.1e−03 3.5e−04

−50.25 1.256444e+01 2.3e−01 2.3e−04 1.8e−05

−10.25 5.674621e+00 1.6e−03 1.2e−08 7.2e−08

−3.25 3.195337e+00 4.8e−06 3.1e−12 2.3e−07

−1.25 1.982433e+00 2.5e−07 3.6e−14 2.1e−06

0.25 1.094362e+00 2.3e−08 1.7e−15 3.2e−05

2.25 2.658683e+00 1.2e−06 4.0e−13 5.4e−07

5.25 4.061202e+00 4.5e−05 7.8e−11 9.3e−08

20.25 7.976042e+00 3.3e−02 1.6e−06 3.4e−07

40.25 1.124496e+01 1.7e−01 8.0e−05 6.3e−06

200.25 2.508194e+01 5.5e−01 2.1e−02 3.8e−03

500.25 3.964318e+01 6.9e−01 1.2e−01 3.6e−02
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Table 15.3.6: Relative error of the 20th (modified) approximants for Ex-
ample 15.3.4, for (15.3.4) with the modifications (15.3.5) and (15.3.6) in
that order, and for (15.3.9) with the modifications (15.3.10) and (15.3.11).

x 2F1(2x, 1; x + 1; 1/2) (15.3.4) (15.3.4) (15.3.4)
−400.25 3.544908e+01 2.1e+00 1.1e+00 1.7e+00

−100.25 1.772457e+01 6.3e+00 5.2e+00 7.6e+00

−50.25 1.253322e+01 8.1e−01 6.1e−01 3.9e−01

−10.25 5.605866e+00 1.3e+00 1.3e+00 8.2e−01

−3.25 3.075227e+00 1.4e−11 7.5e−12 5.6e−13

−1.25 1.797210e+00 2.2e−14 6.0e−15 1.2e−16

0.25 1.311029e+00 8.8e−16 6.0e−19 1.7e−19

2.25 2.809347e+00 5.2e−17 2.8e−17 1.2e−18

5.25 4.158909e+00 1.0e−17 2.3e−17 1.8e−18

20.25 8.025424e+00 1.5e−09 7.3e−09 1.2e−09

40.25 1.127993e+01 9.2e−07 3.6e−06 6.9e−07

200.25 2.509761e+01 3.0e−03 3.3e−02 3.1e−03

500.25 3.965309e+01 3.3e−02 4.0e−01 4.2e−02

x |2F1(2(ix), 1; ix + 1; 1/2)|s (15.3.4) (15.3.4) (15.3.4)
−400.25 3.546015e+01 8.2e−02 2.0e−01 9.3e−02

−100.25 1.774668e+01 3.1e−03 7.7e−03 2.7e−03

−50.25 1.256444e+01 2.3e−04 5.0e−04 1.6e−04

−10.25 5.674621e+00 1.2e−08 1.8e−08 3.0e−09

−3.25 3.195337e+00 3.1e−12 2.0e−12 1.2e−13

−1.25 1.982433e+00 3.6e−14 9.3e−15 2.3e−16

0.25 1.094362e+00 1.7e−15 1.2e−16 1.2e−18

2.25 2.658683e+00 4.0e−13 1.8e−13 7.8e−15

5.25 4.061202e+00 7.8e−11 7.5e−11 7.1e−12

20.25 7.976042e+00 1.6e−06 3.0e−06 7.3e−07

40.25 1.124496e+01 8.0e−05 1.7e−04 5.3e−05

200.25 2.508194e+01 2.1e−02 5.4e−02 2.0e−02

500.25 3.964318e+01 1.2e−01 2.8e−01 1.4e−01
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x 2F1(2x, 1; x + 1; 1/2) (15.3.9) (15.3.9) (15.3.9)
−400.25 3.544908e+01 9.7e−01 1.1e+00 2.2e+01

−100.25 1.772457e+01 1.1e+00 1.4e+00 3.0e+00

−50.25 1.253322e+01 2.6e+00 5.8e+00 5.4e−01

−10.25 5.605866e+00 1.1e+00 1.7e+00 7.3e+00

−3.25 3.075227e+00 1.5e+00 2.1e+00 5.5e+00

−1.25 1.797210e+00 1.0e−01 3.5e−02 5.3e−03

0.25 1.311029e+00 4.0e−06 7.3e−08 3.2e−09

2.25 2.809347e+00 1.0e−12 3.6e−13 6.1e−14

5.25 4.158909e+00 1.9e−17 1.9e−17 5.3e−18

20.25 8.025424e+00 4.6e−19 8.1e−17 4.1e−17

40.25 1.127993e+01 2.5e−10 9.5e−10 5.8e−10

200.25 2.509761e+01 1.9e−04 3.1e−04 2.5e−04

500.25 3.965309e+01 6.2e−03 8.2e−03 7.2e−03

x |2F1(2(ix), 1; ix + 1; 1/2)|s (15.3.9) (15.3.9) (15.3.9)
−400.25 3.546015e+01 2.3e−02 2.8e−02 2.5e−02

−100.25 1.774668e+01 3.5e−04 5.1e−04 4.1e−04

−50.25 1.256444e+01 1.8e−05 2.8e−05 2.1e−05

−10.25 5.674621e+00 7.2e−08 8.8e−08 4.3e−08

−3.25 3.195337e+00 2.3e−07 1.3e−07 3.4e−08

−1.25 1.982433e+00 2.1e−06 5.3e−07 6.3e−08

0.25 1.094362e+00 3.2e−05 2.7e−06 8.1e−08

2.25 2.658683e+00 5.4e−07 2.2e−07 4.4e−08

5.25 4.061202e+00 9.3e−08 7.4e−08 2.6e−08

20.25 7.976042e+00 3.4e−07 5.3e−07 3.2e−07

40.25 1.124496e+01 6.3e−06 1.0e−05 7.2e−06

200.25 2.508194e+01 3.8e−03 5.1e−03 4.4e−03

500.25 3.964318e+01 3.6e−02 4.4e−02 3.9e−02

15.4 Padé approximants

Basic polynomials. Explicit formulas for Padé approximants of ratios
of hypergeometric functions 2F1(a, b; c; z) are developed in [WB93]. We
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define the operator Pk by

Pk

⎛⎝ ∞∑
j=0

cjz
j

⎞⎠ :=
k∑

j=0

cjz
j . (15.4.1)

For any pair m,n ∈ N0, we associate with the hypergeometric series
2F1(a, b; c; z) the polynomial

Vm,n(a, b; c; z) :=

Pm+n+1

(
2F1(a, b; c; z) 2F1(−a−m,−b− n;−c−m− n; z)

)
. (15.4.2)

The degree of Vm,n is less than or equal to max(m,n). Certain identities of
the polynomials Vm,n are useful in the computation of Padé approximants
[WB93]:

Vm,n(a, b; c; z) = Vm,n(−a−m,−b− n;−c−m− n; z)

= Vn,m(b, a; c; z), (15.4.3)

Vm,n(b, a; c; z) = Vm,n(c− b, c− a; c; z), (15.4.4)

Vm,n(c, b; c; z) = 2F1(−n, b− c−m;−c−m− n; z), (15.4.5)

Vm,n(a, 0; c; z) = 2F1(−n,−a−m;−c−m− n; z). (15.4.6)

Explicit formulas.

Theorem 15.4.1: [WB93]

For s ∈ {−1, 0, 1} and m,n ∈ N0 let

Fs(z) := 2F1(a + s, b + 1; c + s + 1; z)
2F1(a, b; c; z)

=
∞∑

i=0

diz
i.

Furthermore let m ≥ n−1 and, in case b(c−a) �= 0, also m ≤ n−s. Then
the Padé approximants rm,n(z) for Fs(z) are given by the irreducible form
of:

rm,0(z) = Pm(Fs(z)), (15.4.7)

rm,n(z) =
Vm,n−1(a + s, b + 1; c + s + 1; z)

Vm+s,n(a, b; c; z)
, n ≥ 1. (15.4.8)

When b = 0 or a = c the above theorem gives an explicit formula for
the Padé approximants rm,n(z) for m ≥ n − 1. This case is also given in
[Wal48, p. 341].
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Because of the connection between Padé tables and C- and P-fractions, we
obtain from Theorem 15.4.1 explicit expressions in terms of the polynomials
Vm,n(z) for the approximants of the C-fraction representation of Fs(z). In
case s = 0, the regular C-fraction for the reciprocal of Fs(z) is given by
(15.3.3). The 2nth and (2n + 1)th approximants of (15.3.3) are given by
1/rn,n(z) and 1/rn,n+1(z) respectively, after appropriate normalisation of
the Padé approximant.

Example 15.4.1: With a = c = 1, b = 0, s = 0 and z replaced by −z we
have

F0(−z) = 2F1(1, 1; 2;−z) =
Ln(1 + z)

z
.

From Theorem 15.4.1 we find

rm,n(−z) =
Vm,n−1(1, 1; 2;−z)

2F1(−n,−1−m;−1−m− n;−z)
, m ≥ n− 1 ≥ 0,

and the following excerpt of the Padé table for Ln(1 + z)/z.

m\n 1 2 3

1
1 + z

6

1 + 2z
3

1 + z
2

1 + z + z2

6

2
1 + z

4 − z2

24

1 + 3z
4

1 + 7z
10 + z2

30

1 + 6z
5 + 3z2

10

1 + z + 11z2

60

1 + 3z
2 + 3z2

5 + z3

20

3
1 + 3z

10 − z2

15 + z3

60

1 + 4z
5

1 + 5z
6 + z2

15 − z3

180

1 + 4z
3 + 2z2

5

1 + 17z
14 + z2

3 + z3

140

1 + 12z
7 + 6z2

7 + 4z3

35

Example 15.4.2: With a = 2, b = 0, c = 1, s = 0 we get the function

F0(z) = 2F1(2, 1; 2; z)
2F1(2, 0; 1; z)

=
1

1− z
.

Except for the leftmost column in the Padé table, where the entries are
the Taylor polynomials 1, 1 + z, 1 + z + z2, . . . , the rest of the table is an
infinite block where all entries are 1/(1 − z). In this case the numerator
and denominator polynomials in Theorem 15.4.1 have common factors.
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Normality. The following theorems give results on the normality of the
Padé table for the hypergeometric function 2F1(a, b; c; z) for different val-
ues of the parameters a, b and c. Some of these normality results follow
naturally from the fact that 2F1(a, 1; c;−z) has a Stieltjes fraction repre-
sentation when c > a > 0.

Theorem 15.4.2: [Wal48, pp. 389–390]

The Padé table for the hypergeometric function 2F1(a, 1; c; z) with c > a >
0 is normal.

Theorem 15.4.3: [dB77]

For m ≥ n the Padé approximants rm,n(z) for the hypergeometric function
2F1(a, 1; c; z) with a, c, c− a /∈ Z−

0 are normal.

Two-point Padé approximants. We associate with the hypergeometric
series 2F1(a, b; c; z) the polynomial

Pn,k(a, b, c, z) := Pn

(
2F1(a, b; c; z)2F1(1−a−k,−b−n; 1−c−k−n; z)

)
,

0 ≤ k ≤ n, (15.4.9)

where the operator Pn is defined in (15.4.1). It is shown in [WB95] that
Pn,k(a, b, c, z) is a polynomial in z of exact degree n when 0 ≤ k ≤ n.

Theorem 15.4.4: [WB95]

Let

L0(z) = Λ0

(
2F1(a, b + 1; c + 1; z)

2F1(a, b; c; z)

)
,

L∞(z) = Λ∞

(
cz−1

2F1(b− c + 1, b + 1; b− a + 2; z−1)
(b− a + 1) 2F1(b− c + 1, b; b− a + 1; z−1)

)
.

Then the two-point Padé approximant r
(2)
n+k,n−k(z) defined by (4.5.3) which

corresponds to L0(z) and L∞(z), is given by

r
(2)
n+k,n−k(z) =

Pn−1,k(a, b + 1, c, z)
Pn,k(a, b, c, z)

, 0 ≤ k ≤ n.

When b = 0 in Theorem 15.4.4, the series L0(z) and L∞(z) are given by

L0(z) = 2F1(a, 1; c + 1; z),

L∞(z) =
cz−1

1− a
2F1(1− c, 1; 2− a; z−1).
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Because of the connection between two-point Padé approximants and M-
fractions indicated in Theorem 4.6.1, we obtain from Theorem 15.4.4 ex-
plicit expressions for the approximants of the M-fraction corresponding to
L0(z) and L∞(z) in terms of the polynomials Pn,k(a, b, c, z). For L0(z) and
L∞(z) given in Theorem 15.4.4, this M-fraction is the reciprocal of the con-
tinued fraction given in (15.3.8). The nth approximant of this M-fraction
is given by r

(2)
n,n(z).

Example 15.4.3: Let a = c = 1/2, b = 0 in Theorem 15.4.4. Then L0(z)
and L∞(z) are the same series at z = 0 and z = ∞ as in Example 15.3.2:

L0(z) = 2F1(1/2, 1; 3/2; z),

L∞(z) = z−1
2F1(1/2, 1; 3/2; z−1).

For k = 0 and n = 2, the two-point Padé approximant r
(2)
2,2(z) correspond-

ing to L0(z) and L∞(z) is given by

r
(2)
2,2(z) =

P1,0(1/2, 1, 1/2, z)
P2,0(1/2, 0, 1/2, z)

=
1 + z

1 + 2/3z + z2
,

with order of correspondence

L0(z)− P1,0(1/2, 1, 1/2, z)
P2,0(1/2, 0, 1/2, z)

= O(z2)

at z = 0, and

L∞(z)− P1,0(1/2, 1, 1/2, z)
P2,0(1/2, 0, 1/2, z)

= O(z−3)

at z = ∞. Observe that r
(2)
2,2(z) is the second approximant of the M-fraction

(15.3.12) in Example 15.3.2.

15.5 Monotonicity properties
Limit periodicity in combination with monotonicity properties of S-fraction
coefficients can be used to simplify truncation error bounds as seen in
Corollary 7.4.2. Many ratios of hypergeometric functions with real param-
eters have such properties. We consider the continued fraction obtained
by replacing z by −z in the C-fraction (15.3.3)

2F1(a, b; c;−z)
2F1(a, b + 1; c + 1;−z)

= 1 +
∞

K
m=1

(cmz

1

)
, (15.5.1)

where the coefficients cm = −am are given in (15.3.3).



314 15. HYPERGEOMETRIC FUNCTIONS

Theorem 15.5.1: [Waa05]

If 0 ≤ a < c + 1, 0 ≤ b < c, then the continued fraction (15.5.1) is an
S-fraction. Let

α = a− b− 1/2,

β = (2b− c + 1)(2b− c),

γ = (2b− c + 1)(2b− c)(2a− c)(2a− c− 1).

(A1) If α = 0 and β > 0, then the sequence {cm} is monotonely increas-
ing.

(A2) If α = 0 and β < 0, then the sequence {cm} is monotonely decreas-
ing.

(B1) If α < 0 and γ ≤ 0, then the sequences {c2k} and {c2k+1} are
monotonely decreasing and increasing respectively.

(B2) If α > 0 and γ ≤ 0, then the sequences {c2k} and {c2k+1} are
monotonely increasing and decreasing respectively.

(C1) If α < 0 and γ > 0, then there exists M ∈ N such that the se-
quences {c2M+2k} and {c2M+2k−1} are monotonely decreasing and
increasing respectively.

(C2) If α > 0 and γ > 0, then there exists M ∈ N such that the se-
quences {c2M+2k} and {c2M+2k−1} are monotonely increasing and
decreasing respectively.

Example 15.5.1: For a = 1, b = 2 and c = 3 case (C1) of Theorem 15.5.1
applies with M = 1. This is easily verified from

c2k+1 =
(1 + k)2

(3 + 2k)(4 + 2k)
, k ∈ N0, c2k =

(2 + k)2

(2 + 2k)(3 + 2k)
, k ∈ N.

For a = 1, b = 1/3 and c = 4 we have case (C2) with

c2k+1 =
(1 + k)(11/3 + k)
(4 + 2k)(5 + 2k)

, k ∈ N0, c2k =
(1/3 + k)(3 + k)
(3 + 2k)(4 + 2k)

, k ∈ N.

The sequence {c2k+1} is increasing from k = 0 to k = 18 and decreasing
from k = 18 on. The sequence {c2k} is increasing from k = 1 on. Hence
M = 18 in case (C2).
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15.6 Hypergeometric series pFq

The hypergeometric series pFq is defined in (15.1.1). For the special case
ap = aq+1 = a and bq = 1 we get the series representation

q+1Fq(a, a, . . . , a; 1, 1, . . . , 1; z) = 1 +
∞∑

n=1

(
(a)n

n!

)q+1

zn, q ∈ N.

(15.6.1)
Euler’s integral (15.2.1) for the function 2F1(a, b; c; z) can be generalised
to [AAR99, p. 67]

p+1Fq+1(a1, . . . , ap+1; b1, . . . , bq+1; z) =
Γ(bq+1)

Γ(ap+1)Γ(bq+1 − ap+1)
×∫ 1

0

tap+1−1(1− t)bq+1−ap+1−1
pFq(a1, . . . , ap; b1, . . . , bq; zt) dt,

�bq+1 > �ap+1. (15.6.2)

The special case p = 1, q = 0 and a2 = 1 leads to the Stieltjes transform
(15.2.2), as discussed in Section 15.2. The derivative of the hypergeometric
series pFq is given by

d

dz

(
pFq(a1, . . . , ap; b1, . . . , bq; z)

)
=∏p

k=1 ak∏q
k=1bk

pFq((a1 + 1), . . . , (ap + 1); (b1 + 1), . . . , (bq + 1); z).

(15.6.3)

Continued fractions for the hypergeometric series 3F2. For hy-
pergeometric series pFq with p ≤ q + 2 [AAR99] (q + 2)-term recurrence
relations exist. Under certain conditions, these relations become three-term
recurrence relations. Such three-term recurrence relations can be used to
obtain continued fraction representations for ratios of contiguous hyper-
geometric series, as described in Section 3.6. In particular, for the series
3F2(a, b, c; d, e; z) there exist four-term recurrence relations which, for the
special case z = 1, reduce to three-term recurrence relations for contiguous
series 3F2(a, b, c; d, e; 1) [DS00]. Observe that the series 3F2(a, b, c; d, e; 1)
converges for

�(d + e− a− b− c) > 0.

From these recurrence relations the following continued fraction represen-
tations can be obtained (the original paper contains several typographical



316 15. HYPERGEOMETRIC FUNCTIONS

errors which are hereby removed):

3F2(a, b, c; d, e; 1)
3F2(a + 1, b, c; d, e; 1)

= 1− bc/d

e− a− 1 +
(a + 1)(d− b)(d− c)/d(d + 1)

1 −
(d− a)(b + 1)(c + 1)/(d + 1)(d + 2)

e− a− 1 +
(a + 2)(d− b + 1)(d− c + 1)/(d + 2)(d + 3)

1 −
(d− a + 1)(b + 2)(c + 2)/(d + 3)(d + 4)

e− a− 1 + . . .
, (15.6.4)

3F2(a, b, c; d, e; 1)
3F2(a, b, c; d + 1, e; 1)

= 1 +
abc/d(d + 1)

d + e− a− b− c −
(1 + d− a)(1 + d− b)(1 + d− c)/(d + 1)(d + 2)

1 +
(a + 1)(b + 1)(c + 1)/(d + 2)(d + 3)

d + e− a− b− c −
(2 + d− a)(2 + d− b)(2 + d− c)/(d + 3)(d + 4)

1 +
(a + 2)(b + 2)(c + 2)/(d + 4)(d + 5)

d + e− a− b− c − . . .
, (15.6.5)

3F2(a, b, c; d, e; 1)
3F2(a + 1, b, c; d + 1, e; 1)

= 1− (d− a)bc/d(d + 1)
(e− a− 1) +

(a + 1)(d− b + 1)(d− c + 1)/(d + 1)(d + 2)
1 −

(1 + d− a)(1 + b)(1 + c)/(d + 2)(d + 3)
(e− a− 1) + . . .

(a + 2)(d− b + 2)(d− c + 2)/(d + 3)(d + 4)
1 − . . .

, (15.6.6)
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3F2(a, b, c; d, e; 1)
3F2(a, b + 1, c + 1; d + 1, e + 1; 1)

=
e− a

e
+

a(d− b)(d− c)/ed(d + 1)
1 −

(d− a + 1)(b + 1)(c + 1)/(e + 1)(d + 1)(d + 2)
(e− a)/(e + 1) +

(a + 1)(d− b + 1)(d− c + 1)/(e + 1)(d + 2)(d + 3)
1 −

(d− a + 2)(b + 2)(c + 2)/(e + 2)(d + 3)(d + 4)
(e− a)/(e + 2) + . . .

. (15.6.7)

Example 15.6.1: Let a = 0, b = c = d = 1 and e = 2 in the continued
fraction representation (15.6.6). Then we get

3F2(1, 1, 1; 2, 2; 1) =
∞∑

m=1

1
m2

=
π2

6
= ζ(2) =

1
1 −

1/2
1 +

1/6
1 −

2/3
1 +

2/5
1 − . . .

.
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Confluent

hypergeometric functions

The confluent hypergeometric function 1F1(a; b; z) can be obtained as the
result of a limit process applied to the hypergeometric function 2F1(a, b; c; z)
introduced in Chapter 15. It is closely related to the Kummer functions, the
Whittaker functions and the parabolic cylinder functions discussed here,
and to the incomplete gamma functions discussed in Chapter 12.
Likewise the confluent hypergeometric limit function 0F1(; b; z) is obtained
by applying a limit process to 1F1(a; b; z), and the formal confluent hyper-
geometric series 2F0(a, b; z) is the result of another limit process applied
to 2F1(a, b; c; z).

16.1 Kummer functions

Definitions and elementary properties. The second-order differential
equation [AS64, p. 504]

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0, a ∈ C, b ∈ C \ Z−

0 (16.1.1)

is called the confluent hypergeometric differential equation or Kummer’s
differential equation. It can be obtained from the differential equation
(15.1.2) by letting p = 1 and q = 1, or from the hypergeometric differential
equation (15.1.3) by replacing z with z/a and taking the limit a →∞, or
by replacing z with z/b and taking the limit b →∞.
Equation (16.1.1) has a regular singularity at the origin and an irregular
singularity at infinity. Among the solutions are the Kummer functions
M(a, b, z) and U(a, b, z).
The solution M(a, b, z) with initial conditions w(0) = 0 and (dw/dz)(0) =
a/b is called the confluent hypergeometric function of the first kind or Kum-
mer’s confluent hypergeometric function of the first kind. It has a hyper-
geometric series representation with one parameter in the numerator, here

319
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denoted a, and one parameter in the denominator, here denoted b. The
series is given by

M(a, b, z) := 1F1(a; b; z) =
∞∑

k=0

(a)k

(b)k

zk

k!
, z ∈ C, a ∈ C, b ∈ C \ Z−

0 .

(16.1.2)
– – –
– – –
– – –

It converges locally uniformly in C to an entire function [AS64, p. 504].
The confluent hypergeometric function of the first kind (16.1.2) can be
obtained from the Gauss hypergeometric series

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
, a, b ∈ C, c ∈ C \ Z−

0

introduced in (15.1.4). The limit process used to obtain the confluent
hypergeometric differential equation (16.1.1) gives [SO87, p. 461]

lim
a→∞ 2F1

(
a, b; c;

z

a

)
= M(b, c, z) = 1F1(b; c; z), (16.1.3a)

lim
b→∞ 2F1

(
a, b; c;

z

b

)
= M(a, c, z) = 1F1(a; c; z). (16.1.3b)

Observe that we use the notation 1F1(a; b; z).
If we apply the same limit process to the two linearly independent solutions
(15.1.6) and (15.1.7) of (15.1.3), we find the two linearly independent solu-
tions 1F1(a; b; z) and z1−b

1F1(a− b + 1; 2− b; z) of (16.1.1). The function
M(a, b, z) is the first of these. The function U(a, b, z) is a linear combina-
tion of these two solutions and is given by [SO87, p. 471]

U(a, b, z) :=

Γ(1− b)
Γ(a− b + 1) 1F1(a; b; z) + z1−b Γ(b− 1)

Γ(a) 1F1(a− b + 1; 2− b; z),

z ∈ C, a ∈ C, b ∈ C \ Z. (16.1.4)

The function U(a, b, z) is called the confluent hypergeometric function of
the second kind or Kummer’s confluent hypergeometric function of the sec-
ond kind. Other frequently used names are the Tricomi function and the
Gordon function.
We have

1F1(0; b; z) = U(0, b, z) = 1. (16.1.5)

The identities

1F1(a; b; z) = ez
1F1(b− a; b;−z), (16.1.6a)

U(a, b, z) = z1−bU(a− b + 1, 2− b, z) (16.1.6b)
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are known as Kummer transformations [AS64, p. 505].
There are several connections between the confluent hypergeometric func-
tions and the elementary functions as well as the error function, the loga-
rithmic integral and functions related to the gamma function.

Example 16.1.1:

1F1(1; a + 1; z) = az−aezγ(a, z), (16.1.7a)

1F1(a; a + 1;−z) = az−aγ(a, z), (16.1.7b)

1F1(a; a; z) = ez, (16.1.7c)

U(a, a + 1, z) = z−a, (16.1.7d)

1F1(1; 2; 2z) =
ez

z
sinh(z), (16.1.7e)

U(a, a, z) = ezΓ(1− a, z), (16.1.7f)

U(1, 1, z) = −ez li(e−z), (16.1.7g)

1F1

(
1/2; 3/2;−z2

)
=
√

π

2z
erf(z). (16.1.7h)

The derivative of the functions 1F1(a; b; z) and U(a, b, z) is given by [AS64,
p. 507]

d

dz
1F1(a; b; z) =

a

b
1F1(a + 1; b + 1; z), (16.1.8a)

d

dz
U(a, b, z) = −aU(a + 1, b + 1, z). (16.1.8b)

Recurrence relations. Recurrence relations for the function 1F1(a, b; z)
are given by [AS64, pp. 506–507]:

1F1(a + 1; b; z) = (2a−b+z)
a 1F1(a; b; z) + (b−a)

a 1F1(a− 1; b; z),
(16.1.9a)

1F1(a; b + 1; z) = b(b−1+z)
(b−a)z 1F1(a; b; z)− b(b−1)

(b−a)z 1F1(a; b− 1; z),
(16.1.9b)

1F1(a + 1; b + 1; z) = b(1−b+z)
az 1F1(a; b; z) + b(b−1)

az 1F1(a− 1; b− 1; z).
(16.1.9c)
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The function U(a, b, z) satisfies the recurrence relations [AS64, pp. 506–
507]

U(a + 1, b, z) =
(2a− b + z)
a(a− b + 1)

U(a, b, z)− 1
a(a− b + 1)

U(a− 1, b, z),
(16.1.10a)

U(a, b + 1, z) =
(b− 1 + z)

z
U(a, b, z) +

(a− b + 1)
z

U(a, b− 1, z),
(16.1.10b)

U(a + 1, b + 1, z) =
(b− 1 + z)

az
U(a, b, z)− 1

az
U(a− 1, b− 1, z).

(16.1.10c)

Asymptotic series expansion. An asymptotic series expansion of the
confluent hypergeometric function of the second kind is given by [SO87,
p. 474; AS64, p. 508]

U(a, b, z) ≈ z−a
2F0

(
a, a− b + 1;−z−1

)
, z →∞, | arg z| < 3π

2
,

(16.1.11)
where 2F0(a, b; z) is the divergent hypergeometric series

2F0(a, b; z) =
∞∑

k=0

(a)k(b)k
zk

k!
, a, b ∈ C. (16.1.12)

For Kummer functions of the first kind, the continued fraction represen-
tations given in this section are obtained by applying the limit process
(16.1.3) to the continued fraction representations for ratios of Gauss hy-
pergeometric series given in Chapter 15. The continued fractions are given
for the ratio 1F1(a; b; z)/1F1(a + 1; b + 1; z), which is closely related to the
logarithmic derivative of 1F1(a; b; z) because of (16.1.8). As a special case,
continued fractions for 1F1(1; b + 1; z) can be derived. Continued frac-
tion representations for other ratios of Kummer functions of the first kind
can be obtained by applying the Kummer transformations (16.1.6) to the
continued fractions in this section.

C-fractions. From applying the limit process (16.1.3a) to the continued
fraction representation (15.3.3) for the ratio 2F1(a, b; c; z/a)/2F1(a, b+1; c+
1; z/a), we get the regular C-fraction expansion [JT80, p. 206]

1F1(a; b; z)
1F1(a + 1; b + 1; z)

= 1 +
∞

K
m=1

(amz

1

)
, z ∈ C,

a ∈ C, b ∈ C \ Z−
0 , (16.1.13a)
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where the coefficients am are given by

a2k+1 =
−(b− a + k)

(b + 2k)(b + 2k + 1)
, k ≥ 0,

a2k =
a + k

(b + 2k − 1)(b + 2k)
, k ≥ 1.

(16.1.13b)

Since limm→∞ am = 0, use of a modification when evaluating (16.1.13) is
not interesting.
From (16.1.5) and (16.1.13) we obtain the C-fraction representation

z 1F1(1; b + 1; z) =
∞

K
m=1

(cmz

1

)
, z ∈ C, b ∈ C \ Z−

0 , (16.1.14a)
– – –
– – –
– – –

where

c1 = 1, c2k =
−(b + k − 1)

(b + 2k − 2)(b + 2k − 1)
, k ≥ 1,

c2k+1 =
k

(b + 2k − 1)(b + 2k)
, k ≥ 1.

(16.1.14b)

It is illustrated in the Tables 16.1.1 and 16.1.2, for z = 1 and varying b.
For �b > 0, the continued fraction (16.1.14) is already given in (12.6.23a)
and represents the function bz1−bezγ(b, z).

Example 16.1.2: Let a = 0 and b = 1 in (16.1.13). Then we obtain the
C-fraction representation given in (11.1.3),

1F1(1; 2; z) =
ez − 1

z
= 2 sinh

(z

2

)
=

∞

K
m=1

(cmz

1

)
, z ∈ C,

with

c1 = 1, c2k+2 =
−1

2(2k + 1)
, k ≥ 0, c2k+1 =

1
2(2k + 1)

, k ≥ 1.

Padé approximants. We get Padé approximants rm,n(z) for the ra-
tio 1F1(b + 1; c + s + 1; z)/1F1(b; c; z) of confluent hypergeometric func-
tions by using the limit process (16.1.3) and Theorem 15.4.1 [WB93]. Let
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Vm,n(a, b; c; z) be given by (15.4.2). Then for m ≥ n− 1 and, if b �= 0 also
for m ≤ n− s, we find

rm,n(z) =
Vm,n−1(∞, b + 1; c + s + 1; z)

Vm+s,n(∞, b; c; z)
, s ∈ {−1, 0, 1},

(16.1.15a)
where

Vm,n(∞, b; c; z) := lim
a→∞Vm,n

(
a, b; c;

z

a

)
= Pm+n+1 (1F1(b; c; z) 1F1(−b− n;−c−m− n;−z)) .

(16.1.15b)

For the confluent hypergeometric function 1F1(1; b; z) the following nor-
mality result can be stated.

Theorem 16.1.1: [dB77]

The Padé approximants rm,n(z) for the confluent hypergeometric function
1F1(1; b; z) with m ≥ n and b ∈ C \ Z−

0 are normal.

T-fractions. Applying the limit process (16.1.3a) to the general T-fraction
(15.3.8), we obtain the T-fraction [JT80, pp. 278–281]

1F1(a; b; z)
1F1(a + 1; b + 1; z)

=
b− z

b
+

1
b

∞

K
m=1

(
(a + m)z
b + m− z

)
, z ∈ C,

a ∈ C, b ∈ C \ Z−
0 . (16.1.16a)

The continued fraction in (16.1.16a) corresponds at z = ∞ to

−z

b

2F0

(
a, a− b + 1;−z−1

)
2F0(a + 1, a− b + 1;−z−1)

, (16.1.16b)

where the series 2F0(a, b; z) is given by (16.1.12). Applying the limit pro-
cess (16.1.3) to the Nörlund fraction (15.3.13) also leads to the continued
fraction representation (16.1.16).
From (16.1.5) and (16.1.16) we obtain the M-fraction representation

1F1(1; b + 1; z) =
b

b− z +

∞

K
m=1

(
mz

b + m− z

)
, z ∈ C, b ∈ C \ Z−

0 .

(16.1.17)
– – –
– – –
– – –

It is illustrated for z = 1 and varying b in the Tables 16.1.1 and 16.1.2. For
�b > 0 the continued fraction (16.1.17) is already given in (12.6.30) and
represents the function bz−bezγ(b, z).
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For neither (16.1.16) nor (16.1.17), use of a modification is recommended,
since the partial numerators in the equivalent representations K∞

m=1 (am/1)
tend to zero.

Example 16.1.3: For a = 0 and b = 1/2 in (16.1.16) we obtain the
M-fraction

1/2
1/2− z2 +

∞

K
m=1

(
mz2

m + 1/2− z2

)
, z ∈ C. (16.1.18)

The continued fraction (16.1.18) corresponds at z = 0 to the convergent
series (13.1.8),

1F1

(
1; 3/2; z2

)
=

1
2z

√
πez2

erf(z),

and at z = ∞ to
−1

2
z−2

2F0(1, 1/2;−z−2).

The continued fraction (16.1.18) multiplied by 2z2 is equivalent to the
T-fraction expansion (13.1.13a) given in Chapter 13.

Two-point Padé approximants. Let Pn,k(a, b, c, z) be given by (15.4.9)
and define

Pn,k(∞, b, c, z) := lim
a→∞Pn,k(a, b, c, z/a), 0 ≤ k ≤ n

= Pn(1F1(b; c; z) 1F1(−b− n; 1− c− k − n;−z)),

where the operator Pn is defined in (15.4.1). The two-point Padé approx-
imant r

(2)
n+k,n−k(z) corresponding at z = 0 and at z = ∞ respectively to

L0(z) = Λ0

(
1F1(a + 1; b + 1; z)

1F1(a; b; z)

)
,

L∞(z) = Λ∞

(
− b

z
2F0(a + 1, a− b + 1;−z−1)

2F0(a, a− b + 1;−z−1)

)
is given by [WB95]

r
(2)
n+k,n−k(z) =

Pn−1,k(∞, a + 1, b, z)
Pn,k(∞, a, b, z)

, 0 ≤ k ≤ n.
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J-fractions. Let uk = (a)kU(a + k, b, z) where (a)k is the Pochhammer
symbol defined in (12.1.7). Then it follows from the recurrence relation
(16.1.10a) that [Tem83]

un+1 =
2a− b + 2n + z

a− b + n + 1
un − a + n− 1

a− b + n + 1
un−1, n ≥ 1. (16.1.19)

The sequence {un}n∈N is a minimal solution of this three-term recurrence
relation [Tem83]. From applying Pincherle’s Theorem 3.6.1 we find a J-
fraction for the ratio

U(a, b, z)
U(a + 1, b, z)

= 2a− b + 2 + z −
∞

K
m=1

(
(a + m)(b− a−m− 1)

b− 2a− 2m− 2− z

)
,

z ∈ C, a ∈ C, b ∈ C \ Z. (16.1.20)

Combined with the relation [AS64, p. 507]

U(a + 1, b, z) =
1

1 + a− b
U(a, b, z) +

z

a(1 + a− b)
U ′(a, b, z) (16.1.21)

a J-fraction for the logarithmic derivative of U(a, b, z) is obtained:

dU(a, b, z)/dz

U(a, b, z)
= −a

z
+

a(1 + a− b)/z

2a− b + 2 + z −
∞

K
m=1

(
(a+m)(b−a−m−1)

b−2a−2m−2−z

)
,

z ∈ C, a ∈ C, b ∈ C \ Z. (16.1.22)
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Table 16.1.1: Relative error of the 5th partial sum of (16.1.2) and the 5th

approximants of (16.1.14) and (16.1.17), for a = 0 and b ∈ C \ Z−
0 .

x 1F1(1;x; 1) (16.1.2) (16.1.14) (16.1.17)
−100.25 9.901244e−01 1.1e−12 2.2e−14 1.2e−18

−50.25 9.804954e−01 8.4e−11 3.1e−12 1.3e−15

−10.25 9.118584e−01 2.8e−06 2.5e−06 2.0e−06

−5.25 9.097331e−01 7.5e−02 7.2e−02 7.2e−02

−1.25 1.128766e+01 2.6e−02 4.4e−01 9.4e−01

−0.75 −1.258138e+01 1.3e−02 1.5e−01 1.1e+00

0.15 1.726993e+01 2.8e−03 1.3e−02 9.3e−01

0.95 2.832945e+00 6.5e−04 1.6e−03 7.7e−01

3.25 1.396433e+00 3.0e−05 2.7e−05 1.2e−04

7.25 1.156651e+00 1.2e−06 4.5e−07 1.2e−07

20.25 1.051816e+00 7.3e−09 8.4e−10 7.8e−12

70.25 1.014437e+00 6.7e−12 2.0e−13 3.8e−17

200.25 1.005019e+00 1.4e−14 1.5e−16 1.1e−21

x |1F1(1;x + ix; 1)|s (16.1.2) (16.1.14) (16.1.17)
−100.25 9.950247e−01 1.3e−13 1.8e−15 3.7e−20

−50.25 9.900978e−01 9.0e−12 2.4e−13 3.8e−17

−10.25 9.522613e−01 2.2e−07 2.6e−08 3.8e−10

−5.25 9.084042e−01 2.2e−05 5.1e−06 5.0e−07

−1.25 7.380543e−01 2.0e−02 2.7e−01 6.1e−01

−0.75 −1.617730e+00 1.8e−02 1.9e−01 1.3e+00

0.15 1.205642e+01 2.8e−03 1.3e−02 9.5e−01

0.95 1.910744e+00 5.5e−04 1.3e−03 9.1e−02

3.25 1.172973e+00 1.3e−05 8.3e−06 1.0e−05

7.25 1.071925e+00 3.1e−07 7.8e−08 6.4e−09

20.25 1.025020e+00 1.3e−09 9.6e−11 2.9e−13

70.25 1.007143e+00 9.3e−13 1.9e−14 1.2e−18

200.25 1.002500e+00 1.9e−15 1.3e−17 3.6e−23
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x |1F1(1; ix; 1)|s (16.1.2) (16.1.14) (16.1.17)
−100.25 9.999502e−01 9.8e−13 2.0e−14 1.2e−18

−50.25 9.998019e−01 6.2e−11 2.5e−12 1.2e−15

−10.25 9.951842e−01 7.1e−07 1.6e−07 1.1e−08

−5.25 9.810739e−01 2.5e−05 1.5e−05 1.1e−05

−1.25 1.153210e+00 3.1e−03 1.2e−02 4.7e−01

−0.75 −2.525707e+00 3.7e−03 1.7e−02 1.2e+00

0.15 −1.780178e+01 3.7e−03 1.9e−02 1.0e+00

0.95 1.729564e+00 3.6e−03 1.6e−02 9.9e−01

3.25 9.492770e−01 2.1e−04 2.8e−04 1.3e−03

7.25 9.902626e−01 4.7e−06 1.7e−06 3.8e−07

20.25 9.987770e−01 1.4e−08 1.4e−09 1.1e−11

70.25 9.998987e−01 8.3e−12 2.4e−13 4.1e−17

200.25 9.999875e−01 1.6e−14 1.5e−16 1.2e−21

x |1F1(1;x− ix; 1)|s (16.1.2) (16.1.14) (16.1.17)
−100.25 9.950247e−01 1.3e−13 1.8e−15 3.7e−20

−50.25 9.900978e−01 9.0e−12 2.4e−13 3.8e−17

−10.25 9.522613e−01 2.2e−07 2.6e−08 3.8e−10

−5.25 9.084042e−01 2.2e−05 5.1e−06 5.0e−07

−1.25 7.380543e−01 2.0e−02 2.7e−01 6.1e−01

−0.75 −1.617730e+00 1.8e−02 1.9e−01 1.3e+00

0.15 1.205642e+01 2.8e−03 1.3e−02 9.5e−01

0.95 1.910744e+00 5.5e−04 1.3e−03 9.1e−02

3.25 1.172973e+00 1.3e−05 8.3e−06 1.0e−05

7.25 1.071925e+00 3.1e−07 7.8e−08 6.4e−09

20.25 1.025020e+00 1.3e−09 9.6e−11 2.9e−13

70.25 1.007143e+00 9.3e−13 1.9e−14 1.2e−18

200.25 1.002500e+00 1.9e−15 1.3e−17 3.6e−23
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Table 16.1.2: Relative error of the 20th partial sum of (16.1.2) and the
20th approximants of (16.1.14) and (16.1.17), for a = 0 and b ∈ C \ Z−

0 .

x 1F1(1;x; 1) (16.1.2) (16.1.14) (16.1.17)
−100.25 9.901244e−01 9.0e−42 8.6e−53 6.3e−61

−50.25 9.804954e−01 2.5e−34 3.4e−42 2.5e−47

−10.25 9.118584e−01 4.1e−13 2.3e−08 2.0e−06

−5.25 9.097331e−01 4.3e−14 1.4e−14 3.2e−05

−1.25 1.128766e+01 6.3e−18 2.4e−20 2.7e−11

−0.75 −1.258138e+01 1.6e−18 3.9e−21 2.5e−12

0.15 1.726993e+01 9.9e−20 1.2e−22 2.9e−14

0.95 2.832945e+00 8.7e−21 5.7e−24 6.5e−16

3.25 1.396433e+00 3.3e−23 4.7e−27 1.2e−22

7.25 1.156651e+00 4.1e−26 6.6e−31 6.7e−29

20.25 1.051816e+00 1.2e−31 1.6e−38 3.4e−40

70.25 1.014437e+00 1.1e−40 2.6e−51 4.6e−58

200.25 1.005019e+00 1.7e−49 7.4e−64 4.4e−75

x |1F1(1;x + ix; 1)|s (16.1.2) (16.1.14) (16.1.17)
−100.25 9.950247e−01 1.9e−45 4.7e−58 1.0e−67

−50.25 9.900978e−01 1.0e−38 2.1e−48 5.0e−55

−10.25 9.522613e−01 3.7e−23 1.8e−25 4.1e−24

−5.25 9.084042e−01 8.5e−20 2.6e−21 8.6e−17

−1.25 7.380543e−01 4.2e−18 1.5e−20 6.9e−13

−0.75 −1.617730e+00 2.0e−18 4.9e−21 5.0e−13

0.15 1.205642e+01 9.9e−20 1.2e−22 2.0e−14

0.95 1.910744e+00 7.0e−21 4.5e−24 1.5e−17

3.25 1.172973e+00 9.9e−24 1.1e−27 4.9e−24

7.25 1.071925e+00 4.0e−27 3.4e−32 3.7e−31

20.25 1.025020e+00 1.8e−33 5.1e−41 5.8e−44

70.25 1.007143e+00 2.6e−43 5.1e−55 3.3e−63

200.25 1.002500e+00 1.9e−52 4.6e−68 9.0e−81



330 16. CONFLUENT HYPERGEOMETRIC FUNCTIONS

x |1F1(1; ix; 1)|s (16.1.2) (16.1.14) (16.1.17)
−100.25 9.999502e−01 8.3e−43 2.8e−54 1.9e−62

−50.25 9.998019e−01 1.1e−36 1.7e−45 1.2e−50

−10.25 9.951842e−01 4.0e−25 4.0e−29 2.1e−27

−5.25 9.810739e−01 2.4e−22 1.4e−25 1.5e−21

−1.25 1.153210e+00 1.2e−19 1.5e−22 1.6e−15

−0.75 −2.525707e+00 1.6e−19 2.0e−22 7.0e−15

0.15 −1.780178e+01 1.6e−19 2.1e−22 6.4e−14

0.95 1.729564e+00 1.5e−19 1.9e−22 4.0e−15

3.25 9.492770e−01 4.9e−21 4.7e−24 9.8e−19

7.25 9.902626e−01 1.6e−23 4.9e−27 4.8e−24

20.25 9.987770e−01 2.4e−29 5.4e−35 4.1e−36

70.25 9.998987e−01 1.3e−39 1.0e−49 2.4e−56

200.25 9.999875e−01 4.5e−49 3.1e−63 2.0e−74

x |1F1(1;x− ix; 1)|s (16.1.2) (16.1.14) (16.1.17)
−100.25 9.950247e−01 1.9e−45 4.7e−58 1.0e−67

−50.25 9.900978e−01 1.0e−38 2.1e−48 5.0e−55

−10.25 9.522613e−01 3.7e−23 1.8e−25 4.1e−24

−5.25 9.084042e−01 8.5e−20 2.6e−21 8.6e−17

−1.25 7.380543e−01 4.2e−18 1.5e−20 6.9e−13

−0.75 −1.617730e+00 2.0e−18 4.9e−21 5.0e−13

0.15 1.205642e+01 9.9e−20 1.2e−22 2.0e−14

0.95 1.910744e+00 7.0e−21 4.5e−24 1.5e−17

3.25 1.172973e+00 9.9e−24 1.1e−27 4.9e−24

7.25 1.071925e+00 4.0e−27 3.4e−32 3.7e−31

20.25 1.025020e+00 1.8e−33 5.1e−41 5.8e−44

70.25 1.007143e+00 2.6e−43 5.1e−55 3.3e−63

200.25 1.002500e+00 1.9e−52 4.6e−68 9.0e−81

16.2 Confluent hypergeometric series 2F0

The confluent hypergeometric series 2F0(a, b; z) can be obtained from the
hypergeometric series 2F1(a, b; c; z) by taking the limit termwise [LW92,
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p. 316],
lim

c→∞ 2F1(a, b; c; cz) = 2F0(a, b; z). (16.2.1)

It is easy to verify that

2F0(0, b; z) = 2F0(a, 0; z) = 1. (16.2.2)

Recurrence relations. The hypergeometric series 2F0(a, b; z) satisfies
the recurrence relations

2F0(a + 1, b; z) = 1+(a−b)z
az 2F0(a, b; z)− 1

az 2F0(a− 1, b; z), (16.2.3a)

2F0(a + 1, b + 1; z) = 1−(a+b−1)z
abz2 2F0(a, b; z)− 1

abz2 2F0(a− 1, b− 1; z).
(16.2.3b)

Applying the limit process (16.2.1), when possible, to the continued frac-
tion representations for ratios of Gauss hypergeometric series given in
Chapter 15, leads to continued fraction representations for ratios of hy-
pergeometric series 2F0(a, b; z).

C-fraction. Applying the limit process (16.2.1) to the C-fraction repre-
sentation (15.3.3) for the ratio 2F1(a, b; c; cz)/2F1(a, b+1; c+1; cz), we get
the regular C-fraction [LW92, p. 316]

1 +
∞

K
m=1

(amz

1

)
, z ∈ C \ (0, +∞), a, b ∈ C (16.2.4a)

where

a1 = −a, a2k = −(b + k), a2k+1 = −(a + k), k ≥ 1. (16.2.4b)

The C-fraction (16.2.4) corresponds at z = 0 to the ratio

2F0(a, b; z)
2F0(a, b + 1; z)

and converges to a meromorphic function in C \ (0, +∞).
As a special case, the C-fraction corresponding to z−1

2F0(1, 1− a;−z−1)
at z = ∞ is given in (12.6.17). It converges to z−aezΓ(a, z).

Padé approximants. Applying the limit process (16.2.1), we find in a
similar way as for the function 1F1(a; b; z) that for m ≥ n − 1 and, if
b �= 0 also for m ≤ n − s, the Padé approximants rm,n(z) for the ratio
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2F0(a+ s, b+1; z)/2F0(a, b; z) of confluent hypergeometric series are given
by

rm,n(z) =
Vm,n−1(a + s, b + 1;∞; z)

Vm+s,n(a, b;∞; z)
, s ∈ {−1, 0, 1}, (16.2.5a)

where

Vm,n(a, b;∞; z) := lim
c→∞Vm,n (a, b; c; cz)

= Pm+n+1 (2F0(a; b; z) 2F0(−a−m;−b− n;−z)) .
(16.2.5b)

The following theorems give results on the normality of the Padé table for
the hypergeometric series 2F0(a, 1; z).

Theorem 16.2.1: [dB77]

The Padé table for the confluent hypergeometric series 2F0(a, 1; z) with
a > 0 is normal.

Theorem 16.2.2: [dB77]

The Padé approximants rm,n(z) for the confluent hypergeometric series
2F0(a, 1; z) with m ≥ n and a ∈ C \ Z−

0 are normal.

Another continued fraction. Applying the limit process (16.2.1) to the
Nörlund fraction (15.3.13) gives the continued fraction

1− (a + b + 1)z +
∞

K
m=1

( −(a + m)(b + m)z2

1− (a + b + 2m + 1)z

)
,

| arg(−z)| < π/2, a, b ∈ C, (16.2.6a)

corresponding at z = ∞ to

2F0(a, b; z)
2F0(a + 1, b + 1; z)

(16.2.6b)

and converging to a meromorphic function for | arg(−z)| < π/2. This con-
tinued fraction can also be obtained from the J-fraction (16.1.20) for a ratio
of Kummer functions of the second kind by using the relation (16.1.11).
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16.3 Confluent hypergeometric limit function
The solution to the differential equation [Wei03, p. 512]

z
d2w

dz2
+ b

dw

dz
− w = 0

with initial conditions w(0) = 1 and (dw/dz)(0) = 1/b is called the conflu-
ent hypergeometric limit function. Its Taylor series expansion at z = 0 is
given by

0F1(; b; z) =
∞∑

m=0

zm

(b)mm!
, z ∈ C, b ∈ C \ Z−

0 . (16.3.1)

In a similar way as for the confluent hypergeometric functions, the function
0F1(; b; z) can be obtained from the limit process

lim
a→∞ 1F1

(
a; b;

z

a

)
= 0F1(; b; z), b ∈ C \ Z−

0 . (16.3.2)

A relation between 1F1(a; b; z) and 0F1(; a; z) is given by the Kummer
transformation [AAR99]

1F1(a; 2a; 4z) = e2z
0F1(; a + 1/2; z2). (16.3.3)

Recurrence relation. The confluent hypergeometric limit function sat-
isfies the recurrence relation

0F1(; b + 1; z) =
b(b− 1)

z
0F1(; b; z)− b(b− 1)

z
0F1(; b− 1; z).

C-fraction. Applying the limit process (16.3.2) to all continued fraction
representations for ratios of Kummer functions of the first kind given in
Section 16.1 leads to the C-fraction representation [Wal48, p. 347; JT88,
pp. 209–210]:

0F1(; b; z)
0F1(; b + 1; z)

= 1 +
∞

K
m=1

(
1

(b−1+m)(b+m)z

1

)
, z ∈ C, b ∈ C \ Z−

0 .

(16.3.4)

Padé approximants. We also find Padé approximants rm,n(z) for the
ratio 0F1(; c + s + 1; z)/0F1(; c; z) by using (16.1.15) and the limit process
(16.3.2):

rm,n(z) =
Vm,n−1(∞,∞; c + s + 1; z)

Vm+s,n(∞,∞; c; z)
,

n− 1 ≤ m ≤ n− s, s ∈ {0, 1}, (16.3.5a)
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with

Vm,n(∞,∞; c; z) := lim
b→∞

Vm,n(∞, b; c;
z

b
)

= Pm+n+1 (0F1(; c; z) 0F1(;−c−m− n; z)) .
(16.3.5b)

T-fraction. By applying the Kummer transformation (16.1.6a) to the
T-fraction (16.1.16), we find a T-fraction for 1F1(a; b; z)/1F1(a; b + 1; z).
Using (16.3.3), this leads to

0F1(; b; z)
0F1(; b + 1; z)

= 1 +
√

z

b
+

1
2b

∞

K
m=1

(
cm
√

z

em + dm
√

z

)
, z ∈ C, (16.3.6a)

with

cm = −2(2b + 2m− 1), em = 2b + m, dm = 4, m ≥ 1. (16.3.6b)

16.4 Whittaker functions

Definitions and elementary properties. Whittaker’s differential equa-
tion [WW80, p. 337]

d2W

dz2
+
(
−1

4
+

κ

z
+

1
4 − μ2

z2

)
W = 0 (16.4.1)

can be obtained from Kummer’s differential equation (16.1.1) by the sub-
stitution W (z) = e−

z
2 zμ+ 1

2 w(z), κ = b/2− a and μ = (b− 1)/2. Standard
solutions are [AS64, p. 505]

Mκ,μ(z) = e−
z
2 zμ+ 1

2 M(μ− κ + 1/2; 1 + 2μ, z),

− π < arg z ≤ π, κ ∈ C, 2μ ∈ C \ Z− (16.4.2a)

and

Wκ,μ(z) = e−
z
2 zμ+ 1

2 U(μ− κ + 1/2, 1 + 2μ, z),

− π < arg z ≤ π, κ ∈ C, 2μ ∈ C \ Z− (16.4.2b)

where M(a, b, z) and U(a, b, z) are the Kummer functions (16.1.2) and
(16.1.4) respectively. Conversely we have

M(a, b, z) = e
z
2 z−

b
2 M b−2a

2 , b−1
2

(z), (16.4.3a)

U(a, b, z) = e
z
2 z−

b
2 W b−2a

2 , b−1
2

(z). (16.4.3b)
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As a special case of (16.4.3) we find

zM(1, b + 1, z) = e
z
2 z

1−b
2 M b−1

2 , b
2
(z) = bz−b+1ezγ(b, z), (16.4.4)

where γ(a, z) is the incomplete gamma function (12.6.2).
The following relations also hold:

Wκ,μ(z) =
Γ(−2μ)

Γ( 1
2 − μ− κ)

Mκ,μ(z) +
Γ(2μ)

Γ( 1
2 + μ− κ)

Mκ,−μ(z),

| arg z| < 3π

2
, 2μ ∈ C \ Z, (16.4.5)

W−κ,μ(−z) =
Γ(−2μ)

Γ( 1
2 − μ− κ)

Mκ,μ(−z) +
Γ(2μ)

Γ( 1
2 + μ + κ)

M−κ,−μ(−z),

| arg(−z)| < 3π

2
, 2μ ∈ C \ Z. (16.4.6)

Recurrence relations. The functions Mκ,μ(z) and Wκ,μ(z) satisfy the
recurrence relations [AS64, p. 507]

Mκ+1,μ(z) =
2(2κ− z)

(1 + 2μ + 2κ)
Mκ,μ(z) +

(1 + 2μ− 2κ)
(1 + 2μ + 2κ)

Mκ−1,μ(z),

Wκ+1,μ(z) = (z − 2κ)Wκ,μ(z) + (μ− κ + 1/2) (μ + κ− 1/2) Wκ−1,μ(z) .

Asymptotic series expansion. The asymptotic series expansion for
Wκ,μ(z) is given by [WW80, p. 343]

Wκ,μ(z) ≈ e−z/2zκ
∞∑

j=0

(−κ− μ + 1/2)j (−κ + μ + 1/2)j

(−z)−j

j!

= e−z/2zκ
2F0(−κ− μ + 1/2,−κ + μ + 1/2;−1/z),

z →∞, | arg z| < 3π

2
. (16.4.7)

Stieltjes transform. A function closely related to the Whittaker function
(16.4.2b) and defined by

Ψα,β(z) := z(α+β)/2−1ez/2W−(α+β)/2,(β−α)/2(z), (16.4.8)

can be expressed as the Stieltjes transform (5.2.1) [GH67]:

Ψα,β(z) =
∫ ∞

0

φα,β(t)
z + t

dt, | arg z| < π (16.4.9a)
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where φα,β(t) is the weight function

φα,β(t) =
tα+βe−t

Γ(α + 1
2 )Γ(β + 1

2 )
Ψ−α,−β(t), 0 < t < ∞. (16.4.9b)

The parameters α and β satisfy either

− 1
2

< α, −1
2

< β ≤ 1
2
, (16.4.10a)

or

− 1
2

< β, −1
2

< α ≤ 1
2
. (16.4.10b)

The moments μk(α, β) with respect to the weight function φα,β(t) are given
by

μk(α, β) =
∫ ∞

0

tkφα,β(t) dt =
(−1)k(α + 1

2 )k(β + 1
2 )k

k!
, k ≥ 0.

(16.4.11)

S-fraction. Since the classical Stieltjes moment problem has a solution
φα,β(t) for μk(α, β) given by (16.4.11), it follows from Theorem 5.1.1 that
there exists an S-fraction of the form

a1

z +
a2

1 +
a3

z +
a4

1 + . . .
, am > 0

corresponding to the asymptotic series

Ψα,β(z) ≈
∞∑

k=0

(−1)kμk(α, β)z−k−1 =
∞∑

k=0

(α + 1/2)k (β + 1/2)k

z−k−1

k!
.

(16.4.12)
The moments μk(α, β) satisfy Carleman’s criterion (5.1.16a) and thus the
solution φα,β(t) to the Stieltjes moment problem for the sequence μk(α, β)
is unique. Hence from Theorem 5.2.1, provided (16.4.10) is satisfied, the
S-fraction is convergent and

Ψα,β(z) =
∫ ∞

0

φα,β(t) dt

z + t
=

a1

z +
a2

1 +
a3

z +
a4

1 + . . .
,

| arg z| < π. (16.4.13)

There is no known closed expression for the coefficients am of the S-fraction
(16.4.13), but the coefficients am satisfy the asymptotic behaviour [JS99]

am ∼ m

2
, m →∞. (16.4.14)
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Other continued fraction representations. Because of the close rela-
tions between Kummer functions and Whittaker functions given in (16.4.2)
and (16.4.3), we can obtain continued fraction representations for special
ratios of Whittaker functions. From (16.4.3a) we get

1F1(a; b; z)
1F1(a + 1; b + 1; z)

=
√

z
M b−2a

2 , b−1
2

(z)

M b−2a−1
2 , b

2
(z)

, (16.4.15a)

1F1(a; b; z)
1F1(a; b + 1; z)

=
√

z
M b−2a

2 , b−1
2

(z)

M b−2a+1
2 , b

2
(z)

. (16.4.15b)

The first ratio has the C-fraction representation (16.1.13) and the T-
fraction representation (16.1.16). The C-fraction and T-fraction repre-
sentation for the second ratio can be obtained from (16.1.13) and (16.1.16)
by applying the Kummer transformation (16.1.6). Continued fraction rep-
resentations for the special case M b−1

2 , b
2
(z) are given in Section 12.6 and

obtained from (16.4.4).

Example 16.4.1: For b = 1 in (16.4.4) and (12.6.23a), we obtain the
C-fraction representation

M0, 1
2
(z) = ez/2 − e−z/2 = ze−z/2

∞

K
m=1

(cmz

1

)
where the coefficients are given in Example 16.1.2.

16.5 Parabolic cylinder functions

Definitions and elementary properties. The parabolic cylinder func-
tions arise in the solution of several practical problems expressed in cylin-
drical coordinates. There are a number of slightly different definitions in
use by various authors.
One way of defining the parabolic cylinder functions is as solutions to the
Weber differential equation [WW80, p. 347; GR00, p. 1021]

d2Dν(z)
dz2

+
(

ν +
1
2
− z2

4

)
Dν(z) = 0, ν ∈ C.
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Two independent solutions are Dν(z) and D−ν−1(iz) where

Dν(z) = 2ν/2+1/4z−1/2W ν
2 + 1

4 ,− 1
4

(
z2

2

)
(16.5.1a)

= 2ν/2e−z2/4(−iz)1/4(iz)1/4z1/2U

(
−ν

2
,
1
2
,
z2

2

)
. (16.5.1b)

Here Wκ,μ(z) is the Whittaker function (16.4.2) and U(a, b, z) is the Kum-
mer function of the second kind (16.1.4) which are related by (16.4.2b). In
the right half plane (16.5.1a) is equivalent to

Dν(z) = 2ν/2e−z2/4U

(
−ν

2
,
1
2
,
z2

2

)
, �z > 0. (16.5.2)

The solution D−ν−1(iz) is valid in the range −3π/4 ≤ arg z ≤ π/4.
The solution Dν(z) can be written in terms of the confluent hypergeometric
function 1F1(a; b; z) as [GR00, p. 1018]

Dν(z) = 2
ν
2 e−

z2
4

( √
π

Γ( 1−ν
2 ) 1F1(−ν

2 ; 1
2 ; z2

2 )−
√

2πz

Γ(−ν
2 ) 1F1( 1−ν

2 ; 3
2 ; z2

2 )

)
,

| arg z| ≤ 3
4
π. (16.5.3)

The function Dν(z) is related to two functions, denoted U(a, z) and V (a, z)
and defined by

U(a, z) := D−a− 1
2
(z), (16.5.4)

V (a, z) :=
1
π

Γ
(
a + 1

2

)(
sin(πa)D−a− 1

2
(z) + D−a− 1

2
(−z)

)
. (16.5.5)

The following examples illustrate the connection with the Kummer func-
tions (16.1.2) and (16.1.4) as well as the Whittaker functions (16.4.2).

Example 16.5.1: For b = 1/2 and b = 3/2 the Kummer functions (16.1.2)
and (16.1.4) reduce to

U

(
2a + 1

4
,
1
2
,
z2

2

)
= 2a/2+1/4ez2/4U(a, z),

U

(
2a + 3

4
,
3
2
,
z2

2

)
= 2a/2+3/4ez2/4 1

z
U(a, z),

M

(
2a + 1

4
;
1
2
,
z2

2

)
= 2a/2−5/4Γ

(
2a + 3

4

)
ez2/4(U(a, z) + U(a,−z)),

M

(
2a + 3

4
;
3
2
,
z2

2

)
= 2a/2−7/4Γ

(
2a + 1

4

)
ez2/4

z
(U(a,−z)− U(a, z)).
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Example 16.5.2: For μ = 1/4 and μ = −1/4 the Whittaker functions
(16.4.2) can be written as

W− a
2 ,− 1

4

(
z2

2

)
= 2a/2

√
zU(a, z),

W− a
2 , 1

4

(
z2

2

)
= 2a/2

√
zU(a, z),

M− a
2 ,− 1

4

(
z2

2

)
= 2a/2−1Γ

(
2a + 3

4

)√
z

π
(U(a, z) + U(a,−z)),

M− a
2 , 1

4

(
z2

2

)
= 2a/2−2Γ

(
2a + 1

4

)√
z

π
(U(a,−z) + U(a, z)).

A relation between the parabolic cylinder functions and the repeated in-
tegral for the complementary error function (13.3.1) is given by [AS64,
p. 301]

Inerfc(z) = e−z2/2 (2n − 1)−1/2
D−n−1/2(z

√
2).

For special values of ν the parabolic cylinder functions are related to the
Hermite polynomials Hν(x) defined in (5.5.5), the error function erf(z)
defined in (13.1.1) and the modified Bessel functions of the second kind
Kν(z), defined in (17.2.7):

Dν(x) = 2−ν/2e−x2/4Hν

(
x√
2

)
, ν ∈ C \ Z−

0 ,

D−1(x) = ez2/4
(π

2

)1/2

erf
(

z√
2

)
,

D−1/2(z) =
( z

2π

)1/2

K1/4

(
z2

4

)
.

Recurrence relations.
The parabolic cylinder functions Dν(z) satisfy the recurrence relations

Dν+1(z) = zDν(z)− νDν−1(z),
dDν

dz
= −z

2
Dν(z) + νDν−1(z).

The functions U(a, x) and V (a, x) defined by (16.5.4) and (16.5.5), respec-
tively, satisfy the recurrence relations [GST06b]

U(a− 1, x) = xU(a, x) + (a +
1
2
)U(a + 1, x), (16.5.6a)

V (a + 1, x) = xV (a, x) + (a− 1
2
)V (a− 1, x). (16.5.6b)
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C-fraction. It can be shown [GST06b] that {U(a+n, x)}n∈N is a minimal
solution of (16.5.6a) for x > 0. Hence, applying Pincherle’s Theorem 3.6.1
to the recurrence relation (16.5.6a), we obtain [SG98]

U(a, x)
U(a− 1, x)

=
1
x +

∞

K
m=2

(
a + m− 3/2

x

)
,

x > 0, a �= −k + 1/2, k ∈ N. (16.5.7)
– – –
– – –
– – –

Since the partial numerators tend to infinity, use of the modification

w̃n(x) =
−x +

√
4(a + n− 1/2) + x2

2
(16.5.8)

can be worthwhile when evaluating the approximants of (16.5.7).
Continued fractions representing special ratios of the parabolic cylinder
functions can also be obtained from the continued fraction representations
for the Kummer functions and the Whittaker functions because of the close
connections given in (16.5.1b), (16.5.1a) and (16.5.2).

Example 16.5.3: The ratio of parabolic cylinder functions

D−3/2(x)
D−1/2(x)

=
U(1, x)
U(0, x)

can be expressed in terms of modified Bessel functions,

D−3/2(x)
D−1/2(x)

=
√

2x

(
1− K−3/4(x2/4)

K1/4(x2/4)

)
(16.5.9)

and because of (16.5.1a) and (16.5.2) it also equals a specific ratio of Kum-
mer functions of the second kind and Whittaker functions,

D−3/2(x)
D−1/2(x)

=
U(3/4, 1/2, x2/2)
U(1/4, 1/2, x2/2)

=
1√
2

W−1/2,1/4(x2/2)
W0,1/4(x2/2)

.
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Table 16.5.1: Relative error of the 5th approximants of (16.5.7) for a = 1,
more precisely (16.5.9). The approximants are first evaluated with w5 = 0
and then with w5 given by (16.5.8).

x U(a, x)/U(a− 1, x) (16.5.7) (16.5.7)
0.25 8.329323e−01 1.4e+00 2.0e−02

0.75 6.485192e−01 1.8e−01 4.4e−03

1.25 5.211635e−01 4.0e−02 1.0e−03

5.25 1.813514e−01 7.3e−06 1.2e−07

20.25 4.920381e−02 2.6e−11 5.9e−14

50.25 1.988869e−02 3.1e−15 1.2e−18

100.25 9.973574e−03 3.2e−18 3.1e−22

Table 16.5.2: Relative error of the 20th approximants of (16.5.7) for a = 1,
more precisely (16.5.9). The approximants are first evaluated with w20 = 0
and then with w20 given by (16.5.8).

x U(a, x)/U(a− 1, x) (16.5.7) (16.5.7)
0.25 8.329323e−01 2.7e−01 1.9e−03

0.75 6.485192e−01 7.2e−03 4.7e−05

1.25 5.211635e−01 2.0e−04 1.3e−06

5.25 1.813514e−01 8.3e−15 5.6e−17

20.25 4.920381e−02 2.5e−34 4.8e−37

50.25 1.988869e−02 9.5e−50 3.6e−53

100.25 9.973574e−03 1.1e−61 1.1e−65



17
Bessel functions

Solutions of boundary value problems are often expressed as linear combi-
nations of the Bessel functions Jn(z) for n ≥ 0. Evaluating the solution
of such a differential equation therefore requires the computation of the
functions Jn(z).
The Bessel functions Jν(z), Yν(z), Iν(z) and Kν(z), which are particular
forms of the confluent hypergeometric function, are analytic functions of z
for | arg z| < π, and for fixed nonzero z they are entire functions of ν. For
ν ∈ Z, the functions Jν(z) and Iν(z) are entire functions of z.
The Bessel functions Jν(z) and Yν(z) and their derivatives can be com-
puted either by means of the recurrence relations combined with the use
of continued fractions and Wronskian relations, or by making use of the
continued fraction representations for the logarithmic derivatives of Jν(z)
and Jν(z) + iYν(z) with a Wronskian relation connecting Jν(z), Yν(z) and
their derivatives.

17.1 Bessel functions

Definitions and elementary properties. The second order differential
equation

z2 d2w

dz2
+ z

dw

dz
+ (z2 − ν2)w = 0, ν ∈ C (17.1.1)

is called Bessel’s differential equation. Among the solutions are the Bessel
functions of the first kind Jν(z), and the Bessel functions of the second kind
Yν(z). Here ν denotes the order. The Bessel functions Jν(z) and Yν(z) are
defined by

Jν(z) :=
(z

2

)ν ∞∑
k=0

(−1)k

k! Γ(ν + k + 1)

(z

2

)2k

, | arg z| < π, ν ∈ C,
(17.1.2a)

– – –
– – –
– – –

Yν(z) :=
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
, | arg z| < π, ν ∈ C \ Z,

(17.1.2b)

343
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where Γ(z) is the gamma function introduced in (12.1.1). For integer order
n ∈ Z the right hand side of (17.1.2b) is replaced by its limit

Yn(z) = lim
ν→n

(Jν(z) cot(νπ)− J−ν(z) csc(νπ)) , n ∈ Z. (17.1.3)

The functions Jν(z) and Yν(z) are linearly independent for all ν ∈ C, and
the functions Jν(z) and J−ν(z) are linearly independent for ν ∈ C \ Z.
When discussing Bessel functions, we use the notation ν for complex order
and n for integer order. The function Jν(z) is sometimes called cylinder
function, and the function Yν(z) is also called the Weber function or the
Neumann function. In the special case n ∈ N0, the Bessel functions of the
first kind Jn(z) are also known as Bessel coefficients.
The Bessel functions Jν(z) and Yν(z) satisfy the symmetry property

Jν(z̄) = Jν(z), Yν(z̄) = Yν(z), ν ∈ R. (17.1.4)

The Bessel functions Jn(z) and Yn(z) satisfy the reflection formulas

J−n(z) = (−1)nJn(z), n ∈ Z,

Y−n(z) = (−1)nYn(z), n ∈ Z.
(17.1.5)

In the particular case ν ∈ R, the function Jν(z) has infinitely many real
zeros, all of which are simple with the possible exception of z = 0. If in
addition ν ≥ 0, the positive zeros jν,k of Jν(z) interlace with the positive
zeros jν+1,k of Jν+1(z) so that

0 < jν,1 < jν+1,1 < jν,2 < jν+1,2 < jν,3 < jν+1,3 < . . . ,

and the negative zeros of Jν(z) are given by −jν,k. In this special case an
infinite product representation of Jν(z) is given by

Jν(z) =
1

Γ(ν + 1)

(z

2

)ν ∞∏
k=1

(
1− z2

j2
ν,k

)
, | arg z| < π, ν ≥ 0.

(17.1.6)
The relation

eiz cos(θ) =
∞∑

n=−∞
ineinθJn(z) = J0(z) + 2

∞∑
n=0

in cos(nθ)Jn(z), n ∈ Z

(17.1.7)
is called the Jacobi-Anger identity [AAR99, p. 211].
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The relation
2
πz

= Jν(z)
d

dz
Yν(z)− Yν(z)

d

dz
Jν(z)

= Jν+1(z)Yν(z)− Jν(z)Yν+1(z)
(17.1.8)

is a Wronskian relation.

Hankel functions. Another pair of solutions of the differential equation
(17.1.1) is given by

H(1)
ν (z) = Jν(z) + iYν(z), ν ∈ C, (17.1.9a)

H(2)
ν (z) = Jν(z)− iYν(z), ν ∈ C. (17.1.9b)

The functions H
(1)
ν (z) and H

(2)
ν (z) are called Bessel functions of the third

kind or Hankel functions.
The Hankel functions satisfy the symmetry properties

H
(1)
−ν (z) = eiνπH(1)

ν (z), ν ∈ C, (17.1.10a)

H
(2)
−ν (z) = e−iνπH(2)

ν (z), ν ∈ C, (17.1.10b)

H(1)
ν (z̄) = H

(2)
ν (z), ν ∈ R, (17.1.10c)

H(2)
ν (z̄) = H

(1)
ν (z), ν ∈ R. (17.1.10d)

Spherical Bessel functions. The second order differential equation

z2 d2w

dz2
+ 2z

dw

dz
+ (z2 − n(n + 1))w = 0, n ∈ Z (17.1.11)

is called the spherical Bessel differential equation. Among the solutions are
the spherical Bessel functions of the first kind jn(z), the spherical Bessel
functions of the second kind yn(z), and the spherical Bessel functions of the
third kind h

(1)
n (z) and h

(2)
n (z). The spherical Bessel functions are closely

related to the Bessel functions Jn(z) and Yn(z) and the Hankel functions
H

(1)
n (z) and H

(2)
n (z) by

jn(z) :=
√

π

2z
Jn+ 1

2
(z), n ∈ Z, (17.1.12a)

yn(z) :=
√

π

2z
Yn+ 1

2
(z), n ∈ Z, (17.1.12b)

h(1)
n (z) := jn(z) + iyn(z) =

√
π

2z
H

(1)

n+ 1
2
(z), n ∈ Z, (17.1.12c)

h(2)
n (z) := jn(z)− iyn(z) =

√
π

2z
H

(2)

n+ 1
2
(z), n ∈ Z. (17.1.12d)
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When n = 0 in (17.1.12) we find

J 1
2
(z) = Y− 1

2
(z) =

√
2z

π
j0(z) =

√
2
πz

sin(z), (17.1.13a)

Y 1
2
(z) = −J− 1

2
(z) =

√
2z

π
y0(z) = −

√
2
πz

cos(z). (17.1.13b)

The Wronskian determinant relation is

yn(z)jn+1(z)− yn+1(z)jn(z) =
1
z2

. (17.1.14)

Recurrence relations. Let Gν(z) denote one of the functions Jν(z),
Yν(z), H

(1)
ν (z) or H

(2)
ν (z). Then Gν(z) satisfies the recurrence relations

[AS64, p. 361]

2ν

z
Gν(z) = Gν−1(z) + Gν+1(z), (17.1.15)

– – –
– – –
– – –

2
d

dz
Gν(z) = Gν−1(z)−Gν+1(z). (17.1.16)

Let gn(z) denote one of the functions jn(z), yn(z), h
(1)
n (z) or h

(2)
n (z). Then

because of (17.1.12) the spherical function gn(z) satisfies the recurrence
relations [AS64, p. 439]

2n + 1
z

gn(z) = gn−1(z) + gn+1(z), n ∈ Z, (17.1.17)

(2n + 1)
d

dz
gn(z) = ngn−1(z)− (n + 1)gn+1(z), n ∈ Z.

(17.1.18)

Combining (17.1.16) with (17.1.15) and (17.1.17) with (17.1.18) gives

d

dz
Gν(z) =

ν

z
Gν(z)−Gν+1(z), ν ∈ C, (17.1.19)

d

dz
gn(z) =

n

z
gn(z)− gn+1(z), n ∈ Z. (17.1.20)

Series expansions. The function Jν(z) is defined by the series represen-
tation (17.1.2a) which can be rewritten as [AS64, p. 362]

Jν(z) =
1

Γ(ν + 1)

(z

2

)ν

0F1

(
; ν + 1;−z2/4

)
, | arg z| < π, ν ∈ C

(17.1.21)
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where 0F1(; b; z) is the confluent hypergeometric limit function (16.3.1).
Using Kummer’s transformation (16.3.3) we obtain the representation

Jν(z) =
e−iz

Γ(ν + 1)

(z

2

)ν ∞∑
k=0

(ν + 1/2)k(2i)k

(2ν + 1)kk!
zk, | arg z| < π, ν ∈ C

=
e−iz

Γ(ν + 1)

(z

2

)ν

1F1 (ν + 1/2; 2ν + 1; 2iz) , (17.1.22)

where 1F1(a; b; z) is the confluent hypergeometric series (16.1.2).
The Hankel functions can be expressed in terms of the Kummer function
of the second kind U(a, b, z) introduced in (16.1.4) [AS64, p. 510],

H(1)
ν (z) =

2√
π

e−i(π(ν+ 1
2 )−z)(2z)νU (ν + 1/2, 2ν + 1,−2iz) ,

| arg z| < π, 2ν ∈ C \ Z, (17.1.23)

H(2)
ν (z) =

2√
π

ei(π(ν+ 1
2 )−z)(2z)νU (ν + 1/2, 2ν + 1, 2iz) ,

| arg z| < π, 2ν ∈ C \ Z. (17.1.24)

Combining (17.1.12a) with each of the series representations (17.1.21) and
(17.1.22) for Jν(z), we find

jn(z) =
√

π

(2n + 1)Γ(n + 1/2)

(z

2

)n

0F1

(
; n + 3/2;−z2/4

)
,

| arg z| < π, n ∈ Z (17.1.25)

and

jn(z) =
√

πe−iz

(2n + 1)Γ(n + 1/2)

(z

2

)n

1F1(n + 1; 2n + 2; 2iz),

| arg z| < π, n ∈ Z. (17.1.26)

Asymptotic series expansions. Hankel’s symbol (ν, k) is frequently
used in representing the coefficients in the asymptotic expansions of Bessel
functions:

(ν, k) = (−1)k (ν + 1/2)k(−ν + 1/2)k

k!
=

Γ (ν + k + 1/2)
k! Γ (ν − k + 1/2)

,

k = 0, 1, 2, . . . . (17.1.27)
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We have (ν, 0) = 1 and the recursion

(ν, k + 1) =
ν2 − (k + 1/2)

2

k + 1
(ν, k), k = 0, 1, 2, . . . .

Let P (ν, z) and Q(ν, z) have the following asymptotic expansions

P (ν, z) ≈
∞∑

k=0

(−1)k (ν, 2k)
(2z)2k

, z →∞,

Q(ν, z) ≈
∞∑

k=0

(−1)k (ν, 2k + 1)
(2z)2k+1

, z →∞.

Then, for the Bessel functions of the first, second and third kind we have
the asymptotic expansions [Tem96, p. 239]

Jν(z) =

√
2
πz

(
P (ν, z) cos

(
z − ν

π

2
− π

4

)
−Q(ν, z) sin

(
z − ν

π

2
− π

4

))
,

z →∞, | arg z| < π, (17.1.28)
– – –
– – –
– – –

Yν(z) =

√
2
πz

(
P (ν, z) sin

(
z − ν

π

2
− π

4

)
+ Q(ν, z) cos

(
z − ν

π

2
− π

4

))
,

z →∞, | arg z| < π, (17.1.29)

H(1)
ν (z) =

√
2
πz

(P (ν, z) + iQ(ν, z)) ei(z−ν π
2 −π

4 ),

z →∞, −π < arg z < 2π, (17.1.30)

H(2)
ν (z) =

√
2
πz

(P (ν, z)− iQ(ν, z)) e−i(z−ν π
2 −π

4 ),

z →∞, −2π < arg z < π. (17.1.31)

An alternative asymptotic representation [Tem96, p. 239] for the Hankel
functions is

H(1)
ν (z) ≈

√
2
πz

ezi−νπi/2−πi/4
∞∑

k=0

(ν, k)
(−2iz)k

,

z →∞, −π < arg z < 2π,

H(2)
ν (z) ≈

√
2
πz

e−zi+νπi/2+πi/4
∞∑

k=0

(ν, k)
(2iz)k

,

z →∞, −2π < arg z < π.
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Stieltjes transform. A Stieltjes transform representation for a particular
ratio of Bessel functions,

g(ν, z) := −1 +
1

4(ν + 1/2)
√−z

Jν− 1
2

(
1

2
√−z

)
Jν+ 1

2

(
1

2
√−z

) , ν + 1/2 > 0, (17.1.32)

can be given in terms of the zeros qν,k of the Bessel function Jν+ 1
2

(
1

2
√−z

)
.

For ν real the zeros qν,k are all simple and negative, and can be arranged
so that

qν,1 < qν,2 < qν,3 < · · · < 0, ν ∈ R. (17.1.33)

Then [JTW94]

g(ν, z) =
∫ ∞

0

dΦ(ν, t)
z + t

= − 2
2ν + 1

∞∑
k=1

qν,k

z − qν,k
, z �= qν,k, ν + 1/2 > 0.

(17.1.34)
Here the distribution function Φ(ν, t) is the step function

Φ(ν, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 2

2ν + 1

∞∑
k=n+1

qν,k, −qν,n+1 < t < −qν,n,

− 2
2ν + 1

∞∑
k=1

qν,k, −qν,1 < t < ∞.

(17.1.35)

The mth moment μm(ν) with respect to the distribution function Φ(ν, t)
is given by

μm(ν) =
∫ ∞

0

tm dΦ(ν, t) =
2

2ν + 1

∞∑
k=1

(−qν,k)m+1. (17.1.36)

Further information about the discrete distribution Φ(ν, t) can be found in
[Sch39; Dic54].
For the Hankel functions also a Stieltjes transform representation can be
given. This representation follows from the relation (17.2.7) with the mod-
ified Bessel functions of the second kind, and the Stieltjes transform rep-
resentation (17.2.28) for the function Kν(z).

S-fractions. Since the classical Stieltjes moment problem for the moments
μm(ν) given by (17.1.36) has the solution Φ(ν, t), it follows from the results
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in Chapter 5 that there exists a modified S-fraction corresponding to the
asymptotic series representation

g(ν, z) ≈ z−1
∞∑

m=0

(−1)mμm(ν)z−m, z →∞, ν + 1/2 > 0,

where g(ν, z) is defined in (17.1.32). The explicit coefficients of this modi-
fied S-fraction and of the S-fraction representation for a more general ratio
of Bessel functions can be obtained from the series expansion (17.1.21) and
the continued fraction (16.3.4) for the confluent hypergeometric limit func-
tion [Wal48, p. 349; AS64, p. 363; JT80, pp. 183–184]. Because of (17.1.19)
we find at the same time an S-fraction representation for the logarithmic
derivative of Jν(z):

Jν+1(z)
Jν(z)

=
ν

z
− J ′

ν(z)
Jν(z)

(17.1.37)

=
z/(2ν + 2)

1 +

∞

K
m=2

(
am(ν)(iz)2

1

)
, z ∈ C, ν ≥ 0,

(17.1.38a)
– – –
– – –
– – – AS

am(ν) =
1

4(ν + m− 1)(ν + m)
, m ≥ 2. (17.1.38b)

The coefficients am(ν) satisfy the asymptotic behaviour

am(ν) ∼ 1
4m2

, m →∞.

For the spherical Bessel functions jn(z) we have

jn+1(z)
jn(z)

=
z/(2n + 3)

1 +

∞

K
m=2

(
am(n + 1/2)(iz)2

1

)
, z ∈ C, n ∈ N0,

(17.1.39)
where the coefficients am(n + 1/2) are given by (17.1.38b). The continued
fractions (17.1.37), (17.1.38) and (17.1.39) are S-fractions in −z2 from m =
2 on.
The S-fraction representation (17.1.38) can also be obtained in the follow-
ing alternative way. Since the sequence of functions Jν+n(z) is a minimal
solution of the three term recurrence relation (17.1.15) [JT80, pp. 167–168],
we know from Theorem 3.6.1 that

Jν+1(z)
Jν(z)

= −
∞

K
m=1

( −1
2(ν + m)/z

)
, z ∈ C, ν ≥ 0. (17.1.40) AS
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The same holds for the ratio of spherical Bessel functions jn+1(z)/jn(z).

An S-fraction representation for the Bessel coefficients J0(x) and Y0(x)
exists and follows from (17.2.9) and (17.2.30) in the next section,

J0(x) = − 2
π
�
(

a1

2xi +
a2

1 +
a3

2xi +
a4

1 + . . .

)
, x > 0,

(17.1.41a)

Y0(x) = − 2
π
�
(

a1

2xi +
a2

1 +
a3

2xi +
a4

1 + . . .

)
, x > 0,

(17.1.41b)

but without closed formula for the coefficients am.

S-fraction representations for the Hankel functions follow from the relation
(17.2.7) and the S-fraction (17.2.30) for the modified Bessel function Kν(z):

H(1)
ν (z) = 2e−iνπ/2+iz

√
2iz
π

(
a1

−2iz +
a2

1 +
a3

−2iz +
a4

1 + . . .

)
,

− 1 < ν < 1, (17.1.42a)

H(2)
ν (z) = 2izeiνπ/2−iz

√
2iz
π

(
a1

2iz +
a2

1 +
a3

2iz +
a4

1 + . . .

)
,

− 1 < ν < 1. (17.1.42b)

No known closed formula exists for the coefficients am in the S-fraction
(17.1.42). Their asymptotic behaviour is given by [JS99]

am ∼ m

2
, m →∞.

C-fractions. If we relax the condition on ν in (17.1.38) and allow ν ∈
C \ Z−, the S-fraction becomes a C-fraction [JT80, pp. 183–184].

According to (17.2.7) the Hankel functions are closely related to the mod-
ified Bessel functions Kν(z) of the second kind introduced in Section 17.2.
Hence a C-fraction representation can be obtained from (17.2.35). Because
of (17.1.19) this gives at the same time a C-fraction representation of the
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logarithmic derivative of the Hankel functions:

H
(1)
ν+1(z)

H
(1)
ν (z)

=
ν

z
− dH

(1)
ν (z)/dz

H
(1)
ν (z)

(17.1.43)

=
−1
1 +

∞

K
m=2

(
cm(ν)/(−2iz)

1

)
, | arg(−iz)| < π, ν ∈ C,

(17.1.44)

H
(2)
ν+1(z)

H
(2)
ν (z)

=
ν

z
− dH

(2)
ν (z)/dz

H
(2)
ν (z)

(17.1.45)

=
1
1 +

∞

K
m=2

(
cm(ν)/(2iz)

1

)
, | arg(iz)| < π, ν ∈ C,

(17.1.46)

c2k(ν) = 2k − 3− 2ν, c2k+1(ν) = 2k + 1 + 2ν, k ≥ 1.

In Section 7.7 the respective modifications

w∓
n (z) =

−1 +
√

1 + 4cn+1(ν)/(∓iz)
2

are suggested for the evaluation of (17.1.44) and (17.1.46). Here the mi-
nus sign goes with the former and the plus sign with the latter continued
fraction.

T-fractions. From the series representation (17.1.21) and the T-fraction
representation (16.3.6) for a ratio of confluent hypergeometric limit func-
tions, we obtain a T-fraction representation for a ratio of Bessel functions.
Because of (17.1.19) it is at the same time a T-fraction representation of
the logarithmic derivative of Jν(z):

Jν+1(z)
Jν(z)

=
ν

z
− J ′

ν(z)
Jν(z)

(17.1.47)

=
z

2ν + 2− iz +

∞

K
m=2

(
cmz

em + dmz

)
, z ∈ C, ν ∈ C \ Z−,

(17.1.48a)
– – –
– – –
– – –

cm = (2ν + 2m− 1)i, em = 2ν + m + 1, dm = −2i, m ≥ 2.
(17.1.48b)
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The T-fraction representation for a ratio of spherical Bessel functions is
given by

jn+1(z)
jn(z)

=
z

2n + 3− iz +

∞

K
m=2

(
c̃mz

ẽm + d̃mz

)
, z ∈ C, n ∈ N0,

(17.1.49a)
where the coefficients are given by

c̃m = 2(n + m)i, ẽm = 2n + m + 2, d̃m = −2i, m ≥ 2. (17.1.49b)

J-fractions. From the J-fraction representation (17.2.41) for a ratio of
modified Bessel functions we obtain [Hit68, p. 109] J-fraction representa-
tions for ratios of both Hankel functions. Because of (17.1.19) this gives
at the same time a J-fraction representation of the logarithmic derivative
of the Hankel functions:

H
(1)
ν+1(z)

H
(1)
ν (z)

=
ν

z
− dH

(1)
ν (z)/dz

H
(1)
ν (z)

(17.1.50)

=
2ν + 1− 2iz

2z
− 1

z

∞

K
m=1

(
ν2 − (2m− 1)2/4

2(iz −m)

)
,

| arg(−iz)| < π, ν ∈ C, (17.1.51)

H
(2)
ν+1(z)

H
(2)
ν (z)

=
ν

z
− dH

(2)
ν (z)/dz

H
(2)
ν (z)

(17.1.52)

=
2ν + 1 + 2iz

2z
+

1
z

∞

K
m=1

(
ν2 − (2m− 1)2/4

2(iz + m)

)
,

| arg(iz)| < π, ν ∈ C. (17.1.53)

In Section 7.7 the respective modifications

w̃∓
n (z) = −(iz ∓ n)

are suggested for the evaluation of the continued fractions in (17.1.51) and
(17.1.53). The minus sign in w̃∓

n (z) goes with the former and the plus sign
with the latter.
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Table 17.1.1: Relative error of the 5th partial sum of the series (17.1.2) and
the asymptotic series (17.1.28) for J85/2(z), and relative error of the prod-
uct J1/2(z)

∏41
k=0

(
Jk+3/2(z)/Jk+1/2(z)

)
where each ratio Jk+3/2/Jk+1/2

is evaluated by means of the 5th approximant of the continued fractions
(17.1.38) and (17.1.48). The factor J1/2(z) =

√
2/(zπ) sin(z) is supplied

with 30 decimal digits accuracy so that the truncation errors in the approx-
imation of the factors Jk+3/2/Jk+1/2 dominate. All results are compared
with the recurrence (17.1.15) which is unstable for ν/x > 1. Here the
second starting value J−1/2(z) is supplied exactly. Making use of the sym-
metry properties (17.1.4) and (17.1.5), we can restrict our investigation to
the first quadrant, including the positive real and imaginary axes.

x Jν(x) (17.1.2) (17.1.15) (17.1.38) (17.1.48) (17.1.28)
0.01 1.750149e−150 3.6e−41 7.9e+264 2.3e−29 1.6e−13 2.9e+197

0.5 2.809806e−78 8.8e−21 8.6e+121 2.4e−12 5.2e−05 4.6e+105

1 1.740120e−65 3.6e−17 7.8e+96 2.8e−09 1.9e−03 1.6e+89

2 1.063809e−52 1.5e−13 3.5e+71 5.6e−06 1.3e−01 6.5e+72

5 7.705496e−36 1.0e−08 6.9e+37 1.6e−01 1.2e+00 1.3e+51

15 4.538163e−16 1.5e−02 4.1e−02 3.3e−01 1.0e+00 2.0e+26

50 −5.735702e−02 1.4e+12 2.3e−30 1.0e+00 1.8e+00 1.4e+06

100 −5.912167e−02 1.1e+28 7.4e−31 1.0e+00 3.6e−01 3.0e+01

500 2.680276e−02 1.4e+65 1.2e−31 2.3e+25 1.3e+00 1.4e−06

1000 −2.407106e−02 9.6e+80 9.7e−31 2.7e+38 8.2e−01 4.0e−10

x |Jν(x + ix)|s (17.1.2) (17.1.15) (17.1.38) (17.1.48) (17.1.28)
0.01 −4.364782e−144 2.3e−39 3.1e+252 7.5e−28 8.9e−13 2.2e+189

0.5 −7.017587e−72 5.6e−19 6.2e+109 7.3e−11 1.5e−04 4.0e+97

1 −4.364789e−59 2.3e−15 1.6e+85 7.3e−08 2.5e−03 2.8e+81

2 −2.714862e−46 9.4e−12 3.8e+60 5.4e−05 1.3e−02 4.3e+65

5 −2.221215e−29 5.6e−07 1.3e+29 3.3e−02 4.7e−03 2.7e+45

15 4.531313e−09 2.7e−01 1.1e−03 9.2e−01 9.0e−03 8.4e+23

50 −2.285875e+16 4.0e+02 1.6e−22 3.7e+01 5.1e−03 1.7e+08

100 9.539441e+39 1.0e+00 7.8e−27 2.6e+06 5.4e−04 4.8e+02

500 8.533405e+214 1.0e+00 6.6e−30 4.6e+32 4.2e−07 6.6e−08

1000 −1.330564e+432 1.0e+00 5.0e−30 1.3e+45 1.5e−08 1.1e−11
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x |Jν(ix)|s (17.1.2) (17.1.15) (17.1.38) (17.1.48) (17.1.28)
0.01 −1.750151e−150 3.6e−41 1.0e+265 2.4e−29 1.6e−13 2.9e+197

0.5 −2.817892e−78 8.8e−21 1.1e+122 2.2e−12 2.6e−05 5.9e+105

1 −1.760236e−65 3.6e−17 1.3e+98 2.0e−09 4.1e−04 4.4e+89

2 −1.113862e−52 1.4e−13 7.3e+72 1.3e−06 2.9e−03 5.8e+73

5 −1.027067e−35 7.7e−09 9.5e+41 1.5e−03 6.1e−03 3.2e+53

15 −6.034981e−15 1.5e−03 4.7e+08 3.2e−01 6.7e−03 3.4e+31

50 −9.052865e+12 9.8e−01 3.3e−16 1.0e+02 4.5e−03 2.5e+13

100 −1.401375e+38 1.0e+00 9.5e−23 6.7e+05 1.0e−03 2.0e+06

500 −4.111670e+214 1.0e+00 9.1e−29 1.2e+27 1.9e−06 9.8e−06

1000 −1.007133e+432 1.0e+00 4.5e−30 1.2e+39 7.4e−08 1.0e−09

Table 17.1.2: Relative error of the 20th partial sum of the series (17.1.2)
and the asymptotic series (17.1.28) for J85/2(z), and relative error of the
product J1/2(z)

∏41
k=0

(
Jk+3/2(z)/Jk+1/2(z)

)
where each ratio is again eval-

uated by means of the 20th approximant of the continued fractions (17.1.38)
and (17.1.48). The factor J1/2(z) =

√
2/(zπ) sin(z) is supplied with 135

decimal digits accuracy so that the truncation errors in the approxima-
tion of the factors Jk+3/2/Jk+1/2 dominate. All results are compared with
the recurrence (17.1.15) which is unstable for ν/x > 1. Here the second
starting value J−1/2(z) is supplied exactly. Making use of the symmetry
properties (17.1.4) and (17.1.5), we can restrict our investigation to the
first quadrant, including the positive real and imaginary axes.

x Jν(x) (17.1.2) (17.1.15) (17.1.38) (17.1.48) (17.1.28)
0.01 1.750149e−150 2.6e−153 5.8e+159 4.1e−132 2.2e−57 2.4e+295

0.5 2.809806e−78 5.9e−82 2.3e+17 4.0e−64 2.3e−23 4.5e+152

1 1.740120e−65 2.6e−69 5.7e−08 5.3e−52 2.9e−17 2.1e+127

2 1.063809e−52 1.2e−56 3.4e−34 1.4e−39 7.5e−11 5.9e+101

5 7.705496e−36 6.8e−40 2.2e−67 1.8e−22 1.6e−01 1.0e+68

15 4.538163e−16 2.3e−19 1.9e−106 2.7e−04 4.6e+00 6.4e+27

50 −5.735702e−02 2.0e+11 2.6e−135 2.2e+00 1.6e+00 1.2e−09

100 −5.912167e−02 2.7e+36 2.5e−135 9.0e−01 3.5e−01 3.7e−22

500 2.680276e−02 4.1e+94 9.0e−136 8.3e+16 1.3e+00 1.5e−51

1000 −2.407106e−02 3.2e+119 1.6e−135 1.0e+00 8.2e−01 4.6e−64
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x |Jν(x + ix)|s (17.1.2) (17.1.15) (17.1.38) (17.1.48) (17.1.28)
0.01 −4.364782e−144 5.4e−147 2.2e+147 4.3e−126 2.2e−54 5.6e+282

0.5 −7.017587e−72 1.2e−75 9.9e+04 3.9e−58 9.1e−21 1.1e+140

1 −4.364789e−59 5.4e−63 2.3e−20 4.2e−46 3.9e−15 5.7e+114

2 −2.714862e−46 2.4e−50 8.1e−45 3.3e−34 5.0e−10 3.8e+89

5 −2.221215e−29 1.2e−33 5.2e−76 9.4e−20 7.0e−06 1.1e+57

15 4.531313e−09 1.2e−13 1.9e−108 2.0e−07 1.0e−12 6.4e+20

50 −2.285875e+16 2.9e+06 2.9e−127 4.1e−02 1.0e−12 1.2e−11

100 9.539441e+39 6.4e+07 2.6e−131 1.1e+00 1.6e−16 2.4e−26

500 8.533405e+214 1.0e+00 1.8e−134 1.0e+00 5.6e−29 2.8e−57

1000 −1.330564e+432 1.0e+00 5.5e−135 1.0e+00 8.2e−35 4.0e−70

x |Jν(ix)|s (17.1.2) (17.1.15) (17.1.38) (17.1.48) (17.1.28)
0.01 −1.750151e−150 2.6e−153 8.6e+159 4.1e−132 2.2e−57 2.4e+295

0.5 −2.817892e−78 5.9e−82 1.7e+17 3.5e−64 8.4e−24 4.9e+152

1 −1.760236e−65 2.6e−69 2.4e−07 3.2e−52 3.1e−18 2.9e+127

2 −1.113862e−52 1.1e−56 3.0e−32 1.9e−40 2.9e−13 2.2e+102

5 −1.027067e−35 5.1e−40 4.1e−64 6.4e−26 4.9e−09 6.1e+69

15 −6.034981e−15 1.9e−20 6.8e−97 3.3e−12 9.1e−11 1.2e+33

50 −9.052865e+12 3.2e−03 1.2e−120 4.1e−04 2.1e−13 7.6e−02

100 −1.401375e+38 1.0e+00 1.3e−128 5.9e−02 1.3e−15 4.1e−18

500 −4.111670e+214 1.0e+00 1.0e−133 1.0e+00 2.4e−26 1.4e−50

1000 −1.007133e+432 1.0e+00 1.6e−134 1.0e+00 5.4e−32 1.3e−63

17.2 Modified Bessel functions

Definitions and elementary properties. The second order differential
equation

z2 d2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0, ν ∈ C (17.2.1)

is called the modified Bessel differential equation. The solutions Iν(z)
and Kν(z) are called the modified Bessel functions. The modified Bessel
function of the first kind Iν(z), is defined in terms of the Bessel function
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Jν(z),

Iν(z) := e−iνπ/2Jν(iz), −π < arg z ≤ π

2
, ν ∈ C, (17.2.2a)

Iν(z) := ei3νπ/2Jν(iz),
π

2
< arg z ≤ π, ν ∈ C, (17.2.2b)

and the modified Bessel function of the second kind Kν(z), is defined by

Kν(z) :=
π

2
I−ν(z)− Iν(z)

sin(νπ)
, ν ∈ C \ Z. (17.2.3)

For integer order n ∈ Z the right hand side of (17.2.3) is replaced by its
limit

Kn(z) = lim
ν→n

π

2
csc(νπ) (I−ν(z)− Iν(z)) , n ∈ Z. (17.2.4)

The functions Iν(z) and Kν(z) are linearly independent for all ν ∈ C, and
the functions Iν(z) and I−ν(z) are linearly independent for ν ∈ C \Z. The
function Iν(z) is sometimes called the hyperbolic Bessel function, and the
function Kν(z) is also called the Basset function or the Macdonald func-
tion. The modified Bessel functions Iν(z) and Kν(z) satisfy the symmetry
property

Iν(z̄) = Iν(z), Kν(z̄) = Kν(z), ν ∈ R (17.2.5)

and the relations [SO87, p. 489; AS64, p. 375]

Iν(−x) = (−1)νIν(x), x > 0, ν ∈ C,

I−n(z) = In(z), n ∈ Z,

K−ν(z) = Kν(z), ν ∈ C.

(17.2.6)

The modified Bessel function of the second kind Kν(z), can be expressed
in terms of the Hankel functions H

(1)
ν (z) and H

(2)
ν (z) by the relations

Kν(z) =
π

2
ieiνπ/2H(1)

ν (iz), −π < arg z ≤ π

2
, (17.2.7a)

Kν(z) = −π

2
ie−iνπ/2H(2)

ν (−iz),
π

2
< arg z ≤ π. (17.2.7b)

From (17.1.9) and (17.2.7), we get

Jν(z) = − 1
πi

(
eiνπ/2Kν(iz)− e−iνπ/2Kν(−iz)

)
, | arg z| < π

2
,

(17.2.8a)

Yν(z) = − 1
π

(
eiνπ/2Kν(iz) + e−iνπ/2Kν(−iz)

)
, | arg z| < π

2
,

(17.2.8b)



358 17. BESSEL FUNCTIONS

and hence we obtain

Jν(x) = − 2
π
�
(
eiνπ/2Kν(ix)

)
, x > 0, (17.2.9a)

Yν(x) = − 2
π
�
(
e−iνπ/2Kν(ix)

)
, x > 0. (17.2.9b)

The Wronskian relation is

−1/z = Iν(z)
d

dz
Kν(z)−Kν(z)

d

dz
Iν(z)

= −Iν(z)Kν+1(z)− Iν+1(z)Kν(z)
(17.2.10)

Because of the close connection between the Bessel functions Jν(z) and the
modified Bessel functions Iν(z) given in (17.2.2), the results established for
the functions Jν(z) can be used to derive continued fraction representations
for Iν(z).

Modified spherical Bessel functions. The second order differential
equation

z2 d2w

dz2
+ 2z

dw

dz
− (z2 + n(n + 1))w = 0, n ∈ Z (17.2.11)

is called the modified spherical Bessel differential equation. Among the
solutions are the modified spherical Bessel functions of the first kind in(z),
the modified spherical Bessel functions of the second kind kn(z), and the
modified spherical Bessel functions of the third kind g

(1)
ν (z) and g

(2)
ν (z).

The spherical Bessel functions are closely related to the modified Bessel
functions In(z) and Kn(z) and the Hankel functions H

(1)
n (z) and H

(2)
n (z)

and are given by

in(z) :=
√

π

2z
In+ 1

2
(z), n ∈ Z, (17.2.12a)

kn(z) :=
√

π

2z
Kn+ 1

2
(z), n ∈ Z, (17.2.12b)

g(1)
n (z) := in(z) + ikn(z) =

√
π

2z
H

(1)

n+ 1
2
(z), n ∈ Z, (17.2.12c)

g(2)
n (z) := in(z)− ikn(z) =

√
π

2z
H

(2)

n+ 1
2
(z), n ∈ Z. (17.2.12d)
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The Wronskian relation is

in(z)kn+1(z) + in+1(z)kn(z) =
π

2z2
. (17.2.13)

Recurrence relations. Let Lν(z) denote one of the functions Iν(z) or
eiνπKν(z). The function Lν(z) satisfies the recurrence relations [AS64,
p. 376]

2ν

z
Lν(z) = Lν−1(z)− Lν+1(z), (17.2.14)

2
d

dz
Lν(z) = Lν−1(z) + Lν+1(z). (17.2.15)

Combined with (17.2.12) these lead to recurrence relations for the modi-
fied spherical Bessel functions [AS64, p. 444]. If �n(z) denotes one of the
functions in(z) or (−1)n+1kn(z), then

2n + 1
z

�n(z) = �n−1(z)− �n+1(z), n ∈ Z, (17.2.16)
– – –
– – –
– – –

2n + 1
z

d

dz
�n(z) = n�n−1(z) + (n + 1)�n+1(z), n ∈ Z.

(17.2.17)

Combining (17.2.14) with (17.2.15) and (17.2.16) with (17.2.17) gives

d

dz
Lν(z) =

ν

z
Lν(z) + Lν+1(z), ν ∈ C, (17.2.18)

1
z

d

dz
�n(z) =

n

z
�n(z) +

2n + 1
2(n + 1)

�n+1(z), n ∈ Z. (17.2.19)

Series expansions. From (17.2.2) and (17.1.2a) we find the series repre-
sentation

Iν(z) =
(z

2

)ν ∞∑
k=0

1
k! Γ(ν + k + 1)

(z

2

)2k

, | arg z| < π, ν ∈ C

=
1

Γ(ν + 1)

(z

2

)ν

0F1

(
; ν + 1; z2/4

)
, (17.2.20)

where 0F1(; b; z) is the confluent hypergeometric limit function (16.3.1).
By using Kummer’s transformation (16.3.3) we get

Iν(z) =
e−z

Γ(ν + 1)

(z

2

)ν ∞∑
k=0

(ν + 1/2)k2k

(2ν + 1)kk!
zk, | arg z| < π, ν ∈ C

=
e−z

Γ(ν + 1)

(z

2

)ν

1F1 (ν + 1/2; 2ν + 1; 2z) (17.2.21)
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where 1F1(a; b; z) denotes the confluent hypergeometric series (16.1.2).
Combining the relation (17.2.12a) with each of the series representations
(17.2.20) and (17.2.21) for Iν(z), we find

in(z) =
√

π

(2n + 1)Γ(n + 1/2)

(z

2

)n

0F1

(
; n + 3/2; z2/4

)
,

| arg z| < π, n ∈ Z, (17.2.22)
– – –
– – –
– – –

and

in(z) =
√

πe−iz

(2n + 1)Γ(n + 1/2)

(z

2

)n

1F1(n + 1; 2n + 2; 2z),

| arg z| < π, n ∈ Z. (17.2.23)

Asymptotic series expansions. The Hankel symbol (ν, k) is defined in
(17.1.27). For the function Iν(z) we combine (17.2.2) with the asymptotic
expansion (17.1.28) for Jν(z) [Tem96, p. 240]:

Iν(z) ≈ ez

√
2πz

∞∑
k=0

(−1)k (ν, k)
(2z)k

+
e−z+i(2ν+1)π/2

√
2πz

∞∑
k=0

(ν, k)
(2z)k

, (17.2.24)

z →∞, −π

2
< arg z <

3π

2
, ν ∈ C,

Iν(z) ≈ ez

√
2πz

∞∑
k=0

(−1)k (ν, k)
(2z)k

+
e−z−i(2ν+1)π/2

√
2πz

∞∑
k=0

(ν, k)
(2z)k

, (17.2.25)

z →∞, −3π

2
< arg z <

π

2
, ν ∈ C.

The function Kν(z) is related to the Whittaker function W0,ν(z) given in
(16.4.2b), by [AS64, p. 377]

Kν(z) =
√

π

2z
W0,ν(2z). (17.2.26)

From the asymptotic expansion (16.4.7) we find

Kν(z) ≈
√

π

2z
e−z

∞∑
k=0

(ν + 1/2)k(−ν + 1/2)k

k!
(−2z)−k

=
√

π

2z
e−z

∞∑
k=0

(ν, k)
(−2z)k

, z →∞, | arg z| < 3π

2

=
√

π

2z
e−z

2F0(ν + 1/2,−ν + 1/2;−1/(2z)).

(17.2.27)
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Stieltjes transform. Relation (17.2.26) between Kν(z) and W0,ν(2z)
leads to

Kν(z) = e−z
√

2πzΨν,−ν(2z), −1 < ν < 1,

where Ψα,β is introduced in (16.4.8). Hence by (16.4.13) we get the Stielt-
jes transform representation

Kν(z) = e−z
√

2πz

∫ ∞

0

φ(ν, t)
2z + t

dt, | arg z| < π (17.2.28a)

where the weight function φ(ν, t) is given by

φ(ν, t) =
1
π

sin(π(ν + 1/2))e−tΨ−ν,ν(t), 0 < t < ∞. (17.2.28b)

The moments μk(ν) for φ(ν, t) are

μk(ν) =
∫ ∞

0

tkφ(ν, t) dt =
(−1)k(ν + 1/2)k(−ν + 1/2)k

k!
, k ≥ 0.

(17.2.29)

S-fractions. In a similar way as in Section 16.4, a modified S-fraction
representation can be obtained from the Stieltjes integral (17.2.28),

Kν(z) = e−z
√

2πz

(
a1

2z +
a2

1 +
a3

2z +
a4

1 + . . .

)
, −1 < ν < 1.

(17.2.30)
No known closed formula exists for the coefficients am in the S-fraction
representation (17.2.30). The coefficients satisfy the asymptotic behaviour
[JS99]

am ∼ m

2
, m →∞.

The S-fraction representation for a ratio of modified Bessel functions Iν(z)
can be obtained from the S-fraction (17.1.38) and the relation (17.2.2)
[GS78]. Because of (17.2.18) at the same time an S-fraction representation
for the logarithmic derivative of Iν(z) is obtained:
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Iν+1(z)
Iν(z)

= −ν

z
+

I ′ν(z)
Iν(z)

(17.2.31)

=
z/(2ν + 2)

1 +

∞

K
m=2

(
am(ν)z2

1

)
, z ∈ C, ν ≥ 0,

(17.2.32a)

am(ν) =
1

4(ν + m− 1)(ν + m)
, m ≥ 2. (17.2.32b)

The coefficients am(ν) behave asymptotically as

am(ν) ∼ 1
4m2

, m →∞.

For the modified spherical Bessel functions we have

in+1(z)
in(z)

=
z/(2n + 3)

1 +

∞

K
m=2

(
am(n + 1/2)z2

1

)
, z ∈ C, n ∈ N0,

(17.2.33)
– – –
– – –
– – –

where the coefficients am(n + 1/2) are given by (17.2.32b). The continued
fractions (17.2.32) and (17.2.33) are often used in equivalent forms similar
to (17.1.40).

Example 17.2.1: For ν = 0 and z = 2 in (17.2.32) we obtain the simple
continued fraction [Rob95]

I1(2)
I0(2)

=
∞

K
m=1

(
1
m

)
.

C-fractions. If we relax the condition on ν in (17.2.32) to allow ν ∈ C\Z−,
the S-fraction becomes a C-fraction.
From (17.2.27), and formula (16.2.4) we obtain C-fraction representations
for the ratio Kν+1(z)/Kν(z) [Hit68, p. 108] as well as the logarithmic
derivative of Kν(z):
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Kν+1(z)
Kν(z)

=
ν

z
− K ′

ν(z)
Kν(z)

(17.2.34)
– – –
– – –
– – –

=
1
1 +

−(1 + 2ν)/(2z)
1 +

∞

K
m=3

(
cm(ν)/(2z)

1

)
,

| arg z| < π, ν ∈ C (17.2.35a)

c2k+2(ν) =
2k − 1

2
− ν, c2k+1(ν) =

2k + 1
2

+ ν, k ≥ 1.
(17.2.35b)

In Section 7.7 the modification

wn(z) =
−1 +

√
1 + 4cn+1(ν)/(2z)

2
(17.2.36)

is suggested for the evaluation of (17.2.34) and (17.2.35b). For real z and
ν ≥ 0, n is best taken even or sufficiently large. Use of this modification is
illustrated in the Tables 17.2.1 and 17.2.2.

T-fractions. The T-fraction representation for a ratio of modified Bessel
functions Iν(z) follows from the relation (17.2.2) and the T-fraction repre-
sentation (17.1.48) [GS78; Gau77]. Because of (17.2.18) we obtain at the
same time a T-fraction representation for the logarithmic derivative:

Iν+1(z)
Iν(z)

= −ν

z
+

I ′ν(z)
Iν(z)

(17.2.37)

=
z

2ν + 2 + z +

∞

K
m=2

(
cmz

em + dmz

)
, z ∈ C, ν ∈ C \ Z−,

(17.2.38a)

cm = −(2ν + 2m− 1), em = 2ν + m + 1, dm = 2, m ≥ 2.
(17.2.38b)

The T-fraction representation for a ratio of modified spherical Bessel func-
tions of the first kind is given by

in+1(z)
in(z)

=
z

2n + 3 + z +

∞

K
m=2

(
c̃mz

ẽm + d̃mz

)
, z ∈ C, n ∈ N0,

(17.2.39a)
– – –
– – –
– – –

with

c̃m = −2(n + m), ẽm = 2n + m + 2, d̃m = 2, m ≥ 2. (17.2.39b)



364 17. BESSEL FUNCTIONS

J-fractions. From the relation [PFTV92, p. 246]

Kν+1(z)
Kν(z)

=
2ν + 1 + 2z

2z
+

1
z
(ν2 − 1/4)

U(ν + 3/2, 2ν + 1, 2z)
U(ν + 1/2, 2ν + 1, 2z)

and the continued fraction (16.1.20) for a ratio of Kummer functions of the
second kind, we obtain a J-fraction representation. Because of (17.2.40)
this is at the same time a J-fraction representation for the logarithmic
derivative of Kν(z) [Hit68, p. 109]:

Kν+1(z)
Kν(z)

=
ν

z
− K ′

ν(z)
Kν(z)

(17.2.40)
– – –
– – –
– – –

=
2ν + 1 + 2z

2z
+

1
z

∞

K
m=1

(
ν2 − (2m− 1)2/4

2(z + m)

)
,

| arg z| < π, ν ∈ C. (17.2.41)

In (7.7.4) the modification

w̃n(z) = −(z + n) (17.2.42)

is suggested. It is illustrated in the Tables 17.2.1 and 17.2.2.

Figure 17.2.1: Region in the (x, ν)-plane where approximant f8(x; 0) of
(17.2.32) with real x guarantees k significant digits for Iν+1(x)/Iν(x) (from
light to dark k = 8, 9, 10, 11). We investigate 0 ≤ x ≤ 20 and 0 ≤ ν ≤ 10.
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Table 17.2.1: Relative error of the 5th approximants of the continued
fraction representations (17.2.34) and (17.2.40) for the logarithmic deriva-
tive d/dz(LnK10(z)), first evaluated without modification and second with
use of the respective modifications w5(z) given by (17.2.36) and (17.2.42).
Because of (17.2.5) it is sufficient to explore the upper half plane.

x (LnKν(x))′ (17.2.34) (17.2.34) (17.2.40) (17.2.40)
0.01 −1.000001e+03 2.0e+00 2.0e+00 4.3e−02 1.7e−01

2 −5.109615e+00 1.4e+00 2.0e+00 4.2e−03 2.3e−02

5 −2.257443e+00 4.0e−01 1.2e+00 1.8e−04 1.6e−03

15 −1.225079e+00 8.0e−03 2.3e−02 9.1e−08 2.5e−06

50 −1.029382e+00 2.5e−05 7.1e−06 4.0e−13 7.4e−11

500 −1.001199e+00 2.5e−10 5.5e−12 8.3e−25 1.2e−20

1000 −1.000550e+00 7.6e−12 8.5e−14 2.1e−28 1.2e−23

x |(LnKν(x + ix))′|s (17.2.34) (17.2.34) (17.2.40) (17.2.40)
0.01 −7.071068e+02 2.0e+00 2.0e+00 4.3e−02 1.7e−01

2 −3.543348e+00 1.8e+00 1.7e+00 3.8e−03 2.1e−02

5 −1.518459e+00 3.1e−01 5.1e−01 9.5e−05 9.7e−04

15 −1.032498e+00 1.9e−03 1.4e−03 7.1e−09 2.8e−07

50 −1.005255e+00 4.5e−06 7.8e−07 9.7e−15 3.2e−12

500 −1.000500e+00 4.3e−11 6.8e−13 1.3e−26 3.9e−22

1000 −1.000250e+00 1.3e−12 1.1e−14 3.3e−30 3.9e−25

x |(LnKν(ix))′|s (17.2.34) (17.2.34) (17.2.40) (17.2.40)
0.01 −9.999994e+02 2.0e+00 2.0e+00 4.3e−02 1.8e−01

2 −4.887294e+00 2.3e+00 2.0e+00 3.9e−02 1.5e−01

5 −1.691040e+00 2.6e+00 2.6e+00 2.6e−02 1.2e−01

15 −7.534162e−01 1.9e−02 1.4e−02 3.9e−06 5.7e−05

50 −9.799154e−01 2.6e−05 5.6e−06 9.6e−13 1.4e−10

500 −9.998010e−01 2.4e−10 5.4e−12 8.9e−25 1.3e−20

1000 −9.999502e−01 7.6e−12 8.4e−14 2.2e−28 1.2e−23
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x |(LnKν(x− ix))′|s (17.2.34) (17.2.34) (17.2.40) (17.2.40)
−0.01 7.071068e+02 2.0e+00 2.0e+00 4.4e−02 1.8e−01

−2 3.543348e+00 2.2e+00 2.1e+00 4.0e−01 8.7e−01

−5 8.645909e−01 2.5e+00 2.5e+00 2.7e+00 2.6e+00

−15 −9.911570e−01 1.6e−03 5.4e−04 9.6e−08 1.5e−06

−50 −9.949619e−01 4.2e−06 5.7e−07 2.0e−14 5.1e−12

−500 −9.995000e−01 4.3e−11 6.6e−13 1.4e−26 4.1e−22

−1000 −9.997500e−01 1.3e−12 1.0e−14 3.5e−30 4.0e−25

Table 17.2.2: Relative error of the 20th approximants of the continued
fraction representations (17.2.34) and (17.2.40) for the logarithmic deriva-
tive d/dz(LnK10(z)), first evaluated without modification and second with
use of the respective modifications w20(z) given by (17.2.36) and (17.2.42).
Because of (17.2.5) it is sufficient to explore the upper half plane.

x (LnKν(x))′ (17.2.34) (17.2.34) (17.2.40) (17.2.40)
0.01 −1.000001e+03 2.0e+00 1.3e+00 6.3e−15 2.0e−14

2 −5.109615e+00 9.9e−05 2.2e−05 3.1e−18 1.4e−17

5 −2.257443e+00 1.6e−07 4.0e−08 2.4e−22 1.5e−21

15 −1.225079e+00 3.3e−13 7.1e−14 7.0e−32 1.0e−30

50 −1.029382e+00 5.0e−22 6.4e−23 4.9e−48 3.0e−46

500 −1.001199e+00 2.1e−41 4.2e−43 4.7e−87 1.6e−83

1000 −1.000550e+00 2.2e−47 2.2e−49 1.6e−99 2.1e−95

x |(LnKν(x + ix))′|s (17.2.34) (17.2.34) (17.2.40) (17.2.40)
0.01 −7.071068e+02 2.0e+00 1.2e+00 6.3e−15 2.0e−14

2 −3.543348e+00 4.1e−05 1.0e−05 1.8e−18 8.3e−18

5 −1.518459e+00 3.1e−08 8.2e−09 2.7e−23 1.9e−22

15 −1.032498e+00 4.5e−15 9.8e−16 8.1e−35 1.4e−33

50 −1.005255e+00 1.1e−24 1.2e−25 7.0e−53 6.6e−51

500 −1.000500e+00 2.3e−44 3.2e−46 3.4e−93 2.2e−89

1000 −1.000250e+00 2.2e−50 1.6e−52 9.7e−106 2.5e−101
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x |(LnKν(ix))′|s (17.2.34) (17.2.34) (17.2.40) (17.2.40)
0.01 −9.999994e+02 2.0e+00 2.9e+00 6.6e−15 2.1e−14

2 −4.887294e+00 2.7e−03 7.1e−04 2.9e−15 1.0e−14

5 −1.691040e+00 1.7e−04 5.4e−05 9.6e−17 4.1e−16

15 −7.534162e−01 1.0e−10 3.4e−11 3.3e−26 2.7e−25

50 −9.799154e−01 2.6e−21 4.7e−22 3.1e−45 1.2e−43

500 −9.998010e−01 2.5e−41 5.2e−43 1.1e−86 3.4e−83

1000 −9.999502e−01 2.4e−47 2.5e−49 2.5e−99 3.2e−95

x |(LnKν(x− ix))′|s (17.2.34) (17.2.34) (17.2.40) (17.2.40)
−0.01 7.071068e+02 2.0e+00 4.5e+00 6.9e−15 2.2e−14

−2 3.543348e+00 6.3e−02 2.3e−02 1.5e−11 3.8e−11

−5 8.645909e−01 1.4e+01 3.1e+00 8.6e−09 2.2e−08

−15 −9.911570e−01 1.1e−12 6.0e−13 1.4e−25 6.7e−25

−50 −9.949619e−01 5.4e−24 1.1e−24 3.7e−49 1.6e−47

−500 −9.995000e−01 2.6e−44 4.0e−46 8.3e−93 4.9e−89

−1000 −9.997500e−01 2.4e−50 1.8e−52 1.5e−105 3.7e−101

Table 17.2.3: Relative error of the 5th partial sum of the series repre-
sentation (17.2.22) for i20(z), and the computation of i20(z) using the
5th approximants of the continued fraction representations (17.2.33) and
(17.2.39) for the factors in+1(z)/in(z), n = 0, . . . , 19. The factor i0(z) =
sinh(z)/z is provided with 30 decimal digits accuracy so that the approxi-
mation error in the factors in+1/in dominates. Making use of the symmetry
properties (17.2.5) and (17.2.6), we can reduce our investigation to the first
quadrant, including the positive real and imaginary axis.

x in(x) (17.2.22) (17.1.17) (17.2.33) (17.2.39)
0.01 7.625988e−66 1.8e−39 4.9e+98 2.2e−29 1.6e−13

0.5 7.293871e−32 4.4e−19 1.5e+31 2.2e−12 2.6e−05

1 7.715148e−26 1.8e−15 2.8e+19 2.0e−09 4.1e−04

2 8.376728e−20 7.1e−12 8.2e+06 1.3e−06 2.9e−03

10 2.371544e−05 6.6e−04 2.0e−15 6.3e−02 5.6e−03

50 7.904304e+17 1.0e+00 2.5e−27 9.5e+01 6.6e−04

500 9.218923e+213 1.0e+00 1.1e−30 2.8e+17 4.5e−08
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x |in(x + ix)|s (17.2.22) (17.1.17) (17.2.33) (17.2.39)
0.01 −7.809003e−63 1.2e−37 2.5e+92 7.5e−28 8.9e−13

0.5 −7.447251e−29 2.8e−17 1.3e+25 7.3e−11 1.5e−04

1 −7.809096e−23 1.2e−13 8.2e+12 7.3e−08 2.5e−03

2 −8.189907e−17 4.7e−10 3.4e+01 5.4e−05 1.3e−02

10 8.782339e−03 1.0e−01 5.4e−21 3.7e−01 7.4e−03

50 4.422559e+18 1.6e+00 8.9e−29 1.0e+02 3.3e−04

500 −8.044847e+213 1.0e+00 6.9e−31 2.0e+20 8.8e−09

x |in(ix)|s (17.2.22) (17.1.17) (17.2.33) (17.2.39)
0.01 7.625970e−66 1.8e−39 1.7e+99 1.9e−29 1.6e−13

0.5 7.251588e−32 4.4e−19 1.6e+31 2.4e−12 5.2e−05

1 7.537796e−26 1.8e−15 6.3e+18 2.8e−09 1.9e−03

2 7.632641e−20 7.7e−12 3.7e+06 5.6e−06 1.3e−01

10 2.308372e−06 5.3e−03 6.1e−22 1.6e−01 1.0e+00

50 −1.578503e−02 4.3e+15 1.1e−30 1.0e+00 1.2e+00

500 −1.575766e−03 5.2e+46 4.6e−30 8.5e+16 5.2e−01

Table 17.2.4: Relative error of the 20th partial sum of the series rep-
resentation (17.2.22) for i3(z), and the computation of i3(z) using the
20th approximants of the continued fraction representations (17.2.33) and
(17.2.39) for the factors in+1(z)/in(z), n = 0, . . . , 19. The factor i0(z) =
sinh(z)/z is provided with 135 decimal digits accuracy so that the ap-
proximation error in the factors in+1/in dominates. Making use of the
symmetry properties (17.2.5) and (17.2.6), we can reduce our investigation
to the first quadrant, including the positive real and imaginary axis.

x in(x) (17.2.22) (17.1.17) (17.2.33) (17.2.39)
0.01 7.625988e−66 2.3e−148 2.2e−07 4.1e−132 2.2e−57

0.5 7.293871e−32 5.2e−77 1.4e−74 3.5e−64 8.4e−24

1 7.715148e−26 2.3e−64 1.7e−86 3.2e−52 3.1e−18

2 8.376728e−20 9.6e−52 6.6e−98 1.9e−40 2.9e−13

10 2.371544e−05 7.5e−23 4.7e−121 1.3e−16 2.5e−09

50 7.904304e+17 1.2e−01 1.7e−132 4.1e−04 1.4e−14

500 9.218923e+213 1.0e+00 2.7e−135 1.0e+00 5.7e−31
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x |in(x + ix)|s (17.2.22) (17.1.17) (17.2.33) (17.2.39)
0.01 −7.809003e−63 4.8e−142 2.1e−13 4.3e−126 2.2e−54

0.5 −7.447251e−29 1.1e−70 5.8e−81 3.9e−58 9.1e−21

1 −7.809096e−23 4.8e−58 2.3e−92 4.2e−46 3.9e−15

2 −8.189907e−17 2.1e−45 9.1e−104 3.3e−34 5.0e−10

10 8.782339e−03 4.2e−16 1.2e−125 4.6e−11 2.1e−09

50 4.422559e+18 1.1e+07 2.0e−133 4.1e−02 1.9e−15

500 −8.044847e+213 1.0e+00 3.9e−135 1.0e+00 8.5e−34

x |in(ix)|s (17.2.22) (17.1.17) (17.2.33) (17.2.39)
0.01 7.625970e−66 2.3e−148 1.1e−06 4.1e−132 2.2e−57

0.5 7.251588e−32 5.2e−77 5.8e−75 4.0e−64 2.3e−23

1 7.537796e−26 2.3e−64 7.2e−87 5.3e−52 2.9e−17

2 7.632641e−20 1.1e−51 3.4e−99 1.4e−39 7.5e−11

10 2.308372e−06 7.3e−22 3.1e−127 2.8e−10 1.2e+00

50 −1.578503e−02 1.4e+18 8.0e−136 1.2e+00 1.2e+00

500 −1.575766e−03 3.3e+79 2.0e−135 1.4e+01 5.2e−01
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Probability functions

Several probability distribution functions can be expressed in terms of spe-
cial functions. Therefore, continued fractions representations can be ob-
tained from the continued fractions given in the previous chapters. We
discuss the normal and log-normal distribution, the gamma, exponential
and chi-square distribution, and the beta, F- and Student’s t-distribution.

18.1 Definitions and elementary properties

Probability distribution. A function F (x) which satisfies [AS64, p. 927]

F (x1) ≤ F (x2), x1 ≤ x2, x ∈ R, (18.1.1a)

F (x) = lim
ε→0+

F (x + ε), x ∈ R, (18.1.1b)

F (−∞) = 0, F (∞) = 1, x ∈ R, (18.1.1c)

is called a cumulative distribution function, abbreviated cdf. It is also called
a probability distribution function or probability distribution for short. If
X denotes a random variable, and P (X ≤ x) represents the probability of
the event X ≤ x, then the cdf F (x) gives the probability that the variable
takes a value less than or equal to x:

F (x) = P (X ≤ x). (18.1.2)

There are two principal types of probability distributions: the continu-
ous probability distribution and the discrete probability distribution. Also
probability distributions that are neither continuous nor discrete exist.

Continuous probability distributions. If F (x) is absolutely continuous
so that the derivative of the cdf F ′(x) = f(x) exists a.e., then [AS64, p. 927]

F (x) = P (X ≤ x) =
∫ x

−∞
f(t) dt =

∫ x

−∞
dF (t). (18.1.3)

371



372 18. PROBABILITY FUNCTIONS

The function f is called the probability density function, abbreviated pdf.
Other used names are probability function or frequency function. The prob-
ability density function is constrained by the normalisation condition∫ ∞

−∞
f(x) dx = 1. (18.1.4)

Discrete probability distributions. For discrete probability distribu-
tions the random variable X lies in a denumerable set {. . . , x−1, x0, x1, . . . }
with point probabilities [AS64, p. 927]

0 ≤ pn = P (X = xn),
∞∑

n=−∞
pn = 1. (18.1.5)

The cdf has the form

F (x) = P (X ≤ x) =
∑

xn≤x

pn =
∫ x

−∞
dF (t) (18.1.6)

where the sum is over all pn for which xn ≤ x.

Basic terminology. We introduce some basic terminology for continuous
probability distributions [AS64, p. 928]. By using Stieltjes integrals we
obtain the same expression for discrete probability distributions. The kth

moment about the origin or the kth raw moment of a probability distribu-
tion F (x) is defined by

μk :=
∫ ∞

−∞
xk dF (x). (18.1.7)

The first raw moment μ1 is called the mean or expectation value of X,
denoted E[X] or μ, and given by

μ := E[X] := μ1 =
∫ ∞

−∞
x dF (x). (18.1.8)

The expectation value E[g(X)] of a function g(X) is given by

E[g(X)] :=
∫ ∞

−∞
g(x) dF (x). (18.1.9)

The moments are usually taken about the mean. These are called kth

central moments, denoted μ′
k, and defined by

μ′
k :=

∫ ∞

−∞
(x− μ)k dF (x), μ′

1 = 0. (18.1.10)
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The second moment about the mean is called the variance

σ2 :=
∫ ∞

−∞
(x− μ)2 dF (x), (18.1.11)

and
σ =

√
μ′

2

is called the standard deviation.

18.2 Normal and log-normal distributions

Definitions and elementary properties. A probability distribution
with mean μ and variance σ2 is called a normal distribution N(μ, σ2), if it
has probability density function [AS64, p. 931; Wei03, p. 2036]

f(x; μ, σ2) =
1

σ
√

2π
e−(x−μ)2/2σ2

, μ, x ∈ R, σ > 0. (18.2.1)

The graph of f(x; μ, σ2) is symmetrical, bell-shaped and centred at the
mean μ. The cdf for the normal distribution is

F (x; μ, σ2) =
1

σ
√

2π

∫ x

−∞
e−(t−μ)2/2σ2

dt

=
1√
2π

∫ (x−μ)/σ

−∞
e−t2/2 dt = F

(
x− μ

σ
; 0, 1

)
. (18.2.2)

An alternative way of representing the cdf (18.2.2) is given by

F (x; μ, σ2) =
1
2

(
1 + erf

(
x− μ

σ
√

2

))
, (18.2.3)

where erf(x) denotes the error function (13.1.1).
The simplest case of the normal distribution (18.2.2) with μ = 0 and σ2 = 1
is known as standard normal distribution or Gaussian distribution, [Wei03,
p. 2037]

F (x; 0, 1) =
1√
2π

∫ x

−∞
e−t2/2 dt =

1
2

(
1 + erf

(
x√
2

))
, x ∈ R.

(18.2.4)
The standard normal probability density function or Gaussian probability
density function is given by

f(x; 0, 1) =
1√
2π

e−x2/2, x ∈ R. (18.2.5)
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A function closely related to F (x; 0, 1), denoted Q(x; 0, 1), is defined by

Q(x; 0, 1) := P (X > x) =
1√
2π

∫ ∞

x

e−t2/2 dt, x ∈ R. (18.2.6)

Then by (18.1.3) and (18.1.4)

F (x; 0, 1) + Q(x; 0, 1) = 1, x ∈ R. (18.2.7)

From (18.2.4) and (18.2.7) we obtain

Q(x; 0, 1) =
1
2

(
1− erf

(
x√
2

))
=

1
2

erfc
(

x√
2

)
, (18.2.8)

where erfc(x) is the complementary error function (13.2.1).

Log-normal distribution. A probability distribution closely related to
the normal distribution N(μ, σ2) is defined in the following way. Let X be
a random variable such that ln(X) has a normal distribution with mean
μ and variance σ2. Then the probability distribution of X is called a log-
normal distribution, denoted log -N(μ, σ2). If X is a random variable with
a normal distribution, then Y = eX has a log-normal distribution. The
log-normal distribution has pdf [WMMY07, p. 201]

f(ln(x);μ, σ2) =
1

xσ
√

2π
e−(ln(x)−μ)2/2σ2

,

μ ∈ R, x, σ > 0. (18.2.9)

The cdf of the log-normal distribution is

F (ln(x);μ, σ2) = P (X ≤ x) =
1
2

(
1 + erf

(
ln(x)− μ

σ
√

2

))
. (18.2.10)

A special case of the log-normal distribution is obtained by taking μ = 0
and σ = 1 in (18.2.9). From (18.2.4) and (18.2.8) we obtain

F (ln(x); 0, 1) =
1
2

(
1 + erf

(
ln(x)√

2

))
, x > 0, (18.2.11)

Q(ln(x); 0, 1) =
1
2

erfc
(

ln(x)√
2

)
, x > 0. (18.2.12)

The probability distribution log -N(0, 1) is also called Gibrat distribution
[Wei03, p. 1194].
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All the results given for the normal distribution also apply to the log-normal
distribution by replacing x by ln(x) in all formulas.

Series expansion. From the series representation (13.1.7) for the error
function and the relations (18.2.4) and (18.2.8) we obtain respectively

F (x; 0, 1) =
1
2

+
1√
2π

∞∑
k=0

(−1)kx2k+1

2k(2k + 1)k!
, x ∈ R, (18.2.13a)

Q(x; 0, 1) =
1
2
− 1√

2π

∞∑
k=0

(−1)kx2k+1

2k(2k + 1)k!
, x ∈ R. (18.2.13b)

Asymptotic series expansion. From the asymptotic series expansion
(13.2.11) of the complementary error function and the relation (18.2.8) we
obtain

Q(x; 0, 1) ≈ e−x2/2

x
√

2π

(
1 +

∞∑
k=1

(−1)k 1 · 3 · 5 · · · (2k − 1)
x2k

)

=
e−x2/2

x
√

2π
2F0

(
1,

1
2
;
−2
x2

)
, x→∞. (18.2.14)

Stieltjes transform. It follows from (18.2.8) and (13.2.13) that Q(x; 0, 1)
can be expressed by the Stieltjes transform

Q(x; 0, 1) =
xe−x2/2

2
√

2π

∫ ∞

0

e−t

√
t(t + x2/2)

dt, x > 0. (18.2.15)

S-fraction. From the relation (18.2.8) and the S-fraction (13.2.20) for
the complementary error function, we obtain a modified S-fraction for the
function Q(x; 0, 1), given by

Q(x; 0, 1) =
xe−x2/2

√
2π

(
a1

x2 +
a2

1 +
a3

x2 +
a4

1 + . . .

)
, x > 0,

(18.2.16a)
where the coefficients am satisfy

a1 = 1, am = m− 1, m ≥ 2. (18.2.16b)

An equivalence transformation leads to

Q(x; 0, 1) =
e−x2/2

√
2π

(
1
x +

∞

K
m=2

(
m− 1

x

))
. (18.2.17)
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C-fraction. A C-fraction representation for Q(x; 0, 1) follows from (18.2.8)
and (13.1.11) [AS64, pp. 931–932],

Q(x; 0, 1) =
1
2
− e−x2/2

x
√

2π

(
x2

1 +

∞

K
m=2

(
cmx2

1

))
, x ∈ R (18.2.18a)

where the coefficients cm are

cm =
(−1)m−1(m− 1)
(2m− 3)(2m− 1)

, m ≥ 2. (18.2.18b)

J-fraction. A J-fraction representation for Q(x; 0, 1) can be obtained from
the relation (18.2.8) and the J-fraction (13.2.23a)

Q(x; 0, 1) =
e−x2/2

√
2π

(
x

1 + x2 +

∞

K
m=2

(−(2m− 3)(2m− 2)
4m− 3 + x2

))
, x > 0.

(18.2.19)

Continued fractions for Mills ratio. We introduce the function R(x)
defined by [Les95]

R(x) :=
1− F (x; 0, 1)

F ′(x; 0, 1)
=
√

2πex2/2Q(x; 0, 1) = ex2/2

∫ ∞

x

e−t2/2 dt,

(18.2.20)
which is called Mills ratio. An S-fraction representation of R(x), introduced
by Laplace, follows immediately from (18.2.17) [Lap05; Les95]

R(x) =
1
x +

∞

K
m=2

(
m− 1

x

)
, x > 0. (18.2.21)

A C-fraction expansion for a function related to R(x) [She54; Les95] follows
directly from (18.2.18),√

π

2
ex2/2 −R(x) =

x

1 +

∞

K
m=2

(
amx2

bm

)
, x > 0, (18.2.22a)

am = (−1)m−1(m− 1), bm = 2m− 1. (18.2.22b)
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18.3 Repeated integrals

Definition and elementary properties. The repeated integrals of the
probability integral are defined recursively by [AS64, p. 934]

I−1(x) :=
1√
2π

e−x2/2, (18.3.1a)

I0(x) := Q(x; 0, 1) =
1√
2π

∫ ∞

x

e−t2/2 dt, (18.3.1b)

Ik(x) :=
∫ ∞

x

Ik−1(t) dt, k ≥ 1. (18.3.1c)

It follows from (18.2.8) and (13.3.1c) that

Ik(x) = 2
k
2−1Ik erfc

(
x√
2

)
, k ≥ 0, (18.3.2)

where Ik erfc(x) denotes the repeated integral of the error function.

Asymptotic series expansion. From the asymptotic series expansion
(13.3.2) and (18.3.2) we obtain

Ik(x) ≈ e−x2/2

√
2πxk+1

∞∑
m=0

(−1)m(2m + k)!
k! m! 2mx2m

, x→∞. (18.3.3)

S-fraction. A modified S-fraction follows from (13.3.5),

Ik(x)
Ik−1(x)

=
∞

K
m=1

(
a
(k)
m

x

)
, k ≥ 1, x > 0, (18.3.4a)

where

a
(k)
1 = 1, a(k)

m = k + m− 1, m ≥ 2. (18.3.4b)
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18.4 Gamma and chi-square distribution

Definitions and elementary properties. A probability distribution
with pdf [Wei03, p. 1135]

f(x; α, θ) =
1

θαΓ(α)
e−x/θxα−1, α, θ > 0, x ≥ 0, (18.4.1)

with parameters α and θ, is called a gamma distribution.
For θ = 1 we obtain

f(x; α, 1) =
1

Γ(α)
e−xxα−1, α > 0, x ≥ 0, (18.4.2)

which is called the standard gamma distribution. The cdf for the gamma
distribution (18.4.1) is

P (x; α, θ) =
1

θαΓ(α)

∫ x

0

e−t/θtα−1 dt, α, θ > 0, x ≥ 0. (18.4.3)

For the function Q(x; α, θ), we get

Q(x; α, θ) = 1− P (x; α, θ) =
1

θαΓ(α)

∫ ∞

x

e−t/θtα−1 dt,

α, θ > 0, x ≥ 0. (18.4.4)

Both the functions P (x; α, θ) and Q(x; α, θ) are related to the incomplete
gamma function (12.6.2) and the complementary incomplete gamma func-
tion (12.6.4) by

P (x; α, θ) =
γ (α, x/θ)

Γ (α)
, (18.4.5a)

Q(x; α, θ) =
Γ (α, x/θ)

Γ (α)
. (18.4.5b)

The functions (18.4.5) are called the regularised gamma functions [Wei03,
pp. 2526–2527].
For integer values of the parameter α, the gamma distribution is also known
as the Erlang distribution [Wei03, p. 1135]. For α = 1 the pdf (18.4.1)
reduces to

f(x; 1, θ) =
1
θ
e−x/θ, θ > 0, x ≥ 0, (18.4.6)
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which is the probability density function for the exponential distribution
[AS64, p. 930]. From the relations (18.4.6) and (18.4.5a) we obtain

P (x; 1, θ) =
1
θ

∫ x

0

e−t/θ dt = γ
(
1,

x

θ

)
= 1− e−x/θ, θ > 0, x ≥ 0.

(18.4.7)

Chi-square distribution. Let X1, X2, . . . , Xν be random variables that
are varied independently and normally distributed with mean μ = 0 and
variance σ = 1. Then the probability distribution of the random variable
[AS64, p. 940]

χ2 =
ν∑

j=1

X2
j , (18.4.8)

is called a chi-square distribution with ν degrees of freedom. The pdf is
given by

f(x, ν) =
1

2Γ
(

ν
2

)e−x/2
(x

2

)ν/2−1

, ν ∈ N, x ≥ 0, (18.4.9)

and the cdf is

P (x2, ν) = P (χ2 ≤ x2) =
1

2Γ
(

ν
2

) ∫ x2

0

e−t/2

(
t

2

)ν/2−1

dt,

ν ∈ N, x ≥ 0. (18.4.10)

The related function Q(x2, ν) is

Q(x2, ν) = 1− P (x2, ν) =
1

2Γ
(

ν
2

) ∫ ∞

x2
e−t/2

(
t

2

)ν/2−1

dt,

ν ∈ N, x ≥ 0. (18.4.11)

Hence the chi-square distribution is a special case of the gamma distri-
bution (18.4.1) with α = ν/2, θ = 2 and x replaced by x2. Therefore
all the results given for the gamma distribution apply to the chi-square
distribution with these substitutions and

P (x2; ν) =
γ (ν/2, x/2)

Γ (ν/2)
, (18.4.12a)

Q(x2; ν) =
Γ (ν/2, x/2)

Γ (ν/2)
. (18.4.12b)
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From the integrals (18.4.11) we observe that for ν = 1 we have the connec-
tion

P (x2, 1) = 2F (x; 0, 1)− 1, (18.4.13)

Q(x2, 1) = 2Q(x; 0, 1), (18.4.14)

where F (x; 0, 1) is the standard normal distribution (18.2.4) and Q(x; 0, 1)
is the function (18.2.6).

Series expansions. From equation (18.4.5a) and (12.6.7) we obtain the
series expansion

P (x; α, θ) =
(x/θ)α

Γ(α)

∞∑
k=0

(−x/θ)k

(α + k)k!
(18.4.15)

=
(x/θ)α

Γ (α + 1) 1F1 (α; α + 1;−x/θ) α, θ > 0, x ≥ 0,

where 1F1(a; b; z) is the confluent hypergeometric function (16.1.2). An
alternative series representation follows from (18.4.5b) and (12.6.8):

P (x; α, θ) =
(x/θ)α

e−x/θ

Γ (α + 1)

∞∑
k=0

(x/θ)k

(α + 1)k

(18.4.16)

=
(x/θ)α

e−x/θ

Γ (α + 1) 1F1 (1; 1 + α; x/θ) , α, θ > 0, x ≥ 0.

Asymptotic series expansion. An asymptotic series expansion for the
function Q(x; α, θ) follows from (18.4.5b) and (12.6.10)

Q(x; α, θ)Γ (α)
(x/θ)α

e−x/θ
≈
(x

θ

)−1 ∞∑
k=0

(−1)k (1− α)k

(x

θ

)−k

(18.4.17)

=
(x

θ

)−1

2F0 (1, 1− α;−θ/x) , α, θ > 0, x→∞,

where 2F0(a; b; z) is the confluent hypergeometric series (16.1.12).

Stieltjes transform. From (18.4.5b) and the Stieltjes transform (12.6.5)
we obtain

Q(x; α, θ)Γ (α)
(x/θ)α

e−x/θ
=

1
Γ (1− α)

∫ ∞

0

e−tt−α

t + x/θ
dt, α, θ > 0, x ≥ 0.

(18.4.18)
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S-fraction. From (18.4.18) and the S-fraction (12.6.15) we get a modified
S-fraction of the form

Q(x; α, θ)Γ (α)
(x/θ)α

e−x/θ
=

a1

x/θ +
a2

1 +
a3

x/θ +
a4

1 + . . .
,

α ∈ (0, 1), θ > 0, x > 0, (18.4.19a)

corresponding to the asymptotic series (18.4.17). The coefficients are

a1 = 1, a2m = m− α, a2m+1 = m, m ≥ 1. (18.4.19b)

C-fractions. From (18.4.5a) and (12.6.23a), we obtain the regular C-
fraction

P (x; α, θ)Γ (α)
(x/θ)α−1

e−x/θ
=

∞

K
m=1

(
cm (x/θ)

1

)
, α, θ > 0, x ≥ 0, (18.4.20a)

where the coefficients are

c1 =
1
α

, c2j =
−(α + j − 1)

(α + 2j − 2)(α + 2j − 1)
, j ≥ 1,

c2j+1 =
j

(α + 2j − 1)(α + 2j)
, j ≥ 1.

(18.4.20b)

From (18.4.5b) and (12.6.24) we obtain the C-fraction

Q(x; α, θ)Γ (α)
(x/θ)α−1

e−x/θ
=

Γ (α)
(x/θ)α−1

e−x/θ
−

∞

K
m=1

(
cm (x/θ)

1

)
,

α, θ > 0, x ≥ 0, (18.4.21)

where the coefficients cm are given in (18.4.20b).

Padé approximants. From (18.4.5b) and (12.6.28) we obtain explicit
formulas for the Padé approximants of

Q(x; α, θ)Γ (α)
(x

θ

)1−α

ex/θ.

The Padé approximants rm,n(x/θ) at x = ∞ are obtained by setting a = α
and z = x/θ in (12.6.28):

rm,n

(x

θ

)
=
Pm+n (2F0 (1− α, 1;−θ/x) 2F0 (α−m− 1,−n; θ/x))

2F0 (α−m− 1,−n; θ/x)
,

m ≥ n− 1. (18.4.22)
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From the relation (18.4.5a) and (12.6.29) we obtain explicit formulas for
the Padé approximants of

P (x; α, θ)Γ (α + 1)
(x

θ

)−α

ex/θ.

The Padé approximants rm,n(x/θ) at x = 0 are obtained by setting a = α
and z = x/θ in (12.6.29):

rm,n

(x

θ

)
=
Pm+n (1F1 (1; 1 + α; x/θ) 1F1 (−n;−α−m− n;−x/θ))

1F1 (−n;−α−m− n;−x/θ)
,

m ≥ n− 1. (18.4.23)

M-fractions. From (18.4.5a) and (12.6.30) we obtain the M-fraction rep-
resentation

P (x; α, θ)Γ (α)
(x/θ)α

e−x/θ
=

1
α− x/θ +

∞

K
m=2

(
(m− 1)x/θ

α + m− 1− x/θ

)
,

α, θ > 0, x ≥ 0. (18.4.24)

The continued fraction (18.4.24) corresponds at x = 0 to the series repre-
sentation

1
α

1F1

(
1; α + 1;

x

θ

)
and at x = ∞ to

−
(x

θ

)−1

2F0

(
1, 1− α;− θ

x

)
.

From (18.4.5b) and (18.4.24) we obtain the M-fraction

Q(x; α, θ)Γ (α)
(x/θ)α

e−x/θ
=

Γ (α)
(x/θ)α

e−x/θ
− 1

α− x/θ +

∞

K
m=2

(
(m− 1)x/θ

α + m− 1− x/θ

)
,

α, θ > 0, x ≥ 0. (18.4.25)

18.5 Beta, F- and Student’s t-distributions

Definitions and elementary properties. The beta function B(a, b) is
defined by [AS64, p. 258]

B(a, b) :=
∫ 1

0

ta−1(1− t)b−1 dt, �a > 0, �b > 0, (18.5.1)
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where ta−1 and (1 − t)b−1 have their principal values. The beta function
is a special case of the hypergeometric series 2F1(a, b; c; z) introduced in
(15.1.4),

B(a, b) =
1
a

2F1(a, 1− b; a + 1; 1) =
Γ(a)Γ(b)
Γ(a + b)

, (18.5.2)

where Γ(z) is the gamma function (12.1.1). The incomplete beta function
is defined by [Wei03, p. 1473]

Bx(a, b) :=
∫ x

0

ta−1(1− t)b−1 dt, 0 ≤ x ≤ 1. (18.5.3)

The function Ix(a, b) defined by [Wei03, p. 2526]

Ix(a, b) :=
Bx(a, b)
B(a, b)

=
1

B(a, b)

∫ x

0

ta−1(1− t)b−1 dt, (18.5.4)

is called the regularised beta function or the regularised incomplete beta
function. Observe that

B(a, b) = B(b, a), (18.5.5)

Ix(a, b) = 1− I1−x(b, a). (18.5.6)

The beta distribution has pdf [Wei03, p. 206]

f(x) =
1

B(a, b)
xa−1(1− x)b−1, a, b > 0, 0 ≤ x < 1, (18.5.7)

and the cdf is

F (x) = Ix(a, b), a, b > 0, 0 ≤ x < 1. (18.5.8)

F-distribution. Let χ2
1 and χ2

2 be independent chi-square distributions
with ν1 and ν2 degrees of freedom respectively. The probability distribution
of the ratio [AS64, p. 946]

χ2
1/ν1

χ2
2/ν2

(18.5.9)
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is called an F-distribution with ν1 and ν2 degrees of freedom. The pdf for
the F-distribution is given by

f(F ; ν1, ν2) =
ν

ν1/2
1 ν

ν2/2
2 F ν1/2−1

(ν2 + ν1F )(ν1+ν2)/2B
(

ν1
2 , ν2

2

) , ν1, ν2 ∈ N, F ≥ 0,
(18.5.10)

where B(a, b) is the beta function (18.5.1). The cdf is

P (F ; ν1, ν2) = P

(
X2

1/ν1

X2
2/ν2

≤ F

)
=

ν
ν1/2
1 ν

ν2/2
2

B
(

ν1
2 , ν2

2

) ∫ F

0

tν1/2−1

(ν2 + ν1t)(ν1+ν2)/2
dt,

ν1, ν2 ∈ N, F ≥ 0. (18.5.11)

The F-distribution is related to the beta distribution by

P (F ; ν1, ν2) = Ix

(ν1

2
,
ν2

2

)
, ν1, ν2 ∈ N, (18.5.12a)

where
x =

ν1F

ν2 + ν1F
(18.5.12b)

and Ix(a, b) is the regularised beta function (18.5.4). Hence the results for
the beta distribution can be carried over to the F-distribution, taking into
account (18.5.12).

Student’s t-distribution. Let X be a random variable with a normal
distribution having mean μ = 0 and variance σ = 1. Let χ2 be a ran-
dom variable with an independent chi-square distribution with ν degrees
of freedom. Then the probability distribution of the ratio [AS64, p. 948]

X√
χ2/ν

is called Student’s t-distribution or t-distribution with ν degrees of freedom.
The pdf is defined by

fν(t) =
1√

νB( 1
2 , ν

2 )

(
1 +

t2

ν

)−(ν+1)/2

, ν ∈ N, t ∈ R, (18.5.13)

where B(a, b) is the beta function introduced in (18.5.1). The cdf for
Student’s t-distribution is

Fν(t) = P

(
X√
χ2/ν

≤ t

)

=
1√

νB( 1
2 , ν

2 )

∫ t

−∞

(
1 +

x2

ν

)−(ν+1)/2

dx, ν ∈ N, t ∈ R.
(18.5.14)
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The Student t-distribution is related to the beta distribution by

Fν(t) =

⎧⎪⎪⎨⎪⎪⎩
1− 1

2
Ix

(
ν

2
,
1
2

)
, t > 0, ν ∈ N

1
2
Ix

(
ν

2
,
1
2

)
, t ≤ 0, ν ∈ N

(18.5.15a)

where Ix(a, b) is the cdf of the beta distribution and

x =
ν

ν + t2
, t ∈ R. (18.5.15b)

The t-distribution is related to the F-distribution as follows: if X has
a Student’s t-distribution with ν degrees of freedom, then Y = X2 is
distributed as F with 1 and ν degrees of freedom. For large ν the Student’s
t-distribution approaches a normal distribution.

Series expansions. The probability distribution (18.5.8) has the series
representation [AS64, p. 945]

Ix(a, b) =
xa

aB(a, b) 2F1(a, 1− b; a + 1;x), a, b > 0, 0 ≤ x < 1,

(18.5.16a)
– – –
– – –
– – –

where 2F1(a, b; c; z) is the hypergeometric series (15.1.4). Alternatively, by
using the relation (15.1.14d), we get

Ix(a, b) =
xa(1− x)b

aB(a, b) 2F1(1, a + b; a + 1;x), a, b > 0, 0 ≤ x < 1.

(18.5.16b)

C-fraction. From the series representation (18.5.16b) and the C-fraction
(15.3.4), we obtain a regular C-fraction for Ix(a, b) [AS64, p. 944; JT80,
p. 132],

Ix(a, b) =
xa−1(1− x)b

aB(a, b)

∞

K
m=1

(amx

1

)
, a, b > 0, 0 ≤ x < 1,

(18.5.17a)
– – –
– – –
– – –

where

a1 = 1, a2m+2 = − (a + m)(a + b + m)
(a + 2m)(a + 2m + 1)

, m ≥ 0,

a2m+1 =
m(b−m)

(a + 2m− 1)(a + 2m)
, m ≥ 1.

(18.5.17b)
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Since (18.5.17) is limit periodic, use of the modification (7.7.5), given here
by w(x) = (−1 +

√
1− x)/2, is recommended when the order of the ap-

proximant is larger than 2b + 1.
In [AS64, p. 944] a C-fraction representation for Ix(a, b) in the variable
x/(1 − x) is given. It can be obtained from (18.5.17) by applying the
transformation formula (15.1.14b).
An associated continued fraction representation for Ix(a, b) is given in
[TW80b].

M-fraction. From the series representation (18.5.16b) and the M-fraction
representation (15.3.9), we obtain

B(a, b)Ix(a, b)
xa(1− x)b

=
1

a + (1− a− b)x +

∞

K
m=2

(
cmx

em + dmx

)
,

a, b > 0, 0 ≤ x < 1, (18.5.18a)
– – –
– – –
– – –

where

cm = (m− 1)(b−m + 1), em = a + m− 1, dm = −(a + b−m),

m ≥ 2. (18.5.18b)

Because of the limit periodicity of (18.5.18), use of the modification

w̃n(x) = − (en + dnx)x
1 + x

, 0 ≤ x < 1,

as explained in (7.7.4) and (7.7.5), may be worthwhile when evaluating the
continued fraction. Its usefulness depends on the values a and b compared
to the order of the approximant.

Other continued fraction representations. From the series represen-
tation (18.5.16b) and the special case (15.3.14) of the Nörlund fraction, we
obtain the continued fraction representation

B(a, b)Ix(a, b)
xa(1− x)b

=
1

a− (a + b)x +

∞

K
m=2

(
cm(x− x2)
em + dmx

)
,

a, b > 0, 0 ≤ x < 1/2, (18.5.19a)
– – –
– – –
– – –

where

cm = (a+b+m−2)(m−1), em = a+m−1, dm = −(a+b+2m−2),

m ≥ 2. (18.5.19b)
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For (18.5.19) the modification

w̃n(x) = (en + dnx)
x

1− 2x
, 0 ≤ x < 1/2,

obtained from a combination of (7.7.4) and (7.7.5), can be used.
A more complicated continued fraction representation is given by [DDM92]

B(a, b)Ix(a, b)
xa(1− x)b

=
∞

K
m=1

(
αm(x)
βm(x)

)
, a, b > 0, 0 ≤ x < 1, (18.5.20a)

– – –
– – –
– – –

where the coefficients αm(x) and βm(x) are

α1(x) = 1,

αm+1(x) =
(a + m− 1)(a + b + m− 1)(b−m)m

(a + 2m− 1)2
x2, m ≥ 1,

βm+1(x) = a + 2m +
(

m(b−m)
a + 2m− 1

− (a + m)(a + b + m)
a + 2m + 1

)
x,

m ≥ 0.
(18.5.20b)

Because of (18.5.6) it is sufficient to explore the series and continued frac-
tion representations of Ix(a, b) for 0 ≤ x ≤ 1/2. In view of the fact that
(18.5.20) is most useful when x ≤ a/(a + b), the role of a and b and x
and 1−x may need to be interchanged when evaluating representations of
Ix(a, b).

Table 18.5.1: Relative error of the 5th partial sum of (18.5.16b) and the
5th approximants of (18.5.17), (18.5.18), (18.5.19) and (18.5.20) for a = 20
and b = 25. The approximants of (18.5.17), (18.5.18) and (18.5.19) are all
evaluated without modification.

x Ix(a, b) (18.5.16) (18.5.17) (18.5.18) (18.5.19) (18.5.20)
0.01 1.399753e−28 6.9e−11 3.3e−12 2.2e−15 9.8e−14 1.1e−24

0.1 1.606253e−09 6.7e−05 6.8e−07 1.2e−09 4.3e−08 5.1e−14

0.2 1.206101e−04 4.1e−03 5.8e−05 3.8e−07 1.0e−05 4.0e−10

0.3 2.175738e−02 4.3e−02 1.6e−03 4.5e−05 1.1e−03 2.7e−07

0.4 2.773366e−01 2.1e−01 3.7e−02 5.9e−03 1.5e−01 9.9e−05
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Table 18.5.2: Relative error of the 20th partial sum of (18.5.16b) and
the 20th approximants of (18.5.17), (18.5.18), (18.5.19) and (18.5.20) for
a = 20 and b = 25. The approximants of (18.5.17), (18.5.18) and (18.5.19)
are all evaluated without modification.

x Ix(a, b) (18.5.16) (18.5.17) (18.5.18) (18.5.19) (18.5.20)
0.01 1.399753e−28 2.2e−37 3.8e−49 1.7e−58 3.2e−46 2.0e−102

0.1 1.606253e−09 2.1e−16 4.9e−28 1.1e−36 2.3e−24 1.1e−60

0.2 1.206101e−04 4.0e−10 1.3e−20 1.9e−28 6.0e−16 1.6e−46

0.3 2.175738e−02 1.7e−06 1.8e−15 2.0e−22 1.3e−09 4.6e−37

0.4 2.773366e−01 5.2e−04 4.3e−11 4.4e−17 8.9e−04 2.5e−29

Figure 18.5.1: Region in the (a, b)-plane where the 6th approximant of
(18.5.20) for the incomplete beta function Bx(a, b) attains k significant
digits when x = 0.25 (from light to dark: k = 10, 11, 12 and 13). For (a, b)
we explore the region [5, 25]× [5, 25].
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Figure 18.5.2: Region in the (a, b)-plane where the 6th approximant of
(18.5.20) for the incomplete beta function Bx(a, b) attains 10 significant
digits for x = k/8 (from light to dark: k = 1, 2, 3 and 4). For (a, b) we
explore the region [0, 20]× [3, 23].



19
Basic hypergeometric functions

A q-analogue or q-bracket is a mathematical expression that generalises a
known expression with a given parameter q. The q-analogue reduces to the
original expression by taking the limit q → 1 for q inside the unit circle.
The q-analogue is also called the q-extension or the q-generalisation. The
earliest q-analogue studied in detail is the q-hypergeometric series which
was developed by Heine in 1846.

19.1 Definition and basic properties
The q-hypergeometric series or basic hypergeometric series is defined by
[GR04, p. 4]

rφs(a1, . . . , ar; b1, . . . , bs; q; z) :=
∞∑

m=0

(a1; q)m · · · (ar; q)m

(b1; q)m · · · (bs; q)m

zm

(q; q)m

(
(−1)mq(

m
2 )
)1+s−r

, (19.1.1)

ak, bk ∈ C, bk �= q−n, k = 1, . . . , s, n ∈ N0, 0 < |q| < 1,

where (a; q)k is the generalised Pochhammer symbol or q-shifted factorial
defined by

(a; q)0 := 1,

(a; q)k := (1− a)(1− aq)(1− aq2) · · · (1− aqk−1), k ∈ N.
(19.1.2)

The product (19.1.2) is also defined for k = ∞ [AAR99, p. 488]:

(a; q)∞ :=
∞∏

k=1

(1− aqk−1). (19.1.3)

Since

(a; q)k =
(a; q)∞

(aqk; q)∞
, |q| < 1, k ∈ N0,

391
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the definition of (a, q)k can be extended to

(a; q)α =
(a; q)∞

(aqα; q)∞
, |q| < 1, α ∈ C,

where the principal value of qα is taken when q �= 0.
The left hand side of (19.1.1) represents the q-hypergeometric function rφs

where the series converges. Assuming 0 < |q| < 1, the following holds for
the convergence of (19.1.1) [GR04, p. 5]:

r < s + 1: the series converges absolutely for z ∈ C,
r = s + 1: the series converges for |z| < 1,
r > s + 1: the series converges only for z = 0, unless it terminates.

In case of convergence, the q-hypergeometric function rφs represents an
analytic function of z in the convergence region. Furthermore, the q-
hypergeometric function rφs terminates if one of the numerator parameters
ak equals q−m with m ∈ N0. In particular,

rφs(. . . , ak−1, 1, ak+1, . . . ; b1, . . . , bs; q; z) = 1. (19.1.4)

A special case of the q-hypergeometric series is:

2φ1(a, b; c; q; z) :=
∞∑

m=0

(a; q)m(b; q)m

(c; q)m

zm

(q; q)m
,

|z| < 1, a, b, c ∈ C, c �= q−n, n ∈ N0, 0 < |q| < 1. (19.1.5)

If a = qα, b = qβ and c = qγ in (19.1.5) then we obtain the Heine series
[And86, p. 10] defined by

∞∑
m=0

(qα; q)m(qβ ; q)m

(qγ ; q)m

zm

(q; q)m
, γ /∈ Z−

0 , 0 < |q| < 1. (19.1.6)

Using the definition of the generalised Pochhammer symbol (19.1.2), the
Heine series (19.1.6) can be rewritten as

1 +
(1− qα)(1− qβ)
(1− qγ)(1− q)

z +
(1− qα)(1− qα+1)(1− qβ)(1− qβ+1)

(1− qγ)(1− qγ+1)(1− q)(1− q2)
z2 + . . . ,

γ /∈ Z−
0 , 0 < |q| < 1. (19.1.7)

Since
lim
q→1

1− qs

1− qt
=

s

t
(19.1.8)
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the Heine series reduces to the hypergeometric series

2F1(α, β; γ; z) =
∞∑

n=0

(α)n(β)n

(γ)n

zn

n!
(19.1.9)

when q → 1. The q-analogue of the natural number n, denoted [n]q, is
defined by

[n]q =
(1− qn)
(1− q)

= 1 + q + q2 + · · ·+ qn−1, n ∈ N, 0 < |q| < 1.

(19.1.10)
The q-factorial is defined by

[0]q! := 1,

[n]q! :=
(1− q) · · · (1− qn)

(1− q)n

=
(q; q)n

(1− q)n
=

(q; q)∞
(1− q)n(qn+1; q)∞

, n ∈ N, 0 < |q| < 1.

(19.1.11)
From (19.1.8) we get

lim
q→1

[n]q! = n! . (19.1.12)

The q-gamma function generalises the q-factorial and is defined by

Γq(1) := 1,

Γq(z) :=
(q; q)∞
(qz; q)∞

(1− q)1−z.
(19.1.13)

Here we take the principal values of qz and (1− q)1−z [GR04, p. 21]. Then
Γq(z) is a meromorphic function with poles at z = −n± 2πik/ ln(q) where
k, n ∈ N [AAR99, p. 493]. For Γq(z) the recurrence

Γq(z + 1) =
1− qz

1− q
Γq(z) (19.1.14)

holds [AAR99, p. 494], which reduces to the recurrence relation (12.1.5)
for q → 1.

Recurrence relations. Continued fraction representations for ratios of
the hypergeometric series 2F1(a, b; c; z) are obtained by using the contigu-
ous relation (15.1.15) and the recurrence relations (15.1.16b) and (15.1.16c).
Similarly, we obtain continued fractions for ratios of the q-hypergeometric
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series 2φ1(a, b; c; q; z) from the q-analogue of these relations. The contigu-
ous relation (15.1.15) for the 2φ1(a, b; c; z) series is [LW92, p. 320]

2φ1(a, b; c; q; z) = 2φ1(a, bq; cq; q; z) +
(1− a)(c− b)
(1− c)(1− cq)

z 2φ1(aq, bq; cq2; q; z).

(19.1.15)
The q-analogue of the recurrence relations (15.1.16) is given by [VS01;
AR93; LW92, p. 321]

2φ1(a, b; cq2; q; q2z) =

− (1− cq)(1− (a + b)z + c(qz + z − 1))
(a− cq)(b− cq)z 2φ1(a, b; cq; q; qz)

+
(1− c)(1− cq)(1− z)

(a− cq)(b− cq)z 2φ1(a, b; c; q; z),
(19.1.16a)

2φ1(a, bq2; cq2; q; z) =
((1− c)q + (a− bq)z)(1− cq)

(1− bq)(a− cq)z 2φ1(a, bq; cq; q; z)

− (1− c)q(1− cq)
(1− bq)(a− cq)z 2φ1(a, b; c; q; z),

(19.1.16b)

2φ1(aq2, bq2; cq2; q; z) =

(1− c− (a + b− ab− abq)z)(cq − 1)
(1− aq)(1− bq)(c− abqz)z 2φ1(aq, bq; cq; q; z)

+
(1− c)(1− cq)

(1− aq)(1− bq)(c− abqz)z 2φ1(a, b; c; q; z).
(19.1.16c)

Integral representations. The q-integral is defined by∫ 1

0

f(x) dq(x) = (1− q)
∞∑

m=0

f(qm)qm.

The q-analogue of Euler’s integral representation (15.2.1) for 2F1(a, b; c; z)
is given by [And86, p. 11]

2φ1(qα, qβ ; qγ ; q; z) =
Γq(γ)

Γq(β)Γq(γ − β)

∫ 1

0

tβ−1(qt; q)γ−β−1

(zt; q)α
dq(t),

|z| < 1, �β > 0, γ − β ∈ C \ Z−
0 , 0 < |q| < 1.

A q-beta function which is a q-analogue of the beta function (18.5.1) is
defined by

Bq(a, b) :=
∫ 1

0

tb−1(qt; q)a−1 dq(t) =
Γq(a)Γq(b)
Γq(a + b)

, �a > 0, b ∈ C\Z−
0 .

(19.1.17)
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19.2 Continued fraction representations

C-fraction. The contiguous relation (19.1.15) gives rise to the Heine con-
tinued fraction [Ber91, p. 21; AR93]

2φ1(a, b; c; q; z)
2φ1(a, bq; cq; q; z)

= 1 +
∞

K
m=1

(amz

1

)
,

z ∈ C, a, b, c ∈ C, c �= q−n, n ∈ N0, 0 < |q| < 1, (19.2.1a)

with

a2k+1 =
(1− aqk)(cqk − b)qk

(1− cq2k)(1− cq2k+1)
, k ∈ N0,

a2k =
(1− bqk)(cqk − a)qk−1

(1− cq2k−1)(1− cq2k)
, k ∈ N.

(19.2.1b)

The C-fraction (19.2.1) is the q-analogue of the Gauss continued fraction
(15.3.3). Putting b = 1 in (19.2.1) and using (19.1.4), we find

z 2φ1(a, q; cq; q; z) =
∞

K
m=1

(cmz

1

)
,

z ∈ C, a, c ∈ C, c �= q−n, n ∈ N0, 0 < |q| < 1, (19.2.2a)

with

c1 = 1, c2k+2 =
(1− aqk)(cqk − 1)qk

(1− cq2k)(1− cq2k+1)
, k ∈ N0,

c2k+1 =
(1− qk)(cqk − a)qk−1

(1− cq2k−1)(1− cq2k)
, k ∈ N.

(19.2.2b)

Example 19.2.1: Setting a = c = q in (19.2.2) leads to

2φ1(q, q; q2; q;−z) = 1 +
∞∑

m=1

(1− q)
1− qm+1

(−z)m = z−1
∞

K
m=1

(
dmz

1

)
,

(19.2.3a)
with

d1 = 1, d2k+2 =
(1− qk+1)qk

(1 + qk+1)(1− q2k+1)
, k ∈ N0,

d2k+1 =
(1− qk)qk

(1 + qk)(1− q2k+1)
, k ∈ N.

(19.2.3b)
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For q → 1 the series tends to the Taylor series expansion of Ln(1 + z)/z at
the origin and the continued fraction tends to the S-fraction representation
(11.2.2) of Ln(1 + z)/z.

Padé approximants. The Padé approximant rm,n(z) for 2φ1(a, q; cq; q; z)
is given by the irreducible form of p(z)/q(z) where [Aga94]

p(z) =
(az/c)m(q−n; q)m(q−m/a; q)m

(q; q)m(q−m−n/c; q)m

m∑
k=0

(q−m; q)k(a; q)k(cqn+1; q)kqk

(cq; q)k(aq; q)k(qn−m+1; q)k
×

3φ2(q−m+k, cqn+k+1, q; qn−m+k+1, aqk+1; q/z),

q(z) = 2φ1(q−n, q−m/a; q−m−n/c; az/c).
(19.2.4)

Observe that when m = n, the above formulas give us explicit expressions
for the (2n+1)th approximants of the C-fraction (19.2.2). Similarly, when
m = n − 1, we obtain explicit expressions for the (2n)th approximant of
(19.2.2).

T-fractions. The q-analogue of the T-fraction (15.3.8) is obtained from
the recurrence relation (19.1.16b), and given in [AR93]:

2φ1(a, b; c; q; z)
2φ1(a, bq; cq; q; z)

=
q(1− c) + (a− bq)z

q(1− c)
+

1
q(1− c)

∞

K
m=1

(
cmz

em + dmz

)
,

|z| < |q/a|, a, b, c ∈ C, c �= q−n, n ∈ N0, 0 < |q| < 1, (19.2.5a)

a− bq

q(1− c)
z

2φ1(bq/c, b; bq/a; q; cq/(abz))
2φ1(bq/c, bq; bq2/a; q; cq/(abz))

=

q(1− c) + (a− bq)z
q(1− c)

+
1

q(1− c)

∞

K
m=1

(
cmz

em + dmz

)
,

|z| > |q/a|, a, b, c ∈ C, 0 < |q| < 1, (19.2.5b)

where

cm = q(1− bqm)(cqm − a),

em = q(1− cqm), dm = a− bqm+1,
m ≥ 1. (19.2.5c)

The T-fraction (19.2.5) is limit periodic. A suitable modification for this
fraction is found by combining (7.7.4) and (7.7.5), and is given by

w̃n(z) = (en + dnz)w(z) (19.2.6a)
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with

w(z) = K
(−aqz/(q + az)2

1

)
=

⎧⎪⎪⎨⎪⎪⎩
−q

q + az
,

−az

q + az
,

|z| > |q|
|a| ,

|z| < |q|
|a| .

(19.2.6b)

q-analogue of the Nörlund fraction. The q-analogue of the Nörlund
fraction (15.3.13) [Fra60; IL89] can be derived from the recurrence relation
(19.1.16c) and is given by

2φ1(a, b; c; q; z)
2φ1(aq, bq; cq; q; z)

=

1− c− (a + b− ab− abq)z
1− c

+
1

1− c

∞

K
m=1

(
cm(z)

em + dmz

)
,

z ∈ C, a, b, c ∈ C, c �= q−n, n ∈ N0, 0 < |q| < 1, (19.2.7a)

with

cm(z) = (1− aqm)(1− bqm)(cz − abqmz2)qm−1,

em = 1− cqm,

dm = −(a + b− abqm − abqm+1)qm,

m ≥ 1. (19.2.7b)

Another continued fraction. Let the function h(a, b; c; q; z) be defined
by [VS01]

h(a, b; c; q; z) = (c; q)∞(z; q)∞ 2φ1(aq, b; c; q; z). (19.2.8)

The function (19.2.8) satisfies the relations

h(a, b; c; q; z) = h(aq, b; c; q; z) + az(b− 1)h(aq, bq; cq; q; z),

h(aq, b; c; q; z) = (1− z)h(a, b; c; q; qz) + z(1− b)h(aq, bq; cq; q; z),

h(aq, b; c; q; qz) =
(aqz − c)
(abqz − c)

h(a, b; c; q; qz) +
aqz(b− 1)
(abqz − c)

h(aq, bq; cq; q; z).

(19.2.9)
The relations (19.2.9) lead to the continued fraction

2φ1(a, b; c; q; z)
2φ1(aq, b; c; q; z)

=

1 +
a

−1 +
α0(z)
β0(z) +

γ0(z)
1 +

a

−1 +
α1(z)
β1(z) +

γ1(z)
1 + . . .

|z| < 1, a, b, c ∈ C, c �= q−n, n ∈ N0, 0 < |q| < 1, (19.2.10a)



398 19. BASIC HYPERGEOMETRIC FUNCTIONS

where
αm(z) = aq(1− qmz),

βm(z) = c− aqm+1z,

γm(z) = abqm+1z − c,

m ≥ 0. (19.2.10b)

Continued fractions in qz. The function 2φ1(a, b; c; q; z) also satisfies
the recurrence relation

2φ1(a, b; c; q; q2z) =
−q − c + (a + b)qz

abqz − c
2φ1(a, b; c; q; qz)

+
(1− z)q
abqz − c

2φ1(a, b; c; q; z),

which leads to a continued fraction for 2φ1(a, b; c; q; qz)/2φ1(a, b; c; q; z)
given by [IL89]

2φ1(a, b; c; q; qz)
2φ1(a, b; c; q; z)

=
1− z

1 + cq−1 − (a + b)z +

∞

K
m=1

(
am(z)
bm(z)

)
,

z ∈ C, a, b, c ∈ C, |c/q| �= 1, 0 < |q| < 1. (19.2.11a)

The coefficients are

am(z) = −(cq−1 − abqm−1z)(1− qmz),

bm(z) = 1 + cq−1 − (a + b)qmz,
m ≥ 1. (19.2.11b)

The continued fraction in (19.2.11) converges to the left-hand side if (a, b, c)
belongs to a neighbourhood of (0, 0, 0), |z| < 1 and z is not a pole of the
right-hand side [IL89]. A continued fraction for the reciprocal of the ratio
in (19.2.11) is given by [Den84]

2φ1(a, b; c; q; z)
2φ1(a, b; c; q; qz)

= 1 +
α0z

1− z +
γ0(z)

1 +
α1z

1− z +
γ1(z)

1 + . . .
,

z �= 1, a, b, c ∈ C, c �= q−n, n ∈ N0, 0 < |q| < 1 (19.2.12a)

where
αm = (1− aqm)(1− bqm),

γm(z) = abq2m+1z − cqm,
m ≥ 0. (19.2.12b)
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A continued fraction for the ratio 2φ1(aq, b; c; q; z)/2φ1(a, b; c; q; z) is given
by [VDSR87]

2φ1(aq, b; c; q; z)
2φ1(a, b; c; q; qz)

=

1 +
α0z

(1− a)(1− z) +
γ0

1 +
α1z

(1− a)(1− z) +
γ1

1 + . . .∣∣∣∣ z

(1− a)(1− z)

∣∣∣∣ < 1
4
,

∣∣∣∣ a

(1− a)(1− z)

∣∣∣∣ < 1
4
,

a, b, c ∈ C, c �= q−n, n ∈ N0, 0 < |q| < 1 (19.2.13a)

with
αm = (1− bqm),
γm = a− cqm,

m ≥ 0. (19.2.13b)

19.3 Higher order basic hypergeometric functions

The q-hypergeometric series rφs is defined in (19.1.1). There are results
on continued fraction representations for higher order basic hypergeomet-
ric functions, ratios of such functions or other expressions involving such
functions [Mas95].
We restrict ourselves here to a continued fraction representation for two
ratios of 3φ2(a, b, c; e, f ; q; z) given in [VDSR87]. For the first ratio we have

3φ2(a, b, c; e, f ; q; ef/(abc))
3φ2(a, b, c; eq, f ; q; efq/(abc))

= 1 +
α0

β0 +
γ0

1 +
α1

β1 +
γ1

1 + . . .
(19.3.1a)

where the coefficients αm, βm and γm, are given by

αm =
(1− aqm)(1− bqm)(1− cqm)ef/(abc)

(1− eq2m)(1− eq2m+1)(1− fqm)
,

βm =
1− ef/(abc)

1− fqm
,

γm =
−(1− eqm+1/a)(1− eqm+1/b)(1− eqm+1/c)fqm

(1− eq2m+1)(1− eq2m+2)(1− fqm)
,

m ≥ 0.

(19.3.1b)
Eliminating c by setting c = ef/(abz) in (19.3.1) and taking the limit
e → 0, we obtain the continued fraction (19.2.12) as a special case. For
the second ratio we have

3φ2(aq, b, c; e, f ; q; ef/(abcq))
3φ2(a, b, c; e, f ; q; ef/(abc))

= 1 +
α0

β +
γ0

1 +
α1

β +
γ1

1 + . . .
(19.3.2a)
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where the coefficients αm, β and γm, are given by

αm = (1− bqm)(1− cqm)
ef

abcq
,

β = (1− a)
(

1− ef

abcq

)
,

γm = a

(
1− eqm

a

)(
1− fqm

a

)
,

m ≥ 0. (19.3.2b)

Eliminating c by setting c = ef/(abqz) in (19.3.2) and taking the limit
e→ 0, we obtain the continued fraction (19.2.13).
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[TK98] D. Takahashi and Y. Kanada. Calculation of π to 51.5 bil-
lion decimal digits on distributed memory parallel processors.
Trans. Inform. Process. Soc. Japan, 39(7):2074–2083, 1998.

[Tup91] J. Tupper. Reliable two-dimensional graphing methods for
mathematical formulae with two free variables. In ACM SIG-
GRAPH, pages 77–86, 1991.

[Tup04] J. Tupper. GrafEq. Pedagoguery Software, 2004.

[TW80a] W.J. Thron and H. Waadeland. Accelerating convergence of
limit periodic continued fractions K(an/1). Numer. Math.,
34:155–170, 1980.

[TW80b] M.J. Tretter and G.W. Walster. Analytic subtraction applied
to the incomplete Gamma and beta functions. SIAM J. Sci.
Statist. Comput., 1(3):321–326, 1980.

[VA87] Walter Van Assche. Asymptotics for orthogonal polynomials.
Springer-Verlag, Berlin, 1987.

[vdP79] Alfred van der Poorten. A proof that Euler missed . . .
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approximants of ratios of hypergeometric functions. In WS-
SIAA 2, pages 427–434. World Scientific Publishing Company,
1993.

[WB95] J. Wimp and B. Beckermann. Families of two-point Padé
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convergence, 12

Carleman, 47
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uniform, 48

general, 48
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correspondence, 82
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cosh
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strong moment, 78
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equivalence transformation, 15,

159
equivalent, 15
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connection, 19, 38
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Padé approximant, 381, 382
S-fraction, 381
standard, 378
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gamma function, 185, 221
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golden mean, 185
golden ratio, 22, 185, 186

regular continued fraction, 186
golden section, 185
golden sequence, 186
Gompertz’ constant, 190

continued fraction, 190
Gordon function, 320
Gragg-Warner bound, 138
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Hankel determinant, 82, 94
Hankel function, 345

C-fraction, 351
J-fraction, 353
Stieltjes transform, 349

Hankel symbol, 347, 360
harmonic number

alternating, 191
Heine series, 392
Henrici-Pfluger bound, 141
Hermite, 179
Hermite polynomial, 94

recurrence relation, 94
hyperbolic Bessel function, 357
hyperbolic functions, 210
hypergeometric differential equation,

292
hypergeometric series, 291, 315

absolute convergence, 291
basic, 391
confluent, 320
Gauss, 292
M-fraction, 298
Nörlund fraction, 300
Padé approximant, 310
q-analogue, 391
recurrence relation, 293
regular C-fraction, 296
S-fraction, 296
Stieltjes transform, 295
T-fraction, 298
two-point Padé, 312

IEEE, 149
incomplete beta function, 293,

383
incomplete gamma function, 238,

378
C-fraction, 240
complementary, 378
M-fraction, 243
Padé approximant, 243

indeterminate, 79
inner product, 91
interval sequence theorem, 136
inverse

difference, 125
hyperbolic function, 214
trigonometric function, 204

J-fraction, 37, 41, 120
algorithm, 120
coefficients, 120
real, 37, 80, 92

Jacobi polynomial, 96
recurrence relation, 96

Jacobi-Anger identity, 344

Khinchin, 190
Khinchin’s constant, 190

infinite product, 191
regular continued fraction, 191

Kummer
confluent hypergeometric function,

320
differential equation, 319
function, 319
transformation, 321, 333

L-degree, 102
Laguerre polynomial, 95

recurrence relation, 95
Lambert, 176
Laurent polynomial, 102

regular, 102
singular, 102

Legendre polynomial, 74, 97
recurrence relation, 97

Leibniz’ formula, 176
level curve, 169
limit periodic, 23, 132, 134, 145
Lindemann, 176
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linear fractional transformation,
10, 22, 54
elliptic, 55
loxodromic, 55
parabolic, 54

ln 2
continued fraction, 182

log-gamma function, 224
log-normal distribution, 374
logarithmic derivative

Bessel function, 350, 352
confluent hypergeometric function

first kind, 322
second kind, 326

Hankel function, 351, 353
Kummer function

first kind, 322
second kind, 326

modified Bessel function, 362–
364

logarithmic function, 196
even contraction, 196
S-fraction, 196
Thiele expansion, 128

logarithmic integral, 285
S-fraction, 287

Ludolph van Ceulen, 176
Ludolph’s constant, 176

M-fraction, 38, 68, 122
algorithm, 123
coefficients, 123
Hankel determinant, 122

Macdonald function, 357
Machin’s formula, 176
machine operation, 150
mean, 372
Mercator series, 182
Miller’s algorithm, 155
Mills ratio, 376

C-fraction, 376
S-fraction, 376

minimal solution, 56, 154, 155
modification, 11, 30

improvement formula, 146
limit periodic, 145
square root, 145

modified approximant, 11, 30, 49,
144, 149

modified Bessel function
C-fraction, 362
first kind, 357
J-fraction, 364
recurrence relation, 359
S-fraction, 362
second kind, 357
Stieltjes transform, 361
T-fraction, 363

modified spherical Bessel function
first kind, 358
recurrence relation, 359
S-fraction, 362
second kind, 358
T-fraction, 363
third kind, 358

moment, 77, 372
central, 372

moment problem, 77
classical

Hamburger, 78
Stieltjes, 78

determinate, 78
Hausdorff, 78
indeterminate, 78
strong

Hamburger, 78
Stieltjes, 78

trigonometric, 78
monic, 92
multidimensional, 28
multivariate, 28
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Nörlund fraction, 300, 397
natural logarithm, 182
needle experiment, 176
Neumann function, 344
norm, 27
normal distribution, 373

C-fraction, 376
J-fraction, 376
S-fraction, 375
standard, 373
Stieltjes transform, 375

normed field, 27
numerator, 13

partial, 11
Nuttall

convergence theorem, 72

order of correspondence, 32
orthogonal L-polynomial, 102
orthogonal polynomial, 91

Chebyshev
first kind, 98
second kind, 98

Gegenbauer, 99
Hermite, 94
Jacobi, 96
Laguerre, 95
Legendre, 97
reciprocal, 100
Szegő, 100
ultraspherical, 99

oval sequence theorem, 51, 131
oval theorem, 50

P-fraction, 36, 66, 114
Padé approximant, 59

basic hypergeometric series,
396

block structure, 61
chi-square distribution, 381,

382

complementary error function,
264

complementary incomplete
gamma, 243

complex error function, 264
confluent hypergeometric function,

324
confluent hypergeometric limit,

333
confluent hypergeometric series,

332
convergence, 70
Dawson’s integral, 255
error function, 255
exponential function, 62
exponential integral, 278
gamma distribution, 381, 382
hypergeometric series, 310
incomplete gamma, 243
normal, 61, 62
orthogonality, 73
q-hypergeometric series, 396
recurrence relation, 63
table, 60

para-orthogonal polynomial, 101
parabola sequence theorem, 130
parabola theorem, 49, 129

uniform, 49
parabolic cylinder function, 337

C-fraction, 340
recurrence relation, 339

part
even, 16
odd, 17

PC-fraction, 38
positive, 38

Pell number, 183
recurrence relation, 183

period, 22, 23
periodic continued fraction

tail, 25
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Pfaff
transformation, 294

pi (π)
Leibniz’ formula, 176
Machin’s formula, 176
modified S-fraction, 177
regular continued fraction, 177
root of, 181
square of, 181
Wallis’ formula, 177

Pochhammer symbol, 222, 291
generalised, 391

polygamma function, 229
recurrence relation, 229
Stieltjes transform, 230

polynomial
associated, 73, 94

Pommerenke
convergence theorem, 72

power function, 217
C-fraction, 218

PPC-fraction, 38, 82, 100
probability density function, 372
probability distribution

continuous, 371
discrete, 371

probability distribution function,
371

probability integral
repeated integral, 377
repeated integral, S-fraction,

377
product form recurrence, 154

complexity, 154
psi function, 229
Pythagoras’ constant, 183

q-analogue, 391, 393
beta function, 394
gamma function, 393
hypergeometric series, 391
recurrence relation, 394

q-beta function, 394

q-bracket, 391

q-extension, 391

q-factorial, 393

q-gamma function, 393
recurrence relation, 393

q-generalisation, 391

q-hypergeometric series, 391, 392
C-fraction, 395
contiguous relation, 394
higher order, 399
Nörlund fraction, 397
Padé approximant, 396
recurrence relation, 394, 398
T-fraction, 396

q-integral, 394

q-shifted factorial, 391

qd-algorithm, 107
non-normal, 115
progressive, 110
standard, 108

rabbit constant, 187
recurrence relation, 186
regular continued fraction, 187

reciprocal
covariance, 61
difference, 125
polynomial, 100

recurrence relation, 100

recurrence
backward, 153
forward, 153
product form, 154
relation, 13
stable, 154
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recurrence relation, 13
contiguous, 293, 394
four-term, 315
minimal solution, 56, 154
orthogonal polynomial, 92
Padé approximant, 63
q-analogue, 394
solution, 58
three-term, 42, 56, 58, 92, 293,

321, 331, 333
reflection coefficient, 100
regular continued fraction, 190
regularised beta function, 383
regularised incomplete beta function,

383
rhombus rules, 108
Riemann zeta function, 181, 188,

191, 222, 229
round-off error, 150, 156

bound, 158
relative, 150

S-fraction, 35, 114
convergence, 47, 53
Hankel determinant, 114
modified, 36, 79, 86
truncation error, 138, 139, 141

sequence
totally monotone, 85

series
Euler, 19
formal Laurent series, 30, 32
formal power series at z = 0, 30
formal power series at z = ∞,

32
formal Taylor series, 30, 32

shifted factorial, 222, 291
signed modulus, 164
significant digit, 151, 164
sin

T-fraction, 202
sine integral, 286

singular, 102
sinh

T-fraction, 211
Śleszyński-Pringsheim’s theorem,

45
spherical Bessel function

first kind, 345
recurrence relation, 346
S-fraction, 350
second kind, 345
T-fraction, 353
third kind, 345

square root
√

2
regular continued fraction, 183

stable recurrence, 154
staircase

descending, 64, 114
jumping block, 115

standard deviation, 373
standard gamma distribution, 378
standard normal distribution, 373
star identity, 63, 64
Stern-Stolz series, 46
Stieltjes

function, 62
transform, 86

Stirling’s approximation, 224
Student’s t-distribution, 384
Szegő polynomial, 100

recurrence relation, 100

t-distribution, 384
T-fraction, 37, 41, 122

algorithm, 123
coefficients, 123
general, 37
Hankel determinant, 122
positive, 37, 81, 90, 124

tail, 23, 25, 132, 143
tail sequence, 25

critical, 26, 144, 152, 154
right, 26
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tan
S-fraction, 202
Thiele fraction, 202

tanh
S-fraction, 211

tetragamma function, 235
C-fraction, 236
S-fraction, 235

Thiele
expansion, 127
interpolating fraction, 38, 125

Thron/Gragg-Warner bound, 138
Toeplitz

determinant, 60, 101
matrix, 60

transformation
Euler, 294
linear fractional, 10, 22, 54
Pfaff, 294

Tricomi function, 320
trigamma function, 232

C-fraction, 232
J-fraction, 233
S-fraction, 232

trigonometric functions, 200
truncation error, 49, 50, 129, 150,

164
a posteriori bound, 129, 140
a priori bound, 129
interval sequence theorem, 136
limit periodic, 134
oval sequence theorem, 131
parabola theorem, 129
positive T-fraction, 142
real J-fraction, 142
S-fraction, 86, 138, 141
tail, 143
Worpitzky, 140

two-point Padé approximant, 67,
68
confluent hypergeometric, 325
hypergeometric series, 312

ulp, 150, 157
ultraspherical polynomial, 99
uniformly bounded, 52

value, 12
value set, 48, 50, 51, 131, 137
Van Vleck

convergence theorem, 46
variance, 373
Viskovatov, 20
Viskovatov algorithm, 20

generalised, 118
normalised, 112

Wallis’ formula, 177
Weber

differential equation, 337
function, 344

Weierstrass product formula, 185
weight function, 78
Whittaker

differential equation, 334
function, 334

C-fraction, 337
particular ratio, 337
recurrence relation, 335
S-fraction, 336
Stieltjes transform, 335
T-fraction, 337

Worpitzky
convergence theorem, 45

Wronskian
Bessel, 345
modified Bessel, 358
modified spherical Bessel, 359
spherical Bessel, 346

Zinn-Justin
convergence theorem, 71
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