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Preface

This is the second edition of this text on survival analysis,
originally published in 1996. As in the first edition, each chap-
ter contains a presentation of its topic in “lecture-book” for-
mat together with objectives, an outline, key formulae, prac-
tice exercises, and a test. The “lecture-book” format has a
sequence of illustrations and formulae in the left column of
each page and a script in the right column. This format allows
you to read the script in conjunction with the illustrations and
formulae that high-light the main points, formulae, or exam-
ples being presented.

This second edition has expanded the first edition by adding
three new chapters and a revised computer appendix. The
three new chapters are:

Chapter 7. Parametric Survival Models

Chapter 8. Recurrent Event Survival Analysis

Chapter 9. Competing Risks Survival Analysis

Chapter 7 extends survival analysis methods to a class of sur-
vival models, called parametric models, in which the distri-
bution of the outcome (i.e., the time to event) is specified in
terms of unknown parameters. Many such parametric models
are acceleration failure time models, which provide an alter-
native measure to the hazard ratio called the “acceleration
factor”. The general form of the likelihood for a parametric
model that allows for left, right, or interval censored data is
also described. The chapter concludes with an introduction
to frailty models.

Chapter 8 considers survival events that may occur more than
once over the follow-up time for a given subject. Such events
are called “recurrent events”. Analysis of such data can be
carried out using a Cox PH model with the data layout aug-
mented so that each subject has a line of data for each re-
current event. A variation of this approach uses a stratified
Cox PH model, which stratifies on the order in which recur-
rent events occur. The use of “robust variance estimates” are
recommended to adjust the variances of estimated model co-
efficients for correlation among recurrent events on the same
subject.
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Suggestions
for Use

Chapter 9 considers survival data in which each subject can
experience only one of several different types of events (“com-
peting risks”) over follow-up. Modeling such data can be car-
ried out using a Cox model, a parametric survival model or a
model which uses cumulative incidence (rather than survival).

The Computer Appendix in the first edition of this text has
now been revised and extended to provide step-by-step in-
structions for using the computer packages STATA (version
7.0), SAS (version 8.2), and SPSS (version 11.5) to carry out
the survival analyses presented in the main text. These com-
puter packages are described in separate self-contained sec-
tions of the Computer Appendix, with the analysis of the same
datasets illustrated in each section. The SPIDA package used
in the first edition is no longer active and has therefore been
omitted from the appendix and computer output in the main
text.

In addition to the above new material, the original six chap-
ters have been modified slightly to correct for errata in the first
edition, to clarify certain issues, and to add theoretical back-
ground, particularly regarding the formulation of the (partial)
likelihood functions for the Cox PH (Chapter 3) and extended
Cox (Chapter 6) models.

The authors’ website for this textbook has the following web-
link: http://www.sph.emory.edu/~dkleinb/surv2.htm

This website includes information on how to order this
second edition from the publisher and a freely downloadable
zip-file containing data-files for examples used in the text-

book.

This text was originally intended for self-study, but in the nine
years since the first edition was published, it has also been ef-
fectively used as a text in a standard lecture-type classroom
format. The text may also be use to supplement material cov-
ered in a course or to review previously learned material in
a self-instructional course or self-planned learning activity.
A more individualized learning program may be particularly
suitable to a working professional who does not have the time
to participate in a regularly scheduled course.
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Preparation

Preface ix

In working with any chapter, the learner is encouraged first to
read the abbreviated outline and the objectives and then work
through the presentation. The reader is then encouraged to
read the detailed outline for a summary of the presentation,
work through the practice exercises, and, finally, complete the
test to check what has been learned.

The ideal preparation for this text on survival analysis is a
course on quantitative methods in epidemiology and a course
in applied multiple regression. Also, knowledge of logistic re-
gression, modeling strategies, and maximum likelihood tech-
niques is crucial for the material on the Cox and parametric
models described in chapters 3-9.

Recommended references on these subjects, with suggested
chapter readings are:

Kleinbaum D, Kupper L, Muller K, and Nizam A, Applied
Regression Analysis and Other Multivariable Methods,
Third Edition, Duxbury Press, Pacific Grove, 1998, Chapters
1-16, 22-23

Kleinbaum D, Kupper L and Morgenstern H, Epidemiologic
Research: Principles and Quantitative Methods, John
Wiley and Sons, Publishers, New York, 1982, Chapters 20-
24,

Kleinbaum D and Klein M, Logistic Regression: A Self-
Learning Text, Second Edition, Springer-Verlag Publishers,
New York, Chapters 4-7, 11.

Kleinbaum D, ActivEpi-A CD Rom Electronic Textbook on
Fundamentals of Epidemiology, Springer-Verlag Publish-
ers, New York, 2002, Chapters 13-15.

A first course on the principles of epidemiologic research
would be helpful, since all chapters in this text are written
from the perspective of epidemiologic research. In particular,
the reader should be familiar with the basic characteristics of
epidemiologic study designs, and should have some idea of
the frequently encountered problem of controlling for con-
founding and assessing interaction/effect modification. The
above reference, ActivEpi, provides a convenient and hope-
fully enjoyable way to review epidemiology.
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2 1. Introduction to Survival Analysis

Introduction

Abbreviated
Outline

This introduction to survival analysis gives a descriptive
overview of the data analytic approach called survival analy-
sis. This approach includes the type of problem addressed by
survival analysis, the outcome variable considered, the need
to take into account “censored data,” what a survival func-
tion and a hazard function represent, basic data layouts for
a survival analysis, the goals of survival analysis, and some
examples of survival analysis.

Because this chapter is primarily descriptive in content, no
prerequisite mathematical, statistical, or epidemiologic con-
cepts are absolutely necessary. A first course on the principles
of epidemiologic research would be helpful. It would also be
helpful if the reader has had some experience reading math-
ematical notation and formulae.

The outline below gives the user a preview of the material to
be covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. What is survival analysis? (pages 4-5)
II. Censored data (pages 5-8)
III. Terminology and notation (pages 8-14)
IV. Goals of survival analysis (page 15)
V. Basic data layout for computer (pages 15-19)
VI. Basic data layout for understanding analysis
(pages 19-24)
VIL. Descriptive measures of survival experience
(pages 24-26)
VIII. Example: Extended remission data (pages 26-29)
IX. Multivariable example (pages 29-31)
X. Math models in survival analysis (pages 31-33)



Objectives

Objectives 3

Upon completing the chapter, the learner should be able to:

L.

Nk WD

oo

10.

11.

12.

13.

14.

Recognize or describe the type of problem addressed by
a survival analysis.

Define what is meant by censored data.

Define or recognize right-censored data.

Give three reasons why data may be censored.
Define, recognize, or interpret a survivor function.
Define, recognize, or interpret a hazard function.

Describe the relationship between a survivor function
and a hazard function.

State three goals of a survival analysis.

Identify or recognize the basic data layout for the com-
puter; in particular, put a given set of survival data into
this layout.

Identify or recognize the basic data layout, or compo-
nents thereof, for understanding modeling theory; in par-
ticular, put a given set of survival data into this layout.
Interpret or compare examples of survivor curves or haz-
ard functions.

Given a problem situation, state the goal of a survival
analysis in terms of describing how explanatory vari-
ables relate to survival time.

Compute or interpret average survival and/or average
hazard measures from a set of survival data.

Define or interpret the hazard ratio defined from com-
paring two groups of survival data.
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Presentation

e the problem

e goals

e terminology and
notation

e data layout

e examples

This presentation gives a general introduction
to survival analysis, a popular data analysis ap-
proach for certain kinds of epidemiologic and
other data. Here we focus on the problem ad-
dressed by survival analysis, the goals of a survival
analysis, key notation and terminology, the basic
data layout, and some examples.

I. What Is Survival Analysis?

Outcome variable: Time until an
event occurs

Start follow-up TIME Event

Event: death
disease
relapse
recovery

Assume 1 event

> 1 event

Time = survival time

Event = failure

Recurrent event
or
Competing risk

We begin by describing the type of analytic prob-
lem addressed by survival analysis. Generally, sur-
vival analysis is a collection of statistical proce-
dures for data analysis for which the outcome vari-
able of interest is time until an event occurs.

By time, we mean years, months, weeks, or days
from the beginning of follow-up of an individual
until an event occurs; alternatively, time can refer
to the age of an individual when an event occurs.

By event, we mean death, disease incidence, re-
lapse from remission, recovery (e.g., return to
work) or any designated experience of interest that
may happen to an individual.

Although more than one event may be considered
in the same analysis, we will assume that only
one event is of designated interest. When more
than one event is considered (e.g., death from any
of several causes), the statistical problem can be
characterized as either a recurrent events or a
competing risk problem, which are discussed in
Chapters 8 and 9, respectively.

In a survival analysis, we usually refer to the time
variable as survival time, because it gives the time
that an individual has “survived” over some follow-
up period. We also typically refer to the event as
a failure, because the event of interest usually is
death, disease incidence, or some other negative
individual experience. However, survival time may
be “time to return to work after an elective surgi-
cal procedure,” in which case failure is a positive
event.



EXAMPLE

1. Leukemia patients/time in remis-
sion (weeks)

2. Disease-free cohort/time until heart
disease (years)

3. Elderly (60+) population/time until
death (years)

4. Parolees (recidivism study)/time
until rearrest (weeks)

5. Heart transplants/time until death
(months)

Presentation: Il. Censored Data 5

Five examples of survival analysis problems are
briefly mentioned here. The first is a study that fol-
lows leukemia patients in remission over several
weeks to see how long they stay in remission. The
second example follows a disease-free cohort of
individuals over several years to see who develops
heart disease. A third example considers a 13-year
follow-up of an elderly population (60+ years) to
see how long subjects remain alive. A fourth ex-
ample follows newly released parolees for several
weeks to see whether they get rearrested. This type
of problem is called a recidivism study. The fifth
example traces how long patients survive after re-
ceiving a heart transplant.

All of the above examples are survival analysis
problems because the outcome variable is time
until an event occurs. In the first example, involv-
ing leukemia patients, the event of interest (i.e.,
failure) is “going out of remission,” and the out-
come is “time in weeks until a person goes out
of remission.” In the second example, the event
is “developing heart disease,” and the outcome is
“time in years until a person develops heart dis-
ease.” In the third example, the event is “death”
and the outcome is “time in years until death.”
Example four, a sociological rather than a medi-
cal study, considers the event of recidivism (i.e.,
getting rearrested), and the outcome is “time in
weeks until rearrest.” Finally, the fifth example
considers the event “death,” with the outcome be-
ing “time until death (in months from receiving a
transplant).”

We will return to some of these examples later in
this presentation and in later presentations.

II. Censored Data

Censoring: don't know survival
time exactly

Most survival analyses must consider a key
analytical problem called censoring. In essence,
censoring occurs when we have some information
about individual survival time, but we don’t know
the survival time exactly.
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EXAMPLE As a simple example of censoring, consider

Leukemia patients in remission:

Why censor?

1. study ends—no event
2. lost to follow-up
3. withdraws

EXAMPLE

2 4 6 8 10 12

T Tt
AfL=2 X i
I
B r=12 i Study end
I
© e Withdrawn i
D =8 E Study end
E T=6  q.'!
F T=3.5 Xi
X Event occurs

leukemia patients followed until they go out of re-
mission, shown here as X. If for a given patient,
the study ends while the patient is still in remission
(i.e., doesn't get the event), then that patient’s sur-
vival time is considered censored. We know that,
for this person, the survival time is at least as long
as the period that the person has been followed,
but if the person goes out of remission after the
study ends, we do not know the complete survival
time.

There are generally three reasons why censoring
may occur:

(1) a person does not experience the event before
the study ends;

(2) aperson is lost to follow-up during the study
period,;

(3) a person withdraws from the study because
of death (if death is not the event of interest) or
some other reason (e.g., adverse drug reaction
or other competing risk)

These situations are graphically illustrated here.
The graph describes the experience of several per-
sons followed over time. An X denotes a person
who got the event.

Person A, for example, is followed from the start
of the study until getting the event at week 5; his
survival time is 5 weeks and is not censored.

Person B also is observed from the start of the
study but is followed to the end of the 12-week
study period without getting the event; the survival
time here is censored because we can say only that
it is at least 12 weeks.

Person C enters the study between the second and
third week and is followed until he withdraws
from the study at 6 weeks; this person’s survival
time is censored after 3.5 weeks.

Person D enters at week 4 and is followed for the
remainder of the study without getting the event;
this person’s censored time is 8 weeks.



Presentation: Il. Censored Data 7

Person E enters the study at week 3 and is fol-
lowed until week 9, when he is lost to follow-up;
his censored time is 6 weeks.

Person F enters at week 8 and is followed until
getting the event at week 11.5. As with person A,
there is no censoring here; the survival time is
3.5 weeks.

SUMMARY

Event: A, F

Censored: B, C, D, E

In summary, of the six persons observed, two get
the event (persons A and F) and four are censored
(B,C,D,and E).

Survival Failed (1);
Person time censored (0)
A 5 1
B 12 0

A table of the survival time data for the six persons
in the graph is now presented. For each person,
we have given the corresponding survival time up
to the event’s occurrence or up to censorship. We
have indicated in the last column whether this
time was censored or not (with 1 denoting failed
and 0 denoting censored). For example, the data
for person C is a survival time of 3.5 and a cen-
sorship indicator of 0, whereas for person F the
survival time is 3.5 and the censorship indicator is
1. This table is a simplified illustration of the type
of data to be analyzed in a survival analysis.

Notice in our example that for each of the four
persons censored, we know that the person’s exact
survival time becomes incomplete at the right side
of the follow-up period, occurring when the study
ends or when the person is lost to follow-up or is
withdrawn. We generally refer to this kind of data
as right-censored. For these data, the complete
survival time interval, which we don'’t really know,
has been cut off (i.e., censored) at the right side of
the observed survival time interval. Although data
can also be left-censored, most survival data is
right-censored.
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True survival time

Observed survival time

X
* * *

Study start ~ HIV exposure HIV + test

Left-censored data can occur when a person’s true
survival time is less than or equal to that person’s
observed survival time. For example, if we are fol-
lowing persons until they become HIV positive,
we may record a failure when a subject firsts tests
positive for the virus. However, we may not know
exactly the time of first exposure to the virus, and
therefore do not know exactly when the failure oc-
curred. Thus, the survival time is censored on the
left side since the true survival time, which ends
at exposure, is shorter than the follow-up time,
which ends when the subject tests positive.

Ill. Terminology and Notation

T = survival time (7 > 0)

\ random variable

t = specific value for T

EXAMPLE

Survives > 5 years?
T>t=5

5 = (0, 1) random variable

|1 if failure

~ 10 if censored
e study ends
e Jost to follow-up
e withdraws

S(t) = survivor function
h(t) = hazard function

We are now ready to introduce basic mathemati-
cal terminology and notation for survival analysis.
First, we denote by a capital T the random vari-
able for a person’s survival time. Since T denotes
time, its possible values include all nonnegative
numbers; that is, T can be any number equal to or
greater than zero.

Next, we denote by a small letter ¢ any specific
value of interest for the random variable capital
T. For example, if we are interested in evaluating
whether a person survives for more than 5 years
after undergoing cancer therapy, small ¢ equals 5;
we then ask whether capital T exceeds 5.

Finally, we let the Greek letter delta (5) denote a
(0,1) random variable indicating either failure or
censorship. That is, & = 1 for failure if the event
occurs during the study period, or § = 0 if the sur-
vival time is censored by the end of the study pe-
riod. Note that if a person does not fail, that is,
does not get the event during the study period, cen-
sorship is the only remaining possibility for that
person’s survival time. That is, 6 = 0 if and only
if one of the following happens: a person survives
until the study ends, a person is lost to follow-up,
or a person withdraws during the study period.

We next introduce and describe two quantitative
terms considered in any survival analysis. These
are the survivor function, denoted by S(¢), and
the hazard function, denoted by /4(¢).



S(t)=P(T >1t)

t

S(t)

1 S(1)=P(T > 1)
2 S2)=P(T > 2)
3 S(3) = P(T > 3)
Theoretical S(¢):
S(0)=1

S(t)

S(e0)=0

S(¢) in practice:

t Study end

Presentation: Ill. Terminology and Notation 9

The survivor function S(¢) gives the probability
that a person survives longer than some specified
time ¢: that is, S(¢) gives the probability that the
random variable T exceeds the specified time ¢.

The survivor function is fundamental to a survival
analysis, because obtaining survival probabilities
for different values of ¢ provides crucial summary
information from survival data.

Theoretically, as ¢ ranges from 0 up to infinity,
the survivor function can be graphed as a smooth
curve. As illustrated by the graph, where ¢ iden-
tifies the X-axis, all survivor functions have the
following characteristics:

e they are nonincreasing; that is, they head
downward as ¢ increases;

e attimet =0, S(t) = S(0) = 1; that is, at the
start of the study, since no one has gotten the
event yet, the probability of surviving past time
0 is one;

e attimet= oo, S(t) = S(oc0) = 0; that is, theo-
retically, if the study period increased without
limit, eventually nobody would survive, so the
survivor curve must eventually fall to zero.

Note that these are theoretical properties of sur-
vivor curves.

In practice, when using actual data, we usually
obtain graphs that are step functions, as illus-
trated here, rather than smooth curves. Moreover,
because the study period is never infinite in length
and there may be competing risks for failure, it is
possible that not everyone studied gets the event.
The estimated survivor function, denoted by a
caret over the S in the graph, thus may not go all
the way down to zero at the end of the study.

The hazard function, denoted by h(t), is given
by the formula: /(t) equals the limit, as At ap-
proaches zero, of a probability statement about
survival, divided by At, where At denotes a small
interval of time. This mathematical formula is dif-
ficult to explain in practical terms.
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h(t) = instantaneous potential

Velocity at time

h(t)

N\

S(¢) : not failing

h(t) : failing

t

Instantaneous potential

Before getting into the specifics of the formula,
we give a conceptual interpretation. The hazard
function h(¢) gives the instantaneous potential
per unit time for the event to occur, given that
the individual has survived up to time ¢. Note
that, in contrast to the survivor function, which
focuses on not failing, the hazard function focuses
on failing, that is, on the event occurring. Thus, in
some sense, the hazard function can be considered
as giving the opposite side of the information given
by the survivor function.

To get an idea of what we mean by instantaneous
potential, consider the concept of velocity. If, for
example, you are driving in your car and you see
that your speedometer is registering 60 mph, what
does this reading mean? It means that if in the
next hour, you continue to drive this way, with
the speedometer exactly on 60, you would cover
60 miles. This reading gives the potential, at the
moment you have looked at your speedometer,
for how many miles you will travel in the next
hour. However, because you may slow down or
speed up or even stop during the next hour, the
60-mph speedometer reading does not tell you
the number of miles you really will cover in the
next hour. The speedometer tells you only how
fast you are going at a given moment, that is, the
instrument gives your instantaneous potential or
velocity.

Similar to the idea of velocity, a hazard function
h(t) gives the instantaneous potential at time ¢
for getting an event, like death or some disease
of interest, given survival up to time ¢. The given
part, that is, surviving up to time ¢, is analo-
gous to recognizing in the velocity example that
the speedometer reading at a point in time in-
herently assumes that you have already traveled
some distance (i.e., survived) up to the time of the
reading.
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Given In mathematical terms, the given part of the for-

\v mula for the hazard function is found in the proba-

h(t) = lim LUST<t+At | 720) bility statement—the numerator to the right of the
A0 At limit sign. This statement is a conditional prob-

ability because it is of the form, “P of A, given
B,” where the P denotes probability and where
Conditional probabilities: P(A|B)  the long vertical line separating A from B denotes
“given.” In the hazard formula, the conditional
Pt <T <t+At|T >1t) probability gives the probability that a person’s
= P(individual fails in the interval ~ survival time, T, will lie in the time interval be-
[t,t + At]|survival up to time ) tween ¢t and ¢ + At, given that the survival time
is greater than or equal to . Because of the given
sign here, the hazard function is sometimes called

a conditional failure rate.

Hazard function = conditional We now explain why the hazard is a rate rather
failure rate than a probability. Note that in the hazard func-

tion formula, the expression to the right of the

limit sign gives the ratio of two quantities. The

@ PU<T<t+At] TZ} numerator is the conditional probability we just

A1=0 At discussed. The denominator is A¢, which denotes

a small time interval. By this division, we obtain a
probability per unit time, which is no longer a

Probability per unit time probability but a rate. In particular, the scale
for this ratio is not 0 to 1, as for a probability,
Rate: 0 to 0o but rather ranges between 0 and infinity, and de-

pends on whether time is measured in days, weeks,
months, or years, etc.

P=Pt<T<t+AtT >1) For example, if the probability, denoted here by
P, is 1/3, and the time interval is one-half a day,
then the probability divided by the time interval

P At P /At =rate is 1/3 divided by 1/2, which equals 0.67 per day.
1 1 1/3 As another example, suppose, for the same prob-
3 Eda}’ 12 = 0.67/day ability of 1/3, that the time interval is considered

in weeks, so that 1/2 day equals 1/14 of a week.
11 1/3 Then the probability divided by the time interval
3 ﬁweek m =4.67/week  becomes 1/3 over 1/14, which equals 14/3, or 4.67

per week. The point is simply that the expression P
divided by At at the right of the limit sign does not
give a probability. The value obtained will give
a different number depending on the units of
time used, and may even give a number larger
than one.
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>
(o) = P(tsT<zAJ[r Atl T>1)

Gives
instantaneous
potential

Hazard functions

-

h(t) —_\
T

0 t

e h(t)>0
e /i(t) has no upper bound

EXAMPLE
0

Constant hazard
(exponential model)

h(t) for healthy
persons

When we take the limit of the right-side expres-
sion as the time interval approaches zero, we are
essentially getting an expression for the instanta-
neous probability of failing at time 7 per unit time.
Another way of saying this is that the conditional
failure rate or hazard function 4(t) gives the in-
stantaneous potential for failing at time ¢ per unit
time, given survival up to time 7.

As with a survivor function, the hazard function
h(t) can be graphed ast ranges over various values.
The graph at the left illustrates three different haz-
ards. In contrast to a survivor function, the graph
of h(t) does not have to start at 1 and go down to
zero, but rather can start anywhere and go up and
down in any direction over time. In particular, for
a specified value of ¢, the hazard function /() has
the following characteristics:

e it is always nonnegative, that is, equal to or
greater than zero;

e it has no upper bound.

These two features follow from the ratio expres-
sion in the formula for /(¢ ), because both the prob-
ability in the numerator and the At in the denom-
inator are nonnegative, and since At can range
between 0 and co.

Now we show some graphs of different types of
hazard functions. The first graph given shows a
constant hazard for a study of healthy persons.
In this graph, no matter what value of ¢ is spec-
ified, h(t) equals the same value—in this exam-
ple, 1. Note that for a person who continues to be
healthy throughout the study period, his/her in-
stantaneous potential for becoming ill at any time
during the period remains constant throughout
the follow-up period. When the hazard function
is constant, we say that the survival model is ex-
ponential. This term follows from the relation-
ship between the survivor function and the hazard
function. We will return to this relationship later.
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@

T Weibull

h(?) for leukemia
patients

t
® | Weibull
h(¢) for persons
recovering from
surgery

t
@ T | lognormal

h(t) for TB
patients
t

S(t): directly describes survival
h(t): ¢ ameasure of instantaneous
potential
o identify specific model
form
e math model for survival
analysis

Presentation: Ill. Terminology and Notation 13

The second graph shows a hazard function that
is increasing over time. An example of this kind
of graph is called an increasing Weibull model.
Such a graph might be expected for leukemia
patients not responding to treatment, where the
event of interest is death. As survival time in-
creases for such a patient, and as the prognosis
accordingly worsens, the patient’s potential for dy-
ing of the disease also increases.

In the third graph, the hazard function is decreas-
ing over time. An example of this kind of graph is
called a decreasing Weibull. Such a graph might
be expected when the event is death in persons
who are recovering from surgery, because the po-
tential for dying after surgery usually decreases as
the time after surgery increases.

The fourth graph given shows a hazard function
that is first increasing and then decreasing. An
example of this type of graph is the lognormal
survival model. We can expect such a graph for
tuberculosis patients, since their potential for dy-
ing increases early in the disease and decreases
later.

Of the two functions we have considered, S(¢) and
h(t), the survivor function is more naturally ap-
pealing for analysis of survival data, simply be-
cause S(t) directly describes the survival experi-
ence of a study cohort.

However, the hazard function is also of interest for
the following reasons:

e it is a measure of instantaneous potential
whereas a survival curve is a cumulative mea-
sure over time;

e it may be used to identify a specific model
form, such as an exponential, a Weibull, or a
lognormal curve that fits one’s data;

e it is the vehicle by which mathematical mod-
eling of survival data is carried out; that is, the
survival model is usually written in terms of
the hazard function.
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Relationship of S(¢) and h(t):

If you know one, you can determine

the other.

EXAMPLE

h(t) = X if and only if S(t) = e

General formulae:

S(t) = exp |:— /: h(u)du}

Regardless of which function S(¢) or A(t) one
prefers, there is a clearly defined relationship
between the two. In fact, if one knows the form
of S(1), one can derive the corresponding /(t), and
vice versa. For example, if the hazard function is
constant—i.e., h(t) = A, for some specific value
A—then it can be shown that the corresponding
survival function is given by the following for-
mula: S(¢) equals e to the power minus A times 7.

More generally, the relationship between S(¢) and
h(t) can be expressed equivalently in either of two
calculus formulae shown here.

The first of these formulae describes how the sur-
vivor function S(¢) can be written in terms of an in-
tegral involving the hazard function. The formula
says that S(¢) equals the exponential of the nega-
tive integral of the hazard function between inte-
gration limits of 0 and 7.

The second formula describes how the haz-
ard function %4(z) can be written in terms of a
derivative involving the survivor function. This
formula says that 4(¢) equals minus the derivative
of S(¢) with respect to ¢ divided by S(z).

In any actual data analysis a computer program
can make the numerical transformation from S(z)
to h(t), or vice versa, without the user ever having
to use either formula. The point here is simply that
if you know either S(¢) or A(t), you can get the
other directly.

_ dS(t)/dt
=[5
S(t) h(t)
SUMMARY

T = survival time random
variable

t = specific value of T

5 = (0, 1) variable for failure/
censorship

S(t) = survivor function
h(t) = hazard function

At this point, we have completed our discussion
of key terminology and notation. The key no-
tation is T for the survival time variable, ¢
for a specified value of T, and 6 for the di-
chotomous variable indicating event occur-
rence or censorship. The key terms are the
survivor function S(¢) and the hazard func-
tion h(t), which are in essence opposed con-
cepts, in that the survivor function focuses on
surviving whereas the hazard function focuses
on failing, given survival up to a certain time
point.
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IV. Goals of Survival Analysis

S(t)

S(@)

Goal 3: Use math modeling, e.g., Cox

S(t)

Treatment
Placebo
1
6

proportional hazards

We now state the basic goals of survival analysis.

Goal 1: To estimate and interpret survivor and/or
hazard functions from survival data.

Goal 2: To compare survivor and/or hazard func-
tions.

Goal 3: To assess the relationship of explanatory
variables to survival time.

Regarding the first goal, consider, for example, the
two survivor functions pictured at the left, which
give very different interpretations. The function
farther on the left shows a quick drop in survival
probabilities early in follow-up but a leveling off
thereafter. The function on the right, in contrast,
shows a very slow decrease in survival probabili-
ties early in follow-up but a sharp decrease later
on.

We compare survivor functions for a treatment
group and a placebo group by graphing these func-
tions on the same axis. Note that up to 6 weeks,
the survivor function for the treatment group lies
above that for the placebo group, but thereafter
the two functions are at about the same level.
This dual graph indicates that up to 6 weeks the
treatment is more effective for survival than the
placebo but has about the same effect thereafter.

Goal 3 usually requires using some form of math-
ematical modeling, for example, the Cox propor-
tional hazards approach, which will be the subject
of subsequent modules.

V. Basic Data Layout

Two types of data layouts:

for Computer

for computer use
for understanding

We previously considered some examples of sur-
vival analysis problems and a simple data set in-
volving six persons. We now consider the general
data layout for a survival analysis. We will provide
two types of data layouts, one giving the form ap-
propriate for computer use, and the other giving
the form that helps us understand how a survival
analysis works.
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For computer:

Indiv. # ¢ 5 X, XUt X,

1 t & Xy Xip Xip

2 &) 8 X X5ttt Xy,
(5 5= 3 got event)
(8 tg= 3 censored )

.
.
.
n t nl

n 811 X, X'112 °t

Failure Explanatory

status

variables

Indivé ¢ 8 X, X°°°'X,
1 t & Xy Xttt Xy,
t 8 Xy X5ttt Xy

(G 15=3 &=1)

7

i 5= # failures
1

(8 =3 8=0)

n Ly 671 an Xn2 ‘

.'an

X;=Age, E, or Age x Race

Introduction to Survival Analysis

We start by providing, in the table shown here, the
basic data layout for the computer. Assume that we
have a data set consisting of n persons. The first
column of the table identifies each person from 1,
starting at the top, to n, at the bottom.

The remaining columns after the first one provide
survival time and other information for each per-
son. The second column gives the survival time
information, which is denoted ¢ for individual 1,
t; forindividual 2, and so on, up to t,, for individual
n. Each of these t’s gives the observed survival time
regardless of whether the person got the event or
is censored. For example, if person 5 got the event
at 3 weeks of follow-up, then t5 = 3; on the other
hand, if person 8 was censored at 3 weeks, without
getting the event, then rg = 3 also.

To distinguish persons who get the event from
those who are censored, we turn to the third col-
umn, which gives the information for status (i.e.
d) the dichotomous variable that indicates censor-
ship status.

Thus, &; is 1 if person 1 gets the event or is 0 if
person 1 is censored; 8, is 1 or 0 similarly, and so
on, up through §,,. In the example just considered,
person 5, who failed at 3 weeks, has a & of 1; that
is, &5 equals 1. In contrast, person 8, who was cen-
sored at 3 weeks, has a 6 of 0; that is, &g equals 0.

Note that if all of the 8; in this column are added
up, their sum will be the total number of failures in
the data set. This total will be some number equal
to or less than 1, because not every one may fail.

The remainder of the information in the table
gives values for explanatory variables of interest.
An explanatory variable, X;, is any variable like
age or exposure status, E, or a product term like
age x race that the investigator wishes to consider
to predict survival time. These variables are listed
at the top of the table as X, X,, and so on, up to
X ,. Below each variable are the values observed
for that variable on each person in the data set.
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Columns

o8 Xy Xttt Xy,
B 8 Xy Xp' Xy

e e o N —

Rows
S e e o)
Mg
N
>
N~
o | o
=
/

EXAMPLE

The data: Remission times (in weeks)
for two groups of leukemia patients

Group 1 Group 2
(Treatment) n =21 (Placebo) n =21
6,6,6,7, 10, 1,1,2,2,3,

13, 16, 22, 23, 4,4,5,5,

6+, 9+, 10+, 11+, 8,8,8,8,

17+, 19+, 20+, 11, 11, 12, 12,
25+, 32+, 32+, 15,17, 22, 23
34+, 35+

In remission

/ at study end
+ denotes )

Lost to

censored \ follow-up
Withdraws

For example, in the column corresponding to X
are the values observed on this variable for all
persons. These values are denoted as X1, X,1, and
so on, up to X,,1; the first subscript indicates the
person number, and the second subscript, a one
in each case here, indicates the variable number.
Similarly, the column corresponding to variable
X, gives the values observed on X, for all n per-
sons. This notation continues for the other X vari-
ables up through X ,.

We have thus described the basic data layout by
columns. Alternatively, we can look at the table
line by line, that is, by rows. For each line or row,
we have the information obtained on a given indi-
vidual. Thus, for individual j, the observed infor-
mation is given by the values ¢;, 8;, X1, X, etc.,
up to X;,. This is how the information is read into
the computer, that is, line by line, until all persons
are included for analysis.

As an example of this data layout, consider the fol-
lowing set of data for two groups of leukemia pa-
tients: one group of 21 persons has received a cer-
tain treatment; the other group of 21 persons has
received a placebo. The data come from Freireich
et al., Blood, 1963.

As presented here, the data are not yet in tabu-
lar form for the computer, as we will see shortly.
The values given for each group consist of time in
weeks a patient is in remission, up to the point of
the patient’s either going out of remission or being
censored. Here, going out of remission is a failure.
A person is censored if he or she remains in remis-
sion until the end of the study, is lost to follow-up,
or withdraws before the end of the study. The cen-
sored data here are denoted by a plus sign next to
the survival time.
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EXAMPLE (continued)

Introduction to Survival Analysis

Group 1 Group 2
(Treatment) n =21 (Placebo) n =21
6,6,6,7,10, 1,1,2,2,3,
13, 16, 22, 23, 4,4,5,5,
6+, 9+, 10+, 11+, 8,888,
17+, 19+, 20+, 11,11, 12, 12,
25+, 32+, 32+, 15,17, 22,23
34+, 35+
# failed # censored Total
Group 1 9 12 21
Group 2 21 0 21
3
Indiv. t (failed or X
@ (weeks) censored) (Group)
1 6 1 1
2 6 1 1
® 6 1 1
4 7 1 1
5 10 1 1
6 13 1 1
7 16 1 1
8 22 1 1
GROUP o 23 1 1
1 10 6 0 1
11 9 0 1
12 10 0 1
13 11 0 1
17 0 1
15 19 0 1
16 20 0 1
17 25 0 1
18 32 0 1
19 32 0 1
20 34 0 1
21 35 0 1

Here are the data again:

Notice that the first three persons in group 1 went
out of remission at 6 weeks; the next six per-
sons also went out of remission, but at failure
times ranging from 7 to 23. All of the remain-
ing persons in group 1 with pluses next to their
survival times are censored. For example, on line
three the first person who has a plus sign next to a
6 is censored at six weeks. The remaining persons
in group one are also censored, but at times rang-
ing from 9 to 35 weeks.

Thus, of the 21 persons in group 1, nine failed dur-
ing the study period, whereas the last 12 were cen-
sored. Notice also that none of the data in group
2 is censored; that is, all 21 persons in this group
went out of remission during the study period.

We now put this data in tabular form for the com-
puter, as shown at the left. The list starts with the
21 persons in group 1 (listed 1-21) and follows
(on the next page) with the 21 persons in group
2 (listed 22-42). Our n for the composite group
is 42.

The second column of the table gives the survival
times in weeks for all 42 persons. The third col-
umn indicates failure or censorship for each per-
son. Finally, the fourth column lists the values of
the only explanatory variable we have considered
so far, namely, group status, with 1 denoting treat-
ment and 0 denoting placebo.

If we pick out any individual and read across the
table, we obtain the line of data for that person that
gets entered in the computer. For example, person
#3 has a survival time of 6 weeks, and since 6 = 1,
this person failed, that is, went out of remission.
The X value is 1 because person #3 is in group
1. As a second example, person #14, who has an
observed survival time of 17 weeks, was censored
at this time because 6 = 0. The X value is again 1
because person #14 is also in group 1.
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Indiv. t (failed or X
(weeks) censored) (Group)
22 1 1 0
23 1 1 0
24 2 1 0
25 2 1 0
26 3 1 0
27 4 1 0
GROUP 23 4 1 0
2 29 5 1 0
30 5 1 0
31 8 1 0
&) 8 1 0
33 8 1 0
34 8 1 0
35 11 1 0
36 11 1 0
37 12 1 0
38 12 1 0
39 15 1 0
40 17 1 0
41 22 1 0
42 23 1 0

As one more example, this time from group 2, per-
son #32 survived 8 weeks and then failed, because
5 = 1; the X value is 0 because person #32 is in
group 2.

VI. Basic Data Layout for
Understanding Analysis

For analysis:

Ordered

failure # of # censored in Risk

times failures [, 2(j+1)) set

() (m)) (q) R(;)

=0 my=0 o R(t (o))
a) nmy q1 R(t )
2) m; a2 R(t(3))
L) my 9k R(tg)

{ty,t5,...,1,)

i :C:eh‘sored ’I—S‘
Unordered < Fajled £
ordered (t(,«))

k = # of distinct times at whick subjects

failed (k <n)

We are now ready to look at another data layout,
which is shown at the left. This layout helps pro-
vide some understanding of how a survival analy-
sis actually works and, in particular, how survivor
curves are derived.

The first column in this table gives ordered fail-
ure times. These are denoted by ¢’s with subscripts
within parentheses, starting with #(), then ¢y and
so on, up to ). Note that the parentheses sur-
rounding the subscripts distinguish ordered fail-
ure times from the survival times previously given
in the computer layout.

To get ordered failure times from survival times,
we must first remove from the list of unordered
survival times all those times that are censored; we
are thus working only with those times at which
people failed. We then order the remaining fail-
ure times from smallest to largest, and count ties
only once. The value k gives the number of distinct
times at which subjects failed.
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EXAMPLE

Introduction to Survival Analysis

Remission Data: Group 1
(n =21, 9 failures, k = 7)

L) g Rt

l=0 0 0 21 persons survive > 0 wks
ty=6 @ 1 21 persons survive > 6 wks
ty=7 1 1 17 persons survive > 7 wks
t3=10 1 2 15 persons survive > 10 wks
ty=13 1 0 12 persons survive > 13 wks
t5=16 1 3 11 persons survive > 16 wks
le=22 1 0 7 persons survive > 22 wks
t7=23 1 5 6 persons survive > 23 wks
Totals 9 12

Remission Data: Group 2
(n =21, 21 failures, k = 12)

L) g Rit;)

t=0 0 0 21 persons survive > 0 wks
ty=1 2y, 0 21 persons survive > 1 wk
ty=2 2\ 0 19 persons survive > 2 wks
l3=3 1 N 0___ 17 persons survive > 3 wks
ty=4 2 0 16 persons survive > 4 wks
t5=5 2 0 14 persons survive > 5 wks
te=8 41 0 12 persons survive > 8 wks
tpy=11 2] 0 8 persons survive > 11 wks
tgy=12 2 0 6 persons survive > 12 wks
=15 1 0 4 persons survive > 15 wks
tay=17 1 0 3 persons survive > 17 wks
tqy=22 1 0 2 persons survive > 22 wks
l4»=23 1 0 1 personsurvive >23 wks
Totals 21 0

For example, using the remission data for group
1, we find that nine of the 21 persons failed, in-
cluding three persons at 6 weeks and one person
each at 7, 10, 13, 16, 22, and 23 weeks. These
nine failures have k = 7 distinct survival times,
because three persons had survival time 6 and we
only count one of these 6's as distinct. The first
ordered failure time for this group, denoted as
L1y, is 6; the second ordered failure time (), is 7,
and so on up to the seventh ordered failure time
of 23.

Turning to group 2, we find that although all
21 persons in this group failed, there are several
ties. For example, two persons had a survival time
of 1 week; two more had a survival time of 2 weeks;
and so on. In all, we find that there were k = 12 dis-
tinct survival times out of the 21 failures. These
times are listed in the first column for group 2.

Note that for both groups we inserted a row of
data giving information at time 0. We will explain
this insertion when we get to the third column in
the table.

The second column in the data layout gives fre-
quency counts, denoted by m;, of those persons
who failed at each distinct failure time. When
there are no ties at a certain failure time, then
m; = 1. Notice that in group 1, there were three
ties at 6 weeks but no ties thereafter. In group 2,
there were tiesat 1, 2, 4, 5, 8, 11, and 12 weeks. In
any case, the sum of all the m;’s in this column
gives the total number of failures in the group
tabulated. This sum is 9 for group 1 and 21 for
group 2.
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q;= censored in [t(f), L7 1))

Remission Data: Group 1

o) iy

]

9;

R ;)

l=0

tgy= 6‘
ty=17 T
f=10
to=13
l5=16
te=22
=23

0

0
1
1
2
0
3
0
5

21 persons survive = 0 wks
21 persons survive > 6 wks
17 persons survive > 7 wks
15 persons survive > 10 wks
12 persons survive > 13 wks
11 persons survive > 16 wks
7 persons survive > 22 wks

6 persons survive > 23 wks

Totals

12

Remission Data: Group 1

# t(weeks)

=2

X(group)

0 N O Ul B W N =

el

e e e e e e e e e e e e e e e e e

S O OO0 oo oo

NN = s e s e e
- O VN0 Ul A WRN—O

—_ e e e e e

The third column gives frequency counts, denoted
by g;, of those persons censored in the time in-
terval starting with failure time #(;) up to the next
failure time denoted #(; ;). Technically, because of
the way we have defined this interval in the table,
we include those persons censored at the begin-
ning of the interval.

For example, the remission data, for group 1 in-
cludes 5nonzerog;s:qi = 1,q, = 1,q3 =2;¢q5 =
3, g7 = 5. Adding these values gives us the to-
tal number of censored observations for group 1,
which is 12. Moreover, if we add the total number
of ¢’s (12) to the total number of n7’s (9), we get the
total number of subjects in group 1, which is 21.

We now focus on group 1 to look a little closer
at the ¢’s. At the left, we list the unordered group
1 information followed (on the next page) by the
ordered failure time information. We will go back
and forth between these two tables (and pages) as
we discuss the ¢’s. Notice that in the table here,
one person, listed as #10, was censored at week 6.
Consequently, in the table at the top of the next
page, we have ¢; = 1, which is listed on the sec-
ond line corresponding to the ordered failure time
t(1), which equals 6.

The next g is a little trickier, it is derived from the
person who was listed as #11 in the table here and
was censored at week 9. Correspondingly, in the
table at the top of the next page, we have g, = 1
because this one person was censored within the
time interval that starts at the second ordered fail-
ure time, 7 weeks, and ends just before the third or-
dered failure time, 10 weeks. We have not counted
here person #12, who was censored at week 10,
because this person’s censored time is exactly at
the end of the interval. We count this person in
the following interval.
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EXAMPLE (continued)

Introduction to Survival Analysis

Group 1 using ordered failure times

o)

m.

7

9;

R(@;)

(w=0

0

21 persons survive > 0 wks)

=6

toy=17

tay=10
ty=13
l5=16
l=22
toy=23

3
1
1
1
1
1
1

21 persons survive > 6 wks
17 persons survive > 7 wks
15 persons survive > 10 wks
12 persons survive > 13 wks
11 persons survive > 16 wks
7 persons survive > 22 wks

6 persons survive > 23 wks

Totals

EXAMPLE

9

ﬁmowoe@lzlo

Risk Set: R(t( f)) is the set of individuals for whom

T21

Remission Data: Group 1

t) mnog R

(w=0 |0 0
w=® |3 1
t="7 1 1 17 persons survive > 7 wks
13=10 1 2 15 persons survive = 10 wks
tgy=13 1 0 12 persons survive > 13 wks
l5=16 1 3 11 persons survive > 16 wks
=22 1 0 7 persons survive > 22 wks
tgy=23 1 5 6 persons survive > 23 wks

Totals

We now consider, from the table of unordered
failure times, person #12 who was censored at
10 weeks, and person #13, who was censored at
11 weeks. Turning to the table of ordered failure
times, we see that these two times are within the
third ordered time interval, which starts and in-
cludes the 10-week point and ends just before the
13th week. As for the remaining ¢'s, we will let you
figure them out for practice.

One last point about the ¢ information. We in-
serted a row at the top of the data for each group
corresponding to time 0. This insertion allows for
the possibility that persons may be censored after
the start of the study but before the first failure. In
other words, it is possible that gy may be nonzero.
For the two groups in this example, however, no
one was censored before the first failure time.

The last column in the table gives the “risk set.”
The risk set is not a numerical value or count but
rather a collection of individuals. By definition,
the risk set R(f(j)) is the collection of individuals
who have survived at least to time ¢(j); that is, each
person in R(#(;)) has a survival time that is #(;) or
longer, regardless of whether the person has failed
or is censored.

For example, we see that at the start of the study
everyone in group 1 survived at least 0 weeks, so
the risk set at time 0 consists of the entire group of
21 persons. The risk set at 6 weeks for group 1 also
consists of all 21 persons, because all 21 persons
survived at least as long as 6 weeks. These 21 per-
sons include the 3 persons who failed at 6 weeks,
because they survived and were still at risk just up
to this point.
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EXAMPLE (continued)
m, q.

L) i 4 R(1)

t=0 >< 21 persons survive > 0 wks
ty=6 21 persons survive > 6 wks

17 persons survive > 7 wks
15 persons survive > 10 wks

12 persons survive > 13 wks

7 persons survive > 22 wks

o~
5
|
—_
w
[ U

1
2
0
3 | 11 persons survive > 16 wks
0
5

6 persons survive > 23 wks

g
=
2
7

©
—
N

t=0 0 0/ 21 persons survive > 0 wks
ty=6 3 1 21 persons survive > 6 wks
ty=17 1 1 17 persons survive > 7 wks
13=10 1 2\ 15 persons survive > 10 wks
w=@ |1 o
t5=16 1 3| 11 persons survive > 16 wks
le=22 1 0 7 persons survive > 22 wks
ty=23 1 5 6 persons survive = 23 wks

g
=
=
w»

)
=
o

How we work with censored data:
Use all informaton up to time of cen-
sorship; don’t throw away informa-
tion.

Now let’s look at the risk set at 7 weeks. This set
consists of seventeen persons in group 1 that sur-
vived at least 7 weeks. We omit everyone in the
X-ed area. Of the original 21 persons, we there-
fore have excluded the three persons who failed
at 6 weeks and the one person who was censored
at 6 weeks. These four persons did not survive at
least 7 weeks. Although the censored person may
have survived longer than 7 weeks, we must ex-
clude him or her from the risk set at 7 weeks be-
cause we have information on this person only up
to 6 weeks.

To derive the other risk sets, we must exclude
all persons who either failed or were censored
before the start of the time interval being con-
sidered. For example, to obtain the risk set at
13 weeks for group 1, we must exclude the five
persons who failed before, but not including,
13 weeks and the four persons who were censored
before, but not including, 13 weeks. Subtracting
these nine persons from 21, leaves twelve persons
in group 1 still at risk for getting the event at
13 weeks. Thus, the risk set consists of these twelve
persons.

The importance of the table of ordered failure
times is that we can work with censored obser-
vations in analyzing survival data. Even though
censored observations are incomplete, in that we
don’t know a person’s survival time exactly, we can
still make use of the information we have on a
censored person up to the time we lose track of
him or her. Rather than simply throw away the
information on a censored person, we use all the
information we have on such a person up until
time of censorship. (Nevertheless, most survival
analysis techniques require a key assumption that
censoring is non-informative—censored subjects
are not at increased risk for failure. See Chapter 9
on competing risks for further details.)
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EXAMPLE

fy ™ g R(t()

6 3 1 v 21 persons

7 1 1 v 17 persons
10 1 2 v 15 persons
13 1 0 v 12 persons
16 1 @ v 11 persons
22 1 0 7 persons
23 1 5 6 persons

For example, for the three persons in group 1 who
were censored between the 16th and 20th weeks,
there are at least 16 weeks of survival information
on each that we don’t want to lose. These three per-
sons are contained in all risk sets up to the 16th
week; that is, they are each at risk for getting the
event up to 16 weeks. Any survival probabilities de-
termined before, and including, 16 weeks should
make use of data on these three persons as well
as data on other persons at risk during the first
16 weeks.

Having introduced the basic terminology and data
layouts to this point, we now consider some
data analysis issues and some additional appli-
cations.

VII. Descriptive Measures of
Survival Experience

EXAMPLE

Remission times (in weeks) for two
groups of leukemia patients

Group 1 Group 2
(Treatment) 1 = 21 (Placebo) n =21
6,6,6,7, 10, 1,1,2,2,3,
13, 16, 22, 23, 4,4,5,5,
6+, 9+, 10+, 11+, 8,8, 8,8,
17+, 19+, 20+, 11,11, 12, 12,
25+, 32+, 32+, 15,17, 22, 23
34+, 35+
T, (ignoring +s) = 17.1| T, = 8.6
= 9 - 21
hi=55=005 | hy=-5= 115
Average hazard rate (1) = M
n
2t
i=1

We first return to the remission data, again shown
in untabulated form. Inspecting the survival times
given for each group, we can see that most of the
treatment group’s times are longer than most of
the placebo group’s times. If we ignore the plus
signs denoting censorship and simply average all
21 survival times for each group we get an aver-
age, denoted by T “bar;” of 17.1 weeks survival for
the treatment group and 8.6 weeks for the placebo
group. Because several of the treatment group’s
times are censored, this means that group 1’s ture
average is even larger than what we have calcu-
lated. Thus, it appears from the data (without our
doing any mathematical analysis) that, regarding
survival, the treatment is more effective than the
placebo.

As an alternative to the simple averages that we
have computed for each group, another descrip-
tive measure of each group is the average hazard
rate, denoted as h “bar.” This rate is defined by di-
viding the total number of failures by the sum of
the observed survival times. For group 1, & “bar”
is 9/359, which equals .025. For group 2, 1 “bar”
is 21/182, which equals .115.
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S —»
%M

Placebo hazard > treatment hazard:
suggests that treatment is more
effective than placebo

Descriptive measures (7 and /) give
overall comparison; they do not
give comparison over time.

EXAMPLE

Group 1
treatment

A 4

Group 2
placebo

0 } } } }

10 20
t weeks

Median = 8 Median = 23

As previously described, the hazard rate indicates
failure potential rather than survival probability.
Thus, the higher the average hazard rate, the lower
is the group’s probability of surviving.

In our example, the average hazard for the treat-
ment group is smaller than the average hazard for
the placebo group.

Thus, using average hazard rates, we again see that
the treatment group appears to be doing better
overall than the placebo group; that is, the treat-
ment group is less prone to fail than the placebo
group.

The descriptive measures we have used so far—the
ordinary average and the hazard rate average—
provide overall comparisons of the treatment
group with the placebo group. These measures
don’t compare the two groups at different points in
time of follow-up. Such a comparison is provided
by a graph of survivor curves.

Here we present the estimated survivor curves
for the treatment and placebo groups. The method
used to get these curves is called the Kaplan-
Meier method, which is described in Chapter 2.
When estimated, these curves are actually step
functions that allow us to compare the treat-
ment and placebo groups over time. The graph
shows that the survivor function for the treat-
ment group consistently lies above that for the
placebo group; this difference indicates that the
treatment appears effective at all points of follow-
up. Notice, however, that the two functions are
somewhat closer together in the first few weeks of
follow-up, but thereafter are quite spread apart.
This widening gap suggests that the treatment is
more effective later during follow-up than it is
early on.
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o

Median

Median (treatment) = 23 weeks

Median (placebo) = 8 weeks

X

Also notice from the graph that one can obtain
estimates of the median survival time, the time at
which the survival probability is .5 for each group.
Graphically, the median is obtained by proceeding
horizontally from the 0.5 point on the Y-axis un-
til the survivor curve is reached, as marked by an
arrow, and then proceeding vertically downward
until the X-axis is crossed at the median survival
time.

For the treatment group, the median is 23 weeks;
for the placebo group, the median is 8 weeks. Com-
parison of the two medians reinforces our previ-
ous observation that the treatment is more effec-
tive overall than the placebo.

VIII. Example: Extended
Remission Data

Group 1
t (weeks) log WBC
6 2.31
6 4.06
6 3.28
7 4.43
10 2.96
13 2.88
16 3.60
22 2.32
23 2.57
6+ 3.20
o+ 2.80
10+ 2.70
11+ 2.60
17+ 2.16
19+ 2.05
20+ 2.01
25+ 1.78
32+ 2.20
32+ 2.53
34+ 1.47
35+ 1.45

Group 2
t (weeks) log WBC
1 2.80
1 5.00
2 491
2 4.48
3 4.01
4 4.36
4 2.42
5 3.49
5 3.97
8 3.52
8 3.05
8 2.32
8 3.26
11 3.49
11 2.12
12 1.50
12 3.06
15 2.30
17 2.95
22 2.73
23 1.97

Before proceeding to another data set, we con-
sider the remission example data (Freireich et al.,
Blood, 1963) in an extended form. The table at the
left gives the remission survival times for the two
groups with additional information about white
blood cell count for each person studied. In par-
ticular, each person’s log white blood cell count
is given next to that person’s survival time. The
epidemiologic reason for adding log WBC to the
data set is that this variable is usually considered
an important predictor of survival in leukemia pa-
tients; the higher the WBC, the worse the prog-
nosis. Thus, any comparison of the effects of two
treatment groups needs to consider the possible
confounding effect of such a variable.
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EXAMPLE: CONFOUNDING

Treatment group: log WBC = 1.8
Placebo group: log WBC = 4.1
Indicates confounding of treatment
effect by log WBC

Frequency
distribution

Treatment Placebo

\ '

log WBC

Need to adjust for imbalance in the
distribution of log WBC

EXAMPLE: INTERACTION

High log WBC Low log WBC

S(#)| Treatment  S(7)

Treatment

Treatment by log WBC interaction

Although a full exposition of the nature of con-
founding is not intended here, we provide a sim-
ple scenario to give you the basic idea. Suppose
all of the subjects in the treatment group had very
low log WBC, with an average, for example, of 1.8,
whereas all of the subjects in the placebo group
had very high log WBC, with an average of 4.1.
We would have to conclude that the results we've
seen so far that compare treatment with placebo
groups may be misleading.

The additional information on log WBC would
suggest that the treatment group is surviving
longer simply because of their low WBC and not
because of the efficacy of the treatment itself. In
this case, we would say that the treatment effect
is confounded by the effect of log WBC.

More typically, the distribution of log WBC may be
quite different in the treatment group than in the
control group. We have illustrated one extreme in
the graph at the left. Even though such an extreme
is not likely, and is not true for the data given here,
the point is that some attempt needs to be made to
adjust for whatever imbalance there is in the dis-
tribution of log WBC. However, if high log WBC
count was a consequence of the treatment, then
white blood cell count should not be controlled
for in the analysis.

Another issue to consider regarding the effect of
log WBC is interaction. What we mean by inter-
action is that the effect of the treatment may be
different, depending on the level of log WBC. For
example, suppose that for persons with high log
WBC, survival probabilities for the treatment are
consistently higher over time than for the placebo.
This circumstance is illustrated by the first graph
at the left. In contrast, the second graph, which
considers only persons with low log WBC, shows
no difference in treatment and placebo effect over
time. In such a situation, we would say that there
is strong treatment by log WBC interaction, and
we would have to qualify the effect of the treat-
ment as depending on the level of log WBC.
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Need to consider:

e interaction;
e confounding.

The problem:

Compare two groups after adjusting
for confounding and interaction.

EXAMPLE

Xl 2
(Group) (log WBC)

Individual ¢

# (weeks) &

X.

(1 6
2 6
3 6
4 7
5 10
6 13
7 16
8 22
9 23
Group 1(1] g
1 12 10
13 11
14 17
15 19
16 20
17 25
18 32
19 32
20 34
21 35
(22 1
23 1
24 2
25 2
26 3
27 4
28 4
29 5
30 5
Group ;; g
2 33 8
34 8
35 11
36 11
37 12
38 12
39 15
40 17
41 22
42 23

COO0OO0OO0OOOOOOOO == = = == ==

e e e e e e e e e e e

S QU UG

[=E=Relelelelelel--E-E-R-i-h-lelelele NNl

2.3l
4.06
3.28
4.43
2.96
2.88
3.60
2.32
2.57
3.20
2.80
2.70
2.60
2.16
2.05
2.01
1.78
2.20
2.53
1.47
1.45

2.80
5.00
491
4.48
4.01
4.36
2.42
3.49
3.97
BI57)
3.05
237
3.26
3.49
2.12
1.50
3.06
2.30
285
2.73
1.97

The example of interaction we just gave is but one
way interaction can occur; on the other hand, in-
teraction may not occur at all. As with confound-
ing, it is beyond our scope to provide a thorough
discussion of interaction. In any case, the assess-
ment of interaction is something to consider in
one’s analysis in addition to confounding that in-
volves explanatory variables.

Thus, with our extended data example, the basic
problem can be described as follows: to compare
the survival experience of the two groups after ad-
justing for the possible confounding and/or inter-
action effects of log WBC.

The problem statement tells us that we are now
considering two explanatory variables in our ex-
tended example, whereas we previously consid-
ered a single variable, group status. The data lay-
out for the computer needs to reflect the addition
of the second variable, log WBC. The extended ta-
ble in computer layout form is given at the left.
Notice that we have labeled the two explanatory
variables X; (for group status) and X, (for log
WBC). The variable X is our primary study or ex-
posure variable of interest here, and the variable
X, is an extraneous variable that we are interested
in accounting for because of either confounding or
interaction.



Analysis alternatives:

e stratify on log WBC;

e use math modeling, e.g.,
proportional hazards model.
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As implied by our extended example, which con-
siders the possible confounding or interaction ef-
fect of log WBC, we need to consider methods for
adjusting for log WBC and/or assessing its effect in
addition to assessing the effect of treatment group.
The two most popular alternatives for analysis are
the following:

e to stratify on log WBC and compare survival
curves for different strata; or

e to use mathematical modeling procedures
such as the proportional hazards or other sur-
vival models; such methods will be described
in subsequent chapters.

IX. Multivariable Example

e Describes general multivariable
survival problem.

e Gives analogy to regression
problems.

EXAMPLE

13-year follow-up of fixed cohort from
Evans County, Georgia

n = 170 white males (60+)

T = years until death
Event = death

Explanatory variables:

e exposure variable

¢ confounders

e interaction variables

Exposure:
Social Network Index (SNI)
1t
01 2 3 4 5
Absence Excellent
of social social
network network

We now consider one other example. Our purpose
here is to describe a more general type of mul-
tivariable survival analysis problem. The reader
may see the analogy of this example to multiple
regression or even logistic regression data prob-
lems.

We consider a data set developed from a 13-year
follow up study of a fixed cohort of persons in
Evans County Georgia, during the period 1967-
1980 (Schoenbach et al., Amer. J. Epid., 1986).
From this data set, we focus or a portion contain-
ing n = 170 white males who are age 60 or older
at the start of follow-up in 1967.

For this data set, the outcome variable is T, time
in years until death from start of follow-up, so
the event of interest is death. Several explanatory
variables are measured, one of which is considered
the primary exposure variable; the other variables
are considered as potential confounders and/or in-
teraction variables.

The primary exposure variable is a measure called
Social Network Index (SNI). This is an ordinal
variable derived from questionnaire measurement
and is designed to assess the extent to which a
study subject has social contacts of various types.
With the questionnaire, a scale is used with values
ranging from 0 (absence of any social network) to
5 (excellent social network).
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EXAMPLE (continued)

Study goal: to determine whether SNI is
protective against death,
i.e., SNI 2= S() ~

Explanatory variables:

SNI Exposure variable
AGE

SBP

CHR Potential confounders/
QUET interaction variables
SOCL

Note : QUET = Sight__ 149

(height)?

The problem:
To describe the relationship between
SNI and time to death, after
controlling for AGE, SBP, CHR,
QUET, and SOCL.

Goals:

e Measure of effect (adjusted)

e Survivor curves for different SNI
categories (adjusted)

e Decide on variables to be adjusted;
determine method of adjustment

The study’s goal is to determine whether one’s
social network, as measured by SNI, is protec-
tive against death. If this study hypothesis is cor-
rect, then the higher the social network score, the
longer will be one’s survival time.

In evaluating this problem, several explanatory
variables, in addition to SNI, are measured at the
start of follow-up. These include AGE, systolic
blood pressure (SBP), an indicator of the presence
or absence of some chronic disease (CHR), body
size as measured by Quetelet’s index (QUET =
weight over height squared times 100), and social
class (SOCL).

These five additional variables are of interest be-
cause they are thought to have their own special
or collective influence on how long a person will
survive. Consequently, these variables are viewed
as potential confounders and/or interaction vari-
ables in evaluating the effect of social network on
time to death.

We can now clearly state the problem being ad-
dressed by this study: To describe the relationship
between SNI and time to death, controlling for
AGE, SBP, CHR, QUET, and SOCL.

Our goals in using survival analysis to solve this
problem are as follows:

e to obtain some measure of effect that will de-
scribe the relationship between SNI and time
until death, after adjusting for the other vari-
ables we have identified,;

e to develop survival curves that describe the
probability of survival over time for different
categories of social networks; in particular, we
wish to compare the survival of persons with
excellent networks to the survival of persons
with poor networks. Such survival curves need
to be adjusted for the effects of other variables.

¢ to achieve these goals, two intermediary goals
are to decide which of the additional variables
being considered need to be adjusted and to
determine an appropriate method of adjust-
ment.
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The computer data layout for this problem is given
below. The first column lists the 170 individuals
in the data set. The second column lists the sur-
vival times, and the third column lists failure or
censored status. The remainder of the columns
list the 6 explanatory variables of interest, start-
ing with the exposure variable SNI and continu-
ing with the variables to be accounted for in the
analysis.

Computer layout: 13-year follow-up study (1967-1980) of a fixed cohort of n = 170
white males (60+) from Evans County, Georgia

# t o SNI AGE SBP CHR QUET SOCL

1 t o1 SNI; AGE; SBP, CHR; QUET, SOCL;
2 t o2 SNI, AGE, SBP, CHR, QUET; SOCL,

170 1170 6170 SN1170 AGE170 SBP170 CHR170 QUET170 SOCL170

X. Math Models in Survival It is beyond the scope of this presentation to pro-
Analysis vide specific details of the survival analysis of
these data. Nevertheless, the problem addressed

General framework by these data is closely analogous to the typical
multivariable problem addressed by linear and lo-

E D gistic regression modeling. Regardless of which

modeling approach is chosen, the typical problem

) concerns describing the relationship between an
Controlling for Cy, G, ... C,. exposure variable (e.g., E) and an outcome vari-
able (e.g., D) after controlling for the possible con-

SNI study: founding and interaction effects of additional vari-
E=SNI = D = survival time ables (e.g., Cy, C3, and so on up to Cp). In our
Controlling for AGE, SBP, CHR, survival analysis example, E is the social network
QUET, and SOCL variable SNI, D is the survival time variable, and

there are p =5 C variables, namely, AGE, SBP,
CHR, QUET, and SOCL.
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Model Outcome

Time to event
(with censoring)

Survival analysis

£

=

g9

E 2 Linear regression | Continuous (SBP)
o . .

5 8 | Logistic regression| ...

Z 2 g g Dichotomous

:z (CHD yes/no)

L

Measure of effect:
Linear regression:
regression coefficient 3
Logistic regression:
odds ratio e”

Survival analysis:
hazard ratio e”

EXAMPLE

SNI study: hazard ratio (HR) describes
relationship between SNI and 7, after
controlling for covariates.

Introduction to Survival Analysis

Nevertheless, an important distinction among
modeling methods is the type of outcome vari-
able being used. In survival analysis, the outcome
variable is “time to an event,” and there may be
censored data. In linear regression modeling, the
outcome variable is generally a continuous vari-
able, like blood pressure. In logistic modeling, the
outcome variable is a dichotomous variable, like
CHD status, yes or no. And with linear or logistic
modeling, we usually do not have information on
follow-up time available.

As with linear and logistic modeling, one statisti-
cal goal of a survival analysis is to obtain some
measure of effect that describes the exposure-
outcome relationship adjusted for relevant extra-
neous variables.

In linear regression modeling, the measure of ef-
fect is usually some regression coefficient f3.

In logistic modeling, the measure of effect is an
odds ratio expressed in terms of an exponential of
one or more regression coefficients in the model,
for example, e to the 3.

In survival analysis, the measure of effect typically
obtained is called a hazard ratio; as with the logis-
tic model, this hazard ratio is expressed in terms
of an exponential of one or more regression coef-
ficients in the model.

Thus, from the example of survival analysis mod-
eling of the social network data, one may obtain
a hazard ratio that describes the relationship be-
tween SNI and survival time (T'), after controlling
for the appropriate covariates.
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Interpretation of HR (like OR):
HR = 1 = no relationship

HR = 10 = exposed hazard
10 times unexposed

HR = 1/10 = exposed hazard
1/10 times unexposed

The hazard ratio, although a different measure
from an odds ratio, nevertheless has a similar in-
terpretation of the strength of the effect. A haz-
ard ratio of 1, like an odds ratio of 1, means that
there is no effect; that is, 1 is the null value for
the exposure-outcome relationship. A hazard ra-
tio of 10, on the other hand, is interpreted like an
odds ratio of 10; that is, the exposed group has ten
times the hazard of the unexposed group. Simi-
larly, a hazard ratio of 1/10 implies that the ex-
posed group has one-tenth the hazard of the un-
exposed group.

Chapters

/1. (Introduction]

2. Kaplan-Meier Survival Curves
and the Log-Rank Test

This presentation is now complete. We suggest
that you review the material covered here by read-
ing the detailed outline that follows. Then do the
practice exercises and test.

In Chapter 2 we describe how to estimate and
graph survival curves using the Kaplan-Meier
(KM) method. We also describe how to test
whether two or more survival curves are estimat-
ing a common curve. The most popular such test
is called the log-rank test.
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Detailed
Outline

L

II.

III.

What is survival analysis? (pages 4-5)
A. Type of problem addressed: outcome variable is
time until an event occurs.

B. Assume one event of interest; more than one type
of event implies a competing risk problem.

C. Terminology: time = survival time; event = failure.
D. Examples of survival analysis:
i. leukemia patients/time in remission
ii. disease-free cohort/time until heart disease
iii. elderly population/time until death
iv. parolees/time until rearrest (recidivism)
v. heart transplants/time until death
Censored data (pages 5-8)
A. Definition: don’t know exact survival time.

B. Reasons: study ends without subject getting event;
lost to follow-up; withdraws.

C. Examples of survival data for different persons;
summary table.

Terminology and notation (pages 8-14)

A. Notation: T = survival time random variable:
t = specific value for T
& = (0-1) variable for failure/censorship
status

B. Terminology: S(¢) = survivor function
h(t) = hazard function
C. Properties of survivor function:
e theoretically, graph is smooth curve, decreasing
from S(t) =1 attimet = 0to S(t) =0 att = oo;
e in practice, graph is step function that may not
go all the way to zero at end of study if not
everyone studied gets the event.

D. Hazard function formula:
Pt <T <t+AtT >1t)
At

0= bm,

E. Hazard function properties:

e /1(t) gives instantaneous potential for event to
occur given survival up to time z;

e instantaneous potential idea is illustrated by
velocity;

e hazard function also called “conditional failure
rate”;

e /i(t) > 0; has no upper bound; not a probability;
depends on time units.



Detailed Outline 35

F. Examples of hazard curves:
i. exponential
ii. increasing Weibull
iii. decreasing Weibull
iv. log normal
G. Uses of hazard function:
e gives insight about conditional failure rates;
e identifies specific model form;

e math model for survival analysis is usually
written in terms of hazard function.

H. Relationship of S(¢) to k(¢): if you know one, you
can determine the other.

e example: /(1) = A if and only if S(t) = e™*
e general formulae:

S(t) = exp [— /Ol h(u)du:|

-2

IV. Goals of survival analysis (page 15)

A. Estimate and interpret survivor and/or hazard
functions.

B. Compare survivor and/or hazard functions.

C. Assess the relationship of explanatory variables
to survival time.

V. Basic data layout for computer (15-19)
A. General layout:

#1085 X; Xy-e- X,

I 6 & Xu XXy
2t b Xu Xn---Xy

ot % Xjpo XpeeeXjp

n I 611 an XnZ "’an

B. Example: Remission time data
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VI.

VII.

Basic data layout for understanding analysis
(pages 19-24)
A. General layout:

Ordered

failure #of # censored Risk
times failures in [fjy, tj+1))  set
) (m;) ;) R(tj)
y=0 my=0 qdo R(t))
L) mi q1 R(t)
2) myp q2 R(l‘(z))
Lk i qk R(t@))

Note: k = # of distinct times at which subjects
failed; n = # of subjects (k < n); R(#(j)), the risk
set, is the set of individuals whose survival times
are at least #(j) or larger.

B. Example: Remission time data
Group 1 (n = 21, 9 failures, k = 7);
Group 2 (n = 21, 21 failures, k = 12)

C. How to work with censored data:
Use all information up to the time of censorship;
don’t throw away information.

Descriptive measures of survival experience

(pages 24-26)

A. Average survival time (ignoring censorship
status):

n

T underestimates the true average
j= survival time, because censored
n times are included in the formula.

L
— 1
T =

B. Average hazard rate:

# failures

h = n
C. Descriptive measures T and /1 give overall
comparison; estimated survivor curves give
comparison over time.
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. Estimated survivor curves are step function

graphs.

. Median survival time: graphically, proceed

horizontally from 0.5 on the Y-axis until
reaching graph, then vertically downward until
reaching the X-axis.

Example: Extended remission data (pages 26-29)

A

B.
C.

Extended data adds log WBC to previous
remission data.

Need to consider confounding and interaction.
Extended data problem: compare survival
experience of two groups, after adjusting for
confounding and interaction effects of log WBC.

. Analysis alternatives:

i. stratify on log WBC and compare survival
curves for different strata;

ii. use math modeling, e.g., proportional
hazards model.

Multivariable example (pages 29-31)

A.

The problem: to describe the relationship

between social network index (SNI) and time

until death, controlling for AGE, systolic blood

pressure (SBP), presence or absence of chronic

disease (CHR), Quetelet’s index (QUET—a

measure of body size), and social class (SOCL).

Goals:

e to obtain an adjusted measure of effect;

e to obtain adjusted survivor curves for different
SNI categories;

e to decide on variables to be adjusted.

The data: 13-year follow-up study (1967-1980) of

a fixed cohort of # = 170 white males (60+) from

Evans County, Georgia.

AGE SBP CHR QUET SOCL

1 n 61 SNI;
2 15 5, SNI,

170 t170 6170 SNII70

AGE; SBP; CHR; QUET, SOCL;
AGE, SBP, CHR; QUET, SOCL,

AGEi70 SBPi7p CHRi7p QUETi70 SOCLj79
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Practice
Exercises

X. Math models in survival analysis (pages 31-33)

A.

Survival analysis problem is analogous to typical
multivariable problem addressed by linear
and/or logistic regression modeling: describe
relationship of exposure to outcome, after
accounting for possible confounding and
interaction.

Outcome variable (time to event) for survival
analysis is different from linear (continuous) or
logistic (dichotomous) modeling.

Measure of effect typically used in survival
analysis: hazard ratio (HR).

Interpretation of HR: like OR. SNI study: HR
describes relationship between SNI and T, after
controlling for covariates.

True or False (Circle T or F):

T

T

—3

T F 10.

T F 11.

T F 12.

F 1. Ina survival analysis, the outcome variable is di-

F

F

jzsliles|

2.

chotomous.

In a survival analysis, the event is usually de-
scribed by a (0,1) variable.

If the study ends before an individual has gotten
the event, then his or her survival time is censored.

If, for a given individual, the event occurs before
the person is lost to follow-up or withdraws from
the study, then this person’s survival time is cen-
sored.

S(t) = P(T > t) is called the hazard function.
The hazard function is a probability.
Theoretically, the graph of a survivor function is
a smooth curve that decreases from S(t) =1 at
t=0toS(t)=0att = oc.

The survivor function at time ¢ gives the instanta-
neous potential per unit time for a failure to occur,
given survival up to time ¢.

The formula for a hazard function involves a con-
ditional probability as one of its components.
The hazard function theoretically has no upper
bound.

Mathematical models for survival analysis are fre-
quently written in terms of a hazard function.
One goal of a survival analysis is to compare sur-
vivor and/or hazard functions.
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T F 13. Ordered failure times are censored data.
T F 14. Censored data are used in the analysis of survival

data up to the time interval of censorship.

T F 15. Atypical goal of a survival analysis involving sev-

16.

17.

18.

eral explanatory variables is to obtain an adjusted
measure of effect.

Given the following survival time data (in weeks) for
n = 15 subjects,

L1, 14,14, 14,2, 2,2, 24, 24, 3, 3, 3+, 44, 5+

where + denotes censored data, complete the following
table:

tj)y mj qj R(1j))

0 0 0 15 persons survive > 0 weeks
1

2

3

Also, compute the average survival time (7') and the aver-
age hazard rate (/) using the raw data (ignoring 4 signs
for 7).

Suppose that the estimated survivor curve for the above
table is given by the following graph:

T
T .

S@)

0 1 2 3
¢
What is the median survival time for this cohort?

Questions 18-20 consider the comparison of the
following two survivor curves:

14
' Group A

NO)

Which group has a better survival prognosis before time
*?
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19. Which group has a better survival prognosis after
time ¢*?
20. Which group has a longer median survival time?

Test True or False (Circle T or F):

T F 1.

T F 10.

Survival analysis is a collection of statistical pro-
cedures for data analysis for which the outcome
variable is time until an event occurs.

. In survival analysis, the term “event” is synony-

mous with “failure.”

. If a given individual is lost to follow-up or with-

draws from the study before the end of the study
without the event occurring, then the survival
time for this individual is said to be “censored.”

. In practice, the survivor function is usually

graphed as a smooth curve.

. The survivor function ranges between 0 and oo.
. The concept of instantaneous potential is illus-

trated by velocity.

. Ahazard rate of one per day is equivalent to seven

per week.

. If you know the form of a hazard function, then

you can determine the corresponding survivor
curve, and vice versa.

. One use of a hazard function is to gain insight

about conditional failure rates.

If the survival curve for group 1 lies completely
above the survival curve for group 2, then the me-
dian survival time for group 2 is longer than that
for group 1.

. The risk set at six weeks is the set of individu-

als whose survival times are less than or equal to
six weeks.

. If the risk set at six weeks consists of 22 persons,

and four persons fail and three persons are cen-
sored by the 7th week, then the risk set at seven
weeks consists of 18 persons.

. The measure of effect used in survival analysis is

an odds ratio.

. If a hazard ratio comparing group 1 relative to

group 2 equals 10, then the potential for failure is
ten times higher in group 1 than in group 2.
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T F 15. The outcome variable used in a survival analy-

16.
17.
18.
19.

sis is different from that used in linear or logistic
modeling.

State two properties of a hazard function.
State three reasons why hazard functions are used.
State three goals of a survival analysis.

The following data are a sample from the 1967-1980
Evans County study. Survival times (in years) are given
for two study groups, each with 25 participants. Group 1
has no history of chronic disease (CHR = 0), and group
2 has a positive history of chronic disease (CHR = 1):

Group 1 (CHR=0): 12.3+,5.4,8.2,12.2+, 11.7, 10.0,
5.7,9.8,2.6,11.0,9.2, 12.1+, 6.6,
2.2,1.8,10.2,10.7,11.1,5.3, 3.5,
9.2,25,8.7,3.8,3.0

Group 2 (CHR=1): 538,2.9,684,83,9.1,42,4.1, 1.8,
3.1,11.4,2.4,14,59,1.6,2.38,
49,35,65,99,3.6,52,88,7.38,
47,39

For group 1, complete the following table involving
ordered failure times:

iy mj q; RG)

Group 1: 0.0 0 0 25 persons survived > 0 years
1.8 1 0 25personssurvived > 1.8 years
22
2.5
2.6
3.0
35
3.8
5.3
5.4
5.7
6.6
8.2
8.7
9.2
9.8

10.0
10.2
10.7
11.0
111
11.7
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Answers to
Practice
Exercises

20.

10.

11.

12.

13.

14.

15.

For the data of Problem 19, the average survival time
(T') and the average hazard rate () for each group are
given as follows:

T h

Group 1: 7.5 .1165
Group 2: 5.3 .18%

a. Based on the above information, which group has a
better survival prognosis? Explain briefly.

b. How would a comparison of survivor curves provide
additional information to what is provided in the
above table?

i

: the outcome is continuous; time until an event occurs.

i

: the person fails, i.e., is not censored.

o]

: S(¢) is the survivor function.

F: the hazard is a rate, not a probability.

F: the hazard function gives instantaneous potential.

T

F: ordered failure times are data for persons who are
failures.

T

T



16.

17.

18.

19.

20.

Answers to Practice Exercises

lj) mj q; R(p)
0 0 0 15 persons survive > 0 weeks
1 2 3 15 persons survive > 1 weeks
2 3 2 10 persons survive > 2 weeks
3 2 3 5 persons survive > 3 weeks
— 33 - 7
T=—==22h=—=02121
15 33

Median = 3 weeks

Group A
Group B

Group A

43
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Introduction

Abbreviated
Outline

We begin with a brief review of the purposes of survival analy-
sis, basic notation and terminology, and the basic data layout
for the computer.

We then describe how to estimate and graph survival curves
using the Kaplan-Meier (KM) method. The estimated sur-
vival probabilities are computed using a product limit
formula.

Next, we describe how to compare two or more survival
curves using the log-rank test of the null hypothesis of a
common survival curve. For two groups, the log-rank statis-
ticis based on the summed observed minus expected score for
a given group and its variance estimate. For several groups,
a computer should always be used because the log-rank for-
mula is more complicated mathematically. The test statistic
is approximately chi-square in large samples with G — 1 de-
grees of freedom, where G denotes the number of groups be-
ing compared.

Several alternatives to the log-rank test will be briefly de-
scribed. These tests are variations of the log rank test that
weigh each observation differently. They are also large sam-
ple chi-square tests with G — 1 degrees of freedom.

The outline below gives the user a preview of the material to
be covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. Review (pages 48-50)
II. An example of Kaplan-Meier curves (pages 51-55)
III. General features of KM curves (pages 56-57)
IV. The log-rank test for two groups (pages 57-61)
V. The log-rank test for several groups (pages 61-63)
VI. Alternatives to the log-rank test (pages 63-68)
VII. Summary (page 68)
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Objectives Upon completing the chapter, the learner should be able to:

1. Compute Kaplan-Meier (KM) probabilities of survival,
given survival time and failure status information on a
sample of subjects.

2. Interpret a graph of KM curves that compare two or more
groups.

3. Draw conclusions as to whether or not two or more sur-
vival curves are the same based on computer results that
provide a log-rank test and/or an alternative test.

4. Decide whether the log-rank test or one of the alternatives
to this test is more appropriate for a given set of survival
data.
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Presentation

¢ plot and interpret
KM survival curves!

® test equivalence of
KM curves using
log-rank test

® Peto test

This presentation describes how to plot and inter-
pret survival data using Kaplan-Meier (KM) sur-
vival curves and how to test whether or not two
or more KM curves are equivalent using the log-
rank test. We also describe alternative tests to the
log-rank test.

I. Review
Start TIME Event
Event: death

disease
relapse

Time = survival time
Event = failure

Censoring: Don’t know survival
time exactly

4— True survival time ——»
| |

! Observed survival timeJl
Right-censored

NOTATION

T = survival time

\random variable
t = specific value for T'

We begin by reviewing the basics of survival anal-
ysis. Generally, survival analysis is a collection of
statistical procedures for the analysis of data in
which the outcome variable of interest is time
until an event occurs. By event, we mean death,
disease incidence, relapse from remission, or any
designated experience of interest that may happen
to an individual.

When doing a survival analysis, we usually refer
to the time variable as survival time. We also typ-
ically refer to the event as a failure.

Most survival analyses consider a key data analyt-
ical problem called censoring. In essence, censor-
ing occurs when we have some information about
individual survival time, but we don’t know the
survival time exactly.

Most survival time data is right-censored, because
the true survival time interval, which we don't re-
ally know, has been cut off (i.e., censored) at the
right side of the observed time interval, giving us
an observed survival time that is shorter than the
true survival time. We want to use the observed
survival time to draw implications about the true
survival time.

As notation, we denote by a capital T the random
variable for a person’s survival time. Next, we de-
note by a small letter ¢ any specific value of inter-
est for the variable T.



5 = (0, 1) random variable

1 if failure
0 if censored

S(t) = survivor function

=Pr(T >1)
S(0)
| Theoretical S(¢)
S(t)
‘/S(W)
0 t o —P

S@) in practice

0 t Study end

h(t) = hazard functon
= instantaneous potential
given survival up to time ¢

Not failing l;(t)

! |
S() Failing

h(t)isarate: 0to oo

S(@) h(r)

Presentation: I. Review 49

We let the Greek letter delta (8) denote a (0,1) ran-
dom variable indicating either censorship or fail-
ure. A person who does not fail, that is, does not
get the event during the study period, must have
been censored either before or at the end of the
study.

The survivor function, denoted by S(), gives the
probability that the random variable T exceeds the
specified time 7.

Theoretically, as ¢ ranges from 0 up to infinity,
the survivor function is graphed as a decreasing
smooth curve, which begins at S(f) =1 att =0
and heads downward toward zero as ¢ increases
toward infinity.

In practice, using data, we usually obtain esti-
mated survivor curves that are step functions, as
illustrated here, rather than smooth curves.

The hazard function, denoted by h(t), gives the in-
stantaneous potential per unit time for the event
to occur given that the individual has survived up
to time .

In contrast to the survivor function, which focuses
on not failing, the hazard function focuses on fail-
ing; in other words, the higher the average hazard,
the worse the impact on survival. The hazard is a
rate, rather than a probability. Thus, the values
of the hazard function range between zero and
infinity.

Regardless of which function S(¢) or h(f) one
prefers, there is a clearly defined relationship
between the two. In fact, if one knows the form
of S(t), one can derive the corresponding /(z), and
vice versa.
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General Data Layout:

Indiv# ¢t & Xy X2-~-Xp
1 o 0 Xi XXy,
2 h 0 Xy XXy,
n Iy 5;1 an XnZ to an
Alternative (ordered) data
layout:
Ordered #of #censoredin Risk
failure times, failures  [7(y, #(j41)), set,
4 mj qj R(t(j))
to)y=0 my =0 q0 R(to))
i1 m q1 R(ty)
i) my q2 R(tz)
) s qk R(tg)

Table of ordered failures:

e Uses all information up to time

of censorship;

o S(1) is derived from R(¢).

Survival probability:
Use Kaplan-Meier (KM)
method.

The general data layout for a survival analysis is
given by the table shown here. The first column of
the table identifies the study subjects. The second
column gives the observed survival time informa-
tion. The third column gives the information for
d, the dichotomous variable that indicates censor-
ship status. The remainder of the information in
the table gives values for explanatory variables of
interest.

An alternative data layout is shown here. This lay-
out is the basis upon which Kaplan-Meier sur-
vival curves are derived. The first column in the
table gives ordered survival times from smallest to
largest. The second column gives frequency counts
of failures at each distinct failure time. The third
column gives frequency counts, denoted by ¢;, of
those persons censored in the time interval start-
ing with failure time #(;) up to but not including
the next failure time, denoted by #(;11). The last
column gives the risk set, which denotes the col-
lection of individuals who have survived at least
to time ;).

To estimate the survival probability at a given time,
we make use of the risk set at that time to include
the information we have on a censored person up
to the time of censorship, rather than simply throw
away all the information on a censored person.

The actual computation of such a survival proba-
bility can be carried out using the Kaplan-Meier
(KM) method. We introduce the KM method in the
next section by way of an example.



Presentation: Il. An Example of Kaplan-Meier Curves 51

Il. An Example of
Kaplan-Meier Curves

EXAMPLE

The data: remission times (weeks) for
two groups of leukemia patients

Group 1 (n=21) Group 2 (n=21)
treatment placebo
6,6,6,7, 10, 1,1,2,2,3,

13, 16, 22, 23, 4,4,5,5,

6+, 9+, 10+, 11+, 8,8, 8,8,

17+, 19+, 20+, 11, 11, 12, 12,
25+, 32+, 32+, 15,17, 22, 23
34+, 35+,

Note: + denotes censored

# failed # censored | Total

Group 1 9 12 21
Group 2 21 0 21

Descriptive statistics:
T, (ignoring +’s ) = 17.1, T, = 8.6

By =.025 7y =115, "2~ 46
hy

The data for this example derive from a study of
the remission times in weeks for two groups of
leukemia patients, with 21 patients in each group.
Group 1 is the treatment group and group 2 is
the placebo group. The basic question of interest
concerns comparing the survival experience of the
two groups.

Of the 21 persons in group 1, 9 failed during the
study period and 12 were censored. In contrast,
none of the data in group 2 are censored; that is,
all 21 persons in the placebo group went out of
remission during the study period.

In Chapter 1, we observed for this data set that
group 1 appears to have better survival prognosis
than group 2, suggesting that the treatment is ef-
fective. This conclusion was supported by descrip-
tive statistics for the average survival time and
average hazard rate shown. Note, however, that
descriptive statistics provide overall comparisons
but do not compare the two groups at different
times of follow-up.
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EXAMPLE (continued)

Ordered failure times:

Group 1 (treatment)

LG it i 4;
0 21 0 0
6 21 3 1
7 17 1 1
10 15 1 2
13 12 1 0
16 11 1 3
22 7 1 0
23 6 1 5
>23 — — —
Group 2 (placebo)
L) & 8 4
0 21 0 0
1 21 2 0
2 19 2 0
3 17 1 0
4 16 2 0
5 14 2 0
8 12 4 0
11 8 2 0
12 6 2 0
15 4 1 0
17 3 1 0
22 2 1 0
23 1 1 0
Group 2: no censored subjects
Group 2 (placebo) 5
y m m g StG)
0 21 0 0 1
1 21 2 0 19/21=.90
2 19 2 0 17/21 = .81
3 17 1 0 16/21 =.76
4 16 2 0 14/21 = .67
5 14 2 0 12/21 = .57
8 12 4 0 8/21 =.38
11 8 2 0 6/21 =.29
12 6 2 0 4/21=.19
15 4 1 0 321 =.14
17 3 1 0 2/21=.10
22 2 1 0 1/21 = .05
23 1 1 0 0/21 =.00

A table of ordered failure times is shown here for
each group. These tables provide the basic infor-
mation for the computation of KM curves.

Each table begins with a survival time of zero, even
though no subject actually failed at the start of
follow-up. The reason for the zero is to allow for
the possibility that some subjects might have been
censored before the earliest failure time.

Also, each table contains a column denoted as n;
that gives the number of subjects in the risk set at
the start of the interval. Given that the risk set is
defined as the collection of individuals who have
survived at least to time #(j, it is assumed that n;
includes those persons failing at time #(;). In other
words, 1; counts those subjects at risk for failing
instantaneously prior to time ;).

We now describe how to compute the KM curve
for the table for group 2. The computations for
group 2 are quite straightforward because there
are no censored subjects for this group.

The table of ordered failure times for group 2
is presented here again with the addition of an-
other column that contains survival probability
estimates. These estimates are the KM survival
probabilities for this group. We will discuss the
computations of these probabilities shortly.
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A plot of the KM survival probabilities correspond-

KM Curve for Group 2 (Placebo)

0 5 10 15 20

Weeks
S()=Pr (T'>1)
Group 2 (placebo)
ty m omp g S
0 21 0 0 1
1 21 2 0 19/21 = .90
2 19 2 0 17/21 = .81
3 17 1 0 16/21=.76
4 16 2 0 14/21 = .67
5 14 2 0 12/21 = .57
8 12 4 0 8/21 =.38
11 8 2 0 6/21 =.29
12 6 2 0 4/21=.19
15 4 1 0 321 =.14
17 3 1 0 2/21=.10
22 2 1 0 1/21=.05
23 1 1 0 0/21 =.00

# surviving past ¢

S(t(i)) = 21

No censorship in group 2

Alternative formula: KM approach

ing to each ordered failure time is shown here for
group 2. Empirical plots such as this one are typ-
ically plotted as a step function that starts with a
horizontal line at a survival probability of 1 and
then steps down to the other survival probabili-
ties as we move from one ordered failure time to
another.

We now describe how the survival probabilities for
the group 2 data are computed. Recall that a sur-
vival probability gives the probability that a study
subject survives past a specified time.

Thus, considering the group 2 data, the probabil-
ity of surviving past zero is unity, as it will always
be for any data set.

Next, the probability of surviving past the first or-
dered failure time of one week is given by 19/21 or
(.90) because 2 people failed at one week, so that
19 people from the original 21 remain as survivors
past one week.

Similarly, the next probability concerns subjects
surviving past two weeks, which is 17/21 (or .81)
because 2 subjects failed at one week and 2 sub-
jects failed at two weeks leaving 17 out of the orig-
inal 21 subjects surviving past two weeks.

The remaining survival probabilities in the table
are computed in the same manner, that is, we
count the number of subjects surviving past the
specified time being considered and divide this
number by 21, the number of subjects at the start
of follow-up.

Recall that no subject in group 2 was censored, so
the ¢ column for group 2 consists entirely of ze-
ros. If some of the ¢’s had been nonzero, an alter-
native formula for computing survival probabili-
ties would be needed. This alternative formula is
called the Kaplan-Meier (KM) approach and can
be illustrated using the group 2 data even though
all values of ¢ are zero.
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EXAMPLE

. 19 17 16 14 14
a2 o N6 A8 _ 18
S = x g X7 X 15~ 21 =%

PI'(T> t(l) | T2 t(/))

A 17 14 14
S(4)—1X@X1—9X Xl_é_ﬁ_.67
19

—= >

- Pr(T >1|T > 1)

%:Pr(T >3|T2 3)

17 = # in risk set at week 3

a 19 17 _16
S(4)_1><i><1—9><1—7>< :

4 19 17 16 14 12
S(8)—1><ﬁ><1—9><1—7><R><ﬁ><

KM formula = product limit
formula

Group 1 (treatment)

tp n m g Sltg)

0o 21 0 o (@

6 21 3 1 1x1i8

1

For example, an alternative way to calculate the
survival probability of exceeding four weeks for
the group 2 data can be written using the KM for-
mula shown here. This formula involves the prod-
uct of conditional probability terms. That is, each
term in the product is the probability of exceed-
ing a specific ordered failure time #(;) given that a
subject survives up to that failure time.

Thus, in the KM formula for survival past four
weeks, the term 19/21 gives the probability of sur-
viving past the first ordered failure time, one week,
given survival up to the first week. Note that all 21
persons in group 2 survived up to one week, but
that 2 failed at one week, leaving 19 persons sur-
viving past one week.

Similarly, the term 16/17 gives the probability of
surviving past the third ordered failure time at
week 3, given survival up to week 3. There were
17 persons who survived up to week 3 and one of
these then failed, leaving 16 survivors past week 3.
Note that the 17 persons in the denominator rep-
resents the number in the risk set at week 3.

Notice that the product terms in the KM formula
for surviving past four weeks stop at the fourth
week with the component 14/16. Similarly, the KM
formula for surviving past eight weeks stops at the
eighth week.

More generally, any KM formula for a survival
probability is limited to product terms up to the
survival week being specified. That is why the KM
formula is often referred to as a “product-limit”
formula.

Next, we consider the KM formula for the data
from group 1, where there are several censored
observations.

The estimated survival probabilities obtained us-
ing the KM formula are shown here for group 1.

The first survival estimate on the listis S(0) = 1, as
it will always be, because this gives the probability
of surviving past time zero.
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EXAMPLE (continued)

Group 1 (treatment)

o o m g Sy

0210 0 0 (D

6 21 3 1 1 ><= 8571

7 17 1 1 8571x = 8067
10 15 1 2 .8067x fa=.7529
13 12 1 0 .7529% %%:.6902
16 11 1 3  .6902x %%:.6275
2 7 1 0 .6275x% %:.5378
232 6 1 5 5378x %}:.4482

Fraction at ¢;y; Pr(T > 1) | T > t(i))

Not available at ¢(;y: failed prior to ;)
or
censored prior to #(

e

group 1 only

KM Plots for Remission Data

0'8? Group 1 (treatment)

0.6F
0.4F

E Group 2 (placebo)
0.2F PP

Obtain KM plots from

computer package, e.g., SAS,
Stata,
SPSS

The other survival estimates are calculated by mul-
tiplying the estimate for the immediately preced-
ing failure time by a fraction. For example, the
fraction is 18/21 for surviving past week 6, because
21 subjects remain up to week 6 and 3 of these
subjects fail to survive past week 6. The fraction is
16/17 for surviving past week 7, because 17 peo-
ple remain up to week 7 and one of these fails to
survive past week 7. The other fractions are calcu-
lated similarly.

For a specified failure time ¢}, the fraction may be
generally expressed as the conditional probability
of surviving past time #(;), given availability (i.e.,
in the risk set) at time #(jy. This is exactly the same
formula that we previously used to calculate each
product term in the product limit formula used for
the group 2 data.

Note that a subject might not be available at time
t(j) for one of two reasons: (1) either the subject
has failed prior to #(j, or (2) the subject has been
censored prior to fj. Group 1 has censored ob-
servations, whereas group 2 does not. Thus, for
group 1, censored observations have to be taken
into account when determining the number avail-
able at #;).

Plots of the KM curves for groups 1 and 2 are
shown here on the same graph. Notice that the
KM curve for group 1 is consistently higher than
the KM curve for group 2. These figures indi-
cate that group 1, which is the treatment group,
has better survival prognosis than group 2, the
placebo group. Moreover, as the number of weeks
increases, the two curves appear to get farther
apart, suggesting that the beneficial effects of the
treatment over the placebo are greater the longer
one stays in remission.

The KM plots shown above can be easily obtained
from most computer packages that perform sur-
vival analysis, including SAS, Stata, and SPSS. All
the user needs to do is provide a KM computer
program with the basic data layout and then pro-
vide appropriate commands to obtain plots.
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I1l. General Features of KM
Curves

General KM formula:
S(tj)
= S(l‘(/_l)) X ISF(T > l‘(j)|T > l‘(i))

KM formula = product limit
formula

j—1
S(tij_1) = HPr(T > 1) T = 1))

i=1

EXAMPLE

14

S(10) = .8067 x 15 =752
121 " 17)" 15
$(16) = .6902 x %

_[18 16 14 11 10
121717 T 15 7 12)" 11

j
Sty = [TPAT > 10T = 1]

i=1
= S(t(j-1)
x Pr(T > tolT = tg))

Math proof:

Pr(A and B) = Pr(A)xPr(B | A)
always

The general formula for a KM survival probabil-
ity at failure time ¢(j) is shown here. This formula
gives the probability of surviving past the previous
failure time ¢(;_;), multiplied by the conditional
probability of surviving past time (), given sur-
vival to at least time f ;).

The above KM formula can also be expressed as a
product limit if we substitute for the survival prob-
ability S(t i—1)), the product of all fractions that
estimate the conditional probabilities for failure
times #(j_1) and earlier.

For example, the probability of surviving past ten
weeks is given in the table for group 1 (page 55)
by .8067 times 14/15, which equals .7529. But the
.8067 can be alternatively written as the product
of the fractions 18/21 and 16/17. Thus, the product
limit formula for surviving past 10 weeks is given
by the triple product shown here.

Similarly, the probability of surviving past sixteen
weeks can be written either as .6902 x 10/11, or
equivalently as the five-way product of fractions
shown here.

The general expression for the product limit for-
mula for the KM survival estimate is shown here
together with the general KM formula given ear-
lier. Both expressions are equivalent.

A simple mathematical proof of the KM formula
can be described in probability terms. One of the
basic rules of probability is that the probability of
a joint event, say A and B, is equal to the prob-
ability of one event, say A, times the conditional
probability of the other event, B, given A.
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A=“T >t;” - AandB=B
B — “T > Z’(I)"

Pr(A and B) = Pr(B) =

No failures during #j_1) < T < ¢
Pr(A) = Pr(T > Z‘(j_l)) =

Thus, from Pr(A and B) formula,

Pr(A and B) = Pr(A) x Pr(B|A)
S(t() = Sltj-1)
x Pr(T > Z‘(j)|T > l‘(,‘))

If we let A be the event that a subject survives to
at least time #(j) and we let B be the event that a
subject survives past time #(;), then the joint event
A and B simplifies to the event B, which is inclusive
of A. It follows that the probability of A and B
equals the probability of surviving past time ;).

Also, because () is the next failure time after#(;_y),
there can be no failures after time #(;_) and be-
fore time #(j). Therefore, the probability of A is
equivalent to the probability of surviving past the
(j — 1)th ordered failure time.

Furthermore, the conditional probability of B
given A is equivalent to the conditional probability
in the KM formula.

Thus, using the basic rules of probability, the KM
formula can be derived.

IV. The Log-Rank Test for
Two Groups

Are KM curves statistically
equivalent?

We now describe how to evaluate whether or not
KM curves for two or more groups are statistically
equivalent. In this section we consider two groups
only. The most popular testing method is called
the log-rank test.

When we state that two KM curves are “statisti-
cally equivalent,” we mean that, based on a testing
procedure that compares the two curves in some
“overall sense,” we do not have evidence to indi-
cate that the true (population) survival curves are
different.
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e Chi-square test

e Overall comparison of KM
curves

e Observed versus expected
counts

e Categories defined by ordered
failure times

EXAMPLE

Remission data: n = 42

# failures # in risk set

L(j) Wy gy i 12
1 0 2 21 21

2 0 2 21 19

3 0 1 21 17

@ 0o 2 21 16
5 0 2 21 14

6 3 0 21 12

7 1 0 17 12

8 0 4 16 12

10 15 8
11 0 2 13 8
12 0 2 12 6
13 1 0 12 4
15 0 1 11 4
16 1 0 11 3
17 0 1 10 3
22 1 1 7 2
23 1 1 6 1

Expected cell counts:

e1j:(

62]‘:<

nlj

nyj + naj

T

Proportion

in risk set

1’12]'

nyj + naj

> x (myj +my;)

T

# of failures over

both groups

> x (myj + my;)

The log-rank test is a large-sample chi-square test
that uses as its test criterion a statistic that pro-
vides an overall comparison of the KM curves be-
ing compared. This (log-rank) statistic, like many
other statistics used in other kinds of chi-square
tests, makes use of observed versus expected cell
counts over categories of outcomes. The cate-
gories for the log-rank statistic are defined by each
of the ordered failure times for the entire set of
data being analyzed.

As an example of the information required for the
log-rank test, we again consider the comparison
of the treatment (group 1) and placebo (group 2)
subjects in the remission data on 42 leukemia pa-
tients.

Here, for each ordered failure time, #(;), in the en-
tire set of data, we show the numbers of subjects
(m;j) failing at that time, separately by group (i),
followed by the numbers of subjects (1;;) in the
risk set at that time, also separately by group.

Thus, for example, at week 4, no subjects failed in
group 1, whereas two subjects failed in group 2.
Also, at week 4, the risk set for group 1 contains
21 persons, whereas the risk set for group 2 con-
tains 16 persons.

Similarly, at week 10, one subject failed in group 1,
and no subjects failed at group 2; the risk sets for
each group contain 15 and 8 subjects, respectively.

We now expand the previous table to include ex-
pected cell counts and observed minus expected
values for each group at each ordered failure
time. The formula for the expected cell counts
is shown here for each group. For group 1, this
formula computes the expected number at time j
(i.e., ey;) as the proportion of the total subjects
in both groups who are at risk at time j, that
is, ny;/(n1; 4+ ny;), multiplied by the total num-
ber of failures at that time for both groups (i.e.,
myj +myj). For group 2, e;; is computed simi-
larly.
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EXAMPLE

Expanded Table (Remission Data)

# failures  # in risk set

# expected Observed-expected

i My Wy Wy Py iy j €j myj—eyj M= e;

1 1 0 2 21 21 (21/42)x2 (21/42)x2  -1.00  1.00

2 2 0 2 21 19 (21/40)x2 (1940)x2  -1.05  1.05

33 0 1 21 17 (138 x1 (17/38)x1  -055  0.55

4 4 0 2 21 16 (IB7x2 (16/37)x2 -1.14 114

5 5 0 2 21 14 (2135x2 (14/35)x2  -120  1.20

6 6 3 0 21 12 (21/33)x3 (12/33)x3 1.09  -1.09

7 7 1 0 17 12 (1729x1 (1229 x1 041 -0.41

8 8 0 4 16 12 (16/28)x4 (12/28)x4  -229 229

9 10 1 0o 15 8 (1523)x1  (823)x1 035 -0.35
10 11 o 2 13 8 (1321)x2  (821)x2  -124 124
1M 12 0o 2 12 6 (1218)x2  (6/18)x2  -1.33 133
12 13 1 0 12 4 (1216)x1  (416)x1 025 -0.25
13 15 0o 1 11 4 (@AU15x1 (415 x1 -073  0.73
14 16 1 0 11 3 (1U14x1 (G314)xl 021 -0.21
15 17 o 1 10 3 (10/13)x1  (313)x1 -077  0.77
16 22 1 1 2 (7/9) x 2 (2/9x2  -056  0.56
17 23 1 1 1 (6/7) x 2 U)x2  -071 071
Totals 9 @D 19.26 -10.26

# of failure times

17

O; —E; =) (mjj —ej),
j=1

i=1,2

EXAMPLE

0,-E,=-10.26
02 —E2 = 10.26

Two groups:
0, — E; = summed observed
minus expected score for group 2

(0, — E,)?

Log—rank statistic = m

When two groups are being compared, the log-
rank test statistic is formed using the sum of the
observed minus expected counts over all failure
times for one of the two groups. In this exam-
ple, this sum is —10.26 for group 1 and 10.26 for
group 2. We will use the group 2 value to carry out
the test, but as we can see, except for the minus
sign, the difference is the same for the two groups.

For the two-group case, the log-rank statistic,
shown here at the left, is computed by dividing the
square of the summed observed minus expected
score for one of the groups—say, group 2—by the
variance of the summed observed minus expected
score.
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Var(O,» —E[)
_ Z 111/'1’12,'(1471/' +7’Vlz,‘)(l’l1,‘ +1’12] —my; —mz,-)
(1 +n2j)*(m1j +naj — 1)

i
i=12

Hy: no difference between survival
curves

Log-rank statistic ~? with 1 df
under H

Computer programs:
Stata’s “sts test”:

e descriptive statistics for KM
curves

e Jog-rank statistic

o Alternative statistics to log-rank
statistic

EXAMPLE

Using Stata: Remission Data

Events Events

Group observed expected
1 9 19.25
21 10.75

Total 30 30.00

Log-rank = chi2(2) = 16.79
P-value = Pr > chi2 = 0.000

The expression for the estimated variance is
shown here. For two groups, the variance formula
is the same for each group. This variance formula
involves the number in the risk set in each group
(n;j) and the number of failures in each group
(m;;) at time j. The summation is over all distinct
failure times.

The null hypothesis being tested is that there is no
overall difference between the two survival curves.
Under this null hypothesis, the log-rank statistic
is approximately chi-square with one degree of
freedom. Thus, a P-value for the log-rank test is
determined from tables of the chi-square distri-
bution.

Several computer programs are available for
calculating the log-rank statistic. For example
the Stata package has a command called “sts
test” that computes descriptive information about
Kaplan-Meier curves, the log-rank statistic, and
alternative statistics to the log-rank statistic, to
be described later. Other packages, like SAS and
SPSS, have procedures that provide results sim-
ilar to those of Stata. A comparison of Stata,
SAS, and SPSS procedures and output is pro-
vided in the Computer Appendix at the back of this
text.

For the remission data, the edited printout from
using the Stata “sts test” procedure is shown here.
The log-rank statistic is 16.79 and the correspond-
ing P-value is zero to three decimal places. This
P-value indicates that the null hypothesis should
be rejected. We can therefore conclude that the
treatment and placebo groups have significantly
different KM survival curves.
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EXAMPLE

0,-E,=10.26
Var(0, - E,) = 6.2685
2
0,-E,)

Log-rank statistic = ,(\
Var(02 — Ez)

Approximate formula:

# of groups (Ol N Ei)2

X2~
E;

i

EXAMPLE

x2 - (£10.26)°  (10.26)°
1926  10.74
=15.276

Log-rank statistic =16.793

Although the use of a computer is the easiest way
to calculate the log-rank statistic, we provide here
some of the details of the calculation. We have al-
ready seen from earlier computations that the
value of O, — E, is 10.26. The estimated variance
of O, — E; is computed from the variance formula
above to be 6.2685. The log-rank statistic then is
obtained by squaring 10.26 and dividing by 6.285,
which yields 16.793, as shown on the computer
printout.

An approximation to the log-rank statistic, shown
here, can be calculated using observed and ex-
pected values for each group without having to
compute the variance formula. The approximate
formula is of the classic chi-square form that sums
over each group being compared the square of the
observed minus expected value divided by the ex-
pected value.

The calculation of the approximate formula is
shown here for the remission data. The expected
values are 19.26 and 10.74 for groups 1 and
2, respectively. The chi-square value obtained is
15.276, which is slightly smaller than the log-rank
statistic of 16.793.

V. The Log-Rank Test for
Several Groups

Hg: All survival curves are the
same.

Log-rank statistics for > 2 groups
involves variances and covariances
Of Oi — Ei.

Matrix formula: See Appendix at
end of this chapter.

The log-rank test can also be used to compare
three or more survival curves. The null hypothesis
for this more general situation is that all survival
curves are the same.

Although the same tabular layout can be used to
carry out the calculations when there are more
than two groups, the test statistic is more com-
plicated mathematically, involving both variances
and covariances of summed observed minus ex-
pected scores for each group. A convenient math-
ematical formula can be given in matrix terms.
We present the matrix formula for the inter-
ested reader in an Appendix at the end of this
chapter.
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Use computer program for
calculations.

G (> 2) groups:
log-rank statistic ~x? with
G—1df

Approximation formula:

# of groups (Oz _ Ei)2
E;

X’ =

i

Not required because computer
program calculates the exact
log-rank statistic

EXAMPLE

vets.dat: survival time in days,
n=137

Veteran’s Administration Lung Cancer Trial

Column 1: Treatment (standard = 1, test = 2)
Column 2: Cell type 1 (large = 1, other = 0)
Column 3: Cell type 2 (adeno = 1, other = 0)
Column 4: Cell type 3 (small = 1, other = 0)
Column 5: Cell type 4 (squamous = 1, other = 0)
Column 6: Survival time (days)

Column 7
(0 =worst . .. 100 = best)

Column 8: Disease duration (months)

Column 9: Age

Column 10: Prior therapy (none =0, some = 1)

Column 11: Status (0 = censored, 1 = died)

We will not describe further details about the cal-
culation of the log-rank statistic, because a com-
puter program can easily carry out the computa-
tions from the basic data file. Instead, we illustrate
the use of this test with data involving more than
two groups.

If the number of groups being compared is
G(> 2), then the log-rank statistic has approxi-
mately a large sample chi-square distribution with
G — 1 degrees of freedom. Therefore, the decision
about significance is made using chi-square tables
with the appropriate degrees of freedom.

The approximate formula previously described in-
volving only observed and expected values with-
out variance or covariance calculations can also
be used when there are more than two groups be-
ing compared. However, practically speaking, the
use of this approximate formula is not required as
long as a computer program is available to calcu-
late the exact log-rank statistic.

We now provide an example to illustrate the use of
the log-rank statistic to compare more than two
groups.

The data set “vets.dat” considers survival times in
days for 137 patients from the Veteran’s Admin-
istration Lung Cancer Trial cited by Kalbfleisch
and Prentice in their text (The Statistical Analysis
of Survival Time Data, John Wiley, pp. 223-224,
1980). A complete list of the variables is shown
here. Failure status is defined by the status vari-
able (column 11).

Among the variables listed, we now focus on the
performance status variable (column 7). This vari-
able is an continuous variable, so before we can
obtain KM curves and the log-rank test, we need
to categorize this variable.
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EXAMPLE (continued)

Performance Status Categories

Group # Categories Size
1 0-59 52
2 60-74 50
3 75-100 35

KM curves for performance status groups

1.0 t T T T T T

1]

12, 37
My 2 3]
_] 23,

Th 2.3
+ l_l 2
1 12

0 100 200 300 400 500 60

0.5

0.0

Events  Events
Group observed expected
1 50 26.30
2 47 55.17
3 31 46.53
Total 128 128.00

Log-rank = chi2(2) = 29.18
P-value = Pr > chi2 = 0.0000
G =3groups;df=G-1=2

Log-rank test is highly significant.

Conclude significant difference among
three survival curves.

If, for the performance status variable, we choose
the categories 0-59, 60-74, and 75-100, we obtain
three groups of sizes 52, 50, and 35, respectively.

The KM curves for each of three groups are shown
here. Notice that these curves appear to be quite
different. A test of significance of this difference is
provided by the log-rank statistic.

An edited printout of descriptive information
about the three KM curves together with the log-
rank test results are shown here. These results
were obtained using the Stata package.

Because three groups are being compared here,
G = 3 and the degrees of freedom for the log-
rank test is thus G — 1, or 2. The log-rank statistic
is computed to be 29.181, which has a P-value of
zero to three decimal places. Thus, the conclusion
from the log-rank test is that there is a highly sig-
nificant difference among the three survival curves
for the performance status groups.

VI. Alternatives to the Log
Rank Test

Alternative tests supported by Stata

Wilcoxen

Tarone-Ware

Peto
Flemington-Harrington

There are several alternatives to the log rank test
offered by Stata, SAS, and SPSS designed to test
the hypothesis that two or more survival curves
are equivalent. In this section we describe the
Wilcoxon, the Tarone-Ware, the Peto, and the
Flemington-Harrington test. All of these tests
are variations of the log rank test and are easily
implemented in Stata.
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Log rank uses
O; — E; = ) _(mij —eij)
j

i=group#
j = jth failure time

Weighting the test statistic for two
groups

Test statistic:

2
<Z wi(t;)(mi; — €ij)>
j

var <Z w(tj)(my; — 6ij)>
j

i=1,2
j = jth failure time
w(t;) = weight at jth failure time

Wilcoxon Test

e w(t;) =n; (number at risk)

e Earlier failures receive more
weight

e Appropriate if treatment effect
is strongest in earliest phases
of administration

Weights Used for Various Test
Statistics

Test Statistic w(t;)

Log rank 1

Wilcoxon nj

Tarone-Ware WO

Peto 5(t

Flemington-  §(¢j_1)?[1 — $(t;_1))
Harrington

In describing the differences among these tests,
recall that the log rank test uses the summed ob-
served minus expected score O — E in each group
to form the test statistic. This simple sum gives
the same weight—namely, unity—to each failure
time when combining observed minus expected
failures in each group.

The Wilcoxon, Tarone-Ware, Peto, and
Flemington-Harrington test statistics are
variations of the log rank test statistic and are
derived by applying different weights at the jth
failure time (as shown on the left for two groups).

The Wilcoxon test (called the Breslow test in
SPSS) weights the observed minus expected score
at time t; by the number at risk 2, over all groups
at time t;. Thus, the Wilcoxon test places more em-
phasis on the information at the beginning of the
survival curve where the number at risk is large al-
lowing early failures to receive more weight than
later failures. This type of weighting may be used
to assess whether the effect of a treatment on sur-
vival is strongest in the earlier phases of adminis-
tration and tends to be less effective over time.

The Tarone-Ware test statistic also applies more
weight to the early failure times by weighting
the observed minus expected score at time t; by
the square root of the number at risk ,/7;. The
Peto test weights the jth failure time by the sur-
vival estimate 3(¢;) calculated over all groups com-
bined. This survival estimate 5(¢;) is similar but
not exactly equal to the Kaplan-Meier survival
estimate. The Flemington-Harrington test uses
the Kaplan-Meier survival estimate $(¢) over all
groups to calculate its weights for the jth failure
time, §(¢j_1)P[1 — §(¢j—1)}¢. The weights for each
of these test statistics are summarized on the left.
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Flemington—-Harrington Test
w(t) = $(t;-1)[1 = $(@t;-)F

ifp=1andq =0, w(t) =3(tj_1)
ifp=0andq =1,

w(t) =1 —§(l‘,‘,1)
ifp=0andq =0,

w(t) = 1 (log rank test)

Comparisons of Test Results:
Remission Data, Testing

Treatment (RX)
Chi-square
Test (1df) P-value
Log rank 16.79 0.0000
Wilcoxon 13.46 0.0002
Tarone- 15.12 0.0001
Ware
Peto 14.08 0.0002
FH (p =3, 8.99 0.0027
q=1)
FH (p =1, 12.26 0.0005
q=3)

Vets Data, 3-Level Performance
Status

Chi-square
Test (2 df) P-value
Log rank 29.18 0.0000
Wilcoxon 46.10 0.0000

Remission Data, 2-Level Treatment

Chi-square
Test (1df) P-value
Log rank 16.79 0.0000
Wilcoxon 13.46 0.0002

The Flemington-Harrington test allows the most
flexibility in terms of the choice of weights because
the user provides the values of p and q. For exam-
ple, if p =1 and q = 0 then w(t) = 3(¢;_;) which
gives more weight for the earlier survival times
when §(#;_1) is close to one. However, if p = 0 and
q = 1 then w(t) = 1 —3(¢j_;) in which case the
later survival times receive more weight. If p = 0
and q = 0 then w(t) = 1, and the Flemington-
Harrington test reduces to the log rank test.

On the left is a comparison of test results for the
effect of treatment (vs. placebo) using the remis-
sion data. The log rank chi-square statistic (also
displayed previously in this chapter) is the high-
est among these tests at 16.79. The Flemington-
Harrington (FH) test with p = 3 and q = 1 yielded
the lowest chi-square value at 8.99, although with
this weighting it is not immediately obvious which
part of the survival curve is getting the most
weight. However, all the test results are highly sig-
nificant yielding a similar conclusion to reject the
null hypothesis.

On the left are comparisons of the log rank and
Wilcoxon tests for the 3-level performance status
variable from the vets dataset discussed in the pre-
vious section. The Wilcoxon test yields a higher
chi-square value (46.10) than the log rank test
(29.18). In contrast, the log rank test for the ef-
fect of treatment (RX) from the remissions data
yields a higher chi-square value (16.79) than the
Wilcoxon test (13.46). However, both the Wilcoxon
and log rank tests are highly significant for both
performance status and for treatment.
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KM curves for performance status groups

1.0 f—+—

0.5+

0.0+

o

100 200 300 400 500 600

0.4

0.2

KM Plots for Remission Data

0.8F

0.6

Group 1 (treatment)

Group 2 (placebo)

Choosing a Test

Results of different weightings
usually lead to similar
conclusions

The best choice is test with
most power

Power depends on how the
null is violated

There may be a clinical reason

to choose a particular weighting

Choice of weighting should be
a priori

A comparison of survival curves gives insight into
why the Wilcoxon test yields a higher chi-square
value than the log rank test for the 3-level perfor-
mance status variable. The 3 curves being com-
pared are farthest apart in the early part of follow-
up before becoming closer later. By contrast, a
comparison of the 2 curves for treatment shows
the curves diverging over time.

In general, the various weightings should provide
similar results and will usually lead to the same
decision as to whether the null hypothesis is re-
jected. The choice of which weighting of the test
statistic to use (e.g., log rank or Wilcoxon) depends
on which test is believed to provide the greatest
statistical power, which in turn depends on how it
is believed the null hypothesis is violated.

If there is a clinical reason to believe the effect of
an exposure is more pronounced toward the be-
ginning (or end) of the survival function, then it
makes sense to use a weighted test statistic. How-
ever, one should make an a priori decision on
which statistical test to use rather than fish for
a desired p-value. Fishing for a desired result may
lead to bias.



Stratified log rank test

e (O — E scores calculated within

strata
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e (O — E scores then summed

across strata

e Allows control of stratified

variable

Stratified log-rank test

->lwbc3 =1

| Events Events
X | observed expected
_______ U
0 | 0 2.91
1 | 4 1.09
....... U
Total | 4 4.00
->lwbc3 = 2

| Events Events
X | observed expected
....... e m e e e, ————————
0 | 5 7.36
1 | 5 2.64
_______ e e e e e e e ————— - -
Total | 10 10.00
->lwbc3 = 3

| Events Events
rXx | observed expected
_______ S
0 | 4 6.11
1 | 12 9.89
_______ U
Total | 16 16.00
-> Total

| Events

| Events expected
X | observed )
_______ e e e e e —r—,—,—,—,————————-
0 | 9 16.38
1 | 21 13.62
_______ U
Total | 30 30.00

(*) sum over calculations
within lwbc3 chi2 (1) =

10.14, Pxr > chi2 =

0.0014

The stratified log rank test is another variation
of the log rank test. With this test the summed
observed minus expected scores O — E are cal-
culated within strata of each group and then
summed across strata. The stratified log rank
test provides a method of testing the equiv-
alence of survival curves controlling for the
stratified variable. An example of the stratified
log rank test is presented next using the remission
data.

On the left is Stata output from performing a strat-
ified log rank test for the effect of treatment (RX)
stratified by a 3-level variable (LWBC3) indicating
low, medium, or high log white blood cell count
(coded 1, 2, and 3, respectively).

Within each stratum of LWBC3, the expected num-
ber of events is calculated for the treated group
(RX = 0) and for the placebo group (RX = 1). The
total expected number of events for the treated
group is found by summing the expected num-
ber of events over the three strata: 2.91 + 7.36 +
6.11 = 16.38. Similarly the total expected num-
ber of events for the placebo group is calculated:
1.09 + 2.64 + 9.89 = 13.62. This compares to 9
observed cases from the treated group and 21 ob-
served cases from the placebo group yielding a chi-
square value of 10.14 with 1 degree of freedom (for
2 levels of treatment) and a corresponding p-value
of 0.0014.

Recall that when we did not control for log white
blood cell count, the log rank test for the effect of
treatment yielded a chi-square value of 16.79 and
a corresponding p-value rounded to 0.0000.
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Log rank unstratified

Oi — Ei =) (mij —eij)
j

i = group #,

j = jth failure time

Log rank stratified

O; —E; = ZZ(WH;'S — ejjs)
s

i=group #, j = jth failure time,

s = stratum #

Stratified or unstratified (G groups)

Under Hy:

log rank statistic ~x? with

G-—1df

Can stratify with other tests
Wilcoxon, Tarone-Ware,

Peto, Flemington-Harrington

Limitation

Sample-size may be small within

strata

Alternatively
Test associations using modeling

e Can simultaneously control

covariates
e Shown in next chapter

The only difference between the unstratified and
stratified approaches is that for the unstratified
approach, the observed minus expected number
of events for each failure time is summed over all
failure times for each group (i). With the stratified
approach, the observed minus expected number
of events is summed over all failure times for each
group within each stratum and then summed over
all strata. Either way, the null distribution is chi-
square with G — 1 degrees of freedom, where G
represents the number of groups being compared
(not the number of strata).

The stratified approach can also be applied to any
of the weighted variations of the log rank test (e.g.,
Wilcoxon). A limitation of the stratified approach
is the reduced sample size within each stratum.
This is particularly problematic with the remis-
sion dataset, which has a small sample size to be-
gin with.

We have shown how the stratified log rank test
can be used to test the effect of treatment while
controlling for log white blood cell count. In the
next chapter we show how modeling can be used
to test an association of a predictor variable while
simultaneously controlling for other covariates.

VII. Summary

KM curves:

1

0.8
0.6
0.4
0.2

0

0

16

24

32

We now briefly summarize this presentation. First,
we described how to estimate and graph survival
curves using the Kaplan-Meier (KM) method.



t(jy: jth ordered failure time
i
S(t) = [ [ PrlT > )T = 1]
i=1
= S(tj-1)
XPF(T > l‘(i)|T > l‘(i))

Log-rank test:
Hy: common survival curve for
all groups
(0, — Ey)?
Var(Oz — Ez)
log-rank statistic ~x? with G — 1
df under H,

G = # of groups

Log-rank statistic =
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To compute KM curves, we must form a data lay-
out that orders the failure times from smallest to
largest. For each ordered failure time, the esti-
mated survival probability is computed using the
product limit formula shown here. Alternatively,
this estimate can be computed as the product of
the survival estimate for the previous failure time
multiplied by the conditional probability of sur-
viving past the current failure time.

When survival curves are being compared, the log—
rank test gives a statistical test of the null hypoth-
esis of a common survival curve. For two groups,
the log—rank statistic is based on the summed ob-
served minus expected scores for a given group
and its variance estimate. For several groups, a
computer should always be used since the log-
rank formula is more complicated mathemati-
cally. The test statistic is approximately chi-square
in large samples with G — 1 degrees of freedom,
where G denotes the number of groups being com-
pared.

Chapters

1. Introduction
v 2(Kaplan-Meier Survival Curves
and the Log-Rank Test

Next:

3. The Cox Proportional Hazards
Model and Its Characteristics

This presentation is now complete. You can review
this presentation using the detailed outline that
follows and then try the practice exercises and test.

Chapter 3 introduces the Cox proportional haz-
ards (PH) model, which is the most popular math-
ematical modeling approach for estimating sur-
vival curves when considering several explanatory
variables simultaneously.
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Detailed
Outline

I.

II.

Review (pages 48-50)
A. The outcome variable is (survival) time until an
event (failure) occurs.

B. Key problem: censored data, i.e., don’t know
survival time exactly.

C. Notation: T = survival time random variable
t = specific value of T
d = (0, 1) variable for failure/
censorship status
S(t) = survivor function
h(t) = hazard function
D. Properties of survivor function:
i. theoretically, graph is smooth curve, decreasing
from S(t) = 1 attimet = 0to S(t) = 0 at
t = o0;
ii. in practice, graph is step function.
E. Properties of h(t):

i. instantaneous potential for failing given
survival up to time;

ii. h(t)is a rate; ranges from 0 to oco.

F. Relationship of S(¢) to A(t): if you know one you
can determine the other.

G. Goals of survival analysis: estimation of survivor
and hazard functions; comparisons and
relationships of explanatory variables to survival.

H. Data layouts
i. for the computer;

ii. for understanding the analysis: involves risk
sets.

An Example of Kaplan-Meier Curves (pages 51-55)

A. Data are from study of remission times in weeks for
two groups of leukemia patients (21 in each group).

B. Group 1 (treatment group) has several censored
observations, whereas group 2 has no censored
observations.

C. Table of ordered failure times is provided for each
group.

D. For group 2 (all noncensored), survival probabilities
are estimated directly and plotted. Formula used is

# surviving past ;)
21

S(t) =
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E. Alternative approach for group 2 is given by a
product limit formula.

F. For group 1, survival probabilities calculated by
multiplying estimate for immediately preceding
failure time by a conditional probability of
surviving past current failure time, i.e.,

Stjy = S(j-n PriT > 1|T = t;)].

General Features of KM Curves (pages 56-57)
A. Two alternative general formulae:

j
Sy = HPF[T > t)|T > t)] (product limit
=1 formula)

Sy = Sj—pPrlT > tjIT > 1(5)]

B. Second formula derived from probability rule:
Pr(A and B) = Pr(A) x Pr(B|A)

The Log-Rank Test for Two Groups (pages 57-61)

A. Large sample chi-square test; provides overall
comparison of KM curves.

B. Uses observed versus expected counts over
categories of outcomes, where categories are
defined by ordered failure times for entire set of
data.

C. Example provided using remission data involving
two groups:
i. expanded table described to show how
expected and observed minus expected cell
counts are computed.

ii. forith group at time j, wherei = 1 or 2:

observed counts = m;,

expected counts = ¢;;, where

expected counts = (proportion in risk set) x
(# failures over both groups),

. nij
Le.,ejj = (#) (mll- + ij)-

nyj + nyj

D. Log-rank statistic for two groups:

(0; — E;)?
Var(Ol- — Ei)}

wherei =1, 2,
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VI.

™

H.

O; —E; = Z(mij —e;j),and
j

Var(Oi —Ei)
_Z nyjngi(my; 4+ my;)(ny; +nyj — my; —my;)
- (n1j +n2;)?(n1j +nyj — 1)

El

i=1,2

Hy: no difference between survival curves.
Log-rank statistic ~y? with 1 df under Hj.
Approximate formula:

G 2
O — E:
X2 — 2% where G = 2 = # of groups

Remission data example: Log-rank statistic =
16.793, whereas X2 = 15.276.

. The Log-Rank Test for Several Groups

(pages 61-63)

A.

B.
C.

D.

Involves variances and covariances; matrix
formula in Appendix.

Use computer for calculations.

Under Hy, log-rank statistic ~y? with G — 1 df,
where G = # of groups.

Example provided using vets.dat with interval
variable “performance status”; this variable is
categorized into G = 3 groups, so df for log-rank
testis G — 1 = 2, log-rank statistic is 29.181

(P =0.0).

Alternatives to the Log-rank Test (pages 63-68)

A

Alternative tests supported by Stata:

Wilcoxen, Tarone-Ware, Peto, and
Flemington-Harrington.

Alternative tests differ by applying different
weights at the j-th failure time.

The choice of alternative depends on the reason
for the belief that the effect is more pronounced
towards the beginning (or end) of the survival
function.

The stratified-log-rank test is a variation of the
log-rank test that controls for one or more
stratified variables.

VII. Summary (page 68)
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Practice 1. The following data are a sample from the 1967-1980 Evans

Exercises County study. Survival times (in years) are given for two study
groups, each with 25 participants. Group 1 has no history of
chronic disease (CHR = 0), and group 2 has a positive history
of chronic disease (CHR = 1):

Group 1 (CHR =0): 12.3+,5.4,8.2,12.24,11.7,10.0, 5.7,
9.8,2.6,11.0,9.2,12.14, 6.6, 2.2,
1.8,10.2,10.7,11.1,5.3,3.5,9.2,
2.5,8.7,3.8,3.0

Group 2 (CHR =1): 5.8,2.9,8.4,8.3,9.1,4.2,4.1,1.8,3.1,
11.4,2.4,14,59,1.6,2.8,4.9,3.5,
6.5,9.9,3.6,5.2,8.8,7.8,4.7,3.9

a. Fill in the missing information in the following table
of ordered failure times for groups 1 and 2:

Group 1 Group 2
ty np o myoqp Sty oty ong ompogq; S()
00 25 0 0 1.00 00 25 0 0 1.00
18 25 1 0 96 14 25 1 0 96
22 24 1 0 92 16 24 1 0 92
25 23 1 0 .88 18 23 1 0 88
26 22 1 0 84 24 22 1 0 84
30 21 1 0 .80 28 21 1 0 .80
35 20 C—————5 |29 20 1 0 76
38 19 1 0 72 31 19 10 72
53 18 1 0 68 35 18 1 0 68
54 17 1 0 64 36 1710 64
57 16 1 0 .60 3.9
66 15 1 0 56 4.1
82 14 1 0 52 42
87 13 1 0 48 47 13 1 0 48
92 ¢ ) | 49 12 1 0 44
98 10 1 0 36 52 11 1 0 40
100 9 1 0 32 58 10 1 0 36
102 8 1 0 28 50 9 1 0 32
107 7 1 0 24 65 8 1 0 28
110 6 1 0 20 78 7 1 0 24
1M1 5 1 0 16 83 6 1 0 20
M7 4 C———— |84 5 1 0 16
88 4 1 0 12
9.1 [ }
9.9
14 1 1 0 .00
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b. Based on your results in part a, plot the KM curves
for groups 1 and 2 on the same graph. Comment on
how these curves compare with each other.

c. Fill in the following expanded table of ordered failure
times to allow for the computation of expected and
observed minus expected values at each ordered
failure time. Note that your new table here should
combine both groups of ordered failure times into
one listing and should have the following format:

Gy | maj  maj | nij M €1j €2j | Mij —e1j  Myj — ey
1.4 0 1 25 25 500 500 —.500 .500
1.6 0 1 25 24 5100490 —.510 510
1.8 1 1 25 23 | 1.042 958 —.042 .042
22 1 0 24 22 522 478 478 —.478
2.4 0 1 23 22 ST 489 —.511 511
2.5 1 0 23 21 523 477 AT7 —477
2.6 1 0 22 21 516 484 484 —.484
2.8 0 1 21 21 500 500 —.500 .500
29 0 1 21 20 512 488 —.512 512
3.0 1 0 21 19 525 475 475 —.475
3.1

35

3.6

3.8

3.9 0 1 18 16 529 471 —.529 529
4.1 0 1 18 15 545 455 —.545 .545
4.2 0 1 18 14 563 437 —.563 .563
4.7 0 1 18 13 581 419 —.581 581
4.9 0 1 18 12 .600 400 —.600 .600
5.2 0 1 18 11 621 379 —.621 621
5.3 1 0 18 10 .643 357 357 —.357
5.4 1 0 17 10 630 .370 370 —.370
5.7 1 0 16 10 615 385 .385 —.385
5.8 0 1 15 10 .600 400 —.600 .600
5.9 0 1 15 9 625 375 —.625 625
6.5 0 1 15 8 652 .348 —.652 .652
6.6 1 0 15 7 682 318 318 —.318
7.8 0 1 14 7 667 333 —.667 667
8.2 1 0 14 6 700 .300 .300 —.300
8.3 0 1 13 6 .684 316 —.684 .684
8.4 0 1 13 5 722 278 —.722 722
8.7 1 0 13 4 765 235 335 —.335
8.8 0 1 12 4 750 250 —.750 750

(Continued on next page)
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ly | my maj | myo M| ey ey | mij—erj Mj— e

91 | 0 1 |12 3 | .800 .200 | —.800 800

9.2

9.8

9.9
100 | 10 [ 9 1 [ .90 .100 100 —.100
102 | 1 0 | 8 1 | .88 .12 112 —.112
107 [ 1 0 | 7 1 | 875 .125 125 —.125
110 | 1 0 | 6 1 | .857 .143 143 —.143
11 | 1 0 | 5 1 | .833 .167 167 —.167
114 | 0 1 | 4 1 | 800 .200| —.800 800
117 | 1 0 | 4 0 |1000 .000 .000 .000
Totals 22 25 30.79 1621 C )

d. Use the results in part ¢ to compute the log-rank
statistic. Use this statistic to carry out the log-rank
test for these data. What is your null hypothesis and
how is the test statistic distributed under this null
hypothesis? What are your conclusions from the

test?

2. The following data set called “anderson.dat” consists of re-
mission survival times on 42 leukemia patients, half of whom
get a certain new treatment therapy and the other half of
whom get a standard treatment therapy. The exposure vari-
able of interest is treatment status (Rx = 0 if new treatment,
Rx =1 if standard treatment). Two other variables for con-
trol as potential confounders are log white blood cell count
(i.e., logwbc) and sex. Failure status is defined by the relapse
variable (0 if censored, 1 if failure). The data set is listed as

follows:
Subj Survt Relapse Sex logWBC Rx
1 35 0 1 1.45 0
2 34 0 1 1.47 0
3 32 0 1 2.20 0
4 32 0 1 2.53 0
5 25 0 1 1.78 0
6 23 1 1 2.57 0
7 22 1 1 2.32 0
8 20 0 1 2.01 0
9 19 0 0 2.05 0
10 17 0 0 2.16 0

(Continued on next page)



76 2. Kaplan-Meier Survival Curves and the Log-Rank Test

Subj Survt Relapse Sex logWBC Rx

11 16 1 1 3.60 0
12 13 1 0 2.88 0
13 11 0 0 2.60 0
14 10 0 0 2.70 0
15 10 1 0 2.96 0
16 9 0 0 2.80 0
17 7 1 0 4.43 0
18 6 0 0 3.20 0
19 6 1 0 2.31 0
20 6 1 1 4.06 0
21 6 1 0 3.28 0
22 23 1 1 1.97 1
23 22 1 0 2.73 1
24 17 1 0 2.95 1
25 15 1 0 2.30 1
26 12 1 0 1.50 1
27 12 1 0 3.06 1
28 11 1 0 3.49 1
29 11 1 0 2.12 1
30 8 1 0 3.52 1
31 8 1 0 3.05 1
32 8 1 0 2.32 1
33 8 1 1 3.26 1
34 5 1 1 3.49 1
35 5 1 0 3.97 1
36 4 1 1 4.36 1
37 4 1 1 2.42 1
38 3 1 1 4.01 1
39 2 1 1 491 1
40 2 1 1 4.48 1
41 1 1 1 2.80 1
42 1 1 1 5.00 1

a. Suppose we wish to describe KM curves for the
variable logwbc. Because logwbc is continuous, we
need to categorize this variable before we compute
KM curves. Suppose we categorize logwbc into
three categories—low, medium, and high—as
follows:

low (0-2.30), n = 11;
medium (2.31-3.00), n = 14;
high (>3.00), n = 17.
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Based on this categorization, compute and graph
KM curves for each of the three categories of logwbc.
(You may use a computer program to assist you or
you can form three tables of ordered failure times
and compute KM probabilities directly.)

b. Compare the three KM plots you obtained in part a.
How are they different?

c. Below is an edited printout of the log-rank test
comparing the three groups.

Events Events
Group observed expected
1 4 13.06
2 10 10.72
3 16 6.21
Total 30 30.00

Log-rank = chi2(2) = 26.39
P-value = Pr > chi2 = 0.0000

What do you conclude about whether or not the
three survival curves are the same?

To answer the questions below, you will need to use a com-
puter program (from SAS, Stata, SPSS, or any other package
you are familiar with) that computes and plots KM curves and
computes the log-rank test. Freely downloadable files can be
obtained from weblink http://www.sph.emory.edu/~dkleinb/
surv2.htm.

1. For the vets.dat data set described in the presentation:

a. Obtain KM plots for the two categories of the
variable cell type 1 (1 = large, 0 = other). Comment
on how the two curves compare with each other.
Carry out the log-rank, and draw conclusions from
the test(s).

b. Obtain KM plots for the four categories of cell
type—large, adeno, small, and squamous. Note that
you will need to recode the data to define a single
variable which numerically distinguishes the four
categories (e.g., 1 = large, 2 = adeno, etc.). As in part
a, compare the four KM curves. Also, carry out the
log-rank for the equality of the four curves and draw
conclusions.
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2. The following questions consider a data set from a study
by Caplehorn et al. (“Methadone Dosage and Retention of
Patients in Maintenance Treatment,” Med. J. Aust., 1991).
These data comprise the times in days spent by heroin ad-
dicts from entry to departure from one of two methadone
clinics. There are two further covariates, namely, prison
record and methadone dose, believed to affect the sur-
vival times. The data set name is addicts.dat. A listing of
the variables is given below:

Column 1: Subject ID

Column 2: Clinic (1 or 2)

Column 3: Survival status (0 = censored, 1 = departed
from clinic)

Column 4: Survival time in days

Column 5: Prison record (0 = none, 1 = any)

Column 6: Methadone dose (mg/day)

a. Compute and plot the KM plots for the two categories
of the “clinic” variable and comment on the extent to
which they differ.

b. A printout of the log-rank and Wilcoxon tests (using
Stata) is provided below. What are your conclusions
from this printout?

Events Events
Group observed expected

1 122 90.91
2 28 59.09
Total 150 150.00

Log-rank = chi2(2) = 27.89
P-value = Pr > chi2 = 0.0000
Wilcoxon = chi2(2) = 11.63
P-value = Pr > chi2 = 0.0007

c. Compute and evaluate KM curves and the log-rank
test for comparing suitably chosen categories of the
variable “Methadone dose.” Explain how you
determined the categories for this variable.
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Answers to 1. a
Practice
Exercises Group 1 Group 2
tjy nj mjoq;p Stg)  ty o onpompogq; o Sl)
00 25 0 0 1.00 00 25 0 0 1.00
1.8 25 1 0 .96 14 25 1 0 .96
22 24 1 0 92 1.6 24 1 0 92
25 23 1 0 .88 1.8 23 1 0 .88
26 22 1 0 .84 24 22 1 0 .84
30 21 1 0 .80 28 21 1 0 .80
35 20 20 20 1 0 .76
38 19 1 0 12 3.1 19 1 0 72
53 18 1 0 .68 35 18 1 0 .68
54 17 1 0 .64 3.6 17 1 0 .64
57 16 1 0 .60 39 16 1 0 .60
6.6 15 1 0 .56 4.1 [15 1 0 .56}
82 14 1 0 .52 4.2 14 1 0 .52
87 13 1 0 .48 4.7 13 1 0 48
92 (12 2 0 40 | 49 12 1 0 .44
98 10 1 0 .36 5.2 11 0 40
100 9 1 0 .32 5.8 10 1 0 .36
102 8 1 0 .28 5.9 9 1 0 32
107 7 1 0 24 6.5 8 1 0 28
11.0 6 1 0 .20 7.8 7 1 0 24
11.1 5 1 0 .16 8.3 6 1 0 .20
117 4 84 5 1 0 .16
8.8 4 1 0 A2
9.1 [ 3 1 0 .08 J
9.9 2 1 0 .04
114 1 1 0 .00
b. KM curves for CHR data:
1.0 + ' +
TS
2—l—
r 27 1—
05T 3 —_ -
2/ 1/
2— 1
: e SN o
0.0 . ) ) ) 2 T
0 2 4 6 8 0 12 14
Group 1 appears to have consistently better
survival prognosis than group 2. However, the KM

curves are very close during the first four years, but
are quite separate after four years, although they

appear to come close again around twelve years.



80 2. Kaplan—-Meier Survival Curves and the Log-Rank Test

c. Using the expanded table format, the following
information is obtained:

I(j) my; My | Ny Npj e1j €2j myj —e1j  Myj —ej
1.4 0 1 |25 25 500 500 —.500 500
1.6 0 1 |25 24 510 490 — 510 510
1.8 1 1 |25 23| 1.04 958 —.042 042
2.2 10 |24 22 522 478 478 — 478
2.4, 0 1 |23 22 511 489 — 511 511
2.5. 10 |23 21 523 A77 477 — 477
2.6 10 |2 21 516 484 484 — 484
2.8 0 1 |21 21 500 500 — 500 500
2.9 0 1 |21 20 512 488 — 512 512
3.0 10 |21 19 525 475 475 — 475
3.1 0 1 |20 19 513 487 ~513 513
35 1 1 |20 18 | 1.053 947 —.053 .053
3.6 o 1 |19 17 528 A72 —.528 528
3.8 10 |19 16 543 457 457 —.457
3.9 0 1 |18 16 529 471 — 529 529
4.1 0o 1 |18 15 545 455 — 545 545
42 0 1 |18 14 563 437 — 563 563
4.7 0 1 |18 13 581 419 — 581 581
4.9 0 1 |18 12 600 400 — 600 600
5.2 0 1 |18 11 621 379 — 621 621
53 10 |18 10 643 357 357 — 357
5.4 10 |17 10 630 370 370 — 370
5.7 10 |16 10 615 385 385 — 385
5.8 0 1 |15 10 600 400 — 600 600
5.9 0 1 |15 9 625 375 — 625 625
6.5 0 1 |15 8 652 348 — 652 652
6.6 10 |15 7 682 318 318 ~ 318
7.8 0 1 |14 7 667 333 — 667 667
8.2 10 |14 6 700 300 300 ~.300
8.3 0 1 |13 6 684 316 — 684 684
8.4 0o 1 |13 5 722 278 722 722
8.7 10 |13 4 765 235 335 — 335
8.8 0 1 |12 4 750 250 — 750 750
9.1 0o 1 |12 3 800 200 — 800 800
9.2 20 | 12 2| 1.714 286 286 —286
9.8 [1 0|10 2 833 167 167 —.167}
9.9 0 1 9 2 818 182 —.818 818
10.0 1 0 9 1 900 100 100 —.100
10.2 10 8 1 888 112 112 112
10.7 1 0 7 1 875 125 125 — 125
11.0 1 0 6 1 857 143 143 — 143
1.1 1 0 5 1 833 167 167 — 167
11.4 0o 1 4 1 800 200 — 800 .800
11.7 1 0 4 0| 1.000 .000 .000 .000
Totals 22 25 30.79 16.21 (—8.690 8.690
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d. The log-rank statistic can be computed from the

totals of the expanded table using the formulae:

=AY
log-rank statistic = ,(\OZ—EZ)
Var(Oi — Ei)

Var(Ol- - El)

. Z nyjng;(my; 4+ my;)(ny; +naj — my; —my;)
- (n1j +n2;)?(nyj +nyj — 1)

The variance turns out to be 9.448, so that the
log-rank statistic is (8.69)%/9.448 = 7.993.

Using Stata, the results for the log-rank test are
given as follows:

Events Events
Group observed expected
1 22 30.79
2 25 16.21
Total 47 47.00

Log-rank = chi2(2) = 7.99
P-value = Pr > chi2 = 0.0047

The log-rank test gives highly significant results.
This indicates that there is a significant difference in
survival between the two groups.

. For the Anderson dataset, the KM plots for the three
categories of log WBC are shown below:

1 o
S(r) 0.8 | Group 1 (log WBC 0-2.3)
0.6 £
E Group 2 (log WBC 2.31-3.0)
04 ¢
0.2 ; Group 3 (log WBC > 3.0)
0 : 1 L . L
0 8 16 24 32

Weeks

. The KM curves are quite different with group 1
having consistently better survival prognosis than
group 2, and group 2 having consistently better
survival prognosis than group 3. Note also that the
difference between group 1 and 2 is about the same
over time, whereas group 2 appears to diverge from
group 3 as time increases.



82 2. Kaplan—-Meier Survival Curves and the Log-Rank Test

Appendix:
Matrix
Formula

for the
Log—Rank
Statistic for
Several
Groups

c. The log-rank statistic (26.391) is highly significant
with P-values equal to zero to three decimal places.
These results indicate that there is some overall
difference between the three curves.

For i=1,2,...,G and j =1,2,...,k, where G =# of
groups and k = # of distinct failure times,

n;; = # at risk in ith group at jth ordered failure time

m;; = observed # of failures in ith group at jth ordered failure
time

e;; = expected # of failures in ith group at jth ordered failure
time

1’11']' >(
= ——— ) (my; +my;)
(”1;‘ + 1pj ! !

G

np =y
i=1
G

mj =y m
i=1

k
Oi — Ei =) (m;j —eij)
=1
k
Var(0; —E) =Y iy (nj — g )m; (n; — m;)

pot n?(n,- -1

k
g (s — )
Cov(O; — E;, O — E)) = R :
].2:1: n?(n,- -1)

d=(0i—E,0,—E,,...,O6_1 —Eg_1)

V= ((vi))

where v;; = Var (O; — E;) and v;; = Cov (O; — E;, O; — E})
fori=1,2,....6-1;1=1,2,...,G — 1.

Then, the log-rank statistic is given by the matrix product
formula:

Log-rank statistic = d'V~'d

which has approximately a chi-square distribution with
G — 1 degrees of freedom under the null hypothesis that all
G groups have a common survival curve.
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Introduction

Abbreviated
Outline

We begin by discussing some computer results using the Cox
PH model, without actually specifying the model; the purpose
here is to show the similarity between the Cox model and
standard linear regression or logistic regression.

We then introduce the Cox model and describe why it is so
popular. In addition, we describe its basic properties, includ-
ing the meaning of the proportional hazards assumption and
the Cox likelihood.

The outline below gives the user a preview of the material to
be covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. A computer example using the Cox PH model
(pages 86-94)
II. The formula for the Cox PH model (pages 94-96)
III. Why the Cox PH model is popular (pages 96-98)

IV. ML estimation of the Cox PH model
(pages 98-100)

V. Computing the hazard ratio (pages 100-103)

VI. Adjusted survival curves using the Cox PH model
(pages 103-107)

VII. The meaning of the PH assumption
(pages 107-111)

VIII. The Cox likelihood (pages 111-115)
IX. Summary (pages 115-116)



Objectives 85

Objectives Upon completing this chapter, the learner should be able to:

10.

11.

State or recognize the general form of the Cox PH model.

State the specific form of a Cox PH model appropriate for
the analysis, given a survival analysis scenario involving
one or more explanatory variables.

State or recognize the form and properties of the baseline
hazard function in the Cox PH model.

Give three reasons for the popularity of the Cox PH
model.

State the formula for a designated hazard ratio of interest
given a scenario describing a survival analysis using a
Cox PH model, when

a. there are confounders but no interaction terms in the
model;

b. there are both confounders and interaction terms in
the model.

State or recognize the meaning of the PH assumption.

Determine and explain whether the PH assumption is
satisfied when the graphs of the hazard functions for two
groups cross each other over time.

State or recognize what is an adjusted survival curve.

Compare and/or interpret two or more adjusted survival
curves.

Given a computer printout involving one or more fitted
Cox PH models,
a. compute or identify any hazard ratio(s) of interest;
b. carry out and interpret a designated test of
hypothesis;
c. carry out, identify or interpret a confidence interval
for a designated hazard ratio;

d. evaluate interaction and confounding involving one
or more covariates.

Give an example of how the Cox PH likelihood is formed.
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Presentation

This presentation describes the Cox proportional
hazards (PH) model, a popular mathematical
model used for analyzing survival data. Here, we
focus on the model form, why the model is pop-
ular, maximum likelihood (ML) estimation of the
model parameters, the formula for the hazard ra-
tio, how to obtain adjusted survival curves, and
the meaning of the PH assumption.

e model form

e why popular

e ML estimation

e hazard ratio

e adjusted survival
curves

e PH assumption

I. A Computer Example Using
the Cox PH Model We introduce the Cox PH model using computer
output from the analysis of remission time data
(Freireich et al., Blood, 1963), which we previously
discussed in Chapters 1 and 2. The data set is listed

here at the left.

Leukemia Remission Data

Group 1(n =21) Group 2(n = 21) These data involve two groups of leukemia pa-
#(weeks) log WBC | #(weeks) logWBC tients, with 21 patients in each group. Group 1
6 2.31 1 2.80 is the treatment group, and group 2 is the placebo
6 4.06 1 5.00 group. The data set also contains the variable log
6 3.28 2 4.91 WBC, which is a well-known prognostic indicator
7 4.43 2 4.48 of survival for leukemia patients.
10 2.96 3 4.01
13 2.88 4 4.36 For this example, the basic question of interest
16 3.60 ¢ 242 concerns comparing the survival experience of the
22 2.32 5 3.49 ce . .
>3 5 s 397 two groups ad]qstlng for the possible confounding
. g q 35 and/or interaction effects of log WBC.
9+ 2.80 8 3.05
10+ 2.70 8 2.32
11+ 2.60 8 3.26
17+ 2.16 11 3.49
19+ 2.05 11 2.12
20+ 2.01 12 1.50
25+ 1.78 12 3.06
32+ 2.20 15 2.30
32+ 2.53 17 2.95
34+ 1.47 22 273
35+ 1.45 23 1.97

+ denotes censored observation
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EXAMPLE (continued)

T = weeks until going out of remission
X, = group status = E
X, =log WBC (confounding?)

Interaction?
X3 =X, XX, = group status x log WBC

Computer results for three Cox PH
models using the Stata package

Other computer packages provide
similar information.

Computer Appendix: uses Stata, SAS,
and SPSS on the same dataset.

Edited output from Stata:

We are thus considering a problem involving two
explanatory variables as predictors of survival
time 7, where T denotes “weeks until going
out of remission.” We label the explanatory
variables X (for group status) and X, (for log
WBC). The variable X is the primary study or
exposure variable of interest. The variable X is
an extraneous variable that we are including as a
possible confounder or effect modifier.

Note that if we want to evaluate the possi-
ble interaction effect of log WBC on group status,
we would also need to consider a third variable,
that is, the product of X and X>.

For this dataset, the computer results from
fitting three different Cox proportional hazards
models are presented below. The computer
package used is Stata. This is one of several
packages that have procedures for carrying out
a survival analysis using the Cox model. The
information printed out by different packages
will not have exactly the same format, but they
will provide similar information. A comparison
of output using Stata, SAS, and SPSS procedures
on the same dataset is provided in the computer
appendix at the back of this text.

Model 1:

Coef.  Std. Err. z p > |z| Haz. Ratio [95% Conf. Interval]
Rx 1.509 0.410 3.68 0.000 4.523 2.027 10.094
No. of subjects = 42 Log likelihood = —86.380 Prob > chi2 = 0.0001
Model 2:

Coef.  Std. Emm. z p > |z| Haz. Ratio [95% Conf. Interval]
Rx 1.294 0.422 3.07 0.002 3.648 1.595 8.343
log WBC 1.604 0.329 4.87 0.000 4.975 2.609 9.486
No. of subjects = 42 Log likelihood = —72.280 Prob > chi2 = 0.0000
Model 3:

Coef.  Std. Err. z p > |z| Haz. Ratio [95% Conf. Interval]
Rx 2.355 1.681 1.40 0.161 10.537 0.391 284.201
log WBC 1.803 0.447 4.04  0.000 6.067 2.528 14.561
Rx xlog WBC —0.342  0.520 —0.66 0.510 0.710 0.256 1.967

No. of subjects = 42 Log likelihood = —72.066

Prob > chi2 = 0.0000
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EDITED OUTPUT FROM STATA
Model 1:

Coef.  Std. Err. p>lzl
Rx 1.509 0.410 0.000

Haz. Ratio
4.523

No. of subjects = 42 Log likelihood = -86.380

Hazard ratios

Model 2:

Coef. Std. Err. p>lz
Rx 1.294 0.422 0.002
log WBC 1.604 0.329 0.000

No. of subjects = 42 Log likelihood = -72.280

Haz. Ratio
3.648
4.975

Model 3:
Std. Err.
1.681

Coef.
Rx 2.355
log WBC 1.803 0.447 0.000 6.067
Rx x log WBC —0.342 0.520 0.510 0.710
No. of subjects = 42 Log likelihood = -72.066

p>lzl Haz. Ratio
0.161 10.537

EXAMPLE (continued)

Same dataset for each model
n =42 subjects
T = time (weeks) until out of remission

Model 1: Rx only
Model 2: Rx and log WBC

Model 3: Rx, log WBC, and
Rx x log WBC

We now describe how to use the computer
printout to evaluate the possible effect of treat-
ment status on remission time adjusted for the
potential confounding and interaction effects of
the covariate log WBC. For now, we focus only
on five columns of information provided in the
printout, as presented at the left for all three
models.

For each model, the first column identifies
the variables that have been included in the
model. The second column gives estimates of
regression coefficients corresponding to each
variable in the model. The third column gives
standard errors of the estimated regression
coefficients. The fourth column gives p-values for
testing the significance of each coefficient. The
fifth column, labeled as Haz. Ratio, gives hazard
ratios for the effect of each variable adjusted for
the other variables in the model.

Except for the Haz. Ratio column, these
computer results are typical of output found
in standard linear regression printouts. As the
printout suggests, we can analyze the results from
a Cox model in a manner similar to the way we
would analyze a linear regression model.

We now distinguish among the output for the three
models shown here. All three models are using the
same remission time data on 42 subjects. The out-
come varible for each model is the same—time
in weeks until a subject goes out of remission.
However, the independent variables are different
for each model. Model 1 contains only the treat-
ment status variable, indicating whether a sub-
ject is in the treatment or placebo group. Model 2
contains two variables—treatment status and log
WBC. And model 3 contains an interaction term
defined as the product of treatment status and log
WBC.
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EDITED OUTPUT: ML ESTIMATION

Model 3:

Coef. Std. Err. p>lzl Haz. Ratio
Rx 2355  1.681  0.161 10.537
log WBC 1.803  0.447  0.000 6.067

Rx xlog WBC -0.342  0.520

0.510)

0.710

No. of subjects = 42 |Log likelihood = -72.066

EXAMPLE (continued)

—-0.342
-0.520

P =0.510:

=-0.66 =Z Wald statistic

LR statistic: uses Log likelihood = -72.066

-2 In L (log likelihood statistic) = -2 x (-72.066)

=144.132

EDITED OUTPUT

Model 2:

Coef. Std. Err. p>lzl Haz. Ratio
Rx 1.294 0.422  0.002 3.648
log WBC 1.604 0.329  0.000 4.975

No. of subjects = 42 |Log likelihood = —72.280

EXAMPLE (continued)

LR (interaction in model 3)

=-21n Lyogel 2= (-2 In Ly o461 3)

In general:
LR=-2InLy—(-21n Lp)

We now focus on the output for model 3. The
method of estimation used to obtain the coeffi-
cients for this model, as well as the other two mod-
els, is maximum likelihood (ML) estimation. Note
that a p-value of 0.510 is obtained for the coef-
ficient of the product term for the interaction of
treatment with log WBC. This p-value indicates
that there is no significant interaction effect, so
that we can drop the product term from the model
and consider the other two models instead.

The p-value of 0.510 that we have just described is
obtained by dividing the coefficient —0.342 of the
product term by its standard error of 0.520, which
gives —0.66, and then assuming that this quantity
is approximately a standard normal or Z variable.
This Z statistic is known as a Wald statistic, which
is one of two test statistics typically used with ML
estimates. The other test statistic, called the like-
lihood ratio, or LR statistic, makes use of the
log likelihood statistic. The log likelihood statistic
is obtained by multiplying the “Log likelihood” in
the Stata output by —2 to get —2 In L.

We now look at the printout for model 2, which
contains two variables. The treatment status vari-
able (Rx) represents the exposure variable of pri-
mary interest. The log WBC variable is being con-
sidered as a confounder. Our goal is to describe the
effect of treatment status adjusted for log WBC.

To use the likelihood ratio (LR) statistic to test
the significance of the interaction term, we need
to compute the difference between the log like-
lihood statistic of the reduced model which does
not contain the interaction term (model 2) and the
log likelihood statistic of the full model containing
the interaction term (model 3). In general, the LR
statistic can be written in the form —2 In L minus
—21InLp, where R denotes the reduced model and
F denotes the full model.
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EXAMPLE (continued)

LR (interaction in model 3)
=-21In Lmodel 2= (_2 In Lmodel 3)
= (-2 x-72.280) — (=2 x =72.066)
=144.550 — 144.132 = 0.428

(LR is 2 with 1 d.f. under Hy;:
no interaction.)

0.40 < P < 0.50, not significant
Wald test P=0.510

LR + Wald
When in doubt, use the LR test.

OUTPUT

Model 2:

Coef. Std. Err. p>lzl Haz. Ratio
Rx 1.294) 0.422
log WBC 1.604 0.329 0.000 4.975

No. of subjects = 42 Log likelihood =-72.280

Three statistical objectives.

1. test for significance of effect
2. point estimate of effect
3. confidence interval for effect

EXAMPLE (continued)

Test for treatment effect:
Wald statistic: P =0.002 (highly
significant)
LR statistic: compare
-2 log L from model 2 with
-2 log L from model without Rx

“ariable

Printout not provided here

Conclusion: treatment effect is signifi-
cant, after adjusting for log WBC

To obtain the LR statistic in this example, we com-
pute 144.550 minus 144.132 to obtain 0.428. Un-
der the null hypothesis of no interaction effect,
the test statistic has a chi-square distribution with
p degrees of freedom, where p denotes the num-
ber of predictors being assessed. The p-value for
this test is between 0.40 and 0.50, which indicates
no significant interaction. Although the p-values
for the Wald test (0.510) and the LR test are not
exactly the same, both p-values lead to the same
conclusion.

In general, the LR and Wald statistics may not give
exactly the same answer. Statisticians have shown
that of the two test procedures, the LR statistic has
better statistical properties, so when in doubt, you
should use the LR test.

We now focus on how to assess the effect of
treatment status adjusting for log WBC using the
model 2 output, again shown here.

There are three statistical objectives typically
considered. One is to test for the significance
of the treatment status variable, adjusted for
log WBC. Another is to obtain a point estimate
of the effect of treatment status, adjusted for
log WBC. And a third is to obtain a confidence
interval for this effect. We can accomplish
these three objectives using the output provided,
without having to explicitly describe the formula
for the Cox model being used.

To test for the significance of the treatment
effect, the p-value provided in the table for the
Wald statistic is 0.002, which is highly significant.
Alternatively, a likelihood ratio (LR) test could
be performed by comparing the log likelihood
statistic (144.559) for model 2 with the log
likelihood statistic for a model which does not
contain the treatment variable. This latter model,
which should contain only the log WBC variable,
is not provided here, so we will not report on it
other than to note that the LR test is also very
significant. Thus, these test results show that
using model 2, the treatment effect is significant,
after adjusting for log WBC.
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EXAMPLE (continued) A point estimate of the effect of the treatment is

Point estimate:
HR = 3.648
—¢l1.294

Coefficient of treatment variable

provided in the HR column by the value 3.648.
This value gives the estimated hazard ratio (HR)
for the effect of the treatment; in particular,
we see that the hazard for the placebo group is
3.6 times the hazard for the treatment group.
Note that the value 3.648 is calculated as e to the
coefficient of the treatment variable; that is, e to
the 1.294 equals 3.648.

To describe the confidence interval for the ef-
fect of treatment status, we consider the output
for the extended table for model 2 given earlier.

OUTPUT

Model 2:

Coef. Std. Err. z p >zl Haz. Ratio  [[95% Conlf. Interval] |
Rx [1.294 0.422] 3.07 0.002 3.648 1595 8.343
log WBC 1.604 0.329 4.87 0.000 4.975 2.609 9.486

No. of subjects = 42

EXAMPLE (continued)

95% confidence interval for the HR:
(1.595, 8.343)

| )

Log likelihood = -72.280

{
AN 7
1 1595  3.648 8.343

95% CI for B,: 1.294 + (1.96) (0.422)

0.975

1.96 7Z

95% CI for HR = ebi:

expl[p; * 1.96331] = ¢1.294 1.96(0.422)

Prob > chi2 = 0.0000

From the table, we see that a 95% confidence
interval for the treatment effect is given by the
range of values 1.595-8.343. This is a confidence
interval for the hazard ratio (HR), which sur-
rounds the point estimate of 3.648 previously
described. Notice that this confidence interval is
fairly wide, indicating that the point estimate is
somewhat unreliable. As expected from the low
p-value of 0.002, the confidence interval for HR
does not contain the null value of 1.

The calculation of the confidence interval
for HR is carried out as follows:

1. Compute a 95% confidence interval for the re-
gression coefficient of the Rx variable (3;). The
large sample formula is 1.294 plus or minus
1.96 times the standard error 0.422, where 1.96
is the 97.5 percentile of the standard normal or
Z distribution.

2. Exponentiate the two limits obtained for the

confidence interval for the regression coeffi-
cient of Rx.
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Stata: provides CI directly

Other packages: provide ’s and s@'s

EDITED OUTPUT

Model 1:
Coef. Std. Err. p>lzl Haz. Ratio

Rx 1.509 0.410 0.000
No. of subjects = 42 Log likelihood = -86.380

Model 2:

Coef. Haz. Ratio
3.648

4.975

Std. Err.  p>lzl
Rx 1.294 0.422 0.002
log WBC 1.604 0.329  0.000
No. of subjects =42 Log likelihood = -72.280

EXAMPLE (continued)

HR for model 1 (4.523) is higher than
HR for model 2 (3.648).

Confounding: crude versus adjusted
R’s are meaningfully different.

Confounding due to log WBC
= must control for log WBC, i.e.,
prefer model 2 to model 1.

If no confounding, then consider preci-
sion: e.g., if 95% CI is narrower for
model 2 than model 1, we prefer model 2.

The Stata output provides the required confidence
interval directly, so that the user does not have to
carry out the computations required by the large
sample formula. Other computer packages may
not provide the confidence interval directly, but,
rather, may provide only the estimated regression
coefficients and their standard errors.

To this point, we have made use of information
from outputs for models 2 and 3, but have not yet
considered the model 1 output, which is shown
again here. Note that model 1 contains only the
treatment status variable, whereas model 2, shown
below, contains log WBC in addition to treatment
status. Model 1 is sometimes called the “crude”
model because it ignores the effect of potential co-
variates of interest, like log WBC.

Model 1 can be used in comparison with model 2
to evaluate the potential confounding effect of the
variable log WBC. In particular, notice that the
value in the HR column for the treatment status
variable is 4.523 for model 1, but only 3.648 for
model 2. Thus, the crude model yields an esti-
mated hazard ratio that is somewhat higher than
the corresponding estimate obtained when we ad-
just for log WBC. If we decide that the crude and
adjusted estimates are meaningfully different, we
then say that there is confounding due to log WBC.

Once we decide that confounding is present, we
then must control for the confounder—in this
case, log WBC—in order to obtain a valid estimate
of the effect. Thus, we prefer model 2, which
controls for log WBC, to model 1, which does not.

Note that if we had decided that there is no “mean-
ingful” confounding, then we would not need to
control for log WBC to get a valid answer. Nev-
ertheless, we might wish to control for log WBC
anyhow, to obtain a more precise estimate of the
hazard ratio. That is, if the confidence interval for
the HR is narrower when using model 2 than when
using model 1, we would prefer model 2 to model 1
for precision gain.
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[95% Conf. Interval]

Rx model 1 2.027  10.094
width = 8.067
width = 6.748

Rx model 2 1595  8.343

log WBC 2.609  9.486

EXAMPLE (continued)

Model 2 is best model.

AN
HR = 3.648 statistically significant

95% CI for HR: (1.6, 8.3)

Cox model formulae not specified

Analysis strategy and methods for
Cox model analogous to those for

logistic and classical linear models.

EXAMPLE (continued)

Survival Curves Adjusted for log WBC

(Model 2)
S()
1.0

16 24

Time

The confidence intervals for Rx in each model
are shown here at the left. The interval for Rx in
model 1 has width equal to 10.094 minus 2.027, or
8.067; for model 2, the width is 8.343 minus 1.595,
or 6.748. Therefore, model 2 gives a more precise
estimate of the hazard ratio than does model 1.

Our analysis of the output for the three models
has led us to conclude that model 2 is the best of
the three models and that, using model 2, we get
a statistically significant hazard ratio of 3.648 for
the effect of the treatment, with a 95% confidence
interval ranging between 1.6 and 8.3.

Note that we were able to carry out this analysis
without actually specifying the formulae for the
Cox PH models being fit. Also, the strategy and
methods used with the output provided have been
completely analogous to the strategy and methods
one uses when fitting logistic regression models
(see Kleinbaum and Klein, Logistic Regression,
Chapters 6 and 7, 2002), and very similar to
carrying out a classical linear regression analysis
(see Kleinbaum et al., Applied Regression Analysis,
3rd ed., Chapter 16, 1997).

In addition to the above analysis of this
data, we can also obtain survival curves for each
treatment group, adjusted for the effects of log
WBC and based on the model 2 output. Such
curves, sketched here at the left, give additional
information to that provided by estimates and
tests about the hazard ratio. In particular, these
curves describe how the treatment groups com-
pare over the time period of the study.

For these data, the survival curves show
that the treatment group consistently has higher
survival probabilities than the placebo group after
adjusting for log WBC. Moreover, the difference
between the two groups appears to widen over
time.
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Adjusted survival
curves

KM curves

Adjusted for
covariates

Use fitted Cox
model

Remainder:

No covariates

No Cox model
fitted

e Cox model formula
e basic characteristics of Cox

model
e meaning of P

H assumption

Note that adjusted survival curves are mathemat-
ically different from Kaplan-Meier (KM) curves.
KM curves do not adjust for covariates and, there-
fore, are not computed using results from a fitted
Cox PH model.

Nevertheless, for these data, the plotted KM curves
(which were described in Chapter 2) are similar in
appearance to the adjusted survival curves.

In the remainder of this presentation, we describe
the Cox PH formula and its basic characteristics,
including the meaning of the PH assumption and
the Cox likelihood.

II. The Formula for the
Cox PH Model

h(t,X) =ho(t)e

p
> BiX;

i=1

X=(X1,Xa,...,

Xp)

explanatory/predictor variables

14
Y BiX;
ho(l) X ei=l
Baseline Exponential
hazard
Involves ¢ Involves X’s but
but not not ¢ (X’s are

X’s

time-independent)

The Cox PH model is usually written in terms
of the hazard model formula shown here at the
left. This model gives an expression for the hazard
at time ¢ for an individual with a given specifica-
tion of a set of explanatory variables denoted by
the bold X. That is, the bold X represents a col-
lection (sometimes called a “vector”) of predictor
variables that is being modeled to predict an indi-
vidual's hazard.

The Cox model formula says that the hazard at
time ¢ is the product of two quantities. The first
of these, hy(t), is called the baseline hazard
function. The second quantity is the exponential
expression e to the linear sum of (3; X;, where the
sum is over the p explanatory X variables.

An important feature of this formula, which
concerns the proportional hazards (PH) assump-
tion, is that the baseline hazard is a function of
t, but does not involve the X’s. In contrast, the
exponential expression shown here, involves the
X’s, but does not involve ¢. The X’s here are called
time-independent X’s.
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X’s involving ¢: time-dependent

Requires extended Cox model (no
PH)

Time-dependent variables:
Chapter 6

Time-independent variable:
Values for a given individual
do not change over time; e.g.,
SEX and SMK

Assumed not to change
once measured

AGE and WGT values do not change
much, or effect on survival depends
on one measurement.

Xi=Xs= =X, =0
h.X) = ho(t) e5

— holt) ¢°

= hy(t)

Baseline hazard

No X’s in model: h(z,X) = ho(2).

ho(t) is unspecified.

Cox model: semiparametric

It is possible, nevertheless, to consider X’s which
do involve ¢. Such X’s are called time-dependent
variables. If time-dependent variables are consid-
ered, the Cox model form may still be used, but
such a model no longer satisfies the PH assump-
tion, and is called the extended Cox model.

The use of time-dependent variables is discussed
in Chapter 6. For the remainder of this presenta-
tion, we will consider time-independent X’s only.

A time-independent variable is defined to be any
variable whose value for a given individual does
not change over time. Examples are SEX and
smoking status (SMK). Note, however, that a per-
son’s smoking status may actually change over
time, but for purposes of the analysis, the SMK
variable is assumed not to change once it is mea-
sured, so that only one value per individual is used.

Also note that although variables like AGE and
weight (WGT) change over time, it may be appro-
priate to treat such variables as time-independent
in the analysis if their values do not change much
over time or if the effect of such variables on sur-
vival risk depends essentially on the value at only
one measurement.

The Cox model formula has the property that if
all the X’s are equal to zero, the formula reduces
to the baseline hazard function. That is, the expo-
nential part of the formula becomes e to the zero,
which is 1. This property of the Cox model is the
reason why /(t) is called the baseline function.

Or, from a slightly different perspective, the Cox
model reduces to the baseline hazard when no X’s
are in the model. Thus, /¢(t) may be considered
as a starting or “baseline” version of the hazard
function, prior to considering any of the X’s.

Another important property of the Cox model is
that the baseline hazard, %((¢), is an unspecified
function. It is this property that makes the Cox
model a semiparametric model.
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EXAMPLE: Parametric Model

Weibull:
h(t, X) = Aptr-!

where A = eXp[ﬁl-:liXi]
and % (z) = ptp-!

Semiparametric property

Popularity of the Cox model

In contrast, a parametric model is one whose
functional form is completely specified, except for
the values of the unknown parameters. For ex-
ample, the Weibull hazard model is a parametric
model and has the form shown here, where the
unknown parameters are A, p, and the {3;’s. Note
that for the Weibull model, /14(t) is given by AptP~!
(see Chapter 7).

One of the reasons why the Cox model is so popu-
laris that it is semiparametric. We discuss this and
other reasons in the next section (III) concerning
why the Cox model is so widely used.

Il1l. Why the Cox PH Model
Is Popular

Cox PH model is “robust”: Will
closely approximate correct
parametric model

If correct model is:

Cox model will
Weibull = approximate
Weibull

Cox model will
Exponential = approximate
exponential

Prefer parametric model if sure of
correct model, e.g., use goodness-
of-fit test (Lee, 1982).

A key reason for the popularity of the Cox model is
that, even though the baseline hazard is not spec-
ified, reasonably good estimates of regression co-
efficients, hazard ratios of interest, and adjusted
survival curves can be obtained for a wide variety
of data situations. Another way of saying this is
that the Cox PH model is a “robust” model, so that
the results from using the Cox model will closely
approximate the results for the correct parametric
model.

For example, if the correct parametric model is
Weibull, then use of the Cox model typically will
give results comparable to those obtained using a
Weibull model. Or, if the correct model is expo-
nential, then the Cox model results will closely ap-
proximate the results from fitting an exponential
model.

We would prefer to use a parametric model if we
were sure of the correct model. Although there are
various methods for assessing goodness of fit of a
parametric model (for example, see Lee, Statistical
Methods for Survival Data Analysis, 1982), we may
not be completely certain that a given parametric
model is appropriate.
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When in doubt, the Cox model is a
“safe” choice.

hX) = hot) x et

Baseline | Exponential

hazard U
0 < h(t,X) < oo always

p
hot) x Y BiXi
i=1

——
Linear

4
Might be < 0

Even though /(¢) is unspecified,
we can estimate the (3’s.

Measure of effect: hazard ratio (HR)
involves only p’s, without
estimating /o(t).

Can estimate 4(t,X) and S(¢,X)
for Cox model using a minimum
of assumptions.

Thus, when in doubt, as is typically the case, the
Cox model will give reliable enough results so that
it is a “safe” choice of model, and the user does
not need to worry about whether the wrong para-
metric model is chosen.

In addition to the general “robustness” of the Cox
model, the specific form of the model is attractive
for several reasons.

As described previously, the specific form of the
Cox model gives the hazard function as a product
of a baseline hazard involving t and an exponential
expression involving the X’s without ¢. The expo-
nential part of this product is appealing because
it ensures that the fitted model will always give
estimated hazards that are non-negative.

We want such nonnegative estimates because, by
definition, the values of any hazard function must
range between zero and plus infinity, that is, a haz-
ard is always nonnegative. If, instead of an expo-
nential expression, the X part of the model were,
for example, linear in the X’s, we might obtain neg-
ative hazard estimates, which are not allowed.

Another appealing property of the Cox model is
that, even though the baseline hazard part of the
model is unspecified, it is still possible to estimate
the B’s in the exponential part of the model. As
we will show later, all we need are estimates of the
[3’s to assess the effect of explanatory variables of
interest. The measure of effect, which is called a
hazard ratio, is calculated without having to esti-
mate the baseline hazard function.

Note that the hazard function /(¢,X) and its corre-
sponding survival curves S(¢,X) can be estimated
for the Cox model even though the baseline haz-
ard function is not specified. Thus, with the Cox
model, using a minimum of assumptions, we can
obtain the primary information desired from a
survival analysis, namely, a hazard ratio and a sur-
vival curve.
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Cox model preferred to logistic model.

Uses survival Uses (0,1) outcome;
times and ignores survival times
censoring and censoring

One last point about the popularity of the Cox
model is that it is preferred over the logistic model
when survival time information is available and
there is censoring. That is, the Cox model uses
more information—the survival times—than the
logistic model, which considers a (0,1) outcome
and ignores survival times and censoring.

IV. ML Estimation of the
Cox PH Model

. X) = ho(t) e ™

ML estimates: ﬁi

/

Coef. Std.Err. p > |7z| Haz. Ratio
Rx 1.294 0.422  0.002 3.648
log WBC 1.604 0.329 0.000 4.975

No. of subjects = 42 Log likelihood = -72.280

Estimated model:
]:l(l‘ X) = ilo(l‘)e 1.294 Rx + 1.604 log WBC

ML estimates: maximize likelihood
function L

L = joint probability of observed
data = L(B)

We now describe how estimates are obtained for
the parameters of the Cox model. The parame-
ters are the B’s in the general Cox model formula
shown here. The corresponding estimates of these
parameters are called maximum likelihood (ML)
estimates and are denoted as 3; “hat.”

As an example of ML estimates, we consider once
again the computer output for one of the models
(model 2) fitted previously from remission data
on 42 eukemia patients.

The Cox model for this example involves
two parameters, one being the coefficient of
the treatment variable (denoted here as Rx)
and the other being the coefficient of the log
WBC variable. The expression for this model is
shown at the left, which contains the estimated
coefficients 1.294 for Rx and 1.604 for log white
blood cell count.

As with logistic regression, the ML estimates of
the Cox model parameters are derived by maxi-
mizing a likelihood function, usually denoted as
L. The likelihood function is a mathematical ex-
pression which describes the joint probability of
obtaining the data actually observed on the sub-
jects in the study as a function of the unknown pa-
rameters (the B’s) in the model being considered.
L is sometimes written notationally as L([3) where
(3 denotes the collection of unknown parameters.

The expression for the likelihood is developed at
the end of the chapter. However, we give a brief
overview below.
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L is a partial likelihood:

e considers probabilities only
for subjects who fail

e does not consider probabilities
for subjects who are censored

Number of failure times
Y\k
L=LixLyxLyx--xLi=]]L;
j=1

where
L; = portion of L for the jth failure
time given the risk set R(¢(;))

Information on censored subjects
used prior to censorship.

Li uses ’E} in R(l(j)) Censored later
|

1 4
7o %

Steps for obtaining ML estimates:

e form L from model
e maximize In L by solving

olnL
aB3;

i=1,..., p(# of parameters)

=0

Solution by iteration:

e guess at solution
e modify guess in successive steps
e stop when solution is obtained

The formula for the Cox model likelihood func-
tion is actually called a “partial” likelihood func-
tion rather than a (complete) likelihood function.
The term “partial” likelihood is used because the
likelihood formula considers probabilities only for
those subjects who fail, and does not explicitly
consider probabilities for those subjects who are
censored. Thus the likelihood for the Cox model
does not consider probabilities for all subjects,
and so it is called a “partial” likelihood.

In particular, the partial likelihood can be written
as the product of several likelihoods, one for each
of, say, k failure times. Thus, at the jth failure time,
L; denotes the likelihood of failing at this time,
given survival up to this time. Note that the set of
individuals at risk at the jth failure time is called
the “risk set,” R(f(j)), and this set will change—
actually get smaller in size—as the failure time in-
creases.

Thus, although the partial likelihood focuses on
subjects who fail, survival time information prior
to censorship is used for those subjects who are
censored. That is, a person who is censored after
the jth failure time is part of the risk set used to
compute L ;, even though this person is censored
later.

Once the likelihood function is formed for a given
model, the next step for the computer is to maxi-
mize this function. This is generally done by maxi-
mizing the natural log of L, which is computation-
ally easier.

The maximization process is carried out by tak-
ing partial derivatives of log of L with respect to
each parameter in the model, and then solving a
system of equations as shown here. This solution
is carried out using iteration. That is, the solu-
tion is obtained in a stepwise manner, which starts
with a guessed value for the solution, and then
successively modifies the guessed value until a so-
lution is finally obtained.
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Statistical inferences for hazard
ratios: (See Section I, pages 86-94)

Test hypotheses | Confidence intervals

Wald test Large sample 95% CI
LR test

HR =P fora (0,1) exposure
variable (no interaction)

Once the ML estimates are obtained, we are usu-
ally interested in carrying out statistical inferences
about hazard ratios defined in terms of these esti-
mates. We illustrated previously how to test hy-
potheses and form confidence intervals for the
hazard ratio in Section I above. There, we de-
scribed how to compute a Wald test and a likeli-
hood ratio (LR) test. We also illustrated how to cal-
culate a large sample 95% confidence interval for
a hazard ratio. The estimated hazard ratio (HR)
was computed by exponentiating the coefficient
of a (0,1) exposure variable of interest. Note that
the model contained no interaction terms involv-
ing exposure.

V. Computing the Hazard
Ratio

—— h@eXx*
AR = "X
h(t,X)
where
X* = (X*7 X;v "'7X:;)
and
X:(X17X2""7Xp)

denote the set of X’s for two
individuals

To interpret I-/IR want HR >1,1ie.,
h(t.X*) > ht,X).
Typical coding:  X*: group with
larger &
X : group with
smaller /2

EXAMPLE: Remission Data

X =(X{, X5,..., X, ), where X =1
denotes placebo group.

X=X, X,..., Xp), where X; =0
denotes treatment group.

In general, a hazard ratio (HR) is defined as the
hazard for one individual divided by the hazard for
a different individual. The two individuals being
compared can be distinguished by their values for
the set of predictors, that is, the X’s.

We can write the hazard ratio as the estimate of
h(t,X*) divided by the estimate of %(¢,X), where
X* denotes the set of predictors for one individual,
and X denotes the set of predictors for the other
individual.

Note that, as with an odds ratio, it is easier to in-
terpret an HR that exceeds the null value of 1 than
an HR that is less than 1. Thus, the Xs are typi-
cally coded so that group with the larger harzard
corresponds to X*, and the group with the smaller
hazard corresponds to X. As an example, for the
remission data described previously, the placebo
groupis coded as X7 = 1, and the treatment group
is coded as X; = 0.



Presentation: V. Computing the Hazard Ratio

LN
A ~ > BiX}
AR — h(t,X*) F5(@) ei=

S REX) . vk
(@) e=
YR
~ i X Poa
— ho(t) ei=t > Bi(Xf—X;)
HR = O()—p = ei=l
~ > BiX;
ho(t) ei=i

HR = exp |:§: B, (X — Xi)i|

i=1

EXAMPLE

X=(X1,X2 ..... Xp)z(Xl), whereX1
denotes (0,1) exposure status (p = 1)

X;=1,X,=0

HR = explf (X{-X)]
=expl[P;(1 - 0)]=eP1

Model 1:
Coef. Std. Err. P>zl Haz. Ratio
Rx 1.509 0.410  0.000

EXAMPLE 2

Model 2:
Coef.
+
Rx 1.294
log WBC 1.604

X* = (1, log WBC), X = (0,log WBC)
HR for effect of Rx adjusted for log WBC:

Haz. Ratio
3.648
4.975

Std. Err. p>lzl
0.422 0.002
0.329  0.000

101

We now obtain an expression for the HR formula
in terms of the regression coefficients by substi-
tuting the Cox model formula into the numerator
and denominator of the hazard ratio expression.
This substitution is shown here. Notice that the
only difference in the numerator and denomina-
tor are the X*’s versus the Xs. Notice also that the
baseline hazards will cancel out.

Using algebra involving exponentials, the hazard
ratio formula simplifies to the exponential expres-
sion shown here. Thus, the hazard ratio is com-
puted by exponentiating the sum of each 3; “hat”
times the difference between X and X;.

An alternative way to write this formula, using ex-
ponential notation, is shown here. We will now
illustrate the use of this general formula through
a few examples.

Suppose, for example, there is only one X variable
of interest, Xy, which denotes (0,1) exposure
status, so that p = 1. Then, the hazard ratio
comparing exposed to unexposed persons is
obtained by letting X{ =1 and X; =0 in the
hazard ratio formula. The estimated hazard ratio
then becomes e to the quantity 3; “hat” times 1
minus 0, which simplifies to e to the 3; “hat.”

Recall the remission data printout for model 1,
which contains only the Rx variable, again shown
here. Then the estimated hazard ratio is obtained
by exponentiating the coefficient 1.509, which
gives the value 4.523 shown in the AR column of
the output.

As a second example, consider the output for
model 2, which contains two variables, the Rx vari-
able and log WBC. Then to obtain the hazard ratio
for the effect of the Rx variable adjusted for the log
WBC variable, we let the vectors X* and X be de-
fined as X* = (1, log WBC) and X = (0, log WBC).
Here we assume that log WBC is the same for X*
and X though unspecified.
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EXAMPLE 2 (continued)

HR = explf, (X*-X,) + B, (X3-X,)]
= exp[1.294(1-0)
+1.604 (log WBC-log WBC)]
=exp[1.294(1) + 1.604(0)]=

General rule: If X isa (0,1)
exposure variable, then

HR = e (= effect of exposure

adjusted for other X’s)

provided no other Xs are product
terms involving exposure.

EXAMPLE 3

Model 3:

Coef. Std. Err. p>lzl Haz. Ratio
Rx 2.355 1.681 0.161 10.537
log WBC 1.803 0.447 0.000 6.067

Rx xlog WBC -0.342 0.520 0.510 0.710

Want HR for effect of Rx adjusted for
log WBC.

Placebo subject:
X*=(X;=1, X;=log WBC,
X3=1x log WBC)
Treated subject:
X = (X, =0, X,=log WBC,
X3=0 x log WBC)

A~ KN .
HR = exp Zlﬁi(Xz‘ -X;)
=

HR = exp[2.355(1 - 0)
+1.803 (log WBC - log WBC)
+(=0.342)(1 x log WBC
-0 xlog WBC)]

(= expl2.355 - 0.342 log WBC] )

The estimated hazard ratio is then obtained by
exponentiating the sum of two quantities, one
involving the coefficient 1.294 of the Rx variable,
and the other involving the coefficient 1.604 of the
log WBC variable. Since the log WBC value is fixed,
however, this portion of the exponential is zero, so
that the resulting estimate is simply e to the 1.294.

This second example illustrates the general rule
that the hazard ratio for the effect of a (0,1) ex-
posure variable which adjusts for other variables
is obtained by exponentiating the estimated coef-
ficient of the exposure variable. This rule has the
proviso that the model does not contain any prod-
uct terms involving exposure.

We now give a third example which illustrates
how to compute a hazard ratio when the model
does contain product terms. We consider the
printout for model 3 of the remission data shown
here.

To obtain the hazard ratio for the effect of Rx
adjusted for log WBC using model 3, we consider
X* and X vectors which have three components,
one for each variable in the model. The X* vector,
which denotes a placebo subject, has components
X7 =1,X;5=1og WBC and X} =1 times log
WBC. The X vector, which denotes a treated
subject, has components X; = 0, X, = log WBC
and X3 = 0 times log WBC. Note again that, as
with the previous example, the value for log WBC
is treated as fixed, though unspecified.

Using the general formula for the hazard ratio,
we must now compute the exponential of the sum
of three quantities, corresponding to the three
variables in the model. Substituting the values
from the printout and the values of the vectors X*
and X into this formula, we obtain the exponen-
tial expression shown here. Using algebra, this
expression simplifies to the exponential of 2.355
minus 0.342 times log WBC.
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EXAMPLE 3 (continued)

log WBC = 2:

P

HR = exp[2.355 - 0.342 (2)]
=el671=532

log WBC = 4:

A
IR = exp[2.355 — 0.342 (4)]
= 0.987= 268

General rule for (0,1) exposure
variables when there are product
terms:

HR = exp[B + Sjwj]

where
[ = coefficient of £/

§; = coefficient of E x W,

(I;ﬁ( does not contain coefficients
of non-product terms)

EXAMPLE

Model 3:
A E ~ w,
B = coefficient of Rx
81= coefficient of Rx x log WBC

ITIE (model 3) = exp[fh 31 log WBC]
= exp[2.355 - 0.342 log WBC]

In order to get a numerical value for the hazard
ratio, we must specify a value for log WBC. For
instance, if log WBC = 2, the estimated hazard
ratio becomes 5.32, whereas if log WBC = 4, the
estimated hazard ratio becomes 2.68. Thus, we get
different hazard ratio values for different values of
log WBC, which should make sense since log WBC
is an effect modifier in model 3.

The example we have just described using model
3 illustrates a general rule which states that the
hazard ratio for the effect of a (0,1) exposure vari-
able in a model which contains product terms in-
volving this exposure with other X’s can be written
as shown here. Note that 3 “hat” denotes the co-
efficient of the exposure variable and the 6 “hats”
are coefficients of product terms in the model of
the form ExW;. Also note that this formula does
not contain coefficients of nonproduct terms other
than those involving E.

For model 3, B “hat” is the coefficient of the Rx
variable, and there is only one & “hat” in the
sum, which is the coefficient of the product term
Rx x log WBC. Thus, there is only one W, namely
Wi = log WBC. The hazard ratio formula for the
effect of exposure is then given by exponentiating
B “hat” plus 6; “hat” times log WBC. Substituting
the estimates from the printout into this formula
yields the expression obtained previously, namely
the exponential of 2.355 minus 0.342 times log
WBC.

VI. Adjusted Survival Curves
Using the Cox PH Model

Two primary quantities:

1. estimated hazard ratios
2. estimated survival curves

The two primary quantities desired from a sur-
vival analysis point of view are estimated hazard
ratios and estimated survival curves. Having just
described how to compute hazard ratios, we now
turn to estimation of survival curves using the Cox
model.
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No model: use KM curves

Treatment
group

| Placebo
group

10 20
t in weeks

Cox model: adjusted survival
curves (also step functions).

Cox model hazard function:

h.X) = ho(t) e

Cox model survival function:

)4
X BiX;

S(t,X) = [So(t)]"

Estimated survival function:

P
X BiX;

8,X) = [S0)]"

So(t) and f3; are provided by the
computer program. The X; must
be specified by the investigator.

Recall that if no model is used to fit survival data,
a survival curve can be estimated using a Kaplan-
Meier method. Such KM curves are plotted as step
functions as shown here for the remission data
example.

When a Cox model is used to fit survival data, sur-
vival curves can be obtained that adjust for the
explanatory variables used as predictors. These
are called adjusted survival curves, and, like KM
curves, these are also plotted as step functions.

The hazard function formula for the Cox PH
model, shown here again, can be converted to a
corresponding survival function formula as shown
below. This survival function formula is the ba-
sis for determining adjusted survival curves. Note
that this formula says that the survival function at
time ¢ for a subject with vector X as predictors is
given by a baseline survival function Sy(¢) raised
to a power equal to the exponential of the sum of
(3; times X;.

The expression for the estimated survival function
can then be written with the usual “hat” notation
as shown here.

The estimates of So(¢) and {3, are provided by the
computer program that fits the Cox model. The
X’s, however, must first be specified by the investi-
gator before the computer program can compute
the estimated survival curve.
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EXAMPLE: Model 2 Remission
Data

I:L(l‘ X) = ljlo(t)el.294 Rx + 1.604 log WBC

S(6,X) = [Sy(r)]XP(1:294 Rx +1.604 log WBC)

Specify values for X = (Rx, log WBC):

Rx =1, log WBC =2.93:
$¢X) = [So([)]exp(1.294(1) +1.604 (2.93))

=[Sy =([S(r)]4009

Rx =0, log WBC = 2.93:
$(tX) = [So(t)]exp(1.294 (0) +1.604 (2.93))

= [So@I™PHTY = ([Sy()11099

Adjusted Survival Curves

Rx =1, log WBC = 2.93:
S$aX) = [Sp(n)]*°?

Rx =0, log WBC =2.93:
S@X) = [Sy0)1'*?

Typically, use X = X or X pedian.

Computer uses X.

EXAMPLE (continued)

Remission data (n = 42):

log WBC =2.93

For example, if we consider model 2 for the
remission data, the fitted model written in terms
of both the hazard function and corresponding
survival function is given here.

We can obtain a specific survival curve by
specifying values for the vector X, whose compo-
nent variables are Rx and log WBC.

For instance, if Rx = 1 and log WBC = 2.93,
the estimated survival curve is obtained by
substituting these values in the formula as shown
here, and carrying out the algebra to obtain the
expression circled. Note that the value 2.93 is the
overall mean log WBC for the entire dataset of 42
subjects.

Also, if Rx =0 and log WBC = 2.93, the es-
timated survival curve is obtained as shown here.

Each of the circled expressions gives ad-
justed survival curves, where the adjustment is
for the values specified for the X’s. Note that for
each expression, a survival probability can be
obtained for any value of ¢.

The two formulae just obtained, again shown
here, allow us to compare survival curves for dif-
ferent treatment groups adjusted for the covariate
log WBC. Both curves describe estimated survival
probabilities over time assuming the same value
of log WBC, in this case, the value 2.93.

Typically, when computing adjusted survival
curves, the value chosen for a covariate being ad-
justed is an average value like an arithmetic mean
or a median. In fact, most computer programs for
the Cox model automatically use the mean value
over all subjects for each covariate being adjusted.

In our example, the mean log WBC for all 42 sub-
jects in the remission data set is 2.93. That is why
we chose this value for log WBC in the formulae
for the adjusted survival curve.
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General formulae for adjusted
survival curves comparing two
groups:

Exposed subjects:

N N exp[fil(l)fz BiX:]
St.Xp) = [So(®)] i#l

Unexposed subjects:

. el BiO+Y BiXi]
S(t.Xo) = [So(1)] i

General formula for adjusted
survival curve for all
covariates in the model:

3(t,X) = [So(t)]oxP1E )

EXAMPLE (continued)

Single survival curve for Cox model
containing Rx and log WBC:

Rx =0.50

log WBC =2.93

é(t,)_() = [SO(Z)]exp(ﬁlR_x + ﬁzlog WBC)

= [Sy(£)]exp(1.294(0.5) + 1.604(2.93))

= [S,(1)]exp(5:35) = [Sy(2)]2106

Compute survival probability by
specifying value for 7 in
8(t.X) = [So()1P10¢

Computer uses t's which are
failure times.

More generally, if we want to compare survival
curves for two levels of an exposure variable, and
we want to adjust for several covariates, we can
write the formula for each curve as shown here.
Note that we are assuming that the exposure vari-
able is variable X, whose estimated coefficient is
; “hat,” and the value of X; is 1 for exposed and
0 for unexposed subjects.

Also, if we want to obtain an adjusted survival
curve which adjusts for all covariates in the model,
the general formula which uses the mean value
for each covariate is given as shown here. This
formula will give a single adjusted survival curve
rather than different curves for each exposure
group.

To illustrate this formula, suppose we again con-
sider the remission data, and we wish to obtain a
single survival curve that adjusts for both Rx and
log WBC in the fitted Cox model containing these
two variables. Using the mean value of each co-
variate, we find that the mean value for Rx is 0.5
and the mean value for log WBC is 2.93, as before.

To obtain the single survival curve that adjusts for
Rx and log WBC, we then substitute the mean val-
ues in the formula for the adjusted survival curve
for the model fitted. The formula and the result-
ing expression for the adjusted survival curve are
shown here. (Note that for the remission data,
where it is of interest to compare two exposure
groups, the use of a single survival curve is not
appropriate.)

From this expression for the survival curve, a sur-
vival probability can be computed for any value
of ¢ that is specified. When graphing this survival
curve using a computer package, the values of ¢
that are chosen are the failure times of all persons
in the study who got the event. This process is au-
tomatically carried out by the computer without
having the user specify each failure time.
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EXAMPLE

Adjusted Survival Curves for Treatment and
Placebo Groups

S()

1.0 (Remission data)

0.8

0.6 - Treatment (Rx = 0)

0 |- [So(t)]1°9'9
Placebo

Rx=1)

[ S o(f)]4°0‘9

0 1

8 16 24
Time

0.2

Next section: PH assumption

e explain meaning
e when PH not satisfied

Later presentations:

e how to evaluate PH
e analysis when PH not met

The graph of adjusted survival curves obtained
from fitting a Cox model is usually plotted as a
step function. For example, we show here the step
functions for the two adjusted survival curves ob-
tained by specifying either 1 or 0 for treatment
status and letting log WBC be the mean value 2.93.

We now turn to the concept of the proportional
hazard (PH) assumption. In the next section, we
explain the meaning of this assumption and we
give an example of when this assumption is not
satisfied.

In later presentations, we expand on this subject,
describing how to evaluate statistically whether
the assumption is met and how to carry out the
analysis when the assumption is not met.

VII. The Meaning of the
PH Assumption

PH: HR is constant over time, i.e.,
h(t,X*) = constant x A(t,X)

o h(t,X*)
h(t,X)

B fzo(t)exp[z Bin]

B fzo(t)exp[z [giXi]

P
- [z B - x»}

i=1

where X* = (X{, X3, ..., X;‘,) and
X:(X17X27"'3Xp)

denote the set of X’s for two
individuals.

The PH assumption requires that the HR is con-
stant over time, or equivalently, that the hazard
for one individual is proportional to the hazard
for any other individual, where the proportional-
ity constant is independent of time.

To understand the PH assumption, we need to re-
consider the formula for the HR that compares
two different specifications X* and X for the ex-
planatory variables used in the Cox model. We de-
rived this formula previously in Section V, and we
show this derivation again here. Notice that the
baseline hazard function /1 ¢(¢) appears in both the
numerator and denominator of the hazard ratio
and cancels out of the formula.
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A, X*) L,
~ = (X7 =X
e eXp[; B (X; )}

does not involve ¢.

Constant

Let

A / p A

0 =exp i (X7 — Xi)
i=1

then

A~ X A

hA(r, ) _ 5

h(t,X)

ﬁl\l (X* versus X)

h(t, X*) = 0h(t, X)

Proportionality constant
(not dependent on time)

EXAMPLE: Remission Data

h(t, X) = ;;0([) £1.294 Rx+1.604 log WBC
P 7 — —
7R = I:l(t, Rx=1, log WBC = 2.93)
h(t, Rx=0, log WBC = 2.93)
=exp[1.294] = 3.65 Constant

Placebo
h(t, Rx = 1, log WBC = 2.93)
=3.65h(t Rx = 0, log WBC = 2.93)

Treatment
3.65 = proportionality constant

The final expression for the hazard ratio therefore
involves the estimated coefficients 3; “hat” and
the values of X* and X for each variable. However,
because the baseline hazard has canceled out, the
final expression does not involve time ¢.

Thus, once the model is fitted and the values for
X* and X are specified, the value of the exponen-
tial expression for the estimated hazard ratio is a
constant, which does not depend on time. If we
denote this constant by 6 “hat,” then we can write
the hazard ratio as shown here. This is a mathe-
matical expression which states the proportional
hazards assumption.

Graphically, this expression says that the esti-
mated hazard ratio comparing any two individ-
uals plots as a constant over time.

Another way to write the proportional hazards
assumption mathematically expresses the hazard
function for individual X* as 6 “hat” times the
hazard function for individual X, as shown here.
This expression says that the hazard function for
one individual is proportional to the hazard func-
tion for another individual, where the proportion-
ality constant is © “hat,” which does not depend
on time.

To illustrate the proportional hazard assumption,
we again consider the Cox model for the remission
data involving the two variables Rx and log WBC.
For this model, the estimated hazard ratio that
compares placebo (Rx = 1) with treated (Rx = 0)
subjects controlling for log WBC is given by e to
the 1.294, which is 3.65, a constant.

Thus, the hazard for placebo group (Rx = 1) is
3.65 times the hazard for the treatment group
(Rx =0), and the value, 3.65, is the same re-
gardless of time. In other words, using the above
model, the hazard for the placebo group is propor-
tional to the hazard for the treatment group, and
the proportionality constant is 3.65.
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EXAMPLE: PH Not Satisfied To further illustrate the concept of proportional

Surgery
C tient:
ancer patients <: Radiation with

no surgery

E- [ 0if surgery
| 1 if no surgery

h(t,X) = h(t)eBE

Is the above Cox PH model appropriate?
Note:

Serious

= High risk for death early
surgery

h(1,%)
Hazards cross

E =0 (surgery)

E=1
E =1 (no surgery) E=0
1 L L L
3 t(days)

Mt=2,E=1)_
2 days: I:L(t 2. E-0)
but
5 days: ILZ(Z‘LEEI)>1

h(t=5,E=0)

hazards, we now provide an example of a situation
for which the proportional hazards assumption is
not satisfied.

For our example, we consider a study in which
cancer patients are randomized to either surgery
or radiation therapy without surgery. Thus, we
have a (0,1) exposure variable denoting surgery
status, with 0 if a patient receives surgery and 1
if not. Suppose further that this exposure variable
is the only variable of interest, so that a Cox PH
model for the analysis of this data, as shown here,
will contain only the one variable E, denoting
exposure.

Now the question we consider here is whether the
above Cox model containing the variable E is an
appropriate model to use for this situation. To an-
swer this question we note that when a patient
undergoes serious surgery, as when removing a
cancerous tumor, there is usually a high risk for
complications from surgery or perhaps even death
early in the recovery process, and once the patient
gets past this early critical period, the benefits of
surgery, if any, can then be observed.

Thus, in a study that compares surgery to no
surgery, we might expect to see hazard functions
for each group that appear as shown here. No-
tice that these two functions cross at about three
days, and that prior to three days the hazard
for the surgery group is higher than the hazard
for the no surgery group, whereas after three days,
the hazard for the surgery group is lower than the
hazard for the no surgery group.

Looking at the above graph more closely, we can
see that at 2 days, when ¢ = 2, the hazard ratio of
non-surgery (E = 1) to surgery (E = 0) patients
yields a value less than 1. In contrast, att = 5 days,
the hazard ratio of nonsurgery to surgery yields a
value greater than 1.
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EXAMPLE: (continued)

Given the above description, HR is not
constant over time.

Cox PH model inappropriate because
PH model assumes constant HR:

(t,X) = ho(t)eBE

AR -MLE=D _ 5

h(t, E=0)

General rule:

If the hazards cross, then a Cox
PH model is not appropriate.

Analysis when Cox PH model not

appropriate? See Chapters 5 and 6.

EXAMPLE (continued)

Surgery study analysis options:

stratify by exposure (use KM curves)

start analysis at three days; use Cox

PH model

fit PH model for < 3 days and for > 3
P P

days; get HR (< 3 days) and HR

(> 3 days)

include time-dependent variable

(e.g., E x1); use extended Cox model

Thus, if the above description of the hazard func-
tions for each group is accurate, the hazard ratios
are not constant over time. That is, the hazard ra-
tio is some number less than 1 before three days
and greater than 1 after three days.

It is therefore inappropriate to use a Cox PH model
for this situation, because the PH model assumes a
constant hazard ratio across time, whereas our sit-
uation yields a hazard ratio that varies with time.

In fact, if we use a Cox PH model, shown here
again, the estimated hazard ratio comparing ex-
posed to unexposed patients at any time is given
by the constant value e to the 5 “hat,” which does
not vary over time.

This example illustrates the general rule that if the
hazards cross, then the PH assumption cannot be
met, so that a Cox PH model is inappropriate.

It is natural to ask at this point, if the Cox PH
model is inappropriate, how should we carry out
the analysis? The answer to this question is dis-
cussed in Chapters 5 and 6. However, we will give
a brief reply with regard to the surgery study ex-
ample just described.

Actually, for the surgery study there are several
options available for the analysis. These include:

e analyze by stratifying on the exposure vari-
able; that is, do not fit any model, and, instead
obtain Kaplan-Meier curves for each exposure
group separately;

e start the analysis at three days, and use a Cox
PH model on three-day survivors;

e fit Cox model for less than three days and a
different Cox model for greater than three days
to get two different hazard ratio estimates, one
for each of these two time periods;

e fit a modified Cox model that includes a time-
dependent variable which measures the inter-
action of exposure with time. This model is
called an extended Cox model.



Different options may lead to
different conclusions.

Hazards = PH not met
Cross
but

? = PH met

See Chapter 4: Evaluating PH
Assumption
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Further discussion of these options is given in sub-
sequent chapters. We point out here, that differ-
ent options may lead to different conclusions, so
that the investigator may have to weigh the relative
merits of each option in light of the data actually
obtained before deciding on any particular option
as best.

One final comment before concluding this section:
although we have shown that when the hazards
cross, the PH assumption is not met, we have not
shown how to decide when the PH assumption
is met. This is the subject of Chapter 4 entitled,
“Evaluating the PH Assumption.”

VIII. The Cox Likelihood
Likelihood

e Typically based on outcome
distribution

e QOutcome distribution not
specified for Cox model

e Cox likelihood based on order
of events rather than their
distribution

o Called partial likelihood

Mlustration

Scenario:

e Gary, Larry, Barry have lottery
tickets

e Winning tickets chosen at times
ty, ta, ...

e Each person ultimately chosen
e Can be chosen only once

Question:
What is the probability that the
order chosen is as follows?

1. Barry
2. Gary
3. Larry

Typically, the formulation of a likelihood function
is based on the distribution of the outcome. How-
ever, one of the key features of the Cox model is
that there is not an assumed distribution for the
outcome variable (i.e., the time to event). There-
fore, in contrast to a parametric model, a full like-
lihood based on the outcome distribution cannot
be formulated for the Cox PH model. Instead, the
construction of the Cox likelihood is based on
the observed order of events rather than the
joint distribution of events. Thus the Cox likeli-
hood is called a “partial” likelihood.

To illustrate the idea underlying the formulation
of the Cox model, consider the following scenario.
Suppose Gary, Larry, and Barry are each given a
lottery ticket. Winning tickets are chosen at times
tj(j =1, 2,...). Assume each person is ultimately
chosen and once a person is chosen he cannot be
chosen again (i.e., he is out of the risk set). What is
the probability that the order each person is cho-
sen is first Barry, then Gary, and finally Larry?
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Answer:

Probability =

/
Barry Gary Larry

W | —

Scenario:

Barry - 4 tickets
Gary - 1 ticket
Larry - 2 tickets

Question:
What is the probability that the
order chosen is as follows?

1. Barry
2. Gary
3. Larry

Answer:

Probability = = x

1
3

~ | B

For this scenario

Subject’s number of tickets
affects probability

For Cox model
Subject’s pattern of covariates

affects likelihood of ordered
events

The probability the Barry’s ticket is chosen before
Gary's and Larry’s is one out of three. Once Barry's
ticket is chosen it cannot be chosen again. The
probability that Gary’s ticket is then chosen before
Larry’s is one out of two. Once Barry’s and Gary’s
tickets are chosen they cannot be chosen again
which means that Larry’s ticket must be chosen
last. This yields a probability of 1/6 for this given
order of events (see left).

Now consider a modification of the previous sce-
nario. Suppose Barry has 4 tickets, Gary has
1 ticket, and Larry has 2 tickets; now what is the
probability that the order each person is chosen is
first Barry, then Gary, and finally Larry?

Barry, Gary, and Larry have 7 tickets in all and
Barry owns 4 of them so Barry’s probability of be-
ing chosen first is 4 out of 7. After Barry is chosen,
Gary has 1 of the 3 remaining tickets and after
Barry and Gary are chosen, Larry owns the re-
maining 2 tickets. This yields a probability of 4/21
for this order (see left).

For this scenario, the probability of a particular
order is affected by the number of tickets held by
each subject. Fora Cox model, the likelihood of the
observed order of events is affected by the pattern
of covariates of each subject.



ID TIME STATUS SMOKE
Barry 2 1 1
Gary 3 1 0
Harry 5 0 0
Larry 8 1 1

SURVT = Survival time (in years)
STATUS = 1 for event, 0 for

censorship

SMOKE = 1 for a smoker, 0 for a

nonsmoker

Cox PH model

h(t) = ho(t)e”SMORE

ID Hazard
Barry  ho(t)e?
Gary  ho(t)e®
Harry  ho(t)e®
Larry  ho(t)e?

Individual hazards (Cox likelihood)
analogous to number of tickets
(lottery scenario) For example,
smokers analogous to persons with
extra lottery tickets

Cox Likelihood

L:[mm

l’lo(t)eﬂl

]’lo(l‘)eo

x |:h0(t)e0 T ho(0)e0 + ho(t)ePt

/’Lo(l)eﬁ‘
X[moxm}

Likelihood is product of 3 terms

L =L xL,xLs

Ly =

Ly, =

Ly =

ho(t)ePr

et + ho(t)el + ho(t)e 4 ho(t)e b

)

l’lo(t)eo

[To(t)ef
_ho(l)eﬂl

)

ho(2)e® + ho(t)e® + ho(t)efr

Lho(t)ePt +ho(t)e® 4 ho(t)el + ho(t)ePr

|

)
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To illustrate this connection, consider the dataset
shown on the left. The data indicate that Barry got
the event at TIME = 2 years. Gary got the event at
3 years, Harry was censored at 5 years, and Larry
got the event at 8 years. Furthermore, Barry and
Larry were smokers whereas Gary and Harry were
nonsmokers.

Consider the Cox proportional hazards model
with one predictor, SMOKE. Under this model the
hazards for Barry, Gary, Harry, and Larry can be
expressed as shown on the left. The individual haz-
ards are determined by whether the subject was a
smoker or nonsmoker.

The individual level hazards play an analogous
role toward the construction of the Cox likeli-
hood as the number of tickets held by each subject
plays for the calculation of the probabilities in the
lottery scenario discussed earlier in this section.
The subjects who smoke are analogous to persons
given extra lottery tickets, thereby affecting the
probability of a particular order of events.

On the left is the Cox likelihood for these data.
Notice the likelihood is a product of three terms,
which correspond to the three event times. Barry
got the event first at TIME = 2 years. At that time
all four subjects were at risk for the event. The
first product (L;) has the sum of the four subjects’
hazards in the denominator and Barry’s hazard in
the numerator. Gary got the event next at 3 years
when Gary, Harry, and Larry were still in the
risk set. Consequently, the second product (L;) has
the sum of the three hazards for the subjects still
at risk in the denominator and Gary’s hazard in
the numerator. Harry was censored at 5 years,
which occurred between the second and third
event. Therefore, when Larry got the final event
at 8 years, nobody else was at risk for the event.
As a result, the third product (L3) just has Larry’s
hazard in the denominator and the numerator.
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t1, time = 2, four at risk (L)
ty, time = 3, three at risk (L)
t3, time = 8, one at risk (L3)

For each term:

Numerator—single hazard
Denominator—sum of hazards

Baseline hazard, hy(t) cancels

eﬂl
L=
e +e0+e04eh

e? eh
% |:e°+eo+eﬁ1:| x [37]
Thus, L does not depend on hy(t)
Data A

ID TIME STATUS SMOKE

Barry 2 1 1

Gary 3 1 0

Harry 5 0 0

Larry 8 1 1
Data B

ID TIME STATUS SMOKE

Barry 1 1 1
Gary 7 1 0
Harry 8 0 0
Larry 63 1 1

Comparing datasets

e TIME variable differs
e Order of events the same
e Cox PH likelihood the same

To summarize, the likelihood in our example con-
sists of a product of three terms (L, L, and L3)
corresponding to the ordered failure times (t;, t5,
and t3). The denominator for the term correspond-
ing to time t; (j =1, 2, 3) is the sum of the hazards
for those subjects still at risk at time t;, and the
numerator is the hazard for the subject who got
the event at t;.

A key property of the Cox likelihood is that the
baseline hazard cancels out in each term. Thus,
the form of the baseline hazard need not be spec-
ified in a Cox model, as it plays no role in the esti-
mation of the regression parameters. By factoring
hy(t) in the denominator and then canceling it out
of each term, the likelihood for Barry, Gary, and
Larry can be rewritten as shown on the left.

As we mentioned earlier, the Cox likelihood is de-
termined by the order of events and censorships
and not by the distribution of the outcome vari-
able. To illustrate this point, compare datasets
A and B on the left, and consider the likelihood
for a Cox PH model with smoking status as the
only predictor. Although the values for the variable
TIME differ in the two datasets, the Cox likelihood
will be the same using either dataset because the
order of the outcome (TIME) remains unchanged.



General Approach

e K failure times

e Likelihood a product of K
terms

e Construction of each term
similar to Barry, Gary, and
Larry

L=L1 XLzXL3X~--XLk
k
= 1_[ L;
j=1
Obtaining maximum likelihood
estimates
Solve system of equations

dln L
0B

p = # of parameters

-0, i=123,....p
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We have used a small dataset (four observations
with three failure times) for ease of illustration.
However, the approach can be generalized. Con-
sider a dataset with k failure times and let L;
denote the contribution to the likelihood corre-
sponding to the jth failure time. Then the Cox like-
lihood can be formulated as a product of each of
the k terms as shown on the left. Each of the terms
L; is constructed in a similar manner as with the
data for Gary, Larry, and Barry.

Once the likelihood is formulated, the question be-
comes: which values of the regression parameters
would maximize L? The process of maximizing the
likelihood is typically carried out by setting the
partial derivative of the natural log of L to zero
and then solving the system of equations (called
the score equations).

IX. Summary

1. Review: S(t), h(t), data layout,
etc.

2. Computer example of Cox model:
e estimate HR
e test hypothesis about HR
e obtain confidence intervals

3. Cox model formula:

ht.X) = ho(t)e

4. Why popular: Cox PH model is
“robust”

In this section we briefly summarize the content
covered in this presentation.

e We began with a computer example that uses
the Cox PH model. We showed how to use
the output to estimate the HR, and how to
test hypotheses and obtain confidence inter-
vals about the hazard ratio.

e We then provided the formula for the hazard
function for the Cox PH model and described
basic features of this model. The most impor-
tant feature is that the model contains two
components, namely, a baseline hazard func-
tion of time and an exponential function in-
volving X’s but not time.

e We discussed reasons why the Cox model is
popular, the primary reason being that the
model is “robust” for many different survival
analysis situations.
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. ML estimation: maximize a

partial likelihood
L = joint probability of
observed data = L(f3)

. Hazard ratio formula:

HR = exp [i B (X — Xi):|

i=1

. Adjusted survival curves: 0 or 1

Comparing E groups:

N N explB1E+Y BiXi]
S, X) = [So(r)] il

Single curve:

3(6.X) = [S(1)]oPLE BiXi]

. PH assumption:

h(t,X*)
h(t,X)

ie, h(t,X*) = 0h(t,X)
Hazards cross = PH not met

— 0 (a constant over ?)

. Cox PH likelihood

We then discussed ML estimation of the pa-
rameters in the Cox model, and pointed out
that the ML procedure maximizes a “partial”
likelihood that focuses on probabilities at fail-
ure times only.

Next, we gave a general formula for estimat-
ing a hazard ratio that compared two speci-
fications of the X’s, defined as X* and X. We
illustrated the use of this formula when com-
paring two exposure groups adjusted for other
variables.

We then defined an adjusted survival curve
and presented formulas for adjusted curves
comparing two groups adjusted for other vari-
ables in the model and a formula for a single
adjusted curve that adjusts for all X’s in the
model. Computer packages for these formulae
use the mean value of each X being adjusted
in the computation of the adjusted curve.

We described the PH assumption as meaning
that the hazard ratio is constant over time, or
equivalently that the hazard for one individual
is proportional to the hazard for any other in-
dividual, where the proportionality constant is
independent of time. We also showed that for
study situations in which the hazards cross,
the PH assumption is not met.

Finally, we describe how the Cox likelihood is
developed using the ordered failure times from
the data.

Chapters

1.

Introduction to Survival
Analysis

. Kaplan-Meier Survival Curves

and the Log—Rank Test

Model and Its Characteristics

.|The Cox Proportional Hazards]

. Evaluating the Proportional

Hazards Assumption

. The Stratified Cox Procedure
. Extension of the Cox

Proportional Hazards Model for
Time-Dependent Variables

This presentation is now complete. We recom-
mend that the reader review the detailed outline
that follows and then do the practice exercises and
test.

The next Chapter (4) describes how to evaluate the
PH assumption. Chapters 5 and 6 describe meth-
ods for carrying out the analysis when the PH as-
sumption is not met.
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I. A computer example using the Cox PH model
(pages 86-94)

II.

III.

IV.

A

B.

C.
D.

Printout shown for three models involving
leukemia remission data.

Three explanatory variables of interest: treatment
status, log WBC, and product term; outcome is
time until subject goes out of remission.
Discussion of how to evaluate which model is best.
Similarity to classical regression and logistic
regression.

The formula for the Cox PH model (pages 94-96)

A.

E.

F.

7t X) = holt) exp [i fsixl}
i=1

ho(t) is called the baseline hazard function.

X denotes a collection of p explanatory variables
X1, Xo, ... X,.

The model is semiparametric because (t) is
unspecified.

Examples of the Cox model using the leukemia
remission data.

Survival curves can be derived from the Cox PH
model.

Why the Cox PH model is popular (pages 96-98)

A.

B.

Can get an estimate of effect (the hazard ratio)
without needing to know /(t).

Can estimate /(t), h(z,X), and survivor functions,
even though /(t) is not specified.

. The e part of the formula is used to ensure that the

fitted hazard is nonnegative.

. The Cox model is “robust”: it usually fits the data

well no matter which parametric model is
appropriate.

ML estimation of the Cox PH model (pages 98-100)

A.
B.

Likelihood function is maximized.

L is called a partial likelihood, because it uses
survival time information only on failures, and
does not use censored information explicitly.

. L makes use of the risk set at each time that a

subject fails.

. Inferences are made using standard large sample

ML techniques, e.g., Wald or likelihood ratio tests
and large sample confidence intervals based on
asymptotic normality assumptions
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V. Computing the hazard ratio (pages 100-103)
A. Formula for hazard ratio comparing two
individuals, X* = (X}, X3, ..., X;‘,) and
X = (Xl,Xz, ...,Xp)I

h(t,X*) o
X exp |:; i (X7 — Xi):|

B. Examples are given using a (0,1) exposure variable,
potential confounders, and potential effect
modifiers.

C. Typical coding identifies X* as the group with the
larger hazard and X as the group with the smaller
hazard, e.g., X| = 1 for unexposed group and
X1 = 0 for exposed group.

VI. Adjusted survival curves using the Cox PH model

(pages 103-107)

A. Survival curve formula can be obtained from
hazard ratio formula:

S(t, X) = [So(t)]e*PLE PiXi]
where Sy(¢) is the baseline survival function that
corresponds to the baseline hazard function /(z).
B. To graph S(¢,X), must specify values for
X = (X1, X, ... X,).
C. To obtain “adjusted” survival curves, usually use
overall mean values for the X’s being adjusted.

D. Examples of “adjusted” S(¢, X) using leukemia
remission data.

VII. The meaning of the PH assumption (pages 107-111)

A. Hazard ratio formula shows that hazard ratio is
independent of time:

h(t,X*)
h(t,X)

B. Baseline hazard function not involved in the HR
formula.

C. Hazard ratio for two X's are proportional:
h(t,X*) =0 h(t,X)

D. An example when the PH assumption is not
satisfied: hazards cross

VIII. Cox likelihood (pages 111-115)
A. Lottery Example
B. Likelihood based on order of events
IX. Summary (pages 115-116)
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1. In a 10-year follow-up study conducted in Evans County,
Georgia, involving persons 60 years or older, one research
question concerned evaluating the relationship of social sup-
port to mortality status. A Cox proportional hazards model
was fit to describe the relationship of a measure of social
network to time until death. The social network index was
denoted as SNI, and took on integer values between 0 (poor
social network) to 5 (excellent social network). Variables to
be considered for control in the analysis as either potential
confounders or potential effect modifiers were AGE (treated
continuously), RACE (0,1), and SEX (0,1).

a. State an initial PH model that can be used to assess the
relationship of interest, which considers the potential
confounding and interaction effects of the AGE, RACE,
and SEX (assume no higher than two-factor products
involving SNI with AGE, RACE, and SEX).

b. For your model in part 1a, give an expression for the
hazard ratio that compares a person with SNI = 4 to a
person with SNI = 2 and the same values of the
covariates being controlled.

c. Describe how you would test for interaction using your
model in part 1a. In particular, state the null
hypothesis, the general form of your test statistic, with
its distribution and degrees of freedom under the null
hypothesis.

d. Assuming a revised model containing no interaction
terms, give an expression for a 95% interval estimate
for the adjusted hazard ratio comparing a person with
SNI = 4 to a person with SNI = 2 and the same values
of the covariates in your model.

e. For the no-interaction model described in part 1d, give
an expression (i.e., formula) for the estimated survival
curve for a person with SNI = 4, adjusted for AGE,
RACE, and SEX, where the adjustment uses the overall
mean value for each of the three covariates.

f. Using the no-interaction model described in part 1d, if
the estimated survival curves for persons with SNI = 4
and SNI = 2 adjusted for (mean) AGE, RACE, and SEX
are plotted over time, will these two estimated survival
curves cross? Explain briefly.
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2. For this question, we consider the survival data for 137 pa-
tients from the Veteran’s Administration Lung Cancer Trial
cited by Kalbfleisch and Prentice in their book (The Statis-
tical Analysis of Survival Time Data, Wiley, 1980). The vari-
ables in this dataset are listed as follows:

Variable# Variable name Coding
1 Treatment Standard = 1, test =2
Four 2 Cell type 1 Large = 1, other = 0
indicator 3 Cell type 2 Adeno = 1, other = 0
variables 4 Cell type 3 Small = 1, other =0
for cell type 5 Cell type 4 Squamous = 1, other =0
6 Survival time  (Days) integer counts
7 Performance 0 = worst, ..., 100 = best
status
8 Disease (Months) integer counts
duration
9 Age (Years) integer counts
10 Prior therapy None = 0, some = 10
11 Status 0 = censored, 1 = died
For these data, a Cox PH model was fitted yielding the fol-
lowing edited computer results:
Response: survival time
Variable
name Coef. Std.Err. p > |z| Haz Ratio [95% Conf. interval]
1 Treatment 0.290  0.207 0.162 1.336 0.890 2.006
3 Adeno cell 0.789  0.303 0.009 2.200 1.216 3.982
4 Small cell 0.457  0.266 0.086 1.579 0.937 2.661
5 Squamous cell —0.400  0.283 0.157 0.671 0.385 1.167
7 Perf. status —0.033  0.006 0.000 0.968 0.958 0.978
8 Disease dur. 0.000  0.009 0.992 1.000 0.982 1.018
9 Age —0.009  0.009 0.358 0.991 0.974 1.010
10 Prior therapy 0.007  0.023 0.755 1.007 0.962 1.054

Log likelihood = —475.180

a. State the Cox PH model used to obtain the above

computer results.

b. Using the printout above, what is the hazard ratio that
compares persons with adeno cell type with persons
with large cell type? Explain your answer using the
general hazard ratio formula for the Cox PH model.
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c. Using the printout above, what is the hazard ratio that
compares persons with adeno cell type with persons
with squamous cell type? Explain your answer using
the general hazard ratio formula for the Cox PH
model.

d. Based on the computer results, is there an effect of
treatment on survival time? Explain briefly.

e. Give an expression for the estimated survival curve for
a person who was given the test treatment and who
had a squamous cell type, where the variables to be
adjusted are performance status, disease duration,
age, and prior therapy.

f. Suppose a revised Cox model is used which contains,
in addition to the variables already included, the
product terms: treatment x performance status;
treatment x disease duration; treatment x age; and
treatment x prior therapy. For this revised model, give
an expression for the hazard ratio for the effect of
treatment, adjusted for the other variables in the
model.

. The data for this question contain survival times of 65
multiple myeloma patients (references: SPIDA manual,
Sydney, Australia, 1991; and Krall et al., “A Step-up
Procedure for Selecting Variables Associated with Survival
Data,” Biometrics, vol. 31, pp. 49-57, 1975). A partial list of
the variables in the dataset is given below:

Variable 1: observation number

Variable 2: survival time (in months) from time of
diagnosis

Variable 3: survival status (0 = alive, 1 = dead)

Variable 4: platelets at diagnosis (0 = abnormal,
1 = normal)

Variable 5: age at diagnosis (years)
Variable 6: sex (1 = male, 2 = female)
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Below, we provide edited computer results for several
different Cox models that were fit to this dataset. A number
of questions will be asked about these results.

Model 1:

Variable Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval]

Platelets 0.470  2.854 .869 1.600 0.006  429.689

Age 0.000  0.037 .998 1.000 0.930 1.075

Sex 0.183 0.725 .801 1.200 0.290 4.969

Platelets x age —0.008  0.041 .850 0.992 0.915 1.075

Platelets x sex —0.503 0.804 532 0.605 0.125 2.924
Log likelihood = —153.040

Model 2:

Platelets —0.725 0.401 071 0.484 0.221 1.063

Age —0.005 0.016 740 0.995 0.965 1.026

Sex —0.221 0.311 478 0.802 0.436 1.476
Log likelihood = —153.253

Model 3:

Platelets —0.706  0.401 .078 0.493 0.225 1.083

Age —0.003 0.015 .828 0.997 0.967 1.027
Log likelihood = —153.509

Model 4:

Platelets —0.705 0.397 076 0.494 0.227 1.075

Sex —-0.204  0.307 .506 0.815 0.447 1.489
Log likelihood = —153.308

Model 5:

Platelets —-0.694  0.397 .080 0.500 0.230 1.088

Log likelihood = —153.533

a.

For model 1, give an expression for the hazard ratio
for the effect of the platelet variable adjusted for age
and sex.

. Using your answer to part 3a, compute the estimated

hazard ratio for a 40-year-old male. Also compute the
estimated hazard ratio for a 50-year-old female.

. Carry out an appropriate test of hypothesis to evaluate

whether there is any significant interaction in model 1.
What is your conclusion?

. Considering models 2-5, evaluate whether age and sex

need to be controlled as confounders?

Which of the five models do you think is the best
model and why?

Based on your answer to part 3e, summarize the
results that describe the effect of the platelet variable
on survival adjusted for age and sex.
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Consider a hypothetical two-year study to investigate
the effect of a passive smoking intervention program
on the incidence of upper respiratory infection (URI) in
newborn infants. The study design involves the random
allocation of one of three intervention packages (A, B, C)
to all healthy newborn infants in Orange County, North
Carolina, during 1985. These infants are followed for two
years to determine whether or not URI develops. The
variables of interest for using a survival analysis on these
data are:

T = time (in weeks) until URI is detected or time until
censored
s = censorship status (= 1 if URI is detected, = 0 if
censored)
PS = passive smoking index of family during the week of
birth of the infant
DC = daycare status (= 1 if outside daycare, = 0 if only
daycare is in home)
BF = breastfeeding status (= 1 if infant is breastfed, = 0
if infant is not breastfed)
T, = first dummy variable for intervention status (= 1 if
A =0ifB,=—-1ifC)
T, = second dummy variable for intervention status (= 1
ifB,=0ifA, = —-1if C).

a. State the Cox PH model that would describe the
relationship between intervention package and survival
time, controlling for PS, DC, and BF as confounders
and effect modifiers. In defining your model, use only
two factor product terms involving exposure (i.e.,
intervention) variables multiplied by control variables
in your model.

b. Assuming that the Cox PH model is appropriate, give a
formula for the hazard ratio that compares a person in
intervention group A with a person in intervention
group C, adjusting for PS, DC, and BF, and assuming
interaction effects.

¢. Assuming that the PH model in part 1a is appropriate,
describe how you would carry out a chunk test for
interaction; i.e., state the null hypothesis, describe the
test statistic and give the distribution of the test
statistic and its degrees of freedom under the null
hypothesis.
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d. Assuming no interaction effects, how would you test
whether packages A, B, and C are equally effective,
after controlling for PS, DC, and BF in a Cox PH model
without interaction terms (i.e., state the two models
being compared, the null hypothesis, the test statistic,
and the distribution of the test statistic under the null
hypothesis).

e. For the no-interaction model considered in parts 1¢
and 1d, give an expression for the estimated survival
curves for the effect of intervention A adjusted for PS,
DC, and BF. Also, give similar (but different)
expressions for the adjusted survival curves for
interventions B and C.

2. The data for this question consists of a sample of 50 per-
sons from the 1967-1980 Evans County Study. There are
two basic independent variables of interest: AGE and
chronic disease status (CHR), where CHR is coded as
0 =none, 1 = chronic disease. A product term of the form
AGE x CHR is also considered. The dependent variable
is time until death, and the event is death. The primary
question of interest concerns whether CHR, considered
as the exposure variable, is related to survival time, con-
trolling for AGE. The edited output of computer results
for this question is given as follows:

Model 1:

Variable Coef. Std. Err. Chi-sq p > |z|

CHR 0.8595 0.3116 7.61 .0058
Log likelihood = —142.87

Model 2:

CHR 0.8051 0.3252 6.13 .0133

AGE 0.0856 0.0193 19.63 .0000
Log likelihood = —132.45

Model 3:

CHR 1.0009 2.2556 0.20 .6572

AGE 0.0874 0.0276 10.01 .0016

CHR x AGE  —0.0030 0.0345 0.01 9301
Log likelihood = —132.35
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a. State the Cox PH model that allows for main effects of
CHR and AGE as well as the interaction effect of CHR
with AGE.

b. Carry out the test for significant interaction; i.e., state
the null hypothesis, the test statistic, and its
distribution under the null hypothesis. What are your
conclusions about interaction?

c¢. Assuming no interaction, should AGE be controlled?
Explain your answer on the basis of confounding
and/or precision considerations.

d. If, when considering plots of various hazard functions
over time, the hazard function for persons with
CHR = 1 crosses the hazard function for persons with
CHR = 0, what does this indicate about the use of any
of the three models provided in the printout?

e. Using model 2, give an expression for the estimated
survival curve for persons with CHR = 1, adjusted for
AGE. Also, give an expression for the estimated survival
curve for persons with CHR = 0, adjusted for AGE.

f. What is your overall conclusion about the effect of
CHR on survival time based on the computer results
provided from this study?

. The data for this question contain remission times of
42 multiple leukemia patients in a clinical trial of a new
treatment. The variables in the dataset are given below:

Variable 1: survival time (in weeks)

Variable 2: status (1 = in remission, 0 = relapse)
Variable 3: sex (1 = female, 0 = male)

Variable 4: log WBC

Variable 5: Rx status (1 = placebo, 0 = treatment)
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Below, we provide computer results for several different
Cox models that were fit to this dataset. A number of ques-
tions will be asked about these results starting below.

Model 1:

Variable Coef. Std.Err. p > |z| Haz. Ratio [95% Conf.Interval]

Rx 0.894 1.815 .622 2.446 0.070 85.812

Sex —1.012 0.752 178 0.363 0.083 1.585

log WBC 1.693  0.441 .000 5.437 2.292 12.897

Rx x Sex 1.952 0.907 .031 7.046 1.191 41.702

Rx x logWBC —0.151 0.531 776 0.860 0.304 2.433
Log likelihood = —69.515

Model 2:

Rx 0.405  0.561 470 1.500 0.499 4,507

Sex —1.070 0.725 140 0.343 0.083 1.422

log WBC 1.610 0.332 .000 5.004 2.610 9.592

Rx x Sex 2.013 0.883 .023 7.483 1.325 42.261
Log likelihood = —69.555

Model 3:

Rx 0.587 0.542 279 1.798 0.621 5.202

Sex —1.073 0.701 126 0.342 0.087 1.353

Rx x Sex 1.906 0.815 .019 6.726 1.362 33.213
Log likelihood = —83.475

Model 4:

Rx 1.391 0.457 .002 4.018 1.642 9.834

Sex 0.263 0.449 .558 1.301 0.539 3.139

log WBC 1.594 0.330 .000 4922 2.578 9.397

Log likelihood = —72.109

a. Use the above computer results to carry out a chunk
test to evaluate whether the two interaction terms in
model 1 are significant. What are your conclusions?

b. Evaluate whether you would prefer model 1 or
model 2. Explain your answer.

c. Using model 2, give an expression for the hazard ratio
for the effect of the Rx variable adjusted for SEX and
log WBC.

d. Using your answer in part 3¢, compute the hazard ratio
for the effect of Rx for males and for females separately.

e. By considering the potential confounding of log WBC,
determine which of models 2 and 3 you prefer. Explain.

f. Of the models provided which model do you consider
to be best? Explain.
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e. S(t.X) =[S()
. The two survival curves will not cross, because both
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. l’l(t,X) = ho(l‘)@Xp[Bl SNI + ﬁz AGE + [33 RACE

+ B4 SEX + Bs SNI x AGE + B¢ SNI x RACE
+ B; SNI x SEX]

. HR=exp 2f; +2(AGE)Bs + 2(RACE) B¢ + 2(SEX)p]
. Ho:Bs=Pe¢=p7;=0

Likelihood ratio test statistic: —2InLg — (=2InLF),
which is approximately x? under Hy, where R
denotes the reduced model (containing no product
terms) under Hy, and F denotes the full model (given
in part 1a above).

. 95% CI for adjusted HR:

exp |:2(31 +1.96 x 2,/Var([§1):|

]exp[4f31+<AGE>Bz+<RACE>63+(SEX)B4]

are computed using the same proportional hazards
model, which has the property that the hazard
functions, as well as their corresponding estimated
survivor functions, will not cross.

ch(t,X) =ho(t) exp[B X1 + B3 X3 + ByXs + Bs5Xs

+ B7 X7+ ...+ B1oX10]

. Adeno cell type: X* = (treatment, 1, 0, 0, perfstat,

disdur, age, prther)
Large cell type: X = (treatment, 0, 0, 0, perfstat,
disdur, age, prther)

h(t,X*) P .
HR = hex - [; Bi(Xi — Xi):|

=exp [0+ B3(1 — 0) + B4(0 — 0)
+PB5(0—0)+0+--+0]
= exp[f;] = exp[0.789] = 2.20

. Adeno cell type: X* = (treatment, 1, 0, 0, perfstat,

disdur, age, prther)
Squamous cell type: X = (treatment, 0, 0, 1, perfstat,
disdur, age, prther)

h(t,X*) P .
X exp [; B:(XF — Xi):|

= exp[0+ B3(1 —0) + B4(0—0)
+B5(0—1)+0+---+0]

= exp[f; — Bs] = exp[0.789
— (—0.400)] = exp[1.189] = 3.28

HR =
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d. There does not appear to be an effect of treatment on
survival time, adjusted for the other variables in the
model. The hazard ratio is 1.3, which is close to the
null value of one, the p-value of 0.162 for the Wald
test for treatment is not significant, and the 95%
confidence interval for the treatment effect
correspondingly includes the null value.

e. $(t,X)
— [So(t)]exp[Z[A31+(A35+(per‘fstat)[A37+(disdur)@g+(age)[§9+(prther)[§10]
h(t, X*) .
f. =X - exp[B; + (perfstat)B; + (disdur)B,

+ (age)B 3 + (prther)B 4]
where (3, is the coefficient of the treatment variable
and B11, P12, B3, and PB4 are the coefficients of
product terms involving treatment with the four
variables indicated.

3. a. HR = exp[0.470 + (—0.008)age + (—0.503)sex]
b. 40-year-old male:
HR = exp[0.470 + (—0.008)40 + (—0.503)1] = 0.70

50-year-old Female:

HR = exp[0.470 + (—0.008)50 + (—0.503)2] = 0.39
c. The LR (chunk) test for the significance of both

interaction terms simultaneously yields the following

likelihood ratio statistic which compares models 1

and 2:

LR = [(=2 x —153.253) — (=2 x —153.040)]
= 306.506 — 306.080 = 0.426

This statistic is approximately chi-square with

2 degrees of freedom under the null hypothesis of no
interaction. This LR statistic is highly nonsignificant.
Thus, we conclude that there is no significant
interaction in the model (1).

d. The gold-standard hazard ratio is 0.484, which is
obtained for model 2. Note that model 2 contains no
interaction terms and controls for both covariates of
interest. When either age or sex or both are dropped
from the model, the hazard ratio (for platelets) does
not change appreciably. Therefore, it appears that
neither age nor sex need to be controlled for
confounding.
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e. Models 2-5 are all more or less equivalent, since they
all give essentially the same hazards ratio and
confidence interval for the effect of the platelet
variable. A political choice for best model would be
the gold-standard model (2), because the critical
reviewer can see both age and sex being controlled in
model 2.

f. o The point estimate of the hazard ratio for

normal versus abnormal platelet count is
0.484 = 1/2.07, so that the hazard for an
abnormal count is twice that for a normal
count.

e There is a borderline significant effect of
platelet count on survival adjusted for age
and sex (P = .071).

e The 95% CI for the hazard ratio is given by
0.221 < HR < 1.063, which is quite wide and
therefore shows a very imprecise estimate.
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Introduction We begin with a brief review of the characteristics of the Cox
proportional hazards (PH) model. We then give an overview
of three methods for checking the PH assumption: graphi-
cal, goodness-of-fit (GOF), and time-dependent variable ap-

proaches.

We then focus on each of the above approaches, starting with
graphical methods. The most popular graphical approach in-
volves the use of “log-log” survival curves. A second graphical
approach involves the comparison of “observed” with “ex-

pected” survival curves.

The GOF approach uses a test statistic or equivalent p-value
to assess the significance of the PH assumption. We illustrate
this test and describe some of its advantages and drawbacks.

Finally, we discuss the use of time-dependent variables in an
extended Cox model as a third method for checking the PH
assumption. A more detailed description of the use of time-
dependent variables is provided in Chapter 6.

Abbreviated The outline below gives the user a preview of the material to
Outline be covered by the presentation. A detailed outline for review

purposes follows the presentation.

I. Background (pages 134-135)
II. Checking the PH assumption: Overview

(pages 135-137)

ITII. Graphical approach 1: log-log plots

(pages 137-145)

IV. Graphical approach 2: observed versus expected

plots (pages 145-150)

V. The goodness-of-fit (GOF) testing approach

(pages 151-153)

VI. Assessing the PH assumption using
time-dependent covariates (pages 153-157)
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Upon completing this chapter, the learner should be able to:

L.

State or recognize three general approaches for evaluating

the PH assumption.

Summarize how log-log survival curves may be used to

assess the PH assumption.

Summarize how observed versus expected plots may be

used to assess the PH assumption.

Summarize how GOF tests may be used to assess the PH

assumption.

Summarize how time-dependent variables may be used

to assess the PH assumption.

Describe—given survival data or computer output from a

survival analysis that uses a Cox PH model—how to assess

the PH assumption for one or more variables in the model

using:

a. a graphical approach

b. the GOF approach

c. an extended Cox model with time-dependent
covariates

State the formula for an extended Cox model that pro-

vides a method for checking the PH assumption for one

or more of the time-independent variables in the model,

given survival analysis data or computer output that uses
a Cox PH model.
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Presentation

Evaluating PH:
e graphical

¢ goodness-of-fit
¢ time-dependent
variables

This presentation describes three approaches for
evaluating the proportional hazards (PH) assump-
tion of the Cox model—a graphical procedure, a
goodness-of-fit testing procedure, and a procedure
that involves the use of time-dependent variables.

I. Background

Cox PH model:

h.X) = ho(t)es

X = (X1, X3, ..., X,) explanatory/
predictor variables

P
> BiXi
ho(t) X ei=1

Baseline hazard | Exponential

Involves t but Involves X’s but
not X’s not ¢ (Xs are time-
independent)

X’s involving 7: time-dependent

Requires extended Cox model
(no PH)

Chapter 6

Recall from the previous chapter that the general
form of the Cox PH model gives an expression for
the hazard at time ¢ for an individual with a given
specification of a set of explanatory variables de-
noted by the bold X.

The Cox model formula says that the hazard at
time ¢ is the product of two quantities. The first
of these, h(t), is called the baseline hazard func-
tion. The second quantity is the exponential ex-
pression e to the linear sum of f3;X;, where the
sum is over the p explanatory X variables.

An important feature of this formula, which con-
cerns the proportional hazards (PH) assumption,
is that the baseline hazard is a function of ¢, but
does not involve the X’s, whereas the exponential
expression involves the X’s, but does not involve 7.
The X’s here are called time-independent X’s.

It is possible, nevertheless, to consider X’s that
do involve ¢. Such X’s are called time-dependent
variables. If time-dependent variables are consid-
ered, the Cox model form may still be used, but
such a model no longer satisfies the PH assump-
tion, and is called the extended Cox model. We
will discuss this extended Cox model in Chapter 6
of this series.
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Hazard ratio formula:

— VN

HR :exp[z B (X7 —Xi)]
i=1

where X* = (X}, X3, ..., X})

p
and X = (X, X5, ..., X,)

denote the two sets of X’s.

Adjusted survival curves: 0 or 1
Comparing E groups:

N R explBIE+Y. BiX;]
S(t.X) = [So()] i1

Single curve:

S, X)[So (2]l Bii]

PH assumption:
h(t,X*)
h(t.X)
ie., h(t,X*) = 0h(r,X)

= 0, constant over ¢

Hazards cross = PH not met

Hazards don't cross &% PH met

From the Cox PH model, we can obtain a gen-
eral formula, shown here, for estimating a hazard
ratio that compares two specifications of the X’s,
defined as X* and X.

We can also obtain from the Cox model an expres-
sion for an adjusted survival curve. Here we show
a general formula for obtaining adjusted survival
curves comparing two groups adjusted for other
variables in the model. Below this, we give a for-
mula for a single adjusted survival curve that ad-
justs for all X’s in the model. Computer packages
for these formulae use the mean value of each X
being adjusted in the computation of the adjusted
curve.

The Cox PH model assumes that the hazard ratio
comparing any two specifications of predictors is
constant over time. Equivalently, this means that
the hazard for one individual is proportional to the
hazard for any other individual, where the propor-
tionality constant is independent of time.

The PH assumption is not met if the graph of
the hazards cross for two or more categories of a
predictor of interest. However, even if the hazard
functions do not cross, it is possible that the PH
assumption is not met. Thus, rather than check-
ing for crossing hazards, we must use other ap-
proaches to evaluate the reasonableness of the PH
assumption.

Il. Checking the Proportional
Hazards Assumption:
Overview

Three approaches:

e graphical
e goodness-of-fit test
¢ time-dependent variables

There are three general approaches for assess-
ing the PH assumption, again listed here. We
now briefly overview each approach, starting with
graphical techniques.
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Graphical techniques:
—In(—In) S curves parallel?

—In(-=In) §

Females

Time

Observed vs. predicted: Close?

s

Time
Predicted for males
(sex in model)

——————— Observed for males

Goodness-of-fit (GOF) tests:

e Large sample Z or chi-square
statistics

e Gives p-value for evaluating PH
assumption for each variable in
the model.

p-value large = PH satisfied
(e.g. P> 0.10)

p-value small = PH not satisfied
(e.g. P < 0.05)

Time-dependent covariates:

Extended Cox model:
Add product term involving some
function of time.

There are two types of graphical techniques avail-
able. The most popular of these involves compar-
ing estimated -In(-In) survivor curves over dif-
ferent (combinations of) categories of variables
being investigated. We will describe such curves
in detail in the next section. Parallel curves, say
comparing males with females, indicate that the
PH assumption is satisfied, as shown in this illus-
tration for the variable Sex.

An alternative graphical approach is to compare
observed with predicted survivor curves. The ob-
served curves are derived for categories of the vari-
able being assessed, say, Sex, without putting this
variable in a PH model. The predicted curves are
derived with this variable included in a PH model.
If observed and predicted curves are close, then
the PH assumption is reasonable.

A second approach for assessing the PH assump-
tion involves goodness-of-fit (GOF) tests. This ap-
proach provides large sample Z or chi-square
statistics which can be computed for each vari-
able in the model, adjusted for the other variables
in the model. A p-value derived from a standard
normal statistic is also given for each variable.
This p-value is used for evaluating the PH assump-
tion for that variable. A nonsignificant (i.e., large)
p-value, say greater than 0.10, suggest that the
PH assumption is reasonable, whereas a small
p-value, say less than 0.05, suggests that the vari-
able being tested does not satisfy this assumption.

When time-dependent variables are used to assess
the PH assumption for a time-independent vari-
able, the Cox model is extended to contain prod-
uct (i.e., interaction) terms involving the time-
independent variable being assessed and some
function of time.
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EXAMPLE

h(t, X) = hy(t) exp[P Sex + 8(Sex x )]

4 #0 = PH assumption violated

GOF provides test statistic
Graphical: subjective
Time-dependent: computationally
cumbersome
GOF: global, may not detect
specific departures from PH

For example, if the PH assumption is being as-
sessed for Sex, a Cox model might be extended to
include the variable “Sex x ¢” in addition to Sex. If
the coefficient of the product term turns out to be
significant, we can conclude that the PH assump-
tion is violated for Sex.

The GOF approach provides a single test statis-
tic for each variable being assessed. This ap-
proach is not as subjective as the graphical ap-
proach nor as cumbersome computationally as
the time-dependent variable approach. Neverthe-
less, a GOF test may be too “global” in that it
may not detect specific departures from the PH
assumption that may be observed from the other
two approaches.

Ill. Graphical Approach 1:
Log-Log Plots

o Jog-log survival curves

e observed versus expected
survival curves

log—log S = transformation of S
= —In(-In$)

e InSisnegative = —(In S) is
positive.
e can't take log of In S, but can
take log of (—In S).
e —In(—In S) may be positive or
negative.

The two graphical approaches for checking the PH
assumption are comparing log-log survival curves
and comparing observed versus expected survival
curves. We first explain what a —In —In survival
curve is and how it is used.

A log-log survival curve is simply a transforma-
tion of an estimated survival curve that results
from taking the natural log of an estimated sur-
vival probability twice. Mathematically, we write a
log-log curve as —In(—In S). Note that the log of a
probability such as S is always a negative number.
Because we can only take logs of positive num-
bers, we need to negate the first log before taking
the second log. The value for —In(—In S) may be
positive or negative, either of which is acceptable,
because we are not taking a third log.!

'An equivalent way to write —In(—In8) is —In( for h(u)du),
where for h(u)du is called the “cumulative hazard” function.
This result follows from the formula S (1) = exp[— f(; h(u)dul,
which relates the survivor function to the hazard function (see
p. 14 in Chapter 1).
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EXAMPLE

—ln(—ln)§
é / +oo —/

EXAMPLE

want —In(-In 0.54)

—In(-In 0.54) = -In(0.616)
since In(0.54) = -0.616
-In(0.616) = 0.484
since In(0.616) = —0.484
Thus, (= In(-In 0.54) = 0.484)

ANOTHER EXAMPLE

want —In(-In 0.25)

-In(-In 0.25) = -In(1.386) = -0.327
Thus, (CIn(-In 0.25) =-0.327 )

y-axis scale:

1

A

S —In(=In)S

(e}

—00

log-log § for the Cox PH model:

As an example, in the graph at left, the estimated
survival probability of 0.54 is transformed to a log-
log value of 0.484. Similarly, the point 0.25 on the
survival curve is transformed to a —In —In value
of —0.327.

Note that because the survival curve is usually
plotted as a step function, so will the log-log curve
be plotted as a step function.

To illustrate the computation of a log-log value,
suppose we start with an estimated survival prob-
ability of 0.54. Then the log-log transformation of
this value is —In(—In 0.54), which is —In(0.616),
because In(0.54) equals —0.616. Now, contin-
uing further, —In(0.616) equals 0.484, because
In(0.616) equals —0.484. Thus, the transformation
—In(—In 0.54) equals 0.484.

As another example, if the estimated survival
probability is 0.25, then —In(—In 0.25) equals
—In(1.386), which equals —0.327.

Note that the scale of the y-axis of an estimated
survival curve ranges between 0 and 1, whereas the
corresponding scale for a —In(—In) curve ranges
between —oo and +o0.

We now show why the PH assumption can be as-
sessed by evaluating whether or not log-log curves
are parallel. To do this, we must first describe the
log-log formula for the Cox PH model.
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Cox PH hazard function:

i BjX;
h(t,X) = ho(t)ei=!

From math
Cox PH survival function:

P
> BjXj

S.X) = [S®)F™

Baseline survival function.

log-log = takes logs twice

log #1:

i Bi Xi
InS(t,X) =ei=t x In Sy(¢)
0<S#X) <1

In(probability) = negative value,
so In S(¢,X) and In Sy(¢) are

negative.

But —In S(¢,X) is positive, which
allows us to take logs again.

log #2:

In[—In S(¢, X)]
=In |: — eigl b x In So(t)]

—In |:ei§ BiXi:| + In[—In Sy(1)]
4
= > B;X; + In[—In Sy(1)]
i=1

—In[—In S(z,X)]
P
= — Z B; X; — In[—In Sp(z)]
i=1

or

In[—In S(¢, X)]
)4
=+ B:Xi +In[-InS(t)]
i=1

We start with the formula for the survival curve
that corresponds to the hazard function for the
Cox PH model. Recall that there is a mathemati-
cal relationship between any hazard function and
its corresponding survival function. We therefore
can obtain the formula shown here for the sur-
vival curve for the Cox PH model. In this formula,
the expression Sy(t) denotes the baseline survival
function that corresponds to the baseline hazard
function hg(2).

The log-log formula requires us to take logs of this
survival function twice. The first time we take logs
we get the expression shown here.

Now since S(z,X) denotes a survival probability, its
value for any ¢ and any specification of the vector
X will be some number between 0 and 1. It follows
that the natural log of any number between 0 and
1 is a negative number, so that the log of S(¢, X) as
well as the log of Sy() are both negative numbers.
This is why we have to put a minus sign in front of
this expression before we can take logs a second
time, because there is no such thing as the log of
a negative number.

Thus, when taking the second log, we must obtain
the log of —In S(¢,X), as shown here. After using
some algebra, this expression can be rewritten as
the sum of two terms, one of which is the linear
sum of the (3;X; and the other is the log of the
negative log of the baseline survival function.

This second log may be either positive or nega-
tive, and we aren’t taking any more logs, so we
actually don't have to take a second negative. How-
ever, for consistency’s sake, a common practice is
to put a minus sign in front of the second log to ob-
tain the —In —In expression shown here. Neverthe-
less, some software packages do not use a second
minus sign.
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Two individuals:

= (X1, X2, ..., X1p)

= (Xa21, X202, ..., X3p)
—In[—In S(z,X;)]

—— 3B,y ~Inl-In ()
—ln[—llrIS(t,Xz)]

== 3 By - $,0)]

—In[—In S(#,X;)]
— (=In[-In S(z, X3)])

- ZB (X21

does not involve ¢

Xlz

—In[—In S(¢,X)]
= —In[—In S(¢, X;)]

‘Fé B;(X2 — X1;)

—In[-In 8]

ZBZ(XZI Xlz

Graphical approach using log-log
plots: PH model is appropriate if
“empirical” plots of log-log survival
curves are parallel.

Now suppose we consider two different specifica-
tions of the X vector, corresponding to two differ-
ent individuals, X; and X,.

Then the corresponding log-log curves for these
individuals are given as shown here, where we
have simply substituted X; and X, for X in the
previous expression for the log-log curve for any
individual X.

Subtracting the second log-log curve from the first
yields the expression shown here. This expression
is a linear sum of the differences in corresponding
predictor values for the two individuals. Note that
the baseline survival function has dropped out, so
that the difference in log-log curves involves an
expression that does not involve time .

Alternatively, using algebra, we can write the
above equation by expressing the log-log survival
curve for individual X; as the log-log curve for
individual X, plus a linear sum term that is inde-
pendent of ¢.

The above formula says that if we use a Cox PH
model and we plot the estimated log-log survival
curves for individuals on the same graph, the two
plots would be approximately parallel. The dis-
tance between the two curves is the linear expres-
sion involving the differences in predictor values,
which does not involve time. Note, in general, if
the vertical distance between two curves is con-
stant, then the curves are parallel.

The parallelism of log-log survival plots for the
Cox PH model provides us with a graphical ap-
proach for assessing the PH assumption. That is,
if a PH model is appropriate for a given set of pre-
dictors, one should expect that empirical plots of
log-log survival curves for different individuals
will be approximately parallel.
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Empirical plots: use —In[—InS]
where

1. Sisa KM curve

2. S is an adjusted survival curve
for predictors satisfying the PH
assumption; predictor being
assessed not included in model

EXAMPLE

Clinical trial of leukemia patients:
T = weeks until patient goes out of
remission

Predictors (X’s):
Rx (= 1 if placebo, 0 if treatment)
log WBC

Cox PH model:

h(t,X) = hy(t)exp[B;Rx + B,log WBC]
Assessing PH assumption:

compare log—log survival curves for
categories of Rx and log WBC

One-at-a-time strategy: Rx variable
-In-In §

_____
_____

o, —  L_Low
g Medium

141

By empirical plots, we mean plotting log-log sur-
vival curves based on Kaplan-Meier (KM) esti-
mates that do not assume an underlying Cox
model. Alternatively, one could plot log-log sur-
vival curves which have been adjusted for predic-
tors already assumed to satisfy the PH assumption
but have not included the predictor being assessed
in a PH model.

As an example, suppose we consider the compari-
son of treatment and placebo groups in a clinical
trial of leukemia patients, where survival time is
time, in weeks, until a patient goes out of remis-
sion. Two predictors of interest in this study are
treatment group status (1 = placebo, 0 = treat-
ment), denoted as Rx, and log white blood cell
count (log WBC), where the latter variable is being
considered as a confounder.

A Cox PH model involving both these predictors
would have the form shown at the left. To assess
whether the PH assumption is satisfied for either
or both of these variables, we would need to com-
pare log-log survival curves involving categories
of these variables.

One strategy to take here is to consider the vari-
ables one at a time. For the Rx variable, this
amounts to plotting log-log KM curves for treat-
ment and placebo groups and assessing paral-
lelism. If the two curves are approximately par-
allel, as shown here, we would conclude that the
PH assumption is satisfied for the variable Rx. If
the two curves intersect or are not parallel in some
other way, we would conclude that the PH assump-
tion is not satisfied for this variable.

For the log WBC variable, we need to categorize
this variable into categories—say, low, medium,
and high—and then compare plots of log-log KM
curves for each of the three categories. In this il-
lustration, the three log-log Kaplan-Meier curves
are clearly nonparallel, indicating that the PH as-
sumption is not met for log WBC.
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EXAMPLE: Computer Results

Remission data:
log-log KM curves by Rx

Treatment

Placebo

Remission data: log-log
KM curves by log WBC

________

Remission data: log-log
KM curves by Sex

Problems with log-log survival
curve approach:

How parallel is parallel?
Recommend:

e subjective decision

e conservative strategy: assume
PH is OK unless strong evidence
of nonparallelism

The above examples are sketches of some of the
possibilities that could occur from comparisons of
log-log curves. For the actual data set containing
42 leukemia patients, computer results are shown
here for each variable separately. Similar output
using Stata, SAS, and SPSS packages is provided
in the Computer Appendix.

We first show the log-log KM curves by treatment,
Rx. Notice that the two log-log curves are roughly
parallel, indicating that the Rx variable satisfies
the PH assumption when being considered by it-
self.

Here we show the log-log KM curves by log WBC,
where we have divided this variable into low (be-
low 2.3), medium (between 2.3 and 3), and high
(above 3) values. Notice that there is some indi-
cation of nonparallelism below 8 days, but that
overall the three curves are roughly parallel. Thus,
these plots suggest that the PH assumption is more
or less satisfied for the variable log WBC, when
considered alone.

As a third example, we consider the log-log KM
plots categorized by Sex from the remission data.
Notice that the two curves clearly intersect, and
are therefore noticeably nonparallel. Thus, the
variable, Sex, when considered by itself, does not
appear to satisfy the PH assumption and therefore
should not be incorporated directly into a Cox PH
model containing the other two variables, Rx and
log WBC.

The above examples suggest that there are some
problems associated with this graphical approach
for assessing the PH assumption. The main prob-
lem concerns how to decide “how parallel is par-
allel?” This decision can be quite subjective for a
given data set, particularly if the study size is rel-
atively small. We recommend that one should use
a conservative strategy for this decision by assum-
ing the PH assumption is satisfied unless there is
strong evidence of nonparallelism of the log-log
curves.
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How to categorize a continuous
variable?

e many categories = data “thins
out”

o (different categorizations may
give different graphical pictures

Recommend:

e small # of categories (2 or 3)
e meaningful choice

e reasonable balance (e.g.,
terciles)

How to evaluate several variables si-
multaneously?

Strategy:

e categorize variables separately
e form combinations of categories

e compare log-log curves on same
graph

Drawback:

e data “thins out”

o difficult to identify variables
responsible for nonparallelism

EXAMPLE

Remission Data

log WBC
Rx Low Medium High
Treatment I v v
Placebo e P P

Another problem concerns how to categorize a
continuous variable like log WBC. If many cat-
egories are chosen, the data “thins out” in each
category, making it difficult to compare different
curves. [Also, one categorization into, say, three
groups may give a different graphical picture from
a different categorization into three groups.]

In categorizing continuous variables, we recom-
mend that the number of categories be kept rea-
sonably small (e.g., two or three) if possible, and
that the choice of categories be as meaningful as
possible and also provide reasonable balance of
numbers (e.g., as when using terciles).

In addition to the two problems just described,
another problem with using log-log survival plots
concerns how to evaluate the PH assumption for
several variables simultaneously.

One strategy for simultaneous comparisons is to
categorize all variables separately, form combi-
nations of categories, and then compare log-log
curves for all combinations on the same graph.

A drawback of this strategy is that the data will
again tend to “thin out” as the number of com-
binations gets even moderately large. Also, even
if there are sufficient numbers for each combined
category, it is often difficult to determine which
variables are responsible for any nonparallelism
that might be found.

As an example of this strategy, suppose we use the
remission data again and consider both Rx and
log WBC together. Because we previously had two
categories of Rx and three categories of log WBC,
we get a total of six combined categories, consist-
ing of treated subjects with low log WBC, placebo
subjects with low log WBC, treated subjects with
medium log WBC, and so on.
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EXAMPLE (continued)

Log-log KM curves by six combinations of
Rx by log WBC

Plots suggest PH not satisfied. However,
the study is small, i.e., plots are unreliable.

Alternative strategy:

Adjust for predictors already
satisfying PH assumption, i.e., use
adjusted log—log S curves

EXAMPLE

Remission data:

e compare Rx categories adjusted for log
WBC

e fit PH model for each Rx stratum

e obtain adjusted survival curves using
overall mean of log WBC

Log-log S curves for Rx groups using PH
model adjusted for log WBC

Treatment

Placebo

_25..|..|.....
0 8 16 24 32

The computer results are shown here for the log-
log curves corresponding to each of the six com-
binations of Rx with log WBC. Notice that there
are several points of intersection among the six
curves. Therefore, these results suggest that the
PH assumption is not satisfied when considering
Rx and log WBC together.

However, the sample sizes used to estimate these
curves are quite small, ranging between four sub-
jects for group 4 (Rx = 1,log WBC = low) to
twelve subjects for group 6 (Rx = 1,log WBC =
high), with the total study size being 42. Thus, for
this small study, the use of six log-log curves pro-
vides unreliable information for assessing the PH
assumption.

An alternative graphical strategy for considering
several predictors together is to assess the PH as-
sumption for one predictor adjusted for other pre-
dictors that are assumed to satisfy the PH assump-
tion. Rather than using Kaplan-Meier curves, this
involves a comparison of adjusted log-log survival
curves.

As an example, again we consider the remission
data and the predictors Rx and log WBC. To as-
sess the PH assumption for Rx adjusted for log
WBC, we would compare adjusted log-log survival
curves for the two treatment categories, where
each adjusted curve is derived from a PH model
containing log WBC as a predictor. In computing
the adjusted survival curve, we need to stratify the
data by treatment, fit a PH model in each stratum,
and then obtain adjusted survival probabilities us-
ing the overall mean log WBC in the estimated sur-
vival curve formula for each stratum.

For the remission data example, the estimated
log-log survival curves for the two treatment
groups adjusted for log WBC are shown here. No-
tice that these two curves are roughly parallel, in-
dicating that the PH assumption is satisfied for
treatment.
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EXAMPLE (continued)

Log-log S curves for log WBC groups using
PH model adjusted for Rx

Remission data:

Assess PH assumption for Sex:

¢ use PH model containing Rx and log WBC

¢ use Rx and log WBC in survival
probability formula

Log-log Scurves for Sex adjusted for Rx and
log WBC

L SRS I NV, B NN |
T T T o

v 1. log-log survival curves

2. observed versus expected
survival curves

As another example, we consider adjusted log-log
survival curves for three categories of log WBC, ad-
justed for the treatment status (Rx) variable. The
adjusted survival probabilities in this case use the
overall mean Rx score, i.e., 0.5, the proportion of
the 42 total subjects that are in the placebo group
(i.e., half the subjects have a score of Rx = 1).

The three log-log curves adjusted for treatment
status are shown here. Although two of these
curves intersect early in follow-up, they do not sug-
gest a strong departure from parallelism overall,
suggesting that the PH assumption is reasonable
for log WBC, after adjusting for treatment status.

As a third example, again using the remission data,
we assess the PH assumption for Sex, adjusting for
both treatment status and log WBC in the model.
This involves obtaining log-log survival curves for
males and females separately, using a PH model
that contains both treatment status and log WBC.
The adjustment uses the overall mean treatment
score and the overall mean log WBC score in the
formula for the estimated survival probability.

The estimated log-log survival curves for Sex, ad-
justed for treatment and log WBC are shown here.
These curves clearly cross, indicating that the PH
assumption is not satisfied for Sex, after adjusting
for treatment and log WBC.

We have thus described and illustrated one of the
two graphical approaches for checking the PH as-
sumption, that is, using log-log survival plots. In
the next section, we describe an alternative ap-
proach that compares “observed” with “expected”
survival curves.

IV. Graphical Approach 2:
Observed Versus
Expected Plots

Graphical analog of GOF test

The use of observed versus expected plots to as-
sess the PH assumption is the graphical analog of
the goodness-of-fit (GOF) testing approach to be
described later, and is therefore a reasonable alter-
native to the log-log survival curve approach.
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Two strategies:

1. One-at-a-time: uses KM curves to

obtain observed plots
2. Adjusting for other variables:

uses stratified Cox PH model to

obtain observed plots (see
Chapter 5)

One-at-a-time:

e stratify data by categories of
predictor

e obtain KM curves for each
category

EXAMPLE: Remission Data

KM (Observed) Plots by Rx Group

S
i

0.8
0.6
0.4
0.2

Treatment

0 8 16 24 32
Weeks

Expected Survival Plots by Rx Group

Using PH Model

L, X) = ho(t) PR
1 2 o exp[B.Rx]
| S-Syl

Treatment

Placebo

0 8 16 24 32
Weeks

As with the log-log approach, the observed versus
expected approach may be carried out using ei-
ther or both of two strategies—(1) assessing the
PH assumption for variables one-at-a-time, or (2)
assessing the PH assumption after adjusting for
other variables. The strategy which adjusts for
other variables uses a stratified Cox PH model to
form observed plots, where the PH model contains
the variables to be adjusted and the stratified vari-
able is the predictor being assessed. The stratified
Cox procedure is described in Chapter 5.

Here, we describe only the one-at-a-time strat-
egy, which involves using KM curves to obtain ob-
served plots.

Using the one-at-a-time strategy, we first must
stratify our data by categories of the predictor to
be assessed. We then obtain observed plots by de-
riving the KM curves separately for each category.

As an example, for the remission data on 42
leukemia patients we have illustrated earlier, the
KM plots for the treatment and placebo groups,
with 21 subjects in each group, are shown here.
These are the “observed” plots.

To obtain “expected” plots, we fit a Cox PH model
containing the predictor being assessed. We ob-
tain expected plots by separately substituting the
value for each category of the predictor into the
formula for the estimated survival curve, thereby
obtaining a separate estimated survival curve for
each category.

As an example, again using the remission data, we
fit the Cox PH model with Rx as its only variable.
Using the corresponding survival curve formula
for this Cox model, as given in the box at the left,
we then obtain separate expected plots by substi-
tuting the values of 0 (for treatment group) and 1
(for placebo group). The expected plots are shown
here.
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EXAMPLE (continued)

Observed Versus Expected Plots by Rx

Expected
Observed

0.8F

0.6F

Treatment

0.4F
0.2 - Placebo
0 E 1 1 1 1 1 1 1 i T T 1
0 8 16 24 32

If observed and expected plots are:

e close, complies with PH
assumption

e discrepant, PH assumption
violated

EXAMPLE: Remission Data (continued)

Observed and expected plots are close
for each treatment group.

Conclude PH assumption not violated.

Drawback: How close is close?

Recommend: PH not satisfied only
when plots are strongly discrepant.
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To compare observed with expected plots we then
put both sets of plots on the same graph as shown
here.

If for each category of the predictor being as-
sessed, the observed and expected plots are “close”
to one another, we then can conclude that the PH
assumption is satisfied. If, however, one or more
categories show quite discrepant observed and ex-
pected plots, we conclude that the PH assumption
is violated.

For the example shown above, observed and ex-
pected curves appear to be quite close for each
treatment group. Thus, we would conclude using
this graphical approach that the treatment vari-
able satisfies the PH assumption.

An obvious drawback to this graphical approach
is deciding “how close is close” when comparing
observed versus expected curves for a given cat-
egory. This is analogous to deciding “how par-
allel is paralle]” when comparing log-log sur-
vival curves. Here, we recommend that the PH
assumption be considered as not satisfied only
when observed and expected plots are strongly
discrepant.
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EXAMPLE: Remission Data

Observed Versus Expected Plots by Sex

Expected
Observed

Males

PH assumption not satisfied for Sex.

Same conclusion as with log-log curves.

Continuous variable:

e form strata from categories

e observed plots are KM curves
for each category

e two options for expected plots
1. Use PH model with k — 1
dummy variables X; for k
categories, i.e.,

k—1
030 = ho) exp( 38X

i=1
Obtain adjusted survival
curve:

$(t.X,) = [Sy(t)]PEBiXe)

where

Xc = (Xcl’ X029 BRI Xc,kfl)
gives values of dummy
variables for category c.

As another example, again using the remission
data, we consider observed versus expected plots
by Sex, as shown here. Note that the observed plots
for males and females, which are described by the
thicker lines, cross at about 12 weeks, whereas the
expected plots don't actually intersect, with the fe-
male plot lying below the male plot throughout
follow-up. Moreover, for males and females sepa-
rately, the observed and expected plots are quite
different from one another.

Thus, the above plots suggest that the PH assump-
tion is not satisfied for the variable Sex. We came
to the same conclusion when using log-log sur-
vival curves, which crossed one another and were
therefore clearly nonparallel.

When using observed versus expected plots to as-
sess the PH assumption for a continuous variable,
observed plots are derived, as for categorical vari-
ables, by forming strata from categories of the con-
tinuous variable and then obtaining KM curves for
each category.

However, for continuous predictors, there are two
options available for computing expected plots.
One option is to use a Cox PH model which con-
tains k — 1 dummy variables to indicate k cate-
gories. The expected plot for a given category is
then obtained as an adjusted survival curve by sub-
stituting the values for the dummy variables that
define the given category into the formula for the
estimated survival curve, as shown here for cate-

gory c.
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Options for a continuous variable:

2. Use PH model:

h(t,X) = ho(t) exp(BX)
o\l ) exXp B\

Continuous
Obtain adjusted survival curve:

$(t.X,) = [So(t)]orBXe)

where X, denotes the mean value
for the variable X within category

C.

EXAMPLE: Remission Data

Observed (KM) Plots by log WBC Categories

Option 1:
h(t,X) = ho(t) exp(BiX; + B.X5)

_[1 if high _ 1 if medium
where X, = (g ¢ M8 X=(g 1 R

so that

high = (1, 0); medium = (0, 1); low = (0, 0)
Expected survival plots:

Xy =1, X, =0: S, Xpigh) = [So(0)]exrBD

X1 =0, X, = 1: St, Xpnedium) = [So@)1expB2)
X, =0, X, = 0: 8, Xigny) = [5o(0)]

The second option is to use a Cox PH model con-
taining the continuous predictor being assessed.
Expected plots are then obtained as adjusted sur-
vival curves by specifying predictor values that dis-
tinguish categories, as, for example, when using
mean predictor values for each category.

As an example to illustrate both options, we con-
sider the continuous variable log WBC from the
remission data example. To assess the PH assump-
tion for this variable, we would first stratify log
WBC into, say, three categories—low, medium,
and high. The observed plots would then be ob-
tained as KM curves for each of the three strata,
as shown here.

Using option 1, expected plots would be obtained
by fitting a Cox PH model containing two dummy
variables X; and X,, as shown here, where X;
takes the values 1 if high or 0 if other and X, takes
the values 1 if medium or 0 if other. Thus, when log
WBC is high, the values of X; and X; are 1 and 0,
respectively; whereas when log WBC is medium,
the values are 0 and 1, respectively; and when log
WBC is low, the values are both 0.

The expected survival plots for high, medium, and
low categories are then obtained by substituting
each of the three specifications of X; and X into
the formula for the estimated survival curve, and
then plotting the three curves.
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EXAMPLE (continued)

Expected Plots for log WBC Using
Option 1 (Dummy Variables)

Observed Versus Expected Plots Using

Option 1

0.
0.
0.
0.

S
1

6F
af

00 8 16

Expected
Observed

Option 2: Treat log WBC as continuous

h(z, X) = ho(t)exp[plog WBC)]

Tog WBChgp, = 3.83:
S, Xhigh) = [So(¢)]exp3.8341
Tog WBC,y,oq = 2.64:
S(t, Xined) = [So(#)Jexpl2.64f1
log WBC, = 1.71:

Stt, X, ) =[So()]expl1.718]

Observed Versus Expected Plots for log
WBC Using Option 2

S
v A v o0 =
O TR T

S

:'l Medium

The expected plots using option 1 (the dummy
variable approach) are shown here for the three
categories of log WBC.

Here we put the observed and expected plots on
the same graph. Although there are some discrep-
ancies, particularly early in follow-up for the low
log WBC category, these plots suggest overall that
the PH assumption is satisfied for log WBC.

Using option 2, expected plots would be obtained
by first fitting a Cox PH model containing the con-
tinuous variable log WBC, as shown here.

Adjusted survival curves are then obtained for
specified values of log WBC that summarize the
three categories used to form observed curves.
Here, we find that the mean log WBC scores for
low, medium, and high categories are, respec-
tively, 1.71, 2.64, and 3.83. These values are sub-
stituted into the estimated survival curve formula
as shown here.

Here are the observed and expected plots us-
ing option 2. As with option 1, although there
are some discrepancies within categories, overall,
these plots suggest that the PH assumption is sat-
isfied for the log WBC variable.
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V. The Goodness of Fit (GOF)
Testing Approach

Statistical test appealing

e Provides p-value

e More objective decision than
when using graphical approach

Test of Harrel and Lee (1986)

e Variation of test of Schoenfeld
e Uses Schoenfeld residuals

Schoenfeld residuals defined for

e Each predictor in model
e Every subject who has event

Consider Cox PH model
h(t) = ho(t) exp(3;RX
+ B,log WBC + B;SEX)

3 predictors —> 3 Schoenfeld
residuals for each
subject who has
event

Schoenfeld residual for ith subject
for LOGWBC
Observed LOGWBC
- LOGWBC weighted average

Weights are other subjects’ hazard
(from subjects still at risk)

Underlying idea of test
If PH holds then Schoenfeld residu-
als uncorrelated with time

The GOF testing approach is appealing because it
provides a test statistic and p-value for assessing
the PH assumption for a given predictor of inter-
est. Thus, the researcher can make a more objec-
tive decision using a statistical test than is typically
possible when using either of the two graphical ap-
proaches described above.

Anumber of different tests for assessing the PH as-
sumption have been proposed in the literature. We
present the test of Harrel and Lee (1986), a varia-
tion of a test originally proposed by Schoenfeld
(1982) and based on the residuals defined by
Schoenfeld, now called the Schoenfeld residuals.

For each predictor in the model, Schoenfeld resid-
uals are defined for every subject who has an event.
For example, consider a Cox PH model with three
predictors: RX, LOGWBC, and SEX. Then there
are three Schoenfeld residuals defined for each
subject who has an event, one for each of the three
predictors.

Suppose subject i has an event at time t;. Then
her Schoenfeld residual for LOGWBC is her ob-
served value of log white blood cell count minus a
weighted average of the log white blood cell counts
for the other subjects still at risk at time t;. The
weights are each subject’s hazard.

The idea behind the statistical test is that if the
PH assumption holds for a particular covariate
then the Schoenfeld residuals for that covari-
ate will not be related to survival time.
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Steps for test implementation

1. Obtain Schoenfeld residuals
2. Rank failure times

3. Test correlation of residuals to
ranked failure time Hy: p =0

Hy rejected
Conclude PH assumption violated

PH test in Stata, SAS, SPSS
shown in Computer Appendix

Stata uses scaled Schoenfeld
residuals rather than Schoenfeld
residuals (typically similar results)

EXAMPLE: Remission Data

Column name Coeff. StErr. P(PH)

Rx 1.294 0.422 0.917
log WBC 1.604 0.329 0.944

Both variables satisfy PH assumption.

Note: P(PH) = 0.917 assesses PH for
Rx, assuming PH OK for log WBC.

The implementation of the test can be thought of
as a three-step process.

Step 1. Run a Cox PH model and obtain
Schoenfeld residuals for each predictor.

Step 2. Create a variable that ranks the order of
failures. The subject who has the first (earliest)
event gets a value of 1, the next gets a value of
2, and so on.

Step 3. Test the correlation between the vari-
ables created in the first and second steps. The
null hypothesis is that the correlation between
the Schoenfeld residuals and ranked failure
time is zero.

Rejection of the null hypothesis leads to a conclu-
sion that the PH assumption is violated.

The implementation of the test for the PH assump-
tion in Stata, SAS, and, SPSS is shown in the Com-
puter Appendix. Stata uses a slight variation of the
test we just described in that it uses the scaled
Schoenfeld residual rather than the Schoenfeld
residual (Grambsch and Therneau, 1994). The
tests typically (but not always) yield similar
results.

To illustrate the statistical test approach, we return
to the remission data example. The printout on the
left gives p-values P(PH) for treatment group and
log WBC variables based on fitting a Cox PH model
containing these two variables.

The P(PH) values are quite high for both variables,
suggesting that both variables satisfy the PH as-
sumption. Note that each of these p-values tests
the assumption for one variable given that the
other predictors are included in the model. For
example, the P(PH) of 0.917 assesses the PH as-
sumption for Rx, assuming the PH assumption is
satisfied for log WBC.



Presentation: VI. Assessing the PH Assumption

EXAMPLE

Column name Coeff. StErr. P(PH)
Rx 1.391 0.457 0.935
log WBC 1.594 0.330 0.828
Sex 0.263 0.449 0.038
log WBC and Rx satisfy PH.

Sex does not satisfy PH.

(Same conclusions using graphical
approaches).

Statistical Tests

Null is never proven

e May say not enough evidence to
reject

p-value can be driven by sample size

e  Small sample—gross violation
of null may not be significant

e Large sample—slight violation
of null may be highly significant

Test—more objective
Graph—more objective, but can
detect specific violations

Recommend—Use both graphs and
tests
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As another example, consider the computer re-
sults shown here for a Cox PH model contain-
ing the variable SEX in addition to log WBC and
treatment group. The P(PH) values for log WBC
and treatment group are still nonsignificant. How-
ever, the P(PH) value for SEX is significant below
the 0.05 level. This result suggests that log WBC
and treatment group satisfy the PH assumption,
whereas SEX does not. We came to the same con-
clusion about these variables using the graphical
procedures described earlier.

An important point concerning a testing approach
is that the null hypothesis is never proven with a
statistical test. The most that may be said is that
there is not enough evidence to reject the null. A
p-value can be driven by sample size. A gross viola-
tion of the null assumption may not be statistically
significant if the sample is very small. Conversely,
a slight violation of the null assumption may be
highly significant if the sample is very large.

A statistical test offers a more objective approach
for assessing the PH assumption compared to the
subjectivity of the graphical approach. However,
the graphical approach enables the researcher to
detect specific kinds of departures from the PH
assumption; the researcher can see what is going
on from the graph. Consequently, we recommend
that when assessing the PH assumption, the inves-
tigator use both graphical procedures and statis-
tical testing before making a final decision.

VI. Assessing the PH
Assumption Using Time-
Dependent Covariates

Extended Cox model:

contains product terms of the form
X x g(t), where g(t) is a function
of time.

When time-dependent variables are used to assess
the PH assumption for a time-independent vari-
able, the Cox model is extended to contain prod-
uct (i.e., interaction) terms involving the time-
independent variable being assessed and some
function of time.
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One-at-a-time model:

h(t,X) = ho(t)exp[RX + 60X x g(t)]

Some choices for g (¢):

glt)=t
g(t) =logt
1 ift>1 o
g(t) = n (heaviside
0 itz <t function)
Ho: §=0

Under H,, the model reduces to:

h(t.X) = ho(t) exp[BX]

Use either Wald statistic or
likelihood ratio statistic:
X% with 1 df under H,

EXAMPLE

h(t,X) = hy(t)explB; Sex + B, (Sex x1)]

B, # 0 = PH assumption violated

Strategies for assessing PH:

e one-at-a-time
e several predictors
simultaneously

e foragiven predictor adjusted for
other predictors

When assessing predictors one-at-a-time, the ex-
tended Cox model takes the general form shown
here for the predictor X.

One choice for the function g() is simply g(¢) equal
tot, so that the product term takes the form X x ¢.
Other choices for g(t) are also possible, for exam-
ple, log .

Using the above one-at-a-time model, we assess
the PH assumption by testing for the significance
of the product term. The null hypothesis is there-
fore “6 equal to zero.” Note that if the null hypoth-
esis is true, the model reduces to a Cox PH model
containing the single variable X.

The test can be carried out using either a Wald
statistic or a likelihood ratio statistic. In either
case, the test statistic has a chi-square distribu-
tion with one degree of freedom under the null
hypothesis.

For example, if the PH assumption is being as-
sessed for Sex, a Cox model might be extended to
include the variable Sex x ¢ in addition to Sex. If
the coefficient of the product term turns out to be
significant, we can conclude that the PH assump-
tion is violated for Sex.?

In addition to a one-at-a-time strategy, the ex-
tended Cox model can also be used to assess the
PH assumption for several predictors simultane-
ously as well as for a given predictor adjusted for
other predictors in the model.

’In contrast, if the test for Hy: 3, = 0 is nonsignificant, we
can conclude only that the particular version of the extended
Cox model being considered is not supported by the data.
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Several predictors simultaneously:

P
h(t,X) = ho(t) exp (Z[BiXi
i=1

+ 8 X; x gi(f)]>

gi(t) = function of time for ith
predictor

H0251=52=...=5p=0
LR = _ZIHLPHmodel

- (_2 In Lext. Cox model)
&sz under Hy

Cox PH (reduced) model:

h(t,X) = ho(t) exp (2”: ﬁin)
izl

EXAMPLE: Remission Data

h(t,X) = ho(t)exp [By (Rx)
+ B, (log WBC) + B3 (Sex)
+8; (Rx) x g(?) + &, (log WBC)
x g(t) + 83 (Sex) x g()]
where g() =[ 1 ift>7
0 ifr<7
H0: 81: 82:83:0

LR =32 with 3 df
If test is significant, use backward

elimination to find predictors not
satisfying PH assumption.

To assess the PH assumption for several predictors
simultaneously, the form of the extended model
is shown here. This model contains the predic-
tors being assessed as main effect terms and also
as product terms with some function of time.
Note that different predictors may require differ-
ent functions of time; hence, the notation g;(z)
is used to define the time function for the ith
predictor.

With the above model, we test for the PH assump-
tion simultaneously by assessing the null hypoth-
esis that all the d; coefficients are equal to zero.
This requires a likelihood ratio chi-square statis-
tic with p degrees of freedom, where p denotes
the number of predictors being assessed. The LR
statistic computes the difference between the log
likelihood statistic— —2 In L—for the PH model
and the log likelihood statistic for the extended
Cox model. Note that under the null hypothesis,
the model reduces to the Cox PH model shown
here.

As an example, we assess the PH assumption for
the predictors Rx, log WBC, and Sex from the re-
mission data considered previously. The extended
Cox model is given as shown here, where the func-
tions g; (¢) have been chosen to be the same “heav-
iside” function defined by g(¢) equals 1 if ¢ is
7 weeks or more and g () equals 0 if 7 is less than
7 weeks. The null hypothesis is that all three & co-
efficients are equals to zero. The test statistic is a
likelihood-ratio chi-square with 3 degrees of free-
dom.

If the above test is found to be significant, then we
can conclude that the PH assumption is not satis-
fied for at least one of the predictors in the model.
To determine which predictor(s) do not satisfy the
PH assumption, we could proceed by backward
elimination of nonsignificant product terms until
a final model is attained.
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Heavyside function:
1 ift>7
g) = {0 ift <7

h(t,X) differs fort > 7and t < 7.

Properties of heaviside functions
and numerical results are described
in Chapter 6.

Assessing PH for a given predictor
adjusted for other predictors:
p—1

i Xi +pBX*

i=1

h(t,X) = ho(t) exp|:

+ 8" X* x g(t)j|

X* = Predictor of interest
H()I 0" =0
Wald or LR statistic ~x? with 1 df

EXAMPLE: Remission Data

For Sex, adjusted for Rx and log WBC:
h(t,X) = ho(t) exp[B; (Rx)
+ B, (log WBC) + B* (Sex)
+8" (Sex) x g(1)

Two models for LR test of PH:

1. Cox PH model
2. extended Cox model

See Computer Appendix for Stata,
SAS, and SPSS

Drawback: choice of g;(t)
Different choices may lead to differ-

ent conclusions about PH assump-
tion.

Note that the use of a heaviside function for g(z)
in the above example yields different expressions
for the hazard function depending on whether ¢
is greater than or equal to 7 weeks or ¢ is less
than 7 weeks. Chapter 6 provides further details
on the properties of heaviside functions, and also
provides numerical results from fitting extended
Cox models.

We show here an extended Cox model that can be
used to evaluate the PH assumption for a given
predictor adjusted for predictors already satis-
fying the PH assumption. The predictor of inter-
est is denoted as X*, and the predictors consid-
ered to satisfy the PH assumption are denoted as
X;. The null hypothesis is that the coefficient 8" of
the product term X*g(¢) is equal to zero. The test
statistic can either be a Wald statistic or a likeli-
hood ratio statistic, with either statistic having a
chi-square distribution with 1 degree of freedom
under the null hypothesis.

As an example, suppose, again considering the re-
mission data, we assess the PH assumption for the
variable, Sex, adjusted for the variables Rx and log
WBC, which we assume already satisfy the PH as-
sumption. Then, the extended Cox model for this
situation is shown here.

To carry out the computations for any of the like-
lihood ratio tests described above, two different
types of models, a PH model and an extended Cox
model, need to be fit. See the Computer Appendix
for details on how the extended Cox model is fit
using SAS, SPSS, and Stata.

The primary drawback of the use of an extended
Cox model for assessing the PH assumption con-
cerns the choice of the functions g;(t) for the
time-dependent product terms in the model. This
choice is typically not clear-cut, and it is possible
that different choices, such as g(t) equal to ¢ ver-
sus log ¢ versus a heaviside function, may result
in different conclusions about whether the PH as-
sumption is satisfied.
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Chapter 6: Time-dependent
covariates

This presentation:
Three methods for assessing PH.

i. graphical
ii. GOF
iii. time-dependent covariates

Recommend using at least two
methods.
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Further discussion of the use of time-dependent
covariates in an extended Cox model is provided
in Chapter 6.

This presentation is now complete. We have de-
scribed and illustrated three methods for assess-
ing the PH assumption: graphical, goodness-of-
fit (GOF), and time-dependent covariate methods.
Each of these methods has both advantages and
drawbacks. We recommend that the researcher
use at least two of these approaches when assess-
ing the PH assumption.

Chapters

1. Introduction to Survival
Analysis

2. Kaplan-Meier Survival Curves
and the Log-Rank Test

3. The Cox Proportional Hazards
Model and Its Characteristics

4 4.[Evaluating the Proportionaﬂ

Hazards Assumption

Next:

5. The Stratified Cox Procedure

6. Extension of the Cox
Proportional Hazards Model
for Time-Dependent Variables

We suggest that the reader review this presenta-
tion using the detailed outline that follows. Then
answer the practice exercises and the test that fol-
low.

The next Chapter (5) is entitled “The Stratified Cox
Procedure.” There, we describe how to use a strat-
ification procedure to fit a PH model when one
or more of the predictors do not satisfy the PH
assumption.
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Deta.iled I. Background (pages 134-135)
Outline A. The formula for the Cox PH model:

h(t,X) = ho(t) exp [f Bin}
i=1

B. Formula for hazard ratio comparing two
individuals,

= (X7, X3, ... X)) andX = (X1, Xa, ..., X,):
h(t,X*) .
h(t,X) - P [Z Bi (X }

C. Adjusted survival curves using the Cox PH model:

S(t,X) = [Sp(t)]oPLE piXi]

i. To graph S(t, X), must specify values for
= (le XZv M) Xp)
ii. To obtain “adjusted” survival curves, usually use
overall mean values for the X’s being adjusted.

D. The meaning of the PH assumption

i. Hazard ratio formula shows that hazard ratio is
independent of time:

h(t,X*)
heX)
ii. Hazard ratio for two X's are proportional:
h(t,X*) = 0h(t,X)
II. Checking the PH assumption: Overview (pages
135-137)

A. Three methods for checking the PH assumption:
i. Graphical: compare —In —In survival curves or
observed versus predicted curves.
ii. Goodness-of-fit test: use a large sample Z
statistic.
iii. Time-dependent covariates: use product (i.e.,
interaction) terms of the form X x g(¢).
B. Abbreviated illustrations of each method are
provided.
ITI. Graphical approach 1: log-log plots (pages 137-145)
A. Alog-log curve is a transformation of an estimated
survival curve, where the scale for a log-log curve is
—0o0 to +o00.

=0
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. The log-log expression for the Cox model survival

curve is given by

—In[-InS#,X)] = — i B; X; —In[—In Sp(z)]

i=1

. For the Cox model, the log-log survival curve for

individual X; can be written as the log-log curve for
individual X plus a linear sum term that is
independent of time ¢. This formula is given by

—In[-InS©#,X/)]
14
= —In[-InS@t.Xo)] + Y B;(Xo — X17)

i=1

. The above log-log formula can be used to check the

PH assumption as follows: the PH model is
appropriate if “empirical” plots of log-log survival
curves are parallel.

. Two kinds of empirical plots for —In —In S:

i. SisaKM curve

ii. S is an adjusted survival curve where predictor
being assessed is not included in the Cox
regression model.

. Several examples of log-log plots are provided using

remission data from a clinical trial of leukemia
patients.

. Problems with log-log curves:

i. How parallel is parallel?
ii. How to categorize a continuous variable?

iii. How to evaluate several variables
simultaneously?

. Recommendation about problems:

i. Use small number of categories, meaningful
choice, reasonable balance.
ii. With several variables, two options:
a. Compare log-log curves from combinations of
categories.
b. Adjust for predictors already satisfying PH
assumption.

Graphical approach 2: observed versus expected
plots (pages 145-150)

A. Graphical analog of the GOF test.
B. Two strategies

i. One-at-a-time: uses KM curves to obtain
observed plots.

ii. Adjusting for other variables: uses stratified Cox
PH model to obtain observed plots.
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C.

i

Expected plots obtained by fitting a Cox model
containing the predictor being assessed; substitute
into the fitted model the value for each category of
the predictor to obtain the expected value for each
category.
If observed and expected plots are close, conclude
PH assumption is reasonable.
Drawback: how close is close?
Recommend: conclude PH not satisfied only if plots
are strongly discrepant.
Another drawback: what to do if assessing
continuous variable.
Recommend for continuous variable:
i. Form strata from categories.
ii. Observed plots are KM curves for each category.
iii. Two options for expected plots:
a. Use PH model with k — 1 dummy variables
for k categories.
b. Use PH model with continuous predictor and
specify predictor values that distinguish
categories.

V. The goodness-of-fit (GOF) testing approach (pages
151-153)

A. Appealing approach because

i. provides a test statistic (p-value).
ii. researcher can make clear-cut decision.

. References

i. methodological: Schoenfeld (1982), Harrel and
Lee (1986).

ii. SAS and Stata use different GOF formulae.
The method:

i. Schoenfeld residuals for each predictor uses a
chi-square statistic with 1 df.

ii. Correlations between Schoenfeld’s residuals and
ranked failure times.

iii. If p-value small, then departure from PH.
Examples using remission data.
Drawbacks:

i. global test: may fail to detect a specific kind of
departure from PH; recommend using both
graphical and GOF methods.

ii. several strategies to choose from, with no one
strategy clearly preferable (one-at-a-time, all
variables, each variable adjusted for others).
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VI. Assessing the PH assumption (using time-
dependent covariates) (pages 153-157)

A

Use extended Cox model: contains product terms of
form X x g(t), where g(¢) is function of time, e.g.,
g(t) =t,orlogt, or heaviside function.

. One-at-a-time model:

h(t,X) = ho(t) exp[BX + dg(1)].
Test Hy: 6 = 0 using Wald or LR test (chi-square
with 1 df).

. Evaluating several predictors simultaneously:

P
h(t,X) = ho(t) exp (Z[BiXi + 5iXigi(f)]>

i=1
where g;(¢) is function of time for ith predictor. Test
Hy: 5y =06, =--- =0, = 0 using LR (chi-square)

test with p df.

. Examples using remission data.
. Two computer programs, required for test:

i. Cox PH model program.
ii. Extended Cox model program.

. Drawback: choice of g (¢) not always clear; different

choices may lead to different conclusions about PH
assumption.

The dataset “vets.dat” considers survival times in days for 137
patients from the Veteran’s Administration Lung Cancer Trial
cited by Kalbfleisch and Prentice in their text (The Statistical
Analysis of Survival Time Data, Wiley, pp. 223-224, 1980). The
exposure variable of interest is treatment status (standard =
1, test = 2). Other variables of interest as control variables
are cell type (four types, defined by dummy variables), perfor-
mance status, disease duration, age, and prior therapy status.
Failure status is defined by the status variable (0 if censored,
1 if died). A complete list of the variables is given below.

Column 1: Treatment (standard = 1, test = 2)
Column 2: Cell type 1 (large = 1, other = 0)
Column 3: Cell type 2 (adeno = 1, other = 0)
Column 4: Cell type 3 (small = 1, other = 0)
Column 5: Cell type 4 (squamous = 1, other = 0)
Column 6: Survival time (days)
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Column 7: Performance status (0 = worst, - - -,
100 = best)

Column 8: Disease duration (months)

Column 9: Age

Column 10: Prior therapy (none = 0, some = 10)
Column 11: Status (0 = censored, 1 = died)

1. State the hazard function form of the Cox PH model that
describes the effect of the treatment variable and controls for
the variables, cell type, performance status, disease duration,
age, and prior therapy. In stating this model, make sure to
incorporate the cell type variable using dummy variables, but
do not consider possible interaction variables in your model.

2. State three general approaches that can be used to evaluate
whether the PH assumption is satisfied for the variables in-
cluded in the model you have given in question 1.

3. The following printout is obtained from fitting a Cox PH
model to these data. Using the information provided,
what can you conclude about whether the PH assumption
is satisfied for the variables used in the model? Explain briefly.

[95% Conf.
Coxregression  Coef.  Std. Err.  p > |z| Haz. Ratio Interval] P(PH)
Treatment 0.290  0.207 0.162 1.336 0.890 2.006 0.628
Large cell 0.400  0.283 0.157 1.491 0.857 2.594 0.033
Adeno cell 1.188  0.301 0.000 3.281 1.820 5915 0.081
Small cell 0.856 0.275 0.002 2.355 1.374 4.037 0.078
Performance —0.033  0.006 0.000 0.968 0.958 0.978 0.000
status
Disease 0.000  0.009 0.992 1.000 0.982 1.018 0.919
duration
Age —0.009 0.009 0.358 0.991 0974 1.010 0.198

Prior therapy 0.007  0.023 0.755 1.007 0.962 1.054 0.145

4. For the variables used in the PH model in question 3, describe
a strategy for evaluating the PH assumption using log-log
survival curves for variables considered one-at-a-time.

5. Again considering the variables used in question 3, describe
a strategy for evaluating the PH assumption using log-log
survival curves that are adjusted for other variables in the
model.
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For the variable “performance status,” describe how you
would evaluate the PH assumption using observed versus
expected survival plots?

For the variable “performance status,” log-log plots which
compare high (>50) with low (<50) are given by the follow-
ing graph. Based on this graph, what do you conclude about
the PH assumption with regard to this variable?

6 3
43
23
03 High PS
23 Low PS
-4 = T T T T T T T T T
0 200 400 600 800 1000

What are some of the drawbacks of using the log-log ap-
proach for assessing the PH assumption and what do you
recommend to deal with these drawbacks?

For the variable “performance status,” observed versus ex-
pected plots that compare high (>50) with low (<50) are
given by the following graph. Based on this graph, what do
you conclude about the PH assumption with regard to this
variable?

Observed
Expected

1000

State the form of an extended Cox model that allows for
the one-at-a-time assessment of the PH assumption for the
variable “performance status,” and describe how you would
carry out a statistical test of the assumption for this variable.

State the form of an extended Cox model that allows for the
simultaneous assessment of the PH assumption for the vari-
ables, treatment, cell type, performance status, disease du-
ration, age, and prior therapy. For this model, describe how
you would carry out a statistical test of the PH assump-
tion for these variables. Also, provide a strategy for assess-
ing which of these variables satisfy the PH assumption and
which do not using the extended Cox model approach.
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12. Using any of the information provided above and any addi-
tional analyses that you perform with this dataset, what do
you conclude about which variables satisfy the PH assump-
tion and which variables do not? In answering this question,
summarize any additional analyses performed.

Test The following questions consider a dataset from a study by

Caplehorn et al. (“Methadone Dosage and Retention of Pa-
tients in Maintenance Treatment,” Med. J. Aust., 1991). These
data comprise the times in days spent by heroin addicts from
entry to departure from one of two methadone clinics. There
are two additional covariates, namely, prison record and max-
imum methadone dose, believed to affect the survival times.
The dataset name is addicts.dat. A listing of the variables is
given below:

Column 1: Subject ID
Column 2: Clinic (1 or 2)

Column 3: Survival status (0 = censored, 1 = departed
from clinic)

Column 4: Survival time in days
Column 5: Prison record (0 = none, 1 = any)
Column 6: Maximum methadone dose (mg/day)

1. The following edited printout was obtained from fitting
a Cox PH model to these data:

Cox regression

Analysis time_t: [95% Contf.

survt Coef. Std.Err. p > |z| Haz. Ratio Interval] P(PH)
Clinic —-1.009  0.215 0.000 0.365 0.239 0.556 0.001
Prison 0.327 0.167 0.051 1.386 0.999 1.924 0.332
Dose —0.035 0.006 0.000 0.965 0.953 0.977 0.347
No. of subjects: 238 Log likelihood = —673.403

Based on the information provided in this printout, what
do you conclude about which variables satisfy the PH
assumption and which do not? Explain briefly.



Test 165

2. Suppose that for the model fit in question 1, log-log
survival curves for each clinic adjusted for prison and
dose are plotted on the same graph. Assume that these
curves are obtained by substituting into the formula for
the estimated survival curve the values for each clinic
and the overall mean values for the prison and dose
variables. Below, we show these two curves. Are they
parallel? Explain your answer.

12 -
9 —
6 —
37 Clinic 2
0 -
Clinic 1
-3 T T T T T T T T T T 1
0 300 600 900

3. The following printout was obtained from fitting a
stratified Cox PH model to these data, where the
variable being stratified is clinic:

Stratified

Cox regression

Analysis time_t: [95% Conf.
survt (in days) Coef. Std.Err. p > |z| Haz. Ratio Interval]
Prison 0.389  0.169 0.021 1.475 1.059 2.054
Dose —0.035  0.006 0.000 0.965 0.953 0.978

No. of subjects = 238 Log likelihood = —597.714  Stratified by clinic

Using the above fitted model, we can obtain the log-log
curves below that compare the log-log survival for each
clinic (i.e., stratified by clinic) adjusted for the variables
prison and dose. Using these curves, what do you con-
clude about whether or not the clinic variable satisfies
the PH assumption? Explain briefly.

12

Clinic 2

Clinic 1
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4. Consider the two plots of log-log curves below that
compare the log-log survival for the prison variable
ignoring other variables and adjusted for the clinic
and dose variables. Using these curves, what do you
conclude about whether or not the prison variable
satisfies the PH assumption? Explain briefly.

12 Log-log curves for prison 12 Log-log curves for prison
g | ignoring other variables 9 | adiusted for clinic and dose
(i.e., using log-log KM curves) (i.e., stratified by prison)
6 6
3 3 4
Prison =1 Prison = 1
04 0 -
Prison=0 Prison=0
B3+ B34+ 7T 7T 717
0 300 600 900 0 300 600 900

5. How do your conclusions from question 1 compare with
your conclusions from question 4? If the conclusions dif-
fer, which conclusion do you prefer? Explain.

6. Describe briefly how you would evaluate the PH assump-
tion for the variable maximum methadone dose using
observed versus expected plots.

7. State an extended Cox model that would allow you to as-
sess the PH assumption for the variables clinic, prison,
and dose simultaneously. For this model, state the null
hypothesis for the test of the PH assumption and de-
scribe how the likelihood ratio statistic would be ob-
tained and what its degrees of freedom would be under
the null hypothesis.

8. State at least one drawback to the use of the extended
Cox model approach described in question 7.

9. State an extended Cox model that would allow you to
assess the PH assumption for the variable clinic alone,
assuming that the prison and dose variables already sat-
isfy the PH assumption. For this model, state the null
hypothesis for the test of the PH assumption, and de-
scribe how the likelihood ratio (LR) statistic would be
obtained. What is the degrees of freedom of the LR test
under the null hypothesis?
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10. Consider the situation described in question 9, where

you wish to use an extended Cox model that would allow
you to assess the PH assumption for the variable clinic
alone, assuming that the assumption is satisfied for the
prison and dose variables. Suppose you use the following
extended Cox model:

h(t,X) = ho(t) exp[(prison) + 3,(dose)
+ B;(clinic) + &;(clinic)g (¢)]

where g(t) is defined as follows:

|1 ift > 365days
g(t)—{o iff < 365 days

For the above model, what is the formula for the haz-
ard ratio that compares clinic 1 to clinic 2 when ¢ is
greater than 365 days? when ¢ is less than or equal to
365 days? In terms of the hazard ratio formulae just de-
scribed, what specific departure from the PH assumption
is being tested when the null hypothesis is Hy: 6; = 0?

h(t,X) = ho(t) exp[ B (treatment) + ,(CT1) + 35(CT2)
+B4(CT3) 4 B5(PS) + B4(DD) + B;(Age) + B5(PT)]

where CTi denotes the cell type i dummy variable, PS de-
notes the performance status variable DD denotes the dis-
ease duration variable, and PT denotes the prior therapy
variable.

The three general approaches for assessing the PH model

for the above model are:

(a) graphical, using either log-log plots or observed
versus expected plots;

(b) statistical test;

(c) an extended Cox model containing product terms
involving the variables being assessed with some
function(s) of time.

The P(PH) values given in the printout provide goodness-
of-fit tests for each variable in the fitted model adjusted for
the other variables in the model. The P(PH) values shown
indicate that the large cell type variables and the perfor-
mance status variable do not satisfy the PH assumption,
whereas the treatment, age, disease duration, and prior
therapy variables satisfy the PH assumption, and the adeno
and small cell type variable are of borderline significance.
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4. A strategy for evaluating the PH assumption using log-log
survival curves for variables considered one-at-a-time is
given as follows:

For each variable separately, obtain a plot of obtain log-
log Kaplan-Meier curves for the different categories of that
variable. For the cell type variable, this requires obtaining
a plot of four log-log KM curves, one for each cell type.
(Note that this is not the same as obtaining four separate
plots of two log-log curves, where each plot corresponds
to one of the dummy variables used in the model.) For
the variables PS, DD, and Age, which are interval vari-
ables, each variable must be separately categorized into
two or more groups—say, low versus high values—and
KM curves are obtained for each group. For the variable
PT, which is a dichotomous variable, two log-log curves
are obtained which compare the “none” versus “some”
groups.

For each plot (i.e., one for each variable), those plots that
are noticeably nonparallel indicate variables which do not
satisfy the PH assumption. The remaining variables are as-
sumed to satisfy the PH assumption.

5. One strategy for evaluating the PH assumption for each
variable adjusted for the others is to use adjusted log-log
survival curves instead of KM curves separately for each of
the variables in the model. That is, for each variable sepa-
rately, a stratified Cox model is fit stratifying on the given
variable while adjusting for the other variables. Those vari-
ables that yield adjusted log-log plots that are noticeably
nonparallel are then to be considered as not satisfying the
PH assumption. The remaining variables are assumed to
satisfy the PH assumption.

A variation of the above strategy uses adjusted log-log
curves for only those variables not satisfying the PH as-
sumption from a one-at-a-time approach, adjusting for
those variables satisfying the PH assumption from the one-
at-a-time approach. This second iteration would flag a sub-
set of the one-at-a-time flagged variables for further itera-
tion. At each new iteration, those variables found to satisfy
the assumption get added to the list of variables previously
determined to satisfy the assumption.
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For the performance status (PS) variable, observed plots
are obtained by categorizing the variable into strata (say,
two strata: low versus high) and then obtaining KM sur-
vival plots for each stratum. Expected plots can be ob-
tained by fitting a Cox model containing the (continuous)
PS variable and then obtaining estimated survival curves
for values of the performance status (PS) variable that rep-
resent summary descriptive statistics for the strata previ-
ously identified. For example, if there are two strata, say,
high (PS > 50) and low (PS < 50), then the values of PS to
be used could be the mean or median PS score for persons
in the high stratum and the mean or median PS score for
persons in the low stratum.

An alternative method for obtaining expected plots in-
volves first dichotomizing the PS variable—say, into high
and low groups—and then fitting a Cox model contain-
ing the dichotomized PS variable instead of the original
continuous variable. The expected survival plots for each
group are estimated survival curves obtained for each value
of the dichotomized PS variable.

Once observed and expected plots are obtained for each
stratum of the PS variable, they are then compared on the
same graph to determine whether or not corresponding
observed and expected plots are “close.” If it is determined
that, overall, comparisons for each stratum are close, then
it is concluded that the PH assumption is satisfied for the
PH variable. In determining how close is close, the re-
searcher should look for noticeably discrepant observed
versus expected plots.

The log-log plots that compare high versus low PS groups
(ignoring other variables) are arguably parallel early in
follow-up, and are not comparable later because survival
times for the two groups do not overlap after 400 days.
These plots do not strongly indicate that the PH assump-
tion is violated for the variable PS. This contradicts the
conclusion previously obtained for the PS variable using
the P(PH) results.

Drawbacks of the log-log approach are:

e How parallel is parallel?
e How to categorize a continuous variable?
e How to evaluate several variables simultaneously?
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10.

11.

Recommendations about problems:

¢ Look for noticeable nonparallelism; otherwise PH as-
sumption is OK.

e For continuous variables, use a small number of cat-
egories, a meaningful choice of categories, and a rea-
sonable balance in sample size for categories.

o With several variables, there are two options:

i. Compare log-log curves from combinations of cate-
gories.

ii. Adjust for predictors already satisfying PH assump-
tion.

The observed and expected plots are relatively close for
low and high groups separately, although there is some-
what more discrepancy for the high group than for the low
group. Deciding how close is close is quite subjective for
these plots. Nevertheless, because there are no major dis-
crepancies for either low or high groups, we consider the
PH assumption satisfied for this variable.

h(t,X) = ho(t) exp[B,(PS) + 5(PS) g (¢)]

where g(¢) is a function of ¢, such as g(t) =t¢, or g(t) =
logt, or a heaviside function. The PH assumption is tested
using a 1 df Wald or LR statistic for Hy: 6 = 0.

h(t,X) = ho(t) exp[ B (treatment) + 3,(CT1) + 35(CT2)
+ B4(CT3) + B5(PS) + B¢(DD) + B;(Age) + B5(PT)

+ dy(treatment x g(¢)) + 5,(CT1 x g(t)) + 83(CT2 x g(t))
+ 84(CT3 x g(t)) + 85(PS x g(t)) + 86(DD x g(t))

+ 87(Age x g(t)) + 83(PT x g(1))]

where g(t) is some function of time, such as g(t) = ¢, or
g(t) =logt, or a heavyside function. To test the PH as-
sumption simultaneously for all variables, the null hypoth-
esisis stated as Hy: 81 = 6, = ... = 8g = 0. The test statis-
tic is a likelihood-ratio statistic of the form

LR=—2InLg — (—2InLp)

where R denotes the reduced (PH) model obtained when
all &'s are 0, and F denotes the full model given above. Un-

der Hy, the LR statistic is approximately chi-square with
8 df.
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The question here is somewhat open-ended, leaving the
reader the option to explore additional graphical, GOF, or
extended Cox model approaches for evaluating the PH as-
sumption for the variables in the model. The conclusions
from the GOF statistics provided in question 3 are likely to
hold up under further scrutiny, so that a reasonable con-
clusion is that cell type and performance status variables
do not satisfy the PH assumption, with the remaining vari-
ables satisfying the assumption.
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Introduction

Abbreviated
Outline

We begin with an example of the use of the stratified Cox
procedure for a single predictor that does not satisfy the PH
assumption. We then describe the general approach for fitting
a stratified Cox model, including the form of the (partial) like-
lihood function used to estimate model parameters.

We also describe the assumption of no interaction that is
typically incorporated into most computer programs that
carry out the stratified Cox procedure. We show how the no-
interaction assumption can be tested, and what can be done
if interaction is found.

We conclude with a second example of the stratified Cox pro-
cedure in which more than one variable is stratified.

The outline below gives the user a preview of the material to
be covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. Preview (page 176)
II. An Example (pages 176-180)

III. The General Stratified Cox (SC) Model
(pages 180-181)

IV. The No-Interaction Assumption and How to Test
It (pages 182-188)

V. A Second Example Involving Several Stratification
Variables (pages 188-193)

VI. A Graphical View of the Stratified Cox Approach
(pages 193-194)

VII. Summary (pages 195-196)
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Objectives Upon completing the chapter, the learner should be able to:

L.

2.

Recognize a computer printout for a stratified Cox proce-
dure.

State the hazard form of a stratified Cox model for a given
survival analysis scenario and/or a given set of computer
results for such a model.

Evaluate the effect of a predictor of interest based on com-
puter results from a stratified Cox procedure.

For a given survival analysis scenario and/or a given set
of computer results involving a stratified Cox model,

e state the no-interaction assumption for the given model;

e describe and/or carry out a test of the no-interaction
assumption;

e describe and/or carry out an analysis when the no-
interaction assumption is not satisfied.
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I. Preview

Stratified Cox model:

e modification of Cox PH model

Stratification of predictor not
satisfying PH

e includes predictors satisfying

PH

ow stratification i
carried out:

e computer results

e hazard function

e single predictor
vs. 2 2 predictors

no-interaction vs.
interaction

The “stratified Cox model” is a modification of the
Cox proportional hazards (PH) model that allows
for control by “stratification” of a predictor that
does not satisfy the PH assumption. Predictors
that are assumed to satisfy the PH assumption are
included in the model, whereas the predictor be-
ing stratified is not included.

In this presentation, we focus on how stratification
is carried out by describing the analysis of com-
puter results and the form of the hazard function
for a stratified Cox model. We first consider strati-
fying on a single predictor and then later consider
stratifying on two or more predictors. Further, we
distinguish between the use of a “no-interaction”
version of the stratified Cox model and an alterna-
tive approach that allows interaction.

Il. An Example

EXAMPLE

Clinical trial: 42 leukemia patients

Res

ponse-days in remission

Coef. Std. Err. P(PH)

log
Rx
Sex

WBC  1.594 0.330 0.828
1.391 0.457 0.935
0.263 0.449 0.031

log WBC and Rx satisfy PH
Sex does not satisfy PH

(Same conclusions using graphical

app:

roaches)

Stratified Cox (SC):

control for sex (stratified);
simultaneously include log WBC and
Rx in the model

Consider the computer results shown here for a
Cox PH model containing the three variables, log
WBC, treatment group (Rx), and SEX. These re-
sults derive from a clinical trial of 42 leukemia
patients, where the response of interest is days in
remission.

From the printout, the P (PH) values for log WBC
and treatment group are nonsignificant. However,
the P(PH) value for SEX is significant below the
.05 level. These results indicate that log WBC
and treatment group satisfy the PH assumption,
whereas the SEX variable does not. The same con-
clusions regarding the PH assumption about these
variables would also be made using the graphical
procedures described earlier.

Because we have a situation where one of the
predictors does not satisfy the PH assumption,
we carry out a stratified Cox (SC) procedure
for the analysis. Using SC, we can control for
the SEX variable—which does not satisfy the
PH assumption—by stratification while simulta-
neously including in the model the log WBC and
treatment variables—which do satisfy the PH as-
sumption.



EXAMPLE (continued)

STATA OUTPUT USING SC:

Stratified Cox regression
Analysis time _t: survt

Std. Haz.

Coef. Err. p>lzZI Ratio [95% Conf. Interval]

7.783
6.396

log WBC 1390 0.338 0.000 4.016 2,072

Re 0472 0.048 1.006

No. of subjects =42 Log likelihood =-57.560 Stratified by sex

Appendix A illustrates SC procedures
using Stata, SAS, and SPSS.

e Log WBC and Rx are included in SC
model.
e SC model is stratified by SEX.

Effect of Rx adjusted for log WBC and
SEX:

e Hazard ratio: 2.537 = ¢0-931

e Interpretation: Placebo group
(Rx = 1) has 2.5 times the hazard as
the treatment group (Rx = 0)

Stratified Cox regression
Analysis time _t: survt

Std. Haz.

Coef. Err. p>lzZl  Ratio [95% Conf. Interval]

log WBC 1.390 0.338  0.000 2.072 7.783

Rx 0.931 0.472 ) 0.048 1.006 6.396

No. of subjects = 42 Log likelihood =(=57.560) Stratified by sex

4.016
2.537

95% CI for Rx (1.006, 6.396) indicates
considerable variability.

CI formula: exp(0.931 + 1.96 x 0.472)

Wald test: P = 0.048 (two-tailed),
significant at the 0.05 level.
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The computer results from a SC procedure are
shown here. These results come from the Stata
package. (See the Computer Appendix for running
a SC procedure in Stata, SAS, or SPSS).

The computer results show that the log WBC and
Rx variables are included in the model listing,
whereas the SEX variable is not included; rather,
the model stratifies on the SEX variable, as indi-
cated at the bottom of the output. Note that the
SEX variable is being adjusted by stratification,
whereas log WBC is being adjusted by its inclu-
sion in the model along with Rx.

In the above output, we have also circled some key
information that can be used to assess the effect
of the Rx variable adjusted for both log WBC and
SEX. In particular, we can see that the hazard ra-
tio for the effect of Rx adjusted for log WBC and
SEX is given by the value 2.537. This value can be
obtained by exponentiating the coefficient 0.931
of the Rx variable. The hazard ratio value can be
interpreted to mean that the placebo group (for
which Rx = 1) has 2.5 times the hazard for going
out of remission as the treatment group (for which
Rx =0).

Also, we can see from the output that a 95% con-
fidence interval for the effect of the Rx variable is
given by the limits 1.006 to 6.396. This is a fairly
wide range, thus indicating considerable variabil-
ity in the 2.537 hazard ratio point estimate. Note
that these confidence limits can be obtained by ex-
ponentiating the quantity 0.931 plus or minus 1.96
times the standard error 0.472.

From the above output, a test for the significance
of the Rx variable adjusted forlog WBC and SEX is
given by the Wald statistic P value of 0.048. This is
a two-tailed P-value, and the test is just significant
at the 0.05 level.
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EXAMPLE (continued)

LR test: Output for reduced model

Stratified Cox regression
Analysis time _t: survt

Std. Haz.
Coef. Err. p>lzI  Ratio [95% Conf. Interval]
log WBC 1.456 0.320 0.000  4.289 2.291 8.03

No. of subjects = 42 Log likelihood = (-59.648)  Stratified by sex

LR = (-2 x—59.648) — (-2 x -57.560)
= 119.296 - 115.120 =4.179 (P < 0.05)

LR and Wald give same conclusion.

Hazard function for stratified Cox
model:

hg(t,IX; = hog(t)exp[ﬁle + B, log WBC]
g=1,2;

g denotes stratum #.

SC model for males and females:
Females (g=1):

hy(t,X) =hg()exp[BiRx + B, log WBC]
Males (g =2):
hy(t,X) = hoy()exp[BiRx + B, log WBC]

Rx and log WBC in the model
Sex not in the model (stratified)

AN
HR for effect of Rx adjusted for log WBC
and sex:

eb,

where B is the coefficient of Rx.

An alternative test involves a likelihood ratio (LR)
statistic that compares the above model (full
model) with a reduced model that does not con-
tain the Rx variable. The output for the reduced
model is shown here. The log-likelihood statistic
for the reduced model is —2 times —59.648,
which is to be compared with the log-likelihood
statistic of —2 times —57.560 for the full model.

The LR statistic is therefore 119.296 minus
115.120, which equals 4.179. Under Hy, this
statistic has a chi-square distribution with one
degree of freedom and is significant at the 0.05
level. Thus, the LR and Wald tests lead to the
same conclusion.

So far, we have illustrated the results from a strat-
ified Cox procedure without actually describing
the model form being used. For the remission
data example, we now present the hazard func-
tion form for the stratified Cox model, as shown
here. This hazard function formula contains a
subscript g that indicates the gth stratum.

Thus, in our remission data example, where we
have stratified on SEX, g takes on one of two
values, so that we have a different baseline hazard
function for males and females.

Notice that the hazard function formula contains
the variables Rx and log WBC, but does not
contain the variable SEX. SEX is not included
in the model because it doesn't satisfy the PH
assumption. So, instead, the SEX variable is
controlled by stratification.

Because the variables Rx and log WBC are
included in the model, we can estimate the effect
of each variable adjusted for the other variable
and the SEX variable using standard exponential
hazard ratio expressions. For example, the esti-
mated hazard ratio for the effect of Rx, adjusted
forlog WBC and SEX, is given by e to the 3; “hat,”
where (3 is the coefficient of the Rx variable.
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EXAMPLE (continued) Nevertheless, because the SEX variable is not

Cannot estimate HR for SEX variable
(SEX doesn't satisfy PH).

Different baseline hazard functions:

h(2) for females and %, (¢) for males.

Same coefficients B, and B, for both
female and male models.

hg1(t) = Survival curve
Different for females
baselines |/g,(t) = Survival curve
for males

Females and males: a
same B; and B,= same HR’s, e.g., e,

No interaction assumption
(see Section IV)

Estimates of B; and ,:

Maximize partial likelihood (L),

where L=L XL,

Ly is the likelihood for females derived
from h,(z),

and L, is the likelihood for males derived
from £, (t).

included in the model, it is not possible to obtain
a hazard ratio value for the effect of SEX adjusted
for the other two variables. This is the price to be
paid for stratification on the SEX variable. Note
that a single value for the hazard ratio for SEX
is not appropriate if SEX doesn't satisfy the PH
assumption, because the hazard ratio must then
vary with time.

Notice also that the hazard functions for males
and females differ only insofar as they have
different baseline hazard functions, namely,
hoi1(¢) for females and %, (¢) for males. However,
the coefficients 3; and (3, are the same for both
female and male models.

Because there are different baseline hazard
functions, the fitted stratified Cox model will yield
different estimated survival curves for females
and males. These curves will be described shortly.

Note, however, that because the coefficients of Rx
and log WBC are the same for females and males,
estimates of hazard ratios, such as e to the 3,
“hat,” are the same for both females and males.
This feature of the stratified Cox model is called
the “no-interaction” assumption. It is possible
to evaluate whether this assumption is tenable
and to modify the analysis if not tenable. We will
discuss this assumption further in Section IV.

To obtain estimates of 3; and f3,, a (partial)
likelihood function (L) is formed from the model
and the data; this function is then maximized
using computer iteration. The likelihood function
(L) for the stratified Cox (SC) model is different
from the nonstratified Cox model. For the SC
model, L is obtained by multiplying together
likelihood functions for each stratum. Thus, L
is equal to the product of L and L;, where L;
and L, denote the female and male likelihood
functions, respectively, which are derived from
their respective hazard functions /(¢) and h(¢).
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EXAMPLE (continued)

Adjusted Survival Curves for Rx
from Stratified Cox Model

(adjusted for log WBC)
S
1 Treatment, female
""" . —— Placebo, female
0.8 "ri, LT e Treatment, male
i, - - - Placebo, male
06 il
"1
04f v ek ;
1 g
i D —
0.2 |
1
0 1 h 1 | I R &
0 8 16 24 32

I11. The General Stratified
Cox (SC) Model

Example: one binary predictor

¥

General: several predictors, several

Strata
Z1,2Z,,...,Z;,do not satisfy PH
X1, X5, ..., X,, satisfy PH

Define a single new variable Z*:

1. categorize each Z;

2. form combinations of categories
(strata)

3. the strata are the categories of Z*

EXAMPLE

Age

Treatment
status

Young

Middle

Old

Placebo

1

2

Treatment

4

5

Z* = new variable with six categories
Stratify on Z*

As mentioned above, adjusted survival curves can
be obtained for each stratum as shown here. Here
we have shown four survival curves because we
want to compare the survival for two treatment
groups over each of two strata.

If we compare treatment and placebo group sepa-
rately by sex, we can see that the treatment group
has consistently better survival prognosis than the
placebo group for females and males separately.
This supports our findings about the hazard ratio
for the treatment effect derived earlier from the
computer results for the stratified Cox model.

In the previous example, we illustrated the SC
model for one binary predictor not satisfying the
PH assumption. We now describe the general form
of the SC model that allows for stratification of
several predictors over several strata.

We assume that we have k variables not satisfying
the PH assumption and p variables satisfying the
PH assumption. The variables not satisfying
the PH assumption we denote as Z1, Z,, ..., Zg;
the variables satisfying the PH assumption we de-
note as X, Xa, ..., X,.

To perform the stratified Cox procedure, we de-
fine a single new variable, which we call Z*, from
the Z's to be used for stratification. We do this by
forming categories of each Z;, including those Z;
that are interval variables. We then form combi-
nations of categories, and these combinations are
our strata. These strata are the categories of the
new variable Z*.

For example, suppose k is 2, and the two Z’s are
age (an interval variable) and treatment status
(a binary variable). Then we categorize age into,
say, three age groups—young, middle, and old. We
then form six age group-by-treatment-status com-
binations, as shown here. These six combinations
represent the different categories of a single new
variable that we stratify on in our stratified Cox
model. We call this new variable Z*.



Z* has k* categories where k* =
total # of combinations (strata), e.g.,
k* = 6 in above example.

The general SC model:
hg(t,X) = hog (t)explB1 X1 + B, X
4+ 4B, X,]

g=1,2,... k* strata defined
from Z*

Z* not included in the model

X, Xo. ... X,
model

included in the

Different baseline hazard functions:
ho(2),g =1,2,... k*
Same coefficients: B4, B,, ..., B,
ho(t) = Si(t)

Different | 102() = $(0) Diffﬁfrent
survival

curves

baselines

hout) = S0

HR same for each stratum

(no-interaction assumption, Sec-
tion IV)

(Partial) likelihood function:

L:L1 XL2,X-~XL](*

Strata: 1 2 k*
Likelihood: L, L, ... Li
Hazard: hi(t,X) hy(t,X) ... h(t,X)
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In general, the stratification variable Z* will have
k* categories, where k* is the total number of
combinations (or strata) formed after categoriz-
ing each of the Zs. In the above example, k* is
equal to 6.

We now present the general hazard function form
for the stratified Cox model, as shown here. This
formula contains a subscript g which indicates the
gth stratum. The strata are defined as the different
categories of the stratification variable Z*, and the
number of strata equals k*.

Note that the variable Z* is not explicitly included
in the model but that the X’s, which are assumed
to satisfy the PH assumption, are included in the
model.

Note also that the baseline hazard function /g, (¢)
is allowed to be different for each stratum. How-
ever, the coefficients 3, 3,5, ..., , are the same
for each stratum.

As previously described by example, the fitted
SC model will yield different estimated survival
curves for each stratum because the baseline haz-
ard functions are different for each stratum.

However, because the coefficients of the Xs are the
same for each stratum, estimates of hazard ratios
are the same for each stratum. This latter feature
of the SC model is what we previously have called
the “no-interaction” assumption to be discussed
further in Section IV.

To obtain estimates of the regression coefficients
Bis Py P »» Wemaximize a (partial) likelihood
function L that is obtained by multiplying together
likelihood functions for each stratum, as shown
here. Thus, L is equal to the product of L times
L, and so on, up until L, where the subscripted
L's denote the likelihood functions for different
strata, with each of these L's being derived from
its corresponding hazard function.
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IV. The No-Interaction
Assumption and How
to Test It

Stratified Cox model

he(t,X) = hog (t)expl B X4

+ B Xo+ -+ B,X,]
B coefficients do not vary over
strata (no-interaction assumption)

e how to evaluate
e what to do if violated

EXAMPLE

No-interaction SC model:
Stratified Cox regression

Analysis time _t: survt

Std. Haz.
Coef. FErr. p>lzl  Ratio

log WBC (1.390) 0.338 0.000
Rx 0.931) 0.472  0.048

No. of subjects =42 Log likelihood =-57.560 Stratified by sex

[95% Conf. Interval]

2.072
1.006

4.016
2.537

7.783
6.396

Interaction by fitting separate models:
Cox regression (Females)
Analysis time _t: survt

Column
name

0.519 0.002 5.150 1.862 14.242 0.228

p-
Coeff StErr. value HR 0.95 CI P(PH)

4log

‘WBC

1.639
5Rx 1.859,

No. of subjects =20

0.729 0.011 6.418 1.537 26.790 0.603

Log likelihood =-22.100

Cox regression (Males)
Analysis time _t: survt

Column
name

0.019 3.222 1.213 8.562 0.674

p-
Coeff StErr. value HR 0.95 CI P(PH)

4log

‘WBC

1.170) 0.499
SRx \0.267) 0.566

No. of subjects = 22

0.637 1.306 0.431 3.959 0.539
Log likelihood = -33.736

Which model is more appropriate
statistically?

We previously pointed out that the SC model con-
tains regression coefficients, denoted as (3’s, that
do not vary over the strata. We have called this
property of the model the “no-interaction assump-
tion.” In this section, we explain what this assump-
tion means. We also describe how to evaluate the
assumption and what to do if the assumption is
violated.

We return to the SC output previously illustrated.
Notice that only one set of coefficients, namely,
1.390 for log WBC and 0.931 for Rx, are provided,
even though there are two strata, one for females
and one for males. These results assume no
interaction of the sex variable with either log
WBC or Rx.

If we allow for interaction, then we would
expect to obtain different coefficients for each
of the (SEX) strata. This would happen if we fit
separate hazard models to the female and male
data, with each model containing the log WBC
and Rx variables. The computer results from
fitting separate models are shown here.

Notice that the coefficient of log WBC is 1.639 for
females but is 1.170 for males. Also, the coefficient
for Rx is 1.859 for females but 0.267 for males.
These results show different coefficients for
females than for males, particularly for the Rx
variable.

But are corresponding coefficients statistically
different? That is, which model is more appropri-
ate statistically, the no-interaction model or the
interaction model? To answer this question, we
must first look at the hazard function model for
the interaction situation.
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EXAMPLE (continued)

Interaction model:

(#) hy(2,X)

= hog(t)expl[ By, log WBC + B, Rx]
where g =1 (females), g = 2 (males)

No-interaction model:
(%) = o, ()exp[B; log WBC + B,Rx]
where g =1 (females), g = 2 (males)

Alternative interaction model:

(%) hg(t,X) = hog(t)exp[Bf log WBC
+ B5Rx + B3 (SEX x log WBC) + B;
x (SEX x Rx)]

where SEX = [1 if female
0if male

hog(t) are different for g =1,2
B* coefficients do not involve g

Equivalence of models (#) and (x ):

g =1 (females), so that sex = 1:

hy(t,X) = hgy(t)explfi log WBC + B5 Rx
+ B3 (1 xlog WBC) + B (1 x Rx)]

=ho1(Dexpl (B} + B3))log WBC
+((B3 + B4)) Rx]

g =2 (males), so that sex = 0:
hy(t,X) = hgy(t)explB; log WBC + B5 Rx
+PB3 (0 xlog WBC) + B4 (0 x Rx)]

N\ = ha(t)expl () log WBC +(B3)Rx]

Interaction models in same format:
Females (g =1): k; (£,X)
(#) = hg(®)exp[Pylog WBC + B, Rx]
(%) =ho1(Oexpl(B] + p3) log WBC

+ (B3 + By)Rx]
Males (g = 2): h, (t,X)
(#) = hg,(t)explPi,log WBC + B,,Rx]
(%) = hy,(t)exp[Bilog WBC + 5 Rx]
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One way to state the hazard model formula when
there is interaction is shown here (¢). Notice
that each variable in this model has a different
coefficient for females than for males, as indicated
by the subscript g in the coefficients 3, and (3,,.

In contrast, in the no-interaction model, the
coefficient (3;) of log WBC is the same for
females and for males; also, the coefficient (3,)
of Rx is the same for females and for males.

An alternative way to write the interaction model
is shown here (x). This alternative form contains
two product terms—SEX x log WBC and SEX x
Rx—as well as the main effects of log WBC and
Rx. We have coded the SEX so that 1 denotes
female and 0 denotes male.

In this alternative model, note that although the
baseline hazards /i, (t) are different for each sex,
the B coefficients do not involve the subscript g
and therefore are the same for each sex.

Nevertheless, this alternative formula (%) is
equivalent to the interaction formula (¢) above.
We show this by specifying the form that the
model takes for g =1 (females) and g =2
(males).

Notice that the coefficients of log WBC are
different in each formula, namely, (B} + B3) for
females versus 3] for males.

Similarly, the coefficients of Rx are different,
namely, (B;+ ;) for females versus (3; for
males.

The preceding formulae indicate that two seem-
ingly different formulae for the interaction
model—(¢) versus (x), shown earlier—can be
written in the same format. We show these
formulae here separately for females and males.
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EXAMPLE (continued)

*® ™
Females (g =1): By =B + B3
Bo1=PB5 + B

(9
Bia= P
B22=P>

Males (g =2):

Stratified Cox regression
Analysis time _t: survt

Std. Haz. [95% Conf.
Coef. Er  p>lzl Ratio Interval]

log 0.499 0.019 3.222 1.213 8.562

WBC
Rx 0.566 0.637 1.306 0.431 3.959
Sex 0.720 0.515 1.598 0.390 6.549
x log
WBC
Sex 1.592) 0.923 0.084 4.915 0.805 30.003
X Rx

No. of subjects =42 Log likelihood =-55.835 Stratified by sex

Females:

- e | =2
0g WBC | g+ 82 1.170 + 0.469 =[[.639)]

[Bu ={1.859]

Interaction model:

hg(t,X) = hog(t)exp[BT log WBC + B3 Rx
+ B3 (SEX x log WBC)
+ By (SEX x Rx)]

Notice that for females, the coefficient 3;; in
model (¢#) must be equivalent to (3] + 3) in
model (x) because both models have the same for-
mat, and both 3;; and (3] + (33) are coefficients
of the same variable, log WBC. Similarly, 3,; in
model (#) is equivalent to (33 + ;) in model (x)
because both are coefficients of the same variable,
Rx.

For males, it follows in an analogous way,
that the coefficient (3, is equivalent to (37, and,
similarly, (3,, equals f33.

Here we provide computer results obtained
from fitting the alternative interaction model (x).

. . . A% ¥ AF

The estimated regression coefficients 3, 3, 33,
A * . .

and f3,, respectively, are circled.

We have shown above that the sums BT + B; and

[3; + BZ are equal to the coefficients 3, and {3,
respectively, in the original interaction model for
females.

Also, we have shown that B, and 3, are equal
to the coefficients f3;, and f,,, respectively, in
the original interaction model for the males. The
numerical equivalences are shown here. Note
again that the coefficients of log WBC and Rx
for females are different from males, as is to be
expected if sex interacts with each variable.

We have thus seen that the interaction model
can be written in a format that contains product
terms involving the variable being stratified—
SEX—being multiplied by each of the predictors
not being stratified. We show this model involving
product terms again here. We will use this
model to describe a test of the no-interaction
assumption.
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EXAMPLE (continued)

Testing the no-interaction assumption:

LR=-2InLz—(-2InLy)
R =reduced (no-interaction) model
F = full (interaction) model

LR ~ X%df under H: no interaction
(2 df because two product terms tested
in interaction model)

No interaction (reduced model):

iOutput: -2 log L: 115.120!
—21n LR/

Interaction (full model):

iOutput: -2 log L: 111.670;

2InL, 7

LR=115.120-111.670 = 3.45

(P > 0.05 not significant).

Thus, the no-interaction model is accep-
table.

Remission data example:

e described no-interaction

assumption

e evaluated assumption using LR
test

e provided interaction model if
needed

Now, we generalize this process.

The test is a likelihood ratio (LR) test which
compares log-likelihood statistics for the interac-
tion model and the no-interaction model. That
is, the LR test statistic is of the form —2In Ly
minus —21nLr, where R denotes the reduced
model, which in this case is the no-interaction
model, and F denotes the full model, which is the
interaction model.

This LR test statistic has approximately a
chi-square distribution with 2 degrees of freedom
under the null hypothesis that the no-interaction
model is correct. The degrees of freedom here is 2
because there are two product terms being tested
in the interaction model.

The log-likelihood statistic for the reduced
model comes from the computer output for the
no-interaction model and is equal to —2 times
—57.560, or 115.120.

The log-likelihood statistic for the full model
comes from the computer results for the interac-
tion model and is equal to —2 times —55.835, or
111.670.

The LR statistic is therefore 115.120 minus
111.670, which equals 3.45. This value is not sig-
nificant at the 0.05 level for 2 degrees of freedom.
Thus, it appears that despite the numerical dif-
ference between corresponding coefficients in the
female and male models, there is no statistically
significant difference. We can therefore conclude
for these data that the no-interaction model is
acceptable (at least at the 0.05 level).

Using the remission data example, we have
described the no-interaction assumption, have
shown how to evaluate this assumption using a
likelihood ratio test, and have provided the form
of an interaction model that should be used in case
the no-interaction assumption does not hold. We
now describe this process more generally for any
stratified Cox analysis.
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No-interaction SC model:

hg(t,X) = hOg(Z)eXp[Ble + BzXZ
oot By X,
g=1,2,... k* strata defined
from Z*

SC model allowing interaction:

hg (t,X) = hog (t)expl B, X1
+ B Xo 4+ 4 B Xl
g=12,... k* strata defined
from Z*

Alternative SC interaction model:

e uses product terms involving Z*
e define k* — 1 dummy variables

Z1. 25, ..., 2}, from Z*

e products of the form Z} x X,
wherei =1,...,k* —1and
j=1,...,p.

o (¢.X) = hog (1) expl By X1 +--- + B, X,
+Ru(ZT x X))+ -+ Bpl(zf x X,)
+Rp(Zy x X))+ -+ sz(zf x X,)
+ o4 Bl,k*—l(ZZL] X Xl) + .-
By 1(Zf_y x X))

g =1,2,...,k* strata defined from Z*

Recall that the general form of the no-interaction
model for the stratified Cox procedure is given as
shown here. This model allows for several vari-
ables being stratified through the use of a newly
defined variable called Z*, whose strata consist of
combinations of categories of the variables being
stratified.

If, in contrast, we allow for interaction of the Z*
variable with the X’s in the model, we can write
the model as shown here. Notice that in this inter-
action model, each regression coefficient has the
subscript g, which denotes the gth stratum and
indicates that the regression coefficients are dif-
ferent for different strata of Z*.

An alternative way to write the interaction model
uses product terms involving the variable Z*
with each of the predictors. However, to write
this model correctly, we need to use k* —1
dummy variables to distinguish the k* categories
of Z*; also, each of these dummy variables,
which we denote as Z§, Z3, ..., Z}._,, needs to
be involved in a product term with each of
the Xs.

The hazard model formula alternative model is
shown here. Notice that the first line of the for-
mula contains the X’s by themselves, the next line
contains products of each X; with Z7, the third
line contains the products with Z#, and the last
line contains products with Z;«_;. Note also that
the subscript g occurs only with the baseline haz-
ard function /g, (¢), and is not explicitly used in
the B coefficients.



EXAMPLE (Remission Data)

Z"=sex, k' =2,

Z7 =sex(0,1),
X, =1log WBC, X, =Rx (p =2)
hy(t,X) = ho,(expl 1 X, + BrX,
+PBii(Z1 x Xp)
+B21(Z] x Xp)]

= hg,(t)explBilog WBC

g=1,2

B1=B1, B2=B3, Bi1 =B3, and By = B4

Testing the no-interaction assump-

tion:

LR = —211’1LR — (—211’1LF)

R =reduced (no-interaction) model

F = full (interaction) model
contains product terms

+ B5Rx + B3(sex x log WBC)

IV. The No-Interaction Assumption and How to Test it 187

+ Bi(sex x Rx)]

B ="'=f3p1 =0
HO: .[312_...=Bp220
Big—r==Ppp_1=0
LR ~ X;(k*—l)df

under Hy: no interaction

p(k* — 1) gives number of product
terms being tested in interaction

model

In our previous example involving the remission
data, the stratification variable (Z*) was the vari-
able SEX, and k* was equal to 2; thus, we have
only one dummy variable Z7, which uses a (0,1)
coding to indicate sex, and we have only (p equal
to) two predictors—X equal to log WBC and X,
equal to Rx. The interaction model is then written
in either of the forms shown here.

The latter version of the interaction model is what
we previously presented for the remission data ex-
ample. Because the two versions presented here
are equivalent, it follows that B} = B4, 3, = B3,

B = B;» and B, = BI'

We have thus seen that the interaction model can
be written in a format that contains product terms
involving dummy variables (i.e., Z*) for the vari-
able being stratified being multiplied by each of
the predictors (i.e., X;) not being stratified. We
will use this model to describe a test of the no-
interaction assumption.

The test is a likelihood ratio (LR) test which com-
pares log likelihood statistics for the interaction
model and the no-interaction model. That is, the
LR test statistic is of the form —2In Lz minus
—2In Ly, where R denotes the reduced model,
which in this case is the no-interaction model, and
F denotes the full model, which is the interaction
model.

The no-interaction model differs from the inter-
action model in that the latter contains additional
product terms. Thus, one way to state the null hy-
pothesis of no interaction is that the coefficients
of each of these product terms are all zero.

The LR test statistic has approximately a chi-
square distribution with p(k* — 1) degrees of free-
dom under the null hypothesis. The degrees of
freedom here is p(k* — 1) because this value gives
the number of product terms that are being tested
in the interaction model.
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EXAMPLE (Remission Data)

Z =sex, k=2,

Z7 =sex(0,1),

X,=log WBC, X, =Rx (p =2)
pk*=1)=2, so

LR ~ y54¢ under Hyy: no interaction

Returning to the remission data example, for
which p =2 and k* = 2, the value of p(k* — 1)
is equal to two times (2 — 1), which equals two.
Thus, to test whether the SEX variable interacts
with the log WBC and Rx predictors, the degrees
of freedom for the LR statistic is two, as previously

described.

V. A Second Example
Involving Several
Stratification Variables

EXAMPLE

vets.dat: survival time in days, n = 137

Veteran's Administration Lung Cancer Trial
Column 1: Treatment (standard = 1, test = 2)
Column 2: Cell type 1 (large = 1, other = 0)
Column 3: Cell type 2 (adeno = 1, other = 0)
Column 4: Cell type 3 (small = 1, other = 0)
5
6
7

—

Column 5: Cell type 4 (squamous = 1, other = 0)
Column 6: Survival time (days)

Column 7: Performance status (0 = worst, ...,
100 = best)

Column 8: Disease duration (months)

Column 9: Age

Column 10: Prior therapy (none = 0, some = 10)

Column 11: Status (0 = censored, 1 = died)

Cox regression
Analysis time _t: survt

Std. Haz. [95% Conf.

Err. p>lzI Ratio Interval] P(PH)
0.207 0.162 1336 0.890 2.006 0.628
0.283  0.157 1.491 0.857 2.594 0.033
0.301 0.000 3.281 1.820 5915 0.081
0.275 0.002 2.355 1.374 4.037 0.078
0.006 0.000 0.968 0.958 0.978 0.000
0.009 0.992 1.000 0.982 1.018 0.919
Age ~0.009 0.009 0.358 0.991 0.974 1.010 0.198
Pr.Therapy 0.007 0.023 0.755 1.007 0.962 1.054 0.145

No. of subjects = 137 Log likelihood = -475.180

Coef.

0.290
0.400
1.188
0.856

Treatment
Large cell
Adeno cell
Small cell
Perf. Stat  -0.033
Dis. Durat. ~ 0.000

Variables not satisfying PH:

e cell type (3 dummy variables)
e performance status

e prior therapy (possibly)

SC model: stratifies on cell type and per-
formance status

The dataset “vets.dat” considers survival times in
days for 137 patients from the Veteran’s Adminis-
tration Lung Cancer Trial cited by Kalbfleisch and
Prentice in their text (The Statistical Analysis of
Survival Time Data, Wiley, pp. 223-224, 1980). The
exposure variable of interest is treatment status.
Other variables of interest as control variables are
cell type (four types, defined in terms of dummy
variables), performance status, disease duration,
age, and prior therapy status. Failure status is de-
fined by the status variable. A complete list of the
variables is shown here.

Here we provide computer output obtained from
fitting a Cox PH model to these data. Using the
P(PH) information in the last column, we can see
that at least four of the variables listed have P(PH)
values below the 0.100 level. These four variables
are labeled in the output as large cell (0.033),
adeno cell (0.081), small cell (0.078), and Perf. Stat
(0.000). Notice that the three variables, large cell,
adeno cell, and small cell, are dummy variables
that distinguish the four categories of cell type.

Thus, it appears from the P(PH) results that the
variables cell type (defined using dummy vari-
ables) and performance status do not satisfy the
PH assumption.

Based on the conclusions just made about the PH
assumption, we now describe a stratified Cox anal-
ysis that stratifies on the variables, cell type and
performance status.



V. A Second Example Involving Several Stratification Variables

EXAMPLE (continued)

Z* given by combinations of categories:

o cell type (four categories)

e performance status (interval) change
to

e PSbin (two categories)

Z" has k=4 x 2 = 8 categories

Four other variables considered as X’s:
* treatment status

o disease duration
* age

e prior therapy

Here, we use treatment status and age
as X’s

Stratified Cox regression
Analysis time _t: survt

[95% Conf.
Interval]

Std. Haz.
Coef. Err. p>lzl Ratio

Treatment 0.125 0.208 (0.548)(1.134) 0.753 1.706

Age -0.001 0.010 0.897 0.999 0.979 1.019

No. of subjects = 137 Log likelihood =-262.020 Stratified by z"

No-interaction model

PN
HR =1.134 (P =0.548)

Treatment effect (adjusted for age
and Z") is nonsignificant

No-interaction model:

hg(t,X)

= hog(t)exp[Bl Treatment + 3, Age]

g=1,2,...,8 (=#of strata
defined from Z*)

Interaction model:

hg(t,X)
= hog(t)expl B, Treatment + B,, Age]
g=1,2,.,8
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Because we are stratifying on two variables, we
need to form a single new categorical variable
Z* whose categories represent combinations of
categories of the two variables. The cell type
variable has four categories by definition. The
performance status variable, however, is an
interval variable ranging between 0 for worst to
100 for best, so it needs to be categorized. We
categorize this variable into two groups using a
cutpoint of 60, and we denote this binary variable
as PSbin. Thus, the number of categories for our
Z* variable is 4 x 2, or §; that is, k* = 8.

In addition to the two stratification variables, cell
type and performance status, there are four other
variables to be considered as predictors in the
stratified Cox model. These are treatment status,
disease duration, age, and prior therapy.

For illustrative purposes here, we use only
treatment status and age as predictors. The
other two variables, disease duration and prior
therapy, are considered in exercises following this
presentation.

Here we show computer output from fitting a
stratified Cox model that stratifies on cell type
and performance status using the eight-category
stratification variable Z*. This model also in-
cludes treatment and age as predictors. These
results consider a no-interaction model, because
only one regression coefficient is provided for
the treatment and age predictors. Notice that the
estimated hazard ratio is 1.134 for the effect of
the treatment variable adjusted for age and Z*,
the latter being adjusted by stratification. The
p-value for this adjusted treatment effect is 0.548,
which is highly nonsignificant.

The no-interaction model we have just described
has the hazard function formula shown here.

To evaluate whether the no-interaction model
is appropriate, we need to define an interaction
model that allows different regression coeffi-
cients for different strata. One way to write this
interaction model is shown here.
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EXAMPLE (continued)

Alternative interaction model:
hy(t,X)
= hgy(t)exp[B; Treatment
+ B, Age
+ B11(Z] x Treatment) + -
+ B17(Z5 x Treatment)
+B21(Z7 x Age) + -+ + Bp7(Z7 x Age)]
g=12,..,8

Another version of interaction model:
Replace Z3,..., Z5 by

Z = large cell (binary)

Z5 = adeno cell (binary)

Z3 = small cell (binary)

Z, = PSbin (binary)

& & .
5=21%XZy
3 &3 el
7t =75 X 7}
& & &
7=23%XZ}

hg(t,X) = hog(t)explB; Treatment + B, Age
+ Bra(tr Z7) + Braltr Z5) + Bys(tr Z3)

+ Bualtr Z3) + Bys(tr Z323)

+Bre(tr Z3Z3) + By (tr Z3Z3)

+By,(AGE Z}) + B5,(AGE Z5)

+ By3(AGE Z5) + B,4(AGE Z)

+ B2s(AGE ZiZ3) + B (AGE Z5Z3)

+ B27(AGE Z377)]

An alternative version of this interaction model
that involves product terms is shown here. This
version uses seven dummy variables denoted as
27, Z5 up through Z7 to distinguish the eight cat-
egories of the stratification variable Z*. The model
contains the main effects of treatment and age
plus interaction terms involving products of each
of the seven dummy variables with each of the two
predictors.

Yet another version of the interaction model is to
replace the seven dummy variables Z{ to Z% by
the seven variables listed here. These variables are
three of the binary variables making up the cell
type variable, the binary variable for performance
status, plus three product terms involving each of
the cell type dummy variables multiplied by the
PSbin dummy variable (Z}).

The latter interaction model is shown here. In this
model, the variable tr Z{ denotes the product of
treatment status with the large cell dummy Z 7, the
variable tr Z3 denotes the product of treatment
status with the adeno cell variable Z3, and so on.
Also, the variable tr Z} Z} denotes the triple prod-
uct of treatment status times the large cell vari-
able Z7 times the PSbin variable Z}, and so on,
for the other triple product terms involving treat-
ment. Similarly, for the terms involving age, the
variable Age Z} denotes the product of age with
Z7, and the variable Age Z7Z; denotes the triple
product of age times Z; times Z;.

Note that we are just considering the interaction
between the stratified variables and the predictors.
We could also (but do not) consider the interaction
between the two predictors, treatment, and age.
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EXAMPLE (continued)

Stratified Cox Regression Analysis on
Variable: Z*
Response: Surv. Time

Std. Haz.  [95% Conf.
Coef. Err. p>lzl Ratio Interval]

Treatment 0286 0.664 0.667 1331 0362 4893
Age 0.000 0.030 0978 0999 0942  1.060
rZ} 2351 1772 0.184 10495 0.326 337.989
rz) -1.158 0957 0226 0314 0048  2.047
rzy 0582 0.855 0496 1790 0335  9.562
rz, -1.033 0868 0234 0356 0065  1.950
trZzjZ,  -0794 1980 0.683 0452 0.009  21.882
7 2785 1316 0.034 16204 1.229 213.589
W27 0462 1.130 0683 1587 0173 14534
Age Z; 0078 0.064 0223 1081 0954 1225
Age Z) -0.047 0.045 0295 0954 0873  1.042
AgeZy  -0.059 0042 0162 0943 0868 1024
Age Z, 0051 0.048 0287 1053 0958  1.157
AgeZiZ, -0.167 0.082 0042 0847 0721  0.99%
AgeZyZ, -0.045 0.068 0511 0956 0838  1.092
AgeZiZ,  0.041 0061 0499 1042 0924 1175

No. of subjects = 137 Log likelihood = -249.972 Stratified by Z*

Eight possible combinations of Z7 to Zj:
g=1: Z1=25=735=7,=0

: Z1=1,Z3=2=23=0
Zh=1,2}=23=73=0
Z5=1,Zi=25=2;=0
=Z T, Za=
Zi=1,25=73=0, Z3=1
Zy=1,25=73=0, Z;,=1
Z3=1,21=75=0, Z;=1

g:]; Z*{:Z;:Z;:ZZ:O
(Squamous cell type and PSbin = 0)

All product terms are zero:

hy(¢.X)

= hg,(t)exp[ P Treatment + B, Age],
where fil =0.286,

B,=0.000, so that

ill #X) = fzo 1(1)exp[(0.286)Treatment]

g=2: Z=1,Z=Z=Z=0
(Large cell type and PSbin = 0)
Nonzero product terms  Coefficients
Age Zj = Age Ba1

tr Z] = Treatment Bi1

Here we provide the computer results from fitting
the interaction model just described. Notice that
the first two variables listed are the main effects
of treatment status and age. The next seven vari-
ables are product terms involving the interaction
of treatment status with the seven categories of Z*.
The final seven variables are product terms involv-
ing the interaction of age with the seven categories
of Z*. As defined on the previous page, the seven
variables used to define Z* consist of three dummy
variables Z}, Z5 and Z; for cell type, a binary vari-
able Z; for performance status and products of Z;
with each of Z}, Z;, and Z3. Note that once the
variables Z§, Z3, Z5, and Z; are specified, the val-
ues of the three product terms are automatically
determined.

We can use these results to show that the inter-
action model being fit yields different regression
coefficients for each of the eight categories defined
by the subscript g for the stratification variable Z*.
These eight categories represent the possible com-
binations of the four variables Z to Z}, as shown
here.

Consider the hazard function when the variables
Z7 through Z;} are all equal to zero. This stratum
is defined by the combination of squamous cell
type and a binary performance status value of 0.
In this case, all product terms are equal to zero
and the hazard model contains only the main ef-
fect terms treatment and age. The estimated haz-
ard function for this stratum uses the coefficients
0.286 for treatment and 0.000 for age, yielding the
expression shown here. Note that age drops out
of the expression because its coefficient is zero to
three decimal places.

Now consider the hazard function when the vari-
able Z} equals 1 and Z3 through Z} are equal to
zero. This stratum is defined by the combination
of large cell type and a PSbin value of 0. In this
case, the only nonzero product terms are Age Z7
and tr Z7, whose coefficients are 3,; and 3;, re-
spectively.
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EXAMPLE (continued)

hy(t,X) = hgy(t)expl(B; + By 1) Treatment
. + SBz +B51) Agel

B, =0.286, B, = 0.000

By1=2.351, B,; = 0.078

Hazard functions for interaction model:
g=1: (AZ’{:ZZT 3=2Z4=0):
h(t,X) = hg(¢)exp[(0.286)Treatment]
g=2:(Z1=1,25=25=2,=0):
fzz(t,X) = i102(t)exp[(2.637)Treatment
+(0.078)Age]
3:(Z5=1,Z1=25=2,=0):
Fiy(t,X) = hrg3(t)expl(-0.872) Treatment
+(-0.047)Age]
4:(Z3=1,Z1=25=7Z,=0):
hy(t,X) = hoa(1)expl(0.868)Treatment
+ (-0.059)Age]
(Z1=25=25=0,Z,=1):
hs(t,X) = higs()expl(-0.747) Treatment
+(0.051)Age]
6:(Z1=1,25=23=0,Z;=1):
izé(t,X) = izoﬁ(z‘)exp[(O.SIO)TreatInent
+ (-0.038)Age]
7:(Z5=1,Z1=23=0, Z;=1):
27(I,X) = 1307(t)exp[(0.880)Treatment
+(-0.041)Age]
g=8:(Z3=1,21=25=0,Z4=1):
fzg(t,X) = izog(t)exp[(0.297)Treatment
+(0.033)Age]
LR test to compare no-interaction model
with interaction model:

oo
Il

oQ
I

o0
Il
Ul

(8]
Il

o
Il

H: no-interaction model acceptable, i.e.,
Treatment: B1; =B, =-=p;7=0

and Age: By =Py =-"=PBy=0

14 coefficients = df = 14

LR=-2InLy—-(21InLy)
R = reduced (no-interaction) model

F = full (interaction) model

The hazard function for this second stratum is
shown here. Notice that the coefficients of the
treatment and age variables are (3, + ;) and
(By + B,1), respectively. The estimated values of
each of these coefficients are given here.

The corresponding estimated hazard function for
the second stratum (i.e., g = 2) is shown here. For
comparison, we repeat the estimated hazard func-
tion for the first stratum.

The estimated hazard functions for the remain-
ing strata are provided here. We leave it up to the
reader to verify these formulae. Notice that the co-
efficients of treatment are all different in the eight
strata, and the coefficients of age also are all dif-
ferent in the eight strata.

We have presented computer results for both the
no-interaction and the interaction models. To eval-
uate whether the no-interaction assumption is sat-
isfied, we need to carry out a likelihood ratio test
to compare these two models.

The null hypothesis being tested is that the no-
interaction model is acceptable. Equivalently, this
null hypothesis can be stated by setting the co-
efficients of all product terms in the interaction
model to zero. That is, the seven coefficients of
product terms involving treatment and the seven
coefficients of the product terms involving age are
set equal to zero as shown here.

Because the null hypothesis involves 14 coeffi-
cients, the degrees of freedom of the LR chi-
square statistic is 14. The test statistic takes the
usual form involving the difference between log-
likelihood statistics for the reduced and full mod-
els, where the reduced model is the no-interaction
model and the full model is the interaction model.
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EXAMPLE (continued)

LR+y3 4 under Hy: no interaction

LR = (=2 x -262.020) — (-2 x ~249.972)
=524.040 — 499.944 = 24.096
P=0.045 (significant at 0.05)
Conclusion:
Reject Hy: interaction model is
preferred.

Might use further testing to simplify
interaction model, e.g., test for seven
products involving treatment or test for
seven products involving age.

Thus, under the null hypothesis, the LR statistic
is approximately chi-square with 14 degrees of
freedom.

The computer results for the no-interaction and
interaction models give log-likelihood values of
524.040 and 499.944, respectively. The difference
is 24.096. A chi-square value of 24.096 with 14 de-
grees of freedom yields a p-value of 0.045, so that
the test gives a significant result at the 0.05 level.
This indicates that the no-interaction model is not
acceptable and the interaction model is preferred.

Note, however, that it may be possible from fur-
ther statistical testing to simplify the interaction
model to have fewer than 14 product terms. For
example, one might test for only the seven prod-
uct terms involving treatment or only the seven
product terms involving age.

VI. A Graphical View of the
Stratified Cox Approach

a. h(t) = ho(t)exp(p,;RX
+ B,SEX)
In(—1In S(t)) = In(—In Sy(t))
+ BRX + B,SEX
males, RX =1

In(-InS(t)) males, RX =0

/o

\

females, RX =1

females,tRX =0

In this section we examine four log-log survival
plots illustrating the assumptions underlying a
stratified Cox model with or without interaction.
Each of the four models considers two dichoto-
mous predictors: treatment (coded RX = 1 for
placebo and RX = 0 for new treatment) and SEX
(coded 0 for females and 1 for males). The four
models are as follows (see left).

a. hy(t)exp(f{RX + $,SEX). This model
assumes the PH assumption for both RX
and SEX and also assumes no interaction
between RX and SEX. Notice all four
log-log curves are parallel (PH assumption)
and the effect of treatment is the same for
females and males (no interaction). The
effect of treatment (controlling for SEX)
can be interpreted as the distance between
the log-log curves from RX = 1to RX =0,
for males and for females, separately.
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b. h(t) = ho(t) exp(fRX + 3,SEX
+ B3 RX x SEX)
In(—In S(t)) = In(—In Sy(t))

males, RX =1
In(-InS(t))

\

males, RX =0

females, RX =1
females, RX =0
t

W

c. h(t) = hog(t)exp(B;RX)
(g=1 for males, g=0 for
females)
In(—InS(t)) = In(—In Sp,(t))
+ BRX
males, RX =1

males, RX =0
In(-InS(t))

\

females, RX =1
t

females, RX =0

3

d. h(t) = hog(t)exp(B;RX
+ B, RX x SEX)
(g=1 for males, g=0 for
females)
In(—In S(t)) = In(—In Spe(t))
+B,RX + B, RX xSEX

males, RX =1

In(-InS(t)) males, RX =0

females, RX =1
females, RX =0
t

\

A

. h(t) = ho()exp(pRX + B,SEX + B3

RX x SEX). This model assumes the PH
assumption for both RX and SEX and
allows for interaction between these two
variables. All four log-log curves are
parallel (PH assumption) but the effect of
treatment is larger for males than females
as the distance from RX = 1toRX =0is
greater for males.

h(t) = hog(t)exp(B;RX), where g = 1 for
males, g = 0 for females. This is a stratified
Cox model in which the PH assumption is
not assumed for SEX. Notice the curves for
males and females are not parallel.
However, the curves for RX are parallel
within each stratum of SEX indicating that
the PH assumption is satisfied for RX. The
distance between the log-log curves from
RX = 1 to RX = 0 is the same for males
and females indicating no interaction
between RX and SEX.

. h(t) = hog(t) exp(pRX + ,RX x SEX),

where g = 1 for males, g = 0 for females.
This is a stratified Cox model allowing for
interaction of RX and SEX. The curves for
males and females are not parallel
although the PH assumption is satisfied for
RX within each stratum of SEX. The
distance between the log-log curves from
RX = 1 to RX = 0 is greater for males than
females indicating interaction between RX
and SEX.
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VII. Summary

Stratified Cox (SC) model:

e stratification of predictors not
satisfying PH assumption
e includes predictors satisfying

PH

e does not include stratified
variables

Computer Results

Stratified Cox regression
Analysis time _t: survt

Std. Haz. [95% Conf.
Coef. Err. p > |z| Ratio Interval]

log

WBC 1.390 0.338 0.000 4.016 2.072 7.783
RX 0.931 0.472 0.048 2.537 1.006 6.396
No. of Log likelihood  Stratified
subjects =42 = —57.560 by sex

Hazard function for stratified Cox

model:

hy(t,X) = hog (t)exp[B X1 + B, X
+o+B,Xp]

g=1,2,... k* strata defined

from Z*
Z* has k* categories
X1, X, ..., X, satisfy PH

Stratification variable Z*:

° identify Z1,2,,.
satisfying PH

e categorize each Z

e form combinations of categories
(strata)

e cach combination is a stratum
of Z*

.., Z, not

We now summarize the most important features
of the stratified Cox (SC) model described in this
presentation.

The SC model is a modification of the Cox PH
model to allow for control by “stratification” of
predictors not satisfying the PH assumption. Vari-
ables that are assumed to satisfy the assumption
are included in the model as predictors; the strat-
ified variables are not included in the model.

The computer results for a SC model provides
essentially the same type of output as provided
for a Cox PH model without stratification. An ex-
ample of SC output using the remission data is
shown here. The variables included as predictors
in the model are listed in the first column followed
by their estimated coefficients, standard errors,
p-values, hazard ratio values, and 95% confidence
limits. Such information cannot be provided for
the variables being stratified, because these lat-
ter variables are not explicitly included in the
model.

The general hazard function form for the stratified
Cox model is shown here. This formula contains
a subscript g that indicates the gth stratum, where
the strata are different categories of the stratifica-
tion variable Z* and the number of strata equals
k*. Notice that the baseline hazard functions are
different in each stratum.

The variable Z* is defined by first identifying the
Z; variables not satisfying the PH assumption. We
then categorize each Z and form combinations of
categories of each of the Z's. Each combination

represents a different stratum making up the vari-
able Z*.
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No-interaction model:

Same coefficients B, 5, ..., Bp
for each g, i.e., Z* does not interact
with the X’s.

hoi(t) = Si(1)

Different | P02(t) = $(0) Diffe.rent
. survival

curves

baselines :
hoe(t) = Se(t)

HR same for each stratum

(Partial) likelihood function:
L=L; xL,x---XLjx

Stratified Cox model allowing interaction:

hy(t,X) = hoy (1) expl 1, X1 + By, X2
+o By Xy ]
g=1,2,..., k%, strata defined from Z*.

Alternative stratified Cox interac-
tion model:

e uses product terms involving Z*

o define k* — 1 dummy variables
from Z*

e products of the form Z* x X;

Testing the no-interaction assump-
tion:

LR=-2InLg—21In Lp)

R =reduced (no-interaction) model

F = full (interaction) model
contains product terms

LR"VX;(k*q)df under Hy: no
interaction

The above model is designated as a “no-
interaction” model because the B’s in the model
are the same for each subscript g. The no-
interaction assumption means that the variables
being stratified are assumed not to interact with
the Xs in the model.

For the no-interaction model, the fitted SC model
will yield different estimated survival curves for
each stratum because the baseline hazard func-
tions are different for each stratum.

However, because the coefficients of the X’s are the
same for each stratum, estimates of hazard ratios
are the same for each stratum.

Regression coefficients in the SC model are esti-
mated by maximizing a partial likelihood function
that is obtained by multiplying likelihood func-
tions for each stratum.

In order to evaluate the no-interaction assump-
tion, we must define an interaction model for com-
parison. One version of the interaction model is
shown here. This version shows regression coeffi-
cients with different subscripts in different strata;
that is, each (3 coefficient has a subscript g.

An alternative way to write the interaction model
uses product terms involving the Z* variable with
each predictor. This model uses k*—1 dummy vari-
ables to distinguish the k* categories of Z*. Each
of these dummy variables is included as a product
term with each of the X’s.

To evaluate the no-interaction assumption, we can
perform a likelihood ratio test that compares the
(reduced) no-interaction model to the (full) inter-
action model. The null hypothesis is that the no-
interaction assumption is satisfied. The test statis-
tic is given by the difference between the log-
likelihood statistics for the no-interaction and in-
teraction models. This statistic is approximately
chi-square under the null hypothesis. The degrees
of freedom is p(k*—1) where p denotes the num-
ber of X’s and k* is the number of categories mak-
ingup Z*.
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PRESENTATION COMPLETE!
Chapters

1. Introduction to Survival
Analysis

2. Kaplan-Meier Survival Curves
and the Log-Rank Test

3. The Cox Proportional Hazards
Model and Its Characteristics

4. Evaluating the Proportional
Hazards Assumption

V5. [The Stratified Cox Procedurej

Next:

6. Extension of the Cox
Proportional Hazards Model for
Time-Dependent Variables

This presentation is now complete. We suggest
that the reader review this presentation using the
detailed outline that follows. Then answer the
practice exercises and the test that follow.

The next Chapter (6) is entitled “Extension of the
Cox PH Model for Time-Dependent Variables.”
There we show how an “extended” Cox model
can be used as an alternative to the stratified Cox
model when one or more predictors do not satisfy
the PH assumption. We also discuss more gener-
ally what is a time-dependent variable, and show
how such a variable can be evaluated using an ex-
tended Cox model.
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Detailed
Outline

I. Preview (page 176)

IL.

III.

A.

Focus on how stratified Cox (SC) procedure is
carried out:

e analysis of computer results from SC
procedure;

e hazard function for SC model;

e stratifying on a single predictor versus two or
more predictors;

e no-interaction versus interaction models.

An Example (pages 176-180)

A.

B.

C.

E.

Cox PH results for remission data yield

P(PH) = 0.031 for SEX.

SC model used: control for SEX (stratified);

include log WBC and Rx in model.

Analysis of Rx effect from stratified Cox

results:

HR = 2.537;95% CI: (1.006,6.396); LR and

Wald tests: P < 0.05.

Hazard model: /1, (t, X) =

hoe(t) exp[3;log WBC + 3, Rx],g = 1,2

o different baseline hazard functions and
survival curves for females and males;

e same coefficients 3; and 3, for both females
and males (no-interaction assumption);

e obtain estimates by maximizing partial
likelihood L = L x L,.

Graph of four adjusted survival curves for Rx

(adjusted for log WBC).

The General Stratified Cox (SC) Model
(pages 180-181)

A.

hy (t,X) =hog () exp [B1 X1 + B Xz +- - -+ B, X1,
g=1’2’...,k*

where the strata are defined from the stratification
variable Z*.

Z* defined from Z, Z,, ..., Z; variables that do
not satisfy PH:

e categorize each Z;
e form combinations of categories
e cach combination is a stratum of Z*

Different baseline hazard functions and survival
curves for each stratum.
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D. Assumes no interaction: same coefficients
Bi,Br--ns Bp for each g; i.e., Z* does not interact
with the X’s; i.e., estimated HR is same for each
stratum.

E. Obtain estimates by maximizing partial likelihood
L=L;xLyx---x L, where L; is likelihood
for ith stratum.

The No-Interaction Assumption and How to Test It

(pages 182-188)

A. Assumes same coefficients 3, 3,, ..., 3, for each
g.

B. Interaction model:

(710, X) = oy (0expIB 1, X1 + Bo, X+ + B X, 1]

g =1,2,...,k* strata defined from Z*.
C. Alternative stratified Cox interaction model:

e uses product terms involving Z*

e define k*—1 dummy variables
75,75, ... Zioy* from Z*

e products of the form Z} x X;, where
i=1,...k*—1j=1,....p

e hazard function: g =1, 2, ..., k* strata
defined from Z*

hy(t,X) = hog (t)expl B X1 + -+ B, X, + By (ZF x X1)
+o+ Bpi(Z] x Xp) + Bra(Z5 x Xi) + -+ + Bpa(Z5 x X))
+ot Bre—t(ZE oy x X))+ 4 By (Zf oy x X)p)]

D. Testing the no-interaction assumption: use LR
statistic given by LR = —2 InLg — (—21In Lf)
where R = reduced (no interaction) model and
F = full (interaction) model
LR~y z(k,_l) 4 under Hy: no interaction,
Le,Pyy=Py=...=Bpr—1 =0

A Second Example Involving Several Stratification

Variables (pages 188-193)

A. Dataset “vets.dat” from Veteran’s Administration
Lung Cancer Trial; n = 137; survival time in days.

B. Variables are: treatment status, cell type (four
types), performance status, disease duration, age,
and prior therapy status.

C. Cox PH results indicate [using P (PH)] that cell
type and performance status do not satisfy PH
assumption.



200 5. The Stratified Cox Procedure

D. Example stratifies on cell type and performance
status using four categories of cell type and two
categories of performance status, so that Z* has

k* = 8 strata.
E. X’s considered in model are treatment status and
age.

F. Computer results for no-interaction model:
estimated HR for effect of treatment adjusted for
age and Z* is 1.134 (P = 0.548); not significant.

G. Hazard function for no-interaction model:
hg(t,X) = hog(t) exp[3; Treatment + (3, Age],
g=12,...,8

H. Hazard function for interaction model:
hy(t,X) = hoy(t) exp [, Treatment + (3,, Agel],
g=12,....,8

I. Alternative version of interaction model:
hg(t,X) = hog(t) exp [ 3| Treatment + 3, Age
+ B11(Z] x Treatment) + - - - + 37(Z5 x Treatment)
+Boy(Z) x Age) + -+ + Br(Z3 x Age)l,
g=1,2,...,8
where Z{ = large cell (binary), Z = adeno cell
(binary), Z5 = small cell (binary), Z; = PSbin
(binary), Z: = Z{ x 2}, 2} = Z5 x Z},
7t = 7% X 7

J. Demonstration that alternative interaction version
(in item I) is equivalent to original interaction
formulation (in item H) using computer results for
the alternative version.

K. Test of no-interaction assumption:

e null hypothesis: ;; =B =...=B17;=0
and ) =Py =...=Py =0

® LR~x{, 4 under Hy: no interaction

e LR =524.040 — 499.944 = 24.096
(P =0.045)
Conclusion: Reject null hypothesis;
interaction model is preferred.

VI. A Graphical View of the Stratified Cox Approach

(pages 193-194)

Comparison of log-log survival curves

1. Describe interaction of Rx and Sex.

2. Describe violation of PH assumption for Sex.

VII. Summary (pages 195-196)
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The following questions derive from the dataset vets.dat con-
cerning the Veteran’s Administration Lung Cancer Trial that
we previously considered in the presentation on the stratified
Cox model. Recall that survival times are in days and that
the study size contains 137 patients. The exposure variable
of interest is treatment status (standard = 1, test = 2). Other
variables of interest as control variables are cell type (four
types, defined in terms of dummy variables), performance
status, disease duration, age, and prior therapy status. Fail-
ure status is defined by the status variable (0 = censored,
1 = died).

1. Consider the following two edited printouts obtained
from fitting a Cox PH model to these data.

survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval] P(PH)
Treatment 0.290 0.207 0.162 1.336 0.890 2.006 0.628
Large cell 0.400 0.283 0.157 1.491 0.857 2.594 0.033
Adeno cell 1.188  0.301 0.000 3.281 1.820 5.915 0.081
Small cell 0.856 0.275 0.002 2.355 1.374 4.037 0.078
Perf.Stat —0.033  0.006 0.000 0.968 0.958 0.978 0.000
Dis.Durat. 0.000 0.009  0.992 1.000 0.982 1.018 0.919
Age —0.009  0.009 0.358 0.991 0.974 1.010 0.198
Pr.Therapy 0.007 0.023 0.755 1.007 0.962 1.054 0.145

No. of subjects = 137

Cox regression
Analysis time _t:

Log likelihood = —475.180

survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval] P(PH)
Treatment 0.298 0.197  0.130 1.347 0.916 1.981 0.739
Small cell 0.392 0.210 0.062 1.481 0.981 2.235 0.382
Perf.Stat —0.033 0.005 0.000 0.968 0.958 0.978 0.000
Dis.Durat. —0.001  0.009 0.887 0.999 0.981 1.017 0.926
Age —0.006 0.009 0.511 0.994 0.976 1.012 0.211
Pr.Therapy —0.003 0.023 0.834 0.997 0.954 1.042 0.146

No. of subjects = 137

Log likelihood = —487.770

How do the printouts differ in terms of what the P(PH)
information says about which variables do not satisfy
the PH assumption?

2. Based on the above information, if you were going to
stratify on the cell type variable, how would you define
the strata? Explain.



202 5. The Stratified Cox Procedure

Stratified Cox
regression

Analysis time _t:

3. Consider a stratified analysis that stratifies on the vari-

ables Z; = “small cell” and Z, = “performance status.”
The small cell variable is one of the dummy variables for
cell type defined above. The performance status variable
is dichotomized into high (60 or above) and low (below
60) and is denoted as PSbin. The stratification variable
which combines categories from Z; and Z, is denoted as
SZ* and consists of four categories. The predictors in-
cluded (but not stratified) in the analysis are treatment
status, disease duration, age, and prior therapy. The com-
puter results are as follows:

survt Std. Err.  p>|z| Haz. Ratio [95% Conf. Interval]
Treatment 0.090 0.197 0.647 1.095 0.744 1.611
Dis.Durat. 0.000 0.010 0.964 1.000 0.982 1.019
Age 0.002 0.010 0.873 1.002 0.983 1.021
Pr.Therapy —0.010 0.023 0.656 0.990 0.947 1.035

No. of subjects = 137

Log likelihood = —344.848 Stratified by SZ*

Based on these results, describe the point and interval
estimates for the hazard ratio for the treatment effect ad-
justed for the other variables, including SZ*. Is this haz-
ard ratio meaningfully and/or statistically significant?
Explain.

. State the form of the hazard function for the model being

fit in question 3. Why does this model assume no interac-
tion between the stratified variables and the predictors
in the model?

. State two alternative ways to write the hazard function

for an “interaction model” that allows for the interac-
tion of the stratified variables with the treatment status
variable, but assumes no other type of interaction.

. State two alternative versions of the hazard function for

an interaction model that allows for the interaction of
the stratified variables (small cell and performance sta-
tus) with each of the predictors treatment status, disease
duration, age, and prior therapy.

. For the interaction model described in question 6, what

is the formula for the hazard ratio for the effect of treat-
ment adjusted for the other variables? Does this formula
give a different hazard ratio for different strata? Explain.
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State two alternative versions of the null hypothesis for
testing whether the no-interaction assumption is satis-
fied for the stratified Cox model. Note that one of these
versions should involve a set of regression coefficients
being set equal to zero.

State the form of the likelihood ratio statistic for evaluat-
ing the no-interaction assumption. How is this statistic
distributed under the null hypothesis, and with what de-
grees of freedom?

10. Provided below are computer results for fitting the in-
teraction model described in question 6. In this print-
out the variable Z} denotes the small cell variable and
the variable Z3 denotes the PSbin variable. The variable
DDZ; denotes the product of Z} with disease duration,
and other product terms are defined similarly.

Stratified Cox

regression

Analysis time _t:

survt Coef. Std.Err.  p > |z| Haz. Ratio [95% Conf. Interval]
Treatment 0.381  0.428 0.374 1.464 0.632 3.389
Dis.Durat. 0.015 0.021 0.469 1.015 0.975 1.057
Age 0.000 0.017 0.994 1.000 0.968 1.033
Pr.Therapy 0.023 0.041 0.571 1.023 0.944 1.109
DDZ7} —0.029 0.024 0.234 0.971 0.926 1.019
AgeZ; —0.055  0.037 0.135 0.946 0.880 1.018
PTZ} 0.043 0.075 0.564 1.044 0.901 1.211
DDZ3 0.025 0.032 0.425 1.026 0.964 1.092
AgeZ; 0.001 0.024 0.956 1.001 0.956 1.049
PTZ; —0.078 0.054 0.152 0.925 0.831 1.029
DDZ,Z; —0.071  0.059 0.225 0.931 0.830 1.045
AgeZ,Z; 0.084  0.049 0.084 1.088 0.989 1.196
PTZ,Z; —0.005 0.117 0.963 0.995 0.791 1.250
trzZy 0.560 0.732 0.444 1.751 0.417 7.351
trz; —0.591 0.523 0.258 0.554 0.199 1.543
trZ,7; —0.324 0.942 0.731 0.723 0.114 4.583
No. of subjects = 137 Log likelihood = —335.591 Stratified by SZ*

Use the above computer results to state the form of the
estimated hazard model for each of the four strata of the
stratification variable SZ*. Also, for each strata, compute
the hazard ratio for the treatment effect adjusted for dis-
ease duration, age, and prior therapy.
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Test

11.

12.

13.

Carry out the likelihood ratio test to evaluate the no-
interaction model described in question 4. In carrying
out this test, make sure to state the null hypothesis in
terms of regression coefficients being set equal to zero in
the interaction model fitted in question 10. Also, deter-
mine the p-value for this test and state your conclusions
about significance as well as which model you prefer, the
no-interaction model or the interaction model.

The adjusted log-log survival curves for each of the four
strata defined by the stratification variable SZ* (adjusted
for treatment status, disease duration, age, and prior
therapy) are presented below.

6
adj Adjusted log-log survival curves by SZ*

0 200 400 600 800 Days

Using this graph, what can you conclude about whether
the PH assumption is satisfied for the variables, small
cell type and PSbin?

Comment on what you think can be learned by graphing
adjusted survival curves that compare the two treatment
groups for each of the four strata of SZ*.

The following questions consider a dataset from a study
by Caplehorn et al. (“Methadone Dosage and Retention of
Patients in Maintenance Treatment,” Med. J. Aust., 1991).
These data comprise the times in days spent by heroin addicts
from entry to departure from one of two methadone clinics.
Two other covariates, namely, prison record and maximum
methadone dose, are believed to affect the survival times. The
dataset name is addicts.dat. A listing of the variables is given
below:

Column 1: Subject ID
Column 2: Clinic (1 or 2)
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Column 3: Survival status (0 = censored, 1 = departed
from clinic)

Column 4: Survival time in days
Column 5: Prison record (0 = none, 1 = any)
Column 6: Maximum methadone dose (mg/day)

1. The following edited printout was obtained from fitting a
Cox PH model to these data:

Cox regression
Analysis time _t:

survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval] P(PH)
clinic —1.009 0.215 0.000 0.365 0.239 0.556 0.001
prison 0.327 0.167 0.051 1.386 0.999 1.924 0.332
dose —0.035 0.006 0.000 0.965 0.953 0.977 0.341

No. of subjects = 238 Log likelihood = —673.403

Based on the P(PH) information in the above printout, it
appears that clinic does not satisfy the PH assumption;
this conclusion is also supported by comparing log-log
curves for the two clinics and noticing strong nonparal-
lelism. What might we learn from fitting a stratified Cox
(SC) model stratifying on the clinic variable? What is a
drawback to using a SC procedure that stratifies on the
clinic variable?

2. The following printout was obtained from fitting a SC PH
model to these data, where the variable being stratified is

clinic:
Stratified Cox
regression
Analysis time _t:
survt Coef. Std. Err.  p > |z| Haz. Ratio [95% Conf. Interval]
Prison 0.389 0.169 0.021 1.475 1.059 2.054
Dose —0.035 0.006  0.000 0.965 0.953 0.978
No. of subjects = 238 Log likelihood = —597.714 Stratified by clinic

Using the above fitted model, we can obtain the adjusted
curves below that compare the adjusted survival probabil-
ities for each clinic (i.e., stratified by clinic) adjusted for
the variables, prison and maximum methadone dose.
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0.8

0.6

0.4

0.2

Adjusted survival curves (stratified by clinic)
No-Interaction Model

Based on these adjusted survival curves, what conclusions
can you draw about whether the survival experience is differ-
ent between the two clinics? Explain.

State the hazard function model being estimated in
the above computer results. Why is this model a no-
interaction model?

Using the above computer results, provide point and inter-
val estimates for the effect of prison adjusted for clinic and
dose. Is this adjusted prison effect significant? Explain.

The following computer results consider a SC model that
allows for interaction of the stratified variable clinic with
each of the predictors, prison and dose. Product terms
in the model are denoted as clinpr = clinic x prison and
clindos = clinic x dose.

Std. Err. P > |z| Haz. Ratio [95% Conf. Interval]

0.539  0.044 2.966 1.032 8.523
0.020  0.079 0.966 0.929 1.004
0.428 0.172 0.557 0.241 1.290
0.015 0.942 0.999 0.971 1.028

3.
4,
5.
Stratified Cox
regression
Analysis time _t:
survt Coef.
prison 1.087
dose —0.035
clinpr —0.585
clindos —0.001
No. of subjects = 238
6.

Log likelihood = —596.779 Stratified by clinic

State two alternative versions of the interaction model be-
ing estimated by the above printout, where one of these
versions should involve the product terms used in the
above printout.

Using the computer results above, determine the esti-
mated hazard models for each clinic. (Note that the clinics
are coded as 1 or 2.)
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7. Below are the adjusted survival curves for each clinic

based on the interaction model results above. These
curves are adjusted for the prison and dose variables.

1

Adjusted survival curves (stratified by clinic)

0.8 Interaction Model

0.6 Clinic 2
0.4

0.2

0 300 600 900

Compare the survival curves by clinic obtained for the
interaction model with the corresponding curves previ-
ously shown for the no-interaction model. Do both curves
indicate the similar conclusions about the clinic effect?
Explain.

Carry out a likelihood ratio test to determine whether the
no-interaction model is appropriate. In doing so, make use
of the computer information described above, state the
null hypothesis, state the form of the likelihood statistic
and its distribution under the null hypothesis, and com-
pute the value of the likelihood statistic and evaluate its
significance. What are your conclusions?

The first printout indicates that the variables large cell,
adeno cell, small cell, and performance status do not sat-
isfy the PH assumption at the 0.10 level. The second print-
out considers a different model that does not contain the
large cell and adeno cell variables. This latter printout in-
dicates that small cell satisfies the PH assumption, in con-
trast to the first printout. The performance status variable,
however, does not satisfy the PH assumption as in the first
printout.

The cell type variable is defined to have four categories,
as represented by the three dummy variables in the first
printout. The “small cell” variable dichotomizes the cell
type variable into the categories small cell type versus the
rest. From the second printout, the small cell variable does
not appear by itself to violate the PH assumption. This re-
sult conflicts with the results of the first printout, for which
the cell type variable considered in four categories does not
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satisfy the PH assumption at the 0.10 level of significance.
We therefore think it is more appropriate to use a SC pro-
cedure only if four strata are to be used. A drawback to
using four strata, however, is that the number of survival
curves to be plotted is larger than for two strata; conse-
quently, a large number of curves is more difficult to in-
terpret graphically than when there are only two curves.
Thus, for convenience of interpretation, we may choose
to dichotomize the cell type variable instead of consider-
ing four strata. We may also consider dichotomies other
than those defined by the small cell variable. For instance,
we might consider dichotomizing on either the adeno or
large cell variables instead of the small cell variable. Al-
ternatively, we may combine categories so as to compare,
say, large and adeno cell types with small and squamous
types. However, a decision to combine categories should
not be just a statistical decision, but should also be based
on biologic considerations.

3. Iﬁadj = 1.095, 95% CI: (0.744,1.611), two-tailed P-value is
0.647, not significant. The estimated hazard ratio for treat-
ment is neither meaningfully or statistically significant.
The point estimate is essentially 1, which says that there is
no meaningful effect of treatment adjusted for the predic-
tors in the model and for the stratified predictor SZ*.

4. hy(t,X) = hog(t)exp[ B Treatment + 3,DD + 3; Age
+ B4PT], g =1, ..., 4, where the strata are defined from
the stratification variable SZ*, DD = disease duration,
and PT = prior therapy. This model assumes no interac-
tion because the coefficient of each predictor in the model
is not subscripted by g, i.e., the regression coefficients are
the same for each stratum.

5. Version 1: l’lg (f, X) = hOg ([)exp[[slg Treatment + [32 DD
+ B3Age + P4 PTl.g =1,....4.

Version 2:  h,(¢,X) = hog(t)exp[; Treatment + 3, DD
+ B3 Age + B4 PT + Bs5(Z] x Treatment)

+ B6(Z3 x Treatment) + B7(Z} x Z3 x Treatment)],
where Z{ = small cell type (0, 1), Z5 = PSbin (0, 1),
andg =1,...,4.
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6. Version 1: hy(t,X) = hog(t)exp[P,, Treatment + 3, DD

10.

+B3gAge+B4gPT]»g:1,...,4.

Version 2:  h,(t,X) = hog(t)exp[ B, Treatment + (3, DD
+ B3 Age + B4 PT + Bs(Z] x Treatment) + B4(Z] x DD)
+ B;(Z7 x Age) + Bs(ZT x PT) + Bo(Z; x Treatment)
+B10(Z3 x DD) + B1(Z5 x Age) + B12(Z3 x PT)

+ B 13(Z] x Z5 x Treatment) + B14(Z] x Z3 x DD)
+B15(Z7 x Z5 x Age) + B1s(ZT x Z3 x PT)],
g=1,...,4

HR, = expP1¥), using version 1 model form. Yes, this for-
mula gives different hazard ratios for different strata be-
cause the value of the hazard ratio changes with the sub-
script g.

Hy: No interaction assumption is satisfied.

Ho: 11 = Bi2 = P13 = B4, Ba1 = B = Baz = Poss
Bs1 = B3 = P33 = P34, Bar = Paz = Puz = Pasg

from version 1.

Hy: Bs = B¢ =PR7=PRs =By =PB1o=B11 = P12

= B3 = B = P15 = P1¢ = 0 from version 2.

LR = —2InLr — (—=2In Lr), where R denotes the reduced
(no-interaction) model and F denotes the full (interaction)
model. Under the null hypothesis, LR is approximately a
chi-square with 12 degrees of freedom.

Estimated hazard models for each stratum:
g=LZy=2;=0:

h1(t,X) = hoi(t)expl(0.381)Treatment + (0.015)DD
+ (0.000)Age + (0.023)PT]

g=272y=1,272;=0:

h(t,X) = hos(1)exp[(0.941) Treatment + (—0.014)DD
+ (—0.055)Age + (0.066)PT]

g=32;=07Z;=1:

h3(t,X) = ho3(t) exp[(—0.210)Treatment + (0.040)DD
+ (0.001)Age + (—0.055)PT]

g=427=1,7Z;=1:

24(t,X) = fz04(1‘)exp[(O.OZé)Treatment 4+ (=0.060)DD
+ (0.030)Age + (—0.017)PT]
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11.

12.

13.

Estimated hazard ratios for treatment effect adjusted for
DD, Age, and PT:

g = 1: HR; = exp (0.381) = 1.464
g = 2: HR, = exp (0.941) = 2.563
g = 3: HR; = exp(—0.210) = 0.811
g =4 HR, = exp (0.026) = 1.026

Hy: Bs=P¢=B7=Ps=Bg=P1o=P11=P12=P13=
Bia =Pi1s=PR1s=0

LR = 689.696 — 671.182 = 18.514, which is approxi-
mately chi-square with 12 df.

P =0.101, which is not significant below the .05 level.
Conclusion: Accept the null hypothesis and conclude that
the no-interaction model is preferable to the interaction
model.

The three curves at the bottom of the graph appear to be
quite non-parallel. Thus, the PH assumption is not satis-
fied for one or both of the variables, small cell type and
PSbin. Note, however, that because both these variables
have been stratified together, it is not clear from the graph
whether only one of these variables fails to satisfy the PH
assumption.

If we graph adjusted survival curves that compare the two
treatment groups for each of the four strata, we will be
able to see graphically how the treatment effect, if any,
varies over time within each strata. The difficulty with this
approach, however, is that eight adjusted survival curves
will be produced, so that if all eight curves are put on the
same graph, it may be difficult to see what is going on.
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Introduction

Abbreviated
Outline

We begin by defining a time-dependent variable and providing
some examples of such a variable. We also state the general
formula for a Cox model that is extended to allow time depen-
dent variables, followed by a discussion of the characteristics
of this model, including a description of the hazard ratio.

In the remainder of the presentation, we give examples of
models with time-dependent variables, including models that
allow for checking the PH assumption for time-independent
variables. In particular, we describe a method that uses “heav-
iside functions” to evaluate the PH assumption for time-
independent variables. We also describe two computer appli-
cations of the extended Cox model, one concerning a study on
the treatment of heroin addiction and the other concerning
the Stanford heart transplant study.

The outline below gives the user a preview of the material to
be covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. Preview (page 214)
II. Review of the Cox PH Model (pages 214-216)

III. Definition and Examples of Time-Dependent
Variables (pages 216-219)

IV. The Extended Cox Model for Time-Dependent
Variables (pages 219-221)

V. The Hazard Ratio Formula for the Extended Cox
Model (pages 221-223)

VI. Assessing Time-Independent Variables That Do
Not Satisfy the PH Assumption (pages 224-229)

VII. An Application of the Extended Cox Model to an
Epidemiologic Study on the Treatment of Heroin
Addiction (pages 230-234)

VIII. An Application of the Extended Cox Model to the
Analysis of the Stanford Heart Transplant Data
(pages 235-239)

IX. The Extended Cox Likelihood (pages 239-242)
X. Summary (pages 242-245)
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Upon completing the chapter, the learner should be able to:

1. State or recognize the general form of the Cox model ex-
tended for time-dependent variables.

2. State the specific form of an extended Cox model appro-
priate for the analysis, given a survival analysis scenario
involving one or more time-dependent variables.

3. State the formula for a designated hazard ratio of interest,
given a scenario describing a survival analysis using an
extended Cox model.

4. State the formula for an extended Cox model that pro-
vides a method for checking the PH assumption for one
more of the time-independent variables in the model, given
a scenario describing a survival analysis involving time-
independent variables.

5. State the formula for an extended Cox model that uses
one or more heaviside functions to check the PH assump-
tion for one more of the time-independent variables in the
model, given a scenario describing a survival analysis in-
volving time-independent variables.

6. State the formula for the hazard ratio during different time
interval categories specified by the heaviside function(s),
for a model involving heaviside function(s).

7. Carry out an appropriate analysis of the data to evaluate
the effect of one or more of the explanatory variables in
the model(s) being used, given computer results for a sur-
vival analysis involving time-dependent variables. Such an
analysis will involve:

e computing and interpreting any hazard ratio(s) of
interest;

e carrying out and interpreting appropriate test(s) of
hypotheses for effects of interest;

e obtaining confidence intervals for hazard ratios of
interest;

e evaluating interaction and confounding involving one
or more covariates.
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Presentation

I. Preview

model form
characteristics
hazard ratio

examples of models
checking the PH
assumption
® computer

applications

This presentation describes how the Cox propor-
tional hazards (PH) model can be extended to al-
low time-dependent variables as predictors. Here,
we focus on the model form, characteristics of this
model, the formula for and interpretation of the
hazard ratio, and examples of the extended Cox
model. We also show how the extended Cox model
can be used to check the PH assumption for time-
independent variables, and we provide computer
applications to illustrate different types of time-
dependent variables. Finally, we describe the ex-
tended cox likelihood and how it contrasts with
the Cox PH likelihood function.

II. Review of the Cox
PH Model

h(t,X) = ho(t) exp [i BiXi:|

i=1

X:(X17X27"'3Xp)
Explanatory/predictor variables

ho(t) x exp |: ] BiXi]
i=1

Baseline hazard | Exponential

Involves ¢ but Involves X’s but

not X’s not ¢ (X’s are
time-
independent)

The general form of the Cox PH model is shown
here. This model gives an expression for the haz-
ard at time ¢ for an individual with a given spec-
ification of a set of explanatory variables denoted
by the bold X. That is, the bold X represents a col-
lection (sometimes called a “vector”) of predictor
variables that is being modeled to predict an indi-
vidual's hazard.

The Cox model formula says that the hazard at
time ¢ is the product of two quantities. The first
of these, h(t), is called the baseline hazard func-
tion. The second quantity is the exponential ex-
pression e to the linear sum of 3, X;, where the
sum is over the p explanatory X variables.

An important feature of this formula, which con-
cerns the proportional hazards (PH) assumption,
is that the baseline hazard is a function of ¢ but
does not involve the X’s, whereas the exponential
expression involves the X’s but does not involve .
The X’s here are called time-independent X’s.
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X’s involving ¢: time dependent

Requires extended Cox model
(no PH)

Hazard ratio formula:

HR = exp [Xp: [gi(Xf — Xi)]
i=1

where X* = (X{, X3, ..., X;) and
X = (X1, X, ..., X,) denote the
two sets of X ’s.

PH assumption:
b, X*)
h(t.X)
ie., h(t,X*) = 0h(t,X)

= 0 (a constant over ?)

Hazards cross = PH not met

Hazards don't cross 3> PH met

Three approaches:

e graphical
e time-dependent variables
e goodness-of-fit test

Time-dependent covariates:

Extend Cox model: add product
term(s) involving some function of
time
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It is possible, nevertheless, to consider X’s that
do involve t. Such X’s are called time-dependent
variables. If time-dependent variables are consid-
ered, the Cox model form may still be used, but
such a model no longer satisfies the PH assump-
tion and is called the extended Cox model. We
will discuss time-dependent variables and the cor-
responding extended Cox model beginning in the
next section.

From the Cox PH model, we can obtain a gen-
eral formula, shown here, for estimating a hazard
ratio that compares two specifications of the X’s,
defined as X* and X.

The (PH) assumption underlying the Cox PH
model is that the hazard ratio comparing any
two specifications of X predictors is constant over
time. Equivalently, this means that the hazard for
one individual is proportional to the hazard for
any other individual, where the proportionality
constant is independent of time.

An example of when the PH assumption is not met
is given by any study situation in which the haz-
ards for two or more groups cross when graphed
against time. However, even if the hazard func-
tions do not cross, it is possible that the PH as-
sumption is not met.

As described in more detail in Chapter 4, there
are three general approaches for assessing the PH
assumption. These are

e agraphical approach;
e the use of time-dependent variables in an ex-
tended Cox model; and

e the use of a goodness-of-fit test.

When time-dependent variables are used to assess
the PH assumption for a time-independent vari-
able, the Cox model is extended to contain prod-
uct (i.e., interaction) terms involving the time-
independent variable being assessed and some
function of time.
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EXAMPLE

h(t,X) = hy(t) exp[Bsex + B,(sex x 1)]

H:B, = 0 = PH assumption satisfied

Options when PH assumption not
satisfied:

e Use a stratified Cox (SC) model.
e Use time-dependent variables.

Time-dependent variables may be:

e inherently time-dependent

e defined to analyze a time-
independent predictor not
satisfying the PH assumption.

For example, if the PH assumption is being as-
sessed for gender, a Cox model might be extended
to include the variable sex x ¢ in addition to sex.
If the coefficient of the product term turns out to
be non-significant, we can conclude that the PH
assumption is satisfied for sex provided that the
variable sex x t is an appropriate choice of time-
dependent variable.

There are two options to consider if the PH as-
sumption is not satisfied for one or more of the
predictors in the model. In Chapter 5, we de-
scribed the option of using a stratified Cox (SC)
model, which stratifies on the predictor(s) not sat-
isfying the PH assumption, while keeping in the
model those predictors that satisfy the PH as-
sumption. In this chapter, we describe the other
option, which involves using time-dependent vari-
ables.

Note that a given study may consider predictors
that are inherently defined as time-dependent, as
we will illustrate in the next section. Thus, in addi-
tion to considering time-dependent variables as an
option for analyzing a time-independent variable
not satisfying the PH assumption, we also discuss
predictors which are inherently defined as time-
dependent.

I1l. Definition and Examples
of Time-Dependent
Variables

Definition:

Time-dependent | Time-independent

Value of variable
is constant over
time

Race

Value of variable
differs over time

Example:

A time-dependent variable is defined as any vari-
able whose value for a given subject may differ
over time (). In contrast, a time-independent vari-
able is a variable whose value for a given subject
remains constant over time.

As a simple example, the variable RACE is a
time-independent variable, whereas the variable
RACE x time is a time-dependent variable.
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EXAMPLES OF
DEFINED VARIABLES

Defined variable: RACE x ¢

Time-independent
Race =1 = Racext =t
Race = 0 = Race xt = 0 (at any 7)

Ex (logt-3)
el 2
Function of ¢

[E denotes a (0,1) exposure variable].

1 ifr>¢,

E x g(t) where g(t) :{0 et
0

Heavyside function

t2t Exgt)=E

t<tyeExg)=0

Heavyside functions used when PH
assumptions not met.

Internal variable:

EXAMPLES OF INTERNAL
VARIABLES

E(t), EMP(t), SMK(t), OBS(t),

Values change because of “internal”

characteristics or behavior of the in-
dividual.

The variable RACE x time is an example of what is
called a “defined” time-dependent variable. Most
defined variables are of the form of the product of a
time-independent variable (e.g., RACE) multiplied
by time or some function of time. Note that after
RACE is determined for a given subject, all the val-
ues of the RACE x time variable are completely
defined over a specified time interval of study.

A second example of a defined variable is given by
Ex (logt — 3), where E denotes, say, a (0,1) expo-
sure status variable determined at one’s entry into
the study. Notice that here we have used a func-
tion of time—that is, log t — 3—rather than time
alone.

Yet another example of a defined variable, which
also involves a function of time, is given by E x
g(t), where g(t) is defined to take on the value 1 if
t is greater than or equal to some specified value
of ¢, called 1y, and takes on the value 0 if 7 is less
than .

The function g(¢) is called a “heaviside” function.
Note that whenever ¢ is greater than or equal to
to, g(t) equals 1, so E x g(t) = E; however, when-
ever t is less than #y, g(t) = 0, so the value of
E x g(t) is always 0. We will later return to illus-
trate how heaviside functions may be used as one
method for the analysis when a time-independent
variable like E does not satisfy the proportional
hazards assumption.

Another type of time-dependent variable is called
an “internal” variable. Examples of such a variable
include exposure level E at time ¢, employment
status (EMP) at time ¢, smoking status (SMK) at
time ¢, and obesity level (OBS) at time ¢.

All these examples consider variables whose val-
ues may change over time for any subject under
study; moreover, for internal variables, the reason
for a change in value depends on “internal” char-
acteristics or behavior specific to the individual.
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“Ancillary” variable:

Value changes because of “external”

characteristics.

EXAMPLES OF ANCILLARY
VARIABLES

Air pollution index at time ¢; EMP(t)

ANOTHER EXAMPLE

Heart transplant status at time 7:

HT(t) = [1 if received transplant at some time 7 < ¢
= |0 if did not receive transplant by time ¢

Transplant HT(z): 0000..

0111111111

ks

HT(t):

ty

No transplant H7(t): 0000...00000

e

Heart transplant status = HT(¢)

Internal:
Status determined
from individual

traits

Ancillary:

Status determined
from external
availability of a
donor

In contrast, a variable is called an “ancillary” vari-
able if its value changes primarily because of “ex-
ternal” characteristics of the environment that
may affect several individuals simultaneously. An
example of an ancillary variable is air pollution
index at time ¢ for a particular geographical area.
Another example is employment status (EMP) at
time ¢, if the primary reason for whether some-
one is employed or not depends more on general
economic circumstances than on individual char-
acteristics.

As another example, which may be part internal
and part ancillary, we consider heart transplant
status (HT) at time ¢ for a person identified to have
a serious heart condition, making him or her el-
igible for a transplant. The value of this variable
HT at time ¢ is 1 if the person has already received
a transplant at some time, say £y, prior to time .
The value of HT is 0 at time # if the person has not
yet received a transplant by time 7.

Note that once a person receives a transplant,
at time fg, the value of HT remains at 1 for all
subsequent times. Thus, for a person receiving a
transplant, the value of HT is 0 up to the time of
transplant, and then remains at 1 thereafter. In
contrast, a person who never receives a transplant
has HT equal to 0 for all times during the period
he or she is in the study.

The variable “heart transplant status,” HT(t), can
be considered essentially an internal variable, be-
cause individual traits of an eligible transplant re-
cipient are important determinants of the decision
to carry out transplant surgery. Nevertheless, the
availability of a donor heart prior to tissue and
other matching with an eligible recipient can be
considered an “ancillary” characteristic external
to the recipient.
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Computer commands differ for
defined vs. internal vs. ancillary.

But, the form of extended Cox
model and procedures for analysis
are the same regardless of variable

type.

The primary reason for distinguishing among de-
fined, internal, or ancillary variables is that the
computer commands required to define the vari-
ables for use in an extended Cox model are some-
what different for the different variable types,
depending on the computer program used. Never-
theless, the form of the extended Cox model is the
same regardless of variable type, and the proce-
dures for obtaining estimates of regression coeffi-
cients and other parameters, as well as for carrying
out statistical inferences, are also the same.

IV. The Extended Cox Model
for Time-Dependent
Variables

B X(0)) = holt) exp [pzl BX,

+§:6in0{|

j=1

X(t) = (X17 X27 . 'Xpla
—_—
Time-independent

Xi@t), Xo(t), ... Xp, (1))

Time-dependent

h(tX(0) = ho(t) exp[BE + 8(E x 1)],

P = 1y172= i
Xt)=X,=E, X;(t)=E x 1)

Estimating regression
coefficients:

ML procedure:

Maximize (partial) L.

Risk sets more complicated than for
PH model.

Given a survival analysis situation involving both
time-independent and time-dependent predictor
variables, we can write the extended Cox model
that incorporates both types as shown here at the
left. As with the Cox PH model, the extended model
contains a baseline hazards function /((¢) which
is multiplied by an exponential function. How-
ever, in the extended model, the exponential part
contains both time-independent predictors, as de-
noted by the X; variables, and time-dependent pre-
dictors, as denoted by the X (¢) variables. The en-
tire collection of predictors at time ¢ is denoted by
the bold X(z).

As a simple example of an extended Cox model,
we show here a model with one time-independent
variable and one time-dependent variable. The
time-independent variable is exposure status E,
say a (0,1) variable, and the time-dependent vari-
able is the product term E x t.

As with the simpler Cox PH model, the regression
coefficients in the extended Cox model are esti-
mated using a maximum likelihood (ML) proce-
dure. ML estimates are obtained by maximizing a
(partial) likelihood function L. However, the com-
putations for the extended Cox model are more
complicated than for the Cox PH model, because
the risk sets used to form the likelihood function
are more complicated with time-dependent vari-
ables. The extended Cox likelihood is described
later in this chapter.
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Computer programs for the
extended Cox model:

Stata (Stcox)
SAS (PHREG)
SPSS (COXREG)

Computer
Appendix

Statistical inferences:
Wald and/or LR tests
Large sample confidence intervals

Assumption of the model:
The hazard at time ¢ depends on the
value of X;(¢) at that same time.

1

P1
h(t,X(t)) = ho(t) exp [Z B Xi
=1

p

+ Z 3 X;(t ):|
7:11\
One coefficient forX;(¢)

Can modify for lag-time effect

Lag-time effect:

EXAMPLE

EMP(t) = employment status at week ¢

Model without lag-time:
h(t,X(1)) = h(t) exp[SEMP(t)]

Same week

Model with 1-week lag-time:
h(t,X(t)) = h(t) exp[6"EMP(t - 1)]

One-week earlier

Computer packages that include programs for fit-
ting the extended Cox model include Stata, SAS,
and SPSS. See the Computer Appendix at the end
of this text for a comparison of the Stata, SAS, and
SPSS procedures applied to the same dataset.

Methods for making statistical inferences are es-
sentially the same as for the PH model. That is, one
can use Wald and/or likelihood ratio (LR) tests and
large sample confidence interval methods.

An important assumption of the extended Cox
model is that the effect of a time-dependent vari-
able X (t) on the survival probability at time ¢ de-
pends on the value of this variable at that same
time ¢, and not on the value at an earlier or later
time.

Note that even though the values of the vari-
able X;(t) may change over time, the hazard
model provides only one coefficient for each time-
dependent variable in the model. Thus, at time ¢,
there is only one value of the variable X (¢) that
has an effect on the hazard, that value being mea-
sured at time .

Itis possible, nevertheless, to modify the definition
of the time-dependent variable to allow for a “lag-
time” effect.

To illustrate the idea of a lag-time effect, suppose,
for example, that employment status, measured
weekly and denoted as EMP(t), is the time-
dependent variable being considered. Then, an ex-
tended Cox model that does not consider lag-time
assumes that the effect of employment status on
the probability of survival at week t depends on the
observed value of this variable at the same week ¢,
and not, for example, at an earlier week.

However, to allow for, say, a time-lag of one week,
the employment status variable may be modified
so that the hazard model at time ¢ is predicted by
the employment status at week ¢ — 1. Thus, the
variable EMP (t) is replaced in the model by the
variable EMP (t — 1).
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General lag-time extended model:

P1
h(t X)) = ho(t) exp [Z Bi Xi
i=1
P2
+§:&&U—Lﬂ}

j=1

X;(t — Lj)replaces X ()

More generally, the extended Cox model may be
alternatively written to allow for a lag-time modi-
fication of any time-dependent variable of interest.
If we let L; denote the lag-time specified for time-
dependent variable j, then the general “lag-time
extended model” can be written as shown here.
Note that the variable X;(¢) in the earlier version
of the extended model is now replaced by the vari-
able Xj(t — L]').

V. The Hazard Ratio Formula
for the Extended
Cox Model

PH assumption is not satisfied for
the extended Cox model.

_he X))
~h@X@))

P1
= exp |:Z Bi[X;‘ — Xl-]
i=1

HR(1)

P2
+Z§l’[X?(Z) —Xj(l)]:|
i=1

Two sets of predictors:
X*(t) = (X7, X3, ..., X, X7(0),
X3, ... X5,(0)

X(t) = (Xy, Xo, .. .,Xpl,Xl(f),
Xo(t), ..., Xp, (1))

We now describe the formula for the hazard ra-
tio that derives from the extended Cox model.
The most important feature of this formula is
that the proportional hazards assumption is no
longer satisfied when using the extended Cox
model.

The general hazard ratio formula for the extended
Cox model is shown here. This formula describes
the ratio of hazards at a particular time ¢, and re-
quires the specification of two sets of predictors
at time ¢. These two sets are denoted as bold X*(¢)
and bold X(¢).

The two sets of predictors, X*(¢) and X(¢), identify
two specifications at time ¢ for the combined set of
predictors containing both time-independent and
time-dependent variables. The individual compo-
nents for each set of predictors are shown here.
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EXAMPLE

h(t,X(1)) = hy(t) exp[BE + &(E x 1)]

E- { 1 if exposed
~ | 0 if unexposed

X(t)=(E=1,Ext=t)
X(t)=(E=0,Ext=0)

Ry <M E=1D
h(t, E = 0) X
=exp[B(1 - 0) + 8((1 xt) - (0 x1))]
= exp[ﬁ + St]

~ P
0>0=HR(t) Tast T
PH assumption not satisfied

HR(t) = exp [i Bi[Xi* - Xi]
i—1

+j21}

A function of time

In general, PH assumption not sat-
isfied for extended Cox model.

o>

; is not time-dependent.

o>

j represents “overall” effect of

j(f).

et

As a simple example, suppose the model contains
only one time-independent predictor, namely, ex-
posure status E, a (0,1) variable, and one time-
dependent predictor, namely, E x t. Then, to com-
pare exposed persons, for whom E =1, with
unexposed persons, for whom E =0, at time
t, the bold X*(t) set of predictors has as its
two components E = 1 and E x ¢t = ¢; the bold
X(t) set has as its two components E = 0 and
Ext=0.

If we now calculate the estimated hazard ratio that
compares exposed to unexposed persons at time
t, we obtain the formula shown here; that is, HR
“hat” equals the exponential of  “hat” plus & “hat”
times ¢. This formula says that the hazard ratio is
a function of time; in particular, if  “hat” is posi-
tive, then the hazard ratio increases with increas-
ing time. Thus, the hazard ratio in this example is
certainly not constant, so that the PH assumption
is not satisfied for this model.

More generally, because the general hazard ratio
formula involves differences in the values of the
time-dependent variables at time ¢, this hazard ra-
tio is a function of time. Thus, in general, the ex-
tended Cox model does not satisfy the PH assump-
tion if any d; is not equal to zero.

Note that, in the hazard ratio formula, the co-
efficient &; “hat” of the difference in values
of the jth time-dependent variable is itself not
time-dependent. Thus, this coefficient represents
the “overall” effect of the corresponding time-
dependent variable, considering all times at which
this variable has been measured in the study.
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EXAMPLE

E(¢) = chemical exposure status
at time ¢ (weekly)

_ {0 if unexposed at time ¢
1 if exposed at time ¢

: E@f) 01011
t 12345...

: Ef) 11010
t 12345..

Exp vs. unexposed
g =1 5=0

h(t,X(2)) = ho(t) exp[3E(1)]

One coefficient

d represents the overall effect of E(¢).

ﬁk(f) _ l/’\l(t,E(t) = 1)
h(t,E(t) = 0)
= exp[S[l = 0]]
- ¢d, a fixed number
But, PH is not satisfied:

ﬁ(t) is time-dependent because E(t) is
time-dependent.

As another example to illustrate the formula for
the hazard ratio, consider an extended Cox model
containing only one variable, say a weekly mea-
sure of chemical exposure status at time z. Sup-
pose this variable, denoted as E(¢), can take one of
two values, 0 or 1, depending on whether a person
is unexposed or exposed, respectively, at a given
weekly measurement.

As defined, the variable E(¢) can take on differ-
ent patterns of values for different subjects. For
example, for a five-week period, subject As values
may be 01011, whereas subject B’s values may be
11010.

Note that in this example, we do not consider
two separate groups of subjects, with one group
always exposed and the other group always un-
exposed throughout the study. This latter situa-
tion would require a (0,1) time-independent vari-
able for exposure, whereas our example involves
a time-dependent exposure variable.

The extended Cox model that includes only the
variable E(¢) is shown here. In this model, the val-
ues of the exposure variable may change over time
for different subjects, but there is only one coeffi-
cient, , corresponding to the one variable in the
model. Thus, 6 represents the overall effect on sur-
vival time of the time-dependent variable E(t).

Notice, also, that the hazard ratio formula, which
compares an exposed person to an unexposed per-
son at time t, yields the expression e to the 6 “hat.”

Although this result is a fixed number, the PH as-
sumption is not satisfied. The fixed number gives
the hazard ratio at a given time, assuming that the
exposure status at that time is 1 in the numerator
and is 0 denominator. Thus, the hazard ratio is
time-dependent, because exposure status is time-
dependent, even though the formula yields a single
fixed number.
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VI. Assessing Time-
Independent Variables
That Do Not Satisfy the
PH Assumption

Use an extended Cox model to

e check PH assumption;

e assess effect of variable not
satisfying PH assumption.

Three methods for checking PH as-

sumption:

1. graphical
2. [extended Cox model]
3. GOF test

Cox PH model
independent X’s:

for p

h(t,X) = ho(t) exp [Zp: BiXi:|

i=1

Extended Cox model:
Add product terms of the form:

Xi x gi(t)

time-

h(t,X(1)) = ho(t) exp [é B Xi

+£5iXigi(f)]

i=1

We now discuss how to use an extended Cox model
to check the PH assumption for time-independent
variables and to assess the effect of a variable that
does not satisfy the PH assumption.

As described previously (see Chapter 4), there are
three methods commonly used to assess the PH
assumption: (1) graphical, using, say, log-log sur-
vival curves; (2) using an extended Cox model; and
(3) using a goodness-of-fit (GOF) test. We have pre-
viously (in Chapter 4) discussed items 1 and 3, but
only briefly described item 2, which we focus on
here.

If the dataset for our study contains several, say p,
time-independent variables, we might wish to fit a
Cox PH model containing each of these variables,
as shown here.

However, to assess whether such a PH model is
appropriate, we can extend this model by defin-
ing several product terms involving each time-
independent variable with some function of time.
That is, if the i th time-independent variable is de-
noted as X;, then we can define the ith product
term as X; x g;(t) where g;(t) is some function of
time for the ith variable.

The extended Cox model that simultaneously con-
siders all time-independent variables of interest is
shown here.



Presentation:

EXAMPLE

gi(t) = 0 for all i implies no time-
dependent variable involving Xj, i.e.,

)4
h@, X)) = hy(?) eXP[EIBiXi]

EXAMPLE 2

&i(t) =t = Xig,(t) = X; x t
P D
h(t.X(®) = ho(?) eXP[;BiXi + 2 t)]

EXAMPLE 3: one variable
at a time

grt) =t,

X
i, Gl { gi(?) = 0 for other i

P
2 BiX; + 87 (Xz x 1)

i=1

h(t,X(1)) = hy(t) exp

EXAMPLE 4
g =Int=Xg(t)=X; x Int

)4 p
h(t,X(2)) = hy(t) exp[z BX; + > 8:(X; xIn 1)
i=1 i=1
EXAMPLE 5: Heaviside Function

0 ifr>1
(t) = 0
&(0) [1 ift <t

Extended Cox model:

h(t,X(2)) = ho(t) exp [ B Xi

p
i-1
p
+) 8 Xigi(t)
i=1

e Check PH assumption.
e Obtain hazard ratio when PH
assumption not satisfied.

H0161=62=~-'=6p=0
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In using this extended model, the crucial decision
is the form that the functions g;(¢) should take.
The simplest form for g;(¢) is that all g;(¢) are
identically 0 at any time; this is another way of
stating the original PH model, containing no time-
dependent terms.

Another choice for the g;(¢) is to let g;(¢) = ¢. This
implies that for each X; in the model as a main ef-
fect, there is a corresponding time-dependent vari-
able in the model of the form X; x ¢. The extended
Cox model in this case takes the form shown here.

Suppose, however, we wish to focus on a partic-
ular time-independent variable, say, variable X .
Then g;(t) =t fori = L, but equals 0 for all other
i. The corresponding extended Cox model would
then contain only one product term X, x ¢, as
shown here.

Another choice for the g;(t) is the log of ¢, rather
than simply ¢, so that the corresponding time-
dependent variables will be of the form X; x In¢.

And yet another choice would be to let g;(¢) be a
“heaviside function” of the form g;(t) = 1 when
t is at or above some specified time, say ¢, and
gi(t) = 0 when ¢ is below #5. We will discuss this
choice in more detail shortly.

Given a particular choice of the g;(¢), the corre-
sponding extended Cox model, shown here again
in general form, may then be used to check the PH
assumption for the time-independent variables in
the model. Also, we can use this extended Cox
model to obtain a hazard ratio formula that con-
siders the effects of variables not satisfying the PH
assumption.

To check the PH assumption using a statistical
test, we consider the null hypothesis that all the &
terms, which are coefficients of the X;g;(¢) prod-
uct terms in the model, are zero.
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Under Hy, the model reduces to PH
model:

h(t.X) = holt) exp [Z fsixl}

i=1

LR=-2In LPH model
_(_2 In Lext. Cox model)

"vX; under Hy

EXAMPLE

h(t,X(t)) = ho(t) exp[BE + d(E x1)]
Hy: 0 =0 (i.e., PH assumption is
satisfied)

Reduced model:
h(t,X) = ho(t) exp[BE]

LR=-2InLg-(-21InLy)
~x2with 1 df under H,,

F = full (extended), R = reduced (PH)

SAS: PHREG fits both PH and
extended Cox models.

Stata: Stcox fits both PH and
extended Cox models.

If PH test significant: Extended Cox
model is preferred; HR is time-
dependent.

Under this null hypothesis, the model reduces to
the PH model.

This test can be carried out using a likelihood ratio
(LR) test which computes the difference between
the log likelihood statistic, —2 In L, for the PH
model and the log likelihood statistic for the ex-
tended Cox model. The test statistic thus obtained
has approximately a chi-square distribution with
p degrees of freedom under the null hypothesis,
where p denotes the number of parameters being
set equal to zero under Hj.

As an example of this test, suppose we again con-
sider an extended Cox model that contains the
product term E x ¢ in addition to the main effect
of E, where E denotes a (0,1) time-independent ex-
posure variable.

For this model, a test for whether or not the PH
assumption is satisfied is equivalent to testing the
null hypothesis that & = 0. Under this hypothesis,
the reduced model is given by the PH model con-
taining the main effect E only. The likelihood ra-
tio statistic, shown here as the difference between
log-likelihood statistics for the full (i.e., extended
model) and the reduced (i.e., PH) model, will have
an approximate chi-square distribution with one
degree of freedom in large samples.

Note that to carry out the computations for this
test, two different types of models, a PH model
and an extended Cox model, need to be fit.

If the result of the test for the PH assumption is sig-
nificant, then the extended Cox model is preferred
to the PH model. Thus, the hazard ratio expression
obtained for the effect of an exposure variable of
interest is time-dependent. That is, the effect of the
exposure on the outcome cannot be summarized
by a single HR value, but can only be expressed as
a function of time.
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EXAMPLE
h(t,X(1)) = hy(t) exp[BE + 8(E x t)]

AR - exp[ﬁ + St]
AR
50

Heaviside function:
AR

1 ifr =1
g(t)_{o ift <t

h(t,X(1)) = ho(t) exp[BE + S Eg(t)]

t>ty: gt)=1=>Exg(t)=E
h(t,X) = ho(t) expl(p + O)E]
HR = exp[p + 8]

t <ty gt)=0=E xg(t)=0
h(t,X) = ho(t) exp[ B E]
HR = expl[f]

A single heaviside function in the
model

h(t,X)
= ho(t)explPE + O(E x g(t))]

yields two hazard ratios:
t>ty: Iﬁ:exp([g—i—f))
t<ty: HR = exp(B)

We again consider the previous example, with the
extended Cox model shown here. For this model,
the estimated hazard ratio for the effect of expo-
sure is given by the expression e to the quantity
B “hat” plus & “hat” times ¢. Thus, depending on
whether 6 “hat” is positive or negative, the esti-
mated hazard ratio will increase or decrease ex-
ponentially as ¢ increases. The graph shown here
gives a sketch of how the hazard ratio varies with
time if & “hat” is positive.

We now provide a description of the use of a “heav-
iside” function. When such a function is used, the
hazard ratio formula yields constant hazard ratios
for different time intervals, as illustrated in the ac-
companying graph.

Recall that a heaviside function is of the form g (¢),
which takes on the value 1 if ¢ is greater than or
equal to some specified value of ¢, called ty, and
takes on the value 0 if 7 is less than 7. An extended
Cox model which contains a single heaviside func-
tion is shown here.

Note that if t > t, g(t) = 1, so the value of E x
g(t) = E; the corresponding hazard function is of
the form /1(t) x e to the quantity (3 + d) times E,
and the estimated hazard ratio for the effect of E
has the form e to the sum of 3 “hat” plus 6 “hat.”

Ift < ty, g(t) = 0, the corresponding hazard ratio
is simplified to e to the (3 “hat.”

Thus, we have shown that the use of a single heav-
iside function results in an extended Cox model
which gives two hazard ratio values, each value
being constant over a fixed time interval.
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Alternative model with two heavi-
side functions:

h(t.X) = ho(t) exp[d1(E x g1(1))
+82(E x g2(1))]

1 ift >t
g1(t) = {0 ift <t

1 ift <t
82(t) = {0 ift >t

Note: Main effect for E notin model.

Two HR's from the alternative
model:

t>1:g1(t) =1,8()=0
h(t,X) = ho(t) exp[d1(E x 1)
+82(E x 0)]
= ho(t) exp[d; E]
so that AR = exp(8;)
t<to:gi(t) =0,g2(t) =1
h(t,X) = ho(t) exp[61(E x 0)
+8,(E x 1)]
= ho(t) exp[ 5, E]
so that AR = exp(8,)

Alternative model:

h(t.X(t)) = ho(t) exp[01(E x g1(t))
+ 02(E x g2(1))]

Original model:
h(t,X(1))

= ho([) exp[[SE + 5(E X g(t))]
t>ty: HR = exp(Sl) = eXp(B +9)
t<ty: HR = exp(Sz) = GXP(B)

There is actually an equivalent way to write this
model that uses two heaviside functions in the
same model. This alternative model is shown here.
The two heaviside functions are called g(¢) and
g2(t). Each of these functions are in the model as
part of a product term with the exposure variable
E. Note that this model does not contain a main
effect term for exposure.

For this alternative model, as for the earlier model
with only one heaviside function, two different
hazard ratios are obtained for different time inter-
vals. To obtain the first hazard ratio, we consider
the form that the model takes when ¢t > ¢;. In this
case, the value of g(¢) is 1 and the value of g,(z)
is 0, so the exponential part of the model simpli-
fies to &; x E; the corresponding formula for the
estimated hazard ratio is then e to the 6; “hat.”

Whent < 1y, the value of g1(¢) is 0 and the value of
g2(t) is 1. Then, the exponential part of the model
becomes &, x E, and the corresponding hazard
ratio formula is e to the &, “hat.”

Thus, using the alternative model, again shown
here, we obtain two distinct hazard ratio values.
Mathematically, these are the same values as ob-
tained from the original model containing only
one heaviside function. In other words, 8; “hat” in
the alternative model equals 3 “hat” plus 4 “hat” in
the original model (containing one heaviside func-
tion), and 6, “hat” in the alternative model equals
B “hat” in the original model.
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Heaviside functions:

two HR’s constant within two
time intervals

extension: several HR’s constant
within several time intervals

Four time intervals:

P

HR

1.0 1.5 t (years)

Extended Cox model contains either

E,E x gi(t), E x g2(t),

E x g3(1)
or

E x g(t), E x g2(t), E x
g3(t), E x g4(t)

L1 12 ]3] 4
0 05 1.0 1.5 t(years)
h(t,X(t))
= ho(t) exp[01Egi(t) + 0, Eg,(t)
+03Eg3(t) + 04Ega(t)]
where
_J1 if0 <t <0.5year
gi1t) = 0 if otherwise
() = 1 if 0.5year <t < 1.0 year
8280=10 if otherwise
() = 1 if1.0 year <t < 1.5 years
83 =10 if otherwise
|1 ift = 1.5 years
galt) = 0 if otherwise
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We have thus seen that heaviside functions can
be used to provide estimated hazard ratios that
remain constant within each of two separate time
intervals of follow-up. We can also extend the use
of heaviside functions to provide several distinct
hazard ratios that remain constant within several
time intervals.

Suppose, for instance, that we wish to separate the
data into four separate time intervals, and for each
interval we wish to obtain a different hazard ratio
estimate as illustrated in the graph shown here.

We can obtain four different hazard ratios using
an extended Cox model containing a main effect of
exposure and three heaviside functions in the model
as products with exposure. Or, we can use a model
containing no main effect exposure term, but with
product terms involving exposure with four heav-
iside functions.

To illustrate the latter model, suppose, as shown
on the graph, that the first time interval goes from
time 0 to 0.5 of a year; the second time interval
goes from 0.5 to 1 year; the third time interval goes
from 1 year to a year and a half; and the fourth
time interval goes from a year and a half onward.

Then, an appropriate extended Cox model con-
taining the four heaviside functions g;(¢), g2(¢),
g3(t), and g4(t) is shown here. This model assumes
that there are four different hazard ratios identi-
fied by three cutpoints at half a year, one year, and
one and a half years. The formulae for the four
hazard ratios are given by separately exponenti-
ating each of the four estimated coefficients, as
shown below:

0<t<05:HR= exp(dy)
05<t<10:HR = exp(57)
1.0<t < 1.5: HR = exp(83)
t>1.5: HR = exp(84)

4HR’s
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VII. An Application of the
Extended Cox Model to
An Epidemiologic Study
on the Treatment of
Heroin Addiction

EXAMPLE

1991 Australian study (Caplehorn
et al.) of heroin addicts

¢ two methadone treatment clinics

e T =days remaining in treatment
(= days until drop out of clinic)

e clinics differ in treatment policies

Dataset name: ADDICTS

Column 1: Subject ID

Column 2: Clinic (1 or 2)

Column 3: Survival status (0 = cen-
sored, 1 = departed clinic)

Column 4: Survival time in days

Column 5: Prison Record .
(0=none, 1 = any) > covariates

Column 6: Maximum Methadone Dose
(mg/day)

h(t,X) = hy(t) exp[B;(clinic)
+ By (prison) + B3(dose)]

Coef. Std. Err. p>|z| Haz. Ratio P(PH)

Clinic -1.009 0.215 0.000 0.365 0.001
Prison 0.327 0.167 0.051 1.386 0.332
Dose —0.035 0.006 0.000 0.965 0.347

P(PH) for the variables prison and dose are
nonsignificant = remain in model

A 1991 Australian study by Caplehorn et al., com-
pared retention in two methadone treatment clin-
ics for heroin addicts. A patient’s survival time
(T) was determined as the time in days until the
patient dropped out of the clinic or was cen-
sored at the end of the study clinic. The two clin-
ics differed according to their overall treatment
policies.

A listing of some of the variables in the dataset
for this study is shown here. The dataset name is
called “ADDICTS,” and survival analysis programs
in the Stata package are used in the analysis. Note
that the survival time variable is listed in column
4 and the survival status variable, which indicates
whether a patient departed from the clinic or was
censored, is listed in column 3. The primary ex-
posure variable of interest is the clinic variable,
which is coded as 1 or 2. Two other variables of in-
terest are prison record status, listed in column 5
and coded as 0 if none and 1 if any, and maximum
methadone dose, in milligrams per day, which is
listed in column 6. These latter two variables are
considered as covariates.

One of the first models considered in the analysis
of the addicts dataset was a Cox PH model con-
taining the three variables, clinic, prison record,
and dose. An edited printout of the results for this
model is shown here. What stands out from this
printout is that the P(PH) value for the clinic vari-
able is zero to three significant places, which in-
dicates that the clinic variable does not satisfy the
proportional hazard assumption.

Since the P(PH) values for the other two variables
in the model are highly nonsignificant, this sug-
gests that these two variables, namely, prison and
dose, can remain in the model.
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EXAMPLE (continued)

Adjusted Survival Curves
Stratified by Clinic

$ (prison and dose in the model)

.8

6k Clinic 2

A

Clinic 1
2+
0 1 1 1 1 1 ]
0 200 400 600 800 1000 1200
Days

Results:

e Curve for clinic 2 consistently lies above
curve for clinic 1.

e Curves diverge, with clinic 2 being vastly
superior after one year.

Stratifying by clinic: cannot obtain hazard
ratio for clinic

Hazard ratio for clinic requires clinic in the
model.

Extended Cox model:
h(t,X (1)) = hy() explB;(clinic)

+ By(prison) + B3(dose)
+ 8(clinic)g(?)]

where
o(t) = [ 1 if £ > 365 days Note:

0 if 7 < 365 days | Previously
and clinic = 2 for
1 if clinic 1 clinic 2
0 if clinic 2

clinic = [

1 > 365 days: HR = exp(B; + 6)
1 < 365 days: HR = exp(B))

Further evidence of the PH assumption not be-
ing satisfied for the clinic variable can be seen
from a graph of adjusted survival curves strati-
fied by clinic, where the prison and dose variables
have been kept in the model. Notice that the two
curves are much closer together at earlier times,
roughly less than one year (i.e., 365 days), but the
two curves diverge greatly after one year. This in-
dicates that the hazard ratio for the clinic variable
will be much closer to one at early times but quite
different from one later on.

The above graph, nevertheless, provides impor-
tant results regarding the comparison of the two
clinics. The curve for clinic 2 consistently lies
above the curve for clinic 1, indicating that clinic
2 does better than clinic 1 in retaining its patients
in methadone treatment. Further, because the two
curves diverge after about a year, it appears that
clinic 2 is vastly superior to clinic 1 after one year
but only slightly better than clinic 1 prior to one
year.

Unfortunately, because the clinic variable has been
stratified in the analysis, we cannot use this anal-
ysis to obtain a hazard ratio expression for the
effect of clinic, adjusted for the effects of prison
and dose. We can only obtain such an expression
for the hazard ratio if the clinic variable is in the
model.

Nevertheless, we can obtain a hazard ratio us-
ing an alternative analysis with an extended Cox
model that contains a heaviside function, g(¢), to-
gether with the clinic variable, as shown here.
Based on the graphical results shown earlier; a log-
ical choice for the cutpoint of the heaviside func-
tion is one year (i.e., 365 days). The corresponding
model then provides two hazard ratios: one that is
constant above 365 days and the other that is con-
stant below 365 days.

Note that in the extended Cox model here, we have
coded the clinic variable as 1 if clinic 1 and 0 if
clinic 2, whereas previously we had coded clinic
2 as 2. The reason for this change in coding, as
illustrated by computer output below, is to obtain
hazard ratio estimates that are greater than unity.
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EXAMPLE (continued)

(2, X(2)) = ho(t) explB(prison)
+ B3(dose) + §;(clinic)g; ()
+ 8,(clinic)g,(2)]

where

_[1 if £ < 365 days
&1(t) = [0 if > 365 days
and

_[1 ifz>365 days
&2 = [o if £ < 365 days

AN A
t < 365 days: HR = exp(9;)
t > 365 days: AR - exp(5,)

Std. Haz.
Coef. Err.  p>lzl Ratio [95% Conf. Interval]
Prison 0.378 0.168 0.025 1.459 1.049 2.029
Dose -0.036  0.006 0.000 0.965 0.953 0.977

Clinic x g 0.460\0.255 1.583) 0960  2.611
Clinic xg, 1.828 0386 (0.000) (6.223)  2.921 13259

t < 365 days: HR\g e0-460 = 1.583
¢>365 days: HR = 1828 = 6.223

95% confidence intervals for clinic effect:
t < 365 days: (0.960, 2.611)

> %%;ys%izs%

BRI e rw— )

Adjusted Survival Curves
Clinic 1 LL"—L_LR'_\

1 1 1 1 J
0 200 400 600 800 1000 1200

Days
(1 year)

SR

An equivalent way to write the model is to use two
heaviside functions, g1(t) and g,(t), as shown here.
This latter model contains product terms involv-
ing clinic with each heaviside function, and there
is no main effect of clinic.

Corresponding to the above model, the effect of
clinic is described by two hazard ratios, one for
time less than 365 days and the other for greater
than 365 days. These hazard ratios are obtained by
separately exponentiating the coefficients of each
product term, yielding e to the &; “hat” and e to
the 6, “hat,” respectively.

A printout of results using the above model with
two heaviside functions is provided here. The re-
sults show a borderline nonsignificant hazard ra-
tio (P = 0.072) of 1.6 for the effect of clinic when
time is less than 365 days in contrast to a highly
significant (P = 0.000 to three decimal places) haz-
ard ratio of 6.2 when time exceeds 365 days.

Note that the estimated hazard ratio of 1.583 from
the printout is computed by exponentiating the
estimated coefficient 0.460 of the product term
“clinic x g{” and that the estimated hazard ra-
tio of 6.223 is computed by exponentiating the
estimated coefficient 1.828 of the product term
“clinic x g,”.

Note also that the 95% confidence interval for the
clinic effect prior to 365 days—that is, for the prod-
uct term “clinic x gi(t)"—is given by the limits
0.960 and 2.611, whereas the corresponding confi-
dence interval after 365 days—that is, for the prod-
uct term “clinic x g,”—is given by the limits 2.921
and 13.259. The latter interval is quite wide, show-
ing a lack of precision when ¢ exceeds 365 days;
however, when ¢ precedes 365 days, the interval
includes the null hazard ratio of 1, suggesting a
chance effect for this time period.

The results we have just shown support the obser-
vations obtained from the graph of adjusted sur-
vival curves. That is, these results suggest a large
difference in clinic survival times after one year
in contrast to a small difference in clinic survival
times prior to one year, with clinic 2 always doing
better than clinic 1 at any time.
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EXAMPLE (continued)

One other analysis:
Use an extended Cox model that
provides for diverging survival curves

h(t,X(1)) = ho(t)exp[B;(clinic)
+B,(prison) +B3(dose)
+ &(clinic x t)]

R - exp(P; + ot)

HR changes over time.

t =91 days

h(t,X(1)) = ho(t)exp[B;(clinic)
+ B,(prison) + B5(dose)
+ 3&(clinic)(91)]

So

| ﬁ = exp(fil +919) |
t=274:
h(t,X(2)) = ho(t)exp[B;(clinic)
+ B,(prison) + B3(dose)
+ &(clinic)(274)]

s A A
| HR = exp(B; + 2748)|

t =458.5:
AN N A
| TIR = exp(B, + 458.59)|
t=639:
o~ N
| HR = exp(p; + 6398)|
t=821.5:
P A a
| HR = exp(B; + 821.56)|

N P
0>0= HRTas timeT

There is, nevertheless, at least one other approach
to the analysis using time-dependent variables
that we now describe. This approach considers
our earlier graphical observation that the survival
curves for each clinic continue to diverge from
one another even after one year. In other words, it
is reasonable to consider an extended Cox model
that allows for such a divergence, rather than a
model that assumes the hazard ratios are constant
before and after one year.

One way to define an extended Cox model that pro-
vides for diverging survival curves is shown here.
This model includes, in addition to the clinic vari-
able by itself, a time-dependent variable defined
as the product of the clinic variable with time (i.e.
clinic x f). By including this product term, we
are able to estimate the effect of clinic on survival
time, and thus the hazard ratio, for any specified
time .

To demonstrate how the hazard ratio changes over
time for this model, we consider what the model
and corresponding estimated hazard ratio expres-
sion are for different specified values of 7.

For example, if we are interested in the effect of
clinic on survival on day 91, so that ¢t = 91, the
exponential part of the model simplifies to terms
for the prison and dose variables plus 3; times
the clinic variable plus 6 times the clinic variable
times 91: the corresponding estimated hazard ra-
tio for the clinic effect is then e to the power 3,
“hat” plus & “hat” times t = 91.

At 274 days, the exponential part of the model con-
tains the prison, dose, and clinic main effect terms
as before, plus & times the clinic variable times
274: the corresponding hazard ratio for the clinic
effect is then e to 3; “hat” plus 274 & “hat”.

The formulae for the estimated hazard ratio for
other specified days are shown here. Notice that
the estimated hazard ratio appears to be increase
over the length of the follow-up period. Thus, if
& “hat” is a positive number, then the estimated
hazard ratios will increase over time.
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EXAMPLE (continued)

Computer results for extended Cox

model involving T(¢):

Std.
Coef.  Err. P>lzl

Haz.
Ratio  [95% Conf. Interval]

prison 0.390 0.169 0.021
dose -0.035  0.006 0.000

clinic 0.0183)  0.347 0.958

1.476 1.060 2.056
0.965 0.953 0.978
0.982 0.497 1.939

clinic xt(T0.003  0.001 0.001 1.001  1.005

oV (By, 8) = -.000259 Log likelihood = —667.642

B =-0.0183 §=10.003

P P a
HR depends on f3; and o.

=915 TR = exp(, + 1) = 1.292
=274 TIR = exp(By + 1) = 2.233
t = 458.5: TIR = exp(p, + 81) = 3.862
t=639: TIR = exp(P, + &) = 6.677
t=821.5: TIR = exp(P, + 81) = 11.544

exp[Bl + 8t £1.96V VAar(ﬁl + St)]

Var(ﬁl +ot) = s[~251+ i~ sg + 2t cf)?(f’)l, )

T T T
(0.347)% (0.001)? (—.000259)

AN
Time (days) HR

95% CI

91.5 1.292
274 2.233
458.5 3.862
639 6.677

821.5 11.544

(0.741, 2.250)
(1.470, 3.391)
(2.298, 6.491)
(3.102, 14.372)
(3.976, 33.513)

We now show edited results obtained from fitting
the extended Cox model we have just been de-
scribing, which contains the product of clinic with
time. The covariance estimate shown at the bot-
tom of the table will be used below to compute
confidence intervals.

From these results, the estimated coefficient of the
clinic variable is 3, “hat” equals —0.0183, and the
estimated coefficient 6 “hat” obtained for the prod-
uct term equals 0.003. For the model being fit,
the hazard ratio depends on the values of both 3,
“hat” and 6 “hat.”

On the left, the effect of the variable clinic is de-
scribed by five increasing hazard ratio estimates
corresponding to each of five different values of ¢.
These values, which range between 1.292 at
91.5 days to 11.544 at 821.5 days, indicate how
the effect of clinic diverges over time for the fitted
model.

We can also obtain 95% confidence intervals for
each of these hazard ratios using the large sam-
ple formula shown here. The variance expression
in the formula is computed using the variances
and covariances which can be obtained from the
computer results given above. In particular, the
variances are (0.347)> and (0.001)? for 3, “hat”
and 0 “hat,” respectively; the covariance value is
—0.000259.

A table showing the estimated hazard ratios and
their corresponding 95% confidence intervals for
the clinic effect is given here. Note that all confi-
dence intervals are quite wide.
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VIII. An Application of the
Extended Cox Model to
the Analysis of the
Stanford Heart
Transplant Data

EXAMPLE

Patients identified as eligible for heart
transplant:

T = time until death or censorship

65 patients receive transplants

38 patients do not receive transplants
n = 103 patients

Goal: Do patients receiving transplants
survive longer than patients not receiv-
ing transplants?

One approach:
Compare two separate groups: 65 trans-
plants vs. 38 nontransplants

Problem:
Censored
Wait-time or death
|
Eligibility : Received iTime—
E transplant E

— Total survival time -

Note: Wait-time contributes to survival
time for nontransplants.

Covariates:
Tissue mismatch score ]prognostic only
Age at transplant for transplants

Age at eligibility: not considered prog-
nostic for nontransplants

We now consider another application of the ex-
tended Cox model which involves the use of an
internally defined time-dependent variable. In a
1977 report (Crowley and Hu, J. Amer. Statist.
Assoc.) on the Stanford Heart Transplant Study,
patients identified as being eligible for a heart
transplant were followed until death or censor-
ship. Sixty-five of these patients received trans-
plants at some point during follow-up, whereas
thirty-eight patients did not receive a transplant.
There were, thus, a total of n = 103 patients. The
goal of the study was to assess whether patients re-
ceiving transplants survived longer than patients
not receiving transplants.

One approach to the analysis of this data was
to separate the dataset into two separate groups,
namely, the 65 heart transplant patients and the
38 patients not receiving transplants, and then to
compare survival times for these groups.

A problem with this approach, however, is that
those patients who received transplants had to
wait from the time they were identified as eligible
for a transplant until a suitable transplant donor
was found. During this “wait-time” period, they
were at risk for dying, yet they did not have the
transplant. Thus, the wait-time accrued by trans-
plant patients contributes information about the
survival of nontransplant patients. Yet, this wait-
time information would be ignored if the fotal
survival time for each patient were used in the
analysis.

Another problem with this approach is that two
covariates of interest, namely, tissue mismatch
score and age at transplant, were considered as
prognostic indicators of survival only for patients
who received transplants. Note that age at eligi-
bility was not considered an important prognostic
factor for the nontransplant group.
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EXAMPLE (continued)

Problems:

e wait-time of transplant recipients

e prognostic factors for transplants
only

Alternative approach:
Uses an extended Cox model

Exposure variable:
Heart transplant status at time ¢,
defined as

0 if did not receive transplant
by time 7, i.e., if 7 < wait-
time

1 if received transplant prior
to time ¢, i.e., if ¢ > wait-
time

HT(t) =

No transplant HT(t)

0000...00000
t—>

HT(t)

0000..0111111111

/ -

Time of transplant

Transplant

Wait-time for transplants contributes to survival
for nontransplants.

In addition to HT(t), two time-dependent
covariates included in model.

Because of the problems just described, which
concern the wait-time of transplants and the ef-
fects of prognostic factors attributable to trans-
plants only, an alternative approach to the analysis
is recommended. This alternative involves the use
of time-dependent variables in an extended Cox
model.

The exposure variable of interest in this extended
Cox model is heart transplant status at time ¢, de-
noted by HT(t). This variable is defined to take
on the value 0 at time ¢ if the patient has not
received a transplant at this time, that is, if ¢ is
less than the wait-time for receiving a transplant.
The value of this variable is 1 at time ¢ if the
patient has received a transplant prior to or at
time ¢, that is, if ¢ is equal to or greater than the
wait-time.

Thus, for a patient who did not receive a transplant
during the study, the value of HT(¢) is 0 at all times.
For a patient receiving a transplant, the value of
HT(t) is 0 at the start of eligibility and continues
to be 0 until the time at which the patient receives
the transplant; then, the value of HT(¢) changes
to 1 and remains 1 throughout the remainder of
follow-up.

Note that the variable HT(¢) has the property that
the wait-time for transplant patients contributes
to the survival experience of nontransplant pa-
tients. In other words, this variable treats a trans-
plant patient as a nontransplant patient prior to
receiving the transplant.

In addition to the exposure variable HT(t), two
other time-dependent variables are included in
our extended Cox model for the transplant data.
These variables are covariates to be adjusted for
in the assessment of the effect of the HT(¢) vari-
able.
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EXAMPLE (continued)

Covariates:

TMS(t) = {0 if < wait-time
TMS if t > wait-time

AGE(t) = [0 if 7 < wait-time
AGE if t > wait-time

h(t,X(2)) = h(t) exp[8,HT(t)
+ 82TMS(I) + 83AGE(Z)]

Focus:
Assessing the effect of HT(¢) adjusted
for TMS(t) and AGE(?).

Note: HT(¢) does not satisfy PH
assumption.

These covariates are denoted as TMS(¢f) and
AGE(t) and they are defined as follows: TMS(z)
equals 0 if 7 is less than the wait-time for a trans-
plant but changes to the “tissue mismatch score”
(TMS) at the time of the transplant if 7 is equal
to or greater than the wait-time. Similarly, AGE(t)
equals 0 if 7 is less than the wait-time but changes
to AGE at time of transplant if ¢ is equal to or
greater than the wait-time.

The extended Cox model for the transplant data is
shown here. The model contains the three time-
dependent variables HT(t), TMS(t) and AGE(t) as
described above.

For this model, since HT(t) is the exposure vari-
able of interest, the focus of the analysis concerns
assessing the effect of this variable adjusted for
the two covariates. Note, however, that because
the HT(¢) variable is time-dependent by definition,
this variable does not satisfy the PH assumption,
so that any hazard ratio estimate obtained for this
variable is technically time-dependent.

: Sl (ke A summary of computer results for the fit of the
Variable Coef. Err. P>lz| Ratio .
AT 3.4718  Lisel @00 @ozp  above extended Cox model is shown here. These
IMS@ 04442 02802 0112 15593 | pegylts indicate that the exposure variable HT(z) is
AGE(t) 0.0552 0.0226 0.014 1.0567

significant below the one percent significance level
(i.e., the two-sided p-value is 0.008). Thus, trans-
plant status appears to be significantly associated
with survival.

== 1

HR = ¢731718 = 0.0417 = 5= To evaluate the strength of the association, note
that e to the coefficient of HT(t) equals 0.0417.
Since 1 over 0.0417 is 23.98, it appears that there is
a 24-fold increase in the hazard of nontransplant
patients to transplant patients. The preceding in-
terpretation of the value 0.0417 as a hazard ratio
estimate is not appropriate, however, as we shall
now discuss further.

= iz(transplants) 172
HR - _fltransplants) 17

h(nontransplants) 24
Not appropriate!
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EXAMPLE (continued)

AN
23.98 is inappropriate as a HR:

¢ does not compare two separate
groups

e exposure variable is not time-
independent

e wait-time on transplants contributes
to survival on nontransplants

Alternative interpretation:

At time ¢,

h(“not yet received transplant”)

= 24 h(“already received transplant”)

More appropriate:

Hazard ratio formula should account
for TMS and AGE.

Transplant? HT(t) TMS(t) AGE(t)
Yes 1 TMS AGE
No 0 0 0

i denotes ith transplant patient

X'(1) = (HT(t) = 1, TMS(t) = TMS;, AGE(t) = AGE;)
X(¢) = (HT(t) = 0, TMS(t) = 0, AGE(z) = 0)

HR() = expl8,(1 - 0) + §,(TMS; - 0)
+8AGE, - 0)]
= CXP[SI + SzTMSl + 83AGEZ]
 expl[-3.1718 + 0.4442 TMS,
+0.0552 AGE,]

First, note that the value of 23.98 inappropri-
ately suggests that the hazard ratio is compar-
ing two separate groups of patients. However, the
exposure variable in this analysis is not a time-
independent variable that distinguishes between
two separate groups. In contrast, the exposure
variable is time-dependent, and uses the wait-time
information on transplants as contributing to the
survival experience of non-transplants.

Since the exposure variable is time-dependent, an
alternative interpretation of the hazard ratio esti-
mate is that, at any given time ¢, the hazard for a
person who has not yet received a transplant (but
may receive one later) is approximately 24 times
the hazard for a person who already has received a
transplant by that time.

Actually, we suggest that a more appropriate haz-
ard ratio expression is required to account for
a transplant’s TMS and AGE score. Such an ex-
pression would compare, at time ¢, the values of
each of the three time-dependent variables in the
model. For a person who received a transplant,
these values are 1 for HT(t) and TMS and AGE for
the two covariates. For a person who has not re-
ceived a transplant, the values of all three variables
are 0.

Using this approach to compute the hazard ratio,
the X*(¢) vector, which specifies the predictors for
a patient i who received a transplant at time ¢, has
the values 1, TMS; and AGE; for patient i; the X(t)
vector, which specifies the predictors at time ¢ for
a patient who has not received a transplant at time
t, has values of 0 for all three predictors.

The hazard ratio formula then reduces to e to the
sum of &y “hat” plus 6, “hat” times TMS; plus 83
“hat” times AGE;, where the & “hat’s” are the es-
timated coefficients of the three time-dependent
variables. Substituting the numerical values for
these coefficients in the formula gives the expo-
nential expression circled here.



EXAMPLE (continued)

A
HR(¢) is time-dependent, i.e., its value at

time 7 depends on TMS; and AGE; at

time ¢

TMS range: (0-3.05)
AGE range: (12-64)
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The resulting formula for the hazard ratio is time-
dependent in that its value depends on the TMS
and AGE values of the ith patient at the time of
transplant. That is, different patients can have dif-
ferent values for TMS and AGE at time of trans-
plant. Note that in the dataset, TMS ranged be-
tween 0 and 3.05 and AGE ranged between 12 and
64.

We end our discussion of the Stanford Heart
Transplant Study at this point. For further insight
into the analysis of this dataset, we refer the reader
to the 1977 paper by Crowley and Hu (J. Amer.
Statist. Assoc.).

IX. The Extended Cox
Likelihood

1D TIME STATUS SMOKE

Barry
Gary

Harry
Larry

oo Ul W N

[EEN e R SN

—_—0O O =

SURVT = Survival time (in years)

STATUS = 1 for event, 0 for

censorship

SMOKE = 1 for a smoker, 0 for a

nonsmoker

Cox PH model: h(r) = hy(t )e P1SMOKE

Cox PH Likelihood

L=

ho(t)e Pt

[ho(t)e P1
_ho(l‘)e B1

X

|

ho(2)e0 + ho(£)e® + ho(t)e P1

L ho(t)e P+ ho(t)e® + ho(t)e® + ho(t)e 1

At the end of the presentation from Chapter 3 (Sec-
tion VIII), we illustrated the Cox likelihood using
the dataset shown on the left. In this section we
extend that discussion to illustrate the Cox likeli-
hood with a time-dependent variable.

To review: The data indicate that Barry got the
event at TIME = 2 years. Gary got the event at
3 years, Harry was censored at 5 years, and Larry
got the event at 8 years. Furthermore, Barry and
Larry were smokers whereas Gary and Harry were
nonsmokers.

In Chapter 3 we constructed the Cox likelihood
with one predictor SMOKE in the model. The
model and the likelihood are shown on the left.
The likelihood is a product of three terms, one
term for each event time t; (TIME = 2, 3, and 8).
The denominator of each term is the sum of the
hazards from the subjects still in the risk set at
time t;, including the censored subject Harry. The
numerator of each term is the hazard of the sub-
ject who got the event at t;. The reader may wish
to reread Section VIII of Chapter 3.
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Cox extended model

l’l(f) — ho(t)eﬁlSMOKE+BzSMOKE x TIME

Time-dependent covariate
(its value changes over time)

Larry got the event at TIME = 8

Larry’s hazard at each event time

TIME Larry’s Hazard
2 ho(t)e Bi1+2B2
3 ho(t)e B1+3B2
8 ho(t)e B14+8p2

Cox extended model

L=

ho(t)e P1+2P2
ho(t)e B1+2B2 4 lg(£)e + ho(t)e® + ho(t)e P12 32}

« [ ho(t)e® ] ,'
ho()e® + ho(t)e® + ho(t)e P1+362 /
ho(t)e P18B2 Y "’

) [hn(l)e BIER }\' v

Likelihood is product*of 3\ terms:
L=L1XL2XL3 N\

1
]

1

1

Larry
(t=38)

Gary
t=3)

Barry
t=2)

SMOKE x TIME = 0 for nonsmok-

€rs

SMOKE x TIME changes over time
for smokers

Larry’s hazard changes over Ly, L;,
Ls.

Now consider an extended Cox model, which con-
tains the predictor SMOKE, and a time-dependent
variable SMOKE x TIME. For this model it is not
only the baseline hazard that may change over
time but also the value of the predictor variables.
This can be illustrated by examining Larry’s haz-
ard at each event time.

Larry, a smoker, got the event at TIME = 8.
However at TIME = 2, 3, and 8, the covariate
SMOKE x TIME changes values, thus affecting
Larry’s hazard at each event time (see left). Un-
derstanding how the expression for an individual’s
hazard changes over time is the key addition to-
ward understanding how the Cox extended likeli-
hood differs from the Cox PH likelihood.

The likelihood for the extended Cox model is con-
structed in a similar manner to that of the likeli-
hood for the Cox PH model. The difference is that
the expression for the subject’s hazard is allowed
to vary over time. The extended Cox likelihood for
these data is shown on the left.

Just as with the Cox PH likelihood shown previ-
ously, the extended Cox likelihood is also a product
of three terms, corresponding to the three event
times (L = Ly x Ly x L3). Barry got the event
firstatt = 2, then Gary at¢t = 3, and finally Larry
at t = 8. Harry, who was censored at t = 5, was
still at risk when Barry and Gary got the event.
Therefore, Harry’s hazard is still in the denomina-
tor of L; and L,.

The inclusion of the time-varying covariate
SMOKE x TIME does not change the expres-
sion for the hazard for the nonsmokers (Gary and
Harry) because SMOKE is coded 0 for nonsmok-
ers. However, for smokers (Barry and Larry), the
expression for the hazard changes with time. No-
tice how Larry’s hazard changes in the denomina-
tor of Ly, L, and L3 (see dashed arrows above).
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ho(t) cancels in L

eﬁ1+2ﬁ2
L= |:ef31+2l32 +e0 40 +ef31+2[32:|

o0
X
e0 40 + ePr+3p
eBl+862
X | B8

Incorrent coding of SMOKE x TIME

SMOKE
ID TIME STATUS SMOKE x TIME

1 1
0

Barry
Gary

Harry
Larry

0
1 1

oo Ul W N
o O O N

Coded as time-independent,
not time-dependent

Incorrectly coded SMOKE x TIME

e Time independent
e Probably highly significant

e Survival time should predict
survival time

e But not meaningful

Correctly coding SMOKE x TIME

e Time dependent

e Computer packages allow
definition in the analytic
procedure

e See Computer Appendix for
details

The baseline hazard cancels in the extended Cox
likelihood as it does with the Cox PH likelihood.
Thus, the form of the baseline hazard need not be
specified, as it plays no role in the estimation of
the regression parameters.

A word of caution for those planning to run a
model with a time-varying covariate: it is incor-
rect to create a product term with TIME in the
data step by multiplying each individual’s value
for SMOKE with his survival time. In other words,
SMOKE x TIME should not be coded like the typ-
ical interaction term. In fact, if SMOKE x TIME
were coded as it is on the left, then SMOKE x
TIME would be a time-independent variable.
Larry’s value for SMOKE x TIME is incorrectly
coded at a constant value of 8 even though Larry’s
value for SMOKE x TIME changes in the likeli-
hood over L;, L,, and Ls.

If the incorrectly coded time-independent
SMOKE x TIME were included in a Cox model it
would not be surprising if the coefficient estimate
were highly significant even if the PH assumption
were not violated. It would be expected that a
product term with each individual’s survival time
would predict the outcome (his survival time),
but it would not be meaningful. Nevertheless, this
is a common mistake.

To obtain a correctly defined SMOKE x TIME
time-dependent variable, computer packages typ-
ically allow the variable to be defined within the
analytic procedure. See Computer Appendix to

see how time-dependent variables are defined in
Stata, SAS, and SPSS.
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Coding SMOKE x TIME as time-
dependent

Multiple Observations per Subject

SMOKE

1D TIME STATUS SMOKE x TIME

Barry 2 1 1 2
Gary 2 0 0 0
Gary 3 1 0 0
Harry 2 0 0 0
Harry 3 0 0 0
Harry 5 0 0 0
Larry 2 0 1 2
Larry 3 0 1 3
Larry 5 0 1 5
Larry 8 1 1 8

7

Coded as time-dependent

Multiple observations per subject:
revisited in Chapter 8 (recurrent
events)

When a time-dependent variable is defined within
the Cox analytic procedure, the variable is defined
internally such that the user may not see the time-
dependent variable in the dataset. However, the
dataset on the left will provide a clearer idea of the
correct definition of SMOKE x TIME. The dataset
contains multiple observations per subject. Barry
was at risk at t = 2 and got the event at that time.
Gary was at risk at t = 2 and t = 3. Gary didn't get
the event at t = 2 but did get the event at t = 3.
Harry was at risk at t =2, t = 3, t = 5 and didn’t
get the event. Larry was at risk at t = 2, t = 3,
t =135, t = 8 and got the event at t = 8. Notice how
the SMOKE x TIME variable changes values for
Larry over time.

Survival analysis datasets containing multiple ob-
servations per subject are further discussed in
Chapter 8 on recurrent events. With recurrent
event data, subjects may remain at risk for sub-
sequent events after getting an event.

X. Summary
Review Cox PH model.

Define time-dependent variable:
defined, internal, ancillary.

Extended Cox model:

B X(0) = ho(r>exp[":zl1 BX,

Function of time

A summary of this presentation on time-
dependent variables is now provided. We began by
reviewing the main features of the Cox PH model.
We then defined a time-dependent variable and il-
lustrated three types of these variables—defined,
internal, and ancillary.

Next, we gave the form of the “extended Cox
model,” shown here again, which allows for time-
dependent as well as time-independent variables.

We then described various characteristics of this
extended Cox model, including the formula for the
hazard ratio. The latter formula is time-dependent
so that the PH assumption is not satisfied.



Model for assessing PH
assumption:

h(t,X(1)) = ho(t) exp [é B Xi

+ iéiXigi(f)]

i=1

Examples of g;(¢):
t, log t, heaviside function

Heaviside functions:

A~

HR

h(t X(t)) = ho(t) exp[BE + dEg(1)]
where
1 ift >t
gt) = {0 if ¢ <zg
h(t,X(1))
= ho(t)exp[BEgi(t) + B, Ega(t)]

where

1 it =1
gl(z)_{o ift <ty
U ifr <
gZ(t)_{O it >t

EXAMPLE 1

1991 Australian study of heroin addicts

e two methadone maintenance clinics
e addicts dataset file

e clnic variable did not satisfy PH
assumption
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We also showed how to use time-dependent vari-
ables to assess the PH assumption for time-
independent variables. A general formula for an
extended Cox model that simultaneously consid-
ers all time-independent variables of interest is
shown here.

The functions g;(t) denote functions of time for
the ith variable that are to be determined by the in-
vestigator. Examples of such functions are g;(f) =
t,log t, or a heaviside function.

The use of heaviside functions were described and
illustrated. Such functions allow for the hazard
ratio to be constant within different time intervals.

For two time intervals, the model can take either
one of two equivalent forms as shown here. The
first model contains a main effect of exposure and
only one heaviside function. The second model
contains two heaviside functions without a main
effect of exposure. Both models yield two distinct
and equivalent values for the hazard ratio.

We illustrated the use of time-dependent variables
through two examples. The first example consid-
ered the comparison of two methadone mainte-
nance clinics for heroin addicts. The dataset file
was called addicts. In this example, the clinic vari-
able, which was a dichotomous exposure variable,
did not satisfy the PH assumption.
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EXAMPLE (continued)

Adjusted Survival Curves
Stratified by Clinic

Clinic 2

S 1.0
0.8
0.6
0.4
0.2

Clinic 1

O 1 1 1 1 ]
0 200 400 600 800 1000 1200
Days

h(t,X(1)) = hy(t) explB,(prison)
+ B3(dose) + &;(clinic)g;(z)
+ 8, (clinic)g, ()]

.

(Heaviside functions

h(t,X(l‘)) = ho(f)exp[ﬁz(prison)
+ B3(dose) + By (clinic)
+ d(clinic x t)]

where
T@) 1,3,5,7,9 in half-year intervals

EXAMPLE 2: Stanford Heart
Transplant Study

Goals: Do patients receiving transplants

survive longer than patients not receiv-
ing transplants?

h(t, X)) = hy(t) expld,HT(t) + 8,TMS(t)
+ 83AGE(1)]

Exposure variable

Adjusted survival curves stratified by clinic
showed clinic 2 to have consistently higher sur-
vival probabilities than clinic 1, with a more pro-
nounced difference in clinics after one year of
follow-up. However, this stratification did not al-
low us to obtain a hazard ratio estimate for clinic.
Such an estimate was possible using an extended
Cox model containing interaction terms involving
clinic with time.

Two extended Cox models were considered. The
first used heaviside functions to obtain two dis-
tinct hazard ratios, one for the first year of follow-
up and the other for greater than one year of
follow-up. The model is shown here.

The second extended Cox model used a time-
dependent variable that allowed for the two sur-
vival curves to diverge over time. This model is
shown here.

Both models yielded hazard ratio estimates that
agreed reasonably well with the graph of adjusted
survival curves stratified by clinic.

The second example considered results obtained
in the Stanford Heart Transplant Study. The goal
of the study was to assess whether patients receiv-
ing transplants survived longer than patients not
receiving transplants.

The analysis of these data involved an extended
Cox model containing three time-dependent vari-
ables. One of these, the exposure variable, and
called HT(t), was an indicator of transplant sta-
tus at time ¢. The other two variables, TMS(¢) and
AGE(t), gave tissue mismatch scores and age for
transplant patients when time ¢ occurred after re-
ceiving a transplant. The value of each of these
variables was 0 at times prior to receiving a trans-
plant.



EXAMPLE (continued)

Results: HT(¢) highly significant, i.e.,
transplants have better prognosis than
nontransplants.

Hazard ratio estimate problematic:

AN 2
HR =ed1=

23.98

More appropriate formula:

P
HR =exp[ —3.1718 + 0.4442 TMS;

+0.0552 AGE;]
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The results from fitting the above extended Cox
model yielded a highly significant effect of the ex-
posure variable, thus indicating that survival prog-
nosis was better for transplants than for nontrans-
plants.

From these data, we first presented an inappropri-
ate formula for the estimated hazard ratio. This
formula used the exponential of the coefficient of
the exposure variable, which gave an estimate of
1 over 23.98. A more appropriate formula con-
sidered the values of the covariates TMS(¢) and
AGE(t) at time ¢. Using the latter, the hazard ratio
estimate varied with the tissue mismatch scores
and age of each transplant patient.

Chapters

. Introduction to Survival

Analysis

. Kaplan-Meier Curves and the

Log-Rank Test

. The Cox Proportional Hazards

Model

. Evaluating the Proportional

Hazards Assumption

. The Stratified Cox Procedure

/(6.

Extension of the Cox
Proportional Hazards Model
for Time-Dependent Variables

Next:

7.

Parametric models

This presentation is now complete. We suggest
that the reader review the detailed outline that fol-
lows and then answer the practice exercises and
test that follow the outline.

A key property of Cox models is that the distri-
bution of the outcome, survival time, is unspec-
ified. In the next chapter, parametric models are
presented in which the underlying distribution of
the outcome is specified. The exponential, Weibull,
and log-logistic models are examples of paramet-
ric models.
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Detailed
Outline

I. Preview (page 214)
II. Review of the Cox PH Model (pages 214-216)

III.

A. The formula for the Cox PH model:

h(t.X) = ho(t) exp [i BiXi]
i=1

B. Formula for hazard ratio comparing two
individuals:

= (X}, X3,.... X)) and X = (X1, X2, ... X,):

h(t,X*)

p
X = o [Z B (X, - Xn}

C. The meaning of the PH assumption:

e Hazard ratio formula shows that the hazard
ratio is independent of time:

h(t,X*)
h(t,X)

e Hazard ratio for two X’s are proportional:

h(t,X*) = 0h(t,X)

D. Three methods for checking the PH assumption:

i. Graphical: Compare In-In survival curves or
observed versus predicted curves

ii. Time-dependent covariates: Use product (i.e.,
interaction) terms of the form X x g(¢).

iii. Goodness-of-fit test: Use a large sample Z
statistic.

E. Options when the PH assumption is not met:
i. Use a stratified Cox procedure.
ii. Use an extended Cox model containing a
time-dependent variable of the form X x g(z).
Definition and Examples of Time-Dependent
Variables (pages 216-219)
A. Definition: any variable whose values differ over
time
B. Examples of defined, internal, and ancillary
time-dependent variables
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IV. The Extended Cox Model for Time-Dependent
Varibles (pages 219-221)

i=1

A. | (e, X()) = ho(t) exp [z B.X: + z 5 X, (t)i|

where X(I) = (X1, Xo, ..o, Xpw X](I), Xz(t), cey
X,,(t)) denotes the entire collection of predictors
at time ¢, X; denotes the ith time-independent
variable, and X ;(¢) denotes the jth time-dependent
variable.

B. ML procedure used to estimate regression
coefficients.

C. List of computer programs for the extended Cox
model.

D. Model assumes that the hazard at time ¢ depends
on the value of X;(¢) at the same time.

E. Can modify model for lag-time effect.

V. The Hazard Ratio Formula for the Extended Cox
Model (pages 221-223)

14!

HR(t) = exp [Z B:[x7 - Xi]

+ igj[X?(Z) —Xj(f)]:|
iz

B. Because HR(t) is a function of time, the PH
assumption is not satisfied.

C. The estimated coefficient of X;(¢) is
time-independent, and represents an “overall”
effect of X;(t).

VI. Assessing Time-Independent Variables That Do
Not Satisfy the PH Assumption (pages 224-229)
A. General formula for assessing PH assumption:

B, X(0)) = holt) exp [é BX; + ésixigi<z>}

B. g;(t) is a function of time corresponding to X;
C. Test Hy: 64 :62:...:6p =0
D. Heaviside function:

U ifr =1
g(t)_{o if 1 < 1
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E. The model with a single heaviside function:

(X)) = ho(t) exp[BE + 5Eg(1)]|

F. The model with two heaviside functions:
| h(t,X(2)) = ho(t) exp[81 Egi(t) + 52 Ega(1)] |

where

_Jrift =1 | 1ift <1
gl(t)_{Oifz<to and gZ(t)_:Oifzzzo

G. The hazard ratios:
>ty HR = exp([g +8) = exp(f)l)
t <to: HR = exp(B) = exp(5,)
H. Several heaviside functions: examples given with

four time-intervals:
e Extended Cox model contains either
{E,E x g1(t), E x g2(t), E x g3(t)} or
{E x g1(t), E x g2(t), E x g3(t), E x g4(t)}
e The model using four product terms and no
main effect of E:

h(t,X(t)) = ho(t) exp[d1 Eg1(t) + 82, Eg»(¢)
+03Egs3(t) + 84Ega(t)]

where

() = 1 if# is within interval i
E) =10 if otherwise

VII. An Application of the Extended Cox Model to an
Epidemiologic Study on the Treatment of Heroin
Addiction (pages 230-234)

A. 1991 Australian study of heroin addicts
e two methadone maintenance clinics
e addicts dataset file
e clinic variable did not satisfy PH assumption

B. Clinic 2 has consistently higher retention
probabilities than clinic 1, with a more
pronounced difference in clinics after one year of
treatment.

C. Two extended Cox models were considered:

e Use heaviside functions to obtain two distinct
hazard ratios, one for less than one year and the
other for greater than one year.

e Use a time-dependent variable that allows for
the two survival curves to diverge over time.
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VIII. An Application of the Extended Cox Model to the
Analysis of the Stanford Heart Transplant Data
(pages 235-239)

A. The goal of the study was to assess whether
patients receiving transplants survived longer than
patients not receiving transplants.

B. We described an extended Cox model containing
three time-dependent variables:

h(t,X(t)) = ho(t) exp[61HT(t) + d,TMS(t) + d3AGE(t)]

C. The exposure variable, called HT(z), was an
indicator of transplant status at time ¢. The other
two variables, TMS(t) and AGE(t), gave tissue
mismatch scores and age for transplant patients
when time ¢ occurred after receiving a transplant.

D. The results yielded a highly significant effect of the
exposure variable.

E. The use of a hazard ratio estimate for this data was
problematical.

e An inappropriate formula is the exponential of
the coefficient of HT(¢), which yields 1/23.98.

e An alternative formula considers the values of
the covariates TMS(¢) and AGE(¢) at time ¢.

IX. Extended Cox Likelihood (pages 239-242)
A. Review of PH likelihood (Chapter 3).
B. Barry, Gary, Larry, example of Cox likelihood.
X. Summary (pages 242-245)

The following dataset called “anderson.dat” consists of remis-
sion survival times on 42 leukemia patients, half of whom
receive a new therapy and the other half of whom get a stan-
dard therapy (Freireich et al., Blood, 1963). The exposure vari-
able of interest is treatment status (Rx = 0 if new treatment,
Rx =1 if standard treatment). Two other variables for con-
trol are log white blood cell count (i.e., log WBC) and sex.
Failure status is defined by the relapse variable (0 if censored,
1 if failure). The dataset is listed as follows:

Subj Surv Relapse Sex log WBC Rx
1 35 0 1 1.45 0
2 34 0 1 1.47 0
3 32 0 1 2.2 0
4 32 0 1 2.53 0
5 25 0 1 1.78 0
6 23 1 1 2.57 0

(Continued on next page)
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Subj Surv Relapse Sex log WBC Rx
7 22 1 1 2.32 0
8 20 0 1 2.01 0
9 19 0 0 2.05 0

10 17 0 0 2.16 0

11 16 1 1 3.6 0

12 13 1 0 2.88 0

13 11 0 0 2.6 0

14 10 0 0 2.7 0

15 10 1 0 2.96 0

16 9 0 0 2.8 0

17 7 1 0 4.43 0

18 6 0 0 32 0

19 6 1 0 2.31 0

20 6 1 1 4.06 0

21 6 1 0 3.28 0

22 23 1 1 1.97 1

23 22 1 0 2.73 1

24 17 1 0 2.95 1

25 15 1 0 2.3 1

26 12 1 0 1.5 1

27 12 1 0 3.06 1

28 11 1 0 3.49 1

29 11 1 0 2.12 1

30 8 1 0 3.52 1

31 8 1 0 3.05 1

32 8 1 0 2.32 1

33 8 1 1 3.26 1

34 5 1 1 3.49 1

35 5 1 0 3.97 1

36 4 1 1 4.36 1

37 4 1 1 2.42 1

38 3 1 1 4.01 1

39 2 1 1 4.91 1

40 2 1 1 4.48 1

41 1 1 1 2.8 1

42 1 1 1 5 1

The following edited printout gives computer results for fit-
ting a Cox PH model containing the three predictives Rx, log
WBC, and Sex.

Cox regression [95% Conf.
Analysis time t: survt Coef. Std. Err. p > |z| Haz. Ratio Interval]  P(PH)

Sex 0.263  0.449 0.558 1.301 0.539 3.139 0.042
log WBC 1.594  0.330 0.000 4.922 2.578 9.397 0.714
Rx 1.391  0.457 0.002 4.018 1.642 9.834 0.500

No. of subjecs = 42 Log likelihood = —72.109
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Which of the variables in the model fitted above are time-
independent and which are time-dependent?

Based on this printout, is the PH assumption satisfied for the
model being fit? Explain briefly.

. Suppose you want to use an extended Cox model to assess

the PH assumption for all three variables in the above model.
State the general form of an extended Cox model that will
allow for this assessment.

. Suppose you wish to assess the PH assumption for the Sex

variable using a heaviside function approach designed to
yield a constant hazard ratio for less than 15 weeks of follow-
up and a constant hazard ratio for 15 weeks or more of follow-
up. State two equivalent alternative extended Cox models that
will carry out this approach, one model containing one heav-
iside function and the other model containing two heaviside
functions.

The following is an edited printout of the results obtained
by fitting an extended Cox model containing two heaviside
functions:

Time-Dependent Cox Regression Analysis

Analysis [95% Conf.
time_t: survt  Coef.  Std. Err. p > |z] Haz. Ratio Interval]
log WBC 1.567  0.333 0.000 4.794 2.498 9.202
Rx 1.341 0.466 0.004 3.822 1.533 9.526
0-15 wks 0.358  0.483 0.459 1.430 0.555 3.682
15+ wks —0.182 0.992 0.855 0.834 0.119 5.831

No. of subjects = 42

Log likelihood = —71.980

Using the above computer results, carry out a test of hypoth-
esis, estimate the hazard ratio, and obtain 95% confidence
interval for the treatment effect adjusted for log WBC and
the time-dependent Sex variables. What conclusions do you
draw about the treatment effect?

. We now consider an alternative approach to controlling for

Sex using an extended Cox model. We define an interaction
term between sex and time that allows for diverging survival
curves over time.

For the situation just described, write down the extended Cox
model, which contains Rx, log WBC, and Sex as main effects
plus the product term sex x time.
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7. Using the model described in question 6, express the hazard
ratio for the effect of Sex adjusted for Rx and log WBC at 8
and 16 weeks.

8. The following is an edited printout of computer results
obtained by fitting the model described in question 6.

Time-Dependent Cox Regression Analysis

Analysis [95% Cont.
time_t: survt  Coef.  Std. Err.  p > |z| Haz. Ratio Interval]
Sex 1.820 1.012 0.072 6.174 0.849 44.896
log WBC 1.464  0.336 0.000 4.322 2236 8.351
Rx 1.093 0.479 0.022 2.984 1.167 7.626
Sex x Time —0.345  0.199 0.083 0.708 0.479 1.046
No. of subjects = 42 Log likelihood = —70.416

Based on the above results, describe the hazard ratio estimate
for the treatment effect adjusted for the other variables in the
model, and summarize the results of the significance test and
interval estimate for this hazard ratio. How do these results
compare with the results previously obtained when a heavi-
side function approach was used? What does this comparison
suggest about the drawbacks of using an extended Cox model
to adjust for variables not satisfying the PH assumption?

9. The following gives an edited printout of computer results
using a stratified Cox procedure that stratifies on the Sex

variable but keeps Rx and log WBC in the model.

Stratified Cox regression

Analysis [95% Conf.
time_t: survt Coef. Std. Err. p > |z Haz. Ratio Interval]

log WBC 1.390  0.338 0.000 4.016 2,072 7.783
Rx 0.931 0.472 0.048 2.537 1.006 6.396

No. of subjects = 42 Log likelihood = —57.560 Stratified by sex

Compare the results of the above printout with previously
provided results regarding the hazard ratio for the effect of
Rx. Is there any way to determine which set of results is more
appropriate? Explain.
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The following questions consider the analysis of data from a

clinical trial concerning gastric carcinoma, in which 90 pa-
tients were randomized to either chemotherapy (coded as 2)
alone or to a combination of chemotherapy and radiation
(coded as 1). See Stablein et al., “Analysis of Survival Data
with Nonproportional Hazard Functions,” Controlled Clini-
cal Trials, vol. 2, pp. 149-159 (1981). A listing of the dataset
(called chemo) is given at the end of the presentation.

1.

A plot of the log-log Kaplan-Meier curves for each
treatment group is shown below. Based on this plot, what
would you conclude about the PH assumption regarding
the treatment group variable? Explain.

4.0
12
1 b4 Log-log Survival Curves for
201 12— Each Treatment Group
4 19 2/
= 1_| 2_|
E 1= 24
0.0 1—|1 2:|
- 1
-2.0
T T T T T T T T
0 200 400 600 800 1000 1200 1400
Number at risk
45 26 20 11 10 7 5 2
45 40 25 17 10 7 6 2

The following is an edited printout of computer results
obtained when fitting the PH model containing only the
treatment group variable. Based on these results, what
would you conclude about the PH assumption regarding
the treatment group variable? Explain.

Cox regression

Analysis time t: [95% Conf.
survt Coef. Std.Err. p > |z Haz. Ratio Interval] P(PH)
Tx —0.267 0.233 0.253 0.766 0.485 1.21 0

No. of subjects = 90

Log likelihood = —282.744

The following printout shows the results from using a
heaviside function approach with an extended Cox model
to fit these data. The model used product terms of the
treatment variable (Tx) with each of three heaviside func-
tions. The first product term (called Timel) involves a
heaviside function for the period from 0 to 250 days,
the second product term (i.e., Time2) involves the period
from 250 to 500 days, and the third product term (i.e.,
Time3) involves the open-ended period from 500 days and
beyond.
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Time-Dependent Cox Regression Analysis

Analysis [95% Conf.
time_t: survt  Coef.  Std. Err. p > |z| Haz. Ratio Interval]
Timel —1.511  0.461 0.001 0.221 0.089 0.545
Time2 0.488 0.450 0.278 1.629 0.675 3.934
Time3 0.365 0.444 0.411 1.441 0.604 3.440

No. of subjects = 90

Log likelihood = —275.745

Write down the hazard function formula for the extended
Cox model being used, making sure to explicitly define the
heaviside functions involved.

Based on the printout, describe the hazard ratios in each
of the three time intervals, evaluate each hazard ratio for
significance, and draw conclusions about the extent of the
treatment effect in each of the three time intervals consid-
ered.

Inspection of the printout provided in question 3 indicates
that the treatment effect in the second and third intervals
appears quite similar. Consequently, another analysis was
considered that uses only two intervals, from 0 to 250 days
versus 250 days and beyond. Write down the hazard func-
tion formula for the extended Cox model that considers
this situation (i.e., containing two heaviside functions).
Also, write down an equivalent alternative hazard func-
tion formula which contains the main effect of treatment
group plus one heaviside function variable.

For the situation described in question 5, the computer
results are provided below. Based on these results,
describe the hazard ratios for the treatment effect below
and above 250 days, summarize the inference results
for each hazard ratio, and draw conclusions about the
treatment effect within each time interval.

Time-Dependent Cox Regression Analysis

Analysis time_t: survt

Column

name Coeff  StErr p-value HR 0.95 CI
Timel —1.511 0.461 0.001 0.221 0.089 0.545
Time2 0.427 0315 0.176 1.532  0.826 2.842

No. of subjects = 90

Log likelihood = —275.764
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All three variables in the model are time-independent vari-

bles.

The computer results indicate that the Sex variables do not
satisfy the PH assumption because the P(PH) value is 0.042,
which is significant at the 0.05 level.

h(t,X(t)) = ho(t) exp[ B (sex) + B,(log WBC) + B3(Rx)
+81(sex)g1(t) + 82(log WBC)g:(t)
+83(Rux)g3(1)]

where the g;(¢) are functions of time.

Model 1 (one heaviside function)

h(t,X(t)) = ho(t) expl B (sex) + B,(log WBC) + B;(Rx)
+ 01(sex)g1(t)]
where

(1) = 1 if0 <t < 15 weeks
§1 =19 if ¢t > 15 weeks

Model 2 (two heaviside functions):

h(t,X(t)) = ho(t) exp[B,(log WBC) 4 B3(Rx) + 51(sex)g(t)
+ d2(sex)g(t)]
where

(1) = 1 if0 <t < 15 weeks
E1 =19 if t > 15 weeks

and

(1) = 0 ifr > 15 weeks
820 =11 if 0 <t < 15 weeks

The estimated hazard ratio for the effect of Rx is 3.822; this
estimate is adjusted for log WBC and for the Sex variable
considered as two time-dependent variables involving heav-
iside functions. The Wald test for significance of Rx has a
p-value of 0.004, which is highly significant. The 95% confi-
dence interval for the treatment effect ranges between 1.533
and 9.526, which is quite wide, indicating considerable un-
reliability of the 3.822 point estimate. Nevertheless, the re-
sults estimate a statistically significant treatment effect of
around 3.8.

h(t,X(t)) = ho(t) exp[ B, (sex) + B,(log WBC) + B3(Rx)
+61(sex x t)]



256 6. Extension of the Cox Proportional Hazards Model

7. The hazard ratio for the effect of Sex in each time interval,
controlling for Rx and log WBC is given as follows:

t = 8 weeks @ = exp[f; + 85]
t =16 weeks HR = exp[fil +168]

8. Using the model containing Sex, log WBC, Rx, and Sex x
Time, the estimated hazard ratio for the treatment effect is
given by 2.984, with a p-value of 0.022 and a 95% confi-
dence interval ranging between 1.167 and 7.626. The point
estimate of 2.984 is quite different from the point estimate
of 3.822 for the heaviside function model, although the con-
fidence intervals for both models are wide enough to in-
clude both estimates. The discrepancy between point esti-
mates demonstrates that when a time-dependent variable
approach is to be used to account for a variable not satis-
fying the PH assumption, different results may be obtained
from different choices of time-dependent variables.

9. Thestratified Cox analysis yields a hazard ratio of 2.537 with
a p-value of 0.048 and a 95% CI ranging between 1.006 and
6.396. The point estimate is much closer to the 2.984 for
the model containing the Sex x Time product term than to
the 3.822 for the model containing two heaviside functions.
One way to choose between models would be to compare
goodness-of-fit test statistics for each model; another way is
to compare graphs of the adjusted survival curves for each
model and determine by eye which set of survival curves fits
the data better.
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Introduction

Abbreviated
Outline

The Cox model is the most widely used survival model in the
health sciences, but it is not the only model available. In this
chapter we present a class of survival models, called paramet-
ric models, in which the distribution of the outcome (i.e., the
time to event) is specified in terms of unknown parameters.
Many parametric models are acceleration failure time models
in which survival time is modeled as a function of predictor
variables. We examine the assumptions that underlie acceler-
ated failure time models and compare the acceleration factor
as an alternative measure of association to the hazard ratio.
We present examples of the exponential, Weibull, and log-
logistic models and give a brief description of other paramet-
ric approaches. The parametric likelihood is constructed and
described in relation to left, right, and interval-censored data.
Binary regression is presented as an alternative approach for
modeling interval-censored outcomes. The chapter concludes
with a discussion of frailty models.

The outline below gives the user a preview of the material
covered by the presentation. A detailed outline for review pur-
poses follows the presentation.

I. Overview (pages 260-262)

II. Probability Density Function in Relation to the
Hazard and Survival Function (pages 262-263)

ITII. Exponential Example (pages 263-265)

IV. Accelerated Failure Time Assumption
(pages 266-268)

V. Exponential Example Revisited (pages 268-272)
VI. Weibull Example (pages 272-277)
VII. Log-Logistic Example (pages 277-282)

VIII. A More General Form of the AFT Model
(pages 282-284)

IX. Other Parametric Models (pages 284-286)
X. The Parametric Likelihood (pages 286-289)
XI. Interval-Censored Data (pages 289-294)
XII. Frailty Models (pages 294-308)
XIII. Summary (pages 309-312)
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Objectives Upon completing this chapter, the learner should be able to:

L.

No U e w

10.

State or recognize the form of a parametric survival
model and contrast it with a Cox model.

State common distributions used for parametric survival
models.

Contrast an AFT model with a PH model.

Interpret output from an exponential survival model.
Interpret output from a Weibull survival model.
Interpret output from a log-logistic survival model.

State or recognize the formulation of a parametric like-
lihood.

State or recognize right-censored, left-censored, and
interval-censored data.

State or recognize the form of a frailty model and the
purpose of including a frailty component.

Interpret the output obtained from a frailty model.
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Presentation

Parametric Survival Models

I. Overview

parametric models
exponential example
AFT vs. PH

Weibull example
log-logistic example
other approaches
parametric likelihood
interval-censoring
frailty models

Parametric Modeling

e Qutcome assumed to follow
some family of distributions

e Exact distribution is unknown
if parameters are unknown

e Data used to estimate
parameters

e Examples of parametric models:
o Linear regression
o Logistic regression
o Poisson regression

Distributions commonly used for
parametric survival models:

e Weibull

e Exponential

e Log-logistic

e Lognormal

e Generalized gamma

In this chapter we present parametric survival
models and the assumptions that underlie these
models. Specifically we examine the accelerated
failure time (AFT) assumption and contrast it
to the proportional hazards (PH) assumption.
We present examples of several parametric mod-
els, including the exponential model, the Weibull
model, and the log-logistic model. The paramet-
ric likelihood is discussed and how it accommo-
dates left-, right-, and interval-censored data. We
also consider models that include a frailty com-
ponent to account for unobserved heterogeneity.

Linear regression, logistic regression, and Poisson
regression are examples of parametric models that
are commonly used in the health sciences. With
these models, the outcome is assumed to follow
some distribution such as the normal, binomial,
or Poisson distribution. Typically, what is actually
meant is that the outcome follows some family of
distributions of similar form with unknown pa-
rameters. It is only when the value of the parame-
ter(s) is known that the exact distribution is fully
specified. For example, if one distribution is nor-
mal with a mean of three and another distribution
is normal with a mean of seven, the distributions
are of the same family (i.e., normal) but they are
not exactly the same distribution. For parametric
regression models, the data are typically used to
estimate the values of the parameters that fully
specify that distribution.

A parametric survival model is one in which
survival time (the outcome) is assumed to fol-
low a known distribution. Examples of distribu-
tions that are commonly used for survival time
are: the Weibull, the exponential (a special case
of the Weibull), the log-logistic, the lognormal,
and the generalized gamma, all of which are sup-
ported by SAS or Stata software.



Parametric survival models

Distribution specified for time

Cox model is semiparametric:

Baseline survival not specified
Cox model widely popular:

e No reliance on assumed
distribution

e Computer packages can output
Cox-adjusted survival estimates
using algorithm that generalizes
KM

e Baseline not necessary for
estimation of hazard ratio

1.0
0 t
Theoretical S(¢)
S@)
1.0
T T t
0 3 7

Step function (nondistributional
estimates)
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The Cox proportional hazards model, by contrast,
isnot a fully parametric model. Rather it is a semi-
parametric model because even if the regression
parameters (the betas) are known, the distribution
of the outcome remains unknown. The baseline
survival (or hazard) function is not specified in a
Cox model.

A key reason why the Cox model is widely pop-
ular is that it does not rely on distributional as-
sumptions for the outcome. Although the base-
line survival function is not estimated with a Cox
model, computer packages such as SAS, Stata, and
SPSS can output Cox-adjusted survival estimates
(see Computer Appendix) by using a compli-
cated algorithm that generalizes the Kaplan-
Meier (KM) approach while making use of esti-
mated regression coefficients obtained from a Cox
model (Kalbfleisch and Prentice,1980). Also, an es-
timation of the baseline hazard is not necessary
for the estimation of a hazard ratio because the
baseline hazard cancels in the calculation.

In theory, as time ranges from 0 to infin-
ity, the survival function can be graphed as a
smooth curve from S(0) = 1 to S(co) = 0 (see
Chapter 1). Kaplan-Meier and Cox-adjusted sur-
vival estimates use empirical nondistributional
methods that typically graph as step functions,
particularly if the sample size is small. If in the
data, for example, an event occurred at 3 weeks
and the next event occurred at 7 weeks, then the es-
timated survival curve would be flat between 3 and
7 weeks using these nondistributional approaches.
Moreover, if the study ends with subjects still re-
maining at risk, then the estimated survival func-
tion would not go all the way down to zero.
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Appeal of Parametric Survival
Models

e More consistent with theoretical

S(t) than nondistributional
approaches

e Simplicity

e Completeness—h(t) and S(t)
specified

Parametric Survival Models

Survival estimates obtained from parametric sur-
vival models typically yield plots more consistent
with a theoretical survival curve. If the investi-
gator is comfortable with the underlying distri-
butional assumption, then parameters can be es-
timated that completely specify the survival and
hazard functions. This simplicity and complete-
ness are the main appeals of using a parametric
approach.

Il. Probability Density
Function in Relation
to the Hazard and
Survival Function

Probability function known
then
Survival and hazard can be found

S(t) = P(T > t) = / f(wdu

—d[S(t)]/dt

)

Survival in terms of hazard

Sit)=exp| — | h(w)du
/

t
Cumulative hazard: / h(u)du
0

f(t) =h()S(t)

Key Point

Specifying one of f(t), S(t), or h(t)

specifies all three functions

For parametric survival models, time is assumed
to follow some distribution whose probability den-
sity function f(t) can be expressed in terms of
unknown parameters. Once a probability density
function is specified for survival time, the corre-
sponding survival and hazard functions can be de-
termined. The survival function S(t) = P(T > t)
can be ascertained from the probability density
function by integrating over the probability den-
sity function from time t to infinity. The hazard can
then be found by dividing the negative derivative
of the survival function by the survival function

(see left).

The survival function can also be expressed in
terms of the hazard function (see Chapter 1) by ex-
ponentiating the negative of the cumulative haz-
ard function. The cumulative hazard function is
the integral of the hazard function between inte-
gration limits of 0 and t.

Finally, the probability function can be expressed
as the product of the hazard and the survival func-

tions, f(t) = h(t)S(t).

The key point is that specifying any one of the
probability density function, survival function,
or hazard function allows the other two func-
tions to be ascertained by using the formulas
shown on the left.



Survival and Hazard Functions
for Selected Distributions

Distribution S@) h(t)
Exponential  exp(—At) A
Weibull exp(—At?)  AptP~!
Apt?~1
loisti
Log-logistic 7 7

flt)=h(t)S(t)

For example, Weibull:

f(t) = AptP~" exp(—Ar?)
because h(t) = Apt?~! and
S(t) = exp(—At?)

Typically in parametric models:

e A reparameterized for
regression

e p held fixed
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On the left is a table containing the survival and
hazard functions for three of the more commonly
used distributions for survival models: the expo-
nential, Weibull, and log-logistic distributions.

The exponential is a one-parameter distribution
with a constant hazard A. The Weibull and log-
logistic distributions have two parameters A and p.
Notice that the Weibull distribution reduces to the
exponential if p = 1. The probability density func-
tion for these distributions can be found by mul-
tiplying h(t) and S(t). As an example, the Weibull
probability density function is shown on the left.

Typically for parametric survival models, the pa-
rameter A is reparameterized in terms of predic-
tor variables and regression parameters and the
parameter p (sometimes called the shape parame-
ter) is held fixed. This is illustrated in the examples
to come.

Ill. Exponential Example

Simplest parametric survival model:
Hazard function: /(t) = A
(where A is a constant)

EXAMPLE
Remission data (n =42)

21 patients given treatment (TRT = 1)
21 patients given placebo (TRT = 0)

The first example we consider is the exponential
model, which is the simplest parametric survival
model in that the hazard is constant over time (i.e.,
h(t) = A). The model is applied to the remission
data (Freireich et al., 1963), in which 42 leukemia
patients were followed until remission or censor-
ship. Twenty-one patients received an experimen-
tal treatment (coded TRT = 1) and the other 21
received a placebo (coded TRT = 0). The data
are listed in Chapter 1. The variable TRT is just
a reverse coding of the variable RX presented in
Chapter 3.
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h(t) = A = exp(By + B, TRT)

TRT = 1: h(t) = exp(By + B;)
TRT = 0: h(t) = exp(B,)

HR(TRT = 1 vs. TRT = 0)
_ %&))‘31) — expl(B1)

Constant Hazards
= Proportional Hazards

Proportional Hazards
= Constant Hazards

Exponential Model—Hazards are
constant

Cox PH Model—Hazards are pro-
portional not necessarily constant

Remission Data

Exponential regression
log relative-hazard form

t Coef. Std. Err. z p>lz|
trt —1.527 .398 —3.83 0.00
cons —2.159 218 —-9.90 0.00

Coefficient estimates obtained by MLE

asymptotically normal

Parametric Survival Models

For simplicity, we demonstrate an exponential
model that has TRT as the only predictor. We
state the model in terms of the hazard by repa-
rameterizing A as exp(f3,+ 3;TRT). With this
model, the hazard for subjects in the treated group
is exp(g + ;) and the hazard for the placebo
group is exp(f3,). The hazard ratio comparing the
treatment and placebo (see left side) is the ratio of
the hazards exp(f3;). The exponential model is a
proportional hazards model.

The assumption that the hazard is constant for
each pattern of covariates is a much stronger as-
sumption than the PH assumption. If the hazards
are constant, then of course the ratio of the haz-
ards is constant. However, the hazard ratio being
constant does not necessarily mean that each
hazard is constant. In a Cox PH model the base-
line hazard is not assumed constant. In fact, the
form of the baseline hazard is not even specified.

Output from running the exponential model is
shown on the left. The model was run using Stata
software (version 7.0). The parameter estimates
are listed under the column called Coef. The pa-
rameter estimate for the coefficient of TRT (f3,) is
—1.527. The estimate of the intercept (called cons
in the output) is —2.159. The standard errors (Std.
Err.), Wald test statistics (z), and p-values for the
Wald test are also provided. The output indicates
that the z test statistic for TRT is statistically sig-
nificant with a p-value <0.005 (rounds to 0.00 in
the output).

The regression coefficients are estimated using
maximum likelihood estimation (MLE), and
are asymptotically normally distributed.



TRT = 1: i (t) = exp(—2.159
+(—1.527)) = 0.025
TRT = 0: 4 (¢) = exp(—2.159)
=0.115

HR (TRT = 1 vs. 0) = exp(—1.527)

=0.22
95% CI =exp[—1.527 £ 1.96(0.398)]

= (0.10, 0.47)

Results: suggest treatment lowers
hazard

Parametric models

e Need not be PH models
e Many are AFT models

Exponential and Weibull

e Accommodate PH and AFT
assumptions

Remission Data

Exponential regression
accelerated failure-time form

t Coef. Std.Err. z p>|z]
trt 1.527 .398 3.83 0.00
cons 2.159 218 9.90 0.00
AFT vs. PH

o Different interpretation of
parameters

e AFT applies to comparison of
survival times

e PH applies to comparison of
hazards
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The estimated hazards for TRT = 1 and TRT =
0 are shown on the left. The estimated hazard
ratio of 0.22 is obtained by exponentiating the
estimated coefficient (—1.527) of the TRT vari-
able. A 95% confidence interval can be calculated
exp[—1.527 £ 1.96(0.398)] yielding a CI of (0.10,
0.47). These results suggest that the experimental
treatment delays remission.

Up to this point in the book, the key assump-
tion for survival models has been the proportional
hazard assumption. However, parametric survival
models need not be PH models. Many paramet-
ric models are acceleration failure time mod-
els rather than PH models. The exponential and
Weibull distributions can accommodate both the
PH and AFT assumptions.

On the left is Stata output from the AFT form of
the exponential model with TRT as the only pre-
dictor. Stata can output both the PH or AFT form
of an exponential or Weibull model (see Computer
Appendix). SAS (version 8.2) only runs the AFT
form of parametric models and SPSS (version
11.5) does not yet provide commands to run para-
metric models.

The interpretation of parameters differs for AFT
and PH models. The AFT assumption is applicable
for a comparison of survival times whereas the
PH assumption is applicable for a comparison of
hazards. In the following sections we discuss the
AFT assumption and then revisit this example and
discuss the AFT form of this model.
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Parametric Survival Models

IV. Accelerated Failure Time
Assumption

AFT—Multiplicative effect with
survival time
PH—Multiplicative effect with
hazard

f‘ '

Sp(t) =

Su(7t)

/ \

Survival Function
For Humans

Survival Function
For Dogs

AFT models:
Describe “stretching out” or
contraction of survival time

Second lllustration

S; (t)—Survival function for smokers
S, (t)—Survival function for
nonsmokers

AFT assumption:
S,(t) = Si(yt) fort >0
7 is the acceleration factor

Ify = exp(P)
S1(t) = Si([exp(x)]t)
or

Sa([exp(—a)]t) = Sy(t)

The underlying assumption for AFT models is that
the effect of covariates is multiplicative (propor-
tional) with respect to survival time, whereas
for PH models the underlying assumption is that
the effect of covariates is multiplicative with re-
spect to the hazard.

To illustrate the idea underlying the AFT assump-
tion, consider the lifespan of dogs. It is often said
that dogs grow older seven times faster than hu-
mans. So a 10-year-old dog is in some way equiv-
alent to a 70-year-old human. In AFT terminology
we might say the probability of a dog surviving
past 10 years equals the probability of a human
surviving past 70 years. Similarly, we might say the
probability of a dog surviving past 6 years equals
the probability of a human surviving past 42 years
because 42 equals 6 times 7. More generally we can
say Sp(t) = Su(7t), where Sp(t) and Sg(t) are the
survival functions for dogs and humans, respec-
tively. In this framework dogs can be viewed, on
average, as accelerating through life 7 times faster
than humans. Or from the other perspective, the
lifespan of humans, on average, is stretched out 7
times longer than the lifespan of dogs. AFT mod-
els describe this “stretching out” or contrac-
tion of survival time as a function of predictor
variables.

For a second illustration of the accelerated fail-
ure time assumption consider a comparison of
survival functions among smokers S;(t) and non-
smokers S,(t). The AFT assumption can be ex-
pressed as S,(t) = S;(yt) for t > 0, where y is a
constant called the acceleration factor compar-
ing smokers to nonsmokers. In a regression frame-
work the acceleration factor v could be parame-
terized as exp(o) where « is a parameter to be
estimated from the data. With this param-
eterization, the AFT assumption can be ex-
pressed as S;(t) = Si(exp(x)t) or equivalently:
Sy (exp(—a)t) = Sy(t) for t > 0.
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Suppose exp(x) = 0.75
then
S,(80) = S;(60)

S,(40) = S;1(30)

More generally
S,(t) = S1(0.75t)

T;—Survival time for smokers
T,—Survival time for nonsmokers

AFT assumption in terms of random
variables:

T =vT>

Acceleration factor
Measure of association
on survival time

Hazard ratio
Measure of association on the
hazard

Acceleration factor (y)
e Describes stretching or
contraction of S(t)

e Ratio of times to any fixed
value of S(t)

Suppose vy = 2.0

(Group 2 vs. Group 1)

e Time to S(t) = 0.50 (median) is
double for Group 2

e Time to S(t) = 0.20 is double for
Group 2

e Time to S(t) = 0.83 is double for
Group 2

e Time to S(t) = 0.98 is double for
Group 2

e Time to S(t) = q is double for
Group 2 (generalization)

Suppose exp(a) = 0.75; then the probability of a
nonsmoker surviving 80 years equals the proba-
bility of a smoker surviving 80(0.75) or 60 years.
Similarly, the probability of a nonsmoker surviv-
ing 40 years equals the probability of a smoker
surviving 30 years. More generally, the probability
of a nonsmoker surviving t years equals the proba-
bility of a smoker surviving 0.75 times t years (i.e.,
S,(t) = S1(0.75t)).

The AFT assumption can also be expressed in
terms of random variables for survival time rather
than the survival function. If T, is a random vari-
able (following some distribution) representing
the survival time for nonsmokers and T is a ran-
dom variable representing the survival time for
smokers, then the AFT assumption can be ex-
pressed as T; =y T,.

The acceleration factor is the key measure of as-
sociation obtained in an AFT model. It allows the
investigator to evaluate the effect of predictor vari-
ables on survival time just as the hazard ratio al-
lows the evaluation of predictor variables on the
hazard.

The acceleration factor describes the “stretching
out” or contraction of survival functions when
comparing one group to another. More precisely,
the acceleration factor is a ratio of survival
times corresponding to any fixed value of S(t).
For example, if the acceleration factor comparing
subjects in Group 2 vs. Group 1 is y = 2.0, then
the median survival time (value of t when S(t) =
0.5) for Group 2 is double the median survival time
for Group 1. Moreover, the time it takes for S(t) to
equal 0.2 or 0.83 or 0.98 is double for Group 2
compared to Group 1 for the same value of S(t).
In general, the acceleration factor is a ratio of sur-
vival times corresponding to any quantile of sur-
vival time (S(t) = q).
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=2

distance to G=1

0.50 === distance to G =2

Survival curves for Group 1 (G = 1)
and Group 2 (G = 2)

Horizontal lines are twice as long to
G = 2 compared to G = 1 because

Y =2

This idea is graphically illustrated by examining
the survival curves for Group 1 (G = 1) and Group
2 (G = 2) shown on the left. For any fixed value of
S(t), the distance of the horizontal line from the
S(t) axis to the survival curve for G = 2 is double
the distance to the survival curve for G = 1. No-
tice the median survival time (as well as the 25th
and 75th percentiles) is double for G = 2. For AFT
models, this ratio of survival times is assumed con-
stant for all fixed values of S(t).

V. Exponential Example
Revisited

Remission data (n = 42)

21 patients given treatment (TRT = 1)
21 patients given placebo (TRT = 0)

Previously discussed PH form of
model
Now discuss AFT form of model

Exponential survival and hazard

functions:

S(t) = exp(—At)
h(t) =A

Recall for PH model:
h(t) = A = exp(By + B, TRT)

We return to the exponential example applied to
the remission data with treatment status (TRT) as
the only predictor. In Section III, results from the
PH form of the exponential model were discussed.
In this section we discuss the AFT form of the
model.

The exponential survival and hazard functions are
shown on the left. Recall that the exponential haz-
ard is constant and can be reparameterized as a
PH model, h(t) = A = exp(p3y + 3;TRT). In this
section we show how S(t) can be reparameterized
as an AFT model.
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AFT assumption
(comparing 2 levels)

e Ratio of times is constant to all
fixed S(t)

Strategy for developing the model:

e Solve for t in terms of S(t)
e Scale tin terms of the predictors

S(t) = exp(—Ar)
t = [—In(S(t)] x %

let% = exp(xg + o, TRT)
t = [—In(S(t)] x exp(cxg + o1 TRT)

/

Median survival time, S(t) = 0.5:

Scaling of t

tm = [—In(0.5)] x exp(og + & TRT)

LetS(t) =q
t = [—In(q)] x exp(ag + &; TRT)
Acceleration Factor:
v (TRT = 1 vs. TRT = 0)
_ [—In(g)]exp(e + 1)
[—In(g)] exp(c)
= exp(o)

The underlying AFT assumption, for comparing
two levels of covariates, is that the ratio of times
to any fixed value of S(t) = q is constant for any
probability q. We develop the model with the sur-
vival function and solve for t in terms of S(t). We
then scale t in terms of the predictors.

The exponential survival function is S(t) =
exp(—At). By solving for t, we can obtain a for-
mula for t in terms of S(t). Taking the natural
log, multiplying by negative 1, and then multi-
plying by the reciprocal of A, yields the expres-
sion for t shown on the left. By reparameteriz-
ing 1/A = exp(xg + & TRT), or equivalently A =
exp[—(o + o TRT)], it can be seen how the pre-
dictor variable TRT is used to scale the time to
any fixed value of S(t) (see left). For example, to
find an expression for the median survival time ty,,
substitute S(t) = 0.5 (see left).

The expression for t is restated on the left in terms
of any fixed probability S(t) = q. The acceleration
factory is found by taking the ratio of the times to
S(t) = q for TRT = 1 and TRT = 0. After canceling,
7 reduces to exp().
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Remission Data

Exponential regression accelerated
failure-time form

it Coef. Std.Err.  z p>|z]
trt 1.527 .398 3.83 0.00
_cons 2.159 218 9.90 0.00

Y = exp(1.527) = 4.60
95% CI: exp[1.527 £ 1.96(0.398)]
= (2.11, 10.05)

t = [—In(q)] x exp(o + & TRT)
f =[—In(g)]
x exp(2.159 + 1.527(TRT))
Estimated Survival Times by S(t)

Quartiles for TRT = 1 and
TRT = 0 (Exponential Model)

S(t)=q frrT=0 frrT=1
0.25 12.0 55.3
0.50 6.0 27.6
0.75 2.5 11.5

¥ =4.60 (for TRT = 1 vs. TRT = 0)
Ratio of survival times:

553 276 115

120 60 — 25 — 60

Effect of treatment:

e Stretches survival by a factor of
4.6

e Interpretation of y has intuitive
appeal

Parametric Survival Models

On the left is Stata output from the AFT form
of the exponential model with TRT as the only
predictor. The estimate of the coefficient for TRT
is 1.527 with a standard error of 0.398. An esti-
mate of the acceleration factor for treatment is
¥ = exp(1.527) = 4.60. A 95% confidence inter-
val for 7y is calculated as exp[1.527 & 1.96(0.398)]
yielding a CI of (2.11, 10.05).

The parameter estimates can be used to estimate
the time f to any value of S(t) = g. The table
on the left lists the estimated time (in weeks) for
the first, second (median), and third quartiles of
S(t) using the expression for { shown above for
both the treated and placebo groups. In this ex-
ample survival time is the time to remission for
leukemia patients.

The ratio of survival times for each row in the ta-
ble comparing TRT = 1 vs. TRT = 0 is 4.60, which
not coincidently is the estimate of the acceleration
factor (see left). The estimated acceleration factor
suggests that the experimental treatment is effec-
tive for delaying remission by stretching survival
time by a factor of 4.60. Although the hazard ra-
tio is a more familiar measure of association for
health scientists, the acceleration factor has an in-
tuitive appeal, particularly for describing the effi-
cacy of a treatment on survival.
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HR and y are reciprocals in expo-
nential models:

ﬁ(TRT = 1vs. 0)=exp(—1.527)
=0.22

Y(TRT = 1 vs. 0) = exp(1.527)
=4.60

In general
Y > 1 = exposure benefits

survival
HR > 1 = exposure harmful to
survival

Y < 1 = exposure harmful to
survival

HR < 1 = exposure benefits
survival

v = HR = 1 = no effect from
exposure

Exponential PH and AFT models:

e Same model
o Different parameterization
e Same estimates for

o Survival function

o Hazard function

o Median survival

Recall from Section III that the hazard ratio
for the effect of treatment was estimated at
exp(—1.527) = 0.22 using the PH form of the ex-
ponential model. This result illustrates a key prop-
erty of the exponential model: the corresponding
acceleration factor and hazards ratio (e.g., TRT =
1 vs. TRT = 0) are reciprocals of each other. This
property is unique to the exponential model. What
can be generalized, however, is that an accelera-
tion factor greater than one for the effect of an
exposure implies that the exposure is benefi-
cial to survival whereas a hazard ratio greater
than one implies the exposure is harmful to
survival (and vice versa).

Although the exponential PH and AFT models fo-
cus on different underlying assumptions, they are
in fact the same model. The only difference is
in their parameterization. The resulting estimates
for the survival function, hazard function, and me-
dian survival do not differ between these models
(see Practice Exercises 6 and 7).
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For those experienced with Poisson
regression:

Exponential and Poisson models

e Assume a constant rate

e Different data structure
o Poisson—aggregate counts
o Exponential—individual
level
e Use different outcomes
o Poisson—number of cases
o Exponential—time to
event
o Yield equivalent parameter
estimates
o With same data and same
covariates in the model

Exponential model is special case
of Weibull model

Parametric Survival Models

For those who have experience with Poisson re-
gression, there is a close connection between the
exponential and Poisson models. Both distribu-
tions assume an underlying constant rate. In fact,
if the data are structured such that all the cases
and the total time at risk are aggregated for each
pattern of covariates (e.g., TRT = 1 and TRT = 0)
and the log of the corresponding person-time at
risk is used as an offset, then a Poisson model will
yield equivalent parameter estimates as the expo-
nential PH model. The difference is that the ran-
dom outcome for the Poisson model is the count
of events over a fixed amount of time at risk and
the random outcome for the exponential model is
the time (at risk) to event.

We continue with the remission data example and
present the more general Weibull model, which
includes the exponential model as a special case.
In the next section we also show a graphical ap-
proach for evaluating the appropriateness of the
Weibull (and thus also the exponential) model.

VI. Weibull Example

Weibull Model:
Hazard function: h(t) = Apt?~!
(where p > 0 and A > 0)

p is a shape parameter

e p > 1 hazard increases over
time

e p = 1 constant hazard
(exponential model)

e p < 1 hazard decreases over
time

Additional shape parameter offers
greater flexibility

The Weibull model is the most widely used
parametric survival model. Its hazard function is
h(t) = Apt?~!, where p and A > 0. As with the ex-
ponential model, A will be reparameterized with
regression coefficients. The additional parameter
p is called a shape parameter and determines the
shape of the hazard function. If p > 1 then the
hazard increases as time increases. If p = 1 then
the hazard is constant and the Weibull model re-
duces to the exponential model (h(t) =A).If p < 1
then the hazard decreases over time. The addition
of this shape parameter gives the Weibull model
greater flexibility than the exponential model yet
the hazard function remains relatively simple (ba-
sically a scaling of t raised to some fixed power).



Unique property for Weibull model

AFT = PH and PH = AFT
Holds if p is fixed

HR vs. AFT

Hazard ratio = Comparison of rates

Acceleration factor = Effect on
survival

Useful Weibull property:

e In[—In S(t)] is linear with In(t)

e Enables graphical evaluation
using KM survival estimates

Linearity of In(t)

S(t) = exp(—At?)
= In[—In S(t)] = In(A) + p In(t)

01

Intercept = In(M),

Remission data: evaluate Weibull as-
sumption for TRT =1 and TRT =0

In[—In 8(¢)] plotted against In(t)

Slope = p

2 4
|mTRT =0+t+ TRT = 1|
14 , !
f (]
04 ' '
1
' t
_1- ' ' Ral g
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' t ot
2 t
-3
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Log of time
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The Weibull model has the property that if the
AFT assumption holds then the PH assump-
tion also holds (and vice versa). This property
is unique to the Weibull model (Cox and Oakes,
1984) and holds if p does not vary over different
levels of covariates. The PH assumption allows for
the estimation of a hazard ratio enabling a com-
parison of rates among different populations. The
AFT assumption allows for the estimation of an
acceleration factor, which can describe the direct
effect of an exposure on survival time.

The Weibull model also has another key property:
the log(—log) of S(t) is linear with the log of
time. This allows a graphical evaluation of the ap-
propriateness of a Weibull model by plotting the
log negative log of the Kaplan-Meier survival
estimates against the log of time.

To see this linear relationship: start with the
Weibull survival function S(t) = exp(—At?), take
the log of S(t), multiply by negative one, and take
the log again (see left). For the Weibull distribu-
tion, the In[—In(S(t))] is a linear function of In(t)
with slope p and intercept pIn(A). If the slope
equals one then t follows an exponential distribu-
tion.

We again return to the remission data and evalu-
ate the appropriateness of the Weibull assumption
for the treated (TRT = 1) and placebo (TRT = 0)
groups. On the left is the plot of the log nega-
tive log Kaplan-Meier survival estimates against
the log of time for TRT = 1 and TRT = 0. Both
plots look reasonably straight suggesting that the
Weibull assumption is reasonable. Furthermore,
the lines appear to have the same slope (i.e., are
parallel, same p) suggesting that the PH (and
thus the AFT) assumptions hold. If this common
slope equals one (i.e., p = 1), then survival time
follows an exponential distribution. The Weibull
model output containing the parameter estimates
includes a statistical test for the hypothesis p = 1
or equivalently for In(p) = 0 (for testing the expo-
nential assumption). This