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Preface

The basic concept of transportation—the movement of goods and people 
over time and space—has changed little since the Romans developed their 
transportation system over two thousand years ago. Today we have far 
more extensive transportation infrastructure systems that include roads, 
waterways, railways, and air transport options, and much more sophisti-
cated technology than in the past, but the overall objective of transporta-
tion engineers remains the same—to plan, design, construct, and maintain 
the various transportation modal systems in the safest and most efficient 
manner possible. To achieve this goal, transportation professionals have to 
be able to answer fairly sophisticated questions, such as:

Which pavement is most economical for a given situation?

What roadway geometry is safer?

What traffic control device works best?

Where should we invest our limited resources to produce the most 
favorable outcome?

To answer these types of questions, the engineers and planners iden-
tify a clear hypothesis, collect relevant data (either through experiment 
or observation), and develop reasonable conclusions from the data, all of 
which will require the transportation professional to have a solid ground-
ing in statistics. This text is designed to provide the necessary background 
knowledge to make informed transportation-related decisions.

With transportation accounting for between 10% and 20% of the U.S. 
economy, the types of questions listed above are asked thousands of times 
per day across the country. Unfortunately, textbooks that relate specifi-
cally to transportation statistics, to which a transportation professional 
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can turn for help, are very few. Though there are many general engineering 
statistics books that can provide the necessary background material, these 
books do not address statistics from the unique perspective of transporta-
tion. This textbook helps to fill that gap by discussing statistical concepts 
in the context of transportation planning and operations.

Our anticipated audience is comprised of transportation profession-
als, both planners and engineers, who are looking for more sophisticated 
information than is found in a general undergraduate statistics course, 
frequently required by a professional program. This textbook would be 
ideal for an introductory graduate class in transportation statistics that 
could be taken by first-year students specializing in pavements engineer-
ing, transportation systems engineering, or urban planning. In addition, 
the book would be useful for working professionals who would like to 
learn more about some of the concepts to which they are exposed during 
their transportation careers.

While much of what planners and engineers do has been codified 
(e.g., take twenty random pavement samples and test to failure, etc.), 
this book will help explain the why behind the standard methods. Lastly, 
we assume the reader has a basic knowledge of introductory probability 
and statistics as well as a strong working knowledge of basic transporta-
tion concepts.

We, the authors, have over fifty combined years of using statistical 
techniques for transportation research and teaching. Two factors ini-
tiated our collaborative development of this textbook: (1) a graduate 
statistical course established by the authors at Texas A&M University 
approximately ten years ago, and (2) over ten years of collaboration on 
various transportation research projects that involved many of the sta-
tistical techniques discussed in this book. Based on these experiences, 
we made two fundamental, yet dichotomous, observations that moti-
vated us to write this text. The first is that many transportation profes-
sionals suffer from statistical anxiety—not because the concepts are so 
difficult, but because they have not been presented in a way that could be 
easily understood by practicing engineers and planners. We felt the best 
way to reduce this fear was to use specific transportation examples and 
problems, all based on real situations using real data, to illustrate the key 
concepts in the text. The second is that there is also, ironically, a dan-
ger of overconfidence. That is, many transportation professions assume 
that their tried and true statistical methods, which they have become 
accustomed to using in their professional lives, would continue to be 
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appropriate, even though the underlying assumptions of these statistical 
techniques are no longer valid. Equally important are the numerous new 
techniques that could be used in everyday practice but have not been 
well explained in the available literature. That is, the transportation pro-
fessionals did not know what they did not know. We hope this textbook 
fulfills this need.

We have made a concerted effort to define explicitly the underlying 
assumptions and to provide references and insight so the readers will 
know when they need to seek outside help from practicing statisticians. 
In addition, terms have been carefully defined from both a statistical and 
a transportation perspective. In our experience, the jargon adopted by the 
transportation and statistics profession often works at cross-purposes; we 
are hopeful that this text will help make the conversations between trans-
portation professionals and statisticians smoother and more productive 
for both parties.

Key Features of This Textbook
A key feature of this book is that it is focused on realistic transportation-
related problems. The sample problems, both within and at the end of 
the chapters, make use of data obtained as part of various transportation 
studies around the country. The goal was not to produce a textbook that 
was exhaustive in nature. Rather, the focus was on statistical techniques 
most heavily used by pavement and transportation professionals. In par-
ticular we discuss:

The difference among planned experiments and quasi-experiments •	
and field studies

Strategies for conducting computer-aided statistical designs, frac-•	
tional factorial designs, and screening designs

Bias-corrected confidence intervals (we stress that biases in both •	
designing experiments and estimation, unless negligible, should not 
be ignored)

Resampling techniques for evaluating uncertainties, including •	
the jackknife and bootstrap, when there is no closed-form esti-
mator for a standard error (this topic is rarely covered in statistics 
books, but has become increasingly important in transportation 
studies)
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The concept of Bayesian methods using a conjugate prior approach •	
to Bayesian estimation

The concept of smoothing estimators in both regression and density •	
estimation.

Statistical Software
It is our contention that the reader will best learn the concepts in this text-
book by doing—in this case using real data to solve real questions. Each 
chapter has a number of simple examples so that the readers can familiar-
ize themselves with the underlying theory and equations. However, the 
state of the practice in statistics is to use statistical programs when solving 
problems—and the transportation area with its considerable use of data 
is no exception. As such, we have made a conscious decision to adopt a 
specific computer software package: JMP by SAS. We chose this package 
because it is designed to link statistics with graphics so that the user can 
interactively explore, understand, and visualize data, which we have found 
useful when solving transportation statistical problems. In fact, one of our 
first chapters is dedicated to this field. It also has both Windows-based 
and Macintosh operating systems, which our students have found useful. 
Please note that the techniques in this book are, of course, applicable to 
many of the fine statistical packages available on the open market, such as 
SPSS, BMDP, and SYSTAT, among others. While we could have chosen to 
write the textbook in a general format without any reference to computer 
packages, we felt it would not be as useful to the reader. Lastly, we are con-
fident that an informed reader could take the lessons from this textbook 
and successfully apply them using any statistical package.

In addition, we provide the opportunity for student readers to buy their 
own copy of JMP at a significantly reduced price. This will allow students 
at universities that do not have a JMP site license the opportunity to design 
and analyze experiments of their choosing.

Organization of the Textbook
The textbook is comprised of 15 chapters. The first chapters are related to 
standard probability and statistical techniques that the user will need for 
the more advanced sections of the book. These are included in Chapters 2 
through 5 and cover the basics of graphical methods (which are empha-
sized throughout the book), numerical summary methods, random vari-
ables, probability mass functions, and probability distribution functions. 
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Chapters 6 to 9 introduce sampling distributions as well as techniques for 
comparing observed results with various hypotheses about what those 
results should or could be. These latter techniques are known as statistical 
inferences, and we cover single and multiple variables as well as continu-
ous and categorical data. Chapter 10 and 11 are related to model build-
ing with a particular emphasis on regression. The reader will be exposed 
to both simple and multiple linear regression for continuous data and 
generalized linear models for count data. Chapters 12 to 14 are related to 
experimental design, uncertainty estimation, and Bayesian estimation. In 
addition, new methods for identifying standard errors, when the assump-
tions for commonly used approaches are not applicable, are introduced. 
An introduction to Bayesian approaches is provided and is based on the 
use of conjugate priors. Lastly, Chapter 15 deals with the issue of traffic 
microsimulation models and how the techniques developed in the preced-
ing chapters can be used to test various hypotheses.

A draft version of this textbook was used to teach a transportation sta-
tistics course at Texas A&M University to transportation and materials 
graduate students. A number of topics have been added since the course 
was taught. We assume that a week of lectures is 150 minutes long. The list 
of time that it took to cover each covered topic is given in the table below.

Chapter Time in Weeks
2 .75
3 1
4 1
5 1
6 1
7 1.5
8 1.5
9 1.5
10 1.5
11 1
12 1.5
13 .5
14 1
15 1.5
Appendix .5





xxiii

Acknowledgments

This textbook was a collaboration in the true sense of the word—and 
would not have been accomplished without the contributions of many of 
our colleagues and institutions. First, we acknowledge the students who 
have taken our graduate courses over the years. Many of the problems and 
much of the text were “beta tested” on them, and we are truly appreciative 
of the feedback they provided. The text itself was edited numerous times, 
and we acknowledge the excellent work of our primary editor, Lindsay 
Mayo-Fincher, and the editorial assistance of Vanessa Steinroetter, Lisa 
Dworak, and Beverley Rilett.

One of the strengths of the text is in the use of transportation data that 
was collected from various research projects at Texas A&M University 
and the University of Nebraska. We express our sincere gratitude to Paul 
Carlson, Bill Eisele, David Ellis, Kay Fitzpatrick, Tom Freeman, Tim 
Lomax, Eyad Masad, Jennifer Ogle, David Schrank, Shawn Turner, Jerry 
Ulman, Justice Appiah, Bhaven Naik, and Cesar Quiroga for providing 
data used in this textbook.

We are very appreciative for the encouragement that we received from 
our colleagues and the administration at Texas A&M University, the 
Texas Transportation Institute, the University of Nebraska–Lincoln, and 
the Nebraska Transportation Center. We also gratefully acknowledge the 
financial support that allowed this work to be accomplished. In particular, 
the following organizations provided grant funding for portions of our 
textbook:

U.S. Department of Transportation, University Transportation •	
Centers Program to the Southwest Region University Transportation 



xxiv    ◾    Acknowledgments

Center (it is also funded, in part, with general revenues from the 
State of Texas), and

U.S. Department of Transportation, University Transportation •	
Centers Program to the Mid-America Transportation Center, which 
is headquartered at the University of Nebraska–Lincoln.

We thank Abby Spiegelman for a prototype sketch of the textbook •	
cover and Bethany Carlson for creating the final cover design.



xxv

About the Authors

Dr. Clifford Spiegelman is a distinguished professor of statistics at Texas 
A&M University, where he has been for twenty-three years. Dr. Spiegelman 
has also been a senior research scientist at Texas Transportation Institute 
(TTI) for about fifteen years. He held a position at the National Bureau 
of Standards (now NIST). Dr. Spiegelman has been a member of TRB 
statistics committees for many years, and is a founding member of the 
American Statistical Association transportation statistics interest group.

Dr. Eun Sug Park is a research scientist at TTI, where she has worked for 
the past nine years. Prior to joining TTI, she was a research associate at the 
University of Washington’s National Research Center for Statistics and the 
Environment. An author or coauthor of numerous papers and research 
reports, Dr. Park has been honored with the TRB Pedestrian Committee 
Outstanding Paper Award (2006 and 2009) and the 2009 Patricia Waller 
Award. She holds a PhD in statistics from Texas A&M University, an MS 
in statistics, and a BS in computer science and statistics, both from Seoul 
National University.

Dr. Laurence R. Rilett is a distinguished professor of civil engineering 
at the University of Nebraska–Lincoln. He also serves as the director 
of both the U.S. Department of Transportation’s Region VII University 
Transportation Center (the Mid-America Transportation Center) and the 
Nebraska Transportation Center. Dr. Rilett received his BASc degree and 
his MASc degree from the University of Waterloo, and his PhD degree 
from Queen’s University. He has held academic positions at the University 
of Alberta and Texas A&M University. Dr. Rilett is an associate editor of 
the ASCE Journal of Transportation Engineering and is on the editorial 
board of the Journal of Intelligent Transportation Systems: Technology, 
Planning, and Operations.





xxvii

How to Contact the 
Authors and Access 
the Data Sets

The writing of this textbook was a much greater challenge than the authors 
had originally thought—after all, we had been working collaboratively 
for over ten years and had cotaught a number of statistical courses for 
transportation engineers. After writing the text and working through our 
material as carefully as possible, we acknowledge that there are sure to be 
some unanticipated glitches that we missed, that transportation examples 
exist that we might have used, that other topics should have been included, 
and that we could have identified more challenging example problems. 
We welcome readers’ comments, suggestions, and real transportation data 
that may be used as example problems in further editions of this text. We 
can be reached at http://www.stat.tamu.edu/transstat. Most of the data 
used in this book are available in both JMP and tab-separated format and 
can be found on this web site as well.





1

1C h a p t e r  

Overview
The Role of Statistics in 
Transportation Engineering

Most transportation professionals will take an introductory 
course in probability and statistics as undergraduates and, if they 

pursue further studies, a more in-depth statistics course as graduate stu-
dents. Rarely do these courses have a specific transportation focus. This 
is problematic because the problems that they will encounter in their 
working careers tend to be different from those taught in the generic 
introductory courses. The relationships that need to be modeled are com-
plex, and the variables are often categorical in nature. In addition, a large 
proportion of transportation studies are observational in nature and are 
not amenable  to experimental design. Accordingly, the commonly used 
statistics in transportation reflect the unique characteristics of its subjects 
and are often not covered in detail in general statistics classes. Because 
statistics have become so prevalent in the practice of transportation engi-
neering, a statistics textbook written with a transportation perspective and 
employing transportation-related problems is essential to the profession.

It is the authors’ contention that because the transportation problems that 
engineers address are becoming more complex, the statistical knowledge 
base of transportation engineers needs to be developed in such a way that 
they will (1) have a deeper appreciation of the techniques they use in their 
day-to-day working environment, (2) know when to bring in statisticians 
to help them with complex problems, and (3) be able to communicate in a 
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meaningful way to the statisticians with whom they will be working. While 
it is clearly impossible to discuss every statistical technique in a single text-
book, this book does focus on those most likely to be encountered by trans-
portation professionals. In order to expand on this point further, it is helpful 
to understand the working environment of the transportation professional.

1.1  What Is Engineering?
The word engineer originates from the Latin term ingenerare, meaning “to 
invent, to create, or to regulate.” The Accreditation Board for Engineering 
and Technology (ABET) defines engineering as

the profession in which a knowledge of the mathematical and nat-
ural sciences gained by study, experience, and practice is applied 
with judgment to develop ways to utilize, economically, the materi-
als and forces of nature for the benefit of mankind. (ABET, 1986)

The layperson is often confused by the roles of scientists and engineers. 
This is probably because both the engineer and the scientist are thoroughly 
educated in the mathematical and natural sciences. The main difference is 
that scientists primarily use this knowledge to acquire new knowledge, while 
engineers apply the knowledge to the design and development of usable 
devices, structures, and processes. This difference has been summarized—
and no doubt taught to numerous introductory engineering classes—as 
“the scientist seeks to know; the engineer aims to do” (Eide et al., 1979).

Engineering in its simplest form is problem solving. To this aim 
engineers develop devices, processes, structures, and systems based on 
the application of a detailed knowledge of science (e.g., physics, chem-
istry, material behavior) and of mathematics (e.g., integral calculus, 
differential equations, statistics) in an affordable and efficient manner. 
Similar to economists, engineers need to understand the relationship 
between demand and supply, though these terms have different mean-
ings from the same terms as used by an economist. As an example, to 
a transportation engineer the demand may be the number and types of 
vehicles wanting to use a roadway, while the supply is the components 
that comprise the  transportation system (e.g., road width, number of 
lanes, design standard, etc.). The transportation engineer seeks to find 
the best arrangement of road components (e.g., the supply) that meets 
the various users’ needs (e.g., the demand) and does so in an economical 
manner. Note that the demand and supply are not deterministic; thereby, 
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engineers must utilize the concepts of probability and statistics in their 
everyday working environment (Ang and Tang, 2006; Benjamin and 
Cornell, 1970).

In many ways the problems faced within the profession are similar to 
those faced by engineers throughout recorded history. For example, the 
question of how to move freight from one point to another across vast 
distances and over diverse geographic regions has been a problem that 
has attracted engineering attention for thousands of years. Approximately 
175 years ago a popular method to solve this problem was the use of canals. 
Arguably, the most famous canal in the United States was the Erie Canal, 
which links the Hudson River (and hence New York City) with Buffalo 
(and thereby the western United States via the Mississippi waterway via 
Chicago via the Great Lakes), while simultaneously bypassing Niagara 
Falls, which was a major barrier to movement by ship. Figure 1.1 shows a 
picture of a barge on an Erie Canal aqueduct in Rochester, New York. It 
can be seen that if the engineers wished to move freight into and out of the 
city, they had to first cross the Genese River. Their solution was to build an 
aqueduct across the river—in effect a grade separation between the canal 
and the river. The aqueduct was originally built in 1825 and rebuilt in 
1842; indeed, the aqueduct still stands today, although it is now used as a 

Figure 1.1  Erie Canal aqueduct over the Genesse River in Rochester, New York. 
(From the collection of the Rochester Public Library Local History Division. 
With permission.)
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roadway. At the time, the construction of the Broad Street Aqueduct was a 
phenomenal feat of engineering, as is evidenced by Marquis de Lafayette’s 
proclamation during his tour of the United States in 1825:

The grand objects of nature, which threatened to impede, have been 
made only to adorn, as we see in the striking spectacle which is 
at this moment presented to our enchanted eye. I enjoy the sight 
of works and improvements equally rapid and wonderful—among 
which is this grand canal, an admirable work, which genius, science, 
and patriotism have united to construct.

Freight can be moved a variety of ways today—in containers on 
trucks, ships, airplanes, and railway cars. It still, of course, is moved via 
canals. Figure  1.2 shows a portion of a 918-meter aqueduct, known as 
the Wasserstrassenkreuz Magdeburg, over the Elbe River at Magdeburg, 
Germany. The aqueduct was opened in 2003 and connects the Midland 
Canal and the Elbe-Havel Canal.

A comparison of Figures 1.1 and 1.2 shows that while the technology 
used by engineers can change, the issues faced by engineers, such as how 
to move freight, how to move people, and how to design the infrastructure, 
do not. What has changed is that we have a greater understanding of the 
uncertain and stochastic nature of the various variables that affect supply 

Figure 1.2  Aqueduct over the Elbe River at Magdeburg, Germany. (From AP/
Wide World Photos. With permission.)
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and demand. As a result, all facets of transportation and engineering 
make extensive uses of statistics—and without a doubt, the engineers of 
the Magdeburg Aqueduct did so as well. Understanding the best technolo-
gies to use, how to use them, and when to use them is not always obvi-
ous. This requires research, study, and to a great degree statistical analysis, 
which is the underlying motivation of this textbook.

1.2  What Is Transportation Engineering?
Civil engineering is one of the major branches of engineering and, as its 
name implies, is related to engineering for civilian applications. Civil 
engineering improves quality of life through the provision of infrastruc-
ture such as:

Buildings, bridges, and other structures•	

Highways•	

Dams and levees•	

Water treatment and waste disposal plants•	

Transportation engineering is a branch of civil engineering that is 
involved in the planning, design, operation, and maintenance of safe and 
efficient transportation systems. These systems include roadways, rail-
ways, waterways, and intermodal operations. Typically, the demand is the 
amount of traffic (people, cars, railcars, barges) that is expected to use a 
particular transportation facility, while the supply is the quantity and type 
of infrastructure components (roadways, bridges, pavements, etc.). These 
systems are typically large and expensive.

There are a number of attributes of transportation engineering that affect 
the types of statistical theory that are used in the profession. One important 
aspect of transportation engineering is that the transportation engineer is 
not only interested in the infrastructure (e.g., bridges, rails, etc.) and the 
individual units (cars, trucks, railcars) that use the infrastructure, but also 
the user. A conceptualization of this environment is shown in Figure 1.3. 
Often it is necessary to understand the interaction of all three of these 
entities—infrastructure, individual units, and user—to understand the sys-
tem as a whole. Typically the infrastructure and units are considered the 
supply side of the equation, while the users are identified with demand.

Experimental studies, or designed experiments, are the mainstay of many 
standard statistics books. They are used extensively in many engineering 
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disciplines, including pavement engineering, that are not necessarily appli-
cable to transportation systems engineering. For example, consider an 
engineer who is interested in the various factors that affect skid resistance 
and the relationship to crash rate. From an ethical standpoint, she cannot 
place various types of pavement surfacing on different sections of high-
way, observe what types of accidents occur, and then choose the best type 
of pavement based on the empirical accident results. Instead, most trans-
portation studies are observational in nature, and as a result, the statistics 
used by transportation engineers reflect this characteristic. In addition, it is 
sometimes very difficult to obtain certain data from the transportation sys-
tem, so statistical techniques that can handle missing data or use a priori 
knowledge are needed. Lastly, much of the data are correlated and interde-
pendent. For example, the travel time on a given link is often correlated to 
the travel time on the immediate downstream link. Sometimes this corre-
lation is negative: Consider, for example, a driver stopped at a traffic signal 
that is red. If the signal system is coordinated properly, the driver will have 
a lower probability of being stopped at the traffic signal on the next link. At 
other times, however, the correlation is positive: if one link is experiencing 
high travel times because of excessive demand, then other links also will 
experience high travel times because of the same demand. Regardless, as 
this example demonstrates, the assumption that different transportation 
phenomena are independent is not always valid.

In the United States transportation is estimated as representing 10% of 
the nation’s gross domestic product (USDOT, 2009), and a well-maintained 
and comprehensive system is considered by many to be a necessary con-
dition for a successful economy. However, the American Society of Civil 
Engineers (ASCE) in their annual report card gave a grade of D– to the U.S. 
roadway system. As the report notes, “One-third of America’s major roads 
are in poor or mediocre condition and 45 percent of major urban highways 

Infrastructure Units (Vehicles)

Traveler

Figure 1.3  Conceptualization of the transportation environment.
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are congested. Current spending of $70.3 billion per year for highway capital 
improvements is well below the estimated $186 billion needed annually to 
substantially improve conditions.” Given the environment of inadequate 
funding and critical maintenance needs, it is crucial that transportation 
engineers be able to understand the demands (e.g., goods and people move-
ment) on the system as well as the characteristics of the supply (pavement, 
roadway geometrics, etc.). It is the premise of this book that a knowledge 
of statistics is critical to understanding the trade-offs so that our limited 
resources can be used as effectively and as efficiently as possible.

1.3 Go al of the Textbook
The goal of this textbook is to introduce transportation students to 
important statistical techniques that are commonly used in transporta-
tion engineering. The objective is not to produce an engineer who can 
replace the need for a statistician. Clearly, an engineer who desires the 
depth and breadth of statistical knowledge required to do this would need 
to complete an advanced degree from a university statistics department. 
Instead, the goal of this textbook is to provide (1) a strong statistical back-
ground for transportation professionals that enables them to perform 
their various job functions better, and (2) the necessary knowledge so 
that transportation engineers can communicate effectively with statisti-
cians who can help address the complex issues faced by many engineers. 
It is the authors’ belief that the transportation problems have become so 
complex that only a truly interdisciplinary approach will be successful. 
As this approach requires interaction and a basic foundation of know
ledge, this book is designed to facilitate this essential dialogue between 
statisticians and engineers.

1.4  Overview of the Textbook
Comprised of fifteen chapters, this textbook can be divided into five 
main sections. The first section of the textbook explores the conventional, 
but essential, means of interpreting data, including graphical analysis 
(Chapter 2) and common summary measures (Chapter 3). The next section 
includes basic definitions of probability and random variables (Chapter 
4) and common probability distributions found in transportation engi-
neering (Chapter 5). The third section is related to basic statistics, includ-
ing sampling distributions (Chapter 6), statistical inference (Chapter 7), 
and ANOVA and distribution-free tests (Chapter 8). The fourth section 
includes categorical data analysis (Chapter 9), regression techniques, 
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including linear regression (Chapter 10), and regression models with 
discrete dependent variables (Chapter 11). The fifth section includes 
experimental design; factorial, fractional factorial, and screening designs; 
D-optimal and I-optimal designs; sample size calculations; and field 
and quasi-experiments (Chapter 12). Furthermore, the cross-validation, 
jackknife, and bootstrap methods for obtaining standard errors are also 
included in this section (Chapter 13). The textbook ends with two chapters 
that are not often treated in standard statistical books, but are becoming 
increasingly important to transportation professionals. The first covers 
Bayesian approaches to transportation data analysis (Chapter 14), and 
the  second addresses statistical methods for microsimulation models 
(Chapter 15).

1.5  Who Is the Audience for This Textbook?
This textbook is designed for an introductory graduate or upper-level 
undergraduate class in transportation statistics. It is anticipated that the 
students will have a working knowledge of probability and statistics from 
their undergraduate course or an introductory graduate-level course. Terms 
such as random variable, probability density function, t-test, and other sta-
tistical vocabulary should be familiar to students using this resource. The 
book examines current statistical techniques for analyzing transportation 
problems and uses actual transportation data and problems to illustrate 
the procedures. Yet, the audience for this textbook is certainly not lim-
ited to university students; we believe that the textbook also will be useful 
to the practicing transportation professional. The examples culled from 
the current state of the practice will help working professionals obtain 
a better grasp of the theory and issues behind the different techniques 
commonly used in the profession today. Thus, though the book is written 
from an engineering perspective, it will be useful to anyone working in 
the transportation field (e.g., urban planners, management majors, etc.).

1.6  Relax—Everything Is Fine
We have taught transportation statistics for a combined total of more than 
fifty years and have experienced many instances of engineering students’ 
anxiety about using statistical analysis. Students often have a palpable 
fear associated with taking a statistics course, which we attribute partly 
to unfamiliar terminology. Statisticians, similar to engineers, have devel-
oped their own language, and this can be daunting to someone who is not 
trained in the discipline. We have endeavored to write all our explanations 
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in a clear and simple style. Because not every topic can be treated in 
the detail necessary, we have endeavored to add appropriate references 
throughout the text. Another reason for student anxiety in relation to sta-
tistics is that many courses do not use scientific or engineering examples, 
much less transportation examples. Moving from fairly generic concepts 
to particular transportation problems can be daunting. For this reason, we 
have used real transportation problems throughout and have attempted 
to list the pitfalls of the different techniques. The authors also have made 
available a discounted version of JMP, a statistical software package devel-
oped by the SAS Corporation, with the textbook so that readers can try 
the presented examples on their own. While the textbook examples are 
mainly based on JMP, the techniques described in the textbook can be 
used by any standard statistical package.

In sum, this book is geared toward engineers who want to develop a 
working knowledge of statistics and desire material that is conveyed in a 
simple and straightforward manner. While we know that it is not possible 
to cover all statistical areas in depth, we have tried to demonstrate the 
intuitive nature of statistics and hope that this will make it more compre-
hensible for the reader. With this aim in mind, the goal of this textbook 
is to function as a supplement to statistics that has transportation as its 
nexus. We hope that a student, worker, or professional in the transpor-
tation field who uses this textbook will be able to engage in an effective 
dialogue with statisticians. For readers who are apprehensive about statis-
tics, all we can do is give the advice we give our own students routinely: 
“Relax—everything will be fine.”
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2C h a p t e r  

Graphical Methods 
for Displaying Data

2.1  Introduction
As stated in Chapter 1, the objective of this textbook is to help transporta-
tion engineers—who are in practice, education, or research—learn basic 
statistical techniques. The first step in any engineering study should be a 
graphical analysis, and in this text we use the term graphical liberally. For 
example, consider the map of current speeds from the city of Houston’s 
traffic management center, TRANSTAR, shown in Figure 2.1.

On this map, the darker the freeway link is shaded, the more severe the 
congestion is on that link. The darkest shaded links indicate a speed of less 
than 20 miles per hour. As this image illustrates, there is severe congestion 
on the ring road and on the roads entering the city. Conversely, the roads 
on the outskirts of the city are relatively clear, and from this information, 
we can deduce that this is probably a rush hour.

This raw data were obtained from multiple Texas Department of 
Transportation (TxDOT) Automatic Vehicle Identification (AVI) sensors 
located on the traffic network. Data were then compiled by the Houston 
Traffic Management Center, quantified, and displayed graphically for the 
public to use. Maps of this type are clearly much more informative to the 
traveling public than listing the links, locations of the links, and current 
speeds in a table, as shown in Table 2.1.

However, for an engineer who wants the information for other uses, 
this latter table may be more appropriate. This chapter will introduce the 
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most common types of graphical techniques used in transportation engi-
neering. It is always wise not only to graph the data once, but also to do 
so in a number of different ways in order to attain a greater knowledge of 
the data.

Good plots are crucial to gaining information from any data set. This 
is particularly true when either the sample size or the number of variables 
in a data set is large. The common idiom “a picture is worth a thousand 

Speeds <20 30–39 50+
(MPH) 20–29 40–49 No data

Figure 2.1  Houston speed map. (From Texas Department of Transportation. 
With permission.)

Table 2.1  Travel Time and Speed Table from Houston, Texas

From To
Distance 
(miles)

Travel 
Time (m:s)

Speed 
(mph)

Ella IH-10 Katy 2.10 7:30 16
IH-10 Katy Westheimer 3 7:40 23
Westheimer US-59 Southwest 2.10 3:07 59
US-59 Southwest Evergreen 1.40 1:24 60
Evergreen South Post Oak 1 0:54 66
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words” is applicable; namely, a few good plots can lead to more informa-
tion than the application of many tests and formulas. Well-chosen plots 
can help us understand the relationships that underlie the data.

In this chapter we present plotting procedures that have long been used 
by statisticians and transportation professionals. Histograms and scatter 
plots are examples of such plotting procedures. Other plots that we present 
are used by the statistical community, but are not widely used in transpor-
tation, e.g., parallel coordinate plots and control charts. Finally, we urge 
creativity in plotting, as the goal of plotting should be to communicate a 
deeper understanding of data and not to limit ourselves to a fixed set of 
tools. Examples of this approach include transforming the variables in our 
data set to a more meaningful scale before we plot. Readers who want a 
comprehensive reference for exploring data graphically should see Tukey 
(1977). Additional reading on this topic includes Leinhardt and Leinhardt 
(1980) and Theus and Urbanek (2008). It is a good idea to use computer 
software to generate the graphs. The graphs in this chapter were generated 
using the JMP statistical software package (SAS Institute, 2009). Step-by-
step algorithms are given so that the user better understands how these 
plots are constructed.

2.2 Histo gram
The histogram shows the relationship between the levels of a variable 
and the relative frequency of its values. An example of a frequency histo-
gram is shown in Figure 2.2 for Houston Automatic Vehicle Identification 
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Figure 2.2  Histogram of highway speeds in Houston (mph).
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(AVI) speed data. We notice rather quickly that a typical speed is around 
60 miles per hour. Notwithstanding, speeds are considerably dispersed 
because there are a number of very slow speeds, too. Slow speeds may indi-
cate incidents or accidents, and thus we gain more insight from the his-
togram than we would from a table. In addition, this type of information 
is often required by U.S. transportation authorities. For example, in order 
for states to receive federal funding, one of the requirements is to provide 
speed distribution data from selected locations and times throughout their 
network. If it was found that a given highway had excessive speeding, then 
funds may be withheld until the problem is corrected—typically through 
tighter enforcement. For this reason, many state DOTs have permanent 
staff dedicated to collecting and archiving speed data (among other data) 
throughout their networks in order to meet federal reporting require-
ments. A first step in this process would be to plot a histogram to give a 
visual clue whether there is excessive speeding, and if so, to what extent. 
The graphical analysis for these data continues well beyond the histogram, 
but first we give the steps needed to construct a histogram.

Steps to construct a frequency (or relative frequency) histogram are as 
follows:

	 1.	Sort the data from minimum to maximum.

	 2.	Divide the sorted data into k equally spaced groups. It is best to 
choose k so that no data fall on the group boundaries. Note that JMP 
chooses k automatically. Readers can make their own choice using 
the grabber (hand) tool on the toolbar menu. (See the JMP manual 
for detailed instructions for modifying the number of groups.) The 
minimum value belongs to the first group and the maximum value 
belongs to the kth group. There should be no spaces between adja-
cent group boundaries.

	 3.	Count the number of points in each group. For a relative frequency 
histogram calculate the percentage of points in each group.

	 4.	Plot the histogram by plotting a bar corresponding to each of k 
groups. The height of the bar is proportional to the frequency (or 
relative frequency) of each group.

A more sophisticated and improved histogram is constructed by plot-
ting a fitted probability density function (pdf) that shows the relationship 
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between the histogram and an assumed model. For example, one might 
believe that the speeds come from a Gaussian distribution (which is also 
referred to as normal or bell curve distribution) with a mean µ and a stan-
dard deviation σ (see Chapter 5 for more details related to this curve). In 
this case, one would calculate the sample mean, x–, and sample variance, 
s2, from the data and substitute these for the population mean, µ, and the 
population variance, σ2, respectively, in the formulas for the normal prob-
ability density function:

	

f x µ x µ( | , ) exp .σ
πσ σ

= − −



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
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
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Additionally, it is often helpful to overlay a model-free or smoothed his-
togram. By adding the smoothed nonparametric histogram, or density, it 
is possible to get an idea of the number of modes or bumps in the prob-
ability model underlying the data. The steps for constructing a smoothed 
density estimate are discussed in the appendix.

To illustrate the above concepts, Figure 2.3 shows the same speed data 
as in Figure 2.2 with an overlaid fitted normal curve and the smoothed 

Normal (53.7874,12.6114) 
Smooth curve 
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Figure 2.3  Normal curve and nonparametric density curve overlaying the 
histogram of the highway speed data.
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nonparametric density curve. The normal density curve is dotted and the 
smoothed density is solid. The nonparametric density estimate is much 
smoother than the histogram and may do a better job of showing the 
nature of the probability model underlying the data. We will discuss how 
we can test statistically whether a given set of data follow a particular pdf 
in Chapter 9.

2.3 Bo x and Whisker Plot
The next plot that we consider is the box and whisker plot. This plot gives 
a quick view of many essential features of a data set; in particular, the box 
and whisker plot is useful for identifying the median, interquartile range 
(the spread of the middle half of the data), and outliers. They are particu-
larly effective plots to use when comparing different populations.

For example, we may wish to explore the relationship among average 
speeds as derived from loops and the number of traffic signals along a 
roadway. Suppose that time mean speed data were collected from differ-
ent roadways of equal length, but with varying levels of traffic signals. In 
this scenario assume that the link volumes are approximately equal and 
the links are located in similar types of urban environments. In order to 
see whether there is any relationship between median speed and arterial 
spacing, a series of box and whisker plots were developed for each configu-
ration, as shown in Figure 2.4. The horizontal line within each box of the 
plot illustrates the median of the data for each scenario, and it can be seen 
that as the number of traffic signals increases, the median speed tends to 
decrease. The plots also suggest that this decrease in median speed occurs 
at an increasing rate. The upper end of the box is an estimated 75% point 
(75th percentile; see Chapter 3) and the lower end of the box is the esti-
mated 25% point (25th percentile) for each data set. The lines, or whiskers, 
extending from the ends of the boxes go to the farthest data point within 
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Figure 2.4  Box and whisker plots of average travel speeds (mph) vs. number 
of signals.
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1.5 interquartile ranges of the end of the box. The width of each box being 
one interquartile range (see Chapter 3) and any points graphed beyond 
the whiskers are known as outliers. Figure 2.4 shows that as the number 
of signals increases, the median speed decreases. We can also see that the 
speed decrease is not linear in the number of signals. As the number of 
signals increases, the variance in average travel speeds tends to decrease 
to the point that when there are six signals in a segment, there is not much 
variation in the average speed that drivers use.

The specific algorithm for constructing box and whisker plots is as follows:

	 1.	Calculate the 25th percentile, the median, and the 75th percentile 
from the data (see Chapter 3).

	 2.	Begin by creating the rectangle of the box and whisker plot. Construct 
a rectangle that has a lower edge as the 25th percentile and an upper 
edge as the 75th percentile. A line is drawn parallel to the lower and 
upper edges of the rectangle at the median. The box spans the middle 
half of the data.

	 3.	Next, compute the interquartile range. The interquartile range is the 
difference between the 75th percentile and the 25th percentile (see 
Chapter 3). It should be noted that a common, “back of the envelope” 
estimate for the population standard deviation is 3/4 times the inter-
quartile range. Thus, 1.5 interquartile ranges are approximately two 
standard deviations, and 3 interquartile ranges are approximately 
four standard deviations.

	 4.	Then draw the whiskers. From both ends of the box draw a line to 
the farthest observation that still lies within 1.5 interquartile ranges 
from the closest end of the box. Note that it is possible that there are 
no such observations, and in that case, the line(s) is not drawn.

	 5.	Finally, some programs denote outliers on the box and whisker plot. 
Any point greater than 1.5 interquartile ranges from an edge of the 
box is a mild outlier and is plotted with an open circle. Any point 
beyond three interquartile ranges from an edge of the box is a severe 
outlier, and some programs use special symbols to plot outliers in 
this range. For example, mild outliers can be represented by open 
circles and extreme outliers can be represented by closed circles.

	 6.	The observed points can be added to the graph.



18    ◾    Transportation Statistics and Microsimulation﻿

2.4  Quantile Plot
The third type of plot that we consider is a q-q or quantile plot. It is used 
to assess the assumption of an underlying probability distribution model 
for the data. Frequently the model that we wish to refer to will be the nor-
mal or Gaussian model, but the plotting method works for any continu-
ous probability model. Usually on the y-axis the theoretical percent points 
are plotted for a standardized form of the distribution, and on the x-axis 
we plot the observed data. The steps for producing a q-q plot are:

	 1.	Sort the data from smallest to largest observations. Denote the sorted 
observations as x(1) ≤ x(2) ≤ … ≤ x(n).

	 2.	We compute the i/(n + 1)th percentiles from our chosen distribution, 
and denote these as F–1(i/(n + 1)). (Refer to Chapter 4 if you are unfa-
miliar with this notation.)

	 3.	We construct the q-q plot by plotting the pairs x(i), F–1(i/(n + 1)).

	 4.	Some programs, like JMP, add additional features, such as 95% con-
fidence intervals and a probability axis.

Figure 2.5 is a q-q plot of average speeds obtained from an inductance 
loop detector located on Interstate 37 in San Antonio, Texas. The data were 
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Figure 2.5  Quantile plot (q-q plot) of average speeds obtained from inductance 
loop located on I-37 in San Antonio.
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obtained from Figure 2.4 and include all the data from that figure (e.g., the 
number of signals is not considered in this plot). If the normal model were 
close to a perfect description for the average speed data, the fitted straight 
line would run through the plotted points. The q-q plot shows a reason-
ably good agreement with a normal distribution. We can see that almost 
all the quantiles lie within the 95% confidence intervals. Keeping in mind 
that no model is exactly correct, it would be reasonable to assume that 
these data are adequately modeled by the normal distribution. We will 
discuss this issue in greater detail in Chapter 9.

Throughout the twentieth century these types of analyses were per-
formed by engineers using specialized graph paper, appropriately named 
probability paper. With the advent of sophisticated micro-computer-based 
statistical software, such as JMP, this manual approach is not as widely 
used.

2.5  Scatter Plot
The next type of plot that we consider is the scatter plot. It is used to show 
the relationship between two variables (X and Y) that are typically mod-
eled as having a continuous scale. Scatter plots are used to assess the degree 
of correlation and suggest predictive formulas between two variables. Say 
that we have the bivariate data set consisting of n pairs of measurements 
(numbers) on X and Y variables, that is, (Xi,Yi) (i = 1,…,n). The steps for 
constructing a scatter plot are given below:

	 1.	Denote each observation (Xi,Yi) by a point on a rectangular coordi-
nate system with the horizontal axis spanning the range of X values 
and the vertical axis spanning the range of Y values.

	 2.	 If desired, plot a least squares line or other model through the plot. 
This is an option in JMP.

Figure  2.6 shows the scatter plot of population density vs. freeway 
miles traveled for several large U.S. urban areas. We overlaid a fitted 
straight and a nonparametric or model-free curve produced by using a 
smoothing spline on the plot (see appendix at the end of the book). We 
can see a high degree of negative correlation between these two fitted 
curves. While the straight line looks to be an adequate fit (R2 = .93; 
see Chapter 10), the smoothing spline suggests that the true relation-
ship may not be linear. Most of the time, a straight line is more than 
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adequate for data similar to this, and in transportation, a linear rela-
tionship is the most common simplifying model. However, it is always 
important to check that this assumption is reasonable by first plotting 
the data.

When we have several continuous variables that we wish to explore 
together, we can use a scatter plot matrix. It is a collection of scattered 
plots combined in a matrix so that the relationships among all the vari-
ables can be explored at one time. It is usually a good idea not to plot more 
than five variables at a time using a plot matrix; otherwise, the plots over-
whelm the user. This happens in part because each of the plots must be 
reduced in size in order to be accommodated on a single page.

An example may be seen in Figure 2.7, where population density, annual 
public transportation usage in millions of miles, and annual hours of delay 
in thousands of hours are plotted for twenty-two large urban areas. While 
a bit overwhelming, it is possible to make general conclusions about the 
data that would not be as easy if one were looking at it in raw or tabulated 
form. As an example, we can see from Figure 2.7 that there is a negative 
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Figure 2.6  Population density vs. freeway miles for very large urban areas.
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correlation between population density and annual passenger miles on 
public transportation, and a positive correlation between annual hours of 
delay and public transportation usage. In high-density areas there may be 
shorter commutes, and when there are long delays on highways, there is 
an incentive to use public transportation.

The old saying “correlation is not caution” should always be kept in mind 
when interpreting data. Just because two variables are correlated does not 
mean that one causes the other or, as is more common, that changing one 
variable will change the other. Frequently, there is a hidden variable that 
has a causal relationship with both variables. For example, it can readily 
be shown that highways consisting of thicker pavements sometimes require 
repair sooner than highways consisting of thinner pavements. Even if 
there is a negative correlation between pavement life and thickness, it would 
be erroneous to advocate using thinner pavements on highways. The reality 
is that the highways that have thicker pavements also tend to have higher 
volumes, and consequently, this explains the apparently counterintuitive 
correlation.
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Figure 2.7  Scatter plot matrix of population density, annual passenger miles 
on public transportation, and annual hours of delay.
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2.6 P arallel Plot
Another important tool for examining the relationship among several 
variables at one time is a parallel plot. Consider Figure 2.8. It is a plot of 
the passenger miles (on the y-axis in millions) traveled in each of four 
metropolitan areas (on the x-axis) from 1982 to 2003. Each line represents 
normalized passenger miles for a given a year. The plot shows that during 
the study period when public transportation usage was at its highest lev-
els in the Tampa–St. Petersburg area, public transportation use was at its 
lowest levels in the Virginia Beach region. Parallel plots can be used to 
show the relationships among similar variables, as well as differing trends 
across the regions.

Below is a step-by-step explanation of how to construct parallel plots:

	 1.	For each variable chosen, make a vertical line (in our example the 
variables are the four locations). All lines should be of the same 
length, have the same center point, and be parallel. See Figure 2.8. 
(JMP does this automatically.)

	 2.	Scale each variable so that the smallest value is 0 and the largest value 
is 1.

	 3.	Place a dot on the parallel line indicating the level for each variable.
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Figure 2.8  Parallel plot of the passenger miles traveled in each of four metro-
politan areas from 1982 to 2003.
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	 4.	For each observation (row of data), connect the dots among adjacent 
variables with a line segment. See Figure 2.8.

From parallel plots, we can see how individual values vary across axes. 
In our case, each connected line represents a reading across years and 
shows the values for each of four urban locations. While a scatter plot 
matrix can show the overall relationship, or linearity, among responses, 
the connection among points across cells is lost. Parallel plots have the 
advantage of showing relationships, such as positive or negative correla-
tion, across many variables in a comprehensible way.

2.7  Time Series Plot
The time series plot is a useful tool for displaying temporal data. It shows 
how variables change over time (ti) and is a scatter plot (ti,y(ti)) with adja-
cent points connected by a line segment. For example, Figure 2.9 shows 
how passenger miles have approximately tripled in Austin, Texas, over a 
little more than two decades.

In this example there is a fairly linear relationship between vehicle 
miles Traveled (VMT) and time. However, it would be erroneous to 
assume that this relationship will continue in the future. At some point 
capacity issues occur and the system cannot easily handle extra travel. At 
this point the rate of increase, while still increasing with population, will 
in all likelihood be at a decreasing rate. Accordingly, while graphing does 
provide some insight, it is always dangerous to blindly extrapolate beyond 
the limits of the data.
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Figure 2.9  Time series plot of passenger miles traveled in Austin, Texas, over 
years.
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2.8  Quality Control Plots
Quality control plots are the final topic of this chapter. Quality control is 
a field in its own right. An excellent reference for detailed information in 
this area is Montgomery (2004).* One of the basic quality control plots is 
the Xbar chart, which is used to spot unusual data (if there are any) and 
is of importance to those monitoring the quality of a process. Figure 2.10 
shows the Xbar chart for eight probe-vehicle drivers used in a floating car 
study in the Houston area. These types of studies are designed to obtain 
speeds in average conditions on the highway. It is important to ensure that 
the speeds measured from the floating cars are appropriate estimates of 
the average speed on the network. The plot in Figure 2.10 shows that none 
of the probe-vehicle drivers had unusual travel times, as is evidenced by 
the fact that none of the drivers had a deviation from the overall average of 
more than ± 3 (sample) standard deviations (calculated separately for each 
driver) from the sample mean. Any point outside of these limits would be 
unexpected. Unexpected points require more study and explanation when 
they occur.

*	 These plots may be commonly used for quality control in pavement monitoring and mea-
surements, and thus while not used as frequently as other data display, such plots are still 
relevant to transportation.
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There are many different ways to construct control charts. The method 
given below should be thought of as an example. JMP uses a different 
default method for calculation of the sigma used to construct upper and 
lower limits. For the control chart above, separate estimates of standard 
deviation are used for each driver. The method below allows a single-pooled 
variance estimate to be used. There are many variants for control charting, 
and transportation engineers are encouraged to use the most meaningful 
method for their data. Refer to the JMP manual for more detail.

Steps for constructing an Xbar S control chart assuming equal number 
of replicates and a uniform process for each time period (n nti

= , i = 1,…,k) 
are as follows:

	 1.	For each time period or data segment of interest calcu-
late the sample mean and sample variance y y nt j

n
ji

= ∑ =1 /  and 
S y y nt j

n
j ti i

2
1

2 1= ∑ − −= ( ) /( ). Note that it is traditional in quality con-
trol circles to calculate a different estimator for the standard devia-
tion. Readers are referred to the JMP manual to see how it is typically 
done.

	 2.	Calculate the grand mean and pooled variance: y ny kni ti
= ∑ /  and 

S S kp i ti
2 2= ∑ / , respectively. If the data segments are from different 

probability distributions, for example, from different drivers, then the 
variance estimates should not be pooled. In the latter case, individual 
estimates of variance would be used in the corresponding segments.

	 3.	The upper control limit (UCL) is y S np+ 3 2 /  and the lower control 
limit (LCL) is y S np− 3 2 / .

	 4.	Plot the overall mean and the upper and lower control limits as 
shown in Figure 2.10.

	 5.	Plot the sample averages yti on the graph; points beyond the control 
limits are said to indicate an out-of-control process.

In the past, these types of quality control charts have tended not to be 
taught to transportation engineers since they were interpreted as more 
useful for industrial applications, such as manufacturing goods. However, 
as state and federal DOTs have begun outsourcing much of their opera-
tions, maintenance, and construction duties to outsider contractors, these 
types of plots are becoming increasingly common in gauging how well 
contractors are performing their duties.
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2.9 Co ncluding Remarks
As previously stated, it is the authors’ belief that the first step in any 
statistical analysis for transportation applications is to graph the data. 
Unfortunately, it is not always clear what form should be used first, and 
for this reason, it may be necessary to try different graphing types. The 
main goal, of course, is to develop a greater understanding of the data 
through the use of graphs. This comprehension might be of the relation-
ships between the various variables (e.g., speed and volume), the nature of 
the data (type of pdf), whether the data include outliers (e.g., high-speed 
vehicles), or even whether the data are accurate (e.g., negative speeds). 
While this may be done from looking at the raw transportation data, it 
is almost impossible to do this in many applications. For example, there 
are over one thousand inductance loops in San Antonio, Texas, collect-
ing data at continuous 30-second intervals. Over one year there would be 
approximately 1 million data points per pair of inductance loops. In this 
scenario, graphical data analysis would help identify the trends in the data 
much easier than a table would.

With the advent of readily accessible statistical software tools, it is 
very easy to conduct sophisticated statistical tests (as we will illustrate 
in the coming chapters). However, without a good knowledge of the data 
obtained through graphical analysis, it is very easy, particularly for novice 
analysts, to make fundamental mistakes. It is always important to have a 
good understanding of the data that you are analyzing before any statisti-
cal techniques are tried. It is our contention that graphing the data can 
lead to a more comprehensive understanding of them and to better statis-
tical analyses.

Homework Problems

	 1.	Using the headway data, plot histograms with ten, fifteen, and twenty 
groups or bins.

	 2.	Using the headway data, plot a histogram of the headway data and 
overlay a fitted normal curve.

	 3.	For the mobility analysis data, using only the data from very large 
urban areas, construct a box plot using JMP. Construct a box plot 
for annual hours of delay with the confidence diamond for the mean 
turned off. (Right clicking on the confidence diamond does this.)
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	 4.	For column 1 of the speed data, in the file “Houston speed data,” 
construct a normal q-q plot or normal probability plot of the data 
using JMP. Using the confidence intervals, what can you say about 
the normality of the underlying probability distribution that gener-
ated the data?

	 5.	Using the file “Beaumontmobility,” construct a scatter plot of the 
freeway miles (on the x-axis) and total system miles (on the y-axis) 
using JMP.

	 6.	Add a fitted straight line to the scatter plot constructed in question 5. 
Add a smoothing spline to this plot. What information do you derive 
from the plot?

	 7.	Using the file “Beaumontmobility,” construct a scatter plot matrix of the 
freeway miles and total system miles, annual hours of delay, and popu-
lation density using JMP. What message do you get from the plots?

	 8.	Using the urban mobility data file, construct a parallel plot for the 
travel time index for five locations of your choice. What conclusions 
do you arrive at?

	 9.	Using the urban mobility data file, construct four time series plot for 
the travel time index for four locations of your choice. What do you 
think this indicates?

	 10.	What do plots provide that a table of data does not?
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3C h a p t e r  

Numerical Summary 
Measures

3.1  Introduction
As transportation professionals, we are often asked specific questions on 
the construction, operations, and maintenance of the transportation sys-
tem. For example:

Was the pavement constructed to the proper specifications?•	

Are cars going too fast on a highway?•	

What is the average travel time from point A to point B?•	

What is the capacity of a canal lock?•	

In many cases, we can derive analytical solutions to these questions 
based on first principles. Often, however, the answer has to be derived 
from empirical measurement. In this situation, the engineer will need to 
collect data in the field to help answer the question. After plotting, the first 
step is to quantify the data. In this chapter, we present several numerical 
summary measures for summarizing the available data in a useful and 
informative manner. This will include measures describing the center of 
a data set, other locations in a data set, variability in a data set, and the 
relationship between two variables in a bivariate data set. The appropriate 
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summary measures vary with the type of data, which are either categorical 
or numerical. Furthermore, if numerical, the data can be continuous 
or discrete.

3.2  Measures of Central Tendency
As the name implies, these are measures related to the center location of 
the data, which can be viewed as a representative of the values in the set. 
The most popular measures are the mean, median, and mode, as discussed 
in the following sections.

3.2.1  Mean

The most popular measure of center (or central tendency) is the mean. The 
mean is the simple arithmetic average of the values for a numerical vari-
able. The sample mean (x–) can be defined as follows:

	
x

x

n

i
i

n

= =
∑

1

where n is the number of observations in the data set and xi is a value of 
the variable. The variable might be the speeds of vehicles, the number of 
traffic accidents, the lengths of pavement cracking per road segment, etc. 
The mean serves as a useful measure of the center. This is especially true 
when the data are symmetrical and unimodal. Although the mean can 
still be computed for bimodal or multimodal data, the meaning of the 
center for those data becomes unclear and, accordingly, so does the role 
of the mean. Of course, the exploration of the data through plots should 
precede the use of the numerical summary statistics. Using numerical 
summary measures blindly—in other words, without knowing the over-
all shape of the data—may lead to uninformative or even misleading 
summaries.

Figure 3.1 contains a frequency histogram of 204 speed measurements 
obtained from a TransGuide inductance loop detector located in San 
Antonio (SA).
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Example 3.1

The sample mean (x–) of the 204 speed measurements shown in the histogram 
of Figure 3.1 is given by the sum of speed measurements in the sample divided 
by the number of speed measurements in the sample, which can be computed 
as follows:

	
x

x

n

i

i

n

= = ==
∑

1 10 008
204

49 059
,

. .

Remark 3.1

In transportation lexicon the speed calculated in Example 3.1 is known as the 
time mean speed (TMS) because it is the calculated average over time at a sin-
gle location. Because the observations are easily obtained by a single observer 
(or more likely a single detector), TMS is often used in practice. Another com-
monly used average is the harmonic mean, and the equation (when calculating 
the harmonic means speed) is given below:
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where d is the distance over which travel time is measured for each vehicle i (mi), 
ti is the travel time over distance d for vehicle i (h), Si is the speed for vehicle i to 
traverse distance d (mph), and n is the number of vehicles that are observed.
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Figure 3.1  Frequency histogram of SA loop speed data.



32    ◾    Transportation Statistics and Microsimulation﻿

This is also referred to as the space mean speed (SMS) because it is the 
average speed of vehicles over a given distance (or space). When transporta-
tion engineers use average speed, such as in the Highway Capacity Manual, 
it is usually this SMS or harmonic average that they are referring to. The SMS 
is a weighted average in which each vehicle’s speed is weighted by the time 
that it spends in the defined roadway segment or space. For example, a slower 
vehicle will receive more weight in the SMS calculation than a faster vehicle 
because it spends more time in the section. Consequently, the TMS is always 
greater than or equal to the SMS. Additionally, because one needs to know the 
time spent in each section, the SMS takes more resources to measure (e.g., two 
observers or detectors that can identify and track specific vehicles).

3.2.2  Median

The median is another commonly used measure of the center that is 
defined as the middle value in the ordered data. It is the value such that 
50% of the observations in the data set are less than or equal to that value. 
The procedure for computing the sample median (x~) is as follows:

	 1.	Order the observations in the data from smallest to largest with any 
repeated values included.

	 2.	If the number of observations in the data is odd, then the sample 
median is the middle entry in the ordered list. If the number of 
observations in the data is even, then the sample median is the aver-
age of the two middle values in the ordered list.

The median is favored over the mean when there are outliers because 
it is less sensitive to extremes in data. In contrast, the mean, by its very 
definition, is sensitive to even a single outlier because each observation is 
weighted equally.

Example 3.2

Because the number of observations in the data presented in Figure 3.1 is even 
(204), the sample median is given as the average of the 102nd and 103rd obser-
vations in the sorted values:

	
x = + =54 663 54 809

2
54 736

. .
. .

Note that the sample median is significantly larger than the sample mean for 
these data because the distribution is skewed left (there are outliers in the 
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left tail) and the value of the mean is biased toward those outliers. Because 
the distribution is skewed, the sample median is a better estimate of central 
tendency for these data.

3.2.3  Trimmed Mean

The trimmed mean is a compromise between the mean and median. It 
is defined as the mean of the remaining data after a specified proportion 
of the smallest and the largest observations are removed from the data. 
The procedure for computing the 5% trimmed mean (x–5%), for example, 
is as follows:

	 1.	Order the data values from smallest to largest.

	 2.	Delete 5% of values from each end of the ordered list.

	 3.	Average the remaining 90% of the values.

The trimmed mean is less sensitive to outliers than the mean, because 
it is inclusive of all data expect for the most extreme values. Moreover, the 
trimmed mean greatly contrasts with the median, which ignores all other 
data in favor of the middle value (or, in an even configuration, two values).

Example 3.3

The 10% trimmed mean (x–10%) for the data in Figure 3.1 is given by deleting 
20 (204 × 0.1 = 20.4 ≈ 20) observations from each end of the ordered speed 
measurements and then taking the average of the remaining 164 values:

	
x10

8326 149
164

50 769%
.

. .= =

Note that the 10% trimmed mean lies between the sample mean and the sam-
ple median for these data. If the distribution is roughly symmetric and there is 
no outlier, then the mean, the trimmed means, and the median all will be close 
to one another.

3.2.4  Mode

The mode is the value that occurs the most frequently in the data. Unlike 
the mean and the median, which can be computed for numerical data 
only, the mode can be obtained for both numerical and categorical data. 
In the most rigorous interpretation of the term, only one mode can be 
defined within a given data set. If two values occur most often with the 
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same frequency, then, in the strictest sense, there is no mode. However, 
when describing the shape of the data distribution, a mode is sometimes 
interpreted as a bump, and thereby in this interpretation more than one 
mode can be defined. The terms unimodal, bimodal, and multimodal are 
used based on such an explanation and are common to the transporta-
tion lexicon. For example, the travel time distribution of vehicles passing 
through a signalized intersection is often referred to as bimodal because 
there are two distinct bumps: those representing vehicles that are stopped 
by the traffic signal and those that are not.

Example 3.4

For the data in Figure 3.1, the sample mode appears to be between 55 and 60.

3.2.5  Proportion

Proportions can be obtained for the various categories of the categorical 
data. The sample proportions are computed as the number of responses 
that are in the corresponding categories divided by the total number of 
observations in the data. When there are only two possible categories, the 
categories can be named “success” and “failure” and the responses in the 
data can be labeled as 1 for success and 0 for failure. The sample propor-
tion (p) of such data, which is the number of 1s divided by the number of 
observations in the sample, can also be viewed as the sample average of 
responses labeled as 1s and 0s.

Example 3.5

In addition to the traffic data, the San Antonio TransGuide system also collects 
incident data. In this data set, information regarding the type of incident is classi-
fied into one of four categories: major accident, minor accident, stalled vehicle, 
and debris. According to the TransGuide system, there were 866 incidents in 
May 2004 (Quiroga et al., 2004). Among those 866 incidents, 287 correspond 
to major accidents, 221 to minor accidents, 295 to stalled vehicles, and 63 to 
debris. The proportion of each incident type can be computed as

	
pMajor = =287

866
0 3314.

	
pMinor = =221

866
0 2552.
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pStalled = =295

866
0 3406.

	
pDebris = =63

866
0 0727. .

Thus, 33% of the incidents during May 2004 were major accidents, 26% minor 
accidents, 34% stalled vehicles, and 7% debris.

3.3  Measures of Relative Standing
Sometimes we may be interested in other (relative) locations in the data, 
not just the center location. Percentiles and quartiles are often used to 
describe other locations of interest in the data.

3.3.1  Percentile

Percentiles are regarded as the measures of relative standing because they 
describe relative locations compared to other observations in the data. 
The (100p)th percentile for any number p between 0 and 1 is defined as the 
value that 100 × p percent of the observations in the data set lay at or below 
that value. For example, the 85th percentile of the speed data in Figure 3.1 
is the value that 85% of the speed measurements are below or at that value. 
Percentiles are computable using JMP or other statistics packages. For the sam-
ple of size n, the ith (i = 1,…,n) order statistic is the 100[i/(n + 1)]th percentile.

In transportation engineering, the 85th percentile speed is often used 
for design purposes. For example, according to the Manual on Uniform 
Traffic Control Devices (MUTCD) speed limits should be set as close to 
possible to the 85th percentile speed. The primary concern with setting 
the speed limit lower than this value is that drivers may be encouraged to 
not comply with this restriction by authorities. In the short run, this will 
lead to unsafe driving conditions, and in the long run, it will lead to a gen-
eral disregard for all speed limit signs. It should be noted that there was no 
physical reason the 85th percentile was chosen; rather, it was assumed that 
most drivers are reasonable and prudent, and as such, they will choose 
to drive at a safe speed. Moreover, it is important to note that the 85th 
percentile speed is also used in sight design calculations as described in 
the AASHTO Green Book: A Policy on Geometric Design of Highways and 
Streets. Another common example is that roadways are often designed not 
for the worst demand, but rather for some percentile. This is very common 
in transportation systems that, by definition, are “fail soft.” That is, a fail-
ure (demand greater than supply) does not generally lead to catastrophic 
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conditions. This can be contrasted to “fail hard” systems such as bridges. 
For example the 100th highest hourly volume (out of 8,760 hours per year) 
is often used for identifying the demand for a particular roadway. It would 
be prohibitively expensive to design for the highest demand hourly vol-
ume, and the hundredth is seen as a compromise.

Example 3.6

For the data set of Figure 3.1, the 85th percentile is given as 60.401.

3.3.2  Quartile

Quartiles are the particular percentiles. They divide the data into quar-
ters; therefore, the percentiles are the 25th, the 50th, and the 75th. The 
25th percentile and the 75th percentile are usually referred to as the lower 
quartile and the upper, respectively. The 50th percentile, which is the mid-
dle quartile, is the same as the median.

Example 3.7

For the data set of Figure 3.1, the 25th percentile and the 75th percentile are 
41.838 and 58.533, respectively.

3.4  Measures of Variability
So far, we have discussed the various measures of locations in the data. 
Another important feature of the distribution of the data is variability, or 
the extent of the spread of values in the data. Metrics that attempt to mea-
sure variability are sometimes referred to as measures of dispersion.

3.4.1  Range

The simplest measure of variability is the range. It is defined as the differ-
ence between the maximum and minimum values in the data. Because 
the range is determined by the two most extreme values in the data, it 
is extremely sensitive to even a single outlier and generally increases as 
sample size increases. Thus, the use of range as a measure of variability 
should be avoided when there is an outlier or when comparing variability 
of samples that have different numbers of observations.

Example 3.8

For the data set of Figure 3.1, the sample range is computed as
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	 Range = maximum – minimum = 63.767 – 13.304 = 50.4630.

3.4.2  Variance

In describing variability in the data, it is also important to consider how 
the other values, not just the two endpoints, in the data are distributed. 
The variance, which is the average of the sum of squared deviations of the 
observations from the mean, uses all the observations. The sample vari-
ance (s2) is defined as
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where n is the number of observations in the data set and x– is the sample 
mean. It may be seen that the farther a particular observation is from 
the mean, the larger the value of s2 will be. The variance, however, is not 
a measure of spread because its units are the square of the data units.

Example 3.9

For the data set of Figure 3.1, the sample variance can be computed as
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3.4.3  Standard Deviation

The standard deviation—defined as the square root of the variance—is a 
widely used measure of variability and has the same units as the original 
data, such as miles per hour or meters. It can be interpreted as a measure 
of a typical deviation of an observation from the mean.

Example 3.10

For the data set of Figure 3.1, the sample standard deviation can be computed as

	 s s= = =2 158 253 12 580. . .



38    ◾    Transportation Statistics and Microsimulation﻿

One or two unusually small or large observations can easily inflate the 
values of s2 and s even though there may, in fact, be little variability in the 
rest of the observations. Although they are not as sensitive as the range, 
both the variance and the standard deviation are sensitive to outliers and 
are affected by extremes in data.

3.4.4  Interquartile Range

Less susceptible to the influence of outliers, the interquartile range (IQR) 
is another measure of variability. The interquartile range is defined as the 
difference between the upper quartile and the lower quartile. The outliers 
cannot affect the value of the IQR because it is the range of the middle 50% 
of the data.

When the data maintain approximately a normal distribution, there 
exists the following relationship between the standard deviation and 
the IQR:

	
s IQR IQR= ≈

1 35
3
4.

.

If s is much larger than IQR/1.35, then this indicates that the distribution 
may give more weight to observations far from the center in comparison 
to the normal distribution. This would indicate that there may be outliers 
in the data.

Example 3.11

For the data set of Figure 3.1, the sample interquartile range can be computed as

	 IQR = upper quartile – lower quartile = 58.533 – 41.838 = 16.695.

3.4.5  Coefficient of Variation

Another measure of variability that is often employed in transportation 
engineering is the coefficient of variation (CV). The coefficient of variation 
expresses the standard deviation as a percent of the mean as follows:

	
CV s

x
= 100 .
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The CV is a measure of relative variation of the data when the measure 
of dispersion is relative to the measure of central tendency. One common 
interpretation of the CV is that the values in the data set lie, on average, 
within approximately CV percent of the mean. The coefficient of variation 
is especially useful when comparing the variability of the data sets mea-
sured by different units because it is unit-free, and so it automatically takes 
into account the different units in different data sets. It can also be esti-
mated as the standard deviation of the log of the data.

The CV is often used in engineering because it combines both a mea-
sure of central tendency and a measure of dispersion into a single met-
ric. Often it is hard to interpret one metric without knowing the value 
of another. For example, a standard deviation of ten minutes has a dif-
ferent meaning on a ten-minute trip vs. a ten-hour trip. In the former, 
a typical driver would consider the trip to have considerable variability, 
while in the latter almost none. In addition, in some transportation 
applications it is often found that the relationship between the mean 
and standard deviation is approximately constant over time and space. 
Consequently, if a transportation professional only has one measure, 
the other can be readily estimated if the CV from a previous study is 
available.

Example 3.12

For the data set of Figure  3.1, the sample coefficient of variation can be 
computed as
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3.5  Measures of Association
So far we have discussed various numerical measures for summarizing 
univariate data. However, transportation professionals often consider 
more than one variable in the data set, and the relationship among those 
variables is of interest. The correlation coefficient (or Pearson correlation 
coefficient) is a measure of the strength and direction of the relationship 
between two numerical variables, and is often used to describe and assess 
the strength of a relationship. There are two widely used correlation coef-
ficients: Pearson’s correlation coefficient and Spearman’s rank correlation 
coefficient.
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3.5.1  Pearson’s Sample Correlation Coefficient

Let (x1, y1), (x2, y2), …, (xn, yn) denote a sample of measurements on the 
variables X and Y, where x– and y– are the corresponding sample means. 
For example, let X represent spot speed on a roadway and Y the volume. 
Pearson’s sample correlation coefficient is defined as
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and it is a measure of linear relationship between two variables X and Y. 
Note that the value of r is between –1 and 1, and it is unit-free. A posi-
tive value of r indicates an increasing relationship between variables, and 
a negative value indicates a decreasing relationship between variables. A 
value of r close to –1 indicates a strong negative linear relationship, and a 
value close to 1 indicates a strong positive linear relationship. Because it 
only measures the extent of the linear relationship, a value of r close to 0 
does not rule out any strong nonlinear relationship between X and Y. It 
could be very misleading to conclude that there is no relationship based on 
a value of r close to 0 without first examining a scatter plot of the bivariate 
data.

Example 3.13

Table 3.1 contains the volumes measured at fourteen locations along a corridor 
at two different time periods. Figure 3.2 shows the scatter plot of the data.

For the data set given above, Pearson’s sample correlation coefficient can 
be computed as
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Given the scatter plot, it is not surprising that Pearson’s correlation coefficient 
statistic indicates a very strong linear relationship in the data.
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3.5.2  Spearman’s Rank Correlation Coefficient

Recall that Pearson’s correlation coefficient is not a useful measure of asso-
ciation when the relationship between two variables is nonlinear. Another 
potential drawback to Pearson’s correlation coefficient is that it is sensitive 
to outliers. Spearman’s rank correlation coefficient is a good alternative to 
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Figure 3.2  Scatter plot of volumes at time 1 and volumes at time 2.

Table 3.1  Traffic Volumes Measured at Different 
Locations along a Corridor

Location Volumes at Time 1 Volumes at Time 2
  1 303 341
  2 56 68
  3 136 177
  4 146 188
  5 7 8
  6 32 17
  7 35 51
  8 50 51
  9 21 22
10 12 7
11 18 24
12 110 96
13 169 169
14 28 30
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Pearson’s correlation coefficient when there is an outlier in the data, or the 
relationship between the variables is not linear, but still monotonic.

As a concept, Spearman’s rank correlation coefficient is essentially the 
same as Pearson’s correlation coefficient. The difference is that the ranks 
of observations are used, rather than actual observations. Thus, to calcu-
late Spearman’s correlation between paired variables— (x1, y1), (x2, y2), …, 
(xn, yn)—the data are ranked separately, and then the Pearson’s correla-
tion coefficient is computed for the ranks. For example, suppose our data 
consist of pairs (2, 5), (3, 9), (5, 10), (7, 10.1), and (9, 10.2). Then the ranked 
data are: (1, 1), (2, 2), (3, 3), (4, 4), and (5, 5). While the Spearman’s cor-
relation coefficient equals 1, the Pearson’s correlation coefficient, based on 
the original data, is computed to be r = 0.756. Figure 3.3 presents a scatter 
plot of the original data. The scatter plot shows that while there is a strong 
monotonic relationship between the two variables, it is not strictly linear; 
in fact, it is highly nonlinear.

The formula for the Spearman’s rank correlation coefficient can also be 
given as
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where Rxi and Ryi are the ranks of xi and yi, respectively. Note that when 
the relationship between two variables is not monotonic (e.g., U shaped), 
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Figure 3.3  Scatter plot of the original data.
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Spearman’s correlation coefficient may not be an appropriate measure of 
association either.

Example 3.14

For the data set of Example 3.13, Spearman’s sample correlation coefficient can 
be computed as
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For this data set, the difference between Pearson’s correlation coefficient and 
Spearman’s correlation coefficient is relatively small because there are no out-
liers and the relationship between two variables is almost linear, as can be 
observed from Figure 3.2.

Remark 3.2

Although the procedures or formulas for computing summary statistics are pro-
vided to help readers understand the concepts in this book, in practice those 
statistics can be more easily computed by software packages, such as JMP. It 
is rare to do these calculations by hand. However, similar to most engineering 
applications, it is unwise to use the computer program without a deep under-
standing of the logic and theory behind the calculations.

3.6 Co ncluding Remarks
What is the average? How much spread is there in the data? A gen-
eration ago, this was the extent of statistical knowledge most practic-
ing engineers would need to know. Yet, as this chapter demonstrated 
through explaining descriptions for data sets, today’s engineer requires 
a broader array of descriptive statistics. With changes in the industry, 
the transportation engineer’s job is much more complex. The modern 
transportation engineer now has to use the complete set of descrip-
tive statistics to communicate effectively. Thus, the field has changed 
from just utilizing means and standard deviations to relying on more 
sophisticated descriptions in order to communicate important results. 
In a world where the transportation budgets are not keeping up with 
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demands, the necessity for analyzing options, from a valid statistical 
perspective, has never been more important.

Homework Problems

	 1.	Using the highway speed data of Figure  2.2, compute the sample 
mean (time mean speed) and the sample median. Do those values 
differ from each other? What would you recommend as a measure of 
center for these data? Why?

	 2.	The accompanying data are the travel times (min) on an arterial 
street collected by ten test vehicles.

Vehicle 1 2 3 4 5 6 7 8 9 10
Travel Time (min) 10 14 9 10 12 16 10 11 22 11

	 a.	 Calculate the values of the sample mean, median, 5% trimmed 
mean, and mode.

	 b.	 From the relative locations of the above summary statistics, can 
you conjecture the shape of the distribution (smoothed histo-
gram)? Would it be symmetric, skewed right, or skewed left?

	 c.	 What is the proportion of vehicles of which travel time exceeds 
twenty minutes based on the above data?

	 d.	 Compute the 25th percentile and the 75th percentile.

	 e.	 Compute the sample standard deviation and the interquartile 
range. What would you recommend as a measure of variability 
for these data? Why?

	 3.	The accompanying data are the vehicle speeds (ft/s) and lateral 
positions (in.) measured for fifteen vehicles at four locations along 
a curve: upstream location (U), advance curve warning sign loca-
tion (W), point-of-curve location (PC), and midpoint-of-curve loca-
tion (MC). This data set is saved as a JMP file named “vehicle speed 
and lateral position” in the data CD. It was extracted for illustration 
purposes from a larger data set obtained from the FHWA project, 
“Pavement Marking Demonstration Projects: State of Alaska and 
State of Tennessee” (see Carlson et al., 2010).
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Vehicle 
No.

Speed 
at U

Speed 
at W

Speed 
at PC

Speed 
at MC

Lateral 
Position 

at U

Lateral 
Position 

at W

Lateral 
Position 

at PC

Lateral 
Position 

at MC
  1 62 63 62 54 53 28 13 53
  2 70 64 62 50 33 41 17 42
  3 70 67 64 61 44 48 23 54
  4 70 71 68 46 43 24 13 43
  5 73 75 70 65 29 40 19 62
  6 59 65 62 58 35 28 25 51
  7 56 56 46 47 32 48 14 36
  8 59 60 57 51 34 37 14 33
  9 61 64 62 50 28 33 15 71
10 61 62 61 52 23 32 14 36
11 65 66 63 56 38 26 15 56
12 57 81 70 64 43 41 19 59
13 46 71 67 60 50 46 25 52
14 68 66 62 56 43 28 11 51
15 59 51 53 48 49 58 14 77

	 a.	 Calculate the values of the sample mean and standard deviations 
for speed at MC and lateral position at MC and comment on 
them. How would you compare the variability for speed at MC 
to that for lateral position at MC? Is comparing the two standard 
deviations meaningful? Explain.

	 b.	 Calculate the values of CV for speed at MC and lateral position at 
MC, respectively. How do the values compare? Interpret the results.

	 c.	 Calculate the value of the Pearson’s correlation coefficient 
between speed at W and speed at PC. How would you describe 
the relationship between two variables?

	 d.	 Calculate the value of the Spearman’s correlation coefficient 
between speed at W and speed at PC. Is the value larger or smaller 
than the Pearson’s correlation coefficient? If the two values are 
not very close, what do you think causes the main difference?

	 e.	 Construct a scatter plot of speed at W and speed at PC. Identify 
any potential outlier in this bivariate data. Remove any outliers 
from the data and compute the Pearson’s correlation coefficient 
and the Spearman’s correlation coefficient again. What do you 
observe?
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4C h a p t e r  

Probability and 
Random Variables

4.1  Introduction
Transportation engineering is concerned with planning, designing, build-
ing, operating, and maintaining all aspects of the transportation system. 
To accomplish this, transportation engineers must have a deep under-
standing of the demands on the system (number of vehicles wanting to 
use a highway, number of trains on railway tracks, number of ships in a 
port), the supply of the system (number of roads, miles of railway tracks, 
traffic signal settings), and their interactions. This is a very complicated 
process that is compounded by the random or probabilistic nature of the 
variables. As engineers we tend to handle this complexity and randomness 
by creating simplified models of the phenomena of interest.

Probability theory is the calculus for chance occurrences. It provides 
language and grammar for computing the arithmetic of chance. Careful 
application of the rules will allow the reader to obtain the correct answer. 
This section will explain the use of basic probability concepts that are used 
in transportation engineering applications.

4.2  Sample Spaces and Events
Statisticians often use the following definitions to develop the terminology 
of probability. A sample space contains all the possible outcomes for which 
probabilities are needed. For example, the sample space for roadway vehi-
cles in the United States is the approximately 150 million licensed vehicles. 
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The simplest events, which essentially are building blocks of things for 
which we will want to compute probabilities, are called elements. For 
example, a commercial vehicle. The set of 90+ million commercial vehicles 
in the U.S. would be an event. The collection of elements that we want to 
compute the probability for is called an event. These definitions are dem-
onstrated in Figure 4.1.

4.3  Interpretation of Probability
Let A  and B  be two events in the sample space, Ω . For example, the 
sample space may be all vehicles traversing a roadway in a given time 
interval t. Event A might be the observation of a tractor-trailer com-
bination and event B might be the observation of a motorcycle. We 
are going to define a general probability measure or function for each 
event. The probability function assigns a probability, P , or number, to 
every event. The rules, which mathematicians refer to as axioms, are 
as follows:

	 1.	For any event, A  is 0 1≤ ≤P A( ) .

	 2.	 P( )Ω =1, and P( )∅ = 0 , where ∅  denotes the empty event (set).

	 3.	 If A  and B  are disjoint, that is, A B∩ = ∅ , then P A B( )∪ =  
P A P B( ) ( ).+  More generally if A A1 2, ,… is a sequence of mutually 
disjoint events, then P A A P A P A( ) ( ) ( )1 2 1 2∪ … = + +… .

Event: All registered commercial
vehicles in the U.S. 

Sample Space: All registered vehicles in the U.S. 

Element: One particular
commercial vehicle

Figure 4.1  Sample space, event, and element for commercial vehicles in the 
United States.
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It can be shown that as a consequence of rules 1 to 3, rules 4 and 5 follow:

	 4.	 P A P P A P Ac( ) ( ) ( ) ( )= − = −Ω 1 , where Ac  is the complementary 
event to A  in Ω .

	 5.	 P A B P A P B P A B( ) ( ) ( ) ( )∪ = + − ∩ .

These rules, while simple, are the basis of all the probability calculations 
that will be done in this textbook. Additional references that students may 
wish to use are Ott and Longnecker (2009) and Devore (2008). Examples 
4.1 and 4.2 are simple scenarios to familiarize yourselves with the rules.

Example 4.1

What is the chance that a die is thrown and the number that comes up is 
greater than 4?

The answer can be obtained using the rules or by intuition. The sample 
events are 1, 2, 3, 4, 5, and 6. The numbers greater than 4 are 5 and 6. If it is 
a fair die, each number has a probability of 1/6. Using axiom 3, the answer is 
1/6 + 1/6 = 1/3.

Example 4.2

Now, suppose that we roll a pair of dice and we want the probability that the total 
is an even number, but we also require that neither die contains an odd number.

We can see from Table 4.1 that there are thirty-six possible outcomes and 
each is equally likely.

It can be seen that the entries corresponding to an even column number 
and even row number contain the events of interest: those events that sum to 
an even number, but contain no odd number from any die. It is also clear that 
of the thirty-six equally likely outcomes, there are nine that satisfy the criterion. 
Consequently, the probability of this event is 9/36, or 1/4.

Table 4.1  Possible Outcomes from a Pair of Fair Dice

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)



50    ◾    Transportation Statistics and Microsimulation﻿

There are two other key concepts that are yet to be defined. The first is 
the concept of independence. Two events A  and B  are independent if

	 P A B P A P B( ) ( ) ( ).∩ = 	 (4.1)

Note that this definition could have been used in Example 4.2 because 
we implicitly assumed that the outcome of each die was independent. In 
other words, the probability that the first die was an even number was 1/2, 
and the probability that the second die was an even number was also 1/2. 
Using the rule for two independent events, the answer is the product of the 
two probabilities, or 1/4.

4.4  Random Variable
Another important definition is that of a random variable. A random vari-
able is a function that assigns numbers to elements of the sample space. 
In the two previous examples, we talked about numbers on the dice, and 
of course, dots on a dice demarcate the corresponding value of the die. 
The random variable assigned the number 1 to the outcome where one dot 
appeared, and so on. The importance of random variables is that we need 
only consider probabilities of events characterized as numbers. For exam-
ple, you might assign the event of a crash incident as the number 1, and 
in the event a vehicle does not crash, the number 0. Assume that you are 
examining n trips and you have an event Xi (e.g., the random variable rep-
resenting the crash event) for the ith trip. If we wanted to calculate the total 
number of crashes in n trips, we would simply find the sum of the events:

	

Xi
i

n

=
∑

1

.
	

(4.2)

Because the event is a random variable, so too is the sum. In a sense, 
this is a fairly obvious statement. For example, if we know the number of 
accidents in any given month is a random variable, then it follows that the 
yearly number of accidents (e.g., the sum of accidents over every month) 
is also a random variable. A more interesting question is whether we can 
derive the properties of the accidents per year if we know the properties of 
accidents per month. This question will be answered later in this chapter.

One way statisticians describe the probabilities of events, such as 
X x≤( )0 , where x0  is a constant, is through the use of a cumulative 
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distribution function (cdf). The cdf for a random variable, X, is a function 
of sets of the form X x≤( )0

 and is defined by

	
F x P X x( ) ( ).0 0= ≤ 	 (4.3)

The probability of ( )x X x1 2< ≤  is calculated by F x F x( ) ( ).2 1−  In essence, 
the cdf completely describes the probability that an event will occur.

Traditionally, engineering texts consider two varieties of random vari-
ables. The first are those that may take all possible values on some interval, 
and are referred to as continuous random variables. For example, the speed 
of a vehicle can take on any real value (between 0 and the vehicle’s maxi-
mum speed) and may therefore be considered continuous. As we will dem-
onstrate, there are many standard distributions that are used to describe 
random variables. As you progress through this text, you will see that the 
most common distribution is known as the normal, or Gaussian, distribu-
tion. The other type of random variables have discrete outcomes. These 
random variables take values from a list. For example, assume an engineer 
was interested in the number of vehicles arriving at an intersection. It is 
clear that this would be a nonnegative, integer number because there are 
no fractional vehicles. This example is often modeled using the Poisson dis-
tribution. Another example of a discrete random variable is the binomial 
distribution, which has been used to model the number of crashes in n trips 
(where n is a predetermined number, such as 1,000). The most common dis-
tributions used in transportation engineering are described in Chapter 5.

It cannot be emphasized enough that probability distributions models 
are approximations of reality. For example, you may have a measuring 
device that only measures speed to tenth of a mile per hour. While the 
events are discrete and can be listed as discrete values, speeds are typi-
cally modeled as continuous random variables. Similarly, it is clear that 
traffic volume measurements are discrete. However, most transportation 
literature treats volume as continuous. The rationale is that the approxi-
mation does not appreciably change the answer and that, as you will see in 
Chapter 5, continuous distributions are often much easier to use.

This brings us to the densities of a continuous random variable. The 
probability density function (pdf) for a random variable is the derivative 
of the distribution function:

	
f x dF x

dx
( ) ( ) .= ≥ 0 	 (4.4)
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As the name implies, the pdf (probability density function), unlike the 
cdf (cumulative distribution function), cannot be used to calculate prob-
abilities of events directly. However, the area under the pdf is the prob-
ability. For example, for any set of events, or A :

	

P X A f x dx
A

( ) ( ) .∈ = ∫ 	 (4.5)

In other words, once you know the pdf, the probability of any event can 
be calculated by integration. Of course, this would be rather cumbersome 
to do by hand every time one wanted to calculate probabilities, and partic-
ularly for some of the more complicated pdfs. Most software packages will 
allow you to calculate this directly. Prior to computers these probabilities 
were precalculated and put into tables. Indeed, these tables are still taught 
today, but from a practical point of view, they are obsolete. Regardless, in 
order to calculate the probability of an event for a continuous variable, the 
transportation professional will have to perform an integration by using a 
computer program, a table of precalculated values, or by hand. Please note 
that the probability density function is often called the density in practice.

The discrete analog to the density is the probability mass function 
(pmf), or p x( ) . In contrast to the pdf, the pmf gives the probability of 
a given element, or x, directly. For discrete random variables it has the 
property that

	
P X A p x

A

( ) ( ).∈ =∑ 	 (4.6)

4.4.1 F unctions of a Random Variable

Transportation engineers use random variables to model many phenomena. 
For example, they might model speed and volume as random variables with 
specific properties. Often we want to calculate the associated traffic density, 
which is the traffic flow divided by the traffic speed. As you might expect, 
the function of a random variable is also a random variable. Therefore, if 
speed and flow are random variables, then so is traffic density. Yet, only in 
the most simple of cases it is possible to calculate a simple closed-form pdf 
or cdf of a random variable that is a function of other random variables.

To illustrate, consider X as a random variable. As discussed previously, 
X 2  and Log X(| |) are also random variables. The distribution function 
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for a function of a random variable X  can be obtained from the distribu-
tion function of X . For example:

	 P X t P t X t F t F t( ) ( ) ( ) ( )2 ≤ = − ≤ ≤ = − − 	 (4.7)

for a nonnegative scalar, t, and equals zero for negative t.

4.5  Expectations of Random Variables
The expectation of random variables is an important property for 
describing the location of their distribution function. Recognizing that 
all analogies are problematic, the concept of a body’s center of gravity is 
an engineering-related analogy to the expectation, or mean, of a random 
variable. For continuous random variables the mean is defined as

	

µ = =
−∞

∞

∫EX xf x dx( ) .	 (4.8)

For discrete random variables the expectation is defined as

	

µ = =
>{ }

∑EX x p xi i
x p xi i

( ).
| ( ) 0 	

(4.9)

It can be seen from the above formulas that, as the name implies, the 
expected value is the mean, or average value, of the distribution. The 
expected value does not necessarily have to be one of the values that could 
occur. It is easy to show that the expected value of a roll of a die is 3.5, 
which is clearly a value that would never occur on the actual die. However, 
over a large number of rolls, it would be expected that the average of the 
values of the rolls would be 3.5.

A distinction should be made that when statisticians talk about expec-
tations they are basically discussing a weighted average of a function of the 
random variable where the weights are the probabilities of the given event, 
X. For the mean, the function is simply f x x( ) = . However, one could take 
expectations of any function, and some of the more common functions 
will be introduced in the following pages.

Unless otherwise stated (as when we note it is nonexistent for some 
important random variables), we will assume that these integrals and sums 
exist. An example of a distribution without moments is the t-distribution 
with 1 degree of freedom, also known as a Cauchy distribution. In these 
situations, other measures, such as median and interquartile range, are 
used to describe the distribution rather than expectations or means.
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4.5.1  Expected Values Are Linear

We will often have to compute expected values for weighted sums of ran-
dom variables.

Suppose, for example, that X  and Y  are random variables and a  and 
b are constants, and we want to compute the expected value of aX bY+ . 
Note that the values of a and b do not matter in the context of the theory. 
Of course, different values will have different interpretations. If a b= =1 2/ , 
then we have an average of the two random variables. On the other hand, 
if a =1  and b = −1, then we have a difference. Regardless of the values of 
the constants, the expectation of the linear function of X and Y can be 
calculated as follows:

	 E aX bY aEX bEY( ) .+ = + 	 (4.10)

Transportation engineers often use formulas like the one shown above 
when examining functions of random variables. Often it is mathemati-
cally difficult, or even impossible, to derive the sum of two distributions. 
However, if the transportation engineer is really interested in the mean 
of the function, even though the distribution might be better, then these 
types of formulas are very useful.

4.6 �Co variances and Correlation 
of Random Variables

As discussed previously, it is often useful to calculate expectations of func-
tions of the random variables. The expectations that are computed most 
often are given special names. The mean is perhaps the most commonly used 
expectation. However, the key point is that any expectation is a weighted 
value of a function where the weights are the probabilities of the event X.

The mean is used to measure the central tendency of a pdf. The variance 
is used to measure the spread of a pdf. For continuous distributions, the 
variance can be found as follows:

	

σ2 2 2= −( ) = −( )
−∞

∞

∫E X µ x µ f x dx( ) .	 (4.11)

For discrete random variables the variance is calculated using the formula

	

σ2 2 2

0

= −( ) = −( )
>{ }

∑E X µ x µ p xi i
x p xi i

( ).
| ( )

	 (4.12)
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It is clear that the variance is the expectation of the square of the differ-
ence between each event, X, and the mean of the distribution. Not surpris-
ingly, the higher the spread of the pdf, the higher the variance. There are 
many ways of measuring the spread of the pdf; for example, one could take 
the absolute values of the differences instead of the square. However, for a 
variety of reasons not covered in this text, the variance is the most useful 
and, as such, is given a special designation.

Two common measures of association for random variables X  and Y  
are the covariance of X and Y defined as σXY E X EX Y EY= − −( )( ) , and 
the correlation is defined as ρ σ σ σXY XY X Y= / .  The terms σ σxx x= 2  and 
σ σyy y= 2  are called the variance of X  and Y , respectively.

The following properties hold for covariances and variances:

	 1.	 Cov aX bY abCov X Y, , .( ) = ( )

	 2.	 If X and Y are independent random variables, Cov X Y, .( ) = 0

	 3.	 Var aX a Var X( ) = ( )2 .

	 4.	 Var aX bY a Var X b Var Y abCov X Y+( ) = ( )+ ( )+ ( )2 2 2 , .

As before, sometimes it is impractical to calculate the pdf of a function 
of two random variables. In these situations the above formulas are useful 
if we would like to obtain measures of central tendency and spread.

4.7 �Com puting Expected Values of 
Functions of Random Variables

Propagation of error is the name for the calculus used to obtain means and 
variances of nonlinear functions of random variables using Taylor expan-
sions. The subsequent presentation follows the reference Ku (1966) closely. 

Let Z f X Y= ( , ) . Then we approximate the mean of Z as

	 EZ f EX EY f x y= ≈( , ) ( , ).µ µ 	 (4.13)

The variance of Z is approximated using the formula
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Using these formulas, we have the following examples: Table 4.2 shows 
univariate transformations of X and the resulting approximate variances.

Example 4.3

Suppose that we are interested in the space mean speed of vehicles on a 1-mile 
segment of Houston highway. The formula that we would use is

	
ˆ

/
.µ sms

i
n

it n t
=

∑
=

=

1 1

1 	
(4.15)

In which ti  is the travel time over a specified distance measured in hours per 
mile, and n is the number of vehicles. Then, the variance of this estimator is 
approximated by S tt

2 4/ ,  where t  is the average travel time and St
2  is the 

squared estimated standard error for t .

Example 4.4

A formula that is used for calculation of density is

	
k

d d
= = 





5280
5280

1
.	 (4.16)

See May (1990). Here, k is density in vehicles per lane-mile, and d  is aver-
age distance headway. The variance of this estimator is then approximated by 
5280

2 2 4( ) S dd / ,  where
 
Sd

2  is the squared estimated standard error for d .

Table 4.3 shows examples of transformations of X and Y, and the result-
ing variances.

Table 4.2  Approximate Variances of 
Transformed Random Variables Obtained by 
Using Propagation of Error

Function Approximate Variance

1
X

σ
µ

X

X

2

4

ln X σ
µ

X

X

2

2

eX a e X X
2 2µ σ

a 	 Can produce a highly skewed distribution, so 
the approximation may be inaccurate. This is 
particularly true for X having a large variance.
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Example 4.5

Let ρ  be traffic density, X  the estimated average arrival rate, and Y  the 
estimated mean service rate. Both means are in vehicles per time interval 
units. Consequently, ρ = X Y/ , and assuming that the two means are inde-
pendent, its estimated variance is X Y S X S YX Y/ / / .( ) +( )2 2 2 2 2  The estimator is 
S S nX X

2 2= / ,  and is the squared estimated standard error for X . Refer to May 
(1990) for the motivation behind the use of ρ.

4.8 Co nditional Probability
Transportation professionals base decisions upon available knowledge and 
data. Statisticians use conditional probability to formalize the process of 
making decisions based upon available data. Let us look at Table 4.1 again. 
The probability of rolling a 6 on the roll of two dice is 5 36/ . However, if 
we are told that the first die is a 6, then the probability of rolling a 6 is 0. 
For random variables X  and Y , the conditional probability that X  is in 
set A , given that Y  is in set B , is defined as

	

P X A Y B
P X A Y B

P Y B
( | )

,
( )

∈ ∈ =
∈ ∈( )

∈ 	
(4.17)

provided that P Y B( )∈ ≠ 0 . In the case of the dice example,

	

P X Y Y
P X Y

P Y
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0

For continuous random variables X  and Y , the conditional probabil-
ity density function is defined both as

	

f x y
f x y
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X Y

Y
( | )
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(4.18)

Table 4.3  Approximate Variances of Functions of Two Random Variables Obtained 
by Using Propagation of Error

Function
Approximate Variance If X and 

Y Are Independent
Term to Be Added If X and Y Are 

Correlated
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and

	

P X A Y y f x y dx
A

( | ) ( | ) .∈ = = ∫
	

(4.19)

The formulas given above provide the basic elements needed to 
calculate conditional probability and corresponding conditional 
moments. For example, the conditional mean of X  given that Y y=  
is defined as

	

E X Y y xf x y dx[ | ] ( | ) .= =
−∞

∞

∫
	

(4.20)

It can be seen that if random variables X  and Y  are independent, then 
for all y:
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Example 4.6

Suppose that we have twenty vehicle speeds recorded. Half of the speeds are 
recorded in sunny weather, and half of the speeds are recorded during a thun-
derstorm (Table 4.4).

From the data, we can see that the percentage of vehicles speeds traveling 
over 58 mph is 45% (e.g., 9/20 = .45). However, the percentage of drivers travel-
ing over 58 mph on clear weather days is 90% (P(mph > 58 & clear) / P(clear) = 
9/20/10/20 = .90. Thus, in this sample data set, the weather condition and speed 
are not independent variables. Many statistical procedures, such as correlation 
and regression, are designed to gain information by characterizing dependencies 
among variables.

The difference between conditional and ordinary (marginal) probabili-
ties can be understood in the simple example based on airline travel. It can 
readily be shown that the chance that a given airline traveler will die in an 
airplane crash is low. However, conditional upon the given traveler being 
on an airplane that crashes, the probability of death is high.
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4.9 B ayes’ Theorem
We may want to know the probability that a person was driving under the 
influence of alcohol if he or she had a positive Breathalyzer• test. A prob-
lem with this example is that a direct calculation of this probability would 
be difficult. We would have to collect a random sample of drivers who had 
positive Breathalyzer tests and give them an immediate blood test. If they 
did not consent, the probabilities could not be calculated. Bayes’ theorem 
gives us an easier and more practical way to do this type of calculation. 
The two main uses for Bayes’ theorem are to calculate conditional prob-
abilities that would be difficult to do correctly, and to provide improved 
parameter estimates that combine various sources of information. The lat-
ter use is covered in Chapter 14.

Suppose that we have a collection of events, A i ki , , ,= …{ }1 , that are 
mutually exclusive and partition the sample space, such as A1 = DWI and 

Table 4.4  Vehicle Speed and Weather

Vehicle 
Number

Speed 
(mph) Weather

1 65  Clear
2 67 Clear
3 75   Clear
4 59   Clear
5 57   Clear
6 65 Clear
7 67   Clear
8 71   Clear
9 63   Clear
10 62 Clear
11 30 Thunderstorm
12 26 Thunderstorm
13 36   Thunderstorm
14 46  Thunderstorm
15 21   Thunderstorm
16 50  Thunderstorm
17 36 Thunderstorm
18 43   Thunderstorm
19 30   Thunderstorm
20 41   Thunderstorm
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A2 = not DWI. Suppose that we have a second set of mutually exclusive 
events that are observable, B i mi ,  , , ,= …{ }1  such as B1 = failed Breathalyzer 
test and B = passed Breathalyzer test2 . Then we have the following:

	
P A B

P B A P A
P B A P A P B Ai j

j i i

j j
( | )

( | ) ( )
( | ) ( ) ( |

=
+1 1 2 )) ( ) ( | ) ( )

.
P A P B A P Aj k k2 +…+ 		

		  (4.22)

Example 4.7

A police officer stops a speeding driver on a Saturday night and gives him a 
Breathalyzer test. The test shows that his estimated blood alcohol content is 
above .08 g/dl, and this is considered evidence of driving while intoxicated. 
Suppose that a Breathalyzer test has a false positive rate of 5% and a false 
negative rate of 10%. Also, assume that in this town on a Saturday night 8% 
of drivers are intoxicated. What is a chance that a driver who has a positive 
Breathalyzer test is actually driving while intoxicated (DWI)?

Let’s let A1 = dWI  and A2 = not dWI , and let B1 = failed breathalyzer test  
and b = passed breathalyzer test2 . We read above that P A( ) .1 08=  and calculate 
that P A P A( ) ( ) .2 11 92= − = . We are given that P B A( | ) .1 1 90=  and P B A( | ) . .1 2 05=  
Using Bayes’ theorem we get:

	
P A B( | )

. .
. . . .

. .1 1
90 08

90 08 05 92
61= ×

× + ×
≈

Thus, the chance that someone with a positive Breathalyzer test is actually 
driving while intoxicated is about 0.61. In addition, the probability of correctly 
identifying a DWI depends upon the percentage of people in the population 
who are driving while intoxicated. For example, suppose that no one was driv-
ing under the influence of alcohol. If one were to ask “What is the probability 
that someone driving under the influence would have a positive Breathalyzer 
test?” the answer clearly would be zero.

4.10 Co ncluding Remarks
Transportation engineers are often interested in phenomena that are 
not deterministic. In this situation they make use of random variables. 
Random variables can take on a range of values, either discrete or continu-
ous, with a distinct probability or likelihood associated with each value or 
range of values. In these situations, the easiest way to discuss these phe-
nomena is through mathematics, since each phenomenon is defined as a 
function or random variable. For continuous distributions the function is 
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known as a probability density function (pdf), and the probability is repre-
sented by the area under the function. In other words, the transportation 
professional will have to integrate the function over the range of values 
of interest. For discrete variables the function is known as the probability 
mass function (pmf), where it represents the probability of a given event. 
It will be shown in the following chapters that some functions are used 
more than others, and these will be assigned distinct names. However, the 
principles underlying pdfs and pmfs are universal.

Sometimes the engineer is not interested in the distribution per se, but 
in certain characteristics of the distribution. Common metrics include 
measures of central tendency (e.g., mean, mode, median) and measures 
of dispersion (e.g., standard deviation). Not surprisingly, engineers are 
also interested in the relationship between different random variables; for 
example, roadway density is a function of speed and flow rate. Because both 
of the latter variables are random, then so density also is a random variable. 
As was demonstrated, it is often difficult to identify the exact form of the 
pdf of a random variable that is a function of two or more random variables 
except under special circumstances. However, it is often easier to calculate 
or approximate the expectation of this random variable (e.g., mean, vari-
ance). For example, one might not be able to derive the pdf of the roadway 
density given the pdfs of speed and flow, but one could potentially derive 
the mean and variance of the pdf of roadway density. For many applica-
tions this may be sufficient. These concepts will be discussed in greater 
detail later in the text.

This chapter introduced the concepts of probability and random vari-
ables. The authors assume that most readers have been exposed to these 
concepts before, and consequently this introduction was relatively brief. 
However, these concepts form the basis for the remainder of the book; 
hence, if a student has not mastered these basic concepts it will be nearly 
impossible to successfully master the material that follows. We encourage 
readers to follow up with some of the supplementary material if the con-
cepts of probability, random variables, pdfs, and pmfs are not clear.

Homework Problems

	 1.	What is the sample space for the following?

	 a.	 A state legislature is considering lowering freeway speeds to 
reduce fatal accidents.
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	 b.	 A city planning commission is considering recommending that 
bicycle paths be constructed. They want citizen input. What 
would the sample space be for the survey?

	 2.	Suppose that the odds of a person dying in a plane crash are 
1/9,000,000 and the odds of surviving a plane crash are 50%. Explain 
how both probabilities can be simultaneously accurate.

	 3.	Suppose that the probability that a sports car driver gets a speeding 
ticket during a year is 5%. Suppose that 8% of male sports car driv-
ers get tickets during a year. Suppose that 55% of drivers are female. 
What is the probability that a female sports car driver gets a ticket in 
a year?

	 4.	A random variable U is uniformly distributed in the interval [–1,1]. 
That means that its pdf is

	

f u
u
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,
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− ≤ ≤


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


1
2

1 1

0 elsewhere

	 Calculate the mean and variance for U.

	 5.	This question is known as the birthday problem: Assume that there 
are 365 days in a year (ruling out leap years) and that the same num-
ber of people are born on each day of the year. How many people 
have to be (randomly arrive) in a room before the chance of having 
two people with the same birthday is at least 1/2?

	 6.	The variance of a random variable has to be greater than or equal 
to zero. It equals zero if and only if the random variable is a con-
stant with probability 1. The kurtosis of a random variable X is often 
defined as

	

E X 4

4
3

( ) −
σ

.

	 It is a measure of the likelihood of outliers for the random variable 
X. In general, the bigger the kurtosis is, the more likely outliers will 
occur. Show that the uniform distribution defined in problem 4 has 
minimum kurtosis. (Hint: What is the variance of U2?)
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	 7.	When working with transportation statistics that cover several 
orders of magnitude, it is common to use a log transform to plot 
the data. Otherwise, the plot is often hard to understand. Using the 
mobility analysis data, calculate the coefficient of variation for free-
way miles and calculate one hundred times the standard deviation of 
log freeway miles. Are the statistics close? Why or why not?

	 8.	A police officer stops a speeding driver on a Saturday night and gives 
the driver a Breathalyzer test. The test shows that the person’s blood 
alcohol content is above .01, and that is evidence of driving while 
intoxicated. Assume that a Breathalyzer test has a false positive rate of 
3% and a false negative rate of 5%. Also, estimate that on a Saturday 
night in this town 10% of drivers are driving while intoxicated. What 
are the chances who a driver who has a positive Breathalyzer test is 
actually driving while intoxicated?
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5C h a p t e r  

Common Probability 
Distributions

5.1  Introduction
Inexperienced transportation professionals sometimes make the mistake 
of thinking that all variables are deterministic; that is, they have a known 
and constant value. For example, in most introductory classes engineers 
are exposed to the fundamental equation of traffic flow, which relates flow 
(vehicles/time unit), q, to density (vehicles/distance unit), d, and velocity 
(distance unit/time unit), v. That is,

	 q = dv.

However, if one were to go measure any of these parameters in the field 
it would quickly become obvious that there is considerable variability in 
the observations. This is true of almost all engineering equations used in 
practice. This does not mean the equations are incorrect. Rather, it may be 
that the equation refers to average conditions, or it may indicate that the 
formulas are a useful approximation. The most famous example of this 
is Newton’s law that force equals the product of mass and acceleration. 
Einstein showed that, in general, this model is incorrect. Nonetheless, it is 
easy to argue that the model is extremely useful in bridge design.

In those situations where it is not productive to treat variables as deter-
ministic, engineers employ probability theory to model the variables. 
These are known as random variables, as defined in Chapter 4, and they 
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have a probability distribution. Probability mass functions (pmfs) are 
used for discrete variables, and probability density functions (pdfs) are 
used for continuous variables. Many of the more useful functions are used 
so often that they are given special names. These common functions, and 
their properties, will form the focus of this chapter.

It is important to note that many engineering formulas, which from 
all outward appearances are deterministic, actually include these prob-
abilistic concepts. For example, most design codes (e.g., roadway, pave-
ment mixture, bridge, etc.) are developed with probabilistic theory and 
then written in a manner that appears deterministic to an unsophisti-
cated reader. For example, the rules on reinforcing bar size in pavement 
design manuals are deterministic even though the recommended values 
are based on statistical theory. A conventional method of accounting for 
variability is the safety factor that is inherent in many designs. The com-
monly accepted reason for this is that most engineers would not be able to 
understand the probability and statistics concepts if they were written in a 
more mathematically rigorous manner.

5.2 Dis crete Distributions
A random variable X is referred to as a discrete random variable when 
the set of all possible outcomes (sample space) is countable. This does not 
mean that one would ever count the outcomes; rather, it simply refers to 
whether it would be possible to count them. While there are many pmfs, 
there are only a few discrete distributions that are often used in transpor-
tation. For example, the number of times that a new video imaging vehicle 
detection system detects a vehicle correctly, out of n passing vehicles, can 
be modeled by a binomial distribution. Meanwhile, pedestrian arrivals at a 
crosswalk during the given time period may be modeled by a Poisson dis-
tribution. Similarly, crash counts at an intersection may be modeled by a 
Poisson distribution or a negative binomial distribution. We briefly intro-
duce some of those distributions in this chapter, but for more extensive 
discussions on discrete distributions, see the book by Casella and Berger 
(1990). Additionally, for a complete treatment of the various families of 
discrete distributions, please refer to Johnson and Kotz (1969).

5.2.1  Binomial Distribution

The binomial distribution is used to model the number of successes in n 
independent trials where each trial has a binary outcome: either success 
(when an event occurs) or failure (when an event does not occur). Let p be 
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the probability of success. Taking integer values between 0 and n, a ran-
dom variable has a binomial distribution if its probability mass function 
(pmf) is given by

	 P X x
n
x

p px n x( ) ( ) ,= =






− −1 	 (5.1)

for x = 0,1,2,…,n. The binomial distribution is often denoted as Bin (n, 
p), where n is the number of trials and p is the probability success. We 
get different binomial distributions with different n and p. Figure 5.1 
illustrates three binomial distributions (pmf): (a) with n = 10 and 
p = 0.2, (b) with n = 10 and p = 0.5, and (c) with n = 10 and p = 0.8. It 
can be observed from the plots for fixed n that as p gets close to 0.5, 
the distribution becomes more symmetric, and the distribution is sym-
metric at p = 0.5. It should be noted that each outcome (say when n = 10 
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(c) n = 10, p = 0.8 

Figure 5.1  Binomial distributions with (a) n = 10, p = 0.2, (b) n = 10, p = 0.5, 
and (c) n = 10, p = 0.8.
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and x =9 in Figure 5.1a) has a nonzero probability associated with it. 
However, some of the probabilities are so small they cannot be viewed 
on the graphs.

It can be shown (see, e.g., Examples 2.2.2 and 2.3.2 of Casella and 
Berger, 1990) that the mean and variance of the binomial distribution are 
given as
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and
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Remark 5.1

Each trial underlying the binomial distribution is called a Bernoulli trial. A ran-
dom variable X is said to have a Bernoulli (p) distribution if

	 P(x = 1) = p  and  P(x = 0) = 1−p	 (5.4)

which can also be written as

	 P(X = x) = px(1−p)1−x, x = 0,1.	 (5.5)

The binomial random variable Y ~ Bin (n, p) can be regarded as the sum of 
n independent Bernoulli random variables; that is,

	
Y Xi

i

n

=
=

∑
1

where Xi ~ Bernoulli (p).

Example 5.1

The manufacturer of a new video imaging vehicle detection system advertises 
that the nondetection rate (the probability of not detecting a vehicle when 
there is a vehicle present) is known to be 0.05. What is the probability that 
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more than two out of the next ten vehicles that pass the imaging system are 
not detected?

In this case, the expected number of vehicles that would not be detected, 
out of the ten that pass the site, can be modeled by a binomial distribution 
composed of ten trials and a nondetection rate of 0.05 as the success probabil-
ity: p = 0.05. Let X be the number of vehicles that are not detected by the video 
system in the ten passing vehicles. Then we have the following:
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There is only a 1.16% chance that more than two out of ten vehicles are not 
detected by this imaging system. It should be noted that this assumes the manu-
facturer is correct in its assertion. Methods for measuring these types of claims 
will be addressed in Chapter 9.

5.2.2  Poisson Distribution

A Poisson distribution is used to model the number of occurrences (or 
arrivals) in a given time interval (or space) when it can be assumed that 
the probability of observing an occurrence does not depend on time and is 
proportional to the waiting time (if the waiting time is small). See Casella 
and Berger (1990) for a set of rigorous assumptions underlying the Poisson 
distribution. The mean of a Poisson distribution (λ) is assumed propor-
tional to the length of time. If t denotes the length of time for an observa-
tion period, then typically λ = λ0t, where λ0 is the mean of the Poisson for 
one observation time unit. A random variable, taking nonnegative integer 
values, has a Poisson distribution, denoted by Poisson (λ), if its probability 
mass function (pmf) is given by

	
P( ) exp( )

!
,X x

x

x
= = −λ λ 	 (5.6)

for x = 0,1,2,… . As can be seen above, it is completely determined by 
a single parameter, λ, which is both the mean and the variance of the 
Poisson distribution. Figure  5.2 presents plots for two Poisson pmfs: 
one with λ = 1 and the other with λ = 5. It can be observed from the 
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plots that as λ gets larger, all else being equal, the distribution becomes 
more symmetric.

Example 5.2

The arrival rate at a pedestrian crosswalk is known to be 0.2 arrival per 
minute—in other words, a pedestrian arrives every five minutes on average. 
What is the probability that there will be no pedestrian arrivals in the next 
minute? What is the probability there will be more than two arrivals?

In this case, the number of pedestrian arrivals per minute at a crossing can 
be modeled by a Poisson distribution having an arrival rate of 0.2 (i.e., λ = 0.2). 
Let X be the number of arrivals in a minute. Then we have the following:

	
P X =( ) =

−( ) = −( ) =0
0 2 0 2
0

0 2 0 8187
0exp . .

!
exp . . .

There is about an 82% chance that no pedestrian arrives at a crossing in the 
next minute. Also,
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There is only an 0.11% chance that more than two pedestrian arrivals will be 
observed in the next minute.
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Figure 5.2  Poisson distributions with (a) λ = 1 and (b) λ = 5.
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5.2.3  Negative Binomial Distribution

In probability and statistics, the negative binomial distribution is often 
used to model the number of failures observed before a fixed number of 
successes (say, r) in independent Bernoulli trials. Let p be the probabil-
ity of success. A random variable, Y, taking nonnegative integer values 
has a negative binomial distribution denoted by NB (r,p) if its pmf is 
given by

	

P Y y
r y

r y
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(5.7)

y = 0,1,…, where Γ(×) is a gamma function. The mean and variance can be 
shown to be
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and

	
Var Y y

r y
r y

p p rr y

y

( ) =
+( )

( ) +( ) −( ) −
−

=

∞

∑ 2

0

2

1
1

1Γ
Γ Γ

pp
p

r p
p

( ) =
−( )2

2 2

1
,
	
(5.9)

respectively (see, e.g., Casella and Berger, 1990).
We get different negative binomial distributions with different r and p. 

Figure 5.3 presents examples of negative binomial distributions (pmf) for 
different values of r and p.

The negative binomial distribution may also be defined in terms of the 
number of trials, X, until the rth success is observed. Using the relation-
ship that X = r + Y , the pmf for the number of trials can be given as fol-
lows (see, e.g., Casella and Berger, 1990):

	
P X x

x
r x r

p pr x r=( ) =
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( ) − +( ) −( ) −Γ
Γ Γ 1

1
	

(5.10)

for x = r, r + 1,… .
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Remark 5.2

The negative binomial distribution with r = 1 is specifically called a geometric 
distribution, denoted by geometric (P). It can be used to model the number of 
trials until the first success is observed. The pmf can be written as

	 P X x p p
x=( ) = −( ) −

1
1

	
(5.11)

for x = 1,2,…, with the mean and variance given by E(X) = (1/p) and  
Var(X) = (1–p)/p2, respectively.

So far, the negative binomial distribution is defined using the parameters p 
and r. Other parameterizations of the negative binomial distribution are also 
available. One such parameterization that is often used in transportation, espe-
cially in safety analysis, is given in terms of its mean. Let us denote the mean of 
the negative binomial distribution given in Equation 5.8 by λ. Thus,
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−( )r p
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1
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(5.12)
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Figure 5.3  Negative binomial distribution with (a) r = 1, p = 0.2, (b) r = 2, p = 
0.2, and (c) r = 2, p = 0.5.
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Then it can be shown that

	
Var Y
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p r
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(5.13)

Because (1/r)λ2 is positive, Var(Y) is larger than E(Y), and the negative bino-
mial distribution can be used in place of the Poisson distribution to model the 
count data when the observed variance of data is greater than the mean (the 
phenomenon referred to as overdispersion). In fact, the Poisson distribution 
can be viewed as a limiting case of the negative binomial distribution: r → ∞ 
and p → 1 such that r(1–p) → λ (see, e.g., Casella and Berger, 1990). Under the 
parameterization given in Equation 5.12, the negative binomial distribution in 
Equation 5.7 can be redefined as
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(5.14)

If r is also replaced by k–1 in Equation 5.14, then we have the form of the 
negative binomial distribution that is often used in safety analysis to model the 
number of crashes, namely,
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(5.15)

y = 0,1,2,… . The parameter k is often referred to as the negative binomial dis-
persion parameter. The examples of the negative binomial distribution given in 
the form of Equation 5.15 can be found in Chapter 11.

5.3 Co ntinuous Distributions
When the values of the variable can theoretically take on any value on the 
real number line or an interval, the variable is said to be continuous (see 
Chapter 4). For example, traffic engineers have found it useful to model 
variables—such as travel times, speeds, and stopping distances—as hav-
ing continuous distributions. Many distributions used in transportation 
are nonnegative because most physical phenomena that engineers are 
interested in do not have negative values. For example, the lognormal dis-
tribution is used to model forces in bridge engineering and it does not 
allow negative values. As an aside, sometimes transportation engineers 
use pdfs that allow negative values even when the phenomenon of interest 
is nonnegative. For example, a transportation professional may find it con-
venient to model link travel times with a normal pdf. However, in these 
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situations the probability of a negative value typically is very small and, as 
a result, can be ignored. The important point is that all models will have 
error, and the engineer must discern whether the information provided by 
the model is useful.

Note that in practice the empirical values of these variables may be 
rounded to decimal units. For example, speeds are usually recorded to 
only a few decimal points (depending on the detector technology used), 
but they are frequently modeled as coming from a continuous distribu-
tion. In practice, transportation engineers tend to use only a few of the 
available continuous pdfs. These commonly used distributions require 
special attention and are listed below.

5.3.1  Normal Distribution

Perhaps the most commonly used distribution by transportation engi-
neers is the normal distribution. This is sometimes referred to as the 
Gaussian distribution, and is more commonly known to students as the 
bell curve. This distribution is popular for three reasons. First, it has a 
central role in transportation statistics. As described by the central limit 
theorem (CLT) in Chapter 6, the averages of statistically independent 
measurements have a probability distribution that closely approximates a 
normal distribution. When estimates are averages of large ensembles they 
will often be approximately normally distributed. Secondly, the normal 
distribution is used as the motivation for most statistical tests (such as the 
t-test) so that those tests are typically appropriate when applied to average 
speeds and travel time indices. Finally, the normal pdf is easy to opti-
mize and is a commonly used model for errors and survey measurements. 
Therefore, while many traffic phenomena are the result of myriad inputs, 
if the results are additive, then the resulting random variable will be nor-
mally distributed. For example, there are many factors that affect walking 
speed. However, because these effects are both additive and independent, 
it can be readily shown empirically that walking speed may be modeled 
by the normal distribution.

A random variable is said to have a normal distribution with mean µ 
(center and mode of the normal distribution) and variance σ2, if its pdf 
has the form

	 f x e
x
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Note:  The normal distribution is often written in short form as N(μ,σ2). For 
example, N (10, 2) would imply that a variable is distributed normally with 
a mean of ten units and a variance of two units. However, some authors 
use the short form N(μ,σ). Therefore, it is critical that the engineer under-
stands the format a particular author is using so he or she knows whether 
the second parameter is variance or standard deviation.

Both the variance and standard deviation, σ, are indicators of spread. 
For the normal distribution, the latter is more often used as a measure of 
spread because of some special structure inherent in the pdf, which will 
be discussed later. Also, the variance is given in squared units and is often 
awkward to use directly. The larger σ is, the more spread out the distribu-
tion will be. The parameters of the normal distribution, µ and σ, are fre-
quently estimated by the sample mean (X−) and sample standard deviation 
(S). A normal distribution with µ = 1 and σ = 1 is known as the standard 
normal distribution, denoted by N (0, 1). Figure 5.4 shows the pdf of the 
standard normal distribution.

Note that there are no closed-form solutions for finding the area (e.g., 
calculating the probability) under the normal pdf. The integration has 
to be done using numerical methods. However, for most of the common 
distributions, these are already programmed for engineers. For example, 
Excel• has a function for calculating the probability for any normal 
distributions as long as the mean, variance, and range of interest are 
known.
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Figure 5.4  Density of standard normal distribution.
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Note: P rior to the advent of computers it was common to use tables to 
look up the values of the normal distribution. Needless to say, it would 
be impossible to develop the tables for all combinations of means and 
variances. Instead, statisticians would transform a given distribution to an 
equivalent normal distribution with a mean of 1 and a standard devia-
tion of 1—the standard normal distribution. Many textbooks still use this 
approach, but we consider this method a bit archaic given the computer 
and software technology now available to students and researchers. 
Readers can refer to Ott and Longnecker (2009) for a method for finding 
the normal percentiles from a table.

Normal percentiles (quantiles) can easily be computed by JMP. In order 
to demonstrate how to obtain quantiles from the normal distribution 
using JMP, we start by assuming that we are interested in the standard 
normal distribution. If we want to get only one percentile, we can add a col-
umn to the data and choose the formula from the pull-down menu under 
“Cols” in the JMP menu bar. Then, in the formula menu we can choose 
“Normal Quantile” as shown in Figure 5.5, and insert the percentage that 
we want to use and choose “apply.” Otherwise, for a set of percentiles, we 
first enter the percentages that we are interested in into a JMP data table 
column. For example, we enter 0.01, 0.05, 0.1, 0.9, 0.95, and 0.99 in column 

Figure 5.5  Formula menu from JMP.
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1 (see column 1 of Figure 5.6). Then we create a new column, say column 
2, and follow the sequence shown in Figure 5.5. The output from this com-
mand is shown in Figure 5.6. The percentiles that we want are in column 2. 
See “Probability Functions” from JMP Help for more explanations on how 
to obtain probabilities and quantiles for normal distributions.

For example, the 97.5th percentile from a standard normal distribution 
is approximately 1.96—a familiar value to many transportation profes-
sionals. In other words, 95% of the values in any normal distribution will 
lie between plus and minus 1.96 standard deviations from the mean (e.g., 
each tail will hold 2.5% of the probability).

So far we have been exploring the standard normal distribution and 
have shown how to obtain percentiles from it. Suppose that X has a nor-
mal distribution with mean µ and variance σ2. Then a standard normal 
random variable, typically denoted by Z, can be obtained from X using 
the equations

	
Z X= − µ

σ 	
(5.17)

and

	 X µ Z= + σ .	 (5.18)

Thus, if we know the percentiles from the standard normal distribution, 
the percentiles for any other normal distributions can also be obtained by 
plugging in the values in Equation 5.18.

Column 1 Column 2

0.01 –2.3263479

0.025 –1.959964

0.05 –1.6448536

0.1 –1.28155157

0.9 1.281585157

0.95 1.64485363

0.975 1.95996398

0.99 2.32634787

Figure 5.6  Output of standard normal percentiles obtained by JMP.
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Example 5.3

Say that X has a normal distribution with mean 55 Mph and standard deviation 
3 mph. Then the 2.5th percentile can be obtained by

	 55 + 3(−1.96) = 55 − 3(1.96) = 49.12

and the 97.5th percentile can be obtained by

	 55 + 3(1.96) = 60.88.

It follows that the central 95% of this normal distribution lies between 49.12 
and 60.88.

5.3.2  t-Distribution

The t-distribution has a shape similar to that of the normal distribu-
tion (symmetric and bell shaped), but has heavier tails. This means that 
there is more area under the t-distribution pdf than under the normal 
pdf far from the mean. The t-distribution can be used to model averages 
when the original data have a large number of outliers. Recall that the 
gamma function is defined by the equation Γ( )x t e dtx t= ∫∞ − −

0
1  for any 

positive x. The pdf corresponding to a t-distribution with ν degrees of 
freedom is
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This pdf is symmetric about zero, and provided that ν ≥ 3, the variance of 
a t-distributed random variable is

	
Var t v

vv( ) =
− 2 	 (5.20)

and the mean is zero. A t-distribution with ν = ∞ is a standard normal dis-
tribution, and a t-distribution with ν = 1 is a Cauchy distribution (Johnson 
et al., 1994) that has neither a mean nor a variance. We can obtain graphs 
showing t-distributions with many different degrees of freedom. Figure 5.7 
shows a t-distribution with 3 degrees of freedom.
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Percentiles for t-distributions can be obtained from JMP by referring to 
the JMP manual for details. The distribution of the test statistic

	  t X
S n

= − µ0

/
,  

that will be introduced in Chapter 7 also has a t-distribution with n – 1 
degrees of freedom.

5.3.3  Lognormal Distribution

The lognormal distribution is an asymmetric heavy-tailed distribution 
(skewed to the right) that is useful in many engineering studies. The obvi-
ous advantage is that the distribution is nonnegative and is heavy tailed; 
therefore, it has some advantages over the normal distribution (which can 
have values to negative infinity and a few outliers) for modeling physical 
phenomena. In transportation it has been used in studies of signing and 
visibility. For example, see Bachman et al. (2006), where a log transform 
was used before implementing t-tests.

Data are lognormally distributed when the log transform of the data is 
normally distributed. That is, for a random variable, X, if log(X)~N(μ,σ2), 
then X ~ LN(μ,σ2). Its pdf is
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	 (5.21)

for nonnegative x and is zero elsewhere. Its mean is

	 E X e( ) /= +µ σ2 2 	 (5.22)
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Figure 5.7  t-density with 3 degrees of freedom.
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and variance is

	 Var X e( ) ( ).= −µ σ2 2 1 	 (5.23)

Note that the parameters of the lognormal distribution, μ and σ2, are 
not the mean and variance, but the shape and scale parameters of the 
distribution. Usually the estimated mean and standard deviation for log-
transformed data are reported as the shape and scale parameters, respec-
tively. For example, the histogram in Figure 5.8 comes from a pavement 
marking visibility study in rainy conditions (Carlson et al., 2007). The 
distance from pavement marking to detection (detection distance) is the 
variable of interest.

We can see that the overlaying lognormal density to the histogram fits 
the data reasonably well. There are some people who identify the marking 
relatively quickly (e.g., at 100 m), but there are a relatively large proportion 
of people who need much longer (e.g., greater than 250 m). The empirical 
data are asymmetric and, in this situation, the lognormal is a reasonable 
model. The estimated shape parameter (μ) is 5.28 and the estimated scale 
parameter (σ2) is 0.27.

5.3.4  Exponential Distribution

The exponential distribution is often used to model arrival times of 
vehicles and pedestrians at intersections and other points of interest. 
Should the number of arrivals satisfy the following assumptions, then the 

100 150 200 250 300 350
Lognormal (5.27661,0.26653)

Figure 5.8  Pavement marking detection distance data with lognormal density 
overlaid.
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exponential distribution is usually an appropriate model for arrival times. 
These assumptions are as follows:

	 1.	The number of arrivals can be modeled as a stationary Poisson 
process (the mean of the Poisson process does not change with 
time).

	 2.	The number of arrivals at any particular time interval is at most one.

	 3.	The arrivals in different time periods are independent.

The probability density function for the exponential distribution is 
given by

	
f x e x( ) = −1

β
β

	 (5.24)

for x ≥ 0. The mean of the exponential distribution is β (the expected time 
until a single arrival), and the variance is β2. The exponential density is 
considered to be heavy tailed—hence, exponential data typically exhibit 
many more outliers than normally distributed data. The exponential dis-
tribution is often written EXP(β); that is, it is a one-parameter pdf in con-
trast to the normal and lognormal pdfs that require two parameters to 
define the function. As an example, consider the pedestrian data obtained 
at a Tucson, Arizona, site (Fitzpatrick et al., 2006) shown in Figure 5.9. 
The sample mean for this data is 216 and the sample standard deviation 
is 190. The fact that they are nearly equal is characteristic of data from an 
exponential distribution.

The exponential distribution is used in many transportation applica-
tions. For example, it has been used for modeling walking distance to tran-
sit stops, meaning that most people who take transit are willing to walk 
short distances and fewer are willing to walk long distances. Knowing this 
type of information is vital for designing transit systems and identifying 
stop locations.

5.3.5  Gamma Distribution

The gamma distribution used by transportation engineers to model 
headway or spacings (often measured as time) between vehicles has an 
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extra parameter, β. The gamma distribution has a probability density 
function

	
f x x e x
( )

( )

/
=

− −α β

αα β

1

Γ 	
(5.25)

for x ≥ 0. The mean of this more general gamma distribution is αβ and 
its variance is αβ2. The parameter α is called the shape parameter and the 
parameter β is called the scale parameter. The distribution is written as 
Gamma(α, β).

The gamma distribution has heavy tails as Figure 5.10 demonstrates. 
This example depicts headway data collected by a Texas A&M University 
graduate student for her transportation statistics class.

The exponential distribution is a special case of the gamma distribution 
where α = 1 in the gamma distribution.

5.3.6  Chi-Square Distribution

It should be apparent to the reader that there are a number of common pdfs. 
Some of these—lognormal, exponential, gamma—are used to model physical 
phenomena, others are used almost exclusively for statistical tests, and some 
are used for both (e.g., normal distribution). The chi-square distribution is 

0 100 200 300 400 500 600 700 800 900
Inter-Arrival Time in Sec

Figure 5.9  JMP output containing the histogram of the interarrival time data 
with exponential density overlaid.
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used almost exclusively for statistical testing. The pdf corresponding to a 
chi-square distribution with ν degrees of freedom is given by
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The chi-square distribution is a special case of the gamma distribution, 
as can be seen from the following: If X1,X2,…,Xn are independent standard 
normal random variables, N(0,1), then ∑ =i

n
iX1
2  has a gamma distribution 

with α = n/2 and β = 2. That distribution is also called a chi-square dis-
tribution with n degrees of freedom. The chi-square distribution is most 
commonly used to model the distribution of variance estimates from nor-
mally distributed data. In particular, for independent normally distrib-
uted data with mean μ and variance σ2 the ratio
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has a chi-square distribution with n – 1 degrees of freedom (see Chapter 6).

Figure 5.10  Histogram of the headway data with gamma density overlaid.
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Figure  5.11 shows a graph of a chi-square density with 5 degrees of 
freedom.

5.3.7  F-Distribution

The F-distribution is encountered in many statistical hypothesis-testing 
situations, including ANOVA, regression, and tests for equality of vari-
ances that will be introduced in Chapter 7. The F-distribution arises with 
the distribution of the ratio of independent chi-square random variables 
(each divided by its degrees of freedom). That is, for two independent chi-
square random variables, χ1 1

2
,df  and χ2 2

2
,df , with df1 and df2 degrees of 

freedom, respectively,

	
F

df
df

df

df
=

χ
χ

1 1
2

2 2
2

1
2

,

,

( )
( )

/
/

	 (5.27)

has an F-distribution with df1 and df2 degrees of freedom. The pdf for the 
F-distribution is complicated and infrequently used by engineers. The pdf can 
be found by referencing Johnson et al. (1994). These ratios commonly occur 
as ratios of variance estimates based upon normally distributed data. The 
order for the degrees of freedom for the F-distribution is relevant and cannot 
be interchanged. For example, Figure 5.12 shows F-densities with (a) df1 = 2 
and df2 = 5 and (b) df1 = 5 and df2 = 2 degrees of freedom, respectively.

Percentiles for F-distributions can be obtained from JMP, as in the case 
of normal percentiles (see the JMP manual for details). For example, the 
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Figure 5.11  pdf of chi-square distribution with 5 degrees of freedom.
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95th percentile for an F-distribution with 2 and 5 degrees of freedom can 
be obtained as 5.786.

5.3.8  Beta Distribution

The parent of the F-distribution is the beta distribution. Besides parenting 
the F-distribution the beta distribution is a very flexible distribution for 
modeling random variables that are restricted to the interval of 0 to 1. Its 
pdf is

	
f x x x( ; , ) ( )

( ) ( )
( ) .α β α β

α β
α β= + −− −Γ

Γ Γ
1 11 	 (5.28)

It can be seen that when both α and β are equal to 1, the uniform dis-
tribution is a special case of the beta distribution. In Chapter 14 we will 
discuss Bayesian estimation. The beta distribution will be used as the 
(conjugate) prior distribution for the binomial distribution. Different val-
ues of α and β give rise to differently shaped pdfs, as can be seen from 
Figure 5.13.

5.4 Co ncluding Remarks
It is the authors’ experience that students often have trouble with the con-
cept of probability distributions. The easiest way to understand them is 
by realizing that they provide an easy way to describe the frequency of 
outcomes. If the outcomes we are interested in are integers—number of 
cars, number of people—then a pmf is used. The probability that a par-
ticular outcome x will occur is simply the value of the pmf for that value 
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Figure 5.12  F-densities with (a) df1 = 2, df2 = 5 and (b) df1 = 5, df2 = 2.
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x. If the outcomes are continuous, then a pmf is used. In this situation the 
probability of the particular event x occurring is the area under the curve. 
Because we need to identify an area, the events are written as ranges of 
outcomes. For example, if X is speed of vehicles, the probability that a 
given vehicle will be speeding is simply the area under the curve for all 
values x greater than the speed limit. Note that if we were interested in 
the probability of a vehicle going exactly 60 mph the probability would 
be zero. If we meant instead that the speed was around 60 mph, then you 
would have to calculate the probability of being between 59 and 61 mph 
(or 55 and 65).

As described earlier, that there are a number of common pmfs and pdfs 
used by transportation professionals. Note that some of these—lognormal, 
exponential, gamma—are used to model physical phenomena; others are 
used almost exclusively for statistical tests (e.g., F-distribution); and some 
are used for both normal and t-distributions.
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Figure 5.13  Beta densities with (a) α = 3, β = 2 and (b) α = 3, β = 7.
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Appendix: Table of the Most Popular 
Distributions in Transportation Engineering

Distribution
Short 
Form Typical Formula Mean Variance

Binomial Bin (n, p) P X x
n
x

p px n x=( ) =






−( ) −1 np np(1 − p)

Bernoulli
Bernoulli 

(p) P X x p px x=( ) = −( ) −1 1 p p(1 − p)

Poisson Poisson (λ) P
exp

!
X x

x

x

=( ) =
−( )λ λ

λ λ

Negative 
binomial

NB (r, p) P Y y
r y

r y
p pr y=( ) =

+( )
( ) +( ) −( )Γ

Γ Γ 1
1

r p
p

1−( ) r p
p

1
2

−( )

Geometric
Geometric 

(p) P X x p p x=( ) = −( ) −1 1 1
p

1
2

−( )p
p

 Normal N (µ, σ2) f x µ e
x µ

( ; , )σ
πσ

σ2
1
21

2

2

=
−

−
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(degrees of 
freedom) ≥ 2

ν
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Lognormal 
distribution
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x

e x µ( ; , ) [ln( ) ] /( )σ
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σ2 21
2

2 2= − − eµ σ+ 2 2/ e e2 2 2 1µ σ σ+ −( )

Exponential EXP (β) f x e x( ) = −1
β

β β β2
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gamma

Gamma (α, 
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f x x e x
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/
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− −α β
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( )α β

α β
α β
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Homework Problems

	 1.	 It is known that a violation rate of red-light running at a particular 
intersection is 0.1. What is the probability that more than two out of 
twenty entering vehicles run red lights?
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	 2.	 In problem 1, how would you model the number of entering vehicles 
at an intersection until the first red-light violation is observed? What 
is the probability that the number of entering vehicles (until the first 
red light runner is observed) is 5 or less?

	 3.	The mean number of crashes per month at an intersection is known to 
be 1. What is the probability that there will not be a crash in the next 
month? What is the probability there will be more than two crashes?

	 4.	For a normal distribution with mean equal to 55 and standard devia-
tion equal to 5, find the 5, 25, 50, 75, and 95% points (percentiles).

	 5.	For t-distributions with 1, 2, 5, 25, and 50 degrees of freedom, find 
the 5 and 95% points.

	 6.	A random variable U is said to have a standard uniform distribution 
if its pdf is

	
f u

u
( )

,
,

=
≤ ≤




1 0 1
0

if
elsewhere.

		  Calculate the mean and variance for a standard uniform distribu-
tion. Find its 5 and 95% points.

	 7.	Find the 5 and 95% points for a lognormal distribution with param-
eters μ = 2 and σ2 = 8. (Hint: Find the percent points for a normal 
random variable X and use the fact that a lognormal random vari-
able can be expressed as eX.)

	 8.	For chi-square distributions with 1, 10, and 30 degrees of freedom, 
find the 1, 5, 95, and 99% points.

	 9.	For F-distributions with (1, 2) and (2, 1) degrees of freedom, find the 
5 and 95% points.
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6C h a p t e r  

Sampling Distributions

6.1  Introduction
In Chapters 4 and 5, we introduced the concepts of probability, random 
variables, and the distribution of populations. In probability, it is assumed 
that we know the population distribution, and our goal is to find the prob-
ability, or chance, of observing a particular event. For example, if we know 
that crash counts have a Poisson distribution with a known mean value 
(λ), we can calculate the relevant probabilities. In statistics, the character-
istics or distribution of the population is often unknown, and the goal is 
to estimate unknown population characteristics, or the distribution based 
on the sample data. For example, we might have monthly crash frequency 
data, and from this we would like to estimate the average monthly crash 
frequency (λ). Once we have this information, we can use our knowledge 
of probability to make inferences.

Any subset of the population is called a sample. The population char-
acteristic of interest is called a parameter. Say that we are interested in the 
average travel time from A to B during the morning peak hour on week-
days. If we could track all vehicles traveling from A to B, we would have 
the entire population of travel times and could answer questions directly. 
Often it is not possible to obtain the population. For this example, a sample 
of a number of probe vehicles traveling from A to B would be recorded. 
We would then use the sample data to make inferences about the pop-
ulation. For instance, the population mean parameter, µ (e.g., average 
travel time from A to B), can be estimated by the sample average travel 
time of the probe vehicles ( x ), and the population variance parameter,
σ2, can be estimated by the sample variance ( s2 ). Note that while we can 
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estimate the population parameters ( μ, σ2 ) with the sample mean and 
variance, respectively, we have not discussed the accuracy of these esti-
mates. Answering this type of question will be a concern in the chapters 
that follow.

In the previous example, the true population average travel time (aver-
age travel time based on all vehicles traveling from A to B in the specified 
period) is the parameter of interest. This is, by definition, unknown. The 
sample average travel time is an estimate.

In fact, any quantity computed based on a sample is called an estimate, 
and the function resulting in the value estimate is called an estimator. For 
instance, the functional form of the sample mean before we plug in any 
values from the sample is an estimator. An estimate (describing a character-
istic of a sample) is a counterpart of a parameter (describing a characteristic 
of a population) as a sample is a counterpart of a population.

As in the above example, an estimator (here a sample mean) is used to 
estimate the unknown population parameter (population mean). Because 
a sample is only part of the population, an observed (computed) value of 
the estimator will not be exactly the same as the value of the parameter 
(although we hope that they are close). More importantly, if a different 
sample is chosen, the observed value of the estimator will also change. That 
is, the estimate varies from sample to sample. Consequently, an estimator 
is a random variable, and we will make use of this fact to help quantify 
the accuracy of a given estimator. Because the value of an estimator will 
vary for different samples, they are often referred to as a sampling distri-
bution. However, as this only refers to how its values are obtained, all the 
properties of random variables that were described in Chapters 4 and 5 
still apply.

6.2  Random Sampling
Clearly, samples from a population of interest can be selected in many 
different ways. Intuitively, the sample should be representative of the pop-
ulation if we are going to use this information to draw a conclusion about 
the population. One of the easiest ways of selecting a sample is to choose 
individuals or items that are easily accessible to a collector based on conve-
nience. This type of sample is called a convenience sample. Unfortunately, 
the convenience sample is subject to an unknown bias that cannot be 
quantified. That is, when a value of estimator is obtained based on a 
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convenience sample, one cannot quantify how far the estimate is from the 
true parameter value, which hinders generalizing any conclusions beyond 
the observed sample data. For example, if probe vehicles are dispatched 
when it is convenient to the drivers or the data collector, there is no way 
of knowing how close the resulting sample average—the travel time based 
on the probe vehicles—is to the true unknown average travel time. The 
probe drivers might wish to travel during off-peak periods because they 
are paid by the trip and can make more trips during this time because 
speeds are faster. This behavior would clearly bias the results, although the 
size of bias will mostly be unknown. In short, convenience sampling is not 
a recommended way of selecting a sample when we would like to make 
inferences about a population.

A preferable way of selecting the sample data in statistics is random 
sampling, which is also called probability sampling. Probability sampling 
is a method such that each unit in the population has a known probabil-
ity of selection, and a chance method is used to choose the specific units 
to be included in the sample. Samples chosen by this selection method 
are objective and free from unknown biases, and are representative of the 
population. Types of probability samples include a simple random sample, 
a stratified random sample, and a cluster sample. The definition for a sim-
ple random sample is given below.

A simple random sample of size n is a sample chosen in such a way that 
every possible subset of size n has the same chance of being selected as 
a sample.

It is important to note that while the definition is straightforward, this 
type of sampling is sometimes challenging. For the travel time examples, 
the engineer should randomly assign start times for each driver during 
the period of interest. However, the probe-vehicle drivers would also have 
to be given specific instructions regarding how they should drive their 
cars. If the probe-vehicle drivers all tend to go faster than the average, 
this too would bias the results. A common way to remove this bias is to 
instruct the probe-vehicles drivers to (safely) follow a specific vehicle that 
has been chosen randomly from the traffic stream.

Simple random sampling ensures that each individual or object in the 
population has the same chance of being included in a sample. Random 
sampling is a fundamental assumption for most inferential procedures in 
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statistics. If this assumption does not hold, then it is nearly impossible to 
assess the uncertainty associated with an estimate based on the sampling 
distribution. This textbook assumes that samples are randomly generated, 
unless otherwise noted. In practice, this randomization can be difficult to 
implement, and a considerable amount of time is often spent ensuring that 
this assumption is valid. Readers who are interested in more in-depth dis-
cussions of various methods of random sampling may refer to the books 
by Lohr (1999) and Cochran (1977).

6.3  Sampling Distribution of a Sample Mean
The sample mean introduced in Chapter 3 is an estimator because its value 
is computed from the sample data. Intuitively, the value of the sample 
mean will be different for different samples, which is called sampling vari-
ability. To illustrate this point, let us consider a small finite population 
consisting of five speed measurements obtained from five vehicles.

Let µ and σ2 denote the mean (population mean) and variance (popula-
tion variance) of this population given in Table 6.1, respectively. The values 
of µ and σ2 are

	 µ = 



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Notice that because we have sampled the entire population, in this case 
five vehicles, we can readily calculate the population mean and variance.

To illustrate the point, let’s say that instead of sampling the entire 
population, we could only sample two observations from the population 
given in Table 6.1. Obviously, we cannot sample the same vehicle twice. 
This type of sampling is referred to as sampling without replacement and, 
unless otherwise noted, is assumed throughout the text. Considering all 
possibilities, there are ten different ways of selecting a sample size of 2, as 
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shown in Table 6.2. The sample mean, x , from each possible pair is also 
listed.

Assuming that a sample is obtained by simple random sampling, each 
of the above ten samples has the same chance of being selected (i.e., 1/10). 
Given (1) the entire population of sample means as shown in Table 6.2, 
and (2) the probability associated with each sample mean, we can iden-
tify the sampling distribution of the estimator, X , directly as shown in 
Table 6.3.

Let µX  and σX
2  denote the mean and variance of X . Again, using the 

method from Chapter 4, it can be shown that

	 µX i
i

x= 





=
∑ 1

10
1

10

Table 6.1  Population of Vehicle Speeds

Vehicle Number 1 2 3 4 5
Speed: x (mph) 62 55 66 67 58
Prob(x) 1/5 1/5 1/5 1/5 1/5

Table 6.2  All Possible Samples of Size 2 and 
the Corresponding Sample Means

Sample 
Number (i)

Vehicles 
Selected

Speeds 
(x1, x2)

Sample 
Mean (x–)

1 1, 2 62, 55 58.5
2 1, 3 62, 66 64.0
3 1, 4 62, 67 64.5
4 1, 5 62, 58 60.0
5 2, 3 55, 66 60.5
6 2, 4 55, 67 61.0
7 2, 5 55, 58 56.5
8 3, 4 66, 67 66.5
9 3, 5 66, 58 62.0
10 4, 5 67, 58 62.5

Table 6.3  Distribution of X

x 56.5 58.5 60 60.5 61 62 62.5 64 64.5 66.5

Prob( x ) 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10
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It can be observed from the above experiment that:

	 1.	The value of X  varies from sample to sample and is not the same as 
the population mean (μ).

	 2.	The mean of the distribution of X  ( µX ) is the same as the popula-
tion mean (μ).

	 3.	The variance of the distribution of X  ( σX
2 ) is smaller than the pop-

ulation variance (σ2).
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In general, the following relationships hold between µX  and μ, and σX
2  

and σ2, respectively:

	 µ µX = . 	 (6.1)

For an infinite population,

	 σ σ
X n
2

2
= 	 (6.2)

and for a finite population,

	
σ σ

X n
N n
N

2
2

1
= −

−




 	 (6.3)

where N is the population size and n is the sample size. The factor 
N n N−( ) −( )1  is called the finite population correction (FPC) and can 

be replaced with 1 as long as the population size (N) is much larger than 
the sample size, n, for example, if n N  is less than 5 or 10%. Because in 
our example the population size is 5 and the sample size is 2, the finite 
population correction factor cannot be ignored:

	 N n
N

−
−

= −
−

= =
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5 2
5 1

3
4

0 75. .

Using Equations 6.1 and 6.3, we can now obtain the mean and variance 
of the distribution of X  if we only know the mean and variance of the 
population (X) as follows:

	 µ µX = = 61 6.

	 σ σ
X n

N n
N

2
2

1
21 04

2
0 75 7 89= −

−
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

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Notice that we do not actually need to know all possible samples or associ-
ated probabilities (like those given in Table 6.3) to compute compute µX  
and σX

2 . We showed these values in Tables  6.1 and 6.2 to illustrate the 
concepts. However, this was not necessary in order to use Equations 6.1 
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and 6.2. Realistically speaking, for most engineering questions it would 
be impossible to list the entire population and identify the relative prob-
abilities for each outcome.

Equations 6.1 to 6.3 are important properties of the sampling distribu-
tion of X . They can be interpreted as explained in the boxed text.

Under repeated random sampling (i.e., if we take a random sample and 
compute the sample mean many times), the values of X  will be centered 
at the population mean. The variance of X  will be smaller than the popu-
lation variance by a factor of n for an infinite population or by a factor of 
n N N n−( ) −( )1  for a finite population, regardless of the underlying popu-
lation distribution. The larger n is, the smaller the variability in the sampling 
distribution of X . In other words, the sample mean obtained based on a 
large sample will be, in general, closer to the population mean than that 
obtained based on a small sample.

The above relationship is a good attribute of random sampling, and one 
would expect that the more samples one takes, the better the resulting 
estimate. However, there are two important points from Equation 6.2 to 
keep in mind. First, this relationship is only true on average. It could be 
possible that a random sample of size 10 may yield a better estimate of the 
population mean than a random sample of 100. However, there is no way 
to know which estimate is closer to the true population mean—obviously, 
if we knew the true population mean, we would not be trying to estimate 
it. Although we know that, on average, the sample mean based on one 
hundred will be closer, it is not true of all cases all of the time. Second, 
while the sampling distribution variance decreases with sample size (and 
hence the probability that a given estimate will be close to the true mean 
increases), this increase is at a decreasing rate. In other words, the mar-
ginal benefit of taking an additional ten samples after taking ten original 
samples will be greater than taking an additional ten samples after taking 
one hundred original samples.

While the above example was useful for illustrating the general con-
cepts, in practice we will only take a single random sample of size n (rather 
than obtaining many random samples or size n) from a population. The 
value of the sample mean based upon the sample data is that it will be used 
as an estimate for the unknown population mean. It was shown that due 
to sampling variability, the value of the sample mean will not be the same 
as the population mean. Consequently, it would be useful to quantify how 
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close the observed sample mean value is to the true unknown population 
mean (i.e., the accuracy of the sample mean). One way of quantifying this 
accuracy is to provide the probability statement. For example, what is the 
probability that the mean of a random sample of size n ( X ) is within c 
(where c is a margin of error that can be tolerated) of the population mean? 
If we know the entire distribution of X  (which we did for the example 
problem, as shown in Table 6.3), this question can be answered easily. This 
type of the probability statement will play an important role in making 
inferences about the unknown population mean ( µ ) later in Chapter 7.

In practice, the size of population (N) is often infinite or very large, 
and thus it is not even possible to list all possible samples of size n (n < N) 
as we did in Table 6.2. Consequently, deriving the sampling distribution 
for the sample mean is not feasible. Fortunately, there are known theories 
(rules) about the sampling distribution of X  that we can use to find the 
associated probabilities, without computing the values of X  based on all 
possible samples. There are two different cases:

	 1.	When the population distribution is normal, i.e., when X N~ ( , ).µ σ2

	 2.	When the sample size (n) is large

In case 1, when the distribution of the population of X is normal, the 
(sampling) distribution of X  is is also normal regardless of the sample size. 
The mean and variance of the distribution of X  are given in Equations 6.1 
to 6.3. For normal sampling the sample correction is zero; thus, the finite 
correction factor in Equation 6.3 can be ignored and the distribution of X  
can be stated as follows:

	 X N n~ , .µ σ2 /( ) 	 (6.4)

Equivalently, Equation 6.4 can be expressed as

	

X
n

N− µ
σ/

~ ( , ).0 1 	 (6.5)

This is an important result and forms the basis of many of the statisti-
cal tests used by transportation professionals. However, an astute reader 
will see a flaw in this logic: If we are trying to examine the population 
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mean, how likely is it for us to know the population variance? The answer 
is that in most cases we will not know this. A natural solution would be 
to substitute the sample variance for the population variance. A consid-
erable amount of work has been conducted over the past one hundred 
years to understand the implications of this substitution. If the population 
standard deviation (σ) is replaced by the sample standard deviation (S) in 
Equation 6.5, the resulting distribution will be more spread out than the 
standard normal distribution due to extra variability introduced by S. The 
sampling distribution of the standardized X  in that case is given as the 
t-distribution with n – 1 degrees freedom:

	

X
S n

tn
−

−
µ

/
~ .1 	 (6.6)

This distribution is sometimes referred to as a Student’s t-distribution after 
its discoverer, William Sealy Gosset, who wrote under the name Student.

In case 2, there is a well-known theorem in statistics called the central 
limit theorem (CLT). This theorem describes the sampling distribution of 
X  regardless regardless of the underlying population distribution as long 
as the population variance σ2  exists (i.e., is finite). The theorem can be 
formally stated as follows:

Central Limit Theorem

If X  is the sample mean obtained from a random sample of size n of 
which the population distribution has a mean µ  and variance σ2 , then the 
distribution of X  will approach the normal distribution with mean µ  and 
variance σ2 n  as n increases.

	 X N n~ , .µ σ2( )

Using the central limit theorem, we say that the sampling distribution 
of X  can be approximated reasonably well by a normal distribution if n is 
large enough. A general rule of thumb is that “large enough” corresponds 
to n greater than 30 as long as the underlying population distribution is not 
too skewed. If the underlying population distribution is severely skewed, 
a number much larger than thirty would be needed to apply the CLT. It 
cannot be stressed enough that the CLT holds regardless of the shape of the 
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population distribution (as long as the variance exists). The population dis-
tribution may be discrete or continuous, as well as symmetric or skewed. 
Nevertheless, we can make inferences about the mean of the population 
without depending on its distribution, and this is why the CLT is often con-
sidered the most important theorem in statistics. You will see variations of 
the above equations throughout the remainder of the text whenever infer-
ences on population means are required.

The central limit theorem on the sample mean can be illustrated using 
the SA loop speed data (recorded in mph) given in Figure 3.1. The histo-
gram of the original data shows that the speed data in this case are not 
bell shaped and are skewed left. Recall that the mean and variance of the 
original data were 49.059 mph and 158.253 mi2/h2, respectively.

To illustrate the CLT, assume that we take a random sample of size n 
from the data given in Figure 3.1 and calculate the sample mean. Then 
we repeat this one thousand times and construct a histogram. Figure 6.1 
shows the results for a value of n of 5, 15 and 30.

As can be observed from Figure 6.1, the distribution of X  becomes 
more bell shaped as n increases and approaches a normal distribution. 
As stated earlier, this is a general result that is independent of the under-
lying distribution. Also, notice that the histograms of X  are all centered 
on the population mean 49.05. It is also apparent that the variability 
in the sampling distribution of X  decreases as n increases. The values 
µ̂X  and σ̂X

2  given under each histogram represent the sample mean 
and variance of those one thousand X  values. As we discussed previ-
ously, the variance of the sampling distribution of X  can be shown to be 
σ σX n2 2=  if it is computed based on infinitely many samples. Although, 
we have one thousand samples, which can be considered many but not 
infinite, the estimated variance of the sampling distribution of X , σ̂X

2  
is still very close to its theoretical value 158 253. n  for each of n = 5, 15, 
and 30.

When the population distribution is nonnormal and the sample size 
is small, we do not have any general theorem for describing the distribu-
tion of X  because it depends on the population distribution and can be 
different for each population. In this situation you will not easily be able 
to make an assessment about the quality of your estimate. There may be 
some options, but you will need more statistical knowledge than provided 
in this textbook. Under these situations, the authors recommend that you 
seek the services of a professional statistician.
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(a) Sampling distribution of X when n = 5, ˆX = 49.084, 2
X = 30.777ôµ
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(b) Sampling distribution of X when n = 15, ˆX = 49.229, 2
X = 10.417ôµ
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(c) Sampling distribution of X when n = 30, ˆX = 49.161, 2
X = 5.279ôµ

Figure  6.1  Frequency histogram for X  based on one thousand random 
samples.
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6.4  Sampling Distribution of a Sample Variance
In Chapter 3, the sample variance s2  was introduced as a measure of vari-
ability in the data. When the data are obtained as a random sample from 
the population and the population variance σ2  is unknown, the sample 
variance s2  can be used to estimate σ2. Similar to the fact that the value of 
the sample mean differs from sample to sample, the value of sample vari-
ance will also differ for different samples. This variability leads to the sam-
pling distribution for the estimator s2  as a random variable:

	 s
X X

n

i
i

n

2

2

1

1
=

−( )
−

=
∑

.

The sampling distribution of S2  is usually given by considering the fol-
lowing ratio:

	
n s

X Xi
i

n

−( )
=

−( )
=

∑1 2

2

2

1
2σ σ

.

It can be shown that the ratio given above has a chi-square distribution 
with n – 1 degrees of freedom if Xi ’s i n=( )1, , are a random sample 
selected from a normal population with mean µ  and variance σ2. Though 
it is not demonstrated in this textbook, readers interested in the proof can 
refer to Section 5.4 of the book by Casella and Berger (1990). This sam-
pling distribution will be used as a basis for making inferences about the 
unknown population variances in Chapter 7. Note that if you do not know 
the underlying population distribution, then nonparametric methods—
such as the bootstrap confidence intervals described in Chapter 13—will 
need to be used to make inferences about the sample variance. Interested 
readers may refer to the book by Keeping (1995).

6.5  Sampling Distribution of a Sample Proportion
As discussed in Chapter 3, a sample proportion is a summary statistic for 
the categorical data, which can be viewed as the sample mean if there are 
only two categories labeled as 1 (success) and 0 (failure) in the data. We 
used a notation p earlier to represent a proportion of observations cor-
responding to a certain category in the data (a sample proportion unless 
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the data are the population) in Chapter 3, and also to represent the prob-
ability of success in the binomial distribution (a population proportion) 
in Chapter 5. To avoid any confusion between the sample proportion and 
the population proportion, we are going to reserve p to denote the popula-
tion proportion hereafter, and use p̂  to denote the sample proportion. As 
in the case of the sample mean and the sample variance, the value of the 
sample proportion ( p̂ ) will be different from sample to sample, and this 
variability leads to the sampling distribution for the estimator P̂  as a ran-
dom variable.

Let us think of a population consisting of all drivers using toll roads, 
and define a random variable X representing the gender of a driver using 
toll roads as follows:

	
Xi =

0
1

if a driver is a male
if a driver is aa female.





Let p denote the population proportion of female drivers using toll roads:

	 p Prob X= =( )1 .

Suppose we select a random sample of size, n, X X Xn1 2, , ,{ } , consist-
ing of drivers using toll roads and count the number of 1s (female drivers) 
in the sample to estimate p. In Chapter 5, we learned that the number of 
successes in n independent trials can be modeled using a binomial distri-
bution. If we consider that the observation of a female driver is a success, 
the number of female drivers in a random sample of size n, ∑ =i

n
iX1 , will 

follow a binomial distribution. That is,

	
X B n pi

i

n

=
∑ ∼ ( )

1

, .

The sample proportion p̂  obtained by dividing the number of female 
drivers in the sample by n takes a form of a sample mean as follows:

	 P̂
X

n

i
i

n

= =
∑

1 .
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Recall from Chapter 5 that the mean and variance of the binomial distri-
bution Bin n p,( )  are np  and np p1−( ) , respectively. That is,

	 E X npi
i

n

=
∑







 =

1

	 Var X np pi
i

n

=
∑







 = −( )

1

1 .

Using the properties of mean and variance of random variables discussed 
in Chapter 4, we can show that

	
E P E

n
X

n
E X

n
i

n

i

i

n

i( ˆ) =








 =









 = ×

= =
∑ ∑1 1 1

1 1

nnp p= 	 (6.7)

and
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(6.8)

Similar to the distribution of the sample mean, the distribution of the 
sample proportion is centered at its corresponding population parameter 
(the population proportion, p), and the variability is smaller than that of 
the population. The exact distribution of the sample proportion can be 
obtained from a binomial distribution; however, common statistical soft-
ware will be required to calculate the binomial probabilities. If this were 
being done by hand it would be a rather tedious exercise.

Because the sample proportion is also a sample mean, the central limit 
theorem (CLT) that we discussed earlier can be applied when n is sufficiently 
large and the distribution of the sample proportion can be approximated 
by a normal distribution. This is called the normal approximation to the 
binomial distribution. The rule of thumb for determining a large enough 
n for the CLT to be applied, however, is not n > 30 anymore. How large n 
needs to be depends on p because the shape of underlying population dis-
tribution varies considerably with p. For a value of p that is close to 0 or 1, 



106    ◾    Transportation Statistics and Microsimulation﻿

the population distribution is severely skewed and requires a much larger 
sample to apply the CLT than that for p close to 0.5, for which the popula-
tion distribution is not severely skewed. A commonly used rule of thumb 
for approximating the distribution of the sample proportion by a normal 
distribution is np ≥ 5  andn p1 5−( ) ≥ . This rule, however, may not work 
well for some combinations of n and p. See Brown et al. (2001) for more dis-
cussions on this topic. If p is unknown,then p̂  may substitute for p.

We can summarize the sampling distribution of p̂  as follows:

Sampling Distribution of p̂

The mean µ p̂  and variance σ p̂
2  of a sample proportion p̂  obtained from a 

random sample of size n from a population having the population propor-
tion, p, are

	 µ ˆ ( ˆ)p E P p= =

and

	 σ ˆ
ˆ .p Var P

p p
n

2
1

= ( ) =
−( )

In addition, if np̂ ≥ 5  and n p1 5−( ) ≥ˆ , the distribution of p̂  may be 
approximated by a normal distribution with mean µ p̂  and variance σ p̂

2 , 
i.e., ˆ ~ ,p N p p p n1−( )( ) .

6.6  Concluding Remarks
Sampling is a difficult concept to learn. This chapter is intended to explain 
the difference between samples and populations. Sample statistics, such 
as the sample mean and sample variance, change from sample to sample. 
Their changes follow the sampling distributions explained in this chapter. 
Readers need to understand this so that inferences made from samples in 
the next chapters are sensible. Sampling distributions will be the skeleton 
that supports the body of our inferential methods.

Transportation professionals are often asked specific questions about 
the operations of the transportation system, such as:

Are drivers speeding on a particular roadway?

What is the percentage of high-income drivers who use a high-occupancy 
toll lane?

Is the highway system operating under HCM level of service C?
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If the engineer had complete knowledge of the system, then these types 
of questions would be readily answered. Unfortunately, this is not often 
the case, and the engineers have to obtain samples to answer the ques-
tions. Most transportation professionals are familiar with the concepts of 
sample mean and sample variance. Estimates derived from the sample can 
be used to answer these types of questions.

A more subtle question, however, is: How good is the estimate in answer-
ing the question? If you asked someone to analyze whether drivers were 
speeding and she gave you a sample mean speed based on two observa-
tions, you might feel that the estimate would not be appropriate. However, 
just how many observations are required is still an open question.

To fully answer the underlying question, you essentially need to know the 
sampling distribution. As was introduced in this chapter, the sample mean 
and sample variance are both random variables that have a distribution 
(sampling distribution). It was shown that under certain circumstances we 
will know (or can approximate) this distribution. Once we have this distribu-
tion, we can then make inferences about how good our answer is—this will 
form the basis of the following chapters. It cannot be emphasized enough that 
these techniques can only be used under certain circumstances. As a profes-
sional, you will be responsible for understanding when they can be used.

In summary, this chapter will form the basis of most of the work in the 
following chapters; therefore, the reader is cautioned to understand these 
concepts fully before proceeding. Alexander Pope’s famous quote “A little 
learning is a dangerous thing” applies particularly well to statistics. While sta-
tistical formulas may be readily used, particularly with today’s software, such 
as JMP, it is imperative that users have a full understanding of the underlying 
assumptions lest they get themselves, or their clients, in erroneous situations.

Homework Problems

	 1.	What is the probability that the mean ( X ) of a random sample of 
size 2 selected from the population in Table 6.1 lies within 3 mph of 
the population mean ( µ = 61.6)?

	 2.	Suppose an engineer wants to find the percentage of commercial 
vehicles on a roadway segment. In the first hour there were forty-
seven vehicles, and five of them were commercial vehicles.

	 a.	 Based upon the first forty-seven vehicles, what percent are 
commercial?
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	 b.	 Using a binomial distribution, what is the chance that the popu-
lation percentage is greater than 15%?

	 c.	 Using a normal approximation to the binomial distribution, what 
is the chance that the population percentage is greater than 15%?

	 d.	 Explain the differences in your answers for b and c.

	 3.	Probe vehicles are used to monitor speeds of several freeway seg-
ments. Describe deviations from random sampling for each of the 
following:

	 a.	 Probe-vehicle drivers are to stay in the middle of the pack of vehi-
cles with which they enter the freeway.

	 b.	 Probe-vehicle drivers are to pick out a car of their choice and 
follow it at a safe distance.

	 c.	 Probe vehicles are dispatched at a random time, to an intersec-
tion chosen randomly, and a computer randomly chooses which 
vehicle they are to follow at a safe distance.

	 4.	The average fuel efficiency for a vehicle driving on a highway is 21 
mpg with a standard deviation of 4 mpg. What is the probability that 
while driving a 10-mile segment of highway, one hundred randomly 
chosen vehicles use a total of more than 58 gallons of fuel? (Hint: A 
sum is n X× .)

	 5.	A state DOT wants to audit contracts to assess the percent that have 
had all requirements fulfilled within the last five years.

	 a.	 What is the population of interest?

	 b.	 How should the contracts be chosen so that the audited contracts 
can be used to make inferences about the population?

	 c.	 How many contracts need to be audited to attain a standard 
deviation for the estimated percentage of compliant contracts 
less than or equal to .05? (Hint: The standard deviation of p̂  
is p p n( )1− / . The value of p that gives the largest standard 
deviation is .5.)
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7C h a p t e r  

Inferences
Hypothesis Testing and 
Interval Estimation

7.1  Introduction
Often transportation professionals are asked to make specific statements 
regarding the transportation system. For example:

Are average speeds on a freeway within federal guidelines?

Has a safety improvement actually led to a reduction in crashes?

Are the contractors meeting the specifications in the contract?

Are ambulances reaching their destinations within their target time?

Is congestion on one roadway worse than another?

Over the years much effort has been exerted to build statistical models 
that help answer these types of questions. Curve fitting and density estima-
tion (see appendix) are examples of model building. A branch of statistics 
that is dedicated to testing whether models are consistent with available 
data will be the focus of this chapter. Generally, this branch goes under 
the twin headings of hypothesis testing (that will be introduced in this 
chapter) and goodness of fit (which will be covered in Chapter 9). Excellent 
books have been written on the subject; see, for example, the classic text by 
Lehmann and Romano (2005).
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Many contemporary statisticians believe and say “no model is exact but 
some models are useful.” The authors believe the last statement is correct and 
that the value in testing comes from measuring the concordance of the model 
with data. Complete concordance should not be expected. Nonetheless, we 
first present classical hypothesis testing as it underlies the construction of 
confidence intervals (CIs). These tests basically provide yes or no answers to 
the types of questions listed above. We then introduce the concept of confi-
dence intervals that provide a range of plausible models. However, it should 
be noted that while both hypothesis tests and CI will give identical answers 
to the same questions, the authors believe confidence intervals are more 
informative. Hence, confidence intervals are the recommended approach.

7.2 F undamentals of Hypothesis Testing
Our approach to hypothesis testing starts by partitioning all models into 
two sets. Let θ be either a model or an alias for a model. For example, θ can 
be a mean, a regression function, or a probability distribution. There are 
two competing hypotheses in hypothesis testing: the null and the alterna-
tive hypotheses. An alternative, or research, hypothesis (denoted by Ha ) is 
what we would like to prove using the data. The null hypothesis (denoted 
by H0) is negation of the research hypothesis. Let the set of all models 
under consideration be Θ. We start hypothesis testing by assuming that Θ 
is the union of disjoint sets: 

	 Θ ΘH Ha0
and .

That is, 

	 Θ Θ Θ Θ ΘH H H Ha a0 0
∪ = ∩ ∅and = , the empty set.

The models represented by ΘH0
 usually are models that are initially 

assumed to be true, but we want to prove are inappropriate.
Based on the amount of evidence in the data (as discussed in the next 

section), we may or may not reject the null hypothesis. Rejecting H0 or not 
rejecting H0 are two possible decisions that can be made by a researcher 
and could be correct or incorrect depending on the true nature of the vari-
able. Table  7.1 shows that there are two types of errors encountered in 
hypothesis testing: type I and type II errors.

Type I error is the error of rejecting H0 when H0 is true.

Type II error is the error of not rejecting H0 when H0 is false.
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The probability of a type I error (i.e., the probability of rejecting H0 
when it is true) is denoted by α, and the probability of a type II error 
(i.e., the probability of not rejecting H0 when it is false) is denoted by β. 
The probability of correctly rejecting H0 (i.e., the probability of rejecting 
H0 when it is false) is 1 – β and is called the power of the test. We wish 
to obtain the test that minimizes both α and β. It is, however, not pos-
sible to minimize both error rates in hypothesis testing for a fixed sample 
size because there is a trade-off between α and β (the smaller α is, the 
larger β is, and vice versa). The only way of decreasing both error rates is to 
increase the sample size or decrease the measurement variance. A test that 
never rejects H0 has a type I error rate of 0, but a type II error rate of 1. On 
the other hand, a test that always rejects H0 has a type II error rate of 0, but 
a type I error rate of 1. To get around this problem, we usually specify the 
type I error rate as the maximum value that we can tolerate (for example, 
α = 0.05 or 0.1), and then obtain the corresponding test.

Suppose that we are told that a particular highway section has a speed 
limit of 65 mph, and that the average speed of vehicles is equal to this 
speed limit. Based on our experience, we may suspect that an average 
speed is not 65 mph. In this situation our alternative hypothesis is that 
the average speed is not 65 mph, or ΘHa

 = {μ|μ ≠ 65} (this is, the set of all 
average speeds that are not equal to 65 mph). The null hypothesis is that 
the average speed is 65 mph ( μ = 65), and we initially assume that the 
null hypothesis is true. In statistical hypothesis terms, we have the null 
hypothesis H0 : μ = 65 mph vs. the alternative hypothesis Ha : μ ≠ 65 mph.

It is instructive to pursue this average speed example. First, we must 
define what we mean by average speed. Do we mean that the weekly aver-
age, monthly average, weekend average, or today’s average is 65 mph? This 
is a nontrivial question. Do we believe that the average is stable or station-
ary over time? If it is not, then how can we hope to gather data to test it? 
Moreover, how is speed to be measured and how biased are the measure-
ments? For example, are double-loop inductance detectors and radar guns 
both used to measure speeds? Are both measurement methods subject to 
the same biases? How big is the random error in the speed measurements, 

Table 7.1  Outcomes of Hypothesis Testing

True Nature

H0 Is True H0 Is False
Decision Reject H0 Type I error Correct

Fail to reject H0 Correct Type II error
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and is the standard deviation of a speed measurement related to the true 
speed? Are average speeds subject to time trends; for example, are speeds 
slower during rush hour or bad weather?

These are examples of important questions that transportation profes-
sionals must be cognizant of when using standard statistical hypothesis 
testing tools. Most elementary statistic books treat generic cases that are 
easy—that is, where data are assumed to fit unrealistically simple models. 
We will go a bit deeper into these issues in this chapter because even rela-
tively mundane transportation questions can be quite complex.

7.3  Inferences on a Single Population Mean

7.3.1 H ypothesis Tests about a Population Mean

We start our technical exposition by assuming we have n independent 
measurements of the continuous variable speed, X1,X2,…Xn, that have a 
random error with variance σ2. The model is

	 Xi i= +µ σε .

The parameter μ represents the population mean of the measurements, 
and in this case, this would be the true value of average speed. For the sake 
of simplicity, we will assume the errors εi, i = 1,…,n, are normally distrib-
uted with mean 0 and variance 1. This is a standard model given in most 
introductory statistics courses. It does not include many of the features 
discussed in the previous section; for example, there is no bias accom-
modated by this model. The null hypothesis is denoted as H0 is H0 : μ = μ0 , 
where μ0 is a given value (for instance, at 65 mph). The alternative hypoth-
esis is denoted by Ha is Ha : μ ≠ μ0. Note that we focus first on the null 
hypothesis of equality and the alternative hypothesis of nonequality. We 
then discuss one-sided hypotheses such as

	 H0 : μ ≤ μ0 vs. Ha : μ > μ0

or

	 H0 : μ ≥ μ0 vs. Ha : μ < μ0.

Typical statistical approaches estimate the mean parameter, μ, by a sta-
tistic X– and choose the more reasonable of the two competing hypotheses 
based upon how close X– is to μ0. Clearly, H0 is rejected if μ0 and X– are 
too far apart. In this chapter the measure of closeness depends upon the 
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anticipated variability of X– (i.e., standard error of X–). For example, it is 
impossible to say if a difference of 5 mph is close or far without having an 
understanding of the variance of the statistic X–.

We learned in Chapter 6 that the standard error of X– is σ/ n . Thus, if σ 
is known, the typical measure of distance between X– and μ0 will be

	
d X X

nσ µ µ
σ

( , ) | |
/

.0
0= −

Recall that the distribution of X– is normal either when X follows a nor-
mal distribution or when n is large enough. Let Z X n= −( ) ( )µ σ0 / . Then 
under the null hypothesis (i.e., assuming μ = μ0), we have by Equation 6.5, 
in which

	
Z X

n
N= − ( )( ) ~ ,µ

σ
0 0 1

if either normality or a large sample size condition is satisfied. Let zα/2 
and z1−α/2 be the lower α/2 percentile and the upper α/2 percentile of the 
standard normal distribution, respectively. Then, from the property of the 
standard normal distribution, we know that

	 P z Z z P z Z z P Z zα α α α α2 1 2 1 2 1 2 1 2≤ ≤( ) = − ≤ ≤( ) = ≤( )− − − − == −1 α.	 (7.1)

If α = 0.05, Equation 7.1 becomes

	 P z Z z P Z P X
n. . . | |

/
.025 0 975

01 96 1 96≤ ≤( ) = ≤( ) = − ≤µ
σ







= 0 95. . 	 (7.2)

Equation 7.2 implies that if H0 is true most of the time (i.e., 95% of the 
time), the standardized distance of X– from μ0, d X X nσ µ µ σ( , ) | | ( ),0 0= − /  
is at most 1.96 (z0.975). If the observed distance dσ(μ0,X

–
observed) is greater than 

1.96, then it may be considered a rare event (less than 5% of chance) under 
the null hypothesis. Thus, we may reject H0, although there is a small chance 
(5% here) of incorrectly rejecting H0. This defines a hypothesis test about the 
population mean, μ, with a type I error probability α = 0.05.

Transportation students often are confused about the exact interpreta-
tion of these tests. What do statisticians mean when they say that the null 
hypothesis is rejected at α = 0.05. They mean that when the null hypothesis 
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is true, if one hundred random samples of the same size were taken, then, 
on average, the hypothesis test would provide the correct result ninety-five 
times. (That is, they would 95% of the time not reject the null hypothesis.) 
Because we are only taking one sample, we can only make probabilistic 
statements about our results. For example, if the true mean speed were 
65 mph, and that were also the null hypothesis and we repeated the exper-
iment one hundred times, we would expect to incorrectly reject the null 
hypothesis (on average) five times.

7.3.1.1  z-Test
Oftentimes Z X n= −( ) ( )µ σ0 /  is referred to as a test statistic. The 
hypothesis test based on Z X n= −( ) ( )µ σ0 /  is called a z-test. Depending 
on the form of the alternative hypothesis, there could be three different 
z-tests with a type I error probability α:

	 1.	When the alternative hypothesis is Ha: μ ≠ μ0, the z-test rejects H0 if 
and only if

	
X

n
z

−
≥ −

µ
σ α

0
1 2/ .

	 2.	When the alternative hypothesis is Ha: μ > μ0, we reject the null 
hypothesis when

	
( ) .X

n
z− ≥ −

µ
σ α

0
1

	 3.	When the alternative hypothesis is Ha: μ < μ0, we reject the null 
hypothesis when

	
( ) .X

n
z− ≤µ

σ α
0

Cases 2 and 3 would be used if we were interested in whether some met-
ric (e.g., average speed) were greater or lesser than some critical boundary 
(e.g., the speed limit). These types of questions—Are people speeding on 
average? Is the pavement thickness less than specified?—are often encoun-
tered in transportation engineering statistics. Case 1 would be typical of 
questions where we wonder if the metric is higher or lower than some 
specified criteria, such as in instances of air voids in concrete.
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7.3.1.2  t-Test
In most transportation applications σ is not known. In this case the proce-
dure is essentially the same. The sample standard deviation (S) replaces the 
population standard deviation, σ, and a t-test is used in place of the z-test. 
This follows from the discussion in Chapter 6 in which the distribution of 
the sample mean when the variance is unknown follows a t-distribution. 
Recall from Equation 6.6 that

	

X
S n

tn
−

−
µ ~ .1

Thus, a two-sided t-test rejects H0 if and only if dS( μ0,X
–)>tn−1,1−α/2, where 

tn−1,1−α/2 is the upper α/2 percentile from a t-distribution with n − 1 degrees 
of freedom. One-sided tests are handled as above. When the alternative 
hypothesis is Ha : μ > μ0, we reject the null hypothesis when

	

( ) ,,
X
S n

tn
− ≥ − −

µ
α

0
1 1

and when the alternative hypothesis is Ha: μ < μ0, we reject the null 
hypothesis when

	

( ) .,
X
S n

tn
− ≤ −

µ
α

0
1

For z- and t-tests, we have the summary shown in Table  7.2 for the 
tests used.

Sometimes p values rather than percentiles of normal or t-distributions 
are used in hypothesis testing. The p value for these tests is given by

	 p P d X d Xobservedvalue = ≥( )σ σµ µ( , ) ( , )0 0

or

	 p P d X d XS S observedvalue = ≥( )( , ) ( , ) ,µ µ0 0

respectively. As can be seen from above, assuming H0 is true, the p value 
can be interpreted as the probability of obtaining a relative distance (or 
a test statistic value) as extreme as or more extreme than the relative 
distance between the hypothesized mean and the observed sample mean 
(or the observed test statistic value).
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A common error is to interpret the p value as the probability that the 
null hypothesis is true. Because the p value depends upon the sample size, 
this is incorrect. If the p value for a test is less than or equal to α, then the 
null hypothesis is rejected. The p value provides a more rational descrip-
tion of the weight of the evidence than does a simple reject or do not reject 
statement. Consider a test where the p value is 4.9%, and another test in 
which the p value is 5.1%. In the former, the null hypothesis would be 
rejected. In the latter, however, it would not be rejected. From an engi-
neering perspective, the analyst might decide that these values are close 
enough and further investigation may be warranted. A strict yes or no 
answer using hypothesis testing would not provide this insight.

These tests and discussion of p values are provided in most introductory 
statistics books, such as in Ang and Tang (2006) or Ott and Longnecker 
(2009). Note that when sample sizes are very large, differences in popula-
tion can be detected even if those disparities are unimportant to engi-
neers. This is a critical point since many engineers will experience this 
in practice. That is, it is easy to show statistical differences between the 
sample mean and a critical value by taking a large number of samples, 
even though this is not of critical interest to the engineer. For example, 
if the true population mean is 65.5 mph on the roadway and the speed, 

Table 7.2  Summary of Tests for One Population Mean

Hypotheses
Rejection Regions 

for the Tests

z-Test Case 1 (σ: 
known)

H0 : μ ≤ μ0 vs. Ha : μ > μ0 Reject H X
n

z0
0

1if ( )− ≥ −
µ

σ α

Case 2 (σ: 
known)

 H0 : μ ≥ μ0 vs. Ha : μ < μ0
Reject H X

n
z0

0if ( )− ≤µ
σ α

Case 3 (σ: 
known)

H0 : μ = μ0 vs. Ha : μ ≠ μ0
Reject H

X
n

z0
0

1 2if
−

≥ −
µ

σ α/

t-Test Case 4 (σ: 
unknown)

H0 : μ ≤ μ0 vs. Ha : μ > μ0
Reject H X

S n
tn0

0
1 1if ( )

,
− ≥ − −

µ
α

Case 5 (σ: 
unknown)

H0 : μ ≥ μ0 vs. Ha : μ < μ0
Reject H X

S n
tn0

0
1if ( )

,
− ≤ −

µ
α

Case 6 (σ: 
unknown)

H0 : μ = μ0 vs. Ha : μ ≠ μ0
Reject H

X
S n

tn0
0

1 1 2if
−

≥ − −
µ

α, /
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or speed limit, you are interested in is 65 mph, the engineer may argue 
there is no practical difference between the speeds: the cars are following 
the speed limit on average. However, with a sample size around 400 and 
a measurement standard deviation of about 3 mph, a statistical difference 
could be shown between the observed speeds and the speed limit. While 
statistically significant, this difference is of no practical importance. There 
are two dangers to be careful of in practice. The first is to keep taking 
observations until there is a statistical difference. That is, you did not find 
a statistically significant difference when one hundred observations were 
taken. Consequently, you took nine hundred more and found a statistical 
difference. The second danger occurs when someone (e.g., a contractor) 
needs to show a statistically significant difference according to some pre-
scribed quality control criterion. In this situation they may continue to 
test until there is a statistically significant difference. Unfortunately, the 
theory needed to handle sequential testing is well beyond the scope of 
this book. By using common sense and a good knowledge of the underly-
ing assumptions these issues can be avoided. Oftentimes the number of 
samples is selected a priori, which effectively removes the temptation to 
keep taking samples until a statistically significant result is identified.

In summary, the drawbacks to the hypothesis tests include:

	 1.	They give only a yes or no answer to the question of whether H0 
should be rejected. They do not provide information on what a rea-
sonable range of values is for μ.

	 2.	Because most people do not believe such a simple null hypothesis could 
possibly be true (for example, could μ = 65 mph to a million decimal 
places?), the only information coming from the test is information 
about power. That is, we find out if the test made the correct decision 
(one that could have been made without any data); the null hypothesis 
should be rejected. The power of a test is determined by the sample size 
and measurement precision. How valuable is it to know that a sample 
size was too small to reject a hypothesis that is known to be false?

7.3.2  Interval Estimates for a Population Mean

Instead of testing a hypothesis, it is frequently more useful to estimate 
a parameter and specify a plausible range of values for the parameters. 
Typically, the plausible range is given as a confidence interval. While con-
fidence intervals are closely related to hypothesis tests, they are used to 
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approach the issue from a different point of view. Furthermore, confidence 
intervals are typically more easily modified to handle bias. To illustrate 
these issues, we consider confidence intervals for average speed.

If we know the value of σ, then the typical (1−α)100% confidence inter-
val is given as

	 X z n± −1 2α σ/ / .

If we do not know σ, then the (1−α)100% confidence interval is given as

	 X t S nn± − −1 1 2, / / .α

Note that the latter case is more typically found in transportation engi-
neering. Intuitively, if we knew the population variance, we probably 
would know the population mean as well, which would remove the need 
for our hypotheses testing.

Once the confidence intervals are calculated, they define the results of an 
infinite set of hypothesis tests a priori. Basically, H0 is rejected whenever μ0 
is not in the confidence interval. By definition, t-tests (or z-tests) only give 
simple “reject” or “do not reject” answers. It cannot be emphasized enough 
that, if done correctly, the hypothesis tests and the confidence intervals 
will give the same answer to the hypothetical question we are examin-
ing. However, as will be demonstrated in this chapter, the latter give much 
more information and provide a more intuitive feel for the data.

7.3.2.1  Bias-Adjusted Confidence Intervals
It is easy to modify the confidence interval to accommodate bias. Suppose 
that the speed measuring device may be biased. For example, we may know 
that the device is only accurate to within ±B mph. That is, EX = μ + b, and 
the bias b is known to satisfy the bound |b| ≤ B. Then, the corresponding 
bias adjusted confidence intervals are

	 X B z n± +( )−1 2α σ/ /

and

	 X B t S nn± +( )−1 2, / /α
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respectively. This adjustment for bias is conservative; that is, the intervals 
are too wide. See Knafl et al. (1984) for a more accurate and complicated 
approach. The impact of adjusting the confidence intervals for bias makes 
the intervals more realistic. As opposed to traditional confidence inter-
vals, the formula also shows that the width of the intervals decreases more 
slowly as the sample size increases. Accordingly, the bias-adjusted inter-
vals never decrease to zero. For many transportation applications this is 
a more realistic scenario. For example, many measuring devices have a 
known bias that can be readily obtained from the manufacturer or device 
manual. Large sample sizes in the presence of bias do not guarantee esti-
mation accuracy. For a CI that ignores the effect of bias, large sample sizes 
might give a false sense of the accuracy of the analysis. Importantly, this 
cannot happen when bias is correctly taken into account.

Example 7.1

To illustrate these methods without a bias adjustment we consider speed data 
in Houston. The data are given in Table 7.3. Consider that we are interested 
in testing whether the true mean speed is 65 mph or not. The speed data are 
assumed to follow a normal distribution.

Using t-tests (because the population standard deviation is unknown) to test 
the hypothesis that H0: μ = 65 vs. Ha: μ ≠ 65 in JMP supplies the results shown 
in Figure 7.1.

The average speed observed in the field is 64.24 mph and the hypothesized 
value is 65 mph. The question is whether the value of 64.24 is far enough away 
from 65. Based on the t-test, it is clear from the null hypothesis that the mean 
speed of 65 mph cannot be rejected.

The corresponding 95% confidence interval that is not corrected for bias is 
given in Figure 7.2.

Table 7.3  Speed Data in 
Houston for Testing for the 
Mean Speed

Observation No. Speed
1 64.636
2 64.344
3 51.522
4 65.229
5 54.903
6 67.075
7 61.558
8 84.643
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As expected, the CI gives the same result because the hypothesized value 
(65 mph) is within the lower (55.99 mph) and upper (72.49 mph) confidence 
limits. The power of the CI can easily be seen. If you also wanted to test whether 
the mean speed was 70 mph, then this can be done immediately with the CI by 
checking that 70 mph is also in the confidence interval. With t-tests the analysis 
would have to be recalculated.

Finally, if we knew that bias in speed measurements was no more than 
3 mph, then we would expand both sides of the confidence interval by 
3 mph. For example, if the hypothesized speed were 75 mph, we would 
reject this null hypothesis because it is not in the confidence interval we 
selected. However, if we included the bias term, the CI would be (52.99, 
75.49) and we could not reject the null hypothesis that the average speed 
was 75 mph. Accordingly, by including bias we are less likely to reject a 
given null hypothesis, and this represents the uncertainty caused by the bias 
in the measuring device.

In most transportation applications, the assumption that the data are unbi-
ased is hard to justify. Most speed sensors have some bias associated with 
them, and if this bias is known, then the CI can be adjusted to account for this. 
For example, it may be known that based on past experience the inductance 
loop detectors have up to a 2 mph bias when estimating speeds. Thus, the 
upper and lower bounds of the confidence intervals should be expanded to 
account for this bias. Hypothesis tests can also be directly adjusted for bias, but 
that is not pursued here. It is the authors’ recommendation that you should use 
a bias-adjusted confidence interval in these situations.

Figure 7.2  Confidence intervals for mean speed and standard deviation 
of speed.

Figure 7.1  Test statistics for testing mean speed.
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7.4  Inferences about Two Population Means
The next most common question faced by engineers is whether two treat-
ments or strategies are equivalent. For example, a transportation engineer 
might want to know whether the paint from two different manufacturers 
gives signs the same visibility. The engineer would first take a series of sign 
samples developed from each manufacturer and test them under various vis-
ibility conditions, such as rain and clear weather. It would be highly unlikely 
that the mean visibility (measured in feet from the point where the driver rec-
ognizes the sign) from manufacturer 1 would equal the mean visibility from 
manufacturer 2. The real question is how much different these two means 
would have to be before the engineer would feel comfortable stating they were 
dissimilar. This type of question often occurs in transportation engineering.

7.4.1  Hypothesis Tests about Equality of Two Population Means

We will deal with the case of testing equivalence of two means before han-
dling the more general case of testing the equivalence of g-means with 
g ≥ 2. The preceding discussion about the relationship among hypothesis 
tests, confidence intervals, and biases applies to testing equivalence of two 
means. Initially we will discuss the three cases that are usually handled by 
introductory statistics courses: the paired t-test, the pooled t-test, and the 
unequal variance t-test.

Suppose that we have measurement data from two populations. The 
measurements from the first are denoted by X Xn1 1

, ,… , and the data from 
the second population are denoted by Y Yn1 2

, ,… . We denote the population 
means as µ1 and µ2, respectively. The hypotheses that we next consider 
are H0 : μ1 = μ2 vs. Ha : μ1 ≠ μ2. Just as in the single mean case, there are 
one-sided hypotheses that are of interest as well. Examples are H0 : μ1 ≥ μ2 
vs. Ha : μ1 < μ2. A summary table is provided (Table 7.4) and includes the 
appropriate test for the most common hypotheses.

7.4.1.1  Paired t-Test
The paired t-test is designed to handle correlation among matched pairs 
of measurements or data points. For example, before and after measure-
ments on the effects of alcohol upon driving performance (using the same 
drivers) would be tested and assessed using paired t-tests. In this case, the 
test subject is the same and only the presence of alcohol varies. A good 
indicator of the need for a paired t-test is to plot the paired data on a scat-
ter plot. If there appears to be a linear trend in the data, then the paired 
t-test is the best choice among the three t-tests that we consider. However, 
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the requirement that the subjects are the same for paired observations is 
fairly rare in transportation applications. Therefore, the other two tests are 
much more common in transportation engineering.

7.4.1.2  Pooled t-Test
The pooled t-test is used to test the equivalence of two means when the data 
from the two populations are independent and have the same variance. For 
example, we may want to test the equivalence of the speeds approaching 
two different signalized intersections that are distant enough from each 
other as to be independent. We may also expect the luminescence readings 
of two different sign coatings to be independent. If the measurements have 
equivalent variances, then a pooled t-test is appropriate.

7.4.1.3  Unequal Variance t-Test
The unequal variance t-test is used to test the equivalence of two means 
when the data from the two populations are independent and may not have 
the same variance. As a practical matter, rarely are variances expected to 
be equal, but if the ratio of the two variances is far from 1, then an unequal 
variance t-test is appropriate. Later, we give tests for evaluating hypotheses 
about equal variances, but for now we will assume that the transportation 
professional knows a priori whether the variance of the measurements for 
the two populations is near equal or not.

All three t-tests that we use for two-sided hypotheses tests have the form

	
X Y

SE X Y
−

−( ) ,

where SE(X–−Y–) stands for the estimated standard error of the difference in 
the sample means. The three tests use different formulas to compute the 
estimated standard error, and the degrees of freedom associated with that 
estimated standard error.

The paired t-test assumes that the X-Y pairs of data are dependent, 
whereas the matched pairs (Xi,Yi) for i = 1,…,n are independent as the 
subscript i changes. The paired t-test assumes that the data have a natu-
ral pairing and that n1 = n2 = n. Let di = Xi−Yi. The standard error for the 
paired t-test is computed as

	

1 12

1
n

d d ni
i

n

( ) /( ),− −
=

∑
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and it has n – 1 degrees of freedom.
The pooled t-test assumes that all X and Y measurements are mutu-

ally independent, which also implies that all the X measurements and Y 
measurements are independent of each other. The standard error for the 
pooled t-test is computed using the formula

	

( ) ( ) ,n S n S
n n n n

X Y1
2

2
2

1 2 1 2

1 1
2

1 1− + −
+ −

+

 
and it has n1 + n2−2 degrees of freedom.

The standard error for the unequal variance t-test is computed using 
the formula

	

S
n

S
n

X Y
2

1

2

2
+ .

Its degrees of freedom involve a formula given in the appendix to this 
chapter. Fortunately, major statistics packages calculate the degrees of 
freedom calculation automatically.

Table  7.4 summarizes hypotheses and appropriate t-tests. The three 
t-statistics that we use are as follows:

	

t n X Y

X Y X Y n
paired

i i
i

n
= −

− − −( ) −
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∑
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( ) ( ) / ( )2
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1
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Our t-test rejection regions are summarized in Table 7.4. The degrees 
of freedom for these tests are, respectively, n−1, n1 + n2 − 2, and df*. The 
formula for df* is given in the appendix to this chapter.

7.4.2 � Interval Estimates and Bias Adjustment for 
Difference of Two Population Means

The confidence interval that corresponds to the above three tests uses 
the formulas

	 X Y t SE X Ydf− ± −( )−, / .1 2α

The degrees of freedom used are the same ones used for the corre-
sponding t-test. Just as in the univariate case, these intervals can and 
should be adjusted for bias. The bias adjusted form of the intervals uses 
the formulas

	 X Y B t SE X Ydf− ± + −( )( )−, /1 2α

where B is bound on bias for the difference of the means. If bias bounds are 
known only for individual means—say, B1 and B2—then we may simply 
set B = B1 + B2. Notice the bounds on bias are classically handled as addi-
tive, whereas random errors have standard errors that are the square root 
of the sum of the corresponding variances. There is one caveat: If both 
measurements are known to have equal bias, then the difference in means 
will have no bias.

We now present examples of these three tests and intervals for compar-
ing two population means.

Example 7.2

The first example compares the travel time index (a measure of congestion) for 
eighty-six metropolitans for two years—1998 and 2003. Box plots for those 
data are shown in Figure 7.3.

A visual inspection of the box plot does not show much difference in the 
median of the two data sets. If a pooled or unequal variance t-test is performed 
on these data, there would be no significant difference found in the mean 
travel time index. The reason for the lack of power of these two t-tests is due to 
the high correlation of travel time index between the two years. This is shown 
clearly in Figure 7.4.
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Due to the fact that the travel time index is computed for the same cities 
for both years, the data are highly correlated. The proper t-test for this situation 
and data set is the paired t-test, and that output is shown in Figure 7.5.

Because the p value is <0.0001, the paired t-test rejects the hypothesis of 
no change in the mean travel time index (p < .0001). In other words, there is 
sufficient evidence in the data to conclude that there is a change in the mean 

Figure 7.4  Scatter plot of the travel time index for the years 1998 and 
2003.
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Figure 7.3  Box plots for the travel time index.
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travel time index. The confidence interval (0.01912, 0.03809) that was output 
indicates that there is between a 2 and 4% increase in the mean travel time 
index during the five-year span.

In general, the paired t-test is often referred to as a stronger test than the 
pooled test. This is because much of the variability is internalized by using the 
same subject and only varying one factor. Consequently, considerably less data 
may be needed for the paired test, as compared to the pooled test, to have the 
same level of confidence. Unfortunately, because the requirements for con-
ducting paired t-tests in transportation (e.g., only one parameter changes while 
all else remains the same) are comparatively rare, the reader will most likely 
work with pooled tests on a more consistent basis.

Example 7.3

To demonstrate the pooled and unequal variance t-tests, we test the hypothesis 
that the average speeds are equal on two different highway locations in 
Houston. A scatter plot and check of correlation (not shown) indicated that the 
speeds on the highway locations are reasonably modeled as independent. Box 
plots shown in Figure 7.6 indicate that the driving patterns on the two different 
road segments are similar.

The pooled t-test and unequal variance t-test both conclude that the 
null hypothesis of equal mean speeds cannot be rejected. This is shown in 
Figures 7.7 to 7.9. As long as the variances for the two populations are not 

Figure 7.5  Plot of difference and statistics for the paired t-test for mean 
travel times.
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Figure 7.9  Test for population standard deviation of speed.
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Figure 7.6  Box plots for speeds at two different locations.

Figure 7.7  Pooled t-test for mean speeds.

Figure 7.8  Unequal variance t-test for mean speeds.
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very different (e.g., say their ratio is within a factor of 3), then it is generally 
advisable to report the pooled t-test results. This is because the pooled t-test is 
more widely used and understood than the unequal variance t-test. However, 
when the variances are very different, then the separate variance t-test is the 
more appropriate of the two tests. Notice that the degrees of freedom for the 
two tests are, respectively, 42 and 36 (approximately).

7.5  Inferences about One Population Variance
Sometimes the transportation professional is not interested in tests about 
the central tendency of the data (e.g., sample mean) but rather of the dis-
persion, or variance. Similar to the above analysis, confidence intervals for 
the variance or standard deviation can be developed. Just as in the case of 
means, this book starts with simple hypotheses. The first set of hypotheses 
considered about variances is
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The null hypothesis is that the population variance equals a specified 
value, while the alternative hypothesis is that the population variance does 
not equal the specified value. Recall from Chapter 6 that
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if Xi s (i = 1,…,n) are a random sample selected from a normal population 
with mean μ and variance σ2. Thus, under usual assumptions of normally 
distributed, identically distributed, and independent data, the appropriate 
tests and confidence intervals for a population variance are based upon a 
chi-square distribution.

The chi-square test rejects the H0 when
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or when
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That is, if the null hypothesis is true, we expect the ratio S2/σ2
0 to be close to 1, 

and if the ratio is either too small or too big, we reject the null hypothesis.
The corresponding (1−α)100% confidence interval for σ2 is
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Corresponding tests and confidence intervals for the population stan-
dard deviation, σ, can be obtained by taking the square root of all sides of 
the above inequalities. These intervals may be bias corrected. Suppose that 
probe vehicles were used to measure speeds only during the summer when 
schools are not in session. That may cause a bias of ±B%. In that case, the 
bias corrected confidence interval is
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Example 7.4

In Figure 7.9 we presented the JMP output for testing the population standard 
deviation from a single location in Houston. The standard deviation is 4 mph 
based on a sample size of 11.

The corresponding confidence interval is displayed in Figure 7.10 along with 
the confidence interval for the mean speed. Notice that confidence intervals 
for standard deviations and variances are not centered at S2. It can be seen that 
the null hypothesis (e.g., standard deviation is 4 mph) cannot be rejected in 
this case.

Figure 7.10  Ninety-five percent confidence intervals for mean speed and the 
standard deviation of speed.
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7.6  Inferences about Two Population Variances
The next situation that we consider is about testing the equality of two 
population variances. Let’s consider the following hypotheses:
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The usual test for these hypotheses is an F-test. The null hypothesis is 
rejected if the F-statistic is either too big or too small. We use the conven-
tion of writing the F-statistic with the larger of the two sample variances 
in the numerator, and the smaller of the two sample variances in the 
denominator. Then the traditional F-test rejects the null hypotheis only if 
the F-statistic is too large. Specifically, this is defined as
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Let the degrees of freedom for the sample variance estimate chosen for 
the numerator of the F-statistic be denoted as numdf, and the correspond-
ing degrees of freedom for the variance estimate for the denominator be 
denoted as denomdf. The null hypothesis is rejected if F > Fnumdf,denomdf,1−α. 
The JMP output for testing these hypotheses for equality of the variances 
of speeds at two locations is given in Figure 7.11.
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Figure 7.11  Plot and tests for equality of variance from two populations.
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The p value for this F-test is 0.11. Several other tests are also performed, 
and the first four shown in the list are useful when testing the equality of 
variances among g ≥ 2 populations (see Chapter 8). Bartlett’s test is very 
sensitive for departures from normality; hence, it may not be a good test 
if the data being tested have too many outliers. The other three tests—
O’Brien, Brown-Forsythe, and Levene—are based upon ANOVA type 
procedures (that will be discussed in Chapter 8) with the dependent vari-
able being a measure of spread. For example, Levene’s test has the depen-
dent variable as the absolute deviation of each observation from the group 
mean. A detailed explanation of these tests is beyond this text but may be 
found elsewhere (see, e.g., JMP, 2009; Boos and Cavell, 2004; Brown and 
Forsythe, 1974; and O’Brien, 1979).

7.6.1 C onfidence Intervals for the Ratio of Two Variances

As with tests comparing two means, there are equivalent confidence inter-
vals. These confidence intervals are for the ratio of variances. The null 
hypothesis of equal variances is rejected if they do not include the number 
1. The confidence interval formula is

	

S
S

F S
S

FL U
1
2

2
2

1
2

2
2

1
2

2
2

≤ ≤σ
σ

.

Here FL = Fα/2,df1,df2 and FU = F1−α/2,df1,df2 are the α/2 and 1−α/2 quantiles 
(percentiles) from an F-distribution with df1 and df2 degrees of freedom.

7.6.2 �B ias-Corrected Confidence Interval for 
the Ratio of Two Variances

If the bias in S2
i, i = 1,2 might be ±Bi%, then the bias corrected confidence 

interval is
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Suppose that we knew that each variance estimate might be subject to a 
bias of ±5%. Then, the bias corrected form of the confidence interval is
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Note that the bias corrected form of the confidence interval is wider than 
the uncorrected form.

7.6.3  One-Sided Tests

Throughout the last two sections we have been testing two-sided hypoth-
eses. Namely, the null hypothesis is that the variance was equal to a spe-
cific value (or two variances are equal), and the alternative hypothesis 
is that the variance is not equal to that value (or two variances are not 
equal). Sometimes we will want to test whether an experimental treatment 
improves performance measures. In those cases, we will use one-sided 
tests. For one-sided tests, the test statistics are based upon the ratio of the 
sample variances and the cutoff values change. See Ott and Longnecker 
(2009) for the appropriate one-sided tests.

7.7 Co ncluding Remarks
Transportation professionals are often asked questions about the way the 
system is functioning: Are cars speeding? Is a roadway built by a con-
tractor within contract specifications? Needless to say, there is variabil-
ity in almost all physical phenomena, and this randomness needs to be 
accounted for in order to answer these questions. This chapter introduced 
a number of important concepts to provide a statistical basis for these 
analyses.

The approaches in this chapter all make use of the sampling distributions 
discussed in Chapter 6, and two primary approaches were illustrated. The 
first were hypothesis tests that answered simple yes or no type questions 
related to the population mean or variance. The second were confidence 
intervals that looked at the likely bounds of the population mean or vari-
ance. Both techniques can be used to answer the questions or hypotheses 
related to a given metric, and if applied correctly, they will give the same 
result. However, it is the authors’ contention that the confidence intervals 
provide more information to the analyst, and would be more useful in 
most engineering applications. In our experience, engineers often have a 
more intuitive grasp of the CI approach than the straightforward hypoth-
esis testing.

Moreover, the analyst needs to know the basic assumptions before 
using these tests. As a simple example, if the samples are not random, 
then none of the approaches in this chapter apply. If there is bias in the 
measurements, this should be accounted for in the analysis. Common 
pitfalls were also illustrated; for example, almost any difference can be 



136    ◾    Transportation Statistics and Microsimulation﻿

shown to be “statistically significant” if enough observations are taken. It 
is up to the analyst to determine whether a given difference is of practical 
importance—even if it is statistically significant.

The concepts developed in this chapter will be used throughout the 
remainder of this textbook and, in all likelihood, will be used through-
out your career. It is imperative that the assumptions and theory are well 
understood before moving on to the next chapters.

Appendix: Welch (1938) Degrees of Freedom 
for the Unequal Variance t-Test
Let
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the Welch degrees of freedom are 
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As stated in Ott and Longnecker (2009), if the degrees of freedom are not 
an integer, then df* should be rounded down to the nearest integer. The 
package JMP uses fractional degrees of freedom.

Homework Problems

	 1.	A study is undertaken to examine the effects of drunk drivers and, 
in particular, whether older drivers are more affected by alcohol than 
younger drivers. Volunteers drink specified amounts of an alcoholic 
beverage at fixed time intervals. They perform baseline driving tests 
as well as driving tests fifteen minutes after each alcoholic drink. 
The age of each volunteer is recorded. Suppose that the outcome 
measure is the amount of time it takes for the drivers to complete 
a trip through an obstacle course. The recorded time is penalized if 
obstacles are missed or run over. What would be reasonable null and 
alternative hypotheses for this study?
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	 2.	Law enforcement wants to know typical driver speeds in front of a 
school when children are present. They also want to know if the aver-
age speed is exceeding the posted speed limit over the long term. 
The posted speed limit at this time is 35 mph. They use a radar gun 
that is accurate to within 1 mph (bias) and a standard deviation of 
1 mph. The daily average speeds for a week are 37, 34, 38, 35, and 34 
mph. With 95% confidence, is the speed limit exceeded (long term) 
on average based upon the data?

	 3.	In the last problem, if the daily average speeds were misreported as 
37, 34, 38, 35, and 84 mph, would the conclusion change? What is 
the effect of an outlier on the corresponding confidence interval and 
hypothesis test?

	 4.	Probe vehicles are used to compute travel times of highway segments 
around San Antonio, Texas. Forty-five vehicles are used and they 
drive for approximately one hour at a time. A transportation center 
wants to compare the travel times on two nearby highway segments. 
Which of the following tests would be most appropriate and why: 
paired t-test, pooled t-test, or unequal variance t-test? What plot 
could you use to help confirm your answer?

	 5.	Using the urban mobility data set, test whether the variances for 
public transportation passenger miles between 1982 and 2003 
are the same for the two groups: large urban areas and very large 
urban areas.

	 6.	Using the pavement marking data:

	 a.	 Test the hypothesis that the variance for the detection distance 
for females is different from the variance for the detection dis-
tance for males.

	 b.	 Recommend a confidence interval for the difference in detec-
tion distance for females and males. Would you use the equal 
or unequal variances assumption when constructing the confi-
dence interval?

	 c.	 Determine how the confidence interval would change if the device 
measuring the distance has a bias of 3 feet. (Hint: If a bathroom 
scale measures 1 pound overweight, how does that affect the dif-
ference in weight of two people who use the scale?)
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8C h a p t e r  

Other Inferential 
Procedures
ANOVA and Distribution-Free Tests

8.1  Introduction
Transportation researchers often have to compare many possible inter-
vention strategies. For example, they may question whether it is better 
to use a sign that reads “slower traffic keep right,” a sign that reads “left 
lane for passing,” or some combination of both. A natural solution may be 
to compare different combinations of these options and examine which 
gives the better result. It is the transportation analyst’s role to compare the 
results of the different combinations. In this chapter, we explain analy-
sis of variance (ANOVA), an often-used technique for comparing means 
from several populations. This technique allows the analyst to test various 
hypotheses, such as whether the mean response for the different combina-
tions is statistically the same. If the hypothesis of equal means is rejected 
by the ANOVA test, it is natural to question which treatment, or signing 
strategy, is better. In this chapter we provide multiple comparison proce-
dures that can be used to clarify these issues.

Many of the tests described in this textbook depend upon normal-
ity. While many phenomena in engineering behave in normal (or near-
normal) ways, there are many situations in which this is not the case. This 
chapter also presents methods for testing the validity of the normality 



140    ◾    Transportation Statistics and Microsimulation﻿

assumption and, when the assumption is not valid, presents an alternative 
method for testing equality of means.

8.2 �Com parisons of More than 
Two Population Means

In many situations transportation professionals need to compare the 
means of more than two populations, and this section presents two ways 
of accomplishing this task. The first way is by using confidence intervals 
(CIs), and the second is by using analysis of variance (ANOVA). When 
transportation professionals need to compare g-means, such as when g ≥ 2, 
then there are g(g − 1)/2 ways to compare pairs of means. For example, if g 
= 3, we would need to compare 3 × 2/2 = 3 pairs: (μ1,μ2), (μ1,μ3), and (μ2,μ3). 
In order to ensure that the type I error is no more than α, each confidence 
interval is constructed at the
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This correction to α is known as a Bonferroni approach. It is widely used 
if g is not too big, typically for g less than or equal to 10. If g is large, then 
the confidence intervals frequently are too wide to be useful. Note that 
the confidence intervals can be calculated for either the equal or unequal 
variance scenarios. In addition, the test statistics used in the various tests 
need not be independent.

The ANOVA approach is a generalization of the pooled t-test that we 
used when g = 2 and we assumed that variances for the two populations 
were equal. The idea underlying ANOVA is a comparison of a pooled vari-
ance estimate to an estimate of variance obtained using the individual 
sample means.

Suppose the hypotheses to be tested are

H0 : μ1 = μ2 = … = μg, in which all means are equal

vs.

Ha : not all means are equal.

We also assume that the data are independently normally distributed with 
the same variance across the g populations. For pedagogical purposes only, 
let us assume that the number of observations from each population is 
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equal. That is, we assume that there are n1,n2,…,ng observations from each 
of the g populations and that n0 = n1 = n2 = … = ng. The ANOVA F-test is 
the ratio of two quantities. The denominator for the F-test is a pooled vari-
ance estimate
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The numerator is the sample variance of the means multiplied by n0. That 
is, the numerator equals
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Under the null hypothesis, both the numerator and the denominator have 
their expected value, σ2. Thus, under the null hypothesis an F-test statistic 
is anticipated to be 1, and approximately 95% of the time would not pro-
vide enough evidence to reject the null hypothesis. The usual formulas 
used for ANOVA are given in almost every standard textbook; see, for 
example, Ang and Tang (2006) and Ott and Longnecker (2009). In our 
pedagogical context the numerator sum of squares, called the between 
sum of squares or the model sum of squares, equals
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and its degrees of freedom are g – 1. The corresponding denominator sum 
of squares is called the within sum of squares or error sum of squares and 
is equal to
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To demonstrate how confidence intervals and ANOVA can be used to 
compare means from several populations, an example from San Antonio, 
Texas, is used. Speed data from four traffic corridors, each with zero, one, 
two, or three traffic signals, was collected. Note that these data are a subset 
of the data used for Figure 2.3. The numbers of observations from each 
population are not equal, but JMP and other statistical programs easily 
handle this situation. It can be easily calculated that there are 4 × 3/2 = 6 
comparisons to be made. Figure 8.1 shows the results of the six pairwise 
confidence intervals. The intervals are at the (1−α/6)100% ≈ 99.2% level, 
and use the mean squared error as the estimate of the common variance. 
Thus, these tests differ from the typical pooled t-test because the variance 
estimate uses data from all the populations. In addition, the α level is 
properly adjusted to account for multiple comparisons.

It is evident in Figure 8.1 that the first five confidence intervals do not 
contain zero, but the sixth does. In this case, the population mean speeds 
for all signal conditions are different with the exception of corridors with 
one or two traffic signals. The ANOVA information shown in Figure 8.2 
indicates that the hypothesis of equal population means can be rejected. 
That is, at least one of the means is different from the others. However, 
unlike the CI test, the ANOVA table does not identify the means that are 

Number 
of Signals

Number 
of Signals

Difference Standard Error 
Difference

Lower CL Upper CL

0 3 17.89178 1.172762 15.5873 20.19625

0 1 15.12759 1.110275 12.9459 17.30927

0 2 15.00113 0.990213 13.0554 16.94689

2 3 2.89065 1.057042 0.8136 4.96773

1 3 2.76419 1.170268 0.4646 5.06376

2 1 0.12646 0.987258 –1.8135 2.06642

Figure 8.1  Bonferroni adjusted confidence intervals for four signaling levels.

Source DF Sum of Squares Mean Square F-Ratio Probability > F

No. signals 3 20,734.016 6,911.34 106.2889 <.0001*

Error 473 30,756.379 65.02

C. total 476 51,490.395

Figure 8.2  ANOVA for speed data at four signaling levels.
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likely to be unequal. For this reason, the authors argue (similar to that of 
Chapter 7) that CIs are the preferred method of analysis for this type of 
comparison.

8.3  Multiple Comparisons
The experiment-wise type I error rate is the chance that any null hypoth-
esis under consideration is falsely rejected. When the factor is under test, 
for instance, the drivers of probe vehicles have many levels, a multiple test-
ing issue arises. While the type I error for ANOVA correctly sets the type 
I error at α, it does not tell us which levels are responsible for the rejection 
of the null hypothesis. Once we try to assert which pairs of factor lev-
els are different, the α level is no longer controlled by ANOVA. We have 
already encountered one way around this issue. The Bonferroni method 
correctly limits the experiment-wise type I error to α. It is, however, less 
powerful than ANOVA at rejecting the null hypothesis when it is false. 
This means that even when true deviations from the null hypothesis are 
fact, the Bonferroni approach may not detect the deviations.

A popular approach is to use Fisher’s least significant difference (LSD) 
procedure. This test uses all possible pairwise tests for equality of means. 
These tests would be the same as the pairwise pooled variance t-tests 
except that they use the mean sum of squares within to obtain Sw rather 
than using Sp. Thus, these tests have the larger n–g degrees of freedom 
rather than the smaller ni + nj − 2 for the ijth comparison. It is wise not to 
do these tests unless the ANOVA test rejects the null hypothesis of equal 
means. Refer to Ott and Longnecker (2009) for additional details.

Another popular procedure is called Tukey’s honestly significant differ-
ence (HSD) procedure. Readers interested in this topic should see Tukey 
(1953) for more information. These comparisons are based upon the nor-
malized differences:
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The HSD critical value q depends upon g (the number of levels of the fac-
tor) and the degrees of freedom of Sw. This test is available in JMP, and it 
should be noted that ANOVA does not have to be a precursor for the HSD 
method to be applied. This test correctly accounts for multiple compari-
sons on an experiment-wise basis. Again more details about this method 
can be found in Ott and Longnecker (2009).
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To illustrate these methods, we reanalyze the data from San Antonio 
used in Figure 2.3. The dependent variable is average speed along the cor-
ridor, and the factor that we use is the number of traffic signals on the 
corridor. We present the JMP output in Figure 8.3.

The first observation that can be made from the output of Figure 8.3 
is that even small differences in the populations can be detected as sta-
tistically significant due to the relatively large sample sizes. From Fisher’s 
LSD procedure (given under “Comparisons for each pair using Student’s 
t” in Figure 8.3) we can see that only the six and eight signal routes have 
indistinguishable speeds. This can be deduced since the populations for 
six and eight share a common letter. On the other hand, from the Tukey 
HSD (given under “Comparisons for all pairs using Tukey–Kramer HSD” 
in Figure 8.3), it is evident that populations 3 and 4 share a common letter, 
which is also true of populations 6 and 8. The three- and four-signal routes 
have indistinguishable speeds, and the six- and eight-signal intersections 
are not statistically different.

8.4  One- and Multiway ANOVA
The ANOVA method used to analyze the speed vs. signal data is called 
one-way ANOVA. That is because only one factor or independent variable, 
the number of signals, was used in the analysis. Speed is the dependent 
variable. Intuitively, there are likely many more independent variables 
that affect speed than simply the number of traffic signals. In this situa-
tion a multiway ANOVA would be required for analysis. The underlying 
model for one-way ANOVA is

	 Y i n j gij j ij j= + + = … = …µ µ ε , , , , , , .1 1

The observed measurements are denoted by Yij. For pedagogical purposes, 
we will assume that n1 = n2 = … = ng = n0, and so n = g × n0 is the total num-
ber of measurements. In order for the parameters to logically correspond, 
it is common to assume that the parameter μ is the overall mean with the 
expected value taken over all groups. The parameters μj, j = 1,…,g, are the 
mean offset for the jth group from the overall mean. It is often assumed 
that ∑ ==j

g
j1 0µ . The random errors εij, i = 1,…,nj, j = 1,…,g, are assumed 

independently normally distributed with a mean of zero and constant vari-
ance of σ2. The degrees of freedom for the one-way ANOVA model sum of 
squares are g, and the error sum of squares has n – g degrees of freedom.
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Figure 8.3  ANOVA and multiple comparisons for speed vs. number of signal 
data from San Antonio.
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When there is more than one factor, ANOVA extends to multiway 
ANOVA. In two-way ANOVA there are two factors. For example, 
the number of traffic signals on a road segment and weather condi-
tions are factors that may affect driving speed. A new effect emerges 
for multiway ANOVA, and is referred to as interaction effects. These 
effects account for more changes in mean level where factors act dif-
ferently together than they would if their effects were independent of 
each other.

The basic two-way model is written as

	 Y i I j J k nijk i j ij ijk= + + + + = … = … = …µ µ µ γ ε. . , , , , , , , , ,1 1 1 iij .

Similar to the one-way case, the observable measurements are Yijk. Once 
again, for pedagogical purposes, we will assume that nij = n0, i = 1,…,I,  
j = 1,…,J. The parameter μ represents the mean level across all levels of 
both factors. The parameters μi. and μ.j represent the mean offsets from μ 
for the effect of the first and second factors, respectively. These are called 
main effects, and they are interpreted as the part of the factor effects that 
are unaffected by interactions. It is often assumed that ∑ ==i

I
i1 0µ .  and 

∑ ==j
J

j1 0µ . . The parameters γij represent the interaction effects among 
the ith level of the first factor and the jth level of the second factor. The 
parameters γij account for the lack of additivity of the effects for the first 
and second factors. For example, rainy weather may slow traffic more 
when there are three traffic signals along the corridor in comparison to 
when there are no traffic signals on a corridor. These interaction terms 
will be analyzed as part of the ANOVA test to see whether the hypoth-
eses can be supported by the data. It is often assumed that ∑ ==i

I
ij1 0γ  and 

∑ ==j
J

ij1 0γ . The constraints are needed because without such restrictions 
there are more parameters than possible levels of the mean response. 
The constraints are a natural way to make the parameters identifiable. 
Readers should see Ott and Longnecker (2009) for a more detailed 
explanation of this concept. Finally, the random variables εijk, i = 1,…,I, 
j = 1,…,J, k = 1,…,nij, are assumed to be independent normal random 
variables with zero mean and common variance. The ANOVA table gives 
I – 1, J – 1, and (I − 1) (J − 1) degrees of freedom for the first and second 
factors, as well as interaction effects. The error degrees of freedom are 
n − (I − 1)−(J − 1)−(I − 1)(J − 1). For a more in-depth discussion see Ott 
and Longnecker (2009) and Kuehl (2000).
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As an example, let us consider the San Antonio average speed data with 
weather and signals as factors. By way of demonstration we will use four 
levels of weather (denoted 1, 2, 3, and 4) and four levels of corridor (zero, 
one, two, and three traffic signals). The results of a two-way ANOVA for 
these data are shown in Figure 8.4.

From the ANOVA table in Figure 8.4 we can see that both main and 
interaction effects are significant. Not surprisingly, weather affects travel 
speed, as do the number of traffic signals. Furthermore, the interaction 
of these two factors further affects travel speed. All the p values in the 
ANOVA are less than .0001. That is much less than the customary type I 

Response Average Speeds
Summary of Fit

RSquare 0.252302
RSquare Adj 0.251138
Root Mean Square Error 8.197914
Mean of Response 34.59409
Observations (or Sum Wgts) 9656

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 15 218614.01 14574.3 216.8603
Error 9640 647863.81 67.2 Prob > F
C. Total 9655 866477.82 0.0000*

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Weather 3 3 5019.6797 24.8971 <.0001*
#signals 3 3 1618.7689 8.0289 <.0001*
Weather*#signals 9 9 5516.4017 9.1202 <.0001*

Effect Details

Weather*#signals
Least Squares Means Table
Level Least Sq Mean Std Error
1,0 44.249248 0.2483076
1,1 32.707129 0.2250442
1,2 32.718416 0.1637619
1,3 30.801912 0.2528727
2,0 43.960328 0.2969791
2,1 34.481262 0.3070143
2,2 32.695848 0.2596305
2,3 30.630899 0.3003483
3,0 31.968529 1.4059306
3,1 33.513370 0.8546916
3,2 30.741885 0.5931802
3,3 29.820763 0.7546791
4,0 37.280000 8.1979137
4,1 39.020000 4.0989569
4,2 31.584000 2.1166922
4,3 31.285000 2.5924079

(a)

Figure 8.4  Two-way ANOVA with effect details for San Antonio speed data.
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error rate of .05. It should be noted that when the interaction effects are 
significant, it may not make much sense to discuss the main effects (with-
out referring to the level of the other factor) because the effect of one factor 
may be different for each level of the other factor. Our recommendation is 
that whenever an ANOVA test suggests significant interactions, the inter-
action plots need to be examined first. An interaction plot is a graph of 
predicted mean responses that are connected line segments. In Figure 8.4, 
the interaction plot for weather and number of signals is given under “LS 
Means Plot.” The Y-axis is the predicted mean response, and the X-axis 
displays the levels of the number of signals factor. Separate line segments 
are drawn for each level of the other factor, weather, as a function of all 
levels of the factor on the X-axis.

(b) LS Means Plot

LSMeans Differences Tukey HSD
α=0.050
Level Least Sq Mean
1,0 A 44.249248
2,0 A 43.960328
4,1 A B C D 39.020000
4,0 A B C D 37.280000
2,1 B 34.481262
3,1 B C D 33.513370
1, 2 C 32.718416
1,1 C 32.707129
2,2 C 32.695848
3,0 B C D 31.968529
4,2 B C D 31.584000
4,3 B C D 31.285000
1,3 D 30.801912
3,2 C D 30.741885
2,3 D 30.630899
3,3 D 29.820763

Levels not connected by same letter are significantly different.
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Figure 8.4  (Continued) Two-way ANOVA with effect details for San Antonio 
speed data.
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If there is no interaction between the plotted factors, then all the 
line segments will be parallel since main effects are additive. If there is 
an important interaction effect, the line segments will noticeably not be 
parallel, as the effects of factors differ with the combination of levels. If 
the connected line segments are far from being parallel, like the one in 
Figure 8.4, the assessment of the effects of the factors needs to be made 
based on the interaction plots and the corresponding least-squares means, 
rather than on the results from the tests of main effects. For example, the 
interaction plot of Figure 8.4 indicates that the effect of weather on travel 
speed is different depending on the level of the number of traffic signals. 
It is evident that weather affects travel speed when there is zero or one 
traffic signal, whereas weather is irrelevant for two or three traffic signals. 
Put another way, when the level of weather is 1 or 2, the average travel 
speed is higher when there is no signal compared to when there is a signal, 
but when the level of weather is 3 or 4, the average travel speed is lower 
when there is no signal compared to when there is one signal. (Tukey’s 
procedure does not indicate a significant difference in the average travel 
speed when the number of signals is two or three regardless of the level of 
weather.) The multiple comparison tests can be used to determine which 
of the least-squares means of the interaction plots are statistically differ-
ent, and are given under “LS Means Differences Tukey HSD.”

Remark 8.1

In some cases, the interaction effects may not be practically significant, 
although they are statistically significant (or the line segments of the interaction 
plots may not be far from being parallel). In such cases, the interactions could 
be assumed to be negligible and the assessment of main effects is still logical.

8.5 Ass umptions for ANOVA
The tests in the previous sections are all predicated on the underlying 
assumptions for ANOVA, which are normality, independence, and an 
equal variance. ANOVA is robust to the extent outliers make it difficult 
to reject the null hypothesis when it is true. Unfortunately, outliers also 
make it challenging to reject the null hypothesis when it is false. The con-
stant variance assumption can be checked using the Levene test that was 
introduced in Chapter 7. When the equal variance assumption is provably 
wrong (i.e., when the p value is less than α and the difference in variances 
is practically significant), the unequal variance test that is available in JMP 
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should be used. ANOVA is reasonably robust to moderate differences in 
variances. Completing a standard ANOVA and comparing it to an unequal 
variance ANOVA can indicate the effects of unequal variances. Finally, 
the assumption of independence is very important. If there is reason to 
suspect a dependence in the measurements over time—for example, the 
same cars have their speeds measured on different links—then profes-
sional statistical assistance should be sought. Techniques such as repeated 
measure designs are beyond the scope of this textbook. However, a time 
series plot, as described in Chapter 2, can be helpful for detecting depen-
dencies among the data.

The most common way to check the assumption of normality is to plot 
the residuals, which are the differences between the estimated model and 
the observations (see Chapter 10 for more discussion on the residual plot). 
For example, in the two-way ANOVA case, the residuals would be

	 r Y i I j Jijk ijk i j ij= − + + + = … = …ˆ ˆ ˆ ˆ , , , , , ,. .µ µ µ γ 1 1 ,, , , .k nij= …1

If upon analysis of the residuals they do not appear to be approximately 
normally distributed, it is common to try to transform the data. Before 
the use of computer programs, this could be a time-consuming process, 
as  the analyst would have to identify a promising transformation and 
apply the  formula. Then, the analyst would need to estimate the model 
and plot the residuals to see if the transformation resulted in normal data. 
Most modern statistical packages provide an automated transformation 
function that will find an optimal transformation to use for fitting the 
data. In the case of JMP it is based on the Box-Cox transformation, which 
is further explained in Box and Cox (1964). By applying it, JMP will find 
the optimal transformation to use in fitting the data. The form of the Box-
Cox transformation is

	

Y
GM

λ

λλ
−

−

1
1( )

for λ ≠ 0 and ln(Y) for λ ≈ 0. The term GM = (Y1Y2 … Yn)1/n is the geometric 
mean. It is common that if λ ≈ 0, use the log transform, and if λ ≈ .5, use 
the square root transform, while if λ ≈ 1, use no transform.

Figure  8.5 contains the normal quantile plot (see Chapter 2) of the 
residuals that can be used for assessing the assumption of normality. From 
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Figure 8.5 we can see that the normal assumption for errors is not severely 
violated, but there are a good number of outliers. The effects of the outliers/
violation of normality assumptions may be different from case to case. To 
assess such effects, one can either transform the data (average speeds) before 
fitting ANOVA, or use alternative tests that do not depend on the normality 
assumption (such as those presented in the next section). Then, one should 
compare the results against those from the original ANOVA. A homework 
problem is given at the end of this chapter for such a comparison.

8.6 Distri bution-Free Tests
So far, when we tested hypotheses about means, the tests assumed that 
distributed data were essentially normal. From a practical perspective, we 
assumed that there were no huge outliers and there were no more out-
liers than would be expected from normally distributed data. In many 
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Figure 8.5  Residual plots for the fit of weather and signals to speed data.
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transportation problems these assumptions are invalid. In this section, we 
present a number of commonly used nonparametric or distribution-free 
testing procedures that are less susceptible to the effects of outliers.

We start by testing the null hypothesis that the median of a distribution 
is some specified value or not. As we stated earlier, the sample median is 
not as sensitive to outliers as the sample mean. Suppose that we want to 
test whether the median of a probability distribution equals m0 vs. the 
alternative hypothesis that the median is not equal to m0. We form this 
test by constructing the confidence interval for the median and checking 
whether m0 lies in this confidence interval. If it does, then we do not reject 
the null hypothesis. On the other hand, if m0 does not lie in the confidence 
interval, we reject the null hypothesis.

The confidence interval will be constructed using order statistics. We 
assume that we have a random sample of observations X1,X2,…, XN from 
a continuous distribution. Let the ordered (sorted) data be denoted as 
X(1) < X(2) < … < X(n). Thus, the smallest observation from the random sam-
ple is denoted as X(1) and the largest as X(n). The confidence interval for the 
median has the form [X(k),X(n–k+1)], and the coverage probability associated 
with this interval is 1–α, where α = ∑ ( )=

−2 1 20
1

i
k nn

i ( / ) . We assume that k 
is less than n/2. Notice that α takes only a few discrete values as k ranges 
between 1 and n/2. Suppose that we have a random sample size of 30. If 
we want an approximate 95% confidence interval, then by choosing k = 10, 
the coverage probability is 1 – 2(.021) = .958. This probability can be com-
puted with JMP by using the binomial distribution within the formula 
tool for columns. As in the case of testing one population mean, there 
are distribution-free tests for comparing two or more means. Readers are 
referred to Hollander and Wolfe (1999).

8.6.1  The Kolmogorov–Smirnov Goodness-of-Fit Test

The empirical distribution function is defined as

	
ˆ ( )F x

nn = ≤# of observations x .

In a large sample it effectively approximates the true distribution function. 
We initiate the Kolmogorov–Smirnov test by stating that for any fixed 
sample size, n, and empirical distribution function, ˆ ( )F xn , the term nF xn̂( ) 
has a binomial distribution with parameter n, p = F(x). This implies that 
the mean of ˆ ( )F xn  is F(x) and its variance is F(x)(1−F(x)). We use these facts 
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to construct a confidence interval for F(x). An approximate 100(1−α)% 
confidence interval is

	
ˆ ( ) ˆ ( )( ˆ ( ))/ ./F x z F x F x nn n n± −−1 2 1α

This confidence interval can be used to test whether the true distribu-
tion of the data comes from distribution F0(x). That is, we can test the 
hypotheses

	

H F x F x

H F x F xa

0 0

0

: ( ) ( )

: ( ) ( )

=

≠

by checking whether or not F0(x) lies in the confidence interval (1, 1). If it 
does, we cannot reject the null hypothesis, but otherwise, we can reject the 
null hypothesis.

Readers will notice that the hypotheses that we tested are particular to 
a point: x. If we want to test the hypotheses that

	

H F x F x

H F x F xa

0 0

0

: ( ) ( )

: ( ) ( )

=

≠

for x we need another method. The Kolmogorov–Smirnov test is a popular 
method for such a test. It gives a constant, c, such that if the null hypoth-
esis is true, then the set

	
ˆ ( ) ˆ ( )( ˆ ( )) , ˆ ( ) ˆ ( )(F x c F x F x n F x c F xn n n n n− − + −1 1 ˆ̂ ( ))F x nn







(over all x) is a 100(1−α)% confidence interval for F0(x). The Kolmogorov–
Smirnov test can be found within JMP’s distribution platform (see the 
JMP manual for details). JMP gives a p value for this test rather than the 
corresponding confidence interval. Explanations of the other tests used by 
JMP can be found in Hollander and Wolf (1999).

8.6.2  The Kruskal–Wallis Approach to ANOVA

The lack of normality and, in particular, the presence of outliers in 
ANOVA lead to low power. Namely, the hypothesis of equal means is 
difficult to reject when there are many outliers because they inflate the 
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error sum of squares. An alternative is to use a rank test in which all 
the data are placed in one column and ranked. The smallest data point 
gets rank 1, the next smallest rank 2, …, and the largest is ranked as 
n = n1 + n2 + … + ng. Then the raw data are replaced by the ranked data 
and ANOVA is performed on the latter. This is known as the Kruskal–
Wallis test, and it is very resilient to the presence of outliers. The descrip-
tion here is not the exact Kruskal–Wallis test, but a slight variant. Please 
refer to Kruskal and Wallis (1952) and Ott and Longnecker (2009) for fur-
ther details. JMP calls this a Wilcoxon test and specifies that it is equiva-
lent to the Kruskal–Wallis test when there are two or more groups.

8.7 Co nclusions
This chapter illustrated some of the popularly used tests for comparing 
multiple means or situations when the common normality assumptions 
do not hold. These tests often occur in transportation applications, and a 
typical transportation professional will conduct, or at least be exposed to, 
such procedures on a regular basis. In these situations the ANOVA or the 
nonparametric version, the Kruskal–Wallis procedure, is an appropriate 
technique for comparing across the different levels.

Lastly, many of the tests rely on underlying assumptions of normality and 
assume that there are not a large number of outliers. Unfortunately, these 
situations are not uncommon in transportation engineering. Fortunately, 
there are a number of nonparametric tests that can be used to address this 
issue. As the types of questions that transportation professionals need to 
answer become more complex, these techniques will become more com-
mon to the profession.

Homework Problems

	 1.	Suppose that we wanted to compare the average speeds among five 
segments for the probe vehicles. How can we modify 95% confidence 
intervals so that their combined error rate is 5% while accounting for 
all 5 × 4/2 = 10 comparisons?

	 2.	Using the urban mobility analysis data, test the hypothesis that the 
mean values for public transportation passenger miles between 1982 
and 2003 are the same for Akron, Ohio; Albuquerque, New Mexico; 
Allentown, Pennsylvania; and Anchorage, Alaska. If the means are 
not equal, form a grouping for these cities’ public transportation 
means that is logically sound.



Other Inferential Procedures    ◾    155

	 3.	For the data used in problem 2 show that the mean squared error 
equals S S S SAkron

2 2 2+ + +Albuquerque Allentown Anchoragee
2 4/ . If the sample sizes 

were not equal, would this be true? How would the formula change?

	 4.	For pavement marking data the gender and glare variables were 
combined.

	

1

2

3

=

=

=

Female Glare

Male Glare

Female Glare

,

, ~

, ~

44 =












 Male Glare, .

	 a.	 Do an ANOVA of the detection data using the combined gender 
and glare variable as the factor.

	 b.	 Do an ANOVA of the logged detection data using the combined 
gender and glare variable as the factor.

	 c.	 Which analysis is more appropriate using the logged data or the 
raw data? Why?

	 5.	For the speed, number of signals, and weather data used for ANOVA, 
redo the analysis using rank transforms.

	 a.	 Are the main effects and interactions significant?

	 b.	 How do the p values compare to the p values from ANOVA?
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9C h a p t e r  

Inferences Concerning 
Categorical Data

9.1  Introduction
In Chapter 3, we introduced the concept of proportion(s) as a summary of 
categorical data. As you may recall, this type of data occurs relatively often 
in transportation. For example, the U.S. Federal Highway Administration 
(FHWA) groups vehicles into thirteen distinct types, and a good portion of 
survey data is categorical in nature. Consequently, transportation engineers 
use and test proportions quite often. We may wish to know if an education 
program decreases the percentage of teen drivers who are texting while 
driving. In another situation, we may want to know if there are differences 
in the proportions of male and female drivers using toll roads. Not sur-
prisingly, it is often not enough to know what the proportions are for the 
questions in which we are interested; thereby, we would like to know how 
confident we are in the estimates. The focus in this chapter is on making 
inferences concerning population (true) proportions for categorical data; 
for example, it may be that 47% of male drivers and 53% of female drivers 
use toll roads. In this chapter we will learn how to infer whether the 6% 
difference is statistically significant.

9.2 � Tests and Confidence Intervals 
for a Single Proportion

Suppose we have a situation where each of n individuals has an indepen-
dent choice. For example, drivers on State Route (SR) 91 in California have 
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a choice of driving on either a toll or free section of the roadway—both 
sections run parallel to each other. Suppose we use notation

	

Xi =
0
1

if option 1 is made
if option 2 is madde





= …, , , .i n1 	

For our example, 0 may correspond to a driver using the free lanes and 
a 1 would correspond to a driver using the tolled lanes. Let ˆ /P X ni

n
i= ∑ =1  and p EP= ˆ . In an analogous approach to testing whether a sample mean 

equals µ or not, we will test whether p p= 0  or not. With a couple of tech-
nical caveats that we will discuss later, the philosophy of testing propor-
tions is analogous to those for testing means from a continuous random 
variable. One caveat is that we must have a minimum number of observa-
tions in order to make meaningful confidence intervals. In this textbook 
we will assume that there are at least five successes (ones) and at least five 
failures (zeros) in any given trial.

As an aside, the rule about the number of successes is based upon tradi-
tional advice where np  and n p( )1−  should be greater than 5. In essence, 
we are hoping that the central limit theorem (CLT) applies, and based on 
experience, this appears to be a good rule of thumb. However, in statistics 
it is critical to always check your assumptions.

Because we do not know p  and it appears in the standard deviation for-
mula that we use to create a confidence interval, we use P̂  as a surrogate. 
We reject the null hypothesis p p= 0  when P̂  is far from p0  relative to its 
standard error. The estimated standard error of P̂  is typically given as

	  

ˆ( ˆ) ,P P
n

1−

and in most transportation applications, this approximation will suffice. 
Therefore, the standard testing setup becomes

	

H p p

H p p

o

a

:

:

=

≠

0

0

and the rejection rule is to reject the null hypothesis when

	

n P p
p p

z
ˆ

( )
./

−
−

≥ −
0

0 0
1 21 α

	
(9.1)
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Under the null hypothesis the standard error of P̂  is

	

p p
n

0 01( ) .−
	

(9.2)

Note that for proportions, the typical confidence interval has a differ-
ent form than you have previously seen due to the fact that there is no 
particular value for p  (such as p0 ) that is of central concern. Thereby, the 
confidence interval has the form

	

ˆ ˆ( ˆ) ./P z P P
n

± −−1 2 1α

	
(9.3)

Also note that bias correction can also be added in the case of the confi-
dence intervals for the mean. For example, if 2% of respondents to a sur-
vey leave a question blank, then ±2% can be added to both sides of the 
confidence interval.

As we discussed previously, there are two technical caveats that may have 
to be addressed. The first is when a given experiment results in observa-
tions that are either all successes or all failures. Note that the assumption of 
np ≥ 5  and n p( )1 5− ≥  can hold and we can still not observe a success in ten 
trials. The reader will quickly see that the estimated standard error would 
be zero. For example, suppose that we are concerned with red light viola-
tions and we observed no red light offenders in ten cycles at an intersection. 
Then the usual 95% confidence interval for the proportion of cycles where 
red light offenses occur would be 0 0± . However, from a practical point of 
view this is a ridiculous answer. For this reason, the authors recommend a 
minimum of five successes and five failures before using these techniques.

An alternative approach is to estimate the intervals based upon cal-
culations that use the binomial distribution because the binomial con-
fidence interval can cope with the low number of observations. When 
P̂ = 0 , the confidence interval is ( , ( / ) )/0 2 1− α n , and when P̂ =1, the con-
fidence interval is (( / ) , )/α 2 11 n . For a more detailed explanation see Ott 
and Longnecker (2009).

In the previous example if we observe no red light violations in ten 
signal cycles, then the 95% confidence interval for the proportion of cycles 
having red light offenders is ( ,. )0 3085 . This is a much more credible 
answer than the 0 0±  obtained by using the usual formula when we have 
ten observations.
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Our second caveat is a technical one. It is known that the CLT is not 
appropriate for some combinations of p  and n . There are both lucky and 
unlucky combinations of these parameters, as described in Brown et al. 
(2001). For confidence intervals, we can do better than require nP̂  and 
n P( ˆ)1−  to be at least 5. A more stable confidence interval is obtained by 
using the Agresti-Coull (1998) formula. For 95% confidence intervals, this 
is obtained by adding two successes and two failures to the data. Thus, the 
center of the Agresti-Coull confidence interval is

	

ˆ .P
X

nAC

i
i

n

=
+

+
=

∑
1

2

4 	
(9.4)

We let

	

SE P P P
nAC

AC AC( ˆ )
ˆ ( ˆ )= −

+
1

4
	 (9.5)

and the Agresti-Coull 95% confidence interval is

	
ˆ ( ˆ )/P z SE PAC AC± −1 2α 	 (9.6)

provided that the sample size is at least ten. Again, this is a general rule 
of thumb in statistics. For the red light example the 95% Agresti–Coull 
interval is (0, .33). This is reasonably close to the adjustment for the 
ordinary confidence interval. For reasons of scholarship, it should be 
noted that the Agresti–Coull interval is closely related to Wilson’s (1927) 
interval.

When the sample size is small—say, less than 10—the authors advise 
using confidence intervals based upon the binomial distribution. Suppose 
that we wish to test the hypothesis that

	

H p p

H p p

o

a

:

: .

=

≠

0

0
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The sum nP Xi
n

i
ˆ = ∑ =1  has a binomial distribution with parameters 

n p, 0( ) . Then, the exact p value for the test of hypothesis based upon a 
binomial distribution is

	

n
x

p px n x

x np np np





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−( ) −

− ≥ −{ }
∑ 1
0 0ˆ

.

	
(9.7)

Confidence intervals can be calculated based upon the binomial 
approximation, but the allowable values of α  are limited due to the small 
number of nonzero terms for the pdf of the binomial distribution. JMP 
does one-sided exact binomial tests for data that are recorded as zero 
or one and as nominal or ordinal variables. For further information see 
“Options for Categorical Variables” in the JMP manual. These calcula-
tions can be awkward if the sample size is large, and for sample sizes of 
ten and larger, the Agresti-Coull (1998) test and corresponding confidence 
intervals should suffice.

9.3 � Tests and Confidence Intervals 
for Two Proportions

Often we will want to compare the success rate of two traffic strategies. 
For example, we may want to know which of two signs are more effec-
tive at keeping traffic in the right lane of a two-lane road. One sign may 
say, “slower traffic keep right,” and another sign may read, “left lane for 
passing only.” In other instances, we may wish to know if having wider 
highway shoulders results in a smaller accident rate. In order to answer 
these questions, we generalize the approaches given in the last section. In 
this way we can test and obtain confidence intervals for the difference of 
two proportions.

Because we will want to know something about the success rate of 
the two procedures, we assume that we have independent observations 
from each of the two populations. Let X X n1 1 1 1, ,, ,…  be n1  independent 
Bernoulli observations from the first population with mean p1 . Also, let 
X X n2 1 2 2, ,, ,…  be n2  independent Bernoulli observations from the second 
population with mean p2 . Let ˆ /P X ni

n
i1 1 1 1= ∑ =  and ˆ /P X ni

n
i2 1 2 2= ∑ =  be 

the sample proportions from the two populations. Based upon the logic 
that we have used throughout this chapter, we will test the null hypothesis 
that p p1 2 0− =  vs. the alternative hypothesis that p p1 2 0− ≠  based upon 
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how close the estimated difference is relative to its standard error. The 
estimated difference

 
ˆ ˆP P1 2−  has an estimated standard error of

	
SE P P P P

n
P P

n
( ˆ ˆ )

ˆ ( ˆ ) ˆ ( ˆ )
1 2

1 1

1

2 2

2

1 1− = − + −



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..
	

(9.8)

Thus, we test the hypotheses:

	

H p p

H p pa

0 1 2

1 2

:

:

=

≠

using a generalization of the single population approach. We use the 
test statistic

	

ˆ ˆ

( ˆ ˆ )
P P

SE P P
1 2

1 2

−
−

	
(9.9)

and reject H0  if it is greater than z1 2−α/ . Otherwise, we do not reject H0 .
As before, we can also use a confidence interval to test the same hypoth-

esis, and once again, it provides more information than the hypothesis 
test. The corresponding confidence interval for the difference of propor-
tions p p1 2−  is

	
ˆ ˆ ( ˆ ˆ )./P P z SE P P1 2 1 2 1 2− ± −−α 	 (9.10)

Just as in the case of a single proportion, the CLT may be inappropri-
ate for certain values of p and n. As a result, the assumption that the test 
statistic is approximately normal may be inadequate. For the same reasons 
as previously stated, we assume that at least five successes and five failures 
from each population are mandatory for the normal approximation to have 
a reasonable chance of developing reasonable, and functional, confidence 
intervals.

Similar to the aforementioned example, we will present an improved 
alternative from Agresti and Caffo (2000). This formulation simply adds 
one success and one failure to the samples from each population, but 
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otherwise proceeds in a similar manner. Again we add four observations in 
total. That is, each population has one success and one failure added. Let
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(9.11)

and
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	 (9.12)

Then our new confidence interval is
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(9.13)

It works much more reliably than the traditional confidence interval based 
upon a normal approximation.

9.4 �C hi-Square Tests Concerning More 
Than Two Population Proportions

Categorical data with multiple categories are often encountered in 
transportation. For example, incident types in the San Antonio, Texas 
DOT district are classified as major accident, minor accident, debris, 
and stalled vehicle. Crashes may be classified according to their sever-
ity level: fatal, incapacitating injury, nonincapacitating injury, minor 
injury, and property damage only. Moreover, vehicles may be classified 
according to their access maneuvers at HOV lanes and the use of the 
turn signals. As a first step, categorical data with more than two catego-
ries are usually summarized in a frequency table where each column 
corresponds to a particular category and the cells contain the frequency 
counts of observations.

9.4.1  Chi-Square Test for Univariate Categorical Data

Univariate categorical data can be summarized in a one-way frequency 
table. As a case in point, researchers randomly sampled 866 incidents 
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from the records of all incidents in San Antonio in 2004, and classified 
each according to type of incident, as shown Table 9.1.

The proportion of each incident type is computed to be 33% (= 287/866 × 
100) for major accidents, 26% for minor accidents, 34% for stalled vehicle, 
and 7% for debris. Note that those percentages represent the sample pro-
portions based on the observed data.

Sometimes transportation professionals would like to make inferences 
about categorical data, such as shown in Table 9.1. Let us denote the true 
proportions in each category of type of incident as pMajor , pMinor , pStalled , 
and pDebris  for major accidents, minor accidents, stalled vehicle, and debris, 
respectively. Assume that there is a hypothesized value for each category 
denoted as pMajor

0 , pMinor
0 , pStalled

0 , and p pDebris
0 . Note that often the null 

hypothesis is that all proportions are the same (e.g., there is no effect of 
treatment). The null hypothesis and the alternative hypothesis of interest 
are stated as follows:

H0: p p p p p pMajor Major Minor Minor Stalled Sta= = =0 0, , llled Debris Debrisp p0 0, .=

Ha: At least one of the true category proportions is different from the 
corresponding hypothesized value.

The chi-square test can be used to evaluate the above hypotheses. This 
test is often referred to as a goodness-of-fit test (see, e.g., Agresti, 1990). 
The chi-square test statistic, denoted by χ2 , measures the discrepancy 
between the observed cell counts and the expected cell counts where the 
latter are given as the hypothesized category proportions multiplied by 
the sample size n. For example, the expected cell count for the category 
of major accidents is npMajor

0 ; for minor accidents, npMinor
0 ; and so on. In 

general, when there are K categories, the chi-square statistic χ2 , can be 
defined as

	
χ2

0 2

0
1

=
−( )

=
∑ Y np

np
k k

kk

K

	
(9.14)

Table 9.1  One-Way Frequency Table for Randomly Selected Incidents in 
San Antonio, 2004 (n = 866)

Type of Incident
Major 

Accident
Minor 

Accident
Stalled 
Vehicle

Debris on 
Road

Observed count 287 221 295 63
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where Yk denotes the observed cell count for the kth category and pk
0  

denotes the hypothesized value for the corresponding category. A large 
value of χ2 indicates that there is a significant discrepancy between the 
observed cell counts and the expected cell counts; thus, this information 
suggests a rejection of the null hypothesis. Yet, this begs the question: How 
do we define the term large? That is, how large should χ2  be in order to 
reject the null hypothesis? In practice, this can be determined based upon 
the corresponding p value. For example, a small p value (e.g., less than 
0.05) corresponds to a large χ2

 value. When the null hypothesis is true 
and the sample size is large enough so that npk

0 5≥  for each category, the 
distribution of the statistic χ2 can be approximated by a chi-square dis-
tribution with degrees of freedom df = K–1 denoted by χK −1

2 . Therefore, 
the null hypothesis will be rejected if the p value associated with χ2

 — 
computed based on the chi-square distribution with df = K–1—is less than 
the predetermined significance level, α.

Example 9.1

Assume that the data in Table 9.1 represent a random sample of the incidents 
that occurred in San Antonio in 2004. Imagine that you have been asked to 
determine if the four incident types occur with equal probability, and you 
have decided to conduct the test at α = 0.05. In this situation the null hypoth-
esis is p p p pMajor Minor Stalled Debris= = = = 0 25. , and the alternative hypothesis is 
that at least one of the true category proportions is not 0.25. The expected cell 
count for each category is computed as

Expected count = n × = × =0 25 866 0 25 216 5. . . .

and the observed value of χ2 is

	

χ2
0 2

0
1

4

2
287 216 5

216 5
22

=
−( )

=
−( ) +

=
∑ Y np

np
k k

kk

.
.

11 216 5
216 5

295 216 5
216 5

63 216 5
2 2−( ) +

−( ) +
−.

.
.

.
.(( )2

216 5.

= 160.3464.

Because the expected cell counts (here 216.5) are all greater than 5, the p 
value can be approximated by the tail probability to the right of the observed 
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χ2 value for the chi-square distribution with df = 3 (i.e., χ2~ χ3
2 ). This is repre-

sented as follows:

	 p Pvalue = <0.0001.( . )χ2 160 3464≥

In practice, the chi-square test is conducted by using statistical packages, 
such as JMP. By looking at the terms in the sum, we can make educated guesses 
about which classes cause the null hypothesis to be rejected. For example, the 
sum corresponding to minor accidents is

	

221 216 5
216 5

09
2−( ) ≈

.
.

. .

On the other hand, the term corresponding to debris is

	

63 216 5
216 5

109
2−( ) ≈

.
.

.

It is very likely that debris, and not minor accidents, is contributing to reject-
ing the null hypothesis. Tests of proportions can be done as a more precise 
way to assess the cells causing the difference. For most applications, at least in 
the authors’ experience, a check based upon the contributing terms to the χ2  
will suffice.

Figure 9.1 shows the JMP output for the chi-square test. Because the p value is 
less than α (= 0.05), H0 is rejected. It can be concluded that there is strong evidence 
in the data that not all of the four incident types occur with equal probability.

9.4.2  Tests for Independence of Two Categorical Variables

When there are two categorical variables, the data can be summarized in 
a contingency table. A contingency table contains the frequency counts 
of observations classified according to two variables. The rows indicate 

Test Probabilities
Level Estimated 

Probability
Hypothesized 

Probability
Major accident 0.33141 0.25000
Minor accident 0.25520 0.25000
Stalled vehicle 0.34065 0.25000
Debris 0.07275 0.25000

Test Chi-Square DF Probability > Chi-Square
Pearson 160.3464 3 <.0001

Figure 9.1  The JMP output for the chi-square test.
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different values of one variable, and the columns indicate the values of 
another variable. A contingency table having I rows and J columns is often 
referred to as an I × J table.

As part of a TxDOT-sponsored research project to develop guidance 
materials on intermediate access to a buffer-separated toll lane, research-
ers recorded whether a driver used the turn signal during the maneuver 
(Fitzpatrick et al., 2007). A contingency table for access maneuver at an 
HOV  lane (abort, in, out, or passing) and use of turn signal (yes, no) is 
shown in Table 9.2. This is a 4 × 2 contingency table. Table 9.2 also shows the 
marginal totals for the columns and the rows, which are obtained by add-
ing the cell counts in each column and in each row, respectively. The grand 
total, the sum of all observed cell counts in the table, is also given as 6,965.

A common question associated with categorical data of the sort shown 
in Table 9.2 is whether the two variables are independent. In this case, this 
question specifically asks whether maneuver type and use of turn signal are 
independent. By law, drivers must use a turn signal when conducting any 
of the maneuvers shown in Table 9.2. Clearly, some do not, and the trans-
portation engineer might be interested in whether some drivers perform-
ing particular types of maneuvers are more likely not to use a turn signal 
indication than other types of maneuvers. In general, when there are two 
categorical variables and we wish to test whether there is any association 
between them, the null and alternative hypotheses can be stated as follows:

H0: The two variables are independent.

Ha: The two variables are not independent.

Recall that the variables are statistically independent if all joint prob-
abilities equal the product of their marginal probabilities. That is,

	 p p p forij i j=  i I=1, , , j J=1, ,

Table 9.2  Contingency Table of Access Maneuvers by Use of Turn Signal

Count No Yes Row Marginal Total
Abort 29 26 55
In 2,249 2,236 4,485
Out 527 1,356 1,883
Passing 345 197 542
Column marginal total 3,150 3,815 6,965
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where pij denotes the joint probability that the response falls in the cell 
in the ith row and the jth column. Furthermore, pi and pj represent the 
marginal probability of the ith row (obtained by summing the joint prob-
abilities in the ith row across the J columns) and the marginal probability 
of the jth column (obtained by summing the joint probabilities in the jth 
column across the I rows), respectively. Thus, under the null hypothesis of 
independence, the expected cell count for the ith row and jth column ( Eij ) 
can be computed as

	 Eij = Expected count for the (i, j)th cell = npi pj

where n is the sample size. Because the true marginal probabilities are 
unknown, those probabilities are estimated by the sample marginal pro-
portions. The estimated expected cell count ( ˆ )Eij  can be obtained as 
follows:

	 Êij = n (jth column marginal total/n) × (ith row marginal total/n)

	 = (jth column marginal total) × (ith row marginal total)/n.

The chi-square test can again be used to evaluate the above hypoth-
eses. The chi-square test statistic, χ2 , is formed as the sum of the squared 
differences between the observed cell count and the estimated expected 
cell count divided by the estimated expected cell count. In general, when 
there are IJ cells in the contingency table, the chi-square statistic χ2 can 
be defined as

	 χ2

2

11

=
−( )

==
∑∑ Y E

E
ij ij

ijj

J

i

I ˆ
ˆ

	

(9.15)

in which Yi,j and Êij  denote the observed cell count and the estimated 
expected cell count for the (i,j)th category, respectively. A large value of 
χ2  indicates that there is a significant discrepancy between the observed 
cell counts and the expected cell counts, which suggests rejection of the 
null hypothesis. When the null hypothesis is true and the sample size 
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is large enough so that Êij ≥ 5for each cell, the distribution of the statistic 
χ2 can be approximated by a chi-square distribution with degrees of free-
dom df I J= −( ) −( )1 1 . The null hypothesis will be rejected if the p value 
approximated by the tail probability to the right of the observed χ2 value, 
for the chi-square distribution with df I J= −( ) −( )1 1 ,  is less than the pre-
determined significance level, α.

Example 9.2

Assume that researchers are interested in testing whether there is any associa-
tion between vehicles’ access maneuvers at HOV lanes (abort, in, out, or pass-
ing) and the use of turn signals (yes or no) based on the data in Table 9.2. The 
hypotheses to be tested are as follows:

H0: Access maneuvers at HOV lanes and the use of turn signals are 
independent.

Ha: Access maneuvers at HOV lanes and the use of turn signals are not 
independent.

The expected cell counts are estimated by

Êij = (jth column marginal total)(row marginal total)/(grand total)

for i = 1 2 3 4, , ,  and j = 1 2, , and are provided in parentheses in Table 9.3.

Table 9.3  Contingency Table of Access Maneuvers and Use of Turn Signal

Use of Turn 
Signal

Row Marginal 
Total

Maneuver Type No Yes
Abort 29

(25)
26

(30)
55

In 2,249
(2,028)

2,236
(2,457)

4,485

Out 527
(852)

1,356
(1,031)

1,883

Passing 345
(245)

197
(297)

542

Column marginal 
total

3,150 3,815 6,965
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The observed value of χ2  is

	

χ2
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2
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4

2
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ij ij
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ˆ
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= 345.241.

Because the estimated expected cell counts are all greater than 5, the p value 
can be approximated by the tail probability to the right of the observed χ2  
value for the chi-square distribution with df = (2 – 1)(4 – 1)= 3 (i.e., χ2 ~ χ3

2) as 
follows:

	 p P Xvalue 345.241= ≥ <( ) . .2 0 0001

In practice, the chi-square test is conducted by using a statistics package, 
such as the JMP. Figure 9.2 shows the JMP output for the chi-square test.

Because the p value is less than α (= 0.05), H0 is rejected. It can be con-
cluded that there is strong evidence in the data that access maneuvers at HOV 
lanes and the use of turn signals are not independent. Once again, the individ-
ual terms in the sum defining the χ2  can be used to judge which cells do not 
support independence by comparing them among one another. For example, 
the top left cell of the table has a contribution of 29 25 25

2−( ) / , which is less 
than 1, and the top left cell is not displaying dependence. On the other hand, 
the third row of the table has contributions such as 527 852 852 124

2−( ) ≈/  
and shows a strong dependence for that cell.

Tests
Source DF –Log-Like R-Square (U)
Model 3 177.6634 0.0370
Error 6,961 4,618.3121
C. total 6,964 4,795.9755
N 6,965

Test Chi-Square Probability > Chi-Square
Pearson 345.241 < 0.0001

Figure 9.2  The JMP output for the chi-square test of independence.
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9.4.3  Tests for Homogeneity of Two or More Populations

In many contingency tables one variable may be fixed and play the role 
of a group variable that indicates the population from which the samples 
are selected, and a subject in each sample may be classified by the remain-
ing variable. Suppose that researchers are interested in determining if the 
proportions of the four different incident types-major accidents, minor 
accidents, stalled vehicle, and debris-are the same for rainy days and days 
without rain. That is, they are interested in whether rain (the fixed group 
variable) has an effect on the number of each type of incident expected 
on any given day. To test this, suppose they collected a random sample of 
220 rainy days and a separate random sample of 495 days with no rain. 
The data are summarized in the 2 × 4 contingency table (Table 9.4).

Table 9.4 also shows the marginal totals for the columns and the rows, 
which are obtained by adding the cell counts in each column and in each 
row, respectively. Here, the two row marginal totals, 495 and 220, are fixed 
by the sampling design (e.g., the sample sizes for nonrainy days and rainy 
days were fixed by the experimenter) while the four column totals are ran-
dom. The grand total, the sum of all observed cell counts in the table, is 
also given as 715.

As stated above, the hypothesis of interest here is whether the proportions 
of the four different incident types are the same for a population of rainy days 
and a population of days without rain. In general, when there are I populations 
from which separate random samples are obtained and each observation in 
the sample is classified according to the value of a categorical variable, the 
null and alternative hypotheses of interest can be stated as follows:

H0: The true category proportions are the same across all of I populations.

Ha: The true category proportions are not the same for all of I popula-
tions; that is, they are different for at least one of the I populations.

Table 9.4  Contingency Table of Rainfall by Incident Type

Incident Type
Row Marginal 

Total
Major 

Accident
Minor 

Accident
Stalled 
Vehicle Debris

No rain 153 124 173 45 495
Rain 90 57 60 13 220
Column 
marginal total

243 181 233 58 715
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Note that the null hypothesis represents homogeneity of populations 
with respect to the category proportions. The chi-square test statistic can 
again be used to test the above hypotheses. The expected cell count under 
the null hypothesis for the jth category and the ith population ( ˆ )Eij  can 
be estimated as follows:

	 Êij = (sample proportion of the jth category) × (ith sample size)
	 = (jth column marginal total/grand total) × (row i marginal total)
	 = (jth column marginal total) × (row i marginal total)/(grand total).

As before, the chi-square test statistic, χ2 , is formed as the sum of the 
squared differences between the observed cell count and the estimated 
expected cell count divided by the estimated expected cell count. In gen-
eral, when there are IJ cells in the contingency table, the chi-square statis-
tic χ2 can be defined as
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where Yi,j and Êij  denote the observed cell count and the estimated expected 
cell count for the (i,j)th category, respectively. A large value of χ2 indicates 
that there is a significant discrepancy between the observed cell counts and 
the expected cell counts; thus, this suggests rejection of the null hypothesis. 
When the null hypothesis is true and the sample size is large enough so that 
Êij ≥ 5  for each cell, the distribution of the statistic χ2  can be approximated 
by a chi-square distribution with degrees of freedom df I J= −( ) −( )1 1 . The 
null hypothesis will be rejected if the p value approximated by the tail prob-
ability to the right of the observed χ2  value for the chi-square distribution 
with df I J= −( ) −( )1 1  is less than the predetermined significance level, α.

Example 9.3

Suppose that researchers are interested in testing whether the proportions of 
the four different incident types—major accidents, minor accidents, stalled 
vehicle, and debris—are the same for rainy days and days without rain based 
on the data in Table 9.4. The hypotheses to be tested can be stated as follows:

H0: The category proportions of incident type are the same for rainy days 
and days with no rain.

Ha: The category proportions of incident type are not the same for rainy 
days and days with no rain.
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The estimated expected cell counts computed by

Êij = (jth column marginal total)(row i marginal total)/(grand total)

for i = 1 2,  and j = 1 2 3 4, , , , and are provided in parentheses in Table 9.5.
The observed value of X2 is
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= 9.181.

Because the estimated expected cell counts are all greater than 5, the p 
value can be approximated by the tail probability to the right of the observed 
χ2  value for the chi-square distribution with df = (2 – 1)(4 – 1) = 3 (i.e., χ χ2

3
2∼ )  

as follows:

	 p Pvalue = ( . ) . .χ2 9 181 0 0270≥ =

In practice, the chi-square test is conducted by using a statistics package 
such as JMP. Figure 9.3 shows the JMP output for the chi-square test.

Because the p value is less than α (= 0.05), H0 is rejected. We can conclude that 
there is sufficient evidence in the data that the category proportions of incident 
type are not the same for rainy days and days with no rain. That is, the presence 
or absence of rain appears to affect the types of incidents that are observed. As 
before, individual contributions to the chi-square statistic can be used to gain an 
understanding of which cells contribute to the null hypothesis being rejected.

When the assumptions for the large sample tests are not met, i.e., some 
of the (estimated) expected cell counts are less than 5, the chi-square 

Table 9.5  Contingency Table of Rainfall by Incident Type with 
Estimated Expected Counts

Count
Major 

Accident
Minor 

Accident
Stalled 
Vehicle Debris

Row 
Marginal 

Total
No rain 153

(168)
124

(125)
173

(161)
45

(40)
495

Rain 90
(75)

57
(56)

60
(72)

13
(18)

220

Column 
marginal 
total

243 181 233 58 715
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approximation may be invalid and exact tests (see, e.g., Agresti, 1990) may 
need to be employed. The reader is referred to Agresti (1990) for more in-depth 
discussion on inferences on various contingency tables.

9.5 � The Chi-Square Goodness-of-Fit Test for 
Checking Distributional Assumptions

The chi-square goodness-of-fit test can also be used to test whether 
the underlying distribution of the data follows a specific distribution 
(e.g., normal, exponential, etc.). The test is based upon the multinomial 
distribution.

Suppose that we obtain a set of random data and construct a histogram. 
We are interested in what the underlying distribution could be. The first 
step is to examine the histogram and hypothesize what would be a rea-
sonable distribution type. Figure 9.4 shows a histogram of headway data 
obtained from a freeway. Given the fact that the headway decreases at a 
decreasing rate, it might be reasonable to hypothesize that the underlying 
distribution is exponential. We could overlay an exponential distribution 
on the histogram in order to visually compare the histogram and the den-
sity function. 

Let Ei  be the expected number of observations within the ith cell of the 
histogram based upon an assumed theoretical pdf. Assume that the null 
hypothesis is correct, and let ni  be the number of observations within the 
ith cell. Then the chi-square test statistic is
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Tests
Source DF –Log-Like R-Square (U)
Model 3 4.62130 0.0050
Error 709 913.22117
C. total 712 917.84247
N 715

Test Chi-Square Probability > Chi-Square
Pearson 9.181 0.0270

Figure  9.3  The JMP output for the chi-square test of homogeneity of two 
populations.
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This statistic has an approximate chi-square distribution with I −1 degrees of 
freedom. We reject the null hypothesis if the value of χ2 exceeds the 100 1( )− α  
percentile of a chi-square distribution with I −1  degrees of freedom.

As an example, consider the two hundred headway observations used 
in Figure 9.4. Suppose we use five equally spaced cells to construct our 
chi-square test. Note that at this time JMP does not easily perform a 
chi-square test for continuous distributions. Thus, other packages, such as 
MATLAB, may be used. Using the MATLAB “chitest” command we get 
χ2 = 10.5419, and for a chi-square with 4 degrees of freedom, the p value 
is .0322. The p value obtained from JMP using the Kolmogorov test is less 
than .01 for these data. The p value given by the chi-square test does not 
properly take into account the estimation of the unknown parameter in 
the exponential distribution. However, in large samples this should not be 
very important.

9.6 Co nclusions
Categorical data are used regularly by transportation agencies and, as such, 
are often analyzed by engineers. This is because some transportation-related 
factors are, by definition, discrete. Examples of these could include (1) num-
ber of lanes on a roadway, (2) personal characteristics such as gender, (3) 
experiential characteristics such as whether someone has taken a traffic 
course, (4) specific treatment such as type of de-icer, and (5) number of cars 
in a household. In other situations the variables are discrete because that 

Figure 9.4  Histogram for headway data with an overlaid exponential 
distribution.
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is how the information was collected. For example, it is rare to ask specific 
questions related to salary; rather, the survey typically asks responders to 
fill in their answer as part of a range. When the data are categorical, the 
transportation professionals often ask questions related to proportions of 
the categorical data.

The techniques used to analyze one or two proportions are very similar 
to those related to the inference of the estimated mean value of continu-
ous variables. Both hypothesis tests and confidence intervals can be used 
for inference questions. As previously explained, the authors recommend 
using confidence intervals for inference. The results will be the same as 
for standard hypothesis testing; however, the authors feel the CIs provide 
more useful information. Note that when there were more than three pro-
portions being compared, only hypotheses tests were presented.

This chapter also introduced a number of issues that are particular to 
categorical inference. For example, if no events are observed for a par-
ticular situation, the traditional CI calculations will give answers that are 
clearly inappropriate. However, with the revised CI this issue is handled, 
as the modified CIs are more accurate than the standard approaches. As 
before, it is imperative for the analyst to understand the limitations of the 
various approaches.

The concept of two-way contingency tables was also developed in this 
chapter. These are very common in transportation studies. For example, 
transportation agencies are often interested in whether a variable they have 
control over, such as a type of sign or roadway, has an effect on some type 
of driver characteristic. The approaches would then allow for various ques-
tions to be answered, such as whether the presence of education campaigns 
affects the number of people running through red-lights or texting while 
driving.

Homework Problems

	 1.	 In a study of red light offenses at an intersection, there were 180 light 
cycles. In 163 cycles, there were no red light violations, and in 17, 
there was at least one vehicle that ran a red light. Give point and 
interval estimates for the mean percent of red light violations.

	 2.	A state department of transportation is interested in knowing 
whether older Americans can drive safely (compared to the general 
population) if their blood alcohol content (BAC) is .06%, or 75% of the 
state’s statutory limit. Fifty volunteers are used: thirty participants 
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are under the age of forty-five, and twenty are over the age of sixty. 
Each participant is given alcoholic beverages at fifteen-minute inter-
vals until his or her BAC is .06%. Three drivers from the under the 
age of forty-five group and five from the older group had driving 
mishaps. Provide confidence intervals for the mean difference of the 
proportion of drivers adversely effected by a BAC of .06%.

	 3.	A transportation engineer is comparing two strategies for cutting 
down on red light violations. The first strategy uses warning signs of 
the upcoming traffic signal. The second uses sensors to keep signals 
green if a vehicle is calculated not to have enough time to easily stop 
for a red signal. The engineer records driver behavior at two matched 
intersections. Are the sensors successful at cutting down the per-
centage of red light runners?

Stopped at Red Continued on Red
Warning signs 304 9
Sensors 256 6

	 4.	A work zone study is being conducted to see what variables most 
influence a driver’s decision to decrease speed. The study uses vol-
unteers from passive and active states. In a passive state, police are 
present at work zones but do not ticket speeders. In an active state, 
police are present at work zones and ticket speeders. Use a test of 
homogeneity to see if there are significant age differences between 
passive and active states in the study. If there are differences, what 
age categories are contributing to the differences?

Enforcement A B C D E F
Active 83 150 223 60 21 22
Passive 79 146 215 108 34 17
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10C h a p t e r  

Linear Regression

10.1  Introduction
In previous chapters, we looked at modeling single transportation 
phenomena, such as vehicle speed, as a random variable. We illustrated how 
to graph empirical speed data, make hypotheses about the distribution of 
speeds, and then test the hypotheses using statistical techniques, such as 
the Kolmogorov–Smirnov (K–S) test. We also showed how we quantify the 
random variable by measures of central tendency (mean, mode, median) 
and measures of dispersion (variance and range). Additionally, we demon-
strated how to test hypotheses about these measures by using confidence 
intervals (CIs), such as t-tests and F-tests. In many transportation applica-
tions, however, we are interested in the relationship between two variables. 
In particular, engineers are often asked what happens to one variable if 
another variable is changed; that is, they are asked to predict outcomes. 
In this situation we will need to know how to develop a statistical rela-
tionship between the two variables. For example, we might be interested 
in the relationship between two variables in several scenarios, such as (1) 
the service life of a pavement and average daily traffic (ADT), (2) visibility 
distance and sign font size, (3) vehicle speed and the posted speed limit, or 
(4) crash rate and speed limit.

As engineers we would like to make rationale trade-offs with a variable 
we “control” (e.g., pavement thickness, font size, speed limit) in order to 
meet some objective (e.g., increases in pavement life, sign visibility, safety). 
However, we need to have a model that relates the two variables, and we 
must to be able to test the model for accuracy. For example, a common 
assumption by novices is that by reducing the speed limit, vehicle speeds 
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will automatically decrease. In this chapter it will be shown how a model 
that can be used to test this hypothesis can be developed and utilized. 
This chapter is focused on modeling a particular subset of all these types 
of relationships, or the situation where the relationship between two vari-
ables is linear in the parameters, that is, where the response of a particular 
variable is linear in nature (at least in the particular range of data under 
examination). We start this chapter using a straight-line example, and 
then proceed to more complicated examples.

10.2  Simple Linear Regression
If we believe that the relationship between two variables is linear, then 
the modeling process consists of collecting paired data on the two 
variables and fitting a straight line. Fitting a straight line is among the 
simplest and most powerful tools in statistical modeling and would be 
familiar, in its basic form, to any elementary school student. Statisticians 
call the fitting of a straight line simple linear regression, but perhaps a 
more appropriate description is “straightforward” rather than simple. 
We will also illustrate how to test the hypothesis that a relationship is 
linear.

Let us consider Figure 10.1, which is a scatter plot showing the aver-
age annual delay on the vertical axis and the number of principal arte-
rial streets across major metropolitan areas on the horizontal axis. These 
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Figure 10.1  Bivariate fit of annual hours of delay by miles traveled on princi-
pal arterials.
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data were obtained from a collection of cities used to compute the Texas 
Transportation Institute Congestion Index (Schrank and Lomax, 2007).

Based on a cursory examination of the graph, it may be concluded that 
as the daily vehicle miles traveled (in thousands of miles) on principal arte-
rial streets increases, the number of annual hours (in thousands) of delay 
increases. There is a very important lesson behind this observation. As an 
engineer, you need to identify whether a relationship is causal before you 
can use your model for engineering purposes. For example, if you were to 
take a given city and build more major arterials, you would not expect an 
increase in delays. Rather, the above relationship exists because both delay 
and the number of major arterials are related to another variable: city pop-
ulation size. This does not mean that the model is inaccurate or that it can-
not be used for prediction. For example, the number of arterial roadways 
may, in fact, be a good predictor of delay. If you wanted to estimate delay 
in a city, but only had information on the number of arterial streets, this 
might be an appropriate model. However, in this situation you will not be 
able to directly manipulate one variable (e.g., add more streets) and predict 
the outcome of the other.

Note:  If you wish to manipulate one variable and predict the outcome 
of another, you will need to establish that there is a causal relationship. 
Sometimes this is very easy to do; for example, it is easy to establish that 
vehicle momentum is directly related to crash severity, all else being equal. 
However, in other situations, this is not so easy and many false results can 
be obtained. Situations like the example above, in which there is a hidden 
variable (which causes the relationships in the other two), are known as 
false cause fallacies.

There is no statistical test that can be used to determine causation. The 
only tools that are typically available in these situations are scientific 
knowledge and engineering judgment. 

In summary, the methods presented in this chapter should be considered 
as descriptive or predictive, but they do not imply underlying causes.

10.2.1 C orrelation Coefficient

The first descriptive measure we discuss is correlation, or the Pearson cor-
relation coefficient. Suppose that we have paired data (Xi,Yi), i = 1,…,n. The 
Pearson correlation coefficient, r, introduced in Chapter 3 gives a measure 
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of linearity between the two variables in the data. It is also called the sam-
ple correlation coefficient. As presented in Chapter 3, the sample correla-
tion coefficient is defined by the equation
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For the data in Figure 10.1, r = .981.
Correlations are useful for quickly measuring the degree of linearity 

among variables. They are particularly useful for scanning data sets with 
many variables to find those that are linearly related. In other words, if 
you had a data set with fifty variables, you would need 50 × 49/2 = 1225 
scatter plots to visually examine all the relationships. Thus, even though 
good statistical practice is to plot data before they are analyzed, plotting is 
not always practical.

Note: A  value of r = 0 indicates the relationship between the two vari-
ables is not linear. However, this does not imply that there is no rela-
tionship between the variables; rather, it only indicates that if there is 
a relationship, it is not linear. The reader may wish to verify that the 
sample correlation coefficient between the data (Xi,Yi), where Yi = X2

i 
and Xi = ±(i/10), i = 1,…10, has r = 0. Clearly, there is a relationship 
between Y and X. Accordingly, we need to recognize that we may over-
look nonlinear relationships when we scan through high-dimensional 
data using correlations. 

There is a corresponding population quantity to the sample correla-
tion coefficient defined in Equation 10.1, which measures the strength of 
the linear relationship between two variables in the entire population. It 
is called the population correlation coefficient and denoted by ρ. In fact, 
the correlation (ρXY) introduced in Chapter 4 corresponds to the popula-
tion correlation coefficient (ρ).

JMP gives p values for correlation coefficients when the hypotheses of 
interest are H0 : ρ = 0 vs. Ha : ρ ≠ 0. In JMP, this feature is found in the 
multivariate menu. When both X and Y can be viewed as random, the 
standard error for r is approximately
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This standard error can be used to get approximate confidence intervals 
for a population correlation, ρ. An approximate confidence interval is

	 r z s e r± −1 2α . .( ). 	 (10.3)

Please note that the confidence interval should be truncated when nec-
essary to avoid extending beyond ±1. We would like to emphasize that 
JMP uses a more complicated and accurate confidence interval formula, 
which is based on a transformation of the estimated correlation. Those 
interested in further information on this approach may find a detailed 
description in the JMP manual.

10.2.2 F itting a Straight Line

Often, knowing that two variables are linearly related is the first step 
in a study. The next step is to identify the formula of the straight line. 
Specifically, we want to discover the best straight lines out of the infinite 
number that are possible (or more realistically, from all the lines that 
might reasonably describe the linear relationship). To further complicate 
the issue, there are many straight lines that can be fitted when at least one 
of the variables has a measurement error.

As an example, Figure 10.2 shows the relationship between the annual 
hours of delay and the number of principal arterial streets in Beaumont, 
Texas. The solid line represents the typical least-squares line (we will describe 
how the least-squares line was obtained later), and the dotted line represents 
the fit when labeling of the X-Y pairs is reversed (e.g., instead of regressing 
y on x, we regress x on y). We could have drawn a line freehanded, and that 
would probably be different from both of these. There are other lines that are 
used as well, and most of them lie between those two lines.

But, which of these lines should we use as our model? To answer this 
question, we will need to discuss the errors related to the various models.

The basic linear model has two components. The first component is the 
underlying “true” relationship, which is the straight-line model for the 
mean of Y: E(Y) = a + bX. The second component is the error that incor-
porates all deviations from a straight line. These deviations may be due to 
measurement error or to the fact that there are other unknown variables 
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that affect the relationships. For most statistical straight-line fitting tech-
niques, these errors are assumed to be normally distributed. We will show 
how this assumption may be checked later in this chapter.

In Figure 10.2, the underlying relationship between annual hours of delay 
and the miles driven on principal arterial streets is not (perfectly) linear. 
Part of the error is systematic, or what statisticians call bias, and it represents 
error in the model. The second component of the error is random measure-
ment error, and it behaves randomly. Hours of delay are estimated with error, 
and this is part of the reason that the observations do not fall exactly on the 
least-squares line. Thus, the model that underlies simple linear regression is

	 Y a bX= + + ε. 	 (10.4)

The X variable is commonly referred to as the independent variable or 
predictor. The term predictor is a more appropriate name because sets of 
independent variables can be correlated or dependent, leading to awkward 
terminology. In this textbook we use the term predictor. The Y variable is 
known as the dependent variable. The a and b are the intercept and slope 
parameters that we wish to estimate. The ε is the error in the model. We 
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assume that we have observations (Xi,Yi), i = 1,…,n, where Yi = a + bXi + εi. 
We also assume that the errors are normally distributed with mean zero 
and constant variance, which implies that the systematic offsets or biases 
are negligible. The assumption of normality is typically used, although it 
can often be replaced by an assumption that the error distribution pro-
duces few outliers. When there are many outliers, the usual confidence 
intervals for the parameters are often wide, and it is difficult to estimate 
the range of the true slope and intercept. In these cases, robust fits to the 
data are recommended as described in Mosteller and Tukey (1977).

It should be noted that the residuals (e.g., the difference between the 
observed value of Y and the predicted value) should be saved and plotted. 
A box plot will be used to check for outliers, and a q-q plot will be used to assess 
normality. These plots will be covered in greater detail later in the chapter.

10.2.2.1  Estimating Slope and Intercept
The least-squares estimators â and b̂ are obtained by a minimization of 
the errors between the observations and a straight line as defined in the 
expression
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with respect to a and b. The formulas for estimating the slope (b) and the 
y intercept (a) are as follows:
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and

	 ˆ ˆ .a Y bX= − 	 (10.6)

The above formulas are known in the statistical literature as best linear 
unbiased estimates (BLUEs). While not covered here, they are generally 
taken as representing the best straight line out of all that are possible. In 
this situation, the best is the resulting straight line that has the lowest sum 
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of squared errors out of all possible lines, and the smallest standard error 
possible. For this reason, the BLUE model shown above is the best model 
for most engineering applications, and is the one readers will most likely 
encounter in their professional careers.

Note:  These formulas are so popular that they can be found in most 
spreadsheet packages (such as Excel) and scientific calculators. While there 
may be a temptation to use these formulas with a calculator, it should 
be resisted. The formulas are theoretically correct, but they are prone to 
round-off errors. Many packages, such as JMP, use numerically stable algo-
rithms to calculate these same quantities.

10.2.2.2  Inferences on Slope and Intercept
In essence, the regression equation allows us to estimate a measure of cen-
tral tendency, in this case, the mean for a given value of input x. Intuitively 
it would be useful to test hypotheses related to intercept, slope, and the 
line. Standard tests have been developed over the years to address these 
issues, and these are often output by most computer packages. Similar to 
the univariate case, we need an estimate of the variance. The first formula 
of interest is for the estimated variance for the residuals:
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It is evident that the estimated variance is very similar to that of the uni-
variate case. The only difference in the numerator is that instead of using 
the estimated mean, the estimated mean for a given value of x is used. The 
denominator is n – 2 rather than n – 1 to account for the fact that both the 
slope and intercept were estimated (e.g., in statistical parlance we lose a 
degree of freedom).

The estimated standard error for the estimated slope is
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The estimated standard error for the estimated intercept is
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The degrees of freedom associated with these standard error estimates 
are n – 2. Note that the denominator in Equation 10.9 has a term related 
to difference in the values of the x predictor minus the average value of 
the x predictor. In essence, obtaining a relatively wide range of x values 
will allow for stronger statistical testing than having a small range, all 
else being equal. Caution is needed not to choose predictor values too far 
apart because the model may not be valid over too wide a range of the 
predictor.

As before, we can calculate confidence intervals and use these to test 
hypotheses. The CIs for the estimated slope (b) and intercept (a) are

	
ˆ ( / , )ˆ ˆb t n b± − −1 2 2α σ 	 (10.10)

and

	 ˆ ( / , )ˆ ˆa t n a± − −1 2 2α σ 	 (10.11)

respectively. Just as in ANOVA (see Chapter 8), computer programs, such 
as JMP, provide an ANOVA table with their regression output. The F-test in 
the output tests whether or not the slope equals zero, and is the most com-
monly utilized test related to the slope. If we cannot tell whether the slope 
is statistically different from zero, then it is impossible to argue that there 
is a linear relationship between the variables. The null hypothesis under-
lying this test is that the population slope equals zero, and the alternative 
hypothesis is that the population slope is not equal to zero. Alternatively, if 
the confidence interval for slope is calculated, then the equivalent hypoth-
esis test can be done by checking whether zero lies in the confidence inter-
val or not. The important regression output from JMP for the plot shown 
in Figure 10.2 is shown in Figure 10.3.

In Figure  10.3 it is clear that the mean square for error, that is, our 
variance estimate (σ̂2), is 20,111. It is important to remember that statisti-
cal packages will not provide the units, and consequently, you must keep 



188    ◾    Transportation Statistics and Microsimulation﻿

track of them. The F-ratio in the ANOVA table is the square of the t-ratio 
for the slope estimate in the table. Accounting for rounding error is dem-
onstrated in the following equation:

	 t
b̂

( . ) . . .2 27 94 63 0436 62 9918= = ≈

Using only two decimal places in our calculation causes a slight offset in 
our value for tb̂

2. The p values for the F-test and the t-test for the slope 
will always be identical. Based on the regression output in Figure 10.3, we 
could conclude that both the intercept and the slope are significantly dif-
ferent compared to zero.

Note:  When the intercept is shown to be not statistically different than 
zero, some textbooks advocate “forcing” the line to run through zero. This 
tactic only estimates the value of the slope. In practice, it is usually best to 
estimate the intercept unless there is strong reason to believe the line runs 
through the origin.

Linear Fit
Annual Hours of Delay = –664.6465 + 1.5443783*Miles Traveled on Principal 
Arterial Street 

Summary of Fit

RSquare 0.759012
RSquare Adj 0.746963
Root Mean Square Error 141.8125
Mean of Response 512.5909
Observations (or Sum Wgts) 22

Analysis of Variance
Source DF Sum of

Squares 
Mean Square F Ratio

Model 1 1266815.6 1266816 62.9918
Error 20 402215.7 20111 Prob > F
C. Total 21 1669031.3 <.0001*

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept –664.6465 151.3777 –4.39 0.0003*
Miles Traveled on Principal Arterial
Street

1.5443783 0.194586 7.94 <.0001*

Figure 10.3  Regression statistics for Figure 10.2.
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10.2.3 P rediction

A common reason for fitting a straight line is to predict the value of the 
dependent variable Y from the given value of the predictor variable X. 
For example, we may wish to predict travel times using measured volume 
from inductance loop detectors as a predictor. For prediction individual 
parameters are less important; instead, it is pertinent to know how the 
estimated parameters are used together to make a prediction. The predic-
tor that we will use is

	 ˆ ˆ ˆ .Y a bX= + 	 (10.12)

The standard error for the prediction is
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The standard error for the line used in prediction is
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The difference between the two formulas in Equations 10.13 and 10.14 
is the scalar 1 inside the square root sign. The confidence interval for the 
line (e.g., the average Y value) at point x is

	
ˆ ˆ ˆ ., / ˆ ˆa bx tn a bx+ ± − − +2 1 2α σ 	 (10.15)

The interval estimate for a new predicted Y (future observation) at x, 
which is called the prediction interval, is given as

	
ˆ ˆ ˆ ., / ˆa bx tn Y+ ± − −2 1 2α σ 	 (10.16)
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That addition of the scalar 1 in Equation 10.13 is needed to expand the 
confidence interval enough so that the resulting prediction interval is suf-
ficiently wide enough to capture the unobserved Y (new points on a scatter 
plot) at the desired confidence level. If the errors in the Y are nonnormal—
with heavy tails so that the data are prone to outliers—then the approach 
described above is not appropriate. In this situation the authors advise the 
reader to obtain statistical assistance from a professional so that appropri-
ate prediction intervals can be constructed. The prediction interval given 
in Equation 10.16 can be plotted in JMP by selecting the appropriate menu 
choice after fitting a line. The resulting plot will resemble Figure 10.4.

In Figure 10.4 the shaded region shows the 95% confidence interval for 
the fitted line at each x. Note that the CI for the simple regression case 
is directly analogous to the CI for the single variable situation. Basically, 
if we were to repeat the same experiment one hundred times, we would 
expect the CI to contain the true mean ninety-five times.

In contrast, the wider intervals, which are indicated by the dotted line, 
show the 95% prediction intervals for the predicted Y at each x. Notice how 
the prediction intervals capture the points on the graph (Ys) and the con-
fidence intervals capture the fitted line with a tighter band. This demon-
strates the fact that prediction intervals need to be wider than confidence 
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intervals in order to capture observations. In summary, we use the CI to 
measure how well we can predict the average mean value for a given x 
value and the prediction interval (PI) to measure the range of observations 
we might expect for a given x value.

10.3  Transformations
Often two variables are related in such a way that a transformation of at 
least one of the variables leads to a linear relationship between the two. 
When two variables have a monotonic relationship (such as y = ex for 
nonnegative variables), y = x2 transformations, such as the log or square 
root, can be applied to create a linear relationship. Thus, engineers should 
consider transformations to their data when scatter plots indicate that x 
and y do not have a linear relationship. As an example, the scatter plot in 
Figure 10.5 shows annual hours of delay vs. daily freeway miles traveled 
in thousands for Akron, Ohio. Two curves are plotted. One is a straight-
line fit (dashed line) and the other is a ln(y) to ln(x) straight-line fit (solid 
curve). The latter was created by first transforming the x and y data using 
a natural logarithmic function. The transformed data were then used in a 
simple linear regression analysis as described in this chapter. The resulting 
ln(y)-ln(x) regression line was subsequently transformed back to its origi-
nal units and plotted in Figure 10.2 as a solid line. An inspection shows 
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that this latter curve appears to fit the data better, and thus the researcher 
may wish to start her analysis assuming a logarithmic relationship.

One downside of transformation is that the resulting estimates and 
confidence intervals obtained from the transformed data are for trans-
formed variables, such as log-transformed passenger miles and not actual 
passenger miles. It is usually important for the transportation professional 
to transform answers back to the original units. The curve in Figure 10.5 
illustrates a linear regression line that has been transformed back to its 
original units. An excellent book about this important topic is by Carroll 
and Rupert (1988).

10.4  Understanding and Calculating R2

Even though we are using the BLUE estimator, a reasonable question 
arises: How good is our model? A commonly used measure of model fit 
in linear regression is R2, which is called the coefficient of determina-
tion. For the simple linear regression, R2 is equal to the squared Pearson 
sample correlation: R2 = r2. It can be calculated two ways in simple linear 
regression. The first way is to square the sample correlation coefficient. The 
second is to use the equation

	 R2 = Model Sum of Squares
Total Sum of Squares
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This latter approach is more general, as it applies beyond simple linear 
regression, and therefore is recommended by the authors. It can also be 
used in multiple linear regression, as will be discussed later in this chap-
ter. From the above equation, it is clear that R2 measures the proportion of 
the total variation attributable to regression. The value of R2 lies between 
0 and 1. When most variability in the observed y can be explained by the 
regression line, R2 will be close to 1, whereas it will be close to 0 when most 
variation is random and cannot be explained by the regression line.

In the example given in Figure 10.3,

	
R2 1266815 6

1669031 3
759= =.

.
. .
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There is no best overall methodology to use to compute R2, as it really 
depends on which values are easiest to obtain. Given that the vast majority 
of the calculations will be done by the statistical package, deliberating over 
which method to use is quite unnecessary.

Of more importance is whether the value of R2 should be considered 
acceptable. Unfortunately, there is no set answer. In some areas of transpor-
tation engineering, such as economic impact studies, R2 ≥ .6 is considered 
good. In other areas, such as calibrating double-loop speed measurements 
to radar gun speed measurements, R2 < .9 may be considered poor. In our 
example, R2 = .759012, and the reader should check to be sure that he or 
she can calculate r using this value for R2.

Finally, R2 is only a crude measure of linearity. Consider the (X,Y) data 
pairs (0,3),(0,3),(1,3). With this given data set, the R2 for the straight-line fit 
to these data equals zero. Now consider adding one additional (X,Y) pair 
(100,1000000). The straight-line fit to the data (0,3),(0,3),(1,3),(100,1000000) 
has R2 ≈ 1. The lesson to learn from this example is that R2 is only a rough 
measure of fit. The presence of outliers can make the model appear to be 
better or worse than it is in actuality. As discussed previously, the coef-
ficient of determination is completely inappropriate if the underlying rela-
tionship is highly nonlinear.

10.5 �Veri fying the Main Assumptions 
in Linear Regression

As was discussed at the beginning of the chapter, there are a number of 
underlying assumptions that must be made before linear regression tech-
niques can be employed. It is imperative that you understand underlying 
assumptions because you may have to address this issue in order to vali-
date your research. Specifically speaking, if you present results at a confer-
ence, you will in all likelihood find that some members of your audience 
will ask whether you checked your assumptions. This section will help you 
make these comparisons.

One of the assumptions was that the variance was constant (e.g., 
regardless of the value of x, the variance is constant). The most common 
method for checking this assumption is to plot the residuals (e.g., the 
residual difference between the predicted value of y and the observed 
value of y, for a given x) vs. the predicted value, or the x variable. These 
plots are used to check that the magnitude of the residuals does not 
vary in a systematic way with the predicted variable or the x variable. 
For example, if the residuals’ spread appears to increase (or decrease) 
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as x increases, then the assumption of constant variance is probably 
not appropriate. When a nonconstant variance is suspected, the data 
are typically handled by either performing weighted least squares or by 
transformations, such as Box-Cox transformations. An excellent refer-
ence for handling nonconstant variance is Carroll and Rupert (1988). 
Note that if the assumption is violated, this is usually not considered 
a fatal error. This is because the estimated slope and intercept are still 
unbiased, but unnecessarily inaccurate. The resulting population vari-
ances would be bigger than necessary. Moreover, the estimated standard 
errors would be biased and thus inaccurate.

Another assumption is that the straight-line model is an adequate repre-
sentation of reality. Again, residual plots should be checked. There should 
be no discernable pattern in the residuals, as you should only see random 
noise. When there are suspicions that the linear fit is not adequate, then 
smoothing methods from the appendix or higher-order polynomials may 
be appropriate. Polynomial models will be discussed later in this chapter.

Finally, the assumption of independent errors is critical for obtaining 
valid confidence intervals and prediction intervals. Time series techniques 
can be used to check for serial correlation in the data. See the JMP manual 
for these tests.

Mosteller and Tukey (1977) give excellent diagnostic procedures and 
alternative approaches when assumptions appear to be violated.

10.6 �Com paring Two Regression Lines at a Point 
and Comparing Two Regression Parameters

The reader may be confronted with the question of whether two differ-
ent regression models are, in fact, statistically dissimilar. Fortunately, 
using the formulas that we have studied, it is relatively easy to compare 
(1) two regression lines at the same point x, and (2) regression param-
eters from two independent experiments. The logic behind the approach 
is similar to the logic used when we compared two means and, later, 
two proportions. The general form of the confidence interval and 
corresponding test will be similar regardless if we are comparing two 
independent estimates of the slope, or if we are comparing two predic-
tions. If we want to test whether two slopes, b1 and b2, are equal, we use 
the confidence interval

	 ˆ ˆ ˆ ˆ ./ ˆ ˆb b z
b b1 2 1 2
2 2
1 2

− ± +−α σ σ 	 (10.18)
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If zero is not in this interval, we conclude that the slopes are not equal.
For comparing two independently estimated regression lines at a point 

x0 from two different models at a common value, we construct the confi-
dence interval

	 (ˆ ˆ ) (ˆ ˆ ) ˆ ˆ/ ˆ ˆa a b b X z
a b X1 2 1 2 0 1 2
2

1 1 0
− + − ± +− +α σ σ ˆ̂ ˆ .

a b X2 2 0

2
+

	 (10.19)

If zero is not in that interval, the predictions are said to be different.

10.7  The Regression Discontinuity Design (RDD)
In many transportation evaluations, there is an abrupt change in policy 
with a predictor variable or covariate. The predictor may be time, for 
example, a new speed limit that goes into effect on a specific date, or it 
could be the age of a (potential) driver. These social policies can be evalu-
ated by fitting a separate regression line to the two groups. For example, 
suppose drivers at age X0 are required to have an eye exam in order to 
keep their driver’s license. We can fit a line to the number of tickets for 
ages X0−5 to X0 and a different line to the data for drivers X0 to X0+5. We 
then test to see whether the difference estimate in Equation 10.19,

	
(ˆ ˆ ) (ˆ ˆ ) ˆ ˆ/ ˆ ˆa a b b X z

a b X1 2 1 2 0 1 2
2

1 1 0
− + − ± +− +α σ σ ˆ̂ ˆa b X2 2 0

2
+

contains zero. If the confidence interval contains only negative values, 
then we might attribute the improvement to the eye exam. There are many 
other explanations that need to be considered as possible causes of a sig-
nificant difference. For instance, safety improvements in vehicles or roads 
could provide alternating explanations. Readers are referred to Campbell 
and Stanley (1963), Cook and Campbell (1979), Shadish et al. (2002), Sween 
(1971), and Trochim (1984). These references provide important consider-
ations and an in-depth discussion of the regression discontinuity design. 
They also contain commonsense guides underlying social program evalu-
ation. For a history of RDD, see Cook (2008).

10.8  Multiple Linear Regression
In this section, we will extend simple linear regression to include more 
than one predictor. For example, traffic congestion depends upon the 
numbers of highways, entrances, exits, arterial roads, signals, and many 
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other factors. Thus, engineers wanting to predict congestion need tools 
that can use multiple predictor variables as input. In addition, engineers 
will often need to explore many alternative models in order to find the one 
most relevant to their purpose.

This section describes common tools for predicting a single outcome 
measure using multiple predictors. This includes polynomial regression 
where multiple predictors are constructed from one original predictor 
using a power transformation.

Assume that we observe n observations on p+1 variables (Yi,X1i,X2i,…, 
Xpi). They are related by the equation

	 Y X X Xi p p i= + + +…+ +β β β β ε0 1 1 2 2 . 	 (10.20)

As in simple linear regression, Yi is the dependent variable that is to 
be modeled as a linear function of the p predictor variables (x1i,x2i,…,xpi). 
Just as in simple linear regression, the terms εi represent independent and 
identically distributed (iid) normal random error and have mean of 0 and 
variance σ2. The parameter β0 is the intercept, and the parameters β1,β2,…, 
βp are the regression slopes for the predictor variables (X1i,X2i,…,Xpi), 
respectively. Under these assumptions, the least-squares estimates estima-
tors ˆ , ˆ , , ˆβ β β0 1 … p are obtained as the parameter values that minimize

	 Y X Xi p p
i

n

− − −…−( )
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∑ β β β0 1 1
2

1

. 	 (10.21)

The variance estimator σ̂2 is calculated by the equation
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The formulas for the standard errors for ˆ , ˆ , , ˆβ β β0 1 … p are best given 
using matrices, and they can be found in Ott and Longnecker (2009). 
Multiple linear regression also includes polynomial regression. Note that 
in the model



Linear Regression    ◾    197

	 Y X X X p= + + +…+ +β β β ε0 1
2 	 (10.23)

is a special case of multiple linear regression. In polynomial regression, 
X1 = X, X2 = X2, …, Xp = X p. The term linear in linear regression refers to 
the linearity of the model in the regression parameters, or betas. Multiple 
linear regression models are not necessarily linear in the Xs.

To illustrate this concept, consider the hours of traffic delay for the city 
of Los Angeles for the years 1982 to 2004. The predictor variables are the 
population, the average daily miles driven on available arterial streets, and 
the miles of freeway that were available. A scatter plot matrix is shown in 
Figure 10.6.

We see from the example that the average daily miles driven on prin-
cipal arterial streets, the average miles driven on freeways, and the pop-
ulation in Los Angeles are linearly related to the annual hours of delay 
and vice versa. We now use Equation 10.20 to model the annual hours of 
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delay as a linear function of the other variables. The estimated parameters, 
their standard errors, t-tests, and corresponding p values are shown in 
Figure 10.7.

The parameter estimates for β0,β1,β2, and β3 are given in the first col-
umn of Figure 10.7. The next column contains their estimated standard 
error. The third column contains the corresponding t-test for testing 
the hypothesis that the parameter is zero vs. the alternative hypoth-
esis that the parameter is not zero. We notice that only one p value is 
significant at the α = .05 level (e.g., average miles driven on principal 
arterial streets with a t value of 2.91). It is tempting to refit the model 
using only the intercept and the number of principal arterial streets 
as the predictors. However, when we look at the matrix of the correla-
tions among the predictors in Figure 10.8, we see that the predictors are 
highly correlated.

High correlation among predictor variables is known as collinearity of 
predictors. It causes the standard errors of the collinear predictors and 
the corresponding p values to be inflated. In this situation, we can remove 
any two of the three x variables, and the remaining slope, in all likeli-
hood, will be statistically significant. More importantly, not removing 
two of the variables will make the model appear to be more useful than 
it actually is.

Lastly, it should be pointed out that it is not uncommon to have col-
linearity in actual engineering data. In fact, it would be rare to have cor-
relation values close to zero for observational studies.

Figure 10.7  Parameter estimates.

Figure 10.8  Correlation matrix for the predictors.
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10.8.1 C onfidence Intervals on Regression Parameters

Confidence intervals can be calculated for the k (= p + 1) regression param-
eters (including the intercept) using the formula

	
ˆ ( / , ) , /β α αj t n k tn k± − − − −1 2 1 2

	 (10.24)

More advanced textbooks, such Johnson and Wichern (2007), give formulas 
for confidence ellipsoids. Confidence ellipsoids give joint confidence regions 
for the p-estimated regression parameters that have a minimum area.

10.8.1.1  Extrapolation
It is extremely dangerous to use predictors outside of the joint range of 
experimental data. For observational studies where data are typically col-
linear, this is very important. For example, suppose that two x variables 
were practically equal everywhere in the data used to fit the model (and 
hence nearly perfectly collinear). Then any prediction conducted where 
the same two x variables were not nearly equal would be outside the range 
of the experimental data, even if they were not extreme values compared 
to the data used to fit the model. It is dangerous to extrapolate using x data 
that are not typical of the data used to fit the model.

10.9  Variable Selection for Regression Models
Given that there are multiple variables that can be used in any model (some 
of which may be correlated), a natural question is: How do you identify a 
reasonable model? A brute force approach would be to calculate each pos-
sible model, remove the ones that are clearly incorrect (because they defy 
common sense, for example), and then use some predetermined criteria to 
choose the best one (e.g., highest R2). Obviously, this would be time con-
suming. Fortunately, the statistical packages have automatic techniques 
that can be used, and these applications are the focus of this section.

Stepwise modeling procedures usually give three choices: step up, step 
down, and mixed procedures. In JMP, the step-up method starts adding 
predictor variables one at a time until a criterion of choice reaches a level 
of choice. The step-down method starts with all predictor variables in the 
fitted model and removes them one at a time until a criterion of choice 
reaches a level of choice. Finally, a mixed method allows adding and 
subtracting predictor variables until a criterion of choice reaches a level 
of choice. In addition when the number of predictors is small, JMP allows 
searching all possible subsets of predictors.
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When the sample size is much greater than the number of predictors, 
the authors think it is best to start with a step-down approach. When the 
sample size is small or about the same size as the number of predictor 
variables, then the authors’ preference is to start with a step-up approach. 
For this example, all three approaches arrive at the same optimal model, 
but this does not always happen. When the stepwise model selection 
methods choose different models, then care must be taken in choosing the 
best model. Chosen models by different selection methods typically differ 
when there is multicollinearity. It should be noted that each of the models 
will be statistically significant based on the criteria defined a priori by the 
modeler. Thereby, if the modeler requested a 95% of level of significance, 
then all the identified models will have variables that are statistically sig-
nificant at this level. As previously stated, there is no set way to choose 
the best model, and hence this decision is based on the engineer’s judg-
ment. One useful principle, known as Occam’s razor, states that when 
comparing two models that work equally well, the simplest model should 
be chosen. It is very important that users of a developed model should be 
informed about the existence of alternative models that work nearly as 
well as the chosen model. While alternative models may fit nearly equally 
well on the data set used to test the models, they may not fit equally well 
on more extensive data.

It cannot be stressed enough that there is no way to identify the best 
model, and as such, the engineer is often responsible for making this 
decision. For example, a model with four input parameters may be mar-
ginally better than a model with two input parameters based on statisti-
cal measurements. However, if it costs a significant amount of money to 
obtain observations on extra parameters, the simpler model might be 
preferred. By the same token, it may be that one of the extra parameters 
is a policy variable (e.g., price of fuel) that is needed for a particular anal-
ysis. In this case, it may be more reasonable to select the more complex 
model.

The package JMP has stepwise (forward, backward, and mixed) 
model selection methods available in its “Fit Model” procedure under 
the “Analysis” menu. The JMP stepwise procedures give several meth-
ods for judging the quality of the fit. These include R2, Cp, adjusted R2, 
and AIC collected. AIC corrected is a statistical method that balances the 
choice of model by adding a well chosen penalty for the number of pre-
dictors used to the residual sum of squares (see Figure 10.9). In addition, 
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p values are provided. The interpretation of R2 is similar to that of the 
simple linear regression R2. The Cp statistic is a frequently used technique, 
and the usual recommendation is to choose the model that has CP equal to 
the number of predictor variables plus 1 for the intercept. The adjusted R2 
is an R2 value with a correction for degrees of freedom. The uncorrected 
R2 increases as more predictors are added to the model. However, the 
adjusted R2 value does not necessarily increase as parameters are added 
to the model. Finally, a very popular measure of fit is the AIC criterion. 
The model with the lowest AIC value is chosen as the best. For additional 
details, see the JMP manual, and Sheather (2009).

For the Los Angeles data, the model using JMP with the lowest AIC has 
annual hours of delay predicted by the model with predictors—the aver-
age daily miles driven on principal arterial streets and average daily miles 
driven on freeways—as the predictor variables. These results are shown 
in Figure 10.9. The parameters forced into the model have a checkmark in 
the “lock” column, and those chosen by the algorithm have a checkmark 
in the entered column. While the p values are given for each of the param-
eters, they are not statistically valid. This is because they do not account 
for the multiple numbers of tests performed in choosing a model. Readers 
can find more details about the stepwise regression method in a number 
of excellent texts, such as those written by Neter et al. (1996), Miller (1990), 
and Sheather (2009).

10.10  Additional Collinearity Issues
When predictor variables are linearly related, as in the Los Angeles 
example, the parameter estimates will have an inflated standard error 
and correspondingly wide confidence intervals. It is important for trans-
portation engineers to understand that modeling when predictor vari-
ables are collinear is a tenuous process. Small changes in the values for a 

Figure 10.9  Estimated parameters from a stepwise fit in JMP.
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predictor can lead the stepwise regression procedure to choose a differ-
ent model.

When data sets are large, it is usually wise to randomly choose subsets 
of the data to model. For example, a modeler could choose ten random 
subsets, each using 90% of the original data. If any of the resulting ten 
models are different in important ways, then the modeler needs both to 
investigate the differences and to explain these discrepancies to users of 
the model obtained from the full data. However, a full discussion of this 
approach is beyond the scope of the book. The authors recommend that 
the reader seek professional statistical assistance in these situations.

10.11  Concluding Remarks
The focus of this chapter was on modeling the linear relationships between 
a dependent variable (y) and one or more predictor variables (Xi). These 
types of models are often used in transportation and are found in many 
applications. Given that the various assumptions—constant variance, iid 
data, and normality—are valid, these models can be very useful. The ways 
of developing confidence intervals and prediction intervals for the pre-
dicted values were also covered in this chapter. The former are related to 
how well we can predict the mean response, while the latter pertain to our 
ability to predict a particular observation. For example, we may want to 
predict speed for a given speed limit. We would use the CI to measure how 
well we can predict the average or mean speed and the PI for a range of 
observations we might expect.

Model building was also a major focus of this chapter. We explained 
that there are a number of criteria that can be used to identify whether a 
model is useful. In addition, methods for finding the best models auto-
matically were illustrated. However, at the end of the day, model building 
is as much an art as a science, as it is up to the modeler to use her judg-
ment to identify the best model. The user must be prepared to justify her 
selection based on statistical theory. Additionally, she should be prepared 
to test the underlying assumptions to demonstrate that linear regression 
is appropriate for the given situation.

In summary, linear regression (both simple and multiple) is a 
very powerful tool and is often used in transportation applications. 
However, the reader is cautioned to understand the underlying assump-
tions behind the model so that the technique can be used correctly. 
This chapter’s homework problems will illustrate some of the common 
mistakes.
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Homework Problems

	 1.	Double-loop data for San Antonio is contained in the data file cor-
responding to Figure 3.1.

	 a.	 Plot occupancy (Y) vs. speed (X).

	 b.	 Fit a line to the data.

	 c.	 Is the slope of the line significantly different from zero? With 
what confidence level?

	 d.	 What is a good estimate of the error standard deviation? How 
many degrees of freedom does it have?

	 e.	 What is R2?

	 f.	 Plot the residuals. Do any assumptions appear to be violated?

	 g.	 Split the data into those observations with speeds less than 30 mph, 
and those with speeds equal to or greater than 30 mph. Fit both 
sets separately and compare the fits. What can you conclude?

	 2.	A field gauge used to measure asphalt density is compared to a lab 
instrument. The data are in the file called “field gauge.” Engineers 
want to know if the field gauge is equivalent to the lab instrument.

	 a.	 If instruments are equivalent, then a zero reading on one 
instrument should be zero on the other, at least on average. Is 
there evidence to support that this is true for the lab and field 
gauge?

	 b.	 If instruments are equivalent, then the scale of measurement 
should be the same for both instruments. That is, if the instru-
ments are equivalent, then the straight-line fit should give an 
intercept of zero and a slope equal to 1 up to uncertainty levels. Is 
that true for this example?

	 c.	 Give a confidence interval for ρ, the population correlation 
coefficient.

	 d.	 Mobility data for Akron, Ohio, are contained in the data file 
called “problem 10.3.”  For the six mobility variables in the file, 
compute their correlations. Which ones are significantly differ-
ent from zero?
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	 e.	 Using stepwise regression, build a model to predict public trans-
portation usage.

	 f.	 For your model, what is R2? Is your model reasonable?

References

Campbell, D. T., and J. C. Stanley. 1963. Experimental and quasi-experimental 
designs for research. Boston: Houghton Mifflin.

Carroll, R. J., and D. Rupert. 1988. Transformation and weighting in regression. 
New York: Chapman & Hall.

Cook, T. D. 2008. “Waiting for life to arrive’’: A history of the regression-disconti-
nuity design in psychology, statistics and economics. Journal of Econometrics, 
142, 636–54.

Cook, T. D., and D. T. Campbell. 1979. Quasi-experimentation: Design and analysis 
for field settings. Chicago: Rand McNally.

Johnson, R. A., and D. W. Wichern. 2007. Applied multivariate statistical analysis. 
7th ed. Englewood Cliffs, NJ: Prentice Hall.

Miller, A. J. 1990. Subset selection in regression. London: Chapman & Hall.
Mosteller, F., and J. W. Tukey. 1977. Data analysis and regression: A second 

course in statistics. Addison-Wesley Series in Behavioral Science. Reading, 
MA: Addison-Wesley.

Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. 1996. Applied linear 
statistical models. 4th ed. Burr Ridge, IL: Irwin.

Ott, R., and M. Longnecker. 2009. An introduction to statistical methods and data 
analysis. 6th ed. Belmont, CA: Cengage/Brooks/Cole.

Schrank, D. T., and T. Lomax. 2007. The urban mobility report. Texas 
Transportation Institute, College Station, TX.

Shadish, W. R., T. D. Cook, and D. T. Campbell. (2002).  Experimental and quasiex-
perimental designs for generalized casual inference. Boston: Houghton Mifflin 
Company.

Sheather, S. J. 2009. A modern approach to regression with R. New York, New York: 
Springer.

Sween, J. A. 1971. The experimental regression design: An inquiry into the feasibility 
of nonrandom treatment allocation. Evanston, IL: Northwestern University.

Trochim, W. M. K. 1984. Research design for program evaluation. Beverly Hills, 
CA: Sage. 



205

11C h a p t e r  

Regression Models 
for Count Data

11.1  Introduction
In Chapter 10 we looked at linear regression models that are commonly 
used in transportation to identify the effects of independent variables 
(whether continuous or discrete) on an important dependent variable 
(that is, continuous). For example, we might be interested in the speed on a 
roadway as a function of the traffic volume, the number of lanes, the road-
way density, the type of driver, etc. However, sometimes in transportation 
the dependent variable is discrete in nature. One common example would 
be the crash frequency counts in safety analysis. The modeling of safety is 
important to engineers and decision makers.

In safety analysis, we are often interested in finding the relationship 
between crashes and roadway characteristic variables such as number of 
lanes, lane width, shoulder width, median type, median width, etc., and 
traffic volumes. Crashes are often examined in terms of crash counts, and 
because of the nature of crash counts, they are discrete and rare. They usu-
ally do not follow a normal distribution and, in general, it has been found 
that the variance increases as the crash count increases. Consequently, 
it is usually inappropriate to model untransformed crash count as a lin-
ear regression model with a normal error distribution because some of 
the underlying model assumptions such as normality and constant vari-
ance are seriously violated. Note that, as discussed in Chapter 10, it is 
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possible that the crash counts can be transformed so that the distribu-
tion of the transformed variable becomes closer to a normal distribution 
with constant variance. In this situation, a linear regression model may 
be employed to develop a prediction equation. However, a transformation 
does not always provide a satisfactory result; namely, transformed crash 
counts may still not be close enough to a normal distribution.

Alternative approaches, which are the focus of this chapter, involve the 
use of Poisson regression or a negative binomial regression models because 
they are specifically designed to model discrete events. These models can 
describe the relationship between crash counts and roadway character-
istic variables without the need to first transform the data. These models 
belong to a category of the generalized linear models (see, e.g., McCullagh 
and Nelder, 1989), and they are widely used nowadays to model crash 
count data.

11.2 Poisso n Regression Model
A Poisson regression model can be used to describe the number of 
crashes, Y, occurring for a fixed time interval (such as a year or a month) 
on several roadway segments or on a roadway segment over time inter-
vals. In Poisson regression, the dependent variable, Y, is assumed to 
follow a Poisson distribution with the mean µ, which is dependent on 
explanatory variables, such as the roadway geometric characteristic 
variables or traffic volumes. Recall that a Poisson distribution can be 
expressed as

	
Pr

exp
!

, , , , .Y y
y

y
y

=( ) =
−( )

=
µ µ

0 1 2

In Poisson regression, it is assumed that the log of mean µ is a linear func-
tion of a set of covariates, that is,

	 log log ,E Y x xp p( )( ) = ( ) = + + +µ β β β0 1 1 

or equivalently,

	 µ β β β= + + +( )exp .0 1 1x xp p

The covariates are often some combination of control variables, such as road-
way width, shoulder width, etc., and other variables such as traffic volume.
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Let’s denote the crash count per year at the ith roadway segment by Yi 
( , , )i n=1 . Then the Poisson regression model for Yi can be written as

	 Yi i~ Poisson µ( )
where

	
µ β βi j ij

j
x= +( )∑exp 0

and Yis are assumed to be independent given µi . The exponential coef-
ficient for x j , exp β j( ) , j p=1, , , indicates the effect of unit change of 
x j  on crashes. The percent change in crashes can also be measured by 
exp %β j( )−{ }×1 100 .

The regression parameters, β β β0 1, , , p , are often estimated by the 
maximum likelihood estimation method (which maximizes the likeli-
hood or the log likelihood with respect to parameters (here βs)). A brief 
description of the maximum likelihood estimation method is provided in 
the appendix to this chapter.

The log likelihood (LL) for the Poisson regression is given as

	
LL y yi i i i

i

n

= − ( )− ( ){ }
=

∑ x xβ βexp log !
1

where x i i p ipx xβ β β β= + + +0 1 1  . Maximum likelihood estimation can 
be implemented by a number of statistical software packages. For exam-
ple, the GENMOD and GENLOG procedures can be used to fit Poisson 
regression models in SAS and SPSS, respectively. In JMP, the Poisson 
regression model can be fitted in the “Model Specification” or “Fit Model,” 
window as shown in Figure 11.1. This window is in turn a subset of the 
“Analyze” menu. It can be seen in the upper right corner of the menu 
that “Generalized Linear Model,” “Poisson,” and “Log” are selected for the 
“Personality,” “Distribution,” and “Link Function,” respectively.

One popular application is to use a Poisson regression model for crash 
rate data where the crash rate is a count of crashes divided by exposure. 
A common measure of exposure is in million vehicle-miles of travel per 
year. An example calculation of exposure for a given link (or segment) i is 
shown below:
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exposure Length

i
i iADT= × ×365

106
.

In Poisson regression, the rate data can be handled by using the origi-
nal crash counts (the numerator of the crash rate) as a dependent variable 
while having the log of exposure as an offset variable, as follows:

	 log log .E Y x xi i i p ip( )( ) = ( )+ + + +exposure β β β0 1 1 

An offset variable is a regression variable with a constant coefficient of 1 
for each observation.

11.3  Overdispersion
Recall that the Poisson distribution is completely characterized by one 
parameter, the mean (µ), which is also equal to the variance. However, 
there are many cases where the observed variance of crash counts is greater 
than the mean. For example, this may occur because of heterogeneity of 
roadway segments, a failure to include important explanatory variables in 
the model, and for myriad other reasons. As an aside, crashes are related 
to (1) roadway characteristics, (2) vehicle characteristics, and (3) driver 

Figure 11.1  JMP fit model window for model specification.
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characteristics. Obtaining accurate information on the latter is practically 
impossible, and consequently, it is fairly common to not include all the 
relevant explanatory variables in crash models.

The above phenomenon, where the variance is greater than the mean, is 
called overdispersion. In this situation a Poisson model would not be appro-
priate and the modeler must account for the excess variation. If overdisper-
sion in the data is ignored when it is actually present, then the standard 
errors of the estimated regression coefficients under Poisson regression 
models are underestimated and erroneous inferences could be made (e.g., 
the variables might be incorrectly declared to be significant when they are, 
in fact, not). A common solution to this problem is to use negative bino-
mial regression models, which will be introduced in the next section.

As an aside, when overdispersion is not very severe, an overdispersed 
Poisson model can also be used, which introduces a scale parameter to cor-
rect the estimated covariance matrix under the Poisson model. It does this 
by inflating the standard errors by the value of the scale parameter (see, 
e.g., Cohen, 2003). This technique will be illustrated later in the chapter.

11.4 �Assessi ng Goodness of Fit of 
Poisson Regression Models

One of the popular measures used to assess the fit of Poisson regression 
models is the deviance, which is a measure of unexplained variation similar 
to the residual sum of squares in multiple linear regression. It is defined as

	 Deviance ˆ , log , log ˆ ,µ µY L Y Y L Y( ) = ( )− ( ){ }2

where log ˆ ,L Yµ( )  is the log likelihood under the fitted model µ̂  and 
log ,L Y Y( )  is the log likelihood for the largest model having each obser-
vation y as a unique estimate of µ.

For the Poisson model the deviance can be expressed as follows:

	
Deviance ˆ , log ˆ ˆµ µ µY Y Y Yi i i i i

i

n

( ) = ( )− −( ){ }
=

2
1

∑∑ .

If our model fits the data well, it is expected that the deviance has an 
approximate chi-square distribution with degrees of freedom (DF) n – q, 
where n is the number of observations and q is the number of param-
eters (i.e., q = p + 1, including an intercept) in the fitted model µ̂ . Thus, 
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deviance/DF should be close to 1 if the model fits the data well. A value of 
deviance/DF much greater than 1 suggests that the model is misspecified 
or there is an overdispersion problem in the data. A value of deviance/
DF much less than 1 also indicates misspecification of the model or an 
underdispersion problem (the phenomenon that the variance is less than 
the mean, which also violates an underlying assumption for the Poisson 
distribution) in the data (Sheather, 2009). Caution needs to be exercised 
with using the deviance as a goodness-of-fit measure when the data set 
being analyzed is sparse (when there is a large number of observed zeros 
in the data) because comparison of the deviance with a chi-square distri-
bution may be invalid in such cases, as discussed in Boyle et al. (1997). A 
simulation approach was suggested by Boyle et al. (1997) as an alternative 
method of assessing model fit for the sparse data.

Another popular measure of fit of the model is the Pearson chi-square 
statistic, which is defined as the squared difference between the observed 
and predicted values divided by the variance of the predicted value 
summed over all observations in the model:

	
X

Y
Var

i i

ii

n
2

2

1

=
−( )

( )=
∑ ˆ

ˆ .
µ
µ

Similar to the deviance, the Pearson chi-square has an approximate chi-
square distribution with degrees of freedom n – q if the model fits the data 
well. Thus, a value of Pearson chi-square/DF close to 1 indicates a good 
model fit, while a value much greater than 1 or less than 1 may suggest that 
there is an overdispersion or underdispersion problem in the data.

Example 11.1

Researchers are interested in finding the relationship between crashes on rural 
two-lane highways and the width of the right lane and the width of the right 
shoulder. A subset of Texas on-system crashes for the years 1999–2001 was 
obtained for the analysis (Fitzpatrick et al., 2005). There are 2,729 two-lane 
roadway segments in the database, and crashes are examined in terms of the 
variable “total crashes for three years.” Total crashes are the total number of all 
crashes (includes all types of crashes) during the three-year observation period 
on each roadway segment. In this example, the dependent variable, Y, is “total 
crashes for three years,” and the independent variables of interest are right lane 
(width in feet) and right shoulder (width in feet). The exposure variable is also 
introduced into the model to account for differences in segment length and 
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roadway volume across the different roadway segments. The exposure vari-
able, EXPO3, is defined as

EXPO3 = exposure in million vehicle-miles of travel for 3 years

	 = (AADT)(365)(3)(segment length)(10–6).

A Poisson regression model of the following functional form is fitted to 
the data:

E(total crashes for 3 years) = EXPO3 exp(β0 + β1 right lane +β2 right shoulder)	

The GENMOD procedure in SAS is used to fit Poisson regression models using 
log(EXPO3) as an offset variable. Table 11.1 contains the SAS output obtained 
by using PROC GENMOD as follows:

PROC GENMOD DATA=RSBS_2L_NM_LS;
MODEL Total_Crashes_for_3_years = Right_Lane Right_Shoulder
/ DIST=Poisson LINK=Log OFFSET=LogEXPO3;
RUN;

It can be observed from Table 11.1 that both right lane width and right shoul-
der width have statistically significant influence. The negative sign for the coef-
ficients for them suggests that highway segments that have a wider right lane 
or wider right shoulder experience lower crash rates, all else being equal. This 
result would be consistent with expectation. The exponential coefficient for 
right lane, exp .−( )0 1104  = 0.8955, indicates how much the crash rate changes 
when the right lane width increases by a foot, i.e., the crash rate is reduced 
by a factor of 0.8955. The percent change in crash rate associated with a foot 
increase in the width of the right lane is exp . % . %,−( ) −{ } × = −0 1104 1 100 10 45  
i.e., 10 45. %  less. A similar interpretation can also be made for the coefficient 
of right shoulder width.

The prediction equation obtained by using the estimated coefficients in 
Table 11.1 can be given as follows:

E(total crashes for 3 years) = EXPO3 exp(1.4018 – 0.1104 right lane – 0.0664 
right shoulder).

Note that the goodness of fit information shows that the deviance and 
Pearson chi-square divided by degrees of freedom somewhat exceed 1.0. 
Remember that ratios (value/DF) close to 1.0 indicate that the model is adequate 
and overdispersion is not likely to be a problem. In this case, while the ratios do 
not exceed 1.0 seriously, they might still cast some doubt about validity of the 
Poisson model. In other words, the ratios suggest that there is a greater variabil-
ity among total crash counts than would be expected for Poisson distribution. 
In technical terms, there may be an issue of overdispersion in the model.

A similar output can also be obtained by running the generalized linear 
model procedure in JMP given in Figure 11.1. The resulting JMP output is given 
in Table 11.2.
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Example 11.2

Because overdispersion in the data of Example 11.1 seems possible, an over-
dispersed Poisson model that introduces a scale parameter to correct the 
estimated covariance matrix under the Poisson model may be tried. The scale 
parameter can be estimated by the square root of deviance/DF (by using SAS 
PROC GENMOD with an option “scale = d”) or the square root of Pearson 
chi-square/DF (by using SAS PROC GENMOD with an option “scale = p”). 
The result from the overdispersed Poisson regression with the scale parameter 
estimated by the square root of deviance/DF is presented in Table 11.3, and 
was obtained by using SAS PROC GENMOD as follows:

PROC GENMOD DATA=RSBS_2L_NM_LS;
MODEL Total_Crashes_for_3_years = Right_Lane Right_Shoulder
/ DIST=Poisson scale=d LINK=Log OFFSET=LogEXPO3;
RUN;

It can be seen from the output in Table 11.3 that the scaled deviance is now 
held fixed to 1 and the scale parameter is estimated as 1.2349. Also note that 
the parameter estimates for intercept and right lane and right shoulder have not 
changed. However, their standard errors are now inflated by the value of the 
scale parameter. Although the effects of right lane and right shoulder remain 
statistically significant, it is important to note that there is no guarantee that 
this will always happen. In other words, the scale parameter will not affect 
the point estimates of the regression coefficients. However, the correspond-
ing uncertainty estimates (standard errors) will get larger, which reflects the 
fact that there is more variability in the data than there would be in a standard 
Poisson model. The CI and PI intervals (if calculated) would be greater than 
those of the standard Poisson model.

The overdispersed Poisson regression can also be run in JMP by selecting 
the option “Overdispersion Tests and Intervals” from the “Fit Model” window 
given in Figure 11.1. In JMP, however, the scale parameter is always estimated 
by the square root of Pearson chi-square/DF (not by deviance/DF). The result-
ing standard error estimates from JMP would be equal to those of SAS if an 
option “scale = p” were used in running SAS PROC GENMOD. However, they 
might be different if an option “scale = d” were used in SAS. Table 11.4 con-
tains the JMP output of fitting an overdispersed Poisson regression model to the 
same data.

11.5 Ne gative Binomial Regression Model
Recall that the critical assumption in the Poisson distribution is that the 
mean (µ) is equal to the variance. However, it is well documented in the 
literature (see, e.g., Lord et al., 2005) that this is often violated for crash 
data, which means that overdispersion is an issue in model development. 
To account for overdispersion, the negative binomial (NB) model is often 
used. The NB model introduces an additional parameter, k, called the 
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negative binomial dispersion parameter, to account for excess variation. 
In negative binominal regression, the dependent variable, Y, is assumed 
to follow a negative binominal distribution with the mean µ, which is 
dependent on explanatory variables such as roadway geometric charac-
teristic variables or traffic volumes. The negative binomial can be derived 
as a gamma mixture of Poisson by assuming that the mean of Poisson 
distribution varies across the population of individuals according to a 
gamma distribution. For the negative binomial regression model, we can 
write:

	 Yi i iµ µ~ Poisson( )
where

	 µ β β β β β βi i p ip i i px x b x x= + + +( ) = + +exp exp0 1 1 0 1 1  iip ib( ) ( )exp

and bi is an error term corresponding to an outcome-specific latent effect. 
Assuming that exp bi( )  is gamma distributed with a mean equal to 1 and 
variance equal to k, a closed-form expression for the marginal distribution 
of Yi can be obtained as the negative binomial:

	
Pr Y y

k y
y k

k
ki i

i

i
=( ) =

+( )
+( ) ( ) +




−

−

−

−

Γ
Γ Γ

1

1

1

11 µ

 +







=
−

1

1
0 1 2

k y

ik
y

iµ
µ

, , , ,

where Γ  is the gamma function. Note that the functional form for the 
mean of Yi remains the same as that for the Poisson regression model. 
Thus, the expected number of crashes can still be represented as

	 µ β β βi i p ipx x= + + +( )exp .0 1 1 

However, the variance of Yi is µ µi ik+ 2 , which is larger than that of the 
Poisson regression model for a positive value of k. It needs to be noted 
that the negative binomial dispersion parameter, k, is not the same as 
the dispersion parameter in generalized linear models denoted by φ  in 
McCullagh and Nelder (1989), and must be estimated. The SAS PROC 
GENMOD procedure provides the maximum likelihood estimate for k 
in addition to the estimates for the regression parameters. Note that the 
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Poisson regression model corresponds to the negative binominal regres-
sion model when the value of k is 0.

Example 11.3

Recall that the crash data in Example 11.1 revealed an overdispersion problem. 
Although an overdispersed Poisson model can be used to correct the esti-
mated covariance matrix when overdispersion is modest, an negative binomial 
regression model is, in general, a more preferred model when the data are 
overdispersed. Table 11.5 contains the SAS output for the negative binominal 
regression obtained by using SAS PROC GENMOD as follows:

PROC GENMOD DATA=RSBS_2L_NM_LS;
MODEL Total_Crashes_for_3_years = Right_Lane Right_Shoulder
/ DIST=NB LINK=Log OFFSET=LogEXPO3;
RUN;

From Table 11.5, it can be seen that the effects of right lane and right shoul-
der are statistically significant, and the signs of the estimated coefficients are 
consistent with expectation. Note that the standard errors for the coefficient 
estimates are larger than those of the Poisson regression model, which is a con-
sequence of accounting for overdispersion in the data. The negative binomial 
dispersion parameter was estimated to be 0.4566. The estimated equation for 
the expected total crashes is as follows:

E(total crashes for 3 years) = EXPO3 exp(1.4018 – 0.0798 right lane – 0.0663 
right shoulder).

From the “criteria for assessing goodness-of-fit” (Table 11.5), it can be seen that 
the negative binomial model fits the data very well because it has a deviance 
of 2,571 as opposed to 4,157 for the Poisson regression model, with 2,726 
degrees of freedom.

Note that in Examples 11.1 to 11.3, the traffic volume variable (average 
annual daily traffic (AADT)) was used simply for an offset variable (as 
part of the exposure variable) rather than as a predictor variable of the 
regression models. The underlying assumption for using AADT as an off-
set variable is that the relationship between crashes and AADT is linear. 
That is, crashes increase with AADT in a linear manner on rural roads 
in Texas (for the AADT volumes in the study). Intuitively, the relation-
ship between crashes and AADT can be nonlinear. Therefore, it would be 
better to use AADT as a predictor variable rather than as an offset vari-
able. Because we model log(mean crashes) in Poisson or negative binomial 
regressions, log(AADT) is often used as a predictor variable.
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Example 11.4

The crash data in Example 11.3 can be refitted using the negative bino-
mial regression model with log(segment length*3) as an offset variable and 
log(AADT) as one of predictor variables. The functional form for the mean total 
crashes in that case is give as

E(total crashes for 3 years) =exp{loglength3 + β0 + β1 right lane +β2 right 
shoulder + β3 logAADT}

where E(total crashes for 3 years) is the expected number of total crashes for 
three years and loglength3 = log(segment length*3). Table 11.6 contains the 
SAS output for the negative binominal regression (with the mean function given 
above) obtained by using SAS PROC GENMOD as follows:

PROC GENMOD DATA=RSBS_2L_NM_LS;
MODEL Total_Crashes_for_3_years = Right_Lane Right_Shoulder 
LogAADT
/ DIST=NB LINK=Log OFFSET=LogLength3;
RUN;

It can be observed from Table  11.6 that both right lane and right shoul-
der have a statistically significant influence on total crashes. The negative sign 
for the coefficients for them suggests that as the width of the right lane or 
the width of the right shoulder increases, the crash count decreases, which 
is consistent with expectation. The coefficient for logAADT is estimated to 
be 1.0654. Because the corresponding confidence interval does not contain 
1, we may conclude that the crash count increases slightly faster than AADT 
increases. The prediction equation obtained by using the estimated coefficients 
in Table 11.6 can be given as follows:

E(Total Crashes for 3 years)
= exp{ Log(Segment Length×3) - 7.2208 - 0.0838 Right Lane
-0.0736 Right Shoulder +1.0654 LogAADT}
= 3×(Segment Length) AADT1.0654 ×exp{-7.2208-0.0838 Right Lane
-0.0736 Right Shoulder }.

From the “criteria for assessing goodness-of-fit,” it can be seen that the neg-
ative binomial model of Table 11.6 fits the data as equally well as the model in 
Table 11.5. The conclusions on the effects of right lane width or right shoulder 
width do not change materially regardless of which model form is used. It 
needs to be noted, however, that there might be other cases where the form 
of the model makes a difference in both the goodness of fit and the parameter 
estimates. In such cases, selection of the model can be made based on both 
the goodness of fit and engineering judgment.
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11.6 Co ncluding Remarks
In some transportation applications the dependent variable is discrete. As 
an example, crash count data (number of crashes per unit of time) and 
queue length measurements (number of cars waiting at a traffic signal) 
must have, by definition, nonnegative integer values. In these situations 
the statistical methods described in Chapter 10 may not be appropriate. 
Note that this does not mean you cannot run the standard regressions 
techniques with count data—many software packages will allow you to 
run standard regression models with discrete dependent variables. In this 
situation, though, the results will often be misleading. As always, it is up 
to the user to understand the assumptions and limitations of the software 
he or she chooses to use.

Practicing engineers are often confronted with statistical models related 
to safety issues. In particular, they will be asked to design or operate the 
transportation system in the safest manner possible. In order to do, this 
they will need to know what trade-offs are involved with respect to various 
control variables, such as lane width, shoulder width, etc. The techniques 
discussed in this chapter will help them develop models that may provide 
insight to these relationships.

The use of generalized linear models was the focus of this chapter. 
These models are ideal when the dependent variable is count data (e.g., 
integer). The predictor variables can be either discrete or continuous. The 
two most common models are Poisson and negative binomial regression 
models, and these are often used in developing crash prediction models, 
which are known in the literature as safety performance functions (SPFs). 
These models are easily implemented with existing statistical software 
such as JMP or SAS. In addition, most state departments of transporta-
tion have crash count data along with information on key parameters. 
As such, most practicing professionals will be exposed to these types of 
models.

Appendix: Maximum Likelihood Estimation
In Chapter 4 we introduced probability density functions and probability 
mass functions. For example, the pdf for the normal density is
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and the pmf for the Poisson is

	
P

exp
!

.X x
x

x

=( ) =
−( )λ λ

For each pdf and pmf, the functions are thought of as functions of x 
that depend upon parameters. In the two cases above, the parameters are 

µ σ,( )  and λ , respectively.
Likelihoods in the simplest form are a pdf or pmf that is thought of as 

a function of the parameters for fixed values of x. More specifically, let 
X Xn1 , ,…  be a sequence of independent and identically distributed ran-
dom variables. Suppose each random variable has pdf or pmf f Xi( | )θ  
for i n= …1, , . The parameter θ  may be multidimensional, as in the case 
of the normal pdf θ µ σ= ( ), , or univariate, as in the case of the Poisson 
θ λ= . Then the likelihood function is
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Maximum likelihood estimation maximizes ∏ ( )=i
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if X1 |θ  with respect 
to θ , keeping the X s fixed.

The likelihood for the normal distribution after some simplification is
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The likelihood for the Poisson distribution after some simplification is
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Using calculus, it can be shown that for the normal distribution the 
maximum likelihood estimators for µ  and σ  are X  and ( )/ .n n S−1  
Finally, using calculus, it can be shown that the maximum likelihood esti-
mator for λ  is X . For more detail, see Casella and Berger (1990).

Homework Problems

	 1.	Researchers are interested in determining the relationship 
between crashes on rural two-lane highways and lane and shoul-
der widths. Use the data set “Crashes_rural 2ln highways.” Note 
that right lane and right shoulder actually represent the widths of 
them, respectively.

	 a.	 Construct the histogram of the variable “Total crashes for 3 years.” 
What characteristics do you observe from the distribution?

	 b.	 Plot total crashes for three years (Y) vs. right lane (X). Also, plot 
total crashes for three years (Y) vs. right shoulder (X). Is there 
any pattern in the plot? Does the relationship between two vari-
ables (X and Y) look linear?

	 c.	 Fit the normal linear regression model to total crashes for three 
years with right lane and right shoulder included as predictors. 
Do you think the model fits the data well? Create appropriate 
diagnostic plots. What assumptions seem to be violated?

	 d.	 Fit the normal linear regression model to total crashes for three 
years with right lane and right shoulder, logAADT, and log-
length3 included as predictors. Create appropriate diagnostic 
plots. What assumptions seem to be violated?

	 2.	Using the same data set (“Crashes_rural 2ln highways”):

	 a.	 Fit a Poisson regression model to the total crashes for three-year 
data using right lane, right shoulder, and logAADT as covariates, 
and loglength3 as an offset variable. What are the parameter esti-
mates for right lane, right shoulder, and logAADT and the corre-
sponding standard errors? What effects are statistically significant 
at α = 0.1?

	 b.	 Do you think the Poisson regression model fits the data well? 
Why or why not?
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	 c.	 Fit an overdispersed Poisson regression model to the data by 
using the same set of covariates and an offset variable as in prob-
lem 2a. What are the parameter estimates for right lane, right 
shoulder, and logAADT and the corresponding standard errors? 
What effects are statistically significant at α = 0.1?

	 d.	 Fit a negative binomial regression model to the same data using 
the same set of covariates and an offset variable as in problem 
2a. What are the parameter estimates for right lane, right shoul-
der, and logAADT and the corresponding standard errors? What 
effects are statistically significant at α = 0.1?

	 e.	 Do you think the negative binomial regression model fits the 
data well? Why or why not?

	 f.	 What can you conclude about the effects of right lane and right 
shoulder on total crashes?

	 g.	 What about the effect of AADT on crashes? Do you think the 
relationship between AADT and crashes is linear? Why or why 
not?

	 3.	Researchers extracted a subset of total crashes that are expected to 
be influenced by the widths of right lane and right shoulder (such 
as single vehicle crashes, opposite direction crashes, etc.). In the 
data set “Crashes_rural 2ln highways,” the column named “Related 
crashes for 3 years” contains such crashes. Answer problems 2a to 
2g using “Related crashes for 3 years” instead of “Total crashes for 
3 years.”
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12C h a p t e r  

Experimental Design

12.1  Introduction
Much of what we know of transportation phenomena comes from 
observation. Transportation professionals observe data, build a model, 
and test their hypotheses. Ultimately, they agree that the model works and 
can be used for estimation and prediction (within some predefined limits), 
or they agree that the model is not valid. Of course, a more likely scenario 
is that they agree that more information is required.

This chapter is focused on designing experiments where data can 
be obtained to test a driving hypothesis. First, the designed experi-
ment approach is compared and contrasted with the direct observation 
approach. Subsequently, a discussion of proper experimentation tech-
niques is provided. Lastly, the theory of model development for designed 
experiments and the methods for testing the underlying hypothesis of the 
experiment are discussed.

12.2 �Com parison of Direct Observation 
and Designed Experiments

Before the theory of designed experimentation is discussed, it is worth-
while to compare and contrast the two primary methods of obtaining 
data that transportation engineers will be exposed to during their careers. 
In transportation engineering the most common methodology is direct 
observation. For example, a transportation analyst may wish to study gap 
acceptance during the permitted left turn phases at unsignalized intersec-
tions. The analyst would choose one or more representative unsignalized 
intersections and observe the attributes of the permitted left turning 
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movements (e.g., type of vehicle, size of gaps chosen, speed of oncoming 
vehicles, size of gaps not chosen, number of lanes, etc.). Based on this 
information, a gap acceptance model could then be developed.

The second method is based on experimentation in which the analyst 
controls the environment of the observations. For example, an analyst 
may set up a permitted left turn experiment on a closed course. The ana-
lyst could then vary the gaps between the oncoming vehicles by adjust-
ing, for example, the distance between vehicles, the type of vehicles, their 
speed, etc. From this information a second type of gap acceptance model 
can be developed.

There are advantages to both the observational and the experimental 
approach. The direct observation method has the advantage that, if done 
correctly, the driver’s decision is not affected by the observer. The informa-
tion obtained is pure in the sense that a driver is making a decision with 
no outside impacts. One disadvantage is that certain types of data, such 
as the driver’s state of mind, cannot be collected by an outside observer, 
though it could be important in model development. Similarly, not all of 
the gaps an analyst may be interested in may be experienced by the driver; 
that is, it may be too cost prohibitive to conduct the observational study so 
all combinations of events are observed. Another disadvantage of obser-
vational studies is that there are confounding effects (such as location, vis-
ibility, etc.) that cannot be adjusted by the modeler. A list of challenges for 
observational studies is given in Section 12.10.

The advantage of the designed experiment is that many factors can be 
measured and controlled that cannot be measured in a field study. The 
downside is that the experiment itself might affect the results. For exam-
ple, a driver’s gap acceptance behavior might be different because the 
driver knows she is being watched.

For many transportation phenomena the designed experiment is the 
most economical and efficient method of obtaining data. This is particu-
larly true when human behavior is not involved. It should be noted that 
sometimes it is impossible to conduct experiments in which only obser-
vational data are required. For example, if one were studying the effect of 
alcohol on safety, it would be unethical to provide alcohol to drivers, let 
them drive on a public roadway, and then measure the effects on safety. In 
this situation only indirect observations would be allowed and would take 
the form of analyzing accident statistics for which alcohol was a contribut-
ing factor. Alternatively, alcohol studies can be, and have been, conducted 
in a safe, closed-course environments, such as test tracks.
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Transportation experiments provide an opportunity to develop 
solutions to important transportation questions. What is the best asphalt 
concrete mixture for long-term durability? What is the best coating for a 
stop sign so that it can be seen at night? A well-planned experiment will 
provide useful information that can help answer these questions. A poorly 
done experiment can be less than useful by providing inadequate or mis-
taken information, which results in misleading models.

12.3  Motivation for Experimentation
To motivate the designed experiment protocols let us consider a situation 
where a given state transportation agency is interested in studying which 
of two stop sign coatings, coating A or coating B, is better. For safety rea-
sons, the transportation engineer decides to conduct the experiment on 
a closed course because an observational study would not be possible for 
the given hypothesis. The measure of merit for the stop sign coatings is the 
average distance from the sign that drivers begin to decelerate. Consider 
the following experiments, which we will label “good” and “poor” for what 
should be obvious reasons.

12.3.1  The Good Experiment

A sample size calculation using JMP was done to ensure that if drivers 
decelerate at least 5 feet sooner, on average, for one of the state’s com-
monly used coatings (A or B), the experiment will be 85% likely to detect 
that there is a difference. Based upon this JMP calculation, one hundred 
volunteers are randomly chosen. Fifty of them are randomly assigned to 
drive a closed course that has been outfitted with stop signs treated with 
coating A. The other fifty drivers drive the course that has been outfitted 
with coating B. The process by which the number of samples is derived is 
the focus of this chapter.

The likely outcome from the good experiment is that if one of the stop 
sign coatings leads to an improvement of an average of 5 feet or more, it is 
likely that the treatment will be discovered as superior.

12.3.2  The Poor Experiment

It was decided based a priori that twelve volunteers would be tested for each 
sign coating without random assignment, and without using the appropri-
ate statistical formula to calculate the recommended sample sizes.

The likely outcome from the poor experiment is that if one of the stop 
sign coatings leads to an improvement, it is less likely that the treatment 
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will be discovered as superior. In addition, due to random variation, any 
difference that is found may indicate that the wrong coating is superior. 
The experimental outcomes may be dependent upon the attributes of the 
volunteers. For example, if the experiment were conducted in a university 
setting, the volunteers might all be undergraduate students in a transpor-
tation statistics class. If there were a difference in sign coatings as a func-
tion of age of the driver, then this experiment might miss this effect. In 
summary, the authors would like to stress that a poorly designed experi-
ment will provide worse results, on average, than a properly designed 
experiment.

Remark 12.1

In most countries experiments involving human and animal subjects require 
institutional review board (IRB) approval. The motivation for this chapter is 
based on the assumption that the transportation engineer would be allowed to 
conduct planned studies. However, as a practical matter, all experimentation 
involving human subjects will have to go through some type of institutional 
review board. In addition, transportation agency or research agency lawyers 
often will be called in to check the protocols. These considerations frequently 
preclude direct experiments on the transportation network.

On the surface, the proposed study of stop sign coatings would seem 
reasonable to carry out in a field experiment. Suppose a transportation 
engineer is allowed to choose between the two sign types with identical 
costs. Being conscientious, she would like to identify which of the two 
works better in the field. The designed experiment approach that is the 
focus of this chapter would allow her to do so; that is, she could locate 
reasonable stop sign locations, randomly assign signs with different coat-
ings to these locations, and then observe the results. From a legal point of 
view, however, she might not be allowed to conduct this type of experi-
ment in the field. It would be a decision that would have to be made by 
an IRB. To illustrate, say coating B is better than coating A (remember, 
this will not be known until after the experiment). If during the course 
of the study, someone crashed at one of the coating A sites, which was 
later found to be an inferior coating type, the transportation agency 
could be held responsible, even if the crash were unrelated to sign coat-
ing. For this reason, these types of designed experiments are rarely done 
in the field. For the reasons outlined in the above example, most likely 
the experiments would be conducted on a closed-course environment. 
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Transportation analysts are often confronted with similar situations: 
Which of the x allowed for use by the transportation agency, works best 
in the field and under what conditions? What font size should be used on 
traffic signs?

The reader often will be confronted with this type of question. That 
is, the reader will have to choose whether it is best to go to the field and 
collect observed data (without changing the experiment) or to design an 
experiment in a closed-course environment. Obviously, the correct choice 
will be a function of the budget for the study, the underlying hypothesis, 
past experience, etc. It will also depend upon IRB decisions, as in many 
countries experiments involving human subjects must get IRB approval 
before implementation.

12.4 �A  Three-Factor, Two Levels 
per Factor Experiment

Consider the three-factor hypothetical experiment. Suppose we want to 
assess the effect of background material on a highway sign (two materi-
als: A1 or A2), the sign placement (two placements: B1 or B2), and the size 
of the sign (two sizes: C1 or C2). We then have three factors, each with two 
possible levels. Suppose the transportation agency wants traffic to slow 
down after viewing a particular warning sign. The goal of the research is 
to identify the best set of factors (e.g., material, placement, and size) that 
will achieve this objective. Our dependent variable or figure of merit will 
be measured speed at a specified distance from the sign. We hypothesize 
that

	 speed f A B C errori j k= +( , , ) 	 (12.1)

where i = 1,2; j = 1,2; k = 1,2. The error term in the equation is meant to 
account for all missing factors, and it is assumed to have a mean of zero 
and a constant variance. The mean response function can be modeled 
with the following (over)parameterized form:

	
f A B C constanti j k i j k ij ik( , , ) = + + + +( ) +( )α β δ αβ αδ ++( ) +( )βδ αβδjk ijk 		

		  (12.2)

where i = 1,2; j = 1,2; k = 1,2.
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The parameters that have a single subscript, such as αi and βj, represent 
main effects. The parameters with double subscripts, such as (αβ)ij, rep-
resent two-way interactions. For example, material (C) and size (A) may 
have a combined effect that results in a greater (or lesser) effect on speed 
than their individual effects. Finally, the three-way interaction is repre-
sented by (αβδ)ijk. Consider the situation where all parameters other than 
the αi,βj,δk in the equation are known to be equal to zero. In this case, the 
value of f(Ai,Bj,Ck) would depend only upon the choice of the main effects 
(material, placement, and size), and there would be no interaction effects 
among the factors. On the other hand, if the assumption of no interaction 
effects was not valid and the parameters with two or more subscripts are 
not equal to zero, then experiments that change one variable at a time 
would lead typically to biased models.

12.4.1 � A Common Fallacy: Changing One Factor at a Time Experiments

A classical myth about optimal experimental design is that for experi-
ments with many factors it is best to vary only one factor at a time. This 
myth is dangerous in many ways. The first misconception is that opti-
mizing one variable at a time will give the same result as optimizing 
all the variables simultaneously. Even if a large number of single vari-
able experiments were practical, in many cases they will not provide a 
practical optimum. In addition, repeating sequences of single variable 
experiments costs a lot more to run. If the experiment only changed one 
variable at a time, then it would be extremely difficult to estimate and 
understand the role of interactions among the factors. If these interac-
tions were important, the analyst would end up with a model that leads to 
poor decisions. For example, if size and material had a negative interac-
tion effect, a model that ignored this interaction effect could lead to poor 
estimation of speed.

Example 12.1

Consider doing a one factor at a time experiment to estimate the parameters 
of Equation 12.2 as shown in Table 12.1. It can be seen that all the settings 
were changed one at a time, and there are four runs. By run we mean collect-
ing experimental data at the settings indicated by one row of the design table. 
Equation 12.2 has eight parameters. At an intuitive level, it is clear that four 
observations would not be enough to estimate the eight parameters needed to 
characterize the eight possible values for f. For example, how would we know 
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the effect of setting the factors to level A2, B1, and C2 (the value f(A2,B1,C2)) if 
interaction effects are nonzero? By definition, conducting an experiment in this 
way ignores the interaction effects, which would be problematic if the interac-
tion effects were considerable.

12.5 F actorial Experiments
Consider the three-factor signing experiment discussed before. Each fac-
tor has two levels and the figure of merit is measured speed. If we are 
unwilling to assume that any parameters in the model of Equation 12.2 
are equal to zero, then we have eight parameters to estimate. Typically 
constraints are imposed to aid in model interpretation. Without con-
straints, we would have twenty-seven unconstrained parameters, but only 
eight possible levels for the function f. The model would be overparam-
eterized using twenty-seven parameters. The constraints imposed in this 
textbook are consistent with those used by JMP. Other software packages 
may impose different constraints, so package users need to read the soft-
ware’s user manual in order to properly interpret parameter estimates. The 
constraints that we impose include:
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as well as constraints on the three-way interactions.
The constraints help measure effects from the overall average. For 

example α1 + α2 = 0 implies that if α1 ≠ 0, then neither is α2, and one of 
them is positive and the other negative. Put another way, the effects are 
measured as deviations from the average.

Table 12.1  A Design Changing One Factor at a Time for the 
Signing Experiment

Run Level for A Level for B Level for C Value for f
1 A1 B1 C1 f(A1,B1,C1)
2 A2 B1 C1 f(A2,B1,C1)
3 A2 B2 C1 f(A2,B2,C1)
4 A2 B2 C2 f(A2,B2,C2)
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Given the above constraints, the number of free parameters that need 
to be estimated is eight. These eight consist of the overall mean (e.g., 
constant term), the three main effects, the three two-way interactions, 
and the one three-way interaction. A complete factorial arrangement of 
treatments is given in Table 12.2 and was generated by the JMP Design 
of Experiments (DOE) module. It can be seen that JMP has identified 
the eight levels. While this example was small for larger experiments, 
this option is particularly useful for defining the design possibilities 
a priori.

For this design, all of the main effects and interactions can be estimated 
because every possible combination of factors is used in the design. It should 
be noted that collecting the minimum number of observations (e.g., eight 
in this example) is problematic, as there will not be enough observations 
to estimate standard errors. Using only eight observations to estimate a 
model with eight parameters will result in overfitting (e.g., the model fits 
the data exactly). Consequently, in most studies, additional observations 
are collected. The extra observations are needed to estimate the model’s 
ninth parameter—the standard deviation of the error. These extra obser-
vations typically are done by replicating the experimental runs, using 
each setting two or more times, or augmenting the experimental design. 
A methodology for calculating the required number of runs is described 
later in this chapter. Not surprisingly, randomization is key to a successful 
designed experiment. For example, the experimental units are usually run 
in random order. Runs are also usually randomly assigned to geographical 
location or subjects to reduce bias in experimental outcomes. Experiments 

Table 12.2  A Complete Factorial Design for the 
Signing Experiment with Three Factors, Each Having 
Two Levels

Background 
Material

Sign 
Placement Sign Size Speed

A1 B1 C1
A2 B1 C1
A2 B2 C2
A2 B2 C1
A1 B1 C2
A1 B2 C1
A2 B1 C2
A1 B2 C2
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with larger numbers of factors involve more complicated constraints (see 
Kuehl, 2000). By using JMP or another widely used statistical program, 
the user will get appropriately fitted models and tests.

12.6 Fr actional Factorial Experiments
Factorial experiments allow the estimation of the interaction effects of all 
orders. However, when the number of factors is large, or when there are 
many possible levels for factors, then the number of experimental runs 
needed may be very large. For example, if there are seven factors and each 
factor has two levels, the number of experimental runs needed for a full 
factorial experiment is 27 = 128. This problem is compounded because 
standard errors for the estimated parameters often are required in order 
to estimate confidence intervals of sufficient accuracy. Consequently, 
even more runs would be required beyond this minimum number. As the 
reader may be aware, there are few transportation studies that involve this 
many experiments.

A common solution to this dilemma is to run a preliminary experi-
ment or screening experiment. Screening experiments allow the analyst to 
identify the important factors under consideration. These factors are then 
investigated in a more comprehensive analysis. Typically a preliminary 
experiment might be run to evaluate only the main effects. For example, if 
an experiment has eleven two-level factors, then only twelve experimental 
runs would be needed to evaluate the main effects. This may be contrasted 
with a full factorial experiment that would need 211 = 2048 experimental 
runs. It should be noted that in many engineering studies the higher-order 
interactions are (1) not usually found to be statistically important, or (2) 
their magnitudes in comparison to the main effects are so small that they 
can be practically ignored. For these reasons, many transportation engi-
neering models will ignore the higher-order interactions even if they are 
found to be statistically significant.

Generally fractional factorial experiments, p, for two-level factors are 
expressed as 2p−r fractional factorials. When r = 1, the experiment is con-
sidered a half fraction and the numbers of runs needed are half of those 
from a full factorial. In the example, we presented a 23−1 fractional factorial 
that used four experimental runs. When r = 2 the resulting experimental 
design is called a quarter fraction. An excellent and classic reference for 
fractional factorial designs is Box et al. (2005), and another useful refer-
ence is the JMP DOE user manual.
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After the screening experiment, a fractional factorial experiment, 
which is a factorial experiment with only a subset of the original param-
eters, often can be used to obtain good (and sometimes optimal) estimates 
of the remaining model parameters. Recall the factorial experiment that 
we presented about speed reduction as a function of high sign type, sign 
placement, and size of the sign (see Section 12.5). It was shown that eight 
runs were required in order to have enough data to estimate the eight 
model parameters. Suppose that the engineer assumed that the three-way 
interaction parameter—which measured the interaction of the highway 
sign type, sign placement, and size of the sign—could be considered neg-
ligible. This is equivalent to assuming the third-order interactions equal 
zero (e.g., αijk = 0). In this case, there are only seven remaining uncon-
strained parameters to estimate. Because all possible orderings of factors 
are considered in the factorial experiment, any four runs chosen would be 
a subset of the factorial experiment.

The package JMP provides a subset that allows estimation of the over-
all mean and the main effects, and also provides an aliasing figure that 
shows the confounding of effects. By aliasing or aliased terms, we mean 
model terms that cannot be judged independently from each other. More 
precisely, the magnitude of the effects is redundant. For example, con-
sider modeling observed speeds using the model Y = μ1 + μ2 + ε. It would 
not be possible to tell the difference between values of μ1 and μ2, and any 
values that had μ1 + μ2 = μ would give the same value for the mean of the 
observed speeds. We say that μ1 and μ2 are aliased or confounded with 
each other. As a more serious example, the fractional factorial experiment 
that JMP gives for the signing experiment that we described is shown in 
Table 12.3.

There are four runs characterized as A2B1C1, A2B2C2, A1B1C1, and 
A1B1C2. Notice that the JMP changes more than one variable at time. For 
example, in going from setting A2B1C1 to A2B2C2 the second and third 

Table 12.3  A Simple Fractional Factorial Design 
for the Signing Experiment with Three Factors

Background 
Material

Sign 
Placement Sign Size Speed

A2 B1 C1
A2 B2 C2
A1 B2 C1
A1 B1 C2
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factors were both changed. The reader may verify that there is no way to 
get this design by changing one variable at a time.

Figure 12.1 gives the list of aliased effects. The first line of Figure 12.1, X1 
= X2*X3, means that the main effect for background is confounded (indis-
tinguishable) from the two-way interaction effect between sign placement 
and sign size. The other terms are interpreted similarly; for example, the 
main effect for sign size is confounded with two-way interaction effect 
between sign background and sign placement. Thus, for example, the 
design would not let us distinguish between a big effect for sign back-
ground and an interaction effect between sign placement and sign size. 
If these interaction effects were known to be equal to zero, or negligible, 
then the confounding issue disappears. In this situation a fractional facto-
rial experiment would be appropriate—with a corresponding reduction in 
data and expense.

12.7  Screening Designs
Fractional factorial designs are a subset of screening designs. Screening 
designs can be used to find the factors that likely will lead to the most 
useful model. Screening designs allow for the investigation of a large 
number of factors (usually p ≤ 100). For example, a screening design for 
eleven factors needs only twelve experimental runs, whereas a screening 
design for fifteen factors requires only sixteen experimental runs, and a 
screening design for thirty-one factors requires only thirty-two experi-
mental runs.

These are called Plackett–Burman designs. Recall that full factorial 
designs would require 211,215 and 231 experimental runs, while a half frac-
tional factorial experiment would require half as many runs, etc. These 
designs can be obtained in JMP under the DOE menu.

The authors suggest that the JMP aliasing figure be reviewed before 
implementing a screening design. For example, a screening fractional fac-
torial design for fifteen factors can be obtained from JMP that produces 

Figure 12.1  Aliasing of effects for the simple fractional factorial design.
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the aliasing shown in Figure 12.2. It can be seen that effect X1 cannot be 
distinguished from eight interaction terms in the full model (e.g., X2-X15, 
X3-X14, X4-X11, X5-X6, X7-X8, X9-X10, X12-X13). The reader should 
immediately see the trade-offs involved. There is a significant reduction in 
the amount of data required. However, the modeler is giving up the pos-
sibility of analyzing various interaction effects, as shown in Figure 12.2. 
Some interactions will clearly be zero. For example, if X2 is vehicle color 
and X15 is lane width, their interaction term would probably be zero. 
Obviously, each experiment will be different and the user will have to 
decide how comfortable she is in making these trade-offs.

Figure 12.2 shows that the main effects are confounded with various sec-
ond-order interactions, but if all interaction terms were zero, then the main 
effects could be estimated without bias. When screening designs are run, it 
is hoped that the interaction terms are much less important than the main 
effects. It is not usually practical to use a fractional factorial design 2p–1 or 
2p–2 when the number of factors, p, is large, say, 15.

Screening designs can be used in microsimulation experiments, where 
road design elements, driver behavior, and supply and demand are all fac-
tors under study.

12.8 D -Optimal and I-Optimal Designs
When transportation engineers are confident in the form of their model, 
as described in Chapters 8 and 10, experimental designs can be optimized. 
To illustrate, consider an asphalt pavement sample where we want to 

Figure 12.2  Aliases for a fifteen-factor screening design assuming third- and 
higher-order interactions are zero.



Experimental Design    ◾    243

model surface roughness, as measured by international roughness index 
(IRI) as a function of age (pavement age in years), and traffic volume, as 
represented by the average annual daily traffic (AADT). We might use a 
model like this:

	 IRI age AADT= + + +β β β ε0 1 2* * .

Our goal is to estimate the model parameters, β, and their uncertainty. 
If we have a choice of pavement ages and AADT, which parameter values 
should we choose? Similarly, readers may have the need to design experi-
ments (including microsimulation experiments) that use models that are 
more complex. As long as the model is linear in the βs, we can use the 
custom design feature in JMP to give an optimal design.

Generally, the transportation engineer will input to JMP the numbers 
of dependent variables (IRI, rutting, etc.) and the numbers of independent 
(predictor) variables. He or she also needs to tell JMP which variables are 
continuous, categorical, and bounds on these variables. In addition, JMP 
can handle linear constraints on the independent variables.

Let us consider a more complex version of the roughness model that 
was introduced:

	

IRI age age AADT AADT

a

= + + + +

+

β β β β β

β

0 1 2
2

3 4
2

5

* * * *

* gge AADT* .+ ε

Let us suppose that pavement age varies between one and seven years 
old, while AADT varies between 50,000 and 1 million vehicles.

The optimal design from JMP for this model is to use the eight runs 
in Table 12.4. The locations for this design should, if possible, be chosen 
randomly from those available that meet the preselected criteria. By using 
this design, roughness needs to be measured at only a few locations in 
order to develop a meaningful model.

The two optimality criteria that are available in JMP are D- and 
I-optimality. D-optimality chooses a design that minimizes the general-
ized variance of the βs. In essence, it minimizes the area of the confidence 
ellipse for the βs. I-optimality minimizes the average prediction variance. 
The average is taken over the range of predictors given to the design. Often 
the two designs coincide, but not always.
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A defect of optimal designs is that they are optimal for the specified 
model, but if the model is wrongly specified, the design can be bad. For 
example, the optimal design for the original pavement model IRI = β0 + β1* 
age + β2* AADT + ε has only four runs and no possibility of identifying 
quadratic or cross-product terms, as shown in Table 12.5.

Generally, it is wise to choose a design for a more complex model than 
one believes holds. This model should reduce to the more trusted model if 
the extra parameters are indeed zero. Good references for optimal designs 
are Mitchell (1974) and Atkinson and Donev (1992).

D-optimal designs have been used in transportation research, such as 
those used to assess pavement performance. In Freeman et al. (2006), a 
D-optimal design was generated for a twenty-three-factor experiment 
to assess asphalt cement properties. The number of runs that would be 
needed for a factorial experiment is 223 = 8,388,608. The D-optimal design 
generated for estimating main effects and two-way interactions required 
only 277 runs. Because each run required thirty to forty-five minutes, the 
savings permitted by a D-optimal design are apparent; in fact, a full facto-
rial experiment would not have been possible.

Table 12.4  Optimal 
Design from JMP for 
Complex IRI Model

Age AADT
7 525,000
7 50,000
4 1,000,000
4 525,000
1 525,000
1 1,000,000
1 50,000
7 1,000,000

Table 12.5  Optimal 
Design for Simple Model

Age AADT
7 1,000,000
1 50,000
1 1,000,000
7 50,000
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The DOE module in JMP has a powerful custom experimental design 
capability. It can be used when the experimenter is reasonably sure of the 
important factors needed to model in the experiment. Alternatively, when 
the needed number of factors is small, a custom design also may be sought. 
Continuous, categorical factors can be used in the design as well as many 
other types of factors, such as covariates. The JMP custom design module 
is a very powerful tool that can provide experimental designs for many 
situations faced by transportation professionals. It will generate designs 
for any linear model that the engineer provides. In order to use the cus-
tom design module, the transportation professional needs to know how 
many experimental runs that he or she can afford, as the custom design 
gives choices from a minimum design that simply allows estimation of 
the basic model parameters, to a user-specified number of experimental 
runs. It should be noted that it is often useful to do preliminary screening 
design runs of the factorial model before any data are collected, so that 
the user will be allowed to make rationale data collection decisions (e.g., 
what variables to collect, how many should be collected) with regard to 
the study budget. The reader is referred to the JMP Design of Experiments 
manual for more detail.

12.9  Sample Size Determination
In some cases, it is possible to specify sample sizes based upon type I error, 
power, a plausible alternative hypothesis, and standard error estimate. 
The JMP module that helps with these calculations is given within the 
DOE module, and it has a radio button labeled “Sample Size and Power.” 
Selecting that button produces Figure 12.3.

While the JMP DOE manual has detailed instruction for using this 
module, we will demonstrate how it can be used to find appropriate 
sample sizes to compare the effect of two sign backgrounds. Suppose 
that the measure of effectiveness is measured by the change in speed 
(measured in MPH), and that a 3 mph change in speed is considered 
important to detect. Suppose that the standard deviation for mph mea-
sured using double-loop detectors is 4 mph. In addition, suppose that 
we choose a type I error size of .05 and want at least 85% power to detect 
a difference in mph of at least 3 mph. Then we choose the “Two Sample 
Means” radio button from the sample size menu and fill it in as shown 
in Figure 12.4.

We then choose the “Continue” button. The sample size suggested is 
65.8 or 66 total observations, or 33 for each treatment. As well, it assumes 
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Figure 12.3  JMP sample size menu.

Figure 12.4  Sample size calculation menu for two sample means.
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the analyst does not know the mean but does know the standard deviation 
(perhaps from previous experience). Consequently, while these sample 
size tools are very useful, it is up to the analyst to understand their limita-
tion while using them. If the input information is incorrect, it is unlikely 
that the number of samples will be correct.

If we do not wish to specify power ahead of time, the power can be 
left unspecified and selecting “Continue” from Figure  12.4 produces 
Figure 12.5.

Using this figure, we can see how the need for larger sample sizes varies 
with requirements for larger power. If we use fifty (independent) vehicles 
for each sign background and thus a total sample size of a hundred, we are 
very likely able to detect a difference of three mph. As an aside, the reader 
should be used to seeing these types of relationships by now. In general, 
the larger the sample size, the better the result; however, the benefit to an 
increasing sample size decreases at an increasing rate. This is very typi-
cal in statistics, which is why it is important to understand the costs of 
each additional experiment and the benefit associated with having a better 
answer.

Figure 12.5  Power curve.
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12.10  Field and Quasi-Experiments
As stated in Section 12.2, a transportation professional often has to con-
duct a field study to assess the impact of different strategies. Generally, 
observational studies require larger sample sizes than designed experi-
ments. Unfortunately, they also have many uncontrolled factors, as dis-
cussed in Chapter 10. In addition to performing regression discontinuity 
designs, and running ANOVAs, it is important to understand the con-
founding factors. The following discussions are a summary of mate-
rial from Campbell and Stanley (1963), Cook and Campbell (1979), and 
Shadish et al. (2002).

In order to motivate our approach, consider the challenges of model-
ing policy changes, such as an increase in the energy tax and its effect 
on average daily traffic (ADT), an increase in a speed limit and its effect 
on fatalities, or a change in the minimum age for consumption of alco-
holic beverages and its effect on crashes. Clearly, a controlled randomized 
experiment cannot be implemented to judge the effects of these types of 
possible policy changes. As such, we need to know a good way to analyze 
this type of program after it has been implemented and what the limita-
tions are of observational studies.

There are two types of challenges to interpreting observational studies. 
The first are those internal to the experimental subjects. These challenges 
result in potential misinterpretation of the social change effects for the 
experimental subjects. The second types of challenges are those external 
to the experimental subjects. These make it hard to have confidence that 
findings about the effect of social changes for the experimental subjects 
are likely to occur for the general population. External challenges have 
a lot to do with analyzed samples that lack typical population traits. For 
example, it would be hard to generalize driver responses to sign changes in 
rural Texas to New York City. It would also be hard to generalize observa-
tions in passive work zone enforcement areas (just flashing police lights) to 
active work zone enforcement areas (tickets given to violators).

Table 12.6 lists the main challenges to internal validity for the analysis 
of a social program. It is based upon Campbell and Stanley (1963) and 
Table 2.4 in Shadish et al. (2002).

It is important to note that through sophisticated statistical tech-
niques, some of the challenges may be somewhat mitigated. A classic ref-
erence for before and after studies is Hauer (1997). However, the authors 
emphasize that these challenges will never be ignorable. For example, 
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Bayesian techniques can be used to model and assign a variance to the 
implementation times for social change. This will mitigate, but not solve, 
the problem of ambiguous timing for social change. After giving the 
analogous table (Table 12.7) for challenges to extrapolating predictions 
to nonexperimental units, a few common quasi-experimental designs 
will be evaluated. Discussions that are more extensive are found in the 
cited references.

Table 12.6  Threats to Internal Validity

Challenge or Threat to Internal Validity Example
1. �History. The specific history occurring 

between before and after measurements. 
Cars have improved safety features 
blunting the effect of increased speed 
limits.

2. �Maturation. Changes in subjects that 
naturally occur independently from the 
social change being evaluated. 

Measuring the effect of alcohol on young 
adults in a multiyear study. As people get 
older, they learn how to lessen the effects 
of alcohol.

3. �Testing. Subjects who do not act as they 
normally would because they know that 
they are being evaluated.

The presence of someone with a radar gun 
tends to slow drivers down.

4. �Changes in instrumentation or 
definitions used to record outcomes.

Changes in how accidents are recorded can 
lead to difficulty in assessing accident 
trends.

5. �Regression. Selecting matched control 
and exposed groups for comparison 
based upon unusual outcomes. These 
outcomes likely are not repeatable, and 
the matched groups revert to unmatched 
levels independently of the social change 
being evaluated.

Regions are matched based upon ADT for 
a short period of time. Unusually high 
ADT will tend to revert to the norm 
independently of traffic management 
changes.

6. Biased selection of comparison groups. Drivers in Texas and New York have 
different vehicle characteristics. 
Evaluations must take these differences 
into account.

7. �Biased departure from participation in 
the evaluation. Remaining subjects may 
not represent typical outcomes.

Regions where red light cameras are 
unsuccessful may discontinue their use. 
The remaining regions using red light 
cameras will show success.

8. �Ambiguous timing of social change 
implementation.

There is a lag from the time speed limits 
are changed by municipalities and the 
time that street signs are posted. Before 
and after studies need the date that the 
posted speed limits changed for each 
road segment.
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We discuss a few designs from the references to emphasize the 
importance of quasi-experimental design choices. Let X denote the imple-
mentation of a social program, let O denote an observation or measure-
ment, and let R denote randomized assignment to experimental groups 
among the subjects at hand.

The simplest and least effective design that we consider is the one-shot 
case study. It is denoted as

	 X O.

There is no control group, and the main point of introducing this design 
is to have a bad actor to reference. The one-shot case study has to compare 
the after-program analysis to our opinion of what would have happened 
if the social change were not implemented. The analysis from this design 
suffers from all the internal and external challenges that we discussed 
previously.

The next design is the one-group pretest/posttest design. It is symbol-
ized by

	 O X O.

Here there is no assignment; all subjects are observed before and after 
implementation of the intervention. As an example, consider observ-
ing average speeds before and after statewide speed limits are lowered 
from 70 mph to 55 mph. This design does slightly better than the first, 
but it is far from a good design. For example, if we were testing the 
effectiveness of banning handheld cell phones over the course of a few 

Table 12.7  Threats to External Validity

Challenge or Threat to 
External Validity Example
1. �Reactive effect of 

testing
Probe-vehicle drivers, knowing that they are monitored by 
GPS, drive differently during data collection than they 
would if they did not know that they were being monitored.

2. �Interaction effects of 
selection biases

Selecting volunteering cities to participate in signing 
experiments may lead to cities being selected that are not 
typical.

3. �Multiple program 
effects

Using the same set of experimental units for various social 
changes may produce results dependent upon all the prior 
social changes to which the subjects were exposed.
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years, we would have many other confounding factors. Changing speed 
limits, vehicle and road design changes, weather differences, and traffic 
volume changes all would provide challenges to the analysis. At least 
for challenges to internal validity, this design provides protection for 
regression and selection biases. See Campbell and Stanley (1963) for 
more detail.

The final design that we consider is the pretest-posttest control group. 
It is symbolized by

	

R
R

O
O

X O
O.

The subjects available (perhaps all volunteers) are randomly assigned to 
treatment and control (nontreatment) groups. Both groups are observed 
before and after implementation of the program. This design mitigates 
most of the threats to internal validity presented, but due to the fact that 
the pool of experimental subjects was not chosen at random, little help is 
provided for extrapolating results found among experimental units to a 
broader population.

A complete description of these approaches is beyond the scope of this 
textbook. However, most transportation engineers are confronted with 
analyzing policy decisions (e.g., what is the effect of raising the speed 
limit?), and we wanted to introduce the common techniques and, more 
importantly, discuss the challenges of conducting these types of experi-
ments. A more complete and extensive discussion for the science of 
quasi-experimental design can be found in the following cited references: 
Campbell and Stanley (1963), Cook and Campbell (1979), and Shadish 
et al. (2002).

Remark 12.2

In practice, the assessment of the impact of policy changes in transportation, 
such as raising the speed limit, is often carried out by observational studies 
due to the limitation in randomization (random assignment between treatment 
and nontreatment groups is usually not possible in safety studies). In the cases 
where the treatment and nontreatment groups are not randomly assigned, the 
nontreatment group is referred to as a comparison group rather than a control 
group’ Interested readers are referred to Hauer (1997) for more discussions on 
this issue.
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Remark 12.3

We note that there are some semantic differences among terms used in engi-
neering literature (e.g., Hauer, 1997) and related social science literature (e.g., 
Campbell and Stanley, 1963; Cook and Campbell, 1979; Shadish et al., 2002) in 
bias assessment. For example, Hauer (1997) considers regression to the mean 
as a selection bias, whereas the other researchers handle regression to the 
mean as a separate bias involved in selection. The differences in the way these 
sources treat these bias terms is essentially semantic; all are deeply concerned 
with bias issues.

12.11 Co ncluding Remarks
This chapter dealt with an important topic—the use of designed experi-
ments. For some specialties, such as safety studies on the effects of alcohol, 
designed field experiments are out of the question. In other areas they are 
common, such as sign legibility studies conducted in a closed course, or 
pavements and material thickness vs. wear studies. When they are able 
to be used, designed experiments are very efficient at identifying impor-
tant relationships. Their power comes from the fact that the designer can 
choose the levels of factors that he or she would like to know more about 
or change. Consequently, the number of observations can be significantly 
lower than those of an observational study.

One of the prime benefits of factorial designs is that interaction effects 
can be explicitly modeled and estimated. For example, in pavement design 
it is a known fact that while both traffic loading and environment affect 
pavement life, their interaction term can be important. Note that, as 
always in statistics, there is an art as well as a science to building models. 
Sometimes the transportation analyst judges or even intuitively assumes 
that certain interaction terms are unimportant, possibly recognizing, for 
example, that there is no reason for a significant interaction (e.g., traffic 
loading and sign placement on pavement life) or because the magnitude 
of the interaction is such that it can reasonably be ignored. (In practice, it 
is uncommon for interactions above three-way interaction to be impor-
tant.) In these situations, the analyst can reduce the number of runs, 
which would reduce cost or increase the number of parameters that can be 
examined for the same cost.

Lastly, it is crucial that the modeling and inference be done within 
the bounds of good statistical theory and practice. Opinion should be 
verified with data and valid analyses; this is not a new concept and has 
been an ongoing theme throughout the textbook. This chapter lists a 
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number of threats to both internal and external validity of the models. 
It is important that these be addressed before any experimentation 
begins. For sophisticated model development, the authors recommend 
the transportation analyst work closely with trained statisticians. While 
this may result in added expense, it will be far cheaper than a failed 
experiment or, worse, a poorly defined model that results in erroneous 
decisions.

Appendix: Choice Modeling of Experiments

Choice Modeling

Transportation engineers use surveys to provide valuable information for 
transportation decisions. What are the most preferred modes of travel and 
under what conditions? Where is the best location to build a shopping 
mall? Crucial decisions cannot be made without information from impor-
tant stakeholders. In this section, we will show how to use JMP to design 
and analyze a survey.

Conducting a survey may require IRB approval. One of the first steps in 
planning a survey is to get appropriate approvals. The next step is to create 
clear surveys and have an analysis strategy that supports the decisions 
that need to be made. For example, consumers may have choices in how 
they travel, whether by private car, rail, bus, or taxi. They have different 
trip purposes: work, shopping, or leisure. They also have a choice to make 
about the time of day to travel.

A properly designed survey and analysis will provide useful informa-
tion. Both designing and analyzing the survey are necessary to ensure that 
well-informed decisions are made. There is a choice design module in JMP, 
and in order to use it, some software-specific vocabulary is required. Note 
that “Factors” represent types of choices. For example, mode of travel—
private car, rail, bus, or taxi—represents a factor with four levels.

A profile is a set of factors at particular levels. An example of a profile 
is private car, work trip, at 7:30 a.m. The factors are mode of travel, reason 
for a trip, and time of a trip.

A choice set is a collection of profiles that a person is asked to choose 
from. For example, a person may be asked what is the most common trip 
that he takes: (1) private car, work trip, at 7:30 a.m., or (2) bus, shopping 
trip, at 10 a.m. A person typically would be asked to choose from two to 
four profiles for each of perhaps ten choice sets on a survey.

An example survey generated by JMP is shown in Figure 12.6.
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Once the responses from the survey are collected, a model is fit to the 
data. The JMP help file gives the form in which the data must be placed. 
The model that is fit is the multinomial logit model; see Washington et al. 
(2003). That model is described by the equations
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Homework Problems

	 1.	From the published literature, find a field study. List the internal and 
external threats to the conclusions that the authors present.

	 2.	For the study that you used for question one, what are the factors? 
Pretend that you can perform a designed experiment for this study. 

Choice Set Choice ID Mode Purpose Time of Trip

  1 1 1 Rail Work Mid-afternoon
  2 1 2 Car Shopping Mid-morning
  3 2 1 Bus Shopping Noon
  4 2 2 Car Leisure Mid-morning
  5 3 1 Bus Leisure Mid-morning rush hour
  6 3 2 Rail Shopping Mid-morning
  7 4 1 Rail Leisure Noon
  8 4 2 Car Work Morning rush hour
  9 5 1 Rail Shopping Morning rush hour
10 5 2 Car Work Noon
11 6 1 Bus Shopping Mid-morning
12 6 2 Rail Work Noon
13 7 1 Bus Work Mid-morning
14 7 2 Car Shopping Morning rush hour
15 8 1 Bus Shopping Morning rush hour
16 8 2 Taxi Shopping Mid-afternoon
17 9 1 Taxi Work Morning rush hour
18 9 2 Car Work Evening rush hour
19 10 1 Car Work Mid-afternoon
20 10 2 Taxi Work Evening rush hour

Figure 12.6  An example of a choice survey designed by JMP.
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How many observations would you use and what design would you 
use? Explain.

	 3.	Generate a 25–2 fractional factorial experiment. What effects are con-
founded (aliased) with the main effects? 
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13C h a p t e r  

Cross-Validation, 
Jackknife, and Bootstrap 
Methods for Obtaining 
Standard Errors

13.1  Introduction
A focus of this textbook has been on statistical modeling and estimation—
whether as a single variable (e.g., speeds at a location) or as multiple variables 
(e.g., relationship between traffic speed and weather) using multiple linear 
regression or ANOVA. As stated before, readers should not only be well 
versed in developing models and using them for estimation and prediction, 
but they should also be able to quantify statistically how good their resulting 
estimates are. To answer this question, the reader has to understand the con-
cept of standard error; consequently, every chapter that deals with inference 
has a section on estimating standard errors. These techniques, while very 
powerful, are limited by the underlying assumptions related to a closed-form 
formula. The use of coefficients of variation, logs, exponents, and other non-
linear functions of the data is commonplace. For example, in transportation 
engineering origin-destination (OD) estimates and 85th percentile speeds do 
not have closed-form standard error formulas. In general, nonlinear estima-
tors do not have closed-form formulas for their standard errors. This chapter 
focuses on three approaches for quantifying uncertainty when a closed-form 
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formula for standard errors is not available. Sometimes propagation of error 
(see Chapter 4) can be used, but the methods given here are often more accu-
rate for nonlinear estimators. This chapter will focus on approaches that can 
be employed when you encounter this type of situation.

13.2 � Methods for Standard Error Estimation 
When a Closed-Form Formula Is Not Available

Many statistical estimators given in this textbook—such as the median 
(or other percentiles) and transformations such as ln( )X  and R2 —do not 
have simple formulas for obtaining standard errors. In these situations 
other techniques are required. For example, in Chapter 4 we illustrated 
propagation of error techniques for obtaining approximate standard 
errors for nonlinear transformations. For many decades, propagation 
was the most practical way to get standard errors for nonlinear methods. 
However, approaches developed over the past fifty or so years are often 
better because they have been shown to provide more realistic uncertainty 
estimates. The main defect of propagation of error is that this approach will 
often ignore the higher-order terms from the Taylor expansion. In many 
instances, these terms contribute to uncertainty, but if they are ignored, 
the resulting standard error (SE) estimates can be underestimated.

The three leading modern approaches to standard error estimation 
are the cross-validation, bootstrap, and jackknife methods. Each of these 
approaches has several ways in which it can be implemented. To initiate this 
discussion, consider Figure 13.1, which shows measured travel time on a 
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Figure 13.1  An example of a smoothed nonlinear estimator.
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corridor in Houston, as quantified by the Automatic Vehicle Identification 
system, vs. the time of day. The data are fully described in Eisele (2001) as 
well as in Eisele and Rilett (2001). A fitted smoothing spline (denoted by a 
solid-line curve) was used to estimate the relationship between the travel 
time and the time of day. See Green and Silverman (1994) for more infor-
mation about splines and other nonparametric estimators. Note that the 
fitted smoothing spline does not have a simple closed-form standard error 
formula. In this situation, engineers who wish to calculate the SE, and 
hence the CI or PI, will need to use alternative methods for finding practi-
cal uncertainty estimates. This will be the focus of this chapter, though, 
unfortunately, space limitations restrict a full conversation. Likewise, the 
theoretical underpinnings are beyond the scope of this book. Readers who 
want a more in-depth treatment are referred to excellent books written by 
Efron and Tibshirani (1993) and Mosteller and Tukey (1977).

13.3 Cross -Validation
Cross-validation’s main use is to provide uncertainty estimates for predic-
tions as contrasted from parameter estimates. They are used to measure 
how well we can predict a new Y . In Chapter 10, the error variance esti-
mate (i.e., prediction error estimate) or MSE was given as
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The degrees of freedom, n p− , is the proper denominator based upon 
statistical calculations. The degrees of freedom calculations depend upon 
having a linear estimator and a finite number of parameters. For nonlinear 
parametric models propagation of error techniques often can be used to 
obtain an equivalent estimator of prediction error. For estimators that do 
not allow a Taylor expansion or have the number of parameters increas-
ing with sample size—such as a smoothing spline—other approaches are 
needed. For prediction, a commonly used method is cross-validation. 
The most common form of cross-validation is called leave-one-out cross-
validation. Let the smoothing spline estimate in Figure 13.1 be denoted as 
ˆ( )f x . It was obtained using all the data plotted. Suppose we denote these 
data as ( , ), , ,x Y i ni = …1 2 . Let the smoothing spline estimator that uses 
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all the data except the jth point (xj, Yj) be denoted as f̂–j(x). Then the cross-
validated estimate of prediction error is
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In Equation 13.1 the cross-validated estimate of the prediction errors is 
simply an average of estimated squared errors. The estimated errors are 
obtained by subtracting the best estimate of the mean function for Yj
using all the observations that are independent of Yj  (i.e., ˆ ( )f xj j− ).

In large samples, this technique furnishes a reasonable estimate of 
the prediction error provided the observations are independent or very 
close to independent. When the data are dependent, other forms of cross-
validation are better suited for prediction error estimation. Readers are 
referred to Efron and Tibshirani (1993).

13.4 � The Jackknife Method for 
Obtaining Standard Errors

Another alternative to the propagation of error formulas is the jackknife 
method. It can provide a standard error estimate for almost any estima-
tor. Both the jackknife and cross-validation procedures use estimates con-
structed from data sets that use all but one observation. Each observation 
is deleted once. Unlike cross-validation that is used to estimate prediction 
mean squared error, the jackknife provides standard errors for param-
eter estimates. The difference is akin to the distinction between predic-
tion intervals and confidence intervals for regression at a fixed value of x  
(refer to Chapter 10 for a full discussion).

One approach to the jackknife is based upon the Quenouille-Tukey 
jackknife: see Tukey (1958). It is mainly used for small- to medium-size sam-
ples and where Taylor expansions are difficult to apply. Notwithstanding, 
propagation of error works well in large samples with independent data, 
and the presence of a suitable Taylor with small second- and higher-order 
terms. For linear estimators the jackknife is unnecessary because correct 
and simple closed-form formulas are available.

The jackknife method is based on pseudovalues. We assume that we 
have n  independent samples. We denote our nonlinear estimator as Θ̂n , 
with the subscript emphasizing the number of samples that are used. Let 
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the estimators that use all but the jth sample be denoted by ˆ
,Θn j− −1 . Then 

the jth  pseudovalue is

	 Y n nj n n j
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Note that this approach essentially calculates a series of pseudovalues by 
removing a single observation from the sample and executing this n times 
(where n is the number of samples). These jackknife pseudovalues are then 
centered and used to estimate the SE. In this case the traditional estimator 
for standard error is obtained. This approach is best illustrated by way of 
examples.

Example 13.1

We first use a linear example. Please note that using the jackknife approach 
on a linear example is unnecessary, but it is useful for demonstrating the 
general methodology. Assume we are conducting a speed study and have 
recorded speeds from three vehicles of 61, 64, and 68 mph. The mean speed is 
64.33 mph. Using the usual formula for standard error of the mean, we obtain a 
result of 2.03 mph. When we construct the pseudovalues using Equation 13.2, 
we find that they are 61, 64, and 68 mph, respectively. Thus, the standard error 
obtained using Equation 13.3 is 2.03 mph.

Example 13.2

Suppose that researchers want to get the standard error for the natural log of 
the mean of observed speeds. That is, the estimator of interest is

	 Y X= ( )ln

where X  denotes the average speed. In this case, identifying the standard error 
for the natural log of the mean,

 
ln X( ), is considerably more complicated than 

the previous example. For the data in Example 13.1 it can be easily calcu-
lated that the mean of the natural log of the data is 4.16. The pseudovalues 
for this model are 4.1100, 4.1559, and 4.2189 mph, respectively. The jackknife 
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standard error is .0316 mph. When we use the propagation of error formula we 
have S XX

2 2 0315/ . .=
As discussed in the literature, the jackknife formula is more accurate than 

the propagation of error formula (see Efron and Tibshirani, 1993). In the authors’ 
experience, the jackknife standard error is also considerably easier to use than 
deriving the propagation of error formula. The jackknife standard error has 
degrees of freedom approximately equal to the number of unique pseudoval-
ues minus 1. This number is typically n – 1 except when calculating population 
percentiles. When calculating the percentiles (such as the median), typically, 
there will be one degree of freedom for the estimated standard error because 
there are usually only two distinct values for the pseudovalues (see homework 
problem 2). For percentile standard errors, the bootstrap formula is a better 
approach and is discussed in the next section.

13.5 Bootstr apping
Bootstrapping is the most modern and perhaps the most widely used 
method for estimating SE. While there are many variants of the boot-
strapping method, there are two main approaches: case bootstrapping 
and residual bootstrapping (see, e.g., Efron and Tibshirani, 1993). Each 
has its advantages, but in this textbook we will specifically focus on case 
bootstrapping. Residual bootstrapping is mainly used to find standard 
errors in regression models where it is important to keep all the origi-
nal predictors in the model and there exists a well-accepted, presumed 
model. Case bootstrapping can be used to find standard errors for 
almost any statistical procedure where observations are independent. 
Given that this is a central assumption throughout the book, the case 
bootstrapping approach can be used for any model described, includ-
ing models on the univarate, bivariate, or multivariate data and regres-
sion. Suppose that one were interested in finding the 85th percentile 
speed from loop detectors. Furthermore, assume that the measured 
speeds are independent. In this situation, case bootstrapping would be 
a good choice.

The algorithm for the case bootstrap will be described below and then 
demonstrated with an example. Suppose that we have data Xi , i n= …1, ,  
(e.g., speed measurements), and an estimator ˆ( , , )θ X Xn1 …  of a transpor-
tation performance measure (e.g., the 85th percentile speed). The case 
bootstrap proceeds as follows:

	 1.	Using the original sample, Xi , i n= …1, , , draw independently with 
replacement a sample of size n and do this J times. Accordingly, if 
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the original sample consists of three numbers—2, 5, and 9—the first 
redrawn sample might be 5, 5, and 2. Denote the redrawn sample as 
Xij

* , i n= …1, , , j J= …1, , .

	 2.	For the redrawn sample, Xi
* , i n= …1, , , calculate ˆ( , , ),* *θ X Xj nj1 …  

j J= …1, .

	 3.	Using ˆ( , , )* *θ X Xj nj1 … , j J= …1, , calculate
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	 This is the case resampling bootstrap estimator for the standard 
error of ˆ( , , )θ X Xn1 … .

Example 13.3

Suppose that a traffic engineer modeled the relationship between annual hours 
of delay and average miles traveled on principal arterial streets. She subse-
quently fitted a linear relationship between the two by using simple linear 
regression. In this case, the standard formula for calculating standard errors (as 
presented in Chapter 10) could be used because a linear model was chosen to 
illustrate the approach. The JMP output is shown in Figure 13.2.

We can see from the JMP output that the standard errors for the intercept 
and the slope are 151.4 and .19, respectively. In contrast, she may have chosen 
to use a bootstrap technique to calculate these standard errors. In this case, one 
hundred case bootstrap samples were drawn for these data, and the bootstrap 
standard errors for intercept and slope are 157.3 and .22, respectively. The 
bootstrap estimates were calculated using the MATLAB Statistics Toolbox 
(2009); this Toolbox has a command for easily calculating bootstrap estimates. 
Because we are dealing with a simple straight line, the SE estimates from the 
JMP output in Figure 13.2 are smaller than the bootstrap estimates. Yet, they 
are also more accurate, as they were from a closed-form solution. However, 
as is typical, the estimates from both methods are close. As an aside, the esti-
mates provided in the JMP are a trivial case of the propagation of error tech-
nique. However, the reader should keep in mind that the bootstrap estimates 
are typically more accurate than propagation of error for nonlinear estimation 
of parameters (Efron, 1992). Notice that R2 equals .76 (from Figure 13.2), but 
JMP does not provide a standard error for R2. The bootstrap standard error is 
.081 for R2.
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Remark 13.1

The bootstrap method can also be used for calculating confidence intervals 
using bootstrap percentiles. For example, if one thousand bootstrap samples 
are drawn for estimating the sample mean, then the confidence interval can 
be taken as the interval that contains the 26th smallest bootstrap replication 

Linear Fit 
Annual Hours of Delay = –664.6465 + 1.5443783*Miles Traveled on Principal Arterial Street 

Summary of Fit 

RSquare 0.759012 
RSquare Adj 0.746963 
Root Mean Square Error 141.8125 
Mean of Response 512.5909 
Observations (or Sum Wgts) 22

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio 
Model 1 1266815.6 1266816 62.9918
Error 20 402215.7 20111 Prob > F
C. Total 21 1669031.3 <.0001*

Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t|
Intercept -664.6465 151.3777 –4.39 0.0003*
Miles Traveled on Principal Arterial Street 1.5443783 0.194586 <.0001*

Bivariate Fit of Annual Hours of Delay by Miles Traveled
on Principal Arterial Street 
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Figure 13.2  Partial JMP output for bivariate fit of annual hours of delay by 
average miles traveled on principal arterial street.
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of the sample mean to the 975th smallest bootstrap replication of the sample 
mean. If confidence intervals are obtained in this manner, the bootstrap cor-
rectly handles the effects of nonnormal errors. Similar statements apply for 
prediction intervals.

13.6 Co ncluding Remarks
This chapter focused on alternative techniques for estimating a stan-
dard error when traditional approaches, which were the focus of much 
of this textbook, do not apply. These typically occur when (1) the rela-
tionship between variables is nonlinear and no reasonable transforma-
tion is available to convert the problem to a linear one, or (2) there is 
no closed-form formula for standard error. It is important to note that 
these two conditions are often found in transportation problems, and 
these techniques are useful in situations where bounds on the estimates 
are required. For example, while it is often constructive to provide pre-
dictions, many decision makers would like to know their accuracy. As 
was shown throughout the textbook, standard errors are instrumental 
in identifying these bounds: through either confidence or prediction 
intervals.

The three techniques discussed in this chapter—cross-validation, jack-
knifing, and bootstrapping—are highly powerful and relatively easy to 
use. More importantly, they will allow users to accurately set bounds (i.e., 
standard errors) on their estimates when standard approaches discussed 
in previous chapters will not work. This is critically important for many 
modern transportation applications.

Homework Problems

	 1.	Prove that the jackknife calculations for Examples 13.1 and 13.2 
are correct.

	 2.	Take a random sample size of ten from a normal distribution 
using JMP.

	 a.	 Use the jackknife to estimate the standard error for the median. 
How many degrees of freedom should this standard error have?

	 b.	 Write a computer program to take one hundred bootstrap samples 
from the ten values that you have and estimate the standard error.

	 c.	 Which estimate of standard error do you prefer?
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	 3.	Take a random sample of twenty-five lognormal random variables 
using JMP. Write a computer program to take one thousand bootstrap 
samples to calculate the sample mean from each of these samples.

	 a.	 Construct a 95% confidence interval using a bootstrap estimate 
of standard error.

	 b.	 Construct a 95% confidence interval using a bootstrap estimate 
of the 2.5th and 97.5th percentiles.

	 c.	 Compare your answers.

	 4.	List three estimators that are not referred to in this book for which 
you do not have a closed-form formula for standard error.
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14C h a p t e r  

Bayesian Approaches 
to Transportation 
Data Analysis

14.1  Introduction
In this chapter, we will present the basic concepts and principles of 
Bayesian approaches as well as simple examples to illustrate the concepts. 
In previous chapters we discussed exploratory plotting, estimation, and 
hypothesis testing based upon field studies or designed experiments. 
Often transportation researchers have more information about mobility, 
signaling, safety, and materials than just the data at hand. By using a prior 
distribution, that information can be used in a mathematically rigorous 
fashion. This is particularly important when sample sizes are small and 
standard errors are large.

Bayesian estimators are a weighted average among prior opinion and 
data-driven estimators. They enable researchers to use all the information 
available, providing a distinct benefit, since well-informed researchers 
generally estimate better models when they incorporate their knowledge. 
Researchers that have less experience, however, will benefit by using a 
noninformative prior. In such cases, a state of vague knowledge can also 
be used to get Bayesian estimators. Often those estimators will not differ 
much from the estimators given in the previous chapters.
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Finally, we emphasize that this is a quick introduction to Bayesian esti-
mation. References to more extensive coverage of Bayesian statistics and 
modern advanced procedures are provided. Before researchers can appre-
ciate more advanced approaches, it is useful to have a good grasp of the 
material presented in this chapter.

14.2 F undamentals of Bayesian Statistics
In Bayesian approaches the parameters are viewed as random variables 
having their own distributions, as opposed to classical (or frequentist) 
approaches treating the unknown parameters as fixed constants. The dis-
tribution of parameters assumed before observing any data is called a prior 
distribution. The key idea of a Bayesian approach is that all (prior) knowl-
edge or extra information in addition to the data about the parameters 
can be incorporated into the estimation through the prior distributions on 
model parameters. Let θ be a parameter of interest. For example, it could 
be a true free-flow mean speed along a highway corridor. Suppose that we 
have information from a previous study that the mean speed along this 
corridor is approximately 55 mph with a standard deviation of approxi-
mately 3 mph. The prior distribution on θ may be assumed to be normal 
with a mean of 55 and standard deviation of 3, i.e., θ ~ N(55, 32).

The prior information on the parameter can be updated by the infor-
mation contained in the data through Bayes’ theorem. In Chapter 4, we 
introduced Bayes’ theorem in terms of discrete events/probabilities. It can 
also, however, be stated in terms of continuous probability distributions. 
The two main uses for Bayes’ theorem (also known as Bayes’ rule) are (1) to 
calculate conditional probabilities that would be difficult to do correctly, 
and (2) to provide improved parameter estimates that combine various 
sources of information. Discussion on the second use has been deferred 
until the present chapter.

In Bayesian statistics, Bayes’ theorem plays a major role. Once the data 
are obtained, the information contained in the data can be combined with 
the prior distribution through Bayes’ theorem. This leads to an updated 
distribution for the parameter, called a posterior distribution. Let us 
denote the sampling distribution (or the likelihood, see the appendix of 
Chapter 11) by f(x|θ), the prior distribution by p(θ), and the posterior dis-
tribution by π(θ|x). Bayes’ theorem states that

	 π θ
θ θ

x
f x p

m x
( ) =

( ) ( )
( ) 	 (14.1)
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where m(x) is the marginal distribution of the data (x) given by

	 m x f x p d( ) = ( ) ( )∫ θ θ θ. 	 (14.2)

The marginal distribution m(x) is actually the normalizing constant that 
makes the integral of π(θ|x) equal to 1. Because m(x) does not depend on 
θ, Bayes’ theorem is sometimes stated more briefly as

	 π θ θ θx f x p( ) ∝ ( ) ( ) 	 (14.3)

or

	 posterior likelihood prior∝ × .

The ∝ means “is proportional to.” Note that the posterior distribution 
(Equation 14.1) is the conditional distribution of θ given the data. Bayesian 
inferences (which will be discussed in the next section) are made based 
on the posterior distribution. The ability to incorporate various sources 
of information (the information contained in the data and prior informa-
tion) into parameter estimation leads to an improved estimate. This is a 
strength of a Bayesian approach.

The use of Bayesian statistics in transportation has recently become 
more popular. See, for example, Park et al. (2008b) for a Bayesian approach 
for pavement performance prediction and Schluter et al. (1997), Carriquiry 
and Pawlovich (2004), Park et al. (2010), and references therein for fully 
Bayesian approaches in traffic safety analysis. Ang and Tang (2006) pre-
sented a good overview on the use of Bayesian statistics in transportation. 
Readers who desire more extensive coverage and discussions of Bayesian 
statistics in the general context are referred to Bolstad (2007), DeGroot 
and Schervish (2002), and Lee (2004). Part of the challenge with the 
use of Bayesian statistics is a computational difficulty. Except for some 
simple models with special types of priors called conjugate priors (which 
will be introduced in the next section), Bayesian computation can typi-
cally not be done analytically, and oftentimes numerical approximation 
or simulation is required. Computational techniques that have become 
very popular in modern Bayesian statistics are Markov chain Monte 
Carlo (MCMC) methods, which is beyond the scope of this textbook. 
The MCMC approach allows for the simulation of complex, nonstandard 
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multivariate distributions by generating random variables from a (mar-
ginal) distribution indirectly, which obviates the need to calculate the 
density. After a sufficiently large number of iterations, samples generated 
from MCMC can be regarded as posterior samples (i.e., samples gener-
ated from the posterior distribution). Two of the widely used MCMC 
algorithms are Gibbs sampling and the Metropolis–Hastings algorithm. 
For a general overview and various usages of MCMC (in nontransporta-
tion contexts), interested readers are referred to, for example, Gilks et al. 
(1996) and Robert and Casella (2004). Park et al. (2008a) provide a helpful 
discussion of the use of MCMC in origin-destination matrix estimation 
and imputation of missing volumes.

14.3  Bayesian Inference
Bayesian inference about the parameter is based on the posterior distri-
bution, which is proportional to the likelihood (distribution of the data) 
and the prior distribution (distribution of the parameter). Thus, the 
very first step in Bayesian analysis is to specify the likelihood and the 
prior distribution. Unlike the likelihood, we can choose relatively easily 
from several available distributions that best approximate the data; the 
decision on what prior distribution is best to use is not straightforward. 
Bolstad (2007) provides helpful guidelines on how to choose a prior in 
a general statistics context. If there is actually very good prior infor-
mation (e.g., from the previous study) or expert knowledge on the 
parameter of interest (e.g., on the range of plausible values), it is best to 
incorporate such information into the prior distribution. For example, 
if we know from the previous study that the free-flow average speed (µ) 
is around 62 mph with a standard deviation of about 3 mph, we may 
set our prior distribution on µ to be the normal distribution with prior 
mean 62 and prior standard deviation 3. (Free-flow speeds are known 
to be well approximated by normal distribution if there are not many 
outliers.)

Oftentimes, however, there is no precise knowledge on the parameter of 
interest, because often the purpose of the study is to estimate the unknown 
parameter values. In these situations vague priors—sometimes referred 
to as noninformative priors or reference priors—are typically used. A 
vague prior has a relatively flat distribution compared to the likelihood. 
For example, a normal distribution with a very large standard deviation 
such as 100 (when the mean is 62, as above) can be viewed as a nonin-
formative prior because the distribution is almost flat. By flat we mean 
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that the distribution assigns approximately equal weight on all possible 
values of the parameter, which in this case is average speed. In this case, 
we hope that the effect of priors on the posterior distribution is minimal, 
because we do not have a very good prior knowledge on the parameter, and 
the posterior distribution will be largely determined by the likelihood. We 
should note, however, that the determination of noninformative priors is 
not always a clear-cut decision, especially in high-dimensional parameter 
space. In fact, the selection of priors often requires careful thought, par-
ticularly when there is a paucity of good prior information. For a more 
in-depth discussion of this topic, interested readers are referred to Kass 
and Wasserman (1996). Schluter et al. (1997) also provide a good discus-
sion on the elicitation of both informative and noninformative priors, in 
crash data analysis.

14.3.1 C onjugate Priors

Recall from Bayes’ rule (Equation 14.3) that

	 posterior likelihood prior∝ × .

It would be mathematically convenient if likelihood × prior leads to a for-
mula for a known distribution from which the posterior distribution can 
be identified. An easy way to achieve this is to select a prior so that likeli-
hood × prior is in a similar functional form as the prior.

14.3.1.1  For Poisson Likelihood
Let X be the number of pedestrian arrivals per minute at a crossing with 
an unknown arrival rate of λ. In Chapter 5 we learned that the Poisson 
distribution approximates such data well. Thus, we can choose the distri-
bution for X (likelihood) to be Poisson (λ). That is,

	
f x e

x

x
λ λλ

( ) =
−

!
.

Now we need to choose the prior distribution for λ. Note that λ can be 
continuous and can only take nonnegative values (because it is an arrival 
rate). Among the set of continuous distributions having nonnegative sup-
ports, the gamma distribution is mathematically tractable and makes 
likelihood × prior essentially the same formula as the gamma prior. Recall 
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that the gamma distribution with parameters α and β, Gamma(α,β), is 
given as

	
p eλ λ

α β
λ α β

α λ β

α( ) = ( ) ≥ >
− −1

0 0
Γ

, , , .

By entering the formula for the Poisson likelihood and the gamma prior 
into Equation 14.3, we get

	 π θ θ θx f x p( ) ∝ ( ) ( )

	

∝( )( )
=

− − −

+ − − +( )

e e

e

x

x

λ α λ β

α λ β

λ λ

λ

1

1 1 1

which is essentially the same formula as the gamma prior except that the 
parameters are different (i.e., updated to x + α and (1 + 1/β)−1). The full 
gamma posterior density is given as

	 π λ
λ β

α

α λ β α

x
e

x

x x

( ) =
+( )

+( )
+ − − +( ) +1 1 1 1 1

Γ
. 	 (14.4)

Note that a gamma prior gives rise to a posterior distribution that again 
belongs to a gamma family.

A prior is said to be a conjugate prior if the prior and the posterior dis-
tributions belong to the same family, in other words, if the posterior has 
the same distributional form as the prior distribution. Another commonly 
used conjugate prior includes a beta prior for the binomial likelihood and 
a normal prior for the normal likelihood.

14.3.1.2  For Binomial Likelihood
Let n be the number of vehicles entering a particular intersection in 
a given time and Xi (i = 1,…,n) be a random variable taking a value of 
1 if the ith vehicle runs the red light and 0 if it does not. Then X1,…,Xn 
can be  regarded as a sample of independent observations following 
Bernoulli(p), where p is the unknown true rate of red light running at the 
intersection. Let Y be the number of vehicles that run red lights out of n 
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vehicles, i.e., Y Xi
n

i= =Σ 1 .  Then Y follows a binomial distribution, Bin(n,p), 
with the following likelihood:

	
f y p

n
y

p py n y( ) =




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−( ) −1 .

Assume that the prior distribution on p is Beta(α,β) with the prior density 
function given as

	
p p p p( ) =

+( )
( ) ( ) −( )− −Γ

Γ Γ
α β

α β
α β1 11 .

It can be shown that the posterior distribution of p is Beta(y + α,n−y + β)  
with the following density function:

	 π
α β

α β
αp y

n
y n y

p py n y( ) =
+ +( )

+( ) − +( ) −( )+ − − +Γ
Γ Γ

1 1 ββ−1 	 (14.5)

where 0 ≤ p ≤ 1, which belongs to the same family in distribution (beta 
distribution) as the prior (see homework problems for details). Note that 
we merely need to add the number of successes y to α and the number of 
failures n – y to β to obtain the parameters of the posterior distribution in 
this case. From the property of a beta distribution, it can be shown that the 
mean and variance of the posterior distribution in Equation 14.5 are

	 E p y y
n

( ) = +
+ +

α
α β 	 (14.6)

and

	 var .p y
y n y

n n
( ) =

+( ) − +( )
+ +( ) + + +( )

α β

α β α β2 1 	 (14.7)

14.3.1.3  For Normal Likelihood
For the normal likelihood, a conjugate prior is also normal, which will lead 
to a normal posterior distribution. To illustrate, let X1,…,Xn be a sample 
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of independent observations distributed N(μ,σ2) where σ2 is known. Let 
us assume that the prior distribution on μ is N(m,τ2), where m and τ2 are 
known. Then it can be shown that the posterior distribution of μ is normal 
with mean and variance given by

	 E x n x m n x
n

µ
σ τ σ τ

τ
τσ( ) = +





+





=
+2 2 2 2

2

2

1
2 ++

+

σ

σ τ

2

2 2
n

n

m 	 (14.8)

and
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See Casella and Berger (1990) for details.
It can be seen from Equation 14.8 that the posterior mean of a normal 

population mean, μ, can be viewed as a weighted average of the sample 
mean and the prior mean with weights inversely proportional to the vari-
ance of X– and the prior variance, respectively.

Example 14.1

Let Xi (i = 1,…,n) denote the number of fatal crashes per year at the ith intersec-
tion. Say that X1,…,Xn are independent and each follows a Poisson distribution 
with the mean crash rate λ. Assume that the mean crash rate is not constant, 
but is believed to be a gamma-distributed random variable possessing a prior 
density with parameters α and β. That is, λ~Gamma(α,β). What would be the 
posterior distribution after observing x1,…,xn crashes from n intersections?

By Bayes’ rule,

	 π λ λ λx x f x x pn n1 1, , , , ( ) ∝ ( ) ( )
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By retaining the terms that involve λ only, it can be shown that

	 π λ λ λλ α λ βx x e en
x nii
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+ − − +( )λ α λ βx nii

n
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which looks like a gamma distribution with parameters xii
n +∑ = α1  and (n+1/β)–1 

except for a normalizing constant. The full posterior density of λ with a normal-
izing constant is
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which can be denoted by Gamma x nii
n +∑ +( )( )=

−α β1 1
1

, . The reader should 
note that the prior distribution on the mean crash rate λ, Gamma(α,β), has 
been updated to the posterior distribution, Gamma x nii

n +∑ +( )( )=

−α β1 1
1

, , after 
observing the data. The mean and variance of the posterior distribution in 
Equation 14.10 are given as

	 E x x x nn ii
nµ α β1

1
1 1, ,( ) = +∑( ) +( )=

−
	 (14.11)

and

	 E x x x nn ii
nµ α β1

2
1 1, ,( ) = +∑( ) +( )=

−
	 (14.12)

respectively.

Table 14.1 contains the list of commonly used conjugate priors for some 
of the distributions that are often used in transportation studies.

We should note that one of the main motivations for using a conjugate 
prior is computational convenience. By using a conjugate prior, it is pos-
sible to obtain a closed-form formula for a posterior distribution and a 
Bayesian estimator (that will be presented in the next section). There are 
cases, however, where a conjugate prior may not exist for a given model or 
is not appropriate to summarize the scientific knowledge available a pri-
ori for the parameter of interest. In these situations other computational 
techniques, such as MCMC, which was mentioned earlier in this chapter, 
can be employed to obtain the samples from the posterior distribution. 
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This means that a closed-form formula for the posterior distribution does 
not need to be obtained. The posterior summaries are computed based on 
those samples. Interested readers are referred to the references given in the 
previous section.

14.3.2	P oint Estimation

A Bayesian approach may utilize various summaries of the posterior 
distribution for estimation of the parameter. The mean of the posterior 
distribution (posterior mean) is often used as the Bayes estimator of the 
parameter. The definition of the posterior mean is given by

	 E x x dθ θπ θ θ( ) = ( )∫ . 	 (14.13)

For the conjugate distributions of Table 14.1, the posterior mean can be 
analytically obtained and a closed-form solution is known. Other sum-
maries of the posterior distribution, such as the posterior median, poste-
rior mode, or posterior percentiles, may also be used as a Bayesian point 
estimator.

Example 14.2

Researchers are interested in estimating the true free-flow mean speed (µ) along 
a corridor. Say that from the previous studies the mean speed can be assumed 
to follow a normal distribution with a mean of 55 and standard deviation of 3, 
i.e., μ ~ N(55,32). Suppose that researchers observed five speeds ranging from 
39 to 53 from X ~ N(μ,62), and the sample mean speed value was determined to 
be 45, which was significantly lower than the prior mean speed (55). The prior 
mean (55) can be updated by incorporating the information obtained from the 
data (sample mean speed of 45) to the posterior mean (Bayes estimate). Recall 
that the posterior mean is given by a weighted average of the maximum likeli-
hood estimate (sample mean) and the prior mean. Using the formula given in 
Equation 14.8, the Bayes estimate can be calculated as
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The Bayes estimate of the mean speed (49.44) lies between the sample mean 
(45) and the prior mean (55). Compared to the maximum likelihood estimate 
(MLE), the Bayes estimate is an improved estimate in that it incorporates exter-
nal information (prior information). Note that, in this case, the maximum likeli-
hood estimate (45) and the Bayes estimate (49.44) differ considerably because 



278    ◾    Transportation Statistics and Microsimulation﻿

n is small and the sample values differ markedly from those that would be 
expected given the prior distribution. As the sample size increases, however, 
the difference between two estimators decreases in general.

Example 14.3

Let n be the number of vehicles entering a particular intersection in a given 
time, Y the number of vehicles that run red lights out of n vehicles, and p the 
unknown true violation rate of red light running at the intersection. Researchers 
are interested in estimating the violation rate at the intersection. Based on the 
historical data, the violation rate is assumed to follow a beta distribution with 
the parameters α = 2 and β = 7. Then the prior mean violation rate (the prob-
ability of red light running anticipated before the observation of any data) is

	
E p( ) =

+
=α

α β
0 2222. .

Say that twenty vehicles entered the intersection during the five-minute 
time interval and two of the vehicles ran a red light. How can this observation 
be used to update the prior distribution of probability of red light running, Beta 
(2, 7)? What is the Bayes estimate of p? How different is it from the expected 
probability of red light running before observing any data (0.2222)?

First note that Y (the number of vehicles that run red lights out of n vehicles) 
follows a binomial distribution, Y ~ Bin(n,p). Recall that the posterior distribu-
tion of p with the Beta prior is Beta(y + α,n–y + β). In our case n = 20, y = 2, α 
= 2, and β = 7. Entering those numbers in Beta(y + α,n–y + β), we get the pos-
terior distribution of p as Beta(4,25). From Equation 14.6, the posterior mean 
(Bayes estimate) of p can be shown to be

	
E p y

y
n

( ) =
+

+ +
= +

+ +
=

α
α β

2 2
20 2 7

0 1379. .

The Bayes estimate of p (0.1379) lies between the sample mean 
of the underlying Bernoulli trials, y/n = 0.1, and the prior mean of p, 
E(p) = α/(α + β) = 0.2222. Note that, after observing the data, the information 
in the data has been incorporated into the prior mean violation rate and led 
to an updated estimate (posterior mean violation rate) that combines both 
sources of information.

The posterior mean of p can be expressed as a weighted average of the 
sample mean (y/n) and the prior mean α/(α + β) with weights depending 
on α, β, and n as follows:
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For the Bayes estimate (0.1379) of Example 14.3, we have
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That is, the Bayes estimate for the probability of running a red light (0.1379) is 
the weighted average of the sample proportion of vehicles running a red light 
(0.1) and the prior estimate of the probability (0.2222), where the weights are 
given as 0.6897 and 0.2414 in this case.

It can be seen from Equation 14.14 that as the sample size (n) increases, 
the MLE will get proportionately more weight, and as a result, the Bayes esti-
mate (posterior mean) would become closer to the MLE (sample mean). On 
the other hand, when the sample size is small, the prior mean is given more 
weight and the Bayes estimate would be closer to the prior mean. This is when 
the role of the prior becomes more important. Although the use of good prior 
knowledge will improve the Bayes estimate and will lead to a more precise 
estimate regardless of the sample size, the effect will become more prominent 
when the sample size is small. At the same time, it needs to be remembered 
that the use of wrong or incorrect prior information when the sample size is 
small would affect the resulting Bayes estimate more significantly than when 
the sample size is large. While the advantage of Bayesian approaches becomes 
clearer in the small sample case, that is when the use of good prior information 
and selection of reasonable priors becomes more crucial, so as not to generate 
misleading results.

14.3.3 U ncertainty Estimation

As in the classical analysis, it is important to know not only the point 
estimate for the parameter but also how good the estimate is with respect 
to precision and accuracy. Put another way, the point estimate itself may 
not be very useful without knowing how much uncertainty is associated 
with it. In Bayesian analysis, a measure of variability of the posterior dis-
tribution can be used as an uncertainty estimate for the parameter (or 
an estimate for the uncertainty of the parameter estimate). An interval 
covering the central area of the posterior distribution can also be used as 
an uncertainty estimate.

14.3.3.1  Posterior Standard Deviation
The standard deviation of the posterior distribution (posterior standard 
deviation) describes the uncertainty in the parameter in Bayesian infer-
ence. The posterior standard deviation can be thought of as a counterpart 
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of the standard error used in the classical approaches. The definition of the 
posterior standard deviation is given by

	 Std x Var xθ θ( ) = ( )[ ]1 2

	 = − ( )( ) ( )



∫ θ θ π θ θE x x d2

1 2

. 	 (14.15)

Other summaries of the posterior distribution, such as the posterior inter-
quartile range or posterior variance, may also be used to provide uncer-
tainty estimates for θ.

Example 14.4 (Example 14.2 continued)

Researchers are also interested in knowing how precise their estimate for the 
free-flow mean speed (49.44) is. The uncertainty estimate for the Bayes esti-
mate of the free-flow mean speed µ can be obtained as follows. From Equation 
14.9, the posterior variance is
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Then the posterior standard deviation is

	 Std x Var xµ µ( ) = ( ) = 2.

Example 14.5 (Example 14.3 continued)

The Bayes estimate for the probability of running a red light (0.1379) is sub-
ject to uncertainty. The uncertainty estimate for the Bayes estimate of p can 
be obtained by the standard deviation of the posterior distribution as follows. 
From Equation 14.7, the posterior variance of Beta(y + α,n–y + β) is
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Thus, the posterior standard deviation is

	 Std p y Var p y( ) = ( ) = =0 0031 0 0556. . .
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14.3.3.2  Credible Intervals
Credible intervals used in Bayesian interval estimation may be viewed as 
a counterpart of confidence intervals used in classical interval estimation, 
but with a very different interpretation. Given a posterior distribution 
π(θ|x), C is a credible interval for θ if

	 P C x x d
C

θ π θ θ∈( ) = ( )∫ . 	 (14.16)

For example, a 95% credible interval for θ can be constructed by finding 
an interval C over which ∫C π(θ|x)dθ = 0.95. A probability interpretation 
such that there is 95% probability that θ is inside the interval C can be 
attached to Bayesian credible intervals unlike the confidence intervals. This 
is in contrast to confidence intervals where the confidence level associated 
with the confidence interval concerns the long-run percentages of simi-
larly constructed intervals covering the true parameter value from similar 
independent experiments. There are many different ways to form a credible 
interval (see Casella and Berger, 1990). Credible intervals with equal tails 
are frequently used in Bayesian interval estimation. A (1−α)×100% equal-
tail credible interval corresponds to the 100(α/2)th and 100(1 – α/2)th per-
centiles of the posterior distribution. For example, the 2.5th percentile and 
the 97.5th percentile can be used to construct the 95% credible interval.

For normal mean µ (with known variance σ2), a (1−α)×100% Bayesian 
credible interval (obtained by using a normal prior) can be given as

	 E x z Std xµ µα( )± ( )−1 2 	 (14.17)

where E(μ|x–) and Std(μ|x–) are posterior mean and posterior standard devia-
tion (see Equations 14.8 and 14.9), respectively, and z1–α/2 is the upper α/2 per-
centile of the standard normal distribution.

Remark 14.1

If σ2 is unknown, the sample variance s2 can be used in place of σ2 in Equations 
14.8 and 14.9 to obtain E(μ|x–) and Std(μ|x–). The credible interval given in 
Equation 14.17 then should be widened to account for added uncertainty due 
to replacing σ2 by the sample variance s2. The (1–α)×100% Bayesian credible 
interval for µ in that case is given as

	 E x t Std xnµ µα( ) ± ( )− −11 2, 	 (14.18)

where tn–1,1–α/2 is the upper α/2 percentile of the t-distribution with n – 1 degrees 
of freedom.
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Example 14.6 (Example 14.4 continued)

Researchers desire to find an interval that is believed to contain the free-flow 
mean speed at some probability level. Say that they wish to obtain a 95% 
credible interval for µ. Because the standard deviation of speeds is known to 
be σ = 6 in this case, the formula in Equation 14.17 can be used to obtain the 
credible interval. Recall that the posterior mean and posterior standard devia-
tion were E(μ|x–) = 49.44 and Std(μ|x–) = 2, respectively, from Examples 14.2 and 
14.4. By plugging in those values as well as z1–α/2 = 1.96 in Equation 14.17, their 
95% credible interval can be obtained as

	
E x z Std xµ µα( ) ± ( ) = ± ( )( ) = ±−1 2 49 44 1 96 2 49 44 3. . . .992.

The lower limit and upper limit of the interval are 45.52 and 53.36. The 95% cred-
ible interval [45.52, 53.36] is an interval that has a posterior probability of 95% of 
containing µ. That is, there is a 95% probability that µ belongs to [45.52, 53.36].

Example 14.7 (Example 14.3 continued)

We can also find a 95% credible interval for the probability of running red light 
p. Recall from Example 14.3 that the posterior distribution of p was Beta(4,25). 
To get the lower and upper limit of the 95% credible interval, we only need to 
find the 2.5th and 97.5th percentiles from Beta(4,25) distribution. Those values 
can easily be computed by JMP (see Section 5.3.1) or any other statistical soft-
ware package. The 2.5th and 97.5th percentiles from Beta(4,25) are 0.040 and 
0.282, respectively. The 95% credible interval for p is [0.040, 0.282], which 
has a posterior probability of 95% of containing p.

Example 14.8

Suppose that in Example 14.3 researchers did not have any prior information or 
expectation on the probability of red light running, p, before they started their 
study. Thus, they decided to use the uniform prior that gives equal weight to all 
possible values of p in [0, 1]:

	 p p p( ) = ≤ ≤1 0 1for . 	 (14.19)

The prior in Equation 14.19 can be viewed as a noninformative prior for p, 
as it does not favor any one value over another. By Bayes’ theorem, the poste-
rior distribution for p in this case is

	 π p y
n

y
p py n y( ) =







−( ) ×−
1 1	 (14.20)
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for 0 ≤ p ≤ 1. Equation 14.20 can be rewritten as

	 π p y
n

y n y
p py n y( ) =

+ +( )
+( ) − +( ) −( )+ − − +Γ

Γ Γ
1 1

1 1
11 1 11 1−

	 (14.21)

which corresponds to the density of the beta distribution Beta(y+1,n–y+1). In 
fact, the uniform prior in Equation 14.19 is a special case of the Beta(α,β) prior 
where α = 1 and β = 1. The posterior distribution of p with n = 20 and y = 2 is 
Beta(3,19). The posterior mean and variance of p can be obtained by substitut-
ing in n = 20, y = 2, α = 1, and β = 1 in the formulas of Equations 14.6 and 14.7 
as follows:

	
E p y

y
n

( ) = +
+ +

= +
+ +

= =α
α β

2 1
1 1 20

3
22

0 1364.

and

	

var p y
y n y

n n
( ) =

+( ) − +( )
+ +( ) + + +( )

=
+( )α β

α β α β2
1

2 1 220 2 1

20 1 1 20 1 1 1
0 0051

2

− +( )
+ +( ) + + +( )

= . .

The posterior standard deviation is

	 Std p y Var p y( ) = ( ) = =0 0051 0 0716. . .

We can see that the Bayes estimate of p in this case is related to the frequentist 
estimate of p obtained by adding one success and one failure in Chapter 9.

Recall from Examples 14.3 and 14.5 that the posterior mean and stan-
dard deviation of p were 0.1379 and 0.0556, respectively, when the prior 
was Beta(2,7). Note that the Bayes estimate obtained by using a non-
informative prior (0.1364) is still relatively close to the Bayes estimate 
obtained by using Beta(2,7) prior (0.1379). However, the posterior stan-
dard deviation under the noninformative prior (0.0716) is larger than 
that under the Beta(2,7) prior (0.0556). The larger uncertainty estimate 
under the noninformative prior is a natural consequence of not incorpo-
rating any prior information on p into parameter estimation. The 95% 
credible interval for p under the noninformative prior can be obtained 
as the 2.5th and 97.5th percentiles from Beta(3,19). The resulting interval 
[0.030, 0.304] is, as expected, wider than the 95% credible interval of 
Example 14.7.
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14.4 Co ncluding Remarks
Often transportation professionals have very good information on a process 
before they begin a study. For example, they may have some information on 
the physical properties of a material based on published material, or they 
may have information on the demand for transportation services based 
on earlier studies. Until now, this textbook concentrated on approaches 
that assumed that this information did not exist—or at least would not be 
useful for estimating models. However, the approaches discussed explicitly 
use this information (e.g., the prior information) with the newly observed 
data to develop statistical models. These techniques are particularly useful 
when (1) the prior information is good or trustworthy, and (2) the amount 
of newly collected data is limited. Because they have been shown to be 
very useful in other fields (e.g., not wasting information), these Bayesian 
approaches have become increasingly popular in transportation studies.

In this chapter we showed how researchers can combine prior knowl-
edge with newly collected data to develop Bayesian models. This in turn 
can be used to estimate transportation phenomena of interest, such as the 
proportion of drivers who run red lights at signalized intersections. We 
showed, by example, that these estimates are easily computed with the use 
of conjugate priors, and follow understandable mathematical principles. We 
presented Bayesian credible intervals based upon posterior distributions. 
Bayesian estimators are widely used in safety analyses, although the models 
published in the literature mostly use nonconjugate priors because of com-
plexity issues. Although the general theory remains the same, closed-form 
estimators are not (generally) available because prior distributions are not 
conjugate and posterior distributions are not given in any known form. In 
such cases, computer simulations must be used to sample from the posterior 
distribution. A common simulation technique is MCMC. By understanding 
the process of using conjugate priors, the reader will have a good basis for 
reading references that use MCMC methods. In some sense this parallels 
the use of the bootstrap in Chapter 13 to get standard errors when no closed 
form exists. Thus, this chapter provides readers with an introduction to the 
concept of Bayes estimation and credible intervals.

Homework Problems

	 1.	Let Y be the number of vehicles that run red lights out of n vehicles, 
following a binomial distribution, Bin(n,p), and let p have a Beta(α,β) 
distribution, the conjugate family for the binomial.
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	 a.	 Using Bayes’ rule, show that the posterior distribution of p, π(p|y), 
is proportional to

	 n
y p py n y( ) +( )

( ) ( ) −( )+ − − + −Γ
Γ Γ

α β
α β

α β1 11

	 b.	 The beta function is defined as B p p dp( , ) ( )α β α β= ∫ −− −
0
1 1 11 , and 

the following relationship holds between the beta function and 
the gamma function:

	
B α β

α β
α β

, .( ) =
( ) ( )

+( )
Γ Γ
Γ

		  Using this relationship, show that

	
π

α β
α β

αp y
n

y n y
p py n y( ) =

+ +( )
+( ) − +( ) −( )+ − − +Γ

Γ Γ
1 1 ββ−1

		  which is Beta(y+α,n–y+β). Researchers are interested in estimat-
ing the annual average fatal crashes at twenty intersections in a 
city. Suppose that the annual fatal crash count follows a Poisson 
distribution with the mean λ. It is believed that the mean crash 
count, λ, is not a constant, but a random variable distributed as 
Gamma(2,3). Researchers collected the data on the fatal crash 
counts for a year from twenty intersections, and the total fatal 
crash count (the sum of fatal crash counts over twenty intersec-
tions) turned out to be twenty-five.

	 c.	 Find the posterior distribution of λ. (Hint: Note that a gamma 
distribution is the conjugate family for the Poisson. Also, note 
that Σi

n
ix= =1 25  in Table 14.1. Enter another number in the for-

mula too.)

	 d.	 What is the prior mean fatal crash count?

	 e.	 Find the Bayes estimate of λ. (Hint: The Bayes estimate is the 
posterior mean fatal crash count.) How different is it from the 
prior mean fatal crash count?

	 f.	 Find an uncertainty estimate for the Bayes estimate of λ. (Hint: 
The posterior standard deviation can be used as an uncertainty 
estimate.)
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	 g.	 Compute the 95% credible interval for λ. (Hint: You can use JMP 
or other statistical software packages to get the gamma percen-
tiles.) How would you interpret this interval?
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15C h a p t e r  

Microsimulation

15.1  Introduction
In recent years traffic microsimulation packages have become an important 
modeling tool for various aspects of transportation planning, design, and 
operations. A study in 1997 identified over fifty separate commercially 
available traffic microsimulation packages (Algers et al., 1997), and there 
is no doubt this list has grown substantially since then. Because traffic 
microsimulation models are becoming more widely used in a variety of 
transportation applications, it is important for transportation profession-
als to understand the concepts behind these models and analyze their out-
put statistically.

This chapter provides a brief overview of microsimulation models, fol-
lowed by the statistical methods for analyzing microsimulation output. 
Next, this section raises issues examined in previous chapters, such as the 
accuracy of the model with reference to statistical inference and the design 
of experiments. Methods of calibration are also briefly discussed. The final 
section of this chapter looks at common performance measures, and how 
they are calculated from simulation output.

15.2  Overview of Traffic Microsimulation Models
Traffic microsimulation models seek to represent the interaction of the 
physical system (e.g., the supply: roads, intersections, traffic control, etc.) 
and the users (e.g., the demand: routes, driver characteristics, etc). These 
models are referred to as micro because they operate at an individual unit 
level (e.g., vehicles, people). They are referred to as simulation because they 
seek to model the internal processes of the system (e.g., drivers’ decisions, 
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vehicle characteristics, traffic signal operations, etc.) and not simply the 
output of the system. These microsimulation models are popular because 
the systems they represent are so complex that more traditional macro-
scopic models are insufficient.

Figure 15.1 provides an overview of the information flow for a generic 
microsimulation model. We can see that there are two basic inputs: supply 
(box A) and demand (box B). The supply consists of (1) the physical attri-
butes of the network and (2) the operating strategies of the transportation 
agency. An example of the former would be the fact that a given intersec-
tion has a traffic signal present. An example of the latter is illustrated by 
that all traffic signals in the simulation model operate according to the 
city’s timing plan. Note that the supply is typically under the direct con-
trol of the decision makers in charge of the transportation network. For 
example, they can add more roads, expand lanes, add transit, or change 
signal timing plans in the hopes of improving performance at an intersec-
tion, along a particular roadway, across a corridor, or at the system level. In 
contrast, the decision makers may exert considerable or almost no control 
over demand, depending on the situation. For example, airlines choose 
their prices and can manage demand by varying their fares. In contrast, 
highway authorities have limited ability to change prices on freeways, and 
consequently, they have to use other approaches, such as ramp metering 
or high-occupancy lanes.

(A) Supply
Input

(B) Demand
Input

(C)  Microsimulation Model

(D)  Output

Figure 15.1  Schematic diagram of a microsimulation model.
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The vast majority of transportation model developers find it useful to 
treat the physical component of the supply as a mathematical representa-
tion of nodes and links, each with its own attributes. We should note that, 
in general, much of transportation network supply modeling borrows 
heavily from mathematical graph theory, in which the nodes, or vertices, 
are points in space. The set of all nodes is N. The set L represents all the 
ordered pairs of vertices, which commonly are referred to as links, arcs, or 
directed edges. In essence, the links connect the nodes and hence have a 
direction associated with them, that is, from node a to node b. The entire 
network is referred to as a directed graph and is written mathematically as 
G (N, L) (Bondy and Murty, 1976, 2008).

For the sake of convenience, the present chapter will discuss networks 
with respect to the roadway mode, and we will use the common trans-
portation terminology of nodes and links. There are, however, simulation 
models for railways, transit lines, multimodal networks, and other trans-
portation modes. The general principles discussed in this chapter will 
apply equally to these microsimulation models. The attributes of nodes 
typically include location coordinates—x, y, and possibly z—and type of 
signal control, such as uncontrolled, stop sign, or traffic signal. The nodes 
are often thought of as representing intersections, although this is not nec-
essarily true from a practical point of view. Note that while the coordi-
nates may correspond to latitude, longitude, and elevation, any spatially 
consistent coordinate system could be used. The links represent homoge-
neous sections of the roadway network, and their attributes would include 
number of lanes, speed limit, or grade.

Figure  15.2 shows a section of a VISSIM traffic network in Lincoln, 
Nebraska. The traffic network is represented by links and nodes, and 
this particular microsimulation network is multimodal since both road-
ways and railways are represented. Figure 15.3 presents a snapshot of a 
microsimulation from this network. This figure features a signalized 
intersection located near an at-grade railroad crossing. We can see that 
vehicles, pedestrians, trains, and traffic control can all be modeled and 
displayed to the user. The visualization aspects of microsimulation models 
make them powerful tools for communicating with decision makers and 
the public. However, it is important for the user to understand whether the 
models are reasonable, and this is the focus of this chapter.

Figure 15.4 shows a detailed view of an interchange from the Lincoln 
network where the nodes (circles) and links (solid lines) are shown explic-
itly. In this figure, the direction of movement is indicated by the arrows. 
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It should be noted that nodes do not solely represent intersections; rather, 
they represent locations where the roadway characteristics change. It is 
also important not to assume that simply because two links cross, there 
is a node located at their intersection. Grade-separated road crossings, for 
example, would not have a node. Note that while each microsimulation 
model may have a different set of attributes and coding schemes, they will, 
for the most part, all model the physical transportation network as some 
form of directed graph.

Freeway Links

Railway Links

Arterial Links

Figure 15.2  VISSIM subnetwork of Lincoln, Nebraska, showing streets (solid 
lines) and railway lines (dotted).

Figure 15.3  Screen shot of a microsimulation model.
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The second input (shown in box B in Figure 15.2) is the transportation 
demand. The demand typically takes the form of an origin-destination 
matrix where the number of vehicles are defined whose drivers wish to 
travel from a given node i to a given node j and whose drivers wish to 
depart their origin at some point during a specific time period. Typically, 
the input also includes the vehicle types (e.g., percentages of passenger cars, 
buses, tractor trailers, etc.), the driver types, and the respective attributes 
of both (acceleration capabilities, braking capabilities, perception reaction 
time, driving aggressiveness, etc.) associated with the demand between 
the two nodes. Note that the traffic demand can be static in that it does not 
change over the entire simulation, or dynamic in that it does change with 
simulation time. In addition, the more sophisticated models will define OD 
demand with respect to the movement of people, as opposed to vehicles, 
and the simulation will include a mode choice component. For example, 
three hundred people wish to travel from origin A to destination D, and 
their travel options include drive alone, carpooling, transit, and cycling. In 

Grade
separated

intersection
(no node)

Links

Nodes

Figure 15.4  Directed graph of a highway interchange in Lincoln showing nodes 
(circles) and links (lines).
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this case the model would identify endogenously the number of vehicles of 
each type traveling from each origin to each destination.

It should be noted that some packages do not input an OD matrix 
directly. Instead, demand is modeled as consisting of (1) volumes enter-
ing the links and (2) turning movement percentages at intersections. This 
approach has an advantage, because the volume and turning movement 
information is easier to obtain in the field than from an OD matrix. While 
both methods can be used to represent demand, the former allows the 
modeler more control. For example, consider Figure 15.5, which shows a 
simple network with observed volumes and two potential OD matrices. 
The reader can easily verify that there are a large number of OD matrices 
that would produce the volumes on the links. Some involve significant 
weaving (e.g., OD Matrix B in Figure 15.5), while others do not (e.g., OD 
Matrix A in Figure 15.5). Clearly the amount of weaving will affect the 
simulation results. The authors recommend that the OD matrix be used 
whenever possible, as it provides more control to the user. However, the 
reader should be cautioned that estimating or observing large OD matri-
ces is not a trivial problem (Nihan and Davis, 1989; Cascetta et al., 1993; 
van der Zijpp, 1997).

In general, the user defines a specific length of simulation time (e.g., 
from 8 a.m. to 10:30 a.m.) as part of the input. The microsimulation 
program progresses through the modeling process at small time incre-
ments, such as 0.1 seconds. In doing so, it models the interaction between 
the individual units, or vehicles, as they enter the network at their origin 

100 veh/h 200 veh/h 100 veh/h

100 veh/h 100 veh/h

Node 1

Node 2 Node 4

Node 3

OD Matrix A
(No Weaving)

From\To

Node 1

Node 2

Node 3

100

0

Node 4

0

100

OD Matrix B
(Weaving)

From\To

Node 1

Node 2

Node 3

0

100

Node 4

100

0

Figure 15.5  Simple network showing traffic volumes and potential OD matrices.
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nodes, traverse it while interacting with the traffic control as well as other 
vehicles, and depart at their destination nodes. This process is represented 
by box C in Figure 15.1.

Note that the demand is typically entered as a deterministic number 
(veh/h) rather than as individual vehicle movements. In Figure  15.5, 
for example, the demand from node 1 to node 3 might be 100 veh/h. 
The user would input this along with attributes such as from node to 
node, vehicle type percentages, and driver type percentages. The use 
of aggregate values for input saves time and effort because the user 
does not have to enter specific information—from node, to node, type 
of vehicle, type of driver, departure time, and so forth—for 100 sepa-
rate vehicles. Instead, the program translates this deterministic num-
ber into individual vehicle movements that have specific attributes that 
correspond to the macroscopic input. Consider the situation where one 
hundred vehicles per hour (veh/h) are input as traveling from node 1 
to node 3 between 8 a.m. and 9 a.m. In this situation approximately 
one hundred vehicles will be created that have attributes associated 
with the input information, that is, 20% heavy vehicles and 80% pas-
senger cars. The vehicles will then be assigned to leave at random times 
between 8 a.m. and 9 a.m. Based on logic that is typically internal to 
the simulation model, vehicles choose a route to their destination, enter 
the network at node 1, and traverse the network to node 3, while simul-
taneously interacting with both other vehicles and the transportation 
system. The manner of these interactions is a function of the type of 
vehicle and the driver type attributes. The model simulates the system 
at set time increments, which are typically at the decisecond (e.g. 0.1 
second) interval. For example, during a particular time step, a given 
vehicle may move from point x to point y, a traffic signal may change 
from amber to red, and other changes may occur. The simulation pro-
ceeds until the end time input by the user is reached.

Modeling large cities at the decisecond level results in a considerable 
amount of data available for analysis. Consequently, the user typically has 
discretion in the information that is output (e.g., box D in Figure  15.1) 
as part of this process, the form it should take, and the frequency of the 
output. Typical output may be categorized as (1) information related to 
the individual vehicles statistics, (2) information related to specific links 
or intersections, and (3) information related to the system as a whole. In 
addition to aggregated data from the entire simulation, users will request 
output in fifteen-, thirty-, or sixty-minute increments.
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It is important to emphasize that many of the phenomena in microsim-
ulation programs, such as driver behavior, are modeled as random vari-
ables. The exact distribution of the random variable used within the model 
is often defined internally to the program, although the user often defines 
the parameters. The number of vehicles for a given OD pair, for instance, 
may be modeled as a normal distribution, whereas the time between arriv-
als (e.g., when they enter the network) may be represented as following an 
exponential distribution. Assume that you wanted to model the network 
shown in Figure 15.5 and that you input 100 veh/h traveling from node 
1 to node 4 from 8 a.m. to 9 a.m. In some programs, the total number of 
vehicles may be random; for instance, it could be 103 veh/h or 98 veh/h. The 
important point, though, is that while the input values are deterministic, 
the model will “draw” the actual number from a predefined pdf. Similarly, 
the time between arrivals at which the vehicles enter the network, between 
8 a.m. and 9 a.m., also will be random and would be drawn from the expo-
nential distribution (if this pdf were chosen by the user).

Lastly, the microsimulation program developers assume the user is 
familiar with the assumptions underlying the logic of the model. The 
standard microsimulation models all have default parameters, such as a 
value for λ in the Poisson distribution for vehicle departure counts. As 
a result, the user does not necessarily need to calibrate the model before 
running it. Consequently, if you provide input in the proper format and 
run the microsimulation program, you will get output. It is then up to the 
reader to decide how good the simulation results are, a concept that will be 
explored further in the following sections.

15.3 A nalyzing Microsimulation Output
Because of their flexibility and ability to model complex systems, micro-
simulation models have become increasingly common over the past twenty 
years. This section will examine the different types of statistical analyses 
commonly used when analyzing their output.

15.3.1  Model Calibration Validation and Verification

The terms verification, validation, and calibration are often used in the 
context of microsimulation modeling. However, these terms are not 
always well defined or understood. For this reason, the present section 
will explicitly define them, basing the definitions on common usage in the 
transportation engineering community.
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Model verification is the process of determining if the logic that 
describes the underlying mechanics of the model, as specified by the 
model developer(s), is faithfully replicated by the model. It is important 
to note that model verification is not concerned with whether the logic is 
correct. For example, if the model developers intended that a stream of 
vehicles approaching an isolated intersection follow the Poisson distribu-
tion, then model verification will confirm that the modeled vehicles are 
indeed distributed according to a Poisson pdf. The graphical goodness-
of-fit techniques described in Chapter 9 could be used for this application. 
The question of whether this distribution is correct is not part of model 
verification.

Model validation is the process of determining to what extent the mod-
el’s underlying fundamental rules and relationships are able to adequately 
capture the targeted emergent properties of the model. As the name 
implies, emergent properties emerge from the model and are not defined 
a priori. In traffic microsimulation models, for instance, link capacity, 
density, and speed are often defined as emergent properties. Note that the 
emergent property might be compared to theoretical values or empirically 
collected data. For the capacity example, validation might involve com-
paring the simulated link capacity with (1) the Highway Capacity Manual 
values (HCM, 2010) or (2) observed data.

Model calibration is the process of modifying the default microsimula-
tion parameters so that the model replicates the observed traffic condi-
tions as accurately as possible. For example, if a Poisson distribution is 
deemed appropriate for modeling a given stream of vehicles arriving at a 
traffic signal, then the model calibration would identify the best value for 
the parameter λ of the Poisson distribution. A more detailed overview of 
model calibration will be provided later in this chapter. We should note 
that it is good practice to use separate data sets for the model calibration 
and model validation processes. In addition, the calibration step is com-
monly performed before the validation step.

15.3.2 A ggregate Goodness-of-Fit Measurements

A number of aggregate goodness of fit measurements can be used to 
quantify the degree to which the model results fit the field data. The term 
aggregate is used because all the measurements are combined into a single 
metric. Commonly used aggregate measures include the mean absolute 
error (MAE), the mean absolute proportional error (MAPE) (sometimes 
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referred to as the Mean Absolute Error Ratio (MAER)) and the root mean 
squared error (RMSE), shown in Equations 15.1 to 15.3 respectively.
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where:
	Oi	 Measure of performance (e.g., average link volume) observed from 

field data
	 Ei	 Measure of performance (e.g., average link volume) estimated by 

the simulation model
	 N	 Total number of observations (e.g., link volumes).

Each measure has its own advantages and disadvantages. As an exam-
ple, the MAPE estimates error as a proportion of the observed mean 
and is therefore easily understood by decision makers because it has a 
physical meaning. For example, assume that you had measured link vol-
umes and were comparing these to simulated link volumes. A MAPE of 
0.10 would indicate that, on average, the simulation and modeled results 
differ by 10%. However, this measure is best suited to applications in 
which the denominator, the observed measure of performance, does 
not exhibit a wide range. If the measure of performance is link volume, 
to name one possibility, and the network consists of a mixed arterial-
freeway network, then it is likely that the MAPE for minor roads will 
be larger than for major roadways. Consequently, MAPE should not be 
computed for all links combined, but should be computed separately 
for groups of links with similar observed volumes. Note that users can 
choose any measure of performance (link volume, occupancy, speed, 
etc.); however, they should indicate what metric they used when report-
ing the results.
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The above equations are presented for a single time period. It is often 
valuable to apply the selected measure of performance for discrete 
time periods. For example, when simulating a four-hour peak period, 
it may be desirable to report performance measures for each one-hour 
or thirty-minute period so that trends may be examined over time. 
In this situation the aggregate performance measure is calculated for 
each time period. For example, the disaggregate MAE for time period 
t (MAEt) is shown in Equation 15.4.
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where:
	 t	 Time period t; note all time periods are of equal length
	 T	 Number of time periods
	Oit	 Measure of performance (e.g., average link volume) observed from 

field data during time period t
	Eit	 Measure of performance (e.g., average link volume) estimated by 

the simulation model during time period t
	Nt	 Total number of observations (e.g., link volumes) during time 

period t.

Note that in transportation literature most measures of volume and 
demand are presented in terms of vehicles per hour (veh/h). However, 
by convention, this volume measurement is assumed to be based on 
fifteen-minute observations unless stated otherwise (HCM, 2010). 
Consequently, many users choose to output volume data at the 15 min-
ute level of aggregation.

15.3.3  Statistical Analysis of Microsimulation Output

There will be many times when the user will want to know whether the 
simulation results are valid or whether there is a significant difference 
between the results in a statistical sense. This is typically determined 
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by comparing the simulation results to one of the three sources that 
follow:

	 1.	Deterministic values that are based on theory or common practice, 
for example, a capacity value derived from a microsimulation analy-
sis vs. the capacity calculated from the highway capacity model.

	 2.	Empirical data obtained from one or more field sites. The empiri-
cal performance measure output can be collected manually by the 
user or automatically by existing detector equipment that is part of a 
monitoring system (e.g., inductance loops). 

	 3.	Output from two microsimulation runs that have different supply or 
demand characteristics. For example, simulation 1 might use a cur-
rent traffic control system, and simulation 2 an improved traffic con-
trol system. In this case, the user may be interested in determining 
(i) what improvements may occur from the new traffic control sys-
tems, and (ii) whether these differences are statistically significant.

Note that comparisons 1 and 2 can be components of the model validation 
step; that is, these types of comparisons can be used to answer the ques-
tion of how well the model is performing.

In addition to identifying the point of comparison for the simulation 
results, the user will also have to define which performance measures will 
be compared. Among other measures, these may include average speed, 
average delay, and volumes. She will also need to define which statistical 
tests will be used along with their associated levels of significance. The 
general framework is shown in Figure 15.6.

The above decisions are not often made in isolation. For example, 
the question of which performance measures to use is often a function 
of what can be collected readily in the field (e.g., we would like roadway 
density but we have access only to automated occupancy measurements) 
and what is output from the microsimulation model (e.g., we would like 
approach delay by turning movement but only average vehicle delay is 
output from the model). Needless to say, the level of significance (or con-
fidence) will be a function of the performance measure being estimated 
and the cost to obtain the necessary data. For instance, we would like 0.1% 
significance levels (99.9% confidence levels), but 10% significance levels 
(90% confidence levels) will suffice for the given application and cost of 
data collection.
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Importantly, by definition both the empirical and simulation results 
can be stochastic. With respect to the empirical data, for instance, you 
may measure occupancy from 7 a.m. to 8 a.m. over a period of twenty 
weekdays. From these measurements you can then obtain measures of 
central tendency (e.g., mean, median, and mode), measures of dispersion 
(e.g., variance), and if there is enough data, the underlying distribution.

The reason why microsimulation output may be stochastic requires a 
more detailed explanation. By its nature, a microsimulation model will 
provide the same output given the same input, all else being equal. This is 
an advantage from a modeling perspective because someone in Lincoln, 
Nebraska, can obtain the same results as someone in Chennai, India, using 
the exact same input data and microsimulation model. In addition, it 
means the microsimulation experiments or runs are repeatable—running 
the model with the exact same input a year later will give the same result. 
However, the underlying logic of traffic microsimulation models is inher-
ently stochastic in that the models use a pseudorandom number generator 
to estimate the probability density functions (pdfs). These pdfs, in turn, 
are used to identify when vehicles depart from their origins, select vehicle 
types, select routes, identify behavior attributes, and so forth. The pseudo-
random number generators will produce a distinct stream of more or less 
random numbers for different seed numbers. The seed numbers are part 
of the input requirements and are controlled by the user. Consequently, 
two different seed numbers will result in two different sets of simulation 
results. It is important to choose seed numbers that produce independent 
runs. More importantly, this means that a given scenario can be analyzed 
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Figure 15.6  Statistical analysis of microsimulation results.
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based on the average of several simulation runs using different seed values 
for random numbers. If a user runs the simulation Nm times with Nm dif-
ferent random number seeds, then measures of central tendency and dis-
persion (and in fact the complete cumulative distribution function) can be 
obtained from microsimulation models. This is shown in the dotted box 
in Figure 15.6.

Because of the stochastic nature of the observed and simulated data, 
statistical techniques are necessary for making informed decisions regard-
ing the quality of the simulation results. For example, it is unlikely that the 
empirical and simulated results, such as the average speed on a specific 
link, will match exactly.

When a user wishes to make statements about specific physical 
quantities, the methods of inference discussed in Chapter 7 typically 
are used. A common question is to compare a stochastic variable with 
a deterministic value (e.g., is the average stop delay equal to or less than 
a theoretical value?). In this situation, simple hypothesis tests or confi-
dence intervals (CIs), with or without bias, depending on the situation, are 
appropriate.

Another common question is whether the difference in a given perfor-
mance measure between the observed data, denoted by Y, and the sim-
ulated data, denoted by X, is significant. In such a case, the confidence 
interval for the mean difference shown in Equation 15.5, which was first 
defined in Chapter 7, can be used.

	 X Y t SE X Ydf− ± −( )−, /1 2α 	 (15.5)

where:
	 X	 Observed measure (e.g., average travel time for the entire simula-

tion, average speed on a specific link, etc.)
	 Y	 Corresponding simulated measure (e.g., average travel time for 

the entire simulation, average speed on a specific link, etc.).

As before, if the CI contains zero, then there is no significant evidence 
against the hypothesis that the means of the two measures are the same. We 
must note that X may also represent simulation results. A transportation 
planner, for instance, might wish to analyze the effect that the removal of a 
bridge may have on a system. In this case, the user could run the model with 
and without the bridge and then compare the results using Equation 15.5.
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15.3.4  Identifying the Statistically Optimal Number of Simulation Runs

The above tests assume that the number of simulation runs, Nm, is known 
a priori. For example, you decide ahead of time that you will run the simula-
tion twenty times and then perform the statistical analyses. However, some-
times it is useful to calculate how many simulation model runs are required 
for a particular analysis in order to obtain statistically significant results. 
The formula for answering this question is shown in Equation 15.6.
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where:
	Nm	 Number of simulation runs for performance measure m
	M	 Number of performance measures that are being considered by 

the user
	σm	 (Estimated) standard deviation of performance measure m
	t Nm1 2 2− −α/ ,  � t-Statistic value for given significance level and number of 

simulation runs
	 ε	 Allowable error; this is often specified as a fraction of the mean 

value of the performance measure μm.

Equation 15.6 is essentially a reordering of the confidence interval 
bounds introduced in Chapter 7 so that the number of simulation runs 
is the dependent variable. It can be seen from the above equation that 
there are several pieces of information required to solve for Nm. The level 
of significance has to be defined by the analyst. Values of 10, 5, and 1% are 
typically chosen. In addition, the normal distribution is often used as an 
approximation of the t distribution when Nm is large, which means that 
t Nm1 2 2− −α/ ,  can be replaced with z1–α/2 on the right-hand side of the equa-
tion. More importantly, in order to solve for Nm, the standard deviation of 
the performance measure is required—this is problematic, as it will not be 
known until the traffic simulations have been run. The user is then faced 
with two choices: either to assume a value based on past experience or to 
use an iterative approach.

Step 1	� Run a set number of simulations. A typical number would be 
on the order of ten.

Step 2	� Calculate the mean and standard deviation of each perfor-
mance measure, m.



302    ◾    Transportation Statistics and Microsimulation﻿

Step 3	� Calculate Nm for each performance measure m. The highest 
value is the one required for the analysis.

Step 4	� Compare the number of simulation runs completed with the 
number identified in step 3 (i.e., compare Nm with the current 
number of simulation runs). Have there been enough simula-
tion runs?

		  If yes, stop.

		  If no, run the simulation again and return to step 2.

It is a useful approximation. It produces a larger sample size than one 
would get if they assumed σm is known. It still may produce too small of a 
confidence interval due to the sequential choice of sample size (sequential 
testing was discussed in Chapter 7).

The above equation is based on the assumption that the performance 
measure follows the central limit theorem. For metrics that are based on 
average values, this is likely a valid assumption. However, in some cases, 
such as the variance, this might not be true and alternative methods 
would be required. In addition, sometimes the analyst is interested in the 
distribution of the performance measure, rather than just the mean. In 
both of these cases nonparametric tests are often used (Kim et al., 2005). 
For more sophisticated methods for choosing sample sizes for computer 
experiments, a good reference is Loeppky et al. (2009).

Lastly, it is important to note that, in general, the more disaggregate the 
level of analysis detail becomes, the more runs are needed. For example, if 
a comparison of the average travel time per link for all links and all time 
periods were required, it would in all likelihood involve considerably more 
runs than the average travel time across all OD pairs for all time periods.

15.3.5  Microsimulation Calibration

The calibration of traffic microsimulation models has received wide-
spread attention because of the increasing use of these models for both 
traffic operations and transportation planning applications. The ability to 
accurately and efficiently model traffic flow characteristics, drivers’ behav-
ior, and traffic control operations is critical for obtaining realistic micro-
simulation results.

As discussed previously, calibration is defined as the process of adjust-
ing the value of the microsimulation model parameters such that the 
simulation output is, as far as possible, consistent with the observed or 
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empirical data. Because of the difficulty in collecting data in the field 
and the lack of readily available automatic calibration procedures, users 
often run traffic microsimulation models with default parameter values. 
Based on the authors’ personal experiences, this is a bad idea—rarely do 
the default values result in microsimulation output that replicates empiri-
cal data. In our experience it is not uncommon to run microsimulation 
models using default values and obtain mean absolute error ratio (MAPE) 
values of well over 100%.

Figure 15.7 illustrates a conceptualization of the calibration process. The 
first step in calibration is the selection of one or more field sites from which 
field data may be obtained. The second step is to define the set of perfor-
mance measures by which the model will be compared to existing field 
conditions. For example, the user could choose to use average speeds, travel 
times, average delay, or other factors. A full description of possible metrics 
is discussed in the last section of this chapter. Once these measures have 
been obtained, appropriate amounts of empirical data are collected. As dis-
cussed earlier in this chapter, the appropriate amount of data will be a func-
tion of the statistical analysis adopted and the level of confidence desired. 
The observed network is modeled using an initial prior microsimulation 
parameter set. This prior set could be based on the default values, previ-
ous calibration results, or engineering judgment. The model is run and the 
performance measures are then collected and estimated from the model 
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Figure 15.7  Overview of microsimulation calibration process.
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output. Criteria are selected that define the level of similarity between the 
model results and the field data required for the model to be considered 
calibrated satisfactorily. For example, aggregate measures (e.g., MAPE), 
confidence intervals, and nonparametric distribution tests have all been 
used. Based on the results of the statistical tests, the model parameter(s) is 
adjusted and the process repeated. When the simulated data matches the 
empirical data, the model is considered calibrated and the process stops.

The calibration process outlined in Figure 15.7 is sometimes done man-
ually with each step controlled by the user. This is particularly problematic 
for microsimulation model calibration because there is often a multitude 
of parameters (related to vehicle characteristics, driver behavior, etc.) that 
may require adjustment. For example, VISSIM has over thirty parameters 
that the user can control. Because the manual process is time-consuming, 
it is rarely done to any great length, and consequently only a small subset 
of potential parameter sets is studied. While it is better than simply using 
the default parameter set, the manual approach is not recommended.

15.3.6 C omputer-Based Microsimulation Calibration

With the recent growth in computational resources it is now possible to 
develop automatic calibration procedures that mimic the process shown in 
Figure 15.7. One key question is how to optimize the parameter selection 
process. Fortunately, there are numerous optimization procedures that 
can be used. The gradient approach determines the search direction by 
evaluating the partial derivative of the objective function. A simplex algo-
rithm is based on a geometric feature for optimizing systems containing 
continuous factors. A genetic algorithm (GA) is a problem-solving algo-
rithm that emulates biological evolutionary theories to solve problems in 
the field of optimization. In transportation engineering, all of these pro-
cedures have advantages and disadvantages and have been used in micro-
simulation model calibration (Schultz and Rilett, 2005).

In the past, collecting the necessary empirical data was difficult, expen-
sive, and time-consuming. With the recent widespread deployment of 
intelligent transportation systems we have access to an abundance of data 
on traffic systems as well as opportunities to use this data for calibration. 
(Rilett et al, 2001).

Once the optimization technique and data sources are selected, auto-
mating the process on a microcomputer is relatively straightforward. Of 
more critical importance, however, is the measure of similarity between the 
empirical observations and simulated results that is used in the calibration 
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process. Many authors have used aggregated performance measures, such 
as average travel time or total traffic volume, in an attempt to find the best 
parameter set that minimizes some objective function. A common mea-
sure is the MAER, wherein the parameter set that has the lowest MAER is 
selected as the preferred one.

When using an aggregated performance measure, such as the average 
network speed, there is a tendency to assume that the parameter set that 
produces the lowest value of the performance measure is the best parameter 
set. However, this assumption is valid only when the distributions for the 
simulated and observed speeds are identical. In other words, the only differ-
ence between the results from different parameter sets is a measure of cen-
tral tendency, such as the mean or median. Alternatively, the distribution 
of empirical data and simulated data can be compared using the Wilcoxon 
rank-sum, Kolmogorov–Smirnov, or other nonparametric tests.

Lastly, if the user is employing a statistical test in the calibration pro-
cess, it is possible that he or she will have a number of parameter sets that 
are neither statistically different from each other nor statistically different 
from the empirical data (Kim et al., 2005). In this case other criteria will 
have to be used to choose the best parameter set from the group of statisti-
cally appropriate parameter sets. Alternatively, it is also possible that no 
statistically significant parameter sets are found.

It should be noted that often model calibration efforts are conducted on 
the sole basis of traffic volumes. Based on our experience, it is the authors’ 
recommendation that this be avoided because it is possible to have sim-
ulated link volumes match quite closely to field traffic counts and still 
observe large discrepancies between modeled and actual levels of conges-
tion. Consequently, it is recommended that if microscopic traffic simula-
tion models are being calibrated on the basis of link volumes or turning 
movements, then at least one other metric—such as link speed, travel time, 
or queue location and length—should be used.

In practice it appears that for most calibration studies, target criteria 
levels are defined. One such example is ensuring that all measured link 
volumes are within some prespecified percentage of the observed values. 
Once these performance criteria are established, all reasonable attempts 
are made within the allotted budget and project scope constraints to reach 
these targets. If they are not obtained, then the level of confidence placed 
in the model results also must be reduced. It should be noted that there 
are no universally agreed upon criteria for determining when a model is 
calibrated. Some users simply run the calibration process a set number 
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of times and pick the parameter set that provides the lowest MAER, and 
thereby the “best” result.

Hypothetically, there are three possible causes of an unsuccessful model 
calibration. First, because the solution space is highly nonconvex, there is 
no known algorithm, short of complete enumeration, that will ensure an 
optimal solution. As such, the results will be local optima—if the modeler 
is unlucky, these local optima may be fairly poor. Algorithms that attempt 
to search across a wide range of values, such as genetic algorithms, can 
help minimize this problem. Second, the calibration may be unsuccessful 
because an insufficient quantity of field data, or data of insufficient quality, 
may have been used to calibrate the parameter values. Third, the under-
lying logic in the microsimulation model may be inadequate to capture 
certain traffic behavior correctly; thus, it would be impossible to correctly 
calibrate the model. Unfortunately, when a user has difficulty calibrating a 
model, it is generally not clear which of these possible causes, or combina-
tion of possible causes, is the source.

15.3.7 A bsolute vs. Relative Model Accuracy

When considering which of the many traffic microsimulation packages to 
use, a key question—and, unfortunately, one that is often overlooked—is 
that of identifying the intended application. In transportation engineering 
microsimulation models have been used for many applications, as demon-
strated in the following list.

Traffic operations Selecting optimal signal timing plans, analyzing the capacity 
of roadways, and calculating travel times

Roadway design Identifying the feasibility of different designs and analyzing 
merge conditions

Evaluation Estimating performance measures such as average delay and 
fuel emissions

Transportation planning Analyzing different investment scenarios: roadway vs. light rail 
transit

Identifying the application is important for a number of reasons. 
Intuitively, different traffic microsimulation models will be preferred 
depending on the application. The application will also define which sta-
tistical approaches (discussed in this textbook) will be required, along with 
their level of sophistication. For example, if the application requires that 
a specific performance measure be provided, such as intersection control 
delay, then the model must offer accurate estimates of this parameter. In 
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addition, the modeler must be able to identify the accuracy of the estimate, 
as was discussed earlier in this chapter.

However, if the goal of the model is to identify the best design alter-
native, then the absolute accuracy of the model is less of an issue pro-
vided that the performance measures generated from the model correctly 
reflect the differences between the designs. This is illustrated in Figure 15.8 
for designs 1 and 2 where the lower the value of the performance measure 
(e.g., delay) the better the design. For both designs, the model overesti-
mates the measure of performance, but it does correctly reflect the relative 
benefits associated with design 2.

Even for the most sophisticated microsimulation models, there is con-
siderable difficulty in identifying “ground truth” from empirical data. It 
is rarely possible to know within well-defined statistical limits the origin-
destination traffic matrix (e.g., the demand) for the current time period. 
However, it is possible to estimate these demands such that when applied to 
the road network, the resulting traffic volumes reasonably reflect observed 
traffic volumes. As we discussed in this chapter, this may or may not be 
sufficient for a given application. For instance, matching link volumes cor-
rectly does not ensure accurate representation of link travel times or delay.

15.4 Per formance Measures
Transportation engineers use performance measures to analyze the trans-
portation system. As we discussed in Section 15.3, performance measures 
are often used in the calibration process and hypotheses testing, and may 
be calculated from observed or simulated data. This section provides a 
brief overview of performance measures followed by a description of those 
most commonly used.
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Figure 15.8  Absolute vs. relative model reliability.
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15.4.1  Overview of Performance Measures

Performance measures are broadly used for simplification, quantification, 
and communication (Zietsman and Rilett, 2002b). The following are some 
of the most important applications of performance measures:

	 1.	Provide a broad perspective

	 2.	Assess facility or system performance

	 3.	Calibrate models

	 4.	Identify problems

	 5.	Develop and assess improvements

	 6.	Formulate programs and priorities

	 7.	Educate a wide range of interest groups

	 8.	Set policies.

Performance measures are typically used to provide the decision maker 
with the quantitative information necessary to make and monitor deci-
sions. Typical levels of aggregation of performance measures as well as 
examples of each type of metric are shown in Table 15.1 (U.S. D.O.T. 1996, 
Poister, 1997, Zietsman and Rilett, 2002b). It should be noted in this table 
that the two highest levels of aggregation, namely, goals and objectives, 
are direct products of strategic planning exercises. The two lowest levels, 

Table 15.1  Levels of Aggregation

Level of Performance 
Measurement

Types of Performance 
Measures Required

Examples of Relevant 
Measures

Goals Overall goal for sustainable 
transportation

To have a sustainable 
transportation system

Objectives Social, environmental, and 
economic objectives

To have a safe road-based 
transportation system

Indices Aggregated or integrated 
performance measures

Safety index

Performance measures Input, output, or outcome 
measures

Fatalities per 100 million 
miles of travel

Information Manipulated data Vehicle miles of travel and 
number of fatalities

Data Raw data Volume counts and accident 
records
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information and data, are derived from operational management and data 
collection. This chapter focuses on the performance measures that are typ-
ically developed from simulation models, such as Paramics or VISSUM.

Table 15.2 includes a summary of the attributes of a good performance 
measure (Meyer and Miller 2000, OECD 2001, Zietsman and Rilett 
2002b). Notice that the fifteen attributes of a good performance measure 
suggested in Table 15.2 are effectually a wish list that the transportation 
engineer strives toward. It will be relatively rare for a performance mea-
sure to possess most of these attributes. In some instances certain attri-
butes of a good performance measure are not compatible, and a particular 

Table 15.2  Attributes of a Good Performance Measure

Quality Explanation
1. �Able to 

discriminate
Must be able to differentiate between the individual components 
that are affecting the performance of the system

2. Able to integrate Must be able to integrate environmental, social, and economic 
aspects

3. Acceptable The general community must assist in identifying and 
developing the performance measures

4. Accurate Must be based on accurate information, of known quality and 
origin

5. Affordable Must be based on readily available data or data that can be 
obtained at a reasonable cost

6. �Appropriate level 
of detail

Must be specified and used at the levels of detail and aggregation 
appropriate for the questions it is supposed to answer

7. Have a target Must have a target level or benchmark against which to 
compare it

8. Measurable The data must be available, and the tools need to exist to 
perform the required calculations

9. Multidimensional Must be able to be used over time frames, in different 
geographic areas, with different scales of aggregation, and in 
the context of multimodal issues

10. Not influenced Must not be influenced by exogenous factors that are difficult to 
control or of which the engineer is not even aware

11. Relevant Must be compatible with overall goals and objectives
12. Sensitive Must detect a certain level of change that occurs in the 

transportation system
13. Show trends Must be able to show trends over time and provide early 

warnings about problems and irreversible trends
14. Timely Must be based on timely information that is capable of being 

updated at regular intervals
15. Understandable Must be understandable and easy to interpret, even by the 

community at large
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performance measure will therefore not comply with all characteristics. 
As an example, it is very difficult for a performance measure to be sim-
ple (i.e., understandable at the community level) and at the same time 
able to address certain complex multidimensional aspects. Therefore, it 
is often necessary to have a variety of indicators for the different applica-
tions. Because of the wide range of potential performance measures for 
all possible applications, the nature of this chapter will be more technical. 
That is, it will focus on measures relevant to traffic and transportation 
engineers who are interested in quantifying the performance of the trans-
portation system.

To date, performance measures have been related more toward the 
operational aspects of transportation systems. This is because trans-
portation decision makers have tended to concentrate on enhancing 
the supply side of transportation. Recent legislation in the United States 
has demanded a paradigm shift in terms of performance measures. For 
example, mobility, accessibility, efficiency, and effectiveness have all 
recently become more important for selecting performance measures 
(Turner et al., 1996).

15.4.2 �C ommon Performance Measures 
Used in Simulation Analysis

The output from the simulation model is used to quantify performance 
measures, which can be categorized into three types:

	 1.	Point measures (i.e., spot mean speed, throughput)

	 2.	Link-based measures (i.e., link travel time, space mean speed, delay)

	 3.	Corridor/system measures (i.e., average vehicle speed, average per-
son delay).

Typically, the majority of data that are collected automatically in the 
field consist of point measures because of the nature of the technology 
available. For example, loop detectors, video detection, and radar, which 
are among the most commonly used traffic collection devices, all provide 
traffic information obtained at a single point, by placing them throughout 
the network. Electronic toll tags and cell phone technology allow more 
vehicles to be tracked both spatially and temporally as they traverse the 
network. Obviously, as these systems become more widespread, link-based 
data will become more readily available.
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It should be noted that most simulation models can provide infor-
mation for all three categories. In general, the second category is most 
useful because it allows the analyst to study spatial and temporal trends. 
Regardless of the type of data chosen, the amount of output can be over-
whelming for large simulations. Consequently, many analysts focus on 
aggregate measures, at least for the preliminary analysis.

Often traffic engineers are interested in performance measures related 
to congestion, which may be classified by four dimensions (Shrank and 
Lomax, 2009):

	 1.	Duration (i.e., length of time the facility is affected by congestion)

	 2.	Extent (i.e., number of people affected and the geographic location)

	 3.	Intensity (i.e., severity of the congestion; typically, it is actual trip 
experience in relation to expected trip experience)

	 4.	Reliability (i.e., variation of the first three dimensions).

In general, the preferred performance measures are used to measure 
congestion variation based on the levels of analysis and usage of the mea-
sure. Approach delay, person delay, and similar performance measures are 
useful for specific intersections and locations. Performance measures such 
as travel time, speed, and delay per vehicle are useful up to the corridor 
level. At high levels of analysis, cumulative measures are often used. In 
addition, congestion indices are used occasionally to help quantify con-
gestion because of the difficulty in interpreting relative conditions. The 
following sections will outline the most common performance measures 
used in microsimulations.

15.4.3  Travel Time

Travel time is a very important performance measure for analyzing traffic 
operations. It can be measured on a link, a corridor, an origin-destination 
(OD), or system basis. It may also be analyzed by time period or for the entire 
day. The travel time for a given vehicle on a link is shown in Equation 15.7:

	 t t tia ia
x

ia
e= − = =a 1, A; i 1, N. , , 	 (15.7)

where:
	 tia	 Travel time on link a for vehicle i
	 tx

ia	 Time vehicle i exited link a
	 te

ia	 Time vehicle i entered link a
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	 N	 Number of vehicles being simulated
	 A	 Number of links in network
	 e	 Enter
	 X	 Exit

The average travel time for link a for a given period, p, is shown in 
Equation 15.8. Note that in order to utilize Equation 15.9, the time period 
has to be defined. It is important to note that for nonlinear aggregate rela-
tionships, such as aggregate-based air pollution estimate techniques, the 
selection of the time period can affect the results, all else being equal. For 
example, if the travel time is input to a nonlinear model, then the results 
will be a function of the time period chosen. Assume that you ran a sim-
ulation model and obtained average speed data, volume counts, vehicle 
types, and so forth on a minute-by-minute basis. It is possible, and indeed 
probable, that if you calculated the amount of pollution produced over a 
thirty-minute period and then calculated the total amount of pollution 
over two fifteen-minute periods, using the same data, you would obtain 
different estimation amounts. This outcome is true even though the simu-
lated data were the same in both situations (Zietsman and Rilett, 2002b).

Due to the nature of simulation models, it is important to identify 
the procedure for recognizing whether a vehicle belongs to a given 
period, p. A typical approach would be to identify all vehicles that 
leave, or enter, the link during period p as belonging to that period. 
More sophisticated approaches attempt to weigh the effect of a vehicle 
on a given link for two or more time periods. Intuitively, as the period 
length increases, the above effect diminishes. In addition, as link length 
or congestion increases, this effect increases. We should also note that 
for most users this decision will be made by the model developers. For 
example, link travel time statistics for a given period may only apply to 
vehicles that departed the link during the specified time period. It is 
the user’s responsibility to understand how the output is calculated.
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where:

	tap 	 Mean travel time on link a during time period p
	Nap	 Number of vehicles associated with (i.e., entering, exiting, or on) 

link a during time period p
	Eiap	 Indicator variable = 1 if vehicle i is associated with link a during 

time period p
	 P	 Number of time periods.

The corridor (OD movement) travel time can be calculated in a manner 
similar to that of Equation 15.9, where each vehicle is defined with respect 
to its entry and exit of the corridor (OD movement). As the corridor or 
OD travel time increases, the process of identifying which vehicle belongs 
to which time period, entry or exit, becomes more critical.

There are two important points to note about the above formulas. First, 
while there have been many empirical travel time studies over the years, 
of which the Texas Transportation Institute’s Mobility Study is arguably 
the most famous, many do not actually measure travel times (Schrank 
and Lomax, 2009). Rather, they measure spot speeds at various inductance 
loop detector locations and extrapolate travel times from these measure-
ments. It is relatively easy to show that using instantaneous speeds (or spot 
speeds) leads to biased estimates of travel time (or space mean speeds). 
While corrections are available, they are rarely applied in practice.

The second key point to remember is that the average corridor (OD) 
travel time in any given period is not simply the sum of the average travel 
times across all links that compromise the corridor (OD) movement. This 
approach would be an approximation, and the bias would be a function of 
corridor length, link travel times, travel time variability, as well as other 
factors. Furthermore, the error is most severe for the variability estimate 
in comparison to the mean travel time estimate.

15.4.4  Total Delay

Total delay is defined as the sum of time lost due to congestion, traffic 
control devices, and other factors. It may be determined quantitatively by 
the difference between the actual travel time and a base-level travel time 
of all the vehicles in a given time period. There are numerous base levels 
that could be chosen. However, because delay is often used at traffic sig-
nals on an approach lane basis, the free-flow travel time is typically used. 
Note that this free-flow time is calculated based on the assumptions that 
there are no traffic signal interruptions and no competing volume. This 
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has numerous advantages, such as the fact that other baseline values may 
change during the simulation. For example, suppose you choose a base-
line measuring the travel time associated with level of service C. If the 
traffic signal timing changes during the simulation, the definition of level 
of service C may also change. Total delay for a given vehicle is shown in 
Equation 15.10.

	 d t tia ia a
f= − = =i 1, N; a 1, A , , 	 (15.10)

where:
	dia	 Travel delay on link a for vehicle i
	 tf

a	 Baseline travel time (for the interchange analysis a free-flow travel 
time is recommended).

The average delay on a given time period is calculated using Equation 
15.11. Similar to the travel time calculation, this calculation requires that 
the researcher develop a method for determining which vehicle belongs to 
which period. As before, a typical approach would be to choose a common 
rule, such as vehicle i exits the link during period p. Regardless of the 
rule the user chooses, it is vital that it is the same across all performance 
measures.
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where:

	dap 	 Average delay on link a during period p.

Typically, delay is estimated over the entire network. Equations 15.12 
and 15.13 give the formulas for calculating the time period and total net-
work estimates, respectively.
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where:

	dp 	 Average delay on network during time period p
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where:

	d 	 Average delay on network.

Note that delay is often used at intersections to compare the effect of 
different control strategies. In this case, the delay is calculated based on 
the links that enter a given intersection as shown in Equation 15.11.
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where:

dbp Average delay at intersection b during time period p
Ba Indicator variable; equal to 1 if link a exits to intersection b and 0 

otherwise
B Number of intersections on the network.

The average intersection delay for the entire simulation period for each 
intersection b can be calculated by summing the results of Equation 15.7 
over all periods and dividing by N. Traffic engineers will sometimes cal-
culate delay on an approach, as opposed to a lane, basis.

At this point it is pertinent to explain that delay and travel time are 
naturally correlated. This is typically because neither will provide as much 
information individually as they do together. For example, an average 
travel time of thirty minutes or an average delay of twenty minutes has 
different meanings depending on location (Houston, Texas, or Omaha, 
Nebraska) and time of day (peak or off-peak period). Together, however, 
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they provide information on the relative effect of congestion and traffic 
control on mobility.

15.4.5  Queue Length (Oversaturation)

When judging the operational quality of a traffic network, particularly 
near intersections and on and off ramps, a key performance measure is 
queue length. This measure is readily available from most traffic micro-
simulation models. The average queue length is provided, but traffic engi-
neers are often more interested in the maximum queue length and/or—the 
amount of time by which a given queue is greater than some set level. 
The key question is whether queues spill back and affect traffic operations 
at other locations. For instance, a queue at a traffic signal may affect an 
upstream traffic signal, or a ramp queue may affect operations on free-
way main lane operations. It may be assumed (incorrectly), for example, 
that intersection operations do not affect one another. One way to test this 
assumption would be to check whether the maximum queue ever spills 
back toward the upstream links in such a manner as to potentially affect 
operations at the upstream intersection.

While queue length statistics are often output from simulation mod-
els, it is not always clear how these statistics are derived. For this reason, 
comparing simulated and observed queuing statistics is often problematic 
because there are so many different methods of defining when a vehicle is 
actually in a queue (e.g., does it have to be stopped or below some thresh-
old speed?). While a complete exposition of the topic is beyond the scope 
of this textbook, this point does reiterate the importance of comparing 
like with like. If the empirical performance measures, or statistics, are 
calculated in a different manner than the simulated performance mea-
sures, then direct comparisons are difficult and can lead to erroneous 
conclusions.

Traffic engineers often are interested in the amount of double cycling—
the number of vehicles that wait for more than one cycle at a traffic signal 
before being allowed to proceed. This figure is of consequence for traffic 
engineers because it is a direct measure of oversaturated conditions, that 
is, when demand is greater than supply. However, this value is rarely out-
put by traffic microsimulation models, and therefore queue length is often 
used as a surrogate measure. Intuitively, queue length is related to travel 
time and delay. More importantly, the performance measure does pro-
vide information on why delays may be occurring and, more importantly, 
where the critical delays are located. For example, the information could 
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be used to identify potential locations for improved traffic signal operation 
or geometric improvements.

15.4.6 N umber of Vehicles Completing Simulation

As described in the preceding two sections, it is important to define, 
a priori, how a given travel time or delay measure will be counted (i.e., 
when a vehicle exits or enters a link, or based on some weighted aver-
age). It is equally important, however, to make sure that any comparisons 
made between competing scenarios are valid. As an example, simulation 
1 might have better average delay values than simulation 2. However, if 
simulation 2 has a greater throughput (i.e., more vehicles arrive at their 
destination), then it may not be clear which is the more desirable alter-
native. Therefore, an important performance measure for simulation 
programs is the number of vehicles completing their trips. Note that 
this is one reason why average travel time and delay values are often 
recommended rather than total travel time or delay. If all simulations 
had the same number of vehicles completing their trips, then the total 
travel time (delay) and average travel time (delay) would provide the same 
information.

There are two important points about this performance measure to bear 
in mind. First, if the demand is for a given time period, from 8 a.m. to 
9 a.m., and the simulation runs until the end of that time period, finish-
ing at 9 a.m., there will always be vehicles remaining on the network when 
the simulation ends. Second, because of the stochastic nature of traffic 
microsimulation models, it is unlikely that each simulation run will have 
the same number of vehicles completing their trips. The analyst then has two 
choices. One is to simply calculate this metric and use it in conjunction with 
the other metrics during the decision-making process. Alternatively, a base 
condition, such as 95% of OD movements completed, can be used whereby 
any simulation that does not meet this criterion is either (1) rejected from 
further consideration or (2) adjusted (i.e., traffic signal control, or traffic 
operation control) so that the OD movements are satisfied.

15.4.7 � Percentage of Corridor (OD Movements) 
Congested (PCC) Measure

Often there are particular OD movements or corridors that are of impor-
tance to the analyst and require additional insight. For example, a trans-
portation agency might be concerned with highway mobility, and therefore 
detailed metrics related to highways are expected to be important. As 
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discussed previously, traffic delay is often used as a metric for analyzing 
traffic control at intersections. For freeway corridors, a common metric is 
the percentage of the corridor that is congested.

Congestion can be defined subjectively in terms of unacceptable 
speeds, travel times, or delay. It is recommended that congested travel 
be defined in terms of space mean speed (i.e., travel time), as the trav-
eling public and decision makers have an intuitive sense of this met-
ric. In addition, a base condition is required to which all measures are 
applied. Once the appropriate congestion metric and base conditions are 
identified, the PCC performance measure can be calculated as shown in 
Equation 15.15.
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where:
	Pcp	 Percentage of time corridor C is congested during period p; note 

that for this equation space mean speed is chosen, but other met-
rics can be readily applied

	La	 Length of link a
	 Sa	 Baseline metric (i.e., space mean speed) on link a

	Dap	 Indicator variable; equal to 1 if link a is congested (i.e., below 
baseline metric for link a) and 0 otherwise

	Ca	 Indicator variable; equal to 1 if link a is part of corridor c and 0 
otherwise

	 C	 Number of corridors on the network.

Note that the corridor performance measure, pcp, is only defined with 
respect to links. This is problematic from two perspectives. First, the links on 
the network often have different lengths. Therefore, if one were to take a con-
gested link of 2 kilometers length and split it into two, the congestion corridor 
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metric would increase even though the input data would be essentially the 
same. Second, vehicles might experience below-threshold speeds on sections 
of a given link but still have an average space mean speed higher than the 
baseline value. These values would not be calculated in the metric. Therefore, 
some analysts prefer to calculate speed in small blocks, say, 100 meters, and 
then aggregate to get the percent congested performance measure. This is rel-
atively easy to do in the new simulation models, such as TRANSIMS (Nagel 
et al, 1998). However, in most traffic microsimulation models obtaining this 
data is considerably more difficult. Consequently, if these types of metrics 
are chosen, it is recommended that the link lengths be kept approximately 
the same size. Alternatively, Equation 15.12 can be weighted by link length or 
volume to indicate the importance of the congestion on a given link.

15.4.8  Travel Time Variability

The reliability of travel time is a very important sustainable transporta-
tion performance measure. The standard deviation of travel time, which 
is calculated using Equation 15.16, is a measure of dispersion of the indi-
vidual travel times relative to the mean travel time. In general, the lower 
this value is, the less variability there is in travel times and speed, and the 
more reliable the system becomes.
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where:

σap  Standard deviation of travel time on link a during time period p.

As before, the value of the standard deviation in and of itself is not that 
useful from a purely analytical perspective. A standard deviation of ten 
minutes on a link, for example, with a mean travel time of ten minutes 
would be considered less reliable than a link with a standard deviation of 
ten minutes on a link with a mean travel time of one hundred minutes. 
Often the coefficient of variation, which can be computed with Equation 
15.17, is used to give a measure of its importance.
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where:

CVap The coefficient of variation of travel time on link a during time 
period p.

Similar to the travel time metric, the standard deviation output of many 
links is difficult to examine, particularly for large networks. Consequently, 
this information is often aggregated into corridor, OD, or total values. The 
standard deviation for all trips on a network is shown in Equation 15.18.
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where:

	σap 	 Standard deviation of travel time for all completed trip 
movements

	 t 	 Average travel time for all completed trip movements

	 ti 	 Completed travel time for vehicle i.

15.4.9  Level of Service

In the Highway Capacity Manual, density is used to define levels of service 
(LOSs) for freeway sections. Density is defined as the number of vehicles 
occupying a given length of a lane or roadway at a particular instant. It 
can be computed with Equation 15.19 (Prassas et al., 2004). The maxi-
mum densities associated with levels of service A, B, C, D, E, and F are 6, 
10, 15, 20, 29, and greater than 29 passenger cars per kilometer per lane, 
respectively.
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where:
Dat Density on link a at time t
Qat Vehicles on link a at time t.

If the flow rate and space mean speed are available, they can be used to 
calculate density as well. Because of the one-to-one relationship between 
density and the former variables, it is often used as a baseline performance 
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measure. The authors caution against these types of LOS metrics because (1) 
the input variables (e.g., speed, flow, etc.) provide more information than the 
LOS measure, and (2) LOSs are highly correlated to other metrics—such as 
the percent of the corridor congested—and consequently are of limited use.

15.4.10  Travel Rate

Over the years there have been a number of other performance measures 
identified for freeway corridors. One is the travel rate, which is the rate 
of motion in minutes per kilometer for a specified roadway segment or 
vehicle trip. It is calculated by dividing the segment travel time by the seg-
ment length, as shown in Equation 15.20.
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where:

	rap 	 Travel rate on link a during time period p.

As the above formula shows, the travel rate is simply the inverse of space 
mean speed modified by the link length. Given that space mean speed is 
better understood by most decision makers, the authors recommend its use.

15.4.11 P erformance Indices

Many indices have been developed over the years that attempt, in a single met-
ric, to define how a given system is performing. The most visible use has been 
in congestion studies in the United States (Schrank and Lomax, 2009). While 
useful for providing a broad and aggregated overview of network performance, 
they are not readily applicable for model validation or calibration.

15.5 Co ncluding Remarks
This chapter examined transportation microsimulation models that are 
fast becoming the modeling system of choice for large-scale traffic and 
planning studies. The first part of the chapter provided a brief overview 
of the general structure of microsimulation models. The focus was on the 
supply input, the demand input, and the microsimulation output. It was 
demonstrated that these models are, by definition, stochastic and probabi-
listic in nature. Consequently, the statistical approaches developed in this 
textbook can be utilized.



322    ◾    Transportation Statistics and Microsimulation﻿

The second part of the chapter focused on the methods for compar-
ing microsimulation output with (1) theoretical values, (2) empirical data, 
and (3) other microsimulation data. These comparisons could be used for 
model validation for quantifying the effects of proposed network improve-
ments. A methodology for calculating the number of simulation runs was 
also provided so that statistically meaningful comparisons could be made. 
This section discussed model calibration in detail. Lastly, the most com-
mon metrics used in microsimulation models were presented and discussed 
with respect to their mathematical meaning and their respective formulas.

Homework Problems

	 1.	A microsimulation model was run in which the vehicles entering the 
network over the span of an hour were assigned an entry time based 
on a pdf. Three sets of data are provided that have a mean of 300 
veh/h. How many vehicles are created in each data set? Why is the 
number of vehicles not equal to 300? Verify that the data is Poisson, 
normal, or uniformly distributed, and estimate their respective 
parameters.

	 2.	A freeway in Omaha was modeled using a microsimulation pack-
age. The model was calibrated and then run ten times. Measured 
and simulated values are provided. Is there a statistical difference 
between the microsimulation results and the empirical data?

	 3.	Repeat question 2 for the systemwide performance measures that are 
provided in the data side. Is there a difference in results?

	 4.	A local traffic engineer wants to understand the effect of a bridge out-
age on the system. He runs the model ten times with the bridge in the 
network and without. Using the data provided, identify if there was 
a statistically significant difference between the simulation runs.
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Appendix: Soft Modeling 
and Nonparametric 
Model Building

The models that have been discussed in this textbook, such as the normal 
distribution and the straight-line regression, are very powerful tools in 
transportation engineering. For example, using regression we can pre-
dict the effect of freeway traffic given the traffic on arterial roads. Using 
normal distribution theory, we can predict the percentage of observations 
that will fall with one, two, or three standard deviations of the mean.

Average speeds are often reasonably modeled as normally distributed, 
and traffic congestion can often be modeled as growing at a linear rate (at 
least until capacity is reached). However, there are many situations, such 
as modeling average speeds over time and modeling national congestion 
levels, where a normal probability distribution model and a straight-line 
model may not lead to acceptable results. For example, from a strictly 
theoretical perspective, the change in average speeds over time may be 
normally distributed, but where the mean and standard deviation have 
a temporal component or where there are occasional loop detector fail-
ures that produce outliers. Sometimes polynomial regression models fail 
to provide adequate models. In these situations, methods that are more 
robust are required. That is the subject of this appendix. These techniques 
should be used when the more traditional models do not provide adequate 
results or when the assumptions underlying the traditional models cannot 
be met.

To further motivate this discussion, consider Figure A.1, which shows a 
histogram of observed speeds where the mean is 52 mph and the standard 
deviation is 13 mph.
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If the analyst makes the assumption that the data may be modeled as 
a normal distribution (with a mean of approximately 52 mph and a stan-
dard deviation of approximately 13 mph), the resulting model may be 
plotted as a solid-line curve, as can be observed from Figure A.1. It may 
be seen that the normal model clearly underestimates the modal speeds. 
Remember that a chi-square test or goodness of fit test may also be used to 
test whether the distributions are similar.

An alternative approach is to use a smoothed density function to repre-
sent the random variable. This is shown as a dotted line, and it may be seen 
that it more accurately summarizes the graphed data. While the normal 
curve has only one peak or mode, at the sample mean, the smoothed den-
sity has its main peak at 65 mph, and smaller peaks at 30 and 40 mph.

The travel time index for Nashville-Davidson, Tennessee, is plotted 
from 1982 to 2003 in Figure A.2. It may be seen that the scatter plot shows 
a nonlinear trend. Superimposed on the graph are the least-squares fit-
ted straight-line, fourth-degree polynomial fit, as well as a nonparamet-
ric smoothing spline. While the fourth-degree polynomial and spline 
fit the plotted data well, it is clear that extrapolations using the polyno-
mial to future years would likely be intolerably inaccurate. This poses a 
fairly standard statistical question in transportation engineering. Is it 
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Figure A.1  Houston speeds combined: A smoothed histogram.
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more important to choose a model that has less bias or a model that has 
smaller variance? The reality is there is no one answer, because each situ-
ation is different. However, the goal of this appendix is to teach analysts 
how to identify the trade-offs so they can choose the best answer for their 
application.

In this appendix we present methods for soft modeling of densities 
and regression functions. The methods are known to work well when the 
choice of a parametric model such as a normal density or straight line is 
not acceptable. In these situations the soft modeling or smoothing meth-
ods typically provide less biased descriptions and predictions than the 
parametric models do. The trade-off is that they often have a somewhat 
larger variance than fitted parametric models. So the transportation pro-
fessional often has a choice of choosing a nonparametric estimator with 
less bias and a somewhat bigger variance or a parametric estimator with a 
bigger bias but a smaller variance. The best choice of estimator varies from 
data set to data set and problem to problem.

We start this discussion by focusing on kernel estimates. As an aside, 
if the sample is large, this approach is nearly equivalent to using smooth-
ing splines (used by JMP) and nearest neighbor estimates (see Simonoff 
(1996) or Silverman (1986) for more detail, definitions, and extensive 
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Figure A.2  An example of a smoothed scatter plot of travel time vs. year.
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reference lists). In fact, as a practical matter, most smoothing methods in 
practice for many problems give similar solutions and estimates. In order 
to motivate the approach, consider the scatter plot in Figure A.3, which 
shows the travel time index vs. year.

In Figure A.3, the mean of the data belonging to each five-year partition 
is drawn as a horizontal line. In some sense estimating the mean curve by 
using piece-wise averages is a model-free or nonparametric approach. Note 
that a number of questions arise almost immediately with this approach. 
We might wonder why the five-year intervals start at 1980 (instead of 1978 
or 1983) and why use five-year bin sizes (instead of four or six years)? It 
is important to note that the discontinuity of the piece-wise averages at 
the boundaries is not desirable in most transportation applications. These 
questions will be addressed in the coming sections. However, the point of 
Figure A.3 is that the idea of local averaging is the key to nonparametric 
estimation.

Intuitively there are a number of ways to improving the above 
approach. The first way is to average those observations within 2.5 years 
of the date for which we want our travel time index. In that way we 
would be estimating in the middle of our local region. Second, in order 
to make the estimates smoother, we may weight the observations closer 
to where we want our estimate than those farther away. For instance, 
if we want to estimate the mean travel time index at 1992, we might 
weight the observed value at 1992 the most and the values at 1990 and 
1994 the least. As we will see, this can lead to a smooth curve similar to 
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Figure A.3  An example of a crude soft modeling method.
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the smoothing spline in Figure A.2. Finally, we can choose the width 
of our local neighborhood to produce the level of smoothness that we 
want. This issue is often known as choosing the bandwidth or smooth-
ness parameter.

Specifically, let x1,…,xn be independent and identically distributed with 
density (pdf) f(x). A typical kernel estimate of f(x) is
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where the function k is given by k(x2) = K(x), K is the kernel, s2 is the sample 
variance, and h is the bandwidth. In the case of the example above, using 
moving averages, the kernel K would be the uniform density equal to 1/2 
on the interval [–1, 1]. In all our real examples, K is the normal density.
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The choice of bandwidth, h, can be complicated; see Siminoff (1996). 
JMP has a default choice and allows the user to override the default. For 
many purposes the choice of bandwidth for density estimation given by 
hopt = {4/3}1/5 σn−1/5 is reasonable and is known as the normal (Gaussian) 
plug-in estimate of bandwidth. It would be optimal in large samples if the 
true density were normal. An example of JMP’s kernel density estimator 
was given in Figure A.1.

The kernel density estimate of a regression function is given by the 
formula

	

r x E Y X x
y K x x

h

K x x
h

i
i

i

n

i

( ) ˆ[ | ]  = = =

−





−


=
∑

1





=
∑

i

n

1

where K is the kernel, as previously defined. Here the plug-in bandwidth 
can be chosen by cross-validation (see Simonoff, 1996) or by trial and error. 
An example of a smoothed fit for Houston traffic data using a Gaussian 
kernel is shown in Figure A.2.
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The JMP software uses smoothing splines to estimate regression curves 
using a soft modeling approach. The JMP software allows the user a trial-
and-error approach using a slider. For all choices of stiffness asymptoti-
cally (related to kernel bandwidth) the user gets an R-square statistic and 
a sum of squares due to the error for the smoothed fit.

Another popular smoothing method is loess; see Cleveland (1979) and 
Cleveland and Devlin (1988). This approach is very useful when modeling 
nonlinear functions. The choice of smoothing parameter is an important 
topic. It might be wise for someone new to smoothing to ask a statisti-
cian for help with choosing an optimal smoother. Simonoff (1996) and 
Silverman (1986) spend a considerable amount of time on calculations 
needed for choosing the smoothing parameter.
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