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Preface

This book is an introduction to the mathematical theory of design for ar-
ticulated devices that rely on simple mechanical constraints to provide a
complex workspace for a workpiece or end-effector. Devices ranging from
windshield wipers to robot manipulators and mechanical hands are exam-
ples of these systems each of which has a skeleton of links connected by
joints called a linkage. The function or task for the device is defined as a set
of positions to be reached by the end-effector. The goal is to determine the
dimensions of all of the devices that can achieve a specific task. Formulated
in this way the design problem is purely geometric in character.

This text blends two approaches to this design problem in order to de-
velop the intuition needed to move from planar to spatial linkage design.
One approach considers the geometric configurations of points and lines
generated as a moving body is displaced through a finite set of positions.
This is the foundation for graphical methods for planar linkage synthesis
and can be generalized to spherical and spatial linkage design. A separate
approach focusses directly on solving the nonlinear constraint equations
that characterize a mechanical connection. This provides convenient equa-
tions for planar and spherical linkage design, and is crucial to addressing
the geometric challenge of spatial linkage design.

This unified formulation requires a range of mathematical tools. The
basic language is vector algebra and matrix theory that should be familiar
to junior and senior university students. However, something among the
techniques ranging from graphical constructions, spherical trigonometry,
complex vectors and quaternions to line geometry and dual vector algebra
is certain to be unfamiliar. For this reason, the presentation is designed
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to introduce these techniques and additional background is provided in
appendices.

The first chapter presents an overview of the articulated systems that
we will be considering in this book. The generic mobility of a linkage is
defined, and we separate them into the primary classes of planar, spherical,
and spatial chains.

The second chapter presents the analysis of planar chains and details
their movement and classification. Chapter three develops the graphical
design theory for planar linkages and introduces many of the geometric
principles that appear in the remainder of the book. In particular, geometric
derivations of the pole triangle and the center-point theorem anticipate
analytical results for the spherical and spatial cases.

Chapter four presents the theory of planar displacements, and Chapter
five presents the algebraic design theory. The bilinear structure of the de-
sign equations provides a solution strategy that emphasizes the geometry
underlying linear algebra. The five-position solution includes an elimina-
tion step that is probably new to most students, though it is understood
and well-received in the classroom.

Chapters six and seven introduce the properties of spherical linkages and
detail the geometric theory of spatial rotations. Chapter eight presents the
design theory for these linkages, which is analogous to the planar theory.
This material exercises the student’s use of vector methods to represent
geometry in three dimensions. Perpendicular bisectors in the planar design
theory become perpendicular bisecting planes that intersect to define axes.
The analogue provides students with a geometric perspective of the linear
equations that they are solving.

Chapter nine introduces the analysis of spatial linkages including open
chains that are closely related to robot manipulators. The complexity of
spatial linkages requires the introduction new techniques. However, we
maintain a point of view that emphasizes the similarity to the planar and
spherical theories. For example, the constraint equations of planar and
spherical linkages are shown to be special cases of those for spatial linkages.

Chapter 10 develops the geometry of spatial displacements. Here, we find
that the screw triangle and the center-axis theorem must be formulated
using lines rather than points. Dual vector algebra is introduced to provide
vector operations for calculations with the Pliicker coordinates of lines. The
result is that geometric calculations with line coordinates are identical to
the more familiar vector calculations with point coordinates.

Chapter 11 presents the design theory for spatial chains, and Chapter
12 introduces the geometry of linear combinations of lines that arise in the
construction of spatial linkage systems. While the design techniques for
planar linkages are well developed, there is room for much more work in
the design and use of spatial linkages.

I am pleased to express my gratitude for the contribution of many teach-
ers and colleagues whose work over the years have developed and clarified
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linkage design theory. This book includes results of the insight, commit-
ment, and hard work by Jeff Ge, Mohan Bodduluri, John Dooley, Pierre
Larochelle, Andrew Murray, Fangli Hao, Curtis Collins, Alan Ruth, Shawn
Ahlers, and Alba Perez. I have also benefitted from the insight of Qizheng
Liao and the inspiration of Bernard Roth. Finally, the support by the
Division of Design, Manufacturing, and Industrial Innovation of the Na-
tional Science Foundation that has made this book possible is gratefully
acknowledged.

J. Michael McCarthy
Irvine, CA
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1

Introduction

A mechanical system, or machine, generally consists of a power source and
a mechanism for the controlled use of this power. The power may originate
as the flow of water or the expansion of steam that drives a turbine and
rotates an input shaft to the mechanism. It may be that instead the turbine
rotates a generator and the resulting electricity is used to actuate a distant
electric motor connected to the mechanism input. Another power source
is the expansion of pressurized fluid or burning air—fuel mixture against a
piston in order to drive its linear movement inside a cylinder. The purpose
of the mechanism is to transform this input power into a useful application
of forces combined with a desired movement. For this reason, machines are
often defined abstractly as devices that transform energy from one form,
such as heat or chemical energy, into another form, usually work.

In this book our focus is on devices that transform an input rotary or
linear motion into more general movement. We assume that a power source
is available that can provide the force and torque needed to drive the sys-
tem. The primary concern is determining the mechanical constraints that
provide a desired movement. This is known as the kinematic synthesis, or
geometric design, of a mechanism.

A mechanism is often described as assembled from gears, cams, and
linkages, though it usually contains other specialized components, such as
springs, ratchets, brakes, and clutches, as well. Of these it is the linkage that
provides versatile movement. Gears and cams generally rotate or translate,
though with important torque and timing properties. And the other com-
ponents are used to apply forces. Therefore, because our goal is to obtain
a desired movement, we focus on the design of linkages.
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1.1 Linkages

A linkage is a collection of interconnected components, individually called
links. The physical connection between two links is called a joint. This
definition is general enough to encompass gears and cams where the joint
is formed by direct contact between two gear teeth or between a cam and
follower. However, we limit our attention to joints that do not include the
type of rolling and sliding contact that is found in gears and cams. In
fact, the linkages that we study can be viewed as constructed from two
elementary joints, the rotary hinge, called a revolute joint (denoted by R),
and the linear slider, or prismatic joint (denoted by P). These joints allow
one-degree-of-freedom movement between the two links that they connect.
The configuration variable for a hinge is the angle measured around its axis
between the two bodies, and for a slider it is the distance measured along
the linear slide of the joint.

Other joints are available to form linkages, such as the universal joint, the
ball-in-socket, and a circular cylinder on a rod. In these cases, it is possible
to identify an equivalent assembly of hinges and sliders that provide the
same geometric constraint. The universal joint, or T-joint, can be viewed
as constructed from two revolute joints that are at right angles to each
other. This joint allows a two-degree-of-freedom movement between the two
links that it connects. The ball-in-socket joint, or S-joint, is formed from
three revolute joints with concurrent axes. This joint allows three-degree-
of-freedom rotational movement and is often found in robot wrists with
each joint actuated. Finally, the cylindric joint, or C-joint, is constructed
by mounting a hinge on a slider so that the axis of the hinge is parallel to the
direction of the slider. This joint allows two-degree-of-freedom movement.

These joints constrain the trajectories of points in one link to lie on simple
geometric objects in the other link, assuming that the links do not bend
or distort as they move. For example, the revolute joint constrains points
in one body to follow circular trajectories relative to the other link, and a
slider generates linear trajectories. The T and S-joints both constrain these
trajectories to lie on a sphere, while the cylindric joint forces them to lie on
a cylinder. This feature leads to algebraic equations that characterize the
mechanical constraint imposed by a linkage on the movement of a floating
link, or workpiece. The design problem consists of solving these equations
for a specified set of task positions for the workpiece.

There are other more exotic joints that can be used to construct linkages,
such as the screw, or helix joint, the planar joint, and the ball-in-slot joint.
However, there is enough opportunity for both interesting geometric theory
and applications arising from the use of R, P, T, S, and C-joints in the
design of linkages.
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1.2 Mobility

An important characteristic of an assembly of bodies forming a linkage is
the generic mobility of the system. This is, generally speaking, the number
of independent parameters such as joint angles and slide distances that are
needed to specify the configuration of the linkage ignoring any deformation
of the links. It is also known as the dimension of the configuration space
of the system. The generic mobility of a linkage is the sum of the uncon-
strained degree of freedom for the links in the system less the constraints
imposed by the joints.

In a linkage assembled from n bodies, one link is designated as the fixed
frame, or ground, against which the movement of the remaining links is
measured. This link has no freedom of movement. Thus, the unconstrained
degree of freedom for a linkage constructed from n links is (n — 1)K, where
K is the number of parameters required to specify the position of a single
link. In three-dimensional space K = 6 because three orientation parame-
ters and three coordinates for a reference point are required to locate this
body relative to the ground link. A body that can only rotate in space has
K = 3; and one constrained to planar movement also has K = 3.

Revolute and prismatic joints, and joints constructed from them, reduce
the dimension of the configuration space of a system by introducing con-
straint equations among the configuration parameters. These joints are said
to impose holonomic constraints on the system. In contrast, nonholonomic
constraints, such as the contact of a rolling wheel or knife edge on a sur-
face, do not reduce the dimension of the configuration space of the system.
They restrict the instantaneous movement from one configuration to the
next. The number of constraint equations imposed by a joint is u = K — f,
where f is known as the freedom allowed by the joint. Thus, the number
of constraint equations imposed by j joints is > 7_, (K — f;), where f; is
the freedom of the ¢th joint.

The generic mobility of a linkage is the difference between the uncon-
strained freedom of the links and the number of constraints imposed by
the joints, that is,

F=mn-1K=-) (K-f)=Kn-j-1)+3 f.  (L1)

=1

This mobility formula places a lower bound on the degree of freedom of a
linkage. The mobility may actually be greater due to special dimensions and
internal symmetries in the linkage. An interesting example is the spatial
4R closed chain known as Bennett’s linkage, which moves with one degree
of freedom though this formula predicts that it is a structure with mobility
F = —2. Such linkages are termed overconstrained (Waldron [95]).

If a linkage consists of a series of links separated by individual joints
forming a serial open chain, then there is always one more link than the
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number of joints. This means that n = j + 1 and the mobility formula
simplifies to

F = Zf (1.2)

Thus, the mobility of a serial open chain is simply the sum of the freedom
at each joint.

We now consider separately the cases of planar, spherical, and spatial
linkages.

1.2.1 Planar Linkages

A planar linkage has the property that all of its links move in parallel planes.
Most linkages found in practice are, in fact, planar linkages. A body moving
in the plane is located by the x and y components of a reference point and
a rotation angle ¢ measured relative to ground. Thus, its unconstrained
degree of freedom is K = 3.

The only joints compatible with this movement are revolute joints with
axes that are perpendicular to the plane, prismatic joints that move along
lines parallel to it, and the direct contact joints of gears and cams that have
lines of action parallel to the plane. Of the joints that we are considering,
only the R and P-joints can be used for planar linkages. Both of these joints
have freedom f = 1. Thus, the mobility formula for planar linkages is

F=3n—2j—3. (1.3)

If the links are arranged to form a single-loop closed chain, then j = n and
the mobility formula becomes

F=n-3. (1.4)

It is easy to see that the four-bar linkage, which is a closed chain formed
by four links and four joints, has mobility ' = 4 — 3 = 1. Figure 1.1 is
an example of a planar 4R closed chain. Another example is the RRRP
slider-crank linkage.

It is interesting to consider how many joints j are needed to constrain a
planar assembly of n links to a generic mobility of one. Set F' =1 in (1.3)
and solve for j to obtain

3
= —n — 2. 1.5
j=35n (1.5)
Clearly, n must be even, and we find, for example, that a one-degree-of-
freedom six-bar linkage must have 7 = 7 revolute joints. Figure 1.2 shows
the two classes of single-degree-of-freedom six-bar linkages.
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Figure 1.2. Examples of the two classes of six bar linkages: (a) the Watt six-bar
linkage; and (b) the Stephenson six-bar linkage.

1.2.2 Spherical Linkages

Each of the links of a spherical linkage is constrained to rotate about the
same fixed point in space, which means that the trajectories of points in
each link lie on concentric spheres. The orientation of a link can be defined
by three rotation angles often termed roll, pitch, and yaw. For convenience,
we visualize yaw as a longitude angle on a globe, and pitch as latitude.
Then the roll angle is the rotation about an axis through a given longitude
and latitude. These three parameters are sufficient to define the orientation
of a rigid body in space and, as in the plane, K = 3.

Only revolute joints assembled so their axes intersect the same fixed point
are compatible with the geometric constraint of spatial rotation. Because
this joint has freedom f = 1, the mobility formula for spherical linkages
becomes

F=3n—2j-3. (1.6)
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Figure 1.3. The spherical 4R linkage.

The spherical four-bar linkage has four revolute joints with axes that radiate
from the fixed center point, see Figure 1.3. It has mobility F' = 1.

1.2.8 Spatial Linkages

A spatial linkage is characterized by the feature that at least one link in
the system moves between two general positions in space. Six parameters
are needed to specify the location of this link, three for the coordinates of a
reference point and three for the orientation of the body about this point.
Therefore, K = 6 and we have

F:ﬁ(n—j—1)+(2f,-). (1.7)

For the casc of a single-loop closed chain, where 7 = n, the mobility formula
becomes

F= (ZJ: fi) — 6. (1.8)

Thus, a spatial single-loop closed chain must have seven one-degree-of-
freedom joints in order to have mobility F' = 1. Notice that of these seven at
most three can be prismatic joints, because these joints constrain only the
translational freedom of the body. The spatial four-bar linkage constructed
with four cylindric joints, denoted 4C, has mobility FF =8 — 6 = 2.



1.2. Mobility 7

. ' Moving Platform —'

ol AN
| R\l

\

—

.
! A

b

Fixed Pivots

Figure 1.4. The spatial 5TS platform linkage.

1.2.4 Platform Linkages

An important class of linkages consists of multiple serial chains that have
their end-links connected to form a single floating link, or platform. Pla-
nar and spherical 4R linkages can each be viewed as platform linkages
constructed from a pair of RR open chains. Similarly, the spatial 4C closed
chain is obtained by rigidly connecting the end-links of two CC open chains.
The 5TS platform linkage consists of a single floating link supported by five
separate TS chains (Figure 1.4). The mobility of these systems is easily
determined.

Consider a platform supported by c serial open chains connecting it to
ground. Divide the platform among the ¢ chains and let the mobility of the
ith chain including its piece of the platform be F;. Rejoining the end-links
of these chains to form a single platform is the same as removing ¢ — 1
bodies from the system. Thus, the mobility of a platform manipulator can
be calculated to be

F:zc:Fi—K(c—l)zK—zc:(K—Fi). (1.9)
=1 i=1

A convenient interpretation of this equation is obtained by introducing the
degree of constraint U; = K — F; imposed by the ith open chain. If the
mobility of a chain is greater than the unconstrained degree of freedom K,
that is, F; > K, then the chain does constrain the platform and U; = 0.
Let the degree of constraint of the platform itself be U = K — F. Then
(1.9) can be written as

U= Z U;. (1.10)
=1
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The degree of constraint imposed on the platform is the sum of the degrees
of constraint of its supporting chains. For example, the T'S open chain has
five degrees of freedom, therefore it has one degree of constraint. Thus, the
5TS platform has five degrees of constraint, or one degree of freedom.
The formula (1.10) defines the maximum constraint that the support-
ing chains can impose. Special dimensions and symmetries can reduce this
degree of constraint increasing the freedom of movement of the system.

1.3 Workspace

The workspace of a robot arm is the set of positions, consisting of both a
reference point and the orientation about this point, that are reachable by
its end-effector. A robot is designed so its end-effector has unconstrained
freedom of movement within its workspace. However, this workspace does
have boundaries, defined in part by the extreme reach allowed by the chain.
The shape and size of the workspace for a robot is a primary consideration
in its design.

The workspace of a linkage is defined by identifying a specific link as the
workpiece. Then the workspace is the set of positions that this workpiece
can reach. For serial open chains and platform linkages the dimension of the
workspace is exactly the generic mobility F' of the system, when F' < K.
If the mobility F' of the linkage is greater than the unconstrained freedom
K, then the system is said to have redundant degrees of freedom.

1.4 Linkage Design

Linkage design is often divided into three categories of tasks, called motion
generation, function generation, and point-path generation. Our approach,
presented in later chapters, is based on techniques developed for motion
generation. In this case, it is assumed that the designer has identified po-
sitions that represent the desired movement of a workpiece. This can be
viewed as specifying positions that are to lie in the workspace of the link-
age. Thus, a discrete representation of the workspace is known, but not
the design parameters of the linkage. The constraint equations of the chain
evaluated at each of the task positions provide design equations that are
solved to determine the linkage.

This approach can also be applied to the design of linkages for function
generation. In this case the goal is to coordinate an output crank rotation
or slide with a specific input crank rotation or slide. Specialized design
procedures have been developed for function generation for various linkage
systems. However, we can transform this into a motion generation problem
by holding the input link fixed and allowing the ground link to move. By
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doing this we obtain a set of task positions for the output link relative to
the input link, which are defined by the desired coordinated set of input
and output joint parameters. We use these positions to design another open
chain that connects the input and output links. The result is a closed chain
with the desired coordination between the input and output links.

The last category, point-path generation, is a classical problem in linkage
design where the primary concern has been the generation of straight-line
paths. It is possible to transform a path generation design problem into a
motion generation problem by simply adding specifications for the orienta-
tion of a reference frame at each location of the moving point. However, this
reduces the number of points that can be used to approximate a desired
path. In particular, we will see that a planar 4R linkage can be designed
to reach as many as five arbitrary task positions. In contrast, it is known
that, by ignoring the orientation of the coupler, a four-bar linkage can be
designed so the trajectory of point on the coupler passes through as many
as nine specified points; see Roth and Freudenstein [79] and Wampler et
al. [100]. Unfortunately, this is a difficult design problem even in the plane,
and the theory for more general linkage systems has not been developed.

1.4.1 Approximate Straight-Line Mechanisms

One of the interesting problems in classical mechanism theory was the
design of a linkage to generate straight-line motion. We take a moment
here to present three important planar 4R linkages distinguished by the
near straight-line movement of a point on the floating link. Let vertices of
the quadrilateral formed by the linkage be labeled OABC in a clockwise
manner, such that O and C are the fixed pivots and A and B are the
moving pivots; and let the link lengths be labeled a = |OA|, b = |CB],
g = |0C|, and h = |AB|.

1. Watt’s linkage: Let the tracing point P be a distance z along the
coupler AB of length h measured from A. If the link lengths OA and
BC satisfy the ratio /(h — x) = a/b and the fixed link has length
g2 = h? + (a + b)?, then the point P follows a near straight-line
movement over part of its path. See Figure 1.5.

2. Robert’s linkage: Let the link lengths satisfy the relations a = b and
g = 2h, and locate the tracing point P to form an isosceles triangle of
side x = a with the two moving pivots. The result is that P moves on
a nearly straight line along the part of its path between the two fixed
pivots. The height d can be varied to modify this path. See Figure 1.6.

3. Chebyshev’s linkage: Chebyshev’s linkage has dimensions g = 2h and
a = b = 2.5h. In this case locate the point P midway between the two
moving pivots to trace a near straight-line movement. See Figure 1.7.
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Figure 1.5. Watt’s straight-line linkage: z = h/2, b = a.

~——h ——

e =

2h

Figure 1.6. Robert’s straight-line linkage.

—

Figure 1.7. Chebyshev’s straight-line linkage: a = 2.5h, b = 2.5h, g = 2h.
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1.5 Summary

This chapter has introduced the linkage systems that are the focus of the
mathematical theory that follows. Linkages are classified by the type and
number of joints that form the assembly. Joints that can be constructed
from hinges and sliders to form planar, spherical, and spatial linkages pro-
vide a remarkably wide range of devices. The mobility formula defines
the generic degree of freedom of a linkage, which is the dimension of its
workspace. The size and shape of this workspace characterizes the per-
formance of the device. The goal of the design theory presented in the
following chapters is to formulate and solve the constraint equations that
ensure that the workspace for a given open chain includes a discrete task
space prescribed by the designer.

1.6 References

Dimarogonas [17] and Hartenberg and Denavit [36] present historical ac-
counts of the origins of the theory of machines and mechanisms. The
concept of a kinematic chain was introduced by Reuleaux [74] who also
identified the central role played by the joints in classifying devices. A sys-
tematic notation to define kinematic chains constructed from elementary
joints was introduced by Denavit and Hartenberg [16]. Freudenstein and
Dobryankyj [27] and Crossley [13] applied graph theory to the problem of
identifying all the linkage assemblies available for a certain number of links
and type of joint. Crossley [14] described spatial linkages and the larger
variety of joints available for these systems. Harrisberger [34] formulated
a classification theory for spatial linkages and with Soni [35] enumerated
the spatial four-bar linkages. See Kota [44] for more information about
systematic enumeration of linkage systems.

1.7 Exercises

1. Determine the degree of freedom of the system formed by two planar
3R manipulators that hold the same workpiece.

2. Determine the degree of freedom of the system formed by a spatial
6R robot that (i) rotates a hinged lever; (ii) rubs a block against a
planar surface.

3. Consider a linkage with ¢ independent closed loops, show that ¢ =
j+ 1 —n, and the mobility formula can be written as F = )_ f, — 6¢.

4. Show that while the planar and spherical 4R linkages have mobility
F =1, the spatial 4R Bennett linkage should not move at all.
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. The mobility formula assumes that a joint is a connection between

two links. However, often three or more links are shown connected at
one joint. Show that if p links appear connected at one joint, that the
mobility formula requires the connection be counted as p — 1 joints.

. Show that if a truss is a linkage with mobility /' = 0, then its joint

forces can be determined by elementary static analysis.

. Let the links of a mechanism be the vertices of a graph, and its joints

the edges. Show that there are only two nonisomorphic graphs of
planar six-bar linkages with F' = 1, the Watt and Stephenson chains.

. Determine the number of revolute joints that a planar eight-bar link-

age must so F' = 1. Show that there are 16 nonisomorphic graphs for
these linkages.

. Enumerate the ' = 1 spatial four-bar linkages that can be assembled

using R, P, T, S, and C-joints.



2
Analysis of Planar Linkages

In this chapter we consider assemblies of links that move in parallel planes.
Any one of these planes can be used to examine the movement since the
trajectories of points in any link can be projected onto this plane with-
out changing their properties. Our focus is on linkages constructed from
revolute joints with axes perpendicular to this plane and prismatic joints
that move along lines parallel to it. We examine the RR, PR, and RP open
chains and the closed chains constructed from them, as well as the 3R and
RPR planar robots. We determine the configuration of the linkage as a
function of the independent joint parameters and the physical dimensions
of the links.

2.1 Coordinate Planar Displacements

A revolute joint in a planar linkage allows rotation about a point, and
a prismatic joint allows translation along a line. These movements are
represented by transformations of point coordinates in the plane.
Consider the rotation of a link about the revolute joint O located at the
origin of the fixed coordinate frame F. Let x = (x,y)T be the coordinates
of a point measured in the frame M of the link. If the moving frame has
its origin also located at O, and the angle between the z-axes of these two
frames is 0, then the coordinates X = (X, Y)T of this point in F' are given
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by the matrix equation

X cosf —sinf 0 x
Y > =|sinf@ cosf O|<cy,. (2.1)
1 0 0 1 1

We introduce the extra column in this matrix to accommodate translations
typical of prismatic joints as part of the matrix operation.

In particular, consider a prismatic joint that has the z-axis of F' as its
line of action. Let the distance between the origins of M and F' along this
line be s. Then we have

X 1 0 s| (z
yi=10 1 0|{y}. (2.2)
1 00 1] |1

A translation along a prismatic joint parallel to the y-axis is defined in the
same way as

X 1 0 O T
Y =10 1 s T (2.3)
1 0 0 1 1

The matrices in these equations define the three coordinate displacements
of planar movement. Planar displacements are constructed from these three
basic transformations.

We now introduce the notation [Z(0)], [X(s)], and [Y(s)] for these
coordinate displacements, so we have

X =[Z(0)]x, X=[X(s)]x, and X =[Y(s)]x, (2.4)

respectively. Notice that we do not distinguish symbolically between the
coordinates X that are two-dimensional and those that have 1 as a third
component. Some authors to refer to the former as vectors and the latter
as affine points. We do not need this general distinction, and therefore will
take the time to make the difference clear when needed in the context of
our calculations.

2.1.1 The PR Open Chain

The benefit of this matrix formulation can be seen in considering the move-
ment of a PR open chain. This chain consists of a link that slides along the
linear guide of a P-joint relative to the ground. An end-link is attached to
the slider by a revolute joint, Figure 2.1. We now determine the movement
of a coordinate frame M attached to the end-link relative to a fixed frame
F.

First, locate F' so that its z-axis is parallel to the slide of the P-joint
and denote its origin by O. Locate M in the end-link so that its origin is
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Figure 2.1. The PR and RR open chain robots.
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centered on the revolute joint, which we denote by A, and with its z-axis
aligned initially with the z-axis of F.

The configuration of the PR chain is defined by the slide s from O to
A, and the rotation angle # about O measured from the z-axis of F' to the
z-axis of M. The transformation of coordinates from M to F' is given by
the matrix product

X = [X(s)][Z(9)]x, (2.5)
or
X cosf) —sinf s T
Y = |sinf@ cosf 0|y (2.6)
1 0 0 1 1

The set of planar displacements [D], given by
[D] = [X(s)][2(0)], (2.7)

is the workspace of the PR open chain. This matrix equation defines the
kinematics equations for the chain.

An important question in the analysis of an open chain is what parameter
values s and 6 are needed to reach a given displacement [D] in the workspace
of the chain. Assuming the elements of the matrix

a1 a1 Pg
[D] = [a21 a2 py (2.8)
0 0 1

are known, equation (2.7) can be solved to determine these parameters. No-
tice that p, = 0 is required for the displacement [D] to be in the workspace
reachable by the PR chain. It is now easy to see that s and 6 can be
determined from the elements of [D] by the formulas

s=p; and 6 = arctan ail. (2.9)
ali
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Its important to note here that the arctan function must keep track of the
signs of both az; and a1y so the correct value for 6 is obtained in the range
0 to 2m.

The arctan function in calculators often incorporates the assumption that
the denominator of the fraction ag;/aq is positive. If this denominator is
actually negative, as occurs when 6 is in the second and third quadrants,
then m must be added to the angle returned by the calculator in order to
obtain the correct result.

2.1.2 The RR Open Chain

A planar RR open chain has a fixed revolute joint O that connects a rotat-
ing link, or crank, to the ground link. A second revolute joint A connects
the crank to the end-link, or floating link, Figure 2.1.

Position the fixed frame F' so that its origin is the fixed pivot O and its
z-axis is directed toward A when the crank OA is in the zero position.
Introduce the moving frame M in the end-link, so that its origin is located
at A and its z-axis is also directed, initially, along the segment OA.

Let 01 be the angle measured from F' to OA as the linkage moves, and let
02 be the angle measured from OA to M. Then the position of M relative
to F' is defined by the composition of coordinate displacements

X = [2(60,))[X (@)][Z(02)]x, (2.10)

where a = |A — O] is the length of the crank. Expanding this equation we
obtain

X cos(fy +62) —sin(f; +602) acosb x
Y = Sil’l(gl -+ 92) COS(Ql -+ 02) a sin 01 Yy, - (211)
1 0 0 1 1

Notice that the position of the floating link of an RR chain is equivalent to
a translation by the vector d = (asin 61, asinf;)T followed by a rotation
by the angle o = 6, + 0,.

The workspace of the RR chain is given by the set of displacements

(D] = [2(01)][X (a)][Z(02)]. (2.12)

This defines the kinematics equations of the RR chain. For a given position
[D] the parameter values 6; and 6, that reach it are obtained by equating
(2.8) to the matrix in (2.11). The result is that the angles §; and o = 6, +6,
are given by

0, = arctan Py and o = arctan 22, (2.13)

Dx a1

Notice that the elements p, and p, must satisfy the relation

a=./pz+p;. (2.14)
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Figure 2.2. The RPR and RRR open robots.

in order for [D] to be in the workspace of this chain.

2.1.3 The RPR and 3R Chains

If the distance a between the joints of an RR chain is allowed to vary, then
we obtain the structure of a three-degree-of-freedom planar manipulator.
This variation in length can be introduced either by a prismatic joint,
forming an RPR open chain, or by a revolute joint to form a 3R open
chain, Figure 2.2. The formulas for the RR chain can be used to analyze
the RPR and 3R chains with minor modifications.

For the RPR, the link length a can be identified with the slide parameter
s of the prismatic joint. The result is that (2.12) with a = s defines the
workspace of the RPR chain. Equations (2.14) and (2.13) define the values
for s, 01, and 0> needed to reach a given goal displacement.

For the 3R case, we have an elbow joint E inserted between O and A.
Let the lengths of the two links be a; = |E — O| and a3 = |A — E|. Denote
the rotation angle about the elbow joint by 62 which is measured from OE
counter-clockwise to EA. The rotation of the end-link around A is now
denoted by 65. The kinematics equations of this chain become

[D] = [2(01)][X (a1)][Z(02)][X (a2)][Z(05)]- (2.15)

The variable length s = |A — O| is given by the cosine law of the triangle
ANOEA,

s% = a? + ag + 2a1a4 cos 5. (2.16)
The positive sign for the cosine term in this equation arises because 8 is
an exterior angle of the triangle AOEA. Notice that s must lie between
the values |a2 — a1| and a1 + as.

For a given position [D] of the end-link, we can determine the length s
as we did for the RPR chain using (2.14). This allows us to compute the
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elbow joint angle as

2 2 2 2
Pz +py_a1_a’2

0y = arccos (2.17)

2&1&2
The arccosine function yields two values for this angle +0,. We can compute

the joint angle 6, using (2.13), however, we must account for the presence
of the angle ¢ = ZEOA, which is given by

ao sin Oy
= arct ) 2.1
¥ = arctan a1 + ag cos b (2.18)
The result is
01 = arctan By _ . (2.19)

Dz

Finally, 63 is obtained from the fact that the rotation of the end-link is
o =01+ 62 + 03 in (2.13), which yields

93 = arctan aﬂ — 91 — 92. (220)
a11
Notice that we obtain two sets of values 6, and 63 depending on the sign
of 0. These are known as the elbow-up and elbow-down solutions.

2.2 Position Analysis of the RRRP Linkage

The RRRP linkage is called a slider-crank and consists of a rotating crank
linked to a translating slider by a connecting rod, or coupler. It is a fun-
damental machine element found in everything from automotive engines
to door-closing mechanisms. We can also view this device as a platform
linkage, in which case the coupler is a workpiece supported by an RR and
a PR chain.

Denote the fixed and moving pivots of the input crank by O and A,
respectively, and let B be the revolute joint attached to the slider. Position
the fixed frame F' so that its origin is O and orient it so that its xz-axis is
perpendicular to the direction of slide, Figure 2.3. The input crank angle
f is measured from the z-axis of F' around O to OA, and the travel s of
the slider is measured along the y-axis to B.

The length of the driving crank is r = |A — O|, and the length of the
coupler is L = |B — A|. The distance e to the linear path of the pivot B is
called the offset. Notice that the dimensions r, L, and e are always positive.

2.2.1 The Output Slide

To analyze this linkage, we determine the output slide s as a function of
the input crank angle 0. The linkage moves so the pivots A and B remain
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Figure 2.3. The dimensions characterizing a slider-crank, or RRRP, linkage.

the constant distance L apart. The coordinates of these pivots in F' are

given by
A= {TCF)SQ} and B = {6} : (2.21)
rsin 0 s
Thus, the length L = |B—A| of the coupler provides the constraint equation
(B-A)-(B-A)=1L2 (2.22)

Substitute (2.21) into this expression and collect the coefficients of s to
obtain the quadratic equation

s? — (2rsin@)s + (r* + e* — 2ercos § — L?) = 0. (2.23)

The quadratic formula yields the roots

s =rsinf £ /L2 — e + 2er cosf — 2 cos? 6. (2.24)

Thus, for a given input crank angle 6 there are two possible values of the
slide s. They are, geometrically, the intersection of a circle of radius L
centered on A with the line through B parallel to the y-axis of F. These
two solutions define the two assemblies of the RRRP linkage. The positive
solution generally has the slider moving above the crank, while the negative
solution has it below.

2.2.2 The Range of Crank Rotation

We now consider the values of the crank angle 6 for which a solution for the
slider position s exists. The condition that the solution be a real number is

L? — e* 4+ 2ercosf — r?cos? 6 > 0. (2.25)

Set this to zero to obtain a quadratic equation in cosf that defines the
minimum and maximum angular values for the crank angle #, and obtain
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the roots

e+ L e— L
and 60,,,x = arccos
r T

0 in = arccos (2.26)

Notice that the arccosine function returns two values for these limiting
angles that are reflections through the z-axis of F'.

If cos Opmin > 1, then the lower limit 6,,;, to the crank rotation angle does
not exist. In which case the crank can reach # = 0 and pass into the lower
half-plane of F'. Thus, the condition that no lower limit exist is

Si=L—r+e>0. (2.27)

Similarly, if cosfpax < —1 then the upper limit does not exist, and the
crank can reach 6 = 7. This yields the condition

Sy=L—r—e>0. (2.28)

The signs of the parameters S and S; identify four types of slider-crank
linkage depending on the input rotation of the crank:

1. A rotatable crank: S; > 0 and Sy > 0, in which case neither limit
Omin NOT Opax exists, and the input crank can fully rotate.

2. A O-rocker: S; > 0 and Sy < 0, for which 6,,,, exists but not 0,
and the input crank rocks through 8 = 0 between the values 4-60,,,x.

3. A m-rocker: S; < 0 and S5 < 0, which means that 6,,;, exists but

not Omax, and the input crank rocks through § = 7 between the values
:I:emin'

4. A rocker: 57 < 0 and Sy < 0, in which case both upper and lower
limit angles exist, and the crank cannot pass through either 0 or 7.
Instead, it rocks in one of two separate ranges: (i) Opin < 0 < Opax,
or (ll) —Hmax < 0 < —Bmin.

The conditions S; > 0 and Sy > 0 for a fully rotatable crank can be
combined to define the formula

S1S=(L—r+e)(L—r—e)=(L—-7r)2—e?>0. (2.29)

Notice that because e is always positive, L — r must be positive for S5 to
be positive. This allows us to conclude that

L—r>e (2.30)

is the condition that ensures that the crank of the RRRP linkage can fully
rotate.

The parameters S or S5 can take on zero values as well. In these cases,
the pivots O, A, and B line up along the z-axis of F', and the slider-crank
linkage is said to fold.
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2.2.8 The Coupler Angle

Let ¢ denote the angle around the moving pivot A measured counter-
clockwise from the line extending along the crank OA to the segment AB
defining the coupler. Then the coordinates of the pivot B = (e, s)T are also
given by the vector

_ frcos@+ Lcos(0 + ¢)
B = {rsin@—l—Lsin(H—i—d)) ' (2.31)
We equate the two vectors defining B to obtain
rcosf + Lcos(0 + ¢) = e,
rsinf + Lsin(f + ¢) = s. (2.32)

These equations are called the loop equations of the slider-crank because
they capture the fact that the linkage forms a closed loop. Solve these
equations for Lsin(f + ¢) and L cos(f + ¢) and use the arctan function to
obtain

s—rsinf

0 + ¢ = arctan (2.33)

e—rcosf

This equation provides the value for ¢ associated with each solution for the
slide s defined in (2.24).

2.2.4 The Extreme Shder Positions

The maximum translation of the slider, s,,.x, is reached when the coupler
angle ¢ is equal to zero. In this instance the pivots O, A, and B fall on a
line, so that r + L forms the hypotenuse of a right triangle. This yields

Smax = \/(T + L)2 —e2. (234)

The crank angle 6, associated with s,y is obtained from the loop equations
(2.32) as

Smax

€

0, = arctan (2.35)

Notice that the parameter s;., can be positive or negative, because the
linkage can be assembled with the slider above over below the z-axis.

The minimum translation of the slider, sy,, occurs with the coupler
angle ¢ is equal to 7. In this configuration the pivots A and B are on
opposite sides of O and L — r is the hypotenuse of the triangle, so spin is
given by

Smin = V(L — )2 — €2 (2.36)

While syax always exists, spin exists only if this square root is real. There
are two cases L —r > 0 and L — r < 0. In the first case the crank is fully
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Figure 2.4. The inverted slider-crank, or RRPR, linkage.

rotatable and the associated crank angle is

02 = 7 + arctan 3“:“. (2.37)

The minimum slide results when the pivot A rotates to the position such
that O lies between it and B. If L — » < 0 then A and B are on the same
side of O and the crank angle is

0, = arctan Smin. (2.38)
e

Notice that these extreme configurations can be reflected through the z-
axis.

If the crank of the slider-crank is fully rotatable, then the angular travel
of the crank as the slider moves from sy,ax t0 Smin is |#2 — 01]. The angular
travel of the return from spin t0 Smax is |2 — (02 — 01)|. The ratio of these
two ranges of travel is known as the time ratio

_ 10— 64
|2 — (62 — 61)]

Notice that if the offset e is nonzero then the time ratio is less than 1.
This means that the crank rotates a smaller angular distance as it pulls
the slider to spyin, than it does when it pushes it out again to s;,ax- This
operation is known as quick return because for a constant angular velocity
the slider moves slowly toward spax and quickly as it returns to spmin-

Tt (2.39)

2.2.5 The RRPR Linkage

A slider-crank linkage is often used in an inverted configuration in which the
P-joint is connected to the floating link, Figure 2.4. In this form, the pris-
matic joint may be the piston of a linear actuator that drives the rotation
of the crank OA. This system is analyzed as follows.

Let the driving RR crank be OA with length r = |A — O|, as before.
Position the frame F' with its origin at O and its z-axis directed toward C,
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which denotes the fixed pivot of the RP chain. The length of the ground
link OC is g = |C — O]. Counsider the line through C perpendicular to the
direction of the slider and the line through A parallel this direction. Let
the intersection of these two lines be the point B. The length ¢ = |B — C|
is the joint offset, and s = |A — B is the slide distance of the prismatic
joint. Denote the input crank angle by 6 and let ¢ be the angle measured
about C to the segment CB.

These conventions allow us to introduce the intermediate parameters b
and 3 given by

b=+vs?>+e?> and tanf = z. (2.40)
The cosine law for the triangle ACOA yields the relation
b> = g* +r? —2rgcosf. (2.41)

Substitute s® + e? to obtain

s=1+/g2+ 12 —e2 — 2rgcosd. (2.42)

This defines the joint slide s for a given crank angle 6. Notice that this
equation can also be solved to determine 6 for a given slide:

g2+ 12 —e? g2

0 =
COos org

(2.43)
This latter situation arises when the slider is the piston in a linear actuator
driving the RR crank.

The rotation angle 1 of the RP crank is determined using the fact that
the coordinates of the pivot A can be written in two ways

_frcost| _ g+ bcos(y+ )
A= {rsinﬁ} - { bsin(¢y +3) |- (2:44)
These equations yield the formula
Y + 3 = arctan ﬂ (2.45)
rcosf —g

Notice that 3 is determined from s by (2.40).
The range of movement of the cranks and the sliding joint for this linkage
can be analyzed in the same way as shown above for the RRRP linkage.

2.3 Position Analysis of the 4R Linkage

Given a planar 4R closed chain, we can identify an input RR crank and an
output RR crank, Figure 2.5. Let the fixed and moving pivots of the input
crank be O and A, respectively, and that the fixed and moving pivots of the
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Figure 2.5. The link lengths that define a 4R linkage.

output crank be C and B. The distances between these points characterize
the linkage:

a=|A-0,b=|B-C|,g=|C-O|, h=[B-A| (2.46)

To analyze the linkage, we locate the origin of the fixed frame F' at O,
and orient it so that the z-axis passes through the other fixed pivot C.
Let 6 be the input angle measured around O from the z-axis of F' to OA.
Similarly, let 1 be the angular position of the output crank CB.

2.83.1 Qutput Angle

The relationship between the input angle 6 of the driving crank and the
angle 1 of the driven crank is obtained from the condition that A and B
remain a fixed distance apart throughout the motion of the linkage. Since
h = |B — A| is constant, we have the constraint equation

(B—A) - (B—A)—h?=0. (2.47)

The coordinates of A and B in F' are given by
A:{acosﬁ} and B:{g+bcos¢}_ (2.48)

asin @ bsin
Substitute these coordinates into (2.47) to obtain
b +g*+2gb cos h+a®—2(a cos O(g+b cos1p)+absin O sin ) —h? = 0. (2.49)

Gathering the coefficients of cos® and sin, we obtain the constraint
equation for the 4R chain as

A(0) cosyp + B(0) sinyp = C(0), (2.50)
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where

A(0) = 2abcos — 2gb,
B(0) = 2absin ¥,
C(0) = g*> + b* + a*> — h? — 2agcosf. (2.51)

The solution to this equation is

B C
Y(0) = arctan <A> + arccos (W) : (2.52)

Equations of the form (2.50) arise many times in the analysis of linkages,
so we present its solution in Appendix A for easy reference, see (A.1).

Notice that there are two angles i for each angle 6. This arises because
the moving pivot B of the output crank can be assembled above or below
the diagonal joining the moving pivot A of the input crank to the fixed pivot
C of the output crank. The angle § = arctan(B/A) defines the location of
this diagonal, and e = arccos(C/+v/A? 4+ B?) is the angle above and below
this diagonal that locates the output crank.

The argument of the arccosine function must be in the range —1 to
+1, which places a solvability constraint on the coefficients A, B, and C.
Specifically, for a solution to exist we must have

A+ B2 - (C?>0. (2.53)

If this constraint is not satisfied, then the linkage cannot be assembled for
the specified input crank angle 6.

2.3.2 Coupler Angle

Let ¢ denote the angle of the coupler measured about A relative to the
segment OA, so 8+ ¢ measures the angle to AB from the z-axis of F'. The
coordinates of B can also be defined in terms of ¢ as

_ [acos@+ hcos(6 + ¢)
B_{asin9+hsin(0+¢) ' (2:54)

Equating the two forms for B, we obtain the loop equations of the four-bar
linkage
acos + hcos(0 + ¢) = g + bcosp,
asin@ + hsin(6 + ¢) = bsin 1. (2.55)

For a given value of the drive crank 6, determine v using (2.52) then cos(f+
¢) and sin(0 + ¢) are given by
__g+bcosy —acost

cos(f + @) = h and sin(f + ¢) =

bsin) — asinf

(2.5.6)
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Thus, the value of the coupler angle is obtained as

bsin — asinf 0
g+bcosy —acosf '

¢ = arctan ( (2.57)
Notice that we obtain a unique value for ¢ associated with each of the two
solutions for the output angle 1.

An Alternative Derivation

It is useful here to present a direct calculation of the coupler angle ¢ asso-
ciated with a given crank angle 6. The derivation is identical to that above
for the output angle. However, our standard frame is now F”’, positioned
with its origin at A and its z-axis along the vector O— A.. In this coordinate
frame, the pivots B and C have the coordinates

F/B:{hcos(qb—w)} ind F/C:{chos(w—e)}_ (258)

hsin(¢ — ) gsin(m — 0)
The constraint (B — C) - (B — C) = b? yields the equation
A(0) cos¢p + B(0)sinp = C(6), (2.59)
where

A(0) = 2ah — 2gh cos,
B(0) = 2ghsin 6,
C(0) = b*> —a® — g*> — h? + 2ag cosf. (2.60)

This equation is solved in exactly the same way as before (A.1). It results in
two values for ¢ for each crank angle 6. The output angle 1) associated with
each of these coupler angles can be determined from the loop equations of
the linkage written for C in F".

We use this equation for the coupler angle in our solutions for four and
five position synthesis of a planar 4R linkage.

2.3.8  Transmission Angle

The angle ¢ between the coupler and the driven crank at B is called the
transmission angle of the linkage. If the only external loads on the linkage
are torques on the input and output cranks, then the forces Fp and Fg
acting on the coupler at the moving pivots must oppose each other along
the line AB, Figure 2.6. Thus, the force Fpg is directed at the angle (
relative to the driven crank, and sin { measures the component of Fg that
is transmitted as useful output torque. The cos( component is absorbed
as a reaction force at the fixed pivot of the driven crank.

To determine ¢ in terms of 8, equate the cosine laws for the diagonal
d = |A — C| for the triangles ACOA and AABC. Since ( is the exterior
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Figure 2.6. The coupler is a two-force member connecting the input and output
cranks.

angle at B, we have
d? = g% + a? — 2agcos@ = h? + b2 + 2bh cos(. (2.61)

The result is

g2+ a® — h? — b2 — 2agcosd

2.62
2bh (2:62)

cos( =

2.8.4 Coupler Curves

As a linkage moves, points in the coupler trace curves in the fixed frame.
The parameterized equation of this curve is obtained from the kinematics
equations of the driving RR chain. Let x = (z,y)” be the coordinates of a
coupler point in the frame M located at A with its z-axis along AB. The
coordinates X = (X,Y)7 in F are given by the matrix equation

X(0) cos(@ +¢) —sin(f@+¢) acosf| [z
Y(0) p = |sin(0+¢) cos(0+¢) asinf| Qy,. (2.63)
1 0 0 1 1

The coupler angle ¢ is a function of 8, thus the coupler curve is parametrized
by the crank angle 6.

The algebraic equation for this curve, eliminating 6, is obtained by defin-
ing the coordinates of X from two points of view. Let the coupler triangle
AXAB (Figure 2.7) have lengths r and s given by

r=|X—-Al=22+y?2 and s=|X-B|=+/(z —h)2+y2. (2.64)

If A is the angle to AX in F, and u is the angle to BX, then we have

X - A= {”Cf’s’\} and X-B = {SC?’S“}. (2.65)
rsin A ssin y
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Figure 2.7. The trajectory of a point in the floating link is known as a coupler
curve of the 4R chain.

Rearrange these equations to isolate A and B, and substitute into the
identities A - A = a? and (B — C) - (B — C) = b? to obtain
X2 4+Y?—-2Xrcos\—2Yrsin A +r? = a2,
X2 4Y?2_-2Xscospy—2Yssinp+ s — 2gscospu — 2X g+ ¢g° = b
(2.66)

The algebraic equation of the coupler curve is obtained by eliminating A
and p from these two equations.

First, note that if « is the interior angle of the coupler triangle AXAB
at A, then A\ = a4+ 0+ ¢. Similarly, if 3 is the exterior angle of this triangle
at B, then y = 84 0 + ¢, or equivalently

p—A=p0-—a. (2.67)

The angle v = 8 — « is the interior angle of the coupler triangle at X given
by the cosine law as

r? 4+ % — h?
2rs ’

cosy = (2.68)

Substitute yp = A+« into (2.66) and rearrange these equations to obtain
Aqcos A+ Bysin A = C,

Ascos A+ Basin A = Cy, (2.69)
where
A =2rX, Ag = 2s(cosy(X — g) + Y sin7),
By =2rY, By = 2s(—siny(X — g) + Y cosv),

Ch=X24Y2+r2-0a% Co=(X—-g)2+Y2-02+s%  (270)

Eliminate A in these equations by solving linearly for x = cos A and y =
sin A. Then impose the condition z? + y? = 1. The result is

(C1By — C3B1)? 4+ (A2Cy — A1C2)? — (A1By — A2B1)?> =0.  (2.71)



2.4. Range of Movement 29

a

0 G i

e

l' g d - 4 .

Figure 2.8. The angles Omin and @max are the limits to the range of movement of
the input link.

Notice that A; and B; are linear in the coordinates X and Y, and C; are
quadratic. Therefore, this equation defines a curve of degree six. See Hunt
[38] for a detailed study of this curve, known as a tricircular sextic, and a
description of its properties.

2.4 Range of Movement

2.4.1 Limits on the Input Crank Angle

The formula that defines the output angle 1 for a given input angle 6 has
a solution only when A% 4+ B? — C? > 0. When this condition is violated,
the crank is rotated to a positioned in which the mechanism cannot be
assembled. The maximum and minimum values for 6 are obtained by setting
this condition to zero, which yields the quadratic equation in cos @

4a2g® cos® 6—4ag(g® + a® — h? — b?) cos 6
+((¢® +a®) — (h+b)?)((¢* +a®) = (h—b)?) =0. (2.72)

The roots of this equation are the upper and lower limiting angles 6,,.x
and 0,;, that define the range of movement of the input crank,

_(@®+a®) — (h—b)? (9 +a®) — (h+b)?

c0S Oppin = 209 , €OSOpax = 2ag . (2.73)

These equations are the cosine laws for the two ways that the triangle
AAOC can be formed with the coupler AB aligned with the output crank
CB, Figure 2.8. This alignment is what limits rotation of the input crank.
The cosine function does not distinguish between 16 so there are actually
two limits for each case +60,,;, and 0.« above and below OC.
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The arccosine function yields a real angle only if its argument is between
—1 and 1. This provides conditions that determine whether these crank
limits exist.

The Lower Limit: 0,,;,

If Omin does not exist, then the crank has no lower limit to its movement
and it rotated through 6 = 0 to reach negative values below the segment
OC. Thus, cosOnin > 1 is the condition that there is no lower limit to the
input crank rotation, that is,

(9% +a?) — (h — b)?
2ag

> 1. (2.74)

This simplifies to yield
(g —a)*— (h—b)* > 0. (2.75)
Factor the difference of two squares to obtain
(9g—a+h—>b)(g—a—h+b)>0,
T'Ty >0, (2.76)
where
Th=9g—a+h—-b and Tho=g—a—h+0. (2.77)
Thus, 77 and 75 must both be either positive or negative for there to be
no lower limit to the rotation of the input crank.
The Upper Limit: 6.5

If Onax does not exist, then the crank has no upper limit to its movement
and it will be able to rotate through 8 = 7. Thus, cos0n.x < —1, or

(6 + %) — (h+1)* _
2ag

~1, (2.78)

is the condition that this limit does not exist. This inequality simplifies to
(h+b)* —(g+a)* >0, (2.79)
which factors to become

(h+b—g—a)(h+b+g+a)>0,
15T, > 0, (2.80)

where
Ts=h+b—g—a, and Ty=h+b+g+a. (2.81)

The sum of the link lengths T} is always positive. Therefore, the condition
that there is no upper limit to the rotation of the input crank is 75 > 0.
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Figure 2.9. The angles ¥min and ¥max are the limits to the range of motion of
the output link.

Input Crank Types

We can now identify four types of movement available to the input crank
of a 4R linkage:

1. A crank: 7175 > 0 and T3 > 0, in which case neither O,ijn nor @max
exists, and the input crank can fully rotate.

2. A O-rocker: T175 > 0 and T3 < 0, for which 6., exists but not
Omin, and the input crank rocks through 8 = 0 between the values
igmax-

3. A m-rocker: 7175 < 0 and 73 > 0, which means that 0., exists
but not Op.x, and the input crank rocks through § = 7 between the
values +60,,;,.

4. A rocker: 777> < 0 and 73 < 0, which means that both upper
and lower limiting angles exist, and the crank cannot pass through
either 0 or 7. Instead, it rocks in one of two separate ranges: (i)
Omin < 0 < Omax, or (11) —Omax < 0 < —Onin-

2.4.2 Limits on the Qutput Crank Angle

The range of movement of the output crank can be analyzed in the same
way. The limiting positions occur when the input crank OA and coupler
AB become aligned, see Figure 2.9. The limits i, and ¥n,ax are defined
by the equations
(h+a)® - (9° + %) (h—a)® —(g° +1%)
5 Wmin = ’ 5 ax — . (2.82

cos P g COS P 2y (2.82)
Note that in this case 9 is the exterior angle, which changes the sign of the
cosine term in the cosine law formula.




32 2. Analysis of Planar Linkages

Examining the existence of solutions to arccosine in (2.82), we find that
the condition for no lower limit ¥y, is

(h+a—g—>b)(h+a+g+b)>0,
(—T%)(Ty) > 0, (2.83)

where T5 and T are the same parameters used above for the input crank.
Because T} is always greater than zero, the condition that there be no lower
limit to the range of movement of the output crank is 7o < 0.

Similarly, in order for there to be no upper limit 9., we have

(9g—b—h—a)(g—b+h—a)>0,
(=T3)(1T1) > 0. (2.84)

Again, the parameters T3 and T; are the same as were defined above and
there is no upper limit to the movement of the output crank when 7773 < 0.

Output Crank Types

We can now identify four types of movement available to the output crank
of a four-bar linkage:

1. A rocker: 7175 > 0 and T > 0. In this case both limits 1)y, and
Ymax €xist, and the crank cannot not pass through either 0 or 7.
Instead, it rocks in one of two separate ranges: (i) ¥min < ¥ < Ymax,

or (ll) _¢mm S 1,0 S _'(/)min-

2. A O-rocker: T1'7T5 < 0 and 75 > 0, for which ., exists but not
Ymin, and the output crank rocks through 1 = 0 between the values

:I:'Qbmax-

3. A m-rocker: 7115 > 0 and 7% < 0, which means that ¥, exists but
not Ymax, and the output crank rocks through v = 7 between the
values +9min-

4. A crank: 7773 < 0 and T5 < 0. Then neither limit ¥min nor Ymax
exists, and the output crank can fully rotate.

2.4.83 The Classification of Planar 4R Linkages

A planar 4R linkage is classified by the movement of its input and output
cranks. For example, a crank-rocker has a fully rotatable input link, and
an output link that rocks between two limits. On the other hand a rocker-
crank has an input link that rocks and an output link that fully rotates.
The combinations of positive and negative signs for the parameters 77, 75,
Ts identify eight basic linkage types. These parameters can take zero values
as well, in which case the linkage folds.
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The Eight Basic Types

The link lengths a, b, g, and h for a 4R chain define the three parameters
Ty, Ts, and T5. Our classification scheme requires only the signs of these
parameters, therefore we assemble the array (sgnTi,sgnTs,sgnT3). The
eight possible arrays identify the eight basic types of 4R linkages.

We separate the linkage types into two general classes depending upon
the sign of the product T1T>T5. If T1T5T3 > 0 then the linkage is called
Grashof; otherwise, it is called nonGrashof. There are four Grashof and
four non-Grashof linkage types.

We consider the Grashof cases first:

1.

(+,+,+): Because 737, > 0 and T3 > 0 the input link can fully
rotate. Similarly, because 17175 > 0 and 7% > 0 the output link is a
rocker with two output ranges. This linkage is a crank-rocker.

. (+,—,—): With T3T5 < 0 and T3 < 0 the input is a rocker, and

with 7175 < 0 and Ty < 0 the output is a crank. This defines the
rocker-crank linkage.

(—,—,+): In this case, 717> > 0 and T35 > 0, so the input link is a
crank, and 71753 < 0 and T < 0, which means that the output link
is also a crank. This defines the double-crank linkage.

(—,+,—): T1T> < 0 and T3 < 0 define the input as a rocker, and with
1173 > 0 and 15 > 0 the output is also a rocker. This defines the
Grashof double-rocker linkage type.

Now consider the nonGrashof cases:

D.

(—,—,—): Here we have T1T5 > 0 and 715 < 0, and the input link
rocks through the value 6 = 0. With 7175 > 0 and 7% < 0, the
output link rocks through the value ¢ = 0. This type of linkage is
termed a 00 double-rocker.

(+,+, —): In this case, the input rocks through # = 0. However, with
T1T3 < 0 and T > 0 the output rocks through ) = w. This linkage
is called a 07 double-rocker.

(+, —,+): With T4T5 > 0 and T35 > 0 the input link rocks through ,
and because 17173 < 0 and 7% < 0 the output link rocks through 0.
This is the 70 double-rocker.

(—,4+,+): Finally, the input again rocks through =, as does the
output, defining the mm double-rocker.

The parameters associated with these linkages are listed in Table 2.1.
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Linkage type Ty | Ty | T35
1 | Crank-rocker + | + | +
2 | Rocker-crank + | = | =
3 | Double-crank — | = | +
4 | Grashof double-rocker | — | + | —
5 | 00 double-rocker — | = | =
6 | Om double-rocker + | + | =
7 | w0 double-rocker + | = | +
8 | mm double-rocker — |+ | +

Table 2.1. Basic Planar 4R Linkage types

2.4.4 Grashof Linkages

If a linkage is to be used in a continuous operation, the input crank should
be able to fully rotate so that it can be driven by a rotating power source.
A study of the configurations of a 4R linkage lead Grashof to conclude that,
for a shortest link of length s and longest link of length [, the shortest link
will fully rotate if

s+Il<p+yq, (2.85)

where p and ¢ are the lengths of the other two links. This is known as
Grashot’s criterion and linkages that have a rotatable crank are called
Grashof linkages.

There are four linkage types that satisty Grashof’s criterion. If the input
or output link is the shortest, then we have the crank-rocker or the rocker-
crank, respectively. If the ground link is the shortest, then both the input
and output links will fully rotate relative to the ground; this is the double-
crank linkage. Finally, if the floating link is the shortest link, then the
input and output links are rockers; this is the Grashof double-rocker. By
examining Table 2.1, it is easy to see that these four linkage types satisfy
the condition

TT5T3 > 0, (2.86)

which can be shown to be equivalent to Grashof’s criterion.

The rockers of each of the Grashof linkage types are distinguished by the
fact that both upper and lower limits exist. The means that they have two
distinct angular ranges of movement, one in the upper half plane and one
in the lower relative to the fixed link. If the linkage is assembled so that the
rocker is in one angular range, then it cannot reach the other range without
disassembly. Thus, Grashof linkages have two distinct sets of configurations
called assemblies. The linkage can move between the configurations in only
one of these assemblies and cannot reach the others.
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2.4.5 Folding Linkages

If any one of the parameters T, T, or T35 has the value zero, then the
linkage can take a configuration in which all four joints lie on a line. The
linkage is said to fold.

If we consider the positive, negative, and zero values for the array
(11,T5,T3), then we find that there are 27 types of planar 4R linkages,
19 of which fold. Furthermore, the number of parameters 7; that are zero
defines the number of folding configurations of the linkage. It is often use-
ful to have a linkage fold. However, while it is easy to drive the linkage
into a folded configuration, it may be difficult to get it out of the this
configuration.

Consider, for example, the parallelogram linkage defined by a = b and
g = h. This linkage has 75 = 0 and 73 = 0. Thus, it has two folding
configurations, which occur for the input crank angles of § = 0, 7. Another
doubly folding example is the kite linkage with ¢ = a and h = b, which
yields 77 = 0 and 7> = 0. This linkage folds when # = 0, at which point
the output link can freely rotate because the joints A and C coincide; the
second folding position occurs when v = .

There is one triply folding case, the rhombus linkage, for which a = b =
g = h. This linkage is a combination of the parallelogram and kite linkages.
It folds at the two configurations § = 0,7 like the parallelogram. When
0 = 0 the output link is free to rotate because the joints A and C coincide
as with the kite linkage. The third folding configuration occurs when 1 = 7.
The linkage can also reach this configuration with 6 = 7, in which case it
is the input crank that can freely rotate because O and B coincide.

Linkages that have small values for any of the parameters 7; are termed
near folding. These linkages have configurations in which the joints can lie
close to a line. In nearly folded configurations the transmission angle of the
linkage is near 0 or 7, and the output crank is difficult to move using the
input crank.

2.5 Velocity Analysis

The velocity analysis of a linkage determines the angular rates of the various
joint parameters as a function of the configuration of the linkage and the
input joint rate. This analysis can be used in combination with the principle
of virtual work to provide an important technique for determining the force
and torque transmission properties of these systems.

2.5.1 Velocity of a Point in a Moving Link

Points x fixed in a moving link M trace trajectories X(t) = [T'(t)]x in
the fixed frame F'. The velocity of a point along its trajectory is the time
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derivative of its coordinate vector, that is, V = X. Of importance to us is
the relationship between this velocity and the movement of the linkage as
a whole.

The usual convention in velocity calculations is to focus on the trajecto-
ries in F' rather than coordinates in M of the moving point. For this reason,
the trajectory of the of a segment AB fixed in M is defined by coordinates
A and B measured in F. A general trajectory X of M has the property
that r = |X — A| and a = ZBAX are constants, because the three points
A, B, and X are part of the same link.

Let the orientation of M be defined by the angle 6§ of AB measured
relative to the z-axis of F'. Then we can determine the relative position
vector X — A as

_ [rcos(6+ o)
X-A= {rsin(9+a)}' (2:87)
The time derivative of this vector yields
V=X=A+0[JJ(X-A), where [J]= [? _01} : (2.88)

This defines the velocity of a general point in terms of the velocity of a
reference point and the rate of rotation of the body. We now show that
0[J] is directly related to the angular velocity of this link.

Each body in a planar linkage rotates about an axis that is perpendicular
to the plane of movement. Denote this direction by k= (0,0,1)T. Then
the usual vector cross product yields kx7= 7 and k x 7= —17, where 7 and
7 are unit vectors along the z- and y-axes of the fixed frame F'. We now
define the angular velocity of the link AB to be the vector

wap = 0Ok. (2.89)

where 6 defines the orientation of AB in F. Notice that for any vector y,
the angular velocity vector satisfies the identity

wap Xy = 0[Jy. (2.90)

This allows us to write equation (2.88) for the velocity of a point in the
form

V=A+wupx(X—-A). (2.91)

The angular velocity vector can be viewed as an operator that computes
the component of velocity that arises from the rotation of the link.

Notice that if the link AB simply rotates about A, then A = 0, and we
have

V =wap x (X — A). (2.92)

In this case, the velocity of a point X is directed 90° to the line joining it
to A.
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2.5.2 Instant Center

It interesting to note that there is a point in every moving link that has
zero velocity. This point I, known as the instant center, is found by setting
(2.91) to zero, that is,

A+wapx(I—-A)=0. (2.93)
Take the cross product by wp and solve for I to obtain
I—A— M. (2.94)
WAB -WA4AB

This calculation uses the vector identity a x (b x ¢) = b(a-c) —c(a-b).

The geometric meaning of I is found by substituting A from (2.93) into
(2.91) to obtain

V=wap x (X -1I). (2.95)

Compare this to (2.92) to see that the distribution of velocities in this link,
at this instant, is the same as is generated by a rotation about the instant
center L.

2.6 Velocity Analysis of an RR Chain

The kinematics equations of an open chain define the set of positions it can
reach as a function of its joint parameters. If each of these parameters is
given as a function of time, then we obtain a curve in its workspace that
defines the trajectory of the end-link. The time derivative of the kinematics
equations defines the velocity along this trajectory.

The 3 x 3 transform [D] = [A, P] for planar open chains separate into a
2 x 2 rotation matrix [A] and a 2 x 1 translation vector P. The translation
vector P is defined by the position of reference point in the end-link. The
orientation ¢ of this link is the sum of the relative rotation angles at each
joint. Thus, the velocity of any trajectory X(t¢) of any point in the end-link
is given by the equation

V=P+wy x (X-P), (2.96)

where w; is, the angular velocity vector of the end-link, is the sum of the
angular velocities at each joint.

2.6.1 The Jacobian

For an RR chain let 61(¢) and 65(t) be the rotation angles at each joint.
We can compute

(2.97)

w = (01 + 05)k and P:{—aﬁlsmﬁl}.

ab cos 8y
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These two equations are considered to define the velocity of the end-link as
a whole, as opposed the velocity of trajectories traced by its points. The P
and ¢ are assembled into a vector and (2.97) is written in the matrix form

. —asinf; 0 .
{P} = | acost O {91} (2.98)
d) 1 1 02

In robotics literature this 3 x 2 matrix is called the Jacobian of the RR
chain. Given a desired velocity for the end-effector, we can solve these
equations to obtain the required joint rates #; and 6.

Another form of the Jacobian is obtained by considering the trajectory
of a general point x in M given by

X(t) = [D(t)]x = [Z(61)][ X (a)][2(62)]x. (2.99)

Compute the velocity V. = X then eliminate the M-frame coordinates
using x = [D71X. The result is

V =X = [D][D7X. (2.100)

The matrix [S] = [D][D~!] can be viewed as operating on a trajectory X(¢)
to compute its velocity V.
For the RR chain, we use (2.11) and compute

0 —91 — 92 aég sin 91
[S] = |01 + 02 0 —abycosby | - (2.101)
0 0 0

The upper left 2 x 2 matrix is (§; + 02)[J], which is the matrix that we
have associated with the angular velocity of the end-link. The third column
is the velocity of the trajectory Y (¢) that passes through the origin of F'.
Assemble this into the matrix equation

v 0 a sin 01 9
{ } = [0 —acosb, {9-1} . (2.102)
¢ 1 1 2
This alternative form for the Jacobian is the focus of our study in the last
chapter of this text.

2.6.2 The Centrode

We now compute the instant center for the instantaneous movement of the
end-link of the RR chain. From (2.94) we have

1—py YuxP (2.103)

WM'WM.
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Simplify this equation and introduce the vector &€ = (cosf,sinf;)T to

obtain
I—a -2 _)e& (2.104)
01 + 6,

This shows that the instant center lies on the line through the two revolute
joints of the RR chain.

Equation (2.103) defines an instant center for every configuration of the
chain. If the joint angles 61 and 65 are related by a function f(6;,602) = 0,
then the set of instant centers forms a curve in F' known as the centrode.

Other planar open chains can be analyzed in the same way to relate
the velocity of the end-link to the rate of change of the configuration
parameters.

2.7 Velocity Analysis of a Slider-Crank

If the input crank to an RRRP linkage is driven at the rate 0, then we can
determine the rotation rate ¢ of the coupler link, and the linear velocity $
of the slider using the velocity loop equations. These equations are obtained
by computing the time derivative of the loop equations (2.32)

. [ —rsinf o s [—Lsin(@+¢)| . [0
9{rc089}+(0+¢){l;cos(9+¢) }_8{1}' (2.105)
Rearrange the terms so this equation takes the form

0  Lsin(0+ ¢) s 4 [—rsin@ — Lsin(0 + ¢)
[1 —Lcos(0+¢)] {¢} = 9{ rcos + L cos(0 + ¢) } (2.106)

Notice that to solve these equations we must have previously determined
the parameters ¢ and s. Then Cramer’s rule yields
8 7 sin ¢

s and é_rsin@—l—Lsin(@—i—qﬁ)
6  sin(0+ ¢) 0 Lsin(0 + ¢)
It is useful to note that we can obtain the slider velocity directly from

the constraint (2.23) and avoid the need to determine ¢ or ¢. To do this,
simply compute the time derivative of this constraint equation to obtain

(2.107)

$(s —rsinf) — Or(scosf — esinf) = 0. (2.108)

The result is

izr(scosﬁ—.esuﬂ). (2.100)
0 s —rsinf

This equation is used to determine the mechanical advantage of this linkage.
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2.7.1 Mechanical Advantage

The ratio of the static force generated at the slider to the input torque
applied at the crank is known as mechanical advantage. We compute this
using the principle of virtual work which states that the work done by
input forces and torques must equal the work done by output forces and
torques during a virtual displacement. For the RRRP linkage, we assume
the weight of each link and the friction in each joint are negligible compared
to the applied forces and torques. In which case, the principle of virtual
work requires that the work done by the torque applied to the input crank
must equal the work done by the slider on an external load during a virtual
displacement.

A wvirtual displacement is a small movement of the system over which
the applied forces and torques are considered to be constant. This small
movement is easily defined in terms of the velocities of each link. The
angular velocity of the input crank 0 acting over a small increment of time
8t generates the virtual crank displacement 60 = 66t. Similarly, a virtual
displacement of the slider is ds = $dt.

Let the input torque to the crank be T = Fian, where Fj, is a force
applied perpendicular to the link at a distance p along it. Then the virtual
work of this torque is Fi,pdf. The virtual work done by the slider as it
applies a force F = F,yt7 along its direction of movement is F'ds. Thus, we
have

Foyi 80t = Fi,pbét. (2.110)

Because the virtual time increment ¢ is not zero, we can equate coefficients
to obtain the relationship

Four 0 p(s —rsinf)
= - = ) 2.111
B $ r(scosf —esinb) ( )

This ratio defines the mechanical advantage of the slider-crank. Notice that
it depends on the configuration of the linkage, as well as the ratio p/r, which
defines the point of application of the input force Fj,.

This formula has an interesting geometric interpretation. Let I be the
intersection of the line through the crank OA and the line y = s that
locates the slider. We now determine the distances |IA| and |IB| from the
geometry of the linkage and obtain

s S
IA|=r— — IB|=e— | — ) 2.112
TA]=r sin 6 and  [IB| = e (sin 0) cos ( )

Thus, we find that the mechanical advantage for the slider-crank can be
written as
Fout _ p|IA|
Fi ’I"|IB‘ )

(2.113)
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Decreasing the distance |IB| increases the mechanical advantage. In fact,
as tanf approaches s/e, the extreme position of the slider, the distance
|IB| approaches zero, and the mechanical advantage becomes very large.

2.8 Velocity Analysis of a 4R Chain

The velocity loop equations of the 4R chain are obtained by computing the
time derivative of the loop equations (2.55) to obtain

. [—asin6 o o [—hsin(@+¢)| _ ; [—bsiny

H{acosﬁ}+(9+¢){hcos(0+¢) }_w{bcosw ' (2.114)
For a given input angular velocity 0, these equations are linear in the angu-
lar velocities ¢ and 1) of the coupler and output link. Notice that we must

have already determined the angles ¢ and 1. Assemble these equations into
the matrix equation

—bsiny  hsin(@+¢) | [¥) g [ —asind — hsin(0 + ¢) (2.115)
beostp —hcos(0+¢)| \ o) acosf + hcos(0+ o) [ '

Solve this equation to determine the velocity ratios

é_ asin ¢ and é_asin(1p—9)—hsin(9+q5—¢)
6  bsin(f+ ¢ — ) 6 hsin(0 + ¢ — 1) '

(2.116)

2.8.1 Qutput Velocity Ratio

We now examine the velocity properties of the 4R chain in terms of the
angular velocity vectors wo = 0k and weo = d)k where 7, 7, and k are the
unit vectors along the coordinate axes of a three dimensional frame. The
time derivative of the constraint equation (B — A)- (B — A) = b? yields

(B—A)- (B-A)=0. (2.117)
Since B = we x (B — C) and A = w X A, this can be written as
(k x (B —C) —0k x A) - (B—A) = 0. (2.118)

Interchange the dot and cross operations and expand this equation to
obtain

Yk-Bx(B—A)—0k-Ax (B—A)—¢k-Cx (B—A)=0. (2.119)

Notice that the cross products A x (B — A) and B x (B — A) are equal,
and, in fact, any point on the line Lap: Y(¢) = A + t(B — A) yields the
same result. In particular, both A and B can be replaced by the point
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Figure 2.10. The angular velocities of the input and output links are
instantaneously equivalent to gears in contact at the instant center I.

I = r7, which is the intersection of Lpg with the z-axis. Since C = g7, this
equation takes the form

k- (d(r—g) —0r)Tx (B—A)=0. (2.120)
It is now easy to see that the output velocity ratio is given by

U
il (2.121)

The distance r to the point I along the z-axis can be computed by finding
the parameter ¢ that satisfies the relation 7- (A +¢(B — A)) = 0. Substitute
this into 7 = 7- (A + ¢(B — A)) to obtain

absin(f — ¢)

bsin¢ — asinf’

(2.122)

Notice that the velocity ratio between the output and input links can be
viewed as instantaneously equivalent to the speed ratio between two gears
in contact at the instant center I that have the radii g—r and r respectively,
see Figure 2.10.
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2.8.2 Coupler Velocity Ratio

A similar relationship for the coupler velocity ratio is obtained by comput-
ing the velocity of B in the fixed frame using vector operations. Combining
this with the fact that B-(B—C) = 0, we obtain a geometric representation
of the velocity ratio.

The coupler has the angular velocity wa = (d) + H)E, so the velocity of
B is given by

B=A+wysx(B-A). (2.123)
Since A = 0k x A, this equation becomes
B=0kxA+(¢+6)kx(B—A)=0kxB+¢kx(B—A). (2.124)
Substitute this into the condition B - (B — C) = 0 to obtain
(6k x B+ ¢k x (B—A))-(B-C) =0, (2.125)

Notice that B can be replaced by any point on the line Lcg: Y(t) =
B + t(B — C) because k x t(B — C) - (B — C) = 0. In particular, consider
the point J that is the intersection of Lo p with the line Lo that joins O
and A. Let € be the unit vector in the direction A, so A = a€ and J = re.
Substitute this into (2.125) and obtain

(br + ¢(r —a))k x €- (B —C) = 0. (2.126)

For this equation to be zero, the coupler velocity ratio must satisfy the
relation
) T
i = : (2.127)
0 a—7rT

Thus, the angular velocity ratio between the coupler and input link is
instantaneously equivalent to the speed ratio of two gears in contact at J
with radii of a — r and a, respectively, Figure 2.11.

The value of r defining J along the line Lo is obtained by solving for ¢
such that e+ - (B +#(B — C)) = 0. Note that &- = (—sinf, cosf)T is the
unit vector perpendicular to €. Then, substitute the result into the relation
r=¢€-(B+¢(B - A)) to compute r.

2.8.3 Kennedy’s Theorem

We have seen that the output velocity ratio of a 4R linkage can be viewed
as generated instantaneously by a pair of gears connecting the input and
output links. The points in contact along the pitch circles of the two gears,
Q on the input link and P on the output link, must have the same velocity,
that is, Q = P. The point in F that coincides with these two points is the
instant center I. We now show that an instant center with this property
exists for any two links moving relative to a ground frame F'.
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Figure 2.11. The angular velocities of the input and coupler links are
instantaneously equivalent to gears in contact at the instant center J.

Consider the movement of two independent links and let their instant
centers in F' be O and C. We now ask whether there are points, Q on one
and P on the other, that have both the same coordinates I = (X,Y)? in
F and the same velocity.

Let g = |C — O| be the distance between the instant centers, and let
Q - O = (rcosf,rsinf)” and P — C = (g + kcost,ksiny)? be the
relative vectors locating Q and P. The velocities of these points are

. [ —rsinf . : [ —ksiny

Q_e{frcosO}’ P_¢{kcos¢}' (2:128)
IfQ =P = (X,Y)T, then Y = rsinf = ksint, and to have the same
velocity

e —pY + Y [0
P_Q_{ ¥(rcos® — g) — Orcos }_{ 0 } (2.129)

The first component of this equation shows that Y = 0. Set § = ¢ = 0 and
let » and k take positive and negative values so that X =r = k+ g. From
the second component of (2.129) we find that 7 must satisfy the equation

P(r —g) —6r =0,
that is,

v T
;= . (2.130)
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Thus, I = (r,0)T is the desired instant center. The fact that the point I
must lie on the line joining the O and C is known as Kennedy’s theorem.

2.8.4 Mechanical Advantage in o 4R Linkage

The relationship between an applied input torque and the torque generated
at the output crank of a 4R linkage is easily determined by considering the
equivalent set of gears and the principle of virtual work. From the velocity
ratios determined above, we have the virtual displacement of the output
crank defined as

T

51p = ot = 0

ot, (2.131)
r—g
where 7 is the distance to the instant center I from the fixed pivot O of
the drive crank.
The virtual work of the input torque T = TOE is Tpd0. Similarly, the
virtual work of the output torque, T = TCE, is T0v. From the principle
of virtual work we obtain

Tod0 = Tady, or Tobdst =Tc éé&t. (2.132)

The virtual time increment ¢ is nonzero, so we equate coefficients to obtain
the relationship

Ic _r—yg
To r

(2.133)

Note that the distance r has a sign associated with its direction along
the z-axis from O. The conclusion is that the torque ratio of a linkage is
the inverse of its velocity ratio, which is exactly the torque ratio of the
equivalent gear train. Notice that the value of this torque ratio changes
with the configuration of the linkage.

Let the input torque be generated by a couple, which is a pair of forces
in opposite directions but of equal magnitude F separated by the perpen-
dicular distance a, so Mo = aFp. Similarly, let the output torque result in
a couple with magnitude M = bF. Then, the ratio of output force F
to input force F( is obtained from (2.133) as

Fo _afr—g
Fo_b< - ) (2.134)

This ratio is called the mechanical advantage of the linkage. For a given set
of dimensions a and b the mechanical advantage is directly proportional to
the velocity ratio of the input and output links.
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2.9 Summary

This chapter presented the position and velocity analysis of planar open
chains and the closed chain slider-crank and four-bar linkages. Conditions
on the existence of solutions to the input-output equations for the closed
chains provide a classification scheme for these devices based on the range
of movement of their cranks. The velocity analysis of these systems lead to
the introduction of instant centers and Kennedy’s theorem, which can be
used to compute the mechanical advantage of the linkage.

2.10 References

The position and velocity analysis of planar open chains follows the ap-
proach used in robotics as found in Craig [11] and Paul [68]. The analysis
of planar linkages including the study of accelerations and dynamic forces
can be found in many textbooks. See, for example, Waldron and Kinzel [98],
Erdman and Sandor [22], Mabie and Reinholtz [50], Mallik et al. [51], and
Shigley and Uicker [85]. For further study of the dynamics of these systems
see Krishnaprasad and Yang [45] and Sreenath et al. [87]. The strategy
used to classify planar slider-crank and 4R linkages follows Murray and
Larochelle [65].

2.11 Exercises

1. Consider the PRRP elliptic trammel formed from two PR chains
connected so that the directions of the two sliders are at right angles
in the ground link. Derive the coupler angle ¢ as a function of the
input slider translation s and show that a general coupler curve is an
ellipse.

2. Oldham’s coupling is an RPPR linkage with the directions of the two
sliders oriented at a right angle to form the coupler link. Analyze this
linkage to determine the output crank angle ¢ as a function of the
input angle 6.

3. The Scotch yoke mechanism is an RRPP linkage with the ways of the
sliders at right angles. Analyze this linkage to determine the output
slide s as a function of the input 6.

4. Derive the algebraic equation of the coupler curve of an RRRP linkage
and show that it is a quartic curve.

5. Analyze (i) Watt’s linkage, (ii) Robert’s linkage, (iii) Chebyshev’s
linkage, and determine the coupler angle ¢ as a function of the input
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crank angle 6. Generate the coupler curve of the point that traces an
approximately straight line.

. Derive the algebraic form of the 4R coupler curve and show that its
highest degree terms are (z%+%?2)3, and that those of fifth and fourth
degree contain the factors (22 + 42)? and z2 + y?, respectively. These
features identify this curve to as a tricircular sextic.

. Select a coupler point X on a 4R linkage OABC. Construct the trian-
gle AOCY that is similar to the coupler triangle AABX. Show that
the coupler curve traced by X has a double point at its intersections
with the circle circumscribing AOCY.

. Show that the centrode for an RR chain becomes a circle when ¢ = ,ué
and p is constant. Because this curve lies in the fixed frame F' it is
called the fized centrode.

. Transform the coordinates of the centrode of an RR chain to the
moving frame M by m = [T~1]I. This defines a curve known as the
moving centrode. Show that for ¢ = pf and constant p, the moving
centrode is a circle.



3
Graphical Synthesis in the Plane

The geometric principles that are fundamental to linkage design can be
found in simple and efficient graphical constructions for RR and PR chains.
As the floating link of one of these chains reaches various task positions,
points in it define sets of corresponding points in the fixed frame. The design
problem is to find a circle for the RR chain and a straight line for the PR
chain that passes through these corresponding points. This usually results
in multiple RR and PR chains that can be combined to form slider-crank
or four-bar linkages.

3.1 Displacement of a Planar Body

The positions of moving body M can be specified by simply drawing the
body in various locations in the background plane F'. The features needed
to define a position M in F' are a point D and a directed line segment €
which we denote by M : (D, €).

Consider two positions of M, that is, My : (€1, D) and M, : (&, D?).
The displacement of M from the first position to the second position con-
sists of the translation of D from D! to D? along the segment D*D? = d,
combined with a rotation that carries €7 to €3 defined by the angle ¢12
measured in a counterclockwise sense. See Figures 3.1 and 3.2.
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M,

Figure 3.1. The location of the displacement pole P12 when CD' and CD? have
the same signs relative to €1 and és.

Figure 3.2. The location of the pole P12 when C D' and C'D? have opposite signs
relative to €1 and €.

3.1.1 The Pole of a Displacement

The displacement between two positions M; and Ms can be achieved by a
pure rotation about a special point P;5 called the pole of the displacement.
The pole has the property that it is located in exactly the same place in
the ground frame F', whether the moving body is in position M; or Ms.
To find Po, we first consider the point of intersection C of the line
through D! along €, and the line through D? along 5. Notice that the angle
between these lines about C' is the rotation angle ¢,5 of the displacement.
Now construct the circle through the vertices of the triangle ACD!'D?; see
Appendix B for this construction. Let the angle ZD'CD? at C measured
counterclockwise be denoted by k. C is said to view the segment D!D?
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G

Figure 3.3. A general point Q! is displaced by a pure rotation about P2 by the
angle ¢12 to the point Q2.

in the angle k. Notice that every point on the circular arc that contains
C views D!'D? in the same angle. The points on the opposite circular arc
view D! D? in the angle k + 7.

If the segments C D! and CD? are directed along €; and €5, respectively,
then kK = ¢, sec Figure 3.1. This remains truc if both segments C D!
and CD? are directed opposite to €, and €. On the other hand, if CD! is
directed along €, and CD? is directed along —€5, as shown in Figure 3.2,
or equivalently CD! = —¢&; and CD? = &3, then ¢y = Kk + 7.

Now consider the perpendicular bisector V = (D'D?)1 which intersects
the two arcs of this circle in points P and P’. Let P be the intersection
with the arc that contains C. If kK = ¢19, then P is the pole Pj5 of the
displacement. If ¢1o = k + 7, then P’ is the pole P;3. In either case, a
rotation about Pj3 by ¢12 carries the segment P2 D! into P12D?, and the
line €] into €5.

3.1.2 Determining the Position of a Point

For any point @) in a moving body let Q* and Q? denote its corresponding
points in positions M; and M,. We can use @' and the pole P}, to construct
the point Q?, using the fact that the displacement from M; to M, is a
rotation about Pj3. Join Q! to P;2 to define the line L}, and then duplicate
the angle ZD!P;,D? from this line around Pj5 to define L?; see Appendix
B. Simply measure the distance P;2Q! along the line L? in order to define
Q?, Figure 3.3. This procedure is reversed to determine Q! from @2, in
which case we construct the angle —¢;2 about P;s from L2 to define L.
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An alternative technique for rotating Q! about Pjs to Q% uses the fact
that a rotation by the angle ¢12 can be achieved by a pair of reflections
through lines separated by the angle ¢12/2. Consider the line L joining D*
to the pole Pjo and the perpendicular bisector V = (D'D?)L. These lines
lie at the angle ¢15/2 around P;5. Two reflections, one through L and a
second through V, will move Q! to its displaced position Q2.

3.1.8 An Alternative Construction for the Pole

We now use the fact that every point in the displaced body must move in
a circle about the pole P;5 in order to define an alternative construction
for this point. The two points D! and D? and the perpendicular bisector
V = (D'D?)" are already known. (See Appendix B for the construction of
a perpendicular bisector.) Now choose another point A in the moving body
and identify its corresponding points A! and A? in F. The perpendicular
bisector of the segment A'A? must pass through the pole, which means
that its intersection with V is the desired point P;.

Because this must be true for any point ) in the moving body, we find
that Pjs is the intersection of the perpendicular bisectors of all segments
Q'Q? generated by two positions of M.

3.1.4 The Pole Triangle

If we have three positions M;, i = 1,2,3, for a moving body M, we can
consider the displacements in pairs and determine the poles Pio, Pas3, Pi3
and the associated relative rotation angles @12, @23, ¢13. It is easy to see
that the displacement given by T43 : (¢13, P13) is obtained by the sequence
of two displacements T12 : ((Z512, Plg) followed by T23 : ((]523, P23). ThUS, we
have

13 = P23 + P12. (3.1)

The three poles P2, Ps3, and Pi3 form a triangle, known as the pole
triangle. See Figure 3.4. We now show that the vertex angles of the pole
triangle are directly related to the relative rotation angles ¢;;.

Consider the point in the moving body M that coincides with the pole
P53 when the body is in position M,, Figure 3.5. Notice that in position
M3 this point is fixed in place by definition of the pole of the displacement
Ty3. Now consider its location in position M; denoted by Ps; and called
the image pole. PJ; moves to the location Pa3 after a rotation by ¢12 about
P2 and after a rotation by ¢13 about P;3. Thus, PJ; must be the reflection
of Py3 through the side N; = P, P;3 of the pole triangle. Furthermore, Ny
bisects the rotation angle ¢12 as well as the rotation angle ¢;3.

We can distinguish two cases: (i) the pole P35 is to the left of the directed
line segment Pa3 P, or (ii) Pi3 is to the right of Po3Pio. In the first case
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Ms3.

Figure 3.5. The pole P23 and its image Py3 are reflections through the side Pi» Pi3
of the pole triangle.

the sum of the angles ¢15 and ¢o3 is less than 27, and in the second case
their sum is greater than 27.

1. If ¢12 + ¢p23 < 27, then the interior angles of the pole triangle at Pi5
and Pag are the angles ¢12/2 and ¢23/2, and the exterior angle at P53

is $13/2 = ¢12/2 + P23 /2.

2. If ¢19 + do3 > 2w, then ¢15/2 and ¢o3/2 are the exterior angles of
the pole triangle at P2 measured from N; to the segment PjsPss,
and K = ¢12/2 + ¢23/2 — 7 is the interior angle at P;3. The angle
$13/2 = k + m measured counterclockwise around Pj3.
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Figure 3.6. The fixed and moving pivots G and W' of an RR chain and the pole
P13 form the dyad triangle AW!GPis.

The pole triangle provides a geometric way to determine the rotation
angle and pole of a displacement T}3, given the rotation angles and poles
of two relative displacements 772 and To3.

3.2 The Geometry of an RR Chain

The displacement of the end-link of an RR chain is the result of a rotation
first about the moving pivot W! followed by a rotation about the fixed pivot
G. This is equivalent to the composition of rotations about the relative poles
P> and P,3, and we find that the dyad triangle AW'GP;5 has the same
properties as the pole triangle.

3.2.1 The Dyad Triangle

Consider the displacement of the floating link of an RR chain from position
M, to position M. Let W1 and W? be the corresponding points of the
moving pivot in the two positions, and let G be the fixed pivot. The pole
P, of the relative displacement of the M forms a triangle with W' and G,
called the dyad triangle. We now examine the geometry of this triangle.

Let L' and L? be the lines joining G to the two positions W! and W2
of the moving pivot. The angle (312 between these two lines is the rotation
angle of the crank. Choose the direction €; defining the orientation of M,
to be along L'. This allows us to identify the relative rotation of the floating
link around W2 as the angle a2 between L? and &, see Figure 3.6.

The relative rotation ¢;2 of the end-link between positions M, and M,
is the sum of the relative rotations about the fixed and moving pivots, that
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is,
P12 = Pi2 + 2. (3.2)

Now identify the point Rj2 on the perpendicular bisector Vio =
(WW?2)+ that corresponds to the location of the moving pivot when the
crank angle is 315/2, that is, ZW G Ry = 12/2. Notice that R, lies on
the arc of the circle through W' and W? around G. The angle measured
counterclockwise from P;joW?! to the perpendicular bisector Vi, must be
one-half the rotation of the end-link, ¢12/2. There are two forms for the
triangle AW?G P, depending on the location of Py relative to G along
V5. It lies either on the same side as the point R, or on the opposite
side. We have the two cases:

1. If P2 is on the same side of G as Rjs, then (312/2 < ¢12/2 and
a12 + P12 is less than 27. In this case the interior angles of the dyad
triangle at W' and G are ZP ., WG = aq5/2 and ZWIG Py = $12/2,
respectively, and the exterior angle at P, between the segment
P12W1 and V12 18 ¢12/2 = 0412/2 + ,612/2.

2. If P;5 is on the opposite side of G as R,, then the sum a7 + (12 is
greater than 27, and ¢12/2 > 7. The angles a12/2 and (312/2 are the
exterior angles of the dyad triangle at W' and G, and k = a12/2 +
B12/2 — m is the interior angle at Pis. Thus, we have ¢12/2 =k + 7
measured counterclockwise around Pis.

3.2.2 The Center-Point Theorem

We now examine the case of three positions M7, My, and M3 of the floating
link of an RR chain. A result fundamental to Burmester’s techniques for
the design of these chains is that the angle ZP;;G P} is directly related to
the crank rotation angle 3;x.

We know from the geometry of the dyad triangle that /W !GPy, is either
B12/2 or B15/2+ 7 depending on the location of P;q relative to G. Similarly,
for the dyad triangle AW?2GPs3 we have that ZW?2GPa3 is either (23/2 or
B23/2 + . Now, notice that /WG P12 = ZP1o,GW?2. Considering each of
the possible cases for the angle ZP19oGPy3 = LP1,GW?2 + ZW?2GPy3, we
see that this angle must be either 813/2 or 13/2 + 7. Thus, G views the
segment PjsPa3 in either the angle 313/2 or 813/2 + 7, see Figure 3.7.

This generalizes to the following result central to Burmester’s theory of
linkage synthesis:

The Center-Point Theorem. The center point G of an RR chain that
reaches three positions M;, M;, and My views the relative poles P;; and
Pji, in the angle Bir/2 or Bix/2 + m, where Bi is the crank rotation angle
from position M; to M.
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Figure 3.7. The fixed pivot G of an RR chain views the poles P12 and P.3 in the
angle (13/2, where (313 is the crank rotation from position M; to Ms.

Another way of saying this is that 3;; is the central angle of the circle
circumscribing the triangle AP;;G P;;, measured counterclockwise from F;;
to P;i. For a given set of task positions the relative poles P;; are known,
and this theorem provides a condition on the possible locations of center
points.

3.3 Finite-Position Synthesis of RR Chains

We now consider the design of RR chains that reach a specific set of task
positions M;. The positions are specified by drawing each reference point
Dt and direction vector €, i = 1,...,n, on the background plane F.

The fixed pivot G of the RR chain is located in F' and attached by a link
to the moving pivot W in the moving body M. The moving pivot defines
the corresponding points Wt i =1,...,n, in each of the task positions.
The points W* must lie on a circle about G, because the crank connecting
the G and W has a constant length. Thus, the goal of the design process
is to find points in the moving body that have n corresponding positions
on a circle.

3.8.1 Two Precision Positions
Select a Moving Pivot

Given two positions M : (€}, D!) and M, : (€3, D?), a moving pivot W has
a second position W?2 in F. The fixed pivot G must lie on the perpendicular
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Gr

Figure 3.8. The fixed pivot G of an RR chain lies on the perpendicular bisector
of the segment W'W?2.

bisector of the segment W1W?2, Figure 3.8. Any point on this line can be
chosen as the fixed pivot of the chain with W! as the moving pivot. This
yields the following construction for an RR chain that can reach two task
positions:

1. Select any point in the moving body as the moving pivot W' and
determine its second position W? located in F.

2. Construct the perpendicular bisector Vis = (W'W?2)1. Any point on
this line can be used as the fixed pivot G.

For each choice of a moving pivot W1 there is a one-dimensional set of fixed
pivots G. Thus, there is a three-dimensional set of RR chains compatible
with the two positions.

Select a Fixed Pivot

Rather than select the moving pivot, it is may be preferable to select the
fixed pivot G and construct the associated moving pivot. To do this, we
locate the pole P;5 and determine the relative rotation ¢5 of the displace-
ment from M : (€1, D') to Ms : (€2, D?). For a specific choice of the fixed
pivot G the line V = GP;» must be the perpendicular bisector to the seg-
ment WIW? for all possible moving pivots W', Figure 3.9. This leads to
the following construction for the moving pivot:

1. Construct the pole Py and the relative rotation angle ¢,2 from the
two given positions M; and Ms.

2. Select any point in F’ as the fixed pivot G and draw the line V = GPy5.
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Figure 3.9. Given the fixed pivot G the moving pivot W' lies on a line through
Py2 at the angle ¢12/2 to the GP;s.

3. Duplicate the angle ¢12/2 on either side of V around P, to determine
the lines L' and L2

4. Choose any point on L' as the moving pivot W!. The circle about
Py,» with radius PjoW! intersects L? in the corresponding point W2,

The two-dimensional set fixed pivots combines with the one-dimensional
set moving pivots on the line L' to yield a three-dimensional set of RR
chains that reach a two position task.

3.83.2 Three Precision Positions
Select a Moving Pivot

Given three positions M; : (€;, D), i = 1,2,3, the moving pivot W! for M;
moves to the points W2 and W3 in the other two positions. The desired
fixed pivot G is the center of the circle through AWW?2W?2, Figure 3.10.
The construction for the fixed pivot given a moving pivot is

1. Select an arbitrary point W! in F to be the moving pivot and de-
termine the corresponding point W2 and W3 in positions My and
Ms.

2. Construct the perpendicular bisectors Vi = (W'W?2)L and Vy3 =
(W2W3)+.

3. The intersection of these lines is the fixed pivot G.
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Figure 3.10. For three specified positions the fixed pivot G is the center of the
circle through W', W2, and W3.

Notice that for every choice of the moving pivot there is a unique fixed
pivot. Thus, there is a two-dimensional set of RR chains compatible with
three task positions.

Select a Fixed Pivot

In order to determine a moving pivot W! given the fixed pivot for a three
position task we construct poles Pjs and P;3 and rotation angles ¢;2 and
¢13, Figure 3.11. Join G to these poles to define lines V12 and V;3 that are
the perpendicular bisectors of segments W!W? and W!W?2, respectively.
The moving pivot W! is constructed as follows:

1. Construct the poles Py and P;3 and the rotation angles ¢,2 and ¢;3.

2. Select a fixed pivot G and join it to the poles Pi» and P;3 by the
lines V2 and Vi3.

3. Duplicate the angle ¢12/2 on either side of Vi3 to define the lines Lt
and L2, and the angle ¢13/2 on either side of V;3 to define the lines
M! and M2

4. The intersection of the lines L! and M?! is the moving pivot W,

Thus, three-position synthesis yields a unique moving pivot for each fixed
pivot.
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Figure 3.11. For three specified positions the moving pivot W' can be constructed
using the selected fixed pivot G and the pole triangle.

3.8.8 Four Precision Positions

Given four positions for the moving body, the moving pivot takes the posi-
tions Wt,i = 1,2,3, 4. In general, these four points will not lie on a circle.
However, there are points in the moving body M that do have four corre-
sponding points W* on a circle. Burmester introduced graphical techniques
to find the centers for these circles, which define the desired RR chains.

The tool for this construction is the opposite-pole quadrilateral, which
is constructed from four of the six relative displacement poles, P;;, i <
7 = 1,2,3,4. The six poles are assembled into three opposite-pole pairs
that have no repeating subscript, that is, Pjo P34, Pi3 P34, and P4 Ps3. An
opposite-pole quadrilateral is formed by identifying any two opposite-pole
pairs as diagonals of the quadrilateral. For example, the opposite-pole pairs
P2 P34 and Pp4Ps3 are the diagonals of the opposite-pole quadrilateral
Q : P13 Py3 P34 P14. We can now state the following theorem:

Burmester’s Theorem. The center point of an RR chain that can reach
four specified positions in the plane views opposite sides of an opposite-pole
quadrilateral obtained from the relative poles of the given positions in angles
that are equal, or differ by .

Proof. From the center-point theorem we know that a center point G must
view the segment P;; P in the crank rotation angle B;1/2 or B /2 + .
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An opposite-pole quadrilateral is constructed so that opposite sides have
the form P;; P and Py, Pri. Thus, G must view opposite sides of the
opposite-pole quadrilateral in the angle 3;5/2 or 8;1x/2 + m, or one side in
the angle 3;;/2 and the other in 8;,/2 + 7. m

The following construction uses the opposite-pole quadrilateral to
generate a center point, Figure 3.12.

Construction of Center Points. Points that satisfy Burmester’s
theorem are obtained as follows:

1. Construct the opposite-pole quadrilateral Q : PioPa3 P3s P4 using the
relative poles of the four task positions.

2. Choose an arbitrary angle 0 and rotate the segment PioPas by this
angle about Pia to obtain Pj5. Construct a new location of P34 on a
circle about P14 such that Pj, maintains its original distance to Pj.
The result is a new configuration Q' of the quadrilateral Q.

3. The pole G of the displacement of the segment Pi3P3, relative to its
original location Pyg P34 satisfies Burmester’s theorem and is a center
point.

Proof. Let G be the intersection of the perpendicular bisectors V; =
(Pa3Pj3)t and Vo = (P34 P4,)t that are used to define the pole of the dis-
placement of the segment P»3P34. The input RR chain formed by PisPs3
has the dyad triangle AP,3P2G. Let & be the rotation of Py3 P34 to P3Py,
around G, then G must view the segment P;2 Ps3 in the angle k/2 or k/2+,
depending on form of the dyad triangle. Similarly, the geometry of the dyad
triangle A P34 P14G requires that G view the segment Pj4Ps4 in either /2
or k/2 + m. Thus, the pole G views the opposite sides PysPo3 and P4 Py
in angles that are equal, or differ by 7. The same argument shows that G
views the other two sides Py3P34 and P15 P4 in angles that are equal, or
differ by 7. Thus, G satisfies Burmester’s theorem. ]

Once a center point is obtained by this construction, any three of the
four positions can be used to construct the associated moving pivot. The
result is an RR chain that reaches the four specified positions.

Notice that for a given increment of rotation of the crank PioPs3 of the
opposite-pole quadrilateral there are actually two center points, one for
each assembly of the quadrilateral as a linkage. The relative poles obtained
from all of the configurations of the opposite-pole quadrilateral form a cubic
curve known as the center-point curve.

3.8.4 Fwe Precision Positions

Burmester’s theorem can be used to identify center points for RR chains
that reach five specified task positions for a moving body. This is equivalent
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AN

Figure 3.12. A fixed pivot G for four specified positions is constructed using the
quadrilateral formed by the poles P2 P23 P34 P4.

to finding points W*, i = 1,...,5, that lie on a circle. Given M; : (&;, D?),
1=1,...,5, construct two opposite-pole quadrilaterals Q14 : Pi2 P33 P34P14
and Q15 : P12 Po3 P35 Pis. Associated with each opposite-pole quadrilateral
is a center-point curve. The intersection of these two curves is a finite
number of points that are the desired center points, known as Burmester
points. We will see later that there are at most four Burmester points,
therefore there can be at most four RR chains that reach the five task
positions.

While the constructions for two- and three-position synthesis are easy
and convenient, four- and five-position synthesis problems are more
efficiently solved using the algebraic techniques presented in a later chapter.

3.4 The Geometry of the PR and RP Chains

A PR chain consists of a prismatic joint connected by a link to a revolute
joint, which in turn is attached to a moving body. The prismatic joint
guides the moving pivot of the PR chain along a line in the fixed frame.

The design of a PR chain that reaches a specified set of goal positions M;,
i=1,...,n, requires finding the moving pivot W! that has corresponding
positions Wi, i =1, ..., n, that lie on a straight line. Because every point in
the connecting link of the PR chain has a trajectory parallel to the slider,
it is the direction of this line that is important, not its location. Notice
that the moving body can rotate as required about the hinged R joint of
the chain.
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The RP chain has a prismatic joint attached to the moving body and a
revolute joint as the connection to the fixed frame. From the point of view
of the moving body the various positions of the revolute joint G must lie on
a line in all the goal positions. This is an inversion of the design problem
for the PR chain.

3.4.1 Finite-Position Synthesis of PR Chains
Two Precision Positions

Given two positions of the moving body M; and M;, we select the moving
pivot W' and find the corresponding position W?2. These two points define
the direction of the prismatic joint parallel to W!W?2. For any choice of a
moving pivot there is a unique PR chain. Thus, there is a two-dimensional
set of PR chains that reach two specified positions.

It is possible to choose the direction of the prismatic joint and determine
the associated moving pivot. Let the pole of the relative displacement from
M to M5 be P15 and determine the relative rotation angle ¢2.

1. Draw a line s in the direction of the slider and drop a perpendicular
line V from the pole P;5 to §.

2. Now duplicate the angle ¢15/2 on either side of V to define the lines
L' and L.

3. The two positions of the moving pivot W! and W? are the
intersections of L' and L? with &

Three Precision Positions

For three task positions M;, i = 1,2,3, we seek a moving pivot W' that
has the property that the three corresponding points W', W2, and W3 lie
on a straight line in £'. We now show that to have this property W1 views
the side P;3P;2 of the pole triangle in ¢q3/2.

The Slider-Point Theorem. Given three positions My, My, and M3, a
point that has three corresponding positions W', W2, and W3 on a line §
has the property that the angle measured counterclockwise from P to Pj;
around W* is LPikWiPZ-j = ¢jr/2, where ¢ is the relative rotation for
each displacement.

Proof. If the points W', W2, and W3 lie on a line, then the perpendic-
ular bisectors V12, Vi3 are parallel to each other and perpendicular to
the line along s. Recall from the properties of a pole that the angle mea-
sured counterclockwise from P;;W* to the perpendicular bisector V;; is
¢ij/2. Let Vi; be the midpoint of the segment W*W7, and consider the two
right triangles APjoViaW! and AP;3Vi3W! that share the vertex W'. As-
sume first that ¢12 + @23 < 27, which means that ¢13/2 > ¢12/2. Then
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considering the various configurations available for these triangles we find
ZP13W1P12 = ¢23/2. On the other hand, if ¢12—|—¢23 > 271', then ¢13/2 > T
and the vertex angle of the triangle AP;3VisW?! at Pi3 is ¢13 — w. This
case yields the same result ZPisW! Py = a3 /2. O

The points that view the segment Py3P;5 in the angle ¢o3/2 form a circle
Cq. This circle can be obtained as the reflection through of N; = Py P53
of the C* that circumscribes the pole triangle A Pys Pog Pi3. We can define
similar circles Co and Cs as reflections of C* through the line Ng = P9 Pog
and N3 = P13P23, reSpectively.

The three circles C;, 2 = 1,2, 3, intersect each other at the point H called
the orthocenter of the pole triangle. This point is also the intersection of
the altitudes dropped from each vertex of the pole triangle to the opposite
side. Each line 5 through H intersects the three circles C; in the points W,
¢t = 1,2,3. These three points are the three locations of the moving pivot
of an PR chain as the slider moves along the line s.

The following construction yields the moving pivot W1 that has three
positions on a line s

1. Given three positions, determine the pole triangle APy Po3Pi3 and
construct its circumcircle C*.

2. Reflect this circle through the side Ny = Py2 P13 to obtain C;, which
is the set of points available to be the moving pivot W1,

3. Construct the orthocenter H of the pole triangle as the intersection
of the altitudes of the pole triangle.

4. Either choose a line s through H and find its intersection with C; to
determine W1, or choose W' on C; and construct 3 as its join with
H.

5. The remaining positions W?2 and W? are obtained as the intersection
of § with the circles Cy and Cs.

The result is that for three positions of the moving body there is a
one-dimensional set of PR chains.

Four Precision Positions

Given four positions of the moving body, we have six poles that can be
assembled into six pole triangles. Choose two of these triangles, for example
APy Py3sPi3 and A P9 Py Py, and construct their two orthocenters Hiog
and Higq. The line § = Hio3H124 joining these orthocenters contains the
four corresponding points W% i = 1,...,4. To determine W, intersect §
with the circle C; described in the previous section. The remaining points
W?2, W3, and W* are obtained from the intersections with the appropriate
circles C;, 1 = 2, 3, 4.
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Thus, there is a single PR chain that can reach four arbitrary positions
of a moving body.

3.4.2 Finite-Position Synthesis of RP Chains

To design an RP chain, we invert the design process for a PR chain. Our goal
is to construct the point G that has the inverted positions ¢*, i =1,...,n,
lying on a straight line as seen from the moving body. Each inverted location
g® is constructed using the pole and rotation angle of the relative inverse
displacement obtained from the task positions.

Two Precision Positions

Given two positions of the moving body M; and Ms, we can compute the
relative pole Pj5. Choose any point in the plane to be g, which coincides
with G in position M;. Compute the second position g by a rotation of
—¢12 about Pj3. The line through these two points determines the direction
of the prismatic joint in M. There is a unique RP chain for each choice of
the fixed pivot.

Rather than select the point G, we can choose the direction of the line §
parallel to the prismatic joint. The construction is essentially identical to
that for a PR chain:

1. Draw a line § in the direction of the slider and drop a perpendicular
line V from the pole P;5 to s.

2. Now duplicate the relative inverse rotation angle —¢12/2 on either
side of V to define the lines L' and L.

3. The inverted positions of the fixed pivot g' and g¢g? are the
intersections of L' and L? with &.

Three Precision Positions

For three task positions M;, ¢+ = 1,2,3, we now seek fixed points that
have the inverted locations g', ¢2, and ¢3 that lie on a straight line in
M . The pole triangle associated with the relative inverse displacements is
AP12P213P13. It is the reflection through the side Ny = Py2 P13 of the pole
triangle A P;o Py3 P13 obtained from the task positions.

The slider-point theorem shows ¢! must view the side Pi5P;3 of the pole
triangle in the relative inverse rotation angle —¢s3/2. Similarly, g% must
view Pi2P); in the angle —¢13/2 and g® must view Pij3P); in the angle
—p12/2.

Introduce the circumcircle K* of the image pole triangle APy Py, P3.
This circle is reflected through the side Ny = P52 Pi3 to define K. This
circle is the reflection of the circle C; obtained in the previous section, and
happens to be the circumcircle C* of the original pole triangle. In fact, it is
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the circle C; that forms the circumcircle of the inverted pole triangle, now
denoted by K*. The point g? lie on the circle Ky that is the reflection of
K* through the line Ny = P15 P35. And finally, g lies on the circle K3 that
is the reflection of £* through the line N3 = P;3Py5.

The three circles K;, © = 1,2, 3, intersect each other at the orthocenter h
of the image pole triangle. Each line s through h intersects the three circles
K; in the points ¢g*. These are the inverted locations of the fixed pivot G
that lie on the line s.

Thus, we have the following construction for the inverted point g' that
has with three corresponding positions on a line s as seen from M:

1. Given three positions, determine the inverted pole triangle A P12 Py; Pr3
and construct its circumcircle C*.

2. Reflect this circle through the side N; = P12 P13 to obtain K; that is
the set of available points for g!.

3. Construct the orthocenter h of the pole triangle as the intersection
of the altitudes to AP12P213P13.

4. Either choose a line § through h and find its intersection with C; to
determine g', or choose g' and construct s as its join with h.

5. In F the fixed pivot G is g' the direction of 5 in each position is
obtained by constructing the location of h in each of the positions
M2 and Mg.

The result is a one-dimensional set of PR chains given three task positions
for the moving body.

Four Precision Positions

The construction for the RP chain through four specified positions is the
same as for the PR chain presented above. The only difference is the use
of the image pole triangles APysP); P13 and AP P}, Py4. Construct the
two orthocenters hi23 and hi24. Then the line s joining these orthocenters
contains the four corresponding points ¢*, i« = 1,...,4. To determine ¢!
intersect s with the circle K1 as shown in the previous section. The result
is a unique RP chain.

3.5 The Design of Four-Bar Linkages

Planar four-bar linkages are formed by connecting the end-links of any two
of the RR, PR, and RP chains. If both chains are designed to reach a given
set of task positions, then the four-bar chain can be assembled in each of
these positions.
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Figure 3.13. Two-position synthesis of a 4R chain is obtained by constructing two
different RR open chains and connecting their end-links.

The 4R linkage is constructed by rigidly connecting the floating links of
two RR chains, Figure 3.13. Because as many as four RR chains may exist
that can reach five positions, at most (;), or six, 4R linkages exist that also
reach these positions. For fewer than five task positions, the dimensionality
of the space of 4R linkages is twice the dimensionality of solutions for the
RR chains.

The RRRP linkage is formed by connecting the floating links of an RR
and PR chain. For four task positions there is a one dimensional set of
RRRP linkages. They are obtained from the single PR chain and the one
dimensional set of RR chains obtained from the center-point curve. For
the cases of two and three task positions there are, respectively, five- and
three-dimensional sets of RRRP chains.

A two-dimensional sct of double-slider PRRP linkages can be con-
structed for three task positions. Two task positions have an associated
four-dimensional set of these linkages.

Four-bar linkages have one degree of freedom, and therefore require only
one actuator. However, the interaction of the two chains forming the linkage
can generate singular configurations that introduce limits to the movement
of the system.
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Figure 3.14. Design a 4R linkage to move the cover.

3.6 Summary

In this chapter we have presented graphical techniques for the design of
planar RR and PR chains. The geometry of the pole triangle and the center-
point theorem that arise in this study are central to the geometric theory
of linkage design. In the following chapters we develop an algebraic formu-
lation to broaden the application of these results, and to lay the foundation
for their generalization to the design of spherical and spatial linkages.

3.7 References

Our approach to the design of linkages is called the design of a guiding
linkage by Hall [32], rigid body guidance by Suh and Radecliffe [92], motion
generation by Sandor and Erdman [83], and finite-position synthesis by
Roth [77]. Tt is inspired by ideas introduced by Ludwig Burmester [5] for
planar movement and Arthur Schoenflies [84] for spatial movement. Also
see Beyer [3]. The texts by Hartenberg and Denavit [36], Hall [32], and
Kimbrell [43] provide detailed development of graphical linkage synthesis.
The use of the opposite-pole quadrilateral to construct the center-point
curve can be found in Luck and Modler [49).

3.8 Exercises

1. Figure 3.14 shows two goal positions for the cover of a box. (i) Con-
struct the pole of the displacement; then (ii) design a 4R linkage to
move the cover from one position to the other. Place the fixed pivots
inside the box and attach the moving pivots outside the boundary of
the cover.
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M,

Figure 3.15. Design a 4R linkage to move the scoop so it clears the obstacle.

2.

Use three-position synthesis to design a 4R linkage to move the
scoop in Figure 3.15 from the first position to the third. Choose the
intermediate position M, so that it clears the obstacle.

. Reflect a point A* through each side of the pole triangle AP, Py3 P53

to obtain A%, i = 1,2, 3. Show that these points are correspond to the
same point A in M for each of the positions M;, i = 1,2, 3. The point
A* is called the cardinal point associated with a point in M.

Show that the circle that circumscribes a pole triangle is the set of
cardinal points for those that have three positions on a straight line.

Show that the orthocenter H* of the pole triangle is the cardinal
point for a point that has its three positions H*, ¢ = 1,2, 3, on the
circumscribing circle of the pole triangle.

Assume that five points are given as five of the six relative position
poles associated with four task positions, M;,i = 1,...,4. Suppose
the missing pole is Py4. Construct this pole as the common vertex of
the two pole triangles APyy Py Py5 and APy P34 P23.

Let the points Py, Ps3, P34, and Py4 be the relative poles for four
positions M;, ¢ = 1,...,4. For a fifth point to be the pole P35
it must form the two pole triangles AP;32P;3P13 and PyyPssPs3.
Show that P;3 must view the opposite sides of the quadrilateral
Q : P9 Py3P34 P14 in angles that are equal, or differ by 7. The set
of points with this property is called the pole curve.



4

Planar Kinemadtics

In this chapter we study the geometry of planar displacements. The position
of a moving body is defined by a coordinate transformation. Associated
with each of these transformations is an invariant point called the pole of
the displacement. We examine the relationship between relative positions of
points in the moving body and the location of this pole. We also consider
the triangle formed by the poles of two displacements and the pole of
their composite displacement. The geometry of this triangle describes the
relationship between the three displacements.

4.1 Isometry

We are concerned with the movement of bodies in the plane such that
the distances between points in the body are unchanged. A transformation
with this property is called an isometry. The measurement of distance is
given by the usual distance formula, which is also known as the Fuclidean
metric in the plane.

Consider the two points P = (P, P,)T and Q = (Q.,Q,)7T in a fixed
frame F'. The distance between these points is the magnitude of the vector
Q — P, given by

Q-P|=/(Q:— P+ (Q, - P, (4.1)
Square both sides of this formula to obtain the Pythagorean theorem

Q- P> =(Q. — Px)* +(Qy — )" (4.2)
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Using vector notation, this equation can be written

Q-P*=(Q-P)-(Q-P), (4.3)

where the dot denotes the scalar product between two vectors. It is useful
to consider the vector Q — P as a column matrix, so that the scalar product
can also be written as the matrix product

Q-PPP=(Q-P)"(Q-P) (4.4)

In order to study the movement of a body we attach a coordinate frame
M to it and determine the position of this frame relative to a fixed co-
ordinate frame F. Assume that initially M coincides with F. Then a
displacement of the body moves M so it takes the position M’ relative
to F. This displacement is defined by a transformation of coordinates from
M’ to F. In addition, because the transformation is an isometry, the dis-
tances between points in M’ are the same as when measured in F'. Planar
displacements are composed of planar translations and rotations.

4.1.1 Planar Translations

Let the coordinates of a point in the moving body M be denoted by the
vector x = (z,y)T, and let the coordinates of the same point in F' be
X = (X,Y)T. If the moving frame M coincides initially with F, then for
every point in M we have X = x. Now add a constant vector d = (d,d,)7
to the coordinates of all the points in the body in order to translate it to
a new position M’ relative to F, that is,

X =x+d. (4.5)

The vector x defines a point in the initial position and X is the coordinate
vector of this point after M is translated to the new position M’.

To see that a translation is an isometry, we compute the distance between
two points before and after the translation. If p and q are the coordinates
of two points in M, then in the position M’ we have P = p + d and
Q = q + d. Compute the distance |Q — P| to obtain

Q—-P|=[(q+d)—-(p+d)|=]|q-Dpl (4.6)

Thus, the distance between these points is the same before and after the
translation.

4.1.2  Planar Rotations

The rotation of a body relative to the fixed frame F' can occur around any
point. However, for now we consider only rotations about the origin O of
F. Let M be aligned initially with F', then a rotation about O introduces
an angle ¢ between the z-axis of F' and the z-axis of the rotated frame
M'. Thus, a rotation changes the direction of the unit vectors 7 = (1,0)7
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and 7= (0,1)T along the = and y axes of M so they are directed along the
coordinate axes of M’.
Let e, and e, be the unit vectors along the z- and y-axes of M’, then

e, =cos¢r+sin¢y and e, = —sin ¢+ cos ¢J. (4.7)
The rotation from M to M’ transforms the vector x = z7'+ y7 into
X=X7+Y7=1ze, +ye,. (4.8)

This can be written in matrix form as
X| |cos¢ —sing| |z
{Y} N [singb cos ¢ ] {y}’ (4.9)

X = [A(¢)]x. (4.10)

Notice that the first column of the 2 x 2 matrix [A(¢)] is simply e, and
the second column is e,. All planar rotations about the origin of F' can be
written in this way, and the matrix [A(¢)] is called a rotation matriz and
¢ the rotation angle.

We now show that rotations preserve the distances between points. Let
p and q be the coordinates of two points in M, and let P and Q be their
coordinates in F' when M is rotated to the position M’. We can compute

Q-P*=(Q-P)"(Q-P) = ([Ala— [4p)" ([Aa - [4la)
(q —p)"[AT][A](q - p). (4.11)
The last step uses the linearity of matrix multiplication, [A]q — [A]p =

[A)(q - p).
Notice that |Q — P| = |q — p| only if the matrix [A] has the property

[AT)[A] = [1, (4.12)

where [I] denotes the 2 x 2 identity matrix. This is equivalent to saying

that the transpose of [A] is also its inverse, that is, [A~!] = [AT]. Matrices

with this property are called orthogonal, because their columns must be

orthogonal unit vectors. The columns of [A(¢)] in (4.9) are the orthogonal

unit vectors e; and e,, so a planar rotation is an isometry.

The product of two planar rotations [A(¢;)] and [A(¢2)] is the rotation
of angle ¢1 + ¢2, that is,

[A(91)][A(¢2)] = [A(d1 + ¢2)]. (4.13)
From this relation, we see that the inverse of [A(¢)] is the rotation by the

angle —¢, and [A(¢)"] = [A(-¢)].

or

4.1.8 Planar Displacements

A general planar displacement consists of rotation of the coordinate frame
M to M’ followed by a translation of M’ to a position M". Rather than
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Figure 4.1. The fixed and moving frames defining a planar displacement.
distinguish between its initial and final positions, M and M", we assume
that the moving frame is always aligned initially with F', and denote the

final position by M, Figure 4.1. Thus, the displacement that defines the po-
sition of the moving frame M relative to the fixed frame F’ is the coordinate

transformation
X __|cos ¢ —sin ¢ T dm
{Y} - [Sin¢ COS¢:| {y} +{dy}7 (414)

X = [A(¢)]x + d. (4.15)

or

It is convenient to assemble the rotation matrix and translation vector into
the single 3 x 3 matrix [77], so equation (4.14) takes the form

X cos¢p —sing 0O [z
Y }=|sin¢g cos¢p 0|y, (4.16)
1 0 0 1 1
or
X = [T]x. (4.17)

The context of our calculations will make it clear whether we consider the
coordinate vectors X and x have a third component of 1. We use the matrix-
vector pair [T'] = [A(¢),d] to define the position of the moving frame M
relative to F'.

Complex Vectors

Complex numbers provide a convenient way to manipulate the coordinates
of points in the plane. Let the coordinate vector X be the complex number
X = X + iY, where i is the imaginary unit (2 = —1). A translation by
the vector d is defined by complex addition, so X = x + d. Rotation by
the angle ¢ is achieved by multiplication by the complex exponential e®?,
X = e"x. Thus, a general planar displacement is defined by the equation

X =ex 4 d. (4.18)
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The advantage of using complex numbers lies in the ease of manipulating
the complex exponential €', as opposed to the rotation matrix [A(¢)]. For
example, the product of two rotations e*®* and e*®? is seen to be e*(®1+#2)
and the inverse of €'? is e 7*?.

4.1.4 The Composition of Two Displacements

Two planar displacements can combine to define a third displacement
called the composition of the two displacements. Consider [T}] to define
the displacement from F' to M, so we have

X =[Ai]y +di = [Th]y. (4.19)

Notice that y is in M; and X is in F'. If the displacement [T3] defines the
position of M> relative to M7, then we have

y = [A2]x + do = [To]x, (4.20)

where x is in Ms. The composite displacement from F' to M, is obtained
by direct substitution

X = [AlAZ]X + d1 + A1d2 = [Tl] [TQ]X. (421)

This computation defines a product operation [13] = [11]{12] for
displacements given by

T1][Ts] = [A1,d4][A2,d1] = [A1 A2, dy + Ardy]. (4.22)

The wnverse displacement is obtained by solving for x in M in terms of
the point X in F', that is,

x = [A(@)TX — [A($)T)d = [T7X. (4.23)
Thus, the inverse of a displacement [T'] = [A(¢),d] is
171 = [A(9)T, —A(9)"d]. (4.24)

The composition of a displacement with its inverse yields the identity
displacement [I] = [I, 0.

Changing Coordinates of a Displacement

Consider the planar displacement X = [T]x that defines the position of M
relative to '. We now consider the transformation [1”] between the frames
M’ and F’ that are displaced by the same amount from both M and F.
In particular, let [R] = [B,c] be the displacement that transforms the
coordinates between the primed and unprimed frames, that is, Y = [R]X
and y = [R]x are the coordinates in F' and M’, respectively. Then, from
X = [T]x we can compute

Y = [R|[T][R ]y (4.25)
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Thus, the original displacement [T] is transformed by the change of
coordinates into [T"] = [R][T][R™}].

4.1.5 Relatwe Displacements

Consider two positions M; and M of a rigid body defined by the displace-
ments [11] and [T»] relative to F. Let X = [I1]x and Y = [T3]x, where
both M; and M, initially coincide with F. The transformation [775] that
carries the coordinates X of M; in F' into the coordinates Y of M, in F'is
defined by

Y = [T12]X,
or
[TQ]X = [Tlg] [Tl]X. (426)
Thus, [T12] is given by
[T12) = [T [T, (4.27)
This defines the relative displacement from M, to M; measured in F'.
The relative rotation and translation components of [T43] = [A12,d12] are
determined by the rotation and translation components of [11] = [41,d;]
and [Ty] = [Ag,d2]. Expand the composition of these displacements to
obtain
[T12] = [A12,d12) = [A24],dy — Ay AT d4]. (4.28)

If the rotation angles of these displacements are ¢; and ¢4, respectively,
then we see that the rotation angle of [A;3] is ¢p12 = o — @1.

For a set of positions [1;] = [A(¢i),d;], i =1,...,n, of a moving body M
measured in F', we have the relative displacement [T}x] = [Tk][Tj_l] given
by

Ti) = [Ajr, dji] = [AkAJT,dk - AkAJde]a (4.29)

where

Gk = G — ¢j, (4.30)

is the relative rotation angle.

The complex exponential simplifies the calculation of the rotation terms
in these transformation equations. In particular, the relative displacement
[T15] = [e*®12,d 5] is given by

[T12) = [TR)[T7 1] = [€"%2, da][e ™", —e*?1dy]
— [6i¢12, d, — 6i¢12d1]_ (4.31)
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4.1.6 Relative Inverse Displacements

The inverse [T~!] of a displacement [T] defines the position of F measured
relative to the moving frame M. Given two positions of a moving body M;
and M, defined by the displacements [1}] and [T5], then [T, '] and [T} *
define displacements that locate the fixed frame in two positions F} and
F5 relative to M. We now consider the relative inverse displacement from
F1 to F2 in M.

Let X be a point in F' that corresponds to x in M7 and y in Ms. Then,
we have x = [I7YX and y = [T, }]X. The relative displacement [1},]
transforms the coordinates in F] to coordinates in F5 measured in M, that
is,

y = [TITZ]Xa
[Ty x = [Th][T] Y% (4.32)
Thus, [T},] is given by
[T1,) = [T5 1[T). (4.33)

This is called the relative inverse displacement. The formula for the rotation
and translation terms of [T,] is obtained as

[Tsz] - [AIZa diz] - [AgAla —Ag(dZ - dl)]- (4-34)

Notice that this is not the inverse of the relative displacement [T%2], which
would be [T1][T5 ).

Associated with the set of positions M;, i =1,...,n, is the set of relative
inverse displacements [T;] Each of these transformation is defined from
the point of view of the moving frame M. We can choose a specific position
M in F' and transform the coordinates of the inverse displacement [TZL] to
obtain

T3] = [TTLIT; . (4.35)

This is known as the image of the relative inverse transformation for
position M, in F.

If M; is one of the frames of the relative inverse displacement, that is
Jj =1, then we have

(T3] = (LT T = [T ] = [T (4.36)

This is also true for j = k. Thus, for j = ¢ or j = k, the image of the relative
inverse displacement [77,] is the inverse of the relative displacement.
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4.2 The Geometry of Displacement Poles

An important feature of any transformation is the set of points that it
leaves invariant. For a general planar displacement there is a single point
that has the same coordinates in M and in F'. This point is called the pole
of the displacement. A planar displacement is equivalent to a pure rotation
about this pole.

4.2.1 The Pole of a Displacement

Let P be the coordinates of a point that are unchanged by the planar
displacement [T] = [A(¢), d], that is,

P = [A(¢)]|P + d. (4.37)
We can solve this equation to determine the coordinates of P as
P =[I - A(¢)])"'d. (4.38)

Notice that if the displacement is a pure translation, then A = I and [I — A]
is not invertible. In this instance the pole is said to be at infinity in the
direction orthogonal to d.

For the case of a nontrivial 2 x 2 rotation matrix [A], the matrix [ — A]
is always invertible. This is not the case when [A] is a 3 x 3 rotation matrix,
as we will see for spatial rotations.

The pole p of the inverse displacement [T—1] = [AT, —ATd] can be de-
termined by substituting the inverted rotation and translation into (4.38).
The calculation

p=—[[ AT AT = [I - A@)] 'd=P  (439)

shows that [T] and its inverse [T~!] have the same pole P.
The formula (4.38) can be used to define the translation component of
the displacement in terms of the coordinates of the pole, that is,

d=[I — A(¢)|P. (4.40)

Thus, a planar displacement [T] = [A(¢), d] can be defined directly in terms
of a rotation angle ¢ and pole P such that

[T(¢,P)] = [A(¢), [I - A($)IP]. (4.41)

Let the translation vector d be defined in terms of the coordinates of the
pole, so the coordinate transformation (4.14) becomes

X = [A(@))x + [ — A($)IP. (4.42)

Rewrite this equation in terms of vectors X —P and x— P measured relative
to the pole to obtain

X — P = [A(¢)](x — P). (4.43)
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This shows that the displaced position X of any point x is obtained by ro-
tating the vector x — P by the angle ¢. Thus, a general planar displacement
is a pure rotation about its pole.

4.2.2  Perpendicular Bisectors and the Pole

Because the relative vectors x — P and X — P are related by pure rotation
(4.43) their magnitudes | X —P| and |x—P| must be equal. This is equivalent
to the statement

(X -P)2 - (x—P)*=0. (4.44)

Consider this to be the difference of two squares using the scalar product
and factor to obtain

(X—xy(X;X—P):Q (4.45)

Notice that V. = (X + x)/2 is the midpoint of the segment X — x, and
V — P is the vector from the pole to V. This allows us to interpret (4.45)
geometrically as stating that V — P is the perpendicular bisector of X — x.
Thus, because this equation is true for any point x, we find that the pole P
lies on the perpendicular bisector of every segment joining the initial and
final positions of points in a displaced body.

This last result provides another way to compute the pole of a planar
displacement. Let r, R and s, S be two sets of initial and final positions of
points associated with a displacement [T']. Then these points satisfy (4.45)

and we have
R
(R—m-( ;r—P):&

@—sy<S;S_P):a (4.46)

These two equations expand to define two linear equations in the
coordinates of P, which are easily solved.

For a general point x in M the triangle AxPX is isosceles with the
rotation angle ¢ at the vertex P. The altitude of this triangle is the
perpendicular bisector V — P, therefore

o _1X-V]|

tan — =

= ) 4.4
2= V_P| (447)

Introduce the operator k x, which performs a rotation by 90° in the plane.
Then we have

X —V =tan =k x (V — P). (4.48)

N |-
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Py
__;4 >

Figure 4.2. The relative pole P12 of the two positions M; and M,.

Replace the midpoint V by its definition in terms of the vectors x and X
in order to obtain Rodrigues’s equation in the plane,

X —x = tan gl_c'x (X +x—2P). (4.49)

4.2.83 Pole of a Relative Displacement

The pole of the relative displacement from M; to M, is an important
tool in linkage design. This pole P, is found by applying (4.38) to the
transformation [T12] = [A(¢12),d12]. This can be written in terms of the
components of the two displacements [T] and [T3] as

Py = [I — A(¢12)] 7' (d2 — A(¢12)dy). (4.50)

Recall that ¢4 is measured from the z-axis of M; to the z-axis of M,.
The relative translation vector d,3 is given in terms of the pole P2 by
the relation

d12 = [I - A(¢12)]P12. (451)

This can be substituted into the transformation equation (4.29) and
simplified to yield

X% - Py = [A(d12)](X! = P1a). (4.52)

Thus, the relative displacement is a pure rotation about the relative pole,
Figure 4.2.
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From the fact that the magnitudes of X! —Pys and X! — P45 are equal
we have

(X% —Ppp)? — (X' = Pp)2 =0, (4.53)
which can be manipulated into the form
X%+ X!
(X2 -XxX1. <+ — P12> =0. (4.54)

Thus, the relative pole P4 lies on the perpendicular bisector of the segment
xX? - x',

For a general pair of positions M; and M} defined by transformations
T3] and [T}] we have

ij = [I — Ajk]_l(dk — Ajkdj). (4.55)

The relative displacement [T}] is a rotation about the pole P .

4.2.4 The Pole of a Relative Inverse Displacement

The pole p;; of the relative inverse displacement [T:k] is located in M and
given by (4.50) as
P = [ — Al ] 7'l = —[A — A7 (de — d). (4.56)

The relative angle of rotation about p,; is —¢;k, where ¢ = dr — ¢; is
the angle of M}, relative to M,;.

We now compute the point in F' that corresponds to p,, when the body
is in position M. This point P/, is the image of the pole p;;, and is called
the image pole in the jth position. A formula for PJ, is obtained by using
the transformation [T};] = [4,,d;] to compute

P}, = [T}lpix = [As; — Aj] ' (dr — di) + d;. (4.57)
When j = i, the image pole P, is given by
o= —Ay] N dy —dy) +d; = [I — Aje] 1 (di — Aird;) = Py (4.58)

Thus, the image pole P!, is the pole Py for all k. A similar calculation
shows that Pfk = P, for all positions 1.

4.3 The Pole Triangle

4.8.1 The Pole of a Composite Displacement

The poles of two displacements [1,] and [1}] form a triangle with the pole
of their composition [T,.] = [T3][1,]. Let o and 3 be the rotation angles of
[1,) and [T3], respectively, and let v be the rotation angle for [1¢]. If we
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Figure 4.3. The triangle formed by three points A, B, and C.

write these transformations in terms of the coordinates of the poles, we
have

[A(), I = AM)IC] = [A(B), [I — A(B)|B] [A(a), [I — A(a)]A].  (4.59)

Expand this expression and equate the rotation and translation terms to
obtain

[A(y)] = [AB)[A(e)] = [A(B + o)),
[ = A()]C = [I = A(B)|B + [A(B)]l] — A(a)]A. (4.60)

The first equation states that v = 3 + a. The second provides a formula
for the pole C in terms of the coordinates of the poles B and A. We will
see that this second equation is the formula for a planar triangle with « /2
and 3/2 as the angles at the vertices A and B.

The computation of the product [1;] = [13][1%] is simplified by using
complex vectors, that is,

[, (1 — e7)C] = [, (1 — ”)B][e™, (1 — &™) A], (4.61)
which expands to yield
e’ = ewem,
(1—e")C = (1 —e®)B+¢eP(1 — e'@)A. (4.62)
We have already seen that the rotation terms yield v = o + 3. The second

equation is the complex number form of the equation of a triangle formed
by the poles A, B, and C, Figure 4.3.

The Composite Pole Theorem

A fundamental result in the geometry of planar displacements is the re-
lationship between the vertex angles of the triangle formed the poles of a
composite displacement and its two factors and the rotation angles of these
displacements.

The Composite Pole Theorem. The pole C of a composite displacement
[T(,C)] = [T(B8,B)][T(a, A)] forms a triangle with the poles B and A. If
a+ [ < 2w, then a/2 and B3/2 are the interior angles at the vertices A and
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B, respectively, and /2 is the exterior angle at C. If « + 8 > 27, then
a/2 and (3/2 are the exterior angles at A and B. Denote by k the interior
angle at C, then v/2 = k + 7.

Proof. The two cases are distinguished by the location of C relative to the
segment BA. If the sum of « and f is less than 27, then C lies to the left
of the directed segment BA, in which case the angle ZABC is less than 7.
If the sum of « and [ is greater than 2w, then the angle ZABC is greater
than 7 and C lies to the right of BA. We consider these cases separately:

Case 1. a+ (<27

In this case the angles «/2 and (3/2 are the interior angles of AABC at
the vertices B and A. The exterior angle at C is v/2 = «/2 + 8/2. The
vector C — B defining one side of this triangle can be obtained by rotating
the vector A — B by the angle 3/2 and rescaling it using the law of sines.
The result is
C-B-— (Sm—2) ¢i0/2(A — B). (4.63)
sin

(r- 3

Use the identities

1 , _ _
sin /2 = 2—(1 — e e /2 and Sin(Tr 5 7) = siny/2 (4.64)
i
to obtain the formula
(1—e")C = (1-e¥)B+eP(1—e)A. (4.65)

This equation is identical to (4.62) and defines the vertex C in terms of
the vertices A and B and their interior angles.

Case 2. a+ (3 > 2m

In this case the angles /2 and (/2 are the exterior angles at the vertices
B and A. The interior angle at C is kK = «/2 + 3/2 — 7. The side C — B
of this triangle is obtained by rotating A — B by the angle 3/2 and then
rescaling its length by using the sine law. The result is

C-B=-— (%) e’¥/2(A — B). (4.66)

Now, notice that sin(m — a/2) = sin /2, therefore this equation becomes
identical to (4.63) for v/2 = k + m, that is, sin(y/2 — ) = —sin~y/2.

The result is that in both cases we obtain (4.65), which is exactly the
equation defining the composite translation (4.62). O

4.3.2  The Triangle of Relative Displacement Poles

Given three positions of a body M;, ¢ = 1,2,3, we have the three relative
displacements [T12], [T23], and [T13] between pairs of these positions. The
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Figure 4.4. The pole triangle AP12P23P13 with sides N1, N2, and Ns.

product [T3][T12] is the relative displacement [T13] as can be seen from
[T23)[T12] = ([T3][T5 D)) = [B][T7 1] = [Tas)- (4.67)

Thus, the three relative displacement poles are related by the composite
pole theorem, and we have

(1 —e"13)P 3 = (1 — e'?23)Pyg 4 923 (1 — €'912) Py, (4.68)

This is the equation of the pole triangle.
For a general set of three positions M;, M;, and M, we have the relative
transformations [T;;] = [Tx][T3;] and the pole triangle

(1 — "% Py = (1 — €“97%)Pyp, + P75 (1 — €99 Py;. (4.69)

The composite pole theorem shows that each of the poles P;;, P, and
P, views the opposite side of the triangle of relative poles in angles directly
related to one-half of the associated relative rotation angle, Figure 4.4.

4.3.83 The Image Pole Triangle

Consider relative inverse displacements associated with three positions M;,
M;, and M. Let M be in position M; and transform coordinates to obtain
the image of the relative inverse displacements, [17;], [T}, ], and [T}, ]. Notice
that

[ fk] - [T;k”T;y] (4-70)
The composite pole theorem yields the equation of the image pole triangle
(1 — e )Pl = (1 — e "%%)P%, + "%k (1 — e 7% P}, (4.71)

Compare this to the pole triangle for three relative displacements (4.69).
Recall that P%, = P;; and Pﬁj = P;; are the poles of the original relative
displacements. Thus, the image pole P;-k is the reflection of P;; through
the line joining P;; and Py, Figure 4.5.
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ij

%

J

Figure 4.5. A comparison of the image pole triangle AngP ,P%, in position M;

with the pole triangle AP ;P ;P x.

4.3.4  The Circumscribing Circle

The equation of the circle that circumscribes the triangle AABC can be
obtained as follows. The basic principle we use is that a general point X
on the circle forms the angle ZAXB that is equal to ¢ = ZACB or ¢+ 7.

The cosine of the angle ¢ at C can be computed from the vectors A — C
and B — C using the formula

(A-0)-(B-C)
|A-C|B-C|

cos ¢ = (4.72)

The sine of this angle is obtained by using the determinant of the matrix
[A — C,B — C], that is,

|A-C, B-A]
A-C|B-C|

sin ¢ = (4.73)

Notice that we are using vertical bars to denote the determinant of a matrix.
Thus, we have

|A—-C, B-C| Lyp
(A-C)-(B-C) Cup

tan ¢ = (4.74)

The same formula defines the angle ZAXB, and because tan ¢ = tan(¢ +

), we have

c. ’A—X, B—X’ _ Lagp
(A-X) (B-X) Cup’

(4.75)
or
C: |[A-X, B-X|Cup—(A-X) - (B—X)Lap=0. (4.76)

This is the equation of the circle through the three points A, B, and C.
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The radius R of this circle is obtained from the identity 2R sin¢ = |[B—A|
and (4.73),

B-AJA-C|B-C
[A-C, B-C]

1
R=g (4.77)

As an example, we compute the equation of the circumscribing circle of
the pole triangle AP3P293P13, given by

P13 — Pys, Pio—Pas| Ly

(P13 —P23) - (P12 —Pa3)  Cas’

(4.78)

Thus, we obtain
C: ‘P13 — X, P12 - X’ 023 — (P13 — X) . (P12 — X>L23 =0 (479)

as the equation of this circle.

4.4 Summary

This chapter has presented the algebraic form the geometric concepts intro-
duced in the previous chapter. Of particular importance are the definition
of a relative displacement and the properties of the pole triangle. It is in-
teresting that these concepts are relatively easy to understand graphically,
while they are difficult to define algebraically. However, we need this latter
approach in order to obtain similar results for spatial rotations and general
spatial displacements.

4.5 References

The geometric theory presented here can be found in Hartenberg and De-
navit [36] as well as in Bottema and Roth [4]. The results on the equation
of a triangle are drawn from [57], while the complex vector formulation
follows Erdman and Sandor [22].

4.6 Exercises

1. Determine the 3 x 3 homogeneous transform [I%2] that defines the
planar displacement by constructing the matrix equation using ho-
mogeneous coordinates [A%, B? C?] = [T12][A", B!, C']. Solve this
equation for [T%3], using the coordinates in Table 4.1 (Suh and
Radcliffe [92]).
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Point M Mo
A" | (2,407 | (5L, D)7
B | (2,6,)7 | (7,1,)T
C' | (1,517 | (62,17

Table 4.1. Point coordinates defining two planar positions.

. Show that the coordinates of the pole P = (p,, py)T of a displacement
7] = [A,d] are given by

de i dy ¢ dz o) dy &
%z gin 2 — ZX cos 2 cos £ + Zsin £
Py = —2 2. Qz 2 and Dy = 2 2_ 92 2 (4.80)
sin & sin ¢

. Given two displacements [I1] = [A1,d1] and [I3] = [Ag,ds], de-
rive a formula for the coordinates of the pole P15 of the relative
displacement [175].

. Let two planar positions be M7 = (0°,1,1) and M> = (60°,3,2), and
determine the relative position pole P15 for these two displacements
(Suh and Radcliffe [92]).

. Complete the derivation of the equation of the planar triangle using
complex numbers to obtain (4.65).

. Given the coordinates A = (3,3)T and B = (1,1)T and interior
angles a = 30° and 3 = 60°, compute the coordinates of the point
C.

. Let C* be the reflection of the circumscribing circle of the pole triangle
through the side N; = P;;P;;. Show that the three circles Ct i =
1, 2,3, intersect in the orthocenter of the pole triangle.

. Given three positions and the associated pole triangle AP12P23P13
determine the image pole triangle AP%2P§3P%3 for M in position
M;. Show that this triangle has P{, = P13, P]; = P13 and that PJ,
is the reflection of Py3 through the side Ny = P15P13.



D
Algebraic Synthesis of Planar Chains

In this chapter we examine the design of RR, PR and RP planar open
chains that reach a specified set of task positions. A constraint equation
is defined for each chain that characterizes the set of positions that it can
reach. This relationship is inverted by considering the positions as known
and the fixed and moving pivots of the chain as unknowns. The result is a
set of design equations that are solved to design the chain.

Two of these chains can be connected to the moving body to form a one-
degree-of-freedom planar four-bar linkage. This closed chain can be used as
a function generator which provides coordinated movement of the input and
output links. Such a connection, however, limits the movement of the two
chains and can interfere with the smooth travel of the workpiece through
the task positions. Techniques used to avoid this problem are known as
solution rectification.

5.1 A Single Revolute Joint

A revolute, or hinged, joint provides pure rotation about a point. Given
two positions of a rigid body, M; and M>, we can locate a revolute joint
such that it moves the body between the two positions. This is easily done
by locating the hinged joint at the pole of the relative displacement.

Let the two positions be specified by the transformations [71] =
[A(¢1),d1] and [To] = [A(¢2),ds]. Then, locate the revolute joint G at
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the relative pole

G = [I — A(¢12)] " (dz — A($12)dy), (5.1)

where ¢10 = ¢ — ¢1. Notice that this joint does not exist if the relative
displacement is a pure translation.

The point g in the moving body M that is to be connected to the hinge
G is the pole of the relative inverse displacement [T},], which is obtained
from (4.39) to define

g =—[Az — A1) (d2 — dy). (5.2)

The locations of the point G in F' and g in M are uniquely defined by
the two task positions. In the following sections we show that we can design
an RR chain that reaches as many as five task positions.

5.2 The Geometry of RR Chains

An RR chain consists of a fixed revolute joint located at a point G = (z,y)T
in F' connected by a link to a moving revolute joint located at w in M.
Let [T] = [A,d] be a displacement that locates M. Then the point W in
F that coincides with w is given by

W = [Alw + d. (5.3)
Clearly, W = (X, )T must lie on a circle about the fixed pivot G, that is,
(W-G) (W-G)=(\—2z)"+ (p—y)° =R, (5.4)

where R is the length of the link. This geometric constraint characterizes
the RR chain.

5.2.1 Perpendicular Bisectors

Let n positions of the end-link of an RR chain be defined by the transfor-
mations [T;], i = 1,...,n. The coordinates W* of the moving pivot must
satisfy (5.4) for each position M;, and we have the n equations

(W'—G)- (W' —G) = |W'?—2W"' . G+|G|?=R%* i=1,...,n. (5.5)

Subtract the first equation from the others to cancel the terms |G|* and
R?. The result is

Wi—Wl-G—lWiQ—W12:Oz’:2...n. 5.6
( ) 2\ = |W'*) =0, ey

We now show that (5.6) defines the perpendicular bisector of the segment
joining W1 to W*. Rewrite the second term in this equation as

W W - W W= (W W (W - W, (5.7)
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M,

Figure 5.1. The fixed pivot G lies on the perpendicular bisector of the segment
W1!W?2 formed by two positions of the moving pivot.

Introduce the midpoint V1; = (Wz + Wl) /2 and substitute this into (5.6)
to obtain

(W' =W (G-Vy) =0. (5.8)

Thus, G — V; is perpendicular to the vector W* — W and passes through
its midpoint, Figure 5.1. This is an algebraic expression of the fact that
the perpendicular bisectors of all chords of a circle must pass through its
center.

The pole Py; of the relative displacement [77;] of the end-link of the RR
chain also lies on the perpendicular bisector of W* — W', This means that
we can replace the vector G — V;; in (5.8) by G — Py; to obtain

(W' - WYY . (G-Py)=0,i=2,...,n. (5.9)

5.2.2 The Dyad Triangle

The displacement of the end-link from M; to M; is the composite of a
rotation of angle a;; about W! followed by a rotation (3;; about G. The
result is a rotation by ¢,; about the pole Py;. Thus, [T};] is given by

[T(¢1:, P12)] = [T(Brs, G)|[T(c1i, WH)). (5.10)

This equation can be obtained from the kinematics equations of the RR
chain, see equation (E.4). The composite pole theorem connects the geom-
etry of the triangle AW!GP;;, called the dyad triangle, and the rotation
angles a1;, $1i, and ¢1;.
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Figure 5.2. The two dyad triangles AW'GP,, and AW!GP,3 define a third
triangle P12GP13.

Expand (5.10) using the notation of complex vectors to obtain
% — ei(ﬁli-i-ali)’
(1 —e®1)P; = (1 — eP1)G + Pri(1 — '™ )W, (5.11)

The first equation shows that ¢;; = $1; + a1;. The second equation is the
equation of the dyad triangle AW!GPy;. Thus, from the composite pole
theorem we have:

1. If ay; + £1i < 27, then the interior angles at W! and G are aq; /2
and [(3,;/2, respectively; and the exterior angle at Py; is ¢;/2.

2. If ay; + (i > 2w, then ;;/2 and (1;/2 are the exterior angles at
W! and G, respectively. Denote by « the interior angle at P;;, then
¢1z/2 =K+.

5.2.83 The Center-Point Theorem

Consider three positions M;, Ms, and M3 of the floating link of an RR
chain with the corresponding positions W?, i = 1,2, 3, of the moving pivot.
The crank rotation angle around G between each of these positions is
Bi; = LW'GWY; clearly, 13 = (23 + Si2-

The geometry of the dyad triangle tells us that the angle /WGP, is
either (812/2 or B12/2 + m, depending on the location of P, relative to G.
Similarly, for the dyad triangle AW?GPy3; we have that ZW?GPo3 is ei-
ther f23/2 or f23/2+7. Notice that ZW' 'GP, = /P1,GW?2. Considering
each of the possible cases for ZP12GPg3 = 4P12GW2 + 4W2GP23, we
see that this angle must be either (3;3/2 or (3,3/2 + w. Thus, G views the
segment P15P53 in either the angle (813/2 or 813/2 + =, see Figure 5.2.

This generalizes to the theorem already presented in chapter 3, which is
the foundation for Burmester’s approach to RR chain design:
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The Center-Point Theorem. The center point of an RR chain that
reaches positions M;, M;, and My, views the relative displacement poles P
and Pji in the angle Bir/2 or Bik/2 + m, where B is the crank rotation
angle from position M; to M.

We now determine the equation of the triangle formed by G and the two
poles P15 and Po3. Let the vector P12 — G be the base of the triangle with
interior angles at vertices P12 and G given by §/2 and (13/2. Then the
exterior angle v/2 at Pog is given by v/2 = §/2 + 313/2, and the equation
of the triangle (4.62) yields

(1 —eMPy3 = (1 — P13)G + P13 (1 — ) Pyy. (5.12)
Substitute for § and solve for G to obtain

Pys — P3Py, <P23 - P12> it

C:G= 1 — ethis 1 — B3

(5.13)

If we fix 813 and let v vary in this equation, then we obtain a circle with
center C given by

Py, — P3P
C — 12 ' 23
1 — etb13

(5.14)

This circle has the property that the central angle measured from Pqs to
Py3 is B13. Thus, any point G on this circle views the segment P15P93 in
either 813/2 or (13/2 + .

5.3 Finite Position Synthesis of RR Chains

In order to design an RR chain we identify a set of task positions M;, i =
1,...,n, for the end-link of the chain. This means that the displacements
[T3],2 =1,...,n, are known, and the angles ¢;; and the relative poles P;
can be determined at the outset. The unknowns are the two coordinates of
the fixed pivot G = (z,y)T and the two coordinates of the moving pivot
W=\ )T, four in all.

5.8.1 The Algebraic Design Equations

The equations (5.9) can be formulated in a way that yields a convenient set
of algebraic design equations for an RR chain. Starting with the relation

W' —Py; = [A(¢1:)|(W' — Py), (5.15)
we subtract W! — Py, from both side to obtain
Wi —W! = [A(¢;) — I[(W' —Py,). (5.16)
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Substitute this into (5.9) to obtain the equations
Dyt (G —Pu) [A(g;) —[(W!' =Py;)) =0,i=2,...,n, (5.17)

which we call the design equations for the RR chain.

Notice that when n = 5, we have four design equations in four unknowns.
Thus, an RR chain can be designed to reach five arbitrarily specified
precision positions.

The Bilinear Structure

The design equations (5.17) are quadratic in the four unknowns G = (z,y)7
and W' = (X, u)T. However, they have the important property that they
are linear when considered separately in the unknowns z, y and A, . This
structure provides a convenient strategy for the solution the five position
problem.

However, before considering five-position synthesis, we examine the sub-
problems of design for two-, three- and four-precision positions. In these
cases, the bilinear structure provides alternative solutions that we describe
as “select the fixed pivot” or “select the moving pivot.” These solution
strategies correspond to the two ways the design equations can be used to
design RR chains.

Let the coordinates of the relative pole be Py; = (p;, ¢;)T. Then we can
expand (5.17) to obtain

T
L =DPi cospri—1 —singy; | [A—pi| .
{y_(h} [ Sin¢1i COS¢M—1] {/J'_Q'L _071—2,--.,?'1,. (518)

If we select the fixed pivot G then the coordinates z, y are known, and we
can collect the coefficients of A and p to obtain the design equations

where

Ai(z,y) = (cos ¢1; — 1)(z — ps) + sin s (y — @),

Bi(z,y) = —sin¢y;(z — p;) + (cos p1; — 1)(y — ),

Ci(z,y) = (cos p1i — 1)(pi(z — pi) + ¢:(y — 4)) + sin d1s(psy — i)
The coordinates of the moving pivot (A, ) are obtained by solving this set
of linear equations.

On the other hand, if we select the moving pivot W then ), [ are
known, and we can collect the coefficients of z and y to obtain

A;( )z + Bi(A, py = Ci(A\, p), i =2,...,n, (5.20)
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where

Al(A p) = (cos g1 — 1)(A —pi) — sin gy (1 — q4),

Bi(A, p) = sin¢1i(A — p;) + (cos 15 — 1) (1 — qi),

Ci(A, 1) = (cos g1 — 1)(pa(A — ps) + @i — @) — sin dui(pspt — @A)
Thus, the fixed pivot coordinates x, y are obtained by solving a set of linear
equations, as well.

5.8.2 Parameterized Form of the Design Equations

The equations of the dyad triangle provide a set of design equations that
include the crank rotation angles (31;. These equations provide a way to
select a crank angle in the design process.

For a set of task positions M;, ¢ = 1,...,n, we have the n — 1 dyad
triangle equations

(1—€e“9)Ppy = (1 —eP)G +ePr (1 - YW i=2,...,n, (5.21)

which are linear in the in the unknown complex vectors G = x + iy and
W' = XA +ipu. If the crank angles 31; are specified, then the rotation angles
aq; = ¢1; — P1; are known as well.

5.3.8 Two Precision Positions

If two positions M; and M, of the end-link are specified, then the dis-
placements [17] = [A(¢1),d ] and [T] = [A(¢2),ds] are given. The relative
rotation angle ¢ and the pole P15 can be determined. Because n = 2,
there is a single design equation

(G — Pya) - [A(¢12) — I|(W! = Pyp) = 0. (5.22)
To design the RR chain we can select either the fixed or moving pivot, and
still have a free parameter.

Select the Fixed Pivot

Choose values for the coordinates of the fixed pivot G = (z,%)T, then
(5.19) yields the equation

AZ(:Ua y)>\ + BZ(wvy)ﬂ’ - 02($7 y)7 (523)

for the coordinates W' = (A, )T of the moving pivot. This is a single
equation relating A and p. Simply choose one and compute the other.

Select the Moving Pivot

The bilinearity of the design equations allows us to select values for the
coordinates W' = (X, 1) of the moving pivot, and use (5.20) to define

A'(\ )z + B' (A p)y = C'(A ). (5.24)
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This is the equation of the perpendicular bisector of the segment wiw?z,
Any point on this line can be used as the center point G.

Select the Crank Angle

The equation of the dyad triangle can be used to specify the crank angle
(312 between the two positions M7 and Ms. In this case (5.22) yields a linear
equation in the complex vectors G = z + iy and W' = X + iu:

(1 — e12)Pyy = (1 — €012)G + eP12(1 — eitnz )W, (5.25)

Recall that a9 = ¢p12 — P12. We can choose either of the vectors G or w!
and solve this equation for the other one. Notice that the free parameter
that existed in the previous solutions has been used here to define the crank

angle ,812 .

5.8.4 Three Precision Positions

For the case of three specified positions of the floating link, we have the
three displacements [7;] = [A(¢;),d;],i = 1,2,3. Compute the relative
angles ¢12, ¢13 and the poles P12, P13 in order to obtain the pair of design
equations

(G — Pyy) - [Al¢rs) — [I(W! —=Pp;) = 0,5 =2,3. (5.26)

These equations yield a unique solution for either the fixed pivot G or the
moving pivot W' for an arbitrary choice of the other.

Select the Fixed Pivot

Choose values for the coordinates of G and assemble the two design
equations (5.19) into the matrix equation

po o R Y o

Solve these equations to obtain a unique moving pivot W™,

Select the Moving Pivot

We may specify the coordinates of W' = (X, )T and write the design
equations (5.20) in matrix form to obtain

o moml (- {goml o

These equations define the two perpendicular bisectors D15 and D;3 that
intersect at the point G, see Figure 5.3.
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Figure 5.3. The fixed pivot G is the intersection of the two bisectors V2 and V3.

Select the Crank Angles

The relative displacements from AM; to M, and from to Mj yield the two
dyad triangle equations

[ ] RN T Pt S CE)

Choose values for the crank angles 3,2 and ;3 and compute ay; = ¢1;— (-
Then Cramer’s rule yields unique coordinate vectors G and W1,

Another approach to this problem uses the center-point theorem to de-
termine the fixed pivot G that has selected values for the crank angles 3,5
and ;3. To be the desired fixed pivot G must view the sides P13P53 and
P12P53 of the pole triangle in the angles 312/2 and (13/2, respectively.

This is achieved by determining the circle that has the segment P12Po3
as a chord with arc length $13. From (5.13) we have

Pj3 — eP13P Po3 — Pyo o
1 — eiP13 1 — eiPr3 )

013 G = (530)

In the same way, the circle that has the P13P23 as a chord with arc length
[h2 is given by

612:G=

— ptb12 _ .
Pa—dPy (Fa-Pu)n

1 — eiPr2 1 — etbr2

The circles C;3 and C;5 have the point P53 in common, and the second
intersection is the desired fixed pivot G. Let C;3 and C;2 be the centers
of these circles and note that

(G — Ci13)2 = (P23 — C13)%, (G —C12)2=(Pa3—C12)%. (5.32)
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From these relations, we can compute
(G —Py3) - (C2—Cy) =0. (5.33)

Thus, for a given set of values for 812 and (13 the fixed pivot G is the
reflection of Py3 through the line joining the centers of the two circles, Cq3
and C12.

5.83.5 Four Precision Positions

In order to find RR cranks that reach four design positions we must find
points W*, i = 1,2, 3,4, that lie on a circle. Clearly, an arbitrary point will
not satisfy this condition. However, this does not mean that no such points
exist. In fact, there is a cubic curve of moving pivots called the circle-point
curve that have four positions on a circle. The centers of all of these circles
form the center-point curve.

The Center-Point Curve

Given four specified positions M;, ¢+ = 1,2, 3,4, we can determine the rel-
ative displacements [T1;] = [A(¢14,d1;)] and define the matrix form of the
design equations

AZ(xvy) Bz(.’I),y) Y Cz(.'L‘,y)
A4(x,y) B4(x,y) 04(-'17,:(/)

There is a solution for the moving pivot W' only if these three equations
are linearly dependent.

For these equations to have a solution, the fixed pivot G must be selected
so the 3 x 3 augmented coefficient matrix [M] = [A;, B;, C;] is of rank two.
This means that the determinant |M| equals zero, which yields a cubic
polynomial

R(a:,y) : |M‘ = a30y3 + (agll‘ + azo)y2 + (CL12SU2 +anx + alo)y
+ CL03$3 + (1,0211’,’2 + agix + agg = 0. (535)

This polynomial defines a cubic curve in the fixed frame, and any point on
this curve may be chosen as the center point G for the RR chain. This is
the center-point curve.

Formulas for the coeflicients in (5.35) are obtained by noting that each
of the elements of [M] are linear in the components of G = (xz,y)7.
Introducing the column vectors a;, b;, and c;, we have

det[M] = ’alx‘}‘bly‘i'(:l, 32[B+b2y—|—c27 a3$_|_b3y_|_(:3’ =0.
(5.36)
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The linearity of the determinant allows us to expand this expression to
define the coefficients of the center-point curve as

azo = |bi1bsbs],

a1 = |ajbobs| + |biazbs| + |byboas],

a9 = |b1b203| + |b102b3| + |C1b2b3|7

a2 = |ajazbs| + |a;bsaz| + |biasas|,

a11 = |a;bacs| + |ajcabs| + |biascs| + |biceas| + |c1asbs| + |c1boas],
a19 = |bicacs| + |c1bacs| + |cicobs|,

ap3 = |ajagas|,

ag2 = |ajazcs| + |ajceas| + |craqas)|,

ap1 = |aicacs| + [crazcs| + |cicoas),

ago = |C1C2C3|. (537)

Burmester’s Theorem

The center-point theorem provides a geometric condition that characterizes
center points for four precision positions. Given four positions, there are
six relative displacement poles P;;, 1 < 7 =1,2,3,4, and the center-point
theorem requires that a fixed pivot G view the pole pairs P;;P;. and
P,.;Pmi in the angle (4 /2 or (B;,/2 + .

Burmester [5] assembled the six relative poles into the three comple-
mentary pairs P12P34, P13P24, and P14P23 such that each pair has the
numbers 1 through 4 in its indices. He then introduced the opposite-pole
quadrilateral that has any two of these complementary pairs as its diago-
nals, Figure 5.4. This construction ensures that the opposite sides of the
opposite-pole quadrilateral have the form needed to apply the center-point
theorem. The result is Burmester’s theorem presented in the chapter 3,
which we repeat here:

Burmester’s Theorem. The center point G of an RR chain that can
reach four specified positions in the plane views opposite sides of an
opposite-pole quadrilateral obtained from the relative poles of the given
positions in angles that are equal, or differ by .

Proof. Burmester’s definition of the opposite-pole quadrilateral ensures
that opposite sides have the form P;;P;; and P,,;P,,;. The center-point
theorem states that G must view P;;P;; in the angle 8;/2 or 3,5/2 + ,
where (3, is the angle from position M; to Mj. Similarly, it must view the
P,,;P i in either §;,/2 or B;,/2 + m. Consider the various combinations
to see that G views these sides in angles that are equal, or differ by 7. [

Burmester’s theorem provides a way to derive the center-point curve
in terms of the coordinates of the relative displacement poles. Let the
opposite-pole quadrilateral be formed with vertices Q : P12PosP34 Py,
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Figure 5.4. The opposite-pole quadrilateral obtained from four planar positions.

and assume the fixed pivot G views P23P12 in the angle k. Then G must
view P34Pq4 in either k or kK + .

We determine the angle /P,GPy3 = k by separately determining
sin k and cos k. Introduce, for the moment, a third coordinate direction
k perpendicular to the plane, and consider our coordinate vectors to be
three-dimensional with zeros as the third component. This allows us to
compute sin k using the vector cross product

—

k- (P12 — G) X (P23 — G) = Sinh‘,|P12 — GHP23 — Gl (538)

This quantity is the determinant of the 2 x 2 matrix [P12 — G, P23 — G],
so we have

SiH/{;lPlQ—GHng—Gl = ’Plz—G, P23—G’. (539)
The cosine of « is obtained using the dot product
COSK}|P12—G||P23—G| :(Plg—G) '(P23—G). (540)

Divide these two equations, and substitute Py = (p2, g2)7, P23 = (a1, b1)7
to obtain

(b1 — g2)x + (a1 — p2)y + P2b1 — q2aq _ Ly
2?2 +y? — (p2 + a1)x — (g2 + b1)y + p2a1 + @2b1 Ch2

tan kK = (5.41)

The numerator in this equation is a linear function of the coordinates x, y,
and the denominator is the equation of a circle.



98 5. Algebraic Synthesis of Planar Chains

"
Py \ \P34

a/ /\b
L B!
o)

Figure 5.5. The dimensions of an opposite-pole quadrilateral considered as a
four-bar linkage.

A similar calculation yields the angle /P1,GP34, which must be either
k or k+ m. However, since tan x = tan(x + 7), we have

(b2 — qa)z + (a2 — pa)y + paba — qaas L3y

= 34 (542
2 + y? — (pa + a2)z — (g4 + b2)y + paaz + qaba  Cay (542)

tank =

where the coordinates of the relative poles are P14 = (p4, q4)T and P34 =
((1,2, bQ)T.

Equate (5.41) and (5.42) to obtain a formula for the center-point curve,
given by

R(ZL', y) . L12034 — L34012 =0. (543)

It is easy to see that the cubic terms of R(z,y) in (5.35) are

3 2 2 3
az0y” + a21Y"x + a12yxr” + ap3z

=((b1 — @2 —bo + @)z + (a1 —p2 — a2 + pa)y) (z® + y*).  (5.44)

The factor z2 4+ 3?2 in this term identifies this cubic polynomial as a circular
cubic. This also means that the ten coefficients a;; are not independent. In
fact, it is easy to see that

azp = Q12 = a1 — P2 — A2+ D4, Qo3 =021 =b1 —qg2 —ba+qs. (5.45)

The Parameterized Center-Point Curve

Burmester’s theorem is also the basis for a derivation of a parameterized
version of the center-point curve. The construction presented in chapter 3
uses the opposite-pole quadrilateral Q : P12P23P34P14 to generate points
that satisfy Burmester’s theorem. We formulate this construction analyti-
cally in terms of the dyad triangle for the RR chain P15,P23 and compute
the center points G as the relative displacement poles of the segment
P23P34, Figure 5.0.

Identify the vertices of the opposite-pole quadrilateral Q with the pivots
of a 4R linkage so O = P2, A = P93, B = P34, and C = Py4. The
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Py

Figure 5.6. A center point G is the pole of the displacement of the coupler P23P34
of the opposite-pole quadrilateral when driven as a four-bar linkage.

formulas in chapter 2 are used to determine the angles at each vertex. Let
0 be the interior angle at P, then we can determine the coupler angle
¢(0) at Py3 using equation (2.57).

Rotate the segment P12P23 an angle Af from the initial configuration
of Q. This requires a corresponding rotation of angle A¢ of the segment
P23P34 about Py3. The composition of these two displacement is a relative
rotation of angle Kk = A8 + A¢ about the pole G (Figure 5.6), given by

[T(k,G)] = [T(A0,P12)][T(A¢p, P23)]. (5.46)
This composition yields the dyad triangle equation
(1 — BOFANG = (1 — 29 Py + 29(1 — '29)Pys. (5.47)
Let 6y and ¢ be the initial values for these angles in @, then we have
A =0—6y, A= p(0)— do- (5.48)

The result is that this equation defines a point G on the center-point curve
for every value of the parameter 6.

To complete this formulation, we need the initial configuration angles 6,
and ¢, which are computed by using formulas (5.39) and (5.40) to obtain

|P14 —Pia, Pos— P12|
6o = arctan 5.49
0 ((Pm —Pj2) - (P23 — P12) ( )
and
|Paz — P12, P3gq — Pyg|
= arctan . 5.50
%0 ((P23 — Pi2) - (P34 — Pa3) (5:50)

A benefit of this parameterization is that a center-point curve can be
classified by the linkage type of the opposite-pole quadrilateral @ that
generates it. In particular, center-point curves generated by nonGrashof
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opposite-pole quadrilaterals have a single circuit, while those generated
by Grashof opposite-pole quadrilaterals have two circuits. Furthermore, all
three opposite-pole quadrilaterals that can be constructed from the six
relative poles generate the same curve.

The Circle-Point Curve

For each point of the center-point curve we have a solution to the design
equation (5.19), which yields a moving pivot W'. These points form the
circle-point curve. We can obtain an equation for this curve directly by
using (5.20) to define the matrix equation

A\ p) Ba(Ap)| (o Cy(\, 1)
Ay(em) B\ ) {}= Cip) . (551)
Ay ) By(A, p) Ci(A\ 1)

These equations have a solution for the fixed pivot G = (z,y)" only if
the augmented coefficient matrix [M’] has rank two. Here, as above, the
elements of [M’'] are linear functions of coordinates of the moving pivot
W' = (), 1) and can be assembled into column vectors, so we have

)T

det[M'] = |ajA + bipu+ ¢}, ajA+bju+ch, ash +biyu+ ch| =0.
(5.52)
The expansion of this determinant yields a polynomial R(A, p) that has
the same form as R(z,y) in (5.35). The coefficients of R(\, 1) are given by
(5.37) using a’, b’ and ¢’.

If the four displacements of M relative to F' are inverted, then we can
compute the circling-point curve simply as the center-point curve of the
inverted displacements. In this case, the curve is defined in the moving
reference frame M. We can then transform these coordinates to the fixed
frame in the first position to obtain the curve of moving pivots W.

This result is achieved by determining the opposite-pole quadrilateral
for the relative inverse displacements with M in position M;. Form the
quadrilateral Qf from the image poles P{,P3;P3,P1,. Recall that Pj, =
Py, and P}, = Py,. The image poles P3, and P3, are the reflections of
P23 and P34 through the lines P12P13 and P13P4, respectively. Thus,
the inverted opposite-pole quadrilateral QT : P12P§3P§4P14 has the same
dimensions as the original opposite-pole quadrilateral Q.

The circle-point curve is constructed by applying Burmester’s theorem to
the quadrilateral QT. Using the equations (5.39) and (5.40), we can derive
the equivalent to equations (5.41) and (5.42). The result is a circular cubic
curve that defines the moving pivots W ™.

A parameterized version of the circle-point curve is obtained using the
same procedure as above for the center-point curve. In fact, because the
dimensions of Q and Q' are the same, the only difference is the initial
configuration of the quadrilateral. Compute new the values for 0y and ¢q
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using P3; and P3, in equations (5.49) and (5.50), then (5.47) yields the
circle-point curve.

5.83.6 Fiwe Precision Positions

Given five task positions for the moving body, we obtain four design
equations (5.17) that are quadratic in four unknowns G = (z,y)T and
W = (A, 1)T. We use a two-step procedure to eliminate the variable
in these equations. The goal is a single polynomial in one unknown. The
solutions of this polynomial are then used to determine the remaining un-
knowns. We also solve this problem by finding the intersections of two
center-point curves.

Algebraic Elimination
Let the coordinates of the relative poles be P1; = (p;, ¢;)T, and expand the
design equations (5.17) for the case n = 5. Assemble these equations into

four linear equations in the two unknowns (A, p)

R
3\, Y 3\, Y _ 3T, Y
A4($7y) B4($7y) {#’} B 04(1;7 y) - (553)
AS(‘T:y) B5($,y) 05("1"7 y)

In order for this system of equations to have a solution the rank of the
4 x 3 augmented coefficient matrix [M] = [A;, B;, C;] must be two. For this
to occur, each the four 3 x 3 minors of this matrix must equal zero. Let R ;
be the determinant of the 3 x 3 matrix formed by removing row 5 — j; so
R, is the computed from the first three rows, Ro from the first two and
last row, and so on. The result is four cubic polynomials in z and y

Ri(z,y) ¢ asoy° + (a21,;% + a20;)y” + (a12,52° + a11 ;2 + aio,5)y
+ a03,j$3 + 4102,3'332 +ap1;x+ap,; =0,7=1,2,3,4. (5.54)

Thus, our four equations in four unknowns are transformed into four equa-
tions in two unknowns. The next step eliminates y to obtain a single
polynomial in z.

At this point we assume that determinants R; have the structure of a
general cubic polynomial in two variables. Collect the coefficients of y in
each R; to define

Rj: djoy® + djny® +djpy +dj3 =0, =1,2,3,4. (5.55)

The coeflicient d;i is a polynomial in = of degree £.
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Assemble these polynomials into a matrix equation with the vector of
unknowns (y3,y?,y)T, given by

dio di1 di2 y3 di3
A R e (5.56)
d40 d41 d42 Y d43

This equation has a solution only if the rank of the 4 x 4 augmented coeffi-
cient matrix [D] = [do, d1,d2, d3], where d; = (d1;, dz2j, dsj, ds;)7, is three.
This means that the determinant |D| of this matrix must be zero.

The determinant |D| is a polynomial in the single variable z. The degree
of this polynomial is the sum of the degrees of each of the columns of [D],
that is, 0+ 1+ 2+ 3 = 6. Thus, we obtain a single sixth-degree polynomial
in

. |D| = Za,x = 0. (5.57)

It happens that a5 = ag = 0 and P(z) is a quartic polynomial. This is due
to the circular cubic structure (5.45) of the polynomials R ;. This quartic
polynomial has four roots of which zero, two, or four will be real. Thus,
there can be as many as four RR chains that reach five positions.

To determine the RR chains that reach five task positions, first formulate
the polynomial P(z) and determine its roots z;, i = 1,2, 3, 4. For each real
root x;, solve (5.56) to determine the coordinate y;. This defines as many
as four fixed pivots G; = (x5, yi)T. Determine the associated moving pivots
W, = (\, )T by solving two of the linear constraint equations (5.17).

Intersecting Two Center-Point Curves

Five task positions determine ten relative displacement poles P;;, 1 < 7 =
1,...,5. Consider the two opposite-pole quadrilaterals Qq4: P15Po3P34P14
and Q15: P1aP23P35P 5. A fixed pivot compatible with five positions lies
on the center-point curve defined by Q14 and on the center-point curve
defined by Q15. This provides another way to determine the fixed pivot G.

The opposite-pole quadrilaterals Q14 and Q15 share the side P12Pa3,
Figure 5.7. Thus, the pivot G must satisfy the two equations

P12(1 _ 6iA61) 4 P23(1 _ 6ZA¢1)6iA91

G= 1 — et(Ap1+A0:)

(5.58)

and
P12(1 o 61‘A62) 4 ng(l . eiA¢2)6iA62
1 _ 6i(A¢2—+—A92) ’

The angles A¢y and A¢s are functions of A, and Af, defined by the
dimensions of the two opposite-pole quadrilaterals.

G =

(5.59)
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Figure 5.7. The reference configuration for the planar compatibility platform.

Notice that equations (5.58) and (5.59) define the same point G when
A91 = A02 and A¢1 = Asz (560)

The first condition is satisfied by using the same parameter 6 to drive
P,,Py3 for both curves. The second condition requires that the triangle
AP53P34P35 have the same shape in each solution configuration. Thus,
the fixed pivots GG are the poles of the displacement of APy3P3,4P35 to
each of the assemblies of the platform, Figure 5.8. We call this assembly
of relative displacement poles the planar compatibility platform and obtain
the following theorem:

The Planar Compatibility Platform. The fized pivot of an RR chain
compatible with five specified planar positions is a pole of the displacement
of the planar compatibility platform from its original configuration another
of its assemblies.

The analysis of the two 4R linkages in this platform yields two equations
of the form

Ai COS¢ + B,L Sin¢ = Cz', 7= 1, 2. (561)

that are easily solved as shown in (A.11). This 3RR platform is known to
have six assemblies. One is the initial configuration, therefore we obtain a
relative pole to each of the remaining five assemblies. However, one of these
is the pole Py3, thus the remaining four are the desired fixed pivots.
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Figure 5.8. The relative displacement poles of the assemblies of the planar
compatibility platform define the fixed pivots G.

5.4 The Design of PR Chains

A PR chain consists of a prismatic joint in the fixed frame F' connected
by a slider to a revolute joint in the moving frame M. Let the trajectory
of the moving pivot W lie on the line L: Y(¢) = R + ¢S, which must be
parallel to the guide of the prismatic joint. The condition that W lie on L
is simply that the vector W — R be aligned with the direction S. This is
expressed by the equation

IS, W-R|=0. (5.62)

This constraint characterizes the PR chain.

5.4.1 The Design Equations

In order to design a PR chain to reach a the task positions M;, i =1,...,n,
we must find a moving pivot W! such that the corresponding points W¢,
i=1,...,n, all lie on a line L in F. Any line parallel to L can be used as
the guide for the prismatic joint.

The points W* and L: Y(t) = R + tS are related by the constraint
equations

S, W' -R|=0,i=1,...,n. (5.63)
Subtract the first equation from those remaining to obtain
IS, W'-W!'=0,i=2,...,n. (5.64)

Notice that R has cancelled in these equations. This is because the point
W1 is sufficient to locate the line L.
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Now recall from our derivation of the design equations for an RR chain
that

Wi —W! = [A(¢;) — I|(W = Py,). (5.65)
Substitute this into (5.64) to obtain the design equations
S, [A(¢1:) — (W' =Py)| =0,i=2,...,n. (5.66)

The unknowns in these equations are the direction S of the guide and the
coordinates of the moving pivot W+,

The design equations are homogeneous in the components of S, which
means that if S is a solution then kS is also a solution. Therefore, only
one component of S is independent, so we set S = (1,m)7, where m is the
slope of L. The components of W' = (A, u)T are independent unknowns.
Thus, the design equations have a total of three unknowns, m, A, and pu.
We will see in what follows that the three design equations obtained from
four task positions define one PR chain.

The Bilinear Structure

The design equations are linear in m and separately linear in A and g. This
bilinear structure allows us to follow a solution procedure similar to that
used for RR chains. However, the different number of unknowns introduces
an asymmetry into the analysis.

The coefficients of m can be isolated by introducing the vectors C; =
[A(¢1;) — IJ(W' —Py;). Then (5.66) can be written as

[m, —1][Cz, ..., Cu] =0, (5.67)
where the components of C; = (4;, B;)T are given by

A; = (cos 1y — 1)A — sin @y — ((cos p1; — 1)p; — sin ¢14q;),
B; = sin¢1;A + (cos ¢ — 1) — (sin ¢14p; + (cos d1; — 1)g;). (5.68)

Note that the components of the poles are given by Py; = (p;, ¢:)T
We can also collect coefficients of A and p, so (5.66) becomes

where
D; = m(cos ¢1; — 1) — sin ¢y,
E; = —msin ¢1; — (cos ¢p1; — 1),

F; = —m((cos ¢1; — 1)p; — sin ¢14q;) + (sin p1;p; + (cos dp1; — 1)q;).
(5.70)

We now determine the solutions to these equations for the cases n = 2, 3, 4.
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5.4.2 Two Positions

For two specified positions for the moving body, we have the single design
equation

[m, —1] Cy =mAs; — By =0. (5.71)

This equation is solved by selecting either a point W or a direction m.
In the first case, given values for components of W' = (X, )T the com-
ponents of the vector Cy = (A, By)T are specified, and equation (5.71)
has the single unknown m. Thus, this slope is uniquely determined.
If instead we select a direction m, then (5.71) becomes a linear equation
in A and p

Do+ Eap+ Fy = 0. (5.72)

Choose either A or i and solve for the other.

The result is a two-dimensional set of PR chains, which are obtained by
selecting either the moving pivot W' or a direction m and one component
of W1,

5.4.8 Three Positions

When three positions of the moving body are specified, we have two design
equations that form the matrix equation

[m, —1] [CQ, Cg] = 0. (573)

This equation has a solution if the 2 x 2 coefficient matrix [Cs, C3] has
rank 1, that is, when

[A(¢12) — I)(W' = P12), [A(¢rs) — IJ(W' — Py3)| = 0. (5.74)

This provides a condition on the selection of the moving pivots wl.
To simplify (5.74), we introduce the identity

[A(gre) — 1] = 2sin 22 71120, (5.75)

where [J] is a rotation by 90°. This combines with the linearity of the
determinant to yield

[A(52))(P12 = W), [A()](P1s — W[ =0.  (5.76)
Multiply both columns by [A(¢p12/2)]T, so (5.74) finally takes the form
Pia — W', [A(22)](P1s— W[ =0. (5.77)

This determinant is zero when the two columns are colinear vectors. There-
fore, the rotation by ¢o3/2 around W' must bring P13 — W' into alignment,
with Py — W1 Thus, W! must view the segment P1oP13 in the angle
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¢23/2, and (5.77) is the equation of a circle. This is an algebraic proof of
the slider-point theorem.
Expand equation (5.77) to obtain the circle C; given by

Ci: N+ +an+app+az =0. (5.78)

Any point on this circle may be chosen as the pivot W*, in which case the
first design equation (5.71) can be solved to determine m.

Rather than select W', we can choose the direction m and obtain the
pair of linear equations

DQ)\"’ EQ/.L+F2 = O,
DsA+ FEsp+ F3=0. (579)

The solution of these equations defines a unique point W1 associated with
a given direction m.

The result is one PR chain for each direction m or point on the circle C;.
This is a one-dimensional set of solutions.

5.4.4 Four Positions

If four task positions for the moving body are specified, then the design
equations become

[m, —1] [Cz, Cg, C4] =0. (580)

In order for this equation to have a solution, the three minors of the matrix
[C2, C3,C4] must be simultaneously zero. This provides three conditions
on the coordinates of the point W1, each of which has the same form as
(5.77).

The condition |Cq, C3| = 0 yields the circle described in the previous
section. Setting the other two minors to zero, we obtain

Cs, Ca| = |P1y — W, [A(22)|(P14 — WD)
[A(%4)](P1g — W]

|C5,Cy] = |P13 — W, = (5.81)
This defines two additional circles,
Co: A% + p? + ag A + agap + azz = 0,
Cs: N2+ 2 4+ as1 A + asap + ass = 0, (5.82)

which combine with C; above to determine the components of w! =
A )T

Collect the coefficients of ;1 and write the three circle equations as the
matrix equation

1 a2 M 4apA+ais] (p
1 ase A +ag )+ ass Ko =
1 as9 A2+ azi A+ ass 1

(5.83)

oo O
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This system of equations has a solution if the determinant |C| of the co-
efficient matrix is zero. This determinant can be simplified by subtracting
the first row from the other two to obtain a linear equation in A, given by

age —aiz2 (@21 —a11)A+ a3 — a3
= 0. 5.84
asy — a1z (az1 —a11) A+ asz — a3 ( )

Solve this equation for A\ and then (5.83) for u in order to determine the
point W', Using this point, the design equations (5.80) yield the direction
m for the slider. The result is a unique PR chain that can reach four
specified positions.

5.5 The Design of RP Chains

An RP chain consists of a revolute joint G in the fixed frame F' connected
to a prismatic joint in the moving frame M. The prismatic joint follows
a fixed line in M. From the point of view of M, the point G must follow
the line L: y(¢) = r + ts parallel to the guide of the prismatic joint as the
body moves through a set of positions M;. Let g be the coordinates of G
measured in M. The condition that g lie on L is simply that g — r must be
aligned with s, which is given by

s, g—r|=0. (5.85)

This constraint characterizes an RP chain.

5.5.1 The Design Equations

In order for the end-link of an RP chain to reach the task positions M;,
1 =1,...,n, we must find a point G in F' that has its corresponding n
points g*, i =1,...,n, in M on a line L. Any line parallel to L can be used
as the guide for the prismatic joint.

Let the n positions of the moving body be defined by the transformations
[T;], i = 1,...,n, so we have the inverse transformations g* = [, ']G.

Then, the points g’ and the line L: y(¢) = r + ts in M are related by the
equations

s, g—r[=0,i=1,...,n (5.86)
Subtract the first equation from those remaining to obtain

s, gh—g'|=0,i=2,...,n (5.87)

Now introduce the relative inverse transformation [T7.] = [Al,, dl.] so that
this equation becomes

s, [Al —I(g' —py)|=0,i=2,...,n, (5.88)
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where p,; is the pole of the relative inverse displacement in M. This is
simply the inverted version of the PR design equation (5.66).

Consider the moving frame to be in position M; and transform coor-
dinates to the frame F. This requires multiplying (5.88) by [A;], so we
obtain

[Ai]s, [Ai][Al, - 1)(g' —py,)| =0,i=2,...,n. (5.89)

Let S = [Ay]s be the direction of the line L in F. Notice that [4](g' —
py;) = G — Py, where Py, is the relative pole in F. We obtain the RP
design equations in the form

S, [Al, —I)(G-Pyu)|=0,i=2,...,n (5.90)

Note that [A1][AT.][AT] = [Al ], because planar rotations commute.

This set of equations is identical in form to those for the PR chain,
and their analysis is the same except for one fundamental difference. The
relative inverse rotation [A! ] is the inverse of the relative rotation [Ay],

which means that the rotation angles gbL are —¢1;. From this we conclude
that the circles derived in the previous section for PR chains will be reflected
through through the segments P,;P,.. Use these circles and the design
procedure for PR chains to design RP chains.

5.6 Planar Four-Bar Linkages

The design equations developed in this chapter determine RR, PR and RP
chains that reach a specified set of positions. These chains can be connected
in pairs to construct various four-bar linkages, each of which has one degree
of freedom. The connection between two chains also allows us to coordinate
the movement of the input and output links in order to design a linkage
known as a function generator.

The coupling between two open chains introduces limits on their relative
movement that can interfere with the smooth travel of the floating link
between the specified positions. For example, a Grashof linkage may reach
one set of task positions in one assembly and the other positions in the
other assembly. This is referred to as the branching problem.

In what follows, we consider the solution to the branching problem for 4R
chains, and then present a strategy for the design of function generators.

5.6.1 Solution Rectification

Filemon [24] introduced a construction for the moving pivot of the input
crank of a 4R linkage that ensures that the linkage moves smoothly through
the task positions. This construction assumes that an output crank CB =
GoutW(l)ut has been selected. It is then possible to determine how this crank
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Figure 5.9. Filemon’s construction uses the three positions of the output crank
to define a wedge-shaped region; the input moving pivot is selected from outside
this region.

rotates to reach each of the design positions. Viewed from the coupler, this
link sweeps out two wedge shaped regions centered on W(])ut, Figure 5.9.
Filemon showed that all that is necessary is that we choose the moving
pivot Wi, of the input crank outside of these regions. Recall that the limit
positions of the input crank OA = G, WL, of a 4R linkage occur when
the coupler AB = W W_ . lines up with the output crank.

Filemon’s Construction

We will focus on three-position synthesis to develop rectification theory,
though it can be applied more generally. For positions defined by the dis-
placements [71], [T2], and [T3] we have the design equations (5.28). For any
choice of the output moving pivot Wg,¢, we can determine a unique fixed
pivot Gouyt-

The positions that Ggyt can take relative to the moving frame are com-
puted using the relative inverse displacements [T};] with M in position M,
that is,

f)ut = [T1:]Gout.- (5.91)

Recall that [T}L] = [T};]-

Now consider the angle a2 measured from Gg; to G234 around W .
Similarly, we have a3 = ZG2 W, G2t measured around W, ;. These
angles combine to form the wedge swept by the driven crank relative the
moving frame M. Assume these angles are between m and —m, then the
angle 7 of this wedge is the sum aj2 + ag3 if these angles have the same
sign. If these angles have different signs then 7 is the angle with the largest
absolute value.
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Figure 5.10. Waldron’s three-circle diagram identifies regions of driven moving
pivots that ensure that Filemon’s construction yields useful driving pivots.

Choose the input moving pivot Wiln from outside of this wedge-shaped
region. The resulting 4R linkage will pass through the design positions
before the coupler lines up with the output crank, which defines the limit
to the movement of the input crank.

Waldron’s Construction

Waldron [96, 97] shows that if the output pivot Wg,; rotates so that any
of the angles aj9, asg, or a3 is greater than or equal to 7, then there
is no solution to Filemon’s construction. This lead him to consider the
points that view each side of the image pole triangle in 7/2 and define the
three-circle diagram.

The poles of the relative inverse displacements [T\], [T4s], and [T}s]
define the image pole triangle AP]QP%:}P 13- The center-point theorem ap-
plied to the image pole triangle yields the result the moving pivot W
views the sides of this triangle the rotation angle —a;x /2 of the coupler rel-
ative to the RR chain. Thus, for a point W and side P}jP;k of the image
pole triangle, we have the relation

Qi (ng - W)- (Pglk - W)

cos = . (5.92)
2 |P;; — W||Pj, — W]
The points that have a;x/2 = 7/2 lie on the circles
Cir : (Pi; — W) - (P, — W) =0. (5.93)

The diameters of these circles are the segments P}jP;k.

The three circles C;2, C23, and C13 bound regions of points for which a;; >
7 /2. Points outside of these circles, as well as points in regions where they
overlap can be used as moving pivots W, Figure 5.10. For these points
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Figure 5.11. A 4R function generator has a prescribed set of input and output
angles 6;, and ;.

the output crank Gout W oyt has a solution for Filemon’s construction. The
result is a 4R linkage that moves through the three specified positions before
it reaches a limit to the range of movement of the input crank.

5.6.2 Function Generation

A four-bar linkage is often designed to coordinate the movement of the
input and output links. Suppose that we are given a table of coordinated
angular values 8;,;,1 = 1,...,n, for the input and output cranks of a 4R
linkage, or 6;, s; for the input and output of a slider-crank. We can apply
the design theory developed in preceding sections to find a linkage that
provides this functional relationship.

The 4R Chain

Select fixed pivots O and C for the input and output cranks of this linkage.
Let g = |C—0O)| be the distance between these points, Figure 5.11. Let F be
a reference frame located at O with its r-axis along the line OC. Assume
the angles 0; and ; are measured relative to the z-axis of F. Introduce
the line Lo through O at the angle 6;.

We now invert this problem by defining the exterior angles §; = 7 — 6;
at O, Figure 5.12. Introduce the coordinate frame F’ attached to the input
crank so that its z-axis is aligned with Lo such that 8, is the angle to OC.
The angles 6; and 1; can now be viewed as the joint angles of the RR open
chain formed by OC as it moves in F’. Using the kinematics equations of
this chain, we compute the n positions

[Di] = [Z@)NX DI Z(:)), i=1,...,n. (5.94)

The positions [D;] can now be used to design an RR chain AB to close the
4R chain.

The result is a 4R chain that has the desired set of coordinated angles 6;

and ¢;, i = 1,....n. Clearly, n < 5, because this is the maximum number
of positions for which solutions exist to the finite position problem.



5.7. Summary 113

Figure 5.12. Holding the input crank fixed the output crank takes positions
M, ..., M; for each of the prescribed input and output angles.

The RRRP Chain

The same strategy can be used to design a slider-crank that has the input
angle 0 coordinated with an output slide s. Let 8; and s;, i = 1,...,n,
be the desired table of values. Select a fixed pivot O and the direction S.
Introduce a fixed frame F' at O with its z-axis perpendicular to S, where
e is the offset distance from O to the guide S. We assume the angles 6; are
measured from the z-axis of F, and s; are measured along the y-axis. Let
Lo be the line through O at the angle 6; to the z-axis of F'.

We invert the problem and determine the exterior angles 6; = 7 — ; and
introduce the frame F’ with its z-axis along Lo at the angle 6;. In this
frame the kinematic equations of the RP chain can be written as

[Di] = [Z@)[X()][Y (s3)],i=1,...,n. (5.95)

The positions [D;] can be used to design the RR chain connecting the
input and output cranks of the RRRP linkage. Again, at most five sets of
coordinated input angles and output slides can be specified.

5.7 Summary

This chapter has presented algebraic techniques for the design of planar
RR, PR, and RP chains. The results are a direct reflection of the graphical
constructions presented earlier. In fact, many of the graphical results are
simply reproduced here in algebraic form. This provides a transition to the
formulation we need for the design of spatial linkages. Because the geomet-
ric principles are the same, it is useful to appeal to understanding gained
in planar synthesis theory to provide insight to the design of spherical and
spatial chains.
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Mi 97, dm,i dy,’i
1 293° | 1.55 | —0.90

2 | 138° | 1.75 | —0.30
3 |348° |1 0.80 | 1.60

Table 5.1. Three positions

5.8 References

The algebraic formulation of linkage design was introduced by Freuden-
stein and Sandor [28] using a complex vector formulation and is developed
in detail in Erdman and Sandor [22]. See also Waldron and Kinzel [98].
The polynomial elimination procedure used to solve the RR and PR design
equations was inspired by Innocenti [40] and Liao [60]. Computer implemen-
tations of planar linkage synthesis originated with Kaufman’s KINSYN [42],
and include Waldron and Song’s RECSYN [99], Erdman and Gustafson’s
LINCAGES [21], and Ruth’s SphinxPC [80]. Ravani and Roth [73] present,
an optimization approach to linkage synthesis that allows more that five
task positions.

5.9 Exercises

M; | 0 | doji | dy,
1 0° 0 0
2 [22°] —6 11
3 |68 | =17 | 13

Table 5.2. Three more positions

1. Use the positions listed in Table 5.1 to design two RR chains to form
a 4R linkage (Sandor and Erdman [83]).

M; | 0; | dsi | dygs

1 0° | 1.0 | 1.0
2 0° | 20 | 0.5
3 | 45° | 3.0 | 1.5

4 190° | 2.0 | 2.0

Table 5.3. Four positions
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M'L' 01 dm,i dy,i
1 0° 0 0
2 | 10° | 1.5 .8
3 [20°] 16 | 1.5
4 160° | 2.0 | 3.0
5 | 90° | 23 | 3.5

Table 5.4. Five positions

. Use the positions in Table 5.2 to determine the pole triangle
AP 15P93P 3. Determine the equation of the circle that circumscribes
this pole triangle (Sandor and Erdman [83]).

. Design a slider-crank linkage to guide the workpiece through the three
positions in Table 5.2.

. Design a 4R linkage that moves a workpiece through the three
positions in Table 5.2.

. Determine the equation of the curve of moving pivots W' that lie on
circles of the same radius R. Show that this is a tricircular sextic.

. Show that if the opposite-pole quadrilateral has the shape of a kite,
then the center-point curve degenerates into a circle and a line.

. Determine the center-point and circle-point curves for the positions
listed in Table 5.3 (Suh and Radcliffe [92]).

. Determine the Burmester points for the five positions listed in Table
5.4 (Sandor and Erdman [83]).



6
Analysis of Spherical Linkages

In this chapter we examine spherical linkages. These linkages have the prop-
erty that every link in the system rotates about the same fixed point. Thus,
trajectories of points in each link lie on concentric spheres with this point
as the center. Only the revolute joint is compatible with this rotational
movement and its axis must pass through the fixed point. We study the
spherical RR and 3R open chains and the 4R closed chain and determine
their configuration as a function of the joint variables and the dimensions
of the links.

6.1 Coordinate Rotations

A revolute joint in a spherical linkage allows spatial rotation about its axis.
To define this rotation, we introduce a fixed frame F' and a moving frame
M attached to the moving link. The coordinate transformation between
these frames defines the rotation of the link.

Consider a link connected to ground by one revolute joint. Let the O be
directed along the axis of this joint and choose A to define the other end
of the link. Both O and A are unit vectors that originate at the center c.
The angle a between these vectors defines the size of this link.

Choose an initial configuration and locate the fixed frame F' so its ori-
gin is at c, its z-axis directed along O, and its y-axis directed along the
vector O x A. This convention ensures that A has sina as its positive
x-component. Attach the moving frame M to OA so that in the initial
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configuration it is aligned with F'. As the crank rotates, the angle 6 mea-
sured counterclockwise about O from the z-axis of F' to the x-axis of M
defines the rotation of the link.

The orientation of OA is defined by transformation between coordinates
x = (z,9,2)T in M to X = (X,Y, Z)T in F, given by the matrix equation

X cos) —sinf 0 x
Y > =|sinf cosf Oy, (6.1)
Z 0 0 1 z
or
X =[Z(0)]x. (6.2)

The notation [Z(-)] represents a rotation about the z-axis.
We can define similar matrices [X(-)] and [Y'(-)] to represent rotations
about the z-axis and y-axis, given by

1 0 0 cosa 0 sinc
[X(a)]= 1|0 cosa —sina| and [Y(a)]= 0 1 0
0 sina cosa —sina 0 cosa
(6.3)
These coordinate rotation matrices are useful in the analysis of spherical

linkages.
An important property of rotation matrices is that their inverse is
obtained by computing the matrix transpose. This means that

cosf) sinf 0
(Z(0)" =[Z2(6)T] = | —sinf cos® 0. (6.4)
0 0 1

For the coordinate rotations [X(-)], [Y(-)], and [Z(-)] this transpose opera-
tion simply moves the negative sign from one sine element to the other. In
fact, the inverse is the rotation in the negative angular direction, that is,

[2(0)~] = [2(-0)].

6.1.1 The Composition of Coordinate Rotations

Let a = (sinc,0,cos @)” be the coordinates in M of the vector A in the
link OA above. Notice that a can be defined by rotating the unit vector
k= (0,0,1)T about the y-axis, so we have

a=[Y(a)k. (6.5)

Substitute this into (6.2) to obtain A after a rotation by 6, which is given
by the composition of two coordinate rotations

A =[Z(0)][Y ()] (6.6)

This equation can be read from right to left as the rotation of k by the
angle o around y followed by a rotation by 6 around z.
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6.1.2 The RR Open Chain

A spherical RR chain consists of a crank OA with fixed axis O and moving
axis A connected to a floating link. Define the initial configuration of this
chain so the fixed frame F' has its z-axis is aligned with O and its y-axis
directed along O x A. Attach the moving frame M to the floating link so
that its z-axis aligned with A and its y-axis is aligned with F' in the initial
configuration.

The rotation of the crank 6; about O is measured from the z-axis of F'
to the plane of the crank OA. The rotation angle 6, of the floating link is
measured about A from the plane of OA to the z-axis of M. We now have
the orientation of M relative to F' defined by the matrix transformation

X = [Z(0)Y (0)][2(62)]x. (6.7)

The set of rotations reachable by the end-link of the RR chain is defined
by

[R] = [Z(0)][Y ()][2(02)], (6.8)

clhicacly — sy  —clicasly — sficly  cOysa
[R] = |sficachy + ch1805  —sbicasly + clicly  sbysa| (6.9)
—sacly saslo ca

where s and ¢ denote the sine and cosine functions. This matrix equation
forms the kinematics equations of the RR chain and defines its workspace.

We now consider whether a specified rotation [R] is in the workspace of
this RR chain. Suppose that we know the elements of [R], which we denote
by

ail] a1z a3
[R]: asi a9 aoss| . (610)
31 Q32 a33

Equate this to (6.9) and examine the third column and third row to see
that

(6.11)

a a
f1 = arctan =23 and 05 = arctan
a3 —as1
Notice that the elements of the given orientation [R] must satisfy the
condition
2 2
Vaz, +a
o = arctan ~—31—32 (6.12)
ass
where « is the angular length of QOA. This characterizes the workspace of
the spherical RR chain.
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6.1.3 The 3R Open Chain

If the angular length o of an RR chain is allowed to vary, then we obtain
a three-degree-of-freedom spherical robot. We can control this change in
length by a revolute joint E inserted between O and A. The result is a
spherical 3R open chain.

Let the angular lengths of the links OE and EA be a; and s, respec-
tively. If ¢ is the dihedral angle measured about the E from the plane of
OE to EA, then « is given by the spherical cosine law (C.5) as

COS (¥ = COS (¥1 COS (xo — Sin vy sin (g €OS . (6.13)

Notice that « lies between |as — 1| and oy + ag.

For a given rotation [R] that defines the orientation of the end-link M, we
can compute « using equation (6.12). We can also use (6.11) to determine
the angle 6, measured to the plane of OA and the angle s from this plane
to M.

Let 11 be the rotation of the crank OE and let 12 be the angle measured
from EA to the z-axis of M. The interior angle of the spherical triangle
AOEA at O is 6, — 11, and the interior angle at A is 5 — 1. Use the
sine and sine—cosine laws in (C.5) to compute

sino sin (7 — (61 — 1)) = sinap sin @,
sino cos (m — (01 — ¢1)) = —(sinoy cosaz + cos oy sinag cos ). (6.14)
Notice that m appears in these equations because 61 —1); is the interior, not

exterior, angle at O. However, because sin(m — ) = sin 6 and cos(m — 0) =
—cos 0, we have

(6.15)

sin g Sin
61 — 11 = arctan ( 2 ¢ ) )

sin (ry cOS (xg + COS (1 Sin g COS ¢

To determine 05 — 12, we use the sine law and sine—cosine law in (C.18)
to obtain

sinosin (1 — (62 — 1p2)) = sina sin @,

— sin o cos (7r — (62 — 1/)2)) = sinay cos @) + cosagsinag cos . (6.16)

Solve these equations to obtain

(6.17)

Sin (1 sin
02 — 1o = arctan ( L ¢ > .

sin arg €OS (x1 + €OS (g Sin vy €OS ¢

The joint angle ¢ at E is that provides the desired angular length « is
found from (6.13) to be

¢ = arccos ( (6.18)

COS (x] COS(xg — COS O
sin a1 sin (05) '
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Coupler 7 \

Driven Crank |
v m\ </

Figure 6.1. A spherical 4R linkage is a spherical quadrilateral with angular
dimensions a, 3, 7, and 7.

The result is a set of values for ¥; and i, associated with each of the
solutions +¢. These are known as the elbow-down and elbow-up solutions
for the 3R chain.

6.2 Position Analysis of a 4R Linkage

A spherical 4R linkage is constructed by connecting the end-links of two
spherical RR chains, Figure 6.1. This linkage is defined by the axes of the
revolute joints, which are lines through the origin c. We choose one of the
two directions along each of these lines to be the unit vectors that define
the linkage. Denote by O and A the unit vectors along fixed and moving
axes of the input crank, and by C and B the fixed or moving axes of the
output crank. The quadrilateral OABC on the unit sphere characterizes
the spherical 4R linkage. Notice that there are actually sixteen spherical
quadrilaterals that define the same spherical 4R linkage. In what follows,
we consider each axis to be directed toward the z > 0 half-plane of the
fixed frame F'. However, the derivations apply to all sixteen cases.

6.2.1 The Coordinates of O, A, B, and C
Given the spherical quadrilateral OABC that defines a spherical 4R

linkage, we can compute the angular lengths of each of the links to be
a = arccos(O - A), (B = arccos(C - B),
~v = arccos(O - C), 1 = arccos(A - B). (6.19)
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These dimensions completely define the movement of the linkage.

Attach a fixed frame F' with its origin at c, oriented so its z-axis is along
O and its y-axis is directed along the vector O x C. This ensures that the
fixed axis C lies in the positive x direction of the xz coordinate plane. Let
define the angle of the input crank about O, and v the angle of the output
crank around C, both measured counterclockwise from the zz plane.

In F, we have the coordinates of O and C defined by

O=Fk and C=[Y(7)k. (6.20)

The coordinates of A are the same as those given in (6.6). It is the
coordinates of B that require some consideration.

Introduce a frame F’ with its z-axis along C. Then the coordinates B’
in F’ of the axis B are defined by an expression similar to (6.6), that is,

B' = [Z(9)][Y (8)]k. (6.21)

Because the frame F” is rotated relative to F' by the angle v about the
y-axis, we obtain the coordinates for B as

B = [Y(MI[Z®)]Y (8)]k. (6.22)

In what follows, we use these equations for O, A, B, and C to determine
the output crank angle 1 and coupler angle ¢ as a functions of the input
crank angle 0.

Loop Equations

It is useful at this point to notice that the coordinates for B can also be
defined in terms of the angle ¢ of the coupler AB relative to the input
crank OA.

Introduce a frame M’ with its z-axis along A and its y axis in the
direction O x A. The coordinates B’ are defined by an equation similar to
(6.21), given by

B' = [Z(9)][Y (n)]E. (6.23)

The transformation from F' to the frame M’ is defined by the composite
rotation [Z(0)][Y ()], given in (6.6). Thus,

B = [Z(0)][Y ()] Z(#)][Y (n)]F. (6.24)

The loop equations for the 4R linkage are obtained by equating (6.22)
and (6.24).

6.2.2 The Output Angle

The angular dimension 77 between the moving axes A and B of a spheri-
cal 4R linkage is constant throughout the movement of the linkage. This
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provides the constraint equation
A -B = cosy, (6.25)

which we use to determine the output angle ¢ as a function of the input
angle 6. The coordinates of A and B, defined in (6.6) and (6.22), are

cos 8 sin « cos 7y cos 1 sin 3 + sin y cos 3
A = (sinfsinap;, B = sin ¢ sin 3 . (6.26)
Cos & — siny cos i sin 3 4 cos 7y cos 3

Substitute this into (6.25) to obtain
clsa(cycysf + syeB) + sfsasysf + cal —syeysB + cyef) =cn, (6.27)

where s and ¢ denote the sine and cosine functions.
Collect the coefficients of costy and sint in this equation, so this
constraint equation takes the form

A(0) cosp + B(#)siny = C(6), (6.28)
where

A(0) = cos Osin a cosysin 3 — cos a sin -y sin 3,
B(#) = sin 0 sin asin g3,
C(0) = cosn — cos fsin arsin -y cos 3 — cos a cos 7y cos . (6.29)

This equation has the solution given by

»(0) = arctan (%) + arccos (ﬁ) . (6.30)

For reference, see (A.1). Notice that there are two output angles 1
associated with each input angle 6, Figure 6.2.

The two output angles ¢ result from the fact that the spherical tri-
angle AABC can be assembled with B on either side of the diagonal
AC. The angle § = arctan(B/A) locates the diagonal AC, and k =
arccos(C/v A2 4+ B?) is the angle above and below this diagonal that
locates the driven crank.

The argument of the arc-cosine function must be in the range —1 to +1,
which means that the link lengths and the input angle § must combine so

A0 + B(0)* —C(9)* >0. (6.31)
If this constraint is not satisfied, then the linkage cannot be assembled for
the specified value of 6.
Hooke’s Coupling

A special case of a spherical linkage known as Hooke’s coupling is found
in most automobiles connecting the output shaft of the transmission to
the drive shaft. This linkage introduces an angle v between the input and
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(a) (b)

Figure 6.2. A spherical 4R linkage has two solutions for the output angle v for
each value of the input angle 6.

output axes. The dimensions of the input and output cranks and the coupler
are a = 3 =n = 7/2. In this case the constraint equation (6.27) simplifies
to become

cosf cosycost + sinfsiny = 0. (6.32)
This can be written in the form
tanftany = —secr, (6.33)

which is the input-output equation for Hooke’s coupling.

6.2.8 The Coupler Angle

We now determine the coupler angle ¢, using the loop equations of the 4R
chain. Equating the two ways (6.22) and (6.24) to define the coordinates
of the moving axis B, we have

[ZOIY (@NZ @Y Mk = [Y MZ@)Y (B)]E. (6.34)

Multiply both sides of this equation by [Z(0)~!] = [Z(6)T] and expand to
obtain

cacesn + sacn cOcycysf + clsycf + sOsysf
s¢sn = ¢ —sfcycysB — sbsyc + cOsysf (6.35)
—sacgsn + cacn —sycysf + cyef3

The first two components of this equation allow us to determine

sfclcycy + clsycl + sBsbsy) — sacn
casmn ’
—sBsfcycy — sfsycf + sBchsy
sn '

cop =

s¢p = (6.36)
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The arctan function yields a unique angle ¢ given values for the angles
0 and 1. This provides a reliable way to determine the coupler angle ¢
associated with each of the two output angles 1 for a given input crank
angle 6.

An Alternative Derivation

A formula for ¢ can be obtained directly in terms of the crank angle 6 inde-
pendent of the output angle 1. To do this we use the fact that the angular
dimension [ of the output crank CB is constant during the movement of
the linkage.

Consider the frame F' positioned so its z-axis is along A and its y-axis
is along the vector A x O. In this frame, the axes B and C have the
coordinates

/ sne(¢p — ) , casyc(m — 0) + sacy
F'B = { sps(¢p — ) and FC= sys(m — 0) (6.37)
cy —sasyc(m — 0) + cacy

The condition B - C = cos 3 yields the equation
A(0) cos¢p + B(0)sing = C(6), (6.38)
where
A(0) = sinn(cos asinycosf — sin a cos ),
B(f) = —sinnsin-ysin6,
C(0) = cos 8 — cosn(sin ar siny cos  — cos « cos 7). (6.39)

This is solved in the same way as before to define

B C
¢(0) = arctan (Z) + arccos (Vﬁ) :

The result is two values for ¢ for each value of the input angle 6. We use
this equation to determine the coupler angle in our solutions for four- and
five-position synthesis for a spherical 4R linkage.

~~

6.40)

6.2.4 Coupler Curves

As the linkage moves, a point in the coupler traces a curve on a sphere
in the fixed frame. This curve can be generated as a function of the input
angle 6 as follows. Let M be a reference frame attached to the coupler so
its z-axis is aligned with the moving pivot A and its y-axis is along A x B.
Let a point in the coupler have the coordinate vector x measured in M. Its
coordinates in F' are given by the matrix equation

X(0) = [Z(O)][Y ()][Z(8)]x. (6.41)

Recall that the coupler rotation angle ¢ depends on . To trace the coupler
curve, compute X as 0 varies through its range of movement. The points
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on this curve separate into sets that are given by the two different solutions
for ¢.

See Chiang [8] for the derivation and analysis of the algebraic equation
of the spherical coupler curve, which when projected on a plane is a curve
of eighth degree.

6.2.5 The Transmaission Angle

The exterior angle ( between the coupler and the output crank at the
moving axis B is called the transmission angle. To determine ¢ in terms
of the input angle 0, we equate the spherical cosine laws for the triangles
ACOA and AABC. Let the diagonal shared by these triangles have the
angular length d, so that cosd = A - C. Notice that 6 is the interior angle
at O, so we have the identities

cos § =cosy cos & + sin 7y sin ¢ cos 6,

=cos 3 cosn — sin 3 sin 7 cos . (6.42)
Solving for cos (, we obtain the formula

cos (3 cosn — €osy cos @ — sin -y sin « cos 6

cos( = (6.43)

sin (3sin 7
If the only external loads on the linkage are an input torque applied to
the crank OA and an output torque applied by the crank CB, then the
joint reaction forces F o and Fg acting on the coupler must act along the
segment AB. The usual assumption in the static analysis of a spherical
linkage is that the joints A and B do not support forces along their axes,
which means that F 54 and Fg must be tangent to the unit sphere. Because
these forces cannot be directed along AB and tangent to the sphere at
the same time, they must both be zero. The conclusion is that under these
conditions there are no internal reaction forces only reaction moments.

Let the internal reaction moments at joints A and B be denoted by M p
and Mg. In order to be in static equilibrium these moments must be equal
and opposite in sign, that is, My = —Mgp. Since a hinge does not support
a moment along its axis, these vectors must be perpendicular to the plane
through AB, which means that they are perpendicular to the plane of the
coupler.

Now consider the components of the moment Mg in the frame M’ that
has its z-axis along B and its y-axis in the direction B x C. Because Mp
must lie in the xy-plane of this frame and be perpendicular to the plane of
the coupler, we have

Mg cos
Mg =< Mpsin( ;. (6.44)
0
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Only the component Mpsin( contributes to the external torque on the
driven crank. Thus, sin ( determines the magnitude of the moment on the
coupler that is transmitted to the output crank. The component My cos(
is absorbed by the reaction moment at the fixed axis of the output crank.

6.3 Range of Movement

The condition that defines whether or not a spherical linkage can be as-
sembled for a given input crank angle yields a formula for the range of
movement of this crank in terms of the link dimensions. A similar analy-
sis yields the range of movement for the output crank. This results in a
classification of spherical 4R linkages based on the angular lengths of its
links.

6.3.1 Limits on the Input Crank Angle

A solution exists for an output angle 1 for a given input 6 only if the
condition (6.31) is satisfied. The extreme values available for § are defined
by A? + B%? — C? = 0, where A, B, and C are given by (6.29). This is a
quadratic equation in cos # that has the solutions

cos(n — 3) — cosacosy cos(n + ) — cosacosy

sin ¢ sin 7y
(6.45)

These equations are the spherical cosine laws for the triangles formed by
the two ways that the coupler link can align with the output link. These
configurations define the range of movement of the input crank. Because the
cosine function does not distinguish between positive and negative angles,
an additional pair of limits exist reflected through the xz-plane of F'. These
negative limits apply when the crank passes through 0 or 7 into the lower
half-plane.

The angular limits 6,,;,, and 6,,. exist only if the dimensions of the links
combine so (6.45) takes values between —1 and 1. This provides conditions
that define whether or not limits exist to the rotation of the input crank.

coS Omin = ,  COSOmax =

sin o sin 7y

The Lower Limit: 0,,;,

If cosOpmin > 1, then the limiting angle 6,,;, does not exist, and the in-
put crank can rotate through 6 = 0 into the lower half-plane. Thus, the
condition that there is no lower limit is

cos(n — ) — cos acosy

. ; > 1,
sin o sin 7y
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or

cos(n — B) > cos(y — a). (6.46)

Because the cosine function decreases as the absolute value of its argument
increases, we can replace this by the equivalent condition

(v—a)* > (n— ) (6.47)

Subtract the right side of this inequality from the left side and factor the
difference of two squares to obtain

(v—a+n-B8)(y—a-n+p) >0,
T, >0, (6.48)

where
Th=y—a+n—08 and To=v—a—-—n+p. (6.49)

Thus, the condition that there is no lower limit to the range of movement
of the input crank is simply that both 77 and T, have the same sign, either
positive or negative. If the signs of these parameters are opposite to each
other, then the input crank cannot reach the value 8 = 0.

The Upper Limit: 0ax

If cosOmax < —1, then the upper limit 6,,,x does not exist, and the in-
put crank can rotate smoothly through 6§ = 7 into the lower half-plane.
Therefore, the condition that there is no upper limit to the crank rotation
is

cos(n + ) — cos acosy

. . < —1, (6.50)
Sin ¢ sin 7y
which simplifies to the relation
cos(n + B) < cos(y + a). (6.51)

The angular distances that characterize the spherical quadrilateral are al-
ways positive. However, the sum of any two can be greater than 7, though
not greater than 27. We ensure that the absolute value of the argument to
cosine is in the range from 0 to 7 by replacing cos(n+/3) by — cos(m—(n+/3))
and cos(y + «) by —cos(m — (7 + «)). The inequality becomes

cos(m — (n+ B)) > cos(m — (v + ), (6.52)
which allows us to define the equivalent relationship
(m—y—a)? > (r—n—pH)° (6.53)
This can be simplified to become

M+B8-—7—a)2r—n-B—7—a) <0,
15T, < 0, (654)
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where
Ts=n+pB—-—v—a and Ty=2r—n—FB—7—q. (6.55)

The range of movement of the input crank does not have an upper limit
if T35 and T4y have the same sign. If these signs are opposite to each other,
then the crank cannot reach the angular value 0 = 7.

Input Crank Types

We can now identify four types of movement available to the input crank
of a spherical four-bar linkage:

1. A crank: 7175 > 0 and 737, > 0, in which case neither limit 0,
nor 0., exists, and the input crank can fully rotate.

2. A O-rocker: T1T5 > 0 and 757, < 0, for which 6,,,, exists but not
Omin, and the input crank passes through 6 = 0 rocking between the
values +0,,.x.

3. A m-rocker: 711, < 0 and 757, > 0, which means that 6,,;, exists
but not Oax, and the input crank rocks through 6 = 7 between the
values +0,in.-

4. A rocker: T1'T> < 0 and 157, < 0, which means that both upper and
lower limit angles exist, and the crank cannot pass through either 0 or
7. Instead, it rocks in one of two separate ranges: (i) Opin < 0 < Opax,
or (ii) —Omax < 0 < —0Onin-

6.3.2 Limits on the Output Crank Angle

The range of movement of the output crank is defined by the two configu-
rations in which the input crank and coupler link can become aligned. The
limits ¥min and Yyax are obtained by applying the spherical cosine law to
the triangles formed by the linkage in these two configurations:

cosycos p — cos(n + « COS7YCOS O — COs|1) — «x
cos Y = 257088 +0) s, = 057080 (n—a)

sin -y sin (3 sin 7y sin (3

(6.56)

As we saw previously, the cosine does not distinguish between positive and

negative angles, so we obtain two sets of limits. One set limits the angular

range of the output crank when it is above the half-plane defined by OC,
and the other set limits rotation below this half-plane.

The limiting angles (6.56) exist only if these formulas yield values that

are between —1 and 1. This allows us to characterize the movement of the
output crank in terms of the dimensions of the linkage.
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The Lower Limit: tmin

If cos Ymin > 1, then the limiting angle ¥n,in does not exist, and the output
crank can move smoothly through 1 = 0. Thus, the condition that there is
no lower limit to the movement of the output crank is
cosycos 3 — cos(n + )
sin 7y sin (3

> 1, (6.57)

which can be written as
—cos(n + a) > —cos(y + ). (6.58)

Replace — cos(n+a) and — cos(y+03) by cos(m—(n+a)) and cos(m—(y+3))
to obtain

cos(m — (n+ «)) > cos(m — (v + 3)). (6.59)
This is equivalent to the inequality
(1= (v +8))* > (7~ (n+a))?, (6.60)
which simplifies to yield
m+a—y=p)2r—n—a—-—y—75) >0,
(—T%)(Ty) > 0. (6.61)

Thus, the parameters defined above also provide insight to the rotation of
the output crank. If the 75 and T, have opposite signs, then there is no
lower limit to the rotation of this crank. This lower limit exists if T»7y > 0.

The Upper Limit: 9.5

If cos¥max < —1, then there is no upper limit y.x to the movement of
the output crank. Thus, we have the condition

cosycos 3 — cos(n — «)

sin 7y sin 3 <-1 (6.62)
which ensures that output crank can move smoothly through 3 = 7.
Simplify this equation to obtain
cos(n — a) > cos(y — ). (6.63)
As we have seen above, this is equivalent to the condition
(v=8)* = (n—a)*>0, (6.64)

which becomes
(v=B+n—a)y—=F-—n+a)>0,
(Tl)(—Tg) > 0. (665)

The result is that the output crank passes through vy = 7 when 7} and T3
have opposite signs. The upper limit 1.« exists when 11735 > 0.
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Output Crank Types
We can identify the four types of output cranks:

1. A rocker: 7175 > 0 and 757, > 0, in which case both limits ¥y,
and Ymax exist, and the output crank rocks in one of two separate
ranges: (1) "/)min S '(/) S "/)maxa or (11) _'(/)max S 1/) S _'(/}min-

2. A O-rocker: 7173 > 0 and T»T; < 0, in which case 1max exists but
not ¥min, and the output crank passes through # = 0 rocking between
the values *+9ax-

3. A m-rocker: 1175 < 0 and 7574 > 0, which means that i, exists
but not ¥max, and the output crank rocks through ¢ = 7 between
the values +9min.

4. A crank: 7175 < 0 and 757, < 0, which means that neither ¥min
nor Ymax exists, and the output crank can fully rotate.

6.3.3 Classification of Spherical 4R Linkages

A spherical linkage is described in terms of the movement of its two cranks
in the same way as a planar linkage. For example, a crank-rocker has a
fully rotatable input crank and a rocker as the output crank. By assigning
positive and negative signs to the four parameters 7;, ¢ = 1,2,3,4, we
obtain 16 types of spherical four-bar linkage.

We separate these linkage types into those with 7, > 0 and those with
Ty < 0. In the first case, the sum of the angular dimensions of the four links
is less than 27. Spherical linkages in this class lie on one side of the sphere.
If T, > 0, then the link dimensions to add up to greater than 27 and the
linkage wraps around the sphere. Within these two general classes we can
identify spherical versions of the eight basic types found in the plane.

The Eight Basic Types, Ty > 0

Given a spherical four-bar linkage with angular dimensions «, 3, 7, and
1, we compute the four parameters T;, i = 1,2,3,4. Assume for the mo-
ment that T, > 0. Then the signs of the three parameters T, T3, and T3
define the same linkage type on the sphere as they do on the plane. In
particular, the combination 7175737, > 0 defines Grashof linkages, while
T\TyT3T, < 0 defines nonGrashof linkages, and there are four Grashof and
four nonGrashof linkage types.
We consider the Grashof cases first:

1. (+,4+,+,+): Because T1Ty > 0 and 737, > 0 the input link can
fully rotate. Similarly, because 7173 > 0 and 7574 > 0 the output
link is a rocker with two output ranges. This linkage is the spherical
crank-rocker.
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2. (+,—,—,+): With 7175 < 0 and 757, < 0 the input is a rocker, and
with 7173 < 0 and 7574 < 0 the output is a crank. Thus, this is a
spherical rocker-crank linkage.

3. (—,—,+,+): In this case, 7175 > 0 and 757, > 0, so that the input
link is a crank, and 7173 < 0 and 157y < 0, which means that the
output link is also a crank. This defines the spherical double-crank
linkage.

4. (—,+,—,4): T1T» < 0 and 737, < 0 define the input as a rocker,
and with 7175 > 0 and 7574 > 0 the output is a rocker as well. Thus,
this defines the spherical Grashof double-rocker linkage.

And the following are the remaining nonGrashof cases:

5. (—,—,—,+): Here we have T1'T5 > 0 and T57, < 0. Therefore, the
input link rocks through the value 8 = 0. With 71753 > 0 and 157 <
0, we see that the output link also rocks through the value ¢ = 0.
This type of linkage is termed a 00 spherical double rocker.

6. (+,+,—,+): In this case, the input again rocks through 8 = 0. How-
ever, with 7175 < 0 and 1574 > 0 the output rocks through ¢ = 7.
This linkage is called a O spherical double rocker.

7. (+,—,+,+): With 7175 > 0 and 7574 > 0 we see that the input link
rocks through 7, and because 7175 < 0 and 757, < 0 the output link
rocks through 0. This is the 70 spherical double rocker.

8. (—,4+,+,+): Finally, the input again rocks through =, as does the
output, which we term the 7w spherical double rocker.

This classification is summarized in Table 6.1.

The Linkages Types for Ty <0

If the parameter 7, is negative, then we have eight linkage types that
wrap around the sphere. However, the movement of the input and output
cranks for each of these cases corresponds to one of the eight basic types
presented above. This correspondence is identified by simply negating each
of the parameters T4, T,, and T3. For example, the spherical linkage of type
(4, +, 4, —) has the same input and output crank movement as that given
by (-, —,—,+), which is a 00 spherical double rocker.

To see that this is true, notice that the input crank movement is de-
fined by the signs of the products 7175 and 757}, and the output crank
movement by the signs of 7173 and T>7T}. It is easy to see that if T, < 0
then both 73 and 7% must be negated in order for 737y and 15T, to
maintain the same signs. We can ensure that the signs of the products
T1T> and 1173 are unchanged by also negating 77. Thus, the linkage
type (sgnTy,sgn Ty, sgn T3, +) has the same crank movement as the type
(—sgnTy, —sgnTs, —sgn T3, —).
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Linkage type Ty | Ty | T5 | Ty

1. | Crank-rocker + |+ | + | +
2. | Rocker-crank + | = | =] +
3. | Double-crank - | - +
4. | Grashof double rocker | — | + | — | +
5. | 00+ double rocker — | = = | +
6. | Or+ double rocker + |+ -]+
7. | w0+ double rocker + | -+ | +
8. | mm+ double rocker -+ |+ | +
9. | Crank-rocker - = =1 =
10. | Rocker-crank - |+ |+ | -
11. | Double-crank + |+ = | =
12. | Grashof double rocker | + | — | + | —
13. | 00— double rocker + |+ + | =
14. | Omr— double rocker — | =+ | =
15. | m0— double rocker — - | =
16. | mwm— double rocker + | == =

Table 6.1. Basic Spherical 4R Linkage types

6.3.4 Grashof Linkages

Grashof’s criterion for planar linkages can be extended to spherical link-
ages. However, in order to uniquely identify the longest and shortest links,
Chiang [8] defines a model linkage that can be selected from the 16 equiv-
alent spherical linkages. It has the property that the sum of each pair of
consecutive link angles is less than or equal to 7. Using this model linkage,
we have a spherical version of Grashof’s criterion

s+l<p+yq, (6.66)

where s and [ are the angular lengths of the shortest and longest links, and
p and ¢ are the angles of the other two links. If this condition is satisfied,
then the shortest link will fully rotate relative to its neighbors.

As for planar linkages, any of the four links of the spherical linkage may
be the shortest link. If the input or output link is the shortest, then we have
a crank-rocker or rocker-crank. If the ground link is the shortest, then both
the input and output links will fully rotate relative to the ground. This is
the double-crank linkage. Finally, if the floating link is the shortest link,
then the input and output links are rockers, which is the Grashof double
rocker. Examining Table 6.1, it is easy to see that these four linkage types
satisfy the condition

TV 15T5T, > 0. (667)

This is equivalent to Grashof’s criterion.



6.4. Angular Velocity 133

Like planar Grashof linkages, the two solutions for the output angle ¢
for a given input angle 6 define independent assemblies for the spherical
Grashof linkage. The configurations reachable in one assembly are separate
from those reachable in the other assembly. To move from one set to the
other the linkage must be disassembled.

6.3.5 Folding Linkages

The classification above considers only positive and negative values for the
parameters T;, ¢ = 1,2,3,4. If any of these parameters is zero, then a
configuration exists with all four joints of the linkage OABC aligned in a
plane, and the spherical linkage is said to fold. The number of parameters
T; that are zero is the number of folding configurations of the linkage.

If we consider that the parameters 73, ¢ = 1, 2, 3,4, can take the values
(+, 0, —), then there are 81 types of spherical 4R linkages, 65 of which fold.
The ability to fold can be useful, however, the position analysis equations
often break down in these configurations.

6.4 Angular Velocity

The velocities of points in a spherical linkage are generated by the spatial
rotation of the links. Thus, the time derivative of a rotation matrix defines
these velocities and the angular velocity of the link.

The angular velocity of a rotating body can be visualized as the rate of
a continuous rotation about an axis. Because this axis may also move in
space, we must develop the definition of angular velocity with some care.

Let the orientation of a body M be defined by the rotation matrix [A(t)],
so that we have the trajectory X(¢) = [A(t)]x for any point x in M. The
velocity of this point is V = X = [A(t)]x. In order to focus on coordinates
in F we make the substitution

V=X =[A®)][A1)T]X = [Q(t)]X. (6.68)

The matrix [2] is called as the angular velocity matriz and defines the rate
of change of orientation of the moving body. It can be viewed as an operator
that computes the velocity V by operating on a trajectory X(t).

The angular velocity matrix is skew-symmetric, that is, [QT] = —[Q)].
Therefore, we can identify a vector w such that for any other vector y,
[Q)y = w x y. This vector w is the angular velocity vector of the body. For
a link connected to ground by a revolute joint, this vector is directed along
the joint axis, as we would expect.

For a link undergoing a general rotation [A(t)], we can find the points I
that have zero velocity by solving the equation

Q)T = 0. (6.69)
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Clearly, these points lie on the line along the angular velocity vector w,
which is called the instantaneous rotation azis.

6.5 Velocity Analysis of an RR Chain

The velocity of trajectories traced by the end-link of a spherical RR chain
are computed using the angular velocity matrix [2] constructed from its
kinematics equations

d

[9(61,02)] = = ([Z(00)[Y ()][2(0)))([Z(0)][Y ()][2(02))"

= 01[K] + 02[Z(00)[Y ()] [K][Y () [ Z(61)"], (6.70)

where [K] is the skew-symmetric matrix defined so [K]y = k x y. Thus,
the angular velocity vector of the end-link is

w = 01k + 05 Z(01)]Y ()]k. (6.71)

This vector can be written in the form of a matrix equation

Wy 0 cosfisina .
wW=(wy, s= [0 sinf;sina {01} : (6.72)
2
W, 1 COS (v

This matrix is called the Jacobian of the spherical RR chain. It relates the
angular velocity of the end-link to the joint rates, 6; and 6,.

6.6 Velocity Analysis of the 4R Linkage

The time derivative of the loop equations (6.35) provides relationships
among the angular velocities 1, ¢, and 6. Expanding this derivative, we
obtain

[ —casnse [ —sO(cycysB + sycf) + cl(sysf)
) snco =0 < —cl(cycysB + syeB) — sb(sysf)
sasnso 0
[ —cOcysysB + sbepss
+ 9 < sbcysysfB + clcyss ;. (6.73)
sysys(

The first two components of these equations provide linear equations that
define the angular velocities of the coupler and output crank, ¢ and ¢, in
terms of the angular velocity of the input crank 0.
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6.6.1 The Output Velocity Ratio

To obtain further insight to the relationship between the angular velocities 0
and v, we derive it in another way. Compute the derivative of the constraint
equation A - B = cosn to obtain

A-B+A-B=o. (6.74)

In order to determine A and B we use the angular velocity vectors wg and
w¢ of the input and output crank, which are given by

wo =600 and we = ¢C. (6.75)

Recall that O and ‘C are unit vectors.
Now substitute A = wo x A and B = w¢ x B into (6.74) to obtain the
relation

(fOxA) - B+ A (yCxB)=0. (6.76)

Interchange the dot and cross operations in this equation and collect terms
to obtain

(00 — C)- A x B =0. (6.77)
Substitute O = k and C = cos 'yE + sin 2 so we have
(HE — tp(cos vk + sin 77)) - A x B=0. (6.78)

—

Finally, using the relations k=7x Jand =7 X k , we write this equation
in the form

(97— ¥(cosy7 — sin*yE)) -’x (A xB)=0. (6.79)

The vector kI = 7' x (A x B) is the intersection of the coupler plane
AB and the xz coordinate plane. Let the coordinates of this vector be
I = (sinp,0,cos p)T, then from (6.79) we have

é _ sinp
5= —sin(p " (6.80)

6.6.2 The Coupler Velocity Ratio

A similar relationship can be derived for the velocity ratio of the coupler.
To do this, we compute the velocity of B using the relation

B:A—I—WABX (B—A), (6.81)

where w g is the angular velocity of the coupler in F'. This angular velocity
is the sum of the angular velocity wa = ¢A of the coupler relative to the
crank OA and the angular velocity wo = 60O of the crank relative to F,
that is,

wap = 00 + ¢A (6.82)
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Now, from the fact that B = wc x B, we have the condition
B-C=(A+wagx (B-A)) - C=0. (6.83)

Recall O = k and introduce the unit vector € in the plane of the input
crank, so A = cosak + sin a€, then this equation becomes

(0k x A + (0k + ¢(cosak +sinaé)) x (B — A))-C =0. (6.84)

Cancel the k x A terms and interchange the dot and cross products to
obtain

((6 + pcosa)k + dsinae) - B x C = 0. (6.85)

Finally, define the unit vector et = k x & and use the relations k = & x &=

and €= —k x € to write this equation in the form
((0 + ¢ cos )€ — psinak) - & x (B x C) = 0. (6.86)

The vector kJ = € x (B x C) defines the line of intersection of the
plane of the input crank OA with the plane of the output crank BC. If
the coordinates of the unit vector along this line are J = cos plg + sin pé€,
then from (6.86) we obtain

% - P (6.87)

sin(a — p)

6.6.3 Instantaneous Rotation Axis

The output velocity ratio of the spherical four-bar linkage can be viewed
as generated instantaneously by a pair of bevel gears connecting the input
and output cranks. The gears have axes O and C and are in contact at the
point I on the spherical section of their pitch cones. We now show that this
is a general characteristic for two bodies rotating about the same point in
a fixed frame F'.

Let the two bodies have the instantaneous rotation axes O and C that
are separated by the angle v. We ask if there is a point Q in one and P in
the other, that coincide with the same point I = (X,Y, Z)T and have the
same velocity in F'. This is the property of points in contact on the pitch
circle of the two gears.

Let p be the angle from O to Q and k the angle from C to P, so we have

sin p cos 6 COS 7y SIn K cos ¥ + sin 7y cos K
Q= {sinpsinf ;, P= sin K sin 1 . (6.88)
cos p —sinysin K cos vy + cosysin Kk

The velocities of these points are obtained by computing the derivatives

. [ —sinpsinf . [ —cosysinksiny
Q=0¢ sinpcos ;, P=1v sin K cos Y : (6.89)
0 — sin -y sin K sin ¢
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If P and Q are to be in contact, then Y = sinksinf = sin psin, and if
they are to have the same velocity, then

_ ‘ . —1/} cos 'yY.—I- oY 0
P-Q=(¢sinkcosy —Osinpcosh p =<0, . (6.90)
—1p cos Y 0

The first and third components of this equation show Y = 0, which means
that 0 =1 = 0 or 7. Let 8 = ¢ = 0 and allow the angles p and « to take
positive and negative values, then (6.88) shows that p — v = .

Finally, the second component of (6.90) yields the relation that defines

Ps

v __sinp (6.91)
0 sin(p—7)
Thus, I derived in the previous section is the point that has zero relative ve-
locity in both the input and output cranks. The fact that this instantaneous
relative rotation axis must lie in the plane defined by the two instantaneous
rotation axes O and C is the spherical version of Kennedy’s theorem.
A similar analysis of the coupler velocity ratio shows that the axis J is
the instantaneous relative rotation axis of the coupler relative to ground.

6.6.4 Mechanical Advantage

The relationship between the torque applied to the input crank and the
torque at output crank of a spherical four-bar linkage is obtained using the
principle of virtual work. In the absence of gravity and frictional loads, this
principle equates the virtual work of torque applied to the input crank to
the virtual work done by the output crank.

A virtual displacement of the input or output crank is defined to be the
angular displacement that occurs when it rotates at a constant angular
velocity for a virtual time period ét. This yields the virtual displacements

60 =006t and 6y = ) Cét. (6.92)

Let To = TpO be the torque applied to the driving crank and T = T C
be the output torque at the driven crank. Then the principle of virtual
work yields the relation

To - 60 = Te - 69). (6.93)
Substitute (6.92) into this equation to obtain
Tobdt = Tyt (6.94)

Since the virtual time increment is nonzero, we can cancel 6t to obtain the
torque ratio
Tc 6  sin(p—
To _ 9 _sinlp=1) (6.95)
To v sin p
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The second equality is the output velocity ratio (6.80). Thus, the torque
ratio of a spherical four-bar linkage is the inverse of its velocity ratio. Notice
that this ratio changes as the configuration of the linkage changes.

Let the input torque be generated by a couple defined such that T =
aF. Similarly, let the output torque be a couple such that T = bF(.
Then the ratio of output force F to input force Fyy is given by

F in(p —
C _ gw_ (6.96)
Fo b sinp

This ratio is called the mechanical advantage of the linkage. For a given

set of dimensions a and b the mechanical advantage is proportional to the
velocity ratio of the input and output cranks.

6.7 Summary

This chapter has presented the position and velocity analysis of the spher-
ical 3R open chain that forms a robot wrist and spherical 4R closed chain.
The results follow closely those developed in the earlier chapter on planar
linkages. The instantaneous rotation axis and Kennedy’s theorem provide
a convenient way to determine the mechanical advantage of a spherical
linkage.

6.8 References

The fundamental reference for spherical linkages is Chiang [8]. Craig [11]
and Tsai [93] present the analysis of robot wrists and the Hunt [38] and
Crane and Duffy [12] examine spherical 4R linkages. The classification of
spherical linkages is taken from Murray [64].

6.9 Exercises

1. Use the equations of spherical trigonometry to determine the joint
angles of a spherical triangle with sides o152 = 120°, as3 = 80°, and
a13 = 135° (Crane and Dufty [12]).

2. Analyze the spherical linkage o = 40°, n = 70°, 8 = 85°, and v = 70°.
Let the input crank angle be § = 75° (Crane and Duffy [12]).

3. A 4R linkage with an output link angle 8 = 7/2 is considered the
spherical version of a slider-crank, since the moving pivot moves on a
great circle of the sphere. Derive the input/output equations for this
linkage.
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4. Derive the algebraic equation of the coupler curve of a spherical 4R
linkage.

5. Determine the output velocity ratio for Hooke’s coupling. Under what
condition is this ratio constant.

6. Prove the general version of Kennedy’s theorem that the three in-
stantaneous rotation axes for three rotating bodies must lie in a
plane.
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Spherical Kinematics

In this chapter we consider spatial displacements that are pure rotations in
three-dimensional space. These are transformations that have the property
that one point of the moving body M has the same coordinates in F' before
and after the displacement. Because the distance between this fixed point
and points in M are constant, each point in the moving body moves on a
sphere about this point. If the origins for both the fixed and moving frames
are located at this fixed point, then the spatial displacement is defined by
a 3 x 3 rotation matrix. The study of spherical kinematics benefits from
both the properties of linear transformations and the geometry of a sphere.

7.1 Isometry

A spatial displacement preserves the distance between every pair of points
in the moving body and is an isometry of three-dimensional space. As in the
plane, this displacement is the composition of a translation and a rotation.

Let P = (P, Py, P,)T and Q = (Q4,Qy, Q)T be the coordinate vectors
of two points in three-dimensional space. The distance between these points
is the magnitude of their relative position vector Q — P,

Q-P|=1/(Q:— P2+ (Q — B2 +(Q:— P2, (7))

which is also called the Fuclidean metric. Using vector notation, this
formula takes the same form as that used for planar kinematics, that is,

Q-P*=(Q-P)- (Q-P)=(Q-P)"(Q-P). (7.2)
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The second equality is the matrix form of the vector scalar product.

7.1.1 Spatial Translations

As we saw in the plane, the addition of a vector d = (dy,dy, d.)T to the
coordinates of all the points in a body, such that X = x 4+ d, is called
a translation. Let the points p and q be translated so P = p + d and
Q = q + d, then we can compute

Q—-P|=|(g+d)—-(p+d)|=|q-pl (7.3)

Thus, translations preserve the distance between points.

7.1.2  Spatial Rotations

A spatial rotation has the same basic properties as a planar rotation, though
now applied to three-dimensional vectors. A rotation takes M from a po-
sition initially aligned with F' and reorients it, while keeping the origins of
the two frames located at the same point c. Let 7, 7, and k be the unit vec-
tors along the coordinate axes of F'. The rotation changes the direction of
each of these vectors. Let these new directions be given by the orthogonal
unit vectors e,, e,, and e,, such that e, x e, = e,. This last condition
ensures that e;, e,, and e, form a right-handed frame like 7, 7, and k. A
point with coordinates x = (z,v, 2)T = z7+y7+ 2k before the rotation will
have coordinates X after the rotation, given by

X = X7+ Y7+ Zk = ze, + ye, + ze,. (7.4)

Let the components of e, be (ez 1,€4 2, 6$,3)T. A similar definition for e,
and e, allows us to form the matrix equation

X ex1 €yl €z1| [z
Y )= leso ey2 €:2| Yy, (7.5)
A €r3 €y3 €23 z
or
X =les ey, e]x=[Ax (7.6)

All spatial rotations are represented by matrices constructed in this way,
which are known as rotation matrices.

Distances

We now show that rotations preserve distances between points. Let p and
q be the coordinates of two points before the rotation, and let P = [A]p
and Q = [A]q be their coordinates after the rotation. We compute

Q-P’=(p-a)[A7][4(p-a)". (7.7)
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Notice that this equality is satisfied only if [AT][A] = [{].
This condition is always true for matrices constructed from orthogonal
unit vectors as in (7.6), which can be seen from the computation

el efe, ele, ele,
[AT][A] = e; ez, ey, e;]= eéem e;ey e;ez =1[I]. (7.8)
el ele, ele, ele,

Important examples are the coordinate rotations [X (-)], [Y ()], and [Z(-)]
presented in (6.3) and (6.1) in the previous chapter.

In general, a spatial rotation is a linear transformation that preserves the
distances between points and the orientation of the reference frames. Ma-
trices [A] that satisfy the condition (7.8) are termed orthogonal. However,
in order to preserve the orientation of the coordinate frame we must add
the requirement that the determinant |A| be positive. From the calculation

det([AT)[A]) = [A]2 =1 (7.9)
we see that an orthogonal matrix can have a determinant of either +1 or —1.
Those with |A| = +1 are rotations. Those with |A| = —1 are reflections.
An example of a reflection is the matrix
1 0 0
0 1 0]. (7.10)
0 0 -1

The columns of this matrix are orthogonal unit vectors, and its transpose
is its inverse. However, it changes the orientation of the frame by reversing
the direction of the z-axis relative to the zy-plane.

Angles

A spatial rotation preserves the relative distances between three points P,
Q, and R. Therefore, it preserves the angle kK = ZQRP. In order to show
this, it is useful to recall that the sine and cosine of the angle about R from
P to Q can be computed from the relative vectors P — R and Q — R by
the formulas

P-R)x(Q-R)-N (P-R)-(Q-R)

, COSK = , 7.11
P-RIQ-R P-rjqQ-R = U

where N is the unit vector in the direction of (P — R) x (Q — R).

Now let the triangle AQRP be the result of a rotation by [A], so we
can make the substitutions P — R = [A](p — r), Q — R = [A](q — 1),
and N = [A]n in (7.11). Note that for rotation matrices only, we have the
identity

Sink =

([A]x) < ([A]ly) = [A](x x ). (7.12)
This allows us to factor [A] from the vector product in sin x and obtain

(P-R)x(Q-R) N=(p-r)x(q—r)-n, (7.13)
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where [A] cancels in the scalar product because [AT][A] = [I]. For the same
reason [A] cancels in the expression for cos k. The conclusion is that these
formulas apply without change to coordinates in M and in F', and therefore
the angle k is the same before and after the rotation.

If the point R = (0,0,0)T = c is the origin of F', then (7.11) simplifies
to define the angle between the vectors P and Q as
PxQ-N P-Q
—————, COSK= ——.

PllQ| PllQ|
And we have that /PcQ=/pcq for any two points p and q in the moving
body.

sink = (7.14)

7.1.8 Spatial Displacements

A spatial displacement consists of a spatial rotation [A] of the moving frame
M from its initial position to a new orientation M’ followed by a translation
d to M". The initial position of M is aligned with F', and its final position
is aligned with M”. As we did in the plane, we let F' and M be the initial
and final positions, and define the spatial displacement of M relative to F
by the transformation [T'] = [A4, d].

Clearly, if d = 0, then the displacement is a spatial rotation about the
origin of F'. Therefore, the orientation of M relative to F' is defined by
the rotation matrix [A]. Below we consider spatial displacements that are
equivalent to pure rotations about other points in F'. The properties of these
rotational displacements are the same as for rotations about the origin of
F, which are our focus of study in what follows.

7.1.4 Composition of Rotations

Consider two rotation matrices [A1] and [As]. Their product [A;][A3] is an
orthogonal matrix, as can be determined from the computation

([A1][A2])" ([A1][Az2]) = [A;][AT][A1][As] = [1]. (7.15)

This is a rotation matrix because its determinant is the product of the
determinants of [A;] and [A3].

The orientation of M defined by this product results from the orientation
of a frame M’ relative to F' defined by the equation X = [A,]y, combined
with the orientation of M relative to M’ given by y = [As]x. Compose these
two rotations by direct substitution for y, and the result is the orientation
of M relative to F, given by

X = [As]x = [A1][As]x. (7.16)

The composite rotation is obtained from the matrix product.
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The inverse [A™1] of a rotation [A] is the rotation defined such that the
composition [A71][A] is the identity. Therefore, [AT] = [A~!] is the inverse
rotation.

Changing Coordinates of a Rotation Matrix

Consider the rotation X = [A]x of M relative to F. We now determine
the rotation matrix [A’] between a pair of fixed and moving frames F”
and M’ that are rotated by the same matrix [R] relative to the original
frames. Coordinates Y and y in the new frames are related to the original
coordinates by Y = [R|X and y = [R]x. Therefore, we have

X = [Alx =[RT]Y = [A][R ]y,

Y =[R][A][R"]y. (7.17)

Thus, the original matrix [A] is transformed by the change of coordinates
into [A'] = [R][A][RT].

7.1.5 Relative Rotations

Consider two orientations M; and Ms of a body relative to F' defined by the
rotation matrices [A;] and [As2]. Let X be the coordinates in F' of a point
x in M when in the orientation M;. Similarly, let Y be the coordinates of
the same point when M is in orientation My. Then we have X = [A;]x and
Y = [As]x, respectively. The relative rotation matrix [Ai] that transforms
the coordinates X into Y is defined by

Y = [A2]X. (7.18)
Substitute for X and Y in order to obtain
[AQ]X = [Alz][Al]X. (719)

Equating the matrices on both sides of this equation, we see that [Ajs] is
given by

[A12] = [A2][AT]. (7.20)

This defines the orientation of M, relative to M, measured in the frame F'.

Relative rotations are easy to compute for coordinate rotations [X(-)],
Y ()], and [Z(-)]. Consider, for example, two orientations of M defined by
the z-rotations [Z(6:)] and [Z(62)]. The relative rotation is given by

(Z(0)]1Z(01)"] = [Z(0)][Z(~01)] = [Z2(02 - 01)] = [Z(012)],  (7:21)

where 019 = 05 — 6. This calculation uses the fact that the inverse of a
coordinate rotation is just the rotation by the negative value of the rotation
angle.
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In general, given a set of orientations M;, + = 1,...,n, we have the
relative rotations defined by

[Ai;] = [A;)[A] ). (7.22)

7.1.6 Relative Inverse Rotations

For two orientations M; and My of a body, we can determine the inverse
orientations F; and F5 of the fixed frame F' as viewed from M. These are
defined by the inverse rotations [A7 '] and [45']. Let X be a point in F that
corresponds to a point x when M is in orientation M, or equivalently, when
F' coincides with F}. Let this X correspond to y in M when in orientation
Ms, which is the same as when F' aligns with F5 as viewed from M. These
coordinates are related by the equations x = [A]7']X and y = [45']X. The

relative tnverse rotation [A]Iz] transforms the coordinates x into y by

Yy :[A]iﬂxy
(A7 1]X =[AL][AT1]X. (7.23)
Thus, we have
[Al,] = [AT]]A4]. (7.24)

This rotation defines the rotation of F' from F] into F5 as viewed from the
moving frame M. Notice that this is not the inverse of the relative rotation
matrix [Alg], which is [Al—zl] = [Al][Ag]

For a general set of orientations M;, i = 1,...,n, we have the relative
inverse rotations

[AL] = [AT][Ad). (7.25)

The relative inverse rotation is defined from the point of view of the
moving frame M. We can choose a specific orientation M; and transform
its coordinates to the fixed frame. In particular, transform the relative
inverse rotation [Al,] to M in F by the rotation [A,], to obtain

[A7,] = [A;][ALJIAT). (7.26)

This is known as the image of the relative inverse rotation for position M,
in F'.

Notice that if M; is one of the orientations of the relative inverse rotation,
say j =1, then

[AL] = [A)AL)AT] = [A)[AT) A [AT] = [A)[AT) = [A%). (7.27)

This result is also obtained for j = k. Thus, in these cases the image of the
relative inverse rotation is the inverse of the relative rotation.
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7.2 The Geometry of Rotation Axes

Every rotation has an axis, which is the set of points that are invari-
ant under the transformation. The geometric properties of these axes are
fundamental tools in the synthesis of spherical RR chains.

7.2.1 The Rotation Axis

The points that remain fixed during a rotation [A] form its rotation axis.
To find these points we consider the transformation equation

X =[A]X. (7.28)
This shows that a fixed point X is the solution to
I — A X =0. (7.29)

This equation has the solution X = 0, which tells us that origin is a fixed
point, as expected. For there to be other fixed points, the determinant of
the coefficient matrix must be zero, that is, |[I — A| = 0.

It happens that this condition is satisfied for all spatial rotation matrices.
Another way of saying this is that these matrices always have A = 1 as an
eigenvalue. Notice that if S is a nonzero solution, then every point P = S
on the line through the origin and S is also a solution. This line of points
is the rotation axis.

Cayley’s Formula

In order to obtain an explicit equation for the rotation axis we first derive
Cayley’s formula for a spatial rotation matrix. Consider the points x and
X in F that represent the initial and final positions obtained from the
rotation X = [A]x. Using the fact that |x| = |X|, we compute

X-X—xx=X-x%)-(X+x)=0. (7.30)

This equation states that the diagonals X — x and X + x of the rhombus
formed by the vertices O, x, X, and x + X must be perpendicular.
The diagonals X — x and X + x are also given by the equations

X—x=[A-I]x and X+x=[A4+I]x. (7.31)
Substitute for x on the right side of these two equations in order obtain
X-—x=[A-I[A+1]""(X+x) = [B](X +x). (7.32)

The matrix [B] operates on the diagonal X + x to rotate it 90° and change
its length. The result is the other diagonal X — x. From the fact that

(X +x)T[B](X +x) =0, (7.33)
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we can see that [B] must have the form

0 —b, by
[B]= | b, 0 —bz. (7.34)
—by by 0
This matrix is skew-symmetric, which means that [BT] = —[B].

The elements of [B] can be assembled into the vector b = (b, b,,b.)T
that has the property that for any vector y,

[Bly =b xy, (7.35)

where x is the usual vector product. The vector b is called Rodrigues’s
vector and (7.32) is often written as

X —-—x=bx (X+x). (7.36)

The equation [B] = [A — I][A + I]™! can be solved to obtain Cayley’s
formula for rotation matrices

[A]=[I — B]"'[I + B]. (7.37)

This shows that the nine elements of a 3 x 3 rotation matrix depend on
three independent parameters. Another way to say this is that the set of
rotation matrices SO(3) is three-dimensional.

We now solve (7.29) explicitly to determine a nonzero point S on the
rotation axis. Substitute Cayley’s formula for [A] into this equation to
obtain

[I-[I-B]"'I+B]]X=0, (7.38)
which simplifies to
[B]X =0. (7.39)

Since [B]X = b x X, it is clear that X = b is a solution. Thus, Rodrigues’s
vector defines the rotation axis.

We denote by S the unit vector in the direction of Rodrigues’s vector b,
and use it to identify the rotation axis of [A].

7.2.2  Perpendicular Bisectors and the Rotation Axis

The angle between the rotation axis S and vectors through the origin ¢ to
any point x in the moving body is preserved by the rotation. This means
that ZxcS equals ZXcS and we have

S X=8 x. (7.40)

This equation states that the component of any point x in the direction
of the rotation axis S is unchanged by the rotation [A]. This can be made
explicit by computing

S-X-S-x=8S-(X-x)=0. (7.41)



148 7. Spherical Kinematics

Thus, the vector joining the initial position of a point x to its final position
X is perpendicular to the direction of the rotation axis.

In order to examine this relation (7.41) in more detail, choose the pair of
corresponding points p and P and consider the set of points Y that satisfy
the equation

Y- (P—p)=0. (7.42)

This defines a plane through the origin, because Y = 0 satisfies this equa-
tion. Furthermore, the midpoint V of the segment P — p lies on this plane
because

p
;pWP—p%:

The last equality simply restates that |P| = |p|.

This shows that the plane defined by (7.42) is perpendicular to the seg-
ment pP and passes through its mid-point V. So it is the perpendicular
bisector of the vector P — p. Thus, we see that the rotation axis lies on the
perpendicular bisector of all vectors X — x for every point x in the moving
body.

P-P-pp_

V. (P-p)= 5

0. (7.43)

Constructing the Rotation Axis

This result provides a convenient way to determine the rotation axis.
Choose two points p and q and determine their transformed positions
P = [A]p and Q = [A]q. The perpendicular bisectors of the segments
P—-—pand Q — q are

Y- (P - p) :07

Y - (Q—q) =0. (7.44)
The rotation axis is the line of intersection of these two planes, and we
have the solution Y = S given by

(P—-p) x(Q—q)
(P —p) x(Q—qa)|

S — (7.45)

7.2.8 The Rotation Angle

The plane defined by AxcS rotates about S in order to reach its final
position containing AXcS, Figure 7.1. The dihedral angle ¢ between these
two planes is called the rotation angle of [A]. It can be determined from
the two vectors S x x and S x X that are perpendicular to these respective
planes, as well as perpendicular to S. Compute the sine and cosine of the
angle between these vectors using (7.14),

(Sxx)x(SxX)-S
IS x x||S x X|

(S x x) - (S x X)
IS x x||S x X]| °

cos ¢ = (7.46)

sin¢ =
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Figure 7.1. The rotation axis and two positions of a general point.

The numerator of sin ¢ simplifies to (S x x) - X, so we have

(Sxx)-X
(Sxx)-(SxX))'

¢ = arctan ( (7.47)

Rodrigues’s Equation

Consider the projections of the points x and X onto the plane perpen-

dicular to the rotation axis S through c, which we denote by x* and X*,

respectively. The isosceles triangle Ax*cX™ has the rotation angle ¢ as

its vertex angle. The altitude V™ of this triangle is the projection of the

midpoint of the segment X — x. Therefore, we have
¢ _ |1 XT -V

tan — =

2 ['V*|
Notice that the vectors X* — V* and V™ are related by the equation

¢
2
where the vector product by S rotates V* by 90°.

We expand this relation to obtain Rodrigues’s equation. First, notice
that

(7.48)

X*—V*=tan =S x V*, (7.49)

SxV*=SxX%=SxX;_x. (7.50)
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The components of x and X in the direction S are canceled by the vector
product with S. Next, we have
X*+x* X'—x* X-—-x

X*—V*=X* - = = 7.51
5 5 5 (7.51)

because the components of x and X along S cancel. Combining these
results, we obtain

X — x = tan %S x (X + x). (7.52)

This is another derivation of Rodrigues’s equation. However, in this case,
we see that the magnitude of Rodrigues’s vector is tan(¢/2), that is, b =

tan($/2)S.

7.2.4 The Rotation Defined by ¢ and S

A rotation matrix [A] is characterized by its rotation axis S and rotation
angle ¢. Cayley’s formula combines with the definition of Rodrigues’s vector
to yield an explicit formula for [A(¢, S)]. Because b = tan(¢/2)S, we have
that the matrix [B] is given by

é 0 —8; Sy
[B] = tan 5 | s 0 —sz|, (7.53)
—8y Sz 0

where S = (s, sy, s,)7. Thus, Cayley s formula ylelds
[A(¢,S)] = [I —tan - [S]] I +tan - [S]] (7.54)
which can be expanded to obtain

[A(¢,S)] = [I] + sin ¢[S] + (1 — cos ¢)[S?]. (7.55)

This equation defines the rotation matrix in terms of its rotation axis and
the angle of rotation about this axis.

Important examples of (7.55) are the coordinate rotations [ X (6)], [Y (0)],
and [Z(0)], which are rotations by the angle  about the axes 7= (1,0, 0)7,

7=1(0,1,0)T, and k= (0,0,1)T, respectively.

Inverse Rotations

The rotation matrix [A] and its inverse [AT] have the same rotation axis S.
This is easily seen by multiplying [A]S = S by [AT] to obtain S = [AT]S.

We now compute [A(¢, S)T] using (7.55). Notice that [ST] = —[S] and
[S?]T = [§?], so we have
[AT] = [I] —sin ¢[S] + (1 — cos ¢)[S?], (7.56)

where ¢ is the rotation angle of [A]. Let ¢’ be the rotation angle of [AT].
Then we see from sin ¢’ = —sin¢ and cos ¢’ = cos ¢ that ¢’ = —¢. Thus,
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the inverse rotation is simply the rotation by the negative angle around the
same axis.

A Change of Coordinates

Equation (7.55) provides a convenient way to understand the change of
coordinates of a rotation matrix. Consider the transformation [A'] =
[R][A(¢, S)][RT], where [A] is defined in terms of its rotation angle and
axis. Then we have

[A'] =[R]([1] + sin ¢[S] + (1 — cos ¢)[S?]) [R"]

=[1] + sin ¢([R][S][R"]) + (1 — cos ¢)([R][S?][RT)). (7.57)

It is easy to show that [S'] = [R][S][RT] is the skew symmetric matrix
associated with the vector S’ = [R]S, and we have

[A"] = [I] + sin ¢[S] + (1 — cos ¢)[S"?]. (7.58)

Thus, a change of coordinates [R][A(¢,S)][RT] leaves the rotation angle
unchanged, and transforms the rotation axis by [R], so [A’] = [A(¢, [R]S)].

7.2.5 Figenvalues of a Rotation Matrix

In this section we consider the matrix equation (7.29) in more detail. The
matrix [I — A] can be considered to be [\l — A], where A = 1. This leads
us to consider the eigenvalue equation

[A]X = X, (7.59)

which has a solution only if the determinant |\ — A| is zero. This yields
the characteristic polynomial

)\3 — (all 4+ ag9 + a33))\2 + (M11 + Moo + Mgg))\ —1=0, (760)

where M;; is the minor of the submatrix of [A] obtained by removing row
¢ and column j.

Rotation matrices have the property that each element is equal to its
associated minor, that is,

Mij = aij. (761)

This follows directly from the fact that the inverse of a rotation matrix is
its transpose.
We use this to simplify (7.60) to obtain

A3 — (CLU + ag9 + CL33))\2 + (CL11 + agg + 0,33))\ —1=0. (762)

It is now easy to check that A = 1 is a root of this polynomial for all rotation
matrices. This means that |/ — A| = 0, so (7.29) always has solutions other
than X = 0.
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To obtain the other two roots of (7.62), divide by (A — 1) to obtain
A2 — (a11 + @29 + a33 — 1))\ +1=0. (763)

The roots of this equation are A = ¢** and A\ = e~ ®, where the angle ¢ is
given by

—1
a11 + a2 + ass \) . (7.64)

¢ = arccos ( 5

7.2.6 Rotation Axis of a Relative Rotation

For two orientations defined by the rotations [A;] and [A2] we have the
relative rotation matrix [A;2] = [A2][AT]. This matrix transforms the co-
ordinates X! of point x in M in orientation M; into the coordinates X2
when the body is in My, that is,

X? = [A19]X . (7.65)

The axis of rotation S5 satisfies the condition (7.40), which in this case
becomes

Sip - X? =8, - X1 (7.66)
or
Sip- (X2 -XH =o. (7.67)

Thus, the relative rotation axis S5 lies on the perpendicular bisector of all
segments joining corresponding points in orientations M; and Ms.

Let P' and P? and Q' and Q? be a pair of corresponding points in
orientations M, and M. Then S;5 is the solution to the pair of equations

S, - (P? —P') =0,
S12-(Q* — Q') =0, (7.68)
given by
(P’ -P) x(Q*- Q")
(P? —P) x (Q*— Q)|

The relative rotation angle ¢, about S5 is the dihedral angle between
the planes containing AX'08;5 and AX'08;5, which by (7.47) is

(Slz X Xl) -X2 )
(SxXhH . (SxX?) /)

(7.69)

SlQ -

¢12 = arctan ( (7.70)

Finally, we see from (7.55) that the relative rotation [As] is defined in
terms of its rotation angle ¢12 and axis Si2 by the formula

[A(¢12, SlZ)] = [I] + Sin leg[slz] + (1 — COS d)12)[5122] (771)
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7.2.7 Rotation Axis of a Relative Inverse Rotation

Given the two orientations M7 and Ms, we can compute the inverse rota-
tions [AT] and [AT] that define the orientations F; and F of the fixed frame
relative to M. The relative inverse rotation is given by [Al,] = [AT][A.].
The rotation axis s; of [Al,] is computed using the formulas above, but it
now lies in M. Let (;51;2 be the relative rotation angle.

In general, we can transform the relative inverse rotation [Ajk_] to the
fixed frame £’ when M is in orientation M; by the computation

(A% = [A;][AL1AT . (7.72)
This transforms the coordinates of s;; to
S7. = [A;]six, (7.73)

which is the image of the relative inverse rotation axis.
For the two cases j =1 and j = 2 we have

[Aizl = [A%ﬂ = [A{z . (7-74)

Thus, the relative inverse rotation angle is d)h = —¢19. The rotation axis
S12 1s transformed to the fixed frame such that

Si2 = [Al]Slz = [Az]Su, (7-75)

which is what we expect for a relative rotation axis.

7.2.8 Rotational Displacements

We now consider spatial displacements that are rotations but around points
other than the origin of F'. In particular, we determine the condition under
which the displacement [T'] = [A, d] has a nonzero fixed point c. We seek
the points X such that

X = [A]X +d, (7.76)
I — AlX =d. (7.77)

We have already seen that |I — A| = 0. Therefore, this equation does not
have a solution, in general, and there are no fixed points. However, we can
determine a condition that the translation vector d must satisfy in order
for a solution to exist.

Substitute Cayley’s formula for [A], as was done in (7.39). The result can
be simplified to the form

be:%(bxd—d). (7.78)
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The left side of this equation is orthogonal to the Rodrigues’s vector b.
This means that the right side must be orthogonal to b as well. Thus, we
obtain the condition

b-(bxd—d)=0, or b-d=0. (7.79)

This is clearly satisfied when d = 0. However, we now see that a spatial
displacement has a fixed point when the translation vector is orthogonal
to the rotation axis.

In this case, we can solve (7.78) by computing

1
bx(be):bx§(bxd—d), (7.80)
which simplifies to yield
b x (d—b xd)
X = " (7.81)

Not only is the point X = c fixed under this displacement, but every point
on the line L : Y = ¢+ ¢S is fixed as well. Therefore, the displacement is a
pure rotation about the axis L, and we call it a rotational displacement.

7.3 The Spherical Pole Triangle

7.8.1 The Axis of Composite Rotation

There is an important geometric relationship between the axes of two ro-
tations [A] and [B] and the axis of their product [C] = [B][A]. This is
easily derived by using Rodrigues’s equation (7.52) to represent each of the
rotations. Let [C] have the rotation axis C and rotation angle -y, so we
have Rodrigues’s vector tan(y/2)C. Similarly, let Rodrigues’s vectors for
[A] and [B] be tan(a/2)A and tan(3/2)B, respectively.

We now consider the composite rotation [B][A] as the transformation
y = [A]x, followed by the transformation X = [B]y. Thus, for [A] we have

y — X = tan %A x (y + x). (7.82)
And for the rotation [B] we have

X —y = tan gB x (X+y). (7.83)
The vector y can be eliminated between these two equations to yield

X—x:tan%C x (X + x),

where

tan %B + tan %A+tan§tan %B x A

temEC: 3
2 1 —tan5tan §B- A

(7.85)
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Figure 7.2. The spherical triangle AABC with interior angles /2 and 3/2 at A
and B, and 7/2 as its exterior angle at C.

This result is known as Rodrigues’s formula for the composition of
rotations.

A Spherical Triangle

We now show that (7.85) is the equation of the spherical triangle formed
by A, B, and C, with interior angles «/2 and 3/2 at A and B, and the
exterior angle v/2 at C, Figure 7.2.

Introduce the planes £ and Ep through the center of the sphere, which
define the sides AC and BC of the spherical triangle. These planes intersect
along the vector C and lie at the dihedral angle /2 relative to each other.
Let na be the unit vector in the direction C x A normal to F, and let
ng be the unit vector along B x C normal to £g. Using these conventions
we have

ny X ng = sin%C and ng-np = cos%, (7.86)

where /2 is the exterior angle at the vertex C. We now compute C in
terms of the vertices A and B and their interior angles.

We can expand np and ng in terms of the unit vectors B, v, and n,
where n is the unit vector in the direction B x A and v =n x B. If § is
the angle measured from B to A in the AB plane, that is, cosé = B - A,
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then we have

ny =sin %(cos dv —sin 6B) + cos %n,

p

ng = — sin gv + cos on (7.87)

Computing the scalar and vector products in (7.86) we obtain

sin 2C =sin p cos ‘B + sin @ cos —B—A + sin b sin %B x A,

2 2 2 2 2 2
Y _ cos 2 cos 2 — sin L sin 2
CO8 oy =08 7 cOs o —sin o sin 2B A. (7.88)

Divide these two equations to obtain

tan %B + tan %A—Ftangtan %B x A

taHXC: 3
2 1 —tan5tan $B- A

(7.89)

Compare this equation with (7.85) to see that Rodrigues’s formula is the
equation of the triangle formed by the rotation axes of [A], [B], and [C]
with interior angles «/2 and (3/2 at the vertices A and B, and the exterior
angle v/2 at C.

The Composite Axis Theorem

The rotation axes of the composition of rotations [C] = [B][A] form a
spherical triangle AABC with vertex angles directly related to the rotation
angles «, 3, and . We examine this triangle using equation (7.88).

Notice that «/2 and (3/2 take values between zero and 7, therefore the
sine of these angles are always positive. Thus, the vector part of (7.88) has
a positive component along B x A. The component along B is positive
for 3 < 7 and negative for 3 > m. We now introduce the convention that
C is directed so it always has a positive component along B. This allows
sin(y/2) to take positive and negative values. Notice that if sin(vy/2) is
negative, then v/2 > .

Because A = cos B + sin dv, we have

sin %C :(sin g coS % + sin % coS g cosé)B +sin%cos gsindv
+sin g sin %B x A. (7.90)
Introduce the angle 7 so that cosT = B - C. Then we have
sin 2 cos 7 = sin b CoS = + sin = cos b cos 9. (7.91)

2 2 2 2 2

Our convention for the direction of C ensures that cos 7 is always positive,
so we have the two cases:
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Case 1. sin(v/2) > 0, that is, v < 2m.

In this case the vertex C has a positive component along B x A. The
derivation above shows that «/2 and 3/2 are the interior angles of AABC
at the vertices A and B. The angle /2 is the exterior angle at C.

Case 2. sin(y/2) < 0, that is, v > 2.

In this case the vertex C lies below the AB plane and has a component
directed opposite to B x A. The angles «/2 and 3/2 are the exterior angles
of AABC at A and B, respectively. If the angle x is the interior angle at
C, then v/2 =k + .

We collect these results in the following theorem:

The Composite Axis Theorem. The azis C of a composite rotation
[C] = [B][A] forms a triangle with the azes B and A of the rotations
[B] and [A], respectively. If sin(y/2) > 0, then the interior angles of this
triangle at A and B are «/2 and [3/2, respectively. If sin(v/2) < 0, then
a/2 and 3/2 are the exterior angles at these vertices. In this case, if k is
the interior angle at C, then v/2 = k + 7.

Quaternions and the Spherical Triangle

W.R. Hamilton [33] introduced quaternions to generalize to three dimen-
sions the geometric properties of complex numbers. A quaternion is the
formal sum of a scalar gy and a vector q = (qu,qy,q.)7, written as
@ =q0+aq.

Quaternions can be added together, and multiplied by a scalar, com-
ponentwise like four-dimensional vectors. A new operation, invented by
Hamilton, defines the product of two quaternions P = pg+p and @ = gp+q
by the rule

R=PQ = (po+p)(go+4d) = (pogo —p-4q) + (gop +poa+p x q), (7.92)

where the dot and cross denote the usual vector operations.
The conjugate of the quaternion QQ = g9 + q is @* = go — q, and the
product QQ* is the positive real number

QR* = (g +a)gp—a)=q +a-q9=|Q (7.93)

The scalar |Q)| is called the norm of the quaternion.
We are interested in quaternions of norm equal to 1. These so-called unit
quaternions can be written in the form

0 0
QQ =cos = +sin =S, (7.94)
2 2
where S = (sm,sy,sz)T is a unit vector. The quaternion product of

A(a/2) = cos(a/2) +sin(a/2)A and B(83/2) = cos(3/2)+sin(5/2)B yields
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the unit quaternion C(vy/2) = B(3/2)A(a/2), given by

Yo Y (e Bone @B )

cos2+sm2(3—<cos2cos2 sm2$1n2BA
. P o . o B ' )
—|-(sm20082B—|-S1n2c082A+S1n2sm2B><A i

(7.95)

Compare this equation to (7.88) to see that quaternion multiplication yields
one vertex of a spherical triangle from the other two. We conclude that each
rotation [A(¢, S)] can be identified with a quaternion S(¢/2) = cos(¢/2) +

sin(¢/2)S.

7.8.2 The Triangle of Relative Rotation Axes

For three orientations M;, M;, and M} of a moving body, we can con-
struct the relative rotations [A;;], [4,x], and [A:x]. Notice that the relative
rotation [A;;] is given by the product [A;][A;;], as is seen from

[Awe] = [A][AT] = ([Ar][A7]) ([A]1AT]) = [Aje][As). (7.96)
Rodrigues’s formula for this composition of rotations yields

tan ¢zk S, — tan ‘%—’“SJ;C + tan ¢2” S7J + tan d’ng tan ¢2” Sjk X S7J
— Sk = ‘
2 ' 1 —tan%—’“tan %Sﬂc S'LJ

(7.97)

This is the equation of the spherical triangle formed by the relative rota-
tion axes AS;;S;1S;k. The composite-axis theorem defines the relationship
between the vertex angles of this triangle and the relative rotation angles
$ij/2, djr/2, and ¢;r/2. For example, if S;; lies above the plane through
S;;S,k, then the interior angles at S;; and S, are ¢;,;/2 and ¢;;/2, re-
spectively, and the exterior angle at S;x is ¢;1/2, Figure 7.3. This triangle
is analogous to the planar pole triangle and is called the spherical pole
triangle.

7.83.8 The Spherical Image Pole Triangle

We now consider the inverse rotations associated with the orientations M,
M;, M, given by [AT], [AT], and [A[]. The relative inverse rotation [A;,]

is the composition of the relative inverse rotations [A;L.k][A;rj], as can be
seen from

[AL] = [AD][A)] = ([AT][A,]) ([AT][Ad) = [Af,)[AL. (7.98)

We can transform each relative inverse rotation to the fixed frame F' for
M aligned with M,,, that is, we compute

[A] = [Am][ALJ[AT]. (7.99)
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Figure 7.3. The spherical pole triangle.

We obtain the composition of the relative inverse rotations as seen from F,
[A%k] = [AF][A%]. (7.100)

Rodrigues’s formula for this composition defines the triangle of image
relative rotation axes, which is known as the spherical image pole triangle.

Let m = 1, for example, and notice that Sij = 8§;; and Sik = S;x, and
we have the image pole triangle ASijS;kSik. The relative inverse rotation

angles are the negatives of the relative rotation angles. Therefore, ¢Ik =
—¢.. Thus, if the spherical pole triangle has ¢;;/2 as its interior angle at
Si;, then the image pole triangle ASijS§kS,~k has —¢12/2 as its associated
interior angle. The result is that the axis Sj- i is the reflection of S ;;, through
the plane defined by S;;S;, Figure 7.4.

7.4 Summary

This chapter has presented the geometric theory of spatial rotations. Of
fundamental importance is the spherical pole triangle, which is the analog
of the planar pole triangle. Notice that Hamilton’s quaternions can be
viewed as the generalization of complex vectors, and that they provide a
convenient tool for computations using the spherical triangle. The similar
form of the planar and spherical results provides an avenue for visualizing
three-dimensional geometry using intuition drawn from plane geometry.
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Figure 7.4. The image pole S;-k is the reflection of S;i through the side S;;S:x of
the spherical pole triangle.

7.5 References

The kinematic theory of spatial rotations can be found in Bottema and
Roth [4]. Crane and Duffy [12] present a detailed development of the
trigonometric formulas for spherical triangles. Cheng and Gupta [7] discuss
the history of the various representations of the rotation matrix. The inter-
esting history surrounding Hamilton’s quaternions and Rodrigues’s formula
is described by Altmann [1].

7.6 Exercises

1. Determine the rotation axis S and angle ¢ for the rotation [A] =
[X (30°)][Y (30°)][Z(30°)] (Sandor and Erdman [83]).

2. Let the axis of a rotation be along the vector q = (2, 2,2\/§)T and
let the rotation angle be ¢ = 30°. Determine the rotation matrix
[A(¢, S)] (Sandor and Erdman [83]).

3. Table 7.1 gives four locations of a pair of points P and Q. Determine

the three relative rotation matrices [A12], [A13], and [A14] (Suh and
Radcliffe [92]).

4. Prove that each element of a rotation matrix is equal to its associated
minor.
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(0.105040, 0.482820, 0.869397)T | (—0.464640, —0.676760,0.571057)7
(0.090725,0.541283,0.835931)T | (—0.133748, —0.751642,0.645868)T
(0.104155, 0.620000, 0.777658)T | (0.161113, —0.702067,0.693646)7
(0.096772,0.725698,0.681173)T | (0.400762, —0.564306,0.721769)T

W N = g

Table 7.1. Point coordinates defining four orientations

. Show that the change of coordinates [R]|[A][RT] of a rotation matrix
[A] has the rotation axis [R]S, where S is the rotation axis of [A].

. Let ¢1 = s;sin(¢/2), ca = sysin(¢/2), c3 = s,sin(¢/2) and ¢4 =
cos(¢/2) denote the components of a unit quaternion. Use (7.54) to
obtain a formula for [A(¢, S)] with each element quadratic in ¢;.

. Derive Rodrigues’s formula for the composition of rotations (7.85).

. Consider a spherical pole triangle AS15823813. Show that the first
position of a point Q' reflects through the side N7 : S12S13 to the car-
dinal point Q* and that the corresponding points Q" reflect through
the sides NV; to the same point.
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Algebraic Synthesis of Spherical
Chains

In this chapter we formulate the design theory for spherical RR chains. The
axes of the two revolute joints must lie in the same plane, and therefore
intersect in a point. The floating link of this system moves in pure rotation
about this point.

Two RR chains can be connected to form a one-degree-of-freedom spher-
ical 4R linkage. The result is that the coupler is guided along a general
rotational movement. Notice that the axes of the four revolute joints must
pass through the same point. While it would seem difficult to ensure that
the four axes intersect in one point, in practice the internal forces of the
system tend to align the axes so that the linkage moves smoothly.

The synthesis theory for spherical linkages follows the same geometric
principles as the planar theory. Intuition gained from working in the plane
can be used to guide the design process for spherical linkages.

8.1 A Single Revolute Joint

A revolute joint cannot rotate a body between two general positions in
space. However, if the two positions have the property that their relative
displacement [T73] = [A12,d12] is a rotational displacement, then a revolute
joint aligned with the rotation axis of this displacement provides the desired
movement.

Let the two spatial positions M; and M, be defined by [11] and [1%], so we
have the relative displacement [T,] = [T5])[T} !]. If the relative translation
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vector ds is orthogonal to the rotation axis Si2, that is, di2-S12 = 0, then
we can determine a fixed point ¢ by (7.81)

c— bia x (d12 — b2 x d12)

2b12 - b2 ’

where b1y = tan(¢12/2)S12 is Rodrigues’s vector for the relative rotation.
The line Li5: Y (¢) = ¢ + ¢S12 is the axis of the revolute joint.

A point in the moving body that lies on this axis, as seen from the moving
frame M, is found from the relative inverse rotational displacement [T7,] =

[TQ'l][Tl] = [AJ{Q,dJ{Z]. This point defines the line LT12: y(t) = ¢ + ts12 in
M that coincides with the line L5 to form the revolute joint.

(8.1)

8.2 Spherical Displacements

If three or more spatial positions M;, 1 = 1,...,n, are to be reachable
by the floating link of a spherical chain, then the relative displacements
[11,], 7 = 2,...,n, must each be rotational displacements. Furthermore,
the axes of these displacements must pass through the same point c. If
this occurs, then the axes of the relative displacements have the form L;:
Y(t) = c+1S1,, j = 2,...,n. The relative translation vectors d;; can now
be written as

[I — Alj]C = dlj: ] = 2, LT (82)

Substitute this into the transformation equation Y/ = [Alj]Yl +d;; to
obtain

Y —c=[Ay)(Y' —c),j=2,...,n. (8.3)

Spatial displacements that can be put into this form are called spherical
displacements. The change of coordinates X = Y — c transforms these
equations into pure rotations about the origin of F. In what follows, we
assume this transformation and consider the positions M;, t =1,...,n, to
be specified by pure rotations [4,],i=1,...,n.

Longitude, Latitude, and Roll Angles

There are many ways to parameterize the set of rotation matrices. For
example, almost any combination of three coordinate rotations can be used
to define a general rotation. Here we introduce a set of parameters that is
analogous to the =z and y translation and rotation ¢ used to define planar
positions. They are the longitude, latitude, and roll angles that define the
orientation of M relative to F'. These parameters allow us to use a globe
to illustrate the orientation of each task position, Figure 8.1.

Locate the fixed frame F' at the center of a globe so its y-axis is directed
toward the north pole and its z-axis passes through intersection of the
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Figure 8.1. Longitude, latitude, and roll coordinates defining orientation relative
to a global frame.

prime meridian, 0° longitude, and the equator, 0° latitude. Longitude and
latitude coordinates a, 3 locate a point X on the surface of the globe such
that its coordinates are

sin a cos (3
X =R sin 3 , (8.4)
cos a cos 3

where R is the distance from the origin c. We can compute longitude and
latitude angles for a vector X = (X,Y, Z)T using the formulas

a = arctan —, [ = arctan . R=+vVX2+Y2+ 22 (8.5)

Z X2 4 72

The orientation of the moving frame M can now be defined in terms of
the longitude # and latitude ¢ of its z-axis, and the roll ) about this axis.
The rotation matrix [4] is given by the composition of coordinate rotations

[A(8, ¢, ¥)] = [Y (D)][X(—9)][Z(¥)], (8.6)
that is,
cos@ 0 sinf]| |1 0 0 cosy —siny O
[A] = 0 1 0 0 cos¢ sing| |sinyy cosyp O
—sinf 0 cosf| |0 —sin¢g cos¢ 0 0 1

Notice that we have used the identities cos(—¢) = cos¢ and sin(—¢) =

—sin¢ in [X(—¢)].
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Figure 8.2. The spherical RR chain with G as the fixed axis, W as the moving
axis, and p is the angular dimension of the chain.

We often draw the moving frame on the surface of the unit sphere, though
it is understood that the origins of both the moving and fixed frames, M
and F, are located at the center of the sphere.

8.3 The Geometry of Spherical RR Chains

A spherical RR chain consists of a floating link connected to a crank by
a revolute joint, which in turn is connected to ground by a revolute joint,
Figure 8.2. The axes of the two joints lie in the same plane, and therefore
intersect. We align this point of intersection with the origin of F' so that the
floating link M moves in pure rotation with no translation component in
F. Let the unit vector directed along the fixed joint axis be denoted by G,
and let the unit vector along the moving axis in M be w. The coordinates
W in F of the moving axis are given by

W = [A]w, (8.8)

where [A] represents the rotation of M relative to the fixed frame F.
The angular length p of the RR chain is constant during the movement,
so we have the condition

G- W = |G||W]|cosp. (8.9)
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This must be true for any rotation [A] of the end-link. This constraint
characterizes the spherical RR chain.

8.3.1 Perpendicular Bisectors

Let n orientations of the frame M in the end-link of a spherical RR chain be
defined by the rotations [4;], i = 1,...,n. Each vector W*, which locates
the moving axis in F for M in orientation M;, satisfies (8.9). Therefore,

G- -W'=|G|[W’|cosp,i=1,...,n. (8.10)

Because |[W'| = |W'|, we can subtract the first equation from the
remaining n — 1 and obtain

Pi: G- (W —WH)=0,i=2,...,n. (8.11)

Recall from (7.30) that this is the equation of the perpendicular bisector
P1; to each segment W' - Wl Equation (8.11) states that all of these
planes pass through G. This is an algebraic expression of the fact that the
moving axes W' lie on right circular cone with G as its axis. The equations
of these perpendicular bisectors form the design equations for a spherical
RR chain.

8.3.2 The Spherical Dyad Triangle

The movement of a spherical RR chain can be viewed as a rotation about
the moving pivot W' by the angle a1; that is followed by a rotation about
G by the angle ;. The composition of these two rotations yields the
rotation ¢q; about the relative rotation axis S;; that moves the end-link
M from orientation M; to M;, that is,

[A(¢1:,815)) = [A(B1s, G)][Aars, W] (8.12)

Rodrigues’s formula yields the equation of the spherical dyad triangle
AWIGSH as

1 1, 1 2 o1, 1
tan leisl' _ tan %G + tan =+ W* + tan %tan GG x W (8.13)
2 1—tan'82#tan%G-W1 ' '

The spherical triangle AW'GS;; has two configurations relative to the
plane containing the axes G and W'. In order to distinguish these configu-
rations let Rq; be the point that coincides with the moving pivot W when
the crank angle is 31;/2. We can now view Sp; as being on the same, or
opposite, side of G along the perpendicular bisector Pi; as the point R;.
If S1; is on the same side as R, then it is above the plane through Gw!
and the sum of the joint angles a + (3 is less than 27, see Figure 8.3. If Sq;
is on the side opposite to Rq;, then Si; is below the plane through GW!
and o + [ is greater that 2w, Figure 8.4. In this case, if x is the interior
angle at Sli, then ¢11/2 =K+ .
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Figure 8.3. The spherical dyad triangle AW!GS;; formed by the fixed axis G,
the moving axis W, and the rotation axis Si;.

Figure 8.4. The spherical dyad triangle AW!GS;; with Si; below the GW!
plane.

Quaternion Equations

We can use Hamilton’s quaternions to define the spherical dyad trian-
gle. Introduce the quaternions G(8;;/2) = cos(f1:/2) + sin(51;/2)G and
Wl(a;/2) = cos(a1;/2) + sin(a1;/2)W?! that represent rotations about
the fixed and moving axes. The quaternion product yields

bui Pri
2 2

Su(5H) =G

)s (8.14)
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where S1;(¢1:/2) = cos(¢1;/2) + sin ¢1;/2S1; defines the relative rotation
of the end-link. Separate the scalar and vector parts of this quaternion to
obtain

b1i B o4 . P . o

COSTZCOSTCOS 5 —sm?sm 5 G W
 Prig . P i a1y Blig1 . B . o 1
sin = Si; = sin 5 €0~ G + sin 5 COS 2W + sin 5 Sin— G x W,
(8.15)

Notice that (8.13) is obtained by dividing the vector equation by the scalar
equation.

8.3.3 The Center-Axis Theorem

For three orientations of the moving body M;, M5, and M3 we have three
positions of the moving pivot W*, 4 = 1,2,3. The crank rotation angle
about G between each of these positions is the dihedral angle 3;; between
the planes defined by GW* and GW. Notice that 313 = B23 + S12.

Recall that the plane P, contains GS12 and bisects the segment WIw?2,
This means that the angle ZW'GS15 equals 12/2 or B12/2+m, depending
on the location of S15 above or below the plane through GW?. Similarly,
because Po3 bisects the segment W2W3, we have that the angle /W?GSys3
is either (823/2 or (B23/2 + m. Notice that /WLGS15=/S1:GW?2. Consid-
ering each of the possible cases for LSlgGSQ;;:LSlzGW2 + LW2G823,
we see that this angle must be either (13/2 or $13/2 + 7. Thus, G views
the two relative rotation axes S12 and Sog in the angle 313/2 or 813/2 + ,
Figure 8.5.

This generalizes to yield a spherical version of the planar center-point
theorem:

The Center-Axis Theorem. The center axis G of an RR chain that
reaches orientations M;, M;, and M, views the relative rotation azes S;;
and S;i in the dihedral angle Bir/2 or Bix/2 + 7, where Bi is the crank
rotation angle from position M; to M.

This theorem provides the foundation for the generalization of Burmester’s
techniques to spherical RR chain design.

The Dihedral Angle at G

The center-axis theorem provides a formula to compute the crank angle 3;,
given the relative rotation axes S;, and S;,. Consider the vectors G x S;;
and G x S;j; that are normal, respectively, to the planes containing GS;;
and GS,x. The angle between these vectors is given by (7.47) as

5 = arctan ((G < S:) '](G stjk)) . (8.16)
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Figure 8.5. The center axis G views the relative rotation axes S;2 and S23 in the
angle $13/2 = B12/2 + P23 /2.

We use this equation to compute 3;; for a given set of relative rotation
axes S;; and S;. This equation remains true whether G views these axes
in B;x/2 or Bk /2 + m, because tan k = tan(k + 7).

Alternatively, we can specify §;x in this equation and obtain

Cir : (G x Si;)- (G x S;z) tan %k

— (G x 8i5) - 8, =0, (8-17)

which is a quadric cone on which the fixed axes G must lie.

Another approach to defining the crank rotation angle 3;x is to use the
quaternion form of the spherical triangle. Assume that the spherical triangle
AS;;GS i is the pole triangle for the composite rotation

[A(7, Sjx)] = [A(Bir, G)][A(S, Si5)]- (8.18)
Associated with this is the quaternion equation

ﬁzk

Sie(0) = 675,43 (8.19)

Multiply both sides by the conjugate S};(6/2) to obtain

ﬂzk 0

G(5) = Jk( )S5(5); (8-20)
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which expands to yield the scalar and vector equations

i 4 4
cos ﬂ; = cos % cos 5 + sin % sin §Sjk - Sij,
i : d .0 : .0
sin g—kG = sin % oS §Sjk — sin 7 cos %Sij — sin % sin §Sjk x S;;. (8.21)

For a given set of relative rotation axes S;; and S;, we can choose arbitrary
values for v and § and obtain the axis G and the rotation angle 3;x.

On the other hand, if we specify [;;, then we can determine § as a
function of v from the scalar equation of (8.21). Notice that this equation
has the form

A cos g + Bsin g =C, (8.22)
where
A = cos %, B = sin %Sjk -8;5, and C =cos 6;"". (8.23)
The solution is
d(y) = 2arctan B + 2 arccos ¢ (8.24)

A /A2 + B2
Substitute this into the vector equation of (8.21) in order to obtain a cone
of fixed axes G parameterized by «y. Each of these axes views S;;S;i in the
dihedral angle 6’1,]6/2 or sz/Z + .

8.4 Finite Position Synthesis of RR Chains

8.4.1 The Algebraic Design Equations

The equations of the perpendicular bisectors Py; can be modified to provide
a convenient set of algebraic design equations for a spherical RR chain. If n
task orientations M;,7 = 1,...,n, are specified for the end-link of the chain,
then we can determine the relative rotation matrices [Ay;], i = 2,...,n,
such that W* = [A;]W?'. This allows us to write the equations of the
perpendicular bisectors (8.11) as

Pu: G-[A; —IIW'=0,i=2,...,n. (8.25)

This is a homogeneous bilinear equation in the six unknown coordinates
for G = (z,y,2)T and W' = (\,,v)T. In what follows we solve these
equations to obtain a spherical RR chain that reaches five task orientations.
To see the structure of these design equations in more detail, we use
(7.55) to write [Ay;] in terms of its rotation axis Sq; and rotation angle ¢1;.
Introducing ¢1;/2 into the resulting equation for [A;; — I], we obtain

[A1, — I] = 25sin ¢21i cos P11

([su] + tan “b; [5142) | (8.26)
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Write the components of the rotation axis such that Siy; = (ps,qs, )7
Then a typical equation (8.25) is

z) " [—tan Pe(r2 4 ¢2) —r;+tanrgp, g + tan Ly, A
Yy r; + ta — tan ¢11 (r2+p2) —p; +tan ¢11qu 7
z —g; +tan Zerip;  p; —tan 2 (¢? + p?)] v
(8.27)
If the vector G = (z,¥, z)7 is considered to be known, then these equations
are linear and homogeneous in the components of W' = (A, i, )T In the
same way, if W' is known, then these equations are linear and homogeneous
in the components of G. This structure provides a convenient strategy for
solving these equations.

The Bilinear Structure

The solution of the design equations for spherical RR chains follows closely
the results for planar RR chains. As in the plane, these equations are linear
separately in the coordinates of the fixed and moving axes. This bilinear
structure allows us to consider selecting the fixed axis or the moving axis
as part of the solution process.

If we select the fixed axis G, then z, y, z are known, and we can collect
coefficients of A, u, v to obtain the design equations

where
A; = —tan ¢—1(r +q; )x + (r; + tan ¢21i qipi)y + (—q; + tan ¢2 TiDi)Z,
B; = (—r; + tan %qipi)x — tan %(rf + p?)y + (pi + tan %riqi)z,
C; = (g; + tan %mpi):c + (—p; + tan qszlzmqi)y — tan — D1 (qf + p?)z.

(8.29)

This is a set of n — 1 linear homogeneous equations in the components of
the moving axis W*.

Rather than select the fixed axis, we can specify a moving axis W' =
(A, 1, )T and collect the coefficients of (z,v, z) to obtain

Alx+By+Clz=0,1=2,...,n, (8.30)
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where
A; = ¢2 (7' +q ))‘ + ( —r; + tan %%pz):u + (QZ + tan ¢2 r'bp’t)
B] = (r; + tan %qipi))\ — tan %('rf + pf)u + (—p; + tan %mqv;)l/,
; — ( —q; + tan ¢2 zpz))\ + (pz + tan ¢2 Tz%)ﬂ tan %(qf + ng)’/-
(8.31)

We solve these n — 1 equations to determine the coordinates of the fixed
axis G.

8.4.2 Parameterized Form of the Design Equations

The movement of the end-link of an RR chain from orientation M; to each
of the orientations M;, 1 = 2,...,n, is defined by the composite rotations

[A(¢1,S13)] = [A(B13, G)[A(1s, W], i =2,y (8.32)

where [31; and a7, are the rotation angles about the fixed and moving axes,
respectively. The quaternion form of these equations are

P1i B i,
The scalar and vector parts of these quaternions provide design equations
in which the joint rotation angles 31; and «q; appear explicitly. They are
used to design spherical RR chains for selected crank rotation angles.

)Wl( =2,...,n. (8.33)

8.4.8 Two Specified Orientations

If two orientations M, and M, are specified for the end-link of a spherical
RR chain, then we have the rotations [4;] and [A3]. From these rotations we
construct the relative rotation matrix [A;2] and obtain the relative rotation
angle ¢12 and axis Si12. This is the information that we need to form the
single design equation

G - [A(¢12,812) — I|W' = 0. (8.34)

We may choose either the fixed or moving axis and solve for the other.

Select the Fixed Axis

If we specify the coordinates G = (z,y, z)T, then the design equation (8.28)
becomes

Ao+ Bop + Corv = 0. (835)

This is the equation of a plane through the origin of F'. Any vector in this
plane can be used as a moving pivot W!. Set v equal to 1, so this plane
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defines a line in the z = 1 plane. We can then choose either A or p and
solve for the other.

Select the Moving Axis

A similar result is obtained if we choose the moving axis W' = (\, p, v)7.
In this case the design equation (8.30) becomes

ALz + Byy + Chz = 0. (8.36)

This equation defines the perpendicular bisector to the segment W W?2.
Set z = 1, so this equation defines a line in the z = 1 plane. Then choose
either z or y and solve for the other.

Select the Crank Angle

The quaternion equation of the dyad triangle can be used to design a spher-
ical RR chain with a specified crank rotation angle 312. The parameterized
design equation is

P12
2

P2

12

S(%2) = c(Bw(422),

For the specified orientations, we can determine the quaternion S(¢12/2).
We now assume that we have specified the fixed axis G and the crank angle
(12, so we have the quaternion G(8312/2). Multiply this equation on the left
by the conjugate G* to obtain a formula defining the moving axis W' and
the rotation angle a2,

—G(22 (8.37)

W) = 6" ()52 (5.33)

Recall that the conjugate G* is obtained by negating its vector part, or
equivalently, by negating the angle (12.

We can select W' and a4y instead. Then G and (12 are determined by
multiplying (8.37) on the right by the conjugate W1,

8.4.4 Three Specified Orientations

Given three task orientations M, M>, and Ms, we have three rotation
matrices [A,], i = 1,2,3, which we use to construct the relative rotations
[A(¢12,S12)] and [A(¢13,S13)]. The result is the two design equations

G - [A($12,812) — [|W' =0,
G - [A(¢13,813) — [[W' = 0. (8.39)

Selecting one axis, these equations yield a unique solution for the other.
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Select the Fixed Axis

For a selected direction of the fixed axis G, the design equations (8.28) can
be assembled into the matrix equation

A
A2 Bz CQ . 0
2 g il g0

This equation is solved by forming the two vectors D; = (A, By, C1)T and
D, = (As, By, C3)T. The result is

W! = kD, x Dy, (8.41)

where k is used to normalize this to a unit vector.

Select the Moving Axis

For a selected moving axis W, we have from (8.30) the equations for the

fixed axis G given by
A, B, c])” 0
i Y -0} (842)

These equations define the perpendicular bisectors to the segments W!'W?
and W'W?3. The two planes intersect in the axis G. Solve these equations
in the same way as shown above for the moving axis.

Select the Crank Angle

Given three orientations M;, i = 1, 2, 3, we have the spherical pole triangle
AS15523513. The center-axis theorem shows that G views the sides S13So3
and S15S,3 in the angles 315/2 and 13/2, respectively. Given the crank
angles 812 and (13, we can use (8.17) to determine two quadric cones that
intersect to define . They are

C12 : (G X 813) (G X 823) tan % — (G X Slg) . 823 = 0,
613 . (G X Slg) . (G X 823) tan & — (G X Slg) . 823 = 0. (843)

The simultaneous solution of these equations yields the desired fixed pivot
G. The moving pivot W' is then calculated using (8.41).

Another approach is to use the quaternion equations of the triangles
AslgGSQ'g, and ASIQGSQQ,, given by

0
(712) = 5 (M55,
0
¢(72) = 5,(2)51,(2). (8.4
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For the specified angles (12 and i3 these equations can be used to de-
termine parameterized equations of the quadric cones C12(y1) and Ci3(72)-
This is done by solving the scalar equations of the quaternions to determine
the angles d; and d2 in terms of 1 and 7, using (8.24). The parameterized
version of the cone Ci3(1) can be substitute into the algebraic equation
for C13 to obtain an equation for v, that identifies the desired G.

8.4.5 Four Specified Orientations

In the previous section we found that for three task orientations every fixed
axis is in one-to-one correspondence with a moving axis. Geometrically,
this results from the fact that the perpendicular bisectors of the segments
W!W?2 and W'W? always intersect in a line. In the case of four task
orientations, the perpendicular bisector of WW* must also pass through
this line. However, this cannot happen in general. This does not mean that
there are no axes that have this property. In fact, there is a cubic cone
of axes G that are centers for four moving axes W' i = 1,2 3,4, that
we can use to form RR chains that reach four orientations. This is the
center-azis cone. The available moving axes form a cubic cone known as
the circling-axis cone.

The Center-Axis Cone

Given four orientations M,;, ¢ = 1,2,3,4, we have the relative rotations
[A(¢14,S15)] and the design equations

Az B2 Cz A 0
A3 B3 C3 M - 0 y (845)
A4 B4 C4 174 0

where A;, B;, and C; are given by (8.28). In order to have a solution the
3 x 3 coeflicient matrix [M]| = [A;, B;, C;] of this equation must have the
determinant |M| equal to zero. This yields a cubic polynomial

R(z,y,2) : |M| = azy® + (@217 + a202)y* + (0122 + a1122 + a102%)y
+ a03$3 + a()QSL‘ZZ + alngz + a0023 = 0. (8.46)

This polynomial defines a cubic cone in the fixed frame, and any line on
this cone may be chosen as a fixed axis G for the spherical RR chain. It is
known as the center-azis cone.

The coefficients a;; can be obtained by noting that each element of the
coefficient matrix [M] is linear in z, y, z, therefore |M| has the form

|M| = ’alx + b1y +ci1z, asz+boy+ caz, azzr+ bsy+ c;:,z’ =0,
(8.47)
where a;, b;, and c; are constants defined by the task orientations. The
linearity of the determinant allows an expansion that is identical to that
presented in (5.37).
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Figure 8.6. The spherical complementary-axis quadrilateral Q: S12823534S14.

The Burmester—Roth Theorem

Roth [75] generalized Burmester’s planar synthesis theory to spatial dis-
placements in a way that included the design of spherical RR chains. He
showed how to construct the spherical equivalent of Burmester’s opposite-
pole quadrilateral, that we call the complementary-axis quadrilateral,
Figure 8.6. The fundamental result is that center axes must view opposite
sides of the complementary-axis quadrilateral in angles that are equal or
differ by 7. This provides a way to generate the equation of the center-axis
cone directly from the coordinates of the relative rotation axes.

Four task orientations define six relative rotation axes S,;, ¢ < j =
1,2,3,4. Following Burmester’s definition of the planar opposite-pole
quadrilateral, Roth defines the three complementary pairs of relative rota-
tion axes, S12S34, S13524 and S14S23. The spherical complementary-azis
quadrilateral is constructed from two sets of complementary pairs so that
the pairs are opposite to each other along the diagonals of the quadrilateral.
The fundamental result is the following:

The Burmester—Roth Theorem. The center axis G of a spherical RR
chain that can reach four specified orientations views opposite sides of
a complementary-axis quadrilateral constructed from the relative rotation
axes of the given orientations in angles that are equal, or differ by .

Proof. The definition of the complementary-axis quadrilateral ensures that
opposite sides have the form S;;S;; and S;,;S..x. The center-axis theorem
states that G views S,;;S;; in the dihedral angle 3,,/2 or ,5/2 + 7, where
Bjk is the crank rotation of from position M; to Mj. Similarly, it must view
the S;;Smk in Bjk/2 or B,/2 + m. Consider the various combinations to
see that G views these sides in angles that are equal, or differ by . L]
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This theorem provides a convenient derivation for the center-axis cone in
terms of the coordinates of the relative rotation axes of the complementary-
axis quadrilateral. Let the vertices of this quadrilateral be S12S93534S14.
Then the dihedral angle x between the planes containing GS12 and GSa3
must be the same as the angle between the planes GS14 and GS34, or differ
by 7. We compute tan x = tan(x + ) to obtain

tan ko — G x 812893 _ Ly
(G X Slz) . (G X 823) 012’
. L
tan s = — & * 514 Sas 31 (8.48)

(G X Sl4) . (G X S34) - 034.

Equate these expressions to obtain an equation for the center-axis cone,
given by

R(l’,y, Z) : L12034 — L34012 = 0. (849)

This is a homogeneous cubic polynomial in the coordinates of G.

The Parameterized Center-Axis Cone

The Burmester-Roth theorem reduces the problem of finding center axes
to finding those axes that view opposite sides of the complementary-axis
quadrilateral in angles that are equal, or differ by 7. Just as we did in the
plane, we can use this to obtain a construction for center axes, Figure 8.7.

Construction of Center Axes. The axes that satisfy the Burmester—
Roth theorem are obtained as follows:

1. Construct the complementary-axis quadrilateral Q: S19S23534S14
using the four task orientations.

2. Rotate the segment S12S23 by an angle 0 about S12 and determine
the new configuration Q' in order to obtain S4; and Sj,.

3. The azxis G of the rotation of S43S%, from its original location S93S34
satisfies the Burmester—Roth theorem and s a center axis.

Proof. Let G be the intersection of the perpendicular bisectors V; =
(S23S5;) L and Vo = (S34S5,)%. Then G is the axis of rotation of the
segment S»3S34 by an angle s to the position S53S%,. The input crank
formed by S15S23 has the dyad triangle AS23S12G and G must view the
S12S23 in the angle k/2 or k/2 + 7. Similarly, the geometry of the dyad
triangle AS34S14G requires that G view the segment S14S34 in either x/2
or k/2 + m. Thus, G views the opposite sides S15S53 and S14S34 in angles
that are equal, or differ by 7. The same argument shows that G views the
other two sides S23S34 and S12S14 in angles that are equal, or differ by 7.
Thus, G satisfies Burmester’s theorem. ]
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Figure 8.7. Construction of the center-axis G using the spherical complemen-
tary-axis quadrilateral.

This construction yields a parameterized equation for the center-axis
cone. The rotation of the coupler segment S93S34 from its initial config-
uration @ to another configuration Q' is the composite of a rotation by
A¢ = ¢ — ¢y about So3, followed by a rotation of A8 = 0 — 6y about Sq,.

This composite rotation is given by

[G(8,G)] = [A(A8, S12)][A(Ad, S23)]. (8.50)
Rodrigues’s formula yields the equation for the relative rotation axis G as
fam —IB-G _ tan %812 + tan %(2823 + tan % tan %512 X Sog (8.51)

2 1 — tan % tan %‘éslg - So3 ' .

The coupler angle ¢(0) is determined from the driving crank rotation 6,
using equation (6.36). We compute 8 = 6y and ¢ = ¢ in the initial
configuration @ from the formulas
(S12 X S14) - So3
(S12 X S14) - (S12 X S23)

tan ¢ = (S23 X S12) - S34 .

’ (S23 X S12) - (S23 X S34)
(8.52)

The result is a formula (8.51) that generate the center-axis cone by varying

the parameter 6.

tan@y =

The Circling-Axis Cone

Associated with each point on the center-axis cone is a solution of the
design equations (8.45), which yields a moving axis W'. These axes form
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Figure 8.8. The image complementary-axis quadrilateral Q' is obtained from Q
by reflecting S23 through the plane S12S13 and S34 through S14S:3.

another cubic cone, called the circling-axis cone. We can compute this cone
directly from the design equations (8.30). For a four position task, we have

A, B) Cj| (z 0
A, B, o4l dyb={0}. (8.53)
Ay By Ci| |z 0

These equations have a solution for the fixed axis G only if the determinant
of the coefficient matrix [M’] is zero. Thus, the coordinates of the moving
axis W' must satisfy the condition

/

|M’| = |[ajA + bip+ciy, ajA+bou+chy, ajh+bsu+chy| =0.
(8.54)
An expansion similar to (5.37) yields the algebraic equation of the circling-
axis cone.

If the four task orientations M;, i = 1,2,3,4, are inverted, then the
circling-axis cone can be computed as the center-axis cone for the inverted
movement. In this case, the cone is defined in the moving frame M. We
then transform the coordinates of this curve to the fixed frame in the first
orientation M; to obtain the set of moving pivots W.

The complementary-axis quadrilateral for the inverted relative displace-
ments in position M, is constructed from the image poles Si,, Si,, Si,,
and Sj,. Recall that S, = S;2 and Sj, = Si4, and further that Sy; and
S§4 are the reflections of So3 and S34 through the planes containing S15S3
and S14S13, respectively. Thus, the image quadrilateral QF : 81285381134814
has the same dimensions as the complementary-axis quadrilateral @, and
the same ground link S;:2S14, Figure 8.8.
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The circling-axis cone can now be determined by applying the Burmester—
Roth theorem to the image quadrilateral QT. The result is a parameterized
equation for the moving axes W™,

8.4.6 Five Specified Orientations

Given five spatial orientations of a rigid body, we can determine as many
as six spherical RR chains that can reach these positions. The solution
procedure follows closely the solution of the planar design equations for five
positions. We solve the design equations (8.25) using a two-step elimination
procedure that yields a sixth degree polynomial. We can also solve this
problem by finding the intersections of two center-axis cones.

Algebraic Elimination
Collect the coefficients of A, i, v in the design equations to obtain

A2 By (o

A 0
As Bz Cj
—{o\. 8.55
A, By C, I‘j 0 (8.55)
As Bs Cs

where A;, B;, and C; are defined in (8.28). In order for this system of
equations to have a solution the rank of the 4 x 3 coeflicient matrix [M]
must be two.

Let R; be the determinant of the 3 x 3 matrix formed from [M] by
removing row 5 — 7, so R is computed using the first three rows, Ry is
obtained from the first two and last row, and so on. The result is four
homogeneous cubic polynomials in x, y, and z, identical in structure to the
center-axis cone (8.49),

Rj(xa% z) : a30,jy3 + (azl,jx + a20,j2’)y2 + (alz,j$2 + a1 2 + alO,jzz)y

-+ a03,jl‘3 + aoz,jSUZZ + a01,j$22 + aoo,jzg =0,7=1,2,3,4.
(8.56)

In the next step, we dehomogenize these equations by setting z = 1, and
eliminate y to obtain a single polynomial in x.

The polynomials R; are homogeneous in z, y, and z, which means that
if G = (z,y,2)T is a solution of these equations, then G’ = k(z,y,2)7T is
a solution as well. Therefore, we can set z = 1 and solve for the unique
values of = and y, and simply recall that G = k(z,y, 1)7 is also a solution.

In each of the polynomials R; collect the coefficients of y so that it has
the form

Rj: djoy® +dj1y° +djpy+djs =0, 5=1,2,3,4. (8.57)

Each coeflicient d;; is a polynomial in z of degree k.
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Assemble the coefficients of these polynomials into a matrix that
multiplies the vector (y3,y?,vy,1)T, given by

dip di1 diz2 dis

(8.58)

Y
- . - . yz
dao da1 daz das 1

o O O O

These four equations have a solution for the unknowns (y3,%?,y) only if
the rank of the 4 x 4 coefficient matrix [D] = [djo, d;1,d;2,d;3] is three.
Thus, this matrix has the determinant |D| = 0.

The determinant | D] is a polynomial in the single variable z. The degree
of this polynomial is the sum of the degrees of each of the columns of [D],
that is, 0+ 1 + 2 + 3 = 6. Therefore, this step of the solution reduces the
four cubic polynomials in z, y to a single sixth-degree polynomial

. |D| = Zazx = 0. (8.59)

This polynomial has six roots for which zero, two, four, or six may be real.
Thus, there can be as many as six spherical RR chains that reach the five
orientations.

To determine the spherical RR chains that reach five specified orien-
tations, first formulate the polynomial P(z) and determine its roots z;,
i = 1,...,6. For each real root z,, solve (8.58) to determine the coordi-
nate y;. This defines as many as six fixed axes G; = (xi,yi,l)T, called
Burmester axes. To determine the associated moving axis W, choose two
of the constraint equations (8.25) and solve for A, u, and v.

Intersecting Two Center-Axis Cones

An alternative solution for the fixed axes of spherical RR chains can be
obtained using the parameterized form of the center-axis cone. The five
task orientations define ten relative rotation axes S;;, 1 < j = 1,...,5.
From these we can construct two complementary-axis quadrilaterals Q14:
812823834814 and lei 812823835815. A fixed axis compatible with five
orientations must lie on the center-axis cone defined by Q4 and on the
center-axis cone defined by Q5. Thus, the desired axes are the intersections
of these two cones.

The complementary-axis quadrilaterals Q14 and Q15 share the same side
S12S923. Therefore, the equations of the two center-axis cones are given by

tan EG o tan %Slg + tan Ag)l 823 + tan % tan %812 X 823 (8 60)
2 1 — tan % tan %812 . 823 .
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s

Figure 8.9. The reference configuration of the spherical compatibility platform.

and
tan /j,_G B tan %Slz + tan %%823 + tan % tan %812 X So3 (8 61)
2 1 —tan % tan %Slg - Sos '

The angles A¢1 and A¢s are functions of Af; and A6, defined by the
dimensions of the two complementary-axis quadrilaterals.

The two equations (8.60) and (8.61) define the same axis G when
A91 = AOQ and Ale = A¢2 (862)

The first condition is satisfied by using the same parameter 6 to drive
S12S23 for both quadrilaterals. The second condition requires that the
spherical triangle AS23S834S35 have the same shape in each solution con-
figuration. Thus, the fixed axis G is an axis of the relative rotation of the
triangle AS23S34S35 to each of the assemblies of the platform formed by
the three RR chains S12S23, S14S34, and S15S35, Figure 8.9. This assembly
of relative rotation axes is called the spherical compatibility platform and
have the following theorem.

The Spherical Compatibility Platform. The fized axis of an RR chain
that can reach with five specified orientations is a relative rotation azis of
the spherical compatibility platform from its original configuration to one
of its other assemblies.
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Figure 8.10. The spherical 4R linkage.

The analysis of this platform yields the two constraint equations
A;cos¢p+ B;sing =C;,i=1,2, (8.63)

one for each of the 4R chains Q14 and Q15. The solution of these equations
shown in (A.11) yields an eighth degree polynomial. This means that the
spherical 3RR platform can have as many as eight assemblies. One is the
original configuration, so there are seven relative rotation axes for the dis-
placement to the other seven assemblies. One of these axes is S;3, and the
remaining six are the desired fixed axes.

8.5 Spherical 4R Linkages

In general, the design of a spherical RR chain yields multiple solutions that
can be assembled in pairs to form one-degree-of-freedom 4R closed chain
linkages, Figure 8.10. It is also possible to design the coupling between two
RR chains in order to coordinate the movement of the input and output
cranks. This is known as a spherical function generator.

Connecting the end-links of two RR chains constrains the range of move-
ment of the individual chains. This can interfere with the smooth travel of
the coupler between the task orientations. This is called the branching
problem. A solution rectification strategy exists for spherical linkages that
is analogous to the planar theory.
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In the following sections we present the spherical version of solution rec-
tification and then present discuss the design strategy for spherical function
generators.

8.5.1 Solution Rectification

Bodduluri [59] shows that Filemon’s construction generalizes to apply to
spherical 4R linkage synthesis. Assume, as before, that the driven crank
GoutW(l)ut has been determined. The output crank, when viewed from the
coupler in each of the design positions, is seen to sweep two wedge shaped
regions centered on W_ .. If the input moving axis W/ _ is chosen outside
of these wedges, then the linkage will not jam between the design positions.

It is possible for this wedge to include the entire space. If this happens,
then there are no solutions to Filemon’s construction. A spherical version of
Waldron’s construction identifies output cranks that ensure that this does
not occur. The result is a spherical 4R chain that moves smoothly through

the task orientations.

Spherical Filemon’s Construction

We focus our development on design for three task orientations. Given
an output moving crank GoutW(l)ut, the inverted positions of Ggyt are
obtained using the inverse of the relative rotations

ghus = (A1) G. (8.64)

Let a2 and ag3 be the angles measured around W . . from g! . to g2 ,
and from g2, to g3, respectively. They are dihedral angles between the
planes L; defined by the axes W(lmtgf)ut, Figure 8.11. Assume that these
angles are between m and —7. The angle 7 of the wedge swept by movement
of the output crank is the sum «aj2 4+ 93, if these angles have the same
sign. If these angles have different signs, then 7 is the angle with the largest
absolute value.

Select the moving pivot W3, outside of this wedge-shaped region, then
the resulting spherical 4R linkage must pass through the design positions
before it hits a singular configuration. This is the spherical version of
Filemon’s construction.

Spherical Waldron’s Construction

Filemon’s construction fails when the angle 7 is greater than or equal to T,
because in this case the wedges cover space and there are no input moving
axes that avoid singular configurations. Waldron’s planar solution to this
problem generalizes to the spherical case. The goal is a condition on the
design of the output crank GoutW(l)ut that ensures that there is a solution
to Filemon’s construction.
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Zout o)) // /

Figure 8.11. The spherical version of Filemon’s construction: The planes L, and
L3 bound the region excluded from selection for driving moving pivots Wj,,.

Given three task orientations, we have the pole triangle AS;5S53S;13.
Inverting the relative rotations to define the movement of the base frame
relative to the coupler, we obtain the image pole triangle ASIZS§3813 in
the first position Mj. The center-axis theorem requires the moving axis
W . to view the side S} Slk in the rotation angle —a;x/2 of the crank
relative to the coupler. Thus we have

azk)_(WxSI)-(WxSI)
~|[W x SL||[W x S|

cos( (8.65)

If an output moving axis W(l,ut has any one of the angles o;x greater
than or equal to 7, then there is no solution to Filemon’s construction.
The points that have a;x/2 = 7/2 lie on the quadric cones

Cir : (W x 8j;) - (W x 8j) =0. (8.66)

The three cones C;;, pass through the sides S}, Slk of the image pole triangle
in a configuration analogous to Waldron'’s three-c1rcle diagram. In this case
the cones are general quadrics and are not circular.

These cones define regions within which an output axis W_,; has cou-
pler rotation angles o all less than 7. This guarantees that Filemon’s
construction yields a region from which an input axis W can be selected.
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Figure 8.12. Coordinated input and output angles for a spherical 4R function
generator.

8.5.2 Function Generation

A spherical four-bar linkage can be designed to provide coordination be-
tween the input and output angular values 6;, v;,i = 1,...,n, Figurc 8.12.
To do this, we arbitrarily select the fixed axes O and C for the input and
output cranks of this linkage. Let v = arccos(O - C) be the angle between
these axes. Denote by Pp the plane through O that makes the dihedral
angle 6, with the plane containing OC.

Following the approach we used for planar function generators, we define
the exterior angles 6; = m — 0; around O. Introduce the coordinate frame
F' attached the input crank so that its y-axis is perpendicular to the plane
Po. Then 6, is the angle from measured Pg to OC. The angles §; and
; are the joint angles of the spherical RR open chain formed by OC as
it moves relative to F’, Figure 8.13. The kinematics equations of this RR
chain define the task orientations, given by

[Ai] = [Z@NXNZ ()], i=1,...,n. (8.67)

Use these orientations [A;] to design a spherical RR chain AB to close the
4R chain.

The result is a spherical 4R chain that has the desired set of coordinated
angles 6; and ¥;, i = 1,...,n, between the input and output links. Notice
that we can obtain a design for at most five coordinated values for these
angles.
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Figure 8.13. Hold the input crank fixed and consider the output crank as the
floating link of an RR chain to define task positions.

8.6 Summary

This chapter has presented the synthesis theory for spherical RR chains.
The algebraic formulation of the design equations and their solution paral-
lels the results presented for planar RR chains. Furthermore, the center-axis
theorem leads to Roth’s generalization of Burmester’s planar constructions.
And the quaternion equation for a spherical triangle generalizes the com-
plex vector equation for a planar triangle. We also obtain spherical versions
for Filemon and Waldron'’s constructions for solution rectification. The ana-
logue between the planar and spherical RR design theories provides insight
to spatial linkage analysis and design.

8.7 References

Dobrovolskii [19] is credited with the initial formalization of the synthesis
theory for spherical linkages. The similarity of the geometry of planar and
spherical linkages lead Meyer zur Capellen et al. [62] to present parallel for-
mulations for their analysis. Suh and Radcliffe [91, 92] describe a constraint
equation based formulation for spherical linkage synthesis. Roth [76, 77]
generalized Burmester’s planar constructions to space, which include the
spherical results in this chapter as a special case. Dowler et al. [20] provide
an example of spherical linkage design. The text by Chiang [8] is devoted
to the analysis and design theory for spherical linkages. Computer-based
design tools for these linkages are described Larochelle et al. [47], Ruth
[81], and Furlong et al. [29].
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Point M Mo
P’ (35°, —13°)T (50°,12°)%
Q' | (—22°,—41°)T | (18°,-36°)7

Table 8.1. Longitude and latitude for points on the African continent

8.8 Hxercises

1. Consider the location of the continent of Africa 150 million years
ago as M, and its location today as Ms. The longitude and latitude
of points P* and Q° in the two locations are given in Table 8.1.
Determine the relative rotation matrix [A;2].

2. Design a 4R linkage to move the African continent between the two
positions defined by Table 8.1.

3. Generate the center-point curve for the relative orientations [Aj2],
[A13], and [A14] defined by the points P* and Q" in Table 7.1.

4. A spherical linkage support for a feeding device is to locate
a spoon at the longitude, latitude, and roll coordinates M, =
(—22.5°,—5°,-30°) and My = (25°,20°,—10°) to pick up and deliver
food, respectively. Select positions M; to provide a desired scooping
movement and M3 so that food is not lost in transit. Generate the
center-point curve and design a spherical 4R linkage.



9
Analysis of Spatial Chains

In this chapter we study spatial linkages. These systems have at least one
link that moves through a general spatial displacement. We examine the
TS and CC chains that are important to our design theory, as well as
the TPS and TRS chains that appear in robotics. In addition, we study
the 3R wrist which is actually a spherical linkage, however, it provides a
convenient parameterization of the S-joint that is an important part of our
spatial open chains. We determine the joint angles for these chains that
position the end-effector in a desired location.

We then analyze the RSSR closed chain, which is closely related to both
the planar and spherical 4R linkages, as well as the spatial 4R linkage,
known as Bennett’s linkage. We then examine the RSSP linkage, which is
a spatial version of the slider-crank. Finally, we consider the spatial 4C
closed chain. Remarkably, planar and spherical 4R linkages are also special
cases of the 4C linkage.

9.1 The Kinematics Equations

The analysis of a linkage requires that coordinate frames be attached to
each of the links in order to measure the joint parameters. While it is rela-
tively easy to define these link frames for planar and spherical linkages, the
assignment of frames for spatial linkages can be difficult. In addition, minor
changes in the coordinate frame convention can yield different constraint
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equations. To standardize this process, we use the Denavit—-Hartenberg
convention to assign reference frames to the links in a spatial linkage.

9.1.1 Joint Axes

The general link of a spatial linkage is considered to be defined by two skew
lines, which we denote here by S; and Sy. Let S; pass through the point
p in the direction S;. Similarly, let S, pass through q in the direction S,.
Then these two lines are defined by the equations

Sl : X(t) =p-+ tSl and SQ : Y(S) =q+ SSQ, (91)

where t and s are arbitrary parameters. These lines are generally easy to
identify because they are the axes of the joints that connect the link to the
rest of the system.

We position the standard link frame B so that its z-axis is aligned with
S1, and its z-axis is along the common normal N directed from S; to Ss.
This defines a unique position for the origin c of this frame along S;.

In order to construct this coordinate frame we must be able to locate the
common normal to two lines.

9.1.2 The Common Normal

The points of intersection ¢ on S and r on So with the common normal N
have the property that they minimize the distance d(¢, s) = |X(t)—Y (s)| for
all points on these lines. The parameter values ¢/, s’ that define ¢ and r can
be computed by setting the partial derivatives of d?(s,t) to zero. In what
follows, we obtain the same result using the fact that N is perpendicular to
both S; and Ss.

Now introduce the parameters ¢t = t' and s = s that define the
intersection points ¢ and r on S; and Ss, so we have

c:p+t’Sl and r = q-+ S,SQ. (92)
The vector r — c is given by
r—c=aN=q-p+s'S; —t'Sy, (9.3)

where a = |r — ¢| and N is the unit vector along S; x S, directed from c
to r.

Determine t' by computing the cross product of this equation with So
and then the dot product with N. Similarly, s’ is obtained by computing
the cross product with S;, then the dot product with IN. The results are

(@—p) xSy N , (@—-p)x8S;-N
and s = .
Sl><SQ'N S;|XSQ'N

Substitute t" and s’ into (9.1) to define the points ¢ and r.

t' =

(9.4)
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The angle « is measured from S; to Se around N, and is given by

_81XSQ-N
tana = S5..s, (9.5)

In these calculations, we can set N to be the unit vector in the direction
S, X S5 in order to determine these points. Then if needed, we change the
sign of N so a is positive.

9.1.8 Coordinate Screw Displacements

To study the relative movement at each joint of a spatial linkage, we in-
troduce three 4 x 4 matrices that we call coordinate screw displacements.
Each of these matrices defines a translation along one coordinate axis com-
bined with a rotation about that axis. This is the movement allowed by an
RP open chain that has the axis of the revolute joint parallel to the guide
of the slider. This assembly is called a cylindric joint, or C-joint, because
trajectories traced by points in the moving body lie on cylinders about the
joint axis.

Let Sq be the axis of a cylindric joint that connects a link $1S5 to ground.
Locate the fixed frame F' so that its z-axis is along S; and its origin is the
point p. Attach the link frame B so that its z-axis is along S; and its z-
axis is along the common normal N from S; and Sy. The displacement of
B relative to F' consists of a slide d and rotation 6 along and around the
z-axis of F'. Combine the rotation matrix and translation vector for this
displacement to form the 4 x 4 homogeneous transform, given by

X cos@ —sinf 0 0| (z
plofme w0yl e
1 0 0 0 1 1
or
X =1[Z(0,d)]x. (9.7)

This defines the transformation of coordinates x in B to X in F' that
represents the movement allowed by a cylindric joint. Notice that we do
not distinguish between point coordinate vectors with and without the
fourth component of 1. In what follows the difference should be clear from
the context of our calculations.

The transform [Z(6, d)] is the coordinate screw displacement about the z-
axis. We can define similar screw displacements [X (-,-)] and [Y(,-)] about
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Figure 9.1. Joint axes S1, S2, and S3 and the link frames B; and Bs.

the z- and y-axes,

1 0 0 d cosf 0 sinf O
0 cosf —sinf O 0 1 0 d
[ X(0,d)] = 0 sinf cosf 0]’ Y9, 4)) = —sinf 0 cosf 0
0 0 0 1 0 0 0 1

(9.8)

We use these coordinate screw displacements to formulate the kinematics
equations for spatial linkages.

It is useful to note that the inverse of a coordinate screw displacement
can be obtained by negating its parameters. For example,

cosf# sinf 0 O

—sinf} cosf 0 O
0 0 1 —d

0 0 0 1

2(0,d)7"] = [2(-0,—d)] = (9.9)

Notice that [Z(0,d)™1] is not the transpose of [Z(0,d)].

9.1.4 The Denavit—-Hartenberg Convention

A spatial open chain can be viewed as a sequence of joint axes S; connected
by common normal lines, Figure 9.1. Let A;; be the common normal from
joint axis S; to S;. The Denavit-Hartenberg convention attaches the link
frame B; such that its z-axis is directed along the axis S; and its z-axis is
directed along the common normal A;;. This convention leaves undefined
the initial and final coordinate frames F' and M. These frames usually have
their z-axes aligned with the first and last axes of the chain. However, their
x-axes can be assigned any convenient direction.

This assignment of standard frames B; allows us to define the 4 x 4
transformation [D] that locates the end-link of a spatial open chain as the
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sequence of transformations

[D] - [Z(ela dl)] [X(a12a a12)] [Z(027 d2)] T [X(an—l,nv an—l,n)] [Z(Hny dn)]a
(9.10)
where o;; and a;; are the twist angle and offset between the axes S; and S;.
This matrix equation defines the kinematics equations of the open chain.
The 4 x 4 transform [T}] = [X (o, ai;)][Z(0,,d,)] is the transformation
from frame B; to B;. Equation (9.10) is often written as

(D] = [TA][T2] - - - [Tn). (9.11)
Notice that [T1] = [Z(61, d1)]-

9.2 The Analysis of Spatial Open Chains

A robot manipulator is often designed as spatial open chain in which each
joint is actuated. The kinematics equations of the open chain define the
position of the end-effector for a given set of values for the joint parameters.
It is also necessary to be able to compute the joint parameter values that
provide a desired position for end-effector. This is known as the inverse
kinematics problem in robotics.

9.2.1 The 3R Wrist (S-Joint)

The spherical 3R open chain that is designed so the second axis is perpen-
dicular to both the first and third axes can reach every orientation in space.
We use this 3R chain to parameterize an S-joint. This chain is also used
as the wrist of a robot manipulator and is of sufficient importance that we
formulate its kinematics equations separately. We then assemble it into RS
and TS chains.

The Kinematics Equations

Introduce the frame F' with its z-axis aligned with S; and its origin at
the wrist center a. Let A be the common normal to the axes S; and Ss.
Introduce the link frame B; with its z-axis along S; as its its z-axis in the
direction A12. The angle ¢ is measured from the z-axis of F' to Ajs. Thus,
the transformation between these frames is defined by the coordinate screw
displacement

1] = [2(1,0)]. (9.12)

Let Ags be the common normal to the axes Sy and Ss. Introduce the link
frame Bs such that So is its z-axis and Ags is its z-axis. The transformation
[ X (m/2,0)] rotates the frame B; around Ajs to align its z-axis with So and
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[Z(¢2,0)] rotates this frame into Bg. Thus, the transformation between
these two frames is
s

[T2] = [X (5, 0)][Z(42,0)]. (9.13)

The end-effector frame M has its z-axis aligned with Ss, and ¢3 is the
angle measured from Aq3 to its z-axis. The transformation from Bs to M
consists of a rotation by m/2 about Ass to align S, with Sz followed by a
rotation about Sz by the angle ¢3. Thus, we have

s

(73] = [X(5;,0)][Z(43,0)]. (9.14)
The kinematics equations of this chain are given by
(W] = [I1][13][15], (9.15)

or

a1 a2 aiz O
a1 agz a3 O
azy azz asz O

0 0 0 1

|_C¢1C¢2C¢3 +8P18d3  —Cco1chasps +SP1cP3  CPh1sP2 0_|
_ |Sh1Cpaco3 — chi1sd3  —SpiChasps — Cpich3  spispa O (9.16)
{ S@2CP3 —S¢28¢3 —C2 OJ ' '
0 0 0 1

Notice that this transformation defines a pure rotation parameterized by
the three angles ¢;, 1 = 1,2, 3.

Inverse Kinematics

If the orientation of M in a 3R wrist is known, then we have the rotation
matrix [A]. The kinematics equations [W] = [A, 0] can be solved to deter-
mine the angles ¢;, i = 1,2, 3. Equate the elements of the third column of
(9.16) to obtain

a13 CP18¢2
ass = S¢1SQZ§2 . (917)
ass —Co2
This equation yields
¢1 = arctan 923 and ¢o = *+arccos(—ass3). (9.18)
ai3

The elements of the third row of (9.16) yield

¢3 = arctan (9.19)

a3
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Notice that while we have unique solutions for ¢; and ¢3, the angle ¢ has
two solutions. Both values +¢9 position the end-effector M in the desired
orientation.

9.2.2 The RS Chain

The RS chain guides the center point a of the spherical joint in a circle
around the axis R; of the revolute joint. In order to analyze this chain we
replace the S-joint by the equivalent 3R wrist, such that the first axis of
the wrist intersects Ry in a right angle at c. The distance a = |a —c| is the
length of the crank.

The Kinematics Equations

We position the base frame F' so that its origin is at ¢ and its z-axis is
aligned with R;. Let N be the common normal between R; and S of the
wrist. Because Ry and S; intersect at ¢, N passes through ¢ perpendicular
to these two lines. Introduce the link frame A; at ¢ that has R; as its z-axis
and its z axis aligned with N. The rotation 6; of the base revolute joint is
measured from the z-axis of F' to that of A1, and we have

[Ry] = [2(61,0)). (9.20)

The transformation from A; to the link frame B; of the 3R wrist con-
sists of a rotation by 7/2 about N that brings R; into alignment with Sy,
followed by a screw displacement along S; of distance a and angle ¢,. For
convenience, we separate this into the product [C][T1] where

C] = [X(5,0)[2(0, a), (9.21)

is a constant matrix. Then we have [T1] = [Z(¢1,0)] as was defined above
in (9.15) for the 3R wrist. The result is that the kinematics equations for
the RS chain are given by

(D] = [R1][C][TA][T2] (T3] (9.22)

Inverse Kinematics

If the position of the end-effector M is known, then the elements of 4 x 4
transform [D] = [A, P] are specified. Notice that because the wrist trans-
formation (W] = [11][1:][T5] is a pure rotation, it does not affect the
displacement term in the product [R:][C], which is its fourth column. We
equate these columns of [D] and [R;][C] to obtain

Dz a sin 64
Py ¢ = { —a cost (9.23)
Pz 0
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| Gimbal joint ]\

Figure 9.2. The TS open chain robot.

and
_ Pz
0, = arctan —. (9.24)
This defines the transformation [R;]. Because [C] is known, we can compute
W] = [C1R]ID] (9.25)

and use the inverse kinematic analysis for the 3R wrist to determine the
angles ¢;, i = 1,2, 3. The result is the set of joint parameter values needed
to place the end-effector of the RS chain in the desired position M.

9.2.83 The TS Chain

We now consider the position analysis of the TS open chain. Figure 9.2.
Crane and Duffy use the term T-joint for a pair of revolute joints with axes
R; and R, that intersect at right angles. This joint is often called Hooke’s
joint and it is used as the gimbal mount for a gyroscope. Replace the S-
joint by the equivalent 3R wrist such that the first axis of the wrist passes
through the center c of the T-joint and is at a right angle to the second
axis Ry. The distance a = |a — c| is the length of this chain.

The Kinematics Equations

The RR chain that defines the T-joint is identical to the first two joints
of the 3R wrist. As we have done previously, position F' with its origin
at ¢ and its z-axis along R;. Introduce the frame A; with its origin at c
and its z-axis along the common normal N;; to the axes R; and R,. The
transformation from F' to A; is [R;] = [Z(6:1,0)] given above.
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Let the No3 be the common normal between Ry and S;. Attach the frame
As with its z-axis along No3. The transformation [Ry] from Ay to Aj is

[R] = [X (5, 0)]12(62,0)) (9.26)

The transformation from As to the link frame B; of the 3R wrist is
achieved by the same transformation [C][7}] described above for the RS
chain. Thus, the kinematics equations of the TS chain become

(D] = [Ra][Re)[CI[T1][13][T5]. (9.27)

Inverse Kinematics

Given the position of the floating link M, we have the elements of the 4 x 4
matrix [D] = [A, P]. Because the wrist transformation [W] = [T1][13][73]
is a pure rotation, it does not affect the displacement term in the product
[R1][R2][C]. We equate the fourth columns of [D] and [R;][R2][C] to obtain

j a cos f1 sin 05
Py =% asinfysinby p. (9.28)
P2 —a cos 0,

From this equation we can compute

6, = arctan Py and 0y = arctan p—y (9.29)
Pz —Pz sin 6

Now the transformations [R;], [R2], and [C] are known, so we have
(W] = [CT[R; '[Ry](D]. (9-30)

The inverse kinematic analysis for the 3R wrist determines the values of
the angles ¢;, i = 1, 2, 3. This determines the joint parameter values needed
to position the end-effector of the TS chain as required.

9.2.4 The TPS and TRS Chains

If the length a of the TS chain is allowed to vary, then we obtain a six-
degree-of-freedom open chain that is often used as the structure for a robot
arm. This variation can be introduced by a prismatic joint to form a TPS
chain, or by a revolute joint to form a TRS chain.

The kinematics equations for the TS chain (9.27) can also be viewed as
the kinematics equations for the TPS robot with the understanding that
the length a is now a joint variable s. In order to solve the inverse kinematics
for this chain we determine

s=\[p2+ D%+ p (9.31)

The remaining joint parameters are obtained using the formulas above for
the TS chain.
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For the TRS chain, we have an elbow joint E inserted between the base
point ¢ and the wrist center a. Let E be parallel to the joint Re and intro-
duce e as the point on E closest to the base point ¢. The distance a; = |e—c|
defines the length of the first link RoE. Now let the axis Sy of the first joint
of the wrist intersect E at a right angle at e. The distance as = |a — €| is
the length of the second link.

The triangle Acea is in the plane perpendicular to E, and the exterior
angle 63 at e of the elbow joint controls the length s = |a — ¢|. The kine-
matics equations of the TS chain can be modified to include this elbow
joint by redefining the matrix [C], such that

[C] = [X(0, al)][Z(Os,0)][X(g,0)][2(0, az)]. (9.32)

The first two matrices define the transformation to the elbow joint E which
is parallel to Re. The second two matrices are the same as the original
matrix [C] but now adapted to the new joint axis.

The inverse kinematics solution for the TRS chain is essentially the same
as that of the TPS chain. We compute the length s using (9.31). The joint
angle 03 is obtained from the cosine law of the triangle Acea,

03 = arccos (9.33)

This yields two values +03 for the elbow joint. The formula for the joint
angle 0, is the same as in (9.29). However, the equation for #; must be
adjusted to accommodate the angle ¥ = Zeca, which is given by

a9 sin O3
— .34
1) = arctan ot agc0s0y (9.34)
The new formula for 5 is
o = arctan T . (9.35)
—p, sin 64

Once 61, 62, and 05 are known, we can use (9.30) to isolate the wrist trans-
formation. Then the inverse kinematics solution for the 3R wrist completes
the analysis.

9.2.5 The CC Chain

A CC open chain is formed by a link that is connected to ground by a fixed
cylindric joint and to an end-effector a moving cylindric joint, Figure 9.3.
Denote the axis of the base joint by O and the axis of the moving joint by
A. The common normal N to these two axes identifies points ¢ on O and r
on A.

Locate the fixed frame F' at the base of this chain so that its z-axis lies
on O. The displacement of this joint is measured by the distance d between
c and the origin of F', and the rotation angle 6 is measured from the z-axis
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Figure 9.3. The CC open chain robot.

of F' to the common normal line N. Similarly, place the moving frame M
in the end-effector so its z-axis lies on A. The displacement at this joint is
measured by the distance ¢ from r to the origin of A and the angle ¢ from
N to the z-axis of M.

The Kinematics Equations

Now introduce the link frame B that has its z-axis aligned with O and its
z-axis along N. Let @ = |r — c| be the length of the crank and let « be the
twist angle measured around N from O to A. Then, the screw displacement
[X (e, a)] rotates the axis O about N and aligns it with A. The result is the
kinematics equations of the CC chain are given by

[D] = [2(8, d)|[X (o, a)][Z(9, )] (9.36)

If the slide distances d and c are constrained to be constant, then these
kinematics equations become those of a spatial RR chain. The kinematics
equations for the spatial RP, PR, and PP chains are obtained in the same
way by constraining the appropriate rotation angle or slide distance of the
fixed and moving C-joints to be a constant.

Inverse Kinematics

Let the desired position of the end-effector of a CC chain be specified by
[D] = [A, P]. We expand the right side of (9.36) to obtain equations that
define the values of the joint parameters 6, d, ¢ and c, that is,

cOcp — sfcas¢p —cls¢p —sfcacd sbsa csfsa + acl
sfce + clcas¢p —sbOs¢ + cOcacp —clOsa —cclsa+ asbl
saso saco ca cca+d
0 0 0 1

[A’ P] =

(9.37)
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In this equation s and c denote the sine and cosine functions.
Equate the third and fourth columns of these two matrices to obtain

a13 sin @ sin o e csinfsina + acosf
ags p = { —cosfsina p py ¢ = § —ccosfsina+asind p. (9.38)
as33 Cos & D, ccosa+d

The crank rotation 6 is determined from the first equation to be

0 = arctan —3 (9.39)
—a23

Once 0 is known, the parameters ¢ and d are obtained from the second
equation as

—acosf —acosf
c= pm— and d=p, — px— cos . (9.40)
sin @ sin o sin @ sin o

Finally, we determine the angle ¢ by equating the third rows of (9.36) and
obtain

¢ = arctan &s1 (9.41)
as2

These relations prescribe the configuration of the CC chain for a specified
location of the end-effector.

9.3 Velocity Analysis of Spatial Open Chains

The kinematics equations of an open chain define the trajectory X(t) =
[D(t)]x of points in the end-link. The velocity of this trajectory is given by
V = X(t) = [D(t)]x. Substitute x = [D~1]X(#), so we have

V = [D][D7)X = [S]X. (9.42)

Using the fact that the 4 x 4 homogeneous transform [D(t)] = [A(t),d(t)]
consists of a rotation matrix [A] and translation vector d we compute

V = [A][AT)X — [4][AT]d +d = [Q)(X — d) + d, (9.43)

where [2] is the angular velocity matrix of the moving link. Introduce
the angular velocity vector w, so that this equation becomes the familiar
definition of the velocity of a point in a moving body,

V=wx(X-d)+d. (9.44)

The 4 x4 matrix [S] = [D][D '] is a generalization of the angular velocity
matrix. It has the general form

QO dxw4+d

1= 1000 0

(9.45)
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The components of this matrix are assembled into the six-vector

called the twist of the moving body.
The axis of this twist L : P(t) = ¢ + ts is directed along the angular
velocity vector w = |w|s, and through the point

d d"
e Wxdxw+d) (9.47)

W W

where d” = d — (s - d)s. This line is the instantaneous screw azis of the
motion. Substitute P(¢) into (9.44) to see that the velocity of these points
are directed along the line L.

The set of instantaneous screw axes generated as a body moves in space
is called its azode. In the following section we compute the twist for a
general spatial open chain.

9.3.1 Partial Twists of an Open Chain

Using the Denavit-Hartenberg convention, the kinematics equations for six-
degree-of-freedom open chain can be written in the form

[D] = [Z(01,d1)][X (12, a12)][Z(02, d2)] - - - [X (a6, as6)][Z (06, dg)]-
(9.48)
Only six of the twelve joint parameters 6;, d;, ¢ = 1,...,6, are variable.
The parameters «;; and a;; define the angle of twist and length of each
link.

Let the joint angles 6;, i = 1,...,6 be variable and the joint slides con-
stant, that is, d; = 0. The analysis is the same if any of the slides are
variable and the joint angles are constant. Compute the partial derivative
matrices

5 = [gg ] D), (9.49)
so we have
[S] = 01[S1] + 02[Ss] + - - - + 0[S (9.50)
Each matrix [S;] has the form
[Si] = [Di[K][D; ], (9.51)

where

[Di] = [Z(01, d1)][X (12, a12)] - - [X (@i-1,4, Gi1,4)] (9.52)
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is the transformation to the ith joint of the chain. The 4 x 4 matrix [K] in
each of these terms is

0 -1 0 0
1 0 00

Kl=1y o0 o o (9.53)
0 0 00

Let the transformation [D;] consist of the rotation matrix [A;] and
translation vector d;, and compute

8] = [ A; dz} ' K 0] [A;—f —[A;.—F]di] _ [AZ-KA;TF ~A;KATd,

’ 000 1(|000 Of (000 1 000 0 )
(9.54)

Here [K] is the upper left 3 x 3 submatrix of (9.53) that performs the cross

product by k, that is, [K]y = k x y. Thus, the elements of each [S;] can be

assembled into the partial twist S; = (S;,d; x S;)T, where S; = [Ai]E. The

result is that (9.50) can be written as

61

. W | S So Se '
T—{dxw+d}_[d1xsl dy xSy -+ dgxSg : . (9.55)

Os

The 6 x 6 matrix in this equation is closely related to the Jacobian defined
for a robot manipulator.

9.3.2 The Jacobian of a Spatial Open Chain

The Jacobian of a six-degree-of-freedom open chain relates the joint rates
0; to the velocity of its end-effector M. This velocity is usually defined as
the six-vector V = (d,w)T, where d locates the origin of M and w is its
angular velocity.

Notice that V can be obtained from the screw T in (9.46) by subtracting
d x w from the second 3-vector component and then interchanging the two
sets of vectors, that is,

v={o} = ) (anwsaf{asw)) o0

Using the identity w = 9181 4+ -+ 9686 we obtain
' (dy—d)x S; (dy—d) xS o
d| _ [(di—d) x5 o—d) xSy --- 0 :
fal-J@g S gl b e
0s
where d; —d is the vector from the origin of M to the ith joint axis. Notice

that dg = d. Therefore, this term cancels. This is the Jacobian of the
spatial open chain.
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9.4 The RSSR Linkage

The spatial RSSR four-bar linkage can be constructed by rigidly connecting
the end-links of two RS chains. The resulting system has two degrees of
freedom, because the sum of the freedom at each joint is eight. One of these
degrees of freedom is the rotation of the coupler about the axis joining the
two S-joints. This freedom is independent of the configuration of the input
and output cranks, and can be arbitrarily specified. In what follows, we
focus on the constraint equations that relate the crank rotations of the
chain.

Let the lines O and C be the axes of the two revolute joints and let N
be their common normal. We assume that the two S-joints rotate in planes
perpendicular to the axes O and C. If ¢, and ¢4 are the points of intersection
of N with the two axes, then we locate these cranks at the distances p and ¢
from c; and cg, respectively. The length of the ground link is ¢ = |cy — ¢4
and its twist angle vy is measured from O to C around N.

We locate the fixed frame F' so that its origin is c1, its z-axis is along O,
and its z-axis is along N. Let the radius of the input crank be a, then the
coordinates a of the center of the input S-joint are given by

a = [Z(0,p)](a), (9.58)

where 0 is the rotation angle of the input crank.

To determine the coordinates b of the center of the output S-joint, we
introduce the frame F’ with its origin at cs, its z-axis aligned with C, and
its z-axis along N. In this frame we have b’ = [Z (1, q)](b7) where b is the
radius of the crank and 1 is the output rotation angle. It is now easy to
see that the coordinates of b in F' are given by

b = [X(7,9)1l2(¥, q)](b7). (9.59)

Thus, the coordinates of the S-joints are given by

a cos bcosy + g
a=<asinf and b =< bcosysiny —gsin~y p . (9.60)
P bsinysiny 4+ qcos~y

9.4.1 The Output Angle

The input and output crank of the RSSR linkage must move in a way that
maintains a constant distance h between the centers a and b of the two
S-joints. This yields the constraint equation for the chain as

(b—a)-(b—a)=h% (9.61)
Substitute (9.60) into this equation to obtain
A(0) cos¢p + B(0) sinp = C(0), (9.62)
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where

A(6) = 2ba cos 6 — 2bg,

B(0) = 2ba cos ysin 0 + 2bp sin 7,

C(9) = ¢*> + ¢* + a* + b*> + p? — h* — 2agcosO + 2gasinysin O — 2gpcos .
(9.63)

This equation is solved, as shown in (A.1), to yield

B
1 (0) = arctan — + arccos ¢ (9.64)

A VA2 + B2
Note that there are two output crank angles 1 for each input 6.
We now show that the constraint equations for the planar and spherical
4R chains can be obtained as special cases of (9.62).

Planar 4R Linkage

A planar 4R linkage can be viewed as an RSSR linkage that has parallel
revolute axes O and C, which means that v = 0. In order to have the
cranks in the same plane we set p = q. The result is the coefficients of
(9.62) become

A(0) = 2ba cos — 2bg,
B(0) = 2basin 6,
C(0) = ¢°> + a® +b* — h® — 2ag cos 0. (9.65)

Compare these coefficients with (2.50) to see that this is the constraint
equation of a planar 4R linkage.

Spherical 4R Linkage

A spherical 4R linkage can be considered to be an RSSR linkage in which
the axes O and C intersect, which means that g = 0. Set the location of
the revolute joints at the distance p = ¢ = 1 from the point of intersection
c of the two axes. This allows us to define the angular dimensions o and 3
of the input and output links such that

a=tana and b= tanf. (9.66)

The coupler angle 7 is defined by the triangle Aacb, with sides of lengths
la—c| =1/cosa and |b—c| = 1/ cos 3, respectively. The cosine law yields
the relation

B2 _ 1 1 2cosn

(9.67)

+ - .
cos?a  cos?2f3 cosacosf3

Substitute these formulas for a, b, and h and the values for g, p, and ¢ into
the equations (9.63). The term 2/ cos « cos 3 cancels in all three coefficients
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to yield
A(0) = sin Bsinacos b,
B(60) = sin 8 sin « cos 7y sin § + sin 3 cos o sin 7,
C'(0) = cosn + sin « cos Fsin -y sin § — cosy cos & cos (3. (9.68)

Compare these coefficients to those derived in (6.27). The difference be-
tween the two sets is due to different conventions for measuring the input
and output angles. Denote by ¢’ and ¢’ the input and output angles used
in (6.27). Then substitute § = ¢ — 7/2 and ¢ = ¢’ — 7/2 into (9.68)
and notice that sinf becomes — cosf’ and cos § becomes sin#’. This also
changes A into B’ and B into —A’. The result is that these coefficients are
transformed into those in (6.27).

Spatial 4R Linkage (Bennett’s Linkage)

An interesting special case of the RSSR is the spatial 4R chain, called
Bennett’s linkage. For this linkage, the base revolute joints must be located
along the common normal line N of their axes, which means that p = ¢ = 0.
Furthermore, the opposite sides of the linkage must be equal, so ¢ = h and
a=b.

We replace the S-joints with revolute joints that have axes A and B. These
axes are positioned at a and b so that the input crank OA and the output
crank CB have the same twist angle o. Furthermore, the twist angle along
the floating link AB must be v, which is the twist angle of the ground link
OC. The result is an assembly of four joints that have consecutive common
normals that intersect, and opposite sides that have the same dimensions.

Even with these constraints, the linkage will not move unless the
dimensions satisfy the additional relationship

° _ 9 (9.69)
sina@  sinvy

known as Bennett’s condition.
Substitute p = ¢ =0, g = h, and a = b into (9.62) to obtain the equation

(acos® — g)cost + (acosysinf)siny = a — gcos@. (9.70)

Divide this equation by a and substitute g/a = sin<y/sina in order to
obtain the constraint equation for Bennett’s linkage,

A(0) cosy + B(0)siny = C(6), (9.71)
where

A(f) = sina cosf — sinvy,
B(#) = sin a cos 7y sin 0,
C(6) = sin — siny cos 6. (9.72)

The solution of this equation yields 1 as a function of 6.



206 9. Analysis of Spatial Chains

It is useful to examine another approach to the solution of (9.71).
Introduce the parameters u = tan(f/2) and v = tan(y/2) so we have

2 2
cosf = ;—22, sinf = 11—1;2, cosy = 11—52, siny = 12_1:1;2. (9.73)
Substitute these formulas into (9.71) to obtain
u?(sin o + sin y) — 2sin a cos yuv + v%(sin @ — siny) = 0. (9.74)
The solution of this quadratic equation for the ratio v/u yields
tanzzji _ sin a cos y £+ cos o sin 7y (9.75)
tan % sin o — sin y ’

which shows that this ratio remains constant as the linkage moves.

9.5 The RSSP Linkage

The RSSP linkage is the spatial version of a slider-crank linkage. Let O be
the axis of the R-joint and let a be the center of the S-joint for the input
RS crank. The output link is the slider of the PS chain. Let b be the center
of the output S-joint b. Then its path is a line C that we consider to be
the guide of the P-joint. The common normal N between O and C defines
the points c¢; and ca, respectively, on these lines.

Locate the base frame F' with its origin at cq, its z-axis along O, and its
x-axis along N. In this frame the coordinates of a are the same as are given
in (9.60). The coordinates of b are given by

) g
b =[Z(y,9)](sk) = { —ssin~y , . (9.76)
$cos 7y

The fact that the distance between the two pivots a and b is the constant
length h yields the constraint equation for the RSSP chain as

s* +2(asinysind — pcosy)s + (¢° +a® 4+ p* — h® —2agcosf) = 0. (9.77)

For each value of the input crank 6 we solve this quadratic equation to
obtain two values for the location s of the output slider.
There are several interesting special cases for this linkage.

The Planar RRRP

The planar slider-crank occurs when the axes O and C are at right angles
and the revolute joint is located in the zy-plane. This means that v = 7 /2
and p = 0. In this case, equation (9.77) becomes

s 4+ 2(asinf)s + (¢* + a®* — h? — 2ag cosf) = 0. (9.78)
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Compare this to the constraint equation of the planar slider-crank (2.23).
Notice that because r = a, L = h, and e = ¢, these equations are the same.

The Symmetric RSSP

If the axis O of the input RS crank intersects the guide C of the slider, then
slider moves in the yz-plane as the input crank rotates about the z-axis.
In this case g = 0 and the constraint equation takes the form

s* 4+ 2(asinysinf — pcosvy)s + (a® + p* — h?) = 0. (9.79)

Notice that because sin § = sin(w—#), this equation is the same for positions
of the input crank that are symmetric relative to the yz-plane. The result
is a movement of the output link that is a symmetric function of the input
crank angle.

The Sinusoidal RSSP

Choose the dimensions of the symmetric RSSP so that the constant term
is zero, that is,

h* = a® + p°. (9.80)
Then (9.79) has one solution s = 0 and a second solution
s =2pcosy — 2asinysinf, (9.81)

which is a sinusoidal function of the input angle 6 of amplitude A = 2a sin 7.

9.6 The 4C Linkage

A 4C closed chain is formed by connecting the end-links of two CC chains.
Each of the four cylindric joints has two degrees of freedom for a total of
eight joint freedoms, which means that the chain has degree of freedom of
two. The two independent parameters are the slide d and rotation 6 of the
input crank its fixed axis. See Figure 9.4.

The Link Dimensions

Let the fixed and moving axes of the input crank be O and A, respectively.
Denote the common normal between these lines by L; and its points of
intersection by a; on O and r; on A. This crank has length a = |r; — a;|
and the twist angle angle a measured about L; from O to A. For convenience
assemble these parameters into the ordered pair & = (e, a).

Let C and B be the fixed and moving axes of the output crank. In this
case, let Ly be the common normal and a; and rs its points of intersection
with the axes C and B. The length of this crank is b = |ry —az| and its twist
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Figure 9.4. The 4C linkage.

angle is 3 measured around L. Collect these parameters into the ordered
pair /3 = (B,b).

The floating link is formed by the common normal M between the moving
axes A and B, which defines points by and by. The distance h = |ba — by |
and angle 7 from A to B define its dimensions, denoted by n = (n, h). The
ground link of the chain is defined by the common normal N between the
base joints O and Cand c; and c3 be the points of intersection with these
axes. Its dimensions are given by 4 = (v, g).

9.6.1 The Kinematics Fquations

Position the fixed frame F with its origin at ¢y, its z-axis along O and its
z-axis along N. Introduce the link frame 7} with its origin at a; and its
x-axis aligned with L;. The displacement of the input crank is given by the
screw displacement of 7} along O of distance d = |a; — ¢;| and angle 6 is
measured from the z-axis of F' to L;. We assemble these joint parameters
into the pair § = (6,d).

The position of the coupler relative to the input crank is defined by
attaching the frame M with its origin at b,, its z-axis along A, and its
z-axis aligned with M. The distance ¢ = |b; —r,| is the slide of the moving
joint, and ¢ is its rotation angle measured from L, to M. Assemble the joint
parameters into the pair ¢ = (¢, c). These definitions yield the kinematics
equations of the input crank OA as



9.6. The 4C Linkage 209

Let the frame F’ be located on the output crank CB so that its origin is
Co, its z-axis is C, and its z-axis is Lo. We can attach link frames 15 and M’
in exactly the same way to obtain the kinematics equations for this crank
as

[Dout] = [Z (v, €)][X (8, 0)][2 (¢, ], (9.83)

where ¢ = (1,e) and { = ((, f) define the rotation angle and sliding
distance at the fixed and moving joints, respectively.

To define the kinematics equations of the 4C closed chain, we introduce
transformation [X(v,g)] from F to F’ and the transformation [X(n,h)]
from M to M’. The result is that the coordinate transformation [T that
locates the frame M’ in F' is defined in two ways, that is,

1] = [Dw][X (n,h)] = [X (7, 9)][Dout]- (9.84)

Substitute (9.82) and (9.83) into this equation to obtain the kinematics
equations of the 4C chain.

9.6.2 The Spherical Image

Associated with a 4C linkage is the spherical linkage with joint axes formed
by the direction vectors O, A, B, and C of the lines O, A, B, and C.
This linkage is known as the spherical image of the 4C chain. We follow
a slightly different derivation and obtain the same constraint equation for
this spherical 4R chain.

The Output Angle

The direction vectors A and B of the moving axes of the spherical image
can be obtained from the third column of the transformations [Dj,] and
[ X (7, 9)][Dout], respectively. These computations yield

sin 6 sin « sin ¢ sin 3
A ={ —cosfsinap, B=<{—cosycosysinf —sinycosf . (9.85)
cos & —sin y cosy sin 8 + cosy cos 3

The fact that A - B = cosn for all positions of the linkage yields the
constraint equation

A(0) cosyp + B(0) siny = C(6), (9.86)
where

A(0) = cosfsin a cosysin § — cos asinysin 3,
B(0) = sinf# sin asin j3,

C(0) = cosn — cos fsin asin -y cos 3 — cos a cos 7y cos (. (9.87)
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This constraint equation is the same as was derived previously as (6.27).
Solve this equation to determine the output angle v as a function of the
crank angle 0.

The Coupler Angle

The kinematics equations provide two ways to define the direction B. It is
the third column of [X (7, ¢)][Dout] and the third column of [D;,][X (7, h)].
Focusing only on the coordinate rotations, we can write this as

Z(9)][X (2)][Z($)][X (n)]k = B, (9.88)

where B is defined above in (9.85), To simplify this equation, introduce the
notation Y = [X(a)][Z(¢)][X (n)]k, so we have

Z(O))Y =B, or Y =[Z(0)]"B, (9.89)
which yields the relations
s¢sn cl(sysfB) — sb(cycypsf + sycf)
—cacsn — sacn p = { —sO(sysf) — cO(cyewsB +syeB) p. (9.90)
—sacesn + cacn —sycysf + cycf

Solving for ¢ from the first and second components of these vectors, we
obtain

cl(sysp) — sb(cycysB + sycf)

sin qb = . ’
sin 7
cos g = sO(sysB) + CQ(C’)/CC(’;/)sz + sycf) + sacr (9.91)

These equations yield the appropriate coupler angle ¢ for either solution
selected for the output angle 1.

9.6.3 The Vector Loop Equation

We now formulate equations that define the output slides ¢ at C, f at B,
and the coupler slide ¢ at A in terms of the rotation angle 6 and sliding
distance d of the input crank OA. To do this, we equate the fourth columns
of the kinematics equations and obtain the vector loop equations of the 4C
chain.

Introduce the notation P;, and Pgyt for the fourth columns of the
left and right sides of the kinematics equations, that is, of the matri-
ces [Din][X(n,h)] and [X (7, g)][Dout], respectively. Expansion of these
equations yields

acl + h(clco — sOspca) sfsa
Pin = { asf + h(sf¢ + clcopca) p + ¢ —clsa (9.92)
d+ hsasg ca



9.7. The 5TS Spatial Linkage 211

and
g+ bey 0 sysf3
Pout = { bsycy p +e —syp + f < —cpsfey —cfsy p . (9.93)
bsysy cy —cysfBsy + cfBcy
Because Pj,; = Pout, we can construct the matrix equation
—sfsac 0 sysf3 c

chsa —sy —cysfey — cfsy e
—ca ¢y —cysfBsy+cBey| | f
ach + h(clcep — sfspca) — g — berp
=< asf+ h(sf¢ + clcpca) — bsypey . (9.94)
d + hsas¢ — bsisy

If the angles ¢ and ¢ have been determined, then this equation can be
solved to obtain a unique set of joint sliding distances ¢, €, and f.
The Planar 4R

It is useful to see how the vector loop equations (9.94) become the loop
equations for the planar 4R when all four joint axes are parallel. Let a =
B =~ =mn=0. Then (9.94) becomes

0 0 0| (c ach + h(clco — sbsp) — g — bey
0 0 Ofqep= as + h(sfp + clceo) — bsy : (9.95)
11 1| |f d

These equations can be written in the form

acosf + hcos(6 4+ ¢) = g + bcosp,
asinf + hsin(6 4+ ¢) = bsin 1,
et f=c+td (9.96)

Compare with (2.55) to see that the equations are the same. Notice that
movement of this linkage in the plane perpendicular to the joint axes is
independent of sliding movement along these axes.

9.7 The 5TS Spatial Linkage

The platform linkage constructed from five parallel TS chains is a one-
degree-of-freedom linkage, Figure 9.5. The workspace of this system is the
intersection of the workspaces of the individual TS chains. In order to
define this workspace we use an implicit formulation based on the geometric
constraints imposed by each of the TS chains.

For the five TS chains, let B; be the center of the ith T-joint in F' and let
p; be the center of the ith S-joint measured in M, so P; = [D]p, locates
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B,

i

Figure 9.5. The 5TS platform linkage.

this point in F. A displacement [D] of the platform is in the workspace
of this linkage if it maintains constant lengths R, for the five chains. This
means that [D] must satisfy the set of constraint equations

((Dlp: — B1) - ([Dlp; —B1) — R}
F = : =0. (9.97)

(DIPs — Bs) - (ID}ps - Bs) - 2
The analytical solution of these equations, known as solving the direct

kinematics of a platform, is beyond the scope this text.

A numerical solution can be obtained by introducing an extra TPS chain
to actuate the linkage. This chain does not impose any constraints on the
platform but does push it along the path allowed by the five supporting TS

chains. Suppose a displacement [D] = [A, d] satisfies the equations (9.97),
then we can compute the slide s of the actuating leg from the equation

([Dlps — Bs) - ([Dlpg — Bg) — s = 0. (9.98)

We now formulate the solution as a root-finding problem. The time-
derivative of the ith constraint equation can be written in the form

([D]p; — B:) - ([D]Pz) —R;R; =0, (9.99)

where R; = 0 for i = 1,...,5 and Rg = $. Substitute p; = [D71P; to
obtain

(P1 — By) - ([S]P1)
F = : =0, (9.100)
(Pﬁ — Bg) g ([S]Pg) — 88
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where [S] = [DD~!']. The operation [S]P; computes the velocity of the
point P; as the platform M moves. Recall that this is equivalent to the
formula

P, =wx (P, —d) +d, (9.101)

where w is the angular velocity vector of M and d is the velocity of its
origin. Substitute this into (9.100) to obtain

(P, —B))- (w x (P —d)+d>
F = : = 0. (9.102)
(Ps — Bg) - (wx (Pﬁ—d)+d) 88

This can be rewritten as the matrix equation

P, -B; P¢ — Bg ]T{d—{-dXW}_
P1X(P1—B1) PGX(PG—BG) wW N )
88
(9.103)
The six-vector P; = (P; — B;, P; x (P; — B;))7 is known as the Plicker
vector of the line along the ith leg. The matrix [['] formed by these Plicker
vectors is the Jacobian of this platform linkage.

For a given position [Dy] of the platform and actuator rate $, we solve
(9.103) to determine the angular velocity w and velocity d of the platform.
This provides an approximation to the solution [D(t)] = (I +[S]t)[Do]. The
result is an algorithm to trace the trajectory of the floating link.

When the matrix [I'] loses rank, the linkage is said to be in a singular
configuration. This is discussed in more detail in the last chapter.

9.8 Summary

This chapter has presented the direct and inverse kinematic analysis of
the 3R wrist, the RS, TS, and CC open chains, as well as the TPS and
TRS robots. The velocity analysis of these systems yields the Jacobian of
robotic theory. The analysis of the RSSR linkage yields the results for pla-
nar and spherical 4R linkages as special cases. It also provides the constraint
equation for the spatial 4R closed chain, known as Bennett’s linkage. We
also analyzed the RSSP, which has several special cases including the pla-
nar slider-crank. The analysis of the 4C linkage was presented which also
specializes to the spherical and planar 4R linkages. Finally, we outlined
a numerical solution for the analysis of the 5TS platform. An analytical
solution exists for this system (Su et al. [89]) but it is beyond the scope of
our work.
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9.9

9. Analysis of Spatial Chains

References

The analysis of spatial open chains is found in robotics texts by Craig [11],
Crane and Duffy [12], and Tsai [93]. Also see Crane and Duffy’s analysis
of the CCC manipulator. The analysis of the RSSR and RSSP linkages is
taken from Hunt [38]. The analysis of a 4C linkage presented here follows
Suh and Radcliffe’s [92] analysis of the RCCC linkage. A classification of
the platform manipulator systems can be found in Faugere and Lazard
23], and Husty [39] presents a general algorithm for the analysis of these
Systems.

9.10 Exercises

1.

Let a spatial RR open chain have length a = 10 and angle of twist
a = 90°. Determine the kinematics equations of the chain. Let P =
(0,0, —10)T be a point in the end-link of this chain, and determine its
coordinates in ' when 6 = 90° and ¢ = 180° (Mabie and Reinholtz
[50]).

Consider the TS chain with length a = 4. Set the joint angles to the
values 01 = 60°, 03 = 120°, and ¢; = 135°, 2 = —60°, ¢35 = 45°,
and determine the 4 x 4 transform that locates the end-link (Kinzel
and Waldron 1999).

Derive the Jacobian for a TS chain.

Consider an RSSR linkage that has the fixed axes in the directions
O =k and C =7 Let ag = (0,0,0)T and a; = (0,1,0)7 be the end-
points of the input crank, and by = (2,0,0)” and by = (2,0,1)7 the
end points of the output crank. Determine the input-output equation
for this linkage (Suh and Radcliffe [92]).

. An RSSP linkage has 7 as the direction of its input fixed axis, O. Let

ap = (0,2,4)T and a; = (0,1,4)T be the endpoints of the input crank
in a reference position, and let h = 10 be the length of the coupler.
Finally, let the output moving pivot follow the line L = ¢7. Analyze
this linkage to determine the output slide s as a function of the input
crank rotation # (Sandor and Erdman [83)]).

Analyze the Bennett linkage with twist angles o = 30° and v = 60°.
Consider the same linkage with @ = —30°. Show that the output
functions of these two linkages are different (Hunt [38]).

Consider the 4C linkage with dimensions & = (30°,2), 7 = (55°,4),

B = (45°,3), and 4 = (60°, 5). Determine the joint angles and offsets
of this linkage for the input § = (6,0) (Suh and Radcliffe [92]).



10

Spatial Kinematics

In this chapter we develop the geometry of spatial displacements defined by
coordinate transformations consisting of spatial rotations and translations.
We consider the invariants of these transformations and find that there are
no invariant points. Instead there is an invariant line, called the screw axis.
Thus, the geometry of lines becomes important to our study of spatial
kinematics. We find that a configuration of three lines, called a spatial
triangle, generalizes our results for planar and spherical triangles to three-
dimensional space.

A convenient set of coordinates for lines, known as Pliicker coordinates,
are introduced, then generalized to yield screws. Dual vector algebra ma-
nipulates these coordinates using the same rules as the usual vector algebra.
This yields a screw form of Rodrigues’s formula that defines the screw axis
of a composite displacement in terms of the screw axes of the two factor
displacements.

10.1 Spatial Displacements

A spatial displacement is the composition of a spatial rotation followed
by a spatial translation. This transformation takes the coordinates x =
(z,y,2z)T of a point in the moving frame M and computes its coordinates
X = (X,Y,Z)7 in the fixed frame F, by the formula

X = T(x) = [A]x +d, (10.1)
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where [A] is a 3 x 3 rotation matriz and d is a 3 x 1 translation vector.
A spatial displacement preserves the distance between points measured in
both M and F'.

10.1.1 Homogeneous Transforms

The transformation that defines a spatial displacement is not a linear opera-
tion. To see this compute 7' (x+y). The result does not equal to T'(x)+71'(y).
This can be attributed to the inhomogeneous translation term in (10.1).
A standard strategy to adjust for this inhomogeneity is to add a fourth
component to our position vectors that will always equal 1. Then we have
the 4 X 4 homogeneous transform

G =looo {37 102

X = [Tx. (10.3)

which we write as

Notice that we have not distinguished between the point coordinates that
have a 1 as their fourth component. In general, these vectors will have three
components. Please assume the addition of the fourth component, when it
is appropriate for the use of these 4 x 4 transforms. We use [1] = [A,d]
to denote the 4 x 4 homogeneous transform with rotation matrix [A] and
translation vector d.

10.1.2 Composition of Displacements

The set of matrices that have the structure shown in (10.2) form a matrix
group, denoted by SE(3), with matrix multiplication as its operation. The
matrix product of [T7] = [A1,d4] and [T3] = [A2, ds] yields

T3] = [Ay, d1][As, da] = [A; Az, di + Arda). (10.4)

It is easy to see that the 4 x 4 transform [73] has the same structure as
(10.2) with A3 = Aj A as its rotation matrix and dz = d; + [A1]ds as its
translation vector.

The composition of the displacements [T1] = [A1,d1] and [T2] = [A2,d2]
can be interpreted as follows. Let [I}] define the position of a frame M’
relative to F' such that X = [A;]y + d;. Then the position of M relative
to M’ is defined by [13] such that y = [Az]x +d2. Thus, the position of M
relative to F' is given by

X = [AlAQ]X + dl + A1d2. (105)

Compare this equation to (10.4) to see that the product of two homogeneous
transforms defines this composition of displacements.
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Similarly, the matrix inverse [T]7! = [A,d]™! defines the inverse

displacement
[T =[A,d] ! =[AT,-ATd). (10.6)
It is easy to use (10.4) to check that [A,d][AT, —ATd] = [I].

Changing Coordinates of a Displacement

Consider the displacement X = [T']x that defines the position of M relative
to £'. We now consider the transformation [7”] between the frames M’ and
F' that are displaced by the same amount from both M and F. In partic-
ular, let [R] = [B, c| be the displacement that transforms the coordinates
between the primed and unprimed frames, that is, Y = [R]X and y = [R]x
are the coordinates in F” and M’, respectively. Then, from X = [T]x we
can compute

Y = [R|[T][R']y. (10.7)

Thus, the original matrix [T] is transformed by the change of coordinates
into [T"] = [R][T][R™].

10.1.3 Relative Displacements

For a set of displacements [I;] = [A;,d;], ¢ = 1,...,n, the relative
displacement between any two is given by

(T3] = [T3)1T; 1] (10.8)

If X' = [T;]x denotes the coordinates in F for points in position M;, then
we have
X7 = [T;;])X". (10.9)

Notice that both X" and X’ are measured in the fixed reference frame F'
they are the coordinates of corresponding points of M in positions M; and

M;.

Relative Inverse Displacements

The relative inverse displacement [T;ﬂﬁ] between two inverse positions F;
and F} is given by
T} = [T (10.10)
Notice that this is not the inverse of the relative displacement [7;], which
would be [T;,'] = [T;])[T: ')
The relative inverse displacement [T7,] is defined from the point of view

of the moving frame M. However, we can choose a specific position M; and
transform this displacement by [7}], to obtain

[15,) = [T, (10.11)
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This is known as the image of the relative inverse transformation for
position M; in F'.

Notice that if M; is one of the frames used in computing the relative
inverse displacement, for example 7 = i, then we have

(T3] = LT DT = (BT = (T3] (10.12)

This same result is obtained when j = k. Thus, for j = 7 or j = k the
image of the relative inverse displacement [T7, ] is the inverse of the relative
displacement.

10.1.4 Screw Displacements

We now consider the invariants of spatial displacements. If a point C has
the same coordinates before and after a spatial displacement [T7], then it
satisfies the equation

C=[T]C, or [I-T]C=0, (10.13)
which simplifies to
I — A]C =d. (10.14)

Recall that all spatial rotations have 1 as an eigenvalue. Therefore, the 3 x 3
matrix [I — A] is singular. Thus, a spatial displacement has no fixed points.

While there are no fixed points, there is a line, called the screw azxis,
that remains fixed during a spatial displacement. To determine this line,
we decompose the translation component of the displacement [T'] = [A,d]
into vectors parallel and perpendicular to the rotation axis S of [A], that
is,

d=d*"+kS, where k=d-S. (10.15)

The displacement [T can now be written as the composition of the
rotational displacement [R] = [A,d"] and the translation [S] = [I, dS],

IT] = [S][R] = [I,kS][4,d"] = [4,d" + kS] = [4,d]. (10.16)

Notice that all spatial displacements can be decomposed in this way.
We have already seen in (7.81) that a rotational displacement [R] =
[A,d”] has a fixed point is given by

b x (d* —b x d¥)
2b-b ’
where b = tan(¢/2)S is Rodrigues’s vector of the rotation [A]. Now consider

the line S through this point in the direction of the rotation axis of [A],
defined by

C—

(10.17)

S:P(t) = C+1S. (10.18)
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Points on this line remain fixed during the rotational displacement [R] =
[A,d”]. Furthermore, the translation [S] = [I, kS] slides points along this
line the distance k. This line remains fixed during the displacement. Thus,
a general spatial displacement consists of a rotation by ¢ about this line
and the sliding distance k£ along it. This is called a screw displacement and
the line S is called the screw azis.

10.1.5 The Screw Matrix

It is often convenient to define a spatial displacement in terms of its screw
axis S and the angle ¢ and slide k around and along it. We have already
determined a formula for a rotation matrix [A(¢, S)] in terms of its rotation
axis and angle. From (10.16) we see that the translation vector is given by

d=[I — AIC + kS. (10.19)

Now use the notation ¢ = (¢, k) for the rotation and slide of the screw
displacement and define the screw matriz

[T($,S)] = [A(6,S),[I — A]C + kS]. (10.20)

This is the 4 x 4 homogeneous transform with elements defined in terms of
the screw parameters of the displacement.

This form of a spatial displacement allows us to write the transformation
of xin M to X in F' as

X — C = [4](x — C) + kS, (10.21)

which shows directly that the displacement consists of a rotation about C
followed by a translation along the screw axis S.

10.2 Lines and Screws

The geometry of the screw axis of a spatial displacement is best studied
using Pliicker’s coordinates that define the line directly. Plicker coordinates
for a line are six-vectors assembled from the direction of the line and its
moment about the origin of the reference frame. The generalization of these
coordinates, called a screw, is familiar from the study of elementary statics
and dynamics where it appears as a the pair formed by the resultant force
and moment on a body.

10.2.1 Plicker Coordinates of a Line

Consider the line S through two points C and Q in space, given by the
parameterized equation

S:P(t) = C+18, (10.22)
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where C has been selected as a reference point on the line, and S is the
unit vector along QQ — C. To eliminate the free parameter ¢ in the definition
of S, we introduce the Plucker coordinates of the line

S — {Ci S}. (10.23)

The vector C x S is the moment of the line about the origin of the reference
frame. Notice that these coordinates do not depend on the choice of the
reference point C, because any other point C' = C + kS yields the same
moment C’' x S = C x S.

A general pair of vectors W = (W, V)T can be the Pliicker coordinates
of a line only if W -V = 0. This is equivalent to saying that there must be
a vector C such that

CxW=V. (10.24)

Solve this equation by computing the vector product of both sides by W
to obtain

W xV
W.-W'

This formula defines the coordinates for the reference point directly in
terms of the Pliicker coordinates of the line.

Pliicker coordinates are homogeneous, which means that W = wS defines
the same line as the unit vector S. For convenience, we normalize our the
Pliicker coordinates so S = (S, C x S), where |S| = 1.

C =

(10.25)

10.2.2 Screws

A general pair of vectors W = (W, V)T for which W -V # 0 and |[W| =
w # 1 is called a screw. We can associate with any screw W a line S, called
the azis of the screw. To do this, decompose the second vector V into
components parallel and perpendicular to W, so we have V = p, W + V™.
Since W - V* = 0, we can determine a point C such that C x W = V*,
This is given by

C— WxV" WxV

S W-W W.W'
Notice that the vector product with W automatically eliminates the
component of V in the direction W.

The line S = (W, C x W)T is the axis of the screw W. Let W = wS.
Then the components of this screw can be written in the form

wS
W= {wC x S+ wpr} ' (10.27)

(10.26)
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The parameter w = |W/| is called the magnitude of the screw, and

W.V
= 10.28
Po = WwW (10.28)

is its pitch. Lines are often called zero-pitch screws.

10.2.8 Dual Vector Algebra

We now introduce dual vector algebra, which allows us to manipulate the
pairs of vectors that define lines and screws using the same operations as
vector algebra.

The Dual Magnitude of a Screw

A multiplication operation can be defined so that a general screw W,
given by (10.27), can be obtained as the product of the pair of scalars
w = (w,wpy) with the pair of vectors S = (S, C x S). This operation is
formulated by introducing the dual unit € that has all the properties of a
real scalar with the additional feature that €2 = 0. Using this symbol, we
define the dual number

W= (W, Wpy) = W + €Wpyy,. (10.29)

Notice that we do not distinguish symbolically between the dual number
written as a pair of numbers or written using the dual unit €. Similarly, we
can define the dual vector

S=(S,Cx8)T =S +¢C x8S. (10.30)

Again, we do not distinguish between the screw written as a pair of vectors
or a dual vector.

Now multiply the dual scalar w0 and the components of the dual vector
S and impose the rule €2 = 0 to obtain

WS = (w + ewpy, ) (S + €C x S) = wS 4+ €(wC x S +wp,,S).  (10.31)

Compare this to (10.27) to see that this equation defines a general screw
W. The dual number v = w + ewp,, is the dual magnitude of the screw W.

Dual Numbers

The set of dual numbers ¢ = a + ea®, where a and a° are real numbers and
€2 = 0, has all the properties of complex numbers. Addition and subtraction
are obtained componentwise, and multiplication is performed as though
these numbers were polynomials in €. Division is defined so that for a =
a+ea® and b=b+ €b°, we have

(b+eb°)(a—ea®) b  b°a— ba®

- (a + €a®)(a — €a®) - 5+6 a?

(10.32)

| o
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Notice that if the dual number has a zero real part then this division
operation is undefined. Such numbers are known as pure dual numbers.
See Appendix D for a summary of the properties of dual numbers.

The Dual Scalar Product

The linearity of the scalar product of vectors allows us to define the dual
scalar product as

W-V=(W+eW°) (V4+eV) =W -V4+e(W-V°+W°.V). (10.33)

This equation can be written in matrix form by introducing the 6 x 6 matrix

[11] defined by
= [0 ¥ -0, (034

The second component of the dual scalar product (10.33) is W7 [TT]V, and
we have

WV =WTv, wiv) (10.35)

as the matrix form of the dual scalar product.
Notice that if a screw is given by W = @S, where S is the Pliicker
coordinates of its axis, then we can compute

W-W =%%S-S) = @° (10.36)

This is because S-S = 1 for normalized Pliicker coordinates. For this reason
Plucker vectors are often called unit screws.

The dual magnitude of a screw W = (W, W°)T can be computed using
the dual scalar product to obtain

W] = (W-W)1/2, (10.37)
Furthermore, the axis of a screw W can be found by dividing by its dual
magnitude, that is,
W WH+eW® 1

1
S = = = —W —(W°® — p,W). 10.38
W|  wHewp, w +€w( PwW) ( )

This yields the same screw axis as was defined above.

The Dual Vector Product

The linearity of the vector vector product allows its extension to dual vec-
tors as well. Consider the two screws W = (W, W°)T and V = (V,V°)T|
and compute

WXV =(W+eW?)x(V+eV®) = WxV4+e(WxV°+WxV). (10.39)

In what follows we show that this screw has as its axis the common normal
to the axes of the screws W and V.
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10.2.4 Orthogonal Components of a Line

Let the Plicker coordinates of the z, y, and 2 axes o£ the fixed frame F
bel = 7o x )T, J = (F,ox 77T, and K = (k,0 x k)T, where o is the
origin of F'. We now determine the orthogonal components of a general line
measured against these coordinate lines.

Consider the line S that intersects the z-axis K in a right angle at a
distance d from o, such that it lies at an angle 6 measured from the z-
axis . The direction of S is S = cos07 + sinf7, and its moment term is
(0 4+ dk) x w. Therefore, we have

B cos 01+ sin 07
"~ | (o +dk) x (cos 07+ sin 07)

_ cos 07 sin 07’
N {cos fo x 7 — dsin@?} + {sin@o X 7+ dcos@j’} ' (10.40)

Thus, the coordinates of S can be written as the sum of two screws. The
first screw has the dual magnitude (cosf, —dsin #) and the line | as its axis.
The second screw has the dual magnitude (sinf, dcosf) and J as its axis.

The Dual Angle

We now introduce the dual angle 0 = 0 + ed, which measures the angle 6
and distance d around and along the axis K from the z-axis | to the line
S, Figure 10.1. The cosine and sine functions of this dual angle are defined
such that

cosf = cost — edsinf, sinf = sin @ + ed cos 9. (10.41)

Equation (10.40) can now be written in the form
S = cos Ol + sin 0, (10.42)

where the screws cos 6l and sin8J are the orthogonal components of S in
the frame F'.

The dual scalar product can be used to compute the component of S
along the line |,

S 1=8S-74+€eS-0x7+CxS-7) =cosb. (10.43)

This calculationquses the fact that S x 7= — sin 0k and that the component
of C — o along k is d. Thus, the dual scalar product allows us to calculate
the dual angle between any two lines about their common normal. In fact,
for general screws W and V, we have

W -V = |W||V]|cos b, (10.44)

where |W| and |V| are the dual magnitudes of these screws and 6 is the
dual angle between their axes.
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Figure 10.1. The dual angle 6 to a line S in the reference frame R formed by the
mutually orthogonal lines |, J, and K.

The Intersection of Two Lines

We now consider the meaning of a zero value for the dual scalar product
between two screws, that is, W -V = 0. Let the dual magnitudes of these
screws be |W| = w(1 + €py,) and |V| = v(1 + €p,), so we have

W -V = wu(l + epy)(1 + €p,)(cos @ — edsin 9). (10.45)
This shows that W -V = 0 implies that cosf = 0, which means that
6 = (m/2,0). Thus, the axes of the two screws must intersect in right
angles.

Two screws that satisfy the weaker condition WT [II]V = 0 are said to be
reciprocal. Notice that this is equivalent to the requirement that W -V = k,
where k is a real constant. Expand this relation to obtain

WTIIV = w - v° 4+ w°v = wv((pw + pv) cosd — dsinf) = 0.  (10.46)
Thus, the condition that two screws are reciprocal is
dtan 0 = py, + po. (10.47)

Applying this condition to two lines for which p,, = p, = 0, we see that
to be reciprocal the lines must be parallel (§ = 0), or they must intersect
(d = 0).

The Common Normal

The dual vector product between two lines defines a screw that has the
common normal between the lines as its axis. To see this, we first consider
the dual vector product between the coordinate axes | and J. By direct
computation we obtain

IxJ=7Tx7+e(Tx (0x7) +(0ox17)x])
=X J4+eo x (7x ]) =K. (10.48)
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Figure 10.2. Two general lines S and L define a common normal line N.

The simplification of the dual component in this equation uses the identity
for triple vector products

ax(bxc)+bx(cxa)+cx(axb)=0, (10.49)
which in our case yields the relation
—ox (Jx1)=7%x (0 x]) +7x (7% o). (10.50)

Similar calculations show that J x K=1land K x| = J.

Consider a general pair of lines S = (S,C x S)T and L = (W, Q x W)T,
Let N be the common normal between these lines, and let p and r be its
points of intersection with S and L, respectively, Figure 10.2. Now use these
two points to define the moment terms in the Pliicker coordinates for these
lines, so we have S = (S,p x S)T and L = (W,r x W)T. We can now
compute the vector product

SXxL=(S+epx8)x (W +erx W),
=S x W+¢(Sx(rx W)+ (pxS)xW). (10.51)

Notice that r = p + dN, where N is the direction of the common normal.
Substitute this into the equation above, and use the vector identity (10.49)
to obtain

S x L = sinON + e(cos ON +sinf o x N) = sin ON. (10.52)

Thus, the dual vector product is an operation that computes the common
normal to two given lines. Furthermore, for general screws W and V we
have

W x V = |W||V|sin N, (10.53)

where |W| and |V| are the dual magnitudes of W and V.
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10.2.5 The Spatial Displacement of Screws

A spatial displacement [T'] = [A, d] transforms the coordinates of points
that form a line. By applying this transformation to two points on the
line we obtain a 6 x 6 transformation [T] for Pliicker coordinates. This
transformation applies to general screws as well.

Consider the line x = (x,p x x)T for which every point is displaced
by the 4 x 4 homogeneous transform [I] = [A,d] to define a new line
X = (X,P x X)T. We now determine the associated transformation [T]
that acts directly on Pliicker coordinates such that

X = [Tx. (10.54)

Let q be a point on the line x a unit distance from p, so x = q — p.
Then, we can compute the new coordinates P and Q to define the line X

{P fx} - {P ><Q(<513P)} N {[D][A]x [f%ii](p x X)} . (10.55)

This calculation uses the skew-symmetric matrix [D] defined by [D]y =
d x y for any y. Thus, we obtain [T] as the 6 x 6 matrix

1] = [DAA SJ : (10.56)

The inverse of this transformation is easily obtained as

A AT 0
[T 1] = [ATDT AT] .

Note that because [D] is skew-symmetric, we have [D + DT] = 0.

(10.57)

The Transformation of Screws

The transformation [T)] defined by (10.56) applies to general screws as well.
To see this, consider the screw w = (w,v)T and compute [1]w to obtain

(V1= {oaim s anv}- (1058)

Clearly, the transformation of the direction w = ks of the screw is the same
as for lines, that is,

W = wS = w[A]s = [A]w. (10.59)

Therefore, we focus attention on the term V = [D][A]w + [A]v.

Let w be written in terms of its axis s = (s,p x s)7, so we have w =
(ws, wp X s + wp,s)T, where w is the magnitude and p,, the pitch of w.
Clearly, we have

[D][A](ws) = wd x S. (10.60)
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We can now compute
[A]lv = [A](wp X s + wpyws) = w([A]p) X S + wp,,S. (10.61)
Combining these results we have
V =[D]Alw+ [Alv=P xW +p, W, (10.62)
where P = [A]p + d. Thus, for a general screw w in M we obtain

W = [T]w. (10.63)

A

The transformation [1] preserves the magnitude and pitch of screws.

The matrix form of the dual scalar product makes it easy to show that the
transformation [T] preserves the dual magnitude of a screw. In particular,
we show that W -W = w - w by the calculation

~

W W = ([F]w) - ([Fw) = (wTTAI [Alw, wT (717 (] [w)
= (wiw,w'[Iw) = w-w. (10.64)

This computation uses the identities [A)T[A] = [I] and [T]7[I1)[T] = [I1].

10.3 The Geometry of Screw Axes

10.3.1 The Screw Axis of a Displacement

We have seen that for every spatial displacement there is a fixed line, called
its screw axis. Here we show that the Pliicker coordinates S = (S, V) of
this screw axis satisty the condition

S = [T]S. (10.65)

This shoyvs that the screw axis is an invariant of the 6 x 6 transformation
matrix [17].
We rewrite (10.65) as the equation

[I —T]S =0, (10.66)

and seek solutions other than S = 0. This is easily done if we separate it
into the pair of 3 x 1 vector equations

I—A]S=0 and [I— AV —[DA]S =0. (10.67)

We already know how to determine the vector S = (s, s,, s,)T, which is
the rotation axis of the rotation matrix [A].

Notice that because [A]S = S, the second equation of (10.67) can be
written as

I — A]V = [D]S. (10.68)
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Now [D]S = d x S must be orthogonal to S. Therefore, it does not have
a component in the direction of the null space of [I — A], which is S. This
means that we can solve this equation for V.

Substitute Cayley’s formula for [A], and simplify to obtain

1
[B]V = 5[[ — B][S]d,; (10.69)
for convenience we have introduced [D]S = —[S]|d. Using the fact that
|B] = tan(¢/2)[S], we can write this equation as
1
S|V = [S][I — B]d = C. (10.70)
2tan 922
Finally, multiply both sides by [S] and simplify to obtain
—1
V = [S?][I — B]d. (10.71)
2tan %3

Because S - V = 0, we see that S = (S, V)T are the Pliicker coordinates of
a line.

The reference point C for S is determined by C = S x V, which is given
in (10.70) above. The line S = (S,C x S)7T is exactly the screw axis that
was formulated earlier for the a spatial displacement [T = [4, d].

10.8.2 Perpendicular Bisectors and the Screw Axis

A spatial displacement preserves the distances and angles between all points
in the moving body. Therefore, it preserves the dual angles between lines
in the body. In particular, the dual angle & between the screw axis S of a
displacement and the axis of a general screw must be the same before and
after the displacement, Figure 10.3.

This is seen by letting x be the coordinates of a screw in the initial

A~

position, so we have X = [I'x as its coordinates after the displacement.
From the fact that S = [T']S, we can compute
S-X=([T]S)-([T]x) =S - x. (10.72)

Thus, the screw axis S forms the same dual angle & with the axes of both
x and its corresponding screw X.
This allows us to compute

S-(X—x)=0, (10.73)
which shows that the axis of the difference of any two corresponding screws
X — x must intersect S in a right angle.

The Screw Perpendicular Bisector

We now examine equation (10.73) in detail. To do this focus on the pair of
corresponding screws x = p and X = P and consider all the screws Y that
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Figure 10.3. Corresponding positions of lines x and X lie at the same dual angle
& relative to the screw axis S of a spatial displacement.

Figure 10.4. The screws P 4+ p and P — p have V and N as their respective axes.

satisfy the equation
Y- (P—p) =0. (10.74)

For example, the screw (P + p)/2 is a member of this set, as can be seen
from the calculation

P+p

— (P-p)=

Recall from (10.64) that |P| = |p|.

Let D be the common normal to the lines p and P with points of in-
tersection c¢; on p and cy on P. Introduce the line V that passes through
the midpoint ¢ of the segment ¢y — ¢; and is directed along the bisector
of the directions p and P. Finally, let N =D x V, so D, V, and N are the
coordinate axes of a reference frame R located at c. See Figure 10.4.

P-P—p-p

0. 10.75
_ (10.75)
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If we denote the dual angle between p and P by 7 = (n, h), then we can
write the components of these screws as

p = |p|(cos gV — sin gN) and P = |p|(cos gV + sin gN) (10.76)
This allows us to compute
P+ p = 2|p|cos gV. (10.77)
The line V is the axis of the midpoint screw. Furthermore, from
P—p=2lp|singN (10.78)

we see that N is the axis of the screw difference P — p.

Thus, the set of screws Y that satisfy (10.74) must have axes that inter-
sect N in right angles. This defines a two parameter family of screws that
we call a screw perpendicular bisector.

Constructing the Screw Axis

The equation (10.73) shows that the screw axis S must lie on the screw
perpendicular bisector for all segments X — x in the moving body. This
provides a convenient way to construct the screw axis of a displacement.
Consider two specific segments P — p and Q — q formed by the two screws
p, q and their corresponding screws P = [T Jp and Q = [T 9. This defines
two screw perpendicular bisectors

Y- (P-p)=0 and Y-(Q-gq)=0. (10.79)

Let N; be the axis of P —p, and let N3 be the axis of Q —q. Then the screw
axis of the displacement S must intersect both of these axes in right angles.
Thus, S must be the common normal to the axes N; and Ns.

The algebra of dual vectors allows us to compute S from the dual vector
product of the screws P — p and Q — q, that is,

(P—p)x(Q—q)
(P —p) x(Q—aq)|

This provides a direct way to compute the screw axis of a spatial
displacement from data that define the positions of two screws.

S = (10.80)

The Dual Displacement Angle

We can determine the dual angle ¢ of a spatial displacement using any
screw p and its corresponding displaced screw P = [T']p. This is done by
computing the dual scalar and vector products

Sinqgz(Sxp)x(SxP)-S cos = (Sxp)-(SxP)
(S xp)-(SxP)| ~ (S xp)- (SxP)I

(10.81)
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Thus, we have
(Sxp)-P
(Sxp)-(SxP)

The simplification in the numerator is obtained using dual vector identities
that are identical to those of vector algebra.

tan ¢ = (10.82)

10.3.83 Rodrigues’s Fquation for Screws

We now examine in more detail the geometric relationship between the
screw axis S of a displacement [7] and the initial and final positions of a
general screw. Because X = [1T]x, we have X - X —x - x = 0, which can also

be written as
(X=x)-(X+x)=0. (10.83)

This can be interpreted as stating that the axes of the diagonals of a screw
rhombus must intersect at right angles. In what follows, we will determine
the components of these diagonals and obtain a screw version of Rodrigues’s
equation.

Let the common normals between the screw axis S and the axes of the
corresponding screws x and X be the lines N; = (N,r; x N;)7 and Ny =
(Ng,ry x No)T, where r; are the respective points of intersection with S,
Figure 10.5. Also introduce the lines V; and Vs, given by V; = Sx N;. Then
x and X can be expanded into components

x = |x|(cos &S — sin@V;), X = |x|(cos &S — sin &Vs). (10.84)
From these equations we obtain the screws X — x and X + x as
X —x=—|x|sin&(Vy — V1),
X+ x = [x](2cos &S — sin &(Vy + V1)). (10.85)
To simplify (10.85), we introduce the line N through the midpoint ¢ of
the segment ro — ro along S. Choose the direction of N so that it bisects
the rotation angle ¢, that is, so N is aligned with the vector (N7 + N2)/2.

We complete the frame at ¢ by introducing V, given by V=S x N. In the
S, N, V frame the lines N7 and Ny become

~ ~ ~ ~

Ny = cos%N — sin %V, No :cos%N—i—sin %V. (10.86)

Notice that Vo — V3 = S x (Ng — N;) = 2sin(é/2)S x V. Therefore,

~

X — x = 2|x|sin & sin %N. (10.87)

From the fact that Vi +Va = S x (N7 + Na) = 2cos(¢/2)V, we have

~

X +x = 2|x|( cos &S — sin G cos %V) (10.88)
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S

Figure 10.5. The components of the screws X + x and X — x can be determined
in the S, N, V frame.

From equations (10.87) and (10.88) we obtain the screw form of Rodrigues’s
equation as

~

X —x = tan gS X (X + x). (10.89)

The screw B = tan(¢/2)S is known as Rodrigues’s screw.

10.4 The Spatial Screw Triangle

10.4.1 The Screw Axis of a Composite Displacement

Rodrigues’s equation can be used to derive a formula that defines the screw
axis of a composite displacement in terms of the screw axes of the two
individual displacements.

Let [T'(&,A)| be the displacement with screw axis A and rotation angle
and slide distance & = («, a). Given another displacement [T'(3, B)], we can
compute the composite displacement by matrix multiplication

[T'(%, Q)] = [T(B, B)][T (&, A)]. (10.90)

Our goal is to obtain a formula for the screw axis C and the dual angle ¥
in terms of B, B and &, A.

The displacement [T'(&,A)] has the associated 6 x 6 transformation
[T(a A)] that transforms screws x in M to y in M’. The displacement
[T'(B, B)] also has an associated 6 x 6 transformation [T'(3, B)] that trans-
forms screws y in M’ to X in F. This sequence of displacements can be
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written using Rodrigues’s equation (10.89) to yield

y—x:tan%Ax (y +x),

X—y:tangB X (X+y). (10.91)

We eliminate the screw y in these equations in order to obtain a formula
for the screw axis C and dual angle 4.

The following calculations use dual vector algebra and follow exactly the
derivation for the spherical version of Rodrigues’s formula. The first step
is to introduce X in the first equation and x in the second, so we have

y—x:tan%Ax (X+x—(X—-y)),

X—y:tanng(X+x+(y—x)). (10.92)

Add these equations and use (10.91) to obtain

~ ~
A

X—x= (tangB—i-tan%A) X (X—l—x)—tan%Ax (tanng (X+y))

—I-tangB(tan %A x (y + x)). (10.93)

Triple product identities for dual vectors that are identical to those for
vectors simplify this equation to yield

X—x:tan%(:x (X + x), (10.94)

where

tanéB—Ftan QA+tanétanQB x A
2 2 22 . (10.95)

tanzC: = N
2 1—tan§tan%B-A

This is Rodrigues’s formula for screws.

10.4.2 The Spatial Triangle

We now show that (10.95) is the equation of an assembly of three lines
A, B, and C known as a spatial triangle. Introduce the common normal N
directed from the line B to A. Now introduce the common normals N and
Ng directed from A and B to C, respectively. The lines A, B, and C form
the vertices of the spatial triangle, and the common normals N, N4, and
Ng form its sides, Figure 10.6.

Let the interior dual angle between the sides Np and N be &/2. Similarly,
let the interior dual angle between the sides N and Np be 3 /2. We now
show that for this configuration the line C and exterior dual angle 4/2 are
defined by Rodrigues’s formula (10.95).
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Figure 10.6. The spatial triangle formed from the lines A, B, and C and their
common normals N, Ng, and N,.

From these definitions we see that

~

Na x Ng = sin%C and Ny -Np = cos % (10.96)

A formula for C is easily obtained by determining Ny and Np explicitly in
terms of A and B.

Let V = N x B complete the reference frame formed by N, B, and V.
The line N intersects B and lies parallel to the NV plane at the angle 3/2
relative to N. Therefore,

~ A~

Ng = cos éN — sin éV. (10.97)
2 2
Note that N and V are computed from the given lines A and B.
Introduce the line T = N x A. Then a computation similar to (10.97)

yields the coordinates of T as

T = —sindB + cosdV. (10.98)
The line N A lies parallel to the TN plane such that the dual angle measured
from Np to N is &/2. Thus, N is given by

N = sin %T—I—COS%N. (10.99)
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The Equation of the Spatial Triangle

We now compute the scalar and vector products in (10.96) to obtain
sin %C = COoS %sin gB + sin % cos §A + sin %sin gB x A,
Ccos % = oS % cos g — sin % sin §B -A. (10.100)

Notice that B-A =T -V = cosé. Dividing these two equations, we obtain

tangB—l—tan%A—l—tangtan%BxA
1—tan§tan%B-A ‘

tan %C - (10.101)

Equation (10.101) defines the coordinates of the line C in terms of those of
A and B and their interior dual angles 3/2 and & /2, respectively. Comparing
this to (10.95) we see immediately that Rodrigues’s formula is the equation
of the spatial triangle formed by the three screw axes A, B, and C.

10.4.8 The Composite Screw Axis Theorem

The screw form of Rodrigues’s equation is separated into two parts by the
dual unit €. The real part is simply Rodrigues’s equation for the composition
of rotations. We have seen that this defines a spherical triangle AABC,
which we call the spherical image of the spatial triangle AABC.

We have already seen that there are two forms of the spherical image
AABC depending on the magnitude of the rotation angles «, 3, and ~.

1. If sin(y/2) > 0, that is, v < 27, then the vertex C has a positive
component along B x A. In this case «/2 and 3/2 are the interior
angles of AABC at the vertices A and B. The angle v/2 is the
exterior angle at C.

2. Ifsin(/2) < 0, that is, v > 2, then the vertex C is directed opposite
to the vector B x A. The angles a/2 and [3/2 are the exterior angles
of AABC at A and B, respectively. If the angle x is the interior
angle at C, then v/2 = k + .

The dual part of Rodrigues’s formula (10.95) is linear in the slide param-
eters of the dual angles. This means that the spatial configuration of lines
can be adjusted by changing the slide parameters a and b without changing
the directions of any of the lines A, B, or C. Thus, we have the following
theorem:

The Composite Screw Axis Theorem. The axis C of a composite dis-
placement [T¢] = [TB][Ta] forms a spatial triangle with the screw azes B
and A of the displacements [Tg] and [T4]. If sin(y/2) > 0, then the inte-

rior dual angles of this triangle at A and B are &/2 and (3/2, respectively.
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If sin(y/2) < 0, then &/2 and 3/2 are the exterior dual angles at these
vertices. In this case, if & is the interior dual angle at C, then 4/2 = k+ .

10.4.4 Dual Quaternions and the Spatial Triangle

W. K. Clifford [9] generalized Hamilton’s quaternions to obtain hypercom-
plex numbers known as dual quaternions (Yang and Freudenstein [103]). A
dual quaternion P is the formal sum of a dual number py = (p, p°) and a
screw P = (p,a), written as P = Py + P. Dual quaternions can be added
together componentwise, and multiplied by a scalar like eight-dimensional
vectors. They can also be multiplied by dual scalars like four-dimensional
vectors of dual numbers.

Furthermore, Clifford extended Hamilton’s product for quaternions to a
product for dual quaternions, given by the formula

R = PQ = (po + P)(do + Q)
= (Podo — P - Q) + (GoP + HoQ + P x Q). (10.102)

The scalar and vector products are operations between dual vectors.
The conjugate of a dual quaternion Q =g+ Qis Q* = go — Q, and the
product QQ* is the dual number

QQ*=(Go+ QG -QV=33+Q-Q=1Q% (10.103)

The dual number |Q| is called the norm of the dual quaternion.
We are interested in dual quaternions () of unit norm, which means that
|| = 1. These unit dual quaternions can be written in the form

A ~

Q = cos ¢ + sin ?S, (10.104)

2 2

where S = (S, C x S)7 is the Pliicker coordinate vector of a line. X
Now consider the product of the two unit dual quaternions A =
cos(&/2) + sin(&/2)A and B = cos((3/2) + sin(3/2)B, that is,

C = cos g + sin %C = (cosg + sin gB) (cos g— + sin %A). (10.105)

Expanding this product, we obtain

A A
~

cos ¥y +sinyC = (cosgcos% —singsin%B-A)

~ ~ ~
~ ~ A~

B & a p . B
+ (sm 5 €08 28+sm 5 €08 2A+sm 5 Sin 2B X A).
(10.106)
Compare this to (10.100) to see that dual quaternion multiplication com-

putes the Pliicker coordinates of one vertex of a spatial triangle and its
associated exterior dual angle from the Pliicker coordinates of the other two
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Figure 10.7. The screw triangle formed by the screw axes Sij;, S;x, and Six.

vertices and their interior dual angles. Thus, the algebra of dual quaternions
provides a useful tool for exploiting the geometry of the spatial triangle.

10.4.5 The Triangle of Relative Screw Axes

Given three positions M;, M;, and My for a moving body, we have the

three relative transformations [T3;] = [T3][T;Y], [Tjx] = [T%] [Tj"l], and
[Tix] = [Tx][T;Y]. From the fact that

[Tir] = [T3)[T35), (10.107)

we can use Rodrigues’s formula for screws to obtain

tan ggzk S tan ék Sjk + tan %S” + tan d)JTk tan %S]k X Sij (10 ]_08)
ik = - - : :
2 1 —tan QZ_A tan %Sjk . Sij

The spatial triangle formed by the three relative screw axes S;j, Sik, and
S,k is analogous to the pole triangle for three planar displacements and is
called the screw triangle, Figure 10.7.

10.5 Summary

This chapter has developed the basic geometric properties of spatial rigid
displacements. The central role played by the screw axis of a displacement
lead to the introduction of line geometry, screws, and dual vector alge-
bra. We obtain the screw form of Rodrigues’s formula and see that it is
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Point M M>

A’ 0,3, 77 | (1.90,11.23,7.19)7
B* | (2,7,1007 | (3.29,14.44,11.29)"
C: (0,5,10)7 | (4.26,13.41,8.84)"
D (-2,5, 77 | (3.92,9.83,8.59)T

Table 10.1. Point coordinates defining two spatial positions

the equation of a spatial triangle formed by three lines and their common
normals. Its properties generalize results for the planar and spherical pole
triangles.

10.6 References

The kinematics of spatial displacements is developed in detail in Roth
|75, 76] and Bottema and Roth [4]. Dimentberg [18] introduced the algebra
of dual vectors and Yang [104] applied it to the analysis of spatial linkages.
Also see Woo and Freudenstein [101]. Yang and Freudenstein [103] formu-
lated dual quaternion algebra for use in spatial kinematic theory. Pennock
and Yang [69] use dual-number matrices to solve the inverse kinematics of
robots. Fischer [26] presents the kinematic, static, and dynamic analysis of
spatial linkages using dual vectors and matrices.

10.7 Exercises

1. A spatial displacement has as its axis the line through the origin
in the direction S = (0, cos(45°),sin(45°))7. Let the rotation and
slide around and along this axis be (45°,v/2). Determine the 4 x 4
homogeneous transform.

2. Determine the spatial displacement [D] = [11][1%][T%] defined by a
sequence of transformations: (i) [T1], a translation by (5,4,1)7; (ii)
(T3], a rotation by 30° about the z-axis; and (iii) [T5], a rotation by
60° about the unit vector through the point (2,0,2)”7 (Crane and
Dufty [12]).

3. Determine the 4 x 4 homogeneous transform [T%2] from the ini-
tial and final positions of four points by constructing the ma-
trix equation using homogeneous coordinates, [AQ,BQ,CQ,DQ] =
[T12][AY, B!, C', DY. Solve this equation for [T},] using the coor-
dinates in Table 10.1 (Sandor and Erdman [83]).
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. Use the coordinates in Table 10.1 to determine the screw axis S and
rotation and slide around and along this axis for the displacement

T3]

. Given the screw axis S and rotation and slide ¢ and d let N; and
Ny be two lines that intersect S at right angles that are separated
by the dual angle ¢/2 = (¢/2,d/2). Show that this displacement
is equivalent to the sequence of reflections through N; and then N,
(Bottema and Roth [4]).

. Show that Rodrigues’s screw B can be computed from the initial and
final positions of two lines p, P and q, Q to obtain B = (P—p) x (Q —

q)/(P—p)-(Q+aq)

. Show that three positions P*, ¢ = 1,2, 3, of a point can be obtained
from the reflection of a cardinal point P* through the three sides of
the screw triangle defined by three specified spatial positions.

. Obtain three positions L?, i = 1,2,3, of a line by the reflection of a
cardinal line L™ through the three sides of the screw triangle.
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Algebraic Synthesis of Spatial Chains

In this chapter we consider the design of spatial TS, CC, and RR chains.
Our approach is the same as that used to design planar and spherical
linkages. For each chain we determine the geometric constraints that char-
acterize the chain, and formulate design equations that are solved for a
given set of task positions.

The maximum number of task positions that can be prescribed decreases
with the degree of freedom of the chain. In particular, the five-degree-of-
freedom TS chain can reach as many as seven specified task positions,
the four-degree-of-freedom CC chain can reach five positions, and the two-
degree-of-freedom spatial RR can only reach three positions.

Our focus is primarily on solving the design equations for the maximum
number of task positions. However, in practice, the use of fewer task posi-
tions can increase the dimension of the set of solutions providing flexibility
to address other aspects of the design. This feature of spatial linkage design
has yet to be exploited in a systematic way.

11.1 The Geometry of a TS Spatial Chain

A TS chain is a link connected to ground by a T-joint, also known as a
gimbal mount, and to an end-link by a spherical joint, Figure 11.1. The
revolute joints that make up the T-joint are often oriented to provide a
slew rotation about a vertical axis combined with an elevation rotation
about a horizontal axis. The S-joint can be constructed as a ball-in-socket
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W

| Gimbal joint ]\

Figure 11.1. The TS spatial open chain.

or as a 3R wrist. In either case it is assumed to provide full orientation
freedom of the floating link about its center.

Let the center of the T-joint be the fixed point B, and let the center of
the S-joint coincide with a point p in M that has coordinates P = [T|p
in F. Then the TS chain constrains the floating link to move so that the
point P lies on a sphere about B, that is,

(P -B): (P -B) = R?, (11.1)

where R is the length of the crank. This constraint characterizes the
geometry of the TS chain.

11.1.1 Perpendicular Bisectors

Let the task for this chain be defined by n spatial positions M;,i =1,...,n,
of the end-link, which means that we have the 4 x 4 transforms [T3], i =

1,...,n. The constraint equation (11.1) must be satisfied by the coordinates
P!, i=1,...,n, of the moving pivot in each position. Therefore, we have
(PP—B)- (P°-B)=R? i=1,...,n. (11.2)

Notice that this equation remains correct even for point coordinate vectors
P* and B that are homogeneous with the fourth component normalized to
1. We now manipulate these constraints to obtain the design equations for
the TS chain.

Subtract the first of constraint equations (11.2) from those remaining to
obtain

(Pi—Pl)-B—%(Pi-Pi—Pl-Pl)=0,z‘=2,...,n. (11.3)
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We factor the second term to obtain (P* — P) - (P* + P)/2, so this set of
equations becomes

P'—P) B-Vy)=0,i=2,...,n, (11.4)

where V1, is the midpoint of the segment P* — P. These equations state
that the fixed pivot B lies on the perpendicular bisecting plane of each of
the segments P* — P. This is an algebraic expression of the geometric fact
that the perpendicular bisector of any chord of a sphere passes through its
center. We use these equations as our design equations for the TS chain.

11.1.2 The Design Equations

As we have done previously, choose the first position M; of the task as a
reference position, and determine the n — 1 relative displacements [1};] =
[T;)[T7 ], @ = 2,...,n. This allows us to define the positions P’ of the
moving pivot in terms of P!, so we have

1
Dy, - ([le-—I]Pl)'(B—i[TM—JrI]Pl) —0,i=2,...,n.  (11.5)

Notice that this equation assumes that P' and B are normalized
homogeneous coordinates.

Introduce the relative rotation matrix [Ay;] and relative translation vec-
tor dy;, so that [T1;] = [A14,d1;]. Then, given the relative screw axis Sy,
we have the identity

dy; = [ — A1;]C1i + d1:Sq, (11.6)

where Cy; is a point on the screw axis and d1;S1; is the slide along this
axis. This allows us to compute

[Ty — I|P' = [Ay; — I)(P' — Cy3) + d1:S1
and
[Ty; + 1P = [Ay; + I](P' — Cy;) + d14S1: + 2C 1. (11.7)
Substitute these equations into (11.5) to obtain
([Av — I](Pl — Cyi) + d1iS14)
(B-cu) - %[AM + (P! = Cyp) — %dl,-su) ~0. (11.8)
Expanding this expression, we obtain after some cancellation
Dy;i: (B—Cy) - [A1; — IJ(P' — Cy;) + d13S1; - (B—P1) — d?i
R O (11.9)

=0,
1=2

This form of the design equations shows that they are bilinear in the
unknown components of the vectors B and P'.
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Let the components of the fixed and moving pivots be denoted by B =
(z,y,2)T and P' = (u,v,w)T. Then seven spatial positions yield six design
equations in these six unknown components. Collect these equations into
the matrix equation

AQ(xay)Z) Bz(ZL‘,y,Z) CQ(x)y’ Z) DQ(.’E,y, Z)

U
v
: : : : wl —
A7($7ya Z) B7(:1:,y,z) 07(1:7:% Z) D7(x,y, Z) 1
(11.10)
We solve these equations in the sections that follow.

11.1.8 Four Specified Spatial Positions

Before determining the solution to the general case, it is interesting to
consider the design of TS chains to reach four task positions. In this case
we have three bilinear equations in the six components of the fixed point
B and the moving point P'. We can choose to select either of these points
and solve the resulting linear equations for the other.

Suppose, for example, that we select the moving point P! = (\, p,v)7.
Then we can gather the coefficients of the design equations (11.5) into the
matrix equation

Ay By Cy Dy

i
A, B, C, Dj Z = (11.11)
1

o O O

Ay By Cy Dy

This equation has a unique solution B = (z,y, z)T, which is the center of

the sphere that passes through the four points P*, i = 1,2, 3,4.

The RS Chain

Notice that if the rank of the coefficient matrix in (11.11) is two, not three,
then the four points P%, i = 1,2,3,4, lie on a circle and do not define a
sphere. This can be viewed as the condition for the design of an RS chain
that reaches the four positions. Each of the four 3 x 3 minors yields a cubic
polynomial in A, u, v that defines a cubic surface in F'. These four surfaces
intersect in a finite number of points that are the moving pivots P with
four positions on a circle. Solve (11.11) to obtain the associated fixed pivot.

11.1.4 Sewven Specified Spatial Positions

The solution of the TS design equations for seven positions follows the
same procedure as that used to solve the planar RR design equations.
Considering (11.10) as six linear equations in three unknowns, we see that
there is a solution only if each of the fifteen 4 x 4 minors of the 6 x 4 matrix
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(M| = [Ai, Bi, C;, D;] is zero. Computing each of these determinants we
obtain 15 quartic polynomials in z, v, z,

35
R;: Zaji:rlymz":(), I,bmn=0,....,4, l+m+n<4, j=1,...,15.
i=1

(11.12)
Each R; has 35 terms.

Eliminate x and y

Rewrite these polynomials so that z is absorbed into the coefficients and
only x and y appear explicitly, that is,

Rj+ djna® + djpz’y + djsz®y” + djazy® + djsy* + djex® + djrz’y
+djsxy” + djoy® + dj108” + djnizy + dijioy® + dj1sz + bjiay

+dj15=0,7=1,...,15. (11.13)

Note that the total degree of any term is at most 4. Assemble these these
polynomials R;, 2 =1, ..., 15, into the matrix equation

[M15X15]V — O, (1114)

where V is the vector of 15 power products
V = (z*, 2%y, 2%%, =y, o, 2P, 2Py, 2y, 0P 2%y, 0 7y, 1)L (11.15)

This equation has a solution only if the determinant of the coefficient matrix
is zero, that is,

| Misxis| = 0. (11.16)

This determinant is a polynomial of degree 20, because it has five columns of
constant terms, four columns of first-degree terms, three of degree two, two
of degree three, and one of degree four, which yields the degree 4+6+6+4+4 =
20.

Reduction of the Constant Terms

The first five columns of constant terms in the determinant of [M515] can
be row reduced by Gaussian elimination to yield

€11 €12 €13 €Ca C15 Cig6 - C1,15

0 22 €23 €24 Co5 C26 “°° €215

0 0 ¢33 €34 €35 €36 - C315

0 0 0 ca4 Ca5 cCag - C415
[Misxisl=|0 0 0 0 55 cs56 - cs15|=0 (1117)

0 0 0 0 0 C6,6 s C6,15

0 0 0 0 0 C15,6 ce C15,15
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Figure 11.2. The CC open chain.

In general, the five constants, c; 1, ¢2,2, €33, €4,4, C5,5, must be nonzero, for
otherwise the determinant of [M55] is always zero. Thus, the polynomial
defining the TS chains is given by the 10 x 10 determinant

C6,6 ¢6,7 " C6,15
C7.6 Cry C7,15

| Mioxio| = | . : . | =0. (11.18)
Ci5.6 Ci57 -** Ci15,15

This 20th degree polynomial can be generated and solved using algebraic
manipulation software on a personal computer.

The real roots of the polynomial defined by (11.18) yields as many as 20
values for z. For each real root z; = B, ;, we solve (11.14) to obtain V,
which in turn yields z; = B; ; and y; = B, ;. The result is as many as 20
points B, that are the fixed pivots of the TS chains.

For a given fixed pivot B; use (11.10) to compute the associated moving
pivot P!. The length of the link joining these two pivots is R;, which is
obtained using (11.1).

11.2 The Geometry of a CC Chain

A spatial CC chain has a fixed C-joint connected by a link to a moving
C-joint and allows the end-link four degrees of freedom, Figure 11.2. Let
G be the axis of the base joint of the chain and W the axis of the moving
joint. Then the link connecting these axes maintains a constant distance r
and a constant twist angle p along the common normal between the fixed
axis G and every location W* of the moving axis. This means that the dual
angle p = (p,r) remains constant as the chain moves.
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The spatial positions of the floating link are defined by the 4 x 4 homo-
geneous transforms [I'] = [A, d]. Associated with this transform is the 6 x 6
transformation [17] for screws. If w is the Pliicker coordinate vector of the
moving axis in M, then in F' we have the corresponding locations of the
moving axis, given by

W' = [T}]w, (11.19)
for each position [T;] of M.

In order to maintain a constant dual angle p the coordinates G and w*
must satisfy the constraint equations

G -W'=|G||W'|cosp,i=1,...,n. (11.20)

Because |w| = |W’| for each of the positions of w, we see that the right
side of these equations are identical. Subtract the first equation from those
remaining to obtain

G- W -WH=0,i=2,...,n (11.21)

Compare these equations to (10.73) to see that G lies on the screw
perpendicular bisector of each segment W* — WlA. o
Now introduce the relative transformations [T1;] = [T3][T; '] such that
W* = [T};]W'. Then we obtain
G-Iy —IW'=0,i=2,...,n. (11.22)

These are the design equations for a CC chain.

11.2.1 Direction and Moment Equations

Let the Pliicker vectors of the fixed and moving axes be G = (G, B x G)T
and W = (W' P' x W*)T where B is a reference point on the fixed axis
and P’ is the reference point for the moving axis. We now separate the
dual scalar product of the design equations into the two sets of equations

G-[A; —IW'=0, GTT;; —W'=0,i=2,...,n. (11.23)

The first set determines the directions of the axes of the CC chain and are
called the direction equations. The second set defines the points B and P*
that locate the fixed and moving axes and are called the moment equations.

The Direction Equations

The direction equations for the design of a CC chain are bilinear and
homogeneous in the direction vectors G and W1,

Pu: G-[A; —IIW'=0,i=2,...,n. (11.24)

In fact, they are exactly the equations for the design of a spherical RR
chain. The solution to these equations presented in chapter 8 yields a finite
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number of the directions for the axes of a CC chain that reaches five task
positions.

The Moment Equations

For convenience let the moment terms of the fixed and moving axes be
denoted by R = B x G and V! = P! x W!. Then the moment equations
can be written as

T 1
. G DliAli Ali —1 W . .

The 6 x 6 matrix in this equation is [II][Ty; — I].
The vectors G and W' are known from the direction equations (11.24).

Therefore, the moment equations are linear in the unknown components of
R and V1, that is,

R-[A; —I|W' +G - [A;; — V' + G- [D;; A )W =0,  (11.26)
or
L, R+M,;, VI4+N,=0,i=2,...,n, (11.27)
where
L; = [A — IW', M;=[4); - ]TG, N;=G-[DyA;]W'. (11.28)

We must add to these equations the requirements that G- R = 0 and
WLV =0,50G = (G,R)T and W' = (W', V)T are Pliicker coordinates
of lines. This yields the matrix equation

—GT 0 ] 4 0 \
o w!l 0
LT w7t R —Ny
2 2 V[~ > (11.29)
_LZ Mg i \_Nn J

Solve these equations for the moments R and V. Then the reference points
B and P! on G and W' are given by

W' x V!
_GxRd pro W XV (11.30)

B .
G -G wl.w!

11.2.2  Five Specified Spatial Positions

Given five spatial positions of the moving body, we know that the direction
equations (11.24) can be solved to determine up to six pairs of directions
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G and W'. For n = 5, the moment equations (11.29) become

'GT 0 i 4 0 3\

0o w7 0

L, M; {\1}1} _{ N2\ (11.31)
_Lg Mg i \—N5J

Solve these six linear equations to define the unique set of moments R, V
for each of the directions obtained for G and W*. The six fixed axes G are
known as Burmester lines and are the spatial analogue to the Burmester
points in the plane. Thus, as many as six CC chains are obtained that reach
five spatial task positions.

11.2.83 The Transfer Principle

We have seen that algebra of dual vectors has all of the properties of vector
algebra. In fact, every calculation using vectors has an analogous calculation
using dual vectors. This is easily verified, or it can be viewed as the result of
the differentiability of the rational operations and trigonometric functions
that make up vector algebra, Appendix D. The relationship between these
two algebras is called the transfer principle.

What is interesting about the transfer principle is the connection that it
provides between the geometry of points and the geometry of lines. Geomet-
ric facts in point geometry that are defined using vector equations become
geometric facts in line geometry obtained from the dual-vector versions of
the same equations. We have already seen that Rodrigues’s formula for
screws (10.95) is the dual-vector form of Rodrigues’s formula for rotation
axes (7.85). Similarly, the the screw perpendicular bisector (11.21) is the
equation of a perpendicular bisecting plane (8.11) written using dual vec-
tors. In fact, the substitution of dual vectors transforms the entire design
theory for spherical RR chains into the design theory for CC chains.

In what follows we focus on geometric results for CC chains that arise
from the spatial dyad triangle and the central-axis theorem. The relation-
ship between these results and the identical results for the spherical and
planar RR design theories provides a unifying framework for spatial design
theory.

11.2.4 The Spatial Dyad Triangle

The displacement of the end-link of a CC chain from position M; to M; can
be viewed as the result of a screw displacement by &,, about the moving

axis W' followed by a screw displacement by Bij about the fixed axis G.
This results in a relative displacement from M; to M; by the amount ¢;;
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Figure 11.3. The spatial dyad triangle for the CC chain.

about the screw axis S;; defined by the transformation equation
[T(¢ij, Siz)] = [T(Biz, G)) [T (Gsz, W) (11.32)

Rodrigues’s formula for screws yields the equation of the spatial triangle
formed by S;;, G, and W*,

tan %SW =

2

tan ﬁz—JG + tan %WZ + tan Pii tan O‘z—JG x W (11.33)
1 —tan%tan%G-Wi

Thus, the internal angles at W* and G are &;;/2 and Bij /2, respectively,
and the external angle at S;; is ¢;;/2, Figure 11.3.

11.2.5 The Central-Axis Theorem

Consider the CC chain that guides a body through positions M;, M;, and

M,,, which means that we have locations W*, W/ and W¥ of the moving
axis, and

G-W —W)=0 and G-(WF—-W")=0o. (11.34)

This states that G lies on the screw perpendicular bisectors of these
segments.

Let L; and L; be the common normal lines between G and the two lines
W* and W?. The dual angle Bij between these common normals is the dual

crank rotation angle about the fixed pivot. Introduce the midpoint screw
M;; = (W + W7)/2 that has the axis V,;. Notice that V,; bisects the dual

angle 3;;.
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Similarly, we consider the position W¥ and construct its common normal
Li to G. The dual crank angle 3,5 is measured from the line L; to Lg. Let

Vx be the axis of the midpoint screw M = (W’ +W¥)/2. The dual angle
between the lines V;; and V; is easily seen to be

& 4 ﬂj_k — Bik ]
2 2 2
The relative screw axis S;; of the displacement from position M; to M;
must also lie on the screw perpendicular bisector. Therefore,

Si; - (W —W") = 0. (11.36)

(11.35)

This means that S;; and S;; have the lines V;; and Vi, respectively, as
common normals with the fixed axis G.

We can now compute the dual angle éik in terms of the relative screw
axes S;; and S, and the fixed axis using the formula

Bik _ G x Sij 'Sjk
2 (G X SZJ) . (G X SJk) ’
Thus, a central axis G views the relative screw axes S;; and S, in the dual

angle [iik /2 or Bik /2 + m. This latter possibility arises because the tangent
function of both angles are equal. We restate this as a theorem.

The Central-Axis Theorem. The central axis G of a CC chain that
reaches the spatial positions MZ, M;, and M}, views the relative screw azes

Si;j and Sji in the dual angle sz/2 or sz/Q + 7, where ﬂzk is the crank
rotation angle from position M; to Mjy,.

tan (11.37)

11.2.6 Roth’s Theorem

Given four positions of a body M;, i = 1,2,3,4, we can determine six
relative rotation axes S;;, ¢ < 7 = 1,2,3,4. Collect the axes into pairs
of complementary azes for which no subscript is repeated, that is, S12S34,
S13S94, and S14S23. Two sets of complementary axes are used to construct
a spatial quadrilateral with the four lines as vertices and their common
normals as sides. The normal lines connecting complementary pairs of axes
are the diagonals of this complementary-screw quadrilateral. The six relative
screw axes define three complementary-screw quadrilaterals, S12513534524,
512514534523, and $135145245023.

Roth’s Theorem. The central axis G of a spatial CC chain that can
reach four spatial positions views opposite sides of a complementary-screw
quadrilateral constructed from the relative screw azes of the given positions
in dual angles that are equal, or differ by .

Proof. The definition of the complementary-screw quadrilateral ensures
that opposite sides have the form S;;S;x and S,,;S,.k. The central-axis
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theorem states that G views S;;S;, in the dual angle Bjk/Q or Bjk/Q + T,
where (31 is crank rotation angle and slide from position M; to M. Simi-

larly, it must view the S,,;Snk in Bjk /2 or Bjk /2 + 7. The result is that G
views the two sides in dual angles that are equal, or differ by . O

The Parameterized Central-Axis Congruence

Roth’s theorem reduces the problem of finding fixed axes, or central azes, to
finding those axes that view opposite sides of complementary-screw quadri-
lateral in equal dual angles. The following construction generates these
points.

Construction of Central Axes. The azes that satisfy Roth’s theorem
are obtained as follows:

1. Use the four spatial task positions to construct the complementary-
screw quadrilateral Q: S19523534S14 and consider it to form a 4C
linkage.

2. Rotate and slide the side S12S23 about S19 by the dual angle 0 and
determine the new configuration Q'. This yields a new location S54S5,
for the coupler of this chain.

3. The screw azis G of the displacement of S43S5, relative to its original
location S23S34 satisfies Roth’s theorem and is a central axis.

Proof. Let G be the intersection of the screw perpendicular bisectors V; =
(S23S53)t and V, = (S3455,)*. Then G is the screw axis of the displacement
of the segment Sy3S34 by the dual angle & to the position S,3S3,. The
input CC chain formed by S12S23 has the spatial dyad triangle AS23512G
and G must view the S12S23 in the dual angle £/2 or £/2 + m. Similarly,
the geometry of the spatial dyad triangle AS34514G requires that G view
the segment S14S34 in either #/2 or #/2 + 7. Thus, G views the opposite
sides S19593 and S14S34 in angles that are equal, or differ by m. The same
argument shows that G views the other two sides S93S34 and S15S14 in
angles that are equal, or differ by w. Thus, G satisfies Roth’s theorem. [

The movement of the coupler S23534 of the complementary-screw quadri-
lateral from its position in Q to another position specified by 6 can be
obtained as a composite displacement. First displace this link about the
axis So3 by the coupler angle A¢ = (¢; — ¢o, ¢; — cg). Follow this with the
displacement about the axis S12 by the drive angle Ab = (0; — 6o, d; — dy).
The result is the transformation equation

[T(k,G)] = [T(AD,512)][T(Ad,S23)]. (11.38)
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Figure 11.4. The spatial platform.

Rodrigues’s formula yields the equation for the central axis G as

tan A20512 + tan %523 + tan % tan %512 X So3

1 —tan %é tan %‘2512 - Sog

tan gG - (11.39)

The coupler angle qB is obtained from the analysis of the 4C linkage for each
value of the crank parameter 0.

The initial dual angle 6y of this linkage is determined directly from the
screws S12 X Si4, and S1o X So3. The result is

(512 X 514) -Sos3
(512 X 514) . (512 X 523)'

tan 0y = (11.40)

A similar equation defines the initial dual angle ¢, obtained using the
screws Syg X Soz and So3 X Say.

Equation (11.39) defines the set of lines G known as the central-azis
congruence, which is parameterized by the dual angle § = (0,d). For each
value 6 we obtain a single direction for G. Values for d displace this line to
form a plane of parallel lines. The result is a two-dimensional set of lines
in space assembled as planes of parallel lines.
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11.2.7 The Spatial Compatibility Platform

Five spatial positions of a body determine ten relative screw axes S;;, ¢ < j
= 1,...,5. Consider the two complementary-screw quadrilaterals Q4 :
512523534514 and le : 512523535515. A fixed axis compatible with five
positions must lie on the central-axis congruence generated by Q14 and
on the central-axis congruence generated by Q;5. Thus, these lines are the
intersection of these two congruences.

Both complementary-screw quadrilaterals Q4 and Q15 are driven by the
crank S15S93, therefore we have

tan %512 + tan Ad So3 + tan % tan %512 X Sa3

tan — G = 2 > : (11.41)
2 1 —tan%tan %512 '523
and
A ta A—‘§25 ta A‘?’25 tan Ad, tan A—‘7325 x S
tan gG _ n 5 12 + I ) 23 + D) 2 12 23 ' (1142)

1 —tan % tan %512 - So3

The angles A¢; and A¢, are functions of Af; and A, defined by the
dimensions of the two complementary-screw quadrilaterals.

It is easy to see that equations (11.41) and (11.42) define the same
screw axis G when the two quadrilaterals Q4 : S12523534S14 and Qq5 :
S19523535S15 are displaced such that

AO; =Afy, and Ay = Ag,. (11.43)

The first equation is satisfied by using the same dual angle parameter
0 to drive S12S23 for both screw quadrilaterals. The second equation re-
quires that the spatial triangle AS34523535 have the same shape in each
solution configuration. Thus, the fixed axis G is the screw axis of the rela-
tive displacement of this spatial triangle from its initial position to each of
the assemblies of the 3CC platform formed by the chains S15523, S14S34,
and S15S35, Figure 11.4. This assembly of relative screw axes is called the
spatial compatibility platform and we have the following theorem:

Murray’s Compatibility Platform Theorem. The fixed axis of a CC
chain that can reach five spatial task positions is a screw axis of the dis-
placement of the spatial compatibility platform from its initial configuration
to one of its other assemblies.

Analysis of the spatial compatibility platform separates into the analysis
of its spherical image, which is identical to the spherical 3RR platform ana-
lyzed in chapter 8, and the solution of two sets of 4C vector loop equations
discussed in chapter 9. The zero, two, four, or six axes obtained from the
spherical image combine with the linear solution of the loop equations to
yield zero, two, four, or six CC chains that reach five spatial task positions.
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Figure 11.5. A spatial RR open chain.

11.3 The Geometry of Spatial RR Chains

A spatial RR chain connects a floating link to ground using two revolute
joints, Figure 11.5. Notice that the axes of these joints must be skew to
each other in space, because parallel axes define a planar RR chain, and
intersecting axes define a spherical RR chain.

Let G be the fixed axis and W the moving axis. Because a revolute
joint allows only pure rotation, the common normal L between G and W
intersects the fixed axis in the same point B for all positions of the chain.
The same is true for the moving axis where the point P on the common
normal to W traces a circle around B.

In order to define a spatial RR chain we need the directions G and W of
the two lines and the coordinates of the points B and P on their common
normal. Thus, there are ten design parameters that define this chain. We
now determine the design equations.

11.3.1 The Constraint Fquations

The RR chain combines the constraints of both the CC chain and the TS
chain. It requires that the axes G = (G,BxG)T and W* = (W*, P*xW*)T
maintain a constant dual angle p = (p, R) in all positions of the chain,
while at the same time the distances between B and the points P* remain
constant. In addition, we have the constraint that the relative vector P'—B
must lie on the common normal between G and W* in each position.
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For n task positions, the geometry of the CC chain provides direction
and moment constraint equations:

Pri: G- [A; — [JW! =0,
My R [Ay —I|W' + G- [Ay; — [V + G- [Dy; A, ]W! =0,
i=2,...,n. (11.44)
The geometry of the TS chain provides the distance constraint

&,
2 )

i=2,...,n (11.45)

Dii: (B —Cy) - [Ay; — (P! — Cyy) 4+ d1;S1s - (B —P) —

And finally, we have the equations
N,: G- (PP-B)=0, W' - (P'-B)=0,i=1,...,n. (11.46)

that ensure that B and P? are on the common normal between G and W*
in each position.

Redundancy of the Moment Constraints

We now show that the direction, distance, and common normal constraint
equations combine to satisfy the moment constraints. To do this we begin
with (11.21) and compute

G- (W' —Wh =0,
G P xW —-P' xWH4+BxG:- (W' —W!') =0. (11.47)
The first equation yields the direction constraints P;; that the angle p
between these axes must be constant. The second equation is the moment
constraint My; and we combine terms to obtain
P'—-B) - GxW'—(P"—B)-GxW'=0. (11.48)

Notice that G x WZ = sin pL;, where L; is the direction of ‘phe comimon
normal to G and W*. The normal constraints N require that P* —B = RL;.
Therefore, we have

(RL;) - (sin pL;) — (RL1) - (sin pL1) = 0. (11.49)

Thus, the moment constraint equations are identically satisfied.

For n task positions we have 2(n — 1) angle and distance constraints and
2n common normal constraints. Thus, for three specified positions, n = 3,
there are ten equations in the ten unknown design parameters for the RR
chain. We formulate a solution to these equations below.

The Spatial Dyad Triangle Constraints

The constraint equations for the RR chain can be simplified by examining
the geometry of the dyad triangles associated with each specified position,
see Figure 11.6.
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Figure 11.6. The spatial dyad triangle for the spatial RR chain.

Let uy; be the point of intersection of the common normal from the
fixed axis G to each screw axis Sq;. Similarly, let vq; be the intersection of
each screw axis with its the common normal to W'. The geometry of the
dyad triangle yields the relation |uy; — vi;| = d1;/2, where dy; is the slide
associated with the displacement from position M7 to M;. The component
of B — P! in the direction Sy; clearly equals uy; — vy;. The result is a
simplified version of the distance constraint

dl'i

DliZSli'(B—Pl)—7:0,?::2,...,71/. (1150)
This can also be obtained by showing that
(B—Cy)-[A —I[(P' —Cy5) =0 (11.51)

for RR chains, which simplifies (11.45) to yield the new constraint.

We now simplify the common normal constraints. The geometry of the
RR dyad triangle shows that B and P' must be on the common normals to
Sq; from G and W!. We use this to eliminate the dependence on P Keep
the first set of equations

M:G-(P'-B)=0, W' . (P'-B)=0. (11.52)

However, for the remaining equations we introduce the matrix [I — S1;S7,],
which is an operator that cancels the components of the vectors B — Cy;
and P! — Cy; in the direction Sy;. The result is

N;: G-[I-S1;8T.](B—Cy1;) =0, W' [I-S;;ST](P'—Cy;) =0. (11.53)
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These equations state that the components that are not in the direction Sq;
must be perpendicular to both G and W?. This is simply another version
of the normal constraint.

11.8.2 Three Specified Spatial Positions

In order to design a spatial RR chain that reaches three task positions M,
Ms, and M3, we must solve the ten design equations

Pra: G- [Ap — W' =0,
7313 . G . [Alg —I]Wl = 0,

D12:Sl2'(B_P1)_%:07
D13IS13'(B—P1)—%=0,

M:G-(P'-B)=0, W' (P'-B)=0,
Nz G- [I — 8128?2](B — C12) 5 Wl . [I - 8128?2](]?1 — 012) == 0,

0
N3:G-[I-81385](B-C3) =0, W' [I-8;38T](P'—Cy3)=0.
(11.54)

The relative screw axes 512 = (812,012 X 812) and 513 = (813,013 X
S13) are known from the task positions. The unknowns are the six point
coordinates B = (z,y, 2)T and P! = (u,v,w)T and the four parameters
that define the directions of G and W'. Tsai and Roth [94] show that
these equations can be solved to obtain two RR chains that form a Bennett
linkage.

To solve these equations we introduce a special coordinate system asso-
ciated with the two relative displacement screws S;o and S;3. These two
screw axes lie on the two-system of relative screw axes generated by the
movement of a Bennett linkage. In the principal frame of this two-system
we find that six of the ten equations are identically satisfied and the number
of variables is reduced to four.

The Cylindroid

The set of relative screw displacements S(5, ) generated by an RR chain is
obtained from the product of the two dual quaternions G(3/2) = cos(8/2)+
sin(8/2)G and W' = cos(cr/2) + sin(a/2)W?, which yields

~

sin 55 = sin b cos =G + sin % cos le + sin g sin %G x Wl

2 2 2 2
cos% :cosgcosg— —singsin %G-Wl. (11.55)

Notice that in these equations the angles o and 3 are real, not dual, angles.
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Huang [37] reports the interesting result that if the angles 8 and « of
the RR chain are constrained such that

tan

IR

— k (11.56)

(Sl

tan

where k is an arbitrary constant, then the axes S(3,«) in (11.55) trace a
cylindroid. Recall from (9.75) that this is a characteristic of the movement
of Bennett’s linkage.

A cylindroid is a ruled surface traced by the axes of the real linear com-
bination of two independent screws, known as a two-system. The geometry
of the cylindroid is well known, see Hunt [38]. In particular, it has a natural
set of principal axes that simplify its description.

The Two-System

We now construct the two-system defined by the screws

S, = sin %512, S, = sin %slg, (11.57)

which are obtained from the three specified positions. The RR chain that
we are seeking must generate this two-system.
A general screw in this two-system is given by

F = aSq + bSs, (11.58)

where a and b are real constants. The screws S, and S, can be written in
the form

S, = sin %(1, P,)S13, Sy =sin %(1, P,)Sq3, (11.59)
where
d d
P,=—=— and P= —"— (11.60)
2tan 52 2tan 5?2

are the pitches of the two screws. We can absorb the scalar magnitudes of
these screws into the constants a and b, so the equation of the two-system
becomes

F = a(1, P,)S12 + b(1, P,)Sus. (11.61)

Now introduce the common normal K between the axes S5 and Sy3. Let
Sio =land J =K x |, so the line S;3 is given by

S13 = cos él + sin 4. (11.62)
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The dual angle 5= (6, d) locates this axis in the frame |, J, and K. Substitute
this into equation (11.61) to obtain

F=a(1, P,)l + b(1, Py)(cos 8l +sin )

= (a+bcosé,aP, + b(P,cosd — dsind))l + (bsind, b(Pysind + dcosd))J.
(11.63)

The axis of each screw F intersects K and is parallel to the plane defined
by | and J. Let ¢ = (¢, z) denote the dual angle from | to each axis. Then
we have

F = f(1, P)(cos | + sin $J)
= f(cos ¢, —zsin¢p + Pcos @)l + f(sing,zcos¢p + Psing), (11.64)

where f is the magnitude of F. Equate the real and dual components of
equations (11.63) and (11.64) to obtain

cos ¢ 1 coséd| [a
f{sin¢} - [0 sincs] {b} (11.65)

—sing cos¢| [z| |P. Pycosd—dsind| [a
f[cosgb singb} {P}_ [O Pbsin5+dcosc5] {b} (11.66)
Solve the first of these matrix equations for (a,b)”, and substitute into the
second equation in order to obtain

[0} [ cond] [Bu (B Pulootdd) [eoso] 1 g

and

P(9) cos¢ sing| |0 Py +dcoté sin ¢
This result defines the pitch P and the offset z of each screw in the two-
system as a function of the angle ¢ measured around K from | = Sys.

The Principal Axes

The principal axes of the two-system are the axes of the screws that have
the maximum and minimum values for the pitch P(¢). We determine these
axes by computing the derivative of (11.67), which is

d [z |-(Py—Py)cotd+d (P, — P,)+dcotd| [sin2¢
do {P} - [ (P, — P,) +dcotd (P,— P,)cotd — d] {cos 2(;5} '

(11.68)
Set the second equation equal to zero to determine the angle ¢ = o that
locates the screws with extreme values of pitch, that is,

—(Py — P,)cotd +d
(Pb — Pa) +dcotd
Notice that this equation defines two values, ¢ = o and ¢ = o+ /2, which

identify the principal screws of the two-system. Their axes X and Y are the
principal azes.

tan 20 = (11.69)
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Determine the offset z(o) from (11.67) and assemble the dual angle 6 =
(0,z(0)) to locate the principal screws of the two-system. The result is

X=cosdl+sing)] and Y = —singl+ cosal. (11.70)

We use the coordinate system X, Y, K to reformulate our design equations
for the RR chain.

The angle ¢ = 7 to the screw with extreme values for the offset z from
S12 is obtained from the first equation of (11.68) as

(Pb — Pa) + dcotd
(P, — P,)cotd —d

tan 27 = (11.71)

This defines two angles ¢ = 7 and ¢ = 7+ /2. Notice that tan 20 tan 27 =
—1, therefore the angles ¢ and 7 differ by 45°. This means that the screws
with the maximum and minimum offset along K are directed at 45° to the
principal axes.

Thus, with the specification of the three task positions comes a coordi-
nate frame F” aligned with the principal axes of the two-system constructed
from sin d)12512 and sin ¢13513 Transform the coordinates of the RR design
problem so that the three positions are defined relative to F’. If [R] is the
4 x 4 transform that defines the position of F’, then the new positions M7,
M}, M} are defined by the transformations [T]] = [R][T;][R™}].

11.3.8 Bennett Linkage Coordinates

We now introduce a set of coordinates originally used to capture the symme-
try inherent in a Bennett linkage (Yu [105]). These coordinates are adapted
to the tetrahedron formed by the joints of a Bennett linkage, which is cen-
tered on the principal axes of our cylindroid, Figure 11.7. These coordinates
reduce the number of design parameters from ten to four and at the same
time identically satisfy six of the constraint equations. The result is four
nonlinear equations in four unknowns, which we solve numerically.

Let the points at the four vertices of the tetrahedron be denoted by B,
P!, Q, and C!, and denote the edges defined by B — C! and P! — Q by
E:1 and Es5. The tetrahedron is oriented so that the common normal to E;
and E; is aligned with the axis K of the cylindroid. The dimensions of the
Bennett linkage ensure that in this configuration K bisects both segments
B — C' and P! — Q. Let the lengths of these edges be 2a = |B — C'| and
2b = |P' — Q| and let ¢ and & be the distance and angle between E; and E,
measured along and around K. Finally, the tetrahedron is located so that
the principal axis X is midway between E; and E; and it bisects the angle
k. These four parameters completely specify the tetrahedron, that is, we
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Figure 11.7. The coordinate frame adapted to a Bennett linkage.

have
acosg b cos %
B= asin% , P! = —bsin%
_c c
2 2
and
—bcos'—;- —a cos'—;-
Q= bsing 3, C'={ —asinf}. (11.72)
c _c
2

The axes of the Bennett linkage are perpendicular to each of the four faces
of this tetrahedron. Thus, we have

2bcsin 5
G=k (Q-B)x(P'-B)=k,{ 2bccos%
4abcos § sin §
and
—2acsin 5
W!'=k,(B-P") x (C' =P')=k,{ 2accost . (11.73)

K : K
4ab cos 5 8in 5

The constants ky and k,, normalize these vectors. Notice that the screws
G = (G,B x G)T and W! = (W', P! x W!) depend only on the four
parameters a, b, ¢, and k.

Using these coordinates, the six design equations that define the common
normal constraints N;, i = 1,2, 3, are identically satisfied. This leaves the
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four design equations

/
Pia: G- [y~ []W' =0, Dip: 8}, (B-P)- T2 =g

/

Piz:G-[A; —I)W'=0, Dy3:8); - (B-P')— %3 =0. (11.74)
These equations can be expanded using algebraic manipulation software
and solved numerically to determine the values of a, b, ¢, and k. Notice
that by determining these parameters we actually define a Bennett linkage
that guides the coupler through the three specified positions.

11.4 Platform Linkages

The design theory associated with each of the TS, CC, and RR spatial
chains yields multiple solutions for a finite set of task positions. Thus, it is
possible to connect the end-links of various solutions together and obtain
a platform linkage with a reduced number of degrees of freedom. We have
already seen that the 5TS and 4C linkages have one and two degrees of
freedom, respectively. These chains can be also be combined to define the
3TS-CC and a TSRR linkages, both with one degree of freedom. As in the
cases of planar and spherical linkages, the combination of chains introduces
constraints on the range of movement of the individual cranks that can
affect the smooth movement of the coupler or platform. The analysis of
this problem for general spatial platforms is the focus of much research.
Currently, there is little rectification theory for spatial linkage design.

11.4.1 The 4C Spatial Linkage

Our solutions for CC chains can yield as many as six of these chains for a
five position task. Thus, we can form up to 15 two-degree-of-freedom 4C
linkages to accomplish this task. While the design theory for this linkage
is the generalization of the planar and spherical 4R design theories, its
use depends on the development of computer-aided design and simulation
systems that allow the designer to visualize and plan its movement in space.

11.4.2 The 5TS Spatial Linkage

The solution of the constraint equations for a TS chain that can reach seven
specified goal positions may yield many as 20 of these chains. Thus, there
can be as many as 15504 5TS linkages that can reach seven specified posi-
tions. The analysis of these linkages to determine their smooth movement
through the goal positions is required to complete the design.
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11.4.83 Function Generation

Spatial open chains can be connected in a way that coordinates the input
and output parameters to form spatial function generators. Here we show
that RSSR and RSSP function generators can be designed using the theory
presented in the previous sections.

Suppose that we have a table of n input angular values 6; and output
angles v; for the RSSR, and output slides s; for the RSSP linkage. Following
the strategy used for both the plane and the sphere, invert this problem
to consider the movement of the output link relative to the input link and
design the TS chain that reaches the specified positions.

For both the RSSR and the RSSP linkages, we select two skew lines O
and C to be the axes of the fixed joints. Let ¥ = (v, g) be the dual angle
between O and C. Denote the common normal between O and C by N, and
have it intersect O at the point c.

The RSSR linkage

For the RSSR linkage, the lines O and C are the axes of the fixed revolute
joints. Let 6; and v;, ¢ = 1,...,n, be the desired table of values. Now
convert the input angles ; to exterior angles §; = m — 0;. Let Po be the
line through ¢ orthogonal to O and oriented such that §; = 7 — @ is the
angle measured from P around O to N. Introduce a new fixed frame F”
that has its origin at c, its z-axis is along O and its z-axis along Pg.

The angles 0; and 1; can now be viewed as the joint angles of the spatial
RR open chain formed by OC in F’. The kinematics equations of this RR
chain define task positions in F”’, given by

Di] = (205, 01X (v, [ Z (w5, 0)], i = 1,...,m. (11.75)

Our design results yield TS chains that reach as many as seven positions
[D;]. The TS chain design combines with the selected RR chain to form an
RTSR linkage, or equivalently an RSSR linkage, that has the desired set of
coordinated angles 6; and ;.

The RSSP linkage

For the RSSP linkage, the line O is the axis of the revolute joint and C is
the guide for the prismatic joint. Let 6; and s;, 7 = 1,...,n, be the desired
table of values. As we did above, invert the design problem and determine
the exterior angles §; = m — 0;. Let Py be the line through ¢ orthogonal
to O, and oriented such that 0, = ™ — 0 is the angle measured from Pg
around O to N. Locate the frame F’ with its origin at c, its z-axis is along
O, and its z-axis is along Pg. In this frame the kinematic equations of the
spatial RP chain are given by

[Di] = [Z(0:,0)][X (v, 9)][Z(0, 53)), i = 1,...,n. (11.76)
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Mi Si Ci (eiadi)
1 (0,0,1)T (0,0,0)™ (0,0)
2 (0,0,1)7 (0,0,0)T | (40°,0.80)
3 | (sin30°,0,cos30°)T | (0,1,0)T | (70°,0.60)

Table 11.1. Three spatial positions

The positions [D;] are used to design a TS chain that connects the input
crank and output slider. The result is an RTSP linkage, or equivalently an
RSSP linkage, that provides the desired coordination between the crank
angles #; and the slider translations s;.

11.5 Summary

This chapter has developed the design theory for TS, CC and spatial RR
open chains. These chains can be combined to form the 5TS, 4C and spatial
4R spatial linkages, as well as RSSR and RSSP function generators. The
focus on these chains reflects the attention they have received in the design
literature. There are other chains available for spatial linkages, for example
the CS and spatial RPR chains, for which the design theory is not as
well-developed.

11.6 References

Suh [90] and Chen and Roth [6] introduced the geometric design of spatial
linkages as the solution of sets of constraint equations. This approach is
presented in detail in the text Suh and Radcliffe [92]. Our results for the
design of TS chains draw on the work by Innocenti [40] and Liao [60]. For
CC chains, we use [56, 57] and Murray [63]. See Ahlers [58] for the design
of a CC robot that approximate a specified trajectory. Tsai and Roth [94]
solved the design equations for spatial RR chains. Our formulation follows
Perez [70], who uses the principal frame of the cylindroid to simplify these
equations.

11.7 FExercises

1. Determine the two spatial RR chains that reach the three positions
specified in Table 11.1 (Tsai and Roth [94]).

2. Determine the four CC chains that reach the five positions specified
in Table 11.2 (Murray and McCarthy [63]).
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11.7. Exercises
Mi Sz’ Cz’ (eiadi)
1 (0,0,1)T (0,0,0)7 (0,0)
2 (0.04,0.10,0.90)T | (0.94,0.52,—-0.41)T | (133°,1.38)
3 | (0.15,-0.04,0.10)7 | (—0.61,0.84,0.12)T | (70.6°,1.90)
4 | (0.43,-0.25,0.87)7 | (0.73,0.69,—0.16)T | (87.9°,—1.12)
5 | (0.40,-0.02,-0.92)T | (5.90,0.10,2.60)T | (25.2°,2.56)
Table 11.2. Five spatial positions
M; d; (long., lat., roll)
1 (0,0,0)" (0°,0°,0°)
2 (1, -0.74,—0.13)7 (6.18°,4.28°, —97.93°)
3 | (0.32,-0.51,-0.80)T | (—83.26°,—18.23°,73.61°)
4 | (-0.18,-1.78, —1.04)T | (=170.03°,39.54°, —50.94°)
5 | (-1.26,0.84,—1.50)T | (—84.74°,—29.18° 150.3°)
6 | (=3.59,2.73,-2.03)T (—8.30°,5.04°, —68.25°)
7 | (-0.05,0.57,—1.48)T (118.3°, —33.80°,139.0°)

Table 11.3. Seven spatial positions

3. Determine the 20 TS chains that reach the seven positions listed in

Table 11.3 (Innocenti [40]).
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Platform Manipulators

In this chapter we consider six-degree-of-freedom systems consisting of
a platform supported by multiple serial chains, called parallel, or plat-
form, manipulators. Walking machines, mechanical fingers manipulating
an object, and vehicle simulator platforms are all examples of platform
manipulators. The Jacobian of these systems defines the contribution of
each actuator to the resultant force and torque applied to the platform.

Our focus is on platform manipulators that have the property that each
actuator generates a pure force acting on the platform. For these systems
the columns of the Jacobian are the Pliicker vectors of lines in space. And
singular configurations are associated with linearly dependent sets of lines,
that we called line-based singularities. Our goal is a geometric classification
of these line-based singularities.

12.1 Introduction

Merlet [61] introduced a classification of line-based singularities, drawn
from the work Dandurand [15] and others, in order to study the singular
configurations of a triangular simplified symmetric manipulator, which has
a structure similar to Figure 12.1. He was able to identify these configu-
rations by inspection of the various ways in which the axes of the linear
actuators could form linearly dependent sets of lines. A similar approach
was used by Collins and Long [10] to analyze a pantograph-based hand-
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Figure 12.1. An example of a Stewart platform. A singular configuration occurs
when the lines F; become linearly dependent.

controller; also see the study by Notash [67] of uncertainty configurations
in parallel manipulators.

This geometric method of analysis provides insight to the structure of
the Jacobian matrix for these systems, which may often be complex, and
can by-pass the computation of the determinant to identify singular config-
urations. It draws on classical results of line geometry, which can be found
in Jessop [41], Salmon [82], and Woods [102], tailored to the features of
these robotic systems.

12.1.1 Tunsts and Wrenches

The angular velocity w and linear velocity d of a moving body are three-
dimensional vectors that can be assembled into a six-vector, called a twist.
Similarly, the resultant force f and torque t acting on a body can be
assembled into another six-vector, called a wrench, Figure 12.2.

The screw Jacobian of a serial chain defines the twist of the end-effector
in terms of the partial twists at each joint of the chain. The principle
of virtual work shows that this Jacobian also relates the wrench at the
end-effector to the torque applied at each actuator.
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Ty

Figure 12.2. A wrench W = (f,p x f +t)7 acting on twist T = (w,q x w + v)7.

Twists

The velocity of the end-link M of an open chain is obtained from its
kinematics equations [D(6)] = [A(0),d(6)] by computing

~ [AAT —AATd +d

s1= D@ = |10, T

(12.1)

This matrix is termed an element of the Lie algebra so(3) by Murray et al.
[66]. From the components of [S] we construct the angular velocity vector
w and linear velocity v = d(t). The six-vector T = (w,q x w + v)7 is
called the twist of the motion.

This matrix takes a particularly simply form for the link transformation
matrix [1;] = [Z(0;,d,)][X (o , a,;)] used in the kinematics equations for a
serial chain. Assume for the moment that both #; and d; are variable, then
we have

0 —6; 0 0
5] = (ZAX DX = | 0 o ] (122)
0O 0 0 0

From this equation we see that the twist associated with a revolute joint
is S; = (6;k,0)T and for a prismatic joint it is S; = (0, d;k)7 .

The kinematics equations of a robot arm allow the expansion of (12.1)
in terms of the partial twists S; associated with each joint parameter 0;,
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given by
W =
T= {qxw—|—v} =[51,52,...,S6]0, (12.3)
where
S, = [T1]-- - [T;]K. (12.4)

Note that here K = (k,0)T for a revolute joint and K = (0,k)7 for a
prismatic joint.

Each of the m serial chains supporting a platform manipulator has the
platform as its end-effector. Therefore, each chain contributes to the same
twist T. Let Sg-z) be the jth partial screw on the ¢th chain. Then we have
the m equations

T=s{,s% ... sP10® i=1,. . m. (12.5)

Phillips [71, 72] uses the terminology motion screw for a twist. The term
joint screw is also used to describe the instantaneous movement allowed by
a joint.

Wrenches

The resultant force and torque f and t exerted at a point p on an end-
effector by the actuators of a serial chain can be assembled into the screw
W, given by

w-{p ok

called a wrench. A wrench for which t = 0 is a pure force. In this case
F = (f,p x )7 is the Pliicker vector of the line of action of the force. The
screw M = (0,t)7 is a pure torque.

The total wrench W applied to a platform supported by m serial chains
is the sum of the individual wrenches

w=>) wb (12.7)
1=1

We use the term actuator screw for wrenches that represent the force-
torque contribution of an actuator. Philips refers to the normalized version
of this wrench as an action screw.
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12.1.2  Virtual Work

The work done by a wrench W = (f,p x f+t)7 as it moves through a twist
T = (w,q x w + v)7T over a virtual time period 6t is given by

oW =(f-(gxw+v)+(pxf+t) w)it
=(f-v+t-w—(p—q)-(wxf))dt =Wét. (12.8)

The instantaneous quantity VW is sometimes called the infinitesimal work
or the rate of work done. We call it the virtual work of W acting on T with
the understanding that it is associated with a virtual time period.

To simplify the computation of virtual work, we follow Kumar [46] and
use the 6 x 6 matrix [II] (10.34) to interchange the vector components of a

screw, that is,
s o ] (=L g, (129

Lipkin and Duffy [48] describe this as the transformation of a screw from
ray coordinates to axial coordinates.

For convenience, we introduce the notation T = [II]T to simplify the
equations that follow. This notation allows us to write the virtual work in
the form

WIT=f.v+t-w—(p—q) (wxf). (12.10)

If the virtual work of a wrench acting on a twist is zero, then the two screws
are said to be reciprocal.

Consider for example a pure force applied to a body connected to ground
by a revolute joint. In this case we have F = (f,p x f)7 and the twist
S = (6S,0q x S)T. The virtual work is

F'S=—0(p—q)- (S x f). (12.11)

Notice that this virtual work is zero if the lines F and S intersect, or are
parallel.

12.2 The Jacobian of a Platform Manipulator

The Jacobian for a single serial chain manipulator is defined by Craig [11]
and Murray et al. [66]. See (9.57). For our purposes we use the closely
related matrix (9.55) that defines the twist T as

T =151,%,,...,56] = [J]0. (12.12)

This is termed the screw Jacobian by Tsai [93]. The difference between this
matrix and the usual Jacobian lies solely in the choice of reference point
for the partial twists. The screw Jacobian uses the origin of the fixed frame
F' rather than the origin of the moving frame M.
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The principle of virtual work yields the important result that the Jaco-
bian also relates joint torques ¥ = (71,..., 76)7 of a serial chain to the
resultant wrench W on the end-effector. To see this we compute the vir-
tual work done by each of the actuators 9,-73515 and equate their sum to the
virtual work done by W on the end-effector twist T. The result is

7705t = WT Tt (12.13)

Substitute (12.12) into this equation and equate the coefficients of 05t to
obtain

7 =[JTIW. (12.14)

For a platform manipulator supported by m serial chains, we have the
set of equations

. < (i) =i < (1)] =(9) - 2(4)

T= [sg),sé),...,sé)} g =0, i=1,...,m, (12.15)
where T, the twist of the platform, is the same for each serial chain. Let
the resultant wrench applied by the ith supporting chain of a platform ma-
nipulator be W . Then we have the joint torques 7() = (7'1(1), e Téz))T,
t=1,...,m, given by

7O = [JOTWD 7@ = jOTIW@ - Fm) — [ mIT)wm) (12 16)

Invert each of these equations to determine the applied wrench w® in
terms of the applied joint torques 7(*), that is,

WO = [JOT=10 = [FO g0 FO120), (12.17)

The wrench Fy) represents the contribution of the jth actuator of the ith
chain.
The resultant force and torque applied to the platform is the sum

(1)
m T
w=3"wo = [[J(l)T]‘l, [J<2>T]—1,...,[J<m>T]—1] 4. (12.18)
=1 7—_(m)
Substitute [J®MT]~! from (12.17) into this to obtain
#(1)
w = [FO R, R R R LRI b (1219)
7(6)
or
W = [[7. (12.20)

The matrix [I'] is called the Jacobian of the platform manipulator. The
transpose of [I'] defines the joint rates of the manipulator in terms of the
desired twist.
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The wrench W depends on the configuration of each of the serial chains
supporting the platform manipulator. If the rank of [I'] is less than six then
the manipulator is said to be in a singular configuration.

12.3 Conditions for Line-Based Singularities

We now focus our attention on platform manipulators that have a total of
six actuators, and introduce conditions that ensure that the actuator screws
are pure forces. For these systems it is possible to characterize singular
configurations in terms of the geometry of linearly dependent sets of lines.
We call these line-based singularities. For serial chains consisting of hinges
and sliders, we find a convenient way to determine the lines of action of
these forces.

Each arm supporting the platform of the manipulator system is assumed
to have the structure of a serial robotic arm that can allow six-degree-of-
freedom movement of the platform. We further assume that each arm has
at least one joint at which a nonzero torque is applied. Otherwise, it does
not contribute to defining singular configurations. Thus, our platforms are
supported by at most six serial chains.

Finally, we require that each of the m the serial chains has an unactuated
spherical wrist. The center c; of this wrist is considered to be the point of
attachment of the ith chain to the platform. This ensures that each chain
applies only a pure force to the platform, which means that no column
of the Jacobian [I'] has a torque term. Thus, each column is the Pliicker
vector of a line. Systems that satisfy these conditions must have at least
three supporting serial chains to resist an external force and torque, and
3<m<6.

These kinematic conditions are typical of many platform manipulator
systems, particularly those based on the 6 TPS Stewart platform, for exam-
ple Figure 12.1. Figure 12.3 shows the structure and actuation schemes for
platform manipulators that have purely line-based singularities. The point
of attachment on the platform and base can be generally located, and it
is possible to apply the actuator forces with one or more serial chains.
Figure 12.4 shows a 3RRRS platform manipulator that has line-based
singularities.

12.8.1 Locating the Lines of Action

If the first three joints of the supporting serial chain are constructed using
revolute or prismatic joints, then their axes combine with the attach-
ment point ¢ to locate the axes of the forces F;, i = 1,2, 3, of the chain.
This makes it possible to determine the line of action of these forces by
inspection.
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LA H

Figure 12.3. The six basic designs and actuation schemes for platform manip-
ulators with line-based singularities. The circles denote the actuator forces of
supporting chains.

Figure 12.4. The 3-RRRS platform manipulator has line-based singularities.

To show this, we first derive a fundamental relationship between the
actuator screws F; and joint screws S; for a general six-degree-of-freedom
serial chain.

The Reciprocal Screw Theorem. The actuator screws F; of a six-

degree-of-freedom spatial serial chain are reciprocal to the each of the partial
twists S; for i # j.

Proof. The actuator screws F; are the columns of the 6 x 6 matrix [J7]™!
obtained from (12.14). Using the identity [J7]™! = [J71]T, we have

T N=1:]- (12.21)
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Now compute

[J_l][J] = [517527756] = [I] (1222)

F
Thus, FZTSJ- = 0 for i # j. Each actuator screw F; generates zero virtual
work when it acts on the joint screw S; for 7 # j, that is, these screws are
reciprocal. L]

In our case the forces F; = (f,p x )T and axes S; = (s,r x s)T are
the Plucker vectors of two lines. This means that the condition that these
screws are reciprocal F;TFSJ- = 0 is also the condition (12.11) that the lines
intersect, or are parallel.

Consider the line of action of F;, which is generated by an actuator at
the first joint. It must intersect the five axes Sa, ..., Sg. Notice that for our
systems the last three axes intersect in the attachment point c. Each line
F; must pass through this point. Furthermore, consider the plane defined
by ¢ and S3. The axis S, intersects this plane in a point p. The line joining
c and p is uniquely determined, and must be the line of action of F;. It
may happen that Ss is parallel to the plane defined by S3 and c. In this
case Fq is the line in the plane through c parallel to S;, which is said to
intersect S, at infinity. A similar construction yields the line of action for
the force generated by each actuator of the chain.

12.4 Classification of Line-Based Singularities

A platform manipulator is in a singular configuration when any one of the
lines of action of the forces on the platform becomes linearly dependent on
the others. We say that the singularity is of type n if this line F is dependent
on no fewer than n other lines. In what follows, we describe the geometry
of linearly dependent sets of lines that define the singular configurations
for platform manipulators. Merlet’s notation (Merlet [61]) is used for the
general classes, though we include additional subcases. Figures 12.5 and
12.6 provide illustrations of these various distributions of lines.

A platform manipulator with six actuated joints has a Jacobian of the
form

1
W =[F,Fy,...,F¢] ¢ ¢ » =[I7, (12.23)
T6
where the actuated joints are now numbered ¢ = 1,...,6. Notice that if the

platform meets the conditions above, then the columns of this Jacobian
have the form F; = (f;, p, x f;)7 which are the Pliicker vectors of the forces



12.4. Classification of Line-Based Singularities 275

applied to the platform. These actuator screws define the line of action of
the forces and have the property that each is reciprocal to itself, that is,
F/F, =0.

12.4.1 Type-1 Singularities

If any one of the six actuator screws F in a platform manipulator is linearly
dependent on one of the remaining five, denoted by Fi, then the system is
in a type-1 singularity. This is equivalent to the condition that

for some scalar k. It is easy to see that for this to occur F and F; must
define the same line.

12.4.2 Type-2 Singularities

A type-2 singularity occurs when one of the actuator screws F is linearly
dependent on two others, denoted by F; and F2, and not on either one
independently. This means that nonzero scalars k1 and ko exist such that

75 . F= lel + k2F2. (1225)

In general, this equation defines a set of screws known as a two-system.
However, we are concerned only with actuator screws F that are Plicker
vectors of a line. Thus, we have the additional requirement

FTF = k3 (FTF1) + 2k ka(FT Fa) + k5 (F3 F2) = 0. (12.26)

Since F; and F5 are lines, the terms F;FIV:i are zero, and we find that F
cannot be a line unless F7 Fo = 0. This means that the two lines F; and F
must intersect, (12.11). When this is true, the lines of 73 lie in the plane
defined by F; and F5 and pass through their point of intersection. This is
known as a pencil of lines.

Type 2a

Two skew lines are often identified as a linearly dependent set of lines,
however, because two skew lines cannot generate a third line that is lin-
early dependent on both of them, they are not, strictly speaking, a type-2
singularity. A third line must actually coincide with one of the two lines,
as in the type-1 singularity.

Type 2b

A type-2 singularity requires that F; and F, intersect in a point p. In this
case the two lines define a plane, and 75 is the pencil of lines in this plane
through p. There are two cases.
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Figure 12.5. A classification of sets of lines linearly dependent on one, two, and
three given lines.

1. If F; and F2 are not parallel, then p is a finite point and all the lines
of 73 pass through p.

2. If F; and Fo are parallel, then they are said to intersect at infinity
and 72 consists of the lines parallel to F; and Fs.

12.4.8  Type-3 Singularities

When one actuator screw F is dependent on three other actuator screws
F1, Fo, and F3, the platform manipulator is in a type-3 singularity. This
occurs when k;, 1 = 1,2, 3, exist, so F is given by

773, . F = lel + kJQFQ + ngg. (1227)
The requirement that F also be a line yields the relation
FTF = 2k1k2(FTFy) 4 2k1k3(FTF3) 4 2koks(FIF3) = 0. (12.28)

Notice that we have dropped the terms F? F; = 0. Equation (12.28) is easily

solved to obtain
—_— TV
ks = T’fle(Fl FZ)TV . (12.29)
k1(F1 F3) + ko(F3 F3)
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Figure 12.6. A classification of sets of lines linearly dependent on four and five
given lines.

This result combines with (12.27) to define 73 as a one-dimensional set of
lines that is known to be a quadric surface Q.

Another view of this quadric Q is obtained by considering the lines L =
(s,r x s)T that intersect Fi, Fy, and F3, given by the matrix equation

[Fi,, Fs, Fs] L=o0. (12.30)

Any line L satisfying this equation intersects all the lines of 73 that form Q,
and therefore must lie on Q. This provides a convenient way to derive its
algebraic expression in terms of the point coordinates r = (z,y,z)T. Given
the lines F; = (f;,p; x f;), we write (12.30) in the form

((Pr—1)xf1) ] (s,
((py — 1) x f2); sy ¢ = 0. (12.31)
((p3 —r) x f3) 5z

This equation has a solution for s = (s, sy,5.)T only if the determinant,
of the coefficient matrix is zero. This determinant can be expressed as the
triple product

Q: ((py—r)xf1): ((py—r) xf2) x ((ps—1r) x f3)) =0. (12.32)
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The cubic terms cancel because (r x f1)-(r x f3) x (r x f3) = 0, and (12.32)
is the equation of the quadric surface Q. The lines L and F define the two
separate sets of rulings on this quadric, known as reguli.

Type 3a

In general, the set of lines 73 is the regulus of lines F defined by (12.29)
lying on the quadric Q defined by (12.32).

Type 3b

If any two of the three lines Fi, Fo, and F3 intersect, then the quadric Q
degenerates to a pair of planes. To see this, let p = p, = p3. Then (12.32)
takes the form

((r—p)-(p—pl) xfl)((r—p)-fgxfg) =0, (12.33)

which is the product of two linear equations in the coordinates of r =
(z,y,2)T. These equations define the two planes

Pr:(r—p)-(p—p1) xf1 =0,
Py:(r—p)-fa xfs3=0. (12.34)

We can distinguish three cases:

1. If the planes are distinct and not parallel, then their intersection is
a finite line, denoted by L. This line must pass through the point of
intersection p of Fo and F3 and intersect F; in a point a. The set T3
consists of all the lines through a in P; and all those through p in
Ps. This case includes the situation when two of the lines lines, say
F, and Fs, both intersect the third line F3. The two planar pencils
are defined by the pairs of lines F; and F3, and F5 and F3.

2. If the planes are distinct and parallel, then their intersection L is at
infinity. This occurs when two of the three lines are parallel. In this
case T3 is two planes of parallel lines.

3. If the three lines lie in one plane, then the quadric degenerates to two
coincident planes. In this case, 73 consists of all lines in that plane.
Type 3c

If the three lines F;, F2, and F3 intersect in the same point p = p; = py =
P3, then the quadric degenerates to a bundle of lines through p. There are
two cases depending on whether this point is finite or at infinity.

1. If the point of intersection p is not at infinity, then equation 73 is the
set of all lines through p.

2. If the three lines are parallel, then the point of intersection p is at
infinity. Then all lines in space parallel to these three lines form 73.
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12.4.4 Type-4 Singularities

The type-4 singularities occur when one actuator screw F is linearly
dependent on no fewer than four other actuator screws, that is,

7?1 . F = lel +k2F2+l€3F3+k4F4. (1235)

This is a two-dimensional set of lines known as a linear congruence.

We analyze this set of lines by considering the screws S = (s,u)? that
are reciprocal to all four lines F;, 7 = 1,2, 3,4, and therefore are reciprocal
to the entire set 74. The screws S must satisfy the four linear conditions
STF, =0, i=1,2,3,4, which we write in matrix form as

[Fi, Fa, Fs, Fa S=0. (12.36)

Let [A] be the 4 x 4 submatrix formed from the first four columns of the
4 x 6 coefficient matrix in (12.36), and let by and by be the fifth and sixth
columns, so we have [Fi,Fy, F3, F4]T = [A,by,by]. Equation (12.36) can
now be solved to determine

—[A7"b; —[A" by
S, = 1 and S, = 0 . (12.37)
0 1

Actually, any linear combination L = s5;7 + tSo of these two screws will
satisfy (12.36). This is known as two-system of screws.

We now consider whether or not the two-system spanned by S; and So
contains any lines. This is determined by the roots of the quadratic equation

LT = s%(STSy) + 2st(STS,) + t2(SES,) = 0. (12.38)

If the roots are imaginary, then there are no real lines in the two-system,
in which case 74 is called an elliptic linear congruence. If there are two real
roots, then two lines exist that intersect every line of 74, which is termed
a hyperbolic linear congruence. Finally, if (12.38) yields a double root, then
T4 is a parabolic linear congruence.

Type 4a

If the two roots of (12.38) are imaginary, then the two-system generated by
S1 and S, contains no lines. In this case, the set of lines 73 is an elliptic linear
congruence. Hunt [38] shows that these lines form concentric hyperboloids
about the common normal to the axes of the two screws S; and S,. The
relationship between these screws and the distribution of the lines of 74
deserves further study.

Type 4b

If the two roots of (12.38) are real and distinct, then two lines L, and L,
exist that intersect the entire set of lines 74, termed a hyperbolic congruence.
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Assume that these two lines are skew. Then we have two cases depending
on whether or not one of these lines lies at infinity. A line at infinity has
the Pliicker vector of the form L = (0, v)7T. This is also described as a screw
with infinite pitch.

1. If the two lines L, and L; are finite and skew, then (12.35) is the set
of lines that intersect these two lines.

2. If one of the lines, say L;, is at infinity, then it has the form L, =
(0,v)T. In this case, L, intersects the set of parallel planes orthogonal
to v, through L, in a series of points. The congruence consists of the
pencil of lines through this point on each parallel plane.

The cases in which the two lines L, and L; intersect each other are usually
identified separately. We consider these cases below.

Type 4c

If (12.38) has a double root, then we have a double line L = L, = L,.
In this case, the set 74 is known as a parabolic linear congruence. We can
distinguish two cases, depending on whether or not this double line is at
infinity.

1. Each point on the finite line L is the vertex of a planar pencil of lines.
Each pencil lies in a different plane passing through the line L.

2. If the two lines coincide at infinity, that is, L, = Ly = (0,v)7T, then
all lines in planes orthogonal to v form the congruence.

Type 4d

The situations in which the two lines of the hyperbolic congruence intersect
are termed degenerate. We identify four subcases depending on whether one
or both of the lines are finite or at infinity.

1. If the two lines defined by (12.38) intersect, then 74 consists of all the
lines in the plane defined by the two lines L, and L, and all lines in
space that pass through their point of intersection.

2. If the lines L, and L; are parallel, which means that they intersect at
a point at infinity, then 74 consists of all lines in the plane containing
these two lines, and all lines in space parallel to them.

3. If one line L, is finite and the other line L, = (0,v)7 is at infinity,
then L, is contained entirely in one of the parallel planes orthogonal
to v. In this case the congruence consists of the lines parallel to L,
together with all lines in the plane that contains L,.

4. If both lines lie at infinity, then we have L, = (0,v,)” and L, =
(0,vy)T, in which case the congruence is formed by all lines in the
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direction s = v, X v. For this to occur the four lines F;, i =1, 2, 3,4,
must be parallel, which means that they form a type-3c.2 singu-
lar configuration. Thus, we conclude that this case cannot occur
independently.

12.4.5 Type-5 Singularities

The final singularity that we consider occurs when an actuator screw is a
linear combination of the remaining five actuator screws. In this case, we
have

73 : F:lel +k2F2+k3F3+k4F4+k5F5- (1239)

Let the six minors of the 6 x 5 matrix [F] = [Fq, Fo, F3, F4, F5] be denoted
by M;—the ith minor is the determinant of the 5 x 5 matrix obtained by
removing row ¢ from [F]. Thus, the set of lines 75 satisfy the linear equation

Mifr + Mafa+ Msfs+ Myfa+ Msfs + Mg fe = 0. (12.40)

This is the equation of a linear complex. Assemble the six coefficients M;
into the screw M=(My, M5, Mg, My, Mo, M3)T with axis L = (s,r x s)7
and pitch y; that is, M = (s,r x s + us)T. Then (12.40) can be written in
terms of M and F = (f,p x f) to obtain

MTF=LTF +pus-f =0. (12.41)

Let the distance from L to F along their common normal be d and the angle
about the common normal be . Then (12.41) reduces to

MTF = —dsina + pcosa =0, or dtana = p. (12.42)
This equation shows that lines of this complex that are a distance d from
the axis L lie at the angle o = arctan(u/d) about the common normal.
Type 5a

In general, the complex 75 is the set of lines tangent to helices with the
line L, described above, as its axis. If the radius of the helix is d, then its
lead is 2mwd? /1, Woods [102].

Type 5b

If the components of the screw M are such that they form the Plicker
coordinates of a line, that is, MTM = 0, then 75 is a special linear complez.
There are two cases depending on whether or not M is at infinity.

1. If M is a real line, then 75 consists of all lines in space that intersect
M.

2. If M has the form M = (0, v)T, which means that it lies at infinity,
then 75 consists of all lines in the set of parallel planes orthogonal to
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v. This means that the common normal to every pair of lines in the
complex is parallel to the direction v.

12.5 Examples

Singularities occur in platform manipulators either as a result of a singu-
lar configuration within a supporting chain or due to interdependence of
actuator screws on separate chains. For the systems we are considering the
serial chain singularities can be only of type 1 or 2, that is, either two
actuator screws fall on the same line, or three lie on the same plane.

If we assume that no supporting chain is in a singular configuration, then
we can determine the following examples of singular configurations in the
basic platform designs shown in Figure 12.3:

1. A type-1 singularity occurs when any two forces F; and F; applied at
the attachment points ¢; and c; align with the segment c;c;.

2. A type-2b.1 has the lines of action of three forces in the same plane
and passing through the same point. This can occur in designs a, b, c,
and e as follows. Let ¢, be the attachment point of a supporting chain
that that has two actuators. The lines of action of the two forces at c;
define a plane. If any other attachment point c; lies in this plane, and
if the line of action of a force F; at this point lies along the segment
c;c;, then the configuration is singular.

3. The type-3c.1 singularity has the lines of action of four forces passing
though one point. This is easily seen in designs b and d. Let ¢; be the
point supported by three actuator screws. This point has the lines
of action of three actuator screws passing through it. The singularity
occurs when the line of action of a force at another attachment point
c; lies along the segment c;c;.

4. The degenerate hyperbolic congruence of type-4d.1 can also be seen in
designs b and d. In this case the lines of action of five forces intersect
two lines. Let c¢; be the point supported by the chain with three
actuators. Then the singularity occurs when the lines of action of
the forces at two other attachment points c¢; and ¢, lie in the plane
defined by the triangle Ac;c;ci. The five actuator screws intersect
the two edges of the platform.

5. The type-5b.1 singularity occurs when all six lines of action of the
forces on the platform pass through the same line. This is easily
seen in designs a and b. For design a the plane of the platform must
coincide with both planes formed by the actuator screws at two at-
tachment points. For design b the actuator screws of the one and two
actuator supporting chains must lie in the plane of the platform. In
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both cases, all six actuator screws intersect the line formed by an
edge of the platform.

12.6 Summary

This chapter has examined platform manipulators that have Jacobians
in which each column is a Plucker vector of a line. Each of these lines
represents the force of an actuator on the platform and singular configu-
rations for these systems occur when these lines are linearly dependent.
This is called a line-based singularity. A type-n singularity occurs when
the line of action of one actuator force is a linear combination of at least
n other actuator forces on the platform. The geometric description these
linear combinations of lines provides insight to the geometry of singular
configurations.

12.7 References

Song and Waldron [86] present the design of walking machines and Mason
and Salisbury [54] consider the design and control of mechanical hands.
The platform used for vehicle simulators is described by Stewart [88], also
see Fichter [25]. Our formulation for the Jacobian of these systems follows
Kumar [46].

The results in this chapter are a special case of a broader study of screws
introduced by Ball [2]. Hunt [38] provides a survey of linearly dependent,
sets of screws important to mechanism theory. Gibson and Hunt [30, 31]
and Martinez and Duffy [52, 53] provide a more detailed look at these
screw systems. Phillips [71, 72] provides a machine-based perspective of
screw theory.

12.8 Exercises

1. Determine the Jacobian for the 3-RRS platform robot shown in
Figure 12.4.

2. Consider the TRS robot that is connected to a platform such that
the spherical joint is unactuated. Determine the line of action of each
of the actuator screws from the condition that it must intersect the
remaining five joint axes.

3. Formulate the linear combination of the Plucker coordinates of two
lines F; and F2 and show that their linear combination is, in general,
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a screw not a line. Determine the condition that ensures that it is a
line.

Show that the set of lines reciprocal to three arbitrary lines is a
quadric surface that also contains these lines.

Consider a cube held by a four fingered grip such that it applies only
normal forces to each of the faces. Determine the set of twists allowed
by arbitrarily located fingers. Under what conditions do the applied
forces become linearly dependent.

Show that the lines of the complex 75 are orthogonal to the velocities
of points in a body moving so its twist has the axis L and pitch pu.



Appendix A

Solving Constraint Equations

A.1 The 4R Linkage Constraint

The analysis of planar and spherical 4R linkages, the spatial RSSR, and
Bennett’s linkage all yield a constraint equation between the output angle
1 and the input angle 6 that takes the form

A(0) cos + B(#)sinyp = C(6). (A.1)

There are two ways to solve this equation the trigonometric solution and
the tan-half-angle technique.

The trigonometric solution begins by dividing both sides of (A.1) by
Vv A? + B?. This allows us to introduce the angle § such that

cosd = 4 and sind = __B (A.2)

VA2 + B2 /A2 + B2
Notice that § = arctan(B/A). The left side of (A.1) takes the form
cos d cos 1 + sind sinp = cos(y) — 9). (A.3)

Thus, the right side must be the cosine of an angle x,

C
VA2 + B

Because x and its negative have the same cosine, we have that § + x and
d — k are both solutions to (A.1). This combines with the definition of § to

(A.4)

COS K =
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yield

1y = arctan (%) + arccos (ﬁ) . (A.5)

Notice that the angle k exists only if —1 < cosx < 1. Therefore, C? <
A? 4+ B?, or equivalently, A2 4+ B2 —(C? > (0 must be satisfied for a solution
to exist.

In this formulation § is the angle to a diagonal of the quadrilateral formed
by the linkages. The angle k is measured on either side of this diagonal to
define the output angle 1.

The tan-half-angle technique uses a transformation of variables to con-
vert sint and cos into algebraic functions. Introduce the parameter
y = tan(v/2), which allows us to define

1—y? . 2y
cosp = 11,7 and sinvy = T % (A.6)
Substitute this into (A.1) to obtain
(A+C)y* —2By — (A-C) =0. (A7)

This equation is solved using the quadratic formula to obtain

) BEVA24+ B?2-(C?
tan & = v : (A.8)
2 A+C
In order to have a real solution we must have A% + B2 — C? > (. This is
the same condition obtained above for the trigonometric solution.
The constraint equations for these linkages are each special cases of a

general equation that we can write as

(a1 cos f+agsinf — ag) cos 1y + (b cos @ + by sin 6 — bz) sin @
—(c1cos0 4 casinf — ¢c3) =0, (A.9)

where a;, b;, and ¢; are constants. Introduce the tan-half-angle parameters
xz = tan(0/2) and y = tan(y/2) so we have

((a1+01 + a3 + C3)$2 — 2(0,2 + Cz)x — (a1 +c1 —az — Cg))y2
—2((b1 + 53)332 — 2box — (bl — b3))y

—((a1 — c1 4+ a3 — e3)2® — 2(az — c2)z — (a1 — a1 — a3+ ¢3)) = 0.

(A.10)

This is a biquadratic equation in the unknowns z and y.

A.2 The Platform Constraint Equations

The 3RR planar and 3RR spherical platforms can be viewed formed from
two 4R linkages OAB;C; and OAB,;C5 driven by the same crank OA.
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Let 6 be the angle of the input crank OA and let ¢ be the angle of the
coupler at A. The constraint equations for the two 4R linkages yield

A1(0) cos ¢ + B1(0) sin p = C1(0),
As(0) cos ¢ + Ba(0) sin p = Ca(6). (A.11)
We now present two ways to solve these equations. The first eliminates sin ¢
and cos ¢ linearly, and the second uses the resultant to solve simultaneous
biquadratic equations.
For the first solution let x = cos¢ and y = sin ¢ and solve the resulting
linear equations using Cramer’s rule to obtain
C1By, — CyBq AyCy — A1Cy
= and y= .
A1By — A2 By A1By — A2 By
In order for these equations to define a solution ¢ they must satisfy the
identity z2 4+ y? = 1. This yields an equation in cos # and sin ), given by

(ClBQ — 0231)2 + (AQCl — A102)2 — (AlBQ — A281)2 =0. (A13)

T

(A.12)

Introduce the tan-half-angle parameter z = tan(6/2) so this equation be-
comes the polynomial P(z) = 0. For each root z; of P(z), compute 6,
and determine the coefficients A;;, B;;, and C;; of the platform equations
(A.11). Solve either one equations determine ¢;.

An alternative approach transforms (A.11) into a pair of biquadratic
equations by introducing the tan-half-angle parameters z = tan(6/2) and
y = tan(+)/2). This yields the equations

Diy* + Eyy+ Fy =0,
Doy? + Exy + Fp = 0, (A.14)
where
Di = dlil'z + dziIIJ + d3i,
E; = e;2% 4 eqx + e3,,
Fi = fiiz® + faz + fai (A.15)
To solve these equations, we introduce a second pair of equations obtained
by multiplying both by y and assemble the four equations into the matrix
equation

0 D1 El Fl y3
0 Dy Ey, F y2
Y
1

Di B, Fi 0 (A.16)

D2 E2 F2 0

o O OO

This equation can be solved for the vector (3, y2,4,1)T only if the coeffi-
cient matrix [M] has determinant zero. Expand this determinant to obtain
an eighth-degree polynomial P(z) in the parameter xz. The roots of this
polynomial define z; for which (A.16) can be solved to determine y;.
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Graphical Constructions

The following constructions use a straightedge to draw lines and a compass
to construct circles and measure distances. They are useful in the graphical
synthesis of planar RR chains.

B.1 Perpendicular Bisector

Given two points P! and P2, we construct the perpendicular bisector L of
the segment P! P2, Figure B.1, as follows:

1. Construct circles C; and Cy centered on P! and P? with radii equal
to or greater than one-half the length of P! P2

2. C; and C; intersect in two points. Join these points to form the
perpendicular bisector L.

B.2 Circle Through Three Points

Given the triangle AP P?P3 the center C of the circle that circumscribes
this triangle, Figure B.2, is given by the construction:

1. Construct the perpendicular bisectors L; and Ly to the segments
P1P? and P?P3.
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Figure B.2. Construction of the circle through three points P', P?, and P3.

2. The intersection of the lines L; and L, defines the center C of the
circle through the three points.

B.3 Duplication of an Angle

Consider two lines L; and Lo that intersect in an angle o at the point P.
The line M5 that makes the same angle with another line M; about a point
Q, Figure B.3, is constructed as follows:

1. Draw a circle Cp such that it intersects L; and L, in points S and 7.

2. Construct a circle Cg with the same radius about ¢ and denote by
U one of the intersections with M;.
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Figure B.3. Duplication of the angle o about the point P from the line M; to
determine the line Ms.

Figure B.4. Reflection of the point @ through the line L.

3. Measure the distance S1' and construct the circle with this radius
about U. Its intersection with Cg is a point V. Join ) to V to define
the line M. The circles intersect in two points, so choose the one that
provides the same orientation for My as L, relative to L.

B.4 Reflection of a Point Through a Line

In order to find the reflection of the point @ through the line L, Figure B.4,
we use the construction:

1. Select two points R and S on L and construct the circles Cr and Cg
with radii RQ and SQ, respectively.

2. The circles Cr and Cg intersect in two points. One is () and the other
is its reflection Q*.



Appendix C
Spherical Trigonometry

Consider the spherical triangle AS1S,S3, where the axes are labeled in a
counterclockwise sense around the triangle, see Figure C.1. Associated with
the side S;S; we can define the normal vector N;; = S; x S;/|S; x S;|. The
angular dimension «;; of this side is defined by the equations

CoOS Ctyj = Sz . Sj. (Cl)

Thus, we can compute the three angles a2, ass, and as;, which we consider
to have a positive magnitude between 0 and 7, thus a;; = «a;;. The sense of
the angles «a;; will be determined as needed relative to the normal vector
Nij-

Figure C.1. The frame Fi has its z-axis along N2 and its z-axis along S;.
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At each vertex S; we denote the exterior dihedral angle by ¢;, which is
defined by the formula
NkzXN,L]SZ_ SkXSILSJ

g = TN Ny (SkxS8i)-(Six8y) (©2)

The indices (i,7,k) in this equation are any one of the three cyclic
permutations (1,2,3), (2,3,1), or (3,1,2).

In the following derivations, we distinguish the F-frame equations from
the B-frame. These are simply two different ways to formulate the same
equations. We will label as F; the frame that has its z-axis along the vertex
S; and the normal vector N;; as its z-axis. The frame B; will also have S,
as its z-axis, but its z-axis will now be the normal vector Ny;.

C.1 The F-Frame Formulas

Our goal is to obtain trigonometric identities for the triangle AS1S,S3. We
begin with the frame F}, aligned with the side S1S;, so the z-axis is along
S;: and N5 is the z-axis. In this frame, we can determine two equations
for the coordinates of S3 in terms of the dimensions of the triangle. The
first is defined by the sequence of rotations

1S5 = [Z(m — ¢1)][X (az1)]E, (C.3)

where m — ¢ is the interior angle at S;, and a3y = a3 is the angular
length of the side S1S3. Recall that k= (0,0,1)T. The superscript preced-
ing S3 denotes the coordinate frame F in which we are computing these
coordinates. The second equation is given by

'S5 = [X(12)][Z($2)][X (aza)]E. (C.4)

Expand these equations to obtain

sin arg1 sin ¢ sin a3 sin ¢o
18; = { sinag; cos ¢y p = { —(sinaqy COS g3 4 COS (19 SiN (g3 COS o)
COS (31 COS (x12 COS (x93 — SN (¥12 SiN (a3 COS P2

(C.5)
The three identities obtained by equating the components of these two
vectors are known, respectively, as the sine law, the sine—cosine law, and
the cosine law of the spherical triangle.

A different set of relations for this triangle can be obtained by introducing
the coordinate frame F, with its z-axis along S and its z-axis directed
along Ny3. We now consider the two definitions of S; in this frame. The
first is the sequence of rotations

*81 = [Z(r — $2)][X (ar2) k. (C.6)
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The second way to determine S; in F, is given by
’S1 = [X(023)][Z (3)][X (a3 k- (C.7)

Expanding these equations, we obtain the identity

sin a2 sin @9 sin a31 sin @3
2S = ¢ sinajaCOSPy p = { —(sin (23 COS (x31 + COS (a3 sin Q31 COS @3
1
COS (¥12 COS (vx23 COS (¥x31 — sin 23 sin 31 COS ¢3

(C.8)
Notice that these equations can be obtained from (C.5) by permuting the
indices (1,2, 3) to form (2,3,1).
Finally, we can obtain a third set of identities by computing the compo-
nents of S, in the frame F3 located with its z-axis along S3 and its z-axis
along N3;. The same derivation as above yields the identities

sin %) sin sin 12 sin 1
3 3
82 == sin 23 COS = —(sin« 1 COS (¥12 + cos o 1 sin 12 COS @
3 3 3 3
COS (31 COS (x31 COS (12 — sin o 1sina12 COS @1
3 3 3

C.9)
Notice that these equations can be obtained from (C.8) by again applying
the cyclic permutation (1,2,3) — (2,3, 1). -
Crane and Duffy [12] introduce the symbols (X, Y}, Z;) defined by

X; sin ok sin ¢
Y; 5 = { —(sin ayj; cos ok + cos o sin aujg cos @) o - (C.10)
Z; COS (r;; COS ¢}, — SiN Q5 Sin @, COS P

Comparing this to our equations above, we have

X, Xs Xy
183 = ¥2 5 281 = )_/3 y and BSQ = )_/1 . (Cll)
ZQ Z3 Zl

Also from our calculations above, we have
sin 7% sin (jﬁj
JSZ' = { sin O35 COS d)j . (012)

COS vy 5

Thus, we obtain Crane and Duffy’s compact form for these identities:

)fk sin a;; sin ¢
}_/k = { SIn &4 COS d)j ) (Cl?))
Zk COs Qg5

where the indices (i, 7, k) are any one of the cyclic permutations (1,2, 3),
(2,3,1), or (3,1,2).
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Figure C.2. The frame B; has its z-axis along N3; and its z-axis along S;.

C.2 The B-Frame Formulas

We now perform the same analysis but with a different set of reference
frames. Let By be the reference frame aligned with side S3S1, so its z-axis
is along S; and its z-axis is the normal vector N3, Figure C.2. In this
case, we determine two equations for the coordinates of So, rather than Ss
as we did above. The first equation is defined by the sequence of rotations

'Sy = [Z($1)][X (c12)]k- (C.14)

The superscript preceding S, denotes the coordinate frame B;. The second
equation is given by

18y = [X(—az1)][Z (7 — ¢3)][X (cva3)]k- (C.15)

Expand these equations to obtain

sin aq9 Sin ¢ sin (o3 Sin ¢b3
182 = { —sinqaj2cos ¢ p = < sin gy COs a3 + COS a3y Sin (a3 COS 3
COS (x12 COS (x31 COS (ro3 — SIN (31 SIN (g3 COS P3

(C.16)
The three identities obtained by equating the components of these two
vectors are alternative forms for the sine law, the sine—cosine law, and the
cosine law of the spherical triangle.
Following the same procedure, we obtain the B-frame versions of %Sj
and 3S;. We can also get these results using the permutations (2, 3,1) and
(3,1,2) of the indices (1,2, 3). This results in the formulas

sin qo3 sin ¢9 sin aug sin ¢
28, = { —sin ags cos 2 p = { sin 2 cos asy + COS a2 sin g1 €OS 1
COS (x93 COS (x12 COS (x31 — SiN (12 Sin ag1 COS 1

C.17)
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and
sin (g1 Sin ¢ sin (12 Sin ¢o
38, = { —sin (31 COS (b3 p = { SIN (xa3 COS (12 + COS (x23 SIN (12 COS P2
COS (31 COS (x93 COS (x12 — SIN (ro3 SiN (x12 COS P2
(C.18)
Crane and Duffy introduce symbols (X;,Y;, Z;) defined by the equations
X; sin a;; sin @
Y; » = { —(sinoy, cosa;; + cosa,isina,; cos¢;) p . (C.19)
Z; COS ¢, COS Ov;; — SN Qv Sin oy 5 COS P

Comparing these equations to our results above, we see that

182 = —Y3 5 283 = —Y1 y and 381 = —Y2 . (CQO)
Z3 Zl ZZ

Also from our calculations above, we have

. sin 7y sin ¢z
'S; = ¢ —sinag, cosg; o . (C.21)
COS (g5

In Crane and Duffy’s notation these identities become

Xk sin Q5 sin (bz
Yk = { sin Q5 COS (]51 5 (022)
2y COS ;5

where the indices (i, j, k) are any one of the cyclic permutations (1,2, 3),
(2,3,1), or (3,1,2). Notice that we have canceled the negative signs in the
y-components of these equations.

C.3 Summary

The result of this analysis is two sets of three vector identities relating the
vertex angles and sides of a spherical triangle. The first set of equations is
(C.5), (C.8), and (C.9). The second set is (C.16), (C.17), and (C.18). The
notation of Crane and Duffy allows these sets of equations to be written
compactly as (C.13) and (C.22), respectively.

It is important to notice that associated with this triangle AS1S2S3 is its
polar triangle AN;2N23N3;. We may analyze this triangle in exactly the
same way as above to obtain two more sets of three vector identities. See
Crane and Duffy for a complete listing of these identities, and for similar
identities for the spherical quadrilateral, pentagon, hexagon, and heptagon.
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Operations with Dual Numbers

The standard form of a screw W = (ks ,kc x s + kps)T is simplified by
defining the multiplication between the ordered pair (k,kp) and the line
L = (s,c x s)T so that

W = (ks, ke x s + kps)T = (k,kp)(s,c x s)T. (D.1)

We view this as a product of the dual scalar & = (k,kp) and the dual
vector L = (s,c x s)T. The dual vector is equivalent to a vector of dual
scalars, so (D.1) implies that the product of two dual scalars & = (a,a®)
and b = (b, b°) is given by

ab = (a,a®)(b,b°) = (ab, a’b + ab®). (D.2)

This may be taken as the definition of multiplication operation for dual
numbers. However, in what follows we will define it in a way that extends
easily to functions F'(a) of a dual number.

Consider the function a(e€) of a real parameter €. Define the dual number
a associated with a(e€) to be the pair constructed from this function and its
derivative a/(¢), both evaluated at € = 0, that is, a(0) = a and a’(0) = a°.
Therefore,

= (a,a®). (D.3)

. da
a=(ale), —
( (€) de>
While there are many choices for a(e), the simplest is a(€) = a + ea®.
Using this approach, we define the addition and subtraction of two dual
numbers as the dual numbers associated with the functions a(e) + b(e) and
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a(e) — b(e), that is,
a+b=(a+ba® +b°) and a—b=(a—b,a® —b°). (D.4)
We can now see that (D.2) is the dual number obtained from the function
a(e)b(e) = (a + €a®) (b + €b°) = ab + €(ab® + a°b) + €2a°b° (D.5)

by evaluating it and its derivative at ¢ = 0. A similar computation yields
the division of two dual numbers as

%:(%f%;E) (D.6)

A differentiable function of a dual number F'(a) can be evaluated using
the chain rule to obtain

F(@) = (F(a(e)). F/(a(e) 229

For example, in order to evaluate a'/? we consider the function F(a) =
(a + €a®)'/? and compute

= (F(a), F'(a)a®). (D.7)

1
F(a) =a"?, F'(a)a® = Ea_l/zao. (D.8)

Thus, we have

o

~1/2 _ ( 1/2 @
al/ _(a/’Qal/z)'

Other examples are the trigonometric functions of a dual angle = (0,d),
given by

(D.9)

cos ) = (cos 0, —dsin6),

sin = (sin 9, d cos ),

A —d
tanf = (tanf, ————). D.10
an ( an 700529) ( )

These computations show that the set of dual numbers forms a commu-
tative ring that we can use to define dual vectors and dual matrices. The
result is dual vector algebra, which is used to manipulate the coordinates
of lines and screws.
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Appendix

Kinematics Equations

E.1 The Planar RR Chain

We now show how to use the kinematics equation of a planar RR chain to
obtain the relative displacement [T'(¢;;, P;;)] of the end-link as the com-
position of rotations about the fixed and moving pivots. The kinematics
equations of an RR chain define the displacement [D] of M relative to F
as the composition of local transformations

[D(e, B)] = [GN1Z(B)][X (a)][Z()][H]. (E.1)

The 3 x 3 matrices [Z(3)] and [Z(«)] define rotations about the z-axis and
[X(a)] is a pure translation along the z-axis. The transformations [G] and
[H| are displacements from F to the fixed pivot and from the moving pivot
to M.

Compute the relative displacement of the moving body M from position
7 to position j, given by

[Dij] = [D;][D;]
= [GNZ(BHIX (@) Z () HIH [ Z (i) Y[ X (@) [Z2(8) G-
(E.2)

Define the relative angles a;; = a; — a; and 3;; = 8; — ; and introduce
the identity displacement [I] = [Z(3;)"][G™Y[G][Z(8;)] in this equation
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to obtain

[Dij] = ([GNZ(B)IG) ((GNZ (B X (@)][Z (i) X (@) ~H[Z(8:)~1IG™H)
= [T(ﬂijaG)HT(aijvwi)]v (E'?’)

where

[T(8:5, &) = [GIlZ(Bip))G,
[T (i, Wi)] = [GZ(BX ()][Z(cip)][X (a)[Z(8:) NG (B4

We now show that the transformations [T'(8;;, G)] and [T(ayj, W*)] are
rotations about the respective poles G and W*. First notice that

G =[Gk and W'=[G][Z(8)][X(a)lk, (E.5)

where k = (0,0,1)7 is the homogeneous coordinates of the origin of F.
We now show that the pole of the displacement [D][A][D~'], where [A]
is a rotation matrix and [D] = [B,b] is a general planar displacement, is

[D]k = b. The composition of displacements [D][A][D~!] becomes
[D)[A][D™'] = [B, b][A, 0][BT, —B"b]
= [BABT,[I — BABT]b] = [A,[I — A]b]. (E.6)
The equality of the rotation matrices [B][A][BT] = [A] results from the
addition of planar rotations. This is the definition of a planar displacement
in terms of its pole.
Thus, equation (E.3), which equates the relative displacement of the
floating link of an RR dyad to the composition of rotations about its fixed
and moving axes, is the transformation equation associated with the planar

dyad triangle.
A similar derivation yields the equation

[Diz] = [T 0z, WHT(B5, G)], (E.7)
where

[T'(8:5,G)] = |G
[T(Oéij, W])] = [G

[T(B:IIG], (E.8)
[Z(B)[X (@)][Z ()] [X (@) ")[Z(8) ]G] (E.9)

Invert equation (E.1) of an RR dyad to obtain the position of the fixed
frame relative to the moving frame

[D(e, )1 = [H[Z(0) ][X (a)1[Z(8) NG (E.10)

For the pair of positions M and My, of the moving body, we have the
inverse relative displacements [7; k] [T '][T3], where

(DL = [H7[Z (o) M[X (a)1)[2(8k) G GIZ(B:)]1X ()][Z (0)][H].
(E.11)

]
]
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An analysis identical to that discussed above for RR dyads yields the
equation

(D} = [T (— i, W (~Bik, &) = [T(—Bik, 8T (—cvi, w)].  (E.12)

The transformation [T'(—a;k, w)] is a displacement with the moving pivot

w in M as its pole. Similarly, [T(—B;,g")] is a displacement with pole g,

that is, the point in M corresponding to the fixed pivot in the ¢th position.
We now compute [D7,] using the first equation in (E.12),

[D2] = [T (— vk, WT(— Bjw, 8T} - (E.13)

This transformation [T3][T (-, w)][Tj_l] changes the coordinates of the
moving pivot w to WY. Similarly, [T}][T(—B;x,g")][T; '] transforms the
point g* in M to G' in F', so we have

(D] = [T (=, WH)][T(~Bik, GY)). (E.14)

E.2 The Spherical RR Chain

The kinematics equation of a spherical RR chain can be used to derive
the relative rotation [R(¢;j, Sij)] of the end-link M as the composition of
rotations about the fixed and moving axes of the chain. The kinematics
equations define the orientation [R] of M relative to F' as the product of
local transformations

[R(e, B)] = [G]IZ(B)[ X (p)][Z ()] H], (E.15)

where [Z(03)] and [Z(«)] are coordinate rotations about z-axis, and [X (p)]
is the coordinate rotation around the z-axis. The rotations [G] and [H] are
transformations from F' to the fixed axis G and from the moving axis W
to M, respectively.

The relative rotation [R;;] of M from orientation M; to M, is given by

[Ri;] = [R;][R]]

= [GNIZ(BNX ([ Z()HIHTZ () TNX ()11 Z(8:)TNGT].
(E.16)

Define the relative angles o;; = o — o; and 3;; = 3; — 3;, and introduce
the identity [I] = [Z(8:)T][GT][G][Z(B;)] to obtain

[Rij] = ([GQNZBHCT]) ((GNZ(BIX (0)][Z (i) X (0) TN Z(8:)TNIGT])
= [A(8i5, G)][A(ci;, WY)], (E.17)
where
[A(Bi5, G)] = (G Z(B:)][GT)
[A(vij, W] = [GNIZ(BNIX (0)[Z(i))IX (0)TNZ(8)TNGT). (E.18)
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We now show that [A(8i;, G)] and [A(e;;, W*)] are rotations about poles
G and W', respectively. First notice that

G =[Gk and W'=[GZ(B)X(p)]E; (E.19)

where k = (0,0,1)T. In light of these relations, all we have to show is that
the rotation matrix [B][A][BT] has [B]S as its rotation axis if the rotation
[A] has the rotation axis S. To see this, simply check the definition

[BABT —I1||B]S = [BA— B|S = [B][A—I]S = 0. (E.20)

The last equality results because S is the rotation axis of [A].
Thus, (E.18) equates the relative rotation to the composition of rotations
about the fixed and moving axes and defines the spherical dyad triangle.
A similar derivation yields the equivalent relation

[Rij] = [A(ei;, W[A(Biz, G, (E.21)
where
[A(8:5, G)] = [G)[Z2(8;;))[GT],
(A, W] = [GIZ(BHX (p)][Z(ip)IIX (0)T][Z(8)TNIGT). (B.22)
Now consider the inverse relative rotation [Rjk] = [RT][R;] for the

spherical RR chain, given by

[RY) = [HT[Z(an)T1[X (0) 112 (8) TIGT]IG)Z(8)] [ X (p)][Z(az')][g]é )
An analysis identical to that discussed above yields the identities |

[Rjk] = [A(—aik,w)][A(—ﬂik,gi)] = [A(—ﬁz‘k,gk)][A(—aimW)]- (E.24)

The rotation [A(—a;, w)] has the moving axis w in M as its rotation axis.
Similarly, [A(—Bik, g*)] has as its rotation axis g’, which is the fixed axis
for the dyad in the ith position of M.

Transform these equations to F' with M in position M; to define

(R, = [R][A(~ v, W)][A(~ Bk, g)][RT). (E.25)

The transformation [R;][A(—auk, w)][R]] changes the coordinates of the
moving pivot w to W7, Similarly, [R;j][A(—Bik, g")][RT] transforms the
point g* in M to G’ in F, so we have

[R],] = [A(—air, W))][A(=Bix, G")]. (E.26)

E.3 The CC Chain

Here we show that the kinematics equations of the CC chain can be used
to define the relative transformation [D;;] as the composition of screw dis-
placements about the fixed and moving axes of the chain. The kinematics
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equation equates the spatial displacement [D] of the moving body M to
the sequence of relative displacements along the chain,

(D&, §)] = [GlIZ(BNIX (P Z(a))[H), (E.27)
where [Z(8)] and [Z(&)] are the coordinate screw displacements about the
fixed and moving axes, and [ X (p)] is a screw displacement along the crank.

The relative transformation [D;,] of M as it moves from position M; to
M; is given by
[Dij] = [D;][D; 7]

= [QNZBNX(PNZ( @) H]H M[Z (&)X (p)1Z(8) MG ).
(E.28)

We simplify this expression by defining &;; = &; — &;, and introduce the
identity [I] = [Z(3) 1[G~ Y[G][Z(53:)] = I to obtain
[Dij] = (G Z(Bip)) G (1ZBNIX (B)][Z (63X (5)11[Z(B:) G 1])
= [T(Bij, G)[T (A5, W], (E-29)
where
[T(Bi5,G)] = [G)[Z(Biy)IG™),
(T (&5, W] = [GIIZ(B)][X (p))[Z(as)) X (9)) ' [Z(8:) G, (E.30)
We now show that the transformations [T(Bij, G)] and [T(&s5, W*)] are
screw displacements about the axes G and W* measured in F'. To see this,

consider k to be the screw along the z-axis of the fixed frame. Then G and
W?* are obtained from the screw transformations

G=[Gk and W' =[G]IZ(5:)]IX(p)]k. (E.31)

Notice that the screw transformation [B][A][B~1] has the screw axis [B]S,
because

[BAB™! — I[B]S = [BA — B]S = [B][A—I]S = 0. (E.32)

The last equality arises because S is the screw axis of [A].

Therefore, we can conclude that (F.30) is the matrix transformation
associated with the spatial dyad triangle.

A similar derivation yields the equation

[Dij] = [T(65, W] [T (Bi5, G)], (E.33)

where

T8, 6)] = [GlIZ(Biy)IG,
[T(éij, W)

A

GIZBNX (D) Z(a:)][X () NZ(6;) G (E.34)
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mechanical hands, 266
mechanism, 1
Merlet, J. P., 266, 274
Meyer zur Capellen, W., 187
mobility, 3
generic, 3
planar linkages, 4
platform linkages, 7
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spatial linkages, 6
spherical linkages, 5
model linkage, 132
Modler, K. H., 67
motion generation, 8
motion screw, 269
moving axis, 165, 245, 254
moving pivot, 53, 87, 241, 242

Murray’s compatibility platform

theorem, 253
Murray, A.P., 46, 138, 264
Murray, R. M., 268, 270

nonholonomic constraint, 3
Notash, L., 267

offset, 18
extreme values, 260
in a two-system, 259
Oldham’s coupling, 46
open chain, 3
opposite-pole pair, 59

opposite-pole quadrilateral, 59, 96

orientation, 143
orthocenter, 63, 85
orthogonal matrix, 71, 142
overconstrained linkage, 3

P-joint, 2
parallel manipulators, 266
Paul, R.P., 46
Pennock, G.R., 238
Perez, M. A., 264
perpendicular bisector, 77
planar, 77, 87
screw, 228
spatial, 147, 166, 241
Phillips, J., 269, 283
pitch, 221, 258
extreme values, 259
in a two-system, 259
infinite, 280
Pliicker coordinates, 219, 220
transformation, 226
Pliicker vector, 213
planar joint, 2
platform manipulators, 266
point-path generation, 8
pole curve, 68
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pole of a composite displacement, 79

pole triangle, 51
circumscribing circle, 84
image, 82
planar, 79
relative, 82
spherical, 154
spherical image, 158
spherical relative, 158

PR planar open chain
design equations, 104

four positions, 107
three positions, 106
two positions, 106
geometry, 61
position analysis, 14

principal axes, 259

principal screws, 260

prismatic joint, 2

Pythagorean theorem, 69

quaternion, 157
conjugate, 157
dual, 236
norm, 157
product, 157
unit, 157

quick return, 22

R-joint, 2
Radcliffe, C. W., 67, 187, 214, 264
rate of work done, 270
Ravani, B., 114
reciprocal screw theorem, 273
reciprocal screws, 270
rectification
planar, 109
spherical, 184
redundant degrees of freedom, 8
reflections, 142
Reinholtz, C.F., 46
relative displacement
planar, 74
spatial, 217
relative inverse displacement
image, 75, 218
planar, 75
spatial, 217
relative inverse rotation, 145

relative rotation, 144
Reuleaux, F., 11
revolute joint, 2, 86, 162
Robert’s linkage, 9
robot manipulator, 193
rocker-crank linkage
planar, 33, 34
spherical, 131
Rodrigues’s equation, 149, 150
for screws, 231
planar, 78
Rodrigues’s formula
for rotation axes, 155, 158
for screw axes, 233, 235
Rodrigues’s vector, 147
rotation, 142
planar, 48, 70
spatial, 141
rotation angle, 71, 148
rotation axis, 146
construction, 148
image, 153
instantaneous, 134, 136
relative, 152
relative inverse, 153
rotation matrix, 216
change of coordinates, 144, 151
composition, 143
eigenvalue, 151
inverse, 150
planar, 71
spatial, 141
Roth’s theorem, 250
Roth, B., 9, 67, 84, 114, 160, 176,
187, 238, 257, 264
RP planar open chain
design equations, 108
geometry, 61
RPR open chain, 17
RR planar open chain
centrode, 38
design equations, 90
five positions, 101
four positions, 95
parameterized, 92
three positions, 93
two positions, 92
geometry, 53, 87
Jacobian, 37



position analysis, 16
velocity analysis, 37
RR spatial open chain
constraint equations, 254
design equations, 257
dyad triangle, 255
geometry, 254
RR spherical open chain
design equations, 166, 170
five orientations, 180
four orientations, 175
parameterized, 172
three orientations, 173
two orientations, 172
geometry, 165
position analysis, 118
velocity analysis, 134
RRPR planar closed chain
position analysis, 22
RRRP planar closed chain
as an RSSP, 206
classification, 20
design, 66
mechanical advantage, 40
position analysis, 18
range of movement, 19
velocity analysis, 39
RS open chain
design equations, 243
position analysis, 195
RSSP spatial closed chain
position analysis, 206
sinusoidal, 207
symmetric, 207
RSSR spatial closed chain
position analysis, 203
Ruth, D. A., 114, 187

S-joint, 2
Salisbury, J. K., 283
Salmon, G., 267
Sandor, G.N., 46, 67, 84, 114
Schoenflies, A., 67
Scotch yoke, 46
screw, 219, 220
axis, 222
axis of, 220
components, 223
magnitude, 221

Index 317

pitch, 221
reciprocal, 224
unit, 222
screw axis, 218, 227
construction, 230
screw displacement, 218, 219
screw matrix, 219
screw transformation, 226
screw triangle, 232
relative, 237
Shigley, J. E., 46
singular configurations, 213, 272
platform manipulators, 274
serial chains, 282
type-1, 275
type-2, 275
type-3, 276
type-4, 279
type-5, 281
skew-symmetric matrix, 147
slider-crank, 18
inverted, 22
slider-point theorem, 62, 107
Song, S. M., 114, 283
Soni, A.H., 11
spatial triangle, 233, 235, 236
spherical cosine law, 119, 125, 292,
294
spherical dyad triangle, 166
spherical image pole triangle, 159
spherical pole triangle, 158
spherical sine law, 119, 292, 294
spherical sine—cosine law, 119, 292,
294
spherical triangle, 155, 157
spherical trigonometry, 291
Sreenath, N., 46
Stewart platform, 272
Stewart, D., 283
straight-line linkages, 9
Su, H.J., 213
Suh, C.H., 67, 187, 214, 264

T-joint, 2
tan-half-angle technique, 285
task, 8
orientations, 170
positions, 2, 55, 90, 240
three-circle diagram, 111
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time ratio, 22 Waldron, K. J., 3, 46, 111, 114, 283

torque ratio walking machines, 266
planar 4R, 45 Wampler, C.W., 9
spherical 4R, 138 Watt’s linkage, 9

TPS open chain, 197 Woo, L., 238

trajectory Woods, F.S., 267, 281
planar, 35 workspace, 8, 118
spatial, 200 workspace of a linkage, 8
spherical, 133 wrench, 267, 269

transfer principle, 248

translation Yang, A.T., 236, 238
planar, 48, 70 Yang, R., 46
spatial, 141 Yu, H.C., 260

translation vector, 216

transmission angle zero-pitch screws, 221

planar 4R, 26, 35
spherical 4R, 125
tricircular sextic, 47
trigonometric solution, 285
TRS open chain, 197
TS open chain
design equations, 242
four positions, 243
seven positions, 243
geometry, 240
position analysis, 196
Tsai, L. W., 138, 214, 257, 264, 270
twist, 201, 267, 268
partial, 201, 268
two-system, 258, 279
principal screws, 260

Uicker, J. J., 46

universal joint, 2

velocity analysis
in the plane, 35
planar 4R, 41
planar RR, 37
planar slider-crank, 39
spatial open chains, 200
spherical 4R, 134
spherical RR, 134
virtual displacement, 40, 137
virtual work, 35, 40, 137, 270, 271

Waldron’s construction
planar, 111
spherical, 184
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