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To Fortunato Pesarin

WHO SAID CAN’T?
Someone is always doing something someone
else said was impossible.
TRY TRYING.

Unknown





Preface

The statistical community has shown an increased interest in shape analysis in the
last decade, in particular with reference to the development of robust inferential
statistical methods. In this book we present an extension of NonParametric Com-
bination (NPC) methodology (Pesarin, 2001; Pesarin and Salmaso, 2010) to shape
analysis. At first we introduce basic concepts and terms that will be used throughout
the book. In particular we provide a brief overview of statistical shape analysis
and geometric morphometric techniques, focussing on landmark and semilandmark-
based representations of shapes (Chap. 1). Then we face with inferential aspects
in the field of shape analysis. In particular, we review inferential methods known
in the shape analysis literature, highlighting some drawbacks of using Hotelling’s
T 2 test statistic, and we introduce NPC methodology for the analysis of shape
configurations. Multiple Aspect (MA) procedures and domain combinations are also
illustrated (Chap. 2). The case of heterogeneous variation and nonzero correlation
among landmarks is also investigated, along with the effects of superimposition on
the power of NPC tests (Chap. 3). Permutation tests have been evaluated also in
the particular case in which the number of variables is larger than the cardinality
of permutation sample space. We have performed a simulation study to evaluate
the power of multivariate NPC tests, showing that the power for the proposed tests
increases when increasing the number of the processed variables provided that the
noncentrality parameter increases, even when the number of covariates is larger than
the permutation sample space (Chap. 4).
These preliminary results allowed us to extend the notion of finite-sample consis-
tency for permutation tests combination-based to the shape analysis field. Sufficient
conditions are given in order that the rejection rate converges to one, for fixed sample
sizes at any attainable α-value, when the number of variables diverges, provided that
the noncentrality induced by test statistics also diverges (Chap. 5).
The last chapter is mainly devoted to practical applications. In particular we present
an application concerning the facial expression of emotion along with a case study
aimed at analyzing aortic valve morphology. Moreover we also introduce two
innovative topics: biometric morphing and nonparametric iterated combination for
paired data (Chap. 6).
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Chapter 1
A Brief Overview on Statistical Shape Analysis

“We have the duty of formulating, of summarizing, and of
communicating our conclusions, in intelligible form, in
recognition of the right of other free minds to utilize them in
making their own decisions”.

Statistical methods and scientific induction. Journal of the Royal
Statistical Society, B, 17, 69–78, 1955.

R.A. Fisher

Abstract In this chapter we introduce the basic concepts and terms that will be
used throughout the book. In particular we provide a brief overview of statistical
shape analysis and geometric morphometric techniques, focussing on landmark
and semilandmark-based representations of shapes.
Shape is described as the geometric property of an object invariant under rotation,
scale, or translation. Morphometric is a new promising branch of statistics that
integrates knowledge from mathematics, geometry, biometrics, computer science,
and modern engineering (essential especially for complicated three-dimensional
object) to study shape and size of objects, along with their covariations with other
variables. In this context the shape of an object is considered as a whole, align
with the interdependence of its parts and conclusions are drawn under conditions of
uncertainty. Geometric morphometrics is a more recent area of morphometrics that,
by means of statistical tools, analyzes geometric information of objects, focusing on
exactly where points or parts of the organism are located with respect to each other.
To illustrate how landmarks and semilandmarks are chosen and then classified in
real applications, we propose two case studies.

Keywords Landmark-based analysis • Geometric morphometrics • Multivariate
morphometrics • Procrustes analysis • Semilandmarks • Statistical shape analysis

C. Brombin and L. Salmaso, Permutation Tests in Shape Analysis,
SpringerBriefs in Statistics 15, DOI 10.1007/978-1-4614-8163-8 1,
© Springer Science+Business Media New York 2013
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2 1 A Brief Overview on Statistical Shape Analysis

1.1 Some Historical Notes

Statistical shape analysis may be considered a cross-disciplinary field characterized
by flexible theory and techniques: specific applications may be found in archeology,
architecture, biology, geography, geology, agriculture, genetics, medical imaging,
neuroanatomical research, security applications such as face recognition, entertain-
ment industry (movies, games), computer-aided design, and manufacturing, and so
on. The range of applications of shape analysis is enormous.
Statistical shape analysis offers a mathematical quantification of shape. It relates
to the study of random objects, where the concept of shape corresponds to some
geometrical information that is invariant under translation, rotation, and scale effects
(Small 1996). In everyday language, shape refers to the external form or appearance
characteristic of an object or the outline of an area/figure.
An intuitive definition of shape is given by Kendall (1977).

Definition Shape is all the geometrical information that remains when location,
scale, and rotational effects are filtered out from an object.

Hence two objects have the same shape if they are invariant under the Euclidean
similarity transformations of translation, scaling, and rotation (Dryden and Mardia
1998). The pioneers in the field of shape analysis are Kendall (1977, 1984, 1989)
and Bookstein (1978, 1986, 1989, 1991). In 1977, Kendall published a brief note
in which he introduced a new representation of shapes as elements of complex
projective spaces. But at that time, applied statisticians found difficult to appreciate
the practical utility of his result. Full details of Kendall’s theory of shape were finally
given in 1984. Showing also potential areas of research and applications, this work
fascinated both probabilists and statisticians.
Mardia et al. (1977) investigated the distribution of the shapes of triangles generated
by certain processes, and in particular considered whether towns in a plain are
spread regularly with equal distances between neighboring towns. Dryden and
Mardia’s interests in statistical shape analysis began in 1986, when they start
collaborating with Paul O’Higgins and David Johnson (Department of Anatomy at
the University of Leeds, UK) for the analysis of the shape of some mouse vertebrae
(Dryden and Mardia 1998).
In 1986, Kendall was invited to be a discussant for an inspiring article by Bookstein
in the journal of Statistical Science, then published in Volume 1 (Bookstein
1986). At that time, it was natural to perceive the close connection between the
mathematical work in shape theory from Kendall landmark paper (Kendall 1984)
and the practical application proposed in Bookstein’s paper.
Kendall and Bookstein developed their theories independently, but they came to
the same conclusion about the possibility of representing spaces on manifolds
independently. Even if they had the same intuition, their proposals were innovative
and unique in both theoretical aspects and practical applications. On one hand,
Kendall represented the shapes of triangles in the plain as points on a sphere, i.e.,
a shape of positive curvature, he focussed on the differential geometry of shape
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analysis and his main applications were in archeology and astronomy. On the
other hand, Bookstein suggested to represent the shapes of triangles as points on
a Poincarè half plane, i.e., a space of negative curvature; his main interests were
in biological and medical sciences and drew on the tradition of researchers such as
D’Arcy Thompson (1961), Julian Huxley (1932), and later researchers in allometry
and multivariate morphometrics (Small 1996).
Moreover, while Kendall studied the shapes of random sets of points (as gen-
erated by a Poisson process), Bookstein focused on points called landmark, i.e.,
biologically active sites on organisms.
Some references and reviews include Goodall (1991), Le and Kendall (1993), Kent
(1994), Kent (1995), Dryden and Mardia (1993), Small (1988), Stoyan et al. (1995),
Stoyan and Stoyan (1994), and Mardia (1995). Recent books on the topic are Small
(1996), Mardia and Dryden (1989), Bookstein (1991), Lele and Richtsmeier (2001),
Slice (2005), and Weber and Bookstein (2011).

1.2 How to Describe Shapes

A substantial role in shape analysis research has been played by shape analysis
based on landmark data, where shapes are represented by a discrete sampling of the
object contours (Dryden and Mardia 1998; Small 1996). Hence landmarks provide
one way of sampling form, they are distinguishable equivalent points on the objects
under study, i.e., they are positioned in some way equivalent on all specimens.
Bookstein and his colleagues recommended the use of landmarks for the analysis
of biological features and constrains the choice of landmarks to prominent features
of the organism or biological structure (Dryden and Mardia 1998). Hence these
points were biologically active sites on organisms and defined in Dryden and Mardia
(1998) as follows:

Definition A landmark is a point of correspondence on each object that matches
between and within population.

These loci have the same name, i.e., they are homologues, as well as Cartesian
coordinates, and correspond in some sensible way over the forms of a data set.
We recall that in geometric morphometrics the term homologous has no meaning
other than the same name is used for corresponding parts in different species
or developmental stages (Slice et al. 1996). Moreover these points represent a
foundation for the explanations of the biological processes, and still nowadays many
of the explanations of form accepted as epigenetically valid adduce deformations of
the locations of landmarks (Bookstein 1986).
Srivastava et al. (2005) emphasized some limitations of the landmark-based
representations. Despite the effectiveness of this approach in the applications where
landmarks are readily available (e.g., physician-assisted medical image analysis),
automatic detection of landmarks is not straightforward and the resulting shape
analysis is extremely determined by the choice of landmarks. In addition, shape
interpolation with geodesics in this framework lacks a physical interpretation.
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Landmarks could be basically classified into three groups: anatomical, mathemati-
cal, and pseudo-landmarks.

• An anatomical landmark is a point assigned by an expert that corresponds
between organisms in some biologically meaningful way, e.g., the corner of an
eye or the meeting of two sutures on a skull.

• Mathematical landmarks are points located on an object according to some
mathematical or geometrical property of the figure, e.g., at a point of high
curvature or at an extreme point. Mathematical landmarks are particularly useful
in automatic recognition and analysis.

• Pseudo-landmarks are constructed points on an organism, located either around
the outline or in between anatomical or mathematical landmarks. Continuous
curves can be approximated by a large number of pseudo-landmarks along the
curve. Also, pseudo-landmarks are useful in matching surfaces, when points can
be located on a regular grid over each surface.

Furthermore they could be grouped into three further types, as described in Dryden
and Mardia (1998).

• Type I landmarks (usually the easiest and the most reliable to locate) are
mathematical points whose homology from case to case is supported by the
strongest (local) evidence, such as meeting of structures or tissues or a small
patch of some unusual histology. Type III landmarks have at least one deficient
coordinate (which means that they can be reliably located to an outline or surface
but not at a specific location, e.g., tip of a rounded bump).

• Type II landmarks are defined by local properties such as maximal curvatures,
i.e., they are mathematical point whose homology is strengthened only by
geometric, not histological, evidence: for instance, the sharpest curvature of
a tooth. Actually this type of landmarks include landmarks which are not
homologous in a developmental or evolutionary sense but which are equivalent
functionally such as wing tips.

• Type III landmarks are the most difficult and the least reliable to locate. They have
at least one deficient coordinate (i.e., they can be reliably located to an outline
or surface but not at a specific location, e.g., tip of a rounded bump) and they
occur at extremal points or constructed landmarks (e.g., maximal diameters and
centroids). They characterize more than one region of the form and they could
be treated by geometric morphometrics as landmark points, even if they could be
tricky because of the deficiency they embody.

Anatomical landmarks are usually of type I or II and mathematical landmarks are
usually of type II or III. Pseudo-landmarks are commonly taken as equi-spaced
along outlines between pairs of landmarks of type I or II, and in this case the
pseudo-landmarks are type III landmarks.
Landmark coordinates, or measurements derived from them, support and are
fundamental in many studies since they record equivalences or homologies. De-
ciding which and how many landmarks to analyze is crucial: several aspects should
be taken into account. First of all, by definition, landmarks must be homologous
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loci identifiable on each specimen in the study. Then, configurations of landmark
should provide an adequate summary of morphology since, within the geometric
framework, landmarks represent the unique data in any analysis. When research
interest is the study of curves or perimeters of structures on an organism, then
semilandmarks points should be collected. Actually these points are located on a
curve and allowed to slip a small distance with respect to another corresponding
curve. The term “semi” is used because the landmarks lie in a lower number of
dimensions than other types of landmarks, e.g., along a one-dimensional curve in
a two-dimensional image (Dryden and Mardia 1998). Semilandmarks are defined
in relation to other landmarks, for example “midway between landmarks 1 and
2.” Indeed they have no anatomical identifiers but remain corresponding points in
a sense satisfactory for subsequent morphometric interpretation (Bookstein 1997).
Hence these loci fail to be true landmarks in the fact that they do not enjoy homology
property, as previously defined, since they lie on homologous curves while their
exact position along these usually smooth regions or curves is unclear.
Defining semilandmarks could be useful to study substantial regions in a object that
cannot be defined simply using anatomical or mathematical landmarks, or a region
comprises between two or more real landmark points (Adams et al. 2004).
On the basis of these considerations, Katina et al. (2007) proposed another landmark
classification, including the information carried by semilandmarks on curves and
surfaces. In particular it is possible to define the following landmark types:

Type 1: discrete juxtaposition of tissues;
Type 2: extreme of curvature characterizing a single structure;
Type 3: landmark points characterized locally by information from multiple
curves and surfaces and by symmetry:

– Type 3a: intersection of a ridge curve and the midcurve on the same surface;
– Type 3b: intersection of an observed curve and the midcurve;
– Type 3c: intersection of a ridge curve and an observed curve on the same

surface;

Type 4: semilandmarks on ridge curves and symmetric curve (midsagittal curve);
Type 5: semilandmarks on surfaces;
Type 6: constructed semilandmarks.

To provide a reliable analysis, landmarks points should be consistently located and
reproduced with a high degree of accuracy. Moreover, they should have conserved
topological positions relative to other landmarks.
Two-dimensional landmark coordinates can be easily obtained from a digital image
of a specimen using free image processing softwares such as tpsDig (Rohlf 2007),
ImageJ, or Scion Image (Rasband 1997–2012; Schneider et al. 2012). Of course,
image quality and the quality of the final data are strongly related. Reliable landmark
data are unlikely to be obtained from a poor-contrast, out-of-focus photograph of
a specimen. The quality of the specimen and/or photograph should be enhanced
(e.g., cleaning, whitening, careful mounting, and illumination) prior to digitizing
the landmarks.
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However, progresses in landmark acquisition have been made. Modern imaging
techniques such as laser scanning, MRI, and the introduction of three-dimensional
(3D) reconstruction in CT technology have revolutionized the way landmark
coordinates are obtained from computer-generated images using software probes
(Spoor et al. 2000). Advances in software and hardware are also making possible
lightweight stereophotogrammetric devices using digital cameras directly linked
to portable computers (O’Higgins 2000). In order to illustrate how landmarks
and semilandmarks are chosen and then classified in real applications, we briefly
introduce our case studies on monk seal skulls and on emotion recognition through
facial expression (see Chap. 6 for more information and results).

1.2.1 Monk Seal Skulls Study

Data at hand consist of 17 Mediterranean monk seal (Monachus monachus) skulls
and information about sex and age class category have been collected by fellows
of the Department of Experimental Veterinary Sciences of the University of Padova
(Mo 2005). In particular 4 seals are male and 5 are female, while for 8 of them we
do not have information about sex. Left-lateral, frontal, posterior, dorsal, and ventral
views of the skull are also available for each subject.
Further analysis of the full data set may be found in Brombin et al. (2009), Brombin
(2009), Brombin et al. (2008), Brombin and Salmaso (2009), Pesarin (2001), and
Pesarin and Salmaso (2010).
Figures 1.1 and 1.2 typify how landmarks data lie upon images. Here we wish to
show the design of the experiment performed to describe the shape of the monk seal
skulls. A description of the landmarks used in the design is given below.

Type 1:

– nasospinale (denoted by ns), a point where the midsagittal plane meets the
inferior inner rim of the nasal aperture;

– rhinion (denoted by rhi), midline point at the inferior free end of the internasal
suture;

– nasion (denoted by n), midline point where the two nasal bones and the frontal
intersect;

– maxillonasofrontale (nasomaxilla, denoted by mnf ), a point on the crossing of
frontonasal, frontomaxillare, nasomaxillare sutures;

Type 2:

– jugale (denoted by ju), point in the depth of the notch between the temporal
and frontal process of the zygomatic;

– mastoideale (denoted by ms), most inferior point on the mastoid process;
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Fig. 1.1 Left-lateral view (Legend: Type 1 (green dot), Type 2 (red dot), Type 3 (blue dot), Type 4
(magenta dot), Type 5 (cyan dot), Type 6 (orange dot), unknown Type (light-gray dot), nasal curve
(blue curve), midsagittal curve (red curve), zygomatic curve (black curve))

Fig. 1.2 Frontal view (Legend: Type 1 (green dot), Type 2 (red dot), Type 3 (blue dot) Type 4
(magenta dot), unknown Type (light-gray dot), nasal curve (blue curve), zygomatic curve (black
curve), part of orbital curve (green curve))
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Type 3:

– prosthion (denoted by pr), point on the maxillary bone where the midsagittal
plane meets a tangent that goes through the alveolar margins of the central
incisors;

– maxillofrontale (denoted by mf ), point where the anterior lacrimal crest of the
maxilla meets the frontomaxillary suture;

Type 4:

– bregma (denoted by b), the juncture of the coronal and sagittal sutures in
the median sagittal plane; should an ossicle be present, the landmark can be
located by drawing in pencil a continuation of the sutures until these lines
intersect;

– canine base (denoted by cb), most mesial point on the outer alveolar margin
of the canine;

– superior zygomaticum (upper zygomatic, denoted by uz), most superior point
on the suture that separates zygomatic and parietal bone;

– zygomaxillare (denoted by zm), most inferior point on the zygomaticomaxillary
suture;

– zygoorbitale (denoted by zo); point where the orbital rim intersects the
zygomaticomaxillary suture;

Type 5:

– zygion (denoted by zy), most inferior point on the suture that separates
zygomatic and parietal bone;

Type 6:

– auriculare (denoted by au), point vertically above the center of the external
auditory meatus at the root of the zygomatic process.

In the left-lateral view we have chosen 5 midplane landmarks and 7 bilateral
landmarks (see Table 1.1 and Fig. 1.1).
In the frontal view we have chosen 4 midplane landmarks and 8 bilateral landmarks.
Landmarks marked by gray bullets have not been classified, in particular canine
tip (ct) landmark point could be defined as Type 5, but it is difficult to classify
univocally. In Fig. 1.1 we show the landmarks and the curves we have chosen. The
gray bullet refers to an undefined landmark type.
Similar arguments could be applied to orbital process (op) landmark point, where op
can be defined as orbital spine on the orbital process of the maxillary bone (Fig. 1.2).

1.2.2 Example of Principal Facial Landmarks

Standard anthropometric anatomical landmarks, i.e., landmarks on the skull from
which craniometric measurements can be taken, are shown in Fig. 1.3a, b. Most of
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these landmarks are frequently used in plastic and reconstructive surgery. Pictures
reproduced below derived from a rhinoseptoplasty case study, in which 14 patients
were evaluated before and after surgery. Results of this case study are published
elsewhere in Brombin et al. (2011).

Table 1.1 Anatomical
landmarks Midsagittal

Prosthion, pr
Nasospinale, ns
Rhinion, rhi
Nasion, n
Bregma, b

Bilateral
Canine base, cb
Canine tip, ct
Maxillonasofrontale (Nasomaxilla), mnf
Maxillofrontale, mf
Orbital process, op
Zygoorbitale, zo
Zygomaxillare, zm
Jugale, ju
Superior zygomatic (Upper zygomatic), uz
Zygion, zy
Auriculare, au
Mastoideale, ms

Fig. 1.3 Principal facial landmarks: frontal (a) and right-lateral views (b)
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All the analyzed patients gave their informed consent to participate in the
experiment (included the photographic documentation only for scientific purposes).
Nowadays, anthropometric analysis and surgical practice intersected at the point to
treat congenital or posttraumatic facial disfigurements in various racial or ethnic
groups successfully (Farkas 1994; Farkas et al. 2005).
While anthropometric analysis of nose allows to provide data which should
contribute to satisfactory results of the cosmetic nasal surgery (Etöz 2011),
landmark-based geometric morphometric techniques represent a powerful tool
to analyze nasal shapes in any population.

Midsagittal landmarks

Name of landmark Description of landmark

Glabella The most prominent part in the midline between the brows
Nasion The midpoint of the nasofrontal suture
Subnasale The junction between the lower border of the nasal septum,

the partition that divides the nostrils, and the cutaneous portion
of the upper lip in the midline

Labiale superius The midpoint of the vermilion border of the upper lip
Labiale inferius The midpoint of the vermillion border of the lower lip
Gnathion The lowest point in the midline on the lower border of the chin
Pogonion The craniometric point that is the most forward-projecting

point on the anterior surface of the chin
Menton The most inferior point of the chin

Bilateral landmarks

Name of landmark Description of landmark
Endocanthion The inner corner of the eye fissure where the eyelids meet,

not the caruncles (the red eminences at the medial angles of the eyes)
Exocanthion The outer corner of the eye fissure where the eyelids meet
Tragion The point located at the notch just above the tragus of the ear

This point corresponds approximately to the upper edge of the ear hole
Alare The most lateral point on the nasal ala
Gonion The most lateral point at the angle of the mandible

1.3 Multivariate Morphometrics

Morphometrics is the study of shape variation and its covariation with other variable
and it represents an integral part of organismal biology (Adams 1999). Or again,
following the definition given in Bookstein (1991), morphometrics is the exploration
of the relationship between extrinsic (e.g. geography, species, sex, etc.) and intrinsic
(e.g. growth) factors, and patterns of form variation. It also concerns itself with the
localization and characterization of such form differences. Its goal is the objective
description of the changes in the form of an organism—its shape and size—during
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ontogeny or during the course of evolution (Bookstein 1986). This description is an
abstract representation (e.g., configuration of sets of landmarks) of the specimens
under study. As a consequence, different representations of specimens are therefore
to be expected to generate results that differ to some degree (O’Higgins 2000).
Database of landmark locations are usually processed using techniques such as
multivariate morphometrics and deformation analysis. Actually one can evaluate
configurations of landmark points by means of variables expressing aspects of size
or shape of single specimens, like distances or ratios of distances, or can directly
measure the relation between one form and another as a deformation (Dryden and
Mardia 1998). Both strategies represent useful tools to examine group differences
in size and shape or between size change and shape change (Bookstein 1986). With
reference to multivariate morphometrics, this approach is often applied without
regard for homology, i.e., it does not require that size or shape measures derive
from the locations of homologous landmarks. As a consequence, the homology
of linear distances is difficult to assess, because many distances (e.g., maximum
width) are not defined by homologous points. The large amount of measure-
ments obtained through this method is analyzed in the conventional multivariate
statistical analysis—canonical variates analysis, principal components analysis,
factor analysis, linear modeling, discriminatory analysis, component extraction—
and any findings are interpreted coefficient by coefficient. In classic morphometric
analysis, measurements are taken in such a way that the geometry of the full
landmark configuration is lost. Moreover visualizing results through graphical
representations of shape is very demanding because the geometric relationships
among the variables (linear distances) are not preserved, thus loosing some aspects
of shape. Results seem to be more abstract/mathematical rather than pictorial and
anatomical.
To conclude these approaches provide precise mathematical descriptions of patterns
of covariance between collected variables, but they do not lead to readily inter-
pretable analyses of the size and shape differences under study (O’Higgins 2000).
Another approach consists in describing differences between sets of landmark
coordinates not in terms of absolute movements but in terms of deformations using
“transformation grids” (Thompson 1961): stretchings and contractions of space are
then illustrated.
Deformation analysis has been introduced into descriptive biology by Thompson
(1961) under the label of “Cartesian Transformation.” We recall the notion of
deformation as given in Dryden and Mardia (1998).

Definition A deformation is a mapping which takes neighbouring points to neigh-
bouring points and which alters lengths of little segments by factors which never
get too large or too small. It is an informal version of what the mathematician calls
a diffeomorphism, a one-to-one transformation which, along with its inverse, has a
derivative at every point of a region and its image.

Thompson (1961) suggested to observe directly a comparison of biological forms,
as a geometric object of measurement in its own right, rather than as the mere
numerical difference of measures made upon forms separately. In particular he
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proposed to represent the form change as a deformation of the picture plane
corresponding closely to what biologists already knew as homology: the smooth
mapping of one form onto the other sending landmarks onto their homologues and
interpolated suitably in between (Bookstein 1986).
But the field of morphometrics has lately experienced a revolution. Actually,
in the 1980s, various authors, among whom we mention Fred Bookstein and
James Rohlf, proposed to combine traditional multivariate morphometrics and
deformation analysis, calling this synthesis geometric morphometrics. This field
deals with methods for the analysis of configurations of landmarks in which their
full geometry is preserved throughout the analyses and which operate in a specific
shape space, Kendall’s shape space (Rohlf 1999; O’Higgins 2000).
The term “geometric” referred the geometry of Kendall’s shape space: the
estimation of mean shapes and the description of sample variation of shape using
the geometry of Procrustes distance. Multivariate morphometrics is usually carried
out in a linear tangent space to the non-Euclidean shape space in the vicinity of the
mean shape.
It could be defined as a collection of approaches for the multivariate statistical
analysis of Cartesian coordinate data, often limited to landmark point locations.
More directly it is described as the class of morphometric methods that capture
the geometry of the morphological structures of interest and preserve complete
information about the relative spatial arrangements of the data throughout the
analyses. As a consequence, results of high-dimensional multivariate analyses
can be mapped back into physical space to achieve appealing and informative
visualizations, contrary to alternative traditional methods (Slice 2005).
Geometric morphometric approaches represent a powerful and sophisticated tool
allowing to simultaneously visualize and statistically quantify differences in form.
Given the rigor of geometric morphometric approaches, the easiness of digitally
acquiring landmark data and the availability of free and user-friendly image
processing softwares, geometric morphometric studies are becoming more and
more frequent in the biological and biomedical literature.
The direct analysis of databases of landmark locations is not convenient because
of the presence of nuisance parameters, such as position, orientation, and size.
Once obtained the raw landmark data for a number of specimens, the next step
of any analysis is to translate and rotate the landmark configurations into a
common position and remove size differences between them. This operation is
called superimposition and facilitates comparison of configurations by removing
variation associated with differences in their location, orientation, and size. Such
differences are irrelevant in a comparison of configuration shape, as follows from
the definition of shape given by Kendall (1977).
Hence, to carry out a valuable statistical shape analysis, a generalized least-squares
superimposition (GLS or Generalized Procrustes Analysis, GPA) is performed
to eliminate non-shape variation in configurations of landmarks and to align the
specimens to a common coordinate system (Rohlf and Slice 1990). Along with
GPA, we mention another registration method, i.e., the two-point registration, that
provides Bookstein’s shape coordinates. The aligned specimens identify points
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in a non-Euclidean space, which is approximated by a Euclidean tangent space
for standard multivariate statistical analyses (Slice et al. 1996). With reference
to GPA superimposition method, at first, the centroid of each configuration is
translated to the origin, and configurations are scaled to a common unit size (by
dividing by centroid size, see Bookstein 1986). Finally, the configurations are
optimally rotated to minimize the squared differences between corresponding
landmarks (Gower 1975; Rohlf and Slice 1990). This is an iterative process and it
is useful to compute the mean shape, which is inestimable prior to superimposition.
Generalized resistant-fit (GRF) procedures, providing median and repeated median-
based estimates of fitting parameters rather than least-squares estimates, are also
available (Slice et al. 1996). In particular they are more efficient for revealing
differences between two objects when the major differences are mostly in the
relative positions of a few landmarks (Rohlf and Slice 1990). Even if they lack
the well-developed distributional theory associated with the least-squares fitting
techniques, being robust, these methods seem to be protected against departure
from the assumptions of the analysis (e.g., independent, identically, and normally
distributed errors) and seem to be unresponsive to the potentially strong influences
of atypical or incorrect data values (Siegel and Benson 1982).
In the presence of semilandmarks, a newsworthy method is that of “sliding
semilandmarks,” allowing outlines to be combined with landmark data in one
analysis, providing a richer description of the shapes. The iterative procedure
involves at first sliding the semilandmarks to the left or right along a curve during the
GPA superimposition in an attempt to minimize the distance between the adjusted
position and the corresponding point in the consensus or to reduce the overall
bending energy required to fit the specimens to the sample average configuration.
Computations are iterative and the algorithm provides smooth and interpretable
deformation grids among the forms. For details, see Bookstein (1997), Adams et al.
(2004), Slice et al. (1996), and TpsRelw soft4ware guide by Rohlf (2008).
After superimposition, differences in shape can be described either in terms of
differences in coordinates of corresponding landmarks between objects (Bookstein
1996) or in terms of differences in the deformation grids representing the objects,
e.g., using the thin-plate spline method (Bookstein 1991).
The thin-plate spline is a global interpolating function that maps the landmark
coordinates of one specimen to the coordinates of the landmarks in another
specimen and represent a mathematically rigorous realization of Thompson (1961)
idea of transformation grids, where one object is deformed or “warped” into another.
The parameters describing these deformations (partial warp scores) can be used as
shape variables for statistical comparisons of variation in shape within and between
populations (Adams 1999). As a result, the thin-plate splines can be interpreted as
one method of generating a coordinate system for tangent space mentioned above.
Along with the superimposition methods, several alternative procedures for
obtaining shape information from landmark data have been proposed (Adams
et al. 2004). Here we mention Euclidean Distance Matrix Analysis (EDMA)
methodsproposed by (Lele and Richtsmeier 1991), a related approach using
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standard multivariate methods on logs of size-scaled interlandmark distances (Rao
and Suryawanshi 1996) and methods based on interior angles (Rao and Suryawanshi
1998).

References

Adams DC (1999) Methods for shape analysis of landmark data from articulated structures.
Evolutionary Ecology Research 1:959–970

Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following
the ‘revolution’. Italian Journal of Zoology 71:5–16

Bookstein FL (1978) The measurement of biological shape and shape change. Lecture notes on
biomathematics. Springer-Verlag, New York, vol 24

Bookstein FL (1986) Size and shape spaces for landmark data in two dimensions. Statistical
Science 1:181–242

Bookstein FL (1989) Principal warps: Thin-plate splines and the decomposition of deformations.
IEEE Transactions on Pattern Analysis and Machine Intelligence 11:567–585

Bookstein FL (1991) Morphometric Tools For Landmark Data: Geometry and Biology. Cambridge
University Press, Cambridge

Bookstein FL (1996) Combining the tools of geometric morphometrics. In: Advances in morpho-
metrics, vol 284, Plenum Press, New York, pp 131–151

Bookstein FL (1997) Shape and the information in medical images: A decade of the morphometric
synthesis. Computer Vision and Image Understanding 66:97–118

Brombin C (2009) A nonparametric permutation approach to statistical shape analysis, ph.D.
thesis. Padova, Italy: University of Padova

Brombin C, Salmaso L (2009) Multi-aspect permutation tests in shape analysis with small sample
size. Computational Statistics & Data Analysis 53:3921–3931

Brombin C, Pesarin F, Salmaso L (2008) Dealing with more variables than sample sizes: an appli-
cation to shape analysis. In: Hunter DR, Richards DSP, Rosenberger JL (eds) Nonparametric
Statistics and Mixture Models: A Festschrift in Honor of Thomas P. Hettmansperger, Singapore:
World Scientific, pp 28–44

Brombin C, Mo G, Zotti A, Giurisato M, Salmaso L, Cozzi B (2009) A landmark analysis-based
approach to age and sex classification of the skull of the mediterranean monk seal (monachus
monachus) (hermann, 1779). Anatomia, Histologia, Embryologia 38:382–386

Brombin C, Salmaso L, Ferronato G, Galzignato P (2011) Multi-aspect procedures for paired
data with application to biometric morphing. Communications in Statistics - Simulation and
Computation 40:1–12

Dryden IL, Mardia KV (1993) Multivariate Shape Analysis. Sankhyā Series A 55:460–480
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Chapter 2
Theoretical Aspects on Permutation Tests
and Shape Analysis

“Normality is a myth; there never has, and never will be,
a normal distribution.”.

Testing for Normality. Biometrika, 34, 209–242, 1947.

R.C. Geary

Abstract This chapter deals with inferential aspects in the field of shape analysis.
At first we review inferential methods known in the shape analysis literature,
highlighting some drawbacks of using Hotelling’s T 2 test statistic. Then we propose
an extension of the NonParametric Combination (NPC) methodology to compare
shape configurations of landmarks.
Without doubts, the more landmark and semilandmarks are collected for a given
object, the more shape information is gathered in the configuration describing the
object, and the better is the quantitative evaluation of its morphological features.
However, most of the traditional inferential methods in shape analysis are parametric
and they often require large sample size while, in practice, researchers have to deal
with few objects/subjects and many landmarks, implying over-dimensioned spaces
and loss of power.
On the other hand, NPC tests represent an appealing alternative since they are
distribution-free and allow for quite efficient solutions when the number of cases is
lower than the number of variables (i.e., (semi)landmarks coordinates). This allows
to obtain better representations of shapes even in the presence of small smile size.
Finally, NPC methodology enables to provide global as well as local evaluation of
shapes: it is then possible to establish whether in general two shapes are different and
which landmark/subgroup of landmarks mainly contributes to differentiate shapes
under study.

Keywords Closed testing procedures • Goodall’s F-test • Hotelling’s T 2 test
statistic • NonParametric Combination methodology • Multi-aspect approach •
Resampling methods
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2.1 Inference and Shape Analysis

The statistical community has shown an increased interest in shape analysis in
the last decade and particular efforts have been addressed to the development
of powerful statistical methods based on model for shape variation of entire
configurations of point corresponding to the locations of morphological landmarks.
Rohlf (2000) reviews the main tests used in the field of shape analysis and compares
the statistical power of various tests that have been proposed to test for equality
of shape in two populations. Even if his work is limited to the simplest case of
homogeneous, independent, spherical variation at each landmark and the sampling
experiments emphasize the case of triangular shapes, it allows the practitioners to
choose the method that has the highest statistical power under a set of assumptions
that are appropriate for the data. Through a simulation study, he found that Goodall’s
F-test had the highest power followed by T 2-test using Kendall tangent space
coordinates. Power for T 2-tests using Bookstein shape coordinates was good if the
baseline was not the shortest side of the triangle. The Rao and Suryawanshi shape
variables had much lower power when triangles were not close to being equilateral.
Power surfaces for the EDMA-I T statistic revealed very low power for many
shape comparisons including those between very different shapes. Power surface
for the EDMA-II Z statistic depended strongly on the choice of baseline used for
size scaling (Rohlf 2000). We remind the reader that EDMA stands for Euclidean
Distance Matrix Analysis (EDMA). Technical details on the above-mentioned tests
are provided in Sect. 2.2.
All the above-mentioned tests are based on quite stringent assumptions. In par-
ticular, the tests based on the T 2 statistic (e.g., T 2-tests using Bookstein, Kendall
tangent space coordinates, Rao and Suryawanshi shape variables, like Rao-d (1996)
and Rao-a (1998)) require independent samples, homogeneous covariance matrices,
and shape coordinates distributed according to the multivariate normal distribution.
We remark that Hotelling’s T 2 test statistic is derived under the assumption of
population multivariate normality and it may not be very powerful unless there
are a large number of observations available (Dryden and Mardia 1998). It is well
known in the literature that Hotelling’s T 2 test is formulated to detect any departures
from the null hypothesis and therefore often lacks power to detect specific forms
of departures that may arise in practice, i.e., the T 2 test fails to provide an easily
implemented one-sided (directional) hypothesis test (Blair et al. 1994).
Goodall’s F test requires a restrictive isotropic model and assumes that the
distributions of the squared Procrustes distances are approximately Chi-squared
distributed.
If we consider the methods based on interlandmark distances, EDMA-I T assumes
independent samples and the equality of the covariance matrices in the two
populations being compared (Lele and Cole 1996), while EDMA-II Z assumes only
independent samples and normally distributed variation at each landmark.
In order to complete the review on main tests used in shape analysis, we recall the
pivotal bootstrap methods for k-sample problems, in which each sample consists
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of a set of real (the directional case) or complex unit vectors (the two-dimensional
shape case), proposed in the paper by Amaral et al. (2007). The basic assumption
here is that the distribution of the sample mean shape (or direction or axis) is highly
concentrated. This is a substantially weaker assumption than is entailed in tangent
space inference (Dryden and Mardia 1998) where observations are presumed highly
concentrated. In this paper test statistics like λmin, Hotelling T 2, Goodall F , and
James FJ have been compared and corresponding p-values have been obtained using
both resampling methods (bootstrap or permutation test) and the usual table. In
particular, with reference to the pivotal statistic λmin, consider k samples of unit
vectors in Cd (in most traditional applications, d = 2,3, but sometimes the case
d ≥ 4 is also relevant) and let m̂i be the estimator of m0 (i.e., mean shape under
H0) based on sample i, for i = 1, . . . ,k. Assume that n1/2M̂im0 has an asymptotic
complex normal distribution CNd−1(0,Gi), i = 1, . . . ,k, where Gi has full rank and
M̂i represents a projection onto the tangent space at m̂i.

Define Â0 = n
k

∑
i=1

M̂∗
i Ĝ−1

i M̂i and T0(m) = 2m∗Â0m, where the ∗ denotes conjugate

transpose and m is a complex unit vector (i.e., m∗m = 1), thus obtaining

λmin ≡ min
m:‖m‖=1

T0(m) = T0(m̂0)

where λmin is the smallest eigenvalue of Â0 and m̂0 is the corresponding unit
eigenvector. For further mathematical details we refer the reader to Amaral et al.
(2007).
It is proved that this statistic has a limiting Chi-squared distribution χ2

2(k−1)(d−1) un-
der the null hypothesis of equality of means across populations (Amaral et al. 2007).
Another statistic used in this paper is the James statistic (see Seber 1984) that
represents an effort to solve the multivariate Behrens–Fisher problem and it is
given by

FJ = (v̄− w̄)T
(

1
n1

S1 +
1
n2

S2

)−
(v̄− w̄),

where vi ∼ N(ξξξ 1,ΣΣΣ1) for i = 1, . . . ,n1 and w j ∼ N(ξξξ 2,ΣΣΣ 2), for j = 1, . . . ,n2 are
the partial Procrustes tangent coordinates, vi and wi are mutually independent, v̄, w̄
and S1, S2 are the sample means and sample covariance matrices (with divisors n1

and n2) in each group. It is proved that FJ ∼ χ2
M . Although authors focus mainly

on the version of the statistic in which neither isotropy within populations nor
constant dispersion structure across populations is assumed, they explain how to
modify the statistic so that either or both of these assumptions can be incorporated
(Amaral et al. 2007).
As pointed out in Good (2000), the assumption of equal covariance matrices may
be unreasonable especially under the alternative, the multinormal model in the
tangent space may be doubted and sometimes there are few individuals and many
landmarks, implying over-dimensioned spaces and loss of power for the Hotelling’s
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T 2 test. Hence when sample sizes are too small, or the number of landmarks
is too large, it is essentially inefficient to assume that observations are normally
distributed. An alternative procedure is to consider a permutation version of the test
(see Good 2000; Dryden and Mardia 1993; Bookstein 1997; Terriberry et al. 2005).
Permutation methods are distribution-free, allow us for quite efficient solutions
when the number of cases is less than the number of covariates and may be tailored
for sensitivity to specific treatment alternatives providing one-sided as well as two-
sided tests of hypotheses (Blair et al. 1994).
In the wake of these considerations, we propose an extension of the NonPara-
metric Combination (NPC) methodology (Pesarin 2001; Pesarin and Salmaso
2010; Brombin 2009; Brombin et al. 2008; Brombin and Salmaso 2009; Brombin
et al. 2009a,b; Alfieri et al. 2012). We observe that a key condition for applying
permutation tests is the exchangeability of observations under the null hypothesis
(Pesarin 2001; Pesarin and Salmaso 2010). Generally permutation tests require
homogeneous covariance matrices under H0 in order to guarantee exchangeability,
thus relaxing the stringent assumptions of parametric tests. This is consistent with
the notion that if H0 is true, this implies the equality in multivariate distribution of
observed variables, i.e., there is no effect at all.

2.2 Technical Details on Tests Known in Shape
Analysis Literature

2.2.1 Hotelling’s T2 and Goodall’s F Tests

Let us define two independent random samples X1, . . . ,Xn1 and Y1, . . . ,Yn2 from
independent populations with mean shapes [μ1] and [μ2]. The hypotheses system
is given by

H0 : [μ1] = [μ2] versus H1 : [μ1] �= [μ2]

Let v1, . . . ,vn1 and w1, . . . ,wn2 be the partial Procrustes tangent coordinates, where

vi ∼ N(ξ1,Σ), wj ∼ N(ξ2,Σ), i = 1, . . . ,n1; j = 1, . . . ,n2

are all mutually independent with common covariance matrices.
An Hotelling’s T 2 two sample test in the Procrustes tangent space could be carried
out, after performing a GPA superimposition on all n1 + n2 individuals to compute
the average shape. Each specimen is then fit to this overall mean (also called the pole
μ̂). Let v̄, w̄ and Sv, Sw be respectively the sample means and sample covariance mat-
rices (with divisors n1 and n2) in each group. The Mahalanobis distance squared
between v̄ and w̄ is

D2 = (v̄− w̄)T S−u (v̄− w̄),
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where S−u is the Moore–Penrose generalized inverse of Su = (n1Sv + n2Sw)/(n1 +
n2 − 2). Under H0 we have ξ1 = ξ2, and we use the test statistic

F =
n1n2(n1 + n2 −M− 1)
(n1 + n2)(n1 + n2 − 2)M

D2 ∼ FM,n1+n2−M−1,

where M = km−m−m(m−1)/2−1 is the dimension of the tangent space. Further
Hotelling’s T 2 versions can be calculated using Kendall tangent space coordinate,
Bookstein coordinates (Edge Superimposition), and Rao and Suryawanshi shape
variables, Rao-d (1996) and Rao-a (1998).
The tests based on the T 2 test statistic require independent samples, homoge-
neous covariance matrices, and shape coordinates normally distributed. We remark
that Hotelling’s T 2 test statistic is derived under the assumption of population
multivariate normality and it may not be very powerful unless there are a large
number of observations available (Dryden and Mardia 1998). It is well known in the
literature that Hotelling’s T 2 test is formulated to detect any departures from the null
hypothesis and therefore often lacks power to detect specific forms of departures that
may arise in practice, i.e., the T 2 test fails to provide an easily implemented one-
sided (directional) hypothesis test (Blair et al. 1994).
Goodall’s F-test (1991) compares the Procrustes distance between the means of two
samples to the amount of variation found within the samples. It uses a generalized
least-squares Procrustes analysis to compute the average shape for each sample. It
is given by

F =
n1 + n2 − 2

n−1
1 + n−1

2

d2
F(μ̂1, μ̂2)

∑n1
i=1 d2

F(Xi, μ̂1)+∑n2
i=1 d2

F(Yi, μ̂2)
∼ FM,(n1+n2−2)M,

This result is valid for small σ and M = 2k−4 for 2D data (M = 3k−7 for 3D data).
It assumes that configurations are isotropic normal perturbations from mean config-
urations, and the distributions of the squared Procrustes distances are approximately
Chi-squared distributions. When the sphericity assumption is true, this test shows
higher power than the usual T 2-test, especially when sample sizes are small.

2.2.2 Euclidean Distance Matrix Analysis Methods

The form of an object X is all the geometrical information about X that is
invariant under translation and rotation (rigid-body transformations) and the form
matrix FM(X) is the k × k matrix of all pairs of inter-landmark distances in the
configuration X .

Let X1,X2, . . . ,Xn be landmark coordinate matrices for a sample of n individuals
from population X . To estimate the average form matrix FM(X) for the population
X , calculate
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• elm,i the squared Euclidean distance between landmarks l and m for the i-th
individual,

• ēlm = n−1 ∑n
i=1 elm,i and s2 = n−1 ∑n

i=1(elm,i − ēlm)
2,

• δ̂lm = (ē2
lm − s2(elm))

0.5.
• FM(X) = (δ̂ 0.5

lm )lm=1,2,...,k

In the same way the average form matrix FM(Y ) of the sample Y1,Y2, . . . ,Yn is
calculated from population Y .
EDMA-I test statistic (Lele and Richtsmeier, 1991; Lele, 1993) is given by

T = max(FDM(X ,Y ))/min(FDM(X ,Y )),

where FDM(X ,Y ) is the form difference matrix for samples X and Y that is
obtained as

FDM(X ,Y )i, j = FM(X)i, j/FM(Y )i, j∀i, j = 1, . . . ,k,

where FM(X) and FM(Y ) are the average form matrices below the convention
0/0 = 0.
EDMA-II test statistic (Lele and Cole, 1995; 1996) is calculated as

Z = max |SX −SY |,

where SX and SY are two size-scaled average form matrices (proper scaling factor
could be edge length or continuous function of edge lengths). Bootstrap procedures
are used to estimate the null distribution of T and Z test statistic.
EDMA-I T assumes independent samples and the equality of the covariance
matrices in the two populations being compared, while EDMA-II Z requires
independent samples and normally distributed variation at each landmark.

2.3 NPC Approach to Shape Analysis

Let X1 be the n1 × (k × m) matrix of raw landmark coordinates of specimens
belonging to the first group. Similarly X2 is the n2× (k×m) matrix of raw landmark

coordinates of specimens belonging to the second group. Let X =

(
X1

X2

)
be the

n× (k×m) matrix of raw landmark coordinates of all specimens, i.e., our data set,
where n = n1 + n2. Hence X is a matrix of data with specimens in the rows and
landmark coordinates in columns. In the permutation context, in order to denote
data sets, it could be useful the unit-by-unit representation given by X = {Xh ji, i =
1, . . . ,n, j = 1,2, h = 1, . . . ,km}, where it is intended that first n1 × km data in the
list belong to first sample and the rest to the second.
In practice, denoting by (a∗1, . . . ,a

∗
n) a permutation of the labels (1, . . . ,n), X∗ =
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{X∗
h ji = Xh j(a∗i ), i = 1, . . . ,n, j = 1,2, h = 1, . . . ,km} is the related permutation of

X , so that X∗
h1 = {X∗

h1i = Xh1(a∗i ), i = 1, . . . ,n1,h = 1, . . . ,km} and X∗
h2 = {X∗

h2i =
Xh2(a∗i ), i= n1+1, . . . ,n,h= 1, . . . ,km} are the two permuted samples, respectively.
For simplicity, we may assume that the landmark coordinates in tangent space
behave according to the following model:

Xh ji = μh + δh j +σhZh ji,

i = 1, . . . ,n, j = 1,2, h = 1, . . . ,km, where

◦ k is the number of landmarks in m dimensions;
◦ μh represents a population constant for the h-th variable;
◦ δh j represents treatment effect (i.e. the noncentrality parameter) in the j-th group

on the h-th variable which, without loss of generality, is assumed to be δh1=0,
δh2 ≤ (or ≥)0;

◦ σh are scale coefficients specific to the h-th variable;
◦ Zh ji are random errors assumed to be exchangeable with respect to treatment

levels, independent with respect to units, with null mean vector (E(Z) = 0), and
finite second moment.

Hence landmark coordinates in the first group differ from those in the second group
by a “quantity” δ , where δ is the km-dimensional vector of effects. Again, X∗

h ji,
i = 1, . . . ,n, j = 1,2, h = 1, . . . ,km, indicates a permutation of the original data.
Therefore the specific hypotheses may be expressed as

H0 :
km⋂

h=1

{Xh1
d
= Xh2} vs. H1 :

km⋃
h

{(Xh1 + δ )
d
> Xh2},

where
d
> stands for distribution (or stochastic) dominance.

With T o
h (0) and T ∗

h (0) we indicate respectively the observed and permutation values
of Th when δ = 0, i.e., under H0.
The assumptions regarding the set of partial tests T = {Th,h = 1, . . . ,km} necessary
for NPC are:

1. All permutation partial test Th are marginally unbiased and significant for large
values, so that they are stochastically larger in H1 than in H0.

2. All permutation partial tests Th are consistent, that is,

Pr{Th ≥ Thα |U,H1h}→ 1, ∀α > 0, h = 1, . . . ,km,

as n tends to infinity, where Thα < +∞ is the critical value of Th at level α . In
order to obtain global traditional consistency it suffices that at least one partial
test is consistent (Pesarin 2001; Pesarin and Salmaso 2010).
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landmark 4

x4 y4

x 4, μ x 4, μ2 y4, μ2y4, μ
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global test

coordinate
level

landmark
level
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level

Fig. 2.1 Different levels of combination

Let λh,h = 1, . . . ,km be the set of p-values associated with partial tests in T that are
positively dependent in the alternative and this irrespective of dependence relations
among component variables in X .
In shape analysis field, h = 1, . . . ,km represents the k landmarks in m dimensions.
In order to apply NPC methodology, usually the hypothesis testing problem is
broken down into two stages, considering both the coordinate and the landmark level
(and, if present, the domain level too). Hence, we formulate partial test statistics
for one-sided hypotheses and then we consider the global test T ′′ obtained after
combining at the first stage with respect to m, then with respect to k (of course, this
sequence may be reversed).
For example, if we consider 4 landmarks, first of all one can derive a test for each
coordinate (x and y coordinates in 2D case) of each landmark. Once decided the
aspects of interest, one could focus on the coordinate level or on the landmark level,
after combining coordinates, or on the domain level as well and finally on the global
test (see Fig. 2.1).

2.3.1 A Suitable Algorithm

We now illustrate the algorithm for calculating the multivariate test, in its simplest
version. Then we may add a multi-aspect procedure and adjust partial p-values for
multiplicity through closed testing procedure (Finos and Salmaso 2007; Brombin
2009; Brombin and Salmaso 2009).

� The first phase (coordinate level) of a procedure estimates the distribution of T
including the following steps:
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1a. Calculate the vector of observed values of tests T : To = T(X).
1b. Consider a member g∗, randomly drawn from the set G of all possible

permutations, and the values of vector statistics T∗ = T(X∗), where X∗ =
g∗(X). In most situations, the data permutation X∗ may be obtained at first
by considering a random permutation (a∗1, . . . ,a

∗
n) of integers (1, . . . ,n)

and then by assignment of related individual data vectors to the proper
group; thus, according to the unit-by-unit representation, X∗ = {X(a∗i ), i =
1, . . . ,n;n1,n2}.

1c. Carry out B independent repetitions of step (b). The set of Conditional
Monte Carlo (CMC) sampling results {T∗

r ,r = 1, . . . ,B} is thus a random
sampling from the permutation km-variate distribution of vector test
statistics T.

1d. The km-variate EDF F̂B(z|X) =
[ 1

2 +∑r I(T∗
r ≤ z)

]
/(B + 1), ∀z ∈ Rkm,

gives an estimate of the corresponding km-dimensional permutation distri-
bution F(z|X) di T. Moreover,

L̂h(z|X) =

[
1
2
+∑

r
I(T∗

hr ≥ z)

]
/(B+ 1),h = 1, . . . ,km,

gives an estimate ∀z ∈ R1 of the marginal permutation significance level
functions Lh(z|X) = Pr{T ∗

h ≥ z|X}; this L̂h(Tho|X) = λh. This gives an
estimate of the marginal p-value related to test Th.

At the end of this first phase, we get a p-value for each landmark coordinate,
hence in total 2k or 3k, depending from the dimension m, partial p-values.
If, for example, we deal with k = 4 landmarks in 2D, hence λ ∗

1 is the
permutation p-value corresponding to the x coordinate of landmark 1, λ ∗

2 the
permutation p-value corresponding to the y coordinate of landmark 1, λ ∗

3 the
permutation p-value corresponding to the x coordinate of landmark 2, λ ∗

4 is the
permutation p-value corresponding to the y coordinate of landmark 2, and so on
(see Fig. 2.2).

� The second phase (landmark level) of the algorithm include the following
steps:

2a. The km observed p-values are estimated from the data X by λh = L̂h(Tho|X),
where Tho = Th(X), h = 1, . . . ,km, represent the observed values of partial
tests and L̂h is the hth marginal significance level function, the latter being
jointly estimated by the CMC sampling method on data set X, in accordance
with step (1.d) above.

2b. The combined observed value of the second-order test is evaluated through
the same CMC results of the first phase, and is given by the combination of
sequential couples (or triplets) of landmark indexes (landmark coordinates)
as illustrated in Fig. 2.2. For example the observed statistic related to the
first landmark (in 2D case) is given by

T
′′

1o = ψ(λ1,λ2).
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1st step

coordinate level︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ∗1 λ∗2

λ∗3 λ∗4

λ∗5 λ∗6

λ∗7 λ∗8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

NPC

on coordinates︷ ︸︸ ︷
ψ(λ∗1 ,λ∗2 )

ψ(λ∗3 ,λ∗4 )

ψ(λ∗5 ,λ∗6 )

ψ(λ∗7 ,λ∗8 )

2nd step

landmarklevel︷ ︸︸ ︷
λ
′∗
1

λ
′∗
2

λ
′∗
3

λ
′∗
4

NPC

on landmarks︷ ︸︸ ︷
ψ(λ

′ ∗
1 ,λ

′∗
2 )

ψ(λ
′ ∗
3 ,λ

′∗
4 )

3rd step

domain level︷ ︸︸ ︷
λ
′′∗
d1

λ
′′∗
d2

4thstep

global test
︷ ︸︸ ︷

T
′′′′∗

Fig. 2.2 Algorithm for k = 4 landmarks in 2D and two domain combinations

2c. The rth combined value of vector statistics (step (1.d)) for the first landmark
is then calculated by

T
′′∗

1r = ψ(λ ∗
1r,λ

∗
2r),

where λ ∗
1r = L̂1(T ∗

1r|X), r = 1, . . . ,B.
Steps (2.b) and (2.c) will be repeated k times, in order to obtain a partial
p-value for each landmark

� The third phase (domain level) of the algorithm include the following steps:

3a. Let us assume that Z out of k landmarks, 1 ≤ Z ≤ k, constitute the first
domain (i.e., a subgroup of landmarks sharing anatomical, biological, or
locational features); A out of k landmarks, 1 ≤ A ≤ k, constitute the second
domain and C out of k landmarks, 1 ≤ C ≤ k, constitute the third domain.
We have just defined three domains but, of course, we may define more than
three domains.

3b. The combined observed value of the third-order test is evaluated through
the same CMC results of the second phase, and is given by

T
′′′

Zo = ψ(λ
′
1, . . . ,λ

′
Z).

corresponding to the first domain,

T
′′′

Ao = ψ(λ
′
1, . . . ,λ

′
A).

corresponding to the second domain, and

T
′′′

Co = ψ(λ
′
1, . . . ,λ

′
C).

corresponding to the third domain.
3c. The rth combined value of vector statistics is then calculated by

T
′′′∗

Zr = ψ(λ
′∗
1r , . . . ,λ

′∗
Zr),
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where λ ′∗
zr = L̂z(T

′′′∗
zr |X), z= 1, . . . ,z, r = 1, . . . ,B, is the permutation p-value

corresponding to landmarks belonging to the first domain;

T
′′′∗

Ar = ψ(λ
′∗
1r , . . . ,λ

′∗
Ar),

where λ ∗
ar = L̂a(T

′′′∗
ar |X), a = 1, . . . ,A, r = 1, . . . ,B, is the permutation p-

value corresponding to landmarks belonging to the second domain;

T
′′′∗

Cr = ψ(λ
′∗
1r , . . . ,λ

′∗
Cr),

where λ ′∗
cr = L̂c(T

′′′∗
cr |X), c = 1, . . . ,C, r = 1, . . . ,B, is the permutation p-

value corresponding landmarks belonging to the third domain;

Hence at the end of this step we obtain different p-values corresponding to
predefined domains. Figure 2.2 illustrates an example where we have defined
2 domains, namely d1 and d2, combining landmarks 1,2 and landmarks 3,4
respectively.

� The fourth and last phase provides the global p-value.

4a. The combined observed value of the global test is evaluated through the
same CMC results in the first phase, and is given by:

T
′′′′

o = ψ(λ
′∗
1 ,λ

′∗
2 ,λ

′′∗
Z , . . . ,λ

′′∗
A , . . . ,λ

′′∗
C ).

4b. The rth combined value of vector statistics (step (S.dk)) is then calculated
by

T
′′′′∗

r = ψ(λ
′∗
1r ,λ

′∗
2r ,λ

′′∗
Zr , . . . ,λ

′′∗
Ar , . . . ,λ

′′∗
Cr ).

4c. Hence, the p-value of the combined test T
′′′′

is estimated as

λ
′′′′
ψ = ∑r I(T

′′′′∗
r ≥ T

′′′′
o )/B.

4d. If λ ′′′′
ψ ≤ α , the global null hypothesis H0 is rejected at significance level α .

2.3.2 Including MA Procedure

As said before, this is obviously the simplest version of the combining procedure.
Actually we could be interested in emphasizing a particular aspect for each
coordinate. Hence, we may apply a multi-aspect (MA) procedure at landmark
coordinates level. We briefly present this procedure in the univariate general case.
Let us assume, without loss of generality, that observations from a response variable
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X on n units are partitioned into two groups, respectively of n1 and n2 units,
corresponding to two levels of a treatment. Let us also assume that the response
variables in the two groups have unknown distributions P1 and P2, both defined on
the same probability space (X ,B), where X is the sample space and B is an
algebra of events. Let X j = {Xji, i = 1, . . . ,n j} be the data set of n j elements related
to the j-th sample or group, j = 1,2. Let X∗

j = {X∗
ji, i = 1, . . . ,n j, j = 1,2} indicate a

permutation of the observed data set X, where the subscript j emphasizes the group
to which permuted elements are assigned. We are interested in testing the global

null hypothesis H0 : {X1
d
= X2} = {P1 = P2} that the two groups have the same

underlying distribution, against the global alternative hypothesis H1 : {X1
d
< X2} of

a stochastic dominance. Thus two CDFs, F1 and F2, are such that in the alternative
they do not intersect each other because of the side-assumptions; we also assume,
for simplicity, that the two distributions are absolutely continuous (Salmaso and
Solari 2005; Brombin 2009; Brombin and Salmaso 2009). H0 may be broken down
into

H0 :

{ K⋂
i=1

H0i

}
(2.1)

where K is the number of considered aspects. Hence H0 is true if all H0i are jointly
true. The alternative may be represented as

H1 :

{ K⋃
i=1

H1i

}
. (2.2)

and it implies that the inequality of two distributions entails the falsity of at least
one partial null hypothesis.
In case–control designs, when treatment effects are presumed to influence not only
locations but also scale coefficients or other aspects, this may be conveniently
examined through several statistics, each one sensitive to differences that affect a
particular aspect of the two distributions.
We are interested in the location-aspect (l) that summarizes the two distributions in
a comparison of two location indices, and in the distributional-aspect (d) based on
the comparison of the two empirical distribution functions. Of course, other aspects
may be included in the MA procedure. In order to evaluate the location-aspect we
formulate a system of hypotheses considering test statistics based on both mean and
median, while to examine the distributional aspect we construct a hypothesis system
based on both Kolmogorov–Smirnov’s and Anderson–Darling’s test statistic.

Thus, in the first case we wish to test

H0l : {[E(X1) = E(X2)]∩ [Me(X1) = Me(X2)]}
H1l : {[E(X1)< E(X2)]∪ [Me(X1)< Me(X2)]}. (2.3)



2.3 NPC Approach to Shape Analysis 29

while in the second, the referential system of hypotheses is given by

H0d : {F1 = F2}
H1d : {F1 > F2} (2.4)

Applying the NPC methodology, we can construct the location-aspect test statistic
by combining the permutation p-values λ ∗

μ and λ ∗
Me associated respectively with

the two partial tests T ∗
μ and T ∗

Me (the difference between the sample median of the
permuted groups) where

T ∗
μ = Tμ(X∗) =

n2

∑
i=1

X∗
2i

and

T ∗
Me = M̃∗

2 − M̃∗
1

using for example the Tippett combining function

T ∗′′
l = max(1−λ ∗

μ ,1−λ ∗
Me). (2.5)

We can do the same to assess the distributional-aspect by combining the permutation
p-values λ ∗

KS, λ ∗
AD associated with the two partial tests T ∗

KS (the permutation version
of the two-sample Kolgomorov–Smirnov’s statistic for one-sided alternatives) and
T ∗

AD (the permutation version of the Anderson–Darling’s test statistic) using the
Tippett combining function

T ∗′′
d = max(1−λ ∗

KS,1−λ ∗
AD). (2.6)

Finally, the global test statistic combines the information from the two-aspect
tests into one global test as follows:

T ∗′′′
MA = ψ(λ ∗′′

l ,λ ∗′′
d ), (2.7)

where ψ is the selected combining function (Salmaso and Solari 2005).
Of course it is possible to take any other useful combining function into consid-
eration, e.g., Fisher, Lancaster, Liptak, and Mahalanobis. For the selection of a
combining function, see the practical guidelines set out in Pesarin (2001); Pesarin
and Salmaso (2010). We have mainly used Fisher omnibus combining function,
calculated as

T ′′
F = ∑

i

log(λi).
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1st step

coordinate level︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ∗1 λ∗2

λ∗3 λ∗4

λ∗5 λ∗6

λ∗7 λ∗8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

MA

procedure
︷ ︸︸ ︷
ψ(φ (λ∗1,μ ,λ∗1,Me),φ (λ

∗
2,μ ,λ∗2,Me))

ψ(φ (λ∗3,μ ,λ∗3,Me),φ (λ
∗
4,μ ,λ∗4,Me))

ψ(φ (λ∗5,μ ,λ∗5,Me),φ (λ
∗
6,μ ,λ∗6,Me))

ψ(φ (λ∗7,μ ,λ∗7,Me),φ (λ
∗
8,μ ,λ∗8,Me))

2nd step

landmarklevel
︷ ︸︸ ︷
λ
′∗
1,MA

λ
′∗
2,MA

λ
′∗
3,MA

λ
′∗
4,MA

NPC

combination︷ ︸︸ ︷
ψ(λ

′∗
1,MA,λ

′∗
2,MA)

ψ(λ
′∗
3,MA ,λ

′∗
4,Ma)

3rd step

domain level︷ ︸︸ ︷
λ
′′∗
MA,d1

λ
′′∗
MA,d2

4thstep

global test
︷ ︸︸ ︷

T
′′′′ ∗

Fig. 2.3 Algorithm for k = 4 landmarks in 2D, MA procedure (mean and median aspects) and
domain combination. ψ and φ are suitable combining functions

It is well known that if the k partial test statistics are independent and continuous, in
the null hypothesis T ′′

F follows a central χ2 distribution with 2k degrees of freedom.
Along with Fisher, we have used Liptak combining function based on the
statistics

T ′′
L = ∑

i

Φ−1(1−λi),

where Φ is the standard normal c.d.f. Of course if the k test statistics are independent
and continuous, then in the null hypothesis T ′′

L is normally distributed with mean 0
and variance k.
Instead of presenting the algorithm in this general case, we illustrate the procedure
under the shape analysis framework. In particular, when including MA procedure,
the first NPC combination presented in Fig. 2.2 is calculated by considering also the
aspects (see Fig. 2.3).

One of the main feature and advantage of the proposed approach is that using the
MA procedure and the information about domains we are able to obtain not only
a global p-value, like in traditional tests, but also a p-value for each of the defined
aspects or domains. Hence following our procedure it is possible to construct a
hierarchical tree, allowing for testing at different levels of the tree (see Fig. 2.1).
On one hand partial tests may provide marginal information for each specific aspect,
on the other they jointly provide information on the global hypothesis. In this
way, if we find a significant departure from H0, we can investigate the nature of
this departure in detail. Also, one can move from the top to the bottom of the
tree and, for interpreting results in a hierarchical way, from the bottom to the
top. It is worth noting that “intermediate” level p-values need to be adjusted for
multiplicity.
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2.3.3 Closed Testing Procedure in Shape Analysis

Multiple comparisons and multiple testing problems arise frequently in statistical
data analysis, and it is important to address them appropriately. Actually, the
problem of multiplicity control arises in all cases where the number of hypotheses
to be tested is greater than one. Such partial tests, possibly after adjustment for
multiplicity (Westfall and Young 1993), may be useful for marginal or separate in-
ferences. If they are jointly considered they provide information on a general overall
or global hypothesis, which typically represents the true objective of the majority of
multivariate testing problems. In order to produce a valid test for the combination
of a large number of p-values, we must guarantee that such test is unbiased and
produces, therefore, p-values below the significance level with a probability less
than or equal to α itself. This combination could be very troublesome unless we are
working in a permutation framework. A Bonferroni correction is valid but the con-
servativeness of this solution is often unacceptable for both theoretical and practical
purposes. Actually, this combination loses power in case of dependence between
p-values. On the contrary, using appropriate permutation methods, dependencies
may be controlled. With reference to multiple testing procedures mentioned before,
these have their starting point in an overall test and look for significant tests on
partial contrasts. Conversely combination procedures start with a set of partial
tests, each appropriate for a partial aspect, and look for joint analyses leading to
global inferences. The global p-value obtained through NPC procedure of p-values
associated with sub-hypotheses is an exact test, thus providing a weak control of
the multiplicity. The inference in this case must be limited to the global evaluation
of the phenomenon. Due to the use of NPC methods, a more detailed analysis may
be carried out. Actually what is important is to select potentially active hypotheses
(i.e., under the alternative). A correction of each single p-value is hence necessary
in this case. A possible solution within a nonparametric permutation framework is
represented by Closed testing procedures (Westfall and Wolfinger 2000). A property
that is generally required is the strong control of the Familywise Error Rate (FWE),
i.e., the probability of making one or more errors on the whole of the considered
hypotheses (Marcus et al. 1976). On the other hand, a weak control of the FWE
means simply controlling α for the global test (i.e., the test where all hypotheses
are null). Although the latter is a more lenient control, it does not allow the
selection of active variables because it simply produces a global p-value that
does not allow interesting hypotheses to be selected, so the former is usually
preferred because it makes inference on each (univariate) hypothesis (Finos and
Salmaso 2005). An alternative approach to multiplicity control is given by the False
Discovery Rate (FDR). This is the maximum proportion of type I errors in the set
of elementary hypotheses. The FWE guarantees a more severe control than the
FDR, which in fact only controls the FWE in the case of global null hypotheses,
i.e., when all involved hypotheses are under H0 (Benjamini and Hochberg 1995).
In confirmatory studies, for example, it is usually better to strongly control the
FWE, thus ensuring an adequate inference when you want to avoid making even
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one error. On the contrary, when it is of interest to highlight a pattern of potentially
involved variables, especially when dealing with thousands of variables, the FDR
would appear to be a more reasonable approach. In this way it is accepted that part
(no greater than the α proportion) of the rejected hypotheses are in fact under the
null (Finos and Salmaso 2005).
The goal of multiple testing procedures is to control the “maximum overall Type
I error rate,” i.e., the maximum probability that one or more null hypotheses is
rejected incorrectly. This quantity also goes by the name “Maximum Experimen-
twise Error Rate” (MEER).
With reference to the closed testing, here we give just some hints and we refer the
reader to Westfall and Wolfinger (2000) and Westfall and Young (1993). Suppose
we wish to test hypotheses H1, H2, H3, and H4, e.g., concerning four landmarks.
Hence, with reference to the Fig. 2.1 we start applying closed testing at landmark
level. The closed testing method works as follows:

1. Test each hypothesis H1, H2, H3, and H4 using an appropriate α-level test.
2. Create the “closure” of the set, which is the set of all possible intersections among

H1, H2, H3, and H4 (in this case the hypotheses H12, H13, H14, H23, H24, H34,
H123, H134, H234, and H1234). In Fig. 2.4 we illustrate the procedure. We have
enumerated all the possible intersections, but of course we are interested only in
some of these intersections. Actually some of these are useful for inferential pur-
pose, and some other are only instrumental and are not investigated. Intersections
of interest are represented by the red bounded boxes, corresponding respectively
to the landmark level (i.e., H1, H2, H3, and H4), to the domain level (i.e., H12 and
H34) and to the global test (H1234).

3. Test each intersection using an appropriate α-level test. In general any test that
is valid for the given intersection.

4. You may reject any hypothesis Hi, with control of the MEER, when the following
conditions both hold:

– The test of Hi itself yields a statistically significant result, and
– The test of every intersection hypothesis that includes Hi is statistically

significant.

Hence a statistically significant result has been obtained for the H3 test, as well as
a significant result for all hypotheses that include H3, in this case, H13, H23, H34,
H123, H134, H234, and H1234 (blue boxes in Fig. 2.4). Since the p-value for one of
the including tests, the H1234 test in this case, is greater than 0.05, you may not
reject the H3 test at the MEER=0.05 level. In this example, we could reject the H3

hypothesis for MEER levels as low as, but no lower than 0.0618, since this is the
largest p-value among all hypotheses containing H3. This suggests an informative
way of reporting the results of a closed testing procedure. When using a closed
testing procedure, the adjusted p-value for a given hypothesis Hi is the maximum of
all p-values for tests that include Hi as a special case (including the p-value for the
Hi test itself). The adjusted p-value for testing H3 is, therefore, formally computed
as max(0.0067,0.0220,0.0285,0.0285,0.0570,0.0580,0.0600,0.0618)= 0.0618.
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H1234: p=0.0570

H123: p=0.0618 H134: p=0.0600 H234: p=0.0580

H24: p=0.0262H12: p=0.0920 H14: p=0.0920 H34: p=0.0285H13: p=0.0220 H23: p=0.0285

H1: p=0.0982 H2: p=0.0262 H3: p=0.0067 H4: p=0.0262

Fig. 2.4 Illustration of the closed testing procedure, focussing on landmark level (k = 4)

2.4 Permutation Version of Hotelling’s T2

In order to compare different tests known in the shape analysis literature, we have
at first carried out a simulation study on Hotelling’s T 2 power which is a sort of
milestone for multivariate testing also in shape analysis. Let us consider the two
independent sample case and assume that the response variables behave according
to the following model:

Xh ji = μh + δh j +Zh ji,

i = 1, . . . ,n j, j = 1,2, h = 1, . . . ,k, where n j is the sample size, μh represents a
population constant for the h-th variable; δh j represents the fixed treatment effect
(i.e., the noncentrality parameter) in the j-th group on the h-th variable and Zh ji

are k-dimensional random errors exchangeable with respect to treatment levels with
null mean vector (E(Z) = 0) and finite second moment.
Let X̄h j, j = 1,2, be the sample mean for the h-th variable, S j the biased sample
covariance matrix (with divisors n1 and n2) and S the common covariance matrix,
given by S = (n1S1 + n2S2)/(n1 + n2 − 2).
We define T

′′
the nonparametric permutation counterpart of Hotelling T 2 given by

T
′′
=

k

∑
h=1

(
X̄∗

h1 − X̄∗
h2

s∗h

)2

where the symbol ∗ indicates a permutation of the original data, X̄∗
h j, j = 1,2 are

multivariate permutation sample means, and s∗h are the diagonal elements of S∗. We
remark that the underlying dependence structure is nonparametrically and implicitly
“captured” by the permutation procedure (see e.g. Pesarin 2001 and Pesarin and
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Table 2.1 Simulations under H1 (n1 = n2 = 10, μ = 0, δ = 0.40, B =CMC = 1000)

α=0.01 α=0.05 α=0.10 α=0.20 α=0.30 α=0.50
k = 15 T 2 0.027 0.118 0.233 0.419 0.566 0.789

T
′′

0.231 0.484 0.623 0.771 0.856 0.941
k = 16 T 2 0.026 0.098 0.192 0.361 0.504 0.741

T
′′

0.228 0.496 0.633 0.792 0.866 0.946
k = 17 T 2 0.019 0.081 0.158 0.325 0.455 0.703

T
′′

0.258 0.534 0.681 0.811 0.875 0.950
k = 18 T 2 0.013 0.067 0.132 0.269 0.414 0.642

T
′′

0.253 0.543 0.667 0.816 0.874 0.956
k = 19 T

′′
0.244 0.544 0.700 0.837 0.905 0.977

k = 20 T
′′

0.318 0.552 0.683 0.825 0.904 0.965
k = 21 T

′′
0.307 0.570 0.693 0.832 0.901 0.962

k = 22 T
′′

0.340 0.618 0.744 0.845 0.906 0.964
k = 23 T

′′
0.344 0.629 0.750 0.857 0.918 0.974

k = 24 T
′′

0.338 0.622 0.741 0.862 0.919 0.973
k = 25 T

′′
0.365 0.656 0.774 0.880 0.930 0.970

Table 2.2 Simulations under H1 (n1 = n2 = 3, μ = 0, δ = 0.40, B = MC = 1000)

α=0.10 α=0.20 α=0.30 α=0.50
k = 3 T

′′
0.059 0.194 0.337 0.554

k = 18 T
′′

0.097 0.278 0.408 0.618
k = 20 T

′′
0.090 0.264 0.390 0.611

k = 25 T
′′

0.117 0.274 0.422 0.643
k = 30 T

′′
0.100 0.270 0.404 0.647

k = 35 T
′′

0.103 0.280 0.436 0.687
k = 40 T

′′
0.089 0.277 0.442 0.667

Salmaso 2010). We also emphasize that in a shape analysis framework Xh ji will
indicate the 2D or 3D landmark coordinates.
When carrying out nonparametric permutation tests we use raw coordinates and not
the shape coordinates. Hence we do not use the coordinates obtained after filtering
out location, scale, and rotational effects from the original data. However we deal
exhaustively with this topic in Chap. 3.
We have compared the traditional parametric Hotelling’s T 2 test (T 2) with the
nonparametric T 2-type counterpart (T

′′
) showing that the power for the suggested

test increases when increasing the number of the processed variables (see Table 2.1)
with the same noncentrality parameter δ , even when the number of covariates (k) is
larger than the permutation sample space (see results in Tables 2.2 and 2.3).
We remark that Hotelling’s T 2 test considered in Table 2.1 is computed using raw
coordinates and not shape variables. Moreover, when n1 = n2 = 10 and k = 19, the
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Table 2.3 Simulations under H1 (n1 = n2 = 3, μ = 0, δ = 1, B = MC = 1000)

α=0.10 α=0.20 α=0.30 α=0.50
k = 3 T

′′
0.187 0.454 0.629 0.800

k = 20 T
′′

0.324 0.779 0.902 0.977
k = 50 T

′′
0.434 0.907 0.985 0.999

test statistic is constantly equal to 0. Hotelling’s T 2 statistic can be related to the
F-distribution by the well-known relation

T 2 =
n1n2(n1 + n2 − k− 1)
(n1 + n2)(n1 + n2 − 2)k

D2 ∼ Fk,n1+n2−1−k,

where D2 is the Mahalanobis squared distance.
B is the number of permutations (Monte Carlo sampling) used for estimating the
permutation distribution, and CMC is the number of Monte Carlo iterations of the
simulation procedure. Note that for n1 = n2 = 3 we explored the whole permutation
sample space.
These interesting findings allow us to assess the usefulness of the nonparametric
permutation solution for high-dimensional data in small sample size case.
Moreover these preliminary results enable us to evaluate the power of multivariate
NPC tests discussed in Chap. 4, thus introducing and extending the notion of “finite-
sample consistency (FSC),” widely discussed in Chap. 5.

A comprehensive comparison, based on simulation study, of power behavior of
the nonparametric permutation version of Hotelling’s T 2 against that of traditional
tests used in shape analysis literature, has been published elsewhere in Brombin
and Salmaso (2009). Results highlight the good performances in terms of power
behavior of NPC test, while controlling the Type I error.
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Chapter 3
Evaluating Power Behavior of Nonparametric
Combination Testing Methodology After
Generalized Procrustes Analysis and Under
Different Correlation Structures

“We call a thing big or little with reference to what it is wont to
be, as we speak of a small elephant or a big rat.”.

On Growth and Form, 1917

D’Arcy Thompson

Abstract In this chapter we investigate the effect of Generalized Procrustes
Analysis (GPA) superimposition on the power of NonParametric Combination
(NPC) testing methodology. Through a simulation study, we show how GPA
alters power function. Since GPA superimposition provides permutationally non-
equivalent transformations, NPC tests are approximate.

Moreover, we examine the case of correlated landmarks. Through a toy example,
considering hypothetical configurations representing some 3D monkey skulls, we
compare the behavior of traditional tests with that of nonparametric permutation
tests in this particular case.

Finally we introduce paired data problem that, in the context of shape analysis,
relates to the study of symmetric structures. Inferential techniques for symmetric
shapes are presented.

Keywords Correlated landmarks • Generalized Procrustes Analysis GPA super-
imposition • Paired landmarks • Symmetric structures

3.1 Generalized Procrustes Analysis and Power
of NonParametric Combination methodology

In Chap. 2, in order to carry out NPC tests, we have used raw coordinates and
not shape coordinates. This choice could be questioned. For example, one could
ask how the NPC tests properly ensure the invariances to translation, rotation, and

C. Brombin and L. Salmaso, Permutation Tests in Shape Analysis,
SpringerBriefs in Statistics 15, DOI 10.1007/978-1-4614-8163-8 3,
© Springer Science+Business Media New York 2013
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Fig. 3.1 Raw data (a) and superimposed data (b)

scale needed for proper shape tests. We could replay that we were considering con-
figurations of landmarks different by construction. In addition, possible difference
in power behavior is associated with transformations induced by GPA. Actually,
including GPA, NPC tests are approximate, since GPA superimposition provides
permutationally non-equivalent transformations (Brombin 2009). Moreover, the
probability distribution of transformed data after GPA may be altered with respect
to the initial distribution. Hence GPA privileges the shape, but it may alter the
dependency structures and, as a result, the distribution producing permutationally
non-equivalent tests within the permutation testing framework. In the extreme case,
if we consider two shapes that differ only for a scale factor (e.g., a big and a small
circle), without GPA, inferential results obtained using NPC tests lead us to accept
the alternative hypothesis, i.e., the two shapes are significantly different. On the
other hand, after superimposition, we just accept the null hypothesis, stating the
equality of the two shapes. Hence, inferential conclusions may be highly different.

We could regard GPA superimposition as a method for standardizing shapes.
It is well known that different results may be obtained using standardized or
original data. For example, in multivariate statistics, this situation occurs in principal
component analysis (PCA). Actually, the components obtained using variance or
correlation matrix are in general not the same, nor is possible to pass from one
solution to another by a simple scaling of the coefficient.
We recall this issue in Sect. 3.2, examining simulation results in the presence of
correlation between landmarks. In Fig. 3.1 we show the effects of GPA superim-
position. The scatterplot has been realized using the tutorial program TPStri (Rohlf
2008), allowing to show some of the relationships between shape coordinates and
to perform sampling experiments for triangles. In particular we have generated
and plotted 2,000 random triangles (shown as small green dots) from normal
distributions, centered on the target shapes (to simulate the effects of random shape
variation such as digitizing error). The target (mean) shape is an equilateral triangle
represented by the red dots (with (− 1

2 ,− 1
2
√

3
), ( 1

2 , 1
2
√

3
) as the endpoints of the base)

and it has been chosen close to the reference (an equilateral triangle too with (0,0),
(0,1) as endpoints of the base).
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A “medium” standard deviation σ = 0.05 for the scatter around each landmark has
been chosen (i.e., we simulate digitizing error). In Fig. 3.1a we have displayed the
raw scatter, while in Fig. 3.1b we have displayed the scatter after Procrustes aligning
each sample to the reference configuration.
As you can see, after GPA superimposition, the variance around each landmark is
greatly reduced and this of course can influence power behavior.
Here we propose the same simulation study presented in Chap. 2, considering only
NPC tests. We compare their power behavior, in the case in which superimposition
step is included or not. Let n j, j = 1,2, be the sample size in the two samples.
Three domains have been defined. We denote with G the global test obtained after
combining all partial tests and with G d the global test that takes into account the
information about domains. Fisher (F) and Liptak (L) are the possible combining
functions used and MA denotes the Multi Aspect procedure previously discussed.
For the sake of space we report only the results for the following simulations:

- 1st simulation: n1 = n2 = 10, σ2 = 0.25,
- 2nd simulation: n1 = n2 = 10, σ2 = 0.50,
- 3rd simulation: n1 = 50, n2 = 20, σ2 = 0.25.
- 4th simulation: n1 = n2 = 50, σ2 = 0.25.

We also show simulation results under the null hypothesis, in order to evaluate if the
nominal α-level, after GPA superimposition, is still under control.
As expected, power function after GPA is slightly different, thus confirming that
transformations are induced by GPA (see the rows highlighted in gray in Tables
3.1–3.4).
The type I error is under control (see the column of nominal level α = 0.05 in
Tables 3.5–3.8). By means of GPA superimposition we are able to compare shapes
on the basis of points of correspondence (i.e., landmarks). It is worth noting that
other methods are available, allowing for comparisons of entire curves. In particular,
it is possible to compare the parameters or coefficients describing a curve of interest
within functional data analysis field.

3.2 Introducing Correlation Between Landmarks

In this nonparametric framework we also analyze the case of heterogeneous
variation at each landmark. We have evaluated power and the achieved α-level.
Superimposition step has been included in the routine. Tippett (T) and Fisher (F)
combining functions have been used, considering both location and distributional
aspects.
Full simulation study has been published elsewhere in Brombin (2009), Brombin
et al. (2009), Pesarin (2001), and Pesarin and Salmaso (2010).
In order to obtain nonsingular covariance matrix, we have performed an eigenvalue
decomposition (ED) of the original variance covariance matrix and transformed the
original eigenvalues λ . We have considered transformations like λ 1/3 and λ 1/10,
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Table 3.1 1st simulation (n1 = n2 = 10, B = CMC = 1,000, σ 2 = 0.25)

α = 0.01 α = 0.05 α = 0.10 α = 0.20 α = 0.30 α = 0.50

G (L) & GPA 0.054 0.172 0.279 0.434 0.549 0.741
G (L) 0.049 0.171 0.281 0.461 0.581 0.766

G d (L) & GPA 0.048 0.165 0.265 0.419 0.526 0.724
G d (L) 0.040 0.168 0.275 0.436 0.567 0.743

G (F) & GPA 0.079 0.214 0.326 0.480 0.615 0.769
G (F) 0.072 0.233 0.365 0.544 0.650 0.810

G d (F) & GPA 0.067 0.203 0.302 0.452 0.581 0.753
G d (F) 0.067 0.216 0.343 0.512 0.619 0.787

G (L, MA) & GPA 0.056 0.175 0.275 0.440 0.549 0.748
G (L, MA) 0.057 0.176 0.303 0.458 0.586 0.749

G d (L, MA) & GPA 0.052 0.170 0.265 0.419 0.527 0.723
G d (L, MA) 0.052 0.177 0.289 0.442 0.566 0.739

G (F, MA) & GPA 0.075 0.218 0.312 0.477 0.604 0.767
G (F, MA) 0.075 0.235 0.365 0.533 0.659 0.801

G d (F, MA) & GPA 0.071 0.203 0.290 0.447 0.568 0.755
G d (F, MA) 0.065 0.211 0.344 0.508 0.630 0.780

Table 3.2 2nd simulation (n1 = n2 = 10, B=CMC=1,000, σ 2 = 0.50)

α = 0.01 α = 0.05 α = 0.10 α = 0.20 α = 0.30 α = 0.50

G (L) & GPA 0.031 0.098 0.180 0.330 0.436 0.647
G (L) 0.027 0.108 0.186 0.339 0.443 0.648

G d (L) & GPA 0.029 0.098 0.167 0.316 0.424 0.632
G d (L) 0.020 0.097 0.183 0.333 0.438 0.630

G (F) & GPA 0.033 0.110 0.196 0.365 0.475 0.647
G (F) 0.034 0.134 0.227 0.369 0.498 0.689

G d (F) & GPA 0.030 0.115 0.188 0.345 0.467 0.631
G d (F) 0.036 0.120 0.210 0.356 0.485 0.675

G (L, MA) & GPA 0.030 0.108 0.176 0.330 0.439 0.643
G (L, MA) 0.022 0.109 0.206 0.345 0.446 0.651

G d (L, MA) & GPA 0.028 0.101 0.170 0.311 0.427 0.627
G d (L, MA) 0.021 0.098 0.193 0.334 0.438 0.647

G (F, MA) & GPA 0.029 0.110 0.201 0.362 0.475 0.645
G (F, MA) 0.032 0.142 0.242 0.372 0.493 0.695

G d (F, MA) & GPA 0.027 0.113 0.190 0.347 0.467 0.634
G d (F, MA) 0.028 0.126 0.221 0.356 0.491 0.678
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Table 3.3 3rd simulation: n1 = 50,n2 = 20, σ 2 = 0.25

α = 0.01 α = 0.05 α = 0.10 α = 0.20 α = 0.30 α = 0.50

G (L) & GPA 0.200 0.422 0.564 0.738 0.829 0.929
G (L) 0.000 0.787 0.870 0.932 0.959 0.987

G d (L) & GPA 0.162 0.390 0.524 0.691 0.790 0.914
G d (L) 0.088 0.761 0.854 0.923 0.955 0.985

G (F) & GPA 0.305 0.588 0.737 0.858 0.918 0.965
G (F) 0.385 0.677 0.797 0.907 0.953 0.990

G d (F) & GPA 0.264 0.549 0.700 0.833 0.904 0.958
G d (F) 0.337 0.634 0.771 0.887 0.940 0.984

G (L, MA) & GPA 0.195 0.415 0.560 0.742 0.828 0.926
G (L, MA) 0.488 0.690 0.811 0.889 0.931 0.971

G d (L, MA) & GPA 0.157 0.382 0.516 0.696 0.802 0.918
G d (L, MA) 0.476 0.686 0.791 0.878 0.920 0.965

G (F, MA) & GPA 0.287 0.579 0.736 0.857 0.920 0.961
G (F, MA) 0.564 0.775 0.863 0.920 0.954 0.982

G d (F, MA) & GPA 0.254 0.542 0.699 0.835 0.908 0.959
G d (F, MA) 0.549 0.767 0.853 0.911 0.948 0.982

Table 3.4 4th simulation (n1 = n2 = 50, B = MC = 1,000, σ 2 = 0.25)

α = 0.01 α = 0.05 α = 0.10 α = 0.20 α = 0.30 α = 0.50

G (L) & GPA 0.429 0.702 0.812 0.907 0.952 0.989
G (L) 0.354 0.644 0.759 0.867 0.916 0.972

G d (L) & GPA 0.386 0.674 0.795 0.895 0.937 0.981
G d (L) 0.332 0.615 0.752 0.856 0.912 0.966

G (F) & GPA 0.653 0.884 0.942 0.980 0.992 1.000
G (F) 0.677 0.873 0.944 0.976 0.989 1.000

G d (F) & GPA 0.610 0.869 0.931 0.972 0.990 0.997
G d (F) 0.641 0.855 0.922 0.970 0.985 0.998

G (L, MA) & GPA 0.428 0.707 0.814 0.904 0.956 0.985
G (L, MA) 0.359 0.630 0.762 0.877 0.920 0.979

G d (L, MA) & GPA 0.382 0.671 0.795 0.883 0.938 0.979
G d (L, MA) 0.340 0.619 0.755 0.864 0.909 0.973

G (F, MA) & GPA 0.634 0.882 0.936 0.980 0.993 1.000
G (F, MA) 0.678 0.883 0.939 0.977 0.991 0.999

G d (F, MA) & GPA 0.595 0.866 0.923 0.971 0.987 0.997
G d (F, MA) 0.651 0.863 0.925 0.971 0.985 0.999
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Table 3.5 Simulations under H0 (n1 = n2 = 10, B = CMC = 1,000, σ 2 = 0.25) using GPA

α = 0.01 ααα = 0.05 α = 0.10 α = 0.20 α = 0.30 α = 0.50

G (L) 0.017 0.054 0.107 0.215 0.307 0.512
G d (L) 0.014 0.055 0.115 0.213 0.304 0.512

G (F) 0.014 0.058 0.120 0.208 0.307 0.506
G d (F) 0.013 0.057 0.121 0.205 0.313 0.490

G (L, MA) 0.016 0.051 0.109 0.217 0.311 0.516
G d (L, MA) 0.013 0.046 0.116 0.218 0.310 0.514

G (F, MA) 0.010 0.058 0.118 0.214 0.311 0.504
G d (F, MA) 0.012 0.061 0.115 0.210 0.317 0.484

Table 3.6 Simulations under H0 (n1 = n2 = 10, B = CMC = 1,000, σ 2 = 0.50) using GPA

α = 0.01 ααα = 0.05 α = 0.10 α = 0.20 α = 0.30 α = 0.50

G (L) 0.007 0.053 0.099 0.198 0.300 0.518
G d (L) 0.012 0.060 0.101 0.203 0.313 0.520

G (F) 0.007 0.047 0.107 0.196 0.299 0.509
G d (F) 0.012 0.055 0.107 0.205 0.299 0.500

G (L, MA) 0.008 0.055 0.099 0.201 0.297 0.514
G d (L, MA) 0.007 0.059 0.104 0.207 0.312 0.519

G (F, MA) 0.005 0.051 0.105 0.195 0.298 0.504
G d (F, MA) 0.008 0.049 0.096 0.200 0.295 0.503

Table 3.7 Simulations under H0 (n1 = 50, n2 = 20, B=CMC=1,000, σ 2 = 0.25) using GPA

α = 0.01 ααα = 0.05 α = 0.10 α = 0.20 α = 0.30 α = 0.50

G (L) 0.014 0.054 0.098 0.196 0.289 0.491
G d (L) 0.014 0.056 0.096 0.200 0.296 0.502

G (F) 0.013 0.053 0.103 0.188 0.289 0.488
G d (F) 0.013 0.052 0.097 0.196 0.293 0.489

G (L, MA) 0.014 0.056 0.095 0.194 0.292 0.494
G d (L, MA) 0.013 0.053 0.095 0.198 0.299 0.492

G (F, MA) 0.017 0.053 0.098 0.189 0.284 0.485
G d (F, MA) 0.014 0.048 0.101 0.194 0.285 0.497

rescaled by their trace (see the effect of transforming eigenvalues on the scatterplot
in Fig. 3.2). Then we have recalculated the covariance matrix Σ∗, using the relation
Σ∗ = VΛ∗V ′, where Λ∗ is a diagonal matrix with the transformed eigenvalues, V
is an orthogonal matrix, containing the corresponding eigenvectors and V

′
means V

transposed.
Under the alternative, data have been generated using different means and the same
covariance matrix Σ∗. In Table 3.9 we display hypothetical mean configurations,
representing 3D male and female Macaca fascicularis monkey skulls (for details,
see Frost et al. 2003).
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Table 3.8 Simulations under H0 (n1 = n2 = 50, B=CMC=1,000, σ 2 = 0.25) using GPA

α = 0.01 ααα = 0.05 α = 0.10 α = 0.20 α = 0.30 α = 0.50

G (L) 0.011 0.048 0.097 0.200 0.316 0.510
G d (L) 0.013 0.048 0.098 0.204 0.311 0.516

G (F) 0.013 0.045 0.108 0.204 0.297 0.515
G d (F) 0.010 0.051 0.113 0.207 0.303 0.521

G (L, MA) 0.009 0.050 0.096 0.212 0.309 0.503
G d (L, MA) 0.011 0.049 0.096 0.207 0.313 0.513

G (F, MA) 0.011 0.051 0.105 0.198 0.302 0.514
G d (F, MA) 0.010 0.050 0.107 0.203 0.294 0.515

Fig. 3.2 Original eigenvalues λ (a), λ 1/3 (b), and λ 1/10 (c)

Let n j, j = 1,2, denote the sample size in the two groups. In particular we
have considered these settings: n1 = n2 = 5, n1 = n2 = 10, n1 = 5, n2 = 10. In
the simulation study we have evaluated power and α-level when the number of 3D
landmarks k was, in turn, equal to 3,6,9,11. Three domains have been considered,
i.e., the first includes landmarks 1, 2, and 11; the second one includes landmarks
from 3 to 7; and the third one includes landmarks from 8 to 10.
We denote with T

′′
the Hotelling’s T 2 permutation counterpart, with G the combi-

nation of all partial tests, with G d the combination using domains.
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Table 3.9 Configurations

Landmark Male Female

# Lnd. name xM yM zM xF yF zF

1 Inion 17.7752 18.9981 6.9585 17.5252 18.9981 6.9585
2 Bregma 15.9101 16.3499 9.2159 15.9101 16.4499 9.2159
3 Glabella 13.6833 12.7086 7.6433 13.6833 12.7086 7.6433
4 Nasion 13.6799 12.6892 7.5628 13.8299 12.6892 7.5628
5 Rhinion 12.9273 11.2649 5.1792 12.9273 11.2149 5.1792
6 Nasospinale 12.6114 10.5523 3.6257 12.6114 10.5523 3.6257
7 Prosthion 12.4725 10.233 2.8531 12.4725 10.2330 2.8531
8 Opisthion 17.1882 17.8852 5.0014 17.1882 17.8852 5.1514
9 Basion 16.5070 16.7665 4.4799 16.5070 16.7165 4.4799
10 Staphylion 14.6975 13.8755 4.1783 14.6075 13.8755 4.1783
11 Incisivion 13.2442 11.4665 3.5466 13.2442 11.4665 3.5166

We remark that transforming eigenvalues as above mentioned, it is difficult to
quantify the amount of the correlation introduced in the dataset. We did not calculate
any multivariate correlation index, since we are just interested in evaluating what
happens to power behavior after introducing some correlations between landmarks.
By the way we would like to mention that the original model by Goodall (1991)
described a perturbation model as a simple model for variation in the positions of
the landmarks around their mean locations. This model also allows for covariation
between the landmarks. In this model the k × m matrix of coordinates for the
k m-dimensional landmarks for the ith specimen is given by

Xi = αi(μ +Ei)Ωi + 1ωt
i

where αi is a scale factor (size of the ith specimen), μ is the mean shape, Ei is a
matrix of random errors (normally distributed with zero mean), Ωi is a m×m matrix
describing the orientation of the ith specimen (reflections excluded), 1 is a vector of
all ones, and ωi is a vector specifying the location of the specimen in the digitizing
plane (or solid). Parameters αi, Ωi , and ωi are the so-called nuisance parameters
because they encode information unrelated to shape variation. As previously noted,
the estimates of shape variation must be independent of these parameters. Matrix
Ei (when strung out as a single column vector with mk elements) has a covariance
matrix Σ = Σk ⊗ Σm, where Σk is the covariance matrix for the landmark points
and Σm is the covariance matrix for the dimensions (Rohlf 2000). The symbol
⊗ denotes the Kronecker product of two matrices. Till now we have investigated
the simplest case of identical independent variation around each mean landmark
position, i.e., Σk = σ2Ik and Σm = Im. This is the type of variation one might
expect from digitizing error. But Goodall’s F test 1991, related to this model for
shape variation, in addition to assuming independent samples and that Ei follows
the multivariate normal distribution, makes the further assumptions that Σk = σ2I
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Table 3.10 Simulations under H0: n1 = n2 = 10, λ 1/3, k = 6, m = 3, B =CMC = 1,000

Achieved α-level
Test 0.01 0.05 0.10 0.20 0.30 0.50

T
′′

0.012 0.056 0.102 0.204 0.295 0.493
GT 0.000 0.052 0.088 0.195 0.290 0.489
Gd,T 0.004 0.038 0.103 0.195 0.288 0.475
GF 0.011 0.055 0.099 0.197 0.292 0.504
Gd,F 0.011 0.050 0.098 0.196 0.293 0.496
GMA,T 0.008 0.031 0.065 0.136 0.206 0.350
Gd,MA,T 0.008 0.027 0.073 0.143 0.216 0.345
GMA,F 0.041 0.112 0.164 0.266 0.340 0.508
Gd,MA,F 0.043 0.122 0.185 0.305 0.402 0.550
Goodall 0.025 0.069 0.119 0.201 0.284 0.465
T 2 0.033 0.098 0.159 0.240 0.331 0.470

G(μ,Me),F 0.012 0.055 0.099 0.190 0.288 0.466
Gd,(μ,Me),F 0.011 0.054 0.098 0.191 0.300 0.479
G(μ,μ2),F 0.010 0.048 0.109 0.195 0.286 0.509

Gd,(μ,μ2),F 0.009 0.043 0.096 0.192 0.287 0.485

and Σm = I for both samples. Under the assumed model, type I error rate is under
control when σ2 is small.
The model of equal and isotropic variation is a fairly restrictive assumption that is
often violated in biological data sets, which often show clearly patterned variation
(Klingenberg et al. 2002). However, when the isotropic normal model holds, more
powerful tests result, especially when sample sizes are small. Furthermore, we
remark that in the usual T 2 tests, power is necessarily low since many degrees of
freedom are used in estimating the covariance matrix.
For sake of space, we present simulation results only for the case in which the
number of 3D landmarks k is equal to 6 and n1 = n2 = 10 (see Tables 3.10–3.13).
In all the simulations under H0, when using global test with Fisher combining
function, MA procedure and domain information, type I error rate was too large,
thus invalidating inferential conclusions. Focussing on α = 0.05, tests with nominal
α-level out of control are highlighted in gray in Tables 3.10–3.11. For example,
in Table 3.10, when α = 0.05, we have that GMA,F has a corresponding achieved
α = 0.112 and Gd,MA,F has a corresponding achieved α = 0.122. We remind that we
were considering location (mean) and distributional (Anderson–Darling’s statistic)
aspects. As mentioned in the previous section, GPA superimposition may modify
dependency structures, thus altering the final distribution. Fisher combining function
is more sensitive to MA procedure than Tippett combining function. If we change
the aspects, e.g., if we consider mean μ and median Me or mean and second
moments μ2, the corresponding GMA,F and Gd,MA,F are able to control the nominal
α-level. These results highlight that GPA affects the initial distribution of the data,
hence a particular care is needed when a MA procedure is performed.
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Table 3.11 Simulations under H0: n1 = n2 = 10, λ 1/10, k = 6, m = 3, B =CMC = 1,000

Achieved α-level
Test 0.01 0.05 0.10 0.20 0.30 0.50

T
′′

0.011 0.043 0.089 0.189 0.286 0.504
GT 0.000 0.040 0.087 0.183 0.282 0.481
Gd,T 0.007 0.041 0.092 0.187 0.293 0.494
GF 0.011 0.046 0.090 0.187 0.284 0.500
Gd,F 0.008 0.045 0.088 0.187 0.300 0.498
GMA,T 0.007 0.030 0.065 0.138 0.198 0.338
Gd,MA,T 0.010 0.030 0.077 0.141 0.197 0.349
GMA,F 0.040 0.104 0.165 0.259 0.348 0.503
Gd,MA,F 0.039 0.130 0.200 0.309 0.417 0.571
Goodall 0.015 0.059 0.111 0.209 0.302 0.501
T 2 0.033 0.090 0.153 0.256 0.332 0.466

G(μ,Me),F 0.009 0.053 0.098 0.199 0.304 0.509
Gd,(μ,Me),F 0.008 0.052 0.105 0.222 0.311 0.507
G(μ,μ2),F 0.013 0.062 0.125 0.223 0.324 0.524

Gd,(μ,μ2),F 0.008 0.060 0.115 0.208 0.314 0.488

Table 3.12 Simulations under H1: n1 = n2 = 10, λ 1/3, k = 6, m = 3, B =CMC = 1000

Power
Test 0.01 0.05 0.10 0.20 0.30 0.50

T
′′

0.337 0.621 0.757 0.888 0.930 0.981
GT 0.000 0.538 0.709 0.855 0.923 0.978
Gd,T 0.123 0.478 0.683 0.828 0.902 0.971
GF 0.299 0.564 0.709 0.858 0.916 0.973
Gd,F 0.286 0.547 0.679 0.819 0.898 0.962
GMA,T 0.234 0.456 0.636 0.754 0.851 0.945
Gd,MA,T 0.255 0.401 0.600 0.755 0.824 0.923
Goodall 0.321 0.551 0.667 0.782 0.863 0.949
T 2 0.253 0.483 0.609 0.739 0.808 0.872

G(μ,Me),F 0.284 0.571 0.711 0.853 0.918 0.969
Gd,(μ,Me),F 0.164 0.431 0.596 0.797 0.880 0.952
G(μ,μ2),F 0.224 0.467 0.612 0.740 0.833 0.922

Gd,(μ,μ2),F 0.137 0.369 0.495 0.663 0.782 0.903

The test performing better are highlighted in gray (see Tables 3.12 and 3.13). Among
more powerful tests, we find Gd,MA,T , Goodall’s F , Hotelling’s T 2, G(μ,μ2),F , and

Gd,(μ,μ2),F . With reference to Goodall’s F and Hotelling’s T 2 parametric tests, they
are not valid. Actually when nominal α-level is equal to 5%, Goodall’s achieved
α-level is 6.9% and Hotelling’s T 2 achieved α-level is 9.8% (see Table 3.10).
Hence the evaluation of power behavior for these tests should be made with caution.
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Table 3.13 Simulations under H1: n1 = n2 = 10, λ 1/10, k = 6, m = 3, B =CMC = 1000

Power
Test 0.01 0.05 0.10 0.20 0.30 0.50

T
′′

0.086 0.242 0.370 0.547 0.674 0.820
GT 0.000 0.162 0.284 0.474 0.604 0.781
Gd,T 0.039 0.200 0.332 0.495 0.628 0.795
GF 0.088 0.239 0.362 0.550 0.672 0.817
Gd,F 0.097 0.260 0.380 0.547 0.667 0.816
GMA,T 0.037 0.111 0.218 0.361 0.471 0.656
Gd,MA,T 0.048 0.133 0.248 0.398 0.507 0.673
Goodall 0.075 0.220 0.339 0.496 0.600 0.769
T 2 0.054 0.155 0.244 0.362 0.448 0.585
G(μ,Me),F 0.097 0.257 0.369 0.524 0.631 0.782
Gd,(μ,Me),F 0.066 0.219 0.355 0.508 0.626 0.798
G(μ,μ2),F 0.066 0.193 0.298 0.435 0.557 0.741
Gd,(μ,μ2),F 0.047 0.152 0.265 0.424 0.543 0.727

Moreover we recall that significance levels obtained by parametric F-tests may not
be reliable. Permutation tests (Good 2000) provide an alternative that can be used for
Procrustes analysis of Variance (ANOVA) even when distributions are not normal
or sample size is small (Klingenberg and McIntyre 1998; Klingenberg et al. 2002).

3.3 Paired Data Problems: Study of Symmetric Structures

In shape analysis, paired data problem is commonly associated with the study of
symmetric structures. Here we briefly summarize the terminology and the inferential
techniques used for symmetric shapes. The most prominent type of symmetry in
the organization of living organisms is bilateral symmetry. A 2D (or 3D) object is
said to be bilaterally symmetric if its mirror image about some line or some plane
is the same as the original form after relabeling some landmarks. This mirroring
locus in general is called the midplane. In a perfect bilaterally symmetric shape
there are two types of landmark. Some are paired, they don’t lie on the midplane,
but appear separately on left and right sides. Some other are unpaired and they lie
on the midplane. Along with bilateral symmetry, we may mention other sorts of
symmetry, like reflection symmetry with multiple axes (or planes) of symmetry,
rotational symmetry, translational symmetry, and scaling symmetry. In the shape
analysis of bilaterally symmetric structures, two categories of symmetry have been
distinguished: matching symmetry and object symmetry. Object symmetry relates to
the symmetry within a single object, such as a face, and hence it considers parts with
internal left–right symmetry. In matching symmetry two separate structures exist as
mirror images of each other, one on each body side (Klingenberg et al. 2002). Thus
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it is concerned with symmetry between two corresponding objects, such as left and
right hands (Mardia et al. 2000).
In other terms, matching symmetry concerns pairs of repeated structures that are
separated from each other by a mirror plane. This mirror plane passes between
the objects (outside of each). The two structures differ by a reflection and an
appropriate translation. In presence of object symmetry, a single configuration
is itself symmetric, as the reflection axis (or plane) passes through the config-
uration (e.g., the vertebrate skull). Object symmetry considers both the shape
information from the left and right side, as in matching symmetry, and the
additional information on the relative arrangement of the two connected halves
(Savriama and Klingenberg 2006). In order to study matching symmetry, the land-
mark configurations from one side are reflected, then all the configurations are
superimposed by GPA to produce an overall mean shape. Variations in the averages
of the pairs of configurations embody the symmetric variation among individuals.
The deviations of each configuration from the consensus provide an estimate of the
asymmetry component.
For the analysis of object symmetry, the data set includes both the original landmark
configurations and their reflected copies with the paired landmarks relabeled.
A GPA is applied to all configurations to produce a single consensus, which
is symmetric. The symmetric variation among individuals is measured from the
averages of the original configuration and its reflected (appropriately relabelled)
copy. Again the asymmetry is estimated by the deviations of each configuration
from the consensus (Savriama and Klingenberg 2006). We refer to the isotropic case
when the covariance matrix is a multiple of the identity; in the non-isotropic case,
the covariance matrix of Procrustes coordinates can be any positive-semidefinite
matrix with the appropriate null space. With reference to the inferential aspect, in
order to test object symmetry in the isotropic case, we may conduct an analysis
of variance (ANOVA) and then use F statistic test. Through the ANOVA test, the
total sum of squares is decomposed into two terms: the square of what has been
called directional asymmetry plus n times the so-called fluctuating asymmetry in the
Procrustes metric.
Subtle asymmetries are small and completely random departures from bilateral sym-
metry. Fluctuating asymmetry is considered the most familiar of these asymmetries,
providing a surprisingly convenient measure of developmental precision: the more
precisely each side develops the greater the symmetry (Palmer and Strobeck 1997).
It has become popular as a measure of environmental quality, stress, health, or
fitness. Unfortunately because subtle asymmetries are often so small, they are
exceedingly difficult to measure and analyze reliably. Conspicuous asymmetries are
easily detected, either as asymmetrical structures on otherwise bilaterally symmet-
rical animals, or as whole-body asymmetries. They are classified as antisymmetry
(also called random asymmetry) or directional asymmetry. Directional asymmetry
(also called fixed asymmetry) arises either when one side is larger than the other on
average, or the larger member of a bilateral pair tends to be on the same side. These
two asymmetries provide information about the evolutionary history, suggesting
how symmetry is broken during development (Palmer 1996).
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In the non-isotropic case, we may use T 2 Hotelling’s test and the approximation to
Fisher’s F distribution.
The same holds for matching symmetry. Obviously there is a difference in the
degrees of freedom of the tests. In the isotropic case we may preform ANOVA
test, while in the non-isotropic case we carry out Hotelling’s T 2. As usual, when the
number of shape variables is greater than the most practical sample size, no formal
T 2 can be computed and working under a permutation framework is recommended.
In particular it is possible to use a permutation test for which the pivotal role of
the Procrustes distance is retained but the distributional assumptions underlying
the F under H0 are relaxed. The reference distribution becomes a Monte Carlo
permutation distribution where what is permuted is the assignment of one of the
forms to the reflected state (Mardia et al. 2000).
Now we briefly present the nonparametric permutation solution to the problem
of multivariate paired data observations. Let us assume that a q-dimensional
non-degenerate real variable X is observed in k different occasions, for instance
at times (τ1, . . . ,τk), on the same n statistical units considered in two different
experimental situations, corresponding to two levels A1 and A2 of a treatment.
Typically, observations at level A1 correspond to baseline responses and those at
level A2 to after-treatment responses.
In shape analysis field, we usually deal with paired landmark data, hence the two
levels A1 and A2 of a treatment correspond to the left and right coordinate of the
same landmark point. We recall that, commonly, treatment effect is strictly related
to the “stratification” variable, in particular it could be age or gender effect.
Coming back to the general case, the whole data set can be denoted by

X = {Xh jit , t = 1, . . . ,k, i = 1, . . . ,n, j = 1,2, h = 1, . . . ,q}

For simplicity, let us assume that the response variables behave according to the
following model:

Xh jit = μh + μhit + δh jt +σht(δh jt) ·Zh jit ,

t = 1, . . . ,k, i = 1, . . . ,n, j = 1,2, h = 1, . . . ,q, where μh represents a population
constant for the hth variable, μhit represents a time effect on the hth variable at time
t and specific to the ith individual; δh jt represents treatment time effect at level j
on the hth variable which, without loss of generality, are assumed to be δh1t = 0,
δh2t ≤ (or ≥)0, ∀(h, t); σht(δh jt) > 0 represent population scale coefficients for
variable h at time t, which are assumed to be invariant with respect to units but which
may depend on treatment levels through effects δh jt , provided that, when δh2t �= 0,

stochastic dominance relationships Xh1
d
< (or

d
>)Xh2, h = 1, . . . ,q, are satisfied; Zh jit

are q-variate random errors, which are assumed to be exchangeable with respect to
treatment levels, independent with respect to units, with null mean vector,E(Z) = 0,
and with unspecified distribution P ∈ P; in particular, these multivariate random
errors may be dependent with respect to component variables and time through any
kind of monotonic regression.
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Here we assume that treatment effects are fixed or stochastic; in the present case,
they are assumed to be independent of errors.
We are interested in testing for these effects irrespective of time, underlying
dependences, and unknown distributions. Thus, the hypotheses under consideration
are formalized as

H0 :

{
k⋂

t=1

[
X1t

d
= X2t

]}
=

{
k⋂

t=1

q⋂
h=1

[δh2t − δh1t = 0]

}
=

{
k⋂

t=1

q⋂
h=1

H0ht

}

against the alternatives of the form

H1 :

{
k⋃

t=1

[
X1t <

d
�=> X2t

]}
=
{ k⋃

t=1

q⋃
h=1

H1ht

}
,

in which at least one among H0ht is not true. Observe that H0 implies exchangeability
of profile responses with respect to treatment levels, so that two q-dimensional
profiles X1t and X2t , t = 1, . . . ,k, are exchangeable within units. Note that in general
case some of the sub-alternatives may be one-sided, or restricted, and others two-
sided. Hence, we are operating in the context of multivariate restricted alternatives.
Also note that for each component variable we assume that the differences of
observations between the two treatment levels are informative. As a matter of fact,
and assuming that the response model is adequate, differences behave as

Yhit = Xh2it −Xh1it = δh·t +σht(δh2t) ·Zh2it −σht(δh1t) ·Zh1it ,

t = 1, . . . ,k, i = 1, . . . ,n, h = 1, . . . ,q, where it is shown that differences Yhit depend
only on treatment effects, exchangeable errors, and δh·t = δh2t − δh1t = δh2t . The
two scale functions σht(δh2t) and σht(δh1t) are equal under H0. It is known that a
direct solution to this testing problem, with restricted alternatives, is generally very
difficult to obtain in a parametric framework, especially if the normality of P is
not assumed and/or if the covariance matrix is unknown (Robertson et al. 1988).
Conversely, nonparametric permutation methods can be applied even in the case of
heterogeneous sample variance–covariance matrices, allowing for an almost exact
solution to the multivariate Behrens–Fisher problem (Pesarin 1997).
Using NPC methods, this problem is processed in two phases. At the first stage kq
partial permutation tests, each suitable for paired observations, are preformed. In
the second stage, all the previously obtained tests are combined by means of NPC
methodology.
Partial permutation tests have the form

Tht = φht (∑iYhit) , t = 1, . . . ,k, h = 1, . . . ,q,

where Yhit are unit-by-unit and variable-by-variable observed differences; functions
φht correspond to the absolute value or to sign plus or minus according to whether
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the htth sub-alternative H1ht of interest is two-sided, �=, or one-sided > or <
respectively. It is worth noting that all these partial tests T = {Tht , t = 1, . . . ,k, h =
1, . . . ,q} are marginally unbiased. Actually each sub-hypothesis H0ht against H1ht ,
being separately related to the hth component variable, may be considered as if it
were univariate. As a consequence, the NPC methodology may be applied and, due
to the assumed exchangeability in H0, the multivariate permutation distribution of
T is generated by the random attribution of individual data vectors to A1 and A2.
This implies that permutations are within individuals and with respect to treatment
levels A1 and A2. Thus, there are two permutations for each individual, and the
cardinality of the permutation sample space X/Y, where Y = {Yhit , t = 1, . . . ,k, i =
1, . . . ,n, h = 1, . . . ,q}, is 2n. In practice, for each unit, the permutation approach
considers an equally likely random choice of the sign to be attributed to the vector
of differences {Yhit , t = 1, . . . ,k, i = 1, . . . ,n, h = 1, . . . ,q}. Note that the random
signs are invariant within units with respect to h and t and are independent with
respect to units. This guarantees that the dependence relations within variables
are preserved. When k = q = 1 and responses are homoscedastic and normally
distributed, this testing problem becomes the classical Student t for paired data.
Moreover, multivariate paired observations testing problems may be viewed as
multivariate testing of symmetry. Hence in shape analysis, we first consider all the
differences between right and left coordinates of each landmark point. Then, once
obtained partial p-values for the coordinates (coordinate level), we combine these
p-values in order to obtain information on landmarks (landmark level). Finally we
consider domains and aspects, if present, as well as the global combination of partial
p-values.
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Chapter 4
Power Behavior of Permutation Tests with High
Dimensional Data

“The statistical method is more than an array of techniques. The
statistical method is a Mode of Thought; it is Sharpened
Thinking; it is Power”.

Paper presented at meeting of the International Statistical
Institute, September 1953.

W.E. Deming

Abstract In this chapter we present main results of an extensive simulation study
aiming to evaluate the power of multivariate permutation tests combination-based.
In particular we show that, for a given and fixed number of subjects, when the
number of variables and the associated noncentrality parameter both diverge, then
the power of multivariate NPC tests converges to one. This holds true even when the
number of variables is larger than the permutation sample space.
These results allow us to introduce and then extend to shape analysis the notion of
finite-sample consistency.

Keywords Informative variables • Multivariate permutation tests • Permutation
sample space • Power function

4.1 High Dimensional Data with Small Sample Sizes

In statistical shape analysis, like in several application fields, e.g., longitudinal
analysis (Diggle et al. 1994), analysis of microarrays and genomics (Salmaso
and Solari, 2005, 2006), analysis of brain images (Friman and Westin 2005), and
functional data analysis (Ferraty and Vieu 2006), it may happen that the sample
sizes are fixed and the number of observed variables is much larger than sample
sizes.
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As already said, in the parametric framework, the most natural way to compare two
mean shapes is by using the Hotelling’s T 2 test. Despite its widespread use, this test
presumes independent samples, that the shape coordinates (e.g., Kendall tangent
space, Bookstein shape coordinates, or Rao and Suryawanshi shape variables, 1996;
1998) follow a multivariate normal distribution, and that the samples are drawn
from populations with the same covariance matrix. These assumptions could be very
demanding (Dryden and Mardia 1998; Blair et al. 1994). As an example, in T 2-test
using Rao and Suryawanshi shape variables (1996), the requirement of the equality
of variances can be a problem since the expected covariance matrix depends upon
the mean shape. In addition, when the number of landmarks k is larger than 3, larger
sample sizes are required than for the other tests since the dimension of shape space
is larger than for the other methods (Rohlf 2000).
Therefore, traditional statistical analysis tools designed for Euclidean spaces have
to be reformulated (Terriberry et al. 2005).
Alternative inferential procedures are those based on a permutation approach.
In Chap. 2, we have introduced an Hotelling’s T 2 permutation counterpart within the
nonparametric combination approach. Simulation results displayed in Tables 2.1–
2.3 show that the power for the suggested test statistic increases when increas-
ing the number of the processed variables or the noncentrality parameter δ ,
even when the number of variables is larger than the cardinality of permutation
sample space X n

/X. In light of these results, we have performed a simulation
study to evaluate the power of multivariate permutation tests combination-based
(Pesarin 2001; Pesarin and Salmaso 2010). In the next section we show that, for a
given and fixed number of subjects, when the number of variables and the associated
noncentrality parameter both diverge, then the power of multivariate permutation
tests based on nonparametric combining functions converges to one. This is still
true in the case in which the number of variables is larger than the permutation
sample space (Brombin 2009; Brombin et al. 2008; Alfieri et al. 2012).
These results allow us to introduce and then extend to shape analysis the notion of
finite-sample consistency for NPC tests, illustrated in Chap. 5. Hence, it is possible
to obtain powerful tests in a nonparametric framework by increasing the number of
informative variables while the number of cases is held fixed. As a result, in shape
analysis, even in presence of few available specimens, many informative landmarks
and semilandmarks coordinates may be allocated, thus allowing for a good accuracy
in the description of the shapes.

4.2 Simulation Study and Results

We start by presenting the problem in a general case. Extensions to the specific field
of shape analysis are straightforward. Let us consider the two independent sample
case and assume that the response variables behave according to the following
multivariate model:

Xh ji = μh + δh j +Zh ji,
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i = 1, . . . ,n j, j = 1,2, h= 1, . . . ,k, where μh represents a population constant for the
h-th variable; δh j represents treatment effect (i.e., the noncentrality parameter) in the
j-th group on the h-th variable which, without loss of generality, is assumed to be
δh1=0, δh2 ≤ (or ≥)0, and Zh ji are random errors assumed to be exchangeable with
respect to treatment levels, independent with respect to units, with zero mean vector
(E(Z) = 0), and finite second moments. Hence h, in a shape analysis framework,
would indicate the 2D or 3D landmark coordinates. Let X̄h j, j = 1,2, be the
sample mean for the h-th variable. The symbol ∗, if present, denotes in this case
a permutation of the original data.
Different multivariate distributions have been considered: normal N (0,1), Cauchy
C y(0,1), Student’s S t(2) with 2 d.f. and Pareto Pa(1,1) distributions. We note
that, because of the chosen parameters, here we deal with “particular” distributions.
Actually Cauchy C y(0,1) has no mean and infinite variance, Student t with 2 d.f.
has finite mean and infinite variance, and Pareto Pa(1,1) has infinite mean and
infinite variance.
The notion of unconditional finite sample consistency, defined for divergent fixed
effects δ , is different from the common notion of (unconditional) consistency of a
test, which considers the behavior of rejection rate for given δ when min(n1,n2)
diverges. It is known that in order to attain permutation (unconditional) consistency
it is required that random deviates Z have finite second moment (Lehmann 1986;
Romano 1990). Here we only require measurability, so that random deviates Z are
not required to be provided with finite moments of integer order ≥ 1.
We focus on the two independent sample case, in the particular case in which
only three specimens are available in each group. Once more we are interested in
investigating what happens to the power when the number of variables is larger than
the cardinality of the permutation sample space. We recall that with n1 = n2 = 3 the
cardinality of the permutation sample space is given by

(6
3

)
= 20, hence we wish

to analyze the power behavior using all the possible permutations and recalling that
in this case the minimum attainable α-level is 1/20 for two-sided tests. Figure 4.1
shows simulation results in the directional case, when the underlying distribution
is multivariate normal. In the case of nondirectional (two-sided) alternatives we
consider the test statistic given by T ∗ = ∑h(X̄

∗
h1 − X̄∗

h2)
2, where X̄∗

h j, j = 1,2 are
permutation sample means, while in the presence of directional alternatives we
simply consider the permutationally equivalent test statistic given by T ∗ = ∑h(X̄

∗
h2).

Focussing on the directional case

• in Fig. 4.2 are shown simulation results when the underlying distribution is the
multivariate Cauchy C y(0,1),

• in Fig. 4.3 are displayed simulation results when data are distributed according
to a Student t with 2 d.f., denoted by S t(2),

• in Fig. 4.4 are shown simulation results when data follows a Pareto distribution
Pa(1,1), with a fixed parameter of shape equal to 1.

Complete simulation study has been published elsewhere in Brombin et al. (2008).
Both in the nondirectional, not shown here, and directional cases, under the
multivariate normal distribution, the power increases when increasing the number
of the processed variables or the value of the noncentrality parameter δ . We also
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Fig. 4.1 Simulation results under Multivariate Normal Distribution N (0,1), directional alterna-
tives (a)–(c)

have found that, under the Cauchy distribution, the power holds steady increasing
the number of covariates, increases when increasing the standardized non-centrality
parameter (producing evidence for its consistency) and converges to 1 when
diverging the non-centrality parameter. Under the S t(2) distribution, it is possible
to show that the test is consistent even if the data distribution does not admit finite
variance. If we consider a Pareto distribution Pa(1,1), simulation results show that
power could not increase when increasing the number of covariates but increases
when increasing the value of standardized δ , converging to 1 when δ diverges.
As said before, Cauchy C y(0,1) has no mean and infinite variance and Pareto
Pa(1,1) has infinite mean and infinite variance. It is to be emphasized that for fixed
(n1,n2), with random deviates distributed according to either Cauchy C y(0,σ) or
Pareto Pa(θ ,σ), the latter with shape parameter 0< θ ≤ 1, when δ is fixed and the
number of variables diverges both are not consistent, because in this case the law of
large numbers does not apply.
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Fig. 4.2 Simulation results under Cauchy C y(0,1) distribution, directional alternatives (a)–(c)

4.3 Final Remarks

Very often, researchers do not have access to large samples. More likely they have
to analyze large data sets with few cases. Asymptotic theory cannot be applied.
Moreover, due to limited resources or limited size of the population under study,
they cannot increase sample size.
Standard parametric approaches assume larger samples than they could ever obtain
in practice (Hoyle 1999). Moreover, assumptions underlying classic parametric
tests, e.g., normality and homoscedasticity, are rarely met when analyzing real data.
Departures from these assumptions can critically reduce the power of standard tests
and regression methods. Adequate sample size is another of the assumptions un-
derlying parametric tests. Whenever assumptions underlying parametric approaches
are not satisfied, statistical methodologies that offer the flexibility of large sample
strategies without requiring prohibitively large samples should be applied. Modern
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Fig. 4.3 Simulation results under Student’s S t(2) distribution, directional alternatives (a)–(c)

robust statistical methodologies may represent a valid alternative approach to classic
parametric methods (Erceg-Hurn and Mirosevich 2008).

Through the simulation study, we have showed that power of multivariate
permutation tests, derived from NPC methodology (Pesarin 2001; Pesarin and
Salmaso 2010; Brombin et al. 2008), increases when the number of processed vari-
ables increases, provided that the noncentrality parameter δ increases, even when
the number of variables is larger than the permutation sample space. These findings
allow to conclude that it is possible to obtain powerful tests in a nonparametric
framework by increasing the number of informative variables while leaving the
number of statistical units fixed. Hence the suggested nonparametric tests provide
efficient and robust solutions in multivariate small-sample-size problems.
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Chapter 5
Finite-Sample Consistency
of Combination-Based Tests in Shape Analysis

“Most of the fundamental ideas of science are essentially
simple, and may, as a rule, be expressed in a language
comprehensible to everyone.”

The Evolution of Physics (1938)

Albert Einstein

Abstract In this chapter we extend and discuss the notion of finite-sample
consistency for permutation tests combination-based to the shape analysis field.
Sufficient conditions are given in order that the rejection rate converges to one, for
fixed sample sizes at any attainable α-value, when the number of variables diverges,
provided that the noncentrality induced by test statistics also diverges. On the basis
of these findings, we emphasize that the proposed tests provide efficient solutions
to multivariate small sample problems, like those encountered in the shape analysis
field. We illustrate finite-sample consistency property of NPC tests by means of a
toy example.

Keywords Conditional and unconditional finite sample consistency • Conver-
gence in probability • Tangent space • Unconditional consistency

5.1 How to Obtain a Tangent Space: A Brief Overview

Goodall’s F test and Hotelling’s T 2 test using Kendall tangent space coordinates
are both based on using a generalized least-squares Procrustes analysis (or GLS
superimposition, also called GPA) to compute the average shape for the entire
dataset. Each specimen is then fit to this overall mean. Rohlf (1999) shows that
triangles (i.e., shapes described by three landmarks in 2D) corresponding to these
aligned specimens lie on the surface of a unit hemisphere of the same dimensionality

C. Brombin and L. Salmaso, Permutation Tests in Shape Analysis,
SpringerBriefs in Statistics 15, DOI 10.1007/978-1-4614-8163-8 5,
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Fig. 5.1 Kendall’s shape
space for triangles (redrawn
from Rohlf 1999). See also,
for further details on shape
spaces, Rohlf (2000), Slice
(2001), Zelditch et al. (2012)

as Kendall’s shape space. When shape variation is small, the distribution of points on
this hemisphere can be satisfactorily approximated by an orthogonal projection onto
an Euclidean tangent plane (if the overall mean is used as the point of tangency).
Kent (1994) calls this space Kendall tangent space but Dryden and Mardia (1992)
call it Kent tangent space. In Fig. 5.1, redrawn from Rohlf (1999), it is shown a
diagram of a cross-section of a construction of Kendall’s shape space for triangles
(circle with a radius of 1/2), hemisphere of pre-shapes aligned to the reference (half
circle with a radius of 1), and tangent space (tangent line). Procrustes distance is
the angle ρ in radians. Point A represents the position of a shape in Kendall’s shape
space and B is the corresponding position in the hemisphere (yielding Procrustes
tangent space coordinates). Point C is the stereographic projection of point A
onto the tangent space (yielding stereographic shape coordinates) and D is the
orthogonal projection of point B onto tangent space (yielding Kendall tangent space
coordinates).
Statistical methods are required to take into account the non-Euclidean geometry of
Kendall’s shape space for both two- and three-dimensional landmarks. In case of
small shape variation it is possible to make a good linear approximation to the space
and then use standard multivariate methods (Kent 1994). The resulting space is of
the same dimensionality as the shape space and may be viewed as tangent to it.
The point of tangency corresponds to the reference shape (usually taken as an
average shape). The projections of the points corresponding to the observed shapes
are used for subsequent statistical analyses.
Spaces tangent to Kendall’s shape space have been constructed in two rather
different ways in morphometrics. A stereographic projection has been used to map
points from the surface of the shape space sphere to a tangent space. Stereographic
projection is a standard tool for mapping points on the complex plane into a one-
to-one correspondence with points on a sphere. The projection is the intersection of
tangent space with a line that goes from the point antipodal to the reference through
the point being projected (point C). The coordinates of stereographic projections are
called shape coordinates. Shapes close to the reference will map to points close to
the origin, and the point antipodal to the reference maps to infinity.
A tangent space may also be constructed by a projection of the hemisphere of
pre-shapes aligned with respect to the average shapeonto the space perpendicular
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to the direction corresponding to the reference. In particular Kendall tangent space
coordinates are based on Procrustes tangent space coordinates and correspond to
point D in Fig. 5.1.

5.2 Main Theorems and General Characterization of Finite
Sample Consistency

We will show that, under mild conditions, the power function of permutation tests
based on associative statistics monotonically increases when increasing the number
of the processed variables, provided that the induced noncentrality parameter δ
increases, even when the number of variables is larger than the permutation sample
space. In particular, for any added variable the power does not decreases if each
variable makes larger noncentrality. Specifically, we will show that, for a given and
fixed number of subjects, when the number of variables k (typically in shape analysis
we handle h= 1, . . . , km variables, describing k landmarks in m dimensions) and the
associated noncentrality parameter δ both diverge, then the power of multivariate
combination-based permutation tests converges to one. These results confirm and
extend those presented by Blair et al. (1994), allowing us to introduce the notion of
“finite-sample consistency” for combination-based permutation tests (Pesarin 2001;
Pesarin and Salmaso 2010; Brombin 2009). Sufficient conditions are given in order
that the rejection rate converges to one, for fixed sample sizes at any attainable
α-value, when the number of variables diverges, provided that the noncentrality
induced by test statistics also diverges.
Such findings look very relevant to solve multivariate small sample problems (like
those encountered in shape analysis field) since they demonstrate that it is possible
to obtain powerful tests in a nonparametric framework by increasing the number of
informative variables while the number of cases is held fixed.

Definition The configuration is the set of landmarks on a particular object. The
configuration matrix X is the k × m matrix of Cartesian coordinates of the k
landmark in m dimensions. The configuration space is the space of all possible
landmark coordinates.

Usually in the applications there are k ≥ 3 landmarks in m = 2 or m = 3 dimensions
and the configuration space is typically Rkm.
Assume to have n = n1 + n2 individuals and consider two independent random
samples of configurations X1, . . . ,Xn1 and Y1, . . . ,Yn2 from independent populations
with mean shapes [μ1] and [μ2].
Let v1, . . . ,vn1 and w1, . . . ,wn2 be the coordinates (each a k×m matrix) of aligned
specimens obtained through a generalized Procrustes analysis (GPA). We remind the
reader that this procedure is performed to estimate a mean shape and to align the
specimens to it. These aligned specimens are then used for the computation of
their tangent space projections and possibly partial warp scores that are useful for
subsequent statistical analyses.
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As shown in Fig. 5.1 the space to visualize aligned specimens is the surface of a
hyper-hemisphere (a hemisphere if k = 3) with the mean shape corresponding to its
pole. This space has a radius of 1. Kendall tangent space represents an orthogonal
projection of this space onto a plane tangent to its pole. For triangles this tangent
space is a unit disk. We refer the reader to Rohlf (1999) for more details about these
relationships.
We start recalling the notation used in Chap. 2 (Sect. 2.3), in the case in which
GPA superimposition step is included. Let V be the n1 × (k×m) matrix of aligned
specimens in tangent space in the first group. Similarly W is the n2× (k×m) matrix
of aligned specimens in tangent space, representing subjects belonging to the second

group. Finally we define U =

(
V
W

)
the n× (k×m) matrix of aligned specimens in

tangent space, i.e., our data set, where n = n1 + n2.
U , V , and W are matrices of data with specimens in the rows and landmark
coordinates in columns.
In the permutation context, in order to denote data sets, it could be useful the unit-
by-unit representation given by U = {Uh ji, i = 1, . . . ,n, j = 1,2, h = 1, . . . , km},
where it is intended that first n1 × km data in the list belong to first sample and the
rest to the second.
In practice, denoting by (a∗1, . . . ,a

∗
n) a permutation of the labels (1, . . . ,n), U∗ =

{U∗
h ji = Uh j(a∗i ), i = 1, . . . ,n, j = 1,2, h = 1, . . . ,km} is the related permutation of

U , so that U∗
h1 = {U∗

h1i = Uh1(a∗i ), i = 1, . . . ,n1,h = 1, . . . ,km} and U∗
h2 = {U∗

h2i =
Uh2(a∗i ), i= n1+1, . . . ,n,h= 1, . . . ,km} are the two permuted samples, respectively.
Using another notation, we may assume that the landmark coordinates in tangent
space behave according to the following model:

Uh ji = μh + δh j +σhZh ji,

i = 1, . . . ,n, j = 1,2, h = 1, . . . ,km, where

◦ k is the number of landmarks in m dimensions;
◦ μh represents a population constant for the h-th variable;
◦ δh j represents treatment effect (i.e., the noncentrality parameter) in the j-th group

on the h-th variable which, without loss of generality, is assumed to be δh1=0,
δh2 ≤ (or ≥)0;

◦ σh are scale coefficients specific to the h-th variable;
◦ Zh ji are random errors assumed to be exchangeable with respect to treatment

levels, independent with respect to units, with null mean vector (E(Z) = 0), and
finite second moment.

With reference to the scale coefficients σh, we observe that these parameters
could be very useful since they reflect the “intrinsic” biases in the registration of
landmarks. Actually there are landmark points readily available, hence easier to be
captured than others by the operator or machine. As a consequence, they are less
variable in their location. Hence landmark coordinates in the first group differ from
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those in the second by a “quantity” δ , where δ is the km-dimensional vector of
effects. Again, U∗

h ji, i = 1, . . . ,n, j = 1,2, h = 1, . . . ,km, indicates a permutation of
the original data.
For the sake of simplicity, we will consider testing problems for stochastic
dominance alternatives, generated by treatments with nonnegative random shift
effects δ even if the focus on stochastic dominance alternatives could be questioned
since in shape analysis it is more likely to formulate landmark specific alternatives,
thus considering a proper set of side assumption specific to the problem, instead
of assuming the dominance of a shape onto another in all the points. Anyway
the extension to specific different sets of alternatives for different groups (or
domains) of landmarks as well as extensions to negative random effects and two-
sided alternatives are straightforward. Therefore the specific hypotheses may be
expressed as

H0 :
km⋂

h=1

{Uh1
d
=Uh2} vs. H1 :

km⋃
h

{(Uh1 + δ )
d
>Uh2},

where
d
> stands for distribution (or stochastic) dominance.

Without loss of generality we can model the data set as U(δ ) = {Z1 + δ ,Z2},
where Z = (Z1,Z2) have the role of random deviates whose distribution is generally
unknown.
We start considering associative partial test statistics, defined as

T ∗
h (δ ) =

1
n1

n1

∑
i=1

ϕh [U
∗
h1i(δ )]−

1
n2

n

∑
i=n1+1

ϕh [U
∗
h2i(δ )] ,

where ϕh is any non-degenerate measurable non-decreasing function of the data,
potentially dependent on the variable under study. For example, T ∗

h may correspond
to the comparison of sampling means, carried out coordinate by coordinate.
With T o

h (0) and T ∗
h (0) we indicate respectively the observed and permutation values

of Th when δ = 0, i.e., under H0.
The assumptions regarding the set of partial tests T = {Th,h = 1, . . . ,km} necessary
for nonparametric combination are obviously the same of those presented in Chap. 2
(Sect. 2.3). Hence all permutation partial tests are marginally unbiased, consistent,
and significant for large values.
Let λh,h = 1, . . . ,km be the set of p-values associated with the partial tests in T,
that are positively dependent in the alternative and this irrespective of dependence
relations among component variables in U .
Again, we refer the reader to Chap. 2 (Sect. 2.3) for details regarding the application
of NPC methodology in shape analysis context.
As already said, we consider the global test T ′′ obtained after combining at the first
stage with respect to m and then with respect to k (of course, the sequence may be
reversed). For the sake of simplicity, we may assume to use associative partial tests
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and direct combining function. In particular, because of the use of direct combining
functions, if we reverse the sequence, thus combining at first with respect to k and
then with respect to m, we obtain exactly the same result.
As mentioned above, in Pesarin (2001), Pesarin and Salmaso (2010) it is proved that
if at least one partial permutation test Th,h = 1, . . . ,km is weakly consistent for H0h

against H1h respectively, then T ′′ = ψ{λ1, . . . ,λkm}, ∀ ψ in the class of combining
functions C , is weakly consistent combined test for

H0 :
km⋂

h=1

{H0h} vs. H1 :
km⋃
h

{H1h}.

In virtue of this theorem, we will focus our attention to the unidimensional case, i.e.,
h = 1 and T1 = T , since if we are able to prove that at least one partial permutation
test is weakly consistent for H0h against H1h, then we can state that the global test
T ′′, obtained after combining with respect to the k landmarks and the m dimensions,
is weakly consistent too.
Afterwards, we will indicate the n-dimensional sample space U with U n and
with U n

/U the conditional reference space associated with U , containing all the
permutations of U .
At first we will study the behavior of conditional (permutation) rejection rate when
sample sizes (n1,n2) and non-degenerate random deviates Z = (Z1,Z2) are held
fixed, while the fixed effect δ goes to the infinity, according to whatever monotonic
sequence {δv,v ≥ 1}. Then we examine the unconditional (population) rejection
rate when i.i.d. random deviates Z do vary in the sample space X n according to the
n-dimensional distribution PZ. The extension from fixed to random effects will be
presented too.
We limited our attention to the notion of weak consistency (or in probability), i.e.,
for divergent values of non-centrality parameter induced by the test statistic, the
rejection probability of test is of one for any fixed α > 0. The almost sure version
(strong or with probability one), although of great mathematical importance, in the
permutation context presents a limited relevance.
In Pesarin (2001), Pesarin and Salmaso (2010), and Hoeffding (1952) it is stated
that conditional and unconditional power functions of any associative test statistics
both do not decrease as the effect increases. Similar behavior is true also for random
effects Δ .
Let us start with a Lemma concerning the conditional finite sample consistency of
T , a stepping stone to the results presented afterwards.

Lemma 5.2.1. Suppose that:

(i) T is any associative test statistic for one-sided hypotheses;
(ii) sample sizes (n1,n2) and the set of real deviates Z = {Z1,Z2} ∈ U n are fixed;

(iii) the data set is U(δ ) = (Z1 +δ ,Z2), where (Z1,Z2) ∈ U n are i.i.d. measurable
real random deviates and δ is the vector of nonnegative fixed effects;
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(iv) fixed effects δ diverge to the infinity according to whatever monotonic sequence
{δv,v ≥ 1}, the elements of which are such that δv ≤ δv′ for any pair v < v′.

If conditions (i)–(iv) are satisfied, then the permutation (conditional) rejection rate
of T converges to 1 for all α-values not smaller than the minimum attainable αa;
thus, T is conditional finite-sample consistent.

Proof. For any chosen δ > 0, let us consider the observed data set U(δ ) = (Z1 +
δ ,Z2), where δ represents the vector of effects corresponding to the given set of
deviates Z. We indicate with TU(δ ) the permutation support induced by the test
statistic T when applied to the data set U(δ ), i.e., TU(δ ) : {T ∗(δ ) = T (U∗(δ ) :
U∗(δ ) ∈U n

/U(δ )}. It is possible to find a value δz of δ such that the related observed
value is right-extremal for the induced permutation support, i.e.,

T o(U(δZ)) = max
TU(δZ)

{T ∗(δZ) : U∗(δZ) ∈ U n
/U(δZ )

}.

This value δZ can be determined by observing that a sufficient condition for
right-extremal property of T o is that minn1(Z1i +δZ)> maxn2(Z2i). Due to the non-
decreasing monotonicity of ϕh, we can also write

1
n1

∑
i

ϕh(Z1i + δZ)>
1
n2

∑
i

ϕh(Z2i).

In this way, T o(U(δZ)) is right-extremal because, for all permutations U∗(δZ) �=
U(δZ), T o(X∗(δZ))< T o(X(δZ)).
The rejection rate relative to the minimum attainable α-value αa (that is equal
to 1/

( n
n1

)
for one-sided alternatives and to 2/

( n
n1

)
for two-sided alternatives), in

force of monotonic behavior with respect to δ , reaches 1 for all δ > δZ , since
T (U∗(δZ))< T o(U(δZ)) for all permutations U∗(δZ)∈U n

/U(δZ )
such that U∗(δZ) �=

U(δZ). Hence, due to the monotonicity property with respect to α , it is of 1 also
∀α > αa.
The conditional power function of T , denoted by

Pr{λ (U(δ ))≤ α|U n
/U(δ )},

is of 1 for all δ ≥ δZ and α ≥ αa, thus has 1 as a limit.

Theorem 5.2.1. Suppose that:

(i) T is any associative test statistic for one-sided hypotheses;
(ii) sample sizes (n1,n2) are fixed and finite;

(iii) the data set is U(δ ) = (Z1 +δ ,Z2), where (Z1,Z2) ∈ U n are i.i.d. measurable
real random deviates and δ is the vector of nonnegative fixed effects;

(iv) fixed effects δ diverge to the infinity according to the monotonic sequence
{δv,v ≥ 1} as in Lemma 5.2.1.
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If conditions (i) to (iv) are satisfied, then the permutation unconditional rejection
rate of test T converges to 1 for all α-values not smaller than the minimum
attainable αa; thus, T is weak unconditional finite-sample consistent.

Proof. We indicate with PZ(z) = Pr{Z ≤ z} the distribution of vector Z. Since
of random deviates Z are required to be provided with measurability, we get that
limz↓−∞ Pr(Z ≤ z) = 0 and limz↑+∞ Pr(Z ≤ z) = 1.
According to the Lemma 5.2.1, a sufficient condition for the observed value
T o(U(δ )) being right-extremal in the induced permutation support TU(δ ) is that
min

n1
(Z1i + δ ) > max

n2
(Z2i). The unconditional probability of this event, as random

deviates Z are i.i.d., is given by

Pr

{
min

n1
(Z1i + δ )> max

n2
(Z2i)

}
=

∫
U
{[1−PZ(t − δ )]n1}d [PZ(t)]

n2 .

The limit of this probability, as δ tends to infinity, is equal to 1, since (n1,n2) are
fixed and finite and, in force of the Lebesgue’s monotone convergence theorem, the
associated sequence of probability measures {PZ(t − δv),v ≥ 1} converges to zero
monotonically for any t.
Hence the probability of finding a set Z ∈ U n for which there does not exist a
finite value δZ such that min

n1
(Z1i +δZ)> max

n2
(Z2i) converges to zero monotonically

as δ diverges. This, by taking also account of Lemma 5.2.1, implies that the
unconditional rejection rate

Wα(δ ) =
∫

U
Pr{λ (U(δ ))≤ α|U n

/U(δ )}dPZ(z),

converges to 1 for all α ≥ αa, as δ tends to the infinity.

Theorem 5.2.2. Suppose that random deviates Z and effects δ are such that:

(i) there exists a function ρ(δ )> 0 of effects δ the limit of which is 0 as δ goes to
the infinity;

(ii) T is any associative test statistic for one-sided hypotheses;
(iii) the data set is obtained by considering the transformation Y (δ ) = ρ(δ )U(δ );
(iv) limδ↑∞ δρ(δ ) = δ̃ > 0, and limδ↑∞ Pr{ρ(δ ) · |Z|> ε}= 0, ∀ε > 0;
(v) and further conditions are the same as in Theorem 5.2.1.

If conditions (i)–(v) hold then the unconditional rejection rate converges to 1 for all
α-values not smaller than the minimum attainable αa; thus, T is weak unconditional
finite-sample consistent.

Proof. At first, we remark that data Y (δ ) = ρ(δ )[Z1 + δ ,Z2], as δ goes to the
infinity, collapse in distribution toward [δ̃ ,0]. Then, for any fixed set of random
deviates (Z1,Z2), T (Y (δ )) is right extreme in the induced permutation support when
min

n1
[(Z1i + δ )ρ(δ )]> max

n2
[Z2iρ(δ )].
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We also notice that ρ(δ ) is positive, hence the event defined by this relation is
equivalent to min

n1
[Z1i + δ ]> max

n2
[Z2i], in the sense that the latter is true if and only

if the former is true. From proof of Theorem 5.2.1, we have that

Pr

{
min

n1
[(Z1i + δ )ρ(δ )]> max

n2
[Z2iρ(δ )]

}
= Pr

{
min

n1
(Z1i + δ )> max

n2
(Z2i)

}

=

∫
U
{[1−PZ [t − δ ]n1} d [PZ(t)]

n2 .

The limit of this probability, as δ tends to infinity, is equal to 1, since the associated
sequence of probabilities {PZ [t − δv],v ≥ 1} monotonically converges to zero and
(n1,n2) are fixed and finite.
According to Theorem 5.2.1, the related rejection rate converges to 1 for all α ≥ αa.
T is weak unconditional finite-sample consistent.

Results obtained in Lemma 5.2.1, concerning the conditional finite-sample
consistency of T , and in Theorem 5.2.1, concerning the weak unconditional finite-
sample consistency of T , even in the presence of a function ρ(δ ) > 0 of effect δ
(Theorem 5.2.2), can be extended to the case of random effects Δ .

Theorem 5.2.3. Suppose that:

(i) T is any associative test statistic for one-sided hypotheses;
(ii) sample sizes (n1,n2) are fixed and finite;

(iii) the data set is U(Δ) = (Z1 +Δ ,Z2), where (Z1,Z2) ∈ U n are i.i.d. measurable
real random deviates and Δ are random effects;

(iv) random effects Δ diverge according to the monotonic sequence according
to whatever sequence {Δv,v ≥ 1}, whose elements are stochastically non-

decreasing, i.e., Δv
d≤ Δv+1,∀v ≥ 1;

(v) limv↑∞ Pr{Δv > u}→ 1 for every finite u.

If conditions (i)–(v) are satisfied, then the permutation unconditional rejection rate
of test T converges to 1 for all α-values not smaller than the minimum attainable
αa; thus, T is weak unconditional finite-sample consistent.

Proof. In order to apply the Lebesgue’s monotone convergence theorem it is
sufficient that

PZ(t −Δ ′′ ≤ u)
d≤ PZ(t −Δ ′ ≤ u),∀u,

whenever Δ ′ d≤ Δ ′′. So the associated sequence of probabilities {PZ[t −Δv],v ≥ 1}
monotonically converges to zero.

The divergence of random effects Δ can be realized by processing a divergent
number k of quantitative variables (landmarks or semilandmarks).
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It is not required that the k variables are independent, actually they can be dependent
in any way. What is important is that the distribution induced by T (U(0)) is
measurable and that of T (U(δ )) diverges at least in probability. Hence these results
are very useful in a multidimensional field as shape analysis.
The notion of unconditional finite-sample consistency, defined for divergent fixed
effects δ , is different from the common notion of (unconditional) consistency of a
test, which considers the behavior of rejection rate for given δ when min(n1,n2)
diverges. It is known that, in order to attain permutation (unconditional) consistency
it is required that random deviates Z have finite second moment (Hoeffding 1952).
Here we only require measurability, so that random deviates Z are not required to
be provided with finite moments of integer order equal to or greater than 1.

Theorem 5.2.4. Suppose a two-sample problem, for one-sided alternatives with the
data set U(δ ) = (δ +σZ1,σZ2), is such that:

(i) the permutation test statistic T is associative and assumed to be weak uncondi-
tional finite sample consistent;

(ii) conditions stated in Theorem 5.2.3 are satisfied;
(iii) unidimensional random deviates Z are provided with null mean value (i.e.,

E(Z) = 0);
(iv) two sample sizes (n1,n2) satisfy the relation (n1 = vn′1,n2 = vn′2), so that they

can diverge according to the sequence {(vn′1,vn′2),v ≥ 1}.

Then for any given δ > 0 the unconditional rejection probability of T converges to 1
as v diverges to the infinity; thus, T is weak unconditional consistent in accordance
with the common notion of consistency.

Proof. Since the fixed effect δ is a unknown constant and sample sizes diverge, the
common notion of consistency may be directly applied to T .
Hence let us organize the unidimensional data set U(δ ) with 1 column and n =
n1 + n2 rows, in a matrix U ′(δ ) with Q columns (r = 1, . . . ,Q) and n′ = n′1 + n′2
rows. Of course, as v diverges also min(n1,n2) diverges.
Let T (U ′(δ )) indicate the test statistic T applied to the data set U ′(δ )).
As the conditions of Theorem 5.2.1 and/or of Theorem 5.2.2 are satisfied by
assumption, T (U ′(δ )) is unconditionally finite sample consistent.
Moreover, for any v ≥ 1, the observed value of T applied to U ′(δ ) is given

by T (U ′(δ )) = ∑
i≤n′1

∑
r≤Q

U ′
r1i(δ )
vn′1

and applied to U(δ ) is T (U(δ )) = ∑
i≤n1

U1i(δ )
n1

.

Certainly T (U ′(δ )) = T (U(δ )).
Furthermore, we may write T (U(δ )) = T (U(0))+ δ/σ = T (U ′(δ )), emphasizing
that two form have the same null distribution and the same non-centrality parameter
which does not vary as v diverges. In contrast the null component T (U(0)), as v
diverges, collapses almost surely toward zero by the strong law of large numbers.
We recall that, by assumption, the random deviates Z admits finite first moment.
Thus, in force of Theorem 5.2.2, the rejection probability for both ways converges
to 1, ∀δ > 0.
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This allows us to state that weak unconditional finite sample consistency implies
weak unconditional consistency, in accordance with the common notion of consis-
tency, for all α ≥ αa.

An important observation must be done as regards the permutation sample space.
In fact when processing the n-rows unidimensional data set U(δ ) the permutation
sample space has

( n
n1

)
elements, and when processing the data rearranged according

to the n′-rows Q-dimensional data set U ′ it has
(n′

n′1

)
elements.

The two ways of considering permutation testing, given the same non-centrality,
have the same unconditional power and so both are consistent for all α ≥ αa =

1/
(n′

n′1

)
. However, they are not completely equivalent in inferential terms. In order to

prove their complete equivalence, we have to prove that both are consistent for all
α > 0 and that convergence should be obtained for any kind of sequences such that
min(n1,n2) diverges.
We have proved that a unconditional δ -consistent associative T is also unconditi-
onally consistent for all α ≥ αa when the sequence of sample sizes is {(vn′1,vn′2),
v ≥ 1}. In practice, if we require consistency at least for α > α◦ and sample sizes
are according to {(vn′1,vn′2),v ≥ 1}, then we may find a pair of sample sizes (n′1,n

′
2)

such that α◦ > 1/
(n′

n′1

)
. And so two ways are equivalent at least for all α ≥ α◦.

Since for any arbitrarily chosen α◦ we may find a pair (n′1,n
′
2) such that α◦ >

αa, then we may conclude that unconditional inferential conclusions associated
with two ways are always coincident, provided that sample sizes are according
to the sequence {(vn′1,vn′2),v ≥ 1}. Hence, if deviates Z are provided with null
mean value, any unconditional finite-sample consistent associative test statistic is
unconditionally consistent at whatever α-value at least when sample sizes diverge
according to the sequence {(vn′1,vn′2),v ≥ 1}.

5.3 A Toy Example

Using the tpsDig2 program for digitizing landmarks and outlines for geometric
morphometric analyses (Rohlf 2007), we have chosen k = 98 points along the
contour and inside of a mosquito’s wing, shown in Fig. 5.2. We have used the image
of the left wing of a female Aedes canadensis (a woodland pool mosquito), available
in the tpsDig2 program Examples.
For sake of simplicity, we have considered all the points (represented by the red
bullets in the Fig. 5.2) as landmarks. Actually there are not true landmark points, at
least they could be considered semilandmarks. Anyways we have decided to process
them as true landmark points, since our goal is to investigate what happens to the
power of permutation tests combination-based when the number of informative
variables (landmarks) increases, while the number of cases is held fixed.
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Fig. 5.2 k = 98 points registered in the left wing of female Aedes canadensis

In order to evaluate power behavior of nonparametric permutation tests
combination-based when increasing the number of the processed variables or the
value of the noncentrality parameter δ , thus studying the finite-sample consistency,
we have carried out a simulation study. In particular, we have generated two
independent samples from a multivariate normal distribution, in the particular case
in which only five specimens are available in each group (small sample sizes). At
the beginning we planned to generate two independent samples from a multivariate
normal distribution, in the particular case in which only three specimens are
available in each group. Unfortunately we found that in correspondence of nominal
α levels 0.01 and 0.05, the power of the test was equal to 0, “jumping” to 1 in
correspondence of α = 0.20.
We guess that this behavior is due to the Procrustes superimposition process that
probably has a more considerable stretching or shortening strength in the presence
of small sample sizes. Let us assume that our samples are made of configurations of
k = 98 landmarks in m = 2 dimensions, characterized by slightly different means.
Since they are not true landmarks, there is no rule in selecting points. Landmarks 1
and 2 correspond to the baseline, i.e., they represent the length of the wing, the other
points have been chosen following the clockwise direction, with the unique intent
of reproducing the main wing structures, thus drawing the image contour.
We have used the points digitized in Fig. 5.2 as an hypothetical configuration
mean, before performing the superimposition. Therefore it contains the raw x and y
coordinates. This mean will be used for generating data in the first group.
Data in the second group differs for that in the first one, according to a random
percentage of variation represented by the parameter Δ . For example, in Table 5.2,
the label “Δ effect up 15%” means that Δ randomly varies in the interval [0,0.15]
and then it is interpreted in terms of percentage change.
In Tables 5.1 and 5.2, in order to draw the attention of the reader, we have
highlighted in bold the case k = 10.
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Table 5.1 Controlling achieved α level and evaluating power: n1 = n2 = 5, m = 2, B = MC =
1,000

ΔΔΔ=0
Nominal α k = 2 k = 5 k = 10 k = 20 k = 50 k = 98

0.01 0.004 0.008 0.006 0.002 0.006 0.011
0.05 0.035 0.047 0.044 0.041 0.048 0.054
0.10 0.065 0.092 0.096 0.096 0.098 0.112
0.20 0.132 0.182 0.199 0.192 0.197 0.208
0.30 0.217 0.285 0.297 0.296 0.302 0.292
0.50 0.383 0.487 0.494 0.490 0.492 0.487

In Table 5.1 we present simulation results under the null hypothesis that Δ = 0. Type
I error rate is under control. As covariance matrix, we have chosen a diagonal matrix
with σ2 = 0.25, i.e., we have considered homogeneous, independent, spherical
variation at each landmark.
Simulation settings consider configurations made of k = 2,5,10,20,50 and k = 98
landmarks, with Δ effects up to 1%,5%,10%,15%, and 20%. We have included the
superimposition step (2D GPA), hence when carrying out nonparametric permuta-
tion tests we have used shape coordinates obtained after filtering out location, scale,
and rotational effects from the original data.
With reference to the NPC procedure, in the first stage we have combined with
respect to the coordinates (thus combining x and y coordinates for each landmark
and obtaining k partial tests and their associated p-values). In the second and
last step we have combined with respect to the landmarks (thus obtaining the
globalp-value). We have used the direct combining function in both steps.
Through this toy example it is possible to “appreciate” the notion of weak
unconditional finite sample consistency for random effects. In fact, examining the
results displayed in Table 5.2, we can see that, for a given and fixed number of
subjects (n1 = n2 = 5), when the number of landmarks k and the random effects
Δ both diverge, then the power of multivariate permutation tests based on Pesarin’s
nonparametric combining functions converges quickly to one (Pesarin 2001; Pesarin
and Salmaso 2010; Brombin 2009). It is also noteworthy that when k = 2 it seems
that we are under H0. In this case, we are just considering the distance between
points 1 and 2, corresponding respectively to the most extreme point on the left and
on the right of the Fig. 5.2 (i.e., the baseline). Hence Procrustes superimposition
process involve just a shortening step in order to obtain completely matching
configurations.
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Table 5.2 Evaluating power: n1 = n2 = 5, m = 2, B = MC = 1,000

ΔΔΔ effect up 1 %
α-level k = 2 k = 5 k = 10 k = 20 k = 50 k = 98

0.01 0.000 0.139 0.081 0.400 0.634 0.712
0.05 0.031 0.576 0.415 0.908 0.998 1.000
0.10 0.057 0.790 0.613 0.989 1.000 1.000
0.20 0.133 0.933 0.808 0.999 1.000 1.000
0.30 0.206 0.974 0.900 1.000 1.000 1.000
0.50 0.358 0.998 0.968 1.000 1.000 1.000

ΔΔΔ effect up 5 %
0.01 0.004 0.627 0.556 0.583 0.749 0.723
0.05 0.025 0.988 0.988 0.993 1.000 1.000
0.10 0.045 1.000 1.000 0.999 1.000 1.000
0.20 0.123 1.000 1.000 1.000 1.000 1.000
0.30 0.205 1.000 1.000 1.000 1.000 1.000
0.50 0.372 1.000 1.000 1.000 1.000 1.000

ΔΔΔ effect up 10 %

0.01 0.003 0.433 0.666 0.723 0.740 0.730
0.05 0.027 0.927 0.998 1.000 1.000 1.000
0.10 0.062 0.991 1.000 1.000 1.000 1.000
0.20 0.131 1.000 1.000 1.000 1.000 1.000
0.30 0.215 1.000 1.000 1.000 1.000 1.000
0.50 0.355 1.000 1.000 1.000 1.000 1.000

ΔΔΔ effect up 15 %
0.01 0.002 0.525 0.707 0.722 0.715 0.717
0.05 0.027 0.953 1.000 1.000 1.000 1.000
0.10 0.058 1.000 1.000 1.000 1.000 1.000
0.20 0.131 1.000 1.000 1.000 1.000 1.000
0.30 0.193 1.000 1.000 1.000 1.000 1.000
0.50 0.367 1.000 1.000 1.000 1.000 1.000

ΔΔΔ effect up 20 %
0.01 0.004 0.734 0.730 0.732 0.721 0.711
0.05 0.031 1.000 1.000 1.000 1.000 1.000
0.10 0.062 1.000 1.000 1.000 1.000 1.000
0.20 0.133 1.000 1.000 1.000 1.000 1.000
0.30 0.204 1.000 1.000 1.000 1.000 1.000
0.50 0.378 1.000 1.000 1.000 1.000 1.000
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Chapter 6
Applications to Real Case Studies

“All great scientists have, in a certain sense, been great artists;
the man with no imagination may collect facts, but he cannot
make great discoveries”.

The Grammar of Science (1892), 37.
Karl Pearson

Abstract This chapter is mainly devoted to practical applications. In particular
we present an application concerning the facial expression of emotion along with
a case study aimed at analyzing aortic valve morphology. We also introduce two
innovative topics: biometric morphing and nonparametric iterated combination for
paired data. In practice, the result of the application of the NPC tests described
in the previous chapters depends also on the choice of the combining function.
Every combining function has its own characteristics and can be preferable to others
in specific situations. As a consequence, results may differ slightly depending on
which combining function is used. Sometimes, especially with categorical variables,
different combining functions may lead to different results in terms of statistical
significance. To remove these differences and assess the useful properties of many
different types of combinations, the iterated combining procedure can be applied.

Keywords Biometric morphing • Expression of emotion • Iterated combination

6.1 Biometric Morphing and Facial Expression of Emotions

Biometric morphing is an innovative technique allowing pictures of a population of
patients to be graphically represented by a single image that describes the average
morphology of a precise anatomic region of interest. It combines procedures typical
of statistical shape analysis and image processing (Pahuta et al. 2009).

C. Brombin and L. Salmaso, Permutation Tests in Shape Analysis,
SpringerBriefs in Statistics 15, DOI 10.1007/978-1-4614-8163-8 6,
© Springer Science+Business Media New York 2013
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Morphing is an effective image-processing tool that transforms (or morphs) one
image into another through a seamless transition. Thin-plate spline geometric
morphometrics (TPSGM) allow to quantify actual shape variation, thus taking into
account the geometry of image deformation.

Biometric morphing is the application of TPSGM to morphing and resulting
images are called morphs. Average results, induced by the therapy, may be
visualized using this procedure, following the guidelines given by Pahuta et al.
(2009). Here, we provide a brief summary of the algorithm which involves three
steps: (Brombin et al. 2011; Alfieri et al. 2012).

1. Choose and digitize landmarks and semilandmarks tpsDig software has been
used). Semilandmarks were interactively selected at equidistant intervals along
anatomic contours or curves between landmarks, and imported into tpsUtil
semilandmark definition software toolkit.

2. Perform Generalized Procrustes Analysis (GPA) to align patients. Pre- and
post-therapy samples are separately processed (tpsRelw software has been used).

3. Unwarp the images on the basis of the transformation from original registered
points to target GPA points. Average the unwarped images in order to generate
an average (tpsSuper software has been used).

All the tps softwares are available online at http://life.bio.sunysb.edu/morph/.
In this chapter we apply biometric morphing to facial expression. We considered
a subsample of 23 subjects performing two basic expressions, anger and disgust,
along with their neutral facial expression. These images are contained in the MUG
database.
Actually, the MUG database contains many sequences of an adequate number of
subjects for the development and the evaluation of facial expression recognition
systems that use posed expressions of the six basic emotions (i.e., anger, disgust,
fear, happiness, sadness, surprise). In contrast to other similar databases, the MUG
database is appropriate for the statistical evaluation of subject-independent and
subject-dependent recognition systems using either images or image sequences. All
the sequences are categorically labeled. Additionally, landmark points annotation
is available for a significant number of images depicting the basic expressions of
various subjects.
In particular, this database consists of image sequences of 86 subjects performing
the six basic expressions. About 35 women and 51 men all of Caucasian origin,
between 20 and 35 years of age, participated in the database. Men are with or
without beard. There are no occlusions except for a few hair falling on the face.
Images were acquired under highly controlled conditions, as regards to patient
position, camera position, background, illumination, light diffusion, and occlusions.
More details can be found in Aifanti et al. (2010). A short tutorial about the basic
emotions was given to the subjects. The subjects were informed about how the six
facial expressions are performed according to the “emotion prototypes” as defined
in the Investigator’s Guide in the FACS manual. The aim was to avoid erroneous
expressions, that is expressionsthat do not actually correspond to their label. After
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Fig. 6.1 Locations of 26
landmarks used in our
investigation

Table 6.1 The set of 26 landmarks used in the research

No. Landmark description

3–6 Right/left lateral-ciliary points located above the most lateral aspect of the eyebrow
2–5 Right/left supra-ciliary points located above the most superior aspect of the eyebrow
1–4 Right/left inter-ciliary points located above the me- dial aspect of the eyebrow
7–11 Point at inner right/left side of the eye
8–12 Highest point on higher margin right/left eye
9–13 Point at outer right/left side of the eye
10–14 Lowest point on lower margin right/left eye
15–17 Right and left lateral alar points located on the lateral alar rims;
16 Nasal tip/Midpoint of the nose;
18–22 Right/left commissure points located on the commissure
19 Highest point on right side of lip
20 Midpoint on upper lip
21 Highest point on left side of lip
19–21 Right and left upper lip points located on the peak of Cupid’s bow
23 Mid-lower lip point
24–25 Attachment of the right/left ear lobe to the cheek
26 Mid point of chin

the subjects had learned the different ways that the six expressions are performed,
they freely chose to imitate one of them. About 80 landmark facial points were
manually annotated on several images and the landmark point annotation for 401
images of 26 subjects is publicly available. As mentioned above, we focused on
23 subjects and on a subsample of 26 landmarks, manually annotated (see selected
landmarks in Fig. 6.1 and Table 6.1).
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The link between the subjective perception of emotions and their expression
to the outer world has generated a great deal of clinical and research interest in
analyzing expressed emotions.
In the field of 2D and 3D facial expression analysis, several imaging techniques
and statistical methods have been developed to recognize/classify/quantify expres-
sion of emotion. In psychological literature, “emotion” has been defined as an
umbrella concept that includes various different components such as affective,
cognitive, behavioral, expressive, and physiological changes (Lambie and Marcel
2002; Panksepp 2005). More generally, emotions have been defined as subjective
experiences, associated with mood, temperament, personality, and disposition and
have been studied extensively in several fields, such as philosophy, psychology,
sociology, and computer sciences.
Facial expression is one of the most powerful means for humans to communicate
their emotions, cognitive states, intentions, and opinions to each other (Ekman
1982). Face can express emotion sooner than people verbalize or even realize their
feelings.

Recently, research efforts have been directed toward the recognition of complex
and spontaneous emotional phenomena (e.g., boredom or lack of attention,
frustration, and stress) rather than on the recognition of deliberately displayed
prototypical expressions of six basic emotions (see Sandbach et al. 2012, Nicolaou
et al. 2011, Gunes and Pantic 2010, Zeng et al. 2009).

Some graphical representations obtained applying biometric morphing
techniques are shown in Fig. 6.2, where consensus configurations are shown along
with average results. Differences in shape between emotions are visible to a naked
eye. However, we are interested in quantifying shape changes using inferential
procedures.
Inferential methods in shape analysis are parametric in nature and may not be very
powerful unless a large number of cases is available (Brombin 2009; Brombin et al.
2008; Brombin and Salmaso 2009). On the other hand, permutation tests represent
an appealing alternative since they are distribution-free, allow for quite efficient
solutions when the number of cases is lower than the number of covariates, they
may be tailored for sensitivity to specific treatment alternatives and provide one-
sided as well as two-sided tests of hypotheses (Blair et al. 1994). For this reason
an extension of the NonParametric Combination (NPC) methodology to statistical
shape analysis has been proposed in Brombin (2009), where the two-independent-
sample case has been discussed extensively(Brombin and Salmaso 2009).

We have to deal with repeated measurements. In particular, if we want to compare
angry and neutral expression or disgusted and neutral expression, we have to
perform a nonparametric two dependent samples test, using as data the coordinates
of aligned landmarks to statistically quantify these differences in mean. For each
coordinate, we may define a suitable test and get a partial p-value. Then, combining
these partial tests, it is possible to obtain a p-value for each landmark. Results are
shown in Table 6.2. The p-values of the combined tests are adjusted with the close
testing method to control the multiplicity of the test (p-FWE). Significance of the
global p-values allows to reject the global null hypothesis of “no change” in shape
induced by a certain emotion (Tables 6.3–6.6).
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Fig. 6.2 Consensus distribution of 23 face images of the MUG dataset, when subjects are
performing angry (a), neutral (c), and disgust (e) facial expression. Average results (morphs) of
angry (b), neutral (d), and disgusted (f) subjects
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Table 6.2 Comparison between angry and neutral facial expression 6.2(a) and disgusted and
neutral expression 6.2(b)

(a)

No. p-value p-FWE
1 0.0001 0.0013
2 0.0001 0.0013
3 0.0001 0.0013
4 0.0001 0.0013
5 0.0002 0.0020
6 0.0001 0.0013
7 0.0003 0.0024
8 0.0001 0.0013
9 0.0001 0.0013
10 0.0001 0.0013
11 0.0001 0.0013
12 0.0001 0.0013
13 0.0398 0.0743
14 0.0001 0.0013
15 0.0004 0.0027
16 0.0014 0.0042
17 0.0004 0.0027
18 0.2349 0.2349
19 0.0001 0.0013
20 0.0002 0.0020
21 0.0002 0.0020
22 0.0002 0.0020
23 0.0002 0.0020
24 0.0005 0.0027
25 0.0001 0.0013
26 0.0009 0.0036
Global 0.0013

(b)

No. p-value p-FWE
1 0.0001 0.0011
2 0.0002 0.0020
3 0.0001 0.0011
4 0.0001 0.0011
5 0.0001 0.0011
6 0.0016 0.0093
7 0.0003 0.0025
8 0.0001 0.0011
9 0.0035 0.0111
10 0.0001 0.0011
11 0.0001 0.0011
12 0.0025 0.0111
13 0.0001 0.0011
14 0.0005 0.0032
15 0.0003 0.0025
16 0.0105 0.0208
17 0.0001 0.0011
18 0.1981 0.1981
19 0.0001 0.0011
20 0.0001 0.0011
21 0.0001 0.0011
22 0.0001 0.0011
23 0.0001 0.0011
24 0.0001 0.0011
25 0.0001 0.0011
26 0.0023 0.0111
Global 0.0011

6.2 Some Remarks on Iterated Combination

For any given data set X, different combining functions due to different rejection
regions may of course give slightly different overall p-values, although, due to their
consistency, they are asymptotically equivalent in the alternative. However, in order
to reduce this influence, we may iterate the combination procedure by applying
more than one combining function ψ1, . . . ,ψs, 2 ≤ s, to the same partial tests, and
then combine the resulting second-order p-values (λ ′′

1 , . . . ,λ ′′
s ) into a third order

of combination by means of one combining function, ψl(λ ′′
1 , . . . ,λ ′′

s ) say. From a
series of Monte Carlo studies, provided that the second-order combination functions
have different rejection regions, we obtained that the third-order p-values λ ′′′

l are
almost invariant with respect to the choice of ψl within the class C . Of course, this
procedure may be iterated into a fourth order, and so on. Table 6.7 illustrates the
iterated combination algorithm (Pesarin 2001; Pesarin and Salmaso 2010; Alfieri
et al. 2012).
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Table 6.7 The iterated combination algorithm

ψo
1 ψ∗

11 · · · ψ∗
1b · · · ψ∗

1B
...

...
...

...
ψo

s ψ∗
s1 · · · ψ∗

sb · · · ψ∗
sB

↓
λ̂ ′′

1 L̂′′∗
11 · · · L̂′′∗

1b · · · L̂′′∗
1B

...
...

...
...

λ̂ ′′
s L̂′′∗

s1 · · · L̂′′∗
sb · · · L̂′′∗

sB

↓
T ′′′o

l T ′′′∗
l1 · · · T ′′′∗

lb · · · T ′′′∗
lB

Hence, the result of the application of the combination-based permutation test
described in the previous section depends also on which combining function ψ is
used. Every combining function has its own characteristics and can be preferable
to others in specific situations. As such, results may differ slightly depending on
which combining function is used. Sometimes, especially with categorical variables,
different combining functions may lead to different results in terms of statistical
significance. To remove these differences and assess the useful properties of many
different types of combinations, the iterated combining procedure can be applied.
The most commonly used combining functions are:

• Tippett’s combining function: ψT = max j=1,...,k(1−λ j),
• Liptak’s combining function: ψL = ∑k

j=1 φ−1(1−λ j),

• Fisher’s combining function: ψF =−2∑k
j=1 log(λ j),

• Lancaster’s combining function: ψG = ∑k
j=1 Γ −1

r,a (1−λ j),

where φ(·) represents the normal cumulative distribution function (CDF) and Γ −1
r,a

is the inverse CDF of a central gamma distribution with known scale parameter a
and r degrees of freedom.
All four functions satisfy the properties described in the previous section and can
be used in the NPC procedure. The main difference relates to the rejection regions.
In problems where some (but not many) sub-alternatives are expected to be true,
Tippett’s combining function is preferable; when all the sub-alternatives or most
of them are expected to be true, Liptak’s combining function should be used;
Fisher’s combining function is good in all the intermediate situations (also known
as “omnibus” combination); also Lancaster’s combining function has a similar
behavior. Often the information about the number of true alternative sub-hypotheses
is not known, hence the iterated combination represents a reasonable, practical,
relatively efficient, and robust solution.
The iterated nonparametric combination can be performed using the following
steps:

1. Calculate the second-order partial tests T ” with some selected combining func-
tions, for example three out of the four above described, obtaining the observed
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values {T ”
0,L,T

”
0,G,T

”
0,F} and the permutation distributions {T”,∗

L ,T”,∗
G ,T”,∗

F }, as
already pointed out in the first phase of the testing procedure at steps (i)–(iii);

2. Calculate the significance level functions of each test obtaining the three-variate
test statistic 1L̂(z|X) = {1L̂L(z|X),1 L̂G(z|X),1 L̂F(z|X)} and the corresponding
p-values 1λ̂ = {1λ̂L,

1 λ̂G,
1 λ̂F} (according to point (iv) of the first phase of the

testing procedure);
3. The three test statistics of the previous step are combined according to step (i) and

(ii) of the second phase of the testing procedure; all three combining functions
are applied so that three results (one for each combination) are achieved, thus
obtaining 2λ̂ = {2λ̂L,

2 λ̂G,
2 λ̂F};

4. Repeat t times step 3 with the combinations of the p-values t−1λ̂ =

{t−1λ̂L,
t−1 λ̂G,

t−1 λ̂F}, t ≥ 3, obtaining tλ̂ = {t λ̂L,
t λ̂G,

t λ̂F}, until the p-values of
the t-th iteration are “very close” to those of the (t −1)-th iteration or reasonably
similar to each other according to a stopping rule, for example:

(a) After a specific number t0 of iterations the procedure stops;
(b) Euclidean distance between the vectors of p-values of two consecutive

iterations:
‖tλ −t−1 λ‖ ≤ ε for a given ε > 0 such that ε is very close to zero;

(c) “Deviance type” rule:√
(tλT −t λ )2 +(tλL −t λ )2 +(tλF −t λ )2 ≤ ε for a given ε > 0, where

tλ is the sample mean of tλL,tλG and tλF .

A similar iterated solution was proposed for tests on genetic differentiation and
independent samples and proved its good behavior under H0. Such a procedure
for independent samples guarantees the rejection of the global hypothesis with
probability α when all null (local) hypotheses are true (Salmaso and Solari 2006).

6.3 On Morphology of Aortic Valve

6.3.1 Introduction

In another application we have examined aortic valve shape. Data come from a real
case study performed by Dr. Carla Villanova at “Casa di cura Villa Maria” in Padova
(Italy). Preliminary results are given. Full results have been published elsewhere in
Brombin et al. (2009).
Data consist of 16 echocardiograms, i.e., 16 2D pictures. As known echocardiography
is one of the most widely used diagnostic tests for heart disease, since it is
noninvasive and provides helpful information, e.g., size and shape of the heart, its
pumping capacity, the location, and extent of any damage to its tissues. Moreover,
it produces accurate assessment of the velocity of blood and cardiac tissue at any
arbitrary point using pulsed or continuous wave doppler ultrasound. This allows us
to evaluate cardiac valve areas and function, any abnormal communications between
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the left and right side of the heart, possible valvular regurgitation, and calculation
of the cardiac output. Our database contains complete patients information (e.g.,
age, gender, body mass index (BMI), systolic and diastolic blood pressure, and
cardiac frequency (CF)). In particular, there are 9 men and 7 women. Mean age
is 59.69± 17.25 years (7 patients are younger than 60 years old, 9 are sixties or
older). Seven patients are overweighted or belong to the obese Class I (i.e., their
BMI ranges from 25 to 35) and 9 are normal, i.e., BMI is comprised between 18.5
and 25.
Information concerning cardiovascular risk factors (e.g., familiarity with heart
disease, smoking habits, hypertension, presence or not of dyslipidemia, diabetes,
high cholesterol and/or triglycerides, and the practice of regular physical activity)
were also recorded. Unfortunately some of these variables contain missing values.
Measurements of M-mode left atrial maximum diameter and of the aortic valve
have also been collected. Telediastolic and telesystolic volumes and ejection fraction
(EF) of the 2D left ventricle have been calculated. Two-dimensional right ventricle
surface area and shortening fraction (SF) have been determined in telediastole and
telesystole. Mitral doppler variables (e.g., velocity of early filling wave (E), velocity
of late filling wave due to atrial contraction (A), deceleration time, and regurgitation)
and aortic doppler variables (e.g., proximal and distal velocity, regurgitation) have
also been measured. Traditionally, the evaluation of the aortic valve status is based
on morphometric measurements. Here we propose a landmark (and semilandmark)-
based approach. At first we define the design of experiment. We have chosen 4
landmarks (red points in Fig. 6.3b), related to the measurements taken at the sinuses
of Valsalva and ascending aorta (see dashed lines in Fig. 6.3a). Moreover we have
digitized 20 semilandmarks (blue points) and 4 curves (curve 1 includes points 7–
11; curve 2 points 12–16; curve 3 is made of points 17–21; and curve 4 of points
22–26).
Semilandmarks fail to be true landmarks in the fact that they do not enjoy homology
property. They lie on homologous curves yet their exact position along these
(usually smooth) curves is unclear. As a part of the superimposition procedure,
the semilandmarks are allowed to slide along their curves in order to minimize the
Procrustes distance from the actual landmark configuration to the sample average
configuration. In Fig. 6.3 are shown consensus and all subjects are represented
as points (c) or vectors indicating the variability at each point (d). In addition we
have recorded 2 artificial landmarks (green points). We call them artificial since
their utility is only related to a feature of tpsRelw program in particular with
reference to the creation of a sliders file. Actually, slider files are used to define
which semilandmarks should be allowed to slide along an estimated curve during
the GPA superimposition. The points can be positioned so as to minimize the
distance between the adjusted position and the corresponding point in the consensus
or they can be positioned so as to minimize the bending energy required for a
deformation of the consensus to the selected specimen. The program allows one
to draw links between any triplets of landmarks. The middle landmark of a triplet
is then considered a semilandmark. In order to define a curve made up of many
semilandmarks, simply you have to define a series of overlapping triplets of points.
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Fig. 6.3 Echocardiogram, distances, and outlines (a). Consensus configuration (b). Consensus and
all subject represented as points (c) or vectors indicating the variability at each point (d)

While one can draw these links in any way that makes sense, a point can only be
defined once as a semilandmark, i.e., it can only be used once as the middle point
of a triplet. For details, we refer the reader to the Tpsrelw guide. Adding these
points we may get more semilandmarks, thus obtaining a better description of the
whole shape. TpsRelw, as previously said, provides a plot of the relative warp scores
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Fig. 6.4 Output from Tpsrelw. Plot of the relative warp scores matrix (a). Deformation grid related
to the consensus (b) and changes in shape when moving from the center to patient 2 (c), or to patient
9 (d), 10 (e), and 12 (f)

matrix also showing the position of each specimen with respect to the first and
second partial warps (see for example Fig. 6.4a). It also allows us to explore the
deformations associated with different position in this ordination. For example, in
Fig. 6.4b we show the deformation corresponding to the position of the consensus.
In Fig. 6.4c, we show the deformation produced when moving from the center to
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patient 2. We can see a contraction of the grid: points 5 and 6 shift inside, thus
producing an increase in distances between points 5–16 and points 6–26, while the
distance between points 11 and 21 decreases. Again, in Fig. 6.4d, we display the
deformation corresponding to the position of patient 9. We can see that there is
a global enlargement and lengthening of the shape, with a loss of the roundness
of the curve 4. In Fig. 6.4e we display the deformation in shape corresponding to
patient 10. There is a global shape prolongation of the shape and a loss of roundness
of the curve 4. Moreover it could be noticed an increase in the distances between
points 1–7 and points 2–17. To conclude, in Fig. 6.4f we show the deformation
corresponding to the position of patient 12. We can see a remarkable contraction of
the shape. Points 5 and 6 are responsible for this variation in shape: points 5 and 6
shift inside, thus producing an increase in distances between points 5–16 and points
6–26.

6.3.2 Inferential Results

We have used the plot of the relative warp scores matrix to define two groups. The
first group includes patients 2, 6, 7, 10, 14, 15, and 16 (n1 = 7). The second includes
patients 1, 3, 4, 5, 8, 9, 11, 12, and 13 (n2 = 9). Five of the seven overweighted or
obese patients in our sample are allocated in this group. We have carried out a two
independent sample test, using NPC methodology, in order to see where are located
significant shape differences among these two groups. As a remark, our data are
now the 2D coordinates of landmarks and semilandmarks after sliding and after
superimposition, minimizing the Procrustes distance. Here we deal with k = 26
points in m = 2 dimensions. As usual we break the problem up into two stages,
considering both the coordinate and the landmark level (and, if present, the domain
level too). In particular we formulate partial test statistics for one-sided hypotheses
and then we consider the global test obtained after combining at the first stage with
respect to m and in the second stage with respect to k.
Actually x and y landmark and semilandmark coordinates could be considered
the sub-hypotheses of the problem, thus providing a set of partial tests. Hence,
combining these partial tests we can get a p-value for each 2D landmark and
semilandmark. We also have computed p-values for each curve (corresponding to a
domain), as well as a global p-value (see results in Table 6.8). We have found that
the two groups are significantly different in all the six landmarks, in curves 1, 2, and
3 and globally. We recall that p-values associated with the curves are also global
p-values. Actually these p-values are obtained after combining all the landmark
coordinates of the points included in the curve itself (e.g., p-value associated with
curve 1 is obtained as a combination of the x and y coordinates of points 7, 8, 9,
10, and 11). In Table 6.8, we call “global” the p-value we get after combining all
the previously obtained p-values. Here we have also used a closed testing procedure
controlling the familywise error rate (FWE).



6.4 Final Remarks 93

Table 6.8 Results

p-value
Landmark 1 0.0028
Landmark 2 0.0001
Landmark 3 0.0006
Landmark 4 0.0010
Landmark 5 0.0218
Landmark 6 0.0553
Curve 1 0.0005
Curve 2 0.0316
Curve 3 0.0077
Curve 4 0.6246
Global 0.0023

This kind of analysis cannot be carried out in a parametric framework, since
standard Hotelling’s T 2 is approximately distributed according to an FM,n1+n2−M−1,
where M = km−m−m(m− 1)/2− 1 is the dimension of the tangent space. In this
case k = 26, m = 2, and n1 + n2 = 16; hence we should calculate F48,−33, which is
impossible.
In groups defined using information on BMI, age, and gender, no significant
differences among patients have been found. This is probably due to the very small
sample size.

6.4 Final Remarks

NPC tests, due to their nonparametric nature, may be computed even when
the number of covariates exceeds the number of cases. With reference to the
problem of small sample sizes, we recall that the results obtained within the NPC
framework can be extended to the corresponding reference population. In Pesarin
(2002) it is proved that it is possible to extend the permutation conditional to
unconditional or population inferences since permutation tests are provided with
similarity and conditional unbiasedness properties. Actually in the parametric field,
this extension is possible when the data set is randomly selected by well-designed
sampling procedures on well-defined population distributions, provided that their
nuisance parameters have boundedly complete statistics in the null hypothesis or
are provided with invariant statistics. In practice, this situation does not always
occur and parametric inferential extensions might be wrong or even misleading.
Permutation tests enable us for such extensions, at least in a weak sense, requiring
that the similarity and conditional unbiasedness properties (sufficient and not
necessary conditions) are jointly satisfied (Pesarin 2002; Ludbrook and Dudley
1998). Moreover, we have shown how NPC methodology enables the researcher
to give local assessment using a combination with domains. We feel confident that
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developing geometric morphometrics techniques in a nonparametric permutation
framework makes possible to obtain valid solutions for the high dimensional and
small sample size problems.
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