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Preface

The motivation for the preparation of this book is my wish to
create an integrated introductory resource for the study of
reliability evaluation and maintenance planning. The focus
across all of the topics treated is the support of design activ-
ities that lead to the production of dependable and efficient
equipment. The orientation of the topical development is that
probability models provide an effective vehicle for portraying
and evaluating the variability that is inherent in the perfor-
mance and longevity of equipment.

The book is intended to support either an introductory
course in reliability theory and preventive maintenance plan-
ning or a sequence of courses that address these topics. Fairly
comprehensive coverage of the basic models and of various
methods of analysis is provided. An understanding of the
topics discussed should permit the reader to comprehend the
literature describing new and advanced models and methods.

Notwithstanding the emphasis upon initial study, the
text should also serve well as a resource for practicing engi-
neers. Engineers who are involved in the design process
should find a coherent explanation of the reliability and main-
tenance issues that will influence the success of the devices
they create. Similarly, engineers responsible for the analysis
and verification of product reliability or for the planning of
maintenance support of fielded equipment should find the
material presented here to be relevant and easy to access and
use.



vi Preface

The background required of the reader is a sound under-
standing of probability. This subsumes capability with calcu-
lus. More specifically, the reader should have an
understanding of distribution theory, Laplace transforms,
convolutions, stochastic processes, and Markov processes. It
is also worth mentioning that the use of the methods dis-
cussed in this book often involves substantial computational
effort, so facility with numerical methods and access to effi-
cient mathematical software is desirable.

One caveat concerning the coverage here is that the
treatment is strictly limited to hardware. Reliability and
maintenance models have been developed for applications to
software, humans, and services systems. No criticism of those
efforts is intended, but the focus here is simply hardware.

The organization of the text is reasonably straightfor-
ward. The elementary concepts of reliability theory are pre-
sented sequentially in Chapters 1 through 6. Following this,
commonly used statistical methods for evaluating component
reliability are described in Chapters 7 and 8. Chapters 9
through 13 treat repairable systems and thus maintenance
planning models. Here again, the presentation is sequential
in that simple failure models precede those that include pre-
ventive actions, and the renewal cases are treated before the
more realistic nonrenewal cases. In the final chapter, four
interesting special topics, including warranties, are discussed.
It is worth noting that three appendices that address aspects
of numerical computation are provided. These should be quite
useful to the reader.

Naturally, many people have contributed to the prepara-
tion of this text. The principal factor in the completion of this
book has been the support and encouragement of my wife
Beverley. An important practical component of my success has
been the support of Virginia Tech, particularly in providing
computing resources and time during my sabbatical. I also
wish to express my profound gratitude to my graduate stu-
dents who have taught me so much about these topics over
the years. May we all continue to learn and grow and to enjoy
the study of this important subject.
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Introduction

Although we rarely think of it, reliability and maintenance
are part of our everyday lives. The equipment, manufactured
products, and fabricated infrastructure that contribute sub-
stantively to the quality of our lives have finite longevity. Most
of us recognize this fact, but we do not always fully perceive
the implications of finite system life for our efficiency and
safety. Many, but not all, of us also appreciate the fact that
our automobiles require regular service, but we do not gen-
erally think about the fact that roads and bridges, smoke
alarms, electricity generation and transmission devices, and
many others of the machines and facilities we use also require
regular maintenance.

We are fortunate to live at a time in which advances in
understanding of materials and energy have resulted in the
creation of an enormous variety of sophisticated products and
systems many of which (1) were inconceivable 100 or 200 or
even 20 years ago, (2) contribute regularly to our comfort,
health, happiness, efficiency, or success, (3) are relatively inex-
pensive, and (4) require little or no special training on our
part. Naturally, our reliance on these devices and systems is
continually increasing, and we rarely think about failure and
the consequences of failure.
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Occasionally, we observe a catastrophic failure. Fatigue
failures of the fuselage of aircraft [1], the loss of an engine
by a commercial jet [1], the Three Mile Island [1] and Cher-
nobyl [1] nuclear reactor accidents, and the Challenger [2]
and Discovery [3] space shuttle accidents are all widely known
examples of catastrophic equipment failures. The relay circuit
failure at the Ohio power plant that precipitated the August
2003 power blackout in the northeast United States and in
eastern Canada [4] is an example of a system failure that
directly affected millions of people. When these events occur,
we are reminded dramatically of the fallibility of the physical
systems on which we depend.

Nearly everyone has experienced less dramatic product
failures such as that of a home appliance, the wearout of a
battery, and failure of a light bulb. Many of us have also
experienced potentially dangerous examples of product fail-
ures such as the blowout of an automobile tire.

Reliability engineering is the study of the longevity and
the failure of equipment. Principles of science and mathemat-
ics are applied to the investigation of how devices age and
fail. The intent is that a better understanding of device failure
will aid in identifying ways in which product designs can be
improved to increase life length and limit the adverse conse-
quences of failure. The key point here is that the focus is upon
design. New product and system designs must be shown to
be safe and reliable prior to their fabrication and use. A
dramatic example of a design for which the reliability was
not properly evaluated is the well-known case of the Tacoma
Narrows Bridge, which collapsed into the Puget Sound in
November 1940, a few months after its completion [1].

The study of the reliability of an equipment design also
has important economic implications for most products. As
Blanchard [5] states, 90% of the life-cycle costs associated
with the use of a product are fixed during the design phase
of a product’s life.

Similarly, an ability to anticipate failure can often imply
the opportunity to plan for the efficient repair of equipment
when it fails or, even better, to perform preventive mainte-
nance in order to reduce failure frequency.
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There are many examples of the products for which the
system reliability is far better today than it was previously.
One familiar example is the television set, which historically
experienced frequent failures and which, at present, usually
operates failure free beyond its age of obsolescence. Improved
television reliability is certainly due largely to advances in
circuit technology. However, the ability to evaluate the reli-
ability of new material systems and of new circuit designs
has also contributed to the gains we have experienced.

Perhaps the most well recognized system for which pre-
ventive maintenance is used to maintain product reliability
is the commercial airplane. Regular inspection, testing, repair,
and even overhaul are part of the normal operating life of
every commercial aircraft. Clearly, the reason for such intense
concern for the regular maintenance of aircraft is an appre-
ciation of the influence of maintenance on failure probabilities
and thus on safety.

On a personal level, the products for which we are most
frequently responsible for maintenance are our automobiles.
We are all aware of the inconvenience associated with an in-
service failure of our cars and we are all aware of the rela-
tively modest level of effort required to obtain the reduced
failure probability that results from regular preventive
maintenance.

It would be difficult to overstate the importance of main-
tenance and especially preventive maintenance. It is also dif-
ficult to overstate the extent to which maintenance is
undervalued or even disliked. Historically, repair and espe-
cially preventive maintenance have often been viewed as
inconvenient overhead activities that are costly and unpro-
ductive. Very rarely have the significant productivity benefits
of preventive maintenance been recognized and appreciated.
Recently, there are reports [6,7,8] that suggest that it is com-
mon experience for factory equipment to lose 10 to 40% of
productive capacity to unscheduled repairs and that preven-
tive maintenance could drastically reduce these losses. In fact,
the potential productivity gains associated with the use of
preventive maintenance strategies to reduce the frequency of
unplanned failures constitute an important competitive
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opportunity [8]. The key to exploiting this opportunity is care-
ful planning based on cost and reliability.

This book is devoted to the analytical portrayal and eval-
uation of equipment reliability and maintenance. As with all
engineering disciplines, the language of description is math-
ematics. The text provides an exploration of the mathematical
models that are used to portray, estimate, and evaluate device
reliability and those that are used to describe, evaluate, and
plan equipment service activities. In both cases, the focus is
on design. The models of equipment reliability are the pri-
mary vehicle for recognizing deficiencies or opportunities to
improve equipment designs. Similarly, using reliability as a
basis, the models that describe equipment performance as a
function of maintenance effort provide a means for selecting
the most efficient and effective equipment service strategies.

The examples of various failures mentioned above share
some common features, and they also have differences that
are used here to delimit the extent of the analyses and dis-
cussions. Common features are that (1) product failure is
sufficiently important that it warrants engineering effort to
try to understand and control it, and (2) product design is
complicated so the causes and consequences of failure are not
obvious.

There are also some important differences among the
examples. Taking an extreme case, the failure of a light bulb
and the Three Mile Island reactor accident provide a defining
contrast. The accident at Three Mile Island was precipitated
by the failure of a physical component of the equipment. The
progress and severity of the accident were also influenced by
the response by humans to the component failure and by
established decision policies. In contrast, the failure of a light
bulb and its consequences are not usually intertwined with
human decisions and performance. The point here is that there
are very many modern products and systems for which opera-
tional performance depends upon the combined effectiveness of
several of the following: (1) the physical equipment, (2) human
operators, (3) software, and (4) management protocols.

It is both reasonable and prudent to attempt to include
the evaluation of all four of these factors in the study of
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system behavior. However, the focus of this text is analytical,
and the discussions are limited to the behavior of the phys-
ical equipment.

Several authors have defined analytical approaches to
modeling the effects of humans [9] and of software [10] on
system reliability. The motivation for doing this is the view
that humans cause more system failures than does equip-
ment. This view seems quite correct. Nevertheless, implemen-
tation of the existing mathematical models of human and
software reliability requires the acceptance of the view that
probability models appropriately represent dispersion in
human behavior. In the case of software, existing models are
based on the assumption that probability models effectively
represent hypothesized evolution in software performance
over time. The appropriateness of both of these points of view
is subject to debate. It is considered here that the human
operators of a system do not comprise a homogeneous popu-
lation for which performance is appropriately modeled using
a probability distribution. Similarly, software and operating
protocols do not evolve in a manner that one would model
using probability functions. As the focus of this text is the
definition of representative probability models and their anal-
ysis, the discussion is limited to the physical devices.

The space shuttle accidents serve to motivate our focus
on the physical behavior of equipment. The 1986 Challenger
accident has been attributed to the use of the vehicle in an
environment that was more extreme than the one for which
it was designed. The 2002 Discovery accident is believed to
have been the result of progressive deterioration at the site
of damage to its heat shield. Thus, the physical design of the
vehicles and the manner in which they were operated were
incompatible, and it is the understanding of this interface
that we obtain from reliability analysis.

The text is organized in four general sections. The early
chapters describe in a stepwise manner the increasingly com-
plete models of reliability and failure. These initial discus-
sions include the key result that our understanding of design
configurations usually implies that system reliability can usu-
ally be studied at the component level. This is followed by an
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examination of statistical methods for estimating reliability.
A third section is comprised of five chapters that treat increas-
ingly more complicated and more realistic models of equip-
ment maintenance activities. Finally, several advanced topics
are treated in the final chapter.

It is hoped that this sequence of discussions will provide
the reader with a basis for further exploration of the topics
treated. The development of new methods and models for
reliability and maintenance has expanded our understanding
significantly and is continuing. The importance of preventive
maintenance for safety and industrial productivity is receiv-
ing increased attention. The literature that is comprised of
reports of new ideas is expanding rapidly. This book is
intended to prepare the reader to understand and use the
new ideas as well as those that are included here.

As a starting point, note that it often happens that tech-
nical terms are created using words that already have collo-
quial meanings that do not correspond perfectly with their
technical usage. This is true of the word reliability. In the
colloquial sense, the word reliable is used to describe people
who meet commitments. It is also used to describe equipment
and other inanimate objects that operate satisfactorily. The
concept is clear but not particularly precise. In contrast, for
the investigations we undertake in this text, the word reli-
ability has a precise technical definition. This definition is the
departure point for our study.
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The point of departure for the study of reliability and main-
tenance planning is the elementary definition of the term
reliability. As mentioned in Chapter 1, the technical definition
of reliability is similar to the colloquial definition but is more
precise. Formally, the definition is

Defn. 2.1: Reliability is the probability that a device prop-
erly performs its intended function over time when oper-
ated within the environment for which it is designed.

Observe that there are four specific attributes of this
definition of reliability. The four attributes are (1) probability,
(2) proper performance, (3) qualification with respect to envi-
ronment, and (4) time. All four are important. Over this and
the next several chapters, we explore a series of algebraic
models that are used to represent equipment reliability. We
develop the models successively by sequentially including in
the models each of the four attributes identified in the above
definition. To start, consider the representation of equipment
performance to which we refer as function.

2.1 STATUS FUNCTIONS

The question of what constitutes proper operation or proper
function for a particular type of equipment is usually specific
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to the equipment. Rather than attempt to suggest a general
definition for proper function, we assume that the appropriate
definition for a device of interest has been specified, and we
represent the functional status of the device as

1 if the device functions properly
0 if the device is failed

Note that this representation is intentionally binary. We
assume here that the status of the equipment of interest is
either satisfactory or failed. There are many types of equip-
ment for which one or more derated states are possible. Dis-
cussion of this possibility is postponed until the end of this
chapter.

We presume that most equipment is comprised of com-
ponents and that the status of the device is determined by
the status of the components. Accordingly, let n be the number
of components that make up the device and define the com-
ponent status variables, x;, as

1 if component iis functioning
“10 if component iis failed

so the set of n components that comprise a device is repre-
sented by the component status vector:

Next, we represent the dependence of the device status
on the component status as the function

o =d(x) (2.1)

and the specific form for the function is determined by the
way in which the components interact to determine system
function. In the discussions that follow, ¢(x) is referred to as
a “system structure function” or as a “system status function”
or simply as a “structure.” In all cases, the intent is to reflect
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the dependence of the system state upon the states of the
components that comprise the system. A parenthetical point
is that the terms “device” and “system” are used here in a
generic sense and may be interpreted as appropriate.

An observation concerning the component status vector
is that it is defined here as a vector of binary elements so that
an n-component system has 2" possible component status
vectors. For example, a three-component system has 23 = 8
component status vectors. They are

{1, 1, 1} {1, 0, 1}

{1, 1, 0} {1, 0, 0}
{0, 1, 1} {0, 0, 1}
{0, 1, O} {0, 0, 0}

Each component status vector yields a corresponding
value for the system status function, ¢.

From a purely mathematical point of view, there is no
reason to limit the definition of the system status function,
so forms that have no practical interpretation can be con-
structed. In order to avoid any mathematically correct but
practically meaningless forms for the system status function,
we limit our attention to coherent systems.

Defn. 2.2: A coherent system is one for which the system
structure function is nondecreasing in each of its argu-
ments.

This means that for each element of the component sta-
tus vector, x,, there exists a realization of the vector for which

Oy veeey X515 0, X541, ceeeey 2,) <Oy, vy X1, 1, Xjpgy ooy, ) (2.2)

Throughout our study of reliability, we will limit our attention
to algebraic forms that comply with this restriction.

Generally, we expect that the physical relationships
among the components determine the algebraic form of the
system status function, ¢.
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2.2 SYSTEM STRUCTURES AND STATUS FUNCTIONS

Among reliability specialists, it is generally accepted that
there are four generic types of structural relationships
between a device and its components. These are (1) series, (2)
parallel, (3) k out of n, and (4) all others. Consider each of
these forms in sequence.

2.2.1 Series Systems

The simplest and most commonly encountered configuration
of components is the series system. The formal definition of
a series system is:

Dejfn. 2.3: A series system is one in which all components
must function properly in order for the system to function

properly.

The conceptual analog to the series structure is a series-
type electrical circuit. However, unlike a series circuit, it is
specifically not implied here that the components must be
physically connected in sequence. Instead, the point of empha-
sis is the requirement that all components function. An exam-
ple of a series system in which the components are not
physically connected is the set of legs of a three-legged stool.
Another is the set of tires on an automobile. In both examples,
the components are not physically connected to each other in
a linear configuration. Nevertheless, all of the components
must function properly for the system to operate.

The concept of a series circuit is commonly used to define
a graphical representation of a series structure. For three com-
ponents, this is shown in Figure 2.1. In general, representations
of system structures such as the one in Figure 2.1 are referred
to as reliability block diagrams. They are often helpful in under-
standing the relationships between components.

1 2 3

Figure 2.1 Reliability block diagram for a series system.
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For the series structure, the requirement that all com-
ponents must function in order for the system to function
implies that a logical algebraic form for the system structure
function is

O(x)= mjn{xi} (2.3)

but an equivalent and more useful form is

o(x) = Hxi (2.4)
i=1

As examples, consider a three-component series system
and the cases

X, =x,=1,2x3 =0 and ¢(x)=0

0 and ®(x)=0

x1=1,x2=x3

1 and ¢(x)=1

Only the functioning of all components yields system
function.

2.2.2  Parallel System

The second type of structure is the parallel structure. The
conceptual analog is again the corresponding electrical circuit,
and the definition is:

Defn. 2.4: A parallel system is one in which the proper
function of any one component implies system function.

It is again emphasized that no specific physical connec-
tions among the components are implied by the definition or
by the reliability block diagram. Figure 2.2 shows the reli-
ability block diagram for a three-component parallel system.

One example of a parallel system is the set of two engines
on a two-engine airplane. As long as at least one engine
functions, flight is sustained. However, this example implies
that simply maintaining flight corresponds to proper function.
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Figure 2.2 Reliability block diagram for a three-component par-
allel system.

It is a worthwhile debate to discuss when this is and when it
is not an appropriate example of a parallel system.

Another example that is more appealing is the fact that
the communications satellites presently in use have triple
redundancy for each communications channel. That is, three
copies of each set of transmitting components are installed in
the satellite and arranged in parallel in order to assure con-
tinued operation of the channel. In view of the fact that this
implies significant weight increases over the use of only sin-
gle-configuration transmitters, the satellite provides an exam-
ple of the importance of reliability as well as one of a parallel
structure.

In a similar manner to that for the series system, the
structure function for the parallel system may be defined as

9(x) = max{x; (2.5)

An alternate form that is more amenable to analytical
manipulation can be defined using a shorthand developed by
Barlow and Proschan [11].
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o(x) = Hxi (2.6)
i-1

The inverted product symbol, [1, is called “ip” and is defined as

]f[xi=1—ll[(1—xi) 2.7)
i=1

=1

Once mastered, this shorthand is very convenient. Example
cases for the three component parallel system are

X, =%x,=1,23=0, and 0x)=1
x;=1,2y=2;=0,and ox)=1
X =%y =%x3=0,and ¢(x)=0

Conceptually, a parallel system is failed only when all
system components are failed.

Before leaving the discussion of parallel structures, it is
appropriate to mention the fact that the parallel arrangement
of components is often referred to as redundancy. This is
because the proper function of any of the parallel components
implies proper function of the structure. Thus, the additional
components are redundant until a component fails. Fre-
quently, parallel structures are included in product designs
specifically because of the resulting redundancy. Often but
not always, the parallel components are identical. At the same
time, there are actually several ways in which the redundancy
may be implemented. A distinction is made between redun-
dancy obtained using a parallel structure in which all com-
ponents function simultaneously and that obtained using
parallel components of which one functions and the other(s)
wait as standby units until the failure of the functioning unit.
Models that describe the reliability of active redundancy and
of standby redundancy are presented at the end of Chapter 4.
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2.2.3 k-out-of-n Systems

The third type of structure is the k-out-of-n structure. There
is no obvious conceptual analog for this structure. A formal
definition of it is:

Defn. 2.5: A k-out-of-n system is one in which the proper
function of any k of the n components that comprise the
system implies proper system function.

The usual approach to constructing the reliability block
diagram for the k-out-of-n system is to show a parallel dia-
gram and to provide an additional indication that the system
is k out of n.

An example of a k-out-of-n system is the rear axle of a
large tractor-trailer on which the functioning of any three out
of the four wheels is sufficient to assure mobility. Another
example is the fact that some (1-k) electronic memory arrays
are configured so that the operation of any 126 of the 128
memory addresses corresponds to satisfactory operation.

The algebraic representation of the structure function for
a k-out-of-n system is not as compact as those for series and
parallel systems. Given the definition of the relationship
between component and system status, the most compact
algebraic form for the structure function is

o)l T Dz 2.8)

0 otherwise
Example cases for a 3 out of 4 system are
X =% =%x3=1,2,=0,and ¢(x)=1
X, =%=1x3=x,=0,and ¢(x)=0

X, =%xy=%3=0,2,=1,and ¢(x)=0

Note that a series system may be considered as an n-out-
of-n system and a parallel system may be viewed as a 1-out-
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of-n system. Thus, the k-out-of-n form provides a generaliza-
tion that is sometimes useful in analyzing system perfor-
mance in a generic context.

As indicated above, the fourth class of component config-
urations is the set of all others that are conceivable. This
statement is not intended to be misleading. Instead, it is
intended to imply that we can establish an equivalence
between any arbitrary component configuration and one
based on series and parallel structures. The process of con-
structing equivalent structures is explained in the next sec-
tion and is illustrated with a classic example.

2.2.4 Equivalent Structures

The selection of a component configuration is usually made
by the device designer in order to assure a specific functional
capability. The configuration selected may not match one of
the classes discussed above. In such a case, there are two
ways by which we can obtain equivalent structural forms that
may be easier to analyze than the actual one. The two ways
are to use either minimum-path or minimum-cut analyses of
the network representation of the system.

As a vehicle for illustrating the two methods, we use the
Whetstone bridge. The reliability block diagram for the bridge
is shown in Figure 2.3. Notice that the bridge structure is not

1 4

Figure 2.3 Reliability block diagram for a Whetstone bridge.



16 Nachlas

Table 2.1 System Status Values for
the Bridge Structure

x ey x o)
1,1,1,1,1) 1 {0,1,1,1,1} 1
{1,1,1,1,00 1 {0,1,1,1,00 1
{1,1, 1,0, 1} 1 {0,1,1,0, 1} 1
{1,1, 1, 0, 0} 0 {0, 1,1, 0, 0} 0
{1,1,0,1,1} 1 {0,1,0,1,1} 1
{1, 1,0, 1, 0} 1 {0, 1, 0, 1, 0} 0
{1,1,0,0,13 1 {0,1,0,0,1) 1
{1,1, 0, 0, 0} 0 {0, 1,0, 0, 0} 0
{1,0,1,1, 1} 1 {0,0,1, 1, 1} 0
{1,0,1, 1, 0} 1 {0, 0,1, 1, 0} 0
{1,0, 1,0, 1} 1 {0, 0,1, 0, 1} 0
{1, 0, 1, 0, 0} 0 {0, 0, 1, 0, 0} 0
{1,0,0,1,13 1 {0,0,0,1,1} 0
{1,0,0, 1, 0} 1 {0,0, 0,1, 0} 0
{1,0,0,0, 1} 0 {0, 0, 0, 0, 1} 0
{1, 0, 0, 0, 0} 0 {0, 0, 0, 0, 0} 0

series, parallel, or k-out-of-n. Thus, the above algebraic rep-
resentations cannot be used directly to provide a statement
of the system status function.

We can obtain a system status function for the bridge in
several ways. One obvious approach is to enumerate all of the
component status vectors, to determine the system status for
each vector, and to construct a table of system status values.
For the five-component bridge structure, this is readily done,
and the result is the given in Table 2.1. On the other hand,
systems having a greater number of components cannot be
handled so easily.

The use of minimum paths will permit us to analyze the
bridge structure and other larger systems as well. Start with
some definitions:

Dejfn. 2.6: A path vector, x, is a component status vector
for which the corresponding system status function has
a value of 1.

Defn. 2.7: A minimum-path vector, x, is a path vector for
which any vector y < x has a corresponding system status
function with a value of 0.
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Defn. 2.8: A minimum-path set, P, is the set of indices of
a minimum-path vector for which the component status
variable has a value of 1.

These definitions identify the component status vectors
that correspond to system function and those vectors that are
minimal in the sense that any reduction in the number of
functioning components implies system failure. For the bridge
structure, the minimum-path vectors and minimum-path sets
are

{1,0,0,1,0) P, ={1,4)
{0,1,0,0,1} P, = {2, 5}
{1,0,1,0,1}  P,=1{1,3,5)
0,1,1,1,0} P, ={2, 3,4

Next, consider the elements of a minimum path and
define a status function for each minimum path. That is,
represent the functional status of each path using the func-
tions p(x). Since all of the components in a minimum path
must function in order for the path to represent proper func-
tion, the components in a minimum path may be viewed as
a series system. Hence, in general,

p,@=[]= 2.9)

ieP;

and for the example bridge structure,

py(x) = X; = X1Xy
A

po()= | | x; = x5
ieh,

ps(x) = X; = X1X3X5

|
iePy
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py(x)= Hxi = XoX3Xy

1ePy

Now, observe that the original system will function if any
of the minimum paths is functioning. Therefore, we may view
the system as a parallel arrangement of the minimum paths.
Algebraically, this means

¢(&)=Hpj(&)=HHxi (2.10)
j

J i€P;

For the bridge structure, this expression expands to

O(x) =1— (1 — 220, (L — 209205 ML — 26, 2053005 N1 — X9205%4)

The most important point here is that, for any component
status vector, the Expression 2.10 will always give the same
system status value as Table 2.1. That is, the parallel arrange-
ment of the minimum paths of a system with the components
of the respective minimum paths arranged in series constitutes
a system that is equivalent to the original system. Figure 2.4
shows the graphical realization of this equivalence for the
bridge structure.

It is appropriate to emphasize here the fact that the
equivalent structure has exactly the same status function
value as the original structure for all realizations of the com-
ponent status vector. Consequently, the minimum-path anal-
ysis permits us to identify a form for the system status
function that can be computed using only series and parallel
algebraic forms.

There is a comparable construction using the idea of cut
vectors rather than path vectors. The method based on cut
vectors may also be used for the bridge and other structures.
Again, start with some definitions:

Dejfn. 2.9: A cut vector, x, is a component status vector for
which the corresponding system status function has a
value of 0.
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Figure 2.4 Minimum path equivalent structure for the Whetstone
bridge.

Defn. 2.10: A minimum-cut vector, x, is a cut vector for
which any vector y > x has a corresponding system status
function with a value of 1.

Defn. 2.11: A minimum-cut set, C,, is the set of indices of
a minimum-cut vector for which the component status
variable has a value of 0.

These definitions identify the component status vectors
that correspond to system failure and those vectors that are
minimal in the sense that any increase in the number of
functioning components implies satisfactory system function.
For the bridge structure, the minimum-cut vectors and min-
imum-cut sets are

0,0,1,1,1} €, =11, 2}
(1,1,1,0,00  C, = {4, 5)

{0,1,0,1,00 C; = {1, 3, 5)
{1,0,0,0,1} C,=1(2,3,4)
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Based on the definition of the minimum cuts, we see that
the system will function if any of the elements of the mini-
mum-cut function. Hence, we may define a structure function
for the minimum cuts as

(2.11)

In general and for the specific case of the bridge structure,
we have

Kl(@::' x =1-(1-x,)1-x,)

ieCy

@)= x =1-(1-x,)1-x)

1eCy

K3(@=:' x =1-(1—2,)1— x5 )X1— ;)

ieCy

@ =] o =1-a-0)a-x)1-x,)

ieCy
We observe further that the system will function only if all
of the minimum cuts are inactive — if all are functioning. If
any minimum cut is active, the system is failed, so the min-
imum cuts act as a series system with respect to system
operation (Figure 2.5).

Here again, it is appropriate to emphasize the fact that
the equivalent structure and the original structure have the
same status function value for each component status vector.
Thus, the system status may be calculated using only the
simple series and parallel forms.

One further observation concerning the equivalent struc-
tures is that one may use either the minimum-cut or the
minimum-path method. Both yield equivalent expressions for
the system status so we may use the one that appears easier
or preferable for some other reason.
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Figure 2.5 Minimum cut equivalent structure for the Whetstone
bridge.

2.3 MODULES OF SYSTEMS

Most modern equipment is fairly complicated and is com-
prised of relatively many components. For example, depend-
ing upon how one counts them, one might say that there are
about 100 components in a television, 300 components in a
personal computer, and 600 components in a medium-size
automobile. Even with minimum paths or minimum cuts,
evaluating the status function for systems of this scale is too
difficult. However, it is also common to find that a complicated
system such as a television is actually comprised of sub-
systems called modules. A television usually has a power
management module, a video signal reception module, an
audio signal reception module, a sound production module, a
video projection module, and some sort of system control mod-
ule. Thus, the system may be viewed as comprised of “super
components” called modules. System status may be defined
as a function of the status modules, and the status of each
module should be a function of the components that comprise it.

To formalize this idea algebraically, assume that the n
components that comprise a system can be partitioned into
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m sets of components corresponding to m modules. Let y,(x)
represent the module status function for module 1, where 1 =
1, ..., m. Then

W(@) = {1 (), Yo (%), evnenees W ()

is a vector of binary module status values, and the system
status is defined as

0(x) = oy (x) 2.12)

Naturally, the module status functions may be evaluated
using minimum paths or cuts, and the system status may be
analyzed by treating the modules as components and applying
the minimum-path or minimum-cut methods as appropriate.

Of course, the partition of the set of components may be
performed at several levels if that is appropriate. The princi-
ple remains the same. Any meaningful decomposition of the
system components may be used to simplify the representa-
tion and analysis of the system status.

A final point here is that systems generally have only
one of each module and usually require that all modules
function properly in order for the system to operate satisfac-
torily. Thus, while it is not always the case, the modules often
comprise a series structure. Consequently, the analysis of
system behavior in terms of modules can be quite efficient.

2.4 MULTISTATE COMPONENTS AND SYSTEMS

The treatment of component and system status throughout
most of this text is limited to the case in which system state
and component states are binary. Nevertheless, it should be
recognized that for some equipment multiple states may be
meaningful. It is reasonable to define derated or otherwise
incomplete levels of performance for some equipment. It may
even be appropriate for some devices to define a continuous
state variable on the interval [0, 1]. Algebraic models for
system state using multistate components and for multistate
systems with binary components have been studied. The key
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references for this work are the papers by Natvig [12] and by
Barlow and Wu [13]. In each case, the key to the construction
is the algebraic representation of the effect of component state
on system state.

Both Natvig and Barlow and Wu start by defining the
state space for the components as {0, 1, ... , m} where x; = j
represents the condition that component i is in state j, the
state 0 corresponds to component failure, and the state m
corresponds to perfect functioning. The interpretation of the
intermediate states depends upon the physical characteristics
of the specific component. Using this basic format, there are
two immediately apparent approaches to defining the system
state as a function of the states of the components of a system.

One approach is to define a binary system state by par-
titioning all of the possible component status vectors into two
subsets, one for which system performance is acceptable and
the other for the case that system level performance is unac-
ceptable. Naturally, this cannot be done in general, because
the selection of members of the two subsets depends upon the
particular system.

An alternate, and more general, approach is to define the
system state to also be an element of the set {0, 1, ... , m} and
to define the value of the system state using minimum-path
and minimum-cut concepts. To do this, we first specify that,
as in the case of the binary state space, the state of a series
system of multistate components is the minimum of the com-
ponent state values. Thus, Equation 2.3 applies:

¢(x) =min{x, } (2.13)

In the same manner, the state of a parallel system is the

maximum of the component state values as stated in Equation
2.5:

¢(x) = max{x; | (2.14)

Then for more general structures, we use the min paths or
min cuts to define
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o(x) = mjax{rlrelgl{x, }} = mkln{l}:gkx{xi }} (2.15)
This general formulation may be tailored to nearly any
application. For example, one can restrict some of the compo-
nents to only a subset of the m+1 states. One may also incor-
porate the multistate status measure within a modular
decomposition in whatever manner is meaningful. Finally,
this formulation has the appealing feature that it subsumes
the binary case.

2.5 EXERCISES

1. Construct the minimum-path and minimum-cut
equivalent structures for a 2-out-of-3 system.

2. Construct the minimum-path and minimum-cut
equivalent structures for a three-component series
system.

3. Construct the minimum-path and minimum-cut
equivalent structures for a three-component parallel
system.

. Identify the primary modules of an automobile.

. Construct the minimum-path and minimum-cut
equivalent structures for the following system:

SIS
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6. Construct the minimum-path and minimum-cut
equivalent structures for the following system:

LT3 ;

7. Construct the minimum-path and minimum-cut
equivalent structures for the following system:
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8. Construct and compare the minimum-path and min-
imum-cut equivalent structures for the following sys-
tems:




Reliability of System Structures

The next logical step in our construction of mathematical
models of reliability is to enhance the system structure models
by the addition of probability — the second of the attributes
of the definition of reliability. As we do this, we will refer to
the probabilities as reliabilities despite the fact that we have
not yet included all four attributes in our models. Naturally,
we expect that the reliability of a system will be represented
as a function of the reliabilities of its constituent components.

3.1 PROBABILITY ELEMENTS

Keeping in mind the fact that we represent system state as
a binary variable, ¢, define the system reliability, R, to be the
probability that the system is functioning:

R,=Pr[¢=1] (3.1)

Observe that an artifact of the binary definition of the
system state is that the system reliability is also the expected
value of the system state variable:

E[¢]=1-Pr[¢p=1]+0-Plo=0]=Pr[o=1] (3.2)

A similar pair of definitions applies to the component
status variables. That is, we let

27
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r; =Prlx; =1] (3.3)

where, because of the fact that the x; are binary, it is again
the case that the reliability and expected value correspond.
For a system comprised of n components, we take

to be the vector of component reliability values. Given the
defined notation, it is reasonable to expect that the system
reliability can be expressed as a function of the component
reliabilities. In terms of general notation, we represent this as

R (r)="Pr[¢p(x)=1] (3.4)

and we devote the next section to the realizations of this
expression.

3.2 RELIABILITY OF SYSTEM STRUCTURES

The formulation of the system reliability function is often
relatively straightforward, but the general forms must be
constructed carefully. The key issue to consider is whether or
not the components are mutually independent. In this con-
struction, we follow the same four cases that we examined in
the previous chapter.

3.2.1 Series Systems

Based on the form of the system structure function, the gen-
eral statement of the reliability function for a series system is

R, =Pr[p(x)=1]=Pr{] [z =1 (3.5)
i=1

Now, in general

Pr[ﬁxi =1]2 ﬁPr[xi =1]
i=1 i=1
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and equality holds only when the components are mutually
independent. Thus, for a series system comprised of indepen-
dent components, the system reliability may be stated as

R, = Hr (3.6)
=1

We should note that, regardless of whether or not the
components are independent, the system reliability function
is an increasing function of the component reliability values
and is a decreasing function of the number of components.

In most series systems, the components are independent
with respect to their probabilities of proper function. One
noteworthy class of structures for which the components are
not independent is the set of systems for which the compo-
nents share loads. This is discussed further in Chapter 14.

3.2.2 Parallel Systems

The expression corresponding to Equation 3.5 for a parallel
system is

n

R, =Prlow)=1=Pr(] [ =1=Pr] Ja-x)=01 3.7
i=1

=1

and it is again the case that

Pr[Hxi =1]< HPr[xi =1]
i=1 i=1

so a parallel system of independent components has reliability
function

R, = Hri (3.8)
=1

Examination of this function indicates that the system
reliability function for a parallel system is increasing in both
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the component reliability values and in the number of com-
ponents.

For system structures other than series and parallel, the
computation of the system reliability from the component
reliabilities is not as straightforward.

3.2.3 k-out-of-n Systems

For the generic k-out-of-n system, there is no compact state-
ment of the reliability function. We can only state that

n

R, =Pr[) x, k] (3.9)

i=1

and even when the components are independent, there is no
convenient form for this function. The single exception occurs
when the n components are independent and identical (have
the same reliability). In that case, the system reliability is
given by the sum of binomial probabilities for k or more
functioning components:

R, = Z(’;)rj(l—r)"_j (3.10)
=k

For most other k-out-of-n systems, the use of the mini-
mum-path- and minimum-cut-based methods of the next sec-
tion provide the most effective approach to evaluating system
reliability.

3.2.4 Equivalent Structures

The fact that every system structure has an equivalent rep-
resentation as a combination of series and parallel forms
suggests that we can use the equivalent structures to evaluate
system reliability. While this is true, the fact that the mini-
mum paths and minimum cuts that comprise the equivalent
forms are usually not independent implies that we will be
able to obtain bounds on system reliability rather than exact
system reliability values. The process of using the minimum
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paths and minimum cuts is again illustrated by the Whet-
stone bridge shown in Figure 2.3
Before developing the minimum-path- and minimum-
cut-based bounds, let us note that, using the same approach
as we did for the system status, we can determine the system
reliability by complete enumeration. Specifically, we can enu-
merate all possible system states, obtain the probability that
each state occurs, and sum those probabilities that correspond
to system function. For the case in which the components are
independent, the result of the enumeration is shown in Table
3.1.
Based on the expressions in Table 3.1, the system reli-
ability is
R, = riryrsr,ry + 1y1o15r,(1 — 1) + 1y1or(1 — 1)1y
+ 1 15r(1 — ror,ry + 115(1 — r5)r, (1 — 15)
+ 1191 — 13)(1 — r)rs + (1 — ro)rsr,rs
+ 1r;(1 = rorsr, (1 — ) + r(1 — ry)rs(1 — 1)1y
+ (1 — rpryrsr,rs + (1 — rryrsr,(1 — 1p)
+ (1 —r)ry(1 —ry)(1 — r)ry(3.11)
With considerable algebraic effort, this reduces to
— T T3l L5 — Tol'sly Ty + 27T s, Ty (3.12)
In addition, for a structure such as the bridge, it would

be reasonable for all five components to be identical and to
have the same reliability. Then,

r=r Vi

and the system reliability function reduces to the polynomial

R, =2r? + 3r3 — 5r* + 215 (3.13)
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Table 3.1 Reliability Values for Paths of the Whetstone Bridge

x o(x) Pri¢x) = 1] x o(x) Pri¢p(x) = 1]
{1,1,1,1, 1} 1 I Lol Ty {0,1,1,1, 1} 1 (I = rprorgr rs
{1,1,1,1, 0} 1 rrorsr (1 —rs) {0,1,1,1, 0} 1 (I = rprorsr (1 —r5)
{1,1,1,0, 1} 1 rrors(1 — rrs {0,1,1,0, 1} 1 (I = rpryrs(1 —rpr;
{1,1,1, 0, 0} 0 rirorsr(l — r)(1 —ry) {0,1, 1,0, 0} 0 (I = rprorsr(1 — r)(1 —ry)
{1,1,0,1, 1} 1 rir(l — rr s {0,1,0,1, 1} 1 (I —rry(1 = roryrs
{1,1,0,1, 0} 1 rirs(l —rarl —rg) {0,1,0,1, 0} 0 I =rryd —rorl —ry)
{1,1,0,0, 1} 1 riro(l —ry)(1 = rrs {0,1,0,0, 1} 1 (I =rry1 —ro)(I —rJrs
{1, 1,0, 0, 0} 0 riro(l —ry)I —r)(1 —r5) {0, 1, 0, 0, 0} 0 (I =rpryd —ro)d —r)I —ry)
{1,0,1,1, 1} 1 r(1 = ryrsrrs {0,0,1,1, 1} 0 (I —r) = ryrgryrs
{1,0,1, 1, 0} 1 r(1 = ryrsr(1 —ry) {0, 0,1, 1, 0} 0 (I -r)d —ryrsr(l —r5)
{1,0,1,0, 1} 1 (1 —ryry(1 —ryr; {0,0,1,0, 1} 0 (I -r)T —ryry(1 —ryr;
{1,0,1, 0, 0} 0 rid —ryrs(l —r)1 —rg) {0,0,1,0, 0} 0 T -r)I =ryrsI-ry) T —-r5)
{1,0,0,1, 1} 1 rid —r)I = rorrs {0,0,0,1, 1} 0 (I =r)1 —ry)I —ryrgs
{1,0,0, 1, 0} 1 rl —ry) (I —ryrl —rs) {0, 0,0, 1, 0} 0 (I -r)T =r)I —ryrl —ry
{1, 0,0, 0, 1} 0 rid-ry) (I-ry A -rprs {0, 0,0,0, 1} 0 (I -r)T =r)I —ry) —ryr;
{1, 0,0, 0, 0} 0 ril-ry)d -ry)d-r)I-r;) 1{0,0,0,0, 0} 0 (I -r)I =r)I-ry)d —r)I —ry)

sejyoeN
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Clearly, system reliability evaluation by this method is rather
demanding and offers plenty of possibility for error.

An alternate approach is to construct bounds on system
reliability. Three sets of bounds on system reliability have
been defined. It is appropriate to compute all three sets and
to combine the information they provide to obtain the nar-
rowest possible interval within which the system reliability
will lie.

The first set of bounds is reasonably obvious and is gen-
erally not very tight. These are the series and parallel bounds.
To compute these bounds, we simply treat the system compo-
nents as if the system configuration were a series structure
of independent components and calculate a lower bound, and
we then calculate an upper bound assuming a parallel con-
figuration. Thus,

bszﬁri SRSSHri:bp (3.14)
i=1 i=1

For a system such as the bridge structure, assuming all
of the components are identical implies that these bounds
reduce to

b=r"<R,<1-(1-r)"=b,

Example calculations of these bounds are presented in Table
3.2.

A second set of reliability bounds may be constructed
using minimum paths and minimum cuts. Remember that
the minimum-cut equivalent structure has the minimum cuts
arranged in series, and recall that for a series structure in
general,

Prhi[xi zl}l:nl[m[xi =1]

Applying this inequality to the minimum-path structures
yields the minimum-cut lower bound on system reliability:
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b, = HPr[Kk(x) SIE Pr[HKk(x) - 1}

=Pr[o(x)=1]=R,

(3.15)

The same reasoning can be applied to the minimum
paths. The minimum-path equivalent structure has the min-
imum paths arranged in a parallel configuration. Therefore,
applying the inequality

P{Hxi = 1} < HPr[xi =1]

i=1

to the minimum paths yields the minimum path upper bound
on system reliability:

b = | [Pr[ps=1]2 Pr|:Hpj(x) - 1}
J J

=Pr[o(x)=1]=R,

(3.16)

For the example bridge structure having five identical
components, these bounds are computed as follows:

K, (x) = Hxi =1-1-x)A-x,),

ieCq

S0 Pr[l(l(g)zljzl_[ri=1—(1—r)2

ieCy

Ko(x) = Hxi =1-1-x,)1-x5),

ieCy

S0 Pr[K2(g)=1]=Hri=1—(1—r)2

ieCq

Kg(x)zux,. =1-(1-x)1-x5)1—x5)

ieCg
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SO

SO

SO

SO

SO

SO

Then,

Prix,(x)=1]= Hxi =1-(1-r)°

ieCy

K, (x) = Hxi =1-(1-2,)1-2)1-x,) ,

ieCy

Prix,(x)=1]= Hxi =1-(1-r)}

ieCy

py(x) = Hxi =X1Xy

ieP

Prip, 0 =1=] [r=r*

ieP

Po(x) = Hxi = XoX5 »

iEPz

Prip,w=11=] [r=r*

el

ps(x) = Hxi = X1X3X5 ,

i€P3

Prlp,(x)=1]= Hn =r’

iePy

py(x)= Hxi = XoX3Xy ,

iePy

Prip,(x)=11=] [r=r°

iePy

35
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bt = 1—(1—7‘)2)2(1—(1—7")3)2 <R, S(l—(l—r2)2(1_r3)2)

bmpu

Example calculations of these bounds are also included
in Table 3.2.

The minimum paths and minimum cuts may be used to
define a third set of bounds. These are known as the minimax
bounds. Starting with the minimum paths, recall that the
structure function for a parallel system may also be expressed
in terms of a maximum. That is, as stated in Equation 2.5,

d(x) = maX{x }

SO

Prio(x)=1]= Pr[meilx{xi} =1]
and for a parallel arrangement of minimum paths,

Prlo(x) = 1]= Primax{p,(x)} = 1
In general, for any set of probabilities
m?X{Pr[pj(&) =1]} < Pr[m?x{pj(&)} =1]

so the minimax lower bound on system reliability is

b, = m}ax{Pr[p J@=1}<R, (3.17)

Applying the same logic to the minimum cuts, we have
from Equation 2.3

¢(x) = min{x;}

SO
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Prio(x)=1]= Pr[min{xi} =1]
and for the parallel configuration of the minimum cuts
Pr{¢(x) = 1]= Primin{x, } = 1]
In general,
Pr[mkm{Kk(g)} =1]< mkln{Pr[Kk(@ = 1}

And the resulting minimax upper bound on system reliability
is

R, < mkin{Pr[Kk(@ =1}=b,,, (3.18)
Therefore, the minimax reliability bounds are
b =max{Prlp;(x) =11} <R, < mkin{Pr[Kk(@ =1}=b,,, (3.19)
J

For the bridge with identical components, the computa-
tion of the minimax bounds proceeds as follows:

bmml = maX{PI'[PJ(&) = ]-]} = maX{T‘Z,Y‘Q,]"S,I"S}: r2
J

and
b = mkin{Pr[Kk(;c) = 1}
=min{1-1-r)?%1-A-r%1-A-r?1-0-r)}
=1-1-r)?
So

r’<R,<1-(1-r)

To illustrate the computation and behavior of the bounds,
we have calculated the values of each of the bounds for the
bridge with identical components for several values of the
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Table 3.2 Computed Values of the System Reliability
and the Bounds on System Reliability

r b, b by R, brimu brpu b,
0.99 0951 0.999 0.980 0.999 1.000 1.000 1.000
0.95 0.774 0.995 0.903 0.995 0.998 1.000 1.000
0.90 0591 0978 0.810 0.979 0.990 0.997 1.000
0.75 0273 0.852 0.563 0.861 0.938 0.936 0.999
0.60 0.078 0.618 0.360 0.660 0.840 0.748 0.990
0.50 0.031 0.431 0.250 0.500 0.750 0.569 0.969
0.25 0.001 0.064 0.063 0.139 0438 0.148 0.763
0.10 0.000 0.003 0.010 0.022 0.190 0.022 0.410

component reliability. These values as well as the actual system
reliability value (from Equation 3.13) are shown in Table 3.2.

Note that one may not in general assume that one of the
sets of bounds will be tighter than the others. A reasonable
approach to using the bounds is to take the greatest of the
lower bounds and the smallest of the upper bounds to obtain
the tightest possible bounds on system reliability. Doing this
for the entries of Table 3.2 indicates that very satisfactory
bounds are obtained.

3.3 MODULES

The idea that the components that comprise a system may
sometimes be partitioned into modules may be extended to
the calculation of system reliability bounds. There are three
key ways in which this may be pursued. Recall that the
algebraic representation of system state using modules is

0(x) = oy (x))
where
\E(E) = {Wl(£)7w2 (&)a """" ?Wm (E)}

One possible approach to the use of the partition is to
calculate the reliability of each module and to use the result-
ing values as component values in the bounds defined in the



Reliability of System Structures 39

previous section. If the modules contain relatively few com-
ponents or are configured in either a series of parallel struc-
ture, this method will be fairly straightforward.

If, on the other hand, some of the modules are themselves
rather complicated, but the system is designed with the mod-
ules in series, then the series computation applied to each of
the upper and the lower bounds provides a pair of bounds on
system reliability. In this case, the bounds on module reliabil-
ity are obtained using the methods of the previous section.

The third possibility is that one or more of the modules
are complicated, and the system configuration of the modules
is not a simple one. In this case, a lower bound on system
reliability can be computed by applying the minimum-cut
lower-bound calculation at the system level to the minimum-
cut lower bounds for the modules.

3.4 RELIABILITY IMPORTANCE

In view of the influence of the reliabilities of the components,
it is reasonable to ask which components have the greatest
(or least) impact on system reliability. One possible reason for
examining this question is to help decide which of the com-
ponents should be improved first. The idea that the effect of
each component is worth considering has led several authors
to define various measures of “reliability importance.” Among
the several forms that have been suggested, the one based on
derivatives seems to us to be the most logical. The formal
definition is

Defn. 3.1: The reliability importance of component i, I5(7),
of a coherent system is the derivative of the system reli-
ability function with respect to the component i reliability.
That is,

d

Ip@)= R, (3.20)

l

An appropriate interpretation of this definition is that
the component for which the component reliability imposes
the greatest gradient on the system reliability function is the
most important. Consider some specific example cases.
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For a series structure comprised of n independent com-
ponents, the realization of expression is

. d d T -
I = R == = .
r(J) ar, = ar, Ii_ll r Ll r;

i#j

Thus, for a series system of independent components, the
reliability importance of any component is equal to product
of the reliabilities of the other components. Since component
indices are usually arbitrary, assume the components have
been numbered so that

Under this indexing, we can see that

)2 I(2)> .. >1,(n)

so that the weakest component has the greatest importance.
For a series system, this seems intuitively reasonable.

For a parallel system comprised of independent compo-
nents, the corresponding analysis is

IR(J)_—RS d‘i]_[ [ H(l r)] H(l r)

#]

Assuming the same ordering of the component indices as
indicated above, the most important component in a parallel
system is the strongest. That is

[,A<IH(2) S <Ip(n)

Intuitively, it seems reasonable that the strongest com-
ponent is most important to reliability. The corresponding
point that investments in component reliability improvement
should begin with the most reliable component is less appar-
ent but equally accurate.
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Resolving questions of how to enhance system reliability
has been one of the areas in which reliability analysts have
contributed to system design efforts. Reliability importance
measures provide a basis for evaluating the cost effectiveness
of investments in component redesign or other improvement
strategies.

3.5 RELIABILITY ALLOCATION

Another approach to enhancing system reliability is by intro-
ducing redundancy at selected component locations. That is,
the system configuration is altered by replacing a single com-
ponent with two or more copies of the component in parallel.
The problem of selecting the components for which this is
done is known as the reliability allocation problem. It is
assumed that each copy of a component included in the system
has a cost. The cost might actually represent the price of the
component or may represent weight or any other consequence
of allocating the component to the design. Then, the problem
of designating the locations and magnitudes of component
redundancy can be stated as an integer mathematical pro-
gram. In fact, there are two plausible algebraic forms for the
optimization problem. We may minimize system cost subject
to a reliability constraint, or we may maximize system reli-
ability subject to a budget constraint.

Regardless of the system configuration, we assume that
we have an expression for the system reliability, R,. Let m;
represent the number of copies of component i placed in par-
allel at the component i location in the system configuration
and let ¢; represent the unit cost for component i. Then, one
integer programming representation of the system design
problem is

n
Minimize E c;m,;

=1

subject to
Rs 2 Rtarget
m; 21 Vi

m,; integer
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Here, we minimize the cost to obtain a target system
reliability level. The alternate problem is to

Maximize R,
subject to

n
E ¢im; < Chygger
i=1

m,; integer

Naturally, for both of the optimization problems, the alge-
braic statement of the system reliability function has terms
of the form

1-(1—r)™

for the contributions of the reliabilities of the component
positions. Equally clear should be the fact that it is the alge-
braic form of the system reliability function that determines
how difficult it is to solve either of the optimization problems.
A recent paper by Majety, Dawande, and Rajgopal [14] pro-
vides an efficient algorithm for solving the integer programs
in general, and recent work by Rice, Cassady, and Wise [15]
suggests that, because of the relatively small number of fea-
sible solutions, enumeration strategies will often yield solu-
tions efficiently.

A distinction should be made here between reliability
allocation and reliability apportionment. Reliability appor-
tionment is the process of assigning reliability targets to sub-
systems during system design. There are algorithms for doing
this, the most popular of which is called the ARINC method,
which is described by Lloyd and Lipow [16]. Usually, the
algorithms are based upon a balance between the reliability
importance of the subsystems and the cost of enhancing the
reliability of existing subsystems designs. The key difficulty
with the apportionment task is that the assignment process
is driven by subjective criteria, in that enhancement cost is
usually represented by an effort function. The origin of the
effort function is often unclear. For this reason, the algorithm
is not developed here. In contrast, the allocation models
defined above treat the question directly.
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3.6 CONCLUSION

The analyses considered to this point provide a means for
relating system reliability to component reliability for many
types of equipment designs. Several exceptions have been
noted, and some of these will be addressed later in the text.
For the system configurations that are based on binary com-
ponent states and independent components, the models and
analyses treated so far are sufficient to permit a reductionist
approach to reliability analysis. That is, for these simplest of
systems, reliability may be studied at the component level
because the dependence of system reliability on component
reliability is well defined. For very many system designs, the
ability to focus independently on individual component reli-
ability performance is essential to achieving the high levels
of reliability we now enjoy.

3.7 EXERCISES

1. For the system of Problem 5 of Chapter 2, assume
that r = {0.96, 0.96, 0.96, 0.90, 0.90, 0.94, 0.94). Com-
pute the three types of reliability bounds as well as
actual system reliability.

2. For the system of Problem 6 of Chapter 2, assume
that r; =r, =0.96,r; = 0.95,r, = 0.98, r; = r, = 0.92,
r; = 0.93, and rg= ry = 0.90. Compute the three types
of reliability bounds as well as actual system reliabil-
ity. Also, compute the lower bound under the modular
decomposition you constructed for the system.

3. Compute the reliability of a 3-out-of-4 system for
which all components have a reliability of 0.85.

4. Compute the reliability of a three-component parallel
system in which all components have a reliability of
0.75.

5. Suggest an alternative reliability importance mea-
sure to the one of Definition 3.1.

6. For the system of Problem 7 of Chapter 2, assume
that r;, = 0.85, r, = 0.80, r; = 0.95,r, = 0.75, and r; =
0.90. Compute the three types of reliability bounds
as well as actual system reliability.
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7. For the system of Problem 8 of Chapter 2, assume
that r; = r, = 0.90, and r; = r, = 0.80. Compute the
three types of reliability bounds as well as actual
system reliability.



Reliability over Time

The definition of reliability given in Chapter 2 indicates that
reliability is the probability of proper function over time. An
implicit feature of this definition is the underlying assumption
that, across a population of identical devices, survival over
time (or life length) is dispersed in a manner that is well
modeled by probability and hence by a probability distribution
function. Thus, the extension of the measures of reliability to
include time involves the specification of probability distribu-
tions that constitute reasonable models for the dispersion of
life length. This is the subject of the present chapter.

4.1 RELIABILITY MEASURES

The logical extension of the models examined in the previous
two chapters to include time is to indicate that component
and system states may be represented as functions of time.
That is, we map x; to x;(¢), and ¢ to ¢(¢). The interpretation of
this extension is that the random variable implied in Defini-
tion 2.1 is the duration of proper system function. In similar
manner, we adjust the definitions of the reliability functions
as

R, (¢)=Prlo@)=1]

45
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and
r(t)=Prlx;(t) =1]

As before, the complement of reliability is failure.

As indicated above, the introduction of the time variable
carries the implicit assumption that the time at which a
component or system state changes from proper function to
failed, the failure time, is a random variable, and across a
population of identical devices, the dispersion in the failure
time can be represented using a probability distribution func-
tion. The failure time of a device is also called its life length.
Denoting life length by 7, the distribution function on 7 is
represented by F(t) where

F,(t)=Pr[T <t]= the probability that device life length
is less than or equal to ¢

Given this basic definition, reliability in time is the prob-
ability that device life length exceeds ¢. Thus,

R(t)= F,(t) = the probability that life length exceeds ¢

These basic definitions raise two points concerning nota-
tion. First, note that it is reasonable to use either R(¢) or the
survivor function F;(¢) to represent reliability. As these forms
are truly synonymous, the survivor function form will be used
here whenever reasonable. Second, note that the subscript
denoting the component or system has been dropped. Much
of the discussion to follow is general, in that it applies equally
well to the system or to any component. As no specific com-
ponent is being identified, the subscript is excluded unless
needed for clarification. In addition, the comment at the end
of Chapter 3 concerning the fact that our ability to reduce our
focus from system to component in many designs suggests
that we can often examine reliability independent of compo-
nent identity.

Returning to the inclusion of time in our models, note
that the distribution function on life length is the basis for
four equivalent algebraic descriptors of longevity. These four
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descriptors are the distribution function, the survivor (reli-
ability) function, the density function, and the hazard func-
tion. Reiterating the above definitions, we have

Distribution function: Fj(¢)=Pr[T <¢] 4.1)

Reliability function:  F,(¢) = Pr[T > ¢] (4.2)
. . d

Density function: fr)= EFT(” (4.3)

The hazard function, z,(¢), is the instantaneous condi-
tional probability of failure given survival to any time. That
is, it is the instantaneous rate of failure for surviving devices.
Algebraically,

Fp(t+At)— Fp(2)

PriT <t+At|T >t]= =
rl | : F.(t)

so we obtain the hazard function as the limit of this expres-
sion.

zp(t) = }tin}){AltPr[T <t+At|T > t]}
(4.4)

lm {IFT(t+At)—FT(t)}= fr(®)
At F, () F,(¢)

At—0

As indicated by the algebraic form, the hazard function is the
rate at which surviving units fail. For this reason, it is often
called the “failure rate.” However, because it can apply to other
failure phenomena, the terminology “failure rate” can be mis-
leading, so in this text, the function z(¢) is called the hazard
function.

Knowledge of any one of the four reliability measures
implies knowledge of all of them. They are all functionally
related and actually comprise alternate statements of the
model of life length dispersion. As an example, note that given
fr(t), we obtain
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t
FT(t)=J. £ (wdu
0

Fr(t)=1-Fp(t)

and

fr(®)
F.(t)

ZT(t) =

As a further example, suppose we are given z;(¢). Treat-
ing the definition of the hazard function

fr@®)

zp(t) = FT(t)

as a differential equation, we have

d — _
fT(t): _EFT(t) = ZT(t)FT(t)
SO

d - _
EFT(t) +zp(OF(8)=0

The solution for this equation is
FT(t) _ e—jozT(u)du
or alternately,

Frl=e 710

where

Z.() =j 2p(wdu (4.5)
0
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is called the cumulative hazard function. Later in this text,
there are several topics in which the cumulative hazard is a
useful part of the analysis.

As the four reliability measures are all faces of the same
description of the failure behavior of a device, we could use
any of them as a basis for distinguishing failure patterns. The
hazard function is commonly used by reliability analysts to
describe the failure behavior of a device. The use of the hazard
function started with the concept that a population of devices
displays a “bathtub-shaped” hazard over the lives of the mem-
bers of the population. The “bathtub curve” is shown in Figure
4.1. The shape is intended to illustrate the view that aging
in a device population proceeds through phases. Early in the
lives of the devices, failures occur at a relatively high rate.
This “infant-mortality period” is often attributed to the failure
of members of the population that are “weak” as a result of
material flaws, manufacturing defects, or other physical
anomalies. Following the “early-life” or “infant-mortality”
period, the device population proceeds through the “func-
tional-life period” during which the hazard function is rela-
tively low and reasonably stable. Finally, toward the end of
the lives of the population members, survivors fail with an
increasing rate as a consequence of “wear out.”

z,(t)

time

Figure 4.1 Example of a bathtub curve.

It is reasonable to observe that actuarial curves for
human and other biological entities often display the bathtub
shape, so that the analogy to human mortality is often infor-
mative. It is also interesting that early-life failure behavior
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has been observed so extensively that most durable goods
manufacturers include some sort of run-in as part of their
product testing activities. In addition, it has long been com-
mon for government and military procurement policies to
mandate run-in efforts as a condition of sale for equipment
suppliers.

The concept of the bathtub curve has been discussed
and debated widely by reliability analysts. Some authors
such as Wong and Lindstrom [17] argue that device popula-
tions are actually comprised of numerous subpopulations,
each of which has a unique hazard behavior. According to
Wong and Lindstrom, mixing the subpopulations results in
a hazard curve that is “roller coaster” rather than bathtub
shaped. The key point is that the hazard function is viewed
as the most informative descriptor of device failure behavior.
It is the measure that is usually used to select the distribution
function to model life length.

In view of the importance of the hazard functions to
descriptions of device failure patterns, an extensive classifi-
cation of hazard function behavior has been devised. The
simplest elements of that classification are presented below.

Defn. 4.1: A life distribution, Fj(¢), is said to be an
increasing failure rate (IFR), distribution if

d
Spar(®20, 0St<e (4.6)

An alternate condition for the IFR classification is that

Fp(t+1)

Frt+1]|1)= F.
T

be nonincreasing in t for all ¢£>0. Note that in the above
definition and the ones that follow, the terminology “failure
rate” is used. This is done to show the correspondence to the
abbreviations that were defined by Barlow, Marshall, and
Proschan [18] at a time when the ambiguity in the terminol-
ogy had not yet been recognized.
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In any case, the above expression says that, if the con-
ditional survival probability is a nonincreasing function of
age, then the rate at which failures occur is increasing and
the life distribution is IFR. By similar reasoning:

Defn. 4.2: A life distribution, Fi(¢), is said to be a decreas-
ing failure rate (DFR), distribution if

d
Zper®<0, 0<t<es 4.7)

_ The alternate condition for the DFR classification is that
F,(t+1|1) be nondecreasing in t for all £>0. The third pos-
sible form for the hazard function is

Defn. 4.3: A life distribution, F;(¢), is said to be a constant
failure rate (CFR), distribution if

d
Spar®=0, 0St<e (4.8)

The equivalent condition for a CFR classification is that
Fr(t+1|1)=Fp(2)

for all t>0. This is an interesting special case that is exam-
ined further in the next section.

There are situations in which the conditions for designa-
tion as IFR or DFR are only partially met. For these cases,
we have

Defn. 4.4: A life distribution, Fj(¢), is said to be an
increasing failure rate on average (IFRA), distribution if

t

2> % _[ 2rWdu, 0<t<oo (4.9)

0
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and is said to be a decreasing failure rate on average
(DFRA), distribution if

t

zT(t)<H 2rWdu, 0<t<oo (4.10)

0

While more detailed and extensive classifications of haz-
ard functions have been defined, the ones enumerated above
are sufficient for our study here. The classification of the
hazard behavior serves to direct our choice of distribution to
model device reliability.

4.2 LIFE DISTRIBUTIONS

In principle, any distribution function may be used to model
equipment longevity. In practice, distribution functions hav-
ing monotonic hazard functions seem most realistic, and
within that class, there are a few that are generally thought
to provide the most reasonable models of device reliability.
The most common choices of life distribution models are
described in the next few pages.

4.2.1 The Exponential Distribution

The most widely used distribution function for modeling reli-
ability is the exponential distribution. It is such a popular
model of device reliability because (1) it is algebraically simple
and thus tractable, and (2) it is considered representative of
the functional life interval of the device life cycle. Some firms
try to manage components or devices by aging them through
the early life period before putting them in service. The
devices are expected to be obsolete before reaching the wear-
out period, so an appropriate model of device reliability is one
having constant hazard. This point of view is controversial.
Nevertheless, the exponential model is widely used. The gen-
eral statement of the exponential distribution is

Frt)=1-¢™ (4.11)
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The corresponding density function is

fr@)=re™ (4.12)

and the hazard function is constant over time. It is

fr@®) _he™

B0~ e (413

ZT(t) =

The exponential distribution is the only probability dis-
tribution that has a constant hazard function. In fact, if we
observe that a device appears to have constant hazard, we
may conclude that the exponential distribution is an appro-
priate life distribution model and the converse statement also
applies. To see that constant hazard implies an exponential
distribution, solve the differential equation implied by Equa-
tion 4.13:

d
dt

and obtain Equation 4.11 as the result.

Constant hazard is both a desirable and an undesirable
feature of the exponential model. The appeal of the result lies
in its simplicity. Problems with the constant hazard model
revolve around the associated “memoryless” property that it
displays and the corresponding fact that the conditional sur-
vival probability is independent of age. That is

Fr(t) = fr(t) = MFp(2)

FT(t+’C) _ e—k(t+‘r)
Fr(7) e ™

Pr(T >t+1|T>1l=Fp(t+1|1)= =e M =F,(t)
The interpretation of this result is that a used device has
the same reliability as a new one. Clearly, this is quite con-
trary to intuition and is unlikely to be true of most devices.
The lack of memory feature of the exponential model is there-
fore a weakness in its representation of real equipment.
One final observation concerning the exponential model is
the fact that the life distribution of a series system comprised
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of independent components each of which has an exponential
life distribution is exponential. That is

n_ S S
R.(t)= HFTi(t) - He%it =
=1

i=1

Note further that the above expression confirms that fact
that the system level hazard function for a series system of
independent components is computed as the sum of the com-
ponent hazards.

4.2.2 The Weibull Distribution

An alternate life distribution model that is also widely used
is the Weibull distribution. The distribution is named for its
developer, Waloodi Weibull, who was a highly talented Swed-
ish scientist. He developed the Weibull distribution [19, 20]
to describe the observed strengths of tensile test specimens.
It has subsequently been found that the distribution provides
a reasonable model for the life lengths of very many devices.
The Weibull distribution function may be stated in several
ways. The most general is

s P
Fpt)=1- e(ﬁj (4.14)

For this three-parameter form of the distribution function,
the parameter ¢ is a minimum-life parameter that is often
assumed to have a value of zero.

The interpretation of the parameter § is that it is the
time before which no failures occur. When expressed in this
manner, it seems reasonable to set d = 0. On the other hand,
if the “time variable” is actually cycles to failure or applied
force in the case of a mechanical component, 6 > 0 may be an
appropriate feature of the failure model. For example, a ten-
sile specimen made of steel will not fail when subjected to
forces of 10 to 20 kg/cm?. To model the dispersion in failure
strength of such specimens, a minimum applied force of per-
haps 6 = 100 kg/cm? might be appropriate. When the minimum
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Fy(1)

é

Figure 4.2 Three-parameter Weibull life distribution.

life parameter is nonzero, the distribution function appears
as is shown in Figure 4.2.

Because it is simply a coordinate location parameter,
there is no loss in generality in assuming it has value zero.
For the balance of the discussion here, we take & = 0. Then,
the form of the two-parameter Weibull distribution function is

¢ B
Fp(t)=1- e_(gj (4.15)

The parameter 6 is a scale parameter in that it deter-
mines the range of dispersion of the distribution. It is also
called the “characteristic life” parameter because the value of
the distribution at ¢ = 6 is independent of the value of the
second parameter, B. That is

Fp(t=0)=1-¢"=0.632

so 0 is a characteristic feature of any realization of the dis-
tribution.

The parameter B is the shape parameter. It determines
the relative shape of the distribution, and it also determines
the behavior of the hazard function. The general form of the
hazard function is
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p-1
ZT(t) = BteB (4.16)

Figure 4.3 provides an illustration of the Weibull hazard
function. Observe that by setting = 1, we obtain the expo-
nential distribution as a special case and thus have constant
hazard. Note further that the hazard is monotonically increas-
ing when 3 > 1 and monotonically decreasing when f < 1.

p>1
(1)

<1

time

Figure 4.3 Weibull hazard functions.

The Weibull distribution is very widely used in reliability
modeling. It has the advantages of flexibility in modeling
various types of hazard behavior and of algebraic tractability.
In addition, as with any two parameter distribution, it can
be made to fit many actual situations reasonably well.

There are two further reasons that the Weibull is so widely
used. One is that when Weibull [19] first developed the distri-
bution form, it was to represent the failure behavior of tensile
specimens, and the other is that the Weibull is one possible
realization of the extreme value distribution. Considering that
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a device is subject to failure due to any of several causes, the
first failure mechanism to be activated (smallest time to occur-
rence) determines device failure. Thus, failure times are
smallest extremes of a set and might reasonably be modeled
using a distribution from the class of extreme value distribu-
tions.

Another perspective on the extreme value concept is that
one might consider that there are some number, say k, of
possible sites (links in a chain, units of material, reactive
species, etc.) of failure, and that each cause is actuated in
time according to an identical and independent distribution.
The time of device failure is the minimum of the cause actu-
ation times. This also implies an extreme value. The extreme
value argument may be stated as

k

Fo0)= Fy 0] [ B 0= By (B 0))
=1
i#]

where the subscripts on the time variable indicate a corre-
spondence to the pertinent “units.” Gumbel [21] presents
results developed by Fisher and Tippet [22], which show that,
in the limit as k goes to infinity, the life distribution can only
have one of three forms, and the forms correspond to cases of
negative, unconstrained in sign, and positive random vari-
ables. The form for nonnegative random variables has the
Weibull as a representative case. In addition, the variable Y
= In T, where T has a Weibull distribution, has an extreme
distribution of the form

B(y-In®)

F,(y)=1-¢"° (4.17)

Thus, the Weibull has a fairly plausible physical interpreta-
tion.

There are two special cases of the Weibull that are used
fairly extensively. One is when the value of the shape param-
eter B is 3.26. At this value, the Weibull is nearly “bell shaped,”
so it appears like and can be used as a substitute for the
Normal distribution. The other special case is when the value
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of the shape parameter B is 2. In this case, the distribution
is usually called the Raleigh distribution. It is special because
the hazard function is linear:

2t
ZT(t) = @

and many people find this linearity appealing.

4.2.3 The Normal Distribution

Another popular model of device life length is provided by the
Normal distribution. Because of its algebraic intractability,
the Normal is usually expressed in terms of its density func-
tion:

e—(t—u)2/2(52

fT(t)ziz

2no

(4.18)

The corresponding distribution function cannot be
expressed algebraically in closed form. Hence, the same state-
ment applies to the reliability and hazard function. The dis-
tribution function is widely tabulated in its standard form. A
table of standard normal probabilities is included in Appendix
A. Tt is also reasonably straightforward to compute Normal
variates and cumulative probabilities numerically. The
expressions for these calculations are provided in Appendix A.

The parameters of the Normal distribution correspond
to the distribution moments. That is, u = E[¢] is the mean of
the distribution, and o2 is the variance. The Normal distribu-
tion displays monotonically increasing hazard. We can prove
that fact as follows. Start with the definition of the hazard
function as given in Equation 4.4 and take the derivative of
the hazard function to obtain

d o FOEOAOERO] R ofo+ e
' [F@) )

dt
Next, take the indicated derivative of the density function
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d e w?/20? 2t — M) e—(t—u)Z/ZG2 (¢ — M)
fr)=— =— =— fr@®)
! dt \Jono? 26>  \|ono? 2 7
and substitute it back into the derivative of the hazard func-

tion:

. R ReRo o
7ZT(t) = G
dt Fr (@)

Note that

F26)>0 so oCzZtZT(t)ZO i = “)fT(t)F )+ F2)20

When t<u
_& _2“) >0
o
fr@®)=0
Fp,(t)>0
and
f£)=0
S0
d
EZT(t) >0
When
tz2u

SR B0+ £ - ( ¢ M)F(t)+fT(t)]fT(t)
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and

fr@®)=0

So the question is whether or not

(= u)

Frt)+fr(6)=0

To decide this, we recall that

Fo(t)= _[N fo(x)da

Necessarily, for any fixed value ¢,

¢ I ; £r()dx < f fp(x)dac

Therefore,

“;2“) Fpt) = (t;z“) J ; fr(o)dx < f (xG‘Z“) fr(x)dx

—(x-w)?/2062

“(x—ue

G2

dx=—fp(x)| =fr(x)
\/275(52 ! L !

and hence

(- u)

Fr(t) < fp(x)

This inequality implies that

W R O f020
0

so the derivative of the Normal hazard function is nonnega-
tive and the hazard function is increasing.
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As is discussed in Chapter 5, the Normal distribution is
often considered a very appropriate model for the reliability
of structural components. On the other hand, many reliability
analysts have resisted the use of the Normal distribution as
a life length model for time indexed ages because of the fact
that the Normal is defined over the entire real line, negative
as well as positive.

4.2.4 The Lognormal Distribution

A suggested response to the criticisms of the Normal distri-
bution is the use of the lognormal. In this case, In ¢ is taken
to be normally distributed. As a consequence, the density
function for the life distribution model becomes

e—(lnt—p)2/202

fr)=—F———
! t\2mo?

Note the appearance of the time variable in the denominator
of this function.

It also appears that the lognormal is an appealing dis-
tribution independent of the issues related to positive random
variables. The life lengths of quite a few microelectronic com-
ponents have been found to be well modeled by the lognormal
distribution.

The lognormal distribution suffers from a comparable
level of algebraic intractability to the Normal. The model is
quite useful, and it displays the unique feature that for appro-
priately selected parameter values, the hazard function
increases and then decreases.

(4.19)

4.2.5 The Gamma Distribution

Another distribution that is widely used in reliability model-
ing is the Gamma distribution. The representation of the
density function for the Gamma is

Ao
fT(t)=ﬁB)tB e (4.20)
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The distribution function can be stated in closed form
only if the shape parameter, 3, is an integer. In this case, the
distribution function is

o k B-1 k
F,(t)= 2(}:’)5“ =1- ();:‘) e (4.21)
~ k! !

k=0

Note that when the shape parameter is an integer, the
Gamma distribution is usually called the Erlang (or Erlang-
B) distribution.

As in the case of the Weibull, the Gamma distribution
model displays increasing hazard when B > 1, decreasing
hazard when B < 1, and constant hazard when 3 = 1. Thus,
setting B = 1 collapses the Gamma distribution to the expo-
nential.

The Gamma has the disadvantage of being rather diffi-
cult algebraically, but it has the advantage that it arises
naturally as the convolution of identical exponential distribu-
tions. It therefore has considerable practical appeal. Strate-
gies for the numerical evaluation of Gamma functions and
Gamma distributions are provided in Appendix A.

4.2.6 Other Distributions

A wide variety of other probability distributions are used for
reliability modeling but most with relatively low frequencies.
One of those other distributions, the Birnbaum-Saunders dis-
tribution [23, 24], is discussed briefly in Chapter 5. Another
is the Makeham [25] distribution, for which the distribution
function is

—[at+E(eY‘—l)]

F,(t)=1-e¢ 7 (4.22)
The hazard function for this distribution is
zp(t) =0 +Pe” (4.23)

so there are three parameters that can be selected to provide
whatever type of model is desired. More importantly, the
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parameters can be selected so that the function matches fail-
ure data quite well. For this reason, the Makeham distribu-
tion [25] is widely used in actuarial studies. Note that it also
corresponds to an extreme value type of distribution.

Still another model that is based on actuarial data anal-
ysis is the Gompertz distribution [25], for which the hazard
function is

AR (4.24)
so the distribution function is

_(ME-D

Fp(t)=1-¢ b (4.25)

While this form is rather intricate, the rationale for its con-
struction is that the reciprocal of the hazard function should

be decreasing. That is,
dl 1
— 0
dt [zT(t)j<

which implies increasing hazard. For those working with actu-
arial data, this seems a reasonable way to treat such behavior,
and the distribution has been adopted by some reliability
specialists for the same reason.

One final model that is particularly worth mentioning is
the one suggested by Hjorth [26]. He calls it the IDB distri-
bution because, depending on the choice of parameter values,
it can have increasing, decreasing, or bathtub-shaped hazard
function. The general statement of the IDB distribution is

—5t2/2

(1+ Bt)/f3
and the corresponding hazard function is
0
2p(t) =0t + (4.27)

1+Pt
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Clearly, with three parameters, many behaviors can be
modeled. In particular, setting 6 = 0 yields the Rayleigh type
of Weibull distribution. Similarly, setting & = 3 = 0, yields the
exponential distribution. Observe that & = 0 implies decreas-
ing hazard, while 6 > 6 implies increasing hazard, and 0 <
0 < 6p yields a bathtub-shaped hazard function. If only for its
flexibility, the model is worthy of consideration.

In summary, we might note that there are very many
types of equipment for which life distributions provide a
meaningful model of life duration. The possible choices are
comparably wide. The distributions described above are the
principle but not the only distributions used to model life
length. Each has advantages, and each has shortcomings. The
key is to select one that is appropriate for its application.

4.3 SYSTEM LEVEL MODELS

The discussion of equivalent structures in Chapter 2 assures
that system reliability may be expressed in terms of compo-
nent reliability. In addition, the discussion in Chapter 3 of
the use of minimum paths and minimum cuts to construct
bounds on system reliability further supports the focus on
component-level reliability measures. Notwithstanding this
fact, system-level (or subsystem) analyses are often meaning-
ful or informative. For example, consider a series system of
independent components. For this system, the reliability func-
tion is

’ZZTL'(”

Fw=]]F@o=]]e™" =e " (4.28)
i=1 1

i=

Clearly, this form implies that for a system of indepen-
dent components arranged in series, the system-level hazard
function is the sum of the component hazard functions. Thus,
system hazard may be managed by reducing component haz-
ard function levels.

Another point of interest is the question of whether or
not component hazard function behavior is preserved in the
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formation of systems. For example, is a system comprised of
independent IFR components IFR? The answer is no. Such a
system is IFRA but not IFR. The most well-known example
of the accumulation of IFR behavior is the parallel arrange-
ment of three independent components, all of which are CFR
(which may be viewed as simultaneously IFR and DFR). For
this system, the reliability is

FT(t) = ]i[FTi(t): l—ﬁ(l—FE(t)) = l—ﬁ(l_exit)
=1 =1 i=1

—Agt —Agt _e—(x1+k2)t _ (gt _e—(7»2+7»3)t —(Ay+ho+Ag)t

=e M 1o te e +e

so the corresponding density function on life length is
fT t)= lleixlt + kzeixzt + 7L3€_x3t - (7L1 + 7\«2 )67(}‘1”»2)1/‘

- (}\«1 + }\«3 )e_(;vl+;b3)t

— (Mg +Ag)e P2 L (0 + Ay + Ay )e Pttt

and the hazard function is the ratio of these two functions. A
plot of the hazard function for the case in which the param-
eters are normalized to sum to one (A, = 0.6, A, = 0.3, A; =
0.1) is shown in Figure 4.4.

Naturally, the specific behavior of the hazard function
depends upon the values of the parameters of the life distri-
butions of the components and upon the specific system struc-
ture. Nevertheless, we may conclude that IFR behavior is not
preserved when IFR components are combined to form a sys-
tem. The same is true for DFR components.

In view of the above results concerning the aggregation
of IFR components, it is clear that, for any system, the behav-
ior of the system-level hazard function and the system-level
reliability function should be examined carefully. The
approach most likely to lead to a successful investigation of
the hazard function at the system level is to form the system
reliability function and to differentiate it, either algebraically
or numerically, and to then evaluate the expression
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27( t)
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Figure 4.4 Hazard function for a three (exponential) component

parallel system.
_(?tFT (V
zp(t) = FT(t) (4.29)

again either algebraically or numerically.
As an example, consider the system shown in Figure 4.5.
This simple system has the following reliability function:

y ~Zp () [ ~Zp, (t) ~Zpy (8) ~Zp, (8)~Zpy (t)
F.(t)=e ™ (e B e T e TR )
_ efzﬁ(t)szZ () + e—ZTl(t>—ZT3 @ e—ZT1 —Zpy ()= Zp,y (2)

The density function corresponding to this reliability function
is

fT(t) — (ZTl (t) + ZT2 (t))eszl(t)*ZTz (t) + (ZTI (t) + ZT3 (t))e—ZTI(t)—ZT3 (t)

— (2, () + 25, () + 21, (#))e”Zn~Zn 0= Zny©

and the hazard function is the ratio of those two expressions.
If all three components have Weibull life distributions with,
0, = 10, B, = 1.25, 0, = 6, = 8, and B, = B; = 2.25, the system
level hazard function is shown in Figure 4.6.
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Figure 4.5 Example system.

2,(1)
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0.15
0.1

0.05

time

Figure 4.6 System-level hazard function.

Finally, before leaving the discussion of life distributions,
let us consider the standby redundant component configura-
tion. As mentioned in Chapter 2, this is a system structure
that does not fall within the set of structural forms enumer-
ated and is one that is used frequently. The system configu-
ration has several possible realizations. Assuming that the
system structure is represented by Figure 4.7, there are two
components in parallel, but only one is performing the system
task at a time. Component 1 operates until it fails, at which
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40/

Figure 4.7 Standby redundant system.

time the switch instantaneously activates component 2. Then
component 2 operates until it fails, at which time the system
is failed. We may consider that the switch is perfect and
always makes the change in components, or we may allow for
the possibility that with probability, say p, the switch func-
tions successfully, and with probability (1 — p) the switch fails
and the system is therefore failed. We may also consider either
that component 2 is “warm” or “cold” while waiting to be
activated. If we say that it is “warm,” we imply that it is aging
in some manner, while the statement that it is “cold” implies
that component 2 is new when the switch moves to initiate
its operation.

Now, the key quantity to determine is the distribution
on the length of time the system operates before failure. That
distribution is

Fr ()=(-p)F )+ p _[0 fr@Fy (t-wdu  (4.30)

The rationale for this construction is that the system
survives as long as the first component, if the switch fails,
and as long as the sum of the failure times of the two com-
ponents, if the switch functions properly. As a special case of
this model, setting p = 1 represents the case of the perfect
switch. One may also observe that, for this model, if Fr, (@)
and Fp (¢) are both IFR, then the system life distribution is
also IFR.
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To conclude this chapter, it is appropriate to note that
there are many other models that have been defined for par-
ticular types of equipment or specific types of operating pro-
files. The models discussed in this chapter represent the
majority but not all of the useful models.

4.4 EXERCISES

1.

2.

Plot the hazard function for a Gamma distribution
having 3 = 1.5 and A = 0.005.

Determine the point at which the hazard function for
the lognormal distribution changes from increasing
to decreasing.

. Prove that the sum of Gamma-distributed random

variables having the same scale parameter is Gamma
distributed.

. Prove that if a life distribution is IFR it is also IFRA,

and that the converse is not true.

. Construct an algebraic expression for the mean life

of a parallel system of two independent components,
each of which has an exponential life distribution.

. Construct an algebraic expression for the reliability

function and the system hazard function for a 2-out-
of-3 system comprised of identical components each
having an exponential life distribution. Plot the haz-
ard function for the case in which A = 0.05.

. Compute the value of the reliability function at t =

500 hrs., t = 1000 hrs., and t = 12000 hrs. for a
component population having Weibull life distribu-
tion with f = 1.50 and 6 = 20000. Also calculate the
mean life length.

. Repeat Problem 7 for a component population having

exponential life distribution with A = 0.001.

. In general, for a distribution function F(?), ¢, is the

¥ quantile of the distribution if F/(z,) = y. Determine
the 0.90 quantile and the 0.99 quantile for the dis-
tributions in Problems 7 and 8.
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10. Construct the algebraic expression for the system
level hazard functions for the structure:

11. Construct algebraic expressions for the reliability
and hazard functions for the following two systems.
Compare several of the values of these functions for
the case in which all components have Weibull life
distributions and in both structures B; = B, = 2.5, 6,
=0, = 100, B; = B, = 1.5 and 65 = 6, = 200.

1 3
2 4
1 3




Reliability over Time 71

12.

13.

14.

15.

Analyze the standby redundant system for two iden-
tical exponential components having A = 0.001 for the
cases of p = 0.50, 0.80, and 1.0. Plot the resulting
distribution function and its hazard function.
Consider a population of devices having life distribu-
tion F(¢). For items from this population that attain
an age of, say, T hours, denote by U(t) the random
variable representing their additional life lengths.
Let Gy(u(t)) be the distribution function on U(7).
G(u(1)) is referred to as the residual life distribution
and Gy (u(1)) is its corresponding survivor function.
Show that Fj(¢) is IFR if and only if Gy (u(1) is
decreasing in 71 for all u.

Construct the residual life distribution for exponen-
tial and Weibull life distributions.

Suppose a population of devices has a Weibull life
distribution with f = 1.6 and 6 = 25. What is the
mean of the residual life distribution for copies of the
device that survive 15 hours?



Failure Processes

The fourth constituent of the definition of the reliability of
equipment is the environment for which it has been designed.
In saying “environment,” we are really referring to the forces
that are imposed on a device and the processes that lead to
its deterioration and failure. We start with the question: Why
does equipment fail? Many people agree that equipment fails
because specific components fail and components fail because
the operation of a system implies the application of forces
(energy) upon the system and its components. Sudden and/or
excessive forces precipitate immediate failure, while usual
forces induce and sustain the progress of various types of
deterioration processes under which the component eventu-
ally can no longer resist the usual force levels.

While the preceding explanation seems reasonable, there
has never really been any consensus on the causes of failure
and how they should be modeled. This situation persists today.
A substantial portion of the scientific and engineering effort
that has constituted the evolution of the reliability discipline
has been focused on the study and modeling of component
degradation processes. Numerous theories and models have
been proposed, and very many heated debates have centered
around the various points of view concerning the nature of
failure processes.

In the pages that follow, I will enumerate several of the
principal models and identify some of the points of contention.

73
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I will try to suggest reasonable choices among the models and
will finally offer my view on how failure models should be
defined. A key feature of the models that have been proposed
is that they are usually defined separately for mechanical
systems, as opposed to electrical/electronic systems. That is,
models of failure have traditionally been developed from
either a mechanical or an electrical (electronic) perspective.
Reliability of mechanical equipment has often been viewed as
a problem in structural integrity as influenced by applied
loads and inherent strength. In contrast, the reliability of
electrical devices has usually been viewed as dependent upon
material stability despite exposure to hostile chemical reac-
tions such as oxidation. It is only recently that some analysts
have suggested that both types of reliability result from com-
mon classes of phenomena. It is my view that this distinction
is unnecessary, because the failure processes for mechanical
and for electrical devices are essentially the same. I believe
that they correspond to the progress and completion of phys-
ico-chemical reactions that occur in the materials that com-
prise devices and that are driven by the transfer of energy
within those materials.

5.1 MECHANICAL FAILURE MODELS
5.1.1 Stress-Strength Interference

An early and still popular representation of mechanical device
reliability is the “stress-strength interference” model. Under
this model, there is random dispersion in the stress, Y, that
results from applied loads. The dispersion in the stress real-
ized can be modeled by a distribution function, say Hy(y).
Similarly, there is also random dispersion in inherent device
strength, X, and this can be modeled by Gx(x). Then, device
reliability corresponds to the event that strength exceeds
stress. That is

F=PrX>Y]= r rhy(y)gx(x)dxdy
vy
(5.1)

= r Jx hy (y)g x (x)dydx

—oc0 o —oo
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for which, an equivalent statement is

F=PriX>Yl= [ hy()(1-Gx(»)dy
- (5.2)

= J‘w H,(x)gx(x)dx

The failure probability is the complement of the reliabil-
ity. This time-independent model has been studied exten-
sively. Kapur and Lamberson [27] provide solutions for
several different choices of G and H.

Since the Expression 5.2 is independent of time, the
definition of a time-based reliability model centers on select-
ing the distributions G and H and on representing the time
evolution of those distributions. One popular model of this
type is based on the assumption that stress is Normal in
distribution, with constant mean and variance, while strength
is also Normal, but with declining mean and increasing vari-
ance. The idea is that the aging of a device results in a gradual
decrease in mean strength and a gradual increase in the
inconsistency (vaiability) in strength. In this case

o (ol Y |1 27®
SN

y

_ Jm q{x_“y jq{x‘“x(t)jdx (5.3)
e c c,.(t)

y

where p, and o, are the constant parameters of the Normal
stress distribution, p(#) and o,(f) are the time-dependent
parameters of the strength distribution, ¢ denotes the stan-
dard Normal density, and ® represents the cumulative distri-
bution for the standard Normal.

Clearly, the time evolution of the parameters of the
strength distribution may be assigned any plausible form. For
example, if the mean declines linearly in time and the stan-
dard deviation increases linearly in time, possible functions
are
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Lx(®)=ux(0)—ot and ox(t)=05(0)+p¢

Consider an example realization of this model. Suppose
the distribution on imposed stress has p, = 100 kg/cm? and
o, = 2 kg/cm?, and the distribution on device strength has p,(0)
= 102.5 kg/ecm? and 6,(0) = 1 kg/cm?. Then the basic concept
of the stress-strength interference model is well illustrated in
Figure 5.1. Note that the distribution on stress lies below that
on strength, so that in general, the strength values will prob-
ably exceed the stress values.

pr
0.4¢

0.3}
0.2t

0.1

time
97.5 100 102.5 105 107.5 110

Figure 5.1 Basic stress-strength interference model.

Next, suppose that the “decay” parameters are o = 0.005
and B = 0.002. With these values, the gradual deterioration
of the device strength is represented by a gradual change in
the center and the width of the strength distribution. This is
illustrated in Figure 5.2. At each point in time, the corre-
sponding “slice” of the distribution corresponds to the strength
distribution at that time. Consider the interference at time
values of ¢ = 250 and 500. The corresponding plots are shown
in Figure 5.3. Clearly, as the mean of the strength distribution
declines, the probability that strength exceeds stress also
decreases. Since both the strength and the stress distributions
have been assumed to be Normal, the values of realizations
of the distribution and for the reliability must be computed
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Figure 5.2 Time evolution of the strength distribution.
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Figure 5.3 (a) Interference at ¢ = 250. (b) Interference at ¢ = 500.
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numerically. Table 5.1 lists values of the reliability function
of Equation 5.3 for the numerical example defined above.

A plot of the reliability function over the same range is
shown in Figure 5.4. Once the numerical analysis of the model
has been performed, one can fit a distribution to the reliability
function as desired. For example, the function represented in
Figure 5.4 (Table 5.1) is well represented by a Weibull distri-
bution with parameters § = 1.083 and 6 = 1204.

Reliability

. . . . . time
500 1000 1500 2000 2500

Figure 54 Example reliability function.

5.1.2 Shock and Cumulative Damage

An alternate and more widely used set of models are the shock
and the cumulative damage models. An appealing description
of the simplest shock model is offered by Gertsbakh and Kor-
donskiy [28], who was one of the pioneers in the development
of reliability theory in Europe. Gertsbakh and Kordonskiy
suggest that we consider a sequence of equipment actuations
(or events), each of which imposes a stress on a component of
interest. As long as the stress is below a threshold, the com-
ponent does not fail, and the first time the stress exceeds the
threshold, the component fails. As an example, he considers
that each time an airplane lands, the landing imposes a grav-
itational force on the communications radio and that varia-
tions in weather conditions and pilot skill imply substantial
variation in the loads experienced. When a sufficiently severe



Table 5.1 Example Reliability Function Values

Time
Reliability

100
0.933

200
0.890

500
0.702

750
0.531

1000
0.391

1500
0.217

2000
0.132

2500
0.088

3000
0.064

4000
0.039

5000
0.028
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load occurs, the radio is damaged and fails. The life of the
radio may thus be measured in numbers of landings and if y
is the probability that failure occurs on any landing, the
distribution on life length is geometric, so

k
Fe)=7) (1-7)" =1-(1-7)' (5.4)
n=1

gives the cumulative probability of failure on or before the £t
landing. One may then argue that for any individual landing,
Y is quite small, so

(1-7) =e™

or alternately, one may observe that

EIK]= %

so that the approximation

FK (k) = e*%z[K]

is reasonable. In either case, one obtains a life distribution
model in terms of the number of cycles or actuations to failure
that is exponential.

Fr(k)=1-¢" (5.5)

Naturally, if we assume an average time between land-
ings (or actuations), the model is easily converted to one
expressed in terms of time. Of course, the designation and
interpretation of a “time” scale is always somewhat arbitrary
and can be defined according to the application.

Gertsbakh’s example is informative in two ways. One is
that it illustrates the fact that reliability models have usually
been based on an engineering analysis of observed physical
behavior. The second is that the example helps to emphasize
the evolution that has occurred in modeling failure as engi-
neers have made the models more and more representative
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of actual operating behavior. Starting from the above model,
the transition across the cumulative damage models to the
diffusion models show this evolution.

The early development of cumulative damage models was
performed by Birnbaum and Saunders [24] in their study of
fatigue in aircraft and by Karlin [29]. The elementary form
of the model starts with the assumption that a device is
subjected to “shocks” that occur randomly in time. Each shock
imparts a random quantity, say X, of damage to the device,
which fails when a capacity or endurance threshold is
exceeded. The most common realization of this model includes
the assumption that the shocks occur according to a Poisson
process with intensity A, and the amounts of damage per
shock are independently and identically distributed according
to some arbitrarily selected common distribution, say G. If
F,.(t) represents the reliability over time, and K is the number
of shocks that occur over the interval [0, ¢], the reliability
function based on a threshold of L is

oo

k
F(t) = Ze-“ OZ?GE?)(L) (5.6)
k=0

Note that the sum is taken over all possible numbers of
shocks, and the notation G¥(x) represents the k-fold convo-
lution of Gx(x) and thus the sum of 2 shock magnitudes, X.
Thus, Equation 5.6 represents the probability that 2 shocks
occur and their sum does not exceed the strength/damage
threshold L — summed over all possible values of 2. By con-
vention, G (x)=1 for all values of x>0, and of course,
GY (x) = Gx(x). Parenthetically, independent of the choice of
distribution Gy (x) for modeling shock magnitudes, Equation
5.6 will correspond to an IFRA distribution.

Consider an example. Assume that a device has an
endurance threshold L = p,(0) = 102.5 kg/cm?, as in the case
of the stress-strength interference model. Let Gy(x) be a Nor-
mal distribution with p, = 50 kg/cm? and ¢, = 1 kg/cm?, and
assume A = 0.004 per hour. Solving Expression 5.6 as a func-
tion of time yields the reliability curve shown in Figure 5.5.
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Figure 5.5 Reliability function for the cumulative damage model.

Note the conceptual duality of the cumulative damage
model and the stress-strength interference model. In the
stress-strength interference model, we treated stress as con-
stant and strength as variable. In the basic cumulative dam-
age model, the strength (damage threshold) is the constant
quantity, and the stress (damage) is variable.

A special case of the cumulative damage model was sug-
gested by Gertsbakh and Kordonskiy [28]. They considered
that shocks occurred according to a Poisson process and were
always of the same fixed magnitude. In this case, the model
reduces to that of a birth process with a termination barrier,
and the life distribution is a Gamma distribution. Also,
Nachlas [30] generalized Gertsbakh’s model by treating the
damage rate as state dependent and the initial and failure
states as random. The result is that the life distribution model
becomes a generalized Gamma distribution. In the general-
ized model, the state dependent arrival rate is defined by the
polynomial

A @)= jome™ ! (5.7

for a component in state j. The state variable represents the
degree of degradation of the device. For a failure threshold of
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state £ and a random initial state, say i, the time to failure
is described by

Fp(t|i,k)=1— {ﬁzJZ ﬁ(l”—r”) e (5.8)

l#r

This model is further enhanced by taking a Poisson mixture
over the distance (k—i) between the initial and final state.

Subsequent to its initial development, the shock model
has been studied extensively and enhanced in several ways.
One of the first extensions is to permit successive shocks to
cause increasing amounts of damage. That is, we continue to
assume that the shocks occur according to a Poisson process
and that the damage caused by the shocks is independent,
but successive shocks are increasingly harmful, so the damage
associated with the i** shock, X;, has distribution Gy, (x), with
the values of the Gx. (x) decreasing in i. With this assumption,
the survival function becomes

_ = (n
FT(t):; (k) Gy, *Gy, Gy, (L) (5.9)

where Gy *Gx, *--Gy, (L) denotes the convolution of the dis-
tributions.

Further extensions include (1) eliminating the assump-
tion of independence of the successive shocks, (2) allowing
attenuation of damage (partial healing) between shock events,
and (3) treating the failure threshold as a decreasing function
of time or damage. In each case, the basic model format is
the same, and the resulting life distribution is IFRA.

The cumulative damage models have been viewed as very
useful and have been applied to some very important prob-
lems. Perhaps the most noteworthy application was the study
by Birnbaum and Saunders [24] of fatigue failures in aircraft
fuselage. The development and use of such models continues.



84 Nachlas
5.2 ELECTRONIC FAILURE MODELS
5.2.1 The Arrhenius Model

To a large extent, models of electrical and electronic device
reliability are motivated by empirical observations and were
developed subsequent to the mechanical reliability models.
The rapid evolution of electronic and especially microelec-
tronic devices provided considerable impetus to the develop-
ment of reliability models for electronic devices. In addition,
because the life lengths of early electronic devices were often
considerably shorter than those of mechanical devices, elec-
tronic device reliability received substantial attention.

Most of the models developed are based on the idea that
electronic device degradation processes are essentially chem-
ical conversion reactions within the materials that comprise
the devices. Consequently, many of the models are based on
the Arrhenius [31] reaction rate equation, which is named for
the nineteenth-century chemist who developed the equation
in the study of irreversible reactions such as oxidation. The
basic form of the equation is that reaction rate, p, is given by

p=me Z/KT (5.10)

where mn is an electron frequency factor, K is Boltzmann’s
constant (8.623 x 105 ev/°K), T is temperature in degrees
Kelvin, and E, is the Gibb’s free energy of activation. For
reliability modeling, the product of the reaction rate, p, and
time yields the extent of the progress of the deterioration
reaction and is therefore considered to correspond to the
cumulative hazard at any time. For example, for the Weibull

life distribution
A
ZT(t>=(pAJ (5.11)

and it may be further noted that alternate rate functions
may be (and sometimes are ) used but are applied in the
same manner. Until recently, the scientific and algebraic
links between rate functions such as Equation 5.10 and life
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distributions and hazard functions has not been widely stud-
ied. Nevertheless, the implied models such as Equation 5.11
are used extensively and have proven to be quite accurate.

5.2.2 The Eyring Model

A more general model was suggested by Krausz and Eyring
[32]. In their model, the rate of progress of the deterioration
reaction depends upon both temperature and voltage, so

p= ne—Ea/KTe—ylV—YZV/KT (512)

where v, and vy, also represent activation energies. Note that
in this model, Krausz and Eyring allow for the possibility
that, in addition to their direct effects, temperature and volt-
age have a synergetic (combination) effect on reaction rate.
For this model, we again incorporate the rate function in the
cumulative hazard function to obtain a life distribution.

5.2.3 Power Law Model

An alternate model for the effect of voltage is provided by the
power law model. In this case, it is assumed that the mean
life length is proportional to the (reciprocal of the) voltage at
which a device is operated raised to an appropriate power.
That is,

E[T]= ch (5.13)
Clearly, the two parameters of this model provide suffi-

cient flexibility that any observed value of the mean life can
be matched by the model.

5.2.4 A Defect Model

For the specific case of integrated circuits, Stevenson and
Nachlas [33] suggest that metallization lines contain both
macroscopic and microscopic flaws, and that these two flaw
types both contribute to device failure. Their basic premise is
that the flaws correspond to material impurities or crystal
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lattice anomalies that serve as reactive sites for degradation
reactions such as metal migration and oxidation. Based on
this basic premise, they show that published microelectronic
failure data is reasonably well described by either the Weibull
or the IDB life distributions, depending upon the relative
magnitudes of the initial concentrations of the two defect

types.

5.3 OTHER FAILURE MODELS

In recent years, some more useful and realistic, or at least
more general, models have been proposed. Of these, the pro-
portional hazards models [34] have been widely used, and the
diffusion models have not yet been widely adopted but should
be in the future. Another more general model that has been
used in actuarial studies for a long time is the competing risk
model. This model has not yet received much attention from
the reliability community, but it soon will. These three model
forms are examined below.

5.3.1 A Diffusion Process Model

The diffusion process models are really a generalization of
the cumulative damage models. They seem to apply well to
mechanical failure processes, but are certainly not limited to
mechanical components. The models were best articulated by
Lemoine and Wenocur [35]. They suggest that the accumula-
tion of age or stress or the gradual reduction in strength of a
component may be modeled as a diffusion process. In the
absence of other phenomena, the diffusion process represents
the deterioration of the component, and the first passage
distribution of the process represents the failure time. They
then add the possibility of sudden catastrophic events occur-
ring in time according to an arbitrarily and selectable rule.
In this case, the component ages gradually and fails according
to the first passage time distribution unless the component
encounters a sufficiently severe shock to cause it to fail “early.”
A familiar example is an automobile tire that gradually wears
and ultimately is worn out. As it wears, the tire has reduced



Failure Processes 87

tread or strength and thus less resistance to randomly occur-
ring road hazards, some (but not all) of which are fatal to the
tire. A conceptually equivalent process is the gradual deteri-
oration of an incandescent light bulb that will also fail sud-
denly if subjected to a voltage surge.

The general model that Lemoine and Wenocur define can
be quite difficult to analyze or evaluate computationally. How-
ever, as they point out, the practically useful model realiza-
tions are generally tractable. Under their formulation,
component status in time is represented by a state variable
X(t) for t 2 0. The state variable evolves according to a diffusion
process with drift uw(¢) and diffusion coefficient 6(¢). Physi-
cally, X(¢) is the level of wear (reduction in strength) at time
t, and it has mean value W#) and standard deviation o(¢).
Then, they define k(x) to be the “killing function” for a com-
ponent in state x (having accumulated wear x). The function
k(x) is essentially the rate at which shocks of sufficient mag-
nitude to cause the component to fail occur when a component
is in state x. In fact, this means that for most of the useful
applications of the model, k(x) is the hazard function.

For the diffusion-based model, the general Chapman-
Kolmogorov backward differential equation is

F n 2 277
HED )y, 1) i) L T IO LD

- s e (514

where the interpretation of F;(x,?) is that it is the probability
that a component having wear level x survives beyond time ¢.

This rather complicated model is actually quite rich. The
choices of initial conditions and of functions u(¢) and c%(¢) lead
to a wide variety of useful and conceptually reasonable specific
models. For example, assuming o(¢f) = 0 and that the wear
tolerance is infinite implies that k(x) corresponds to the
Weibull hazard function. For that model, setting B = 1 to
obtain an exponential distribution corresponds to the case in
which the wear rate is zero. On the other hand, taking k(x)
= x and X(¢) = a + bt yields the Rayleigh distribution. Other
choices yield Normal, Gamma and extreme value life distri-
butions. Thus, as Lemoine and Wenocur point out, selecting
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the mean value and diffusion functions and the killing func-
tion to represent specific types of degradation processes leads
to quite reasonable reliability models.

A generalization of the reaction rate view of electronic
failure processes is suggested by Nachlas [30]. He treats irre-
versible deterioration reactions as pure birth processes in
which the rate functions are the identifying characteristic of
reaction type. Under this formulation, the fact that the birth
process models are essentially specific cases of Poisson pro-
cesses implies that all resulting life distributions are Gamma
or generalized Gamma distributions. As a consequence, the
models are probably more instructive than representative.
They do have the appeal that they provide a more restricted
but still the same type of physical interpretation as the Lem-
oine and Wenocur model.

5.3.2 Proportional Hazards

A relatively unified representation of the relationship
between environment and failure processes is provided by the
proportional hazards model that was originally proposed by
Cox [36]. There are several forms in which this model may be
stated. A general form that is conceptually appealing is

20 () = @)z, (@) (5.15)

The interpretation of the equation is that the device has
a base hazard function, z,(¢) that represents the core disper-
sion in life length, and this hazard is increased by a function,
v, of the vector of variables, x, that describe the specific oper-
ating environment in which the device is used.

There are actually two approaches to using the propor-
tional hazards model. One is to identify the vector x as a set
of covariates or explanatory variables and to view the model
as a statistical basis for fitting a life distribution to observed
failure data. An alternate approach is to view the vector x as
a description of the operating environment and to treat the
function y as a description of the effect of operating conditions
on the failure frequency. Practically, the two views are essen-
tially the same, because the function y(x) is usually determined
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by regression analysis on accumulated failure data, and it is
usually assumed that the function is linear. On the other
hand, when the failure process for a device is understood, the
proportional hazards model in which the function y repre-
sents that failure process is very appropriate.

Observe that, under the basic proportional hazards
model, the shape of the hazard function is preserved. The
environmental effects on the hazard are essentially additive,
and the cumulative hazard function has the comparable form

Zy(t)= j W@z, (Wdu = w)j 20 Wdu=y(x)Z,(®) (5.16)
0 0

Thus, the reliability function is an exponential function of the
environmental variables:

Fp(t)= e V®4® (5.17)

The advantages of this model are that it applies to any
assumed base life distribution, it appears to be equally appro-
priate for mechanical and electronic devices, and it allows for
the very specific representation of a general and arbitrary set
of environmental effects. Conceptually, the chief drawback of
the model is that it may not directly portray the mechanisms
of failure. Practically, the drawback of the model is that sub-
stantial volumes of data are required to obtain satisfactory
regression models for y(x). Enhancements to the model have
been based on allowing some of the environmental variables
to be time dependent.

5.3.3 Competing Risks

Competing risk models have been used for actuarial studies
for a very long time. Some people say their use started with
Sir Thomas Bayes, when he attempted to compute the prob-
abilities of death from various causes given that one cause,
tuberculosis, was eliminated. In any case, the concept of the
competing risk model is that a person or a device is subject
to failure as a result of the action of multiple failure (or
deterioration or disease) processes, which are competing to be
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the cause of failure (death). In the case of human disease
processes, it is inappropriate to treat the various causes as
independent, so the models are often quite complicated. This
may be the reason that the application of the competing risk
models to equipment reliability has been fairly limited.

The basic approach to constructing a competing risk
model is to treat the various risks as components of a series
system. The system fails at the time of the earliest component
failure, which is the time that the first of the competing risks
reaches completion. Thus, if a device is subject to failure from
K causes, C,, k = 1, ..., K, and if the time at which cause C,
reaches completion is ¢,, then the life length of the device is

T= m}jn{tk}

The analysis of the competing risk model starts with a
consideration of the “net” probabilities, which are essentially
the marginal probabilities for each risk — the life distribution
assuming other risks are not present. Assuming there exists
a joint life distribution, the associated joint survivor function
is

FTlsTZ’“w TK(tl? t2, ..... 5 tK)=PI‘[Tl Ztl, T2 th, ceeey TK 2 tK]

so the marginal (net) survival function is
Fy(t))=Fy, 1, . 1,(0,0, .., 0,¢;,0,..0) (5.19)
and the overall survivor function for any time, 7, is
Fr)=Fp . 1.t . t) (5.20)

The probability that failure, when it occurs, is due to specific
cause o is
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T, = j: Fr, (0)du
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Next, one computes “crude” failure probabilities for each
risk, which are the probabilities of failure due to each risk
when other possible causes are considered. To construct the
“crude” probabilities, one constructs the joint survival proba-
bility:

Pr(T >¢,J = jl=Pr[T, >t, T; <T,, Yk # j]

:J [J’ J Froty o s o oo O | [ e |dt; (5.22)
t tj tj P

One then takes the overall survivor function of Expres-
sion 5.20 to be

K
Fy(1)=Pr(T 2t]= ) PriT2t,J =kl (5.23)

k=1

and the cause probability of Expression 5.21 to be
n; =Pr[J = jl=Pr[T 20, J = j] (5.24)

Finally, the survivor function for the “crude” life distri-
bution is

F'TU(t):Pr[TZtlJ:J-]: Pr(T Znt’ J=jl

(5.25)

J

Observe that the described analysis applies regardless
of whether or not the various risks are independent. Of
course, the analysis depends upon having an initial multi-
variate model of life length as a function of the various risks.
This presents a problem, because it is difficult to justify any
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particular multivariate model prior to observing failures, and
when failures are observed, they correspond to observations
of crude failures rather than net failures. The statistical anal-
ysis of such data is discussed in Chapter 8.

The appeal of the competing risk model is that many
types of equipment really are subject to multiple competing
risks. A further advantage of the model is that the combina-
tion of risks, even when each risk has a monotone hazard
function, often yields a “crude” failure distribution that has
a bathtub shape. Thus, the competing risk model provides a
means to combine failure distributions to yield conceptually
appealing model behavior in the overall hazard function.

Note finally that, like the proportional hazards model,
the competing risk model applies to both mechanical and
electronic devices and may be employed with any of the life
distribution models. Thus, it is a model form with wide appli-
cability.

5.4 EXERCISES

1. Assume that a component has a Weibull strength
distribution with B = 2.0 and 6 = 1267 kg/cm?, and
that it is subject to a Normal stress distribution hav-
ing u = 105.5 kg/em? and ¢ = 1.76 kg/cm?, where in
both cases the distributions are time invariant. Com-
pute the reliability of the component.

2. Resolve Problem 1 under the assumption that the
stress distribution has increasing mean and variance
according to the equations u(¢) = 105.5 + 0.0014¢ and
o(t) = 1.76 + 0.0005¢.

3. Solve the cumulative damage model of Equation 5.6
for a component having a strength threshold L = 60
and subjected to shocks that impart a Normally dis-
tributed damage with mean p = 17.5 and standard
deviation o = 1.5. Assume shocks occur according to
a Poisson process with rate A = 0.01/hr.

4. Using the Arrhenius reaction rate model of Equation
5.8 and assuming a Weibull life distribution, compute
the component reliability at 10,000, 25,000, and
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50,000 hours when T = 55°C, E, = 0.80,n = 1.5 x 102,
B = 0.75, and 6 = 40,000 hours. Then plot the reli-
ability at 25,000 hours versus the activation energy
for 0.6 <E, < 1.2.

5. Using the proportional hazards model, plot the base-
line and overall hazard functions and the reliability
function for a component having a Weibull life distri-
bution with = 1.75 and 6 = 2500 hours and y(x) =
1.4.

6. Consider a competing risk model in which the num-
ber of risks is 2 and the joint density on life length is

fT(t) = le, Ty (t17 t2) = 3e—t1_3t2

Determine the probabilities of failure due to each
cause, the net failure probability functions and the
survival functions for each of the crude life length
probabilities.



Age Acceleration

Models of failure processes and the effects of environmental
conditions on failure behavior are often used as a basis for
defining age acceleration regimes. As the term implies, these
are methods for causing a device to age more rapidly than
normal. The basic principle is that altering the operating
environment so that it is harsher than normal operating con-
ditions will increase the rate at which the device ages. That
is, applying “stress” to the device will cause it to age more
rapidly. The parallel idea of increased aging in humans due
to excessive stress is considered representative.

Age acceleration of components or systems is generally
used for one of two purposes — accelerated life testing or
stress screening. In both cases, the environmental models are
the same.

As the term implies, accelerated life testing is the use of
age acceleration to study device longevity. The focus is on
testing and the support of product design and development.
Estimates of life distribution parameter values, or at least
tolerance bounds on reliability, may be obtained. Unsatisfac-
tory reliability performance may be recognized, or sensitivity
to specific environmental factors may be investigated. The
idea in accelerated life testing is that the time needed to test
a new component design in order to verify its reliability can

95



96 Nachlas

be excessive. In fact, many current durable good products such
as computers and automobiles have components for which
typical life lengths are measured in years. In principle, testing
a new component design to verify that it is sufficiently reliable
should involve observation of a sample of the devices operat-
ing until at least some of them fail. In the absence of an age
acceleration method, the design verification effort would be
unreasonably long. Age acceleration is used to reduce the test
duration.

In contrast to accelerated life testing, stress screening is
the use of age acceleration to age a device population beyond
the early life phase of a product population so that the units
put into customer use have reduced and presumably low haz-
ard. It is a means to insulate the customers of a fixed product
design from initially high hazard rates of DFR devices. This
should reduce the level of expense for warranty support and
also assure a favorable product reputation. In fact, optimiza-
tion models have been defined for selecting the most cost-
effective stress regimen. In these models, the costs of applying
the environmental stress to the devices and the costs of lost
new product are balanced against the avoidance of the costs
of failures that would be experienced as a result of failures
during customer use of the product. The solutions obtained
indicate that, for many types of electronic devices, stress
screening is a worthwhile strategy for managing device reli-
ability.

Here again, there is an interesting contrast between
mechanical and electronic devices. Experience has shown that
many electrical and electronic devices display high and
decreasing hazard during early life, so stress screening can
be economically sensible. On the other hand, most mechanical
components display increasing hazard from the start of life.
Consequently, stress screening is rarely used for mechanical
components, and models of its use have not been constructed.

For both applications, the operating environment of a
device is modified within the limits that the device should be
able to tolerate. That is, environment is manipulated in such
a manner that the aging process remains unchanged except
that it occurs more rapidly. It is important to maintain the
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nature of the failure processes, so that the observed aging
behavior is consistent with actual use. When the age acceler-
ation is done properly, it is usually believed that a propor-
tional hazards type of hazard rate enhancement is obtained,
so the shape of the distribution is maintained. Thus, age
acceleration yields only time-scale compression and

Fy, ()= Fy(at) (6.1)

where “a” is the acceleration factor, so Expression 6.1 states
that the life distribution under enhanced stress is the same
as the life distribution under nominal operating conditions
but evaluated for a compressed time scale.

Consider the example of a component having a Weibull
life distribution with B = 1.5 and 6 = 1000 hours. If the
application of a stress to the component population results in
an age acceleration of a = 10, the density and distribution
functions are compressed as shown in Figure 6.1. Represen-
tative values of the distribution functions are

Fy, (50) = F(500) = 0.298

Fr, (100) = F(1000) = 0.632
and
Fr, (200) = F-(2000) = 0.941

Note the compression in the range of dispersion. A key point
is that the shape of the distribution is unchanged, and this
reflects the fact that the basic failure process is unchanged.

6.1 AGE ACCELERATION FOR ELECTRONIC DEVICES

The models used to represent age acceleration are essentially
those for the effects of operating environment presented in
the preceding chapter. In the case of electronic components,
the application is direct. Over the past 50 or 60 years, age
acceleration has been performed regularly on electrical and
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Figure 6.1 The density functions and the distribution functions
with and without age acceleration.

electronic components. It may be the particular failure pro-
cesses to which electrical devices are subject, or it may be
their relatively short lives, but substantial evidence of the
effectiveness of age acceleration has been accumulated. In
fact, the extensive experience in the application of the Arrhe-
nius, Eyring, and power law models has lead to general accep-
tance of their accuracy.

In the case of the Arrhenius model, the age acceleration
factor “a” is computed as the ratio of the reaction rate under
enhanced stress to that for the nominal conditions. Thus, if
T, is the nominal operating temperature and 7, is the stress
temperature, the age acceleration is

oy )

= @ 6.2
o(T,) (6.2)
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As an example, consider a microelectronic device that is nor-
mally operated at a temperature of T\, = 55°C = 328°K. If the
device has an activation energy of E, = 0.8 and is tested at
T, = 95°C = 368°K, it will age at a rate a = 21.6 times faster
than under normal operating conditions. That is, for each hour
of operation at 95°, the device gains 21.6 hours of age.

An interesting extension to this model was studied by
Nachlas [37] in response to evidence presented by Jensen and
Wong [38] that for CMOS devices, the activation energy is
often temperature dependent. Recognizing that performing
thermal age acceleration implies heating and cooling inter-
vals, Nachlas defined a model in which the net age accelera-
tion is obtained as a function of the heating and cooling rate
and of the soak temperature. The basic form of that model is

E,(Ty)
o KT (D _Ea(T®)
a= e KTW dt (6.3)
D Jo

where D is the test duration including heating and cooling
intervals, the function 7(¢) describes the temperature profile
over time, and the function E(7) depends upon the device
identity and may be selected on the basis of the findings of
Jensen and Wong. A representative temperature profile is
shown in Figure 6.2. The cycle represented shows heating and
cooling intervals of 200 minutes each with a dwell (or soak)
period of 800 minutes. Representing the temperature profile
by

294 + 74( %00)25 0<¢<200
T.(t)=1 368 200 <t <1000
368 74(t - 100(%00)2-5 1000 < £ <1200

and on the basis of the Jensen and Wong paper, taking the
activation energy function as

Ea(Ta) — 1.8438—0.00264Ta
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Figure 6.2 Representative thermal cycle for age acceleration.

numerical integration indicates an acceleration factor of a =
167.5.

For the Eyring model, assume the two temperatures are
the same as in the above example and that the nominal and
stress voltages are V, = 5.0 millivolts and V, = 8.0 millivolts,
respectively. The general acceleration factor equation is

PRAN s e

6.4
= oIy, V) ¢ (6-4)

so taking E, = 0.8, v, = 0.2, and vy, = 0.008, the age acceleration
is a = 72.0.

Note that some types of components may not experience
a synergistic effect of the combined stresses. In this case, 7V,
= 0, and the stresses are independent. They, nevertheless,
both contribute to the acceleration in aging.

The (inverse) power law model is defined in terms of the
expected life length. The age acceleration factor is therefore
the ratio of the expected life under nominal conditions to the
expected life length under increased stress. The expression is

C
EIT|V,] _ %fop _ [Vajp (6.5)
E[T|V,] %f N7 :



Age Acceleration 101

In the case of the microelectronic device of the previous exam-
ple, taking p = 2 implies an age acceleration of a = 2.56.

Two final points related to age acceleration of electronic
devices are (1) that thermal stress is generally considered to
be the most effective environmental modification for age accel-
eration, and (2) that Equations 6.1 and 6.2 each imply that
the device hazard function may be represented in a propor-
tional hazards format in which the temperature effect is a
time-independent coefficient.

Note further that the evolution of modern computers,
especially the laptop models, has been dominated by the
development of more efficient and compact cooling systems.

6.2 AGE ACCELERATION FOR MECHANICAL DEVICES

In contrast to the case of the Arrhenius model for electronic
devices, no general model has been defined for age accelera-
tion of mechanical components. In fact, it is generally consid-
ered that, for each mechanical device, an age acceleration
strategy, if there is one, must be identified specifically. Usu-
ally, this means evaluating the forces that drive the deterio-
ration process and seeking a way to intensify those forces.
It is important to note that “stress” testing of mechanical
devices is often misrepresented. For example, the hinge on
the door of an automobile is typically used a few (less than
20) times per day. In advertising the durability of their auto-
mobiles, some firms show a door being opened and closed
continuously and imply that this is a form of testing routinely
used to verify reliability. While this demonstration may be
impressive, and while the time until the hinge fails may be
reduced, the increase in the frequency of use of the hinge does
not constitute age acceleration. The forces imposed on the
hinge during each open—close cycle are not changes, and thus
the distribution on the number of cycles to failure is not com-
pressed. The rate of actuation (or use) is increased, but aging
is not accelerated. In the case of the hinge, age acceleration
might be accomplished by increasing the weight of the door.
Another example of a test that is presented to the public
is one in which an automotive tire is spun continuously and
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at relatively high speed on a test fixture. Here again, the
usual assertion is that this test format accelerates aging and
demonstrates the reliability of the product. The frequency of
actuation is being used to reduce test time, but the distribu-
tion on the number of kilometers to failure is probably not
being altered by the continuous use. It is true that increased
turning speed might imply some age acceleration, and con-
tinuous use may imply heat accumulation that yields accel-
eration. These are worth studying, but the representation to
the consumer public is misleading and inaccurate.

The guiding principle for age acceleration is, therefore,
that the operating conditions experienced by a device must
be modified in a manner that results in a compression in scale
of the life distribution. Vassilou and Mettas [39] provide a
simple but very informative example of this idea. They
describe the “testing” of a paper clip by bending the (small)
inner loop of the clip out of the plane that contains the entire
unit. They consider that bending the inner loop out of the
plane and back into position constitutes a single functional
cycle and they define a “test” in which the usual angle of
displacement of 45° is increased to the “stress” condition of
90°. An additional “test” at 180° is also possible. This paper
clip example serves well to illustrate the fact that it is the
modification of the degree to which the forces that drive fail-
ure that provides age acceleration. For mechanical devices,
the failure processes must be determined, and the driving
forces must be identified. Then a means to intensify those
forces must be found. This process is usually specific to the
component design.

The models presented in Chapter 5 do provide a format
for the study of age acceleration of mechanical devices. In the
case of the cumulative damage model of Equation 5.6, the
frequency of activation effects can be represented easily by
adjusting the rate parameter, A, of the Poisson process for the
arrival of shocks. While this does not comprise age accelera-
tion, the adjustment permits the modeling of the revised oper-
ating profile. More useful models are obtained if the strength
threshold parameter, L, is expressed as a function of the
quantities that define operating conditions.
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In a similar manner, both the stress-strength and pro-
portional hazards models offer the potential to represent age
acceleration. In the case of the stress-strength models, repre-
senting the parameters of the strength distribution in terms
of operating conditions may provide a useful model. Normally,
the proportional hazards models are based on variables (cova-
riates) that represent the operating conditions, so the repre-
sentation of age acceleration should be direct.

Finally, note that the diffusion process models have a
“killing function,” which represents the process of deteriora-
tion. Here again, if the model that comprises the “killing
function” is defined (as would be expected) in terms of the
forces that drive failure, the representation of age acceleration
should again be direct.

6.3 STEP STRESS STRATEGIES

The effectiveness of age acceleration in testing the reliability
of new device designs has lead to the development of numer-
ous stress application strategies. One that has been found to
be particularly useful is the step stress strategy. Under this
plan, the key environmental stress variable, which is often
temperature, is applied at successively higher levels. Thus,
surviving devices are subjected to an increasingly aggressive
environment. The failure data that is obtained in this manner
will often support both the construction of a life distribution
model for the device population and the estimation of failure
model parameters such as the activation energy.

The number of levels at which the stress is applied
depends upon the device being tested, the capability of the
equipment used for stress application, and the extent of the
information sought. Thus, the environmental profile is specific
to each application. An example of a step stress strategy would
be to test a sample of electronic devices having a constant
activation energy of E, = 0.70 at 95°C for 80 hours and to
then increase the temperature to 110°C for an additional 40
hours. Under this regime, the devices that survive the entire
test will experience an average age acceleration over the 120
hours of ¢ = 21.47. A more informative measure is that devices
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that survive the test will have a net equivalent age of 2577
hours. The average age acceleration factor is computed as

07 (1 1 01 (1 1
8060.00008623 328 368 +4060.00008623 328 383
120

(80(14.73)+40(34.96))
= =21.47
120
Of course, the failure data obtained during the test should
provide considerable information about the failure character-
istics of the device population.

One further example of a step stress test is provided by
the paper clips. Suppose the stress regimen is to bend each
member of a sample set of clips 20 cycles of 45° displacement,
followed by 20 cycles of 90° displacement, and further followed
by 20 cycles of 180° displacement. Clearly, the successive
stress levels are increasingly aggressive and should produce
increasing numbers of failures.

6.4 EXERCISES

1. Consider an electronic component having activation
energy E, = 0.6 and normal operating temperature
T, = 55°C. Compute and plot the age acceleration
factor for the Arrhenius model that is realized for the
range of temperatures 70° to 110°C.

2. Assuming a normal operating temperature of 55°C
and an accelerated temperature of 95°C, compute and
plot the acceleration factor defined by the Arrhenius
model for E, in the range of 0.4 to 0.9.



Nonparametric Statistical Methods

The specific description of actual failure characteristics of
components is naturally based on the analysis of observed
failure data. Sometimes, failure data is accumulated during
the operation of a population of devices, but more often, the
failure data is obtained through controlled testing of a sample
of the devices. In either case, statistical methods are then
used to obtain estimates for the parameters of life distribution
models or to determine estimates of the reliability without
considering specific models.

To a large extent, the statistical methods used to analyze
reliability data are the same methods that have been defined
for other statistical applications. In some cases, the methods
require tailoring for application to failure data, but usually
the application is direct. As suggested above, data may be
analyzed to obtain estimates of the parameters of an assumed
life distribution. The methods for computing estimates of dis-
tribution parameters are called “parametric” statistical meth-
ods. A variety of parametric methods are presented in the
next chapter. Data analysis that is directed toward “model-
free” estimates of reliability values and failure process char-
acteristics are called “nonparametric” methods, and these
methods are the subject of this chapter.

The chief advantage provided by nonparametric statisti-
cal methods for studying device reliability is that they do not
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require any assumption concerning the identity or the form
of the life distribution. No potentially confining restrictions
on behavior need be assumed. Also, for cases in which the
choice of life distribution model is difficult, perhaps because
the hazard function is not monotonic, the use of nonparamet-
ric methods permits the analyst to avoid the issue of model
choice altogether. A second and also significant advantage of
the nonparametric methods is that the quantities estimated
are often easier to compute and manipulate than those
derived from parametric methods. One further advantage of
the nonparametric methods is that some permit the use of
grouped data sets in which not all of the failure times are
actually observed.

The key disadvantage of the use of nonparametric meth-
ods is that the estimates obtained usually do not support
inferences about the identities of the hazard or distribution
functions. In general, the quantities computed using nonpara-
metric methods contain less information than those obtained
with parametric analysis.

7.1 DATA SET NOTATION AND CENSORING

Before examining the specific analytical methods, it is worth-
while to establish some standard notation and some termi-
nology that is descriptive of the process of collecting failure
data. To define a standard notation, assume that (unless oth-
erwise specified) the failure data that is to be analyzed has
been obtained in a controlled test of a sample of “n” identical
copies of a device. Assume further that each copy of the device
that is tested is indexed so that its identity is known. We
might think of the index as the “test slot” occupied by the
device during the test.

We then take the set of observed failure times to be ¢,, i
=1, ..., n. Thus, ¢; is the time at which the component with
index “7” fails. Consider an example. Suppose a sample of n
= 50 copies of a device are tested and the (scaled) failure times
are recorded as shown in Table 7.1. Associated with each copy
of the device is an index, and for each indexed device, the
time of failure is recorded.
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Table 7.1 An Example Failure Data Set
t.

i

i t;

i

~.

i t, i t, i t,

1 0883 11 1555 21 0.129 31 0.829 41 0.894
2 0875 12 3503 22 0455 32 0.548 42 0.336
3 5292 13 1541 23 2008 33 1.016 43 0.129
4 0038 14 1218 24 0.783 34 0223 44 1.373
5 4631 15 1285 25 1803 35 3.354 45 0.613
6 1690 16 2190 26 2505 36 1559 46 1.272
7 0615 17 0.720 27 0465 37 3.785 47 0.019
8 2877 18 0.056 28 1494 38 0.599 48 0.068
9 1943 19 0.006 29 0.795 39 0.090 49 0.658
10 3.106 20 0279 30 0299 40 0.026 50 3.085

Now, for many of the methods of analysis of the data, it
is necessary that we reorder it so that the values are increas-
ing. To represent the fact that the data has been reordered,
we rename the values as x; where

xj :t[j] (71)

This expression should be read as x; is the j smallest failure
time observed, and it corresponds to the failure time of the
device copy indexed [j]. For example, in the data set of Table
7.1, x, =ty =ty = 0.006, x5 =ty = t,; = 0.019, and x5, = 5
=ty = 5.292. The completely reordered data set is shown in
Table 7.2. Now, the statistical methods that we consider will
usually be applied to the values x;.

With our notation defined, we next consider the question
of whether or not a test is run to completion. It is easy to
imagine a case in which the time required to test a complete
sample of copies of a component until all have failed can be
excessive. Even with age acceleration, the time required for
a complete test can be unmanageable or infeasible. In order
to perform a reliability test within a reasonable length of time,
tests are often truncated early. A decision to use a truncated
test should be made before the test is performed. When the
test is truncated, we say that the test data obtained are
censored.
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Table 7.2 Reordered Example Failure Data

J X; J X; J X; J X; J X;
1 0.006 11 0.279 21 0.720 31 1.285 41 2.190
2 0019 12 0299 22 0.783 32 1373 42 2505
3 0026 13 0.336 23 0.795 33 1494 43 2.887
4 0038 14 0455 24 0829 34 1541 44 3.085
5 0056 15 0465 25 0875 35 1555 45 3.106
6 0068 16 0548 26 0.883 36 1559 46 3.354
7 0090 17 0599 27 0.894 37 1.690 47 3.503
8 0129 18 0.613 28 1.016 38 1.803 48 3.785
9 0129 19 0615 29 1218 39 1943 49 4631
10 0.223 20 0.658 30 1272 40 2.008 50 5.292

There are two basic approaches to test truncation — Type
I and Type II. A test may be truncated at a preselected point
in time or after a predetermined number of item failures. If
the test is to be terminated after a fixed time interval, the
test duration is known (and therefore limited) in advance, but
the number of device failures that will be observed is a ran-
dom variable. This is Type I test truncation, and the data set
that results is said to be a Type I censored data set. On the
other hand, truncation after a fixed number of failures yields
a Type II censored data set, in which the number of data
values is known in advance, but the test duration is random.
In many cases, the distinction is not crucial, but for some
statistical estimation methods, the difference between the two
types of censoring is important. When a life test is not trun-
cated, it is said to be a complete test, and the data set obtained
is said to be a complete data set.

Now that our notation is established, and the basic
classes of data sets that might be used are defined, we may
examine the methods of analysis. To start, we consider only
those cases in which a complete data set is available.

7.2 ESTIMATES BASED ON ORDER STATISTICS

A direct method for treating failure data is to use the number
of observed failures or the number of surviving devices at any
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time to estimate the failure or survival probability. It seems
intuitively reasonable to define a point estimate for the failure
probability at any test time to be the ratio of the number of
observed failures to the number of items on test. Similarly,
the survivor probability can be estimated by the complement
of the failure probability. That is, for any time ¢

E={j|x,<t, x;, >t) (7.2)

[N

where the caret, above a quantity indicates an estimate.
Now, while these expressions seem intuitively logical, they
can be shown to be based on statistical reasoning and to be
one of two reasonable forms.

Assume an arbitrary time interval, say (¢, ¢ + AT) and
let p; denote the probability that the j* device failure observed
occurs during that interval. In principle, any of the failures
could occur during that interval so the probability that it is
the j* failure is a probability on the index of the failure time
that happens to be the one in the interval of interest. Next,
we ask how it could occur that the j* failure would fall in the
selected interval and the answer is that:

1. Each of the preceding j — 1 failures would have to
occur before the start of the interval, and this occurs
with probability F(¢) for each one.

2. Each of the succeeding n —j failures must occur after
the end of the interval, and this happens with prob-
ability F,(¢+ At) for each one.

3. The j* failure must fall within the interval, and this
happens with probability dF(¢).

4. The number of ways the n copies of the device put on
test can be separated into sets of j — 1,1, and n —j is
given by the multinomial coefficient. Therefore

n!

:(J__1)!(1)'!(n_j)!(FT(t))jl(fT(t)dt)(FT(t))n_j (7.3)

pj
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This is the probability on the number of the failure that
occurs during an arbitrary time interval and in the limit as
the length of the interval is reduced, it is the probability that
it is the j* failure that has occurred by time ¢. Thus, it is the
distribution on the “order statistic,” which is the count of the
number of failures. Properties of distributions on order sta-
tistics have been studied extensively. Among the results that
are known and have been found useful are the facts that the
mean of the distribution on the j* order statistic implies that,
as stated in Expression 7.2, an appropriate estimate for the
fraction failed is

=7 (7.4)
n

while the median of the distribution on the j** order statistic
implies that an appropriate estimate for the fraction failed is

j—-0.3

E.@t)=7"""°
r(@®) n+0.4

(7.5)
Although it may seem counterintuitive, both of these
estimates are reasonable, and each has advantages. The chief

advantage of the estimator based on the mean, Expression
7.4, is that it is unbiased. That is

E[F,(t)]=Fy(t)

The estimator based on the median is not unbiased, but
it has the advantage that it does not assign a value of 1.0 to
the estimate associated with the n* failure time. This is often
considered important in that one does not expect that the
greatest failure time observed during a test really corresponds
to the maximum achievable life length. In general, either of
the estimators may be used, and each is treated at various
points in the discussion of statistical methods presented here.

7.3 ESTIMATES AND CONFIDENCE INTERVALS

The estimators defined in Equations 7.4 and 7.5 are called
point estimates because they yield scalar values. From both
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a statistical and a design perspective, an interval estimate is
usually more informative, because the point estimate is
unlikely to exactly match the actual value of the estimated
quantity. A confidence interval is a range for which there is
an arbitrarily selected probability that the interval contains
the true value of the estimated quantity. The construction of
confidence intervals starts with the estimators and is
described below.

It is also the case that the estimators defined in Expres-
sions 7.4 and 7.5 may be viewed and analyzed in two related
but rather different ways. Specifically, one may base the com-
putation of the estimate of the reliability (or failure probabil-
ity) on the number of survivors (or observed failures) or on
the proportion of the test items that have survived (or failed).
Consider first the use of the number of survivors.

The number of survivors at the end of a fixed time inter-
val is a random variable for which the dispersion is best
modeled using the binomial distribution. That is, survival of
each copy of the component may be viewed as a Bernoulli
trial, so that the quantity n — j has a binomial distribution
with success probability F;(¢). In this case

Eln- jl=nF;(t)
and
Varln - jl=nF;(t)(1- F; (1)) (7.6)

so the corresponding moments for the reliability are

E[n;*]}:FT(t)

and

(7.7)

n_j:|: Fr(t)(1-Fr(2))
n

Var [

n

In general, when the sample size is large (or at least not
too small) and the success probability is not too close to 0 or
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to 1, a confidence interval for the binomial parameter may be
computed using the standard normal distribution. For an
arbitrarily selected confidence level of 100(1 — )%, a confi-
dence interval of

R i’T(t)(l—ﬁT(t)) o
Fr(t)+2, . <F ()< Fp(t)
(7.8)
FT(t)(1—FT(t))
+217% "

is valid asymptotically. Note that a table of standard Normal
probabilities is provided in Appendix A along with numerical
approximation strategies for Normal probabilities.

Consider an example. For the ordered data set provided
in Table 7.2, the point estimates of the failure probability and
of the reliability at ¢ = 0.5 time units are

Fp05)="= 15 030 If‘T(o.5) =1-F,(0.5)=0.70
n 50
. j-0.3 147 ~ _
F.(0.5)= =—=1-0.292 F.(0.5)=1-F.(0.5)=0.708
7(0.5) n+04 504 r(0.5) 7(0.5)

Taking o = 0.05, so that z,, =-1.96, the first of the
estimates provides the confidence interval

0.573 < F;(0.5)<0.827

and the second one yields

0.582 < F.(0.5) < 0.834

A reasonably comparable but more involved estimate and
confidence interval may be defined using the proportion of
test items that have failed by any time. In general, the fraction
failed, say u = F(t), is best represented by the beta distribu-
tion for which the density function is



Nonparametric Statistical Methods 113

£, 8) = I'm+d6+2)

ne_ )
T T+ DrGen Y Lmwrdu (7.9)

In fact, this beta distribution form also follows directly
from the distribution on the order statistics stated in Expres-
sion 7.3. With the definition u = F, () and the parameter
identities of 1 = j—1 and 6 = n—j, replacing f,(¢)dt by du yields
Expression 7.9. Keep in mind that the proportion u must be
in the interval (0, 1).

The point estimate of Expression 7.4 is an appropriate
estimate for the fraction failed by time ¢, so a confidence bound
on that estimate is obtained using the quantiles of the beta
distribution. For integer values of the parameters, the distri-
bution function for the beta distribution can be obtained by
successive integration by parts and is

I'm+d6+2)

kl_ n+d—-k+1 1
r(k+1)r(n+5—k+2)u( u) (7.10)

.
Fy(u,m, 9)=1-)
k=0

Then, a 100(1 — o)% confidence interval on the failure
probability at the time of the j* observed failure is

ulower S FT(t) S uupper (7.11)
where u,,,,, is the solution to the equation
FU(ulowem .j_]-?n_.j):% (712)
and u,,,,, is the solution to the equation
FU(ulower’ j7n_j_1)=1_% (713)

Clearly, these confidence limits must be computed
numerically, but the effort required to do this is not great.
For the same example case as the one treated above in which
n=50andj=15at¢ = 0.5, the point estimate for F;(0.5) is still

A J 15
F,(05)=*==—=0.30
r05)=0 =50
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The corresponding 95% confidence interval is

0.175 < F,.(0.5) < 0.431

and for the reliability, this interval corresponds to

0.569 < F.(0.5) < 0.825

It is appropriate to reiterate the point that the above
estimates and confidence intervals do not depend upon any
assumed form for the life distribution. They apply to any set
of test data, provided the data set is complete.

7.4 TOLERANCE BOUNDS

Returning to the beta density of Expression 7.9 for the pro-
portion failed, let 1, represent the time at which the true
cumulative failure probability is y. That is

Fr(t,)=v (7.14)

Note that when 7 is relatively small, the corresponding
survival probability is 1 - v, and the quantity 1, is called the
“reliable life.” For example, 1, is the age beyond which 99%
of the population will fail. It is the time for which the reli-
ability is 0.99. Similarly, 7, ;, is the age for which the reliabil-
ity is 0.90. In an effort to standardize design practices and
reliability demonstration for new component designs, the U.S.
Air Force has identified, in its design guide [40], the 95%
confidence limit on 7,,, as a “Type A design allowable” and
the 95% confidence limit on 1,,, as a “Type B design allow-
able.” The determination of these quantities is an important
aspect of verifying the reliability of devices that are being
proposed for Air Force use. In statistical terminology, these
quantities are known as tolerance bounds.

The construction of tolerance bounds using test data is
based on the distribution of order statistics and, hence, the
beta density and distribution discussed above. To start, we
consider the j* failure time x;, and as before we let
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Then for an arbitrarily selected value of y, we wish to
have a confidence level of 100(1 — a)% that 1, exceeds x,. That
is, we wish to have

Pr[tY ij]zl—oc

in which case, we will have 100(1 — )% confidence that the
reliability at x; is at least y. Using our established definitions,
this means that the cumulative probability of failure at x; is
smaller than that at 1, so

Prlt, >x;]=Pr[Fy(x,) < Fy(t,)] = Prlu < Fy(t,)]
(7.15a)
= Fy(Fp(t), j-1,n-j)21-a

Now, examining the beta distribution on a proportion u
for the specific case of our test results, we find that:

j-1
FU(uaj_]-,n_.j):]-_ (H’Juk(l_u)n—k
kz; k (7.15b)

=1-B(j-1,n,u)

where the notation B(k, n, p) represents the cumulative bino-
mial probability. Substituting this identity back into Equation
7.15a yields:

Prit, >x;1=1- B(j -1, n, F;(1,)

(7.15¢)
=1-B(j-1,n,7)21-«
so equivalently, the tolerance bound is defined by
B(j-1,n,y)<a (7.15d)

Now, there are several ways in which we can use this
result.

First, consider the cases associated with j = 1. For this
case, Expressions 7.15b and 7.15d simplify to
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Fyw,,n-D=1-0-u)"=1-1-vy)" >1-0

so we find that for the example data set of Table 7.2, using o
= 0.05 and n = 50, we compute y = 0.058, and we say that we
have 95% confidence that the reliability of the component
population is at least 1 — y = 0.942 at a time of x; = 0.006.

An alternate use of Expression 7.15d is to ask how many
items we should have tested in order for x; to correspond to
a Type A design allowable. To answer this question, we set o
= 0.05 and y = 0.10, and we compute n to be 29. For the
corresponding case of the Type B design allowable, y = 0.10
and n = 298.

Next, for other values of j, we might compute the reli-
ability at the time of the 15th failure for which we have 95%
confidence. To do this we solve Expression 7.15d for the small-
est value of y for which the expression holds. That value is y
= 0.403, so the reliability value we seek is 0.597, and we can
say that

PrlF, (¢ = x,; = 0.465) > 0.597] > 0.95

Yet another possible computation would be to ask what
level of confidence do we have that say F (¢ = x,, = 0.223) > 0.75?
The answer is

Pr(Fy(t = x,, = 0.223) > 0.75] > 0.738

Thus, using Expression 7.15d, we can calculate nearly
any sort of tolerance bound we need, and we can also calculate
the sample size required to obtain any specific level of confi-
dence for any desired level of reliability.

7.5 TTT TRANSFORMS

A rather powerful nonparametric method for simply deter-
mining the behavior of the hazard function has been devel-
oped by Barlow and Campo [41] and explained very effectively
by Klefsjo [42]. The method is known as the Total Time on
Test (or TTT) transform. It has the appeal that, after some
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theoretical development, we obtain a simple graphical test.
The underlying idea is that, for any life distribution (having
finite mean), the relationship between the mean and the haz-
ard function may be exploited to characterize the behavior of
the distribution. In addition, the characterization can be per-
formed for an empirical representation of the life distribution
based on test data.

7.5.1 Theoretical Construction

In order to understand the behavior that is to be exploited,
assume that a population of devices has a life distribution
F,(t). Then, for any cumulative failure probability, say u, the
inverse of the distribution function is denoted by F;'(z) and
represents the time for which the cumulative probability of
failure is u. Formally

F7'(w) = minft | Fy(¢) > u) (7.16)

For example, if a population of devices has an exponential
life distribution with A = 0.84, then F;(0.75) = 0.467, and
F;'(0.467)=0.75. Now, using this notation, we have

Defn. 7.1: The Total Time on Test (TTT) transform of a
life distribution having finite mean, u, is denoted by
H Ffl(u) and is expressed as

Frlw) _
H,.()= JO Fy(w)dw (7.17)

Continuing with the above example of the exponential
life distribution, the TTT transform value at u = 0.467 is

Fl(u=0467) 0.75
HFfl (u=0.467)= J. Fr(w)dw = e M dw

0 0

_(t-eo® % = 0467/ = 0,556



118 Nachlas

The TTT transform has two useful and important prop-
erties that will lead us to a method for characterizing the
behavior of a life distribution. The first is that it yields the
mean when evaluated at u = 1.0. That is,

Filu=10) o _
H,.(w=10)= J'O By (w)dw = _[0 Fo(w)dw =y (7.18)

To clarify, note that the time at which the life distribution
has value 1.0 is infinity (or some very large maximum value),
and the integral of the survivor function over the full range
of any random variable yields the mean value of that random
variable.

The second useful property of the transform is that its
derivative, when evaluated at any value of the cumulative
failure probability, equals the reciprocal of the corresponding
value of the hazard function. This is shown as follows:

d _d e
S Hp =2 | Frwdw
d ~ - ~ d - Frl(u) d —
:[du FTl(u)](FT(FTl(u)))—[CwOJ(FT(O))+ jo - Frwdw

Now, clearly the second and third terms of this derivative
equals zero. For the first term of the derivative, we observe
that in the expression

Fp(Fp'(w)

F;'(u) is the time for which the cumulative failure prob-
ability equals u, so evaluating the survivor function at that
value yields 1 — u. That is,

Fp(F'w)=1-u

To evaluate the derivative of the inverse function, we
proceed as follows:
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t=F;"(u)
)
dt d
=~ _ T F
du du " (@)
Then
da _ 1/ _ 1 _1
du _/du_/dp (t)_%(t)
dt de "
and therefore,
d 1
ZFN )=
a T Ew)

Combining our two results and evaluating the derivative
at the cumulative failure probability associated with any time
yields

d 1-u F@ 1

—H (u)=———— = = 7.19
T Y T R

du

where the time indicated is that for which #=F;'(w).

The algebraic representations of the two properties of
the TTT transform are combined below to obtain a character-
ization of the life distribution, but first we can scale the
transform to make the ultimate test data analysis as generic
as possible. We formally define a scaled TTT transform as:

Dejfn. 7.2: The scaled Total Time on Test (TTT) transform
of a life distribution having finite mean, L, is denoted by
@FT,l(u) and is expressed as:

H_,(u) H_,(uw)
O (=" / _ / (7.20)
Fr HFT_I(l) u
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Now, clearly the derivative of the scaled transform equals
the derivative of the transform divided by the scaling con-
stant, i. Thus,

du

d
HFT-l(u)] 1 a
2 ®FT1<u>=[d” ; AT“ST @ (721)

Consider what the derivative of the scaled transform tells
us. Suppose the life distribution happens to be exponential.
In that case, z((¢) = A, and p = 1/A. Thus, at all values of «,
the derivative of the scaled transform is

du

?
A

When the life distribution has constant hazard, the
scaled TTT transform has a slope equal to one. In that case,
the scaled transform plots as a straight line. Suppose the

hazard is not constant. For the Weibull distribution, the mean
is 8 T(1 + 1/B), and the hazard function is

B-1
()

For B > 1, the hazard function is increasing in time, and
the scaled TTT transform displays the form shown in Figure
7.1a. Similarly, for B < 1, the scaled transform has the form
shown in Figure 7.1b, as this is indicative of a distribution
with decreasing hazard function. Thus, we have the very
powerful result that the scaled transform is concave for
increasing hazard, a straight line for constant hazard, and
convex for decreasing hazard distributions.

1
d @FT,l(u)= A :1

7.5.2 Application to Complete Data Sets

The application of our understanding of the behavior of the
scaled TTT transform is to plot the transform values computed
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() TTT
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Figure 7.1 (a) TTT transform for increasing hazard functions. (b)
TTT transform for decreasing hazard functions.

from test data to determine the likely form of the hazard
function for the device being tested. To construct the applica-
tion, we first define the quantities 1(x,) as

J
r(xj)=2xk+(n—j)xj (7.22)
k=1
where the x; are our ordered failure times, so 1(x)) is the total

amount of testing time that is accumulated by the time of the
J failure. This may be seen as follows:
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during the  the number of items so the test time
interval on test is accrued is
(0, x,) n n x
(x5, x5) n-1 (n-1) (xy—2x;)
(g, 25) n-2 (n —2) (x3—2x,)
[ ] [ ] [ ]
[ ] [ ] [ ]
° (]
(x; 5 x;) n-j+1 (n—j+1) (x;—x; )
[ ] [ ] [ ]
[ [ ] [ J
° [ ]
(‘xn—b xn) 1 (xn_xn—l)

Taking the sum after any failure time, one has:

J
)= (n-k+ 1w, — 2,

k=1

and this reduces to the form shown in Equation 7.22.

To apply the TTT transform to test data, we first con-
struct the empirical life distribution corresponding to the test
observations. For a sample of n items placed on test, let Fy (¢)
represent the empirical life distribution. Thus,

p—d

Fy ()=

0

0<t<x

X ST <Xy

(7.23)

Given this definition, the inverse function is defined by

F}}i(u):min{xj | Fx (x;)>u}

(7.24)
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which is the smallest failure time with estimated cumulative
probability equal to or greater than u. For example, for the
data set shown in Table 7.2, we have

0 0<¢<0.006
0.02 0.006<¢<0.019
0.04 0.019<t<0.026

0.06 0.026<t<0.038
FXn (t) = . .

0.98 4.631<t<5.292
1.00 5.292<t <00

A few values of the corresponding inverse function are
Fx'(0.04)=0.019, Fx'(0.30)=0.465, and Fx'(0.99)=4.631. For
the same data set, note that t(x;) = 50(0.006) = 0.30, t(x,) =
50(0.006) + 49(0.013) = 0.937, and t(x5) = 50(0.006) + 49(0.013)
+ 48(0.007) = 1.273.

The use of the TTT transform to analyze test data pro-
ceeds by applying the transform to Fy (¢) in the same manner
as for F(t). That is,

(w) _
H,w=|" Fywdw (7.25)
Xn 0 "

However, recognizing that Fy (¢) is a step function, the

integral may be expressed as a sum. Consider the transform
evaluated at u = j/n.

Fl(/) _[ V' By (widw= j e (wdw

PC AN FLOL
J jo (w)dw+---+J. By (w)dw
Pt () FLTY T
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=J lﬁdw+J' Zn—ldw+...+J’ Inoj+l

o n x N j-1 n

n

1 (nx1 +(n—1(xy — 1)+ (n— 2)(x4 —x2)J

+ot(n— j+1x; —x; )

1
=;’C(xj)

Thus, the TTT transform applied to the test data reduces
to the sum of test times — the total testing time — defined
in Equation 7.22. In addition, in the limit, the empirical trans-
form corresponds to the theoretical transform for the under-
lying life distribution. That is

hnolo H ,1( )— 1111010 F (w)dw
4%8 /4)3

Fr(s)

- C Frwidw=Hy, ()

so the transform based on the empirical distribution is rep-
resentative of the transform for the actual life distribution.
Consequently, we can use the TTT transform obtained from
the data to characterize the underlying life distribution. We
actually use the scaled TTT transform. For the test data, the
above limit also applies to the case of s = 1, so the scaling
constant is t(x,). Thus, the scaled transform is

/o1
., H,, (/) “1(x;)
J e /n’ o T /
L T, ey T
n n n

The application to sample data is implied by the above
discussion, and the result is that the quantities t(x;) and 1(x,)
are computed, and their ratio is plotted against j/n. If the
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Table 7.3 Empirical Values of the Scaled TTT Transform

X Jjin O(x) X Jjin O(x)) X; Jjin O(x))

J J J

0.006 0.02 0.0046 0.613 0.36 0.3665 1.555 0.70 0.6951
0.019 0.04 0.0143 0.615 0.38 0.3674 1559 0.72 0.6960
0.026 0.06 0.0194 0.658 0.40 0.3878 1.690 0.74 0.7240
0.038 0.08 0.0281 0.720 0.42 0.4162 1803 0.76 0.7464
0.056 0.10 0.0407 0.783 0.44 0.4441 1943 0.78 0.7721
0.068 0.12 0.0489 0.795 0.46 0.4492 2.008 0.80 0.7830
0.090 0.14 0.0637 0.829 0.48 0.4633 2.190 0.82 0.8108
0.129 0.16 0.0893 0.875 0.50 0.4815 2.505 0.84 0.8541
0.129 0.18 0.0893 0.883 0.52 0.4846 2.887 0.86 0.8947
0.223 0.20 0.1482 0.894 054 0.4886 3.085 0.88 0.9212
0.279 0.22 0.1824 1.016 056 0.5315 3.106 090 0.9231
0.299 0.24 0.1943 1218 0.58 0.5993 3.354 0.92 0.9420
0.336 0.26 0.2158 1.272 0.60 0.6167 3.503 0.94 0.9511
0.455 0.28 0.2831 1.285 0.62 0.6206 3.785 0.96 0.9641
0.465 0.30 0.2886 1.373 0.64 0.6462 4.631 0.98 0.9899
0.548 032 03329 1494 066 0.6794 5292 1.00 1.00
0.599 0.34 0.3594 1541 0.68 0.6916

result is approximately a 45° line, one concludes that the life
distribution is constant hazard. On the other hand, if the plot
is concave and lies mostly above the 45° line, one concludes
that the life distribution is IFR, and if the plot is convex and
lies below the 45° line, one concludes that the life distribution
is DFR.

Consider the example provided by the data of Table 7.2.
The computed values of the scaled transform are shown in
Table 7.3. Figure 7.2 shows the plot of the values in the table.
Note that the points appear to resemble a 45° line. In fact,
the plot seems to cross the 45° line several times and to
generally lie close to it. An examination of the values in the
table confirms this. It seems reasonable to conclude that the
test data corresponds to a constant hazard life distribution.

In order to illustrate the contrasting behavior to constant
hazard, consider the set of ordered test data in Table 7.4.

For this data, set the values of the scaled transform are
listed in Table 7.5. The corresponding scaled TTT plot for the
data is shown in Figure 7.3. Note that, except for some crossing
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Figure 7.2 Plot of scaled TTT transform.

Table 7.4 Example Life Test Data Set

J X J X; J Xj J X J X;
1 0023 11 0303 21 0511 31 0.754 41 1.224
2 0025 12 0370 22 0.522 32 0.767 42 1.252
3 0081 13 0371 23 0532 33 0.795 43 1.344
4 0110 14 0373 24 0571 34 0.802 44 1378
5 018 15 0394 25 0579 35 0.873 45 1562
6 0226 16 0400 26 0.596 36 0.884 46 1.580
7 0230 17 0412 27 0.605 37 0936 47 1.653
8§ 0278 18 0435 28 0.627 38 0993 48 1.659
9 0278 19 0449 29 0.673 39 1.001 49 1.764
10 0.287 20 0494 30 0.7583 40 1.087 50 2.520

Nachlas

near zero and near 1.0, the entire plot lies above the 45° line.
The appropriate interpretation is that the devices that produced
the test data appear to display increasing hazard. The observed
behavior is confirmed by an inspection of the transform values,
which lie well above the corresponding values of j/n.

Both of the data analyses displayed so far used the entire
complete data set. As discussed earlier, it is often impractical
to run a test until all test units have failed. When the test is
terminated early and a censored data set is obtained, it is
still possible to use the TTT transform. The adjustments nec-
essary to do this are treated in the following section.
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Table 7.5 Empirical Values of the Scaled TTT Transform
X Jjin O(x) X; jin O(x) X Jjin O(x)

J J J

0.023 0.02 0.0315 0435 036 0.5121 0.873 0.70 0.7880
0.025 0.04 0.0342 0449 038 0.5243 0.884 0.72 0.7925
0.081 0.06 0.1078 0494 040 0.5625 0936 0.74 0.8125
0.110 0.08 0.1451 0.511 0.42 0.5765 0.993 0.76 0.8328
0.185 0.10 0.2396 0.522 0.44 0.5852 1.001 0.78 0.8354
0.226 0.12 0.2901 0.532 046 0.5929 1.087 080 0.8613
0.230 0.14 0.2949 0571 048 0.6217 1224 0.82 0.8988
0.278 0.16 0.3514 0.579 050 0.6274 1252 0.84 0.9057
0.278 0.18 0.3514 0.596 0.52 0.6391 1344 0.86 0.9259
0.287 0.20 0.3615 0.605 0.54 0.6450 1.378 0.88 0.9324
0.303 0.22 0.3790 0.627 0.56 0.6588 1.562 0.90 0.9626
0.370 0.24 0.4506 0.673 0.58 0.6865 1.580 0.92 0.9651
0.371 0.26 0.4516 0.753 0.60 0.7325 1.653 0.94 0.9731
0.373 0.28 0.4537 0.754 0.62 0.7331 1.659 0.96 0.9735
0.394 0.30 04744 0.767 064 0.7398 1.764 0.98 0.9793
0.400 0.32 0.4801 0.795 0.66 0.7536 2.520 1.00 1.00
0.412 0.34 0.4913 0.802 0.68 0.7569

TTT

0.2 0.4 0.6 0.8 1"
Figure 7.3 Plot of scaled TTT transform for an IFR distribution.

7.5.3 Application to Censored Data Sets

Suppose a life test has been performed on a sample of n = 50
items, and that the test was terminated early, so that r of the
n items were observed to fail and n — r had not yet failed. For
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Table 7.6 Empirical Values of the
Scaled TTT Transform for Censored
Data Sets

r = 12 r= 20
X; jir O(x)) Jir O(x;)

J

0.006 0.083 0.0236 0.05 0.0118
0.019 0.167 0.0736 0.10 0.0369
0.026 0.250 0.1000 0.15 0.0501
0.038 0.333 0.1444 0.20 0.0723
0.056 0.417 0.2094 0.25 0.1050
0.068 0.500 0.2519 0.30 0.1262
0.090 0.583 0.3280 0.35 0.1643
0.129 0.667 0.4598 0.40 0.2304
0.129 0.750 0.4598 0.45 0.2304
0.223 0.833 0.7627 0.50 0.3822
0.279 0917 0.9387 0.55 0.4704
0.299 1.00 1.00 0.60 0.5011

0.336 0.65 0.5565
0.455 0.70  0.7299
0.465 0.75 0.7441
0.548 0.80 0.8585
0.599 0.85 0.9268
0.613 0.90 0.9450
0.615 0.95 0.9475
0.658 1.00 1.00

purposes of illustration, assume that only the first r data
values of Table 7.2 had been recorded. In that case, the total
observed test time is

t(x,) = Zxk +(n—jx, (7.27)
k=1

For the censored data set, this quantity is used in place
of 1(x,) as the scaling constant, and the scaled transform is

defined as
lI(x )
J' _ J _"c(x.)
O )= = %x,) (7.28)

—1(x,)
n
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Figure 7.4 (a) Plot of scaled TTT transform for censored data with
r =12, (b) Plot of scaled TTT transform for censored data with r = 20.

and this quantity is plotted vs. j/r. For the example data set
of Table 7.2, the computed values for r = 12 and for r = 20
are listed in Table 7.6. The corresponding plots of the scaled
transform are shown in Figure 7.4a and Figure 7.4b, respec-
tively. These plots serve to illustrate the facts that the trans-
form may be applied to censored data and that our ability to
interpret the plots is significantly influenced by the degree of
censoring. For the case in which r = 20, we can be reasonably
confident that the hazard is constant. For the plot correspond-
ing to the data censored after r = 12 observations, our con-
clusion of constant hazard is rather more tenuous.
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Table 7.7 Empirical Values of the
Scaled TTT Transform for Censored
Data from an IFR Distribution

r = 12 r= 20
x; Jjir O(x;) jir O(x;)

J

0.023 0.083 0.0699 0.05 0.0560
0.025 0.167 0.0759 0.10 0.0608
0.081 0.250 0.2392 0.15 0.1916
0.110 0.333 0.3220 0.20 0.2580
0.185 0.417 0.5317 0.25 0.4260
0.226 0.500 0.6438 0.30 0.5157
0.230 0.583 0.6545 0.35 0.5243
0.278 0.667 0.7798 0.40 0.6247
0.278 0.750 0.7798 0.45 0.6247
0.287 0.833 0.8023 0.50 0.6427
0.303 0.917 0.8411 0.55 0.6738
0.370 1.00 1.00 0.60 0.8011

0.371 0.65 0.8028
0.373 0.70  0.8066
0.394 0.75 0.8434
0.400 0.80 0.8535
0.412 0.85 0.8734
0.435 0.90 0.9104
0.449 0.95 0.9321
0.494 1.00 1.00

Once again, to provide a contrast to the constant hazard
case, consider the data from an IFR distribution that is listed
in Table 7.4. If that data had been generated in a test with
censoring either at r = 12 or r = 20, the corresponding data
values would have been those shown in Table 7.7, and the
corresponding plots of the scaled transforms would have been
those shown in Figure 7.5a and Figure 7.5b. Here again, it is
clear that the degree of censoring affects the confidence we
have in our interpretations of the plots.

In closing this discussion, it should now be reasonably
clear that the TTT transform provides a method that is very
simple to perform for characterizing the hazard behavior of
a device population.
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Figure 7.5 (a) Plot of scaled TTT transform for censored data with
r =12. (b) Plot of scaled TTT transform for censored data with r = 20.

It should also be apparent that nonparametric methods
can provide us with substantial information concerning the
reliability of a device design without requiring us to assume an
underlying distribution model of the dispersion in failure times.
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7.6 EXERCISES

1. The following data set was obtained from a life test
of n = 50 copies of a component.

i t, i t, i t, i t, i t,
1 551.881 11  297.883 21 122750 31 539.933 41  141.582
2 964448 12 78.966 22 119.677 32 175.578 42 329.841
3 687.943 13 526061 23 568533 33 465506 43 570.971
4 206215 14 558.106 24 453.852 34 208.198 44  929.433
5 844.059 15  484.969 25 267.140 35 326.713 45  67.964
6 439.283 16 282.293 26 128.874 36 154.290 46 294.060
7 170110 17  589.303 27 675.259 37 703458 47  23.774
8 273522 18 1032.227 28 347.812 38 327.022 48 295.930
9 475883 19 726202 29 283.398 39 511423 49 514.202

10 255.646 20 573.447 30 357552 40 560.902 50 251.874

For this data, identify the values of x,, x5, x,,, and x5,

2. For the data set of Problem 1, compute the point
estimates of the reliability at x,, x5, x,, and x5, with
both the mean and the median based estimation
equations. How do these estimates compare?

3. Using the data in Problem 1, compute 95% confidence
intervals for the failure probability at each of x;, x;,
X179, and x5, using each of Expressions 7.8 and 7.11.
How do these intervals compare?

4. Using the data of Problem 1, compute a 95% tolerance
bound on the reliability at x,, and x,5;. Then compute
the level of confidence the data provides that the
reliability at x,, exceeds 0.55.

5. For the following data set obtained from a life test,
order the data, and then plot the TTT transform.
Indicate what form of the hazard function is sug-
gested by the plot.
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i t, i t, i t, i t,

t.

i

~.

635.655 11 456.731 21 335464 31 282.015 41 170.998
369.012 12 459482 22 100.790 32 172954 42  465.023
312.489 13 420944 23 453,539 33 216.222 43  254.582
196.092 14 306.064 24 82.843 34 204.064 44 319.789
72.393 15 216330 25 356.0563 35 228.195 45 285.048
22.150 16 180.638 26 255.021 36 528971 46 307.34
302.257 17 137.704 27 302217 37 270.25 47  318.541
114434 18 159.855 28 181.568 38 117.524 48 242.783
68.381 19 231442 29 93.694 39 70.280 49  458.005
200.899 20 203.094 30 314.594 40 93.161 50  130.900

O OO0 IO U W

—

6. For the data set of Problem 5, assume that because
of test termination, only the earliest 16 data values
are available. Construct the plot of the TTT transform
for the resulting censored data set.

7. For the data set of Problem 5, assume that because
of test termination, only the earliest 25 data values
are available. Construct the plot of the TTT transform
for the resulting censored data set.

8. Use the complete set of the following life test data to
construct a plot of the TTT transform and indicate
what type of behavior the hazard function appears

to have.

i t, i t, i t, i t,

1 29835 11 1048.13 21  126.097 31 154.884
2 1262.860 12  641.953 22  434.761 32 103.444
3 804.623 13  762.882 23  170.046 33 176.225
4 691.363 14  206.062 24 1880.470 34 252.424
5 654951 15 593.040 25 1058.727 35 333.961
6  409.087 16 224793 26 957271 36 1989.75
7 1615.690 17  203.809 27 2.970 37 1646.63
8  470.408 18  309.879 28 75.239 38 344.135
9 918823 19 3094.740 29  346.605 39  48.831
10 68.348 20 55.854 30  801.645 40 131.215
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9.

10.

Nachlas

For the data set of Problem 8, assume that because
of test termination, only the earliest 12 data values
are available. Construct the plot of the TTT transform
for the resulting censored data set.

For the data set of Problem 8, assume that, because
of test termination, only the earliest 20 data values
are available. Construct the plot of the TTT transform
for the resulting censored data set.



Parametric Statistical Methods

Parametric statistical methods for analyzing reliability data
start with an assumption of the form of the life distribution.
Usually, the choice of a distribution model is based on expe-
rience with similar types of devices or an understanding of
the phenomena that determine item failure. In some cases, a
general model such as the Weibull or Gamma is assumed,
because the availability of two distribution parameters makes
it likely that a reasonable representation of the failure prob-
abilities will be obtained.

Once a life distribution is assumed, the statistical meth-
ods are used to obtain estimates for the parameters of those
distributions — hence the terminology parametric methods.
There are a large number of parametric reliability estimation
methods. Only the principal methods are presented here. As
each of the methods is discussed, it is illustrated by applica-
tion to various life distributions with particular emphasis on
the Weibull and exponential life distributions. The three prin-
cipal methods that are discussed here are (1) the graphical
method, (2) the method of moments, and (3) the likelihood
method. Whenever necessary, the notational conventions dis-
cussed at the start of the last chapter are used here as well.

135
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8.1 GRAPHICAL METHODS

Most of the graphical methods are based on the general rela-
tionship between the cumulative hazard function and the
reliability function. As we know,

Fp(t)=e 2 (8.1)

so consequently,

If test data is used to compute estimated values of the
reliability and these estimates are plotted as a function of
time, the resulting graph will provide estimated values for
the distribution parameters that form the hazard function.

To be more specific, assume the life lengths of a popula-
tion of components are believed to be well represented by an
exponential distribution. The realization of Equation 8.2 for
the exponential is

1
InFyp(t)

=—InF,(¢) =\t (8.3)

which is the equation for a line. Hence, if we represent our
successive reliability estimates by

(8.4)

then a plot of y; versus x; should be a line with slope of A. Of
course, while we can physically plot the observed data, we
would be more likely to use linear regression to determine
the line that best fits the data.
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Table 8.1 Example Ordered Failure Data

jox  =jph oy I e LU
1 4.740 0.950 0.051 11 128.756 0.450 0.799
2 12.636 0.900 0.105 12 150.393 0.400 0.916
3 17.358 0.850 0.163 13 168.101 0.350 1.050
4 22.099 0.800 0.223 14 194.277 0.300 1.204
5 29.085 0.750 0.288 15 238.897 0.250 1.386
6 32.732 0.700 0.357 16 303.383 0.200 1.609
7 41.725 0.650 0.431 17 340.621 0.150 1.897
8 57518 0.600 0.511 18 382.142 0.100 2.303
9 62.864 0.550 0.598 19 492.023 0.050 2.996
10 65.288 0.500 0.693 20 544.017 0.0
y
3F .
25 ¢
2F .
L]
1.5 F .
1t o’
L]
o5t o
v .
100 200 300 400 500

Figure 8.1 Example failure data plot.

braic expression for the slope is

137

Consider an example. Suppose 20 copies of a component
are placed on test and their ordered failure times are those
listed in Table 8.1. Suppose further that we calculate the
corresponding values of the y,, which are also shown in the
table. Then the actual plot of the data is shown in Figure 8.1.
As we can see, within the variation expected in sample data,
the graph is approximately linear. Using the plot to identify
the slope and thus the estimated value of A is not particularly
precise, but a reasonable choice of value appears to be
A = 0.0058. If we compute the actual regression line, the alge-



138 Nachlas

A= 7t =1 =L (8.5)

This equation gives A=0.0055 as the estimate. As a point of
information, the example data was generated using a value
of A = 0.005.

Before we leave this example, note that we did not
include an estimate of the reliability for the last of the
observed failure times. This is because we the used mean
order statistic-based estimation (Equation 7.4):

Frt)="

n
and in this case, —In F.(¢) is undefined, as the reliability esti-
mate is zero. If we had used the equation based on the median
of the distribution on order statistics — Equation 7.5 — we
would have been able to include the final data value in our

calculations.

The application of Equation 8.2 to the Weibull distribu-
tion proceeds in a comparably direct manner. First, we obtain

_InF, ()= (%)B

and taking the logarithm again yields

In(-InF;(¢))=Blnt—Bn6 (8.6)

which is again the slope of a line. In this case, the intercept
is nonzero. We again represent the dependent variable, which
is the estimated reliability at each failure time, by y;, and the
result is a data set such as the example set shown in Table
8.2. Note that the values of the y; listed in the table are
computed using Equation 7.5:
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Table 8.2 Example Weibull Failure Data

J x; In(x,) Fr@) Y J x; In(x) Fr(®) ¥;

1 390.896 5.968 0.962 -3.246 14 932.309 6.838 0.450 -0.225
2 509.925 6.234 0.922 -2.517 15 957.288 6.864 0.411 -0.116
3 540.671 6.293 0.883 -2.085 16 984.191 6.892 0.371 -0.009
4 594.520 6.388 0.844 -1.772 17 1003.160 6.911 0.332 0.098
5 621.604 6.432 0.804 -1.524 18 1018.753 6.926 0.293 0.206
6 626.117 6.440 0.765 -1.317 19 1030.576 6.938 0.253 0.318
7 679.096 6.521 0.726 -1.137 20 1082.845 6.987 0.214 0.434
8 664.210 6.499 0.686 —0.977 21 1222.792 7.109 0.174 0.558
9 710.355 6.566 0.647 -0.831 22 1279.176 7.154 0.135 0.694
10 714.938 6.572 0.607 -0.696 23 1285.361 7.159 0.096 0.853
11 746.485 6.615 0.568 -0.570 24 1392.606 7.239 0.056 1.057
12 763.342 6.638 0.529 -0.451 25 1577.441 7.364 0.017 1.406
13 775.172 6.653 0.489 -0.336

6.2 6.4 6.6. 6.8 7 7.2

Figure 8.2 Plot of logarithms of Weibull failure data.

j—0.3
n+0.4

so all of the data may be included in our analysis. The inde-
pendent variable in this case is the logarithm of the failure
time as specified in Equation 8.6. The plot of the data is shown
in Figure 8.2. Clearly, using the plot to obtain parameter
estimates would be quite difficult for this case. Instead of

F(t)=
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trying to judge the behavior of the plot, we use the regression
analysis equations to calculate our estimates.

The slope and intercept of a line fit to this type of data
are given by Equations 8.7 and 8.8. For the data listed in
Table 8.2, the computed value of the slope is 3.251, and that
for the intercept is —22.358. Now, inverting Expression 8.6,
these numerical values correspond to

B=3.251
é: e—(—22.358>/ﬁ _ o22358/3251 _ 917() 576
nZyjln(xj)—{zij[Zln(xj)]
slope = —' (8.7)
2 (In(x,))” {Zln(x )]
Jj=1
[Z(mu ) J [Zln(x )J{z ¥, 1In(x; )J
=1 -1 (8.8)

intercept =
ln(x ) Lzln(x )]

Equations 8.7 and 8.8 are the standard linear regression
forms. They have a corresponding matrix form that is actually
easier to understand and use. For a general linear fit, the
data pairs, say (u;, v;), that correspond to a model:

v=a+ bu

are arranged in matrix/vector form with
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and
Ut
v=|"
Up
so that the basic model is
V=MU

with the two coordinates of the matrix M being the intercept
“a” and the slope “b.” The regression solution of this model
for a set of data is

M=[UUT'UV (8.9)
As noted above, for the Weibull distribution, this solution

corresponds to
M=\, B R
Bln6

There are three final points related to the graphical
method. The first is that the method can be applied to other
distributions. However, because most other distributions used
to model life length do not have a closed form representation
of the cumulative distribution function, estimation of the
parameters for those distributions is usually performed using
methods other than the graphical ones.

Second, if a plot of Weibull data displays curvature, par-
ticularly near the ends, this is evidence of the existence of a
third parameter, the minimum life parameter. This was the
parameter 6 in Equation 4.14. The best approach to this sit-
uation is to use a search method to identify the value of the
minimum life parameter for which the regression fit is best.
Consider the example of the data set given in Table 8.3. The
initial linear regression plot of that data, using Equations 8.7
to 8.8, is shown in Figure 8.3. Notice the decided nonlinearity
of the initial data plot and the curvature at the ends of the
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Table 8.3 Example Weibull Failure Data with Minimum Life

J % In(x) Fp(t) Y J x; In(x) Fp@) Y
1 589.614 6.379 0.966 -3.3556 11 1003.984 6.912 0475 -0.297
2 640.936 6.463 0.917 -2.442 12 1008.317 6.916 0.426 -0.160
3 670.372 6.508 0.868 -1.952 13 1030.989 6.938 0.377 -0.026
4 731.327 6.595 0.819 -1.609 14 1040.955 6.948 0.328 0.107
5 828.633 6.720 0.770 -1.340 15 1052.332 6.959 0.279 0.243
6 859.266 6.756 0.721 -1.116 16 1062.327 6.968 0.230 0.384
7 870.480 6.769 0.672 -0.921 17 1103.345 7.006 0.181 0.535
8 881.452 6.782 0.623 -0.747 18 1103.629 7.006 0.132 0.704
9 894.234 6.796 0.574 -0.587 19 1192351 7.084 0.083 0.910
10 934.200 6.840 0.525 -0.438 20 1230.343 7.115 0.034 1.216

6.4 6.5 6.6 6.7 6.8 69 7.1

Figure 8.3 Initial plot of logarithms of Weibull failure data.

plot. By successive trials using a search strategy, we find that
a value of 6 = 400.0 results in the plot shown in Figure 8.4.
Then applying the regression analysis to the data adjusted
by 8, we obtain estimates of f=2.85 and 6=606.771.
Finally, it is important to note that the graphical method
(and its regression equivalent) applies directly to censored
data. If, for example, a sample of n = 40 items are placed on
test and the test is terminated after only 18 failures, the
resulting failure times can be plotted against the correspond-
ing estimated failure probabilities, and the parameter esti-
mation equations are the slope and intercept expressions. As
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5.4 5.6 5.8 6.2 64 6.6

Figure 8.4 Revised plot of logarithms of Weibull failure data using
d = 400.0.

a further example, suppose only the first 12 of the data points
in Table 8.1 had been observed. This means that 60% of the
copies of the device on test had failed, but the total test time
would then have been around 150.393 units, rather than the
full 544.017 indicated in the table. This is a significant savings
in test time, and the resulting parameter estimate is an iden-
tical A =0.0058 to the one obtained using the full data set.

8.2 METHOD OF MOMENTS

The method of moments is actually well known and is quite
intuitive. The idea is that the sample moments are equated
to the algebraic expressions of the distribution moments, and
the resulting equations are solved for parameter estimates.
The most common realization of this idea is the use of a
sample mean to estimate a population parameter such as its
mean. Consider some specific cases.

For the exponential distribution, the population mean is
the reciprocal of the distribution parameter:

E[T]= % (8.10)

As the sample mean is a reasonable estimate for the popula-
tion mean, one may use E[t]=x, so



144 Nachlas

=1/ (8.11)

X
For the example data in Table 8.1, we obtain x =137.23 which
yields the estimate A =0.0073.

For the Weibull distribution, two equations are needed
to estimate two parameters. In principle, we could use the
mean and the variance expressions along with the sample
mean and the sample variance. However, there is a slightly
simpler approach. In general, the moments of the Weibull
distribution may be determined to be

E[Tk]=ekr(1+ % ) (8.12)
Therefore, the mean of a Weibull distribution is
E[T]:er(u%) (8.13)

and the corresponding variance is

VarlT]= EIT?]- (EIT]) = eQr(1+ % )-(er(u %)T
= e{r(u%)-ﬁ(n %)] (8.14)

Now, rather than equate the sample mean and sample vari-

ance to the distribution mean and variance, we take the coef-
ficient of variation,

Varld OZ[F(“%)_FZ(“%D

TR 92F2(1+ %)
_ F(1+%] »

1+ 1)

(8.15)
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Table 8.4
Numerical Search Values
B c
1.0 1.0
5.0 0.0525
1.5 0.4610
3.5 0.1001
3.0 0.1321
3.3 0.1113
3.2 0.1177
3.21 0.1170
3.205 0.1173
3.208 0.11712
3.209 0.11706

which contains only one of the parameters. Given a set of
failure data, we solve this expression numerically for the
estimate of , and we then use that estimate in the expression
for the mean to compute an estimate for 6.

Consider an example. The failure data in Table 8.2 has
a mean value of 884.153 and a sample variance of 91548
(standard deviation of 302.569). Thus, the sample value of the
coefficient of variation is 0.1171. A numerical search for the
value of B in Equation 8.15 that most closely matches this
value yields an estimate of =3.208. The sequence of func-
tional evaluations used to find this estimate is shown in Table
8.4. Note that only 11 trials were needed to obtain the param-
eter estimate. Once the estimate of B is obtained, we compute
the estimate of the scale parameter using the sample mean
in place of the population mean in Equation 8.13:

x 884153

F(1+%§J ra.3117)

In the case of the Normal distribution, the estimation
process using the method of moments is direct, as the
moments of the distribution are the mean and variance. Thus,

0= —987.04
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for a sample mean of ¥ and sample variance of s2, the esti-
mation equations are

(8.16)

2

=
1]
n K

The Gamma distribution may also be analyzed using the
method of moments. The approach used for the Weibull dis-
tribution is the most efficient one for the Gamma. In general,
the moments of the Gamma distribution stated in Equation
4.21 are

k-1

BIT!= H(B“) (8.17)

1=0

The application of this form yields a mean value of

E[T]= % (8.18)

and the corresponding variance is

2
Vartrl- B~ (min) = PO BB sa9)

Thus, as in the case of the Weibull, the coefficient of variation,

;Z;T] B? A (8.20)

is expressed in terms of a single parameter. To obtain esti-
mates of the parameters of a Gamma distribution using sam-
ple data, we equate the reciprocal of the sample coefficient of
variation to B and then use the resulting estimate along with
the sample mean to estimate A. For example, the life test data
in Table 8.5 was obtained during the test of a component
population for which the Gamma distribution is believed to
represent well the dispersion in life lengths. As this data dis-
plays a sample mean value of 2948.75 and a sample standard
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Table 8.5 Gamma
Distributed Life Test Data

J X J X;
1 692 11 2623
2 995 12 2881
3 1239 13 2972
4 1314 14 3271
5 1530 15 3618
6 1740 16 3889
7 1949 17 4493
8 2056 18 4973
9 2199 19 6214
10 2348 20 7979

deviation of 1845.25, the application of Expression 8.20 and
then Equation 8.18 yield

A

B=2.554

and

A =0.00086

It should now be apparent that the method of moments
is usually quite easy to apply. It has intuitive appeal. The
disadvantage of the method is that it one does not expect to
be able to use it with censored data. An approach for using
censored data has been suggested and is discussed in the final
section of this chapter.

8.3 METHOD OF MAXIMUM LIKELIHOOD

The most widely used of the parametric techniques is the
method of maximum likelihood. Under this very intuitive
strategy, one selects as parameter estimates those values
“most likely” to have produced the observed data. Consider
an example of this concept. Suppose a presumably fair coin
is tossed 40 times with the result that heads appears on 16
of the trials. What estimate of the probability of heads, p, is
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Figure 8.5 Likelihood function for a binomial sample.

appropriate? One possible answer is that since the coin is a
fair coin, p=0.50. The method of maximum likelihood indi-
cates that p=0.40. The reason for this value is that the
binomial probability of observing 16 heads in 40 trials is
greatest when the value of p is 0.40. That is,

max(b(16, 40, p} = max{[‘mj P(1— p)24} 0128
p p 16

occurs at p = 0.40. This is illustrated in Figure 8.5 in which
the binomial probability of 16 heads in 40 trials is plotted
against the value of p. Note that one usually plots event
probabilities against the events, but that this plot provides
an alternate view of the probabilities — one focused on the
parameter of the distribution.

In terms of algebraic methodology, one forms the likeli-
hood function, which is the joint distribution of the parame-
ter(s) and the sample outcome, and one then maximizes the
function relative to the parameter value. For the binomial,
the likelihood function is

L(x, n, p)=b(x, n, p)= (Z]px 1-p"™
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and to find the maximum, we take the derivative with respect
to p and set it equal to zero:

d d(n
“ L - % (1= p)~*
dp (%, 7, p) dp(xjp (1=p)

_ (n](xpxl(l_p)nx _(n _x)px(l_ p)nfxfl) =0
X

=x(1-p)—-(n—x)p
=x—px—np+px=x—-np=0

From this we obtain the maximum likelihood estimation

equation:
sy
=%,

For our example, this means that p=0.40 is the maxi-
mum likelihood estimate for the probability of heads.

The application of the principle of maximum likelihood
to life test data is direct. We form the likelihood function as
the joint distribution of the observed failure data and the
unknown distribution parameters, and we maximize that
function with respect to the parameters. That is, we form the
likelihood function:

L(E) Q): fT(E) Q) = fT(xD x2) ceey xn) Q) (821)

We next note that the fact that the individual failure
times are mutually independent, so the joint distribution may
be expressed as the product of the marginal distributions.

Fr(®, %o, s 2, 0= [ [ x> © (8.22)
Jj=1

Then we observe further that the values of the parame-
ters that maximize the likelihood function are the same as
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the ones that maximize the logarithm of the likelihood func-
tion, so in those cases in which this equivalence is useful, we
can exploit it.

Consider the exponential distribution for which there is
only one parameter, so 6 ={A} and

fr(x;, 0) = frla;, M) =he™
For the exponential distribution, the likelihood function is

n
xj

n 7k2
L, =] Jre™ =7 = (8.23)
Jj=1
and the corresponding logarithm of the likelihood function is

In(L(x, M))=nlnA- xzn:x ; (8.24)

j=1

To maximize this function we take the derivative and set
it equal to zero:

d N
Sin(Lx, )= X—;xj =0

and solving for the parameter estimate yields

1 - - % (8.25)
2

A check of the second derivative condition indicates that
the second derivative is clearly negative, so the solution we
have found is a maximum. In this particular case, but not in
general, the maximum likelihood and method of moments
estimates are the same. As previously noted, the example data
in Table 8.1 displays a mean value of x=137.23, so our esti-
mate of the parameter is A=0.0073.

A=
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In the case of the Weibull distribution, the concept is the
same but there are two parameters. Thus, we form the like-
lihood function:

x; d
L(x, B, 6)= HfT (x,B,0)= | B:Z_l e[e]

(8.26)

Taking the logarithm of Equation 8.26,

In(L(x, B, 0)) = nlnB—nBln6+(B—1)Zlnxj —elﬁzxg (8.27)
Jj=1 J=1

and to maximize this function, we set the partial derivatives
equal to zero. We solve the resulting expressions for our
parameter estimates. First,

%m(L(&, B, e))=—?+ o 2 x¥=0
1w s
GB=; XE
j=1
b
L 1 g [P
e{ xl}] (8.28)
n#
J=1
and then
0 n C
—In(L(x, B,0))=—-nln6+ » Inx;

N6~ g 1
o Xj o j X
j=1
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Substituting the expression obtained for 6 in this equation
yields

Zxélnxj
1.1 il IR (8.29)
+— nx,— = .
B n = J n .

B
Xj
j=1

This final expression must be solved numerically for the
value of the estimate for B, and that value is then used to
compute the estimated value of 6. The second derivative con-
ditions indicate that the solutions obtained above correspond
to a maximum of the logarithm of the likelihood function. As
an example, consider again the data of Table 8.2. Using a
numerical search strategy, the values of the estimate for
that are evaluated are shown in Table 8.6. Observe that only
11 values were needed to obtain substantial precision in the
estimate. Then, using B=3.212 in Equation 8.28, we obtain
0 =988.257. As will be shown shortly, the method of maximum
likelihood can be applied to the exponential and Weibull dis-
tributions even when the data are censored. The method can
be applied to the Gamma distribution, but only for complete
data sets.

Table 8.6 Trial Values of
the Parameter Estimate

B Lhs B Lh.s.

2.0 0.288 3.20 0.002
4.0 -0.113 3.22 —0.001
3.0 0.038 3.21 0.0004
3.5 -0.046 3.215 -0.0005
3.25 -0.006 3.212 0

3.15 0.011

Recall that, in general, the Gamma distribution does not
have a closed form expression for the distribution function,
but the density function is
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fr@®)= F}Zﬁ)tﬁ le™M (8.30)

Using this form in the likelihood function yields
AP B 1

L(x, B, )= me B, W)= H O

¢ (8.31)
AP ey | A
g 7]
Taking the logarithm,
In(L(x, B, M))=nplnA-nInT(R)
(8.32)

+(B- 1)ilnxj - kzn“xj
j=1 j=1

and we proceed in the same manner as we did with the
Weibull. We take the partial derivatives:

a n
S In(Lx, B )= ’;Bln—;xfo

= B :é (8.33)

%m(L(x B, W)= nlnl—nll;?;’;sz‘lnxj:O

- 1% A1
lnB—ln(anj]—\p(B)+n21nxj -0 (8.34)
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where the Psi function is the derivative of the logarithm of
the Gamma function:

A IN(E)
v(p)= B1 nI'()= )

This function is relatively well behaved. There are both tables
of the function and numerical strategies for computing it. One
such algorithm is included in Appendix A.

The final form of Expression 8.34 was obtained by sub-
stituting Expression 8.33 into the partial derivative with
respect to . Once again, we solve numerically for the estimate
for B and then use that value to compute A using Expression
8.33. For the example data of Table 8.5, only six function
evaluations are needed to obtain B 2. 97 and using this
value, we obtain A =0.00101. The sucessive Values of 3 obtained
during the search are shown in Table 8.7. Note how rapid the
convergence to the estimate is.

Table 8.7 Trial Values of
the Parameter Estimate

B Lhs B Lhs

2.0 0.093 2.9 0.005
4.0 -0.048 2.98 -0.006
3.0 -0.002 2.97 0

One final case that is quite intuitive is the Normal dis-
tribution. Taking the density function for the Normal as
stated in Chapter 4, the likelihood function is

L - 1 —(x;-p)2/20%
L(x,u, 0% =| | frlx, 1, 0= e
1:1[ 1:1[ Npidom

. (8.35)
1 —%2 (Xj—u)z
[ e

and taking the logarithm yields
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In L( ,(5)———1(2) 1(5—— - (836)
nL(x, u n(2r)-nln oo ;x

The partial derivatives are

) 1%
~-InL(x, b, 0*)= —Z+G3Z(xj —u)’ =0

n

d 1
ﬁlnL(g, W, 62)= gx(xj —u)=0

J=1

Solving the second of these equations first yields

ﬁ:lej:TC (8.37)

and then the first yields

(o

(x;—i2) (8.38)

J=1

These expressions should seem familiar.

Returning to the exponential and Weibull distributions,
the fact that these distributions have algebraic forms for their
cumulative distribution functions and reliability functions
permits their analysis under test censoring. Suppose a sample
of n copies of a component is placed on test, and the test is
terminated before all the items have failed. Suppose that only
r failure times have been observed. In this case, there are r
failure times x;, x,, ..., x,, and n — r components have survived
over x, time units. Thus, the likelihood function is

L(x, 0)= [HfT(x e)]F(x,))"" (8.39)

Since the exponential distribution is subsumed by the
Weibull, consider the application of this form to the Weibull.
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Jj=1
(8.40)
r i ]
r L -y LI ()| 2
- grﬁ [ngl]e Fl[ e] ( J
Jj=1
Taking the logarithm,
r r B
In(L(x, B, 9))=rlnB—rBln9+([3—1)Z_;lnxj —Z(’;JJ
g " (8.41)

_[m_r)[ﬂgﬂ

The partial derivatives are

9 B, B B4 (7 — 1P
aeln(L(’*C’ B, 9)) 5 +GB+ szl x; +(n r)x,]

a—Bln(L(x B, 0)) ——r1n6+21nx T [Z Bt (n—r)af J

—(Z Blnx +(n- r)xﬁlnx]

J=1

Solving the first of the equations, we obtain

~ 1l < & . %
0= - Zx§+(n—r)xf (8.42)
=1

and substituting this expression into the second of the partial
derivative equations, we have
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.
fo Inx; +(n- rxPInx,

[}3+i21nxj[]1 , ]—o (8.43)
J=1 [szB +(n— r)x?J
j=1

Once again, we solve Expression 8.43 numerically for [3
and then compute 0 using Expression 8.42. Note that the form
of Expressions 8.42 and 8.43 are consistent with those
obtained for complete data sets. In fact, if we take r = n, these
equations reduce to those obtained for complete data sets.

As an example, suppose only the first r = 15 of the failure
times of Table 8.2 had been observed. Using the equations devel-
oped above, we obtain the parameter estimates = 3.513 and
6=965.571.

To complete this discussion, it is appropriate to note that
the method of maximum likelihood is very appealing because
of its intuitive foundation. It is widely used and the fact that
it can sometimes be applied to censored data is an additional
positive feature of the method. The main disadvantage of the
method is that the estimators obtained are not always unbi-
ased. In particular, the estimators for the Weibull distribution
are not unbiased. Even for the Normal distribution, the esti-
mator for the mean is unbiased, but the one for the standard
deviation is not.

8.4 SPECIAL TOPICS

The statistical methods for parameter estimation that have
been presented in this chapter are generally adequate for
nearly all test situations. However, there are three additional
topics that are worthy of our attention. The first of these is
the extension of the method of moments to right-censored
data. As indicated above, the method of moments has histor-
ically been applied only to complete data sets. Nachlas and
Kumar [43] suggest a heuristic strategy for implementing the
method of moments using data sets that are censored because
of test termination. The construction of the method is based
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on the substitution of the expected remaining life lengths of
the unfailed test specimens for their actual failure times.

The second topic is the use of step-stress testing in which
a sequence of progressively more severe environmental
stresses are used to accelerate component aging. As is shown,
the statistical analysis is essentially the same as for usual
life testing. The third topic is the estimation of reliability
when we have grouped data. In that case, we observe the
number of surviving items at points in time rather than con-
tinuously, and we allow for the removal of some unfailed test
specimens from the test at observation points. When testing
proceeds in this manner, we can only obtain nonparametric
reliability estimates.

8.4.1 Method of Moments with Censored Data

In the case of the exponential distribution, a test for which
the first r failure times are observed and the remaining n — r
are not, the expression for the “surrogate” sample mean is

r

= Y x4 (), + EIY)) (8.44)

n
j=1

where Y is the remaining life of the components that have

not yet failed. The general expression for the expected value

of Y has been shown by Cox [44] to be
~ MQ + G2
= o

where | is the mean of the life distribution, and o2 is the
variance of the life distribution. For the exponential distribu-
tion, this expected value is 1/A, so Equation 8.44 becomes

xX= :L[ij +(n—r)(x, +;\JJ

J=1

E[Y] (8.45)

and we equate this to the population mean to solve for the
estimate of the distribution parameter.
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1 1| % 1
= ij +(n—-r)| x, +=
Aon| & M

This yields the reasonably intuitive expression
-1
N 1l <
A== +(n— 8.46
{r[;x, (n r)x,]] (8.46)

The equation is intuitive because it represents the sam-
ple mean as the average of the observed failure times plus an
additional term to compensate for the unobserved life lengths.
For r = 12, the data in Table 8.1 yield the estimate A =0.0065.

In the case of the Weibull distribution, Cox’s result

implies
GF(1+%)
ElY]=——~+-<
or 1+y)
[+ 4
and substituting this expression into Equation 8.44 yields
, er[1+%]
ij+(n—r) x,_+7I3
J=1 2r(1+%j
B
. er[1+%]
= ij+(n—r)xr]+n_r B
" 2r(1+%)
B

The corresponding representation of the sample variance is
most conveniently stated as

K|
Il
S |H

S |~

J=1
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2

1 , 6F(1+%J
== ¥ 2+(n-r)| x, +——L | —nx?
n-1 ; ’ 2r(1+%§]

To obtain parameter estimates, the expression for x is
equated to the distribution mean, and the resulting expres-
sion is solved for 6. This yields

2n[2xj +(n—r)erF(1+1/[§)

S

J=1

D>

2nT2(1+1/B)— (n—r)TA+2/p)

This expression is used in place of 6 in the expressions for
both the sample mean and the sample variance, which are
included in the coefficient of variation as in the case of uncen-
sored data. A numerical search yields an estimate for 3, which
is then used in the above equation to compute an estimate
for 6. As an example, the first r = 15 data values from Table
8.2 have been used to obtain parameter estimates of f =2.391
and 6=1175.1.

In the case of the Gamma distribution, Cox’s result
implies

B+1

E[Y]:W

and substituting this expression into Equation 8.44 yields

x:i Exj+(n—r)[x,+[32+x1j]

=1
r

_1 _ nor(p+1
= ij+(n r)xr]+ - (27»}

J=1
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The corresponding representation of the sample variance is
most conveniently stated as

To obtain parameter estimates, the expression for x is
equated to the distribution mean, /A, and the resulting
expression is solved for A. This yields

2nB—(n-r)B+1)

Q[ij +(n- r)x,]

J=1

A=

This expression is used in place of A in the expressions for
both the sample mean and the sample variance, which are
included in the coefficient of variation as in the case of uncen-
sored data. A numerical search yields an estimate for B, which
is then used in the above equation to compute an estimate
for A. As an example, the first r = 12 data values from Table
8.5 have been used to obtain parameter estimates of B =3.540
and A =0.00118.

As should now be evident, it is possible to use right-
censored data to construct estimators for distribution param-
eters using the method of moments. The process is fairly
involved, but it does yield reasonable estimator values.

8.4.2 Data Analysis under Step-Stress Testing

Given the efficiencies associated with accelerated life testing,
the idea of using a sequence of increasingly severe stress
levels has been considered worthwhile for some components.
The implementation of the idea is to test at each stress level
for a set time interval so that the test may be characterized
by the sequence {(s;, 1), (89, T3), ..., (84, T))} in Which the s;
are the stress levels and the t; are the change times [45, 46].
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Figure 8.6 Representation of a three-level step-stress regimen.

For a sequence of three stress levels, the progress of the test
is illustrated in Figure 8.6. Note that the interval over which
each stress is applied is T,— T, ;.

There is a significant risk in the use of the step stress
approach. The risk is that an excessive stress level (an over-
stress) will be used, and that this will alter the nature of the
failure process and thus change the life distribution. Usually,
the motivation for using a step-stress test is to provoke fail-
ures very rapidly in order to study a new design for which
the failure behavior is not yet understood. In this case, the
risk of overstress and erroneous inference is substantial.
Thus, the use of a step-stress regimen must be undertaken
carefully.

Assuming, as we did for a single stress, that the life
distribution under all stresses is shape invariant and that we
avoid the application of an excessive stress level, the data
from a step-stress test permits two useful analyses. First, we
can compute an acceleration factor for each stress level and
map the observed failure times to the life distribution under
normal operating conditions. Second, we can use the test data
to estimate physical parameters such as activation energy.

If the acceleration model is already known or assumed,
and a set of test data is obtained in the form of observed
failure times ¢ = (¢, ¢, ..., t,), then the corresponding equiv-
alent data set, x = (x;, x,, ..., x,,), is defined by
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Table 8.8 Example Data for a Step Stress Test

4 % J ¢ %

1.316 14.056 14 52.155 689.435
3.411 36.427 15 56.620 785.784
6.031 64.396 16 61.629 893.898
9.122 97.403 17 67.305 1016.375
12.675 135.346 18 73.811 1156.797
16.702 178.343 19 81.387 1320.296
21.228 226.667 20 90.390 1514.574
26.290 280.722 21  101.389 1751.944
31.940 341.051 22  143.300 2723.871
10 38.242 408.348 23  160.333 3439.661
11 41.236 453.784 24  191.578 4752.684
12 44.524 524.749 25 No failure

13 48.146 602.917

© 030 Ttk WN K |

al; 0<t; <7y
a1T1+a2(tj_T1) Tl <tj ST2
xj = al'tl +a2(12 _Tl)+a3(tj _12) TZ < t] ST3 (8.47)

al’Cl+a2(T2—’Cl)+...+am(tj—”Cm_l) Tm—l <tj STm

Then, this data set may be analyzed using any of the para-
metric (or nonparametric) methods described previously.
Consider an example. Suppose n = 25 copies of a device
for which life length is temperature dependent are subjected to
a step-stress test with the regimen {(85°C, 40 h), (95°C, 100 h),
(105°C, 60 h)}. Suppose further that the device has an acti-
vation energy of 0.80 eV/°K, and that the failure times
recorded during the test are those shown in Table 8.8. The
corresponding equivalent failure times are also shown in the
table. Subjecting the equivalent failure times to the method
of moments estimation procedure for a Weibull distribution
yields the parameter estimates of § = 0.7782 and 6 = 986.198.
An alternate use of data generated in an accelerated life
test under a step-stress regimen is the estimation of the
parameters of the physical model of failure. Specifically, we
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can compute jointly the parameter estimates and an estimate
for the activation energy. We can use the data in Table 8.8 to
illustrate the computations. Assume the activation energy is
not known and that we have recorded only the “raw failure
times,” ¢,.

Using the data from the first 40 h of testing, we obtain
graphical estimates of the distribution parameters at a tem-
perature of 85°C of B = 0.834 and 6 = 87.632. Now, the failure
times after 40 hours are obtained at a higher temperature,
so aging is accelerated relative to the temperature of 85°C.
Assuming shape parameter invariance of the life distribution,
we can compute the times at which the reliability should take
values corresponding to say 12, 9, or 6 (or any number
between 15 and 4) survivors from a set of 25 devices on test.
With the above parameter estimates, we obtain

0.834
12.7 e{tl%ﬁ.ﬁszj

F‘ ¢ =—=V.0=
 (f) 25.4 05

so without acceleration, t/; =56.469

9.7 ’[tf%ﬁ.%z}om

F‘Tl(tleG) = 2572 0.382 =e

so without acceleration, ¢/, =83.719

6.7 ’[tle%ﬂ.ewjom

so without acceleration, ¢/, =123.651

where ¢} is our “extrapolated” value for ¢, Now, we only need
one of these, but note that for all three

a(tj —-T)= tj -7 (8.48)
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where T = 40 hours is the test time at the initial test temper-
ature. This expression follows directly from the relation that
FE,(t)=F;(at). In any case, the extrapolated and observed fail-
ure times yield

alt;s —1) = a(48.146 - 40.0) = {3 — 1= 56.469 — 40.0
so a=2.021

alts — 1) = a(61.629 - 40.0) = t{; —1=83.719-40.0
SO a=2.021

alty — 1) =a(48.146 - 40.0) = t;, —1=123.651-40.0

SO a=2.021

Thus, the acceleration associated with increasing the
temperature from 85°C to 95°C is 2.021. Using the Arrhenius
acceleration equation,

a=2.021= eEf[T%TL]

E,=0.801

Naturally, once the activation energy is estimated, the
characteristic life at normal use temperature may be com-
puted directly. For a normal use temperature of 55°C, the
acceleration at 85°C is 10.678, so 6=935.734.

8.4.3 Data Analysis with Group Censoring

There are situations in which a sample of copies of a device
are put on test, and the test specimens cannot or simply are
not monitored continuously. Instead, the test specimens are
examined periodically to see how many are still surviving,
and the data recorded is the number of failed devices. In the
most general case, the observation times are also considered
to provide an opportunity to remove some specimens from the



166 Nachlas

test. Also, while it is most common to use equal length inter-
vals, the general construction can be based on intervals of
unequal lengths.

Suppose a total of n copies of a device are placed on test
(or in operation) and that the status of the specimens is
inspected at each of the times (1, Ty, ..., 7). Let x; represent
the number of specimens found to be failed at inspection time
T,, and assume that, at that time, we remove m; of the speci-
mens from the test. Thus, the number of specimens that are
tested during any interval, say the j* interval, is

Jj-1
n; =n—2(xi+mi) (8.49)
=1

and the conditional probability of failure during the j* inter-
val may be estimated by

(8.50)

The survivor function at any inspection time 1; may be
estimated as

O (8.51)

n- Z(xl +my)
1=1

The variance of this survivor function estimate may also
be estimated using Greenwood’s formula [36]:

Fyx)= f[(l—f)p: f[ 1-
i=1 i=1

A A A 2 ,j ~
V. (F .)=(F ) S - 8.52
ar\Fr(t))|={Fr(t;) ;ma—pi) (852
Once we have estimates of the reliability and the vari-
ance of the estimates, the Normal distribution confidence
intervals described in Section 7.3 may be applied directly.
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Consider an example. Meeker and Escobar [47] present
heat exchanger tube failure data in which n = 300, m = (99,
95) and x = (4, 5, 2). The three intervals are each 1 year long.
Using this data, n, = 300, n, = 197, and ny = 97. Therefore,

.4
— % _00133
P1=300

Then,
Fo(1,)=1— p, = 0.9867
and Var(Fp(x,)) = 4.385 x 10
Fr(1,)=(1- p,)X1- p,)=0.9616

and ﬁar(ﬁT(TZ))szs x 10™*

and Var(ﬁ‘T (13)) 3438 x 10

Finally, 95% confidence intervals for the survivor func-
tion values are

0.9737 < Fy(1,) < 0.9996
0.9370 < Fy(t,) < 0.9862

0.9054 < F.(1;) <0.9781
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8.5 EXERCISES

1. Assume the following data has been generated in the
life test of a component that is believed to have expo-
nential life distribution. Use the complete data set to
obtain a graphical estimate of the distribution
parameter.

30.950 343.959 118.522 117.887 21.685

68.513 193.503 42.602 64.028 60.502
319.443 200.655 258.156 205.073 247.614
135.314 282.421 5.153 227.674 103.803
211.208 426.444  240.096 15.180 536.120
425.731 433.697 79.7491 258.614 26.505
541.114 8.043 75.666 272.753 50.566
247.343 379.959  220.658 415477 211.587
123.526 324.697 54.672 67.085 77.181

61.702 1011.308 104.253 547470 237.281

2. Use the data of Problem 1 to compute the method of
moments and the maximum likelihood estimates of
the distribution parameter.

3. Assume that only the earliest 20 data values of the
data set of Problem 1 are available. Use those values
to compute the estimates of the distribution param-
eter using each of (a) the graphical method, (b) the
maximum likelihood method, and (¢) the method of
moments.

4. Assume the following data has been generated in the
life test of a component that is believed to have expo-
nential life distribution. Use the complete data set to
obtain a graphical estimate of the distribution
parameter.
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158.033 9.964 247.922 324.953 984.249
579.983 268.967 211.775 252.635 185.474
142.382 524.376 455.421 268.403 9.362
73.521 6.956 145.474 9.527 58.538
799.290 274.426 1500.586 229.539 45.400
2609.448 175.002 50.447 252.747  847.613
711.720  491.442 982.752  2894.425 61.204
505.976  416.891 138.747 12.911 392.515
12.908 497.851 1280.381 213.168 648.615
302.120 780.516 109.058 875.372 197.162

5. Use the data of Problem 1 to compute the method of
moments and the maximum likelihood estimates of
the distribution parameter.

6. Assume that only the earliest 20 data values of the
data set of Problem 2 are available. Use those values
to compute the estimates of the distribution param-
eter using each of (a) the graphical method, (b) the
maximum likelihood method, and (¢) the method of
moments.

7. Assume the following data has been generated in the
life test of a component that is believed to have
Weibull life distribution. Use the complete data set
to obtain graphical estimates of the distribution
parameters.

176.225 1058.727 918.823 29.835 203.809
252.424 695.579 68.348 1262.860 309.879

333.961 2.970 76.218 191.423 3094.748
141.948 75.239 1048.132 804.623 55.853
1989.75 1.340 641.953 152.969 126.097

1646.635 346.605 762.882 691.363 434.761
344.135 801.645 206.062 654.951 382.691
48.831 154.884 1122.269 409.087 170.046
480.549 103.444 593.04 1615.691 1880.473
131.215 724.292 224.793 470.408 957.271

8. Use the data of Problem 7 to compute the method of
moments and the maximum likelihood estimates of
the distribution parameters.
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11.

12.

13.

14.
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Assume that only the earliest 20 data values of the
data set of Problem 2 are available. Use those values
to compute the estimates of the distribution param-
eter using each of (a) the graphical method, (b) the
maximum likelihood method, and (¢) the method of
moments.

Assume the following data has been generated in the
life test of a component that is believed to have
Weibull life distribution. Use the complete data set
to obtain graphical estimates of the distribution
parameters.

170.998 216.222 335.464 456.731 635.655
465.023 204.064 100.790 459.482 369.012
254.582 228.195 453.539 420.944 312.489
319.789  528.971 82.843 306.064 196.092
285.048 270.256 356.053 216.330 72.393
307.343 255.021 181.568 137.704 22.150
318.541 302.217 93.694 180.638 302.257
242.783 117.524 314.594 159.855 114.434
458.005 70.280 282.015 231.442 68.381
130.900 93.151 172.954 203.094 200.899

Use the data of Problem 10 to compute the method
of moments and the maximum likelihood estimates
of the distribution parameters.

Assume that only the earliest 25 data values of the
data set of Problem 10 are available. Use those values
to compute the estimates of the distribution param-
eter using each of (a) the graphical method, (b) the
maximum likelihood method, and (c¢) the method of
moments.

Assume the following data has been generated in the
life test of a component that is believed to have
Gamma life distribution. Use the complete data set
to obtain the maximum likelihood and the method of
moments estimates of the distribution parameters.
Assume that only the earliest 12 data values of the
data set of Problem 13 are available. Use those values
to compute the estimates of the distribution param-
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2765.078 5218.866 1283.310 3893.011
4976.570 3472.228 1461.590 2779.887
1982.422  2262.938 777.843 2106.880
3038.784 838.939 4147.827 4622.490
2480.5562 6357.559 2281.027 4269.130

eter using each of (a) the maximum likelihood method
and (b) the method of moments.

15. Assume the following data has been generated in the

16.

life test of a component that is believed to have Nor-
mal life distribution. Use the complete data set to
obtain the maximum likelihood and the method of
moments estimates of the distribution parameters.

404.271 399.481 377.337 372.954
421.809 407.544 407.888 416.883
391.095 403.850 443.486 408.798
402.554 411,579 414.333 394.265
419.868 380.270 400.514 372.843

Suppose 42 copies of a device for which temperature
dependent life length is believed to be well repre-
sented by a Weibull distribution were subjected to a
step-stress accelerated life test with a stress regimen
of {(85°C, 40 h), (95°C, 80 h), (105°C, 40 h)} and that
the data in the following table were obtained. Com-
pute estimates for the distribution parameters at the
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normal operating temperature of 85°C and for the
activation energy.

t; J t
0.3799 22 40.5757
0.3894 23 44.3383
0.5062 24 48.9265
1.3523 25 49.5716
2.9877 26 51.2090
3.0075 27 51.5310
3.1151 28 53.6824
3.4273 29 54.7999
43191 30 63.3631
10 6.2674 31 64.6060
11 6.6553 32 69.4093
12 8.3147 33 69.6571
13 13.8439 34 75.79811
14 15.7537 35 101.3423
15 16.2473 36 110.6855
16 17.7215 37 117.9570
17 22.3923 38 125.9469
18 23.1186 39 129.8984
19 245316 40 130.6095
20 26.7895 41 140.1335
21 36.8783 42 No failure

J

© 000 Ttk WN |

Test data for a prototype battery [47] were accumu-
lated over 600 hours with an initial test sample of n
= 68 specimens. The batteries were only inspected at
50-hour intervals so T = (50, 100, 150, 200, 250, 300,
350, 400, 450, 500, 550, 600). The associated observed
failures and specimen removals were x = (1, 0, 1, 4,
1,1,1,4,4,2,2)and m =(5,6,1,6,2,1,2, 2, 3, 1,
0). Compute reliability estimates for each of the
inspection times and confidence intervals for the esti-
mates at 200, 400, and 600 hours.
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Repairable Systems | — Renewal and
Instantaneous Repair

Most modern equipment is designed under the assumption
that it will be maintained in some manner. Complicated
equipment is usually expected to operate for substantial
lengths of time, so upkeep and repair activities are assumed
to be part of the device operating experience. A familiar exam-
ple is the personal automobile, which is comprised of many
components, is expensive, and is usually expected to operate
properly for several years if serviced appropriately.

A comprehensive examination of the operation of repair-
able systems must necessarily include a wide variety of equip-
ment behaviors. We consider that there are essentially two
classes of maintenance — preventive and corrective — and
for each of these classes, there are numerous specific policy
realizations. There are also several classes of possible out-
comes of maintenance activity. In addition, the maintenance
activity itself is subject to model representation.

The discussion of repairable systems starts here with a
consideration of corrective maintenance only. In addition,
repair is assumed to be instantaneous and to yield device
renewal. In the chapters that follow this one, repair times of
random duration are considered, nonrenewal models are dis-
cussed, and both instantaneous preventive maintenance and
preventive maintenance of random duration are treated.

173
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A defining feature of the analyses of the present chapter
is that the state of the system or component of interest is
assumed to be the same as new following a maintenance
activity. The assumption of good as new implies device
renewal. As will be discussed subsequently, the assumption
about the state of a system following maintenance is one of
the principal defining features of models of the behavior of
repairable systems. The foundations for both the renewal and
the nonrenewal cases are treated in the present chapter.

To start our examination of models of the operation of
repairable systems, consider the simple definition:

Defn. 9.1: A repairable system is an equipment entity that
is capable of being restored to an operating condition
following a failure.

While simple, this definition permits us to clearly distin-
guish between our models of life length prior to failure and
the models we now develop to represent periods of operation
that may extend across several failures and multiple life
lengths.

Naturally, to build our models, we start with the most
basic forms and then expand their features. The logical first
step in studying repairable systems is to represent the sim-
plest sequence of operating periods. We use a renewal process
for this model so we begin with a review of some concepts
from renewal theory and some corresponding classifications
of life distributions. We then move on to the more complicated
models.

9.1 RENEWAL PROCESSES

A key feature in our study of repairable systems is that we
change the way in which we view the system and in which
we use probabilities. Rather than consider simple life lengths
and their associated distributions, we consider a series of
operating intervals, and we say that the end points of these
intervals form a point process. Naturally, the duration prob-
abilities for the intervals of the point processes are based on
the life distributions. The simplest general stochastic model
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of a representative point process is that for a renewal process.
We start with this one. Formally,

Defn. 9.2: A renewal process is an indexed sequence of
independent and identically distributed nonnegative ran-
dom variables, say T;, T, ....

Conceptually, we think in terms of a device that is oper-
ated until it fails, at which time it is immediately replaced
with an identical but new device that is, in turn, operated
until failure. For the moment, we consider that the replace-
ment is accomplished instantaneously, so the duration of the
replacement activity can be ignored. Because they are mutually
independent and have the same distribution function on length,
the sequence of operating times forms a renewal process.

The above rather terse definition of a renewal process is
assumed to imply that the random variables of the sequence
have a well-defined probability distribution function and that
this distribution function does not change over time (or as the
process continues). A distinction that is often made when the
process is a sequence of device operating times is that the
first device in use may be new or used. (The process may have
started before we began observing it.) If the first device is
new, then 7', has the same distribution as all other T}, and the
process is said to be an “ordinary” renewal process. On the
other hand, if the first device is used, it may not have exactly
the same life distribution as the remaining copies of the
device. (It has a residual life distribution.) In this case, the
renewal process is said to be “modified” or “delayed.” For now,
consider only ordinary renewal processes.

Note also that the definition of a renewal process is the
starting point for an extensive body of study of which reliabil-
ity and equipment maintenance form only a small part. It is
a rich model format that has many applications.

A simple graphical representation of the point process
corresponding to the operation of a sequence of identical
devices is shown in Figure 9.1. Note that the duration of each
of the successive intervals is denoted by 7', while the variables
S, represent the total time elapsed until the time of the k%
replacement. That is
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Si= )T, (9.1)

and we say that S, is the duration of the interval over which
k copies of the device are operated to failure. As each of the
T, has the same probability distribution function, F(¢), the
probability distribution on S, is the k-fold convolution of F ().
We represent this as

Fs, () =F" (@) (9.2)

where

FP(t) = J tF,}k‘D(t—u)fT(u)du (9.3)
0

and by convention, F,”(¢)=1 for all values of time.

The conceptual application of this model form to individ-
ual system components is straightforward. We may consider
that the model represents the sequence of copies of a compo-
nent that are used in a particular position (or slot) in a system
structure. For example, we might consider that it represents
the sequence of lightbulbs used in a lamp.

There are two natural questions that one can address
using this basic model. These are (1) how long until the k%
failure? and (2) how many failures will occur over a fixed time
interval? That is, how soon and how many? It is easy to see
that the answers to these questions form the basis for plan-
ning the volume of spare parts that are purchased, the extent
of investment in repair facilities and equipment, the levels of
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staffing that are established, and perhaps, the extent to which
substitute systems are acquired.

The general expression of these questions is that we wish
to examine the time until an arbitrary number of renewals
have occurred and the probabilities on the number of renewals
over a defined time interval. The probabilities for these two
measures are related by the important fundamental relation

Pr[N, > k]=PrS, <t] (9.4)

where N, represents the number of renewals that occur during
the interval [0, ¢]. This expression is a bit subtle and is worth
pondering. An example realization is that the number of
renewals during 1000 hours can equal or exceed four only if
the time of the fourth renewal is equal to or earlier than ¢ =
1000 hours.

We exploit this relationship to address the questions of
how soon and how many. Note also that we are really consid-
ering a measure in the “time domain” and a measure in the
“frequency domain,” and that Equation 9.4 is the bridge
between the two. One further point is that, once we have used
Equation 9.4 to address the questions of time until the k&%
renewal and the number of renewals over time, we can use
the results of that analysis to determine:

1. The expected number of renewals during an interval
2. The identity of the renewal density

3. Higher moments of the distribution on renewals

4. The distribution of backward recurrence times

5. The distribution on forward recurrence times

The forward recurrence time is the time from an arbitrary point
in time until the next event (failure), and the backward recur-
rence time is the time that has elapsed since the last event.

To exploit Equation 9.4, we assume that we know the
distribution F;(¢) on the length of the individual operating
intervals. In principle, this means we also know the distribu-
tion on S,, as we presume that we can construct the convo-
lution of F;(¢). Then, to determine the probability distribution
on the number of renewals, we use
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Pr[N, =n]=Pr[N, >n]-Pr[N, >n+11= F"(t)- F;"™V(t) (9.5)

Observe that one realization of Equation 9.5 is

Pr[N, =0]=F%(t)- FP(¢)=1- Fy(t) = Fy(¢)

Now, to proceed with the identification of the specific
forms of the distributions on N, and S,, we must specify F(t).
The most well-known construction of this type, and one of the
few that is tractable at all, starts with the selection of the
exponential distribution for F(¢). In this special case, the
point process is called a Poisson Process.

If the lengths of the individual intervals are exponential
in distribution, then the variable S, has a Gamma distribu-
tion. This result is relatively well-known, but its construction
is repeated here to remind the reader of the method of anal-
ysis. We start with the statement of the exponential distribu-
tion as

FT(t) = 1—6_M

and we state its corresponding Laplace transform as

fr(s)= Ly, ()= L(fz(8)) = J:e—st £ (dt = .[: RV

S+A

for the density function and

A
s(s+A)

Fr(s)= L(Fp(®))=

for the distribution function. Often the transform for the den-
sity is easier to use, so we proceed with it.

The transform for the convolution is the product of the
transforms for the distributions included in the convolution.
This means that the transform for the distribution on S, is
the product of k identical terms, each of which is the transform
on the exponential distribution. Thus,



Repairable Systems | — Renewal and Instantaneous Repair 179

. R
fs.(9)=(fr(s) =(Mj

This is the transform for a Gamma distribution, so

k
_ phlp—M
fSk (t) F(k) e

and since k is clearly an integer, we have

' (Y
F, ()= 9.6
sk() — F(j+1)e ( )
The corresponding realization of Equation 9.5 is

ey )y

PI‘[N nl= F(n)(t) F(n+1)(t) M : e M
2 F(J 1) =~ F(J +1)
)" u

P =nl= .

T[N, =n] F(n+1)e (9.7

In other words, if the durations of the individual operat-
ing intervals are exponentially distributed, then the time
until the n** renewal is Gamma distributed, and the number
of renewals over a fixed time interval has a Poisson distribu-
tion.

The example of the exponential case is a bit misleading.
In general, the construction of the distribution on the number
of renewals is much more difficult. In fact, there are many
cases in which one cannot obtain a tractable solution. Never-
theless, the review of the procedure is worthwhile, and it leads
us to examine the expectation on the number of renewals that
can often be obtained even if the distribution cannot be con-
structed.

The expected number of renewals over a fixed time inter-
val is called the renewal function. It is the expectation for the
distribution on N, and is defined as
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oo

M, ()= E[N,]= ZnPr[Nt = n]

"0 (9.8)

oo oo

=) n(FP@-Firom) =Y F @)

n=0 n=1

The analysis of the renewal function is often accom-
plished by first transforming it into a recursive form:

My, (0= FPO=F 0+ Y F (@)

n=1 n=2

= Fy(t)+ ZFqﬁj”)(t)

j=1

_ FT(t)+2JtF}j>(t—u)fT(u)du
10

_F(t)+ jtZF;ﬂ(t—u)fT(u)du
045

My, ()= Fy(t)+ j My, (t—w)frwdu 9.9)
0

This is the very well-known fundamental form known as
the key renewal theorem. Very often, this form serves as the
basis for the analysis of a renewal process. The main reason for
its extensive use is that the associated Laplace transform yields
a direct relationship between the renewal function and the
underlying distribution of the process F(¢). That relationship is

My, (s)= F;(s)+LU My, (t—u)fT(u)duj
0 (9.10)

= Fr(8)+ My, (s)f7(s)
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The transform for the integral is shown in Appendix C. Then,
we have

. Fi(s)  Fis)
M. (5)=Ttr% _ fr 9.11
n ) e T 1o sFis) ®.11)
and equivalently,
Fis= Mn _ Mn© (9.12)

1+sMp (s) 1+mp(s)

Of course, the utility of these results depends upon our ability
to invert the transforms in any particular application.

Note that in Equation 9.12, the lower case m represents
the renewal density. The renewal density is the first derivative
of the renewal function. As a derivative, the renewal density
necessarily represents a rate. It is the rate at which renewals
occur. Thus, it is the rate at which the number of failures
(renewals) increases. It is the “rate of failure.” The quotation
marks are intended to signal the fact that there is consider-
able opportunity for misunderstanding here.

Some people refer to the hazard function for a life dis-
tribution as the failure rate, while others use the term failure
rate to mean the renewal density. These two entities are not
the same conceptually, and except for the case of the expo-
nential distribution, they are not the same algebraically. As
explained in Chapter 4, the hazard function is the conditional
probability of failure for members of a population given sur-
vival to any time. As shown above, the renewal density is the
unconditional probability of another event in a sequence of
events. In an effort to clearly distinguish between the two
entities, the term failure rate is not used here. The hazard
function is called the hazard function or hazard rate, and the
renewal density is called the renewal density, the intensity
function, or the failure intensity. In fact, the most appropriate
label for the renewal density (aside from renewal density) is
the failure intensity.

The renewal density really is the intensity with which
new renewals occur. Algebraically, we can represent the deriv-
ative as
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my, () = :litMFT(t) 9.13)

and we note that the derivative extends to both Equation 9.8
and the key renewal theorem. Hence, we have

my, () = Z £t (9.14)
n=1
Mg, ()= fo() + J’O Mg, (t—wfpWdu (9.15)
N 10)
and mp, (s)= 1= £2(s)
. mg (s)
and fu(s)= —Er 27 (9.16)
1+mg (s)

Clearly, depending upon their relative complexity, one may
work with either the renewal function or the renewal density.

The single case in which the analysis is relatively
straightforward is the exponential case. As indicated above,
the forms for the Laplace transforms for the exponential are

fris)=—
and Fp(s)= s(sﬁ »
S0

my, (s)= 2
and My, (s)= %

S
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In this case, the inversion of the transform is easy and yields

Mg, (£)= A

and My, (8) =M (9.17)

Note that these results imply that when the individual
interval lengths are exponentially distributed, the expected
number of renewals (failures) over an interval of length ¢ is
At, and the intensity with which new failures occur is A. Thus,
for the Poisson Process, the failure intensity is constant.

For many other life distributions, the analysis of the
renewal function is rather difficult. In those cases, there are
some basic results that can be useful. A few of those results
are

t
E,IT]
lim N, = 1
t—o0 t EF [T]
My, ® 1
lim 7
et EplTI

-1

My (£)>

(9.18)

X

Lim (M, (¢ +2)~ My, () = BT
e F

where the notation E[T] is used to represent the mean of the
distribution on the lengths of the individual intervals, and it
is assumed that mean is finite. As an example, applying these
expressions to the exponential distribution for which the
expected value is 1/A yields

Mp@®)2M-1

t—oo t

lim My, (¢t +2)~ M, (8))= A
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The corresponding results for a Weibull life distribution
having shape parameter 3 = 1.5 and scale parameter 6 = 2500
hours are

¢

1
2256.86

My, (6)>

N, 1

= =443 x 10™*
to- ¢t 2256.86

M, (¢
mFiT()=4.43 x 107

. X
lim (M, (¢+2)~ M, (0) = 5

Note particularly the fact that Expression 9.18 applies
to nearly any choice of distribution, so the above results can
be very useful. The last of the four relationships is known as
Blackwell’s Theorem. It is well treated in Feller [48]. In effect,
that last relationship states that, as time advances, a renewal
process “settles down” and experiences renewals about once
per E;[T], so the expected number of renewals during any
interval is the length of the interval divided by the mean of
the underlying distribution.

To close this discussion, note that a sequence of intervals
over which a series of copies of a component are used in a
machine can reasonably be represented using the renewal
process model, provided each interval has the same stochastic
characteristics. When one is examining components and even
some modules, this is often the case. For other levels of equip-
ment aggregation and other types of operational profiles, we
will modify the renewal models later in this text. Note also
that several of the most popular choices of distribution for
representing operating durations yield renewal functions that
are impossible or quite taxing to analyze. However, modern
computing power has made these distributions much more
manageable. The example of the Weibull is treated at the end
of the next section on the basis of a numerical strategy that
is described in Appendix B.
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9.2 CLASSIFICATION OF DISTRIBUTIONS AND
BOUNDS ON RENEWAL MEASURES

The next topic we should consider as a foundation for our
examination of repairable systems is a reclassification of the
basic life distributions and some associated bounds on the
numbers of renewals. The idea here is that the length of each
of the stochastically identical operating intervals is well rep-
resented by one of the life distributions with which we are
already familiar. We now describe those distributions in terms
that are meaningful for a series of intervals. To start, we
compare life lengths of new and used devices.

Defn. 9.3: A life distribution, F(¢), is said to be New Better
than Used (NBU) if

F’T(t+u)SF’T(t)FT(u) (9.19)
and to be New Worse than Used (INWU) if

Fp(t+u) > Fp(t)Fp(w) (9.20)

In other words, an NBU component has a life distribution
that assigns a higher probability of survival for a fixed time
to a new device than it does for a device that has already been
used. An algebraic equivalent to Expression 9.19 is

Fr(t+u)

Frt+u|t)=Pr[T 2t+u|T >t]="1
T | | X0,

<Fp(uw) (9.21)
For an NWU device, the direction of the inequality is
reversed.
As with our original classification of life distributions, a

weaker classification than NBU and NWU has also been
defined. This is,

Defn. 9.4: A life distribution, F(¢), is said to be New Better
than Used in Expectation (NBUE) if

JmIT’T(u)du < B [TF,(t) 9.22)
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and to be New Worse than Used in Expectation (NWUE) if

rFT(u)du > EL[TIF () (9.23)

This definition may also be considered consistent with intu-
ition, as rearranging the condition in Expression 9.22 yields

1
F(t)

for NBUE, and the inequality is reversed for an NWUE com-
ponent. Expression 9.24 says that the mean of the residual
life distribution for a used component is shorter than the
mean of the life distribution for a new component.

Two final points concerning classifications of distribu-
tions are (1) that there are numerous additional classifications
that are not treated here, and (2) the classifications that we
have defined yield a natural nested ordering that can be
useful. An example of a classification not treated here is
increasing mean residual life (IMRL). The nested ordering is
IFR c IFRA ¢ NBU c NBUE and DFR ¢ DFRA ¢ NWU ¢
NWUE.

The primary reason we define the classes of life distri-
butions is that the classifications permit us to define bounds
on renewal behaviors that we would not otherwise be able to
obtain. Keep in mind the fact that, when we model the failure
and renewal behavior of a device with a distribution other
than the exponential, the renewal expressions may become
intractable. In some such cases, we may use the exponential
forms to obtain various bounds. The most commonly used
examples of these bounds are:

a. If Fi(¢) is IFR and has finite mean Eg[T], then for
0<t< Eg[T],

JmFT(u)du < E,IT] (9.24)

Fpt)> ¢ /e (9.25)

b. If F(¢) is IFR and has finite mean Eg[T], then for
0<t< Eg[T],
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(%3 [T) U
F}”)(t)sl—z j Bp7) (9.26)

c. If Fi(t) is IFR and has finite mean E,[T], then for
0<t< Eg[T],

J
N ) t
Pr[N, > n]< Z%F,me%fﬂ“ (9.27)

J!

J=n

d. If F;(¢) is NBU and has cumulative hazard function
Z(t), then for ¢ =0,

._.
N
<.

Pr[N, <n]> e “r® (9.28)

J=0

e. If F(¢) is IFR and has cumulative hazard function
Z(t), then for ¢ =0,

r[N, < n] si(nz (/ ) e (9.29)
Jj=

f. If F(¢t) is NWU and has cumulative hazard function
Z(t), then for ¢ =0,

._.
N
<.

Pr[N, <n]< e 1 (9.30)

J=0

g. If F;(t) is DFR and has cumulative hazard function
Z(t), then for ¢ =0,

r[N, < 7] zi(nz (/ ) o (9.31)
j=0
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h. If F(¢t) is NBUE and has finite mean E[T1], then for

t>0,
t
My ®< Vo i) (9.32)
i. If Fi(¢) is NWUE and has finite mean E;[T], then for
t>0,
¢
M, (1)> /EF[T] (9.33)

Consider the interpretations and some examples of the
above set of conditions.

Suppose we are studying the behavior of a population of
components for which the Weibull distribution provides a good
model of the dispersion in life lengths. Suppose further that
we have estimated the parameters of that Weibull distribution
to be B = 2.75 and 6 = 4000 hours. For this IFR distribution,
the mean life is E4[T] = 3559.43 hours, so the reciprocal of
the mean life is 2.809 x 104, and Expression 9.25 states that
for ¢ <3559.43

= _t
Fr.(t)>e 4559.43 — o0-0002809¢
SO

FT(:[OOO) > 67(0.0002809)(1000) — 0.755

In this case, we can compute the reliability at 1000 hours
to be 0.978. Perhaps more interesting is the fact that the
probability that the third component life length is completed
by 2000 hours is bounded by Expression 9.26 as

(3)(2000) <1- Z (/559 43) %559.43

=1-(0.570+0.320+0.090) = 0.0195
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On the other hand, Expression 9.27 indicates that the
probability of three or more renewals in 2000 hours is bounded
by the same quantity. That is,

PrlN 0, > 31<0.0195

For the same device population, Expressions 9.28 and
9.29 indicate that

2 (Z, @)
0.980522( rt )) e 1" < Pr[N gy, < 3]

2 j 37,200
<> 37 509 _ 0 999
J!
Finally, for the same population, Expression 9.32 states

that
t _t
My, )< /EF[T] = Yas50.43

SO

M, (2000) <2 / 450,43 = 0-562

Note further that the Expression 9.32 can be combined
with the first of the Expressions of 9.18 to yield

t _ t
%EF[T] 1< M, ()< A}F[T]

0.686 < M (6000) <1.686

SO

Naturally, we can perform similar example computations
for Expressions 9.30, 9.31, and 9.33. If our Weibull population
had a shape parameter of B = 0.75 rather than 2.75, the mean
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life would be 4762.56 hours, and Expression 9.30 indicates
that

Pr[Nyy, <31<0.977
and

Pr{Np < 31<0.844

On the other hand, Expression 9.31 indicates that

Pr[Nyq <31<0.998
and

Pr[Ngp < 31<0.735

In the case of Expression 9.33, we obtain

M, (2000) 2 0.420
and
M, (6000) >1.260

These examples illustrate the information one can obtain
in cases in which the convolutions or renewal equations are
computationally difficult.

As noted above, modern computing power has made pre-
viously taxing computations much more manageable. For
example, the renewal function for the Weibull distribution
cannot be expressed in closed form at all. However, Lomnicki
[49] defined an equivalent infinite series expansion for the
Weibull renewal function. The series is exact until it is truncated
to finitely many terms, in which case it provides an approxima-
tion that is often quite accurate. The series form is provided in
Appendix B. When the series is truncated at 15 terms and the
value of the shape parameter is B = 2.75, we obtain
M, (1000)=0.022, M, (2000)=0.140, M (6000)=1.272, and
M, (8000)=1.821. For the case in which § = 0.75, we obtain
M, (1000)=0.370, M, (2000)=0.641, My (6000)=1.585, and
M, (8000) = 2.029.
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9.3 RESIDUAL LIFE DISTRIBUTION

In some cases, we wish to examine the behavior of a device
after it has been operating for some period of time. The ques-
tion of how much life remains to the device is a key question
and is reasonable within the context of the life distribution
as well as within the context of a renewal process. It is often
posed relative to a renewal process. In addition, the residual
life distribution can also be used to define bounds on renewals.

When examining a renewal process, we might reasonably
ask the question of how long it is likely to be until the next
renewal, in view of the fact that the previous renewal took
place a particular number of hours ago. This is the same
question as how long will a device of a given age continue to
function.

For a device having a known age, say 1, the residual life
distribution is the probability distribution on the longevity of
the device from age T onwards. We may consider the residual
life distribution as the conditional distribution on additional
life length given survival to age 1. Thus, if we denote the
residual life distribution for a device of age t by Fy,(v), we
can say that

Fr(u+1)-Fp(7)

PrlU () <l = Fy )= =5 570

_ _ _ (9.34)
_F,()-Fp(u+1) 1- Fr(u+1)
and the corresponding reliability statement is
= Fr(u+1)
PriU(t)>ul=Fy,(w)=-"1%=~——" (9.35)
U(r) FT(T)

Of course, in both of these expressions, F(t) is the underlying
life distribution.

Consider two examples. First, if the underlying life dis-
tribution is exponential, the memoryless property of the dis-
tribution surfaces again, and we find that the residual life
distribution is the same as the life distribution. That is,
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FT(u +T) _ e—?»(uﬂ) o

F, =1-"L =1- =1-
U(r)(u) FT(’E) e—M €

If the underlying life distribution is Weibull with shape
parameter 3 = 2.75 and scale parameter 6 = 4000 hours, then
at 500 hours after a renewal, the distribution on the time to
the next renewal is

- (5] ol
F.(u+71) e T
Fy(is00) @) =1- TF’T(T) =1- {ﬂjm =1-1.012¢ \*
e

2500

80 Fy(:_500)(1000) = 0.208 and Fy;_50,(2500) = 0.806. The corre-
sponding reliability values are the complements of the failure
probabilities.

Here is another way to look at the residual life distribu-
tion. If we consider the progress of a renewal process over the
time domain, the age, say 1, of a functioning device at any
point in time, say ¢, is a random variable. The value of the
random variable, device age, may be represented by

T=t-Sy, (9.36)
and the time until the next renewal is
u(’C)=SNt+1—t (9.37)

Given these definitions, we can represent the probability
that, at any point in time, ¢, the residual life exceeds a specific
value, u, as the probability that the first device in the process
survives beyond ¢ + u plus the probability that a renewal
occurred at some point in time prior to ¢ and the device started
at that time survives longer than ¢ + u. That is,

Fy (@) =Pr[U(t) > ul= Fp(¢t +u)

¢ (9.38)
+ J Fr(t+u—x)mg, (x)dx
0
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Notice the similarity of Expression 9.38 to the Key Renewal
Theorem.

The approach to the analysis of Expression 9.38 is the
same as that for the Key Renewal Theorem and can be just
as taxing. Nevertheless, there are some useful results we can
obtain. First, the limiting form of the residual life distribution
at any point in time is

1 (v
Fyw= g im _[O Fy (x)dax (9.39)

Note that this form does not depend upon the age of the
operating device. In general, as indicated in Chapter 8, Cox
[44] has shown that the mean of this distribution will be

E2[T1+ Vary[T]
2E [T

EylU1= (9.40)

In addition, we have the additional conditions that:

a. If Fi(¢) is NBU then F,(u)<Fp(uw)
b. If F(¢t) is NWU then Fy(u)2Fp(u)

Here again, these apply at any point in time.

To close this discussion, consider the following points.
First, looking forward from any arbitrary point in time, the
time until the next renewal is called the forward recurrence
time. We have just obtained the primary results related to
that quantity. Second, from any point in time, we may also
look back and ask how long has it been since the most recent
renewal. This quantity is called the backwards recurrence
time. Cox [44] has shown that the forward recurrence time
and the backward recurrence time have the same distribu-
tions, so the results described here apply to both. Finally, the
key point here is that it is the use of the renewal density in
Expression 9.38 that permits us to analyze the residual life
(and recurrence times).

9.4 CONCLUSION

The models presented in this chapter serve to highlight the
questions one should consider in the study of repairable
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systems. For some systems, it is the periods of operation that
are the greatest concern, and the duration of repair is either
negligible or unimportant. For those systems, treating repair
as instantaneous is appropriate. Similarly, the study of indi-
vidual components and the analysis of some systems may
reasonably be based on renewal processes. Finally, the oper-
ating performance of many systems is improved by the use of
preventive maintenance, while for some other systems, pre-
ventive maintenance is unproductive or impossible. As we
study specific equipment items, we should tailor our models
in terms of these operating features. The models presented
in this chapter apply to the instantaneous repair case with
renewal. More important, they establish the basic approaches
to model formulation and analysis and emphasize the choices
we must make.

9.5 EXERCISES

1. Consider a renewal process in which times between
failures have a Normal distribution with a mean of
400 hours and a standard deviation of 50 hours. Con-
struct the functional form for Fg, (¢)= F?(t) and the
specific realization of this function when £ = 3. Com-
pute the mean and standard deviation for the distri-
bution on S;.

2. For the distribution on S; obtained in the preceding
problem, compute the bounds defined by Expressions
9.18, 9.25, 9.26, 9.27, 9.28, 9.29, and 9.32.

. Prove that an IFR distribution is NBU.

. Consider a Weibull distribution for which B = 0.60
and 6 = 1000 hours. For this distribution, compute
the bounds defined by Expressions 9.18, 9.30, 9.31,
and 9.33.

5. For the distribution of the preceding problem, use
Lomnicki’s method to obtain approximate values for
the renewal function at 1000, 2000, and 5000 hours.

6. Let F(¢) be a Weibull distribution with § = 1.75 and
® = 800 hours. For this distribution, compute the

=~ W
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bounds defined by Expressions 9.18, 9.25, 9.26, 9.27,
9.28, 9.29, and 9.32.

7. For the distribution of the preceding problem, use
Lomnicki’s method to obtain approximate values for
the renewal function at 2000, 4000, and 5000 hours.

8. Let F(¢) be an NBU distribution, and let u(t) be the
residual life at age T of a component having life dis-
tribution F(¢). Show that E;[u(t)]<Eg[T], where
E.[T] is the mean of F(¢).

9. Let F(¢) be a Weibull distribution with f = 1.75 and
0 = 800 hours. For this distribution, compute the
reliability at « = 100, z = 1000, and u = 2500 hours
for devices that have achieved ages of T = 500 hours,
T = 2000 hours, and Tt = 4000 hours.



10

Repairable Systems Il — Nonrenewal
and Instantaneous Repair

As indicated in the previous chapter, there are many types of
devices for which repair implies renewal. For those cases in
which we are studying individual components in a specific
equipment “slot,” treating component repair as a component
renewal point is clearly appropriate. For some other systems,
repair corresponds either exactly or approximately to system
renewal, so the models described in the preceding chapter
provide a reasonable portrayal of operating behavior.

On the other hand, there are many types of devices for
which a repair does not return the unit to a new condition.
There are also large complex systems, such as automobiles,
for which the replacement of a few of its many components
does not appreciably change the “age” of the system. For
equipment of this sort, the unit is not as good as new following
repair, so unit age following repair may not be taken to be
zero. Clearly, the state of a device following its repair deter-
mines whether or not a sequence of operating periods is well
modeled by a common distribution. When system age follow-
ing repair is nonzero, successive operating periods do not have
a common distribution, and the renewal model does not apply.

Several models based on nonstationary processes have
been suggested for those devices that are not renewed by
repair. We shall explore some of them here. While doing so,

197
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we will continue to assume that repair is instantaneous, or
equivalently, that the operating periods are our key concern
and repair intervals are negligible or unimportant.

The idea of a nonstationary process is that we have a
sequence or operating intervals, each of which ends with unit
failure. As in the case of the renewal process, we denote the
lengths of the intervals by T, T, T, ..., but for the nonsta-
tionary process, each interval has a distinct distribution.
Three useful models have been developed to treat the nonsta-
tionary sequence of operating intervals.

10.1 MINIMAL REPAIR MODELS

The earliest model of system behavior for the case in which
repair does not imply renewal was suggested by Barlow and
Hunter [50]. Their model is called the “minimal repair” model
because it is constructed by assuming that when a failure of
a device occurs, the unit is repaired and is placed back in
operation without any change in its age. That is, the repaired
unit has the same age and the same failure hazard following
repair as it had just prior to failure. It is “as bad as old.” The
algebraic form of this model follows directly the construction
of a nonstationary process. In fact, it is the nonhomogeneous
Poisson process (NHPP) model. The construction starts with
the time process. We denote the number of failures over the
interval (0, ¢t) by N, and let

A(¢)= E[N,] (10.1)

represent its expected value. We also define the failure inten-
sity function, A(f) so that

A = jtx(u)du (10.2)
0

The definition of the accumulating operating time, S,, is
the same as defined in Expression 9.1, and the basic relation-
ship between the variables in the time domain and those in
the frequency domain, Expression 9.4, still applies. Therefore,
we can say that in the frequency domain
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At +x)— A(t))k e—(A(t+x)—/\(t))

2l (10.3)

Pr[N,,,— N, =k]= (
and in the time domain

PriT,., ~ T, > t] = ¢ (A T0-AT) (10.4)

In many respects, this is a very appealing model. It is
relatively easy to use and to analyze. One need only specify
a failure intensity function, and this is reasonably obvious,
as the choice must be consistent for 7',. So by implication,

A)=Zp(t) (10.5)

which is to say, the failure intensity function must correspond
to the hazard function of the device life distribution.

Reversing this logic, if the failure intensity corresponds
to the device hazard function, then the NHPP model provides
the appropriate representation of system behavior. In this
case, Equations 10.3 and 10.4 yield the system performance
information of interest.

For an example, suppose we have a device for which
A(t) = (t/0)", with 6 = 4000 hours and B = 2.75. Then A(2000)=
0.149, A(4000) =1.0, A(6000) = 3.049, and A(8000) =6.727. Also,
using Expression 10.3, we obtain results such as

~(A(2000)-A(0)) (A(ZOOO) _ A(O))2
2!

Pr[Nyy, =2]=e
=0.0095

~(A(2000)-A(0)) (A(2000) — A(O))

Pr[Nyyo =1l=e T

=0.1281

—~(A(2000)-A(0)) (A(ZOOO) ~ A(O))O

=0.8619
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2
e—(A(4000)*A(2000)) (A(4000) - A(ZOOO))

Pr[N 4000 = Nagoo = 21= 5

=0.1547

1
(A(4000)-A(2000)) (A(4000) - A(2000))
1!

Pr[N 4500 = Nagpo =1l=€"

=0.3634

0
—~(A(4000)-A(2000)) (A(4000) - A(2000))

Pr[N 4500 = Nago0 =01= o

=0.4268

2
Pr[ -’VGOOO N4000 2] (A(GOOO) A(4000)) ( ! )

=0.2705

1
~(A(6000)- A(4000)) (A(GOOO) - A(4000))
1!

Pr[Ngooo = N 4900 =11=

=0.2640

0
(A(6000)-A(4000)) (A(GOOO) - A(4000))
0!

Pr[Ngyoo — Ny =0l=e"

=0.1288

and

Pr[Ngopo — Negoo < 21=

~(A(8000)-A(6000)) i A(SOOO) A(GOOO))
k=0

=0.2892
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Similarly, using Expression 10.4, we can compute

Pr[T, - T, >2000]= e*(A(T1+2000)—A<T1))

SO

T, = 500 — Pr[T,—T,>2000]=¢ *0-A50) _ o 7604
T, = 1500 — Pr[T,—T, > 2000] = ¢ (*%0-A050) _ 5357

T, = 3500 — Pr[T, T, >2000] = ¢ (*®00-A3%0) _ g 1819

and

Pr(T, > 2000] = e *®®) = 0.8619

Note the implied decline in the 2000-hour reliability with
increasing reference time. This is a feature identified as indic-
ative of increasing hazard in Chapter 4.

The NHPP also has the feature that it can be trans-
formed into an equivalent homogeneous Poisson process. The
transformation is basically a revision in the time scale. Sup-
pose we are considering a nonhomogeneous process with
cumulative intensity function A(¢#)=E[N,], as stated in
Expression 10.1. Let

(¢) =1infls | A(s) > t} (10.6)

which is to say that 1 is the time inverse for the cumulative
intensity function of the process. Then, we define the process:

‘?(t) :Nt (10.7)

and we find that V3, is a homogeneous Poisson process with
intensity equal to 1. That is, if time is measured using the
scale 1t(¢), then an observed sequence of failures will appear
to constitute a stationary Poisson process with intensity equal
to 1. In fact, it is the correspondence between the homoge-
neous and the nonhomogeneous processes that permits us to



202 Nachlas
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Figure 10.1 Cumulative intensity function for an NHPP based on
a Gamma distribution.

define the probabilities on the number of events in Expression
10.3. The real utility of the relation is that we can sometimes
use our results for renewal processes to obtain probabilities
and other information for nonhomogeneous processes such as
the one used to represent minimal repair.

Consider an example. Suppose we are interested in a
device for which we believe the life distribution is Gamma,
with parameters A = 0.05 and B = 3, and for which minimal
repair is assumed. In this case, using Expression 10.5, we
obtain a plot of the cumulative intensity function as shown
in Figure 10.1. Reading from the plot, we note that A(100) =
2.082. Thus, we can compute the probabilities for the possible
number of failures over the first 100 hours of device operation.
These are shown in Table 10.1. We can also determine that
the time between the second and third failures has an expec-
tation of about 28.5 hours.

10.2 IMPERFECT REPAIR MODELS

The minimal repair models were the first to capture the fea-
ture of real operating equipment that often is not renewed by
repair. They were thus the first of the nonstationary models
and provided an advance in realism. On the other hand, most
devices do not remain “as bad as old” when repaired. Actual
device behavior is often somewhere between the extremes of
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Table 10.1 Frequency
Probabilities for an NHPP
Based on the Equivalent HPP

Ny Pr

0.125
0.260
0.270
0.186
0.098
0.041
0.014
0.004
0.001

O J0 Otk WN O

renewal and simple continuation. In an attempt to make the
nonstationary models more realistic, Brown and Proschan
[61] defined “imperfect repair.” Under an imperfect repair
regime, following repair, a device is renewed (as good as new)
with probability p and minimally repaired (as bad as old) with
probability ¢ = 1 — p. The result is that the probability process
that represents equipment experiences is a mixture of the
renewal process and the minimal repair NHPP.

The key to the analysis of this basic imperfect repair
model is the fact that the times at which a perfect repair is
performed constitute a renewal process that is embedded in
the more general point process produced by the device fail-
ures. The points at which a perfect repair occurs are restart
points. Brown and Proschan [51] point this out and then
proceed with the analysis of the process as follows. Denote
the distribution on the time interval between perfect repairs
by F,(t) and its hazard function by z,(#). Now, if a device has
life distribution F'(¢) and only minimal repairs occur during
(0, t), then at time ¢, the device behaves as if it has age ¢. Its
hazard function is z,(¢), and if a failure occurs, the associated
repair will be perfect with probability p. Thus, the conditional
intensity of the occurrence of a perfect repair is

z,(t)= pzp(t) (10.8)
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As with any hazard function, the survivor function cor-
responding to z,(¢) is

F @)= efjézp(u)du _ epr;zT(u)du _ o Pl
: (10.9)
e oy

Consequently, the distribution on the duration of the
intervals between perfect repairs, which is to say renewals, is

F,t)=1-(Fp(®)" =1-e ?#r® (10.10)

This is a very useful and very general result. It is useful
first because it applies to all choices of underlying life distri-
bution. In addition, Expression 10.8 and those that follow it
show that the distribution on the time between perfect repairs
will be of the same class as the life distribution — IFR, IFRA,
DFR, and so on. Within the intervals between perfect repairs,
Expressions 10.3 and 10.4 describe the probabilities on the
frequency of minimal repairs and the times between them.
Finally, all of the results for renewal processes that we have
examined apply to the intervals between perfect repairs.

Consider a simple example. Suppose that failures of a
particular device are well modeled by a Weibull distribution
with parameters 6 = 4000 hours and § = 2.75. Suppose further
that the probability of perfect repair is p = 0.25. Using these
values, we compute the values for the life distribution as
usual, and the calculation of the times between renewals has
the distribution

¢ B ~ ¢ 2.75
Ft=1-(Fpo) =1-¢ Vo) 21 ¢ i

The results of these calculations are plotted in Figure
10.2. Note that the distribution on individual life lengths is
stochastically smaller than the distribution on renewal times.
Naturally, as p is increased, the times between perfect repairs
tend to be shorted, and as p is decreased, the times tend to
become longer.
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Figure 10.2 Example life and renewal time distributions under
imperfect repair.

Given the apparent utility of the above imperfect repair
model, Block, Borges, and Savits [52] suggested that the mod-
els could be enhanced by making p age dependent. They define
the probability of a perfect repair for a device of age ¢ to be
p(t), with the complementary probability of g(¢) = 1 — p(¢) for
a minimal repair. In a sequence of failures with minimal
repairs, the device is considered to continue to age, so the
time since the last perfect repair is the age of the device.
Using logic that is similar to but rather more intricate than
that for the simple (p, g) model, Block, Borges, and Savits [52]
show that the distribution on the times between perfect
repairs has the same basic form as that for the case of age-
independent perfect repair probabilities. That is,

p@&)fp(t)
2,(t)= p(t)zr(t) Fot) (10.11)
leads to the distribution
_[(tP@fr@)
Ft)=1-¢ %" =1-¢ ™ 1 (10.12)

As in the simpler case, the times of perfect repairs form a
renewal process, and it is again the case that we can compute
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Figure 10.3 Example renewal time distributions under age-
dependent imperfect repair.

device behavior measures using the methods discussed above.
It is also often, but not always, the case that the distribution
on times between renewals has the same behavior as the life
distribution. Behavior is preserved for IFR, IFRA, NBU, DFR,
DFRA, and NWU hazards but not for NBUE.

Consider an example device for which failures are well
modeled by a Weibull distribution with parameters 6 = 4000
hours and B = 2.75. Suppose further that the probability
function for perfect repair is p(¢)=1-e™ where p = 0.0001.
Using these parameter values, we find that the distribution
on the time between perfect repairs (renewals) is the one
shown in Figure 10.3. In addition, as noted above, during the
intervals between renewals, we use the cumulative intensity
function (Expression 10.5) of

A®)=Z,(®) (10.13)

and Expressions 10.3 and 10.4 to compute specific event prob-
abilities.

Clearly, the imperfect repair models permit us to move
away from the “pure renewal” models of device behavior. How-
ever, the use of the mixture of repair types is rather artificial
and does not really provide a true picture of operating expe-
riences. More recent models using what are called equivalent
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age measures have been developed to try to provide more
realistic representations of repair processes.

10.3 EQUIVALENT AGE MODELS

In order to provide a more realistic portrayal of equipment
state following repair, two sets of authors have developed
models that define an equivalent age following repair. Kijima
[53, 54] defines two models for what he calls general repair.
Wang and Pham [55, 56] define a “quasi-renewal” process
model to represent postrepair device state. We shall examine
all of these models here.

Before examining these models, recall that the residual
life distribution is the distribution on the remaining life
length for a device that has already operated for some time.
In Chapter 9, we found that the residual life distribution for
a device of age T can be defined in terms of the device life
distribution (Expression 9.34) as

Fr(u+1)

PriU () <l = Fyo )= 1= 25700

Clearly, as with all distributions, the residual life distri-
bution has a mean value, E[U(7)], and if this mean value is
decreasing in 1, we say the distribution is in the class of DMRL
(decreasing mean residual life) distributions. All IFR distri-
butions are DMRL, and the models developed by Kijima and
by Wang and Pham apply specifically to cases in which the
underlying life distribution of the device of interest is DMRL.
The condition DMRL is weaker than IFR but implies device
deterioration over time for all repair scenarios.

10.3.1 The Kijima Models

The Kijima I model is constructed as follows. Let T} ,j = 1, 2,
... to represent the lengths of successive equipment operating
intervals. Then assume that a repair, say the n*, can amelio-
rate the damage or aging experienced by the equipment dur-
ing only the most recent operating interval and not any of the
damage or aging that was incurred during earlier intervals.
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Thus, following the n* repair, the virtual (or equivalent) age
of the device, A, is defined to be

A=A, +n,T, (10.14)

In this expression, &, is the fraction of the age that is
accumulated during the n* operating interval that is not
“healed” by repair and is thus the additional age that is
accumulated during the n* interval. We may consider that
1 -, is the degree of repair for the n? repair action. In general,
we refer to the quantities m, as “repair effectiveness factors.”
(Repair ineffectiveness factors might be more appropriate.)

The Kijima II model is similar. The difference is that the
amelioration of accumulated damage or age is assumed to
apply to all of the accumulated age. Thus, the virtual age of
a device following the n* repair is taken to be

A, =m,(A,+T,) (10.15)

The selection of the values rt, determines the form of these
models. In both cases, 0<w, <1 for all n. If we take n, = 0 for
all n, both Model I and Model II reduce to the renewal model.
On the other hand, if we set n, = 1 for all n in Model I,
we obtain the minimal repair model. If we take &, to be a
Bernoulli random variable for each n in Model II, the result
is the imperfect repair model. Because the various choices of
coefficients lead to the previous models, Kijima called his
models general repair models. He also specified that, in the
most general case, the coefficients m, should be taken to be
random variables with any arbitrary and not necessarily iden-
tical distributions.

For all choices of the coefficients, the analysis of the
Kijima models is complicated. In general, for any set of coef-
ficients, the distribution on the duration of any operating
interval can be defined for both Model I and Model II using
the residual life distribution. The general form is

F.(t+u)-F;(u)

Pr(T,<t|A, ;=ul=F; ()= _
| A T, (1) 7(w)

(10.16)
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where, naturally, we take A, = 0. Note that the complement is

B Fp(t+u)

Pr[T, >t| A, =ul= F) (10.17)

Now, we would like to be able to identify the probabilities
and the expectations for the numbers of repairs over time and
the time until a given number of repairs have been made. If
we let I1={n,, Wy, ......} represent the sequence of repair effec-
tiveness factors, then we can identify algebraic representa-
tions for these measures. Specifically, we note that the
sequence of random variables {A,} represents the “virtual
age” stochastic process, and that the random variable

S,=>.T, (10.18)
j=1

is the real age (or elapsed time) for the sequence of operating
intervals. We can denote the distribution on the real age by
Fs (t)=Pr[S, <t] (10.19)
and the number of repairs by
N,=sup{n>1|S, <t} (10.20)

Then, the usual relationship between the time and frequency
domains implies that

Pr[N, >n]=Fy (¢) (10.21)

and (in principle) we can compute expectations on the mea-
sures as

EIN,]= ZFSn(t) (10.22)
n=1
and

EIS,]= Jmﬁsn (w)du (10.23)
0
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Unfortunately, for the most general definitions of the
vector I1, these measures of interest are extremely difficult to
determine. As shown below, even for quite simple choices of
I1, the exact analysis of Expressions 10.22 and 10.23 require
successive numerical integrations that are intricate. Rather
than attempt the difficult numerical analysis, we usually com-
pute an upper bound on E[S,] and use that as our key mea-
sure of system behavior.

To appreciate the utility of the bounds, we examine the
analysis of the basic models. Assume that the factors m, are
independently and identically distributed (i.i.d.) random vari-
ables having expected value E[r]. Start with Model I.

Suppose that «,,; =7 for n €[0, 1] and assume that =0,
so that the application of Expression 10.17 yields

F, (=PrlA,., >t]=Pr[A, >1]

t
+ J Pr(nT, >t-u|A, =ulPr[A, =uldu
0

t—u
u+——

- n
= FAn (t)+ J.O WdFAn(u)

F, (u+t—uJ
— t°T T
_F, 1)+ LFT(U) £ (wdu (10.24)

and the density function is
t—u

! f( )
fu ()= njo s (10.25)

with

et
fu®O=_fr(t) (10.26)
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Now that the density on A, is defined, we can construct the
expected value of each operating interval using Expression
10.17 and 10.25. Specifically,

EIT, A, —ul- rPr[Tn St|A, | —uldt
0

_ (10.27)
_ FTJt+u) dt
o Fp(uw
and
BIT)= [ BIT|A L =ulf, du  (10.28
0

Clearly, one possible approach to computing E[S,] is as the
sum of the terms E[T].

Now, Kijima and associates [54] suggest that Expression
10.24 be restated as

By, = | gt (wdu (10.29)
0

where

= t—u
Fro(—9  ust
b

g/ ()= (10.30)

1 u>t

He then notes that when the elements of the vector of repair
effectiveness factors are i.i.d. random variables having distri-
bution function Fiy(n), the stochastic process, {A,} having A, =
0 is a Markov process with transition probability function

1
PrlA,, <¢|A, =ul= jo (1-g@)fymdr  (10.31)

Using this result and the assumption that the underlying
life distribution is DMRL, Kijima shows that bounds for E[S, ]
can be obtained. A lower bound is obtained when it is assumed
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that n, = n for all n and & is simply a constant. In that case,
successive evaluation of the integrals stated in Expressions
10.27 and 10.28 are demanding but possible. For an upper
bound for E[S,], we use the corresponding quantity for the
imperfect repair case. That is, taking the =, to be Bernoulli
with E[n,]=p, we have the imperfect repair case. For that
model, we can compute E[S,, p]l using the following recursion:

vim,n)=W,, +1-plvim,n-1)+ pv(m+1, n-1) (10.32)

where v(m,n) is the expected value of S, for a device that is
subject to an imperfect repair regime and has already had
m — 1 minimal repairs. The quantity y,, is the mean length
of m intervals when only minimal repair is used, and p is the
probability that repair is perfect (x = 0). The boundary con-
ditions for the recursion are v(m,1)=y,,, and the values
v(1, n)=E[S,, p] provide the upper bounds.

The interpretation of Expression 10.32 is that the
expected value of the sum of the lengths of the next n oper-
ating intervals for a device that has had m minimal repairs
so far is the expected value length of the next operating
interval, |, plus the expected value of the sum of the lengths
of the following n — 1 intervals, for which the number of
minimal repairs will be m + 1, with probability p, and m, with
probability 1 — p. The upper bound value that we obtain using
Expression 10.32 applies to the “general repair case” in which
the distribution on the =, has expected value E[rn,]=p.

Based on our understanding of the minimal repair case,
we can compute the value of the mean length of m operating
intervals under minimal repair as

W= r(m)_[ (Zow)" " ey (10.33)

This quantity forms the basis for the numerical computations
for the recursion of Expression 10.32.
Consider an example. Suppose the underlying life distri-

bution for a device is Weibull with = 2.75 and 6 = 4000
hours. In this case, we calculate



Repairable Systems Il — Nonrenewal and Instantaneous Repair 213

Table 10.2 Values
of Mean Residual Life
under Minimal Repair

My

3559.43
1294.34
882.50
695.31
584.69
510.27
456.15
414.69
381.70
3564.71

QO OWOMIO UK WK |3

=

210=( o] ~(“4000]

so we easily obtain the values shown in Table 10.2.

Notice the clearly decreasing values of these mean resid-
ual life lengths. Using the values of Table 10.2, we can solve
the recursion equation of Expression 10.32 to obtain the val-
ues of E[S,, p]l which are our upper bounds on E[S,] for the
general repair model. Example results are shown in Table
10.3. As indicated previously, the nested integrals make the
calculation of the lower bounds very difficult. Using Expres-
sions 10.28 and 10.25, the calculation of E[T,]is manageable.
We find that for n = 0.50, E[T,]=760.168, for = = 0.75,
E[T,1=591.923, and for © = 0.90, E[T,]1=514.559. The corre-
sponding lower bounds on EI[S,] are obtained by adding the
known value of E[T}]=3559.43 to these quantities to obtain
E[S,]1>4319.60, E[S,]1>4151.35, and EI[S,]>4073.99, respec-
tively.

The extension of our analysis to the Kijima II model is
reasonably direct. We start with the basic model stated in
Expression 10.15 and assume the &, are i.i.d. random vari-
ables. We then use Expression 10.17 again to obtain
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Table 10.3 Values of E[S,, p] for Minimal Repair as
Upper Bounds on E[S, ] for General Repair

Eln 1=p=090 Eln,l=p=0.75 Elr,l=p=0.50

S

1 3559.43 3559.43 3559.43
2 5080.27 5420.04 5936.81
3 6063.38 6624.28 7743.96
4 6823.51 7527.55 9092.12
5 7457.78 8266.61 10179.47
6 8009.35 8902.29 11093.31
7 8501.38 9465.85 11886.39
8 8948.05 9975.54 12591.67
9 9358.77 10443.04 13230.49
10 9740.17 10876.37 13817.18

F, ()=Pr[A, ,>t]=Pr[A, > %]

7
T t/ _ — _
+J0 PrlT, > U ~u| A, =ulPrlA, = uldu

SRt
:FAH(%HJ.O/“deFAn(u)zFAn(t)

T(u)
(/) (10.34)
¢ Fp
) R T
and the density function is
Y fa, (@)
fAm(t)—fT(A)L ';i‘(z)d (10.35)

with

_1.
fAl(t)—EfT(A) (10.36)
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as before. The general statements of the expected values for
the S, of Expressions 10.27 and 10.28 are the same for Model
IT as for Model I. Their analysis is no less complicated for
Model II, so our approach is the same.

To compute upper bounds for the E[S, ], we again use the
corresponding quantity for the imperfect repair case. We take
the m, to be Bernoulli with E[n,]= p, and we compute E[S,, pl
using the following recursion:

vim,n)=n,, +(1-pvA, n-1+ pv(m+1,n-1) (10.37)

where the values v(1, n)=E[S,, pl are the upper bounds on
E[S,] for the general repair case when the &, are i.i.d., and
the distribution on the w, has expected value E[r,]=p.

For Model II, we also note that repeated substitution
within the recursion Expression 10.37 leads to the relation
that, under imperfect repair, when n >2,

n—1
EIT,|=EIS,]- EIS, ,]=(-p)Y p"'u,+p" ', (10.38)

J=1

The quantities y, in each of the above expressions are the
same as for Model 1. They are the successive mean residual
life lengths for a device subjected to a minimal repair regime.

Consider the same example as above. When the life dis-
tribution is Weibull with B = 2.75 and 6 = 4000.0, the mean
residual life values are those listed in Table 10.2, and the
upper bounds on E[S,] defined in Expression 10.37 are shown
in Table 10.4. Here again, the computational effort associated
with the computation of the lower bounds is excessive.

In summary, we may observe that the Kijima models are
very appealing, because they provide a significantly more
realistic image of the state of equipment following repair.
Unfortunately, the models are correspondingly difficult to
analyze. On the other hand, it is not difficult to simulate the
models and to use the simulation output to describe system
behavior. This approach is now widely used.
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Table 10.4 Values of E[S,, p] for Minimal Repair as
Upper Bounds on E[S,] for General Repair

n Eln]=p=090 Eln,]l=p=075 Elr,]=p=050

1 3559.43 3559.43 3559.43
2 5080.27 5420.04 5986.31
3 6267.53 7048.99 8310.23
4 7318.33 8598.97 10610.76
5 8296.54 10113.95 12904.37
6 9230.82 11611.27 15195.65
7 10136.33 13098.95 17486.09
8 11022.02 14581.11 19776.21
9 11893.50 16059.96 22066.19
10 12754.52 17536.78 24356.13

10.3.2 The Quasi-Renewal Process

An alternative approach to modeling the postrepair state of
a device is suggested by Wang and Pham [56]. Rather than
directly adjust the age of the unit following repair, Wang and
Pham adjust the life distribution. For the sequence of oper-
ating intervals, T, T, T, ..., each of which ends with device
failure and repair, they assume that

T, =a"'X, (10.39)

where o (>0) is a constant that alters the scale of the distri-
bution and the X, are i.i.d. random variables. Under this
definition, the sequence {7’} is said to form a quasi-renewal
process. Clearly, if a = 1, the sequence is a renewal process.
An interesting feature of this model is that a choice of o0 < 1
implies that the operating intervals are decreasing in magni-
tude, as might occur with aging and deterioration. On the
other hand, a choice of oo > 1 might be used to represent an
ongoing improvement in the quality of replacement units,
with a corresponding gradual increase in the duration of oper-
ating intervals.

For the models developed here, we assume that o < 1, as
the unit of interest is aging. The expressions developed apply
to other choices of the parameter, but this is not pursued here.
For any particular choice of o, we find that
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FTn (t)= FX(%Xn—l)

1
an (t) = an—l fX (%an) (1040)
EIT,]=a"'E[X]

Now, the similarity to the renewal process permits us to
construct some descriptive expressions for the model. In par-
ticular, we again define S, to be the sum of the T; and N, to
be the number of failures during (0, t]. Then, in contrast to
the Kijima models, we can immediately compute:

EIS,]1= Y EIT,)=EIX]Y o/ = 11__0§E[X] (10.41)
=1

J=1

In addition, we use the usual time frequency relationship:

Pr[N, 2n]=Pr[S, <t]

and the same logic that we used for the renewal process to
construct the quasi-renewal function:

M, (t)=E[N,]= ZFSn ) (10.42)

n=1

Of course, the distributions Fg (¢) are all distinct, because
they are convolutions of distinct distributions from a common
class. However, since the process {T',} is constructed so regu-
larly, the Laplace transforms for the distinct distributions and
hence for the quasi-renewal function are readily constructed
as

Fy (s)=Fx(a"s) (10.43)

and

My (s)= iFSn (s)= iﬁF;(oc”‘ls) (10.44)
n=1

n=1 j=1
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Also, as with the renewal process, the derivative of the
quasi-renewal function is the quasi-renewal intensity func-
tion:

mp, (s)= ifs*n(s) = iﬁf;(u“s) (10.45)
n=1

n=1 j=1

As in the case of the renewal model, it is usually quite
difficult to obtain numerical values for the device performance
measures. As indicated above, Expression 10.41 permits us
to compute E[S,]. On the other hand, the quasi-renewal func-
tion tends to be quite difficult.

Consider an example. If the life distribution is Normal
with mean p and standard deviation G, then using the second
of the relationships in (10.40), we find that each of the T', has
a Normal distribution:

\h
o
=
Il
Q ‘
3| =
o
<
|
1]
R
i
DN
7]
Q
[\v]
[}

- e 2(0" o)
V2r(a" 1o)?

but with a mean value of o*!u and a standard deviation of
o'c. We can thus construct the convolutions of the distribu-
tions on the 7', to obtain the distributions on the S,. We do
this most easily using the Laplace transforms. For the normal
life distribution,

s%6?
+

. —su+—
fx(s)=e 2
S0

2/ ,n-1_12
1., s°(0" 7o)
ot 1

- -s U+
fr(s)=e 2

and
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Table 10.5 Values of M(¢) for the
Quasi-Renewal Model with Normal
Life Distribution

t a=09 a=085 a=0.75

1000 0.001 0.001 0.001
2500 0.067 0.067 0.067
5000 0.863 0.875 0.897
8000 1.577 1.741 1.992
10000 2.145 2.447 3.084

n 2.2 n
j— — s70 j—
SZ(OLJ 10_)2 78”20LJ 1+TZ((XJ 1)2
=i =i

fo=TTre=TT """ =
J=1 J

1

1-a” 82(52 1- 2n
[ FE
=e

and we can conclude that the distributions on the S, are
normal with mean 1-o”"/1-op and standard deviation
(1-02"/1-02)"?6. Then, we observe that as n increases, both
the mean and the standard deviations values converge —
often quite rapidly. In addition, for any time interval, ¢, the
sum of the quantities Fg (¢) will also converge. Algebraically,
it is difficult to identify the convergent form, but we can easily
compute approximate values of the limit numerically. As a
general observation, the closer the value of o is to 1.0, the
more quickly the values Fg (#) decline, and therefore, the more

quickly the numerical convergence of the sum.

Suppose the underlying life distribution has pu = 4000.0
and ¢ = 1000.0. The corresponding (approximate) limits for
several values of o are shown in Table 10.5. As the value of
o is decreased, the number of terms that must be computed
increases. For example, for o = 0.95 and a time of 5000 hours,
M(5000) is determined using only two terms, Fg (¢), and
M(10000) requires six terms. On the other hand, for oo = 0.75,

computing M(5000) requires six terms and computing
M(10000) requires 200 terms.
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10.4 CONCLUSION

As in the previous chapter, the models presented above serve
to highlight the questions one should consider in the study of
repairable systems. The models in this chapter focus on the
more realistic representation of the postrepair equipment
state. By treating repair as instantaneous, we obtain the
simplest model forms possible and develop the methods best
suited to their analysis. With these methods now defined, we
are ready to move on to the investigation of equipment per-
formance when repair is noninstantaneous.

10.5 EXERCISES

1. Assume the operation of a device is to be represented
using the minimal repair model with a Weibull life
distribution having B = 1.5 and 6 = 5000.0 hours.
Compute Pr[T, — T; > 1200], Pr[N, = 4], Pr[N,, —
N 1é)i)0 > 2], Pr[Ngoo — Nsoo > 21, and Pr[Nggg — Njgoo
> 2].

2. Plot the cumulative intensity function for the mini-
mal repair model for the case in which the underlying
life distribution is Gamma with = 2 and A = 0.20.

3. Compute and plot the distribution on the time
between device renewals for the imperfect repair
model having a Weibull life distribution with f = 1.5
and 6 = 5000.0 hours.

4. Replicate the bounds on EI[S, ] for the Kijima I stated
in Table 10.3 by computing the values of EI[S,,pl
using Expression 10.32 for the case in which t = 0.90.

5. Construct and run a simulation analysis of the
Kijima I model for the Weibull life distribution with
B = 2.75 and 6 = 4000.0 hours for the case in which
n = 0.90.

6. For the quasi-renewal model, assume F(¢) is Gamma
with B = 2.0 and A = 0.05, and construct the general
expressions for fr (t), Fr (¢), and Fg (¢). Then con-
struct a numerical routine to compute M(¢) for ¢ =
2000, ¢ = 5000, and ¢ = 8000 when o = 0.90.
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Availability Analysis

The models and results described in Chapters 9 and 10 are
constructed without considering the duration of the repair
activity. In many situations, the focus of our analysis is upon
questions for which the answers do not depend upon the
duration of the repair process. This is especially true when
the time a system spends down is relatively less unimportant
than the fact that a failure has occurred and when the dura-
tion of repair is small or negligible in comparison to the device
life length. In contrast to such devices, there are components
and systems for which the duration of the repair activity has
an impact on the meaningful device performance measures.
For items of this sort, we must include repair times in our
models.

Naturally, when we include repair time in our models,
we may represent the possible repair durations in whatever
manner seems most representative of actual experience. In
some cases, repair time is taken to be a constant, while in
most cases, repair time is treated as a random variable, and
a specific distribution is selected to portray the dispersion in
repair times. We will consider both of these possibilities.

We may consider that a typical sample path for a device
is one in which periods of operation are terminated by device
failure and that, therefore, a repair period follows each fail-
ure. Upon completion of the repair, the device is placed in

221
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Ty Ry T, Ry

(IR I

time

Figure 11.1 Representative sample path.

operation again. A representative sample path is shown in
Figure 11.1. Note that we will modify the labels soon, but for
now, we indicate that the periods of repair have durations R,
while the operating periods are labeled as T,. Observe also
that the device’s state is denoted by X;, and that the value of
the state variable is shown to be 1 when the device is oper-
ating and 0 when it is being repaired. Note further that each
pair of periods, operating and repair, is shown to have total
duration V; where

It is reasonable to consider that each interval that includes
an operating period and a repair period is a “cycle.”

In the particular case, in which all of the operating times
T; are random variables with a common probability distribu-
tion and all of the repair times R; are random variables with
a common probability distribution, the series V; forms a
renewal process. This is because the intervals of operation T
form a renewal process, as do the intervals of repair R;, and
thus the V, form an alternating renewal process that is also
a renewal process. For the majority of the current chapter,
the cycles are assumed to form a renewal process, and the
types of analysis that can be performed are discussed. Toward
the end of the next chapter, we examine the relatively few
results that have been constructed for the nonrenewal case.

To study the cycles in the renewal case, we first modify
the definition of the quantities V. In general, our analyses
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(IR -]

time

Figure 11.2 Representative sample path with revised labeling of
the V.

are based on an interest in the times of device failure rather
than in times of device restart. Therefore, we modify the labels
on the sample paths so that the V; correspond to failure times.
This is illustrated in Figure 11.2. The difference is quite
subtle. The change is that the values of the V; now correspond
to failure times. That is,

Vi=T
V2:R1 +T2 (11 2)

Using this definition, the series V; forms a “modified” renewal
process because the distributions for all of the V; other than
V, are the same, and that for V, is different.

As a matter of convention, let the distributions Fr.(t)
represent the distributions on the lengths of the operating
intervals (which could be just the life distribution), and let
GR (¢) represent the distributions on the lengths of the repair
intervals. In that case, the distributions on the durations of
the cycles are constructed as the convolution of FT (z) and
GR (t) and are denoted by H, (t) Thus, in general,

Hy ()= Fy ()% Gy, (0= | Gy, (t-widFy ) (113)
0
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When the distributions are common for all cycles, the sub-
script “” is dropped.

An interesting consequence of the relabeling of the sam-
ple path is that the renewal functions for the expected number
of failures and the expected number of repairs are different.
We will exploit that difference in our analysis later. For now,
note that the Laplace transform for the expected number of
repair completions during and interval (0, ¢) is given by

M (s)= fr(8)gr(s) (11.4)
T s(1- fr(90gr(s))

while the transform for the expected number of failures dur-
ing an interval (0, ?) is

My (s)= ff(S) (11.5)
T s(1- fr9grs)

The expected number of failures and the expected number of
points V; are the same. These arise from the applicable forms
of the key renewal theorem, which are

Mg, (t)=H,(t)+ j M, (¢~ why (wdu (11.6)
0

for the expected number of repair completions and:

My, (8)=Fy(t)+ _[:MHV(t— why (w)du (11.7)

for the expected number of failures.

11.1 AVAILABILITY MEASURES

Regardless of whether or not the cycles form a renewal pro-
cess, the fact that there are periods during which the device
is not functioning leads naturally to the definition of “avail-
ability” as a measure of device performance. In fact, four
distinct but related availability measures have been defined.
The basic one is
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Defn. 11.1: The (point) availability at time ¢, A(¢), for a
device is the probability that it is functioning (X(¢) = 1)
at the time. Thus,

A)=Pr[X()=1]=E[X ()] (11.8)

The distinction that this is the point availability is important.
Nevertheless, A(¢) is usually called simply the availability,
and this is done here unless doing so is ambiguous. The other
three availability measures are:

Defn. 11.2: The limiting availability for a device is the
probability is the limit of the point availability function.
That is,

A@)=1lim A() (11.9)
The limiting availability can be very useful. As we will
see, many devices experience an interval of transience before
they “settle down” into a consistent pattern of operation. At
that point, the devices often display availability behavior that
is stable and similar (or equal) to the limiting form. In addi-
tion, there are many analytical cases in which the point avail-
ability is very difficult (or impossible) to compute, but the
limiting availability measure is manageable.
It may also be useful at certain times to compute aver-
ages so we have:

Dejfn. 11.3: The average availability over an interval
(t;, ty) for a device is

1
ta—t

Alty, t,) = r Aw)du (11.10)

The average availability is often evaluated for ¢, = 0. In
addition, we have

Defn. 11.4: The limiting average availability for a device
is the limit of the average availability over (0, t). That is,

A_ =lim A(0, ) (11.11)

t—oo
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Each of the four measures has utility in specific cases.
In general, the point availability is the most informative mea-
sure, but it is usually the most difficult to obtain. The most
commonly used of the measures is the limiting availability.
The primary reason for its popularity is that, in the case in
which the operating and repair cycles form a renewal process,
it is easily computed as

_ EjTl  MTTF
“ EpT1+E/T] MTTF + MTTR

where MTTF is the “mean time to failure,” and MTTR is the
“mean time to repair.” Of course, when no repair is possible,
the availability measures reduce to their corresponding reli-
ability terms. B

~ For most applications, we should find that A. =A.. Also,
A(t,, ty) is the proportion of the time the device operates
during the interval (¢, ¢,). A further point that is somewhat
subtle is the fact that, for a population of devices, each of the
availability measures is an expected value relative to the
number (or proportion) of the members of the population that
are operational. The distribution on the frequency for which
the availability measures are expected values is the binomial
[57].

Given the elementary definitions stated above, we may
proceed to construct an availability function. The analysis of
availability can become quite intricate, so it is usually per-
formed relative to a very carefully defined statement of the
assumed operating and repair scenario. This is because very
minor differences in operation plan, and particularly in the
assumed failure and repair distributions, may have quite
pronounced effect on the identity of the appropriate model
and its solution.

For now, we assume that each repair operation returns
a device to a “good as new” state, so that all of the operating
periods have the same distribution on duration. Similarly, we
assume that all of the repair activities have a common distri-
bution on duration. Therefore, as noted above, each cycle has
the same probability distribution on its length, and the cycles

(11.12)
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form a renewal process. Therefore, the availability function
may be defined as the sum of two probabilities:

1. The probability that the device has never failed and
is thus still functioning

2. The probability that a new cycle was started at some
recent point in time and no failure has occurred since
then

Algebraically, this is

A = Fp(t)+ I:FT(t —wmy (wdu (11.13)

where, as indicated above, H(¢) is the convolution of the
distributions on operating intervals and on repair times. Note
particularly the similarity of the availability function to the
key renewal theorem.

Generally, when we can, we use Laplace transforms to
obtain the final form of the availability function. In that case,
we construct

1

A*(s>=i‘Fi(S”(s_F;(S)ijV v

(11.14)
:i(1— Fr(9)(1+mi, (9)

and the inverse transform gives the availability function. Note
that Equation 9.16 of Chapter 9 implies that we may use

. 1 . 1
A@)==(1-fr())—"—— 11.15
= - fr ))1—f;<s>g;<s> (15
instead of Expression 11.14, especially if it is easier to avoid
determining the specific form of the renewal density. In addi-
tion, as indicated previously, we can exploit the difference in
the repair completion and the failure time renewal functions
to obtain an additive form. Specifically,

A'(8)= M}, (5)- M}, (s)+i (11.16)
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The advantage of this form is that its inverse is
A)=Mg,)-My, )+1 (11.17)

Also, we again avoid specifically constructing the renewal
density.

11.2 EXAMPLE COMPUTATIONS

Nearly all of the possible realizations of the availability model
are algebraically and computationally quite difficult. The
exception is the case in which both the life distribution and
the repair time distribution are exponential and the repairs
return the system to a “good as new” state. In order to dem-
onstrate the method of analysis, the availability function for
this renewal case is constructed here. Following that analysis,
a more difficult case is examined.

11.2.1 The Exponential Case

To start, assume the exponential life distribution has param-
eter A, and the exponential repair time distribution has
parameter A,. It is worthwhile to construct the distribution
on cycle length, as this illustrates the process of constructing
convolutions. As we know:

AooA, A,

h* _ * *® — =
v(8)=fr(s)gg(s) s+Ap s+, 32+(}\,f+7\,r)s+7\.f7ur

For this transform, we use the method of partial fractions to
solve

1 __A _ B
s+ +A)s+Aph,  s+A, s+,

for the forms
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and

A
A,

B

Thus, the inverse of the transform is

_ A’f}‘r st At
hV(t) = Mc(e —-e )

with the corresponding distribution function

(k,e_)"ft - kfe’k’t)
A2

H,(t)=1-

Observe that this is neither an exponential nor a gamma
distribution, but that it is a proper distribution function, and
it provides an unambiguous model of the dispersion in the
lengths of the cycles of operation and repair. Naturally, it also
correctly yields

Ey, [T1= Ep[T1+ E4T]

Next, in order to construct the availability function, we
use Expression 11.15:

1
1-f7(s)gr(s)

:1 1- At 1— Ay L_l
s s+As s+Ap s+A,

which we can reduce to

A©="(1-1;5)

sS+A,

Als)= s(s+As+A,)

Using the partial fraction expansion:
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stA, A N B
s(s+As+A,) s (s+A +L,)
we obtain
A
A= r
A+,
and
A
B=—"1
A+,
and the inverse transform is
A e o

Aty=-"
= T,

This result is quite useful for examining the behavior of
the availability measures for the renewal case. Note first that
the availability function is comprised of a constant term and
a term that diminishes over time, so the function displays an
initial transience and then settles down to a stable and essen-
tially constant value. This is illustrated in Figure 11.3 for
A= 0.01 and A, = 0.1. The limiting value is

A,

A, = =0.909
W

Note also that we may use Expression 11.5 to compute

}\'r 7\']“ 5 (e*(}hf‘*'?kr)tl _ e*(?mf'i-}ur)tz)
Atk (G —t)Ap+1,)

so, for example, A(10, 20)=0.927. Also, we may note that
A =A..

Examine the limiting availability that we obtained for
the exponential case. Specifically, we can restate the limiting

availability as

A(tl’ t2) =
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Availability
0.945
0.94
0.935
0.93
0.925
0.92
0915

Figure 11.3 Example availability function.

/ Ep[T]

A, BT
4. 7» A, E T
T /EG T+ EelT]

which is the form given in Expression 11.12.

As we have seen above, the exponential model provides
a relatively simple illustration of all of the basic availability
analyses. It must be emphasized that other choices of life and
repair time distributions can be analyzed, but the other cases
often require considerable computational effort.

On the other hand, there are quite a number of nonex-
ponential cases in which the bounds described in Chapter 9
can be used to provide information on device performance.
For cases in which the life distribution and the repair time
distribution are both IFR, the distribution on cycle length,
H(t), will also be IFR. In that case, we can compute bounds
on the lengths of cycles and on the number of cycles, using
Expressions 9.25 through 9.29 and Expression 9.32.

11.2.2 A Numerical Case

If the distribution that best represents the life lengths of a
device is not exponential, the computation of the point avail-
ability function can be quite taxing. However, given modern
computing power, the calculations are frequently manageable.
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The advantages of the capabilities of modern computers and
software should not be taken lightly, as many of the interest-
ing results we can now obtain were completely impossible in
the past. In any case, the computation of the point availability
function may be pursued in any of several ways. One approach
is to construct the relevant Laplace transforms and then use
numerical algorithms to invert A (s). An alternate approach
is to directly perform the integration of Expression 11.13
numerically.

Consider an example. Suppose the life lengths for a pop-
ulation of a device are well represented by a Weibull distri-
bution having parameters 3 = 2.0 and 6 = 200 hours. Suppose
further that repair of the device involves replacement and
takes a random time, for which an exponential distribution
with A = 0.10 provides a reasonable model. For these distri-
butions, we first note that

A = E;[T] _177.245

= =0.94659
* " EpIT1+E,[T] 177.245+10.0

Next, we can evaluate the point availability by perform-
ing the numerical integration of Expression 11.13, in which
we make the substitution

my, (t)= Zj: i we® (t-wdu (11.18)
k=1

and then replace f;"(t) with its approximate form as defined

in Appendix B. The resulting values of the function are fully
accurate until we introduce the numerical error associated
with the integration and the error resulting from the finite
truncation of the infinite sums. The actual numerical effort
involved in this analysis is quite taxing. However, it is man-
ageable. Several of the values of the point availability
obtained for the given distributions are shown in Table 11.1.
The values show a transient interval and a relatively rapid
convergence to the limiting value. In view of the fact that both
the Weibull life distribution and the exponential repair time
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Table 11.1 Computed Values of
the Availability Function for Weibull
Failures and Exponential Repairs

Time AT
50 0.9807
100 0.9614
150 0.9498
200 0.9454
250 0.9451
300 0.9466
350 0.9466
400 0.9466

distribution center around exponential terms, the rapid con-
vergence is exactly the type of behavior one expects to see.

11.3 SYSTEM-LEVEL AVAILABILITY

Naturally, it is most often the case that we are interested in
the availability of a system for which repair involves “servic-
ing” one or several components of a multicomponent system.
Examples of systems for which availability is important and
repair frequently involves component or module replacement
include aircraft, computers, production equipment, and
motorized vehicles. For the present analysis, consider that the
repair activity involves the replacement of a component. Of
course, there are very many possible operating scenarios, each
of which may involve distinct models. Consider two cases here.

For the first case, suppose that a system is comprised of
independent components arranged in an arbitrary configura-
tion and that each component has an associated life distribu-
tion and repair time distribution. Also assume that
components are replaced on failure, but that while any single
component is being repaired, the other components continue
to operate and thus to age. For the second case, we will assume
a series system in which the functioning components do not
age during the replacement of a failed component.
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The first case fits very well with the reliability and sys-
tem status construction we studied earlier. Specifically, sup-
pose that, for component j, the hfe distribution is F;r(¢) and
the repair time distribution is G; z(¢), so that the renewal
function for that component is My (#). Then the availability
function for the component is A; (t) where, as before,

The availability function A;(#) is computed as the solu-
tion to Expression 11.13 without regard to the other compo-
nents. Then, since the system status is

Ag() = E[¢(X @)= o(E[X @) (11.19)

the systems availability functions is

As(t) = 0(A;(8), Ay()..., A, (1)) (11.20)

Thus, we compute the system availability in exactly the
same manner as our calculation of system reliability. All of
the computation rules we developed in Chapter 3, including
the rules for calculating bounds for general structures, apply.
In addition, these rules apply to the limiting availabilities as
well as to the point availabilities.

Consider two examples. Suppose that each of the compo-
nents of a five-component series structure has an exponential
life distribution with the parameters A, = 0.833, A, = 1.250,
A = 2.500, Ay = 1.111, and A5 = 0.200, and that for each
component, the distribution on repair time is exponential with
the parameters A,; = 0.0625, A, = 0.040, A ; = 0.100, A,, =
0.025, and A,; = 0.050. Then, we know from our earlier anal-
ysis that

kjf+k xjf +A;

and
A
A = T
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Figure 11.4 Point availability function for an example series sys-
tem.

Therefore, since the system is a series system,

HA ijf+k

=(0.930)(0.969)(0.962)(0.998)(0.800) = 0.678

and the point availability function is the one shown in Figure
11.4. We can see that the product form of the structure func-
tion implies a fairly rapid decline in the value of the expo-
nential term, and the system thus “settles down” into its
limiting behavior in a short time.

As an example of the more complicated analysis, we
might encounter, consider the bridge structure of Chapter 2
and assume each of the components has a Weibull life distri-
bution with parameters = 2.0 and 6 = 200 hours and an
exponential repair time distribution with parameter A = 0.10.
As we have already computed the availability for a single device
with these characteristics, we know that A;(50)=0.9807 and
A;(200)=0.9454. We may also recall that the series-parallel
bounds, the min path upper-min cut lower bounds, and the
mini-max bounds on reliability for the bridge structure with
identical components are

rP<R,<1-(1-r)

S
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(1-a-r?) (1-a-r?) <R <(1-a-rra-r~y)
and
r’<R,<1-(1-r)?

respectively. Replacing the reliabilities with availability terms
yields

(4,0) <A®<1-(1-A,0)

2

(1—(1—Aj(t))2)2(1—(1—Aj(t))3) <A

2 2
< (1—(1—(Aj(t))2) (1— (Aj(t))3) J
and
(4,0) <A®<1-(1-A,0)
Therefore, we can compute the availability bounds:
0.9072< A,(50)<1.0
0.9992 < A,(50)<0.9999

0.9618 < A,(50) < 0.9996

and

0.7552 < A,(200)<1.0
0.9937 < A,(200) < 0.9997

0.8938 < A,(200) < 0.9970

Of course, we also have the limiting availabilities of
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. ET) 177245
" EIR,+EIT;] 10.0+177.245

=0.947

so we can compute the bounds:
0.760<A_<1

0.994< A, <0.969

Soo T

and
0.896< A, <0.997

Thus, we can see that, for the assumed operating scenario,
the results we developed earlier using the system structure
can be very useful and informative.

A second model for which we can obtain results is that
in which we have an m-component series system. We assume
that the failure of any component stops the operation of the
system and, thus, of the other components. The other compo-
nents do not age while the failed component is being replaced.
Thus, when system operation is resumed, the replaced com-
ponent is new, and the other components have the age they
had when the replaced component failed. Several key struc-
tural results for this model were developed by Barlow and
Proschan [11]. These results are general, in that they apply
to any choice of continuous life and repair time distributions.

The sample path shown in Figure 11.1 at the start of
this chapter is representative of the operating experience for
a series system. The individual failure and repair times may
(usually do) correspond to the failures and replacements of
different components. Thus, let T); represent the life length of
the i"* copy of component j used in the system, and let R;
represent the i** replacement time for the j** component. Next,
let U(¢) represent the system operating time (up time) during
the real time interval (0, £). Note that U(¢) is not an availabil-
ity measure, but that for any realization of the system sample
path, U(¢)/t is the proportion of the time the system functioned
and, hence, is the average availability for that sample path.
Now, Barlow and Proschan [11] prove that
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t—>eo t EF [T]

j=1 T F;

-1
_ » E, [R
Asw:th(t):[uz o)l ]] (11.21)

That is, we take the ratio of the expected repair time to
the expected life length for each component and sum across
components. Add this to one and take the reciprocal, and the
result is the limiting average system availability. In addition,
for typical choices of the life distributions — those that are
continuous — the limiting system availability is the same as
the limiting average system availability. Also, the limiting
values for the component replacement rates are the respective
reciprocals of the mean life times

[ N,U®) 1
152{15[ ’ 4@)]}‘12@[1"] (11.22)

where, as in our previous analyses,

i=1

and
N, (t)=sup{n|S;, <t}

A conceptually equivalent statement to Expression 11.22
is that the average life length of a component divided by the
total up time equals (in the limit) the average number of
copies of the component that are used. Additional useful
results are

Ut) ~ tAg. (11.23)
and
lim N As. (11.24)
toe | E EFJ_[T]
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Over time, the up time is approximated by the product
of time and limiting average system availability, and the num-
ber of replacements for any component is approximately the
limiting average availability divided by the average lift
length. (Note that dividing both sides of Expression 11.24
gives (approximately) Expression 11.22.)

At the system level, we can state that the average system
up time per cycle converges in the limit to

-1
7 1
U= [; AF,- [TJ (11.25)

and the corresponding limit for the average time down per
cycle is

~ [~ Eg,[R]
D U[; EF].[T]J (11.26)
Clearly, these imply the average cycle length, and they are
consistent with the average availability expressions.
Consider again the example of a system comprised of
m = 5 components in series, each of which has an exponential
life distribution with the parameters Ay = 1.20, A, = 0.800,
Ag = 0.400, Ay = 0.90, and A5 = 5.00 and an exponential repair
time distribution with parameters A, = 19.01, A, = 25.00,
A5 =10.00, A,, = 40.00, and A,; = 20.00. In this case, we find

-1

| (0s88) * (1.200) *(2.500) " "

a (0.0625) (0.0640) (0.100) (0.025) (0.050)
5 [ (1.111)  (0.200)

=0.695

-1

(e ) )

U—[Zl, /EF.[T]J =(0.833+1.25+2.50 +1.111+0.20)
J= J

=0.1668
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D=U(0.4387)=0.0732

so the average cycle length is 0.24 time units.

There are two interesting final observations concerning
the system availability measures. First, Expressions 11.21,
11.25, and 11.26 jointly imply that

A~ U
U+D
as we would expect to be the case. Similarly, if the number of

components of the system is m = 1, the limiting average
system availability of Expression 11.21 reduces to

-1
= E;[R]) E,[T]
As.. = [” EF[T]] ~ EpT)+E,R]

and this is also as we would expect.

11.4 THE NONRENEWAL CASES

Very few availability results have been developed for the cases
in which repair does not imply renewal. Numerous authors
have used cost models rather than availability models to
describe the consequences of downtime. The reason for the
shift to cost models is the complexity (or impossibility) of the
probability analysis for availability. Some of these cost models
are discussed in the next chapter. In the meantime, we can
construct some single unit availability results for the imper-
fect repair model.

Recall that under an imperfect repair regime, following
repair, a device is returned to a good as new condition by a
perfect repair with probability p and remains in a bad as old
condition with probability g = 1 — p. The generalization of this
model, defined by Block, Borges, and Savits [52] and discussed
in Chapter 10, is to make the probability of perfect repair age
dependent. Then, the probability of perfect repair is p(¢). As
discussed in Chapter 10, the distribution on the total operat-
ing time from a renewal point until a failure that is followed
by a perfect repair for the first time is (Expression 10.10):
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F,t)=1-(Fp(®)" =1-e ?#r® (11.27)

This expression applies when the minimal repair actions are
instantaneous. However, it also represents the distribution on
total operating time for the case in which minimal repairs
have nonzero durations. In addition, it is useful to note that
the average time of operation per renewal cycle may be deter-
mined as

E,ITI= | Fwdu (11.28)
0

Now, if the minimal repair times have distribution G,,(¢),
and if it is the n* device failure that produces the first perfect
repair, then the total time spent in minimal repair will have
the distribution GV (¢), the n — 1 fold convolution of G, ().
For this conceptual model, Iyer [58] has shown that the dis-
tribution on the total time devoted to minimal repairs in any
renewal cycle is

oo n-1
— oA (Am(t)) (n-1)
Gt)=e Z TR (11.29)
where
A, (s)= J.sq(u)zT(u)du (11.30)
0

represents the cumulative intensity function for the occur-
rence of a failure with a minimal repair response. Clearly, the
distribution in Expression 11.29 is constructed by using a
Poisson distribution on the number of minimal repair events
as the mixing distribution for the extent of the minimal repair
time convolution.

The convolution of the distribution G(¢) with the distri-
bution on total operating time per cycle yields the time until
the occurrence of a failure that is to be followed by a perfect
repair. That is, the distribution on time until a perfect repair
is started
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F(t)= rG(t—u)fp(u)du (11.31)
0

Similarly, the distribution on the total duration of the renewal
cycle is the convolution of this distribution with the one on
perfect repair time, say, G,(¢).

We may also determine the limiting device (average)
availability using the expectations for the durations already
defined. To do this, note first that, in general, each renewal
cycle will include say N periods of device operation terminated
by a device failure. The first N — 1 of the operating periods
are followed by periods of minimal repair, and the last failure
is followed by a period of perfect repair. Now Iyer [58] has
shown that

EIN]=1+ rAm(u)Fp(u)du (11.32)
0

and, since E[N —-1]=E[N]-1, the limiting availability is

4 Ey [T]

" Ep [T1+EIN - 11E [T1+Eq [T] (1133

That is, the average up time divided by the average cycle
length gives us the average availability. The average cycle
length is comprised of the average up time, plus the average
number of minimal repair intervals times their average dura-
tion, plus the average duration of the perfect repair interval.

Notice that we can also state that the average fraction
of the time the device is undergoing minimal repair is

A EIN -1E, [T]
" E [T1+EIN -1E; [T)+Eg [T]

and the average fraction of the time the device is undergoing
perfect repair is

a Eg [T
 E [T1+EIN -1E; [T)+Eg [T]
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Finally, we note that, for the simpler case in which p(¢) =
p, the probability of perfect repair is age independent, so the
expected number of failures to a perfect repair is geometric,
and

E[N]= A (11.34)

In addition, the distribution G(¢) reduces to

G- 2(1( 111)‘1”) 0 (11.35)

Other simplifications are also consistent with our results.
If we take p = 0, we obtain the minimal repair model either
with or without instantaneous minimal repair times. If we
take p = 1, we have the renewal case. Assuming the basic
distributions are exponential yields several simple models
that all behave as Markov processes, as we would expect.

11.5 MARKOV MODELS

To conclude this chapter, note that there is an entirely differ-
ent approach than the ones discussed above to modeling the
time evolution of repairable systems. Many people, and most
notably Birolini [59], have used Markov chains and Markov
processes to represent device- and system-level behaviors
and have used the Markov models to obtain availability or
cost measures. The core idea for the Markov models is to
represent system status in a manner like the one shown in
Figure 11.5. In the figure, the failure hazard is represented
by A(t), and the repair hazard is denoted by u(¢). These
functions represent the intensity of transition to and from
the functioning state (state 1). Under this format, the device
operation is represented as a continuous time Markov pro-
cess with the Chapman-Kolmogorov forward differential
equations [60] being
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Figure 11.5 Two-state transition diagram.

jt Pu1 ()= ME)py 1O+ 1Dy 1)
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& pas(©)=-MOP (O + 1Oy (0

C‘;t Do 2(6) = (D) Py D)+ M) Py 1 (0)

Nachlas

(11.36)

where p, (t) is the probability that the process passes from
state i to state j during an interval of length ¢. For the case
in which the intensity functions are constant, the fact that
P11 +(#)p, ,(t)=1 implies that the first of the equations
(11.36) becomes

Zp1,1(t) = —(7\,+},L)p1’1(t)+},t

for which the Laplace transform is

SO

pi1(8)—p1,1(0): _(7‘+“)pi1(8)+“8
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Figure 11.6 State transition diagram for the repairable parallel
system.
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which is the form given in Section 11.2.1. Clearly, the result
may be constructed using either approach.

For some of the more complicated cases, the use of the
Markov process model is easier than the direct analysis of the
renewal process model. As a case in point, consider a repair-
able parallel system of two components. Assume that two
identical components are arranged in a parallel configuration,
and that the system is operated so that one of the components
is functioning and has constant failure hazard A, while the
second component is in reserve and is therefore subject to a
constant but reduced failure hazard, say A.. Suppose that,
whenever a component fails, repair is undertaken immedi-
ately. The repair time is exponential with intensity u, and if
the repair is completed before a second component failure,
the system continues to function with the repaired component
in the reserve role. System failure occurs when a component
failure precedes the completion of a component repair. This
seemingly simple system is actually quite difficult to analyze.
The state transition diagram for the representative Markov
process is shown in Figure 11.6. The state space E = {0, 1, 2}
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represents the number of failed components. The associated
Chapman-Kolmogorov forward differential equations are the
following nine equations. To evaluate system availability, we
need only solve the first three equations, because the avail-
ability corresponds to the time spent in states 1 and 2.

& o o)==+ )y o(0) Do 10
cflltpo’ 1) =-A+Wpy 1) +up, 2 &)+ (A +A,)pg (2)

& Dy o(6) =Dy o(0)+ Ay 40

(11.37)
& Dy o)==+, )y o(0)+1py A0+, o0
cciltpl’ 1) =-A+Wpy (O +upy &)+ A+ A, )py o (8)
d
@pl, o) =—u@)p; (&) +AE)py ,(2)
d
apz, o) ==(A+A,)py o(&)+1py 1 (2)
Cclltpz, 1B =—(A+ H)p2, (&) + Upo, 2B+ (A +A, )pz, o(®)

& o o(0)= 4Dy o0+ 110

Keeping in mind the fact that
we use the same method as for the previous model to obtain
(s+A+X,)py o(8)—1py, 1(s)=1

. . (11.38)
~(A+A, —Wpg o(s)+(s+A+2U)p, 1(s)= %
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The solution of these two equations requires considerable
effort but finally one finds the solutions to be

9 JA+AIA+1)  (A+A )AL —A,u—AA,)
e+ +
2 2\/4lu+ A2

Elopa2  “Llopa? | —Lersou,)
e? " —e 2 "le 2

Po,o®)= M+ 2 )+ )+ 1

W (202 + 200, + A1)
e
2 ofop+n?

(L+2,)

{ 3\/4;»“”,2. —;Juum%} —é@hzwx,)
e —e e

Do 1(t)= (7b+7br)(7b+u)+u2

Assuming the system starts with both components being new,
the sum of these two probabilities is the availability function

A= BO-+R W) ;
A+A) A+ +u

2 2/4ML + 12
{ %J4xu+x3 —é\/4}»u+}»g } —%(27\,+2u+7»,)
e —e e

{x(x+x,)+x(2x+2u+xr)(x+x,)}

(11.39)

+
A+ A+ ) +p?

and the complement is the solution for p, ,(¢). Clearly, the
limiting availability is

N: (u(?»+7x,+u)) : (11.40)
A+A) A+ +u




248 Nachlas

Note that if we set A, = 0, the model and its results
represent the standby redundant case in which the second
component is not activated until the first one fails. For that
case, the limiting availability reduces to

B (u(?» + u))
MW+

Similarly, taking A, = A, implies active redundancy, in
which the second component ages while waiting to be used.
In that case, the limiting availability is

B (u(zk + u))
"2+ ) +

For both of these special cases, the corresponding forms for
the point availability function apply.

The Markov process models are used widely to represent
system behavior. It is appropriate to emphasize that the above
case is the simplest one of its class. A more general case is to
assume a k out of n structure for which component failures
are repaired as they occur by a single repair person. System
failure occurs when the number of functioning components is
reduced by 2 + 1 to n — £ — 1. The problem may again be
represented as a Markov process. In fact, since only adjacent
states are accessible in single transitions, it is a birth—death
process [60]. This makes analysis possible. However, it is
exceedingly complicated to construct the time-dependent
transition functions. Birolini [59] gives the expected first pas-
sage time to the system down state and the limiting avail-
ability. To state his solution, let E; represent the state that i
components are failed, and let §, denote the failure intensity
for state E;. Then,

O, =kA+(n—k-DA,

and the performance measures depend upon the quantity
n—k. When n -k = 1, the expected first passage time to
system failure is
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_ 8 +8,+p

E[T
[T1] 5,5,

and

(8, +1)
840, +ud, +p?

and by similar analysis, when n — & = 2, the expected first
passage time to system failure is

_ 85(8y +0; + W)+ 1Sy + 1)+ 0,0,

E[T]
8909,

and

_ 188, + 8okt +1*)
800,05 + 18,8, +Su® +p?

00

Finally, Birolini provides the general solution for the limiting
availability for any value of n — k:

(11.41)

Clearly, more complicated system behavior or even less
regular life and repair time distributions may make the anal-
ysis of system behavior quite intricate. For the more compli-
cated systems, the general results defined in Section 11.3
provide one approach, and a simulation of the general Markov
process is often a worthwhile approach.
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11.6 EXERCISES

1.

Assume a device has an exponential life distribution
with parameter A, = 0.005 and an exponential repair
time distribution with parameter A, = 0.08. Plot the
point availability function for the device, and plot also
the Laplace transform of the availability function,
A'(s).

. For the device of the previous problem, compute the

limiting availability and also the average availability
over the interval (50, 150) hours.

. Reconstruct the numerical results shown in Table

11.1 for the Weibull life distribution and exponential
repair time distribution for 50 hours and for 250
hours.

. Assume the bridge structure is comprised of five iden-

tical copies of the device described in Problem 1
above. Plot the point availability function for the sys-
tem.

. Suppose a series system is comprised of four compo-

nents, each of which has an exponential life distribu-
tion and an exponential repair time distribution.
Assume the parameters for these distributions are
Ay = 0.001, &y, = 0.02, Ay = 0.003, A, = 0.07, Ay =
0.004, Az, = 0.03, A, = 0.002, and A,, = 0.10. Plot the
point availability function for the system, and com-
pute the limiting system availability.

. Suppose a device has a Weibull life distribution with

parameters B = 2.0 and 6 = 200 hours and is subject
to imperfect repair with p(¢) = p = 0.25. The duration
of perfect repair has an exponential distribution with
parameter A, = 0.08, and the duration of minimal
repair has an exponential distribution with parame-
ter A, = 0.02. Compute the limiting availability for

the device.
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Preventive Maintenance

Manufacturing equipment, electrical power generation sta-
tions, airplanes, and automobiles are examples of types of
equipment for which operation to failure is usually inefficient
and dangerous. While it is true that component and system
failures do occur for these equipment types, it is also true
that failure events can be very important, and the frequency
of failures and also the severity of failures can often be
reduced by preventive maintenance.

Preventive maintenance (PM) is the practice of removing
a functioning device from operation in order to repair, replace,
adjust, test, or simply inspect it. Naturally, the specific pre-
ventive maintenance action depends upon the particular sys-
tem, but all preventive maintenance activity is undertaken
with the intent to provide enhanced assurance of function. In
some cases, PM involves the replacement of a functioning
device prior to failure. Generally, the motivation for replacing
a functioning device is that the cost of doing so is small in
comparison to the expense of responding to a failure that
occurs during device operation — a field failure. Actual failure
may imply damage to the device or to other components or
equipment. For other cases such as alarm systems, simple
inspection and testing are the logical forms of PM. For still
other equipment types, adjustment is the appropriate action,
while for others lubrication, annealing, or reinforcement is
the required forms of service.

251
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In general, performing PM implies some sort of resource
commitment, and it is expected that the PM effort will reduce
the probability of device failure. The expense of the resources
devoted to preventive maintenance is expected to be balanced
by the savings in (potentially substantial) expenses associated
with in-service failure.

Because of the wide variety of possible applications and
the diversity of conceivable policies, numerous models of pre-
ventive maintenance have been developed. We will examine
several classes of PM strategies and their associated models
here. Some of the models are defined in terms of availability.
However, because the availability function is usually very
difficult to construct and analyze, most of the models are
constructed using cost functions for the measure of perfor-
mance instead of availability. We should recognize that, in
general, PM reduces availability even though it also usually
reduces cost.

12.1 REPLACEMENT POLICIES
12.1.1 The Elementary Models

Historically, two classes of replacement-type preventive main-
tenance policies have been defined. They are referred to as
“age replacement” and “block replacement” policies. An age
replacement policy operates as follows:

The device is replaced by a new copy upon failure or if it
achieves an age equal to the “policy age,” 1,.

In both cases, the device is assumed to be as good as new
following replacement so renewal theory-based models may
be used to represent device performance. Also, the traditional
models were constructed under the assumption that the dura-
tion of the replacement activity has the same distribution for
both PM and replacement following failure. Replacement or
repair following failure is referred to here as “corrective” main-
tenance, in contrast to PM. The assumption of a common
replacement time distribution is used here initially, and a model
based on distinct distributions is presented subsequently.
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In contrast to an age replacement policy, a block replace-
ment policy is based on scheduled actions rather than on
device age. The policy operates as follows:

The device is replaced by a new copy upon failure or at
uniformly spaced time intervals, 1,, 21, 37, ..., where T,
is called the “policy time.”

A slight modification to the policy has been studied by
several people. It is that, when the device fails at a time close
to the policy time, either the device is left idle until the
replacement time, or the replacement time is advanced
slightly. As they constitute minor revisions to the models,
these adjustments to the policy are not pursued here.

For both age replacement and block replacement, optimal
values for the policy times may be determined by analyzing
appropriate cost models. This is shown below. First, relation-
ships between the two policies and general patterns of behav-
ior are examined. Start by defining a convenient notation and
an ordering relationship among distribution functions. Spe-
cifically, let:

N(t, 1,) = the number of device failures during an interval
(0, ) when the device is operated under an age
replacement policy with policy age 1,.

N(¢, t,) = the number of device failures during an interval
(0, t) when the device is operated under a block
replacement policy with policy time T,.

N(t) = the number of device failures during an interval
(0, t) when the device is operated to failure with no
PM.

N(t,t,) = the number of device replacements (failures
and PM) during an interval (0, ¢£) when the device is
operated under an age replacement policy with policy

_ age T,

N(t, 1,) = the number of device replacements (failures
and PM) during an interval (0, £) when the device is
operated under a block replacement policy with policy
time T,.
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The general points of interest revolve around the rela-
tionships among these quantities. As all are random variables,
we use stochastic ordering for which we have:

Dejfn. 12.1: A random variable X is stochastically gl;eater

than or equal to the random variable Y, written X>Y ,if
Pr[X >z]2Pr[Y >z] Vz (12.1)

This definition is widely used,stbut is somewhat counter-

intuitive, because it implies that X>Y when Fy(z) < Fy (2) for
all z. The appropriate interpretation is that the distribution
on X has its mass concentrated on greater values of the ran-
dom variable than does the distribution on Y.

Now, using the above definitions, we find that, for all
devices with NBU life distributions over all values of ¢ and
all choices of 1,,

NWSN,(¢,1,) (12.2)

Thus, using an age replacement policy increases the proba-
bility that the number of failures during any interval will be
small. This provides a reasonable starting justification for the
use of PM. Some additional relations}‘tlips are:

a. For all ¢>0 and 7,20, N(¢)>N,(¢, 7,) if and only if
F(t) is NBU.

b. For all t=0 and 7,20, N (¢, 1,) is stochastically
increasing in 1, if and only if F;(¢) is NBU.

c. For all t=0 and 7,20, N,(¢ 1,) is stochastically
increasing in 71, if and only if F;(¢) is NBU.

With regard to the comparisons of the policies, the rela-
tionships are quite interesting. Specifically, for all £>0 and
for any value assigned to the policy parameters, T,

N, (¢, D<N, (¢, 0 (12.3)

st
N, (t,D)2N,(t, 1)
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where the first of these relations holds in general, and the
second applies when the life distribution is IFR. Basically,
these two inequalities state that block replacement tends to
yield more device removals, while age replacement tends to
yield more device failures. This seems to conform to intuition,
as one has the sense that the block replacement policy
involves removal of relatively young copies of the device.

Now, the cost models for these two basic PM strategies
are usually formulated without considering the durations of
the maintenance tasks. It is considered that the costs ade-
quately capture the implications of failure and of planned
replacement, so the total cost per unit time is an informative
measure of device performance. It is also considered that the
use of PM will reduce the frequency of “field failures” (failures
while in operation), and presumably this implies a cost sav-
ings. Start with the block replacement policy.

Suppose it is possible to identify the costs of a planned
replacement and of field failures, and that these quantities
are represented by c; and c,, respectively. Then, a model for
the total cost per unit time associated with a block replace-
ment PM strategy is:

¢ tesMp (1)

E[Cost|1,]= (12.4)

Tp

The interpretation of this model is that there will be one
planned replacement per period at a cost of c¢;, and the
expected number of failures with corrective replacements per
period is given by the renewal function. Each corrective
replacement has a cost of ¢,. Dividing by the length of the
period gives the expected cost per unit time.

Once the cost model is defined, we can use it to determine
an optimal choice to the policy time, 1,, by conventional opti-
mization methods. Taking the derivative,

d
CoTy %MFT (Tp) ¢ — C2MFT (1)
b

d
——E[Cost =
dr, [Cost| ] T
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and equating it to zero, we find that the optimal choice of the
policy time is the value for which

d
r,,dT_bMFT(r,,)—MFT (1,)= % (12.5)

Intuitively, it is appealing that the policy time should
depend upon the ratio of preventive to corrective replacement
costs. Before analyzing the derivative equation further,
observe that the second derivative condition becomes

5 d? o d
C2Tb ?MFT (Tb) - 262117 7MFT (Tb)
Ty

dr,
2 —2¢,T, —2¢,T, M5 (1))
—dQE[Costh]: L il 4FT °
dt; T,
c, d*
=2=—-M, (1
T, dt; r (%)

Since ¢, and T, are positive, the sign of the second deriv-
ative is determined by the life distribution. Recall that a
distribution that is NBU has

My, (x+y)2 Mg, () + Mg, (y)

so the slope of the renewal density is positive. Thus, if the
device life distribution is NBU, the value of 1, computed using
Expression 12.5 will correspond to a minimum of the expected
cost function. Logically, if replacement improves reliability, it
is worthwhile, and if replacement does not improve reliability,
PM is not appropriate.

Consider an example. Suppose a device has a Weibull life
distribution with parameters = 2.00 and 6 = 2000 hours.
Suppose further that the ratio of preventive replacement cost
to corrective replacement cost is p. Recall that the derivative
of the renewal function is the renewal density, so we wish to
determine the value of 1, for which
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Table 12.1 Optimal Block
Replacement Intervals as a
Function of Cost Ratio

p Ty
0.05 350
0.20 730
0.40 1102
0.50 1282
0.75 1808

TbmFT(Tb)—MFT(Tb): % =p

Numerical solution of this expression using Lomnicki’s
[49] coefficients yields the solutions shown in Table 12.1 as a
function of p. For the age replacement policy, there is only one
replacement per cycle, but it may be either corrective or pre-
ventive. If failure occurs before the device has an age of 1,,
replacement will be corrective. If the device survives to age
1,, replacement is preventive. Thus, the cost per cycle is:

e Fp(t,)+c,Fp(t,)

and we must distribute this cost over the expected cycle
length, which is

T, Fp(t,)+ J tfr(t)dt = J Fp(t)dt
0 0

Therefore, the expected cost per unit time is

ClﬁT(’Ca) +co B (t,)

E[Cost|1,]1= (12.6)

Ta _

Fp(¢)dt
0

Here again, we take the derivative and obtain
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Figure 12.1 Expected cost function for the age replacement.

(—C1fT (t )+ cofr(z, )) J‘Ora 7 0de

iE[Cost|1:a]= _(clpT(T“)_"CZFT(Ta))FT(Ta)

dr, To _ 2
“ FT(t)dtJ
0

and equating the derivative to zero, we obtain the optimality
condition:

Cy

FT(‘CQ)+ZT(Ta)J‘Ta Fp(t)dt = (12.7)
0

C—C

Once again, the solution has the intuitive appeal that
the length of the replacement interval depends directly upon
a ratio of the replacement costs. Consider the same example
as was used for block replacement. A plot of the cost function
is shown in Figure 12.1. Solution of Expression 12.7 indicates
that the optimal replacement age is 1, = 460.86 hours.

The block replacement and age replacement policies and
models provide an informative starting point for our exami-
nation of preventive maintenance. Once the initial models
were defined, numerous extensions and improvements were
defined, and then more intricate and more efficient policies
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were defined. We will examine a variety of these extensions
in the pages that follow.

12.1.2 Availability Model for Age Replacement

One of the first and most realistic extensions to the basic
models is to distinguish between the times required for pre-
ventive and corrective maintenance actions. Consideration of
the times to perform service implies the analysis of availabil-
ity. Arguably, the magnitudes of the two cost coefficients in
the previous models represent the difference in the service
efforts. On the other hand, the availability measures are very
appealing descriptors of device performance.

Barlow and Hunter [50] first studied the age replacement
policy with distinct service times but took the times to be
fixed, so that they were essentially the same as cost factors.
Using the fixed times, they obtained the limiting availability
but not the point availability function, and they showed that
preventive maintenance is not efficient if the cost of PM is
the same as the cost of corrective replacement. More recently,
Murdock and Nachlas [61] constructed a general availability
model for age replacement when the service time distributions
are distinct. Examine their model.

To start, let G,(¢) be the distribution function on the times
to perform PM, and let G.(¢) be the distribution on corrective
maintenance times. Assume that all service implies device
renewal, and that the life distribution is represented by F(¢).
Now, each time the renewed device starts operation, two types
of operating and service intervals are possible. Operation may
end in failure with corrective repair, or it may end after T,
hours of operation with a preventive maintenance replace-
ment. Thus, the renewal interval may look like either of the
ones shown in Figure 12.2. The interval that involves repair
following failure occurs with probability Fr(t,), and the one
that involves PM occurs with probability F,(t,), so the overall
renewal process is a mixture of the two processes created by
the operation/repair renewals and the operation/PM renewals.
Now, the length of the renewal intervals for the case of operation
and repair has distribution H, .(t), where the distribution is
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Figure 12.2 (a) Operation to failure with repair. (b) Operation to
PM replacement.

the convolution of the repair time distribution with the trun-
cated life distribution:

_ fT(u)
H, (t)= JG(t )F( 5 du (12.8)

The life distribution is truncated because device opera-
tion is not allowed to continue beyond the age replacement
policy age. In order to construct this convolution, we will use
the partial Laplace transform:

o _ ()

( ,m:j w fr@) g 12.9

fr. (s 0 ¢ Rt (129

Then, the transform for the density on the length of the
interval is

Ry ()= ———Ffr (s, 1,)8.(s) (12.10)

F()

The renewal function for the process associated with opera-
tion and repair intervals is denoted by My (¢).

In the case of the renewal intervals that involve PM, the
distribution on the duration of the intervals is
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H, ,®)=G,t-1,) (12.11)

as the interval includes operation for 1, hours followed by a
PM activity of random duration. The Laplace transform for
the density on the length of this type of interval includes the
Heavyside function because of the delayed start of the prob-
ability mass. It is

R, ,(8)=e g, (s) (12.12)

The renewal function associated with this process is
denoted by My, (¢), and the density on the duration of the
renewal intervals is

h,(s)=F; (ra)hZ, H(8)+ FT(’Ea)h; (s)
) | (12.13)
= Fp(t,)e " g, () + fr, (5, T,)8.(5)

The associated renewal function is denoted by My (¢).

Given the definition of the renewal function, the avail-
ability function is defined in a similar manner to that used
to construct Expression 11.13 of Chapter 11.

Fo(t)+ jtFT(t— Wmy, Wdu  0<t<7,
At)= 0 (12.14)

t —
Fr(t—wmy (w)du t>1

-1,

a

As with the availability functions of Chapter 11, there
are two reasonable approaches to constructing the actual
point availability function for a particular choice of life and
service time distributions. Direct numerical integration using
appropriate numerical approximations can be very effective.
Murdock and Nachlas [61] constructed the Laplace transform
for Expression 12.14 as

_Fr . (s1)

A*
(®) 1-h,(s)

(12.15)
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Figure 12.3 Availability function for an example age replacement
policy.

They then used numerical inversion algorithms to obtain
values for the time-dependent function for several combina-
tions of life and service time distributions. An example of their
results for the Weibull life distribution and two different ser-
vice time distributions is shown in Figure 12.3.

12.1.3 Availability Model for Block Replacement

A similar analysis may be performed for the block replace-
ment policy. Suppose, for example, that the block replacement
schedule calls for a device replacement at the end of each
month. Then, each month begins with a PM interval of ran-
dom duration, and this is followed by a period of operation
that may in turn be followed by one or more periods of repair
and operation. If we formulate our model of this process as
the sequence of intervals (PM + T)), (R, + T,), ..., then the
failure times form a delayed renewal process. The availability
function is thus

Alt)= J.tgp(u)FT(t —w)du+ J.tFT(t —wmy, (wdu (12.16)
0 0

In this expression, the renewal density for the delayed
renewal process is constructed by first forming the convolu-
tions,
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NN )

)= f - 10 (12.17)
_ ‘ _ fr@w)

h 0= [ g, W s du (12.18)

where the terms in the denominators reflect the truncation
of the life distribution at the end of the block replacement
interval less the time already consumed by replacement.
Then, the renewal function is the convolution of £,,(#) and
the renewal density for the ordinary renewal process based
on h, (¢). That is,

mp, ()= h, () my, () (12.19)

A point here related to the evaluation of this model is
that the Laplace transform for the availability function,
Expression 12.16, is likely to be completely unmanageable, so
direct numerical integration appears to be the most efficient
approach to the analysis. The numerical analysis is not too
difficult. In addition, for most plausible cases, the first of the
two terms of the availability function dominates the other in
magnitude. Consider an example. Suppose we have a device
with a Weibull life distribution with parameters B = 2.0 and
6 = 2000 and exponential corrective and preventive replace-
ment times with A, = 0.005 and A, = 0.025. If we take 1, = 730
hours, the availability function will be as is shown in Figure
12.4. Finally, note that Expression 12.16 applies for ¢ in the
interval [0, t,], or to say it another way, it is defined relative
to the length of the block replacement policy time.

12.1.4 Availability Model for Opportunistic Age Replacement

There are a number of alternate replacement-type preventive
maintenance policies that may be defined. One particular
possibility is the use of an “opportunistic” preventive mainte-
nance strategy. This is an appealing and quite realistic policy
in which the equipment down state is exploited to perform
additional maintenance tasks. Clearly such a policy yields
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Figure 12.4 Availability function for an example block replace-
ment policy.

efficiencies. It is also commonly used. People often choose to
combine preventive maintenance actions in order to reduce
the number of times a machine or vehicle must be removed
from service. However, models for opportunistic maintenance
have not been developed until recently because of the com-
plexity of the probability analysis required. Barlow and
Proschan [11] do give the limiting availability for the oppor-
tunistic policy, but it was only recently that Degbotse and
Nachlas [62] constructed the time-dependent availability
function for a general model of opportunistic age replacement.
Examine that model.

To start, assume, as before, that replacement implies
renewal. Then, consider that any system may be viewed as
comprised of two components — one of interest and the
balance of the system. The policy operates as follows:

a. If either component fails, it is replaced and the other
component does not age during that replacement.

b. If either component attains an age corresponding to
its age replacement policy age, it is replaced preven-
tively and the other component does not age during
that activity.

c. If at any time the system is “down” in order to replace
one of the components, the other component will also
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component 2
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Figure 12.5 Illustration of a nested renewal process for opportu-
nistic replacement. (From Degbotse, A.T. and J.A. Nachlas, “Use of
Nested Renewals to Model Availability Under Opportunistic Main-
tenance Policies,” Proc. of the Annual Reliability and Maintainabil-
ity Symposium, pp. 344-350, IEEE, 2003. With permission.)

be replaced if its age exceeds the opportunistic
replacement policy age .

A model for this policy is rather intricate and requires
considerable notation. Let t,, represent the age replacement
policy age for component i and ®,;, the opportunistic replace-
ment policy age for component i. Necessarily, o,, < 1,;. Also,
let F,(¢) represent the life distribution function for component
i and Gp;(t) represent the distribution on the time to replace
component i. These quantities are used to define a nested
renewal process that represents the operation of the compo-
nents and, thus, of the system.

An illustration of the nested renewal process is shown
in Figure 12.5. Notice that the renewal points for “component
1,” points ¢, t,, t,, and ¢; are “nested” within those for “com-
ponent 2,” points ¢; and ¢;. To describe operating profiles that
correspond to nested renewal processes, we define two classes
of operating intervals, major intervals and minor intervals,
and we further distinguish between initial and general minor
intervals. A “major interval” is a period of system operation
and repair that starts with both components being new and
ends with the completion of a service period in which both
components are replaced (renewed). Thus, a major interval is
a system renewal period, and a sequence of major intervals
forms a renewal process. In Figure 12.5, the interval (0, ¢;) is
a major interval.
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In contrast, a “minor interval” is a period between two
successive restarts of the system following replacement of a
specific one of the components. Since one may use either of
the two components to delimit a minor interval, we arbitrarily
use “component 2.” Thus, minor intervals are the periods
between component 2 restarts. The sequence of minor inter-
vals thus forms a renewal process for component 2 but not
for the system.

Next, distinguish further between an “initial minor inter-
val,” which starts with both components being new, and a
“general minor interval,” which starts with component 2 being
new and component 1 being used. In Figure 12.5, the interval
(0, t3) is an initial minor interval, as both components are new
when it starts. It ends with the system restart following
replacement of component 2. During the interval, component
1 has been replaced several times. The interval (¢;, ¢;) is a
general minor interval, because it starts with component 1
being used and component 2 being new. A major interval will
be comprised of an initial minor interval and some number
(possibly zero) of general minor intervals.

Now, given the life and replacement time distributions,
we define several quantities that help describe system oper-
ation. We focus on cases in which system renewal does not
occur, and these lead to expressions that represent system
renewal and availability. Let:

H(t, k) = the cumulative distribution function on the
accumulated operating time during an initial minor
interval that ends with the replacement of component
2 following £ component 1 replacements and without
system renewal.

H(t,k) = the cumulative distribution function on the
accumulated operating time during a general minor
interval that ends with the replacement of component
2 following £ component 1 replacements and without
system renewal.

Denote the density functions as A,(¢, k) and hg(t, k). The
functions H; and H; are the key building blocks of the model
of system behavior. They are constructed using the life and
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the residual life distributions. That construction is postponed
for now so that the general model structure can be defined
without treating special cases.

Since a minor interval that ends without system renewal
includes £ component 1 replacements and one component 2
replacement, the density function on the total repair time
during a minor interval is

gr(t, k)= _[O 2P (x) g, (t — x)dx (12.20)

where g{”(t) is the k-fold convolution of the replacement time
density.

The density function on the length of a minor interval is
the convolution of the operating and the repair time densities.
That is, for

Q,(t) = the distribution function on the length of an initial
minor interval that ends without system renewal.

Q(t) = the distribution function on the length of a gen-
eral minor interval that ends without system

renewal.
we obtain
a0, ()= ZJ hy (x, B)gp(t—x, k) (12.21)
0
k=0
4o (t) = ZJ he (x, B)gp(t—x, B)da (12.22)
0
k=0
Q) =J' 4, () (12.23)
0
QG(t):J. g6 () (12.24)
0

Corresponding relationships are defined for the minor
intervals that end with system renewal. Let
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U,(t) = the distribution function on the length of an initial
minor interval that ends with system renewal.

U4(t) = the distribution function on the length of a gen-
eral minor interval that ends with system renewal.

To construct these functions, we use

V,(t, k) = the cumulative distribution function on the
accumulated operating time during an initial minor
interval that ends with system renewal due to the
replacement of both components following a compo-
nent 1 failure.

Vio(t, k) = the cumulative distribution function on the
accumulated operating time during an initial minor
interval that ends with system renewal due to the
replacement of both components following a compo-
nent 2 failure.

Ve(t, k) = the cumulative distribution function on the
accumulated operating time during a general minor
interval that ends with system renewal due to the
replacement of both components following a compo-
nent 1 failure.

Vo(t, k) = the cumulative distribution function on the
accumulated operating time during a general minor
interval that ends with system renewal due to the
replacement of both components following a compo-
nent 1 failure.

Finally, define

Z(t) = the distribution function on the length of an initial
minor interval that ends with or without system
renewal.

Z(t) = the distribution function on the length of a general
minor interval that ends with or without system
renewal.

Naturally,

Z,(t) = ZH,(t, k)+2V,1(t, k)+2V,2(t, k) (12.25)
k=0 k=0 k=0
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and

Ze®)= Y Het,k)+ D Vert,R)+ D Veu(t,h) (12.26)

k=0 k=0 k=0

The functions defined above can be used to construct two
availability measures. First, we obtain the availability within
a sequence of minor intervals that do not yield system
renewal, and we then incorporate that availability measure
in an overall system availability function. The renewal density
for the minor intervals without having system renewal is
given by

mg(t) = Z_[O @ (X)q (¢ - x)dx (12.27)
n=0

This represents the probability that a minor interval
starts at any time. For the sequence of minor intervals, the
system availability is the probability that the system is oper-
ating at any point in time and is thus given by

A =Z,t)+ j Z(t - 2 (x)dx (12.28)
0

where Z;(t)=1-Z,(t) represents the probability that the
length of the operating period in an initial minor interval
exceeds t.

The system-level availability starts with the distribution
function for the lengths of the major intervals, ®(¢), and the
corresponding renewal density, m(¢). The distribution on the
lengths of the major intervals is

D) =U, () + J g ()U (¢ - x)dx (12.29)
0

as either an initial or a general minor interval may be the
last minor interval in a major interval. Given this definition,
the system level availability function is
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Ag@) =A@+ ItA(x)mq,(t —x)dx (12.30)
0

This form of the system-level availability function reflects the
nesting of the minor intervals within the major intervals.

Next, observe that we can apply the general model struc-
ture to four problem classes, and that the stepwise application
over the four classes will promote understanding of the model
structure and will allow us to connect our availability results
to the few others that are available.

Recall that the two components each have an age replace-
ment policy age 1,; and an opportunistic replacement age ;.
The four cases are defined by the assumed magnitudes of
those policy parameters. Specifically, we consider (1) t,; = T, =
W, = Wy = oo, (2) T,4 = T,9 = o with w,; and w,, finite, (3) 1,; =
o with 1., ®,; and o,, finite, and (4) all policy ages finite. For
each case, the specification of the policy ages leads to the
definition of the functions H; and H. The first case is a pure
failure model.

12.1.4.1 A Failure Model

When we take all of the policy ages to be infinite, we say that
there will be no PM and no opportunistic replacement. Com-
ponents will only be replaced upon failure. This implies that
system renewal will never occur. Refer again to Figure 12.5
and note that, for an initial minor interval, the probability
that component 2 fails on or before ¢ time units of operation,
during which component 1 fails £ times, is

F()Fy(t) k=0
Hitt, )= J.OtFl(t ~wWAPWF(tdu k=1 (12.31)
The associated density function is
F(®)f,(®) k=0
h;(t, k)= (12.32)

j F-wfPwhndy k21
0
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The corresponding forms for the general minor interval are

F(OF,(t) k=0
Hot, k)=1 ot i (12.33)
J F-wfPWFOdy  k>1
0
and
F@Of® k=0
ho(t, k) = (12.34)

jtﬂ(t _WEPWEOdy k21
0

where it should be particularly noted that Fi(¢) denotes the
survivor function for the residual life distribution, F;(¢). The
residual life distribution is used because the general minor
intervals begin with component 1 being used. Note further
that the convolution, ¥ (¢), includes a first operating period
during which component 1 is used followed by 2 — 1 periods
in which component 1 is new at the start.

In general, it is difficult to specify the residual life dis-
tribution for a process such as the one studied here. We use
the approximation to the residual life distribution defined by
Cox [44]:

. 1 -
FT(t)—HTJ.O Fo(x)dx (12.35)

where i, is the mean of the original life distribution.
Next, we construct

q;(t) = JO fHWF () g,(t —u)du

‘ A RIS
+;J‘O(f2(x)‘[o Fx-w)f, (u)du]
- (12.36)

[I - gP(w)g,(t—x— w)de dx
0
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and

qc(t) = jo f2(u)1?‘1(u)g2(t —uw)du

+§1‘ Lt (fz(x)J.Ox F(x— u)ﬁ(k)(u)du]

(12.37)
( _[ t_xgik)(w)gz(t—x—w)dwjdx
0

These forms are substituted into Expression 12.27 to
obtain the renewal density for minor intervals. The distribu-
tions on total operating time during minor intervals are

Zi0=Y Hi¢, 0= [ f0
k=0 k=0

(12.38)
J.xf’l(x— WF® (W duda = F(t)
0
and
Zg(t)=Y Hy(t, k)= Zj fo(x)
k=0 k=0 "0 (12.39)

jxﬁl(x —wWF® W dudx = Fy(®)
0

which is an appealing and rather intuitive result. An impor-
tant point here is that the simplification of the general model
to the simple case of the failure process provides some vali-
dation of the general formulation. The expressions for u,(t)
and uq(¢t) are constructed in the same fashion, as is shown
shortly.

Returning to the functions @,(¢) and Q(¢), note that @,(e)
and Q;(e) are the probabilities for the two types of minor
intervals that opportunistic replacement does not occur. If
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Q/(=) < 1 and Q() < 1, then there is a positive probability
that an opportunistic replacement and, hence, a system
renewal occurs. In this case, the minor intervals are transient.
On the other hand, if @) = 1 and @ (c) = 1, then there is
no system renewal, and the minor intervals are recurrent.
For the failure model, @) = 1 and Q(>) = 1 and also Z(co)
=1 and Z,(e) = 1. Hence, the minor intervals are recurrent.
As a result, the system availability function reduces to the
within minor interval availability defined in Expression
12.28. Further, based on Expressions 12.38 and 12.39, the
system availability is

AW =F 1)+ J.th(t — Omg(x)dx (12.40)
0

As usual, depending upon the life and repair time distri-
butions, evaluation of the availability function can be rather
intricate. As noted previously, Barlow and Proschan [11]
present the limiting availability for the failure model as

-1
A= (1+"1+V2j (12.41)
My Mo

in which v, is the mean of the repair time distribution G,(?),
and y; is the mean of the life distribution for component i.
Using the derivatives of the Laplace transforms of Expression
12.40 yields the same result.

12.1.4.2 An Opportunistic Failure Replacement Policy

Next, suppose that each of the components is replaced either
upon failure or if it has age ®, when system operation is
interrupted by the failure of the other component. We first
construct expressions for the probabilities that various sam-
ple paths yield restarts for the minor intervals without system
renewal. We must perform the construction relative to the
magnitudes of ,; and w,,. We could consider both cases, but
for explanation, let us simply take ®,; < ®,,. The correspond-
ing analysis and results for the case in which o,; > ®,, are
implied by this analysis. To start, note that, when & = 0,
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R (¢, 0)= £, OF, @) (12.42)

provided ¢<w,. If £>1, the cases that imply no system
renewal are:

a. Component 2 fails at time ¢ where 0 < ¢ < ;.

b. Component 2 fails at time ¢ where o, < ¢ < ©,,, and
the £ component 1 failure occurred at time x, where
t —x < m,. That is, x > t — ®,;.

c. Component 2 fails at time ¢ where ¢ > ®,;, and the
k" component 1 failure occurred at time x, where x
< 0, and t — x < ,;. That is, ¢ — ®,; < x < ®,y, and
by implication, ¢ < ®,; + ®,.

Combining these cases, the realization of Expression 12.33 is

sz(t)jO Foy(t— % (Wdu 0<t<a,

ht, )= fr® [ Frt—wfP@du o, <t<o, (12.43)

t—Wq1

Wg2
fra(?) Frt-wffy du @4 <t <0, +0,

t—wg1

The expressions in 12.42 and 12.43 are used in 12.21 to obtain
the density on the lengths of the initial minor intervals.

Next, we consider the general minor intervals that end
without system renewal. The reasoning and, hence, construc-
tion for the general minor intervals are identical to that for
the initial minor intervals, except that component 1 is used
and is subject to a residual life distribution at the start of a
general minor interval. To reflect the age of component 1 at
the start of a general minor interval, we take the component
1 age to be the average backward recurrence time based on
the life distribution, F,(¢). Denote that age as a;, and note
that Cox [44] shows that age to be

_ M +07 (12.44)
207,

Given the average starting age a,

a,
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h(t, 0)= Fro()Fpy (2)

O S t < Cl)al—al (12.45)
and
t — ~
fTQ(t)J Fpy(t—w)F% (w)du 0<t <,
0
t — ~
het, B =1 fr® | Frt—wfP@du o, <t<oy, (12.46)

t—Wg1

WOgg ~
fro(t) Frt—wfiPwdu o <t<o,+0,

t—g1

Again, these expressions are combined with the total repair
time to determine the density on the general minor interval
length.

Observe that the conditions under which renewal does
not occur correspond to a specific set of sample paths. The set
of possible sample paths that is the complement of the set
described above defines the cases in which system renewal
does occur. Considering initial minor intervals, we note that
system renewal will occur as a result of a component 2 replace-
ment if £ = 0 and component 2 fails at time ¢ where w,; < ¢.
That is,

Urs(t, 0) = ng(t)Fn(t)
0, St (12.47)

and a component 2 failure will precipitate system renewal for
the sample paths having a component 2 failure time of ¢ where

a. 0, <t < o, and the £ component 1 failure time
occurred at x, where 0 <x <t — w,

or
b. W,y <t < ®,; + ®,,, the £ component 1 failure occurred
at x, where 0 <x <t — m,;, and it is also the case that
X< Wy
or

C. M, + W, <t, and the k* component 1 failure occurred
at x, where x < 0,
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while it will be the £ component 1 failure that precipitates
the system renewal at time ¢ if that failure occurs at time ¢
where 0,, <t < ©,; + 0,5, and the £ — 1%t failure occurred at
time x where x < ®,,. or if that failure occurs at time ¢ > o,
+ 0,9, and the £ — 1% failure occurred at time x < ®,,. These
cases exhaust the complement of the set of sample paths that
do not yield system renewal at the end of an initial minor
interval. Algebraically,

t_(")alf
fro® | T Fnt-wff@de 0, <t<o,
0

tfmul —
vrgt, k) = sz(t)JO Fot-wfPwdu  o4<t<o, +o, 1248)

Wgo
sz(t)J Fr-wfP@de o4 +0,<t
0

and

e k):FTz(t)IO Y- Wdy o, <t (12.49)

To combine the operating and repair times, we observe
that, when a component 2 failure precipitates system renewal,
the accumulated repair time is g,(¢, k+1), and in contrast,
when a component 1 failure precipitates system renewal, the
accumulated repair time is g, (¢, k). Thus, the density function
for the duration of an initial minor interval that ends with
system renewal is

w(®= | vnle, Dgr(t-x, b
- (12.50)

=\ et
Y[ vt Rgr(t-s, b+ Dax
k=0

For the general minor intervals that end with system
renewal, we again consider the sample paths that form the
complement of the set of paths that do not yield renewal, so
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Vot 0) = Fro (O, (£)

(Dal - aIS t (12.51)
and
tf(”alf ~
f (t)j Frt-wfPWdu o, <t<o,+o,
vt =1 0 " ' 1T 19 59)
fro®)| " Fpt-wfl@du 0,40, <t
0
and

o, (&, k)=FT2(t)Ima2 Ft—fE YWy o, <t (12.53)
0

Then, the density on the length of the general minor intervals
that end with system renewal is

ug(t)= 2 J.O Va1 (x, R)gp(t—x, R)dx
e (12.54)

hnd t
; ZJ Deg(, B)gp(t 2, b+ 1)dx
k=0 0

Having enumerated and represented all of the sample
paths for the minor intervals, the system availability is deter-
mined by the successive application of Equations 12.25
through 12.30. That is, the specification of any particular
realization of the general model structure hinges upon the
careful construction of the quantities q,(¢) and g(¢), using
h(t, k) and hq(t, k), and the quantities u,(t) and u,(¢), using
vn(t, k), vt k), vsy(t, k), and vgy(t, k). Once these probabilities
have been obtained, Equations 12.25 through 12.30 accumu-
late their content to provide the system availability measure.

To complete this model, we observe that there is a finite
probability of system renewal when the system is subjected
to an opportunistic failure replacement policy, and this is
confirmed for the stated expressions in that @,(=) < 1 and
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Qs() < 1. Also, one can obtain a partial validation of the
stated expressions by noting that taking w,; = ®,, = - yields
the equations for the failure replacement model. Finally, note
that it is possible to obtain the limiting system availability
by taking derivatives of the pertinent Laplace transforms.
Doing this yields

Ag(oo) = Uz (1= Qg () + U 56Q; () (12.55)
(Hyp + R + (V1 + Vo)A = Qg (o0)) + (Uyg + Mg )@ (=)

where the mean values are identified by their subscripts, which
correspond to the distributions to which they apply. Note that
this result conforms to that of Barlow and Proschan [11].

12.1.4.3 A Partial Opportunistic Age
Replacement Policy

A partial opportunistic age replacement policy is one in which
both ®,; and ®,, are finite, but only one of t,; and 71, is.
Arbitrarily, let 1., be finite, and assume w,; < ®,,. Then, system
renewal occurs when either component 1 fails and component
2 has age of at least w,,, or component 2 fails or achieves an
age of 1,5, and the age of component 1 is at least w,;. Keep in
mind the fact that the analysis is slightly different depending
upon whether 1,, < ®,; + ®,5 Or 7,5 > ®,; + ©,5. For now, we
consider only the first of those cases.

As with the previous model, consider first the initial
minor interval that ends without system renewal. Let ¢ denote
the time of the component 2 failure (if there is one), and let
x denote the time of the £ component 1 failure (if there is
one). The sample paths for which there is no system renewal
are:

Sieo ={|0<t <)}
and

0<t<w,,0<x<t

t—m, <x<t

a2» al =

_ W, SE<®
Skzl_ t>x|
Wy SEL<Tyot =Wy SX <O,y

t= Ta2:Tae = Wg1 Sx< Wy2
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These sets imply that

Ry (¢, 0) = fpo()Fpy (2)
0<t<awm,

and

et

Fro@) | Ept—w)fi? (w)du
J0

31

Fp(t—w)fiP (w)du

i=0q1

fr2(®)
hy(t, k)= )

* 0g2

fra(®) Frit-wfP(w)du

Ji-w,y

* 0g2

Fpy(t) Fp(t—wf(w)du

¥ Ta2=Wq1

279

(12.56)

0<t<my,

Oy SE<O,y

(12.57)

W,y SE< Ty

t=Ta2

The same sample paths apply to the general minor inter-
val except that the initial age must be considered when £ = 0.

Thus,
h(t, 0)= fro(t)Fpy ()
0 S t < (Dal - al
and
X3 o -
fro@® | Fpit—wfy w)du
JO0
Y3 o -
sz(t) FTl(t—u)fT('{)(u)du
he(t, k) = 'f;"’j
fr2(®) Fr(t—wf wdu
vi-04
Fw| " Fut-wi®wdu

(12.58)

0<t<wm,

W, SE<O,,

(12.59)

Wy SE< T,y

t=’Ca2

In order to identify the probability functions for the sys-
tem renewal cases, we take the complements of the sets S,_,

and S,.;. Clearly,
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S0 = {(t |@g < t)}

and
W, SE<W®,, X<E—0,
= W, <t<T,o, x<t—®
Sk21 =430, X | a2 o2 ol
Wy SE< Ty, X 20,9
t = Taz, X S Taz —(Dal
SO
v (t, 0)= sz(t)FTl(t)
W, <t (12.60)
and
t=0q1 _
ng(t)j Frt-wfPwdu wo,<t<t,
vpa(t, k) = o (12.61)
Fr,(t) Fr(t—w) i w)du t="1,
0
and

on,(t, ) = F‘m(t)j - e o, <t<t,, (12.62)
0

As with the nonrenewal case, the general minor intervals
are similar to the initial minor intervals, so,

Vga(t, 0) = fro@Fpy @)

(’Oal - al S t (12.63)
and

tfmal — ~
fro®| T Ent-wflwde 0, <t<,
Vo (t, F) = 0 (12.64)

— Ta2=Wa1 _ ~

0
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and

Ve (¢, k):Fsz_[ -V Wdy o, <t<t, (12.65)
0

Once the basic densities on interval duration have been
defined relative to the cases that do and do not yield system
renewal, the calculation of availability measures follows the
previously defined format.

The densities u(¢) and uy(t) are computed as given in
Expressions 12.50 and 12.54, respectively. These are then
used in Equations 12.25 through 12.30 to obtain the system
availability measure. Observe that @) < 1 and Q() < 1,
so system renewals do occur for this model, and Equation
12.55 again gives the limiting system availability. Also, set-
ting 1,, = o causes the model to reduce to the opportunistic
failure replacement model as it should.

12.1.44 A Full Opportunistic Age Replacement Policy

In a full opportunistic age replacement policy, all of the policy
parameters have finite values and both planned replacements
and failure events have the potential to precipitate a system
renewal. A model of system operation under a full opportu-
nistic age replacement policy is defined in the same manner
as the previously constructed models. In fact, the previous
models subsume most of the model forms for the full oppor-
tunistic replacement case.

Note that each of the models defined previously are con-
structed in terms of the relative magnitudes of the policy
parameters. If we further assume that t,;, > 1., then the
models for the partial opportunistic age replacement policy
apply to the full policy case, because the value 1, bounds the
length of the minor intervals such that age replacement of
component 1 cannot occur. Thus, for the full opportunistic age
replacement policy, we need consider only cases in which 7,
< 1,9. However, we note further that the assignment of the
indices to the components is arbitrary, so either component
may be considered component 1, and it will always be the
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case that one of the age replacement times limits the duration
of the minor intervals. Hence, the models defined above
exhaust the “practically interesting” cases and are sufficient
to study all of the opportunistic replacement policies enumer-
ated here.

To close the discussion of the construction of the models,
observe that the four models are mutually consistent, in that
each is successively a generalization of the preceding model.

12.1.45 Analysis of the Opportunistic
Replacement Models

As we have seen previously, availability models tend to be
difficult to analyze, particularly in closed algebraic form. The
above models of opportunistic replacement share the attribute
of being relatively intractable. However, as with most avail-
ability models, we can obtain the Laplace transform of most
of the time-dependent measures and can then invert the
transform numerically. We can also use the transform to
obtain the limiting availability. At the very least, this permits
verification of the stability of the system and validation of the
models.

It is not necessary to show all of the available results
here, but a few key results will help to illustrate the power
of the nested renewal concept. To start, we note that

g1(s)= Y hy(s, k)gp(s, k) (12.66)
k=0

is well defined, so

Q(=)=q;(s) _, (12.67)

and the same applies to Q;(e). Substituting into Equation
12.27 yields

(5= () 12.68
meg(s) 1 (o) (12.68)
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Then, using the derivatives of the Laplace transforms for
Equation 12.26,

d . d * * *
U = _gq) (s)= _g[u,(sHmQ(s)uG(S)J
(12.69)

) Q; ()
1- QG (°°)

and this leads directly to the limiting availability of Expres-
sion 12.55. The intermediate steps are to take

=Ugr + o + (Uyg +Hoe

Ay(s)= A" ()| 1+my(s)] (12.70)
and

A'(8)=Z[(8)+ Zg(s)mg(s) (12.71)

algng with the standard definition of a renewal function for
my(s) to obtain

Z7(8) 1= () + Ze(8)q; ()
1—0 ()1 —gg(s))

Note that all of these results apply regardless of the choices
of life and repair time distributions.

Next, to illustrate the construction of numerical results,
assume that the distributions on the replacement times are
exponential and are

Ag(s)= (12.72)

g )= 7V1‘3_Mt
and
gx(t)= kzei}hzt

respectively, and that the life distributions are Weibull and
are

Bj

Frt)=1- ef[%jj
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Table 12.2 Representative Limiting Availability Values

Y m=1my=1 m=1my=2 m;=2,my=1 my=2,my=2

0.2 0.47 0.51 0.48 0.54
0.4 0.49 0.52 0.64 0.66
0.6 0.54 0.53 0.62 0.65
0.8 0.63 0.53 0.55 0.61

For the purposes of illustration, and recognizing that
scale is arbitrary, take B; = B, = 2.0 with 6, = 1.5, 6, = 1.0, A,
= 0.4, and A, = 0.667. Then, take the age replacement policy
ages to be integer multiples of the mean of the life distribu-
tions, so that

Ty

J::['I‘lll.

J

and take the opportunistic age replacement policy ages to be
fractions of the age replacement policy ages:

waj = YTaj

Using this construction, the limiting availability of Expres-
sion 12.55 for several cases is shown in Table 12.2.

Similarly, the time-dependent availability function can
be obtained using numerical inversion of the Laplace trans-
forms. These functions are shown for the failure replacement,
opportunistic failure replacement, and the partial opportunis-
tic age replacement models in Figure 12.6 for the specific case
in which o,; = 1.50, ®,, = 2.13, and 1,, = 2.51, and the life
and replacement time distributions are the same as above.
The figure serves to illustrate the fact that numerical results
are possible. The results also verify the internal consistency
of the models.

12.2 NONRENEWAL MODELS

Preventive maintenance, like corrective maintenance, may
not imply equipment renewal. For many types of equipment,
preventive maintenance reduces failure probability but does
not return the system to a “good as new” state. Nevertheless,
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—— opp. age

A @)

—&— opp. fail.

—&— failure

Figure 12.6 Example availability functions. (From Degbotse, A.T.
and J.A. Nachlas, “Use of Nested Renewals to Model Availability
Under Opportunistic Maintenance Policies,” Proc. of the Annual
Reliability and Maintainability Symposium, pp. 344-350, IEEE,
2003. With permission.)

the reduction in failure probability may make preventive
maintenance appealing. Both time- and calendar-based pre-
ventive maintenance policies have been defined.

As in the case of the corrective maintenance models of
Chapter 10, the portrayal of equipment performance under
preventive maintenance depends most heavily on the repre-
sentation of the postmaintenance failure distribution. Most
of the models that have been developed are based on the use
of the imperfect repair format for representing the postrepair
equipment state. We will examine a few of these models, as
well as one based on the Kijima virtual age concept and one
based on the quasi-renewal process. Note that, in some of the
models, the analysis requires that a finite end to the interval
of analysis be defined, while for others, one must assume an
infinite time horizon.

One of the earliest and most general models of nonre-
newal equipment operation under preventive maintenance is
the one defined by Nakagawa [63]. In this model, a block (or
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periodic) policy is assumed, with minimal repair of failures
between PM times and system replacement after NV preventive
maintenance intervals. Nakagawa treats the post-PM equip-
ment state in the simplest possible manner by assuming only
that the system hazard function during the k% interval is z,(¢),
where z,(¢) < z,,,(¢), so that the system is gradually deterio-
rating despite the PM schedule. He then assumes all service
times are negligible and defines a cost rate function,

N T
C2ZJObzk(t)+(N—1)cl+cs
k=1

C(x,, N)= (12.73)

Nr,

where c; is the cost of system replacement. Note that the
assumption of eventual replacement was needed to obtain a
tractable model. Note further that NV is a decision variable,
so the model analysis includes selection of optimal values for
both 1, and N. In fact, Nakagawa shows that the optimal value
for 1, may be obtained by differentiation to be the one for
which

N Ty _
Z(‘cbzk(‘rb) - J zk(t)dtJ _WN=Detes g gy
k=1 0 Ca

and the optimal value of N may be determined using the
difference expressions:

C(t,, N)<C(1,, N-1)
C(t,, N)<C(1,, N+1)

Clearly, the appeal of this model is the fact that the
hazard function behavior may be specified arbitrarily (as long
as 2,(t) <z,,,(t)). The assumption of minimal repair at failure
may or may not be viewed as a drawback of the model.

(12.75)

12.2.1 Imperfect PM Models

Clearly, there are numerous possible operating scenarios one
might consider. Suppose that PM is imperfect in that a device
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is renewed with probability p, and the hazard is unchanged
by PM with probability 1 — p. Assume also that a device failure
implies device renewal. In this case a periodic (block) PM
policy will yield a cost per unit time [63] of

[02172(1 - p)j_lFT(ij)+ 012(1_ p)leT(ij)J
C(t,, p)= - = (12.76)

[i(l— p)it Lﬂb F, (u)du]
=

J-D1y

because the probability that it is a failure that precipitates
renewal is

- 1 Jt - 1 .

Y a-p " frwdu=pY a-p " Frlin,)

- (-Dry -
Jj=1 Jj=1

In contrast, if we assume that failure implies minimal

repair rather than replacement, then renewal only occurs as

a result of (some) PM events. In this case, the cost rate [63] is

C(1,, p)= Tl(% P2y (1-p) L’ “zrdu+ CIJ (12.77)
b =

where ¢, is the cost of the (minimal) repair that is performed
following failure.

In the case of age replacement policies, fewer results have
been developed. Block, Borges, and Savits [64] extend their
age-dependent imperfect repair model [52] to include PM that
is perfect. Let the age-dependent probability of replacement
upon failure be denoted by p(¢) and the probability of minimal
repair upon failure by q(#) = 1 — p(¢). Using this format and
the associated life distribution of Expression 10.12, Block,
Borges, and Savits [64] also allow for the cost of minimal
repair to depend upon both time and the number of minimal
repairs. They define:

cg(t) = the cost for the £ minimal repair ¢ time units
after the most recent device replacement.
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Then, recalling that E[N,] is the expected number of
events during (0, ¢) in a nonhomogeneous Poisson process that
has mean value

L 4wz Wdu

the cost of minimal repairs during an interval (0, ¢) is
co™* (1), and the resulting cost per unit time is

e F, (1) + ¢, F,(t,)+

J-r,, ()P (x)ej: atwer i |
C(t,, pt) = 0 : .
_[ F,(x)dx
0

One appealing feature of this model is that it generalizes
several other age replacement imperfect repair models. Spe-
cifically, if the minimal repair cost is a constant ¢,, the cost
model reduces to

(¢ — o), (1,)+ &1 F, (1) + o j OT" F(0)zp(x)dx

C(x,, p)= (12.79)

J.Ora F " (x)dx

and if the probability of minimal repair is constant rather
than age dependent, and the minimal repair cost equals the
failure replacement cost, the model becomes

©ep (t,)+c,F (t,)
P P
Cx,, p)=L—— (12.80)
J'O F,(x)dx

where, in this case, F,(¢) is defined by Expression 10.10.
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12.2.2 Models Based on the Quasi-Renewal Process

Recall that in a quasi-renewal process [56], the distribution
on the k% operating interval, say T}, is scaled by a constant,
o1, so that

T, =0T, =o"'Ty

and

1
FTk (t) = FFTI (%xk_l)

where Fy, (¢) is the underlying life distribution for the device.
Recall further that the quasi-renewal function, Mp, (¢), is
defined in the same manner as a renewal function:

M, ()=EIN,1= Y Fy (t)

n=1

Given these definitions, a block replacement policy (per-
fect PM) with quasi-renewals upon failure has cost rate

csMp, (T,)+¢;

C(t,)= (12.81)

T
This corresponds directly to the expression for the renewal
case and has the corresponding optimality condition.
If the PM that is performed at the scheduled times is
imperfect, and failures are quasi-renewal, we obtain a cost
rate model of

Czp2z(1 - p)j_lMFT (JTp)+e

C(ty) = = - (12.82)
b

Here again, differentiation yields an optimality condition for
selecting the value of 1,.

A rather more interesting model is suggested by Wang
and Pham [55]. They consider that, when a new device is
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placed in operation, it does not undergo PM until after it has
experienced some number, say K, of failures. Then, it is sub-
jected to a periodic PM plan. They further consider that the
cost of ¢y +(j—1lcy, is incurred at the j* failure. Here cy is
the fixed component, and c¢,, is the variable component of the
repair cost. Thus, repair costs are increasing in the number
of repairs performed. Wang and Pham also treat both the
operating periods and the repair intervals as quasi-renewal
processes, so that the length of the j** operating interval has
mean o 'E[T}], and the elements of the sequence of repair
times are scaled by B’™, so that the duration of the j* repair
has mean B*'E[R,]. Next, Wang and Pham assume that, after
a device has experienced K failures, it is subjected to imperfect
PM at intervals of 1, and minimal repair at subsequent fail-
ures. With this intricate set up, they show that the expected
maintenance cost per unit time is

K(K-1) c
Keyr +——— ey + -+
of B 2 D
+pczf2(1 P lj zT(/k)du
N (12.83)

=0 BT LB e T © 4 IR,
1- 1-B

In this expression, the minimal repair cost is taken to be cy,
the time to perform minimal repair is taken to be zero, and
the time to perform a perfect repair (renewal) is denoted by
R,. For this policy and model, the corresponding average avail-
ability is

1-o*

EIT)+%
1-o
(12.84)
1-af 1 B*
E[T]+ E[R1]+ +E[RO]
1-a 1-B

If we assume that K is specified on the basis of the
equipment design, then we can determine an optimal value
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of 1, by differentiation. On the other hand, we can also solve
for 1, as a function of K and then solve for K using finite
differences as shown in Expressions 12.75. Finally, note that
taking K = 0 or K = 1 in the above two models leads to
additional interesting special cases.

12.2.3 Models Based on the Kijima Model

As discussed in Chapter 10, Kijima [53] uses the concept of
equivalent or “virtual” age to represent the fact that a device
is improved but not renewed by maintenance. The basic
expressions that represent this, (10.14 and 10.15), may be
represented in general by:

A, =08, (12.85)

where S, is the actual device age at the time of the n? failure

[ZTJ} and A, is the resulting virtual age just after the
j=1
completion of the n* repair. As shown in Chapter 10, this
construction implies that

F,(t+u)-Fp(u)
FT(U)

FTn+1 &)= Pr[Tn+1 <t | An =u]=

The corresponding hazard function during the n + 1t
operating interval is

zr () =zp(A, + t-8,)=2,(8S, + t-S,)
(12.86)
= 2p(t-(1-0)8,)

and the corresponding hazard at any point in time is

ZTNt+1(t):ZT(AN, + t_SNt):ZT(eSNt + t_SNt)
(12.87)
= 2p(t—(1-0)S, )

Using this notation, Kijima [53] defines the generalized
renewal density as
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mp, (t)=Elzy, (1= Elzp(t-(1-0)Sy)l  (12.88)

and shows that this generalized renewal density satisfies

y—(1-0)x)

_ ‘ fr(
mFA(t)-fT(t)+LmFA(x) ey e (1289)

Clearly, this form corresponds to the Key Renewal Theorem.

Using these definitions, Makis and Jardine [65] examine
a modified age replacement policy in which failures prior to
1, are treated with repairs that improve the device in the
sense described by Kijima, and the device is replaced at the
first failure to occur after age 1,. The costs for the repairs are
assumed to be time dependent, so the cost per replacement
cycle is

¢+ an co(Wmp, (wdu
0 (12.90)

E,, [T+ _[ "By [T, | A, = 6ulmy, (wdu
0

C(t,)=

where the denominator is the expected length of the replace-
ment cycle. Note that the form of the time-dependent repair
cost may be selected as appropriate to an application. Makis
and Jardine also show that, as long as the repair cost is
bounded (c,(¢) < K) and Ep, [T, | A, =yl>€>0, the cost func-
tion of Expression 12.90 has a unique minimum that can be
computed using the derivative.

One final model is the one defined by Kijima, Morimura,
and Suzuki [54] for a block replacement policy with repairs
that improve the device age following failure. Since it is
assumed that the PM activity involves replacement that is
perfect, the model for this policy appears only slightly differ-
ent from the basic block replacement model. The model is

)= M wra (12.91)

Ty
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Clearly, for appropriate choices of the cost parameters
and life distribution, this cost function will have a unique
minimum. The degree of difficulty for the calculation of the
minimum depends mostly on the choice of life distribution.
However, Kijima, Morimura, and Suzuki show that, using the
now familiar form of the residual life distribution,

F,(t+6x)— Fr(6x)

Etlo=""""7 60

the generalized renewal function can be approximated by

. _[0 Fo(wdu

MFA(IJ:)z EFT[T] EFT[T]

t _[tFA(qu)du jt_xFA(u|t—x)du
(oo
‘ Er, 1] J F,(u|t-x)du
0
(12.92)
FT(x)J.fo(x—u|u)du
fr(x)+ =0 dx
J. F,(x—u|uwdu
0

Depending on the choice of life distribution, this approxima-
tion can be very accurate and quite manageable numerically.

12.4 CONCLUSION

Preventive maintenance policies may be defined in several
ways and may ultimately have very many operational real-
izations. The models discussed in this chapter serve to illus-
trate the many forms the models may take and the two
principal approaches to analysis — availability and cost. Pre-
ventive maintenance is an essential ingredient in any produc-
tivity assurance strategy and for many devices, it is critical
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to system safety. Given the significance of PM, methods for
selecting efficient and effective PM policies are important and
are worth the (sometimes taxing) effort they require. It should
now be clear that the state of a unit following repair or
replacement is the aspect of the equipment behavior that
guides the analysis of maintenance policies. It should also be
appreciated that numerical approximations to complicated
functions will often yield policy solutions that are quite sat-
isfactory.
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12.6 EXERCISES

1. Assume a population of devices display life lengths
that are well modeled by a Gamma distribution hav-
ing parameters B = 3.0 and A = 0.005. Compute and
compare the quantities N(z, 1,), N(¢, 1,), N(t), N(¢, 1),
and N(¢, 1) for ¢ = 100, 200, and 400 hours and T,
and 1, values of 0.1 E[T], 0.2 E[T], and 0.4 E[T].

2. Establish the stochastic ordering between a Weibull
distribution and an exponential distribution having
the same mean value for the cases of IFR and DFR.

3. Compute an optimal block replacement policy for a
system having Gamma life distribution with param-
eters B = 3.0 and A = 0.005 and assuming the repair
cost is 12 times the preventive maintenance cost.

4. Compute an optimal age replacement policy for a
system having Weibull life distribution with = 2.75
and 6 = 5000 hours, where repair cost is 20 times the
preventive maintenance cost.

5. Assume a population of devices display life lengths that
are well modeled by a Gamma distribution having
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10.

parameters B = 2.0 and A = 0.002. Assume further
that the devices are managed using an age replace-
ment policy with t, = 750 hours, G_(¢) is exponential
with parameter A = 0.02, and G, (¢) is exponential with
parameter A = 0.05. Compute A(¢) for ¢ = 100 and 400
hours, and also A(400, 800).

. Assume a population of devices display life lengths

that are well modeled by a Weibull distribution hav-
ing parameters B = 2.25 and 6 = 2000 hours. Assume
further that the devices are managed using an age
replacement policy with t, = 1250 hours, G_(¢) is expo-
nential with parameter A = 0.008, and G,(#) is expo-
nential with parameter A = 0.02. Compute A(¢) for ¢
= 1000 and 2400 hours, and also A(2000, 6000).

. Suppose that PM is imperfect in that a device is

renewed with probability p, and the hazard is
unchanged by PM with probability 1 — p. Assume also
that a device failure implies device renewal, so that
the cost rate function is Expression 12.76. Analyze
this model as a function of p for a Weibull life distri-
bution having parameters B = 2.25 and 6 = 2000
hours, a block replacement policy time of 1, = 1500
hours, and ¢, = 20c;. Plot the cost rate divided by ¢,
as a function of p.

. Repeat Problem 7 above for the quasi-renewal model

of Expression 12.82.

. Assume a population of devices display life lengths

that are well modeled by a Gamma distribution hav-
ing parameters 3 = 3.0 and A = 0.005. Use the approx-
imation for the generalized renewal function of
Expression 12.92 to plot the cost rate functions of the
Makis and Jardine model of Expression 12.90.
Assume a population of devices display life lengths
that are well modeled by a Weibull distribution hav-
ing parameters 3 = 2.25 and 6 = 2000 hours. Use the
approximation for the generalized renewal function
of Expression 12.92 to plot the cost rate functions of
the Kijima et al. model of Expression 12.91.
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Predictive Maintenance

Increased recognition of magnitude of the potential benefits
of preventive maintenance has stimulated an interest in find-
ing new and more efficient PM strategies. One of the most
promising new ideas is predictive maintenance (which is also
sometimes called condition-based maintenance). The idea of
predictive maintenance is that monitoring equipment status
should permit the recognition of failure precursors and the
corresponding opportunity for preventive intervention.

The development of this idea has followed two principal
tracks. One avenue of study has been the investigation of how
ordinary process control and process status variables can be
interpreted to provide warning of impending failure. For
example, one study noted that a rotating cutting tool drew
increased quantities of electricity as the tool wore down and
approached failure. Another example was an observed
increase in the width of the vibration spectrum for a pump
as the pump diaphragm deteriorated. As these examples sug-
gest, the focus of this research path is the identification of
process variables that provide warnings of failure, the selec-
tion of an instrumentation plan that permits monitoring of
the variable, and the development of pattern recognition rules
that have a high probability of recognizing pathological pat-
terns in the quantities being observed. This is an exciting and
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interesting domain of study, but it is relatively remote from
our probability-based exploration of reliability and mainte-
nance. We will thus not treat this topic further here.

The second primary research direction has been the use
of reliability and cost measures to formulate predictive main-
tenance strategies. Reliability-function-based monitoring
plans, policies for inspection, and replacement schedules
based both on hazard functions and on cost functions, and
adjustment plans for potentially fallible measurements have
been addressed. We shall examine some of the models con-
structed to portray the implications of predictive maintenance.

As with all of the repairable systems analyses we have
examined, models that represent predictive maintenance
plans differ depending on the assumed state of the system
following maintenance. They also differ in the ways in which
system deterioration is portrayed. The feature they tend to
have in common is the deterioration process and the assump-
tion that there is a measurable variable that represents or is
highly correlated with the extent of deterioration. Thus, we
start with the representation of system evolution and then
move to the analysis of predictive maintenance policies.

13.1 SYSTEM DETERIORATION

We have examined models of component and system failure
in Chapter 5. We noted there that the operation of a device
usually implies the gradual degradation of the unit and its
ultimate failure. Equipment for which this is a reasonable
conceptual description are exactly the ones for which predic-
tive maintenance is appropriate. Recognizing this, van
Noortwijk, Cooke, and Kok [66] argued that an isotropic dete-
rioration model is appropriate.

The term isotropic is used to represent the idea that,
between any two points in time, the deterioration depends on
the state of the device at the start of the interval but not on
the deterioration prior to the start of the interval. Further,
during the interval, deterioration is assumed to proceed in
the form of infinitely many very small steps as described by
Feller [48] and by Nachlas [30], with the consequence that
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X(t)

T; T; T;

time

Figure 13.1 Representation of generalized Gamma deterioration
process.

deterioration is best modeled using the generalized Gamma
process.

Algebraically, we represent the condition of the device by
the state variable X(¢), for which increments during any inter-
val are random. The magnitude of any increment has a
Gamma distribution with a shape parameter that is propor-
tional to the length of the interval. That is,

lﬁ(tz—tl)

— (2—1 -1 _-A\x
fX(t2)—X(t1)(x)_mth ale (13.1)

Using this model, the average deterioration during the
interval is (¢, —t,)/A, and the variance is (¢, —¢,)/A%. Thus,
there is considerable flexibility in the model, so many types
of deterioration can be represented this way. Van Noortwijk,
Cooke, and Kok [66] argue that this model provides an accu-
rate representation of cumulative damage processes, erosion
and corrosion, defect-based degradation, and most other evo-
lutionary deterioration behaviors. A graphical representation
of this type of process is shown in Figure 13.1. Note that the
assumption of independent increments implies that the pro-
cess is semiregenerative, and the times T, T, and 7; are
semiregeneration points.
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X(1)

T 2T 37 4t time

Figure 13.2 Inspection intervals with PM criterion.

13.2 INSPECTION SCHEDULING

The simplest of the predictive maintenance analyses is the
definition of a model for selecting inspection schedules. The
idea is that a system is gradually deteriorating, but the state
of the system may only be determined by inspection, even if
it has failed. The problem is to select an inspection schedule
and a replacement criterion that will permit us to monitor
the state of the system and to renew it prior to failure.

This elementary condition-based replacement strategy
for PM is defined like an age replacement policy. Device status
is determined by inspections that are equally spaced in time
at intervals of length 1. Replacement is performed whenever
inspection shows device deterioration to be beyond a PM cri-
terion, say 6, and below a failure threshold, say X, and also
following failure. This is illustrated in Figure 13.2. For equally
spaced inspections and a Gamma deterioration process, the
mean deterioration per inspection interval is a linear function
of the length of the interval and is Bt/A, so the number of
intervals until the PM threshold is crossed is

B% = G%T (13.2)
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and the number of inspections required to discover that the
threshold has been passed is one greater than that number.
Assuming an inspection cost of ¢;, and PM and corrective
replacement costs of ¢; and c,, as in Chapter 12, the cost per
unit time of an inspection policy 7 is

¢ (97» + 1) +0,Fy (X, ~0)+c,Fy (X, —6)
Cl)= /BT

(P01
where Fx (X, — 0) is the probability that the deterioration in
the final inspection interval does not exceed the difference
between the failure threshold and the PM threshold.

Clearly, the simple model of Expression 13.3 is very sim-
ilar to the age replacement model. One important difference
is that analysis of the model permits optimization of both the
inspection interval and the PM criterion. A shortcoming of
the model is the restriction to equally spaced inspection inter-
vals. A key feature of condition-based maintenance is sensi-
tivity to device state and a corresponding capability to adjust
inspection frequency.

(13.3)

13.3 MORE COMPLETE POLICY ANALYSIS

Recently, Grall, Dieulle, Berenguer, and Roussignol [67]
defined a model that allows for variable inspection intervals
and can be optimized with respect to the replacement thresh-
old. As in the model above, they assume that there is a failure
threshold X, that is fixed by the physical nature of the device.
The device is replaced correctively if its state variable passes
that threshold and preventively if any inspection shows device
state to equal or exceed the PM threshold, 6. In addition,
Grall, Dieulle, Berenguer, and Roussignol assume that, fol-
lowing each inspection, the time of the next inspection is
selected as a function of device state.

The analysis of a device that is managed adaptively and
replaced as described can be based on cost per renewal cycle.
However, this can be quite complicated, so instead Grall,
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Dieulle, Berenguer, and Roussignol based their analysis on
the limiting expected cost rate. That is, they formulate the
basic cost function as

C@t)=c;N; () +c;N,(8)+coNy(t) +c D(t) (13.4)

and then construct

E[C.]=lim

E[C()]
¢

et FO] o V]
t t

t—o0 t—oo

(13.5)

+¢y lim

t—oo

+ ¢, lim

t—oo

{E[NQ(t)]} [E[D(t)]}
t t

In this formulation, D(¢) is the quantity of device down-
time over (0, £) and c, is the unit cost of downtime. Also, N(¢)
is the number of inspections, N,(¢) is the number of PM
replacements, and Ny(¢) is the number of corrective (failure-
precipitated) replacements over (0, t).

For mathematical convenience, they assume a minimum
inspection interval and then further assume an inspection
scheduling decision policy that the time to the next inspection
is a linearly decreasing function of system state. That is,
following the n** inspection at which the system state is deter-
mined to be X(t,), the next inspection time is selected as

T,1 =1, +1+max{0,[fco - e‘o}3 X(rn))} (13.6)

Using this form, the minimum inspection interval is one

time unit, and since X(t,) = 0, the maximum interval is 1 +

T, time units. The minimum interval is used whenever the

device state is within € units of the PM threshold, and over
time, inspection interval length declines from 1, to 1.
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As a matter of notational convenience, let I,(X(t,)) rep-
resent the time interval until the next inspection that is
selected using Expression 13.6. That is

In(X(Tn)) =Th— Ty

The Gamma distribution that describes the independent
increments in the state variable over any interval, as defined
in Expression 13.1, may now be specifically stated as

AP () B, (t,)-1_—Ax
)1 —
fX([)(x) = fX(Tn+1)—X(Tn)(x) = —Xx """ e (13.7)

r'r,(t,)

which is to say that the shape parameter of the distribution
depends upon the selected length of the inspection interval.

Given the definition of the replacement, inspection, and
deterioration processes, the device state, X(¢), is a semiregen-
erative process with regeneration times equal to the times of
device replacement. In addition, the discrete time process, Y,
corresponding to the device state after each inspection, is
defined by

Y, =X(1,)

and takes real values in [0, 6). The evolution of the variable
Y, is a continuous state space Markov chain. If we let TI(Y)
represent the stationary distribution on the state variable Y,,
then the limits in Expression 13.5 can be shown [60] to equal
the corresponding first interval expectations with respect to
I1(Y). That is,

E[Cm]zcl[En[NI(Tl)]}rcl{EH[NI(TI)]}

Elt] E;lt]
(13.8)

”2[ Eqlt,] }“"{ Elt,] }

Thus, the first step in analyzing the PM strategy is the con-
struction of TI(Y).
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For the Gamma deterioration process described by the
distribution of Expression 13.7, the stationary distribution is
obtained as the solution to

o _
() = jo (Fi (0 - 2086(9)+ ¥ (v —0))wdx (13.9)

in which J,(y) is the Dirac mass function. The solution of this
equation takes the form of the convex combination:

I(x) = ady(x) + (1 — a)xg(x) (13.10)

where the parameter a (0 < a < 1) must be computed. To
compute a, we start with the convolutions

f)(fl()l)(y —x)=fxqp(y—x)= fX(rm)—X(rn)(y - Xx)

Yy

(2) _

Yy —x)= I fX(rn+l)—X(rn)(u - x)fxumz)—xum)(y -u)du
x

(13.11)
y pu
f;??n(y -x)= j J fX(‘cml)—X(rn)(w - x)fX(Tn+2)—X(tn+1)

(u - w)fX(TmS)*X(Tmz) (y - u)dLUdu

and so on. Then we solve the expression:

e - o
h(y)=fX(,)(y—0)+J.0 Zf)({(),)(y—x) fxa(x)dx (13.12)
=1

and use the result to compute a as

0 -1
a:(1+J. h(y)dy] (13.13)
0

Once the value of a is determined, the function g(x) in
Expression 13.10 is computed as

gx)=-2"h(x) (13.14)
1-a

and the stationary distribution is then well defined.
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Once the stationary distribution of the Markov process
is obtained, the components of the limiting expected cost rate
can be calculated. Specifically,

e — —
E [N, (1)l = _[0 (Fx)(®—x)— Fx( (X, —))T(x)dx  (13.15)

o _
B [N,(t,)]= L Fy (X, - 0)TI(x)dx (13.16)

0

0 I(x)
E,[D(x,)]= J ( FX(,(u))(Xf—u)dujH(x)dx (13.17)
0

and for a semigeneration interval corresponding to the time
between inspections, Ey[N;(1,)]=1. Finally, the average first
cycle length is

E,lt,]= J.QI(x)H(x)dx (13.18)
0

The evaluation of these expressions appears to require
considerable numerical effort but actually, Grall, Dieulle,
Berenguer, and Roussignol [67] show that the computational
effort is quite manageable. Taking 6 = 6 to be fixed and X, =
12 with costs of ¢; = 25, ¢; = 50, ¢, = 100, and ¢; = 250 and
distribution parameters of f = A = 1.0, they compute the
optimal values of 1, = 6.5 and € = -3 which define the inspec-
tion policy. (The negative value of € means the minimum
feasible interval duration is not used.) In a separate analysis,
they assume X, = 60 with costs of ¢; = 2, ¢; = 90, ¢, = 100, and
¢, = 100 and distribution parameters of f = 1.0 and A = 0.2
and compute the optimal policy parameters to be 6 = 50, 7, =
5.4, and € = 5. In general, they illustrate the fact that the
numerical integration necessary to evaluate the model can be
accomplished efficiently.
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13.4 CONCLUSION

The concept of predictive maintenance is very appealing. Pre-
dictive maintenance holds the promise of significant mainte-
nance cost reductions and associated increases in
productivity. The definition of alternate policy formats and
the formulation and analysis of models for selecting predictive
maintenance policies is embryonic and represents one of the
important new frontiers in maintenance planning research.

13.5 EXERCISES

1. Assume that the Gamma process of Expression 13.1
has parameters B = 3.0 and A = 0.5, and simulate the
process over an interval of 20 time units with inspec-
tions every 4 time units. Plot the observed values of
X(¢) relative to a failure PM threshold of 6 = 100.

2. Assume a Gamma deterioration process has param-
eters B = 2.0 and A = 0.4 and cost parameters of ¢; =
2, ¢; = 10, and ¢, = 20. Solve the model of Expression
13.3 to determine the optimal inspection schedule.

3. Assume a device has a Gamma deterioration process
having parameters B = 5.0 and A = 1.0, failure and
PM thresholds of X = 325 and 6 = 300, and an inspec-
tion schedule that is defined by 1, = 8 and € = 20. Use
Expressions 13.10 through 13.14 to determine the
stationary distribution on the state of the device.

4. For the device described in Problem 3, assume cost
parameters of ¢; = 5, ¢; = 25, ¢, = 75, and ¢, = 200,
and calculate the limiting expected cost rate for pre-
dictive maintenance of the device.



14

Special Topics

To conclude our study of reliability and maintenance planning
models, we should examine some special topics that build
upon the topics treated in this text. These are not the only
extensions to the material in this text, but they are reasonably
general and relatively close to the preceding discussions. The
first of these extensions is warranties. Following a discussion
of warranty policies, the idea of reliability growth is examined.
Then we consider reliability models for dependent compo-
nents, and finally, we explore the construction and use of
bivariate and multivariate reliability models.

14.1 WARRANTIES

A warranty is a guarantee by a producer that a product will
display a defined level of reliability. It is increasingly common
for manufacturers to provide warranties for their products.
The chief reason that manufacturers provide warranties is
that customers often consider warranties to be appropriate,
and warranties are thus an important ingredient in successful
marketing. Independent of this point, it is generally recognized
that complex and especially expensive products should be guar-
anteed to function properly. In 1964, the U.S. Congress enacted
the Magnuson Moss Act, which formally defined how warranties
are to be structured and specified the responsibilities of man-
ufacturers in meeting warranty commitments.
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There are essentially two types of warranties. These are
full replacement warranties and pro rata warranties. Pro rata
warranties are usually offered on products such as automobile
components (e.g., tires and batteries). Common characteris-
tics of products that carry pro rata warranties are that (a)
product use implies wear or at least accumulating deteriora-
tion, (b) repair is either physically impractical or economically
inefficient, and (c) evaluation of product age is reasonably
straightforward. Under a pro rata warranty, the manufac-
turer returns a proportion of the original price of the product
to the customer in the event of product failure. The proportion
of the price that is returned is computed on the basis of an
estimate of how much of the product life the customer has
lost due to failure of the product. In the case of an automobile
tire, a blowout renders the tire unusable. If one occurs, it is
common to measure the depth of the tire tread that remains
and to use the ratio of the remaining tread depth to the
original tread depth to determine the tire life lost due to the
failure. The formula for converting the lost life into a cash
settlement is usually specific to the manufacturer.

The full replacement warranty is a guarantee to repair or
replace a failed product (or component of a product) in order
that the product be as good as new. A key feature of the full
replacement warranty is the definition of the time limit on its
applicability. For some products, that warranty is in force for a
fixed period of time from the date of product purchase. A three-
year warranty on an automobile or a one-year warranty on a
stereo are examples. In the case of the auto, the frequency of
repair does not change the termination date of the warranty.

For some products, the full replacement warranty is
renewed when the product is replaced under the warranty
agreement. For example, a portable stereo that fails prior to
the completion of its one-year warranty period might be
replaced with another copy of the product that is also war-
ranted for one year. Most durable consumer goods carry one
of the two types of warranties.

The choice of which type of warranty to offer is made by
the manufacturer and is highly influenced by the nature of
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the product and its reliability. Questions about warranty pol-
icies for which analysis is meaningful include the length of
the warranty period, the cost that is expected to accrue in
meeting warranty commitments, and the formula to apply for
the pro rata case. We shall examine some simple models for
the warranties below. For each model, we assume that the
warranty promotes demand and therefore increases profit.

14.1.1 Full Replacement Warranties

Most analysts distinguish between repairable and nonrepair-
able products. From an analytical perspective, this distinction
is unnecessary if the product is as good as new after warranty
service. Assume that the warranty for a product is renewed
at a repair time, and let T, represent the duration of the full
replacement warranty. Now there are many scenarios that
one might assume for the warranty. For now, we suppose that
the cost of providing warranty support for a single unit of
product is the cost of manufacturing the product plus an
operating or processing cost that is proportional to the selling
price of the product. That is, the cost to provide a warranted
replacement is (C + dP), where C is the production cost for the
unit of product, P is its selling price, and 0 is the proportion-
ality factor that represents the fraction of the selling price
consumed in the processing of a warranty claim. Assume
further that we can represent the product generation cost as
a fraction of the selling price:

C=vyP

Next, assume that that the likelihood of product sales is
enhanced by the warranty, and that this can be modeled using

Eldemand | T,] =d(T,) = (u; +u,T} )

where 0<r<1. The expected profit realized from product
sales adjusted by the cost of warranty support is

Elprofit]=(P-C)d(T,)- EIN(T,))(C +dP) (14.1)
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where

EIN(T,)))== -1 14.2
[N(T,,)] F(T) (14.2)

is the expected number of replacement units provided each
purchaser. The reason this is the number of copies used to
meet each purchase is that the number of copies of the product
used in order to achieve a life duration in excess of the war-
ranty interval is geometric, with parameter F(T,), the sur-
vivor function for the product life distribution. The expected
value of the number of replacements, N(T,), is one less than
the number of copies used. Substituting the demand and cost
expressions along with E[N(T,)] into Expression 14.1 yields
the expected profit model:

Elprofit]=(P — }(P)(u1 + uzTuf)— (F(lT) - lj(yP +93P)
T\ w
— (1= y)Pu, + A=7)Pu, T - (17;(;)1)3 Fy+OP  (14.3)
T\ w

Taking the derivative of Expression 14.3 yields

(v +3)Pf(T,)

iE[proﬁl‘] =r(1-y)Pu, T, ———— 2
(Fr(T))

dT,

and a convenient application of the hazard function identity
makes this

& B profit] = r(1 - y)PuyT ' — Y+ OP2r(T,)

— 144
dT, Fn(T,) (144

One reason this is convenient is that the second deriva-
tive expression is
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2

e Elprofit]=r(r-1D(1-y)Pu,T, >

_ 0+ 0P (T )fr(T,) _(y+3)P d |
(Fa)f  F@odL™

(T,,)

and clearly this is negative for any IFR distribution. For other
distributions it should be checked but will usually be negative.
Thus, the solution of Expression 14.4 will usually represent
a profit-maximizing warranty policy time. That solution is
obtained numerically as the value of T}, for which

zp(T,)  r(1-7)u,

= = 14.
TR, (+d) (145

As an example, if we assume that production cost is 75%
of selling price for a product, and that 6 = 0.025, u, = 100, r =
0.1, and the device has a Weibull life distribution with B =
2.75 and 6 = 4 months, the computed warranty time is 3.5
months.

Note that the above formulation yields a solution that is
independent of the price of the product and depends instead
upon the proportion of revenue returned to the customer and
upon the failure behavior of the product.

Next consider the situation in which the warranty has a
fixed duration, during which replacement (repair) service is
provided but the duration of the warranty is not extended.
For this case, the cost of meeting the warranty commitment
for each unit of product is defined by the renewal function
based on the product life distribution function. If it is again
assumed that demand depends on the duration of the war-
ranty, as expressed by d(T,), the expected profit function is

El profit] = (P —P)(u, +u,T}; |- My, (T, P + 8P)

= (1-y)Pu, +(1=7)Pu, T} - My, (T, Xy+8P  (14.6)
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To identify the optimal warranty policy time, we again use
the derivative

d(;E[ profit) = r(1—y)Pu,T; ™ = (y+8)Pmy, (T,) (14.7)

so the optimal policy time is the value of T, for which

myp(T,) r(l-yu,

= es) (14.8)

For the example values used above, numerical solution yields
an optimal warranty policy time of 4.2 months.

14.1.2 Pro Rata Warranties

The chief difference between a full replacement and a pro rata
warranty is that the resources committed to meeting the
warranty vary for the pro rata case. Under a full replacement
warranty, the producer incurs the full cost of product replace-
ment when a warranted item fails. While this may be a frac-
tion of the sale price of the product, it is still constant over
the duration of the warranty. In the case of a pro rata war-
ranty, the producer usually “pays” the customer a proportion
of the price of the warranted product, and the proportion paid
depends on the condition or age of the product when it fails.

To represent the effect of pro rata warranty policy on
profitability, define a model that describes the costs and prof-
its associated with a single unit of product. One approach is
to consider that the warranty affects the likelihood of repeat
purchase and that the original purchase may be assumed.
That is, we might assume that for each unit of product sold,
the probability of a repeat purchase following failure of the
unit is proportional to the ratio of failure age to policy age, say:

E[demand | T,] :d(Tw):n[;]

w

Now, assume as before that the consequences of failure
are warranty costs of (C +0P) and that the revenue resulting
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from the repurchase is (P—C)=(1-v)P. The dependence of
warranty cost on product age may be modeled by making the
proportion a function of time. A plausible general form for

this function is
8(t):80[1—( %, ) ] (14.9)

This form permits either linear or nonlinear reduction
in warranty value and also allows that the maximum war-
ranty value be any fraction of the purchase price. Using this
form, the profit associated with the warranty assigned to each
unit of product is

Elprofit]= P j - y)n(Tw] F() - 60[ ( %wjr]fT(t)dt
_PJ {(1 y)n[ j [ (/F)]]fT(t)dt (14.10)

The first derivative condition for this function is

—— E[profit]= PA—vy)nf;(T,,)

dT,
_ PJ v [ s(1- 'Y)T]t Tr+1 )fT(t)dt =

w
s+1
T,

and the second derivative confirms that the corresponding
solution is a maximum. For the numerical values of the pre-
vious examples, we add s = 1.5 and 1 = 0.8. The model solution
is a warranty policy time of 5.25 months.

Naturally, there are many possible variations to the mod-
els described here. One extension that is often considered
worthwhile is to apply a discount factor to future cash flows.
Depending upon the application, this and other modifications
may be reasonable. The modeling format should be the same,
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and the result should be an effective approach to the selection
of a warranty policy.

14.2 RELIABILITY GROWTH

New products and new product designs are usually enhanced
during some sort of “development process.” This development
process generally includes considerable testing and adjust-
ment of both the design and the manufacturing processes used
to create the product. The adjustments are frequently of suf-
ficient significance that they are labeled “engineering design
changes.” An important element of the enhancement of the
product design and manufacturing process formulation is an
increase in the reliability of the product. This improvement
in product reliability is called reliability growth. It has been
observed in many products.

The initial study of reliability growth was reported by
Duane [68], and a subsequent enhancement of the “Duane
reliability growth model” was provided by Crow [69]. Crow’s
model is often referred to as the AMSAA (Army Material
Systems Analysis Activity) model. The models defined by both
Duane and Crow are now incorporated in Military Handbook
189 [70], which specifies procedures for performing reliability
growth evaluation tests. A key point concerning the reliability
growth models is that they are based on an assumption that
the life distribution is exponential (constant hazard).

The fundamental idea underlying the reliability growth
models is that, during development testing, some of the fail-
ures that are observed point to failure modes that result from
design flaws or manufacturing errors that can be eliminated.
Once those problems are eliminated, the product reliability
is improved, and the improvement can be described by a
decrease in the hazard rate or, equivalently, by an increase
in the mean life length for the product.

Having observed the reduction in hazard rate for sev-
eral product designs, Duane formulated a general power law
model for reliability growth. Assuming that a series of device
designs is tested over T units of time and that n(t) of the
test specimens fail through time t, the cumulative hazard
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rate may be estimated by n(t)/t. Duane observed that the
reciprocal of n(t)/t could be called the “cumulative mean time
to failure” (MTTF), and that it appears to be well fit by the
power law function,

_ b
% =k (14.11)

which implies that the logarithm should be well fit by the
linear model:

ln( v (T))=1nk+blm (14.12)

The parameter b is called the rate of growth. Typical
observed values for b are in the range of 0.3 to 0.6. In any
case, the derivative of the cumulative hazard function yields
the hazard rate. For the Duane model,

M) = 1—ka_b (14.13)

or equivalently,

>

1 ko,

== 14.14
] 0 l—bT ( )

Observe that one implication of this model is that one
may set a design reliability target and then compute how long
the development testing should be continued in order to attain
the target. For any specific design, this implication and the
assumption of constant hazard require careful consideration.

The AMSAA model developed by Crow [69] provides
three important improvements to the Duane model. First,
Crow specifically distinguishes between failures observed
during testing that result from failure modes that cannot be
altered and those failures that result from design or manu-
facturing problems that can be addressed. Second, he allows
for the possibility that adjustments to the product design or
manufacturing process may not eliminate the problem com-
pletely. Instead, for each failure mode addressed, Crow
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includes an “effectiveness factor” in the calculation of the
reliability improvement. Finally, Crow defines the growth
model for a sequence of test cycles. He assumes that product
design or manufacturing process changes are implemented at
the end of each of several test cycles. Thus, the development
test is described by the set of test cycle durations (14, Ty, ...,
1,,). Since the life distribution is assumed to be exponential,
the number of failures that occur during each test cycle is
Poisson distributed with mean equal to A7, where A; is the
sum of the hazard rates for the correctable and the uncorrect-
able failure modes during cycle j. (The failure modes are all
assumed to be mutually independent.) Thus, under the Crow
model, the hazard rate during any test cycle is

K

j-1
=N, +22(1—dik)kck (14.15)
=1

k=1

where A, is the hazard rate associated with the uncorrectable
failure modes, A, is the hazard rate for the &% correctable failure
mode, d;, is the effectiveness in modifying the &% failure mode
of the engineering change implemented at the end of cycle i,
and K is the number of correctable failure modes.

As in the case of the Duane model, the Crow model is fit
to the power law function stated in (14.11). The model is then
used to estimate the growth rate, b, and to estimate the final
hazard (and mean life) or to set test durations.

14.3 DEPENDENT COMPONENTS

The possibility of dependence among system components is
an important consideration in the analysis of system reliabil-
ity. The dependence may arise as a consequence of sharing of
loads, susceptibility to the same failure causes, or mutual
interactions. Two examples of mutual interactions are (1) the
case of microelectronic components that are located near
enough that the heat generated by each component affects
the thermal environment experienced by the other component
and (2) mechanical components such as gears and struts that
transmit forces from one component to another.
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Naturally, there are several reasonable approaches to
modeling component dependencies. One general approach is
to simply formulate a system reliability model for which the
system continues to operate but the hazard function changes
when a component fails. This model seems most representa-
tive of the shared load case. The general model is

FTs(t) = FTl(t)_,_ jthl(u)FTZ (t—wdu = o Zn®
0 (14.16)

t
-7 t—
+.[ fr, e = dy
0

where T, is the overall system life length, 7', is the time at
which the first component failure occurs, and 7, is the residual
life length of the system following the first component failure.
If this model is applied to a shared load system, one often
assumes that the individual component life lengths are inde-
pendent, and it is only the sharing of the load that produces
the dependence at the system level. In that case,

Fp, ()= Fy, (t| y(T)Fy, (t| y(T})) (14.17)

where y(T)) describes the effect of load sharing on the life
distributions. Similarly,

— F‘ 4 t -
Fr Wy, 2"
t B t FXz (w)
j Fi Oy, (¢ — ) = J 3 du
' 1 By
Xy X1 FXl (u)

= J.O (le (W)Fy, (t —w)+ fx, W) Fy, (- u))du (14.18)

where the notation X/ is intended to signify the fact that the
hazard function for the surviving component is different than
when both components are functioning.
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An alternate general model for component dependence
was proposed by Barlow and Proschan [11]. They argued that
a reasonable interpretation of certain shock models leads
directly to a bivariate exponential system life distribution.
Their construction proceeds as follows. Suppose a system com-
posed of two components (in arbitrary structure) is subject to
shocks from three sources. The shocks from each source occur
according to Poisson processes, such that N(¢) is the number
of shocks from source i occurring during (0, ¢), and A, is the
parameter for shock process i. Suppose further that a shock
from source 1 causes failure of component 1 with probability
0,, while a shock from source 2 causes failure of component
1 with probability 6,. In the case of shocks from source 3, each
shock causes failure of both components with probability 6,
causes failure of component 1 only with probability 6,,, causes
failure of component 2 only with probability 6,,, and results
in no failures with probability 6,,. Then the joint survival
probability for life lengths 7', and T, for the two components is

k
PI‘[T >t1, T >t2]—(2 Mt (7\- tl) (1 el)k]

k=0
26—7»2@ (7"2t2) (1 92)k
k=0 k!
ii{e% (st e{;o}
k=0 j=0 J!

(14.19)

k
{e_wz,fl) Qalta =)' g em)k}
k!
when 0<¢ <t,. Taking the sums and simplifying, they obtain

PriT, >t,, Ty > t,]= eftl(xlel+x3910)7t2(x292+x3(179007910)) (14.20)

and by symmetry, when 0<%, <¢,
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Pr[Tl >t, T2 S tz]:e—tl(xlel+x3<1—eoo—em))—tz(x292+x3901) (14.21)

Combining these expressions yields the standard bivari-
ate exponential survivor function:

Pr(T, > ¢, Ty > t,] = a7 bamax(i k) (14 99
WheI‘e 7\4; = 7\«161 + }\«3910, 7\4; = )\4262 + 7\43601, and 7\4; = )\43611 .

14.4 BIVARIATE RELIABILITY

People frequently discuss equipment behavior in terms of age
and usage. Common examples are automobiles and automo-
bile tires in which both model year and accumulated mileage
are usually included in discussions of longevity. Less well-
recognized examples for which two measurement scales are
quite important include factory equipment, power generation
machines, and aircraft. In fact, the longevity of many of the
devices that reliability specialists study is meaningfully
described in terms of two measures.

Device life is a resource that may be best represented
and for which the consumption may best be measured using
a two (or higher) dimensional vector, and the quantities that
comprise the vector are specific to the equipment. Years of
usage and mileage are not the only two quantities that might
describe device longevity. We use the terms age and use here,
but these terms are generic and may represent quite different
measures than duration of ownership and distance traveled.
In the example of an automobile tire, age might correspond
to accumulated mileage and usage might be measured as
tread loss. Even more complicated measures such as current
flow and thermal history may be appropriate for some inte-
grated circuits.

There are basically two ways to approach the definition
of a bivariate reliability model. The traditional approach has
been to define the second variable, usage, as a function of
time, so that the bivariate model can be collapsed into a
univariate model. Models of this type are discussed first. In
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fact, we have already discussed some, as the cumulative dam-
age models portray equipment reliability in terms of deter-
ministically defined deterioration occurring at random points
in time, and the proportional hazards models treat age as a
deterministic function of use covariates. Clearly, the nonde-
terministic cases are more interesting.

A second approach that is more recent and was first
treated by Singpurwalla and Wilson [71] and subsequently by
Yang and Nachlas [72] is to develop reliability functions that
are truly bivariate. These are presented subsequently.

14.4.1 Collapsible Models

The collapsible models are generally defined so that the dis-
tribution on “usage” is a stochastic function of age. The cumu-
lative damage models and particularly the shot noise process
discussed in Chapter 5 and the Gamma process models
treated in Chapter 13 are examples of the type of formulation.

The basic formulation is to define age and usage vari-
ables for which the distribution on usage depends upon device
age. From a statistical perspective, this is a reasonable con-
cept. For example, it would be appropriate to describe a dis-
tribution on the age (or wear) for a population of three-year-
old cars.

Algebraically, the collapsible models are quite compli-
cated. The most direct formulation is obtained by defining the
usage variable, say X, as a stochastic process and defining the
failure to correspond to values of the state variable that
exceed a threshold, say 6 (as in Chapter 13). Then for the
bivariate survival function, Fr x(¢, x), the time evolution is

described by

SatFT’ X(t, x) = _(7\’+ZT, X)(t’ x))FT, X(t,x)
(14.23)

. xj Fy 5t w)f (0 —w)du
0

where fx)(x) is the density function for the distribution on
the transition in state over time.
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In Chapter 13, we treated state transitions as a Gamma
process. This is often an appropriate choice. If the state tran-
sition process is to be Gaussian, the result is a Weiner (rather
than Gamma) process, and this model may be representative
of some devices, particularly those that experience healing or
attenuation of damage.

In any case, the general model of Expression 14.23 per-
mits very many specific cases. The following is one of the more
manageable possibilities. If the hazard function is assumed
to be an additive function of independent time and usage
processes so that

zp x(t, x)=2zp(t)+Mx (14.24)

then the Laplace transform of Expression 14.23 with respect
to the state variable X is

s+nt

S

FT x(t, 8)= exp[ﬁ Fxwo@dv—At— J.tzT(v)dv) (14.25)
0

Then, taking the state transition process to be a Gamma
process, the collapsed time dependent life distribution is
obtained as the Laplace transform evaluated at s = 0:

_ o no ¢
Fpt)=F; 1(t,0)= exp(”_[ Faw)dv—2é— j zT(v)dvj(14.26)
Nndo 0

Nearly all other reasonable choices of constituents of the
above model are more difficult to evaluate, but most that are
practically interesting can be managed numerically.

14.4.2 Bivariate Models

There are actually two classes of bivariate models that are
not collapsed into a single dimensional form. These are the
models based on a stochastic functional relationship between
the two variables and the models that represent the variables
as correlated.
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14.4.2.1 Stochastic Functions

The definition of failure models on the basis of stochastic
functions relating age and use starts with the specification of
how the stochastic feature of the longevity variables is por-
trayed. Assume that the time and use to failure are related
by the function u = B(¢), and that the stochastic nature of this
relationship can be represented by treating one or more of
the parameters of B(¢) as random variables.

The interpretation of the function B(¢) is that, across a
population of devices, the accumulated usage by age ¢ is B(¢).
This is equivalent to saying that the mileage traveled by two-
year-old cars is B(¢ = 2). Of course, we impose a probability
distribution on B(#) to model its dispersion. To illustrate this
construction, we consider four example forms here:

1. Bt) =at + B
2. B) =ot2 + Bt + vy
3. B(t) = at®

4. B(t) = (e — 1)/(e* + B)

where the fourth form is the logistic model analyzed by
Eliashberg, Singpurwalla, and Wilson [73]. In each case, we
introduce randomness into the function by treating the
parameter o as a random variable having distribution w.(-).
This imposes random variation on the extent of use experi-
enced by any age. Consequently, both age and usage at failure
are random variables. Certainly, there may be many other
functional forms that may be defined and that may be repre-
sentative of observed behavior. The analytical methods
described here may apply to those other forms as well.

The use of the distribution rt (-) to construct the marginal
probability distribution on usage is accomplished using well-
known methods. In general, as indicated by Eliashberg, Sing-
purwalla, and Wilson [73], we may construct the marginal
density on use as

do(u)
du

fo@) = fyu(w) = 7, (ow)) (14.27)

For example, with B(¢) = ot + B, solving for o yields
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_u-B do(w) 1
a(u)—it and T 1
S0
fb(u){na(”;ﬁ] (14.28)

Once the marginal distribution on usage is obtained, we
construct the joint failure density using the well-known con-
ditioning relation:

fro(t, w) = fro(®) f(w) (14.29)

and the conditional density f7 (¢) is obtained using the well
known relationship between a density and its hazard func-
tion:

fT|U(t) = ZT|U(t) = ZT|g(t)(t) eXp{—j ZTlg(t)(QC)d.’XI} (1430)

0

We use this form specifically so that we can focus upon
the hazard function in the definition of the failure model. We
assume that the bivariate device failure hazard function may
be stated as

zput, u) = Mt + n(w) (14.31)

so that the definitions of the functions A(¢), n(x), and B(¢)
determine the hazard and ultimately the bivariate life distri-
bution. Here, we treat the simplest conceivable form of the
hazard function. More intricate, and perhaps realistic, forms
should be studied. Thus, we assume that A(¢#) and n(uz) are
simple linear functions. That is, we use A(¢) = At and n(u) = nu.

Under this modeling format, the bivariate life distribu-
tion corresponding to form (1) above is obtained by construct-
ing:

ZT|U(x) = ZT|g(t>(x) = M"rn[[u;ﬁjx'i'ﬁj (14.32)
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and applying Expressions 14.29 and 14.30 to obtain

_ MAnu NP, Ao (u-B
fT’U(t,u)—it exp{ 7 t Zt }na[ ; j(14.33)

The same analytical approach yields

Frut, w)= M :2“” exp{_ﬂ(umt}

3
Xp{—Mtz}na(u_B;_yj (14.34)
6 t
_Mamu ) mu Al [
fr.ot, uw= " exp{ n+1t 2t }na(th (14.35)
and
Fr ot w)= 1+B)(At+Mu)

- w)1+Bu)

nB+1
1, 1+pu n,oAs, B 1
21 My Az 1 t}(14.36
““[t " 1—uj TP T Tepu a-w (14.36)
1-u

for cases (2), (3), and (4), respectively. Note that in case (4),
the definition of the use function limits the variable U to [0,1],
so the functions may require rescaling for some applications.
Also, in cases (1) and (2), the forms of the functions B(¢) allow
a nonzero minimum value for usage.

Finally, observe further that all four models are well
defined and require only the specification of the density mw,(-)
to be complete bivariate life distributions. On the other hand,
for each of them, it is unlikely that a closed-form expression
can be obtained for the marginal distribution on age at failure.
In any case, the above examples illustrate the construction of
a model in which the usage variable is a stochastic function
of the age variable.
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14.4.2.2 Correlation Models

In many applications, the two life variables appear to be
correlated rather than functionally dependent. The definition
of models that can represent correlations in the life variables
appears initially to be somewhat simpler than the construc-
tion above. We simply choose a bivariate distribution. How-
ever, it is important that the distribution be capable of
accurately representing equipment behavior, and in particu-
lar, that it have marginal distributions that are consistent
with experience. Three example models that appear to hold
promise for representing bivariate failure processes in which
the two variables are correlated are described here. Once
again, our choices are not the only conceivable ones. Observed
equipment behavior may suggest the use of a different distri-
bution, and the ideas developed here should apply to those
cases as well as the ones treated here.

The first of the candidate models is the generalization of
the bivariate exponential model defined by Baggs and
Nagagaja [74]. In this model, the reliability function is

Fru(t,w)=e ™™ (1+pl-e™)1-e™)) (14.37)
so the corresponding density function is

fr v (t, w) = Ane ™ (1 +pll—2e™ —2e™™ + 4e-<“+“u>}) (14.38)

and the marginal densities are the constituent exponentials
regardless of the value of p.

A second model that is an obvious choice is the bivariate
Normal. The density function for this model is well known,
so it is not restated here. As is also well known, the marginal
densities are Normal.

One final model that we wish to consider here is the one
stated by Hunter [75] in a queuing context but also consistent
with reliability interpretations:

Frut,w)= ﬂ)lo[f\_/i«/?\,ntuj exp{— M ”‘“} (14.39)

1-p
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where I,() is the modified Bessel function of order n. The
marginal densities for this model are not obvious.

To summarize the construction to this point, we have
defined examples of two classes of models that might be used
to portray the dispersion in equipment longevity as defined
using two variables. We next examine the general probability
concepts commonly associated with reliability analysis and
use some of the suggested example forms to illustrate the
concepts discussed. Subsequently, we construct reliability and
maintenance models using the probability concepts and some
of the example model forms.

14.4.2.3 Probability Analysis

Consider a device for which longevity is defined in terms of
two variables, say age and usage. Assuming the distribution
function on longevity has been constructed and is bivariate,
there are some subtle and sometimes difficult questions and
concepts that arise in the application of the bivariate model
to reliability. First, we interpret the cumulative failure prob-
ability F, (¢, u) as the probability that failure occurs by time
t and usage u. That is,

Fp y(t,w)=PrT <t,U <ul (14.40)

One may say that this probability corresponds to the
proportion of the population of devices that have longevity
vector values at failure that do not exceed (¢, ©) in either vector
component. We emphasize this definition because of the fact
that, for a bivariate distribution, probability is generally com-
puted over rectangles such as [t; <T <¢,, u, <U <u,]. Conse-
quently, for any specific longevity vector, (¢, u), the range of
age and use values implies that there are four rectangles in
the (T, U) plane for which probabilities may be meaningfully
calculated. Referring to Figure 14.1, observe that, in addition
to the rectangle used in Equation 14.40, there are the rect-
angles Pr[T' <¢,U >ul, Pr[T' 2¢,U <ul, and Pr[T >¢,U 2u]. It
is not obvious, but relative to the cumulative probability
Fy (¢, u), the probabilities
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F
Pr[T >t U>uj

Pr[T <=t U > u]

F
PriT <t U<u]

Pr[T >t U<=u]

\4

Figure 14.1 Bivaraite probability distributions. (From Yang, S.C.
and J.A. Nachlas, “Bivariate Reliability and Maintenance Planning
Models.” IEEE Transactions on Reliability, Vol. 50, no. 1, pp. 26-35,
IEEE, 2001. With permission.)

t moo
PHT <t,U >ul= J' J' fru(s,vidvds — (14.41)
0Jdu

and
PrT >t U <ul= ” fru(s,vidvds  (14.42)
t 0

are survival probabilities. They correspond to the proportions
of the population that do not have longevity vectors inferior
to (¢, u), either because their failure ages exceed ¢, or their
failure usages exceed u. We do not have informative names
for the probabilities represented by Equations 14.41 and
14.42, but have considered names such as marginal survival
probabilities.
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A further point that is rather subtle is the fact that the
reliability at (¢, u) does not include the probabilities repre-
sented by Equations 14.41 and 14.42. The reliability at lon-
gevity vector value (¢, u) corresponds to the proportion of the
population for which failure age exceeds ¢ and failure usage
exceeds u. Therefore, the reliability function corresponding to
Fpy(t w)is

Frolt,uw)=PrT>t,Uzul = .[T fr u(s, vduds (14.43)
t u

Because it does not include the probabilities represented
by Expressions 14.41 and 14.42, we call this the reliability
rather than the survivor function. We also note that the cumu-
lative failure probability and the reliability no longer sum to
one.

The apparent paradox in the definitions of Fy ;(t,u) and
Fr u(t,u) arises from distinctions in point of observation.
When considering the distribution, all positive valued longev-
ity vectors can potentially occur, and across a population of
devices, all do occur. Relative to the distribution, the cumu-
lative probability at (¢, #) does not include devices for which
either T exceeds ¢ or U exceeds u. On the other hand, all
copies of a device population that have achieved a longevity
of (¢, u) will have longevity vectors at failure that lie within
the rectangle [t <T <o, u<U <], so at (¢, u) the rectangles
corresponding to the marginal survival probabilities are not
accessible.

The computation of bivariate probabilities is reasonably
clear. For any rectangle, say [{;, <T <¢,,u, <U <u,], in the
plane, the probability of observing a failure at a point included
in the rectangle is

PI‘[tISTStZ, ul SUSuz] = FT,U(tZ’ U2)_FT’U(t2, ul)

—Fp y (b, uy)+ Fp (8, uy) (14.44)

A useful special case of this expression applies to the
reliability function, which may be represented by
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Frult,u)=Prlt <T <oo,u <U < oo]

=1-Fy(w) - Fp(t)+ Fy (¢, w) (14.45)

Observe that this expression may also be used to compute
cumulative probabilities in cases in which the reliability func-
tion is easier than the distribution function to analyze.

Very often, the first question that follows the definition
of a probability model for device failure is that of the identity
and behavior of the associated hazard function. For a bivariate
failure distribution, a return to first principles yields

. Prit<T<t+At,usU<u+Au|T>t,U>ul
erult,w) =l Auht
Au—0
— lim Prit <T<t+At,u<U <u+Aul
A—0 AuAtPr[T >¢t, U > u]

Au—

1 (i F, ,t+ At u+Au)
— im —
Fruy(t,u) a0 Ault

Au—0

im FT, v (t+At, w) im FT, u(t, u+At)
AH% AuAt ff;% AuAt

Au—

+lim

. FT, U (t, u)]
At—0  AuAt
Au—0

_frotw) (14.46)
Fruou(t,u)

which is a very appealing result.

Naturally, the next question is whether or not the hazard
function is increasing. Barlow and Proschan [11] define MIFR
(multivariate increasing failure rate), and the application of
that definition to the bivariate life distributions is that a
distribution is MIFR if and only if
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ﬁT,U(t-I—S, u+v)
Fru(t,u)

(14.47)

is nonincreasing in (¢, #). The same statement applies to the
marginal distributions. That is, it must also be the case that

Fr(t+s) Fu(u+v)
— and —
Fr(t) Fy(u)

are nonincreasing in ¢ and u, respectively. The application of
these conditions is far from direct. Most models require
numerical analysis to characterize hazard function behavior,
and that behavior may be rather complicated. For example,
for some choices of its parameters, the bivariate exponential
distribution of Equation 14.39 displays a hazard that is
increasing in usage and decreasing in time.

It should be noted that there is an important and subtle
difference between the construction of univariate reliability
models on the basis of an assumed hazard form and the
corresponding model definition for a bivariate longevity dis-
tribution. As is well known, an assumed univariate hazard
function, z(t), directly implies the life distribution function
by the relation

(14.48)

FT(t) —1— e—JozT(x)dx

which follows as the solution of the differential equation:

o= 10 = 2 0(1- B 0)

The corresponding bivariate (partial) differential equa-
tion is

O°Fp (t, u) -
frotw=—2Y"" 2 (t,wF; ;(t u) (14.49)
’ otdu ’ ’
The solution for this equation has not yet been found, so one
may not build a bivariate reliability model from the hazard
as is done in the univariate case.
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A further question is how one computes the mean and
other descriptive measures for a bivariate longevity distribu-
tion. The answer is that, as with univariate distributions, one
begins by constructing the moment generating function (or
Laplace Transform) and then obtains moments as successive
derivatives of the moment-generating function. The moment-
generating function for the bivariate failure distribution is

V7 (6, 0,) = E[e®%] (14.50)

and its construction is not always simple.

Also of critical importance to bivariate failure modeling
is the question how convolutions are constructed and how
bivariate renewal functions are defined and interpreted. For-
tunately, the convolution theorem has been shown to extend
directly to the bivariate case. On the other hand, the definition
and interpretation of the associated counting process and the
bivariate renewal function is less obvious and may depend
upon the application. This is a topic that is treated below and
for which considerable further study is needed.

14.4.2.4 Failure and Renewal Models

Consider next the renewal model based on the operation of a
sequence of identical copies of a device to failure with instan-
taneous replacement. For a bivariate longevity distribution,
the sequence of device lives forms a bivariate renewal process.

Hunter [75] defines a bivariate renewal process using the
vector (X, Y,), where it is assumed that the (T,, U,) are
independently and identically distributed with the common
joint distribution Fy, (¢, u), and

(Xn,Yn):[iTi,iUiJ (14.51)
i=1 i=1

Of course, by convention, (X, Y,) = (0, 0). The renewal
vector is illustrated in Figure 14.2 below. Referring to the
figure, we note that the number of renewals at any coordinate
point in the plane, say (¢, u), corresponds to the largest value
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Y,
U,
Y,
U,
Y,
U,
T, T, T,

X, X, X,

Figure 14.2 A bivariate renewal process. (From Yang, S.C. and
J.A. Nachlas, “Bivariate Reliability and Maintenance Planning
Models.” IEEE Transactions on Reliability, Vol. 50, no. 1, pp. 2635,
IEEE, 2001. With permission.)

of n for which the nth renewal occurs on or before time ¢ and
usage u. Therefore, it follows that the number of renewals by
(t, u) is given by

Np y(t,u)=sup{ln:n20, X, <t,Y, <u} (14.52)

Under this definition, Ny (¢, u) is a bivariate renewal
counting process for which the distribution is obtained using
the usual “time-frequency duality” relation. Hunter confirms
that this leads to

PIN; ;(t,uw)=nl=F"y, (¢, u)-F'p’ (¢, u)  (14.53)
Observe that this construction implies that
P[NT,U(t7 u)=0]=1—FT,U(t, u) (14.54)

which is intuitively appealing. In addition, using Expression
14.53 to obtain the renewal function yields
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Mp(t, )= EIN, ;(t, wl = 2"":11?(")@, u)  (14.55)

which corresponds to the univariate form. As in the case of
the univariate function, the recursive statement of Expression
14.55 is the key integral renewal equation:

Myt w)=Fy (¢, u)+-[ J "My, u—y)dFy y(x, y) (14.56)
0 0

and this function is the basis for analysis of the renewal
process. As a final point, note that assuming Fj (¢, u) is
absolutely continuous implies that the renewal density exists
and is

9 S
mp(t, u)= =0 Myt u)= D> ftw

= oot w0+ [ [ mpte-mu=yfy o, ey 1457)
0J 0

The Laplace (or Laplace-Stieltjes) transform serves as
the usual method of analysis for the renewal models. For the
bivariate case, the Laplace transform of the density associated
with the distribution function, Fp, (¢, u) is

fr.u(s, v)= Ele ™ "] = j m j et ot wdudt (14.58)
0 0

and

# 1
Fr y(s,v)= ng v(s,v) (14.59)

Using these forms in the analysis of the key renewal
equation leads to

My(s,v)= Fr.y(s v)

_ My (s, v)
1-fr,u(s, v)

B (14.60)
1+suMy(s, v)

and Fy (s, v)=
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as well as
% f’; U(S’ v)
mp(s,v)=—"73——"—
1-fr,u(s,v)
and
£ (s 0)= _myp(s,v) (14.61)
’ 1+mF(S, U)

which correspond to the univariate forms.

Application of these results to specific bivariate distribu-
tions is never simple. In the case of the stochastic functions,
the algebraic complexity of the models implies that the
Laplace transforms cannot be obtained in closed form, but
must be computed numerically. Even the numerical construc-
tion of the transforms is taxing. The procedure is to select a
grid size over the (s, v) plane and to perform the integration
of Equation 14.58 numerically. The results may then be stored
in an array for further use or fit (approximately) using a
second-order regression model.

For the bivariate distributions selected to represent cor-
relation between the variables, expressions for the Laplace
transforms can be obtained. For the bivariate exponential
distribution shown in Equations 14.37 and 14.38, the renewal
function has

kn[(v + 211)(3 + 2%) + svp]
sv[(v + 2n)(s + 27»)(3(0 + n) + vk) - svnlp]

My(s,v)= (14.62)

Similarly, the bivariate exponential distribution of Equa-
tion 14.39 has

-1
S U sv
Mg (s,v)= [sv(k+n+m(1—p)ﬂ (14.63)

and the Laplace Transform of the renewal function for the
bivariate Normal distribution is
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s’6? +2psvG,0,
exp| —sp, —UH, +3 )
+v°o;

My(s,v)= (14.64)
s*67 +2psvo,0,

sv|1—exp| —su, —vp, +3 L s
+vio’

Unfortunately, the inverse transforms for these expres-
sions cannot be constructed in closed form. For Equation
14.63, working with the transform of the associated renewal
density permits its inversion [75] to

m,(t, u)= 7:an0[2 kn:u ]exp{—}mnu} (14.65)

1 1- 1-p

It is rare that the transform is invertible in closed form. For
most of the bivariate models, closed form transform inversions
are not available.

Next, consider the cases in which repair is no longer
instantaneous. Assume instead that repair effort extends over
a bivariate interval that is random. Assume further that the
distribution function on the magnitude of the repair effort is
denoted by G,(¢, u) and is of the same family as the failure
distribution. There is no justification for the assumption that
the failure and repair distributions are of the same family.
The reason for using this assumption here is the fact that it
sometimes makes the analysis easier. In addition, we observe
that for cases in which it is appropriate, the repair distribu-
tion can easily be collapsed into a univariate form.

To construct renewal models for the failure with nonin-
stantaneous repair cases, we obtain the convolution on the
operating and repair intervals and then the renewal function
based on the convolution. As availability is the quantity of
interest for these cases, the renewal function is used to obtain
the availability function. That is, considering a longevity cycle
to be the sum of an operating interval and a repair interval,
the cycle has distribution H, (¢, u), which is obtained as the
inverse transform of
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H. (s,v)= F;,U(S, )G, (s, v) (14.66)

Then using the same reasoning as for univariate models,
we observe that a device is available at coordinate point (z,
u) if it experiences no failures prior to that point, or else it is
renewed at some earlier coordinate point and experiences no
further failures before (¢, u). That is,

Alt,w=F, 4, u)+_[ _[ "By y(t—x, u—y)dMy(x, y) (14.67)
0J 0

where My(t, u) is obtained using Equation 14.59. Also com-
parable to the univariate case is the fact that the availability
function is ultimately obtained as the inverse transform of

F;, U(S, U)

14.68
1-h"(s, v) ( )

A'(s,v)=Fy (s, v)(1+m;{(s, v)) =

As indicated previously, inversion of the transform is quite a
challenge.

Taking the bivariate exponential density of Equation
14.38 as the failure density and assuming the repair time
density comes from the same family means that the repair
time density is

1-2e7" — 27"

gr y(t, w)=,m,e 1+p,{ } (14.69)

+ 46—(7»rt+nru)
and
A, N, ((V +2n,)(s+2),)+ svpr)

((v +2n)(s+20) + svp)
((v4m,)s+1,)(v+2n,)s+24,))

h.(s,v)= (14.70)

((vm)s+A)Nv+2n)s+21))
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so that

A'(s,v)= 8 (14.71)
ay — Qg

with

ay =((s+20)(v+21)+ Anp)((s + M)V +n)(s + 21XV +2n))

o (s+k,)(v+nr)(s+2kr)(v+2n,)
“ 1 (s+2)(v+n)(s+20)(v+2n)

and

ay =M, M, ((s+ 24, )(v +2n,)svp, )((s +21)(v +21) + svp)

The corresponding construction for Hunter’s bivariate
exponential distribution of Equation 14.39 yields

* _ M] }\’rnr
(s, 0)= ((s +A)(V+1)—svp J( (s+X,)(v+m,)—svp, j (14.72)

Then, using the probability identity of Equation 14.45
simplifies slightly the construction of

1 s+A-1 v+n-1 n

su s(s+A) v(v+n)  (s+A)(v+m)—svp

1_[(sm)(v}i]n)—svp][(sﬂr)(zin‘l%)‘svpfJ

Finally, for the bivariate Normal models, we again use
Equation 14.45 with the result that

A'(s,v)= (14.73)

_ 1-vfp(s)—sfy(v)+ sz*, v (s, v)
sv(l— R (s, v))

A'(s,v) (14.74)

where the joint distribution has
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fr.u(s,v)= exp[—sut -, + %(szcsf +2psvo,6, + V%62 )} (14.75)

the marginal distributions have

fr(s)= exp[—uts + %(3205 )}

and

f;(v)=eXp[—Muv+§(v203)} (14.76)

and
by (s, v) = exp| —s(w, +1, )-v(w, +u,, )

+%(sz(0f + 02)+2svp(0t0u +0,0, )+ vz(ci +00 ))} (14.77)

Each of the availability function expressions obtained is
far too intricate to allow for closed form inversion. Numerical
evaluation is difficult but is the only practical approach.

To close this discussion, note that Yang and Nachlas [72]
provide the construction of a model of age replacement for the
bivariate renewal models. Comparable models for other pre-
ventive maintenance cases have not yet been defined, but they
can be constructed. Thus, the extension of the traditional
univariate maintenance planning models for application to
systems for which longevity is bivariate is appropriate and
manageable.
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14.6 EXERCISES

1.

For a given life distribution and set of repair costs,
which type of warranty is more expensive for a man-
ufacturer? Prove your response using expected costs.

. Suppose a full replacement warranty period is to be

set so that no more than 4% of a population of product
units are expected to fail during the warranty inter-
val. If the devices have a Weibull life distribution
with 6 = 200 weeks and B = 2.25, what warranty
period (in operating weeks) should be used?

. Compute the optimal full replacement warranty

period for the product of Problem 2 for the case in
which y= 0.1, u;, = 40.0, and u, = 4.0.

. Compute the optimal pro rata warranty period for

the product of Problem 2 for the case in which y =
0.75, u;, = 40.0, and u, = 4.0.



Appendix A

Numerical Approximations

There are many situations in which the analysis of a reliabil-
ity problem involves numerical calculations. For some of those
calculations, precise numerical computation is not possible,
but numerical approximations are available. Several useful
numerical approximations are provided here. Most of these
are based on descriptions provided by Abramowitz and Stegun
[76]. If desired, alternate or additional algorithms may be
found there.

A.1 NORMAL DISTRIBUTION FUNCTION

For the general Normal distribution with mean p and variance
6?2, one often denotes the distribution by N(u, 62) and the Stan-
dard Normal Distribution is denoted by N(0, 1). In general,

Fo(x)= N, 1, 6%) = j £ (w)du
(A11)

x _(u-p)?
=I 1 e A’Zdu

— 2162

and the standard Normal transformation is

341
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Pt (A.1.2)
(¢)

It is convention that the Standard Normal Distribution
Function is denoted by ®(z) and that the density function is
denoted by ¢(z). Under the standard transformation,

Fy(x)= qn(z=’:“] (A.1.3)
and Abramowitz and Stegun [76] provide the approximation

.1 2 3 4 5 6\716
d)(z)~1—§(1+d1x+d2x e +dyxt +dix® +doar®) ALd)

+ &(2)

where

d, = 0.04986(73)
d, = 0.02114(10)
d; = 0.00327(76)
d, = 0.00003(80)
ds; = 0.00004(89)
dg = 0.00000(54)

and the calculation yields a result with |£(z)|<1.5 x 107". This
algorithm was used to generate the entries in Table A.1.
There is also an algorithm for computing quantiles in the
tail of the distribution. Specifically, for y in the range
0<7v<0.05, Abramowitz and Stegun [76] indicate that

2
Co tCit ot

ey =t 1+et +eyt” +eyt? +ely) (A15)
where
¢, = 2.515517
c; = 0.802853
¢, = 0.010328
e; = 1.432788
e, = 0.189269

e; = 0.001308
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and

1

].1'172

Y

t= (A.1.6)

This approximation yields results for which |e(y)|<4.5 x 107

Table A.1 Standard Normal Cumulative Probabilities

z

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4

0.5000 0.5040 0.5080 0.5120
0.5398 0.5438 0.5478 0.5517

0.5793

0.5832

0.6179 0.6217
0.6554 0.6591

0.5871
0.6255
0.6628

0.6915
0.7257
0.7580
0.7881

0.6950 0.6985

0.5910
0.6293
0.6664
0.7019

0.7291
0.7611

0.7324 0.7357
0.7642 0.7673

0.7910 0.7939 0.7967

0.81569 0.8186 0.8212

0.8413
0.8643

0.8438 0.8461

0.8238
0.8485

0.8665

0.8686 0.8708

0.8849 0.8869 0.8888 0.8907

0.9032
0.9192
0.9332
0.9452

0.9554 0.9564 0.9573

0.9641
0.9712
0.9773
0.9821
0.9861
0.9893

0.9049 0.9066 0.9082

0.9207
0.9345
0.9463

0.9222
0.9357

0.9236
0.9370

0.9474 0.9484
0.9582

0.9648 0.9656 0.9664
0.9719 0.9726 0.9732

0.9778 0.9783

0.9788

0.9826 0.9830 0.9834
0.9864 0.9868 0.9871
0.9896 0.9898 0.9901

0.9918 0.9920 0.9922
0.9938 0.9940 0.9941

0.9925
0.9943

0.9953
0.9965

0.9955

0.9956 0.9957

0.9966 0.9967

0.9968

0.9974 0.9975

0.9976 0.9977

0.9981
0.9987

0.9982
0.9987

0.9990 0.9991

0.9983
0.9987
0.9991

0.9983
0.9988
0.9991

0.9993
0.9995
0.9997

0.9993
0.9995
0.9997

0.9994 0.9994
0.9996 0.9996
0.9997 0.9997

0.5160
0.5557
0.5948
0.6331
0.6700
0.7054
0.7389
0.7704
0.7995
0.8264
0.8508
0.8728
0.8925
0.9099
0.9251
0.9382
0.9495
0.9591
0.9671
0.9738
0.9793
0.9838
0.9875
0.9904
0.9927
0.9945
0.9959
0.9969
0.9977
0.9984
0.9988
0.9992
0.9994
0.9996
0.9997

0.5199
0.5596
0.5987
0.6368
0.6736
0.7088
0.7422
0.7734
0.8023
0.8289
0.8531
0.8749
0.8944
0.9115
0.9265
0.9394
0.9505
0.9599
0.9678
0.9744
0.9798
0.9842
0.9878
0.9906
0.9929
0.9946
0.9960
0.9970
0.9978
0.9984
0.9989
0.9992
0.9994
0.9996
0.9997

0.5239
0.5636
0.6026
0.6406
0.6772
0.7123
0.7454
0.7764
0.8051
0.8315
0.8554
0.8770
0.8962
0.9131
0.9279
0.9406
0.9515
0.9608
0.9686
0.9750
0.9803
0.9846
0.9881
0.9909
0.9931
0.9948
0.9961
0.9971
0.9979
0.9985
0.9989
0.9992
0.9994
0.9996
0.9997

0.5279 0.5319 0.5359

0.5675

0.5714 0.5753

0.6064 0.6103

0.6141

0.6443
0.6808
0.7157

0.6480 0.6517
0.6844 0.6879
0.7190 0.7224

0.7486 0.7517
0.7794 0.7823

0.7549
0.7852

0.8079 0.8106 0.8133

0.8340 0.8365

0.8389

0.8577

0.8599 0.86214

0.8790 0.8810 0.8830

0.8980 0.8997

0.9147
0.9292

0.9162

0.9015
0.9177

0.9306 0.9319

0.9418 0.9429 0.9441

0.9525
0.9616
0.9693

0.9535
0.9625

0.9545
0.9633

0.9699 0.9706

0.9756 0.9761
0.9808 0.9812

0.9767
0.9817

0.9850 0.9854 0.9857

0.9884 0.9887

0.9911
0.9932

0.9913

0.9890
0.9916

0.9934 0.9936

0.9949 0.9951

0.9962
0.9972

0.9963
0.9973

0.9952
0.9964
0.9974

0.9979 0.9980 0.9981

0.9985

0.9986 0.9986

0.9989 0.9990 0.9990

0.9992
0.9995

0.9993
0.9995

0.9993
0.9995

0.9996 0.9996 0.9997

0.9997

0.9997

0.9998
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A.2 GAMMA FUNCTION

When working with the Gamma distribution, the Weibull
distribution, and some other probability functions, one some-
times needs to evaluate a gamma function. In general, the
gamma function is defined as the definite integral

I(x) = rtx-le-tdt (A.2.1)
0

In the cases in which x is an integer, we know that

Ix)=(x-D! (A.2.2)

For cases in which x is not an integer, Abramowitz and
Stegun [76] provide the approximation:

Tx+1)="x!"=~1+a,x+a,x* +a;x® + a,x* +asx° +e(x)  (A.2.3)

for values of x such that 0 <x <1. In this expression, we use
a; = —0.5748646

a, = 0.9512363

a; = —0.6998588

a, = 0.4245549

a; = —-0.1010678

and the resulting error is bounded by |e(x)|<5 x 107,
As an example, observe that we compute I'(5.64) as

I'(5.64) = (4.64)(3.64)(2.64)(1.64) I'(1.64)
= (73.1252)(0.8986) = 65.7122

A.3 PSI (DIGAMMA) FUNCTION

The Psi (or digamma) function is defined as the derivative
of the logarithm of the gamma function. It is therefore the
ratio of the derivative of the gamma function and the gamma
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Tables of the Psi function are available [76]. On the other
hand, approximate numerical evaluation of the Psi function
is reasonably straightforward except for the fact that precise
values may require that a large number of terms be included
in the calculation.

The general series expansion for the Psi function is

wx+1) =—y+ Z(—D"Q(n)x"-l

n=2
|x|<1 (A.3.2)
where
)= Y k" (A.3.3)
k=1

is the Riemann zeta function, and vy is Euler’s constant, for
which the value is y=0.57721(56649). For values of the argu-
ment of the function that exceed 1, we use the recursion:

yx+1)= w(x)+i (A.3.4)

Combining the above expressions implies that a numer-
ical approximation for any Psi function may be computed by
truncating the infinite sums. As stated above, it appears that
the truncation must be made after rather many terms to
obtain good precision, but modern computing power makes
this manageable.



Appendix B

Numerical Evaluation of Weibull
Renewal Functions

The Weibull distribution provides a very useful model of life
lengths. The utility of the distribution results from its trac-
tability when treating simple probabilities for life lengths.
When exploring renewal behavior, it is less manageable. In
fact, there are no closed form expressions for the convolutions
or the renewal function for the Weibull distribution. Lomnicki
[49] shows that the Weibull renewal function has an equiva-
lent representation as the sum of terms of a MacLauren
series, and that the same is true for convolutions of a Weibull
distribution. Specifically, suppose we represent the Weibull
distribution function as

; B
F(t)= 1—e‘%) (B.1)

Then, define the “Poissonian function”:

P, (( t )BJz We(%)ﬁ (B.2)

with the corresponding remainder accumulation:

Dk((%)ﬁ]z ZPJ((%)BJ (B.3)

J= 347
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Then, the Weibull renewal function is represented as the
infinite sum:

M, ()= ic(k)Dk (( I )B) (B.4)
k=1

for which the coefficients, c(k), are computed as indicated by
Lomnicki and explained below. Observe that the correspond-
ing representation of the k-fold convolution of the Weibull
distribution is

FP(t) = i%(k)D,. (( I )Bj (B.5)
=k

in which the coefficients ¢(k) are also defined by Lomnicki
and shown below. Before showing the calculation of the coef-
ficients, we note that the renewal density and the convolution
of the probability density may also be obtained by taking the
derivatives of the functions in Expressions B.4 and B.5,
respectively. This is shown here.

Taking the derivatives of the renewal and convolution
distribution functions, we find that both depend primarily on
the derivative of the function D,, which comprises the key
challenge. That is,

o () =L My (6)= jtgc(kwk(( ty )BJ

(B.6)
o B
:;dk)thk((%) J
d dN ﬁ
fT(k)(t)z(ﬂFTw(t):(ﬂ;%(k)Dj[(%) ] B

_ g¢j<k>;tpj[( %)ﬁj
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Given the definition of the function D,, we have

ool [ aze () -2 an(ls))

J

i (7)‘3 s ) . jﬁ,t“
Zi( ;U@ % (/?!)e%)

: J! J!

j=

ol

: (%(%)’B(%J(%)ﬁ(%)%

ji-nt !

gi{g%)m (%) }(%)ﬁ

lle)

Ct(B=1)!

(B.8)

Substituting this result into Expressions B.6 and B.7, we
obtain

; t/\"
mw@:;k%fgélfUﬁ (B.9)
and
ey
Pt = zq)J(k)EE/_)l)' _/)B .10
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Thus, all of the interesting probability measures can be com-
puted using the coefficients defined by Lomnicki.

To obtain those coefficients, we start by computing a ratio
of gamma functions:

_T(kB+1)
v(k)= %(k+1) (B.11)

Then, we apply the recursive definition:

by (k) =y(k)

k-1
ba(k)= D b,Giry(k—i)

i=j

(B.12)

for which j>0 and 2> j+1. We use the resulting values to
obtain

b(L)
k 1)7* B.13
a()Z()[jy() (B.13)
and then,

¢J-(j)=aj(j)
2 = B.14
0,(k)= Y a,(k) =Y a,(k-1) (B.14

i=j i=j

where again, k> j+1. These are the coefficients we use to
compute the convolutions on the distribution and density
functions. Finally, we obtain the coefficients for the renewal
function and the renewal density:

k
ck)= Y 0,(k) (B.15)

To obtain a sense of the computations involved and the
likely accuracy of the finite sum of terms, consider a set of
example calculations. Suppose = 1.5, and since the scale is
arbitrary, take 6 = 1. Using these values, the first 16 of the
gamma-function-based quantities are given in Table B.1.
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Table B.1 Values of y(&) for p = 1.5

k Y k Y

0 1.0000 8 11880.0000
1 1.3293 9 63636.2377
2 3.0000 10 360360.0000
3 8.7238 11 2.1453 x 106
4 30.0000 12 13.3661 x 106
5 116.9534 13 86.8191 x 106
6 504.0000 14 586.0512 x 108
7  2360.9966 15  4099.8766 x 106

Then, using the quantities, y(k), we use Expression B.12
to obtain the b/(k), shown in Table B.2.

Next, the analysis of Expression B.13 yields the results
in Table B.3 and Table B.4.

Finally, we obtain the values for the coefficients c(k),
which are given in Table B.5.



Table B.2 Values of the Quantities b,(k) for B = 1.5

k\j 0 1 2 3 4 5

0 1.0000

1 1.3293 1.3293

2 3.0000 4.7672 1.7671

3 8.7238 16.6998 10.3251 2.3491

4 30.0000 62.1938 48.0981 19.0271 3.1228

5 116.9534 249.0566 214.2441 110.3305 32.3409 4.1513

6 504.0000 1071.0464 961.8336 572.1867 224.2416 52.3605

7 2360.9966 4926.1199 4442.0375 2857.3636 1328.0853 422.3589

8 11880.0000 24121.6916 21294.4744 14200.6517 7323.0231 2814.0220

9 63636.2377 125198.1354 106397.8593 71453.2323 39160.3981 17010.7346
10 360360.0000 685940.2457 555031.7309 367598.2560 207719.7852 97696.0360
11 2.1453 x 108 3.9521 x 108 3.0421 x 106 1.9452 x 108 1.1080 x 108 547237.1877
12 13.3661 x 10°¢ 23.8614 x 108 17.2026 x 106 10.6275 x 10°¢ 5.9966 x 10°¢ 3.0392 x 106
13 86.8191 x 108 150.4915 x 108 102.0784 x 108 60.0923 x 108 33.1335 x 108 16.9205 x 106
14 586.0512 x 10°¢ 988.5588 x 10°¢ 631.0661 x 106 352.1645 x 10° 187.7382 x 108 95.1867 x 108
15  4099.8766 x 106 6745.3736 x 106  4058.6121 x 106 2140.5447 x 106 1094.3582 x 10°¢ 544.2424 x 108

cs¢

sejyoeN



k\j 6 7 8 9 10
6 5.5185
7 82.0588 7.3359
8 754.7551 125.6394 9.7519
9 5589.1903 1297.6446 189.0252 12.9636
10 36796.0159 10575.6191 2165.9264 280.5346 17.2330
11 226339.1912 75373.4950 19267.6607 3531.4026 411.8167
12 1.3390 x 108 495049.8362 147871.4150 34052.6332 5649.1317
13 7.7593 x 10°¢ 3.0903 x 106 1.0338 x 108 280080.8014 58697.9832
14 44.6066 x 106 18.7034 x 108 6.8004 x 108 2.0780 x 108 515220.0330
15 2.567160 x 108 111.2747 x 106 4.29887 x 106 14.3811 x 10¢ 4.0449 x 108
k\j 11 12 13 14 15
11 22.9086
12 599.1438 30.4533
13 8895.4067 865.1917 40.4828
14 99086.5916 13822.3045 1241.4942 53.8154
15 924648.5878 164320.0939 21235.7913 1771.8168 71.5390

suonoung jemausy [[NqIspA JO uonenfeAy [edtiswinN
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Table B.3 Values of the Quantities a/(k) for B = 1.5

k\j 0 1 2 3 4 5 6 7

0 1.0000

1 0.0000 1.0000

2 0.0000 0.4110 0.5890

3 0.0000 0.1471 0.5836 0.2693

4 0.0000 0.0497 0.4033 0.4429 0.1041

5 0.0000 0.0163 0.2393 0.4650 0.2439 0.0355

6 0.0000 0.0052 0.1306 0.3970 0.3472 0.1091 0.0109

7 0.0000 0.0017 0.0677 0.3005 0.3881 0.1971 0.0419 0.0031

8 0.0000 0.0005 0.0339 0.2102 0.3752 0.2731 0.0921 0.0143

9 0.0000 1.60 x 10 0.0165 0.1392 0.3288 0.3211 0.1525 0.0371
10 0.0000 4.96 x 10 0.0079 0.0885 0.2686 0.3375 0.2114 0.0715
11 0.0000 1.52 x 10°® 0.0037 0.0546 0.2081 0.3267 0.2588 0.1142
12 0.0000 4.66 x 10-¢ 0.0017 0.0328 0.1547 0.2971 0.2892 0.1597
13 0.0000 1.42 x 1076 0.0008 0.0194 0.1113 0.2570 0.3011 0.2021
14 0.0000 4.32 x 107 0.0004 0.0112 0.0779 0.2137 0.2963 0.2367
15 0.0000 1.31 x 1077 0.0002 0.0064 0.0534 0.1719 0.2785 0.2605

rsE

sejyoeN



k\j 8 9 10 11 12
8 0.0008
9 0.0044 0.0002
10 0.0132 0.0013  4.78 x 105
11 0.0292 0.0043 0.0003  1.07 x 10
12 0.0528 0.0106 0.0013 8.33 x10° 2.28 x 10
13 0.0830 0.0215 0.0035 0.0004 1.97 x 105
14 0.1173 0.0375 0.0079 0.0011  9.14 x 10
15 0.1525 0.0586 0.0151 0.0026 0.0003

suonoung jemausy [[NqIapA JO uonenfeAy [edtiswinN
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Table B.4 Values of the Quantities ¢,(k) for B = 1.5

k\j 1 2 3 4 5 6 7 8

0

1 1.0000

2 0.0000 0.5890

3 0.0000 0.2638 0.2693

4 0.0000 0.0974 0.2776 0.1041

5 0.0000 0.0334 0.1974 0.1753 0.0355

6 0.0000 0.0111 0.1197 0.1878 0.0845 0.0109

7 0.0000 0.0036 0.0665 0.1630 0.1220 0.0340 0.0031

8 0.0000 0.0011 0.0350 0.1252 0.1382 0.0622 0.0120 0.0008

9 0.0000 0.0003 0.0177 0.0887 0.1351 0.0870 0.0266 0.0038
10 0.0000 0.0001 0.0087 0.0594 0.1196 0.1033 0.0444 0.0099
11 0.0000  3.43 x 10-° 0.0042 0.0382 0.0987 0.1095 0.0620 0.0193
12 0.0000 1.06 x 10-° 0.0020 0.0237 0.0771 0.1068 0.0764 0.0310
13 0.0000 3.24 x 106 0.0009 0.0144 0.0578 0.0978 0.0860 0.0436
14 0.0000  9.89 x 107 0.0004 0.0086 0.0419 0.0853 0.0901 0.0555
15 0.0000 3.01 x 107 0.0002 0.0050 0.0296 0.0714 0.0891 0.0653

95¢

sejyoeN



k\j 9 10 11 12 13 14 15
9 0.0002

10 0.0011 1.07 x 10-®

11 0.0033 0.0002 1.07 x 103

12 0.0074 0.0010 749 x 10 2.28 x 106

13 0.0134 0.0025 0.0003 1.78 x 10®  4.66 x 107

14 0.0212 0.0051 0.0008 757 %105  4.04 x10%  9.18 x 108

15 0.0300 0.0090 0.0018 0.0002 1.88 x 10%  8.71 x 107 1.74 x 108

suonoung jemausy [[NqIapA JO uonenfeAy [edtiswinN
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Table B.5 Values of c(k)
for =15

c(k) k c(k)

k

1 1.0000 9 0.3595
2 0.5890 10 0.3466
3 0.5331 11 0.3354
4 04792 12 0.3256
5
6
7
8

0.4417 13 0.3168
0.4140 14 0.3089
0.3923 15 0.3017
0.3744




Appendix C

Laplace Transform for the
Key Renewal Theorem

In Chapter 9, the Key Renewal Theorem is presented, and its
Laplace Transform is stated to be

M, (s)=F; (9)+ L(J; M, (t —u) fT(u)duj =F )+ M, (5)f () (C.1)

To see that this is correct, start with the general defini-
tion of the transform:

L(F, (1)) =Jm ¢ F,(t)dt = F, (s) (C.2)
0

Then, we apply the definition to the renewal function,
and the transform of the integral term is

LU. MFT (t-wf, (u)du) = Jm e'”J‘ MFT (t —w) f, (wdudt
0 0 o

o et b
=J.0 L e‘“f‘")z E"(t —we™ f, (u)dudt

n=1

o @f e
:j J E e TOEM (t —we™ f (u)dudt
0 J0o
n=l1

359
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=j _[ Ze*“*“)F;")(t —we™ f, (wydtdu
0 Ju el

= Z,[) U e TR (1 - u)dtje_“‘ f; (wydu
n=1 u

oo

=y J: EM (s)e™ f, (u)du

n=1

=) FT“”*(S)J‘ e £, (uydu
= 0

DR ROTAOEFAC) WO

n=l n=l1

= M;T () f7 (5) (C.3)
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A

Acceleration factor, 97, 98, 100
Accumulated operating time,
cumulative distribution
function, 266, 268
Activation energy, 103
estimated, 165
function, 99
use of test data to estimate, 162
Age acceleration, 95-104
electronic devices, 97-101
exercises, 104
factor, 98
guiding principle, 102
mechanical devices, 101-103
representative thermal cycle for,
100
step stress strategies, 103-104
Age replacement
availability model for, 259
expected cost function for, 258
opportunistic, 263
policy, 252, 253, 258
availability function, 262
full opportunistic, 281
opportunistic, 284
partial opportunistic, 278
AMSAA model, 314, 315
ARINC method, 42
Arrhenius acceleration equation,
165
Arrhenius model, 84, 98

Index

Automobile
components, 173
maintenance, 3
warranty, 308
Availability
average, 225
bounds, 236
definition of, 224
function(s), 234, 247
age replacement policy, 262
block replacement policy, 264
construction of, 226, 229
definition of, 227
example, 231, 285
Laplace transform for, 263
system level, 269, 270
time-dependent, 264
limiting, 225, 249
measures
behavior of, 230
construction of, 269
model
age replacement, 259
block replacement, 262
opportunistic age
replacement, 263
point, 225, 226
Availability analysis, 221-250
availability measures, 224228
example computations, 228233
exponential case, 228-231
numerical case, 231-233

367
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exercises, 250

Markov models, 243—249

nonrenewal cases, 240—243

system-level availability,
233-240

B

Backward recurrence time, 193
Bathtub curve
example of, 49
roller coaster vs., 50
Bernoulli trial, 111
Beta distribution, density function,
112
Binary system state, definition of, 23
Binomial distribution, 111
Birnbaum-Saunders distribution,
62
Birth—death process, 248
Bivariate models
classes of, 321
correlation models, 325
failure and renewal models, 331
probability analysis, 326
stochastic functions, 322
Bivariate probability distributions,
327
Bivariate renewal process, 332
Blackwell’s Theorem, 184
Block replacement
availability model, 262
intervals, 257, 263
policy, 252, 253, 258, 264, 289
Boltzmann’s constant, 84
Bounds, minimax, 36
Bridge structure
bounds, 34
example, 17
system status values for, 16

C

Catastrophic events, 86
Catastrophic failure, 2

Index

Censored data sets, 127
CFR, see Constant failure rate
Challenger accident, 5
Chapman-Kolmogorov backward
differential equation, 87
Chapman-Kolmogorov forward
differential equations,
243, 246
CMOS devices, activation energy, 99
Coherent system, 9
Cold component, 68
Collapsible models, 320
Competing risk model(s), 89
appeal of, 92
construction, 90
uses, 89
Component(s)
age acceleration of, 95
average life length of, 238
cold, 68
commonly encountered
configuration of, 10
configuration, selection of, 15
dependent, 316
design practices, U.S. Air Force,
114
duration of repair activity, 221
failure, 237, 245
hazard function behavior, 64
indices, 40
killing function, 87, 88
life length, 188
multistate, 22
partitioning of into modules, 38
reliability
importance of, 39
values, 28
replacement, 233
status, 87
variables, 8, 27
vectors, 8, 9, 17, 19
super, 21
warm, 68
Condition-based maintenance, 297
Confidence interval(s), 110
construction, 111



Index

definition of, 112
failure probability, 113
Normal distribution, 166
survivor function values, 167
Constant failure rate (CFR), 51, 65
Constant hazard model, memoryless
property, 53
Corrective maintenance, 252, 259
Correlation models, 325
Crow model, 316
Crude life distribution, survivor
function, 91
Cumulative damage
model(s), 78
application of, 83
early development of, 81
reliability function, 82
processes, 299
Cumulative distribution function,
accumulated operating
time, 266, 268
Cumulative hazard
function, 136, 187
rate, reliability growth, 314-315
Cumulative intensity function
failure, 241
NHPP, 202
Cumulative mean time to failure,
315
Cut vector, 18

D

Data analysis
group censoring, 165
step-stress testing and, 161
Data set(s)
censored, 127
life test, 125
notation, 106
Decay parameters, 76
Decreasing failure rate (DFR), 51,
65
Decreasing failure rate on average
(DFRA), 52
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Defect-based degradation, 299
Defect model, 85
Degradation reactions, 85—86
Density function, 47, 210
beta distribution, 112
life length, 65
Device
availability, limiting, 242
bad as old, 202
behavior, pure renewal models,
206
CMOS, 99
downtime, 302
failure(s)
behavior, most informative
descriptor of, 50
number of, 253
probability model for, 329
time, 46
good as new, 226
life, 319
distribution, hazard function,
199
length, Normal distribution
and, 58
longevity, 95, 191, 319
modified operating environment
of, 96
performance, measure of, 224
population, life lengths, 232
replacement of functioning, 251
sample path, 221, 222
state, postrepair, 207
status, determination of, 300
virtual age of, 208
DFR, see Decreasing failure rate
DFRA, see Decreasing failure rate
on average
Diffusion process model, 86, 103
Dirac mass function, 304
Discovery accident, 5
Distribution(s)
beta, 112
binomial, 111
Birnbaum-Saunders, 62
bivariate
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failure, 329
Laplace transforms, 334
probability, 327
classification of, 185
device life, 199
Erlang, 62
exponential, 62
extreme value, 56
function, 47, 98
Gamma, 61, 82, 88,178, 179, 229,
303
disadvantage of, 62
gamma function, 344
life test data, 147
method of maximum
likelihood, 152
method of moments, 146
NHPP, 202
Gompertz, 63
IDB, 63
IFR, 188, 311
life
analysis of renewal function,
163
assumption, 135
classification, 186
exponential, 228, 239
IFR, 231
NBU, 254
Normal, 218
residual, 191, 271
truncated, 260
lognormal, 61
longevity, 330, 331
Makeham, 63
memoryless property of, 191
model, choice of, 135
moments, 143
NBU, 256
Normal, 57
bivariate, 334
confidence intervals, 166
device life length and, 58
method of maximum
likelihood, 154

Index

method of moments, 145
parameters of, 58
stress, 75
operating durations, 184
parameters, graphical estimates
of, 164
Poisson, 179
Rayleigh, 58
repair time, 233
stationary, 305
Weibull, 54, 212
failure modeling by, 206
gamma function, 344
hazard function, 120
method of maximum
likelihood, 151
method of moments, 163
Rayleigh type, 64
reliability function, 78
renewal function, 190
three-parameter, 55
Duane reliability growth model,
314, 315

E

Early-life failure behavior, 49-50
Effectiveness factor, 315-316
Electronic devices

age acceleration for, 97

stress screening and, 96
Electronic failure models, 84

Arrhenius model, 84

defect model, 85

Eyring model, 85

power law model, 85
Endurance threshold, 81
Engineering design changes, 314
Environment

equipment reliability and, 73

manipulated, 96

profile, 103
Equipment

behavior, 319
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design
assumption, 173
reliability, economic
implications, 2
failure, 73
longevity, 2
dispersion in, 326
modeling of, 52
performance, portrayal of, 285
reliability, 4, 73
Equivalent age models, 207
Equivalent structures, 15, 20
Erlang distribution, 62
Estimators, definition of, 110
Euler’s constant, 345
Expected profit model, 310
Exponential distribution, 62, 228
Exponential model, availability
analyses, 231
Extreme value concept, 56, 57
Eyring model, 85, 100

F

Failure
anticipation of, 2
catastrophic, 2
characteristics, description of,
105
component, 245
conditional probability of, 166,
181
consequences of, 1
cumulative intensity function,
241
cumulative probability of, 80,
115, 117
data
example ordered, 137
mean value, 145
reordered example, 108
Weibull, 139, 142, 143
data plot, example, 137
data set, example, 107
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distribution
bivariate, 329
crude, 92
postmaintenance, 285
fatigue, 2
field, 251, 255
hazard, 243, 244, 245
improvement of device age
following, 292
intensity, 181, 198
model(s), 270, 273
competing risk models, 89
diffusion process model, 86
parameters, 103
proportional hazards model,
88
probability, 75, 111
confidence interval, 113
crude, 91
cumulative, 114
point estimate for, 109, 112
preventive maintenance and,
284
rate, 47
constant, 51
decreasing, 51
increasing, 50
threshold, 82—83
time, 46, 106, 138
unconditional probability of, 181
warning of impending, 297
Failure processes, 73—93
electronic failure models, 84-86
Arrhenius model, 84-85
defect model, 85-86
Eyring model, 85
power law model, 85
exercises, 92-93
mechanical failure models, 74—-83
shock and cumulative
damage, 78-83
stress-strength interference,
74-78
other failure models, 86-92
competing risks, 89-92
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diffusion process model, 86—-88
proportional hazards, 88-89
Fatigue failures, 2, 83
Field failure, 251, 255
Forward recurrence time, 177, 193
Frequency domain, 177, 198-199,
209
Full opportunistic age replacement
policy, 281
Full replacement warranty, 308, 309

G

Gamma deterioration process, 299,
300, 304
Gamma distribution, 61, 82, 88, 178,
179, 229, 303
disadvantage of, 62
gamma function, 344
life test data, 147
method of maximum likelihood,
152
method of moments, 145
NHPP, 202
Gamma function, 344, 350
General repair models, 208
Gibb’s free energy of activation, 84
Gompertz distribution, 63
Good as new, assumption of, 174
Graphical statistical methods, 136
Group censoring, data analysis
with, 165

H

Hazard

curve, roller coaster, 50

function, 47, 48, 181
bathtub shaped, 64
behavior, component, 64, 65
bivariate device failure, 323
constant, 53
device life distribution, 199
identity, warranty, 310
Normal, 60

Index

system-level, 67
three component parallel
system, 66
TTT transform, 116, 118, 121
univariate, 330
Weibull distribution, 56, 120
rate, 181, 315
Homogeneous Poisson process, 201
Human behavior, probability models
and, 5
Human disease processes, 89-90
Hunter’s bivariate exponential
distribution, 337

IFR, see Increasing failure rate
IFRA, see Increasing failure rate on
average
Imperfect repair, 240
models, 202, 203
renewal time distribution, 205,
206
IMRL, see Increasing mean residual
life
Increasing failure rate (IFR), 50, 51,
65
classification, alternate condition
for, 50
distribution, 188, 311
Increasing failure rate on average
(IFRA), 51, 65, 81
Increasing mean residual life
(IMRL), 186
Infant-mortality period, 49
Inspection
interval
minimum, 302
optimization of, 301
scheduling, 300
time, survivor function at, 166
Instantaneous repair, 198
Intensity function, quasi-renewal,
218
Interference, 76, 77
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K

Key integral renewal equation, 333

Key Renewal Theorem, 180, 193,
292, 359-360

Kijima model, 207, 213, 215, 291

Kijima virtual age concept, 285

k-out-of-n systems, 14, 30

L

Laplace transform(s), 178, 182, 217,
244,331
availability function, 227
bivariate distribution, 334
collapsed time dependent life
distribution, 321
construction, 232
Heavyside function, 261
Key Renewal Theorem, 359-360
opportunistic replacement, 283
renewal model, 333
repair completions, 224
unmanageable, 263
Life distribution(s), 52—64
analysis of renewal function, 163
assumption, 135
classification, 186
exponential, 52-54, 228, 239
Gamma distribution, 61-62
IFR, 231
lognormal distribution, 61
model, 106
NBU, 254
Normal, 58-61, 218
parameter values, estimates of,
95
residual, 191, 271
truncated, 260
TTT transform, 117, 124
Weibull, 54-58, 184, 212
opportunistic replacement,
283
warranty time and, 311
Life length(s), 46, 58
component, 188, 238
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density function, 65
device population, 232
residual, 213, 215
Life test data
example, 126
Gamma distributed, 147
Life testing, efficiencies associated
with, 161
Likelihood function, binomial
sample, 148
Limiting average availability, 225,
238
Lognormal distribution, 61
Longevity, 2
algebraic descriptors of, 46—47
cycle, 335
distribution, bivariate, 330, 331
variables, 322
vectors, 327, 328

M

MacLauren series, 347
Magnuson Moss Act, 307
Maintenance
automobile, 3
condition-based, 297
everyday life and, 1
Major interval
definition of, 265
lengths, distribution function,
269
Makeham distribution, 63
Manufacturing defects, 49
Markov chain, continuous state
space, 303
Markov models, 243, 245, 248
Markov process, stationary
distribution of, 305
Material flaws, 49
Maximum likelihood estimation
equation, 149
Mean order statistic-based
estimation, 138
Mean time to repair, 226
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Mechanical devices
age acceleration for, 101
stress testing, 101
Mechanical failure models, 74
shock and cumulative damage, 78
stress-strength interference
model, 74, 76
Metal migration, 86
Method of maximum likelihood, 147
Method of moments, 143
extension to right-censored data,
157, 158, 161
Gamma distribution, 146
Normal distribution, 146
Weibull distribution, 146
Minimal repair model, 198
Minimax bounds, 36
Minimum cut(s)
set, 19
structure function, 20
vector, 19
Minimum path
analysis, 18
equivalent structure, 34
set, 17
vector, 16
Minor interval(s)
definition of, 266
distributions on total operating
time during, 272
general, 266, 268, 271, 274
initial, 266, 268, 276
length, density function on, 267
renewal density, 269
sample paths, 277, 279
Model(s)
AMSAA, 314, 315
Arrhenius, 84, 98
availability
age replacement, 259
block replacement, 262
opportunistic age
replacement, 263
bivariate
classes of, 321
correlation models, 325

Index

Normal, 337
probability analysis, 326
reliability, 319
collapsible, 320
competing risk, 89
component dependence, 317, 318
constant hazard, 53
correlation, 325
Crow, 316
cumulative damage, 78, 81, 82
defect, 85
diffusion process, 86, 103
distribution, choice of, 135
Duane reliability growth, 314,
315
electronic failure, 84
equivalent age measures,
206-207
expected profit, 310
exponential, availability
analyses, 231
Eyring, 85, 100
failure, 270, 273
general repair, 208
imperfect repair, 202, 203
Kijima, 207, 213, 215, 291
life distribution, 53, 106
Markov, 243, 245, 248
mechanical failure, 74
minimal repair, 198
nonhomogeneous Poisson
process, 198
opportunistic replacement, 282
power law, 85, 100
preventive maintenance,
imperfect, 286, 287
proportional hazards, 88
quasi-renewal process, 207, 216,
289
renewal, 208, 333
replacement cost, 255
shock, 78, 83, 318
stress-strength interference, 74,
76
system level, 64



Index

system reliability, 317
time-based reliability, 75
Module status function, 22
Moment generating function, 331
Monitoring plans, reliability-
function-based, 298

N

NBU, see New Better than Used
NBUE, see New Better than Used in
Expectation

Net probabilities, 90
New Better than Used (NBU), 185,
254, 256
New Better than Used in
Expectation (NBUE),
185, 188
New Worse than Used in
Expectation (NWUE),
186, 188
NHPP, see Nonhomogeneous
Poisson process
Nonhomogeneous Poisson process
(NHPP), 198, 203, 288
Noninstantaneous repair, 335
Nonparametric statistical methods,
105-134
data set notation and censoring,
106-108
estimates based on order
statistics, 108-110
estimates and confidence
intervals, 110-114
exercises, 132-134
tolerance bounds, 114-116
TTT transforms, 116-131
application to censored data
sets, 127-131
application to complete data
sets, 120-127
theoretical construction,
117-120
Normal cumulative probabilities,
standard, 343

375

Normal distribution, 57
bivariate, 334
confidence intervals, 166
device life length and, 58
function, 341
method of maximum likelihood,
154
method of moments, 145
parameters of, 58
Normal hazard function, 60
Normal life distribution, 218, 219
Normal models, bivariate, 337
Normal stress distribution, 75
Numerical approximations,
341-345
Gamma function, 344
Normal distribution function,
341-343
Psi function, 344-345
Numerical search
strategy, 152
values, 145
NWUE, see New Worse than Used
in Expectation

0]

Operating interval, expected value
of, 211
Operating periods, modeling of, 197
Opportunistic age replacement
policy, 284
Opportunistic failure replacement
policy, 273
Opportunistic replacement
models, analysis, 282
nested renewal process, 265
Optimality condition, replacement
cost, 258
Order statistics
estimates based on, 108

properties of distributions on,
110
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P

Paper clip, testing of, 102
Parallel system(s), 11
example of, 11
failed, 13
hazard function, 66
independent components, 40
reliability function, 29
state transition diagram for, 245
three-component, 12
Parametric statistical methods, 105,
135-172
exercises, 168—172
graphical methods, 136-143
method of maximum likelihood,
147-157
method of moments, 143-147
special topics, 157-167
data analysis with group
censoring, 165-167
data analysis under step-
stress testing, 161-165
method of moments with
censored data, 158-161
Partial opportunistic age
replacement policy, 281
Path vector, 16
Pattern recognition rules, 297
Perfect repair(s)
conditional intensity, 203
intervals between, 204
probability of, 205
PM, see Preventive maintenance
Point availability, 225, 226
function
computation of, 231
series system, 235
values of, 232
Point process, 174, 175, 176
Poisson distribution, 179
Poisson process(es), 81, 83, 88, 102,
178, 183
homogeneous, 201
nonhomogeneous, 198, 288
shock occurrence, 318

Index

Policy(ies)
age, 252
analysis, 301
comparisons of, 254
parameters, 281, 305
time, 253
Postmaintenance failure
distribution, 285
Power law model, 85
definition of, 100
reliability growth, 314
Predictive maintenance, 297-306
exercises, 306
inspection scheduling, 300-301
more complete policy analysis,
301-305
system deterioration, 298—-299
Preventive maintenance (PM), 173,
194, 251-295
benefits of, 3
commercial airplane, 3
exercises, 294-295
models, imperfect, 286, 287
nonrenewal models, 284-293
imperfect PM models,
286-288
models based on Kijima
model, 291-293
models based on quasi-
renewal process,
289-291
policies, time-based, 285
replacement policies, 252—284
availability model for age
replacement, 259-262
availability model for block
replacement, 262263
availability model for
opportunistic age
replacement, 263—-284
elementary models, 252-259
safety and, 6
strategy, opportunistic, 263
Probability(ies), 27
bivariate, 328
distribution function, 175, 176



Index

model, device failure, 329
net, 90
perfect repair, 205
standard Normal cumulative,
343
Product
age, dependence of warranty cost
on, 313
design, complicated, 4
failure, 4
reliability
improvement in, 314
preventive maintenance and,
3
Proportional hazards model, 88
Pro rata warranties, 308, 312
Psi function, 153-154
definition of, 344
general series expansion for, 345

Q

Quasi-renewal
intensity function, 218
process, 207, 216, 285, 289

R

Rayleigh distribution, 58, 87
Redundancy, 13
Reliability
allocation, 41, 42
apportionment, 42
bivariate, 319
block diagram
parallel system, 12
series system, 10
Whetstone bridge, 15
bounds, 33
data, statistical methods used to
analyze, 105
definition of, 7, 45
engineering, definition of, 2
estimated, grouped data, 158
everyday life and, 1
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function(s), 47, 325
cumulative damage model, 82
definition of, 45
example, 78, 79
graphical statistical methods
and, 136

proportional hazards model,
89

series system, 64

growth

cumulative hazard rate,
314-315

model, 314

power law model, 314

importance, definition of, 39

model, time-based, 75

test, truncated, 107

values, 105, 116

Reliability over time, 45-71

exercises, 69-71

life distributions, 52—-64
exponential distribution,

52-54
gamma distribution, 61-62
lognormal distribution, 61
normal distribution, 58-61
other distributions, 62—64
Weibull distribution, 54-58
reliability measures, 45-52
system level models, 64-69
Renewal(s)
availability measures, behavior
of, 230
density, 181, 182, 193, 350
expected number of during
interval, 177

function, 182
analysis of, 180
definition of, 179-180
quasi-, 217
Weibull distribution, 190

model, 208, 333

probability distribution on

number of, 177

process, 174

bivariate, 331, 332
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definition of, 175
modified, 175, 223
nested, 265
ordinary, 175
Repair
effectiveness factors, 211
hazard, 243, 244
imperfect, 240
instantaneous, 198, 220
intervals, renewal function, 260
module replacement, 233
noninstantaneous, 335
nonrenewal cases, 240
renewal cycle, 242
time density, 336
time-dependent, 292
Repairable systems (nonrenewal
and instantaneous
repair), 197-220
equivalent age models, 207-219
Kijima models, 207-216
quasi-renewal process,
216-219
exercises, 220
imperfect repair models, 202-207
minimal repair models, 198-202
Repairable systems (renewal and
instantaneous repair),
173-195
classification of distributions and
bounds on renewal
measures, 185-190
exercises, 194-195
renewal process, 174-184
residual life distribution,
191-193
Replacement
block, 257
cost
planned, 255
ratio of preventive to
corrective, 256
threshold, 301
Replacement policies, 252—284
availability model for age
replacement, 259-262

Index

availability model for block
replacement, 262—263
availability model for
opportunistic age
replacement, 263—284
analysis of opportunistic
replacement models,
282-284
failure model, 270-273
full opportunistic age
replacement policy,
281-282
opportunistic failure
replacement policy,
273-278
partial opportunistic age
replacement policy,
278-281
elementary models, 252-259
Residual life distribution, 191, 207
Riemann zeta function, 345

S

Safety, preventative maintenance
and, 6
Sample path(s)
minor intervals, 277, 279
relabeling of, 224
system renewal for, 275
Scaled TTT transform, 119, 127
derivative, 120
empirical values, 125, 127
plot, 126, 129, 131
Series circuit, 10
Series system, 10
point availability function, 235
reliability block diagram for, 10
reliability function, 28, 64
three component, 11
Shock model, 78, 83, 318
Space shuttle accidents, 5
Special topics, 307-339
bivariate reliability, 319-338
bivariate models, 321-338
collapsible models, 320-321



Index

dependent components, 316-319
exercises, 339
reliability growth, 314-316
warranties, 307-314
full replacement
warranties, 309-312
pro rata warranties,
312-314
Standard Normal Distribution, 341
Standby redundant system, 68
State transition diagram, parallel
system, 245
Step-stress testing, 158
data analysis under, 161
example, 104
representation of, 162
strategies, 103
Strength distribution, time
evolution of, 77
Stress screening, 96
Stress-strength interference model,
74,76
Stress testing, mechanical devices,
101
Structural integrity, problem in, 74
Super components, 21
Survivor function, 90, 91, 204
estimate, 166
values, confidence intervals, 167
Switch failure, 68
System(s)
age acceleration of, 95
availability, 273
computation of, 234
limiting average, 238
behavior
measure of, 210
model, key building blocks of,
266
coherent, 9
deterioration, 298
duration of repair activity, 221
failure, 245, 249
good as new state, 228, 284
hazard function, 286
k-out-of-n, 14, 30

379

level availability function, 269,
270
level models, 64
limiting behavior, 235
modules of, 21
multistate, 22
operating time, 237
parallel, 11
failed, 13
hazard function, 66
independent components, 40
reliability function, 29
state transition diagram, 245
three-component, 12
reliability
bounds on, 38
construction of bounds on, 33
definition of, 27
dependent components and,
316
determination by
enumeration, 31
examples of, 3
expression for, 41
function, 29, 30-31, 42
minimax lower bound on, 36
minimax upper bound on, 37
model, 317
renewal
probability functions for, 279
sample paths, 275
repair time distribution, 233
series, 10
point availability function,
235
reliability function, 64
standby redundant, 68
state, modules and, 38
status function, 8
System structures, 7-26
equivalent representation, 30
exercises, 24—26
modules of systems, 21-22
multistate components and
systems, 2224
reliability of, 27-44
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equivalent structures, 30-38
exercises, 43-44
k-out-of-n systems, 30
modules, 38—-39
parallel systems, 29-30
probability elements, 27-28
reliability allocation, 41-42
reliability importance, 39—-41
series systems, 28—-29

status functions, 7-9

system structures and status

functions, 10-21

equivalent structures, 15-21
k-out-of-n systems, 14-15
parallel system, 11-13
series systems, 10-11

T

Tacoma Narrows Bridge, 2
Test
data
tolerance bounds and, 114
TTT transform and, 123, 124
truncation, approaches to, 108
Three Mile Island reactor accident,
4
Time-based reliability model, 75
Time domain, 177, 192, 209
Time-frequency duality relation,
332
Time-scale compression, age
acceleration and, 97
Tolerance bounds, 114
Total Time on Test (TTT) transform,
116
application to censored data sets,
127
application to complete data sets,
120
hazard function, 118, 121
life distribution, 117
properties, 118
scaled, 119, 125, 126, 127
derivative, 120

Index

empirical values, 125, 127
plot, 126, 129, 131
test data and, 123, 124
theoretical construction, 117
Transition
diagram, two-state, 244
probability function, 211
TTT transform, see Total Time on
Test transform
Type I test truncation, 108
Type II censored data set, 108

U

U.S. Air Force, component design
practices, 114

V
Virtual age, 209, 291

\%%

Warm component, 68
Warranty(ies)
automobile, 308
commitment, cost of meeting, 311
definition of, 307
full replacement, 308, 309
hazard function identity, 310
pro rata, 308, 312
support, cost of providing, 309
time, Weibull life distribution
and, 311
types of, 308
Weibull distribution, 54
bell shaped, 57
component behavior and, 188
failure modeling by, 206
gamma function, 344
hazard function, 120
life lengths for device population,
232
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method of maximum likelihood,
151
method of moments, 144, 163
Rayleigh type, 64
reliability function, 78
renewal function, 190
three-parameter, 55
Weibull failure(s)
availability function values, 233
data
example, 139
minimum life, 142
plot of logarithms of, 139, 142,
143

381

Weibull hazard function, 56, 87
Weibull life distribution, 84,97, 184,
212
opportunistic replacement, 283
warranty time and, 311
Weibull renewal function, 347-358
Weiner process, 321
Whetstone bridge, 15
minimum cut equivalent
structure for, 21
minimum path equivalent
structure for, 19
reliability block diagram, 15
reliability values for paths of, 32
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