L
The Art of Building Great User Experience in Software

Jonathan Anderson,
: . John McRee, Robb Wilson
O’REILLY & the EffectiveUl Team

Technology/Business

Effective Ul

Many companies recognize that people expect effortless, engaging

“Effective Ul is a fantastic
resource for any software

interaction with desktop and web applications, but producing def/'elope?' or buSﬁ?’eSS
software that generates enjoyable user experiences is much harder
than they anticipate. With Effective Ul, you'll learn proven user- managgr w/j)o wanis to
experience strategies that will satisfy your clients and customers,

learn more about the

drive business value, and increase brand strength.
ultimate value of creating
a great user experience.”

This book shows you how to capture the collaborative and
cooperative spirit among designers, engineers, and management
that’s required for building engaging software. You'll also learn

valuable methods for maintaining focus throughout the process— —Ryan Stewart
whether you're a product manager who needs a clear roadmap, Platform Evangelist
a developer or designer looking for guidance and advocacy, or 4

’ Adobe Systems, Inc.

9

a businessperson who wants to understand and manage user-
experience software initiatives.

LEARN HOW TO BUILD BETTER UX IN SOFTWARE THAT WILL:

m Make an effective business case for user experience design
as a crucial component of software product initiatives

m Generate engaging and interactive experiences between
consumers and businesses, or between businesspeople
and their information systems

® Account for the ways people work with, think about, and
consume information

m Establish a richer means of collaboration and
communication

® Reduce frustration by streamlining complex tasks and
creating processes that are more intuitive

®m Distinguish products, services, and brands to gain a
competitive advantage

®m Develop scalable systems that adapt to changing user
needs and behaviors

Familiarity with web development and design and/or
web business development is recommended.

Jonathan Anderson, a founding
member of the user experience
design and development agency
EffectiveUl, is now managing
editor of UX Magazine, an online
resource for user experience
professionals and enthusiasts.
John McRee, a lead experience
architect for EffectiveUl, has been
designing highly intuitive and
engaging user interfaces for more
than a decade,

Robb Wilson is co-owner of UX
Magazine and a technology
rescarch consultant for many
Fortune 500 companies, including
Qwest and National Geographic.

O’REILLY"

oreilly.com

US $44.99 CAN $56.99
ISBN: 978-0-596-15478-3

A

780596"15478

Safari’

Books Online
Free online edition

for 45 days with purchase of
this book. Details on last page.

effective®

Effective Ul

Effective Ul

Jonathan Anderson, John McRee, Robb Wilson,
and the EffectiveUI Team

O’REILLY"

Beijing + Cambridge - Farnham - Kdln - Sebastopol - Taipei + Tokyo

Effective Ul
by Jonathan Anderson, John McRee, Robb Wilson, and the EffectiveUI Team

Copyright © 2010 EffectiveUI. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corpo-
rate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Steve Weiss Proofreader: Nancy Kotary

Development Editor: Jeff Riley Indexer: Julie Hawks

Production Editor: Rachel Monaghan Cover Designer: Karen Montgomery

Copyeditor: Genevieve d’Entremont lllustration and Interior Design:
The EffectiveUI Team

Printing History:
February 2010: First Edition.

The O’Reilly logo is a registered trademark of O'Reilly Media, Inc. Effective UI, the image of a rainbow
lorikeet, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trade-
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-15478-3
(F]

Preface

Building an Effective Ul

Understanding UX
What Good UX Accomplishes
Why Engagement and Good UX Matter
The Elements of Engaging UX
Redefining Two Fundamental Terms
Design
Development

Building the Case for Better UX

Why Now Is the Moment for UX
Motive
Means
Opportunity

Winning Support for Better UX
Stakeholders
Education
Quantifying the Business Value
Materializing and Proving the Concept
Other Strategies for Building Support

Contents

The Humility of Unknowing
The Weakness of Foresight and Planning

Friction in a Complex and
Peculiar System

Subjectivity and Change

Lessons from Uncertainty and the
Unknown

The Further You Are in the Project,
the Wiser You Are

Start Development As Soon As Possible

Written Functional Requirements and
Specifications Are Inherently Flawed

Commitments to Scope Are Untenable
Relish and Respect the Unexpected
Intolerance of Uncertainty Is Intolerable

Effective Requirements

How Framework Requirements
Are Built

Reexamining the Three-Legged Stool
Commitments You Can Live Up To

Effective Process

Development Methodology

3 Effective Planning and Requirements. . 75
Uncertainty and the Unknown

77
78
79

81
87

89

89
90

90
92
92
93
94

97
99
101
102
103

4 Bringing TogetheraTeam.............. 113 Who Should Be Involved in the

The Project Leader 116 Research 182
Relationship to the Product 116 Finding Research Participants 184
Relationship to the Stakeholders 117 Determining the Research Sample Size 185
Relationship to the Project Team 119 Making Recordings 188
Who Should Be the Project Leader 119 Research Through Speaking with Users 190

The Stakeholders 121 User Interviews 190
Securing Authority 121 Structured Interview Techniques 191
Collaboration and Decision Making 124 Research Through Direct Observation 193

The Characteristics of a Successful Analyzing the Research Observations 196

Project Team 125 Discovering Personas 196
Getting Professional Help 127 Weaving User Stories 198
Insourcing Versus Outsourcing 130 Discovering User Priorities 199

Guerilla User Research 200
5 Getting the Business Perspective.. . .. 139 Stakeholder Buy-in Through

Defining Success 141 User Research 202
Creating a Project Mission Statement 142
Determining Project Success Criteria 144 7 Initial Product Architecture........... 205
Exercising Restraint 145 The Initial Product Architecture Team 208
Applying the Pareto Principle 148 Contextual Scenarios 210
What Not to Restrain 148 Mapping High-Level Workflows 213
Refocusing Product Objectives 149 Sketching Low-Fi Visual
Omissions Aren’t Permanent 150 Representations of Requirements 215

o , Examining Key Features and

Describing t.he Product’s Users 151 Interactions 216
User éttmbutes) 152 Setting a Style Vision 217
iii](::)lljf;sto Identify Key User 153 Developing Nomenclature 221

. . . Technical Architecture 222
Creating Business Requirements 160 .
Defining “Requirement” 161 Getting a Lay of the Land 223
Exercises to Develop Business Making Platform and Framework
: Choices 223
Requirements 163 . .
Maintaining Stakeholder Buy-in 169 Understanding Data Requirements 224
Mapping Interactions with
6 Getting toKnowtheUser.............. 171 Other Systems 225
Valuing User Research 173 Finding Shortcuts Through Third-Party
Combating P to Ski and Open Source Components 228
ombating Pressure to
User Resegrch P 175 Discovering Business Logic 229
; Software Architecture in Big Design
Key Concepts in User Research 177
3}; thp 177 Up Front (BDUF) 230
mpaty Project Infrastructure Needs 232
User Goals Versus Product Features and
Tasks 178 Code Source Control 232
Qualitative Versus Quantitative Graphic Asset Management 233
Research Methods 180 Testing Infrastructure and
Environments 234

vi | Contents

8 The Iterative Development Process. .
Regarding “Process”
Iterations and Feedback
The Scope of Iterations
Prioritizing the Subjects of Iterations

Finishing Iterations with Something
Complete

Estimating Iterations
Basic Iterative Process

Mapping Progress and Feedback Across
Multiple Cycles

Increasing the Amount of Feedback
Iteration in Sub-Ideal Project Approaches
Strict Waterfall Process

Iteration in a Big Design Up Front
(BDUF) Process

235
239
239
243
245

246
247
248

252
254
256
257

261

Release and Post-Release. ..

Managing Expectations
The Alpha and Beta Releases
Receiving Orderly Feedback
Last-Minute Housekeeping
User Documentation
And Champagne Corks Fly...
Adoption
Post-Release
Review
Measurement and Tracking

Afterword

Contents

265
266
268
269
270
271
272
273
274
277

vii

Preface

X

Preface

When the Internet first came online in 1969, it linked computer
systems the size of two-car garages that had only a tiny fraction of the
power of a modern smartphone. They were programmed and maintained
by researchers and scientists, and performed functions that would be ludi-
crously rudimentary by today’s standards. The complexity and size of these
systems ensured that computers and software were pretty remote from the
everyday lives and experiences of people. But as the power and sophistica-
tion of computing systems and software have grown, their proximity to our
lives has increased to the point where software is integral to the daily home
and work life experiences of most people.

The sophistication of software has grown tremendously while at the same
time software is reaching a much less technical audience. This creates a
nexus of tension around the user interface (UI); for sophisticated products to
be fully useful, they must be easy to operate. At its heart, software is like any
other tool; its purpose is to make people’s lives and work easier, and to give
people access to capabilities previously beyond their reach. This demands, of
course, that the software itself not be beyond their reach.

It’s taken a while for the standards of UI design and user experience (UX)
quality to catch up with the advances in software capabilities and ubiquity.
But the time for better UX has, at long last, finally come. When we began
writing this book in early 2009, there was a noticeable increase in the atten-
tion to and awareness of the importance of UX in software. At the same
time, though, there was a generally poor understanding of how to build
UX-focused software products. Many large companies were struggling to
build a UX competency from within and finding that UX requires far more
than just graphic design and IT. Prestigious digital, interactive, and ad agen-
cies were trying to get a foothold in the field but were failing with remark-
able regularity. The promise of better UX and the benefits it confers was, and
still is, harder to achieve than many companies expect.

This is why our publisher, O’Reilly Media, asked us to write this book. They
noted the disparity between the growing expectations and demands for better
UX and the poor success rate of companies trying to meet that demand. And
so it’s for the companies and people who recognize the importance of gaining
competency in building better UX in software that we have written this book.

This is for product managers who need a risk-reducing roadmap, for tech-
nologists and designers who need guidance and advocacy, and for business-
people who need to understand and manage UX-focused initiatives.

O’Reilly is perhaps the best known and most respected provider of knowl-
edge resources created by and made for technology innovators. We’ve been
presenting at their Web 2.0 conferences for years, and our employees’ book-
shelves are filled with O’Reilly books. We’re thrilled to add a book to their
prestigious animal series. If you’re wondering what the rainbow lorikeet on
the cover has to do with effective Uls, it’s simple:

What does the dog say? Woof, woof! What does the cow say? Moo, moo!
What does the rainbow lorikeet say? Ui, ui!

It’s a privilege to be participating in the present fast-growing trend of build-
ing better UX in software. EffectiveUI has been riding the UX trend as it has
grown from a small surge into a tidal wave. At a time when other companies
were focusing either on design or on engineering, we built our company

around the marriage of the two.

This is the most basic ingredient for good UX—the cooperation of design and
engineering that results in design-minded engineers and technically savvy
UX designers. We’ve also regarded UX as a new, highly advanced specialty,
very seriously and have endeavored to hire the best, most creative people
available in the industry. It’s thanks to these people and an early focus on
UX that we’ve been able to help a long list of clients succeed in their product
initiatives. They’ve also helped us stay ahead of the curve with the exciting
new things that are happening in the mobile, multitouch, and other emerg-
ing domains of software.

Everything we know about building software and delivering great UX has
come from the contributions of the people working here and the lessons
they’ve learned in approaching a lot of hard challenges over the past five
years. The subjects covered in this book span the dozens of professional
domains within EffectiveUI. The ideas we share in these pages are an aggre-
gation of the thoughts, experiences, and contributions of over a hundred
members of our staff. The process of writing this book was very much

like a very long journalistic assignment. We conducted countless hours

Preface Xi

Xii

Preface

of interviews, had numerous group and one-on-one discussions, and per-
formed a lot of research—all for the purpose of discovering what we as a
company, and as a group of individuals, collectively knew.

This book gives a snapshot of the best advice we found in investigating our
own approach over the period of about a year in 2009. But we work in a fast-
changing, cutting-edge field, so even as we were putting the final touches on
this book, many new ideas and concepts were being conceived and applied
in our work. Because this book covers a very broad subject, we provide only
a high-level overview of some very complex domains. You may want to learn
more about these domains, and to find resources on how to develop your
own expertise in those fields. So, to provide updates and link you to useful
resources, we’ve created a page on our website to complement this book:

http://effectiveui.com/book-resources/

We’ll also be posting updates on Twitter. Please follow us: @uitweet.

Two of us, Jonathan and Robb, also work as managing editors for UX
Magazine (http://uxmag.com). The magazine is a good source of current ideas
and information about the UX strategy, technology, and design.

Thanks and Acknowledgments

As we’ve said, this book represents the thoughts and contributions of over
a hundred people. We’re very grateful to have these people as our friends,
coworkers, teachers, and supporters. We’re also deeply grateful to O’Reilly
Media for giving us this opportunity and for toiling long and hard to help us
pull this off.

http://effectiveui.com/book-resources/
http://uxmag.com

Thank You to Our Virtual Coauthor

The role of a project manager is a tough one—you’re responsible for the results
of a project, and at the same time you’re entirely dependent on other people
doing the majority of the work. Eileen Wilcox may not have written any of

the words that went into this book, but without Eileen none of the words in
this book would have been written. Eileen also conducted much of the early
research and interviews that went into this book, and her thoughtful questions
and follow ups ensured that the information captured was useful.

Just like software engineers and UX designers, writers need a balanced mea-
sure of stern pressure and reassuring supportiveness. And since this book
arose from the ideas of so many people inside our company, the amount of
coordination the writing effort required was enormous. Eileen provided that
pressure, support, and coordination masterfully.

Eileen’s ideas and contributions are everywhere in this book, so we consider
her a virtual coauthor.

Thank You to Our Friends at O'Reilly Media

Thanks first to Steve Weiss for coming up with the idea for this book, and
for his confidence in us. Steve’s enthusiasm and patient stewardship are the
reasons this book exist. Thanks also to Marlowe Shaeffer for her vote of con-
fidence, patience, and support.

Thank you to our development editor, Jeff Riley. Thank you, Jeff, for suffering

to read some atrocious first drafts so our poor readers didn’t have to. Thank

you for making us much better writers, especially since we thought we were
pretty good to begin with. Thank you also to Genevieve d’Entremont, Rachel

Monaghan, and all of the other people who were just beginning to work with
us even as this thank-you section was written.

Preface

Xiii

Xiv

Preface

Thank You to Everyone at EffectiveUl

Everyone at EffectiveUI contributed to this book in some way. Some gave us
a lot of information that’s found all throughout these pages, and others gave
us just one or two ideas that proved foundational. It’s impossible to rank the
degree to which people contributed, so we thank everyone in equal measures.

There were a number of people who spent a lot of their time—much of it
after-hours and on weekends—helping with the content, graphics, and pro-
duction of the book:

Chris Aron

Jeremy Balzer
Eddie Breidenbach
Jason Bowers
Greg Casey

Lance Christmann
Anthony Franco
Jeremy Graston
Catherine Horning
Bobby Jamison
Beth Koloski

Joy Sykes

Tony Walt

Since our people are our company, the best way to know the face of
EffectiveUl is to know the faces of our staff. For this reason, we’ve included a
portrait section at the back of this book to pay homage to our people. It’s done
in the style of a yearbook class page as a further tribute to Herff Jones, the
yearbook company that let us use their product as an example in this book.

Additional Thank-Yous

The following people outside of EffectiveUI helped us a great deal:

Catherine Anderson
Truman Anderson
Constantinos Demetriadis
Tony Hillerson

Gregg Peterson
Alexandre Schleifer

Thanks to Our Partners

Thank you to our friends at Herff Jones and National Geographic for gener-
ously allowing us to use their projects as examples in this book.

Safari Books Online®

S f % Safari Books Online is an on-demand digital library that lets
d hai!:l you easily search over 7,500 technology and creative refer-

ence books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our
library online. Read books on your cell phone and mobile devices. Access
new titles before they are available for print, and get exclusive access to
manuscripts in development and post feedback for the authors. Copy and
paste code samples, organize your favorites, download chapters, bookmark
key sections, create notes, print out pages, and benefit from tons of other

time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To
have full digital access to this book and others on similar topics from O’Reilly
and other publishers, sign up for free at http.//my.safaribooksonline.com.

Preface

XV

http://my.safaribooksonline.com

Chapter 1
Building an Effective Ul

2

Just as a finished software product never looks anything like the
original plans and expectations for it, writing this book carried us in a sur-
prising but interestingly different direction than we’d originally assumed.
When you imagine what it might take to succeed at building an effective
user interface (UI) built with a modern standard of user experience (UX)
quality, you might think of high-end design, innovation and inspiration, and
technical best practices. These are certainly all important components, but
our experience helping other businesses build great products has shown us
that a team’s ability to deliver on the promise of good UX is only partially
dependent on its creativity and technical competency. The rest depends on
creating the right climate for the team and within the company that allows
the team to be effective and helps success come more reliably and easily.

Too many people have endured the pain of participating in the building of a
software product in a bad climate—so many, in fact, that most are resigned to
the belief that building software is an inherently difficult and disappointing
undertaking. Whether you’re a business leader who’s frustrated at the fre-
quency with which software projects disappoint or fail, or you're a software
professional who feels like execs just don’t “get it,” or that your stakeholders
are their own worst enemies, then you already know what we’re talking about.
Everyone is feeling a frustration that has the same root cause, but each is expe-
riencing it from a different perspective and consequently reaching a different
conclusion. The way companies have historically handled software develop-
ment projects is extremely flawed, and everyone knows it without having any
idea of what to do differently. And the ways IT and software engineering teams
have coped with business constraints and responded to the need for better UX
have also been weak and are undermined by entrenched problems and flawed
approaches. These issues combine to cripple the ability of project teams—no
matter how talented they may be—to produce great results. Succeeding in
building a product with a superior UX quality is a particularly significant

Chapter 1: Building an Effective Ul

challenge that requires an intensity of design and engineering productivity,
and anything that interferes with that diminishes the quality of the result.

And so as we asked ourselves how could we best assist people in succeeding
at building products with great UX, we arrived at an unexpected answer:
focus less on training people in how great design is done; focus more on how
to create a setting where great product design can occur and succeed. If you
are opening a restaurant, just having a great chef isn’t enough; the chef’s tal-
ent will be meaningless if the restaurant is in a bad location, the wait staff

is poorly trained, the kitchen doesn’t have a supply of fresh food and isn’t
well equipped, and the restaurant isn’t marketed effectively. The artistry of
exceptional cooking can’t easily be taught in book form, but the business of
being a restaurateur can. Likewise, the skills of great UX architects, visual
designers, and software engineers are gained through individual profes-
sional experience rather than through books, so the most valuable informa-
tion we can offer in helping people succeed in building UX-driven products is
information on how to enable the success of those professionals.

If you’re one of those professionals and want to help your organization or
clients become better at building software, or if you’re a businessperson try-
ing to make a UX-driven initiative successful, we’ve written this book to be of
help and reassurance to you. The best of intentions, the most cogent of busi-
ness strategies, and the most talented professionals are routinely thwarted
by having to operate in settings that are inherently disabled in ways that no
one can quite identify or solve. So a principal goal of this book is to give you
an understanding of what the most fertile and hospitable environment for
UX-driven software development looks like, and to provide some tips on how
to move an organization in that direction. We consistently find that success
in building high-quality software products requires major changes in think-
ing and process across an organization. It takes much more than just one
person to create the right climate for building better software, and so much
of the work of creating that climate requires understanding, teaching, and
advocating for the principles we’ll discuss in this book.

Building a product with a focus on UX also involves people and practices that
might be new and unfamiliar to you and your company, so another principal
goal in this book is to give you a general orientation and clear roadmap of
what it will take to get from a concept to a successful completion. Unless you’re

Building an Effective Ul

3

4

SCIENCE

specialized in one of these domains, you won’t find yourself writing code,
designing interfaces, or conducting user research, but understanding what to
expect, what to avoid, and how all of the professional domains contribute to
the forward momentum of a project will help you ensure its success.

Understanding UX

Good and bad UX is typically easy to identify but difficult to define in gener-
alities since the medium of UX is individual, subjective human experience.
But in order to understand whether your company’s products or internal
systems have successful UX design and to convince skeptical executives of
the value of UX, it helps to have a clear explanation of UX design and what
makes its contribution valuable.

User experience is, as the name suggests, the experience a user has when
interacting with software. Just as is the case with music, a software product’s
UX falls somewhere along a range between subjectively good and subjec-
tively bad. This is obvious enough, but in that simple analogy are a number
of truths that are often misunderstood or overlooked in software develop-
ment. The process of creating good music involves a combination of the
underlying mathematical principles of music that govern how we interpret
sound, the technical skill required to write and play the music, and the artis-
tic sense required to know how to make it all come together pleasingly

SEnmana .. inthe subjective consciousness of the intended audience. Take

away any of those elements, and you make it impossible
to bring new music into being. Also, the quality of music
is not an objective one, but is specific to the subjective
ART experience of the individual listener. A group of people
might love techno and hate country, but that doesn’t
mean that techno is objectively good and country is
objectively bad; it just means that if you’re making music
for that group, you need to bear their subjective needs in
mind.

CRAFTSMANSHIP

All of that is also the case in software UX. There’s no such thing as
objectively bad or good UX, only subjectively bad or good experi-
ences specific to the user. The process of creating great UX involves
some combination of quasi-scientific disciplines such as human factors

Chapter 1: Building an Effective Ul

engineering, usability, and information architecture; the technical skills to
produce not only great UX and user interface design but also the working
software itself; and the artistic sense required to intuit and design for how
the different subjective perspectives of different users will experience any
given aspect of the software. Briefly, building great UX requires the combina-
tion of science, skilled craftsmanship, and art to address a subjective need.

In the way your company has approached the development or improve-
ment of its software products, has it demonstrated an understanding of
these concepts? Evidence of failure is easy to perceive in hindsight. If you’ve
neglected the scientific aspects of building software, you’ve built products
that are confusing, hard to use, cumbersome, poorly organized, and frustrat-
ing. Undervaluing the technical need on the engineering side usually means
you’ve produced gorgeous Ul designs but a disappointing, hacked, utterly
compromised final product that performs poorly. The technical need on the
UX design side—and yes, design for software is highly technical and not just
subjective artistry—is also often overlooked or misunderstood. This leads to
product Uls designed in ways that are graphically interesting but that cause
undue difficulty in how the software will actually work and be developed.
And finally, if you haven’t recognized the subjective nature of UX, it’s likely
that, despite all the best of intentions and efforts, you’ve built products that
users hate or reject. It also means you’ve worked with team members who
narrowly focused on their own disciplines and deliverables without being
constructively mindful of how their work assembles into a larger whole.

This entire book is dedicated to ways you can avoid those bad outcomes,

but it’s important at the outset to point out explicitly that delivering on the
promise of great UX requires that you and your company’s view of and
approach to software development is sensible and correct. Just having some
talented team members won’t lead to success if your general approach to
the endeavor is wrongheaded. And it’s not enough to have just one person
on the team who understands how things need to be done; this is knowledge
that needs to be shared and needs to become part of a broader organiza-
tional competency. And so you’ll find that most of the insight you’ll gain in
this book isn’t specific to innovation, design, technique, or artistry; it’s about
how you can clear the way for innovation, design, technique, and artistry to
come together successfully.

Understanding UX

5

6

What Good UX Accomplishes

Having a strong UX in your software product is a good goal to have, but high-
quality UX isn’t in and of itself the real goal. It’s the means to another, more
important end that, though it’s easy to appreciate firsthand, is incredibly
hard to describe. Good UX enhances user engagement, and UX design is the
art of creating and maintaining user engagement in software. Whereas UX is
an abstract concept and UX design is a professional discipline, user engage-
ment is the all-important subjective experience.

This naturally begs the question, what is engagement? This is best explained
through analogies.

Engagement as immersion

The easiest, most intuitively obvious example of engagement in software is the
experience of playing a great video game. Video games—particularly those of
the first-person variety—aim to create a high degree of immersion for players.
Deep immersion occurs when the
player becomes less and less aware
of his surroundings, and his percep-
tion of the space separating him and
the screen starts to fade. His experi-
ence of the game becomes one of
being the character rather than just
being a guy in a chair manipulating
the controller. If you’ve ever seen
someone leaning his body to one
side to try to steer a car in a game or
dodge an incoming missile, you’ve seen someone who’s heavily immersed
in the game. Robbie Cooper produced a wonderful video for the New York
Times Magazine showing just how immersed kids get in the game play expe-
rience: http.//video.nytimes.com/video/2008/11/21/magazine/1194833565213/
immersion.html.

Creating that deep immersion is an art form, and many things must be con-
trolled lest they diminish or entirely break the immersive experience. A player

Chapter 1: Building an Effective Ul

http://video.nytimes.com/video/2008/11/21/magazine/1194833565213/immersion.html
http://video.nytimes.com/video/2008/11/21/magazine/1194833565213/immersion.html

can be snapped out of immersion and the game play experience can be
destroyed by simple problems like controllers that are difficult to operate,
jarring inconsistencies in the game’s physics or rules, badly delivered lines
by voiceover actors, or any jumping and skipping in the video or audio.

The example of immersion in gaming may seem quite remote from what
you’re trying to accomplish. If you’re building a new Customer Relationship
Management (CRM) tool for internal use at your company, for example, your
goal in focusing on the UX of the product isn’t to make your sales team so
enthralled by the experience of managing their customer interactions that
they forget where they are, mentally merge with the application, and stay up
until 4 a.m. trying to reach the next level of enterprise marketing automa-
tion efficiency. Well, maybe that wouldn’t be so bad. But certainly most soft-
ware products are meant to be useful—not entertaining.

Deep immersion is, however, just an extreme example of user engagement. In
the case of games, the goal is to bring the player’s focus away from manipulating
the controls or comprehending the game dynamics, and even away from being
aware of playing a game, and to put it squarely and deeply on goals internal to
the game: winning the race, killing the aliens, solving the puzzle, and so on.

Engagement as the fourth wall

The fourth wall is a term from theater that is often used in filmmaking. The
action on the stage is bounded by three walls, one in the back and two at the
sides, but there is no fourth wall between the action and the audience. The
audience members watching an engaging play infer and build that fourth wall
in their minds, ignoring its absence. Just as the gamer loses awareness of the
space between the screen and himself, and of the screen itself, the audience
members become so engrossed in the action that the theater around them
fades away. If an actor flubs a line, or a baby starts crying in
the back of the theater, that fourth wall is “broken,” detract-
ing from the experiential quality of the play. Rather than
being engrossed in the plot and action, the audience
members are suddenly reminded that they’re in a theater
and have been sitting in their chairs for an uncomfortably

long time.

What Good UX Accomplishes

8

Most filmmakers pay a tremendous amount of attention to the fourth wall.
They attempt to keep the audience in a constant state of high engagement
through the art of good filmmaking. The art of filmmaking helps them build
and maintain engagement, and ensures that they avoid the simple little prob-
lems that break the fourth wall and remind the audience they’re in a theater
watching a film—like when the boom mic briefly appears at the top of the
frame, or when actors or extras look straight at the camera, or when the spe-
cial effects are noticeably fake or overdone. The filmmaker wants to keep
the audience immersed in what’s going on in the movie, and not on anything
else outside it.

Engagement as frictionless accomplishment of goals

We’re beginning to arrive at the heart of what engagement is: an undistracted,
unencumbered focus on the ultimate goal of the activity a person’s engaged
in. In movies, as in video games, that goal is to be engrossed and entertained,
to be carried away by a story and an experience. The point of software isn’t
necessarily to engross your users in the experience of using the software, it

is to keep them focused on the ultimate goals they’re trying to accomplish

in using the software, rather than on the actual use of the software itself.
Software is, after all, just a tool people use to accomplish certain goals. To be
truly and unobtrusively useful, software must clear the straightest, most fric-
tionless path to the accomplishment of the user’s goals.

One of the most common instances of frictionless user experience that
people encounter comes while driving a familiar route, such as from work to
home at the end of each weekday. Almost everyone has had the experience
of arriving in their garage or driveway with no memory whatsoever of the
drive. In this case, rather than the product being software, it’s the car, and
instead of a keyboard and a mouse, the user is operating pedals and a steer-
ing wheel. The high degree of familiarity people have with the operation of
the car allows for such a frictionless experience that their awareness of all
the little tasks involved in driving slips away. On leaving work, the driver
decides on the goal of returning home; the more familiar the route and the
more skilled the driver, the less attention is required to accomplish the goal.

Chapter 1: Building an Effective Ul

It’s easy to imagine ways in which friction could be increased and attention
drawn to the tasks involved in driving. Swapping the positions of the accel-
erator and brake pedals, for example, would shatter the driver’s acquired
easy familiarity with driving and would force her to pay very careful atten-
tion to working the pedals for the entire drive home. By changing the goal
from going home to going to a restaurant in an unfamiliar part of town, the
driver must focus her attention on navigation. And if something important
in the car is malfunctioning—say, one of the tires is running flat—the driver
will need to focus on controlling the steering wheel. Each of these will make
for a more memorable experience of driving because the driver’s attention
will be on managing the little tasks involved in driving.

Engagement in software

The goal of UX design in building engagement in software is to help people
be more focused on and effective at the accomplishment of their goals. This
involves expert combination of the science, technique, craft, and art of UX
design to create user experiences that effectively engage their target users.

It also involves avoiding or smoothing over things that tend to create friction
and diminish or break engagement. Breaking engagement, like breaking

the fourth wall, is crossing the line where the user must focus on operating
the software instead of achieving her goals. Broken engagement both causes
and indicates difficulty for the user, which in turn causes displeasure. Strong
engagement, on the other hand, both causes and indicates ease for the user,
which in turn brings about pleasure.

The aim of UX design, with its principal goal of creating and maintaining
engagement, is therefore to bring software past the point of frustration, dif-
ficulty, and displeasure, to first create engagement and then to deepen it
according to the needs of the user and the aims of the product. UX design
tries to reduce the friction that diminishes from engagement and that inter-
feres with a user’s ability to focus on accomplishing his goals. UX design
works to apply a certain artistry that helps elevate simple engagement

to higher levels of ease and pleasure, which are what make exceptional
software.

What Good UX Accomplishes

9

Pleasure

()
—
=)
(%)
©

@
[=%

3D

(m]

---- Anger

Awful Bad Most Good Good Theater Good
Software Software Software Software and Movies Games

Engagement

Why Engagement and Good UX Matter

If you understand that positive engagement leads to greater pleasure and
effectiveness for the user, and negative engagement leads to difficulty, dis-
pleasure, and wasted time, it’s easy to imagine why engagement and good
UX are important in customer-facing products and internal information
systems. To ask whether good UX should be a priority for an organization
is essentially to ask whether assisting and pleasing customers and helping
employees to be happy and effective are important goals in business. If a
software product has been well conceived such that helping users accom-
plish their goals is directly connected to an important business goal, then
reducing the friction experienced in achieving the users’ goals should be the
same as reducing resistance against the accomplishment of business goals.

With the growth of the customer experience (CX) trend, there’s been an
increased recognition in business that every aspect of a company’s interac-
tion with its customers (“touch points”) is an effective, rewarding experience.
There’s also an increased understanding of the importance of experience

10 Chapter 1: Building an Effective Ul

quality over just service delivery. Simply having a well-stocked, conveniently
located grocery store is not enough; the store must be visually appealing

and clean, the checkout process must be quick and easy, and the store must
have ample and accessible parking. The corollary to this in software is that it
isn’t sufficient to simply provide the user with a complete range of features;
a good experience in using those features to accomplish one’s goals is also
required. The grocer doesn’t want to waste his customers’ time by not hav-
ing enough checkout stands, or to trouble and confuse them by not organizing
and labeling the shelves properly, or to deter potential customers by being
hard to access or appearing unprofessional and untrustworthy. Likewise, com-
panies with customer-facing products should avoid wasting their customers’
time, confusing them or insulting their intelligence, or pushing them away.
The linkage between acquiring and satisfying customers and business success
is uncontroversial, but the direct relationship between UX quality and those
goals is underappreciated.

The value of good UX and engagement extends to internal information systems
and isn’t limited to customer-facing applications. The goals change, but the
means of accomplishing them remain the same. In the case of internal appli-
cations, exceptional UX has the ability to increase productivity, improve the
timeliness and relevance of business data flowing to decision makers, increases
adoption of the product and therefore the reach of its benefits, improves
employee satisfaction, and generally reduces cost and increases opportunity.

The Elements of Engaging UX

EffectiveUI has spent a long time trying to define, in concrete and mea-
surable terms, the substance of engaging UX. Since good UX is something
that’s measured subjectively and is dependent on the individual needs of
the specific users of a given product, there’s no 100-point checklist of good
UX design; nevertheless, it’s important to have a structure and lexicon for
expressing problems and opportunities related to UX that otherwise can
be recognized only at a gut level. There are a number of concepts that are
focal points of good UX design, or can be fault points for bad UX. This list of
elements of engaging UX can serve as an evaluation tool for assessing the UX
quality of your company’s current applications, understanding where past
efforts have missed the mark, and identifying where investments are needed.

The Elements of Engaging UX

1

Familiarity

All else being equal, it’s easier to operate a tool you’re entirely familiar

with than one you’ve never used before or one that is unfamiliar in some
aspects. In the example of engagement in driving from work to home, swap-
ping the positions of the brake and accelerator pedal destroys engagement
and plunges the user into difficulty, even though the change is very minor
in the context of the complexity of the rest of the car. The need for familiar-
ity appeared in an interesting way when EffectiveUI was building a desktop
version of the eBay application. Because the application wasn’t delivered
through a web browser but rather was deployed as desktop software that
had no discrete page states like websites do, we initially didn’t think to
include a “Back” button such as those found in web browsers. Though the
new application broke free of the page-based constraints of the browser and
offered improved, more fluid means of browsing content, users who were
accustomed to the original eBay experience frequently had the experience
of feeling trapped in some corner of the application without knowing how
to go back. And so even though a “Back” button made little logical sense in the
context of the eBay Desktop application (as it wouldn’t in a product such as
Microsoft Excel), we were compelled by deference to the user’s needs to add a
“Back” button to ensure that a comfortable degree of familiarity was preserved.

There are plenty of other examples of
things that aren’t the most elegant, effi-
cient, or sensible solution but are never-
theless the right solution for the moment

o /o S|

3 * 5 _ 7 because of their strong familiarity. The
' ’i' ’E”’ ’, ’, ’ QWERTY keyboard layout, for example,
came about because the layout helped
! i :] reduce the frequency of typebar clashes
n E in old typewriters, and not because it’s

. . ! the most efficient from an ergonomic

’ " ”’E”“’ ’“, ’ perspective. But at this point the layout
has become so familiar and people have

become so expert in using it that making

any changes would cause nothing but
frustration. One exception to this is stenotype machines, used by stenogra-
phers, which employ a radically different approach to typing because the

12 Chapter 1: Building an Effective Ul

need to type quickly (225+ words per minute) necessarily overrides taking a
familiar approach.

Responsiveness and feedback

Responsiveness in software is also often referred to as providing feedback to
users. This responsiveness, or feedback, is what confirms and reassures the
user that the action he has taken has been effective.

Elevators provide a simple, real-world example of the importance of feed-
back in user interfaces. Imagine that you’d like to take an elevator from the
18th floor of a skyscraper to reach a meeting on the 32nd floor, but with this
elevator all of the button lights and up/down arrow lights are burned out.
When you press the “up” button on the 18th floor, though the order is suc-
cessfully sent to the elevator’s controller, you receive no confirmation that an
elevator has in fact been summoned
to go up. The absence of this feedback
suddenly diverts your attention from
the goal of reaching the meeting on
the 32nd floor and puts it onto the
task of summoning the elevator. You

mash the button a dozen times, and 23 f
still receiving no response, you decide

to hold the button down until the ___\J

elevator arrives. Your anxiety begins

to build, as your uncertainty about i
whether you’ll be able to accomplish 16 Q [\h_ J o

your goal has increased.

When the elevator finally arrives,

L\

no “up” arrow illuminates to let you
know that this elevator is in fact
going up. If it’s going down, you could be in for a long ride, so your anxiety
ratchets up another level. Upon boarding the elevator and pressing the “32”
button, you receive no confirmation that the selection has been accepted, so
you do some more button mashing and hold your breath as the doors close,
waiting to see whether you go up.

The Elements of Engaging UX 13

14

At this point, you’re in such a state of uncertainty that as the elevator begins
moving upward, you briefly think it’s actually going downward, and feel
another small surge of panic. Still holding down the “32” button, you don’t
know that everything is OK until the elevator finally arrives at the 32nd floor
and you quickly jump out, irrationally worrying the doors will snap closed
and whisk you away from your goal before you reach solid ground.

In this scenario, the elevator itself was, from a functional perspective, oper-
ating perfectly. It provided the necessary input mechanisms and responded
correctly to its variable directives, and conveyed its user from one floor to
another without incident. For you as the user, however, the experience of
using the elevator has been bizarrely nerve-racking. The simple failure to pro-
vide valuable feedback pulled your focus away from your goal and forced you
to focus intently on the microtasks required to accomplish the goals that, in a
properly maintained elevator, you would have performed without thinking.

When we released an early version of the eBay Desktop application, several
users said they had trouble determining whether the information on their
screens about the status of an auction item was up-to-date. This was surpris-
ing feedback because we’d built the application to always display the most
current information. With the original eBay web-based application, users
needed to click the browser’s “Refresh” button to see the most current infor-
mation; with the eBay Desktop application, however, the most current infor-
mation was automatically displayed. But it turned out that the ability to click
“Refresh” and see the page reload in the original eBay application gave users
confidence that they were seeing the latest information. What was missing
in the eBay Desktop application wasn’t a “Refresh” button, though; it was a
feedback mechanism that gave users confidence that the information was
fresh. So we added a timer to the auction pages that counted down the sec-
onds until the auction closed. When users looked at the auction page, they
saw a clear, visual, second-by-second indication that the information was
current. We didn’t have to change anything else to address the data fresh-
ness concern; we needed only to provide the right kind of feedback.

Engagement in e-commerce is very important, because it correlates strongly
with the user’s willingness to buy, her ability to complete transactions, and
her experience of the brand. Any friction along the way leads to uncertainty,

Chapter 1: Building an Effective Ul

distrust, and confusion, which decrease the likelihood of the user complet-
ing the transaction or developing an affinity for the brand that would lead to
repeat business. There’s another straightforward example of poor feedback
that occurs frequently in e-commerce sites even to this day, though simple
solutions have been found and really ought to be universally implemented.
After having added the desired items to her shopping cart, and after having
filled out all of the billing and shipping information, including her credit
card information, the user is finally asked to press a button that submits the
purchase. A lot of implied assurances should be associated with the press-
ing of that button: she should be able to know that her purchase has been
accepted, her credit card has been charged, and that it’s no longer neces-
sary to worry about preserving the shopping cart or to take additional steps
to complete the purchase. She’s essentially made a commitment of money,
time, and trust, and requires the reassurance that it has led to success.

But an inexplicably large number of e-commerce sites betray that need by
failing to provide the necessary feedback. Certainly you’ve encountered
sites where under the “Purchase” button there’s a note saying, “Please push
this button only once; otherwise, your card may be charged twice.” This is
a band-aid solution for a failure to be responsive. It takes at least a couple
of seconds after you press the button to validate the order and authorize
the charge with your credit card, and if during that time nothing has hap-
pened to acknowledge that you successfully submitted the purchase, your
uncertainty and worry increase. If you’re not particularly tech-savvy and
don’t notice that the browser has submitted something and is waiting for a
response, you’ll spend a few nervous seconds wondering whether you actu-
ally pressed the button, you missed clicking on it, or your Internet connec-
tion is down, and you might decide to click it again for good measure. If the
“Purchase” button had simply changed its visual state to acknowledge the
click and then deactivated, you’d have some of the reassurance you need
and your focus would remain on the goal of acquiring products rather than
on the microtasks of submitting the purchase request. And if this experience
of uncertainty leads the user to wonder whether her card has been charged
twice, she’ll pick up the phone and call customer support, destroying the effi-
ciency and cost savings sought by having an e-commerce site.

Responsiveness is important at all levels of an application, and for all features
big and small. Good feedback is the UX equivalent of the polite nod or “uh-huh”

The Elements of Engaging UX

15

16

that a listener provides to a speaker to reassure her that he’s still listening
and understanding. Consistent, valuable responsiveness builds a sense of
confidence in the user and thereby improves engagement, allowing him to
focus on achieving his goals rather than fretting over whether each of his
actions taken toward that end have been effective.

Performance

An application’s performance—that is, how well it handles the strains of
processing, display, data traffic, and other technical considerations—can
strongly affect the experience of using it. Performance issues can
cause the application to stall and lag, and for certain opera-
tions to take a disruptively long time to complete. Some
performance issues are inevitable as the application
performs complex operations or interacts with data
over the Internet, and many can be mitigated at the
UX design level by extending the simple courtesy of
providing good feedback through progress bars or
handling heavy processes in a way where the load-
ing and processing are more evenly distributed and
less apparent to the user.

Whereas minor performance issues are irritating and
diminish the UX quality and the productivity of using the
product, major ones can go beyond breaking down engagement
and cause the user to get upset with and distrust the product.
Being forced to endure long or frequent waits, especially in settings where
efficiency is important or the application is supporting repetitive tasks,
can ratchet up the user’s irritation level to the point of anger. This is some-
what akin to the experience of trying to watch a scratched DVD, when your
immersion in the film is constantly being broken by lagging or pixelation
that pulls your attention out of the story and puts it back into your living
room and onto the DVD player. Most people have also had the unfortunate
experience of working in an office with a very expensive copy machine that
jams every 50th copy, making it a source of disproportionate frustration and
anger instead of the office efficiency miracle it was sold as.

Chapter 1: Building an Effective Ul

And if the product performs poorly—if the interface lags or hangs during
heavy processing, certain things happen inexplicably slowly, the user is sub-
jected to frequent progress bars that move slowly and at inconsistent rates—
besides the irritation that results from having to pay attention to the delays
instead of staying goal-focused, the user’s trust of the product also begins to
break down. Performance issues indicate a poorly engineered product or
some sort of technical malfunction occurring behind the scenes, which leave
the user to wonder about the reliability of the product and the safety of the
data he’s entrusting to it. This, once again, injures the user’s ability to benefit
from the product as a tool for accomplishing goals, when those goals seem to
be in jeopardy because of uncertainty about the product’s reliability.

It’s also worth noting that performance quality is based on a constantly
changing, subjective impression. Things that used to be considered fast in
the computing world in 1999 would be agonizingly slow by modern stan-
dards—96 baud modems compared to high-speed cable Internet, 2-page-per-
minute dot-matrix printing compared to 100-page-per-minute laser printers,
and so on. We were also far more willing to accept a bit of technical crude-
ness in the products we used regularly 10 years ago because the state of the
art was far from advanced. But as computer capabilities and the sophistica-
tion and quality of software have increased rapidly, our patience for poor
performance has decreased enormously. Thus a product that delighted
customers or employees three years ago may very easily be irritating them
today.

Consistency in performance is also important. If you’re a regular patron

of a fast food restaurant and every time you go in, it takes five minutes to

get your meal, then five minutes becomes an acceptable waiting period. If
occasionally it takes 10 minutes, those occasions cause frustration. If one
day you get your meal in two minutes, then five minutes is no longer accept-
able. With software, a user should be able to count on the same task taking
roughly the same amount of time for each use, so the delays are familiar and
are therefore less likely to break engagement.

The Elements of Engaging UX

17

18

Intuitiveness and efficiency

Intuitiveness is the degree to which the process of accomplishing a goal or
performing a task within a product is obvious to the user, without explana-
tion or confusion. It relates strongly to familiarity, because a great deal of

a UP’s intuitive ease comes from functions being handled in familiar ways,
buttons being in familiar places, and things having familiar names. With the
goal of allowing the user to remain focused on the goal instead of having to
pay attention to the microtasks of operating the product, intuitiveness allows
the user to more easily slip into engagement and retain undistracted focus
and productivity. Intuitiveness and the efficiency the product makes possible
for the user are also strongly related, as intuitiveness allows a user to remain
focused on accomplishing her goals without having to expend time figuring
out or focusing on the microtasks needed to accomplish those goals.

If they’re misunderstood and misapplied, though, intuitiveness and efficiency
can wind up being competing ideals. Many people view intuitiveness as the
ease with which a person can figure out how to operate a product in his first
few uses of it. But what may be the easiest approach to figure out on first use is
likely not the most efficient long-term approach, and the most efficient applica-
tion UX may be less intuitive to new users. These two ideals are both coupled
and also in some degree of tension with each other, and the right balance must
be struck according to the requirements of the product. Consumer products
generally tend to favor intuitiveness over efficiency wherever there’s ten-
sion, because it’s important not to drive new users away by confusing them
at the outset or providing them with overly complicated “Getting Started”
guides. But products that are made for daily intensive use—an internal call
center support application or a customer-facing CRM tool—should generally
err on the side of efficiency, since the first couple of weeks using the tool are
less important than the subsequent two years, and users of such applications
are willing to undergo a bit of training. Some products address the tension
between ease of learning and ease of long-term use by letting users switch
between basic and advanced interface modes.

But despite the occasional conflict between intuitiveness and efficiency, in
much of UX design, a focus on intuitiveness also yields an improved quality
of efficiency, as well as lower long-term costs to training and support.

Chapter 1: Building an Effective Ul

Herff Jones eDesign: Intuitiveness Versus Efficiency

PPy

= i
=y - 7 = -
s
Secrwi Beoret
g
] g —_—
_____ IR -
Lt -
- . IT -
—ony =g =5
FEFF PEFF

Intuitiveness

Presenting the yearbook in a way that closely
resembles a physical yearbook has clear intuitive
appeal. Users apply their knowledge of how to

use physical books to how to use this screen. As a
result, no training or instruction is necessary to help
people use this yearbook preview screen, and it also
provides students with the most accurate view of
what their yearbook will be like. But this view is also
very limited, and is not ideal when a student is doing
complex work on the yearbook or trying to manage
the whole book.

Efficiency

This screen doesn’t have the clear intuitiveness of the
yearbook preview screen, but is nevertheless much
more useful. It allows many aspects of the yearbook
creation process—the management of colors,
templates, sections, student assignments, progress,
and so on—to be viewed and managed for hundreds
of pages. Having all of this capability on one screen is
an efficient approach, but isn’t immediately intuitive.
That is more than made up for in how the efficient
approach of the screen makes the student’s work
easier and more effective.

The Elements of Engaging UX 19

20

Helpfulness in accomplishing real goals

Since software is a utility meant to help people and businesses accomplish
their goals, the requirement that a product actually help accomplish those
goals should be so obvious that we shouldn’t have to point it out. But a sur-
prising number of products fail to help the business and the user accomplish
their real goals. If a product is to succeed, both the user’s and business’ real
goals need to be accounted for. If the user’s goals aren’t addressed, the prod-
uct will cause frustration or won’t be used and thus won’t help the business;
if the business’s goals aren’t met, the product’s development will have been a
waste of money.

Companies will sometimes build a product with the hope of helping the
company itself accomplish some of its goals, but don’t bother finding out
whether or how those goals were aligned with actual user goals. This comes
about as a result of companies undervaluing the role of user research in soft-
ware design. They assume that they understand the user well enough or that
their interests are the same as their users’ interests, or they underestimate
the significance of the role the product plays in their customers’ relationship
with the company. If this causes them to produce a product that fails to help
users accomplish their real goals and causes them frustration, whatever busi-
ness goal the product was intended to satisfy will also not be accomplished.
Helping users accomplish their real goals is thus a stepping stone to the
accomplishment of business goals.

A solid business goal that may be the basis for funding a new software initia-
tive might be, for example, to reduce the cost to call center support opera-
tions by reducing the support volume and diverting requests to lower-cost
channels. This is a perfectly legitimate starting place and basis for a new
product initiative. It is, however, certainly not the explicit goal of the compa-
ny’s customers to help the company save money on call centers and provid-
ing support. To be successful in meeting the business goal, a means of align-
ing it with a real customer goal must be found and pursued.

There are plenty of instances of big companies taking on just this sort of ini-
tiative and getting it terribly wrong. Solely focused on reducing call center
costs, the companies simply make it very difficult to reach an actual phone
agent. In order to obtain support, they make the user go through a long

Chapter 1: Building an Effective Ul

series of self-help, web-based procedures or browse through incomplete and
poorly organized “knowledge bases.” If the user tries all of those things and
still fails to find a solution, he’s finally provided with a “Contact Us” support
form where he’s required to type a detailed request for support. Sometime
within the next week, he gets a two-sentence email response from an over-
seas support operator who, as it turns out, is reading from the same support
information the user already went through online and through the knowl-
edge base. For users of a software product, this kind of experience is like
being given the middle finger by the company. It’s clear the company’s pri-
mary interest was in reducing the cost of supporting its customers. But the
company took no steps to actually address the user’s goals.

The reality is, no user wants to contact customer support. Users would much
rather have an application that operates as they expect it to. When the appli-
cation doesn’t operate in this way, users expect to easily find answers to their
questions through sources that are instantaneous and readily intelligible. The
business’s goal of reducing support costs can be achieved through helping the
users accomplish their real goals, which are to have a product that is effective
in helping them accomplish their goals (without the need of support) and of
having answers readily at hand for common problems and questions. Rather
than investing in the infrastructure necessary to divert customers and force
them through tedious self-support systems—which, in effect, simply makes
the customers work harder to get the support they wish they didn’t need—
the business should invest in improving the overall UX quality of the product
to reduce the need for support altogether. This winds up being more broadly
positive, because it not only reduces the cost to support operations, but also
improves the user’s experience of using the application, which in turn trans-
lates into benefits such as improved brand affinity for consumer applications
or increased productivity and job satisfaction for internal applications.

That’s a pretty egregious example of how companies can myopically focus on
business goals without attending to user goals, but most failures to attend to
real user goals are more subtle than this and descend from the best of inten-
tions. Businesses tend to make a lot of false assumptions about what’s impor-
tant to their users and set out priorities that, while they deliver some value
to the user and business, fall short as a result of failing to keep a strong focus
on the user’s actual goals. Supporting a user in achieving his actual goals is
always the first step to achieving related business goals.

The Elements of Engaging UX

21

22

On a recent project, EffectiveUl interviewed a large number of call center
support staff and found that over half of their calls are for password resets.
Evidently our client, concerned about security—or their customers’ percep-
tion of security—required users to change their passwords every 45 days.
We reviewed the online password change process and found that ambiguous
labels and poorly written copy were contributing to customer confusion. By
interviewing users, we discovered most were irritated by the 45-day pass-
word change rule, and that most already operated under company policies
that required periodic password changes on schedules that didn’t align with
the product’s 45-day rule. Allowing users to set the date and frequency of
their password changes solved most of the problems and reduced call center
volume dramatically.

Delivery of relevant, valuable content

There are some products—Wikipedia and Craigslist, for example—where the
entire purpose of the product is to deliver useful content. The quality of the
experience of using those products is therefore most strongly determined by
the quality, accessibility, and relevance of the content they provide. Other
types of products are much more focused on capabilities rather than content
and information—Adobe Photoshop and Microsoft Excel, for example. In the
middle are content and capability applications, such as online investment
trading tools like E*TRADE or sales force management and CRM tools.

Wherever it may fall along the spectrum of content-focus, the UX quality of
a product is strongly dependent on its effectiveness in delivering appropri-
ate, relevant content at the right times and places. This is fairly obvious in
the case of the content-intensive products such as Wikipedia and Craigslist,
where the role of the application is to assist the user in getting from a ques-
tion to a useful answer as rapidly and easily as possible while ensuring that
content is available and valuable. But even in far less content-intensive prod-
ucts such as Microsoft Excel, the product’s ability to deliver useful content to
the user at appropriate times is very important in enhancing the experience
of using the application. The necessary consequence of Excel’s breadth and

The Elements of Engaging UX

depth of capabilities is that it is a rather complicated product, and taking full
advantage of its capabilities requires the ability to perform some complex
tasks, such as writing intricate formulas for ranges of cells in a spreadsheet.
Rather than simply providing the user with a thick manual to use in trying
to figure out how to write formulas, Excel provides that information directly
within the application as part of the workflow. So instead of requiring the
user to become an expert prior to using the product, or forcing users to con-
stantly refer to help content, Excel delivers the information the user needs at
the moment he needs it (while performing a complex task). This type of intel-
ligent assistance can also take the form of context-specific help. Rather than
requiring users to access a separate help application to find their answers,
buttons and tool tips can be placed where users are likely to need assistance,
giving them the exact information they’ll require at the exact spot they’ll

require it.

In online trading tools, there’s a pretty balanced emphasis on both the capa-
bilities of trading and managing investments, and the content. The content—
stock prices, news, market analyses, and so on—helps users understand the
market, learn about specific industries and companies, and make educated
decisions about their portfolios. An investment tool in which streams of
accurate, timely information are presented alongside the ability to act on
that information, and key content is automatically made available at junc-
tures where it’s important to the user’s activity, is of far greater value than

a product that keeps that content separate from its capabilities. Products
that successfully anticipate what information and content a user will need
at any given point and make it readily available will build a far greater
sense of confidence and engagement in their users, helping them to remain
focused on their goals rather than managing all the small details that must
be assembled in the accomplishment of those goals. A simple and very use-
ful example of this is when an application pops up a calendar when the
user clicks into a date selection field, saving the user from having to break
engagement and look to another resource to figure out the correct date

or to have to format the date entry according to the needs of the system.

The Elements of Engaging UX

23

Arrival:

Departure:

|

A travel site that provides calendar-
related content when the user needs it 1112113114115 |16 | 17

There are even opportunities

within this domain to delight

users and radically enhance
@ the UX quality of the product

< OCTOBER 2009 . I
: : by providing them with infor-

E m m ﬂ B mation that’s important to

meeting their goals but that
| < ke they didn’t realize was avail-
4 | 61 6|718|9 |10 able or relevant, without their

having to actively seek it out.

18 19 | 20 21 23 | 24 Internal consistency

25 26 27 28 30 | 31 Internal consistency requires
that the application handle
similar tasks in similar ways.
In a CRM tool, for example,

the process for adding a new customer record should be as similar as pos-
sible to the process of adding a new job record. Although the information
being input is different, the essential task is still the same: inputting informa-
tion to create a new record. Internal consistency can be a simple as ensuring
that buttons are in the same places and have the same labels (“OK” versus
“Save” versus “Submit”), and that screens are generally organized and pre-
sented in similar ways so the user knows where to look and what to expect.
But it can also extend to much more complex interactions and tasks; in fact,
the more complex the interaction or task is, the more important it is that it be
as internally consistent with other similar interactions or tasks as possible.
This will make it so the user needs to learn how to operate that type of capabil-
ity of the product only once, and that knowledge can be intuitively generalized

to allow him to use other, similar capabilities with ever-increasing ease.

A product should be internally consistent from a visual design perspective, too,
to ensure that the user has the impression of it being a unified, well-organized,
professional product. Internal consistency is often lost in large product initia-
tives where multiple teams are working on different aspects of the product and
aren’t well coordinated, resulting in badly integrated Frankenstein products
that look like the forced combination of several different products, and that
require the user to master multiple approaches to accomplishing similar tasks.

24 Chapter 1: Building an Effective Ul

A Frankenstein look-and-feel can also come about as part of the design concept
process. Every professional designer has had the experience of presenting
several different concepts to a stakeholder and being asked to take the best
from each concept and mash them all together. Occasionally this can be lead
to positive progress, but most times it leads to incoherence in the resulting
design. Most people understand the problem of mixed metaphors (“I'll bite the
bullet and step up to the plate to nip it in the bud!”), and UX and visual designs
for software are akin to metaphors in how they simplify complexity through
appealing abstraction, and different approaches don’t mix together very well.

The internal consistency of a product should disguise a lack of consistency
in the functions it’s handling. If the product is interacting with a dozen dif-
ferent “backend” systems, the user shouldn’t have any clue that’s the case—
everything should all feel like the same experience. The same is true of
products that span multiple departments or divisions of a single company.
Users should be left to think about their goals without having to under-
stand the nuances of how a company is divided and structured. For exam-
ple, with a travel site, buying a plane ticket should be the same experience
as reserving a hotel room. And an employee using a workplace information
system to sign up for benefits shouldn’t have to perform separate, redun-
dant tasks just because benefits enrollment involves three different depart-
ments within the company.

External consistency

External consistency in functionality is very similar to the ideal of familiarity;
the more similarly the product operates compared to other products the user
is already familiar with, the less of a learning curve there will be in its use, and
the less jarring it will be for the user to switch between the different products
he uses in any given day. Obviously, external consistenty with other products
that have bad UX design shouldn’t be overemphasized beyond the limits of
respecting familiarity. External consistency is actually much more of a concern
when it comes to the visual design of a product, which conveys to the user on
both a conscious and subconscious level a message about who and what the
product is for. Software, like literature or architecture, has a recognizable set
of genres. In architecture, if you see a building made out of white stone
with Greek- and Roman-style columns and ornamental sculptures on the
facade, you're likely to assume that it’s a government building of some sort.

The Elements of Engaging UX

25

Herff Jones eDesign: Integrated Experience

8 e i e | YHiEto0k SEAfT
——— s ol A
— [| - . B -
_ . - = L 5 g
_— _— = ; o ey
‘ e b

| — p— ==l
i - -
-

FHIEIH
Uy

1

...become a single unified experience after the redesign.

26 Chapter 1: Building an Effective Ul

If you’re browsing the shelves of a bookstore and see a book with a cover
that has a painting of a muscular, shirtless man with long, flowing hair riding
a horse with a flushed, swooning lady in his arms, you’d be safe in assuming
you’re standing in the fiction section looking at a torrid pulp romance novel.

Likewise, the visual appearance of a software product should indicate its
purpose and audience. The benefits this confers to the UX are very dif-

fuse and hard to explain, but they have something to do with giving users
the impression and confidence that the product is the right tool for their
needs. When you walk into a lawyer’s office, for example, you expect to be
surrounded by mahogany paneling, expensive burgundy leather chairs orna-
mented with brass studs, and wall-to-wall bookshelves filled with ancient-
looking law books. Even though the office design has nothing at all to do
with the competence of the lawyers in it, it conveys a sense of confidence in
the strength and professionalism of the firm. When you walk into the offices
of a creative ad and marketing design agency, you instead expect bright,
cheery colors, informally dressed staff members, desks littered with art and
toys, foosball tables, and bizarre modern furniture. This gives you the confi-
dence that you’re dealing with hip, modern designers. But put the designers
in the lawyers’ offices and the lawyers in the designers’ office, and you’re
likely to lose all confidence in both. The visual design of software has the
same general effect of first convincing the user that he’s in the right place,
and then giving him confidence that the product is well suited for and effec-
tive at meeting his goals.

It’s also important to note that within the various genres of software and in
the field of software UI design generally, trends and tastes are constantly
evolving. Whereas in the design of law offices, there’s an emphasis on con-
servatism, age, and experience, it’s pretty much always the case that in soft-
ware, the application should appear new and modern within the bounds of
its genre. Old software is generally understood to be inferior software, and
so users are looking for the visual hallmarks of modernity in the UI of the
product. Because of the constantly evolving trends and tastes, a product that
looked modern six months ago often is beginning to look middle-aged today.
Even if the functionality has been updated and is best-in-class, if the visual
design belies the modern capabilities of the product, users will tend to trust
it less and have a more fretful experience using it.

The Elements of Engaging UX

27

This external consistency in visual design also applies to conformity with
brand standards. A product built by a recognizable brand should have a
design feel that’s clearly consistent with that brand. Beside the fact that the
visual standards for established brands are generally very well thought out
and are themselves externally consistent with the how the company wants
to be seen within the broader market, consistency with brand standards also
enhances the user’s trust of the product. The customer’s affinity to the brand
is inherited by a visually consistent product, and the customer’s trust of the
brand extends to trust in the security and value of the product. Conversely, a
product that fails to match the brand’s visual standards will give the impres-
sion of being less professional, potentially less trustworthy, or may be seen
as a repackaged third-party tool.

NATIONAL GEOGRAPHIC

|-.-r . P e
NATIONAL

: Al -
GROGRAPHIC

—

National Geographic brings its strong brand consistency to its software products.

Appropriateness to context

Software products exist within, and are thus beholden to, multiple layers of
context that must be respected in UX design. Software operates on a variety of
different devices and platforms, and is used in a wide range of settings and by
a great diversity of people. The appropriateness of a software’s UX to a given
group of users is a huge subject unto itself and is covered in depth throughout
the rest of this book, but we note it here as a reminder that the constraints and
needs of the people using the product must govern how it works.

28 Chapter 1: Building an Effective Ul

Until recent years, when individuals talked about software, they were
always talking about systems running on enterprise-scale servers and com-
puter equipment or running on a personal computer. But the growth in the
capabilities of web-based, mobile platform, embedded systems, and device
technology have meant that software can be found on the Web, on screens
embedded in refrigerators, on cell phones, in the control bridge of yachts,
and strapped to the hips of FedEx delivery drivers. It may seem obvious that
software UX design should be cognizant of the device, physical, and task set-
ting that it will be used in, but quite frequently it’s not. A recent example of
this has come with the massive popularity of Apple’s iPhone in the U.S., as
many companies have scrambled to make an iPhone version of their product
or web application available. The screen size, performance constraints, and
capabilities of the iPhone are much different than other platforms, and a prod-
uct built for the iPhone must embrace those differences. For example, interact-
ing with an application using your fingers instead of a keyboard and mouse
imposes new constraints, but it also opens up new opportunities. It’s important
to account for the new constraints and take advantage of the new capabilities.

The context in which the software is operating also has to do with the physi-
cal place it’s being used and what’s happening in that environment while it’s
being used. Not all software is meant to be used from the relative serenity of
the office or home. An extreme example is a product made for soldiers on the
battlefield, such as portable systems that connect soldiers directly to surveil-
lance, weather, and situational intelligence data. The need for the software to
be usable under stress, under fire, and while wearing bulky clothing in lim-
ited visibility conditions is going to put some very specific demands on the
UX design of the product. In a less extreme example, point-of-sale systems
for restaurants and retail stores must be designed with a keen awareness
that the user will be multitasking, standing, and engaging with the customer,
and will need to work very quickly. This would suggest that highly controlled
and streamlined processes with large buttons (among many other special-
ized refinements) will lead to a better experience.

Trustworthiness

Underlying most of these elements of good UX has been the need to gain and
maintain the trust of the user—trust that the product is up to snuff, that it’s
secure, provides good information, is safeguarding data, is of high quality,

is the best option for the user, and so on. Failing to achieve trust can deter

The Elements of Engaging UX

29

30

users, and failing to maintain it can cause the user to be preoccupied with
whether or not to trust the product and wondering whether his actions are
having the desired effect, rather than simply being focused on his goals while
assuming (trusting) that everything is working as it should.

The very same issues that break engagement also have a tendency to injure the
trustworthiness of the product, so a focus on UX quality leads to greater trust
in the product, which in turn reinforces the UX quality. Trust is won and lost
at an emotional level that’s determined by the accumulation of all the various
aspects of the UX while using the software. Design issues tend to weigh dispro-
portionately on the user’s impression of the trustworthiness of the product,
though. A study was performed where two kiosks that offered driving direc-
tions around the town were placed at opposite ends of a commercial center.
Both kiosks used the same data and underlying “backend” systems, but one
had a modern UI design, and the other had a design that suggested the product
was older. When the users of the kiosks were asked whether they trusted the
directions provided by a given kiosk, the one with the modern design got dra-
matically higher marks, despite the fact that its output was no different than
the other kiosk.

Summing up

To fully explore all the elements of engagement and UX design would require
its own book, so we’ve simplified a lot of concepts here for the sake of provid-
ing a quick, high-level understanding. This list should be useful in getting a
sense of whether your company’s existing products and internal systems are
passing muster and whether the right people in the company are aware of
what it takes to create a strong UX in a software product. There’s a tendency for
companies to relegate responsibility for UX design either to engineering teams
or to web or ad design teams without understanding the full breadth of what
goes into great experiences in software. If you look back over the elements

of good UX in this section, you’ll note that each draws on different skills and
domains of experience and study in the software world, and that they aren’t
neatly compartmentalized. UX design is something that is best performed by
generalists who have the wide-ranging training and experience necessary to
handle the gamut of issues we’ve described. And as we’ll discuss in the next
section, UX design isn’t an activity that’s exclusive to visual designers, nor even
to what we call UX architects; software engineers and product managers also
play a vital role in UX design and in producing products that people love.

Chapter 1: Building an Effective Ul

Reviewing the elements we’ve covered in this section, it’s clear that the work
of and responsibility for good UX design falls not to a single UX design team,
but rather to the entire collection of professionals involved in the project.
The performance element, for example, requires a strong contribution from
every member of the product team. Each participates in many capacities at
different points along the project.

Stakeholders and product managers

* Facilitate infrastructure decisions and connections to existing or third-party
systems that support good performance

o Work with the team to make tough choices when unavoidable performance
issues force changes in approach

UX architects and designers

» Settle on information architecture plans, interaction designs, workflows,
and feedback mechanisms that avoid, diminish, or conceal from the user the
negative effects of performance issues

* Respond to performance issues discovered by the engineers through new UX
architecture and design plans that account for the issues

* Develop friendly approaches to progress bars or component state changes
that help diminish the disruption caused by performance issues

Technical architects

* Design efficient approaches to managing the processing, data transit, and
external resource connections that can make or break performance

e Continuously audit the product architecture to look for performance
bottlenecks and issues

Software engineers

* Write code and design approaches that are efficient and actively mitigate
performance issues

o Execute faithfully on the UX and visual designs in ways that don’t impair the
performance or compromise the UX quality

e Actively work with stakeholders, project managers, technical architects, and
UX architects to identify unforeseen risks and issues related to performance,
and to figure out how to address them

Quality assurance (QA) and user acceptance testing (UAT)

* Work with actual users to identify where performance-related pain points arise

o Stress-test the application to identify hidden performance issues and bring
them to the attention of the rest of the team

The Elements of Engaging UX

31

32

A similar list can be made for each of the elements of good UX. Good UX

in software arises not from simply hiring a couple of UX professionals and
having them put forth perfect designs, but rather from the collective experi-
ence, skills, attention, talent, and enthusiasm of an entire team that’s work-
ing toward the single, joint ideal of producing an exceptional UX. Forrester
Research has wisely said in a number of articles and whitepapers that the
responsibility for good customer experience—a goal that’s very similar to
that of UX, and in a sense, UX is the technological subset of CX—cannot be
held by one single CX officer or an isolated CX team, but rather needs to be
an organization-wide competency for it to succeed. UX design is not an iso-
lated professional discipline; it’s a general orientation of an entire product
team, and good UX is a responsibility of the entire team.

Redefining Two Fundamental Terms

We will be using two key terms in a way that differs from their normal con-
notations in software. Those two terms are design and development. Since
these concepts are so fundamental to software and to how we recommend
approaching the building of software, taking a close look at our differing
understanding of the two terms gives an early glimpse into and foundation
for the rest of this book. As we said in the previous section, responsibility
for good UX isn’t exclusive to people with “UX” in their titles, but is rather
a broader team orientation and competency. Similarly, but more broadly,
it’s also the case that product design isn’t the sole domain of visual design-
ers, nor is the development of the product strictly the domain of software
engineers.

Design

When people talk about design, they usually mean visual design, and in soft-
ware they usually mean graphic and UI design. Because businesspeople deal
in meetings and paperwork and software engineers deal in code, there’s a
tendency to assume that because they’re not producing visual works, what
they’re doing isn’t design. On the other hand, people readily acknowledge
that the researchers at Intel and AMD are busy working on new designs for
microprocessors, or that city planners design traffic control patterns to man-
age congestion, even though neither of those are visual design fields. This
arises from an ambiguity in the ordinary connotation of the word “design,”

Chapter 1: Building an Effective Ul

and confusion about this is at the heart about some very serious misappre-
hensions about what goes into building software.

It’s necessary to abandon the assumption that design is just concerned with
visual media. Design, very broadly, is the application of creativity and intel-
ligence against solving a problem. Often the problem is a visual one, but the
means of solving it is nevertheless an intellectual and creative process. In
order to create a visually appealing logo that does a good job of representing
a company’s brand and goals, a graphic designer embarks on an intensive
effort of thought, creativity, experimentation, and trial and error. This is no
different at a fundamental level than what a software engineer does to build
a component for an application. It’s only the form of the output and the
experience and training required that differ. Businesspeople and product
managers planning and guiding a project are also undergoing a process of
design. They’ve identified a business problem and are applying their experi-
ence, intellect, and creativity against forming an initiative to respond to it,
and continue to participate in design as they contemplate challenges and
make decisions in shepherding the project along the way.

Holding this broader understanding of design keenly in mind is important for
two very different reasons. First, it helps you appreciate what the people with
“designer” in their titles, or the people whose design output is in visual form,
actually do. Their area of concern is not some fuzzy, entirely subjective, artsy
thing. To arrive at the visual deliverables they produce, they have applied
their deep professional experience, intellect, and creativity toward solving a
problem. The undervaluing of what designers do in software projects is in part
the fault of fading trends in the web design world, where flashiness and high-
concept design were held as greater ideals than effective problem solving in
design. But if you have the good fortune to work with a talented team of visual
designers, it’s important to understand that their work is carefully thought
over, and is best judged according to how adeptly it solves the problem and
not simply how it registers subjectively to a nondesigner.

The second reason this understanding of design is important is in better
understanding what software engineers do. For some reason, people outside
the software field tend to think of software engineers as being workers on
an assembly line mindlessly producing units of progress at a linear rate, or
as low-level construction workers who build things that other people design

Design 33

34

without applying much thought of their own. This view is terribly, terribly
wrong and is one of the principal roots of why projects fail or disappoint
with such great frequency. Software development is an extremely design-
intensive process—that is, every increment of progress that’s made comes
from an intensive effort of thought, creativity, experimentation, and trial
and error. Software engineers may be working from designs passed on from
other members of the team, but those designs come nowhere close to solv-
ing the problem of the actual code implementation. How to translate designs
and specifications into working, stable software is a challenging task that
relies on a high degree of creativity and intelligence. Software engineers are
tasked with solving a mountain of problems ranging from the simple and
routine to the hyper-complex and unforeseeable, and the process they go
through to solve them is fundamentally a process of design.

Design does not lend itself toward linear thinking or management. Eight
designers or engineers don’t produce results eight times faster than one
designer or developer does; in fact, in many cases throwing more bodies at

a problem only makes things worse. As we’ll discuss in depth in Chapter 3,
progress in design work is very difficult to plan and predict, since so much
of it relies on experimentation and discovery. Trying to force those who per-
form design-intensive roles to also produce with the consistency and predict-
ability of assembly line workers ignores the true nature of the work being
done and does nothing to gain any greater measure of certainty.

Development

Development in software projects usually means the phase when the soft-
ware engineers are coding, and it’s normal to hear software engineers
referred to as developers. Generally speaking, there’s nothing wrong with
this, but we’ve found it necessary to break with this convention to give
greater clarity to the approaches we advocate.

With the ordinary connotation of both design and development in software
projects, design is typically a big phase that happens and finishes before
development begins. This approach is a bad one, and you’ll learn more about
this in Chapters 3 and 8. By understanding design in broader terms, we’ve
acknowledged that visual designers design, UX architects design, and soft-
ware engineers design. At this fundamental level, the work these different

Chapter 1: Building an Effective Ul

professionals do on a software project is the same, though the experience
required and the nature of their specific contributions differ. The ideal
setting for producing exceptional UX in software is one where everyone
involved in the design of the product—the businesspeople, the product man-
agers, the visual designers, the UX architects, the software engineers, and
(in ideal circumstances) the target users—are working closely in tandem
and collaborating to solve the myriad problems the project presents as part
of a unified effort. Every feature that goes into a product has an underlying
business goal, a visual design, a workflow and interaction design, a techni-
cal implementation, and a connection to user goals. It’s the complementary
combination of those elements that results in great UX, and each requires
the contribution of a different type of professional.

Segregating the contributions of the different participants on the product by
separating their efforts into serial, distinct phases, is a setup for difficulty,
increased risk, and poor results. Again, this will be discussed in great depth
in the coming chapters, but it’s necessary to bring it up now because we
need to settle on a word that describes the stage where the businesspeople,
product managers, visual designers, UX architects, and software engineers
are working together to build the product—and that word is “development.”
Development, in the sense that we will use it through the rest of this book, is
the stage of the project in which the product gets built, and is not, as the nor-
mal connotation holds, a time when only software engineers are working.
Thus the “development” of the product is not exclusive of the contributions
of everyone else on the project team.

Development

35

Chapter 2
Building the Case for Better UX

38

Since you're reading this book, odds are that you already have
an intuitive sense of some of the ways improved attention to UX can drive

value for your company, your product, your company’s employees, or your
customers. After all, we are each consumers of technology, though we may
also be producers of it. Savvy consumers of technology are witnessing with
great pain the growing distance in quality between what’s available to them
as consumers and what exists in their workplace, or what is being offered to
their own clients and customers.

EffectiveUI frequently encounters people who have a gut sense that software
can be, and ought to be, much better than what we’re sadly accustomed to.
These people may be software designers and engineers who know that
their professional lives and the lives of their users—their true judges and
audience—could be better. They may be marketers in companies where mar-
keting is the only department truly tuned into the customers’ needs, and is
therefore the closest thing the company has to user advocates. Or they may be
product managers or leaders of business units who know deep down in their
souls that their company could be doing better by its customers and employees
if only they could figure out how and convince their bosses to feel the same.

We call these people “champions of change” and are excited to find any oppor-
tunity to work for and with them. One of the primary challenges in convincing
potential clients of their need for our services is to educate them about the
value of and opportunities available through investments in UX. It’s a joy to
find clients who already intuitively understand the first part, because we can
lend them our experience in translating that gut sense into words and argu-
ments that can sway the support of others. Since most companies are just fol-
lowing each others’ leads in pursuing innovations, the world needs people who
are willing to be the first and lead their companies and industries.

Chapter 2: Building the Case for Better UX

One of the greatest challenges you’re likely to face in trying to bring a
UX-centric project to life is convincing other people to support and pay

for it. Many people whose fingers are on the purse strings or who control
resources are still influenced by management climates, priorities, and incen-
tives that are incompatible with good UX:

e First to market instead of best to market
o Saving money instead of investing it effectively
o Using Six Sigma techniques to manage innovation

* Trying to keep parity with competitors’ feature lists instead of differentiating
on experience quality

e Taking the view that design is all about subjective aesthetics and belongs
strictly to marketing and advertising

And so on.!

Even companies with established customer experience (CX) initiatives and
executive-level CX advocates often struggle to connect the business of CX to
the technology of UX. Executives are also rightly skeptical of requests for
investments in software since so many initiatives fall short of expectations
or fail outright, and the moment they’re done spending a million dollars on a
product, it ends up requiring another million to keep pace.

So, to be an effective champion of UX in your organization and to get your
project funded, you need to know how to parlay your intuitions into a flu-
ency of words and a preponderance of evidence, to explain how UX aligns
with business goals in a real and measurable way, and to successfully under-
stand and appeal to the interests and concerns of your colleagues. To get
there, it helps to gain perspective on the trends and changes that underlie
the current impetus toward better UX.

1 Fortune's Betsy Morris gives an interesting overview of changing management strategies that, though addressed at business
generally, bears very directly on the changing strategies for software. See her July 11, 2006, series “Tearing up the Jack Welch

playbook,” found at http://money.cnn.com/2006/07/10/magazines/fortune/rules.fortune/index.htm.

Building the Case for Better UX

39

http://money.cnn.com/2006/07/10/magazines/fortune/rules.fortune/index.htm

40

Why Now Is the Moment for UX

There’s something undeniably special about this moment in history with
respect to UX. Things are truly happening, progress is actually being made,
and it all seems to have begun with such a suddenness that one wonders
who fired the starting gun before most people realized there was even a
race. But this moment we find ourselves in is no singular event; rather, it is
the culmination and point of convergence of a number of significant, long-
running trends in business and technology.

To answer the questions “Why UX?” and “Why now?”, it’s useful—if a bit
perverse—to borrow a concept from criminal law and examine the motive,
means, and opportunity that bear on the current climate:

e Motive, to understand what would make a person or company desire and
perceive the need for better UX.

* Means, to understand what is now available to make better UX possible.

* And opportunity, to understand how means and motive combine to kick off
actual projects and initiatives.

Motive

Pressure is mounting on businesses to provide better UX in their customer-
facing applications and internal information systems. That pressure, by and
large, isn’t coming from top-down mandates from executives demanding
better UX, but rather from a grassroots groundswell from the users of soft-
ware in the market and in the workplace.

People are beginning to expect more from the software systems they interact
with. They’re becoming more intolerant of the pain and aggravation bad UX
causes, and are getting savvier about the capabilities available through software
systems. Not only are they getting more experienced with software due to its
increased ubiquity in their lives, but the broader demography is also changing.
GenY, or “Millenials,” a generation that’s not only grown up with but is largely
defined by its relationship to technology, has entered adulthood and is flood-
ing into the workplace and consumer markets. Older workers who suffered
through the software nightmares of the 1980s, the 1990s, and the bursting of the
dot-com bubble are either retiring or have been promoted to supervise a reti-
nue of younger workers who are accustomed to a more modern age of software.

Chapter 2: Building the Case for Better UX

And we shouldn’t suggest that pressure for better UX in software is coming
only from young people; they’re the most intensive consumers of technologies,
but certainly not the only ones. For GenY-ers and retirees alike, software sys-
tems have become so ubiquitous that it’s impossible to avoid interacting with
them, whether at home, at work, at a grocery store self-checkout stand, at a
bank ATM, checking in for a flight, and so on. People who have grown up with
technology tend to have a natural facility for it that allows them to use a sys-
tem despite major UX challenges. With older users, people with certain types
of disabilities, and less tech-savvy users, better UX might be what determines
whether they can use the systems at all. For these people, UX serves the very
basic purpose of providing accessibility into software systems.

There are powerful trends in the software technology space that are adding
fuel to the UX fire. These trends are bringing better and more usable soft-
ware to people, which in turn is continuing to raise expectations for what

software can do, and how pleasant it can be to use.

UX leaders and innovators are raising the bar

Let’s just get this out of the way: Apple, Apple, Apple, iPod, iPod, iPod,
iPhone, iPhone, iPhone.?

It has become unbearably trite in our industry to bring up Apple, the iPod,
and the iPhone when talking about UX, but it’s also pretty much unavoidable,?
S0 it’s best to address it straight on. Under Steve Jobs’s leadership, Apple has
rebuilt itself as a company with UX as the soul and primary driver of its prod-
uct strategy and design, and that approach is manifest in the iPod, iPhone, and
other Apple products. Other companies and products are also leading the way
in embracing superior UX as a core value, and EffectiveUI has had the good
fortune to help many of them along that journey.

If you’re looking at the iPod or any other positive examples of UX and asking
why the experience of using your product isn’t nearly as good, you can bet your
users are thinking the same thing. Great UX in the consumer space has given
people a glimpse of what’s possible, dispelling at long last their resigned belief
that software systems, like VCRs, are inherently and incurably painful to use.

2 Steve Jobs, Steve Jobs, Steve Jobs.
3 So says Adaptive Path: “As a discussion of product design grows longer, the probability of using the iPod as an exemplar ap-

proaches one.” Peter Merholz et al., Subject to Change (O'Reilly Media Inc., 2008), 78.

Motive

41

42

For customer-facing applications, merely having a software offering has
quickly gone from being positive and differentiating to potentially damag-
ing if the UX doesn’t hold up to customers’ heightening expectations and
decreasing patience. Even workplace information systems are subject to this
pressure, as employees begin to realize their jobs could be easier and less
frustrating, which in turn increases their frustration and injures their job
satisfaction and productivity as nothing improves.

Web technology is pushing the envelope

The trend toward better UX has a number of concomitant web technology
trends that feed both off of and into it. Better UX has made some remark-
able capabilities accessible to web users, and exposure to those capabilities
is driving people to demand more from the other software systems they use,
whether web-based or otherwise.

Web 2.0

The Web 2.0 trend has been very interesting to watch and participate in,
though the concept seems to have caused more hype and anxiety in the busi-
ness world than has been due. The exact definition of the term “Web 2.0” is
hard to get a fix on, in part because, being more of a trend or a genre than a
discrete thing, it has very fuzzy edges and is an abstract concept that exists
nowhere concretely, but only diffusely in the minds of those concerned
with it, none of whom seem to agree with one another. There’s also been
some reasonable pooh-poohing of the trend, and much warning that Web 2.0
is another “bubble.”

It’s hard to deny Web 2.0’s impermanence when even its own name makes
it sound ephemeral. How much longer until Web 2.98 gives way to Web 3.0?
Is Web 3.0 already in beta somewhere? The whole thing is a little silly, as if
anything as amorphous as the evolution of technology could be neatly par-
celed into ordinal numbers.

Stealing from the Wikipedia definition (a very Web 2.0 thing to do), “Web 2.0”
has been said to mean:

4 See Michael Hirschorn’s “The Web 2.0 Bubble” (The Atlantic, April 2007).

Chapter 2: Building the Case for Better UX

A perceived second generation of Web-based services—such as social
networking sites, wikis, communication tools, and folksonomies—that
emphasize online collaboration and sharing among users.

This definition has its flaws. Social networking capabilities—blogging, com-
munity building, sharing, chatting, etc.—are nothing new. Those existed 'round
about Web 0.85 with personal web pages, Geocities, Java IRC widgets, and so on.
The definition is also a bit narrower than the interpretation of Web 2.0 that our
clients and the general public seem to have. Most perceive Web 2.0 as a trend of
general improvement in the capabilities and usefulness of the Web, which are
manifest in some of the new new things. In many people’s minds, Web 2.0 is the
name of today’s advanced generation of web capabilities and features.

The force behind the Web 2.0 phenomenon is a deep, abiding trend that isn’t
about the social networking capabilities, but is rather about their fast-rising
popularity. That popularity has grown because of the new usefulness and dra-
matically improved usability of Web 2.0 applications, which is a result of the
recent advances in technology and UX design. What we’re seeing in Web 2.0 is
not foremost a collection of innovations in the features of the Web, but rather
evidence of the major trend of improving UX. The social capabilities inher-
ent to the Web that were previously accessible only to the ultra-geek are now
accessible to a broader public, thanks to radical improvements in UX, and to
an overall increase in geekiness—that is, tech savviness—in people generally.

Rich Internet applications

This discussion overlaps significantly with that of Web 2.0, because the gen-
eral public doesn’t usually distinguish between rich Internet applications
(RIAs) and Web 2.0 applications. RIAs are, in a nutshell, software made to
work over the Internet through a web browser but that behaves and per-
forms in a way more typically associated with desktop-based software.’

Traditional web-based software relies heavily on the remote application server
to do the processing and presents every aspect of the application to the user
as a discrete page. RIAs, on the other hand, shift much of the processing to the
user’s machine and allow for a completely fluid, non-page-based presentation.

5 Adobe and Microsoft also have runtime “shells” for RIAs that allow them to be installed on the desktop and run outside of a

browser.

44

These differences allow RIAs to have much more desktop application-like
behaviors and capabilities, which allows for animation, video, and other rich
media to be easily distributed through the Web. A comparison of simple exam-
ples should help make the definition and value of RIAs clearer.

A good example of a very simple, traditional web application is an online
questionnaire used by your bank to help you open a checking account
online. After clicking “Open an account” from the bank’s main site, the next
page you’d encounter might ask you to select the account type. Based on
that selection, the site might send you to another page that lists the accounts
terms and fees. After clicking a button to agree to the terms, the next page
might be the place where you enter your personal information. If you make
a mistake on this form (such as omitting a response for a required field or
entering an invalid email address), you’re alerted to this omission only after
you’ve clicked the “Submit” button, the page has been sent to the server for
validation, and the page has then been spat back with the errors reported.

TRADITIONAL WEB APP VS. RICH INTERNET APP (RIA)
1 1:2:3:4

PAGE REFRESH

PAGE REFRESH

PAGE REFRESH

One advantage of RIAs over traditional web apps is that they avoid full-page
refreshes, making the experience of using them feel faster and more seamless.

Chapter 2: Building the Case for Better UX

Even this simple example requires four pages to be loaded in serial progres-
sion. This is a result of how traditional web applications put the burden of
processing on the server. For example, to check whether you entered your zip
code, your input must be sent to the server, checked for completeness, and a
page showing errors must then be returned to you. Processing power is also
what’s required to display video, animations, and more visually and intui-
tively compelling interaction design, so traditional web applications are very
limited in those regards. Though most people have grown accustomed to the
page-based, heavily server-dependent nature of traditional web applications,
their UX is undeniably poor in comparison with what’s possible in desktop
applications and RIAs.

Desktop applications do all of the processing on the user’s machine, enabling
much broader capabilities in the UX and behavior of the application. And
since desktop applications aren’t dependent on the call-and-response rela-
tionship with data and processing, they don’t need to organize and present
everything as discrete pages like a traditional web application does. If you
think of standard office software such as Microsoft Office Excel or Word,
although there may be documents, there are certainly no pages, and no dis-
crete states. The user can do pretty much anything at any time, work with
multiple documents simultaneously, build complex calculations and charts,
and perform other fluid tasks and interactions out of reach from traditional
web applications. On the other hand, desktop applications tend to be discon-
nected to the valuable resources of data and infrastructure available on the
Internet.

RIAs put capabilities like those of desktop applications in the context of the
Web. Google, ever the innovator, has launched an impressive RIA called
Google Docs (http.//docs.google.com), which is essentially a web-based ver-
sion of standard office software for word processing, spreadsheets, presen-
tations, and dynamic form creation. Google Docs can be used to work with
spreadsheets, for example, with an ease that is roughly equal to Microsoft
Excel. If it weren’t for the fact that Google Docs runs in a web browser, it
would be easy to forget that it is a web application. The way it presents
things isn’t restricted to the page-based structure, it isn’t continuously forc-
ing page loads and refreshes, and it elegantly enables the complex, fluid
interactions necessary for editing spreadsheets.

Motive 45

http://docs.google.com

Simply replicating the features of Microsoft Office, Word, and PowerPoint on
the Web, though an impressive accomplishment, would be pointless on its
own. But by virtue of being web-deployed, Google Docs has access to capa-
bilities not available to desktop applications. For example, Google Docs:

e Can be used on any computer with a web browser with an Internet
connection, whereas desktop applications must be installed on the machine
they’re to be used on.

* Can save documents in the “cloud,” meaning they’re available anywhere
to any computer, rather than being stuck on one machine, and are
automatically backed up by Google.

e Can allow multiple users to collaborate over the same document without
creating tons of disparate versions of the same document. The standard
way of collaborating over a document with others is to email versions of the
document back and forth amongst each other, leading to a clutter of emails,
overlapping versions of the document, wasted storage space, and inefficient
collaboration. Putting the document editing and collaboration capabilities
on the Web means that everyone can work on the same, single instance of the
document at the same time without the need for transiting versions through
email.

Another compelling example of an RIA comes from EffectiveUT’s portfolio. A
major yearbook manufacturer, Herff Jones (mentioned in Chapter 1), found
that its customers had problems with the technological process behind cre-
ating yearbooks and getting them to press. Building a yearbook requires
professional print layout software such as Adobe InDesign or QuarkXPress,
which are desktop applications. This approach posed a number of problems
for schools:

» Licenses for print layout software can be pretty expensive, especially for
school budgets.

o Schools tend to have aging computers that aren’t fit to run the software, and
they have onerous IT policies that make it difficult to procure and install
software.

e Schools usually have only one or two computers for a dozen or more
yearbook staffers, making parallel progress and collaboration difficult.

* Photos came from many disparate sources and were stored on multiple
computers. Even when these computers were networked, photo management
was cumbersome and created confusion among the teachers and students. It
also led to a greater frequency of errors in photo resolution, placement, and

cropping.

46 Chapter 2: Building the Case for Better UX

* Layout files were often passed to Herff Jones at the last minute and through
email or postal mail, making it difficult for Herff Jones to actively review the
designs and collaborate with the schools. This made it harder to provide
support to the schools, and concentrated Herff Jones’s support workload in
one narrow timeframe near the end of the school year.

So Herff Jones came to EffectiveUI to rebuild most of the capabilities of
InDesign and QuarkXPress in an RIA. As an RIA, the Herff Jones layout soft-
ware (eDesign) solved all of the critical problems:

* HerffJones was able to provide eDesign to schools for free, radically
improving the company’s ability to compete against and differentiate itself
from other yearbook manufacturers.

* eDesign works on any computer with a web browser and Internet connection,
so the number of school computers that could be used for yearbook creation
was dramatically increased, and it also became possible for students to work
on the yearbook from their homes.

e Photos and other graphics became available as digital assets through a
single resource in the application itself, making the management, cropping,
and placement of the photos dramatically simpler, and making it much easier
to make changes and fix errors.

» Since all of the layout files were online, Herff Jones was able to proactively
look at the schools’ files and collaborate with them using built-in
communication tools to make improvements and corrections so the layouts
could be correct and ready for press much more quickly.

L]
-
N
"0
L]
L]
]
L}

Motive

48

Layout editing is a very complicated, processor-intensive task that would be
utterly impossible with traditional web development techniques, but is now
possible thanks to RIA technologies.

RIAs also have a strong technological advantage in enabling better UX. RIA
development frameworks such as Adobe Flex, Microsoft Silverlight, and
Sun’s JavaFX were built around a core goal of enabling richer, more engag-
ing UI and UX design. There has also been tremendous innovation in using
HTML, CSS, and JavaScript techniques (for example, AJAX and DHTML) to
build richer, more application-like experiences on the Web without requir-
ing browser plug-ins. Compared to more traditional development technolo-
gies, these frameworks and techniques are uniquely well suited for making
exceptional UX and innovative application Uls.

More RIAs are coming online every day, and every day people are being
exposed to the richer capabilities and UX available through RIAs. This expo-
sure is having the effect of dramatically increasing users’ expectations for
the other software systems they interact with in their personal and work
lives. It’s increasingly likely that a new software initiative will wind up being
an RIA, even if previous incarnations of the product were desktop or tra-
ditional web applications, because the intersection of desktop capabilities
with the benefits of data from the Internet and distribution over the Web are
extremely compelling. Additionally, the skills necessary to build an RIA are
quite similar to those required to build iPhone and Android (Google’s mobile
platform) applications, so companies pursuing cross-platform and cross-
device product strategies are increasingly looking to RIAs and RIA profes-
sionals as a model for building new products.

Means

Software engineers are occasionally maligned as being inconsiderate of the
needs of “normal” people—arrogantly, thoughtlessly, and geekily building user
interfaces that make sense only to the engineers themselves, not to anyone
who actually uses the software. But this is generally unfair. Software engineers
have, in fact, often been the ones who best recognized the need for better UX.
The professional fields of UX and interaction design are relatively new.

Chapter 2: Building the Case for Better UX

Before these fields existed, it fell to the engineers to carry the UI design man-
tle, and they suffered mightily at the sight of their own interfaces. But their
problem was threefold:

o Ul design is not a typical competency of software engineers, so one wouldn’t
reasonably expect them to do it well.

e The tools, priorities, and constraints they were working with didn’t allow for
good UX.

* Because UX design wasn’t assumed to be part of their role, they weren’t given
the time and budget necessary to do it well while also delivering on their core
responsibilities.

Put simply, they didn’t lack the desire to deliver better UX, but rather the
means with which to accomplish it. Part of what makes this a special time for
UX is that the means for building better UX is now more readily available.

The tools for better UX

Software engineers rely on development frameworks and libraries to build
both the guts of software and the Ul The frameworks and libraries avail-
able for Uls have, until recently, been ill-suited for building good UX. From
the advent of Microsoft Windows until recently, most software Uls have been
built using the library of UI components available through Windows, which
are notoriously ugly and difficult to ply into passable UX. Sun’s Java Ul librar-
ies have also been weak in enabling highly customized, innovative UI and
UX design. As well, web application UX was constrained by the very limited
capabilities of traditional web development technologies and application
architectures.

But things are finally changing. RIA development technologies, which have

been built primarily around the goal of enabling better UX, have given engi-
neers a much more powerful toolkit to work with. Other, more traditional

technologies such as Java, Cocoa, C, and C++ are also beginning to offer much
more advanced Ul development libraries that in turn enable the develop-

The tools available have
grown considerably.

ment of more powerful, innovative UX. Greater broadband availability and
the rapid increase in the power of personal computers have also made it pos-
sible to solve certain performance-dependent UX challenges. And new types
of devices and user input methods (the iPhone and multitouch, for example)
are giving UX professionals more ways of creating highly intuitive and
usable interaction designs to address new user behaviors and environments.

Means 49

50

The money and time for better UX

The most significant challenge of building an application has historically
been in building its “guts”—the internal, invisible workings of the applica-
tion—rather than its Ul Especially in times when the business requirements
for an application centered entirely on features and not at all on UX quality,
the development of the application’s UI was often the last stage in the proj-
ect that got whatever remaining slivers of time and budget remained after
everything else was done.

But now many of the more difficult engineering challenges of the guts of the
application have been solved or are at least substantially in place. This frees
up time and money to focus on the UI and to give UX quality a higher prior-
ity. Coupled with an increased recognition that products also should compete
on quality and not features alone, this has meant more resources and time
are being allocated to the design and development of the application Ul, and
for user research and professional UX design.

The professional support for better UX

There’s an increased recognition that UI and UX design go beyond colors,
graphics, and logos, and that it’s a recipe for failure to ask engineers to play
the role of UX and visual designers. There’s also an improving understand-
ing that UX design is a specialized subset of the design field—that print,
advertising, or even web designers are not necessarily qualified to do UX
design simply by virtue of being designers. This all adds up to a greater like-
lihood that professional, specialized, and qualified UX design resources will
be available for a project, which naturally leads to better UX outcomes.

Opportunity

Now that better UX is both desired and possible, all that’s needed is the
match strike of opportunity. Opportunities present themselves as companies
identify needs that can be met with investments in UX and as companies and
technologies shift to make openings for UX innovations.

Chapter 2: Building the Case for Better UX

The CX trend

The CX trend can be instrumental in pushing companies to invest in UX.
Good CX requires that a company ensures that each of its touchpoints with
customers is a positive experience. With the increasing ubiquity of software
systems as products and services, and as interfaces between companies and
their customers, an attention to CX demands an attention to UX. The under-
standing and adoption of CX principles is wider and stronger than that of UX,
so CX provides much of the impetus for UX investment opportunities.

Successful CX doesn’t come from an individual job role, nor is it the sole
purview of one department or one CX Officer; rather, it is an organizational
competency where all areas of the organization are pursuing CX excellence
and ensuring their efforts are well orchestrated. This requires a radical
change in structure for many companies whose efforts, staffs, budgets, and
customer touchpoints are siloed in departments with little or no coordina-
tion amongst them. Companies that are undergoing this change in structure
are also moving toward a structure in which better UX is easier to achieve.
Good UX is achieved only when everyone working on a project is focused on
the user’s needs and is effectively collaborating, and it cannot be achieved in
companies where business, design, engineering, and customer advocacy are
siloed and disconnected from one another.

'..'g

f

CX

C

>

E

CX is a responsibility of the ...and not something that can be handled
whole company... by siloed departments.

Opportunity

51

52

The rise of the information workplace

While the CX trend is driving opportunities for better UX for customer-facing
applications, the increasing information-centricity of business is driving
organizations to invest in better UX for the modern information workplace.
Making relevant, timely, and valuable information available to employees
and decision makers, simplifying and streamlining complex tasks, and
increasing the scope of what an individual person can manage have long
been recognized goals. But most custom information systems that have

been built to date, lacking the means to deliver UX quality, have fallen short
on the promise of the information workplace and have suffered from poor
adoption, longevity, and relevance. Now that the means to make workplace
information systems usable and effective exists, the increasing need for such
systems can spur a lot of opportunities to build better UX into the informa-
tion workplace.

Standing on the shoulders of giant IT expenditures

Companies that have already made sizeable investments in IT and software
systems that so far have had terrible Uls may now find themselves in a posi-
tion of having excellent opportunities to make investments in UX. Many com-
panies have made significant investments to transition their major IT systems
to a service-oriented architecture (SOA), which is a strong jumping-off point
for UX-focused “client” Ul initiatives. If many of the difficult engineering
challenges involved in building a software system, excepting those of the UI,
have been largely solved, it may be possible to simply build a better UI on
top of the existing monster. EffectiveUI frequently works on projects where
this is the case; we’ve even built a UI on top of a backend that was running,
in part, on vacuum tubes. Assuming the monster behaves properly, these
projects have been some of the most cost-effective opportunities to improve
the product’s UX quality. With the “backend” challenges largely solved, the
product team can focus its attention and energy entirely on the “frontend”
UX, rather than being mired by invisible technical challenges. A new UX
initiative built on an existing backend can be an opportunity to entirely
reinvigorate the product without having to start over with the messy parts.

Chapter 2: Building the Case for Better UX

Winning Support for Better UX

Unless you’re one of the few fortunate people who manages her own budget
with complete autonomy, who works for an organization where the mandate
for investments in UX comes down from the top, or who is an independently
wealthy investor in his own project, you’re going to need to drum up support
for your project and generate buy-in across your organization. Buy-in is as
much an emotional state as it is an intellectual one. No matter how rational
the justification for your project may be, the final leap of commitment—of
buy-in—is made on an emotional level. The stronger a person’s emotional
engagement with the idea, the greater her receptivity to rational arguments
in favor of the project will be.

The first challenge in convincing people to support an investment in UX is to
educate them about its value and the opportunities it can create for a business.
This challenge is accompanied by the need to do the research for building an
objectively compelling case for the investment. The second principal challenge
is to materialize the idea in some form to make an effective subjective case for
it. How you accomplish these challenges will differ greatly depending on the
nature and politics of your company, but our experience working with a broad
range of companies on widely varied products has given us some insight into
how best to make the case.

Stakeholders

Stakeholders either can be a tremendous asset or can represent your single
greatest hindrance. They can bring products into being with a nod of their
heads and they can cause them to fail with the slightest touch. Your success
may very well be measured not by the objective quality of your accomplish-
ments, but rather by the difference between what you’ve done and what your
stakeholders expected you to do. Projects might be terminated not because of
any serious issues with the schedule, cost, or technical challenges, but simply
because they lost the support of key stakeholders.

A project that is terminated, undermined, or shelved because of its stake-
holders’ interference or lost support is just as much a failed project as one
that runs aground for any other reason. Though stakeholders may at times
inadvertently be the project’s worst enemy, anticipating and mitigating this

Stakeholders 53

is a key responsibility of the project’s leader. And since your stakeholders
are also accountable to their own superiors and stakeholders, stakeholder
management is a key responsibility of every person who wants the project to
succeed. Since this book is about helping you successfully build your prod-
uct, we’ll give a significant amount of attention to how to work with stake-
holders to get the best benefit of their contributions.

We define “stakeholder” as any individual who has significant influence or
authority over the project, or who has control or influence over the money
and resources needed by the project. Who your stakeholders are varies
based on the project, the organization, and the stage of the project. For client
services organizations, the stakeholders are typically appointed represen-
tatives of the client, who in turn have their own stakeholders within their
company. For internal product teams, stakeholders are typically budget
managers, executives, department heads, or product managers. There can
also be hidden stakeholders who must be identified and managed, lest they
unexpectedly appear and derail your efforts.

It’s important to remember that stakeholders are individual people, not depart-
ments, business entities, or groups. Finance doesn’t buy in to a project so much
as some leader from that department does. This is an important distinction to
remember; keep your efforts to bring stakeholders on board focused on a man-

ageable group of individuals rather than entire sections of your organization.

Early on, your stakeholders will be representatives of three key needs: man-
date, money, and resources. In making your initial appeal, make sure you
not only clearly identify the stakeholders who represents these needs, but
also those who have authority and influence to such an extent that their buy-
in will ensure the buy-in of others.

Understanding the stakeholder perspective

Just as understanding the users’ perspective is essential to crafting a product
that meets their needs, building an effective case for an investment in UX
requires an understanding of and sympathy for the perspective of stakeholders
and executives. Entire books are written on this subject; we can just scrape the
surface here. But there are simple misunderstandings that exist in the minds of
many nonexecs, particularly people in technology jobs, that we can address.

Though it may seem that the main challenge of an executive or budget
owner is finding good ways of investing their resources, their problem is
actually more one of exclusion than inclusion. There’s typically no short-
age of ongoing costs and opportunities for investment, and so the challenge
becomes to decide which of opportunities to forgo given the scarcity of
resources. In the late 1970s, Xerox executives notoriously forwent the oppor-
tunity to invest in the then-innovative graphical user interface that their
PARC team had developed, handing it over to the fledgling Apple Computer
Company. Clearly this was not the best choice, but the Xerox executives at
the time weren’t stupid people; they were simply making hard decisions
about how to apply their resources without the benefit of the information
that we all now have about the value and potential of the innovation.

The nature of being an executive is that you’re required to oversee large areas
of a company, including some complicated domains where you may have lim-
ited or no specific experience. This is particularly the case in the management
of technical domains, because technology fields change and evolve so quickly,
and because the complexity associated with them multiplies rapidly. Risk is
one of the key considerations that goes into the triaging of priorities, and from
the perspective of an overwhelmed executive, something is risky if she
doesn’t understand it. This is why education is the first and most important
priority in building the case for investments in UX. Most UX initiatives will
appear to be high-risk proposals to someone who has too little information.

Stakeholders 55

56

In reality, however, these initiatives should be opportunities to mitigate risk.
There’s also a tendency for people disconnected from technology trends to
think, “We got this far without it, so why start now?” It’s the responsibility of
those who have the time and specialization to perceive the opportunities to
make them plainly comprehensible to those with the ultimate accountability
for their outcomes. Remember that there’s a dismal track record for software
initiatives in most companies. A tremendous number of software initia-

tives fail, and they fail because of factors that this book will help you avoid.
Organizations typically don’t reward risk taking, so your job is to reduce the
perception of risk and increase the perception of opportunity.

Software products also are very expensive undertakings that never stop requir-
ing large amounts of money, even after they’re supposedly complete. Building a
new office is always expensive, aggravating, and over budget, but once the rib-
bon is cut, the costs taper dramatically, and that particular problem is solved
for a decade or so. If the project was somewhat unsuccessful, then there will be
unexpectedly large costs to maintenance, but even those will diminish to a low
burn after a while. In a software project, on the other hand, by the time you’ve
finished building the product, it’s already out of date and its development

has exposed whole new realms of problems and opportunities. Thus, when

the ribbon is cut on the software and the executive is hoping to put that chal-
lenge behind her, someone is waiting at her door asking for yet more money to
resolve a problem or improve an area she thought was already solved.

If the project was in any way a failure, then she’ll be forced to make the
tough decision to undertake yet more risk and spend yet more money to
salvage it and validate the original investment. If the project was generally
a success—and here’s the bitter irony—she’ll find herself confronted with
rapidly escalating costs to maintain and support the product. She will be
too quickly thrust into a position of needing to decide whether to commit
the organization to make a second version of the product. Getting started is
costly, failing is costly, and succeeding is costly.

Fortunately, this is all a bit of an exaggeration and relies on the misperception
that money spent on software is an expense rather than an investment. Though
it may be stressful and fatiguing to never seem to reach the light at the end of
the tunnel, each new expenditure should be in response to an opportunity to
drive return on investment (ROI) and reduce risk.

Chapter 2: Building the Case for Better UX

One problem that makes it difficult to get legitimate software initiatives sup-
ported has been caused by the push for companies to chase after hype and
trends. Executives are getting fad fatigue, having chased after half-baked corpo-
rate blogging and Web 2.0 initiatives for no perceptible business reason other
than everyone else was doing it. Technology is a means to an end for both the
business and the users, never the end unto itself, and a lot of the skepticism that
exists today about new tech initiatives is fairly deserved. An important part of
educating executives on the value of a proposal is putting it in the context of its
value to the business. While it’s true that the primary orientation of the project
once it’s started will be in solving the needs of the user and providing the user
value, that goal is just a means of accomplishing some governing business goal.

Many software projects proposals are either ill conceived, poorly researched, or
do a bad job of making the business value clear, so with just a bit of diligence and
a respect for the executive perspective, you have an opportunity to stand out. If
done right, youw’ll find yourself being asked, “How much do you need, and how
soon can we have this?” rather than “How much would this set us back?”

Education

Much of the information that’s helpful in educating stakeholders on the value

of UX was addressed in Chapter 1 and in our explanation of what’s driving the

current opportunities in, and attention to, UX. Things that are obvious in in-

store or in-office experiences somehow become less obvious when it comes to

software. All the reasons why a company wouldn’t want to aggravate, deter, or

insult customers at stores and why it doesn’t want to slow down, frustrate, and

overburden employees are the same reasons why good UX is important in

customer-facing and internal products. A focus on UX in customer-facing S

products is the same as a focus on customer service and quality CX, and
in internal products it’s the same as a focus on productivity, business
intelligence, and job satisfaction. Better UX helps make the company
money. The goal in educating stakeholders is to draw that connec-
tion in clear terms.

Because UX is lumped in with “design” in the ordinary, fuzzy
connotation, there’s a tendency for people to think that doing
a UX rehab on a product is something like slapping a fresh coat of It’s just not that easy.
paint on an aging building. This dramatically underestimates the value and

Education 57

58

complexity of creating good UX in software, and creates the false assumption
that UX outcomes can only be measured subjectively.

And so a focus on first helping stakeholders develop a true understanding of
the function and value of UX design is critical. Design, generally, is a set of
disciplines with concrete outcomes that enhance the value and viability of
whatever it’s concerned with. Organizations that have a strong design com-
petency are edging out those that treat it as a strictly aesthetic, fluffy, mar-
keting function. Progress is being made in establishing the concrete business
value of investments in UX. Although there’s no magical Excel spreadsheet
we can offer to help you establish an irrefutable ROI case for your project,
there are a number concepts that are very useful in educating stakeholders
so they can draw the connection to the business value.

Finding a means of making the investment value of UX clear to stakeholders
has benefits beyond simply getting initial support for the project. If your proj-
ect can be sold as an investment, it’s more likely to be treated as an investment
once it’s underway. In business there’s a general recognition that you have to
spend money to make money, and that spending too little money may result
in making too little money. But if executives relate to UX as a fuzzy art thing,
their impulse will be to manage it as a cost where success is measured by how
little you spend, rather than as an investment where success is measured by
the earnings or savings realized relative to the expenditure. By providing a
means of seeing how investments in, not simple costs of, UX can yield compel-
ling results, you may induce stakeholders to relate to UX more intelligently.
This, in turn, will help ensure the stability of their support as money begins

to be spent. Measuring how an investment can and is delivering ROI from the
beginning of the project to its end will prevent people from thinking about the
project as a cost center and instead will help them see it as an opportunity.

The UX Fund

At the end of 2006, the UX design consultancy firm Teehan+Lax devised a
novel experiment to demonstrate the value of UX in economic terms. They
created the UX Fund, a one-year mutual fund-like investment of $50,000 in
the public securities of companies they considered to be UX leaders, chosen
according to the following criteria:

Chapter 2: Building the Case for Better UX

The companies demonstrated care in the design of their products and
website.

They have a history of innovation.
They inspired loyalty in their customer base.

Doing business with them was a positive experience.

During the fund’s year of existence (11/1/2006 to 10/31/2007), its value
increased 39.37%, outperforming the NASDAQ by 118% and the S+P by 316%
(which grew 18.09% and 9.47%, respectively, during the same period). These
results are striking, particularly when you consider that the results were sig-
nificantly weakened by a number of factors in the portfolio that have noth-
ing to do with UX. Much more information on the UX Fund is available on
the Teehan+Lax blog at http://www.teehanlax.com/blog/?p=293.

Although the example of the UX Fund doesn’t help in getting to concrete fig-

ures for any specific UX initiative, it does provide compelling evidence that
attention to UX is a successful strategy in today’s markets.

TYEAR GROWTH

40%

30%

20%

10%

-

0%
W W -10%
-20%

Nov 1,2006 Nov 1,2007

M UxFund [Nasdag [S&P 500

The UX Fund outperforms NASDAQ and the S&P.

Education 59

http://www.teehanlax.com/blog/?p=293

60

Connecting user goals to business goals

Satisfying user needs and helping users meet their goals are necessary step-
ping stones to achieving business goals in software product design. Good

UX design is principally about making an application effectively and easily
serve the needs and goals of its users, goals such as, “I want to feel confident
my money is invested properly.” Some user goals may at first appear discon-
nected from or unrelated to the business’s financial goals, but their linkage
to the success of the business isn’t usually hard to uncover.

Consider the example just given: “I want to feel confident my money is invested
properly.” For individual, nonprofessional investors, there’s tremendous poten-
tial for anxiety about how their money is invested. Investment is as much a
dark art as it is a science for them, and they pursue investments because they
know they ought to, but are perpetually nervous they’ve done too little research,
placed too risky of bets, and generally made the wrong decisions.

Confidence is as much based on emotion as it is on intellect. The
emotional component of confidence is why people buy name brands.

It’s standard and expected of investment brokerages that they offer custom-
ers online access to their accounts. But many of these online systems were
built in earlier times when it was a differentiating feature to simply have
online access, and these systems have been hacked over the years to add on
features to keep parity with competitors, with the quality of their UX suf-
fering as a result. Imagine, then, that a customer of the brokerage who’s
generally nervous about her investments and who has the goal of gaining
confidence in the wisdom of her decisions goes to the online portal and has
difficulty with the following tasks:

e Enrolling and getting immediate access to her accounts
* Finding information about and interpreting the performance of her investments

* Taking action on her investments and immediately seeing the effects of those
actions

* Finding useful support and information to help guide her decision making

If the portal’s design is also unattractive (giving the sense of lack of polish
and professionalism), and if it behaves strangely or performs poorly (giving
the sense of lack of quality, trustworthiness, and reliability), it all adds up to

more anxiety.

Chapter 2: Building the Case for Better UX

Though the UX and capabilities of the portal have absolutely no connection to
whether or not the customer’s money is invested wisely, they bear heavily on
the customer’s confidence in and perception of the firm. An investment broker-
age’s portal should reinforce a sense of security, professionalism, abundance of
support and expert advice, strong and instantaneous insight and control, and
other qualities that are likely to also be key goals of the company’s branding.

And so it becomes easy to see how the user goal of wanting “to feel confident
my money is invested properly” directly bears on the success of the business.
Links to quantifiable business concerns arising out of this user need might be:

* Reinforcement of branding goals and investments.

* Customer retention. Higher confidence decreases the likelihood the customer
will switch to another firm.

* Increase in customer lifetime value (CLV). A customer who’s confident in her
investments with a particular firm will tend to place more into it over time.

o Decrease in call center and in-store customer support. An anxious customer
will be much more likely to pick up the phone or visit a broker if she can’t get
quick, reassuring, and intelligible information or can’t take immediate and
instantly apparent action on her investments.

It’s very likely that this company will have already developed models for
calculating how investments in branding, customer retention, CLV, and sup-
port cost reduction affect the company’s bottom line. So the person cham-
pioning an investment in improving the UX of the brokerage’s online portal
just needs to develop credible estimates of how a certain investment in UX
affects those four business considerations, and then the company’s existing
models can take it from there.

So, it’s useful to discover what your company’s key objectives and brand
promises are and to find ways of demonstrating how your initiative can
lend support to these goals. Your company’s finance department should

be adept at figuring out things like this. Seeking the advice and support of
finance executives early on can be useful in making the case for better UX
because they can help navigate some of the more mind-boggling financial
justifications. And involving them early in the process of developing a cred-
ible ROI model for UX can easily turn them into allies rather than skeptical
stakeholders.

Education

61

62

Finally, make sure to explore the full range of opportunities for improvement
that your project can bring to every marketing channel and every depart-
ment in the organization, as there can be many subtle ancillary benefits to
improved UX. The broader the positive effects of your project, the more sup-
port and resources may be available to you. Be warned that breadth of effect
cuts both ways, though; more affected departments may mean more stake-
holders who aren’t necessarily happy about invasions into their turf.

Connecting business goals to user behaviors

The same idea works in reverse. The linkages between existing business goals
and user behaviors can offer some of the most compelling and obvious jus-
tifications for investing in UX. The advantage of this approach is that there’s
usually no lack of recognition on the part of stakeholders of the existence of a
certain problem or opportunity; they just haven’t yet seen how UX can be its
solution. We’ll use an internal enterprise application as an example this time.

Call center information systems

For companies that run sizeable call center operations, the high cost of
operating those call centers and the difficulty in maintaining consistent
quality of service are usually identified as major concerns for the business.
Investments in improving the UX of the call center’s information system can
create tremendous opportunities for savings and improved cost effective-

ness. This benefit can come in a number of ways:

e Improving productivity. If the application UI streamlines and simplifies
the support process, and if it improves the accuracy, timeliness, and quality
of the support provided to the customer, this in turn reduces individual call
times, reducing the overall load on the call center and reducing the staffing
requirements.

e Reducing training costs. The easier a system is to use and the more
intuitively and effectively it responds to the operator’s needs, the less training
time will be required to bring on a new operator. This can be especially
significant in high-turnover jobs such as call center operators, and can also
reduce the cost to ongoing training, as well as technical and managerial
coaching and oversight.

e Improved employee retention. This is harder to quantify, but if an investment
in the UX of the call center information system can reduce aggravation, stress,
and confusion for the operators, turnover and its accompanying costs should
decline.

Chapter 2: Building the Case for Better UX

e Improved consistency of service quality. Improvements that ease the
process of providing support, provide the right information at the right
time, allow for more detailed tracking of operator performance, reduce the
need for training, and improve the job satisfaction of operators also cause
a general improvement in the quality and consistency of the service the
operators provide.

These benefits are clearly easy to link to the success of the business. The
challenge is in estimating how a given investment in UX will affect any of
these considerations, especially when counterbalanced against switching
costs. However, a thorough investigation of the problems and opportuni-
ties should give you a good sense of the potential effects of the investment,
at which point it’s time again to seek out the support of someone from the
finance department in building credible models. Getting to the point of hav-
ing a financial model and a clear recognition of how an investment in UX
can affect certain costs in the organization puts you on very solid ground. At
this point, the debate can be over the accuracy of the estimates in the model,
but no one is likely to doubt the validity of UX as an investment.

Using the examples of others

Now it’s your turn to trot out the iPod example and see if it sways anyone’s
opinion. It probably won’t; those who don’t “get” UX will have trouble see-
ing how the example of a consumer electronics product relates to a software
product, though a software initiative is just as much a product development
effort as is developing a new consumer electronics product. Apple has also
been put up on such a high pedestal that to emulate their success simply
seems out of reach. What the Founding Fathers are to politics and law, Apple
now is to technology and UX. Fortunately, there are other examples.

Online tax preparation software

The example of online tax preparation software such as TurboTax is a won-
derful one because you don’t need to have actually used the software to
understand the example. In understanding the full range of the value cre-
ated by TurboTax, it helps to think of it simply as a product rather than a
company, and it helps to think of the IRS as being the company and the tax-
payer being the customer.

It gives some useful
perspective to realize that
the iPhone, while wildly
popular in the U.S., isn’t
popular in Japan. Consumer
electronics in Japan are
always a year or two more
advanced than those in the
U.S. and in that context the
iPhone looks less innovative,
and it also fails to support
some of the activities
Japanese users demand. This
is a great example of how
even UX that’s exceptional

to one set of users can

be deficient to another,
underscoring the importance
of the understanding the
perspective of actual users in

UX design.

Education 63

64

The process of completing a personal income tax return has long been noto-
riously complex and anxiety inducing. But online tax preparation tools have
completely changed that. Early versions of software-based tax preparation
tools made very little difference in the experience of filing a return, because
all they essentially did was allow the user to type directly into the 1040 form.
But attention to UX eventually led to improvements that abstracted the com-
plexity of the form into a very friendly, simple questionnaire model. The
product walks the user through a simple progression of clearly explained
questions presented in a very simple, pleasant, straightforward way.
Meanwhile, the product works behind the scenes to assemble the answers

to those questions into the final tax return. The result: less anxiety on the
part of taxpayers, earlier and more accurate tax filings, increased electronic
transmittal of returns (improving the IRS’s efficiency), and a slightly less
antagonistic relationship between the taxpayer and the federal bureaucracy.

Mint and Yodlee

Mint (a service you’ve probably heard of) is a web-based personal finance
management system that lets users aggregate and track their spending and
income on multiple accounts at nearly any bank. Yodlee, a company you’ve
probably never heard of, did the very hard work of figuring out how to pull
financial data from more than 11,000 sources to create back-end infrastruc-
ture to support services like Mint. By licensing Yodlee’s services, Mint was able
to focus its attention on UX and marketing, and thus produced a service that
became enormously popular. In September 2009, Mint was acquired by Intuit
for $170M and disconnected itself from Yodlee’s services, moving to an infra-
structure created by Intuit.

The Mint and Yodlee story has been a very interesting case study in the
value potential of UX. The technical, business, and logistical challenges sur-
mounted by Yodlee were far greater than those of Mint. It would have been
much, much more difficult to replicate Yodlee’s technology than it would
have been to replicate Mint’s. Until their acquisition, Mint was, in essence,
just a thin layer of UX and marketing atop Yodlee’s much more compli-
cated service. You might think that this means there’s more inherent value
in Yodlee than in Mint, but it hasn’t played out that way. Yodlee has been
around for more than 10 years and has consumed more than $100M in capi-
tal. Mint has been around for just a couple of years and managed to parlay
$32M in venture capital into a $170M acquisition.

Chapter 2: Building the Case for Better UX

Regardless of how sophisticated the backend infrastructure might be, users
must have some interface into it for that infrastructure to be meaningful.
The appeal and usefulness of the capabilities available to users through

that backend infrastructure is entirely mediated by the UX quality of the UL
Despite its relatively limited standalone technological value, Mint’s role in
connecting to users was essential in making the Yodlee services meaningful
to the users. Yodlee had other licensees and offers its own online interfaces
into its services, but Mint won the day through superior UX quality. What
allowed Mint to build value in itself was its ability to earn relationships
directly with customers through attention to UX. Mint’s opportunity was
created in large part by the poor UX quality of online services offered by
banks. And Mint’s value ultimately wasn’t dependent on Yodlee; they were
able to sever themselves from Yodlee’s services and move to Intuit’s services
following the acquisition. TechCrunch wrote a concise, interesting article
about Yodlee and Mint, and how it relates to YouTube’s similar, fantastically
lucrative leveraging of Adobe’s backend services; see http.//www.techcrunch.
com/2009/09/18/mint-is-yodlees-youtube/.

This sort of opportunity is often lingering unrecognized inside of companies.
Many companies have spent a great deal of money on building or licensing
a sophisticated set of backend capabilities, but they haven’t seen it through
to a UX-focused frontend. This means there’s unrealized potential waiting

to be seized. No matter how powerful the backend systems are, their value,
success, and usefulness will always be mediated by the quality of the UI. By
reinvigorating the Ul layer with an attention to UX, companies have a tre-
mendous opportunity to validate the investment in the backend and build

new value.

Expose stakeholders to user feedback

Negative user experiences are hard to ignore or argue with. The trouble

is, many companies aren’t listening or watching for them, or they’re being
observed in the wrong ways by the wrong people. For example, some compa-
nies may perfunctorily order a usability study on a product sometime after
it’s launched, and though that study may be professionally performed and
incorporate actual user feedback, it fails to provide motivation for improving
the UX of the product. This happens for several reasons:

Education 65

http://www.techcrunch.com/2009/09/18/mint-is-yodlees-youtube/
http://www.techcrunch.com/2009/09/18/mint-is-yodlees-youtube/

66

* To the extent the study reflects users’ experiences, those experiences have
been aggregated and translated into data, charts, or textual excerpts that
make an effective scientific case but fail to appeal to the intuition or empathy
that helps to generate emotional buy-in to the need for improving UX.

* Usability studies often fall under the sole purview of IT and therefore are
delivered only to IT. IT usually isn’t focused on or driven by concern for UX
on a deployed product, but is instead busy maintaining and supporting it. The
studies may never be seen by anyone who drives budget or product strategies
and who might see the information outside the context of maintaining an
existing system.

o Usability studies tend to be oriented at suggesting small, incremental
improvements to existing UIs, and this approach may fail to recognize the need
for a product to be built around better UX instead of being hacked toward it.

But when user feedback is sought and presented in the right way, it can be
extremely useful in generating support. Since exposing stakeholders to the
experiences of users is intended to play to their empathy and intuition as
much as to their logical perspective, it’s important that the way the informa-
tion is presented have inherent visceral appeal. A major goal in presenting the
user feedback must be to build empathy for users in the minds of your stake-
holders, and that’s easier when the feedback feels more “real” to them.

The easiest way to accomplish this is to simply bring stakeholders along on
user interviews. Few things could be more jarring than to watch a user strug-
gling to accomplish a key task in an application that was presumed to be
simple, or failing to understand how to use the application to achieve the goal
it was built for. And the negative feedback and thoughts the users provide will
lodge directly and unfiltered in the minds of your stakeholders, helping them
to develop real empathy for user needs and creating a sense of urgency to
respond to the problems and opportunities discovered during interviews.

Second best to having stakeholders at the actual interviews is to show them
video. Again, if the goal is to generate empathy and an intuitive understand-
ing of the problems and opportunities, seeing and hearing users is a lot more
effective than reading about them. Audio recordings can also be useful,

even if the interviews involve observing the user working with the software,
because the interviewer can ask the user questions about what she’s trying
to accomplish, why she may be struggling as she works with the software,
and how her experiences are affecting her attitude toward the product and
the company.

Chapter 2: Building the Case for Better UX

User research is covered in considerable detail in Chapter 6, so we won’t go
any further into the subject here, other than to suggest that it may be useful
in making your case to do some of the user research up front, rather than
bundling it all into the process of the project itself.

Quantifying the Business Value

Education alone may not be enough to make the magnitude of the oppor-
tunity clear. Executives trying to balance and triage opportunities need
common measuring sticks by which to judge which opportunity offers the
strongest value. Again, the goal is to convert the perception of a UX-driven
initiative from it being a cost center to it being a tremendous opportunity,
and that case requires hard numbers and facts.

What sorts of numbers and facts will be compelling is so specific to a given
organization and opportunity that it’s difficult to go into much depth here.
But the processes of having connected the user’s goals to the business’s goals
and vice versa should have exposed some clear points where the business
value can be quantified. When you make conservative projections about the
effects of a UX initiative on sales, customer retention, and brand equity, or on
organizational efficiency, training costs, and employee retention, and connect
those projections with existing models for estimating RO, the strength of the
opportunity is usually very obvious. It also can be useful to look to other orga-
nizations pursuing similar initiatives to get a sense of how they’ve benefited.
If this information isn’t readily available, analysts from research firms such
as Forrester and Gartner can be helpful, and they frequently produce articles
and whitepapers that are very valuable in building a quantified business case.

Materializing and Proving the Concept

When you’re trying to generate buy-in for improved UX, written documenta-
tion or low-fidelity prototypes don’t tend to do your ideas justice, nor make

a compelling case on an intellectual and emotional level for stakeholders.
Ideally, youw’ll want to generate the same sense of engagement and enthu-
siasm in your stakeholders as you propose to generate in your users when
pitching your project. We sometimes call the process of materializing the
concept for stakeholders the “puppy dog sale.” Ask anyone whether he wants

Materializing and Proving the Concept

67

68

a dog, his answer is likely to be, “No, thanks.” But if you just put an adorable,
fuzzy puppy in his arms, you’ll find it very hard to get him to give the puppy
back. The value of good UX can at times be hard to explain, but once stake-
holders have had a direct experience of it, they often just get it.

The other benefit of materializing the concept is it helps ensure that everyone
involved has the same image of the project in their minds. If descriptions of the
project’s goals and anticipated outcomes are left in strictly verbal and written
media, everyone is free to form their own preconceptions and mental images
about what will ultimately be delivered, setting the project up for trouble with
unifying those views and managing stakeholder expectations.

There are several ways to accomplish the goal of materializing the concept,
depending on how much money you have available at the outset. EffectiveUI
has seen a rapidly increasing number of clients willing to spend a bit of
money up front to have their ideas brought to visible life and to help demon-
strate a concept and generate buy-in.

Wireframes and graphic comps

As was the case with user research discussed earlier, it can be extremely use-
ful to do some of the work of the actual project up front. The UX architects
and designers produce two key documents during the course of planning
and developing the product that can be very useful in generating buy-in:
wireframes and graphic comps.

Wireframes are representations of an application’s screens, workflows, and
key interactions. Similar to blueprints, they are intended to clearly represent
the structure and elements of an application, but the visual styling and look-
and-feel are omitted. Leaving style out of wireframes makes it easier to focus
on form and function without being distracted by aesthetic details that have no
bearing on how the application will function. These are useful in generating
buy-in because they’re significantly more concrete than any written or verbal
representation of an idea can be, and in being visual media they will tend to
generate a much stronger emotional reaction on the part of stakeholders.

Chapter 2: Building the Case for Better UX

Professionally prepared wireframes also look very sophisticated and pol-
ished, which is useful in enhancing your credibility when seeking support.
Though wireframes are often used as detailed specifications for a Ul, wire-
frames for this purpose needn’t be complete or comprehensive, only repre-
sentative and compelling.

m Products | Library | Tools | Contact | Help | |Seanh ¢ Loguwt

Customize Dashboard +

a/oa Aa ETos oA Wioa
inihem {hibew e [1 aiam

1 =

Example wireframe of an application dashboard

Graphic comps are images of screens from the application with the graphi-
cal look-and-feel applied. We frequently find that even the marginal level of
abstractedness of wireframes is too much of a barrier to comprehension for
certain stakeholders, making a higher-fidelity, more concrete representation
of the application necessary. Though wireframes give a clear view of the
function of the product, graphic comps appeal most directly to the subjec-
tive interests of stakeholders, and people generally perceive them to be more
fully baked and professional than less graphically rich concepts. Preparing
graphic comps can be risky, though, because you may find that some stake-
holders can’t see past objections to colors, graphics, or brand inconsistency
to understand the assertions about UX you’re trying to make.

Materializing and Proving the Concept 69

70

Storyboards are used to
bridge the flow, motion,
and experience gap
between the script

and the screen.

Storyboards

Although wireframes and graphic comps can be visually appealing, they may
fall a bit short in demonstrating the full UX potential of an idea. Products
must be seen and understood in the context of how they fit into a user’s per-
sonal or work life and how they help fulfill user goals. Whereas wireframes
and graphic comps require the viewer to put himself in the shoes of the user
and imagine what the user’s experience will be, storyboards allow the view
to be pulled back from just the application screens to show them in the con-
text of a user’s life, needs, and behaviors.

If you’ve watched the special features content on a DVD, you may already
be familiar with storyboards. In filmmaking, the script alone communicates
the story of the film, but generally fails to communicate or outline the flow,
motion, and experience of the film. Storyboards are used to bridge the flow,
motion, and experience gap between the script and the screen. Likewise, in
software design, storyboards are a useful tool in communicating flow, inter-
action, and, again, the experience of the application.

Animatics

The term “animatics” is another one we borrow from the film industry. In
film, animatics are an extension of storyboards wherein the static story-
boards are built into rudimentary animations to better demonstrate the
motion of the camera and the action in the frame. Animatics in software
are essentially short films produced to further enrich the demonstration

of a concept. If done well, they can be considerably more effective in win-
ning support than storyboards because they can show an application’s UX
and interaction design with a much higher degree of fidelity, and can bring
actual people into the picture to show them interacting with and reacting
to the application. EffectiveUI has seen a significant increase in the number
of clients who need animatics to generate buy-in more widely in their com-
pany, to the point that we’ve established a creative division in our company
dedicated to this service.

The depth, quality, and approach of animatics can be widely varied. Some
aim to demonstrate a broad vision with a lesser attention to specifics,
whereas others are meant to sell a specific concept with a detailed, high-
fidelity representation. Others are less concerned with the application itself,
instead focusing on capturing a view of the user’s experience with it.

Chapter 2: Building the Case for Better UX

Future vision

This approach is similar to the way car manufacturers produce concept cars
in that, although they will never actually be produced, they are an effort

to generate enthusiasm for the future direction of the brand. One of our
clients, Wells Fargo, has a business unit whose purpose is to explore ways
technology can propel their business forward, and they wanted to get the
wider organization excited about some of the possibilities they were looking
forward to. Combining live-action actors with computer-generated effects,
we produced a 12-minute film that showed the future systems in action,
being used by real people along a storyline written to show how these future
systems could enhance the lives of their users. This video was shown widely
through the company over the Web and in conference hall presentations,
generating strong enthusiasm. That video is now publicly available through
EffectiveUI’s website at http:/www.effectiveui.com/index. html#/?env=consulti
ng&pop=1&f=0.

Microsoft has also produced something very similar that illustrates the
“future vision” animatic style nicely: http;/www.istartedsomething.
com/20090228/microsoft-office-labs-vision-2019-video/.

Materializing and Proving the Concept

71

http://www.effectiveui.com/index.html#/?env=consulting&pop=1&f=0
http://www.effectiveui.com/index.html#/?env=consulting&pop=1&f=0
http://www.istartedsomething.com/20090228/microsoft-office-labs-vision-2019-video/
http://www.istartedsomething.com/20090228/microsoft-office-labs-vision-2019-video/

72

Future vision video

UX showcase

Another client had a business unit that wanted to improve the UX of an exist-
ing business-to-business portal, but they were having difficulty getting others
to buy in to the value of improving the UX of a system that already seemed to
be working well enough. We worked with them to identify a few key inter-
actions and tasks that would be dramatically improved by better UX and
created some graphic comps of what those application screens would look
like. We then used animation to bring those graphic comps to life, making a
video that appeared to show a real application being used, showcasing how
engaging the UX could be. At that time, the application didn’t exist at all, but
by simulating what it might be like, the business unit we were working with
was able to quickly generate buy-in and a common vision for what would
become a multimillion-dollar, business-critical initiative that redefined how
the company interacted with its customers.

User experiences

Years ago, we worked with a client that was trying to sell a very innovative idea
to an investor. To help build the case, they produced a short movie with profes-
sional actors who were acting as if they were using the proposed system. This
segment was followed by one where the actor/users gave enthusiastic, positive
feedback about their experience using the product and how it affected them.

Chapter 2: Building the Case for Better UX

This was an effective animatic approach, because the value of the applica-
tion they were proposing to build was in the experience and learning it was
meant to offer its users. Focusing on the anticipated experiences and reac-
tions of those users was a more effective approach than one that might have
highlighted the features of the system.

Other Strategies for Building Support

Exactly how you build the case for an investment in UX will depend heavily
on the opportunity and the internal politics and goals of your company. The
concepts covered so far in this chapter are the weightiest—but by no means
the only—tools for building your case. Following are a few more strategies.

Start with something small

If you can find some small amount of funding and support up front, you may
consider creating something small that helps to prove your point and rein-
force your credibility. The various methods of materializing the concept are
examples of this, but there are other options, including:

e Do some business planning early. Business planning is the process by
which you hone in on the business goals for the product and reinforce buy-in
with your stakeholders, and it’s the subject of Chapter 5. This can be a very
powerful opportunity for building support for your project because it gets
stakeholders involved in setting out the vision and goals for the product,
and exposes them to the problems, opportunities, and user feedback that are
driving the project. Stakeholders who participate in planning will tend to feel
like they’re involved in and partially responsible for a project, rather than
seeing themselves as needing to manage or approve it from a distance.

* Build a proof of concept. Proofs of concept can take a lot of different forms,
depending on the time and money you can put into them. Generally speaking,
the higher the fidelity of a proof of concept’s visual and interaction design,
the more compelling a case it can make. EffectiveUl sometimes translates
wireframes and graphic comps into clickable prototypes, which allow a
person to actually interact with a narrow simulation of the system, to get
a sense of what the experience of using it will be like, or of how certain
problems will be solved. EffectiveUI uses professional designers working in
Adobe Flash to build these, but if you have a decent design sense and more
free time than money, a software product called OmniGraffle Professional
can be a powerful tool for building rudimentary, interactive prototypes.
Another option is to find an eager developer or designer who sees building
such a prototype as an opportunity to improve her portfolio.

Other Strategies for Building Support

73

Lean on the credibility of outside experts

EffectiveUI occasionally involves the support of financial planning partners
who have deep experience in building the objective, financial case for
investments in software and UX. Professional research and analysis firms
such as Forrester and Gartner have published a lot of studies and whitepapers
reinforcing the need for investment in UX, and these carry enough credibility
and authority with executives that they sometimes allow you to bypass the
need for ROI modeling.

Stay under the radar

One of EffectiveUI’s strongest successes was its partnership with eBay to
build a desktop version of eBay’s application. The project was primarily
to experiment with eBay’s UX in a sandbox that didn’t affect their main
website, and the goal of the project was to study some ideas and opportu-
nities more than it was to produce a marketable product. As a result, the
project was generally outside the awareness of most people at eBay, and
it was treated as an experiment rather than as a central priority for the
organization.

74 Chapter 2: Building the Case for Better UX

Chapter 3
Effective Planning and Requirements

Planning and requirements are difficult subjects in the world of
software development, and are often points of bitter contention between
Balancing the realities =~ managers and project teams. It seems to be universally recognized that the
of how software is built typical approach to managing software projects hasn’t been working par-
with the need for a sense ticularly well, and projects are perpetually behind schedule and over budget.
of security by the busi- The development of software—especially innovative, well-designed, user-
ness and stakeholdersis centered products—simply can’t be planned and managed in traditional
a challenge that can be ~ ways, and failure to recognize this and adapt properly can lead to grinding
met successfully, but it~ failures, misconstrued goals, and half-baked products.
requires a major shift in

how managers and stake- Despite the need for unique management approaches, software develop-

holders perceive software ment projects exist in the context of businesses where strong planning and

development. risk management are critical. Publicized release dates, limited budgets,
forces of competition, and other unavoidable pressures push managers to
try to get certainty in what will be delivered, when it will be delivered, and
what it will cost. That this certainty has never been possible before usually
doesn’t cause managers to reassess the overall approach. Instead, they tend
to resign themselves to the belief that software projects are always dysfunc-
tional, and account for that dysfunction by padding their own estimates and

commitments.

’ Balancing the realities of how software is built with the need for a sense
of security by the business and stakeholders is a tremendous chal-
1 lenge. It’s a challenge that can be met successfully, but it requires a
p) major shift in how managers and stakeholders perceive software
projects. That change in perception is, unfortunately, very difficult
and counterintuitive, but it is so critical to succeeding in a software
project that we’ve dedicated the majority of this chapter to trying
to drive the point home. These changes in perception and approach,
though initially they may be hard fought, can brush aside some of the
issues that have historically made building software such a dysfunctional,

76 Chapter 3: Effective Planning and Requirements

brute-force, grinding process. They can improve your company’s competency
in building software products, dramatically increasing the chance of a suc-
cessful outcome. In the end, whatever initial challenges arose from changing
perceptions is more than made up for in the avoidance of worse difficulties
and greater risk of failure.

So, while this book is dedicated to helping you build and apply good prac-
tices in your software project, much of this chapter is meant to first break
you and your company of bad habits. The deleterious effects of a misguided
approach to planning and requirements can easily negate any good practices
and hard work. Trying to work with bad planning and requirements is like
trying to plant flowers in concrete or ice skate uphill. It’s possible, but it’ll be
very, very hard, and that undue strain will get in the way of doing anything
successful or artful.

0- ‘ .
@Q‘o ‘@ ‘.

Uncertainty and the Unknown

Uncertainty and the unknown are enormous, unavoidable, and fundamental
components of every software development project. Being at peace with this
reality means you can approach the project in a way that adjusts and flows
to account for the unknown. If you fight uncertainty and the unknown—or,
even worse, if you suppose they don’t exist—it’s a path to defeat.

Uncertainty and the Unknown

77

78

The mistaken belief that uncertainty can be entirely stomped out through
upfront planning and everything can be known in advance is the root of
many of the worst problems and errors in the management of software proj-
ects. This arises from the misapprehension that software development is com-
parable to and can be managed like other types of large-scale engineering proj-
ects—building a bridge across a valley, for example. Bridge building and soft-
ware development both have components of science and engineering, and of
art and craftsmanship. But the role of uncertainty and the unknown, and the
way science, art, engineering, and craftsmanship work together throughout
the course of the project are very different. Those differences demand a fun-
damentally different approach to management of the project.

The notion may seem discouraging, but it’s much more accurate to compare
software development to war than it is to compare it to bridge building. While
the battle of software development is fought more with electrons and Mountain
Dew than bullets and napalm, the battlefield is a complex, dynamic, unpredict-
able system of activity residing in shifting political and operational contexts.

The Humility of Unknowing

I am the wisest man alive, for I know one thing, and that is that I
know nothing.

—Socrates

To demonstrate how uncertainty and the unknown are inevitable compo-
nents of a software development project, we’ll examine why the bridge-
building analogy fails and the war analogy succeeds. But even with the

aid of analogies, it’s extremely difficult to explain why uncertainty and the
unknown are unavoidable to someone who’s never been in the trenches of a
software development project. Much of the understanding comes from see-
ing how design, creativity, and inspiration factor into every aspect of build-
ing an application. It also comes from having seen how false certainty, and
the demand for it, can cause failure and lead to poorly designed products.

1 In the war of software development, the enemy is failed product design. The enemy is most certainly not the stakeholders and man-
agers, though frustrated project leaders may slip into viewing them as such. Stakeholders and managers are allies, and like all alliances

of forces, a certain amount of diplomacy is necessary to ensure that the allies are all pursuing the same goals and working in concert.

Chapter 3: Effective Planning and Requirements

It’s difficult to explain or prove this fact except to state it this way for now:
you understand your project far less than you think you do.

And so do your stakeholders, by the way. For your project to be successful,
you need to cultivate in yourself and in your stakeholders a certain humility
and a recognition that, for as much as you know, you know very little, and
that the essence of the project is to investigate and solve a complex problem
and not simply to implement a known solution. Embracing this humility of
unknowing isn’t a resignation to defeat or admission of weakness, but rather

is a state of wisdom required to allow you to succeed.

The Weakness of Foresight and Planning

The great uncertainty of all data in war is a peculiar difficulty,
because all action must, to a certain extent, be planned in a mere
twilight, which in addition not infrequently—Ilike the effect of a
fog or moonshine—gives to things exaggerated dimensions and
unnatural appearance.

—<Carl von Clausewitz, On War

Everything required to design a bridge to a valley is knowable

in advance and can be planned to an extremely high level [8
of accuracy before construction begins. All of the important = é
goals, variables, and constraints can be accurately obtained

before design begins.

Remember that, as we discussed in Chapter 1, design isn’t limited

to visual and artistic design. Just as an engineer is said to design a
bridge or an airplane, a general can design a solution to a battlefield
situation, software engineers can design a technical solution, and
UX professionals can design interactions and workflows. Design is
the application of thought and creativity toward the solution of some
challenge or problem, and does not require that the output be of a
visual or artistic nature.

The Weakness of Foresight and Planning

79

80

Once those key considerations have been discovered, the design of the proj-
ect begins and can be entirely completed before construction starts. With
accurate and complete designs in hand, construction is then all about ensur-
ing the pieces all come together as designed. Construction is not concerned
with any remaining questions about the design and isn’t burdened by the
risk that the design will change during the course of construction.

By contrast, a general preparing for battle can estimate the strength and
disposition of his forces, the resources and capabilities available to him, the
attitudes and aptitudes of his commanders in the field, the lay of the battle-
field, the strategic goals of the battle, the state of the enemy’s forces, and the
parameters for success. He also has history and personal experience to help
him intuit how events will unfold. Based on this knowledge, he can formu-
late a plan for the battle.

But this plan, no matter how carefully devised, is inherently incomplete and
imprecise. It is wholly premised on estimates of the conditions before the
battle and entirely ignorant of the unforeseen conditions that arise during
the battle. These unforeseen conditions are based as much on the vagaries of
weather, emotion, chance, and uncertainty as they are on even the best-laid
plan. This reality is the basis for the famous quote:

No battle plan survives first contact with the enemy.

—Helmuth von Moltke

The same is true of software development. No matter how well you think
you understand the domain and no matter how earnestly you’ve thought
through the requirements, there is still great uncertainty in the original facts
and premises and a vast depth of the unknown still awaiting you. As with
battle, the outcome will be determined at least as much by what comes dur-
ing the course of the project as by what comes before it.

Not all unknowns are bad, by the way; it’s in solving the unforeseen problems
that great design and inspiration can take place. Some unknowns may be rev-
elations about your customers and users that fundamentally change how your
business interacts with them, or they may be undiscovered opportunities for
progress, innovation, efficiency, and improvements to your company’s bottom

line.

Chapter 3: Effective Planning and Requirements

A major reason why uncertainty is unavoidable is that software develop-
ment, unlike bridge building, requires most of the design to happen at the
same time as construction. Construction in the bridge-building business is
the application of craftsmanship against the realization of the design plans
made prior to construction. Construction in software development is every-
thing from UX design to software engineering to quality assurance.? No
amount of upfront planning can keep design from being an essential compo-
nent of the development process. Since design is the process by which prob-
lems are identified and solved, it follows that if design can’t be completed
before development begins, many of the problems and solutions have yet to
be identified and cannot be accounted for in any early project plan.

None of this should be taken as an argument for not doing any planning at
all. The value and role of planning is still strong, but it should be approached
and used differently in light of an understanding of its inherent weaknesses
and realistic value.

Friction in a Complex and Peculiar System

Everything is very simple in war, but the simplest thing is difficult.

These difficulties accumulate and produce a friction, which no man can
imagine exactly who has not seen war.... So in war, through the influence
of an infinity of petty circumstances, which cannot properly be described
on paper, things disappoint us, and we fall short of the mark. A powerful
iron will overcomes this friction, it crushes the obstacles, but certainly
the machine along with them.... Friction is the only conception which,

in a general way, corresponds to that which distinguishes real war from
war on paper. The military machine, the army and all belonging to it,

is in fact simple; and appears, on this account, easy to manage. But let
us reflect that no part of it is in one piece, that it is composed entirely of
individuals, each of which keeps up its own friction in all directions....
This enormous friction, which is not concentrated, as in mechanics, at

a few points, is therefore everywhere brought into contact with chance,
and thus facts take place upon which it was impossible to calculate, their
chief origin being chance.

—Carl von Clausewitz, On War

2 The word “development” is often used to refer to what software engineers do in coding an application, but we'll be using it in the

more general sense that constitutes everything that goes into bringing a project to life, which includes design and user research.

Friction in a Complex and Peculiar System

81

82

The job of the bridge designer is to build a fixed system that can span a cer-
tain distance and withstand a variety of forces variably acting on the struc-
ture. A bridge, one hopes, is a fixed and solid object. It is composed of bits of
metal welded to other bits of metal, cables attached to anchorages, arrange-
ments of trusses, and so on. Though the bridge is a system of individual
pieces, it is a simple, static system because once those pieces are properly
assembled, they can be viewed reliably as a whole and each piece interacts
only with those pieces it is in contact with. When testing a bridge design
against external forces, the engineer first tests each piece, then each connec-
tion, then each structure formed by each connection, then each larger struc-
ture formed by the connection of smaller ones, and so on, until she can test
the bridge as a whole system. If the individual component tests are entirely
reliable, the whole system tests are also reliable without needing to reexamine
the component level.

In addition, the process of building the bridge is a strongly centrally orga-
nized system. Although there is great complexity to how the pieces come
together and systemic ripple effects can be caused by a breakdown in one
part of the construction process, the entire system is perpetually reorga-
nizing itself to the same static, central goal: building the bridge explicitly
defined in the designs.

Software systems and the development of them are, on the other hand, com-
plex systems. Specifically, they’re Complex Adaptive Systems (CAS):

A Complex Adaptive System (CAS) is a dynamic network of many
agents...acting in parallel, constantly acting and reacting to what

the other agents are doing. The control of a CAS tends to be highly
dispersed and decentralized. If there is to be any coherent behavior in
the system, it has to arise from competition and cooperation among
the agents themselves. The overall behavior of the system is the result
of a huge number of decisions made every moment by many individual
agents.®

Understanding why this is the case in software helps to further the
understanding of the role of uncertainty and the unknown in software
development.

3 John H. Holland, Complexity: The Emerging Science at the Edge of Order and Chaos (Penguin Books, 1994).

Chapter 3: Effective Planning and Requirements

The CAS of software

In object-oriented programming (OOP), every element of code that goes into
a product—every class, component, library, data connection, and so on—is a
discrete “agent.” That’s what makes OOP

an effective approach to software develop-

BRIDGE CONSTRUCTION

ment: it allows a complex software sys-
tem to be built out of individual, smaller,
comprehensible pieces with their own
instructions and behaviors. Because each
of these pieces—these agents, like indi-

vidual soldiers on the battlefield—acts and
reacts according to its own situation and
instructions, and according to the state

of the system, the result is a complex sys-

tem that’s far greater than the sum of its
parts. Whereas a bridge is the sum of its
parts—the pieces of metal and welds and

everything else all add up to a single, static
bridge—a software system is the behav-

ior created by the dynamic interaction of Software doesn’t lend itself to discrete phases for testing in
the same way that construction projects often do.

its parts. The complexity further multiplies
when you consider that the human user is
an agent in the system, and the system must accommodate a wide diversity of
users who don’t behave in predictable ways. Unlike with a bridge—where, no
matter what variable forces are in play, it’s always the same bridge—a single
software system can produce a near-infinite number of possible different
behaviors and experiences.

Friction in a Complex and Peculiar System

83

84

Returning to Clausewitz’s thoughts on the complexity of the military enter-
prise, if you recognize that software is composed not of large, static units,
but rather a multitude of individual agents, “each of which keeps up its own
friction in all directions,” you can begin to understand why even the sim-
plest thing can be difficult in unforeseen ways. The fact that the agents in the
software system have the potential to act, react, and interact in unexpected
ways is also the reason why bugs become an increasingly difficult problem
as a product grows, because the complexity of the system and the profusion
of potential interactions and behaviors are increasing nearly exponentially.
In construction, as the staging area where you keep all the pieces empties

as the project progresses, you're left with fewer and fewer questions; things
become simple the closer you get to completion. The opposite is true in soft-
ware. As you begin building, you start to realize how dynamic the system is
and to see ways it might behave and ways people might use it that you hadn’t
considered before, and as you continue to build, the complexity and possi-
bilities multiply.

The vast potential friction in the complex system of software is a key reason
why the unknown bears so heavily on software development. Something
that seems simple on paper is, in fact, difficult, and the scale and effect of
that difficulty can’t be accurately estimated or known in advance because
chance, the unintended, and the unexpected are such strong factors, and a
complex system can’t be fully comprehended by any person.

The CAS of software development

It’s fascinating, though perhaps discouraging, to consider that the process of
developing software is itself a CAS. In this case, the agents in the system are
not only the agents in the software itself, but also the members of the project
team, the stakeholders, the development infrastructure, and even the office
environment. With a team building a bridge, no matter what unforeseen com-
plications arise (delays in materials, weather, poor workmanship, and so on),
the entire system is constantly reorganizing itself around executing on the
design since that design is entirely accurate, comprehensive, and stable. So,
notwithstanding any happenstance during the construction phase, the out-
come will always be the same: one predefined bridge.

Chapter 3: Effective Planning and Requirements

The course of a software development project, on the other hand, is highly
dependent on the idiosyncrasies of every agent in the system interacting with
each other and the effect of happenstance, because there is no accurate, com-
prehensive, and stable plan around which to constantly reorganize. The condi-
tions and progress of yesterday become the basis of what happens today, which
determines what happens tomorrow, and ultimately shapes the end result.

This is easy to imagine if you consider assigning the same project to two differ-
ent, equally qualified project teams. The initial conditions are essentially the
same, but the agents—the people, their office environments, their infrastruc-
ture, and so on—are different. From the very first minute of the commence-
ment of the two projects, they become divergent. Though equally qualified, the
teams will nonetheless approach and solve problems differently, rely on differ-
ent experience in decision making, and have different internal politics. They
will also be subject to different happenstance events, such as having certain
team members absent at certain times, getting different answers to the same
questions by asking different stakeholders, and getting bogged down by differ-
ent types of problems and bugs.

The conditions and progress of yesterday become the
basis of what happens today.

day 1 day 2 day 5 day 10 day 25 day 40

Both teams will hopefully produce a working piece of software, but the two
products will be very different from each other. This fact is not problem-
atic in itself, but is a further indication of how strong a role the inestimable
effects of chance and friction play in the course of a project. In other words,
this is yet another reason why the unknown is such a huge and unavoidable
component of a software project.

Friction in a Complex and Peculiar System 85

86

The peculiarity of the system

Further, every war is rich in particular facts; while, at the same
time, each is an unexplored sea, full of rocks, which the general
may have a suspicion of, but which he has never seen with his eye,
and round which, moreover, he must steer in the night.

—Carl von Clausewitz, On War

The most reliable way to avoid uncertainty is to build products and solve prob-
lems precisely like others you’ve done before. This works strongly in favor of
the bridge builder, who has the opportunity to use essentially the same bridge
design to span a great number of different valleys. Though they may be differ-
ent lengths and be subject to different forces of nature, the scope of the prob-
lem and the design is a lot less than it was the first time that type of bridge
was designed. This allows a much greater predictability in the project and
helps the bridge designer make accurate estimates of cost and schedule. It also
makes it possible for her to point to the last bridge she built and say, “I'll make
you one just like that one,” which gives her client a much clearer picture than
a written proposal, blueprints, or artist’s renderings ever could.

Not so with software. Odds are, the product you’re trying to build is very
different from any other product that’s been built before and certainly dif-
ferent from any you and your team have ever built, especially considering
the role of emerging technologies, platforms, devices, and media. But even if
you’re trying to rebuild an existing product that your team is very familiar
with, this go-around is nevertheless certain to be “rich in particular facts.” If
the original product were perfect, you wouldn’t be rebuilding it, so the new
version probably requires some significant improvements and changes or is
operating under differing constraints and priorities.

Since software and software development are complex systems, a changed
starting position means everything that follows will be different. Problems
that have been solved before will have to be solved again under entirely new
circumstances, and chance and friction will play out in new and unexpected
ways. This is particularly the case with UX-focused products, because the
mandate for better UX changes how every problem is approached and brings
in the contributions of people and domains of thought that didn’t exist for

the previous version.

Chapter 3: Effective Planning and Requirements

So, in short, every software project is unique and tremendously different from
any other. Each project will have its own wealth of peculiar details, problems,
solutions, and inspirations. This is what makes anticipating any approximations
of scope and any corresponding estimates of cost and timeline impossible and
unreliable, even for the most experienced and professional companies and teams.

But never fear; this doesn’t mean that all commitments are impossible or inher-
ently not credible. Solid commitments to schedule and cost are, within the right

context, entirely possible. However, commitments to a certain scope are not.

Subjectivity and Change

Change is the inevitable consequence of uncertainty and the unknown.

The more that’s specified from the outset, the more change there’s likely to
be as discoveries are made. This change can come from within the project
as opportunities, risks, and issues are encountered. It can also come from
outside the project as the priorities of your company and stakeholders shift,
changing the context and priorities for the project.

Change demanded by stakeholders, however well intentioned or valuable,
can be especially pernicious. Here are a number of requests that our happy
bridge builder never has to worry about getting midway through the con-
struction process:

e Can we move the bridge 17 feet to the left? It’s only 17 feet, so that’s not a big
deal, right?

* Our CEO justread an article about how a cantilever bridge collapsed in
Quebec in 1907, so he’s worried about risks you failed to tell us about. Please
change the bridge design from cantilever to suspension.

* We aren’t very happy with how the bridge looks so far. Can you propose a
change in the kind of materials you’re using to make it more attractive?

* The natural gas pipeline that we ran under the bridge without telling
you just exploded and partially destroyed the bridge. Why didn’t you
build it to withstand explosions? Please fix the damage and give it proper
reinforcement, coordinate with our gas pipeline vendor, and have everything
done within the original timeline and budget.

* Remember when you asked us whether the bridge would ever need to support
vehicle traffic and not just pedestrian traffic, and we weren’t sure, so we just
settled on the cheaper pedestrian version? Well, we were wrong. What can
you do to make this work for our needs?

In short, every software
project is unique and
tremendously different
from any other. Each
project will have its own
wealth of peculiar detail
problems, solutions, and

inspirations.

Subjectivity and Change

S,

87

88

* My nephew is majoring in civil engineering and he says the best, most
advanced kind of bridge is a side-spar cable-stayed suspension bridge. I don’t
really know what that means, but why aren’t we getting the most advanced
bridge possible?

* We've hired an offshore company to start building from the other side of
the valley so we can cut the construction time in half. They’re making some
improvements on your design, so please coordinate with them to make sure
everything comes together ahead of schedule.

In software, scarcely a week goes by without some comparable request com-
ing down from stakeholders. Because most people don’t understand how
software is built and because it has no material, tangible presence,
they don’t have any basis for understanding what is hard and what is
easy. They tend to think everything is easy. It’s obvious that moving
a bridge 17 feet to the left is an enormous undertaking, but a compa-
rable change in software can be appreciated only by those building it.

It’s also extremely important to remember that success in building software
is defined in the minds of your stakeholders, not by the objective value of
the product itself. A bridge is a success if it fulfills the original design, spans
the valley, and withstands reasonable stressors. But software is often judged
with much more subjective criteria by stakeholders. If the final product
accomplishes 99 out of 100 goals, but the one missing goal was the pet fea-
ture of a key stakeholder, you may have failed. If the product exceeds expec-
tations in every functional dimension but fails to integrate well with the
visual standards of your company’s brand, you may have failed.

This is why taking control of and maintaining your stakeholders’ expecta-
tions is pivotal to your success. The one mitigating factor at your disposal,
though, is that positive feedback from users can usually trump any stake-
holder’s misgivings and objections. Usually. Even this factor depends on
your ability to cultivate a sense of deference to users in your stakeholders.
Educating your stakeholders on the value of UX and user adoption doesn’t
end once you’ve gotten them to sign off on a budget for the project; their
understanding must be continually maintained. Much of your project’s suc-
cess will depend on managing stakeholder perceptions and expectations, so
each chapter in this book offers advice about how to work with stakeholders.
The business planning and user research stages discussed in Chapters 5 and
6 are crucial to getting your stakeholders into the right mindset.

Chapter 3: Effective Planning and Requirements

Lessons from Uncertainty and the
Unknown

The art of war teaches us to rely not on the likelihood of the
enemy’s not coming, but on our own readiness to receive him; not
on the chance of his not attacking, but rather on the fact that we
have made our position unassailable.

—Sun Tzu, The Art of War

Having accepted that uncertainty, the unknown, and change are unavoid-
able, you can bring your project to a position of strength in its ability to
accommodate them. In fact, you can turn them from threats into a source of
value and strength. There are a lot of corollary lessons that become appar-
ent with this new understanding. These lessons strongly underlie how we
approach planning, requirements, and process.

The Further You Are in the Project,
the Wiser You Are

The entire duration of the project involves the discovery of problems and
their solutions and the constant contributions of design and inspiration. As
progress moves forward, you gain greater and greater understanding of your
users’ needs and the possibilities, goals, constraints, and scope of the project
as the window of uncertainty closes toward the completion of the project.
That greater understanding includes a more complete understanding of and
respect for the overwhelming complexity of the project that helps you put
things in the proper perspective.

It follows, then, that the later you make a decision in a project, the more
likely it is to be the best one by virtue of having been made from a position
of greater experience. This is one of the reasons that attempting to compre-
hensively define the functional requirements of a product on day zero is
absurd and futile; that’s the day when you know the absolute least about the
product, and any decisions you make on that day are very likely to be incor-
rect and eventually (hopefully) changed. Decisions taken too early and stated
as fact rather than conjecture risk preventing informed thought and design
from taking place for the betterment of the product.

The Further You Are in the Project, the Wiser You Are

89

90

This means that decisions that can be made later generally should be

made later. We’ll get into this more as we discuss how to approach realistic
requirements, but this understanding demands that the initial requirements
for the project be specific and concrete with respect to only what is actu-
ally known. They should be silent or permissive on any question that can be
answered in the future from a more informed position.

Start Development As Soon As Possible

Development is where the majority of design happens, and design is the
activity that discovers unknown problems and their solutions, so develop-
ment should begin as soon as possible. Remember that, as we discussed in
Chapter 1, development isn’t the exclusive domain of software engineers.
It’s the stage where everyone on the project team collaborates to develop a
solution. The sooner you begin, the faster the learning comes and the sooner
unknown challenges and opportunities are discovered. This is an additional
argument against spending a lot of time specifying and planning the project
up front, because it means you’re spending time and money guessing at the
solution when you should be investigating and discovering it.

Written Functional Requirements and
Specifications Are Inherently Flawed

Functional requirements and specifications are written before develop-
ment begins, so they’re immediately handicapped by having been made
from the least informed perspective. It’s also extremely difficult to make

an effective language-based description of an experience, interaction, or
visual design. And by virtue of their written form, they’re never as fluid and
dynamic as the project itself. It’s pointless to try to keep the written require-
ments and specifications up to date (which no one ever does, anyway),
because then you’re just updating them to match what’s already happened
in development. That defeats the ostensible purpose of specifications guiding
development, and there’s no point in maintaining a written history of your

product as it develops.

The production of detailed written functional requirements and specifica-
tions poses a number of other problems:

Chapter 3: Effective Planning and Requirements

e They’re usually extraordinarily long and take a very long time to develop,
so they delay the start of development and take budget and resources away
from the building of the product.

* Being so long and so focused on the details and minutiae, they’re rarely read
in their entirety and make it difficult to see the forest for the trees.

* The focus on specificity and detail can in fact cause everyone on the project
to lose sight of the big picture (if they had sight of it in the first place) and get
caught up in focusing on the details.

o They tend to stifle thought and innovation by the development team because
they can just follow the letter of the specifications without questioning
whether they reflect good decisions and thoughtful approaches.

o They usually wind up being an unrealistic laundry list of every possible
feature, rather than a studied, thoughtfully scoped product framed by
reasonable constraints. This also means that every pet idea and feature
of each of your stakeholders will be in the document and will therefore be
apparently committed to, leading to potential conflict as unnecessary or
infeasible ideas and features fall by the wayside.

* They tend to cause stakeholders to think, having spent weeks exhaustively
laying out the specifications, that their work is done and all the questions
have been answered. This leaves them with a false sense of certainty that
you’ll later inevitably have to defy, and also means they won’t be around to
participate during the development phase.

Our new clients often come to us with a phonebook-size binder of documen-
tation, or ask us to help develop one to satisfy a bureaucratic requirement in
their organization. We’ve even seen clients spend more money on building
the specifications than on developing the product itself. Invariably, when we
finish a project and look back on the early documentation for it, the docu-
mentation and the product bear no resemblance to each other.

Putting together written requirements and specifications is not entirely with-
out value, though, so long as it’s perceived in the right way. The goal should
not be to build a definitive description of the product, but rather to do a dry
run of the product design, to get the team to start thinking through the prob-
lems that lie ahead. To quote another famous war strategist:

In preparing for battle, I have always found that plans are useless,

but planning is indispensable.

—Dwight Eisenhower

Written Functional Requirements and Specifications Are Inherently Flawed

91

92

Rather than thinking of early documents and planning as strict require-
ments, it’s more correct and useful to view them as guidelines. They’re the
encapsulation of the best understanding that existed at the time. This under-
standing cannot stagnate at such an early stage; it must deepen and improve
through the whole course of the project. Setting out initial guidelines from
the perspective of the business and the user are the subjects of Chapters 5
and 6, which cover business planning and user research, respectively.

Commitments to Scope Are Untenable

Any estimation of scope, having been defined in the “mere twilight” of the
project kickoff or contract negotiation, cannot possibly be accurate. And a
comprehensive description of the scope of a project is so enormously complex
that it simply can’t be done; the only perfect description of a product is the
product itself.

If the estimated scope is incorrect and incomplete, any subsequent estimate or
commitment will be incorrect and incomplete. This is the root problem of the
mistrust that often exists between managers and project teams, or between
clients and their software services vendors. Managers look for certainty of
scope, schedule, and cost—the so-called three-legged stool—and press for firm
commitments to all of them. When scope inevitably changes, it makes the stool
teeter off balance. More often than not, you find yourself either face-first on
the floor or sitting on a much shorter stool than the one you thought you were
building. Neither position is particularly dignified in the eyes of your stake-
holders. In our experience, investing in UX yields such tremendous benefits
that the period of uncertainty and the flexibility required with respect to the
three-legged stool prove to be well worth it when the project ends.

Relish and Respect the Unexpected

Everyone carries a lot of preconceptions and assumptions into and through a
project. The application of creativity and intelligence against the challenges,
opportunities, and unknowns through the course of the project is bound to
take the project down unexpected paths, and to challenge preconceptions
about the product’s users, its requirements, and the best solutions to key
goals and problems. Those who put excessive faith in their own preconcep-
tions or who are averse to the unexpected will find the progress of the proj-
ect constantly clashing against their expectations and sense of security.

Chapter 3: Effective Planning and Requirements

What you get back from the project team is often going to be significantly
different from what you expected because the team has gone through an
in-depth study and design process. If you have an intelligent, creative,
professional team operating in the proper context, its discoveries and solu-
tions should be much more solid than anyone’s preconceptions and should
therefore be respected and trusted. People involved in the project who are at
peace with uncertainty and the unknown will actually come to enjoy unex-
pected turns and discoveries, because these offer lessons that are valuable
beyond the product itself. They are evidence of innovation and effective,
creative design at work. And in order to respond effectively to the unex-
pected without getting bogged down by new questions, the team must learn
to respond to unknowns quickly and intelligently. This builds a strength and
nimbleness that benefits the whole project.

Intolerance of Uncertainty Is Intolerable

People who oversee software projects have an entirely reasonable need to

be able to plan for them in the context of the larger organization and to meet
commitments of their own—and that need typically manifests as pressure for
certainty. Some certainty can be offered, but some things are impervious to
certainty. This is an immovable fact, as we’ve gone to great lengths to explain
so far in this chapter. Unfortunately, it’s extremely difficult to convince any-
one who hasn’t been in the trenches of software development of this fact. Too
often, those people mistakenly view a person who humbly and wisely recog-
nizes reality as being mealy-mouthed and resistant to accountability.

Intolerance of uncertainty causes very serious problems. It pressures project
leaders to present things as certain when they should know they’re not, set-
ting up future conflict and injuries to credibility. It also tends to cause proj-
ect leaders and team members to be overly optimistic in their projections
as they try to offer pleasing answers to their stakeholders. As the project
progresses and the weaknesses of their projections become apparent, the
project team will often hold the stakeholder at a distance, in the hope they
can scramble to pull off a last-minute miracle. This means that challenges
to the project that should have been identified and disclosed as soon as they
happened accumulate until the end. At that point, it’s too late for the stake-
holder to help or make adjustments, and they’re blindsided by failure and
disappointment.

Intolerance of uncertainty

can cause some serious

problems. It pressures

project leaders to present

things as certain when

they should know they’re

not.

Intolerance of Uncertainty Is Intolerable

93

It’s certainly the responsibility of the project leader and team to act more
responsibly than this, but it’s very difficult to build a product in an environ-
ment of intolerance of uncertainty. Anything you can do to help stakeholders
understand how to create the right climate of accountability and realistic
expectations (giving them a copy of this book, perhaps?) will go a long way
to ensure a successful project. The project’s focus on delivering superior UX
quality provides a helpful star by which to help people navigate. Ultimately,
the project and your company are accountable to the needs of the user as an
objective point of reference. Continually reorienting the team and the stake-
holders to the UX goals of the project can help you slough off unreasonable
expectations, focus on what’s important, and take the best advantage of the
unknowns as they arise.

Effective Requirements

Requirements need to be of a nature and in a form that allow them to adapt
and remain useful and relevant through the winding course of the project.
This is why the most useful approach is to think of the requirements as a
framework for answering questions rather than a catalog of answers. The
framework, if devised properly, will be stable because it will be composed
only of knowable goals and constraints and not of solutions or designs that
will be subject to future design and change. It should also be wide enough

to allow room for a variety of successful outcomes (success is a range, not a
single point) but narrow enough to fence out most unsuccessful outcomes. The
framework requirements can be pictured as a frame describing the bounds of

a successful solution.
BUDGES

Figure 3-1. Framework
requirements describing the
bounds of a successful solution

TEcHNCA
o HNY .
INSTRAWN

94 Chapter 3: Effective Planning and Requirements

96

In this visualization, the dense area represents the successfulness of the solu-
tion, while the constraining boundaries represent the framework require-
ments. This portrays a very effective set of framework requirements because
the framework encompasses barely more than the most successful solutions, is
wide enough that it encompasses all possible successful solutions, and is dead
on center so that the tendency will be for answers to questions to also find their
way to the center.

Throughout the course of the project, thousands of little questions and deci-
sions will need to be made for which there won’t yet be an explicit answer.
These questions are like rubber balls tossed into the framework; they bounce
from wall to wall and tend to arrive near the center. Thus a successful frame-
work provides not the answers to every question, but the design parameters
for how team members can themselves discover answers and make deci-
sions, large and small, through the course of the project.

The framework requirements—being a set of constraining parameters
rather than a list of answers—are a description of the problem and not of the
solution. In our experience, most companies planning a new product haven’t
had a chance to develop a solid understanding of the problem they’re trying
to solve, let alone how they’ll solve it. A phonebook-size binder of require-
ments documentation represents an exhaustive attempt to accurately define
a solution. But, as you’ve learned in this chapter, that view of the solution is
guaranteed to be inaccurate. This approach is an attempt to answer every
question before the real work of design has had a chance to begin.

Recognizing that the purpose of requirements is to define the problem and

not the solution, all efforts should be made to ensure that guesses at the solu-
tion don’t wind up becoming parameters in the framework requirements. The
framework parameters need to be entirely reasonable, accurate, and stable,
but they also need to be flexible and restrained. When guesses at the solution
are built into the framework, they risk being wrong and falsely limiting or mis-
leading design decisions, undermining the value of the framework itself.

It’s a hallmark of good framework requirements that they remain stable and
unchanging through the project, because it means they haven’t crossed the

Chapter 3: Effective Planning and Requirements

line into areas reserved for the design of the product. The closest analog for
good framework requirements is the U.S. Constitution, because it’s general
and flexible enough to provide a framework for answering questions that
the founding fathers could never have possibly foreseen, and yet remains a
resilient foundation for democracy, stability, and the rights of citizens.

How Framework Requirements Are Built

The great news about framework requirements is that they don’t require 12
weeks of Sisyphean planning efforts and documentation the length of War
and Peace. While clients often come to us with their own first attempts at
requirements, the first part of a project is still spent building the framework
requirements.

The process of building framework requirements involves investigating
each of its key parameters, and then distilling the findings of those investiga-
tions into a form that can be easily used and understood by everyone on the
project. The parameters that go into a project’s framework vary from case to
case, but they generally fall into three categories:

o The needs of the business
o The needs of the user

o The technical and infrastructural constraints

The framework shown earlier in Figure 3-1, for example, was composed of
six example parameters:

* Business goals

* Schedule

* Budget

e User goals

* Context constraints

e Technical constraints
In the next three chapters, you will learn how the business, user needs, plat-
form and context constraints, and technical constraints are investigated, dis-

tilled, understood, and communicated to form a usable, realistic framework
of requirements.

How Framework Requirements Are Built

97

98

Extending the requirements

The essence of building a software product is an ongoing evolution and
deepening of the team’s understanding of the requirements through ongoing
design, with engineering following close behind. The framework require-
ments are a starting place and become, as the project progresses, the exte-
rior frame within which tighter and tighter frameworks of understanding

are developed.

8UDGET

?CHED(/
e

%%:)NISHQ

7ECHNICR
Co, o
NSTRAW

Figure 3-2. Extending the framework requirements

Each step of the project, including the design and engineering work that go
into building it, are elements of an ongoing investigation of what the product
should be. Every document that’s produced, every meeting that’s conducted,
and every bit of design that’s done is oriented at honing the collective under-
standing of the product. The result should be an increasingly narrow, multi-
faceted, and accurate view of the requirements with an ever-decreasing area
of uncertainty. The final product represents the moment when all is known
and all questions have been answered, and so would be a single, perfectly

round point at the center.

Chapter 3: Effective Planning and Requirements

Reexamining the Three-Legged Stool

The fact that commitments to scope are untenable seems to fly in the face
of the managers’ need to have a reasonable degree of certainty of what
they’ll be getting. But not basing commitments on a specific, early guess
at scope actually gives them a greater degree of certainty, so long as they
trust you and the project team.

Errors in and changes to a scope commitment can have a wide effect on

a project. The scope may prove to be overambitious given the budget and
schedule available, forcing the project leader to go back to his stakeholders
to revise scope or get more money and time. Ambiguous or largely inaccu-
rate initial guesses at scope can cause a project to run far off in the wrong
direction, requiring scope to be cut or money and time to be added to bring
it back on course. Overwhelmingly long and specific scope documents can
fail to carry through the company’s and the stakeholders’ overall vision for
the product, leading to a product that disappoints and may require more
time and money to bring up to suitability.

So, in short, by forcing a commitment to an early guess at scope, .
managers are, in fact, contributing to the peril that all of com- —\\
mitments they were relying on will be challenged and changed.

The reason for this becomes very obvious if viewed in the form a

pseudo-equation for the traditional three-legged stool of commit-

ted scope, schedule, and cost:*

product = f(scope & schedule & cost)

The problem here is that whereas schedule and cost are known, scope is not.
This means this equation is inherently unsolvable until scope is known. As
we’ve said, the only true and full definition of the scope of a product is the
product itself, a fact that would make this the case:

product = scope
And invoking the rule of equivalence, we end up with:

product = f(product & schedule & cost)

4 The ampersand (&) is a logical symbol, but is being applied very loosely here—as a placeholder, essentially—because the way

the variables are related isn't knowable and isn't important to the argument being made.

Reexamining the Three-Legged Stool

99

100

The only way this equation is meaningful is if schedule and cost have no
effect whatsoever. But schedule and cost are certainly key factors that will go
to define and limit the product. In fact, it should be uncontroversial to leave
scope out of the picture and say that the product will be some function of
schedule and cost:

product = f(schedule & cost)

Then we follow a simple chain of logic that leads to a happier place:

product = f(schedule & cost)

&
product = scope
therefore

product = scope = f(schedule & cost)

In the end, the fact that scope is unknowable until the completion of the proj-
ect means that the notion of scope is unusable as a defining parameter for
the product. The project’s requirements must be a function only of knowable
variables, of which scope is not one.

This is a fact that’s acknowledged and successfully addressed by the frame-
work approach to requirements. The unknown value of product is ultimately
solvable by a study of the parameters that represent its constraints, which
are variables that all have known values. The example framework presented
earlier in the chapter would, for example, have a pseudo-equation like this:

product = scope = Tf(schedule & cost & business_goals & user_goals
& platform_and_context_constraints & technical_constraints)

Every variable of which the product and scope are a function is knowable,
and therefore the equation is solvable. Schedule and cost can be dictated by
managers; business goals are fixed during business planning (see Chapter
5); user goals and context constraints are discovered during user research
(Chapter 6); and the technical constraints are found during the initial prod-
uct architecture stage (Chapter 7).

It’s also somewhat of a change to view schedule and cost not as flexible
factors influenced by scope, but rather as fixed, constraining parameters.
Software projects can generally be made to fit within or expand to nearly
any reasonable budget size; it’s just a question of how ambitious you want
to make them, how detailed you allow things to get, how richly designed

Chapter 3: Effective Planning and Requirements

you can allow them to be, how you choose and allocate resources, and so

on. Clients often come to us with requirements documentation and ask us to
prepare an estimate based on it, but everything in the documentation except
the high-level business requirements is frankly irrelevant, because we know
it will change. The more important questions are: how much are you willing
to spend on this product, and when do you need it by? The answers to those
questions give a much, much clearer picture of what the true scope of the
project will ultimately be.

Approaching projects in this way requires a big leap of trust on the part of
the client or stakeholders, though, so often it’s not an option. We typically
make cost and schedule estimates as best we can based on whatever con-
straining variables we’ve been permitted to know about, and then work with
our client to hone the estimates to fit their actual constraints. Though these
cost and schedule estimates may be based on early requirements documen-
tation, once these estimates have been approved they supplant the require-
ment documentation as part of the framework requirements.

So what does this all mean for the three-legged stool? In the stool metaphor,
the stool is the product, which is, as we’ve just demonstrated, also the scope.
So to say the stool rests on scope, schedule, and cost is to say the stool is rest-
ing, in part, on itself. This is a paradox worthy of a mind like M.C. Escher’s,
but is hardly proper territory for a software product. The stool sits not on
scope, schedule, and cost, but rather on schedule, cost, and any other con-

straining parameter.

Commitments You Can Live Up To

All of this may require an enormous mental shift for you, but once you do

it, yow’ll find you can make commitments with a much greater degree of
confidence and reliability. What you should be committing to is fidelity to
the constraints—the framework parameters—for the product. Luckily, two
of those constraints are cost and schedule, and being able to make confident
commitments to those two will go a long way toward reassuring managers
and stakeholders. The remainder of your commitment is not that the prod-
uct will conform to some preordained scope, but rather that it will satisfy the
needs of the business and its high-level criteria for success and will satisfy
the needs of the user. Who could object to that?

Commitments You Can Live Up To

101

102

The trick then becomes making sure that the needs of the business and the user
have been well understood and are reasonably construed. Once they are, they
become an essential part of the basis of your commitment. Rather than requiring
certainty of scope, your stakeholders should hold you accountable to the project’s
fidelity to its business and user constraints. This makes it important that stake-
holders are in agreement with and have signed off on those constraints, which is
why we spend a lot of time discussing stakeholder buy-in throughout this book.

Effective Process

The process by which software gets developed is just as much guided by
uncertainty and the unknown as the requirements are. This is for two prin-
cipal reasons:

* Design happens in the context of the unknown through the whole course of
the project, so the project’s process must support successful design that leads
to correct decisions and outcomes.

o The actual destination of the project (the final product) is unknown up to
the end, so the process must ensure that there is a minimum of off-course
meandering before you arrive.

We should be clear at this point to explain what we don’t mean when we
say “process.” Some people seem to believe that the software development
process is like an instruction manual; if you follow all of the instructions to
the letter, you’ll end up with a successful product. In our experience, that
kind of “process” is a dangerous myth. Remembering that software and soft-
ware development are complex and peculiar systems, no instruction manual
could possibly exist that would cover every possible project. There’s also a
risk with this type of thinking that project teams will view their success not
in terms of the success and quality of the product itself, but rather in terms
of how well they followed the process and whether they did a good job of
producing process-mandated documentation on time.

People are also often under the misapprehension that, as with an instruction
manual, the software development process is a serial progression of discrete
steps. This view is very appealing to managers and stakeholders because it
gives them a sort of timetable for what progress and deliverables to expect
and also lets them know when they need to pay attention. Unfortunately, it’s
just not that simple.

Chapter 3: Effective Planning and Requirements

Good software development process addresses the effects of uncertainty
and the unknown that we just identified. It supports successful continuous
design to ensure good decisions and outcomes, keeps the project headed in
the right direction with a minimum of course deviations, and keeps all of the
key contributors participating in design through the full course of the proj-
ect. These three goals are supported by combining proper methodology with
effective tools and techniquess.

Development Methodology

It’s perilous for us to tread into the realm of software development method-
ology, but there’s no way around it. Software professionals often have very

strong opinions on what constitutes good versus bad methodology, in some

cases exhibiting cult-like adulation of some specific approach and complete
intolerance of differing views.

In our experience, no one methodology suits every possible project. The
infinite variety and peculiarity of projects makes this conclusion rather obvi-
ous. Every different, specific methodology has well-reasoned underpinnings.
When you’re acquainted with that reasoning, you can figure out what’s best
for a given project.

Waterfall

The waterfall methodology is the most familiar to people because it’s the
most widely employed and also seems to make the most intuitive sense.

As shown in Figure 3-3, it proposes that software be built in a sequence of
major steps—usually business requirements, design requirements, develop-
ment, then deployment—each of which is entirely completed before the next
one begins.

BRAINSTORM REQUIREMENTS DESIGN

Figure 3-3. A basic waterfall process

SOFTWARE
ENGINEERING

Development Methodology 103

104

The supposed strength of waterfall is that it seems to provide a great deal
of clarity and certainty through each step of the project. It’s appealing to
managers because it suggests that once the brainstorming is done and the
requirements have been built, everything else follows naturally.

The flaws with this approach should already be obvious, but before we get
into that, it’s worthwhile to point out that waterfall is actually an effective
approach for some types of projects. Waterfall is efficient and effective for
products that represent minimal design and engineering complexity, or that
are cookie-cutter implementations of well-understood solutions. We would
employ this approach if, for example, we were building a calculator applica-
tion. A calculator is very simple to build, and there are very few questions
that need to be answered about the calculator’s features (what it should look
like, whether it should be basic or scientific, whether it should include mem-
ory functions, and so on) before development begins. The answers to any
design questions are readily obtained in advance and are highly certain.

But no one ever asks us to build calculators. If that’s what you’re working on,
you should quit reading this book and just go build the darn thing.

For any other project, waterfall’s fatal flaw is its total failure to account for
uncertainty and the unknown. It presumes that each step can be entirely
and perfectly completed before the next step begins. We’ve devoted a great
deal of this chapter teaching you what a huge mistake this is; running down
the list of problems with this approach would be beating an already quite
dead horse.

There are, however, two other serious problems with this approach that
we’ve touched on only briefly so far:

* Because each step is entirely separate, each group of contributors is entirely
siloed from the others. The people brainstorming and writing requirements
for the product never collaborate with the people architecting and designing
it. The software engineers never have the opportunity to collaborate with the
architects and designers, let alone the business managers and stakeholders.
Collaboration across all disciplines is absolutely critical to the building of
great software, as we’ll discuss shortly.

Chapter 3: Effective Planning and Requirements

* This approach forces the engineering and quality assurance (QA) stages to absorb
almost all of the effects of the risks and unknowns that arise during the project.
Since the planning, architecture, and design of the product are already ostensibly
complete, there’s no option for changes to them because the money for them
has already been spent and the resources have been allocated to other things.
This leaves it to the engineers to figure out how to account for the inevitable
unforeseen problems and unknowns—and to do it within the budget and timeline
they were allocated before the problems and unknowns were identified.

This is why it so often seems like a beautifully conceived and designed prod-
uct gets hacked and compromised into severe mediocrity by the engineers.
They aren’t being lazy or incompetent; they’re simply delivering what they
can despite being left to absorb the full brunt of risk and the unknown on
their own. That they are likely to have made compromises and hacks that the
stakeholders and designers disagree with is just one more reason why water-
fall’s tendency to silo resources is such a terrible problem.

Big Design Up Front

The term Big Design Up Front (BDUF) is shorthand, often used as a pejorative
for a sort of methodology that’s similar to waterfall but takes a meaningful
step in the right direction. As the name suggests, BDUF essentially involves
large upfront design efforts before engineering and QA begin. It differs from
waterfall, however, in acknowledging that not all design occurs up front and
some design (in the form of resources, budget, and prerogative) must be
reserved for the engineering and QA phase.

BDUF accounts for waterfall’s tragic central fallacy that each step can be made
perfect before the next begins, but it does so rather weakly: it suggests that the
design step can be made nearly perfect before development begins.

-- Planning: e
g :10: i i:0z1
o Tl
BRAINSTORM REQUIREMENTS DESIGN

DEVELOPMENT -
UX/VISUAL DESIGN + SOFTWARE ENGINEERING

Figure 3-4. Big Design Up Front

Development Methodology

105

106

Proponents of BDUF suggest that planning a product on paper and on white-
boards before engineering begins saves time and cost throughout the rest of
the project because it’s easier to change requirements and sketches than it
is to change actual code. This is absolutely true; only proponents of the most
anarchic, cowboy methodologies would ever argue that No Design Up Front
is a sensible approach. The problem with BDUF, though, is in the “Big.”

BDUF tends to require that too much design be done up front. It still treats
design largely as a discrete phase that begins and ends before the actual
development of the product begins. Upfront design efforts suffer from

the absence of any of the understanding about risk, opportunity, and the
unknown that come through the engineering effort, and through develop-
ment more broadly. Upfront design is also typically done without the assis-
tance of software engineers, who should be present to assess the cost and
feasibility of certain ideas and to contribute ideas from their unique perspec-
tive. The early days of the project are when the least is understood about the
project, so the more design work done during that period, the more likely
that work will be off base. This all means that significant portions of the big
upfront investment in design will be wasted, depriving the rest of the dura-
tion of the project of valuable design resources and budget, and delaying the
commencement of actually building the product.

Like waterfall, this approach also promotes a false sense of certainty in stakehold-
ers and siloes resources from each other. Stakeholders tend to participate only in
the upfront design process, and UX designers participate in the development stage
only to the extent that their budget and time weren’t expended up front.

But the fact that experience designers participate in the development stage
at all is a huge step in the right direction. It’s an acknowledgment that
unknowns and problems will be uncovered for which collaboration with
experience designers will be beneficial, and acknowledges to a degree that
the initial designs will need to be adapted and modified.

Truth be told, BDUF is a methodology EffectiveUl is frequently compelled

to employ, despite our preference to do otherwise. This is because we are a
professional services company that builds products for other companies, and
those companies have a very reasonable need to understand what to expect
from us and to be reassured that we understand their needs and know what
we’re doing.

Chapter 3: Effective Planning and Requirements

In the absence of a trusting relationship built on a long history of partner-
ship and successes, we can’t ask a client to just give us a budget, timeline,
and a high-level understanding of their goals and trust us to build them
something they’ll love. That approach can work very well—that’s essentially
how we developed an extraordinarily successful partnership with eBay to
build eBay Desktop>—but it requires a degree of trust and latitude that’s
rarely available in any project, let alone a first engagement with a new ven-
dor. Whether you’re building your product for a client or for your own com-
pany, the same considerations of credibility and trust will probably pressure
your process toward BDUF.

What BDUF offers in this circumstance is the opportunity to work intensively
with stakeholders to translate their business and user needs into a com-
prehensive set of visual experience design requirements. At the end of the
upfront design effort, the stakeholders are given a thorough stack of visually
rich documentation that demonstrates that their needs have been heard and
understood, that they’re working with a professional and qualified team, and
that the team has a strong understanding of the product’s requirements and
the road ahead. This stack of documentation is often what’s used to unlock
the remainder of the budget for the project or to seek buy-in from higher lev-
els of the management ladder. BDUF projects are also easier to sell, because
they allow stakeholders to sign off on a smaller design project before com-
mitting to the larger full project.

The problem with BDUF is that it generally keeps the engineers on the bench,
in the dark, and out of the conversation for too long. A great number of
unknowns, problems, and opportunities can be identified and solved through
an exhaustive upfront design process, but until engineering begins, a vast,
rocky sea of the unknown remains unexplored. Additionally, without the ben-
efit of the engineers’ input, promises and estimates can be made that will later
prove to be impossible or unrealistic, leading to disappointments and increased
tensions.

Like waterfall, BDUF also has the tendency to suggest a higher degree of cer-
tainty than can actually be obtained through early design efforts. In some

5 With an eBay account, you can play with this application by downloading it from http.//desktop.ebay.com.

Development Methodology

107

http://desktop.ebay.com

................................ Planning.

108

EARLY PLANNING

cases, managers and stakeholders try to use this apparent certainty as a
means of “exposing” their engineering team—that is, of putting the engi-
neering team in a position of being isolated and solely responsible for the
completion of the project. This tactic is calculated to increase accountability
for the engineering team, but its true effect is to make all teams less effective
and put an undue burden of risk and strain on the engineering team.

As EffectiveUI’s stature and commensurate credibility in our market have
grown, we’ve been able to reduce the amount of upfront design required
to reassure our clients. Your success in moving in this direction will also be
dependent on your credibility, which is why so much of this book is dedi-
cated to the subjects of maintaining enthusiastic buy-in and building cred-
ibility with your stakeholders.

Agile with a capital “A”

Agile is the name of a broad set of methodologies that arose from frustrated
software engineers who were trying to find more effective approaches to
their work than the traditional, failing ones. Despite its origins in software
engineering, the concepts of Agile are very applicable to the entire product
development process. The integration of UX design into Agile processes is a
somewhat new frontier of thought in software methodology.

GUIDELINES

DEVELOPMENT. oo™
UX/VISUAL DESIGN + SOFTWARE ENGINEERING

Figure 3-5. Agile processes in UX design

Unfortunately, some people already have a bad taste in their mouths left
over from previous encounters with Agile devotees. The problem with
Agile is that it has some very overzealous supporters who insist that Agile

Chapter 3: Effective Planning and Requirements

concepts are the panacea for every possible software woe. These people
may dogmatically enforce some particular purist submethod of Agile to the
great detriment of the project and the sanity of its team. There is no single
right answer, no perfect methodology that can address the full range of proj-
ects and problems in the world. Just as software projects have no room for
false certainty in features, they have no room for false faith and dogma in
methodologies.

But notwithstanding its outspoken supporters, Agile concepts contain a great
deal of wisdom born of a long history of experience. Many people have a
passing familiarity with some of the offspring of the Agile movement, such
as Extreme Programming (XP) and Scrum, but not with the Agile Manifesto
itself. The fact that it’s called a manifesto may seem to bode poorly (think
Unibomber), but bear with it.

MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT

We are uncovering better ways of developing software by doing it and helping

others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the

left more.®

This aligns very tidily with everything we’ve discussed so far in this chap-
ter. At the heart of Agile is the acknowledgment of uncertainty and the
unknown, which requires that flexibility, collaboration, and thoughtfulness
be favored over rigid commitments and the stunting and segregation of
design and thought.

6 http://www.agilemanifesto.org/

Development Methodology

109

http://www.agilemanifesto.org/

110

Effective development methodology

What, then, is EffectiveUT’s solution to the methodology question? We’ve
been successful in building superlative products using a broad range of
methodologies, and that experience has brought about a lot of ideas from
many of our team members. The difficulty in proposing an EffectiveUl
methodology is the fact that no single methodology will work in every cir-
cumstance. We’re also living very much on the cutting edge of this sort of
thinking, and anything concrete we propose at the time of writing this book
is bound to be outdated by the time the book goes to press.

We espouse, therefore, not a specific, patent-pending methodology, but
rather a set of principles and best practices. Like the framework approach
to requirements, good principles can guide successful thought and progress
and stay relevant as the domain of thought progresses. The rest of this book
is dedicated to sharing those principles and showing them at work, with a
specific emphasis on development methodology (coming up in Chapter 8).
If it seems like we’ve spent most of this chapter breaking you down without
building you back up, please bear with us.

If you return to our discussion of the definitions of “design” and “develop-
ment” at the end of Chapter 1, you’ll note that we mean development to be
inclusive of every professional discipline, including stakeholders, the project
leader, UX architects, visual designers, and software engineers. A huge part
of what makes taking a restrained approach to upfront planning and mini-
mizing wasteful upfront design efforts so important is that it frees up room
for a larger, more inclusive development stage. The ideal setting for building
great UX is one where the business leaders, designers, UX architects, and
software engineers are all working in tandem and actively collaborating to
build the product. This can’t happen if each group’s contributions are seg-
regated into discrete phases. Working closely together as part of one large
development team allows everyone to benefit from the learning that occurs
during its course, and to contribute to the decision making that responds to
unknowns, problems, and opportunities.

Chapter 3: Effective Planning and Requirements

For the sake of avoiding redundancy, we’re leaving the greater part of the dis-
cussion of the development cycle for Chapter 8. But that chapter is very much
a sister chapter to this one, since all of the concepts we discuss regarding
how to handle the approach, methodology, and planning for the product are
mostly aimed at creating a fertile ground in which development can occur.
So, if you’re curious and want to continue exploring this line of thinking in
more depth, you may consider jumping ahead to that chapter.

Efficiency and the unknown

It may seem at first blush that a project at the mercy of uncertainty and the
unknown will be inefficient to produce and, therefore, more expensive.
Compared to the nonexistent project where all things are known and there
is no uncertainty, a real-world project will certainly be less efficient. If you
know exactly where you’re going, you’ll naturally take the straightest path
there. But since that sort of certainty is never available, the efficiency of a
project will be a function of how well you account for uncertainty and the
unknown. Clinging to false certainty is a surefire recipe for enormous waste.

Consider again a project assigned to two equally qualified teams. One team
is managed using a waterfall process and the other using a more nimble
framework requirements—driven process. The course of each team’s prog-
ress toward the same destination might look like what’s shown in Figure 3-6.

Team waterfall’s first step is to start executing an in-depth plan that, by
virtue of having been developed in a “mere twilight,” has them heading in
the wrong direction. They don’t discover this until they finish, present the
results, and fail to please. They then do more extensive planning to identify
how the product needs to be modified to reach success. That plan leads them
closer to success, but not quite all the way, resulting in two more planning
and building cycles.

Team agile, on the other hand, zigzags along the course to success. Each time
they pause and assess the situation, they see that they are off course and
make a correction. Further, each time they make a correction they’re further
along in the project and are therefore able to make better decisions about
course adjustments, so the distance of each deviation gets smaller each time.

Development Methodology

111

And this doesn’t even account for the time team waterfall spends planning.
Nor does this reflect the fact that it’s much more time-consuming to refactor
large volumes of code that were written over a long period of time than it is
to make adjustments to small bits of code that were recently written. When
you add this all up, the efficiency of an agile approach in the context of the
unknown is clear.

TEAM AGILE

feedback feedback feedback feedback feedback

T

oo

feedback feedback feedback feedback feedback

[]
PROJECT START

TEAM WATERFALL

feedback feedback

|

:

feedback

PROJECT START

Figure 3-6. Comparing methodology development pathways

112 Chapter 3: Effective Planning and Requirements

Chapter 4
Bringing Together a Team

Since the entire course of your project will involve the applica-
tion of intellect to identifying and solving problems, the capabilities and

aptitudes of your team members (stakeholders included) will be the single
greatest contributor to the success of your project. No amount of process, no
brilliant development methodology, and no force or aptitude of management
can bring about as much success as a talented, driven team can. That is,
unfortunately, one of the weaknesses of what we’re able to offer through this
book. We can provide roadmaps, strategies, and tactics to help you find your
way through the project, but if the people applying those concepts and doing
the design and development work aren’t adequately creative and qualified,
you’ll be swimming against the current the whole time.

Of all the things EffectiveUI has figured out how to do well over the years,
hiring amazing people was our first priority and has remained our princi-
pal focus. We’ve been very fortunate in being able to attract some of the top
people in our field, because our company works on the cutting edge of this
domain and is able to provide a more challenging, user-focused alternative
to talented people. All of the learning that’s described in this book has been
developed through putting those people together in challenging situations.

But most people don’t have the opportunity to access a pool of specialized,
highly qualified individuals. You may be cobbling together a project team
from various departments in an organization, or working with an IT team
that is more accustomed to maintaining legacy applications than building
new ones. The only designers available may be print and brand designers
from your marketing department. You may have access to terrific develop-
ers, but no access to UX design professionals, or vice versa. The single most
important thing you can do to help the success of your project along is to
get the best possible team assembled, so vigorously addressing deficiencies
should be a top priority.

114 Chapter 4: Bringing Together a Team

That advice really bears repeating on its own and in boldface:

The single most important thing you can do is to get the best possible
team assembled.

Given the difficult constraints you and your company are probably oper-
ating under, this may not seem like particularly useful advice on its face.
Good people are expensive and hard to find, so the cost and scheduling con-
straints for your project may seem to prevent you from being picky about
who you have working on it. But this is one among many ways in software
development where it’s easy to be penny-wise and pound-foolish.

Cheaper, more readily available resources are that way for a reason: they’re
less experienced and qualified. These deficiencies, in turn, cause the devel-
opment of the product to be less effectively performed and less efficient. Less
experienced people can’t anticipate or address issues as effectively as pros.
They make progress more slowly, produce lower-quality results, make more
mistakes, and are less capable of making estimates and hitting goals. The
burden of all of those problems accumulates over the course of the project,
leading to a higher chance of low-quality results or outright failure.

It’s important to appreciate the enormous complexity and difficulty of build-
ing a software product and not discount the skill it takes to succeed at it. If
you’re building a skyscraper, you wouldn’t consider hiring a bunch of day
laborers to do the job. Their progress would come much, much more slowly,
and their lack of experience would lead to problems in the project that
would cause massive ripple effects and impose enormous risk. It is exactly
the same with software.

So if you’re stuck thinking, “I can’t afford to hire highly trained professionals
for every position,” consider whether you can afford less-qualified profes-
sionals who underdeliver, fail to meet expectations, develop an unstable sys-
tem, overrun your budget, or simply fail. Experienced professionals may be
more expensive per hour, but they’ll require fewer hours to produce stron-
ger, higher-quality work, and the six weeks you might have to spend finding
them will be more than made up for by the risk and difficulty you will have
averted.

Bringing Together a Team

115

116

The Project Leader

The role of the project leader is not well understood, so it’s too often left
unfilled. There may be a primary stakeholder who provides oversight and
answers questions, or process-oriented project managers charged with man-
aging the schedule and budget, but they aren’t what the project needs as a
leader. Effective project leaders have a unique and multifaceted role:

o They are managed by the stakeholders, but they must manage the
stakeholders.

* They manage the project team, but they serve the project team in their drive
to make progress.

o They stand for firm fidelity to the business and user requirements, but they
fight to preserve a rational approach to uncertainty and the unknown.

o They carry the high-level vision for the product and are a living encyclopedia
of the cumulative knowledge developed throughout the project.

The project leader is the standard bearer for the project, charged with ensur-
ing its success, no matter what obstacles the project may face.

Relationship to the Product

An effective project leader fully owns the product—its requirements, its
challenges, and its outcomes—Dby staying deeply immersed and engaged in
the project through its entire course. No one else involved in the project will
have the opportunity to consistently stay at this level. The project team will
be busy solving specific problems and implementing specific functionality,
so they can have difficulty keeping the whole product in mind and staying
focused on its high-level goals, mission, and criteria for success. Stakeholders
have many other priorities to attend to and can’t keep their minds engaged
with the project. They can’t keep up to date with the project’s day-to-day
discoveries and challenges, which makes it hard for them to make informed
decisions.

Only a person who lives in a state of high-level, long-view orientation with
low-level, daily engagement can successfully hold the vision for the product
together, liaise between the needs of the business and the practical realities
affecting the project, and effectively guide successful decision making. This
is a very time-consuming role that requires a passionate commitment to the
project’s success and a deep immersion in its minutiae.

Chapter 4: Bringing Together a Team

Relationship to the Stakeholders

As previously mentioned, the project leader is in the unusual position of
being accountable to and managed by the stakeholders, but also of needing
to manage and exert a certain level of control over those stakeholders. To

the stakeholders, who have limited contact with the project team, the project
leader is the individual representative of the project. The stakeholders look
to the project leader to provide them with an understanding of progress and
to apply the pressures of accountability. To the project leader, the stakehold-
ers are the guardians of precious information about the business’s needs, the
product’s users, and specifics of different facets of the business that influ-
ence the product. Stakeholders are also the gateway to resources.

Stakeholders must participate wholeheartedly, constructively, and capably in
the project, and they’ll need prodding and guidance from the project leader to
do that. If the project leader can’t induce stakeholders to participate in a help-
ful way, the stakeholders will represent a huge source of risk for the project.

Because the project leader is the project’s ambassador to the stakeholders,
her credibility and trustworthiness with them is of tremendous importance.
The stakeholders are entrusting the project leader with costly resources,
with the task of solving a critical business problem, and with representing
their interests through the course of the project. The better the project lead-
er’s credibility is, the more willing the stakeholders are to provide resources,
to be deferential with respect to the project leader’s assertions about the pro-
cesses and constraints that guide the project, and to allow the project leader
wide latitude in making decisions on their behalf. The project team must be
able to rely on the project leader for quick and reliable answers to questions,
which requires trust on the part of stakeholders to allow the project leader
to make those decisions autonomously at times. There are many opportuni-
ties to build trust with the stakeholders through effective facilitation of the
project, which we will discuss in the coming chapters.

The project leader needs to educate, guide, and manage the stakeholders
through the product development process. Stakeholders will be experts
in whatever field and domain of the business they’re representing, but
may have little or no experience in developing innovative software prod-
ucts. Since the process is often counterintuitive and requires patience and
restraint, the project leader’s credibility is again of critical importance to

Relationship to the Stakeholders

17

118

helping the stakeholders understand the project’s progress and how to best
support it.

Stakeholders usually don’t understand how software is built and don’t have
an intimate understanding of the state of the project, so they can interfere in
the project in inadvertently problematic ways and represent a source of risk.
But stakeholder interference should never be an excuse for failure. The proj-
ect leader is responsible for the project’s success and must defend it from any
source of friction and risk, even if that source is her own superiors. No excuse
matters if a project fails or falls short of expectations. The project leader must
recognize her comprehensive responsibility and accountability and seize con-
trol of everything influencing the project, stakeholders included.

The project leader may also act as a moderator and facilitator for events and
exercises that involve the participation of stakeholders. Because of their dif-
fering positions and backgrounds, stakeholders are likely to have diverse
and sometimes contradictory opinions. It’s the responsibility of the project
leader to corral stakeholders’ opinions toward actionable consensus and
ensure that stakeholders don’t impede the momentum of the project.

If project team members are pulled from a variety of departments in the
company, the project leader may also find herself accountable to the man-
agers of those departments, regardless of whether those managers them-
selves are involved in the project. It’s extremely important to the success

of a project that the project team is working toward, and is accountable to,
the project’s goals. When the team is comprised of employees from differ-
ent departments, they might act as agents of their departments rather than
as members of the project team. Their responsibilities to their respective
departments also might strain their ability to give the project the attention
it requires. So it falls to the project leader to act as an intermediary between
project team members and their respective departments and managers. The
project leader must reassure managers that their resources are being put

to good use and ensure team members feel free to focus on the project. As
well, department managers who aren’t active stakeholders in a project might
nevertheless try to influence it by way of project team members. The project
leader needs to recognize this and step between the team member and the
manager to retain control of the project and stakeholder expectations.

Chapter 4: Bringing Together a Team

Relationship to the Project Team

A project leader needs to be deeply immersed in the project and embedded
in the project team. Stakeholders and process-oriented project managers
tend to manage teams with a certain degree of distance and abstraction. The
project leader, on the other hand, must be on the ground with the project
team, working with them through every critical decision and staying abreast
of the current state of progress, risk, thinking, uncertainty, and unresolved
questions. It’s only through this active level of involvement that the project
leader can effectively guide decision making, keep the project team focused
on the high-level goals, and have a total, accurate understanding of the state
of the project. This total understanding is critical for her ability to make
accurate commitments to stakeholders and to maintain the delicate align-
ment of expectations and reality.

The project leader is in yet another dichotomous position in relation to the
project team. Because she is accountable to the stakeholders and to the suc-
cess of the project, the project leader must manage and guide the project
team toward a successful outcome, but she is also there to support to the
project team. Designers and engineers working on innovative projects need
quick, decisive answers to thousands of tough questions; many of those
answers can be provided rapidly and correctly only by someone who is
responsible to the stakeholders and the high-level goals of the project and is
also familiar with the low-level details. As the project team wades deep into
the details of the project, the project leader needs to ensure that they don’t
lose sight of the project’s high-level goals and that their decision making is
guided by the framework requirements.

Who Should Be the Project Leader

The nature of the project leader’s role likely means there are

few people in your organization who are both capable and

available to do it. The person filling the role must have a

strong degree of trust and credibility within the organiza- O
tion, and those people typically don’t have time to lead a

project. For most projects, the role of the project leader is at

least a half-time focus.

Who Should Be the Project Leader 19

120

Your project may already be spearheaded by someone who can fill this role,
making the choice automatic. If that’s not the case, you may look to someone
from the department or business unit at the head of the project for someone
who can fill this role. If your organization has UX or CX specialists on staff,
they may also be a good choice.

A project leader should:

* Have the time available to devote to the project
* Be passionate about the project and dedicated to its success

* Have the humility necessary to allow her to facilitate a process that will be
guided more by other people’s ideas and vision than her own

e Excel at motivating people and enabling their success

* Have the trust, credibility, or clout necessary to wrangle stakeholders

The project leader’s role is very much like that of an entrepreneur. It’s a role
that requires passion and an ability to preserve a focus on vision and goals
while attending to all of the tiny details. The success or failure of the project
is entirely the project leader’s responsibility, even though other people do
almost all of the work necessary to succeed.

If you’re working with a third-party vendor for UX design and develop-
ment services, it may also be an option to have one of their UX designers,
interaction designers, or product managers fill this role. This can be a chal-
lenging choice, though, since the project leader must have credibility and
trust with the stakeholders and latitude to make decisions on their behalf.
Representatives from vendors are usually treated with cautious distrust if
there isn’t a strong history of partnership between the two companies. On
the other hand, the representative’s extensive experience in product devel-
opment may be a credibility-strengthening quality that isn’t available from
within the organization.

As a matter of convenience, throughout this book we’ll assume that “you,”
the reader, are responsible for helping to lead the project, whether as the
project leader or as a key contributor.

Chapter 4: Bringing Together a Team

The Stakeholders

Every project has a set of stakeholders, whether or not they’re all immedi-
ately identifiable; many more people will try to influence the project than
will be willing to actively participate in it. For professional service compa-
nies, stakeholders are almost always representatives of the client, but those
representatives have their own stakeholders. For internal projects, stake-
holders are those people who control the budget, the resources, the mandate,
and the domain knowledge that fuels the product’s development.

The participation of stakeholders is essential to a project’s success, but there
are many ways that stakeholders can unintentionally hinder the project.
Most stakeholders aren’t familiar with how innovative, UX-driven software
products are built and can at times unwittingly behave in ways that derail
progress or interfere with good decision making. It’s important, therefore,
that the relationship between the stakeholders and the project is set up for
success, and that the stakeholders are aware of how they can best support
the project’s progress while still having their interests attended to.

The project team relies on stakeholders to provide a thorough and stable
understanding of the project’s goals and its user base. As the development
of the product begins and design encounters unknowns, a steady stream of
difficult questions arise. It’s critical to the progress of a project that answers
to those questions can be readily obtained and are firm and reliable. From
the beginning of the project through its end, the project team relies on
stakeholders (by way of the project leader) to provide reliable, steady direc-
tion for the product. Stakeholders need to provide clarity that diminishes
uncertainty and risk, rather than increasing uncertainty and risk through
frequent changes and unstable decisions.

Securing Authority

Since the decisions and direction provided by the stakeholders to the project
team need to be stable and reliable, the authority of the stakeholders to com-
mit the project along specific lines also must be stable and reliable. This may
seem a strange concern, since stakeholders are typically higher up in the
company and are ostensibly conveying their authority down to the project
leader and team. But a lack of clear and secure authority in stakeholders is
actually an enormous problem for many projects.

Securing Authority

121

122

The stakeholders must ultimately speak as one voice and communicate a
unified vision for the product, provide only one answer to a question, and
choose only one favorite from any list of options. The project’s success will
be greatly jeopardized if:

o There’s uncertainty about the prerogative of the group to make autonomous
decisions.

* Conflict amongst stakeholders leads to instability in their decisions.

* Higher-ups in the company can overrule stakeholders’ decisions.

The decisions made by the group of stakeholders actively participating in the
project must be definitive and must be supported by stakeholders and influ-
ential people who aren’t actively participating in the project. This degree

of authority and support often isn’t automatically in place, and if you don’t
secure it at the beginning of the project, you risk the bottom falling out of
the project midway through. Your stakeholders might have their own stake-
holders, but the project can’t wait for or depend on decisions to be run up
the management ladder. The active stakeholders on your project must have
the necessary authority to commit to decisions that won’t be overruled after
they’ve been made.

Authority afforded by trust

The list of people interested in affecting a product’s development is always
much longer than list of people who have the time or ability to actively par-
ticipate in the project. Some managers of involved departments or business
units assign someone under them to participate in the day-to-day activities
of the project, but then these managers will appear suddenly when they
disagree with decisions or when the project grows in significance. The same
can happen with managers who either declined to participate initially or
who weren’t initially actively involved but later decided to assert themselves
in the project. Other stakeholders may participate in the original concept
work on the project, disappear during the early stages of development, and
then reappear later in the process.

This kind of behavior poses a number of serious problems for the project.
From the project kick-off through to its end, the progress of a project entails
a tremendous amount of thinking, design, decisions, and compromises.
Anyone who hasn’t participated actively in that progress lacks much of the
context and information that is necessary for understanding why certain

Chapter 4: Bringing Together a Team

decisions were made. They also lack the perspective necessary to balance
their ideas and individual agendas against the other priorities and consid-
erations that are guiding the project. Late-arriving or on-again, off-again
stakeholders, not understanding or appreciating the decisions that have
come before, often challenge decisions or revisit basic premises that would
shake the foundations of the project. As we discussed in Chapter 3, changes
stakeholders may perceive as simple may, in fact, be enormously difficult
and costly. These changes will probably be improper if they’re imposed by
stakeholders who haven’t actively participated in the project.

So, although late-arriving stakeholders can be welcomed if they trust and are
deferential to the progress that’s been made so far, you should head off late-
arriving and hidden stakeholders who might derail the project. This requires
some effort up front to determine who should be active stakeholders on the
project. The group of active stakeholders must consist of people who are in a
position to contribute to the project; they must also be vested with the trust
and authority of the other potential stakeholders.

This means that a manager who assigns a subordinate to represent her
interests in the project must trust him to make decisions in her stead, must
be available to him if he should want her input, and must be committed

to working through him and never around him. It also means that depart-
ments and business units that decline to participate actively in the project
must place trust in those who are actively participating. This usually means
the group of active stakeholders needs to be strongly representative of the
diverse domains and interests within the organization so all interests can
trust that they will be well represented.

Authority in rank

It can be difficult when some of these hidden and late-arriving stakeholders
are senior managers and executives in the company. Many projects start off
as initiatives of lower-level areas of individual departments, but then grow in
prominence as they near completion and their ability to significantly impact
the business becomes more apparent. Senior managers tend to tune in to
the project as it nears completion, and to have strong opinions and interests
that weren’t present as the project ran its course. They also hold prominent
positions in the company, so existing stakeholders and the project leader
have difficulty challenging their demands. Or they represent departments

Securing Authority

123

124

that want to take over management of the project and profoundly redirect its
course. Companies that are large, highly political, and bureaucratic are par-
ticularly susceptible to these issues.

It’s therefore important that the group of active stakeholders is backed up
by sufficient authority in rank to insulate the project from this type of prob-
lem. If the project mandate is delivered by senior executives, the project is
more likely to be well insulated against incursions by less senior managers.
But if this isn’t the case, you need to secure some high-level backup early in
the project. This may be accomplished by seeking out the executives who
aren’t necessarily able to actively participate in the project themselves but
are likely to be affected by the product outcome. Spend time with them to
find out what practices, information, and people they feel must be in place
in order for them to fully trust the process without participating in it. You’ll
need to get them to explicitly commit to trust the process and to lend their
support, should other executives start to meddle.

Collaboration and Decision Making

Though stakeholder participation in the beginning of the project is mostly
structured in the form of in-person workshops, their participation through the
rest of the project is much looser. It’s not necessary—though it may at times be
useful—to bring everyone together in person for every decision. Stakeholder
schedules are likely too busy to allow for many in-person meetings.

It’s important to figure out early on how collaboration and decision making
will work for the project. The momentum and success of the project depends
on stakeholders rapidly answering questions, providing guidance, and decid-
ing on course adjustments to respond to discoveries and risks. Some method
of collaboration should be agreed upon and put into effect early in the proj-
ect. It doesn’t really matter what that method is, so long as your stakeholders
will use it; orderly, consistent collaboration is the goal, and every company
and stakeholder has a different approach to this. You need to make it clear
that stakeholders must tune into and participate in the discussions and deci-
sions that happen during the project. Stakeholders must understand that if
they don’t actively participate and respond, they’re forgoing their rights to
affect those decisions later on and they may begin to lose the context neces-
sary to contribute to future discussions and decisions.

Chapter 4: Bringing Together a Team

The Characteristics of a Successful
Project Team

The raw materials that go into building a software product are the intel-
ligence, ingenuity, and creativity of the team that builds it. So it follows that
the strength of the project team you’re able to assemble will have an enor-
mous effect on the project’s outcome. Modern, UX-focused software projects
tend to be built by relatively small project teams, usually 5-15 people who
won’t all be working simultaneously.

This may seem obvious, but a strong degree of unity within the team is
critically important. There’s an energy and efficiency inherent to groups of
people who are all thinking about the same problem and working alongside
each other; this doesn’t exist if they’re isolated from one another. Unified
teams share a sense of ownership in creating something valuable and reflect
each other’s enthusiasm, whereas members of fragmented teams just focus
on handing off deliverables without embracing a sense of being part of
something larger. Collaboration in UX-focused project teams needs to hap-
pen by way of discussions and design, not through deliverable hand-offs.

If people are brought together from a variety of departments or from a mix-
ture of internal and external sources, they may feel accountable to priorities
other than the project itself and may work from different locations. Bringing
everyone together into one centralized office can help build a sense of unity
around the project and also makes collaboration much easier. If you can’t
get everyone together in one space, you should try to provide team mem-
bers at least one opportunity to meet face-to-face; it makes a remarkable
difference in their ability to work together. EffectiveUI has multiple offices
and we often work in distributed teams, but in our main office, all of the
designers, engineers, project managers, and other project team members are
together in one space. As we’ll discuss in later chapters, the process of build-
ing UX-focused software involves constant and active collaboration amongst
all the roles and disciplines involved in the project. Thus it’s important that
visual and UX designers aren’t segregated from software engineers. Being
together also helps the team members become better acquainted with one
another’s concerns and professions, which in turn helps everyone make bet-
ter decisions. A software engineer who’s had strong exposure to UX design
does a better job of building components with good UX, and a UX designer

The Characteristics of a Successful Project Team

125

who’s familiar with engineering practices and constraints creates designs

that are easier to engineer.

The need for the different professional disciplines to work together implies
another important characteristic of a successful team: mutual respect amongst
team members for one another’s expertise and the value and constraints of
each discipline. In settings where the visual and UX design staff and effort are
segregated from the software engineering team and effort (as in a waterfall
process, discussed in Chapter 3), there’s a strong tendency for the UX and visual
designers to be unaware of or to not heed the constraints imposed in software
engineering. As a result, they specify things in their designs that are needlessly
difficult to implement, or they offer only a small benefit in exchange for signifi-
cant expense in engineering. A software engineering team that’s segregated
from the UX and visual designers also tends to undervalue the thought and
time that’s gone into the designs they’re attempting to implement, so they’ll
compromise or change certain things to either suit their personal preferences
or gain small engineering expediencies at tremendous cost to the UX.

126 Chapter 4: Bringing Together a Team

For UX-focused projects, you need to have UX and visual designers who
understand and respect the challenges presented through software engineer-
ing. You also need to have software engineers who appreciate the value of
UX and visual design and the need to strive to honor the designs they’re pro-
vided. The mutual respect for one another’s disciplines is also necessary in
the project team members’ continuous, intensive debates (which constitute
the overall product design process).

Another key attribute of successful teams is recognizing the primacy of the
user’s needs for the product. A culture of attentiveness to and empathy for
the user is essential for the team to make appropriate decisions all along the
way. Without a strong focus on the user:

* Software engineers can let technical expediency or a desire for “elegance” get
them off track.

o Designers can get too focused on making something pretty instead of first
making it functional.

* Other contributors can forget to set aside their assumptions and defer to the
guidance provided by users and user research.

Getting Professional Help

We’ll do our best throughout this book to equip you with an understanding
of the components of a software development project and how everything
is developed, but you also need to understand that certain things can be
done only by a professional. Few would expect to develop software without
software engineers; it’s a highly technical and advanced field. But, unfor-
tunately, the same care often isn’t given to UX design, UI design, and user
research.

Why? These disciplines deal in concepts and materials that are much more
intelligible to nonprofessionals than software code and architecture are,

so there’s a tendency to undervalue them. Many fail to recognize that UX
design, UI design, and user research are as advanced and as technical as soft-
ware engineering. Failing to apply professional, experienced resources to UX
and UI design challenges and in user research is tantamount to undervalu-
ing the role of user-focused design and results in an inferior product. Our
assumption is that your goal is to produce a product with a superior UX qual-
ity, and that goal is attainable only with professional help.

Getting Professional Help

127

128

Get specialized, professional help

It’s also important that professionals are properly specialized. Within soft-
ware engineering, there’s a wide range of platforms, languages, and sub-
disciplines, and it’s important to work with engineers who have extensive
experience with the technologies you’ll be using. Even if you have people in
your IT department who are familiar with the right technologies, their expe-
rience may be limited to maintaining products. They may not be familiar
with how to develop products from scratch, or they may not have worked on
user-focused projects.

Visual and UX design for software is also highly specialized. The print and
web designers from your advertising and marketing departments might
enthusiastically volunteer to do UX and UI design, but their design experi-
ence does not translate well to UX and UI design. Likewise, user research
for the purpose of building software is not the same as market research.

It requires a special intuition built through extensive experience and not
just “people skills.” Like a radiologist whose training and experience allows
him to see tumors and abnormalities where everyone else sees only a haze
of gray, the experience of professional user researchers and UX specialists
attunes them to the important observations and the areas in need of explora-
tion as they progress through their work.

Cost considerations

The more capable, professional, and specialized a person is, the more expen-
sive he is. When cost-focused companies are faced with expensive hourly
resources, they tend to bring projects in-house, hire more junior staff, or off-
shore projects. But this is a penny-wise and pound-foolish mistake.

Hiring more expensive, professional resources will mean your budget will
buy fewer hours, but that’s more than offset by the benefit to overall effi-
ciency. If developing software were more like manufacturing widgets, the
more people you hired, the faster you’d pump out units of progress; there’s
a linear relationship between number of employees and rate of production.
But because of the extreme complexity of software projects, using experi-
enced resources has a nearly exponential effect on overall efficiency, not a

linear one.

Chapter 4: Bringing Together a Team

This is because the units of production, whether in UX and UI design or in soft-
ware engineering, are not self-contained and independent like units of a manu-
facturing process, nor are they perfectly designed in advance. Each unit of
progress is the application of intellect to a problem in an effort to build a solu-
tion. Each unit becomes part of the delicate latticework upon which the whole
of the project rests. So the pace of progress depends not only on the speed of a
person’s ability to produce per-unit results, but also on the likelihood that those
results are correct and reliable. If they’re not, then the stability of the product
is compromised and time must be spent returning to resolve old problems

(and every other problem that spawned from them). The effects of many small
errors can easily accumulate into grinding, intractable problems that under-
mine or sink projects. A more experienced resource can work at a quicker
pace, and the results of his work are much more likely to be correct and stable.
More experienced resources also require less supervision; organizations often

underestimate the costs associated with supervising junior resources.

Using more professional and experienced resources radically increases the
likelihood of the project succeeding. Ultimately, the only measurement that
matters is whether you launch a successful project roughly on time and on
budget—not whether you maximized the number of man hours that went
into it. The use of experienced resources offers a much greater likelihood
of ultimate success and also helps make the project itself a much smoother,

more reassuring experience for you and your stakeholders.

130

EffectiveUI worked with a client that learned this lesson the hard way. The
client engaged EffectiveUI to do some of the initial business planning, require-
ments gathering, and design work for a new product concept. But when it
came time to build the product, the client decided to use an offshore company
with hourly rates that were a fraction of EffectiveUI’s. They thought they could
spend the same amount of money and get a greater volume of results. The
offshore company assured our client that they would succeed, then disap-
peared for about eight months to develop the product. At the end of the eight
months—and after a number of change orders and cost increases—the off-
shore company came back to the client to inform them that they were unable
to produce a product that functioned at all. It wasn’t just incomplete or of poor
quality; it was essentially nonexistent from a functional perspective. To make
matters worse, they were convinced it would be impossible to produce a func-
tional product without a great deal more time and money.

The client finally decided to engage EffectiveUl to rebuild the product from
scratch, and we were able to build a very successful solution for less cost than
the offshore firm had originally quoted. In the end, by taking the higher-risk
approach of trying to save money on the hourly cost of development, our client
wound up spending twice as much as they should have to get the product built.

Insourcing Versus Outsourcing

It’s difficult to choose between building a project in-house versus using a
vendor (or some combination of the two). There are obvious implications
to cost and control. If the product is important enough to your company,
many individuals and departments may be clamoring for control and par-
ticipation. As a result, they might not be willing to hand that control to an
outside firm. On the other hand, the resources needed to build a success-
ful, UX-focused product may not be available internally, though there may
be some misconception that they are. As we discussed earlier, designers in
marketing and engineers in IT maintaining legacy systems don’t add up to a
UX-focused team for building new products.

We recommend looking to the preceding section to guide your decision to
insource or outsource the project. You're in the fortunate position of having
good options if you can build an internal team of professional, specialized
resources who are able to work together with a unity of purpose, in the same

Chapter 4: Bringing Together a Team

space, and with mutual respect for one another’s contributions, and if those
people fit the other attributes we described.

But unless your company has a strong track record of producing UX-focused
products, youw’ll be hard-pressed to find most of the key professional resources
internally. Even if your IT department has qualified developers, it can be dif-
ficult to wrest control of them from their current accountabilities. Your only
design resources may be marketing staffers who have the wrong specializations
or who may already be deeply committed to other major initiatives. And the
issue of management and technical infrastructure can also complicate things;
each different type of professional requires their own software and IT infra-
structural support and should be managed by people experienced in managing
that specific type of professional and UX-focused projects in general.

UX-focused projects require strong teams who are working near the leading
edge of software technology, so it’s likely that looking at a specialized, third-
party vendor will be high on your list of options (or it might even be your
only option). The strong value you get out of working with a vendor is that
the vendor should have all of the attributes of a successful team in place and
available to you as a turn-key solution:

* Qualified and engaged staff

e Unity of purpose and location

o Theright kind of management and technical infrastructure
* Experience in UX-focused projects

* No complicated cross-accountabilities within the organization

It’s also possible to build a team out of a mixture of internal people and out-
side consultants. But you need to establish that same unity, mutual respect,
and clear focus; that need places a greater burden on you to ensure everyone
comes together properly. And if, for example, you have internal software
engineering resources and have contracted outside design resources, nei-
ther group will likely be accustomed to working with the other. The soft-
ware engineering people are used to being in their own department, and
the design people are used to being segregated from software engineering
(handing off designs as deliverables and disappearing to their next projects).
You also might encounter hostility from the internal team, a sense of smug-
ness from the consultants, or other culture clashes that you need to address
to keep the team working together successfully.

Insourcing Versus Outsourcing

131

132

Offshoring

There’s one thing that’s very important to state explicitly: innovative,
UX-focused projects are not good candidates for the use of offshore vendors.
Offshore companies tend to favor volume over quality, throwing large num-
bers of lesser-qualified resources at problems. As we’ve already discussed in
this chapter, that approach is fraught with risk and not nearly as cost effec-

tive as it appears.

Offshore companies with highly talented and experienced resources do

exist, but even they are problematic to work with. Progress in an innovative,
UX-focused project relies on quick feedback cycles among stakeholders, the
project leader, UX specialists, design, and software engineers. Time zone differ-
ences between your internal team and offshore companies hinder—if not out-
right destroy—timely and effective collaboration, and generally have the effect
of segregating the offshore team, excluding them from the overall project and
design process, keeping them focused on narrow units of progress, and obscur-
ing their insight into the state of (and challenges to) their progress. If your goal
is to produce something exceptional, this just doesn’t work.

OVERALL PROJECT COST MORE EXPENSIVE LOCAL LESS EXPENSIVE
RESOURCES OFFSHORE RESOURCES
O
ENGAGEMENT $100 $100
UNITS PRODUCED 1.5 5
ACCURACY 80% 20%
SUPERVISION & REWORK $10 $50
UNITS SHIPPED 1.2 1
COST/UNIT $92 $150

Chapter 4: Bringing Together a Team

Evaluating an outsource vendor

In selecting a vendor to perform some or all of the services for the project,
all of the criteria used to define a successful team should be used to assess a
vendor. For example:

o Are their resources sufficiently qualified and specialized?

o Do they fully understand the relationship between UX design, visual design,
user research, and software engineering? Have they created a setting where
they can work together effectively?

o Are they focused on the user and the UX (rather than focused primarily on
visual design or software engineering)?

You should also review the lessons from previous chapters and ask the ven-
dor questions to discover whether they’ve learned those lessons too. The way
the vendor proposes to manage uncertainty and the unknown in a project
will be very telling. Vendors are accustomed to being asked to provide for-
mal, documented processes and to pretend that uncertainty is minimal. But
ask them about how they dealt with unknowns and changes in other projects
and how they propose to manage scope so you can see whether they provide
an honest, realistic point of view. If they don’t—if they tout their patented
process as being universally and comprehensively effective, or if they put a
great deal of emphasis on upfront requirements building and big design up
front—then be wary. Vendors who use this approach tend to try to hold you,
the client, at arm’s length in an effort to conceal the internal details of prog-
ress. That approach doesn’t allow your project to benefit from the wisdom
available through the stakeholders and the project leader. It also prevents you
from having a clear, unfiltered understanding of the state of the project. You
also don’t have immediate control over its course as the inevitable unknowns
and risks are encountered. This leads to surprise disappointments, budget
overages, and change orders.

The ultimate goal for both your company and your vendor should be to cre-
ate a strong working partnership that is built on mutual trust and respect.
Your company gains that trust and respect by:

* Being reasonable about the realities of uncertainty and the unknown
* Being effectively supportive of the development process
* Keeping focus on the high-level goals

* Being clear-headed and passionate about the product you’re building

The ultimate goal for your
company and for the ven-
dor should be to build a
strong working partner-
ship of mutual trust and
respect.

Insourcing Versus Outsourcing 133

134

The vendor gains trust through transparency and a willingness to acknowl-
edge and take responsibility for issues as they arise. It demonstrates its trust
by allowing the project leader direct access to the project through develop-
ment. If a vendor is resistant to this level of transparency, it may simply be
because they have been burned in the past by clients who didn’t reciprocate
that trust. But they should at least acknowledge it as a goal and be working
toward it.

You should also examine the role of the vendor’s account management and
project management. Good project management is crucial to:

* Helping teams meet their commitments and goals
* Providing a level of order to the often-chaotic flow of developing software

e Providing you with an advocate in the vendor’s company who can help foster
a strong relationship between the two companies

On the other hand, project management and account management are

often used as layers to obscure the internals of the project from the client,
translating everything into periodic, heavily packaged, diplomatically pre-
sented abstractions. This is a product of the vendor’s experience working
with clients who reacted poorly when presented with a direct view into the
messy realities of a software project. So, again, although a certain amount of
trust hasn’t yet been earned at the beginning of a project, both you and the
vendor should strive to build mutual trust and develop a more tightly inte-
grated relationship. When you’re trustworthy as a client and, resultantly, in
tune with the project, the vendor won’t feel compelled to hide reality behind
pretty packaging and diplomatic account management. This mutual respect
improves the overall efficiency of the project.

A deep examination of the vendor’s portfolio of past work is also important.
Portfolios—often represented as an impressive collection of logos of well-
known, ostensibly satisfied clients—should never be taken at face value. It’s
important to gain a deeper understanding of what, exactly, the vendor’s role
was in any given project. You may find that in their showcase projects, they
provided only the design services, or only the software engineering services,
or perhaps they consulted only at a minor level. You’re looking for a vendor
with experience in bringing together all of the disciplines from UX design to
software engineering, so the vendor should have several strong case studies
of instances where they did just that.

Chapter 4: Bringing Together a Team

It is possible to bring together the design services of one vendor with the
software engineering services of another, but we’d strongly caution against
it. This situation requires that trust be built amongst three parties instead
of two. That trust can be difficult to build because the vendors will likely
perceive themselves as being in a zero-sum battle for your budget. It also
makes it significantly more difficult to create the setting of a unified, mul-
tidisciplinary team; rather, it creates a setting of segregated roles whereby
the respective parties pass deliverables back and forth but don’t necessarily
collaborate on anything. This is why full-service agencies, though generally
more expensive and in high demand, are most often the best option.

Be wary of engaging agencies that are focused primarily on marketing and
advertising. It’s often the case that if a project is part of a marketing or CX ini-
tiative, or if the product is web-based or has a strong online component, your
company’s first impulse will be to work with whichever agency has helped
with past marketing or web initiatives. When asked whether they’re capable
of building the product, these agencies will almost invariably answer “yes”—
whether it’s true or not. If they don’t already have the capability, they’ll see
your project as an opportunity to build that capability on your dime.

Besides their basic inexperience, the problem here is that marketing and ad
agencies approach these types of projects as websites on steroids, beefing up
their web design and development staff and applying web solution strategies
to the project. But there are enormous differences between websites and soft-
ware. UX-focused software, as we’ve discussed, requires specialized resources
in UX, visual design, and software engineering. Web design and development
skills do not translate to software design and development capabilities. As
well, the technical infrastructure and management practices required for a
software project are vastly different than they are for web projects. An in-
depth investigation of the qualifications of the agency’s resources and their
contributions to their portfolio projects should reveal their true capabilities.

Also, it’s worth doing some digging to ensure that the company you’re hiring will
actually be doing the work. Agencies that don’t currently have the in-house capa-
bility to build your product may simply hire a more specialized agency to do it on
their behalf. In those cases, you're needlessly paying a middleman. And an addi-
tional party in the middle of everything can only harm the unity of the team and
the trusting, integrated working relationship that needs to be established.

Insourcing Versus Outsourcing

135

136

The following are some additional questions you can ask of the agency
you’re evaluating to see if they’ll be a good fit.

To see if they can do the work themselves

Ask to see an example of a live project completed entirely in-house without the
support of third-party vendors.

Ask to be walked through the actual timeline and process for that project.

It's OK if the initial plan changed along the way—that happens in every proj-
ect—but pay attention to the sort of changes that came up, how the agency
responded to them, and whether they seem to understand and are prepared for
the way uncertainty and the unknown affect projects.

Ask to talk to the client for the project they described to see if the client tells a
similar story.

To see if they are good at the engineering but not the UX design

Try to use a product they've built—preferably something created for a broad
audience. Do you think it's easy to use? Trust your gut reaction.

Ask for their recommended approach to creating a good UX. If they don't
include a few methods for gathering input or feedback from actual users (inter-
views, observation, usability testing, and so on), they probably aren't familiar
with how UX design should work.

Ask who they think creates good user experiences. If they can't think of any
examples other than Apple, they probably don't think about the topic as much
as they'd like you to believe.

Chapter 4: Bringing Together a Team

To see if they are good at advertising or marketing, but perhaps
they aren't a true UX-minded software development company

Ask to see sample wireframes or functional specifications from some-
thing they consider a highly functional project. If they can't some up
with any, or can show you only visual designs without detailed notes
and workflows, they probably don't know how to do that.

Ask to speak to a past client that the agency has built functional appli-
cations for.

Ask for someone from their engineering team to join in on a meeting.
If they can't come up with someone, or if that person doesn’t engage
thoughtfully in the conversation, they may not have a qualified engi-
neering team.

Separately, ask their project manager, engineers, and designers how
engineering and design usually work together. If don't share similar per-
spectives, they probably don't work together very well.

Full disclosure

Because EffectiveUl is a full-service agency and we’re essentially describ-
ing ourselves in this chapter, it’s important for us to acknowledge the risk
that our recommendations in this section will seem self-serving. This was
unavoidable—this book is a compendium of our views on the best practices
in this domain, and we spend our days (and a few nights and weekends)
using these practices in our work. For what it’s worth, it wasn’t our idea to
write this book. We were asked to write it by our publisher, O’Reilly Media,
because they noticed we had been delivering strong results in UX-focused
engagements where other, ordinarily competent agencies had failed, so they
wanted us to help you understand how we’ve been doing it. There are a
number of independent research papers, mostly by Gartner and Forrester,
that have helped inform our views and can provide impartial support for
our assertions, particularly for this chapter. Unfortunately, we’re unable to
quote or cite them directly in this book because they’re proprietary works.

Insourcing Versus Outsourcing

137

We’ve taken great care to ensure that this book is the source of credible,
accurate information and not just a big perfect-bound advertisement for
EffectiveUl If you’ve sought out this book for the full range of advice it pro-
vides, then you’re likely not in a position to hire a company like EffectiveUl
anyway. You're probably looking for a roadmap of how to do it on your
own—and that’s precisely the information this book provides.

138 Chapter 4: Bringing Together a Team

Chapter 5
Getting the Business Perspective

140

Business planning is the first stage of planning the project,

when you start to explore and define the problem that needs to be solved.

In Chapter 3, you learned that effective requirements are a framework of
constraining parameters that guide decision making and design. Framework
requirements convey a clear understanding of the problem to be solved, but
leave the details of the solution to be worked out later when the develop-
ment stage begins. The business’s needs and goals will guide and constrain
everything else in the project and are therefore the starting point in building
the framework requirements. Though the focus of the project will eventually
shift primarily onto user needs, meeting those user needs will always be a
means of accomplishing the business’s goals.

The result of this stage should be a clear statement of what the business
absolutely needs and expects of the project—nothing more and nothing

less. Since it forms the basis of a key part of the framework requirements,
business planning must be restrained to just focus on defining the problem
without attempting to prematurely define the solution. The needs of the
business that are explored, clarified, and documented through this stage will
stand as a faithful proxy for the interests of the business and the stakehold-
ers through the course of the project. But they shouldn’t interfere or intrude
unduly in the product design process.

This stage is also a significant opportunity for the project leader to build trust
and buy-in with stakeholders because the work done in this stage requires
intensive stakeholder involvement. The project leader can gain credibility
and reduce worries and uncertainty by taking competent charge of the busi-
ness planning process and ensuring it leads to useful results. This is also the
project leader’s first opportunity to seize control of the stakeholders’ expec-
tations about the project. The differing perspectives of stakeholders must
coalesce around a common understanding of the business’s needs that is
firm and stable. This solid understanding will guide the product’s design and

Chapter 5: Getting the Business Perspective

development; it will also help ensure that stakeholders’ expectations remain
in line with the project’s original goals. This will be essential in ensuring the
project remains focused and isn’t subject to the big course changes that can
occur when stakeholders lose sight of the original problem and goals. It also
helps prevent stakeholder expectations from wandering, allowing the project
leader to focus on and be accountable to goals that are fixed and definite.

Defining Success

Everyone involved in a project should be working toward its success—that
much is obvious. But what does it mean to succeed? There’s often a remark-
able lack of clarity and consensus on this most basic of understandings. Left
unguided, each participant in the project may have a completely different

view of success:

* Some project managers and stakeholders try to ensure a project is delivered
on time and under budget, above any other consideration.

* Some stakeholders want to ensure the project succeeds in meeting their
department’s specific goals, but they aren’t focused on how the project will
affect the rest of the organization.

e UX professionals can focus exclusively on succeeding at meeting user needs
without attending to the needs of the business.

* Project team members may view success as meeting the isolated demands
imposed on them by managers, rather than delivering an exceptional product.

o Project leaders can get so focused on pleasing their stakeholders that they
lose sight of the overriding quality and business goals for the product.

If everyone is working toward different goals, it’s guaranteed that those
goals will come into conflict. And every narrower interest interferes with the
greater interest of truly succeeding in the fullest sense. So, again, what does
it mean to succeed?

Software projects are born to address business problems, to respond to busi-
ness opportunities, and ultimately to drive value into the business. In short,
software projects are meant to create a return on investment. It’s the antici-
pation of that return that motivates a company to invest money into a proj-
ect, and determines how much investment is appropriate. Meeting the ROI
projections that were used to justify the project is the ultimate standard of
success, because it is the truest reflection of the project’s reason for being.

Defining Success

141

142

If you look at the previous list of the disparate, narrow views of success, you
can imagine how each originated from the goal of helping the project meet its
ROI goals. Working to ensure that a project comes in on time and on budget

is an attempt to make key projections in the ROI model come true; meeting
user needs is a stepping stone to meeting the business’s needs. If, however, the
relationship between these lower-level goals and an overriding ROI-oriented
business goal is lost, the lower-level goals will pull the project in differing (and
wrong) directions, and each of the narrow interests will come into conflict.
Therefore, it is tremendously important to kick off the project with clarity
about what success looks like, and strong unity of purpose in meeting the
high-level objectives. This is the core purpose of the business planning stage.

As the project progresses, stakeholders won’t be able to spend much time
working on it. And as the team gets consumed in the details of designing and
building the product, the focus of their day-to-day activities will be very nar-
row. But you cannot allow the team to lose sight of the high-level purpose of
the product. And as the project progresses, even the stakeholders can forget
the original purpose for the project and divert their attention to narrower
goals. You must not let the product deviate from its founding business goals,
because those goals were what justified the investment in the project and it

is to those goals that you should ultimately be held accountable. This means
that practices and mechanisms must be in place to preserve their memory
throughout the project, and to ensure that everyone is working toward the
same objective all along the way.

Creating a Project Mission Statement

Almost every company has at some point tried to formulate a mission state-
ment for itself. Mission statements are meant to help people keep sight of
why the company is doing what it’s doing and why each person is doing his
work, instead of leaving people to live just in the day-to-day without a view
of the big picture. Mission statements are a fixed but flexible point of refer-
ence for people to judge whether their efforts are effectively propelling them
and the company in the right direction.

A mission can offer the same advantages to software projects. It’s easy to get
caught up in the features, design, and technology going into a product and stop
thinking about why it’s being built and how it fits into the larger organization.

Chapter 5: Getting the Business Perspective

Keeping a keen focus on the mission is especially important for projects where
that mission is centered on good UX. High-quality UX is a diffuse, general goal
that must ultimately be translated into a specific product with a concrete fea-
ture set. It’s too easy for project team members to focus on narrow details of the
implementation while forgetting that better UX is the central priority. A concise,
high-level mission statement becomes part of the framework requirements.
Members of the project team will refer back to it as they make decisions and
judge progress, asking, “Are we being successful in fulfilling this mission?”

Mission statements are best created through direct collaboration among
your stakeholders—if you can get their time for it. Mission statements should
be just a few sentences or paragraphs, but those can be hard to arrive at.

If you can’t get your stakeholders together, prepare a first draft and pass it
around among the stakeholders for feedback until you arrive at something
that meets with general approval. It’s again important that every stakeholder
approve of the mission statement, since it will be the basis of many future
decisions. The project mission will be a point of reference for them to return
to as a reminder of the goals as the project progresses.

This is a mission statement from a product we’ve been working on that is
meant to help marketing professionals reach their customers through mul-
tiple channels more easily:

Our mission is to help businesses better communicate with their
customers in ways their customers prefer and appreciate, while also
helping businesses spend more time on marketing strategy instead of
the logistics and tactical details of executing on their marketing plans.

The company building this product thinks it can find success in expanding
the capabilities available to marketing professionals and improve their effec-
tiveness through high-quality UX that makes the new and existing capabili-
ties easier to perform. The mission has a clear user orientation; it’s stated in
terms of the benefit the product can offer its users. This was possible because
the company had drawn a clear connection between its own business success
and user needs. Project missions (especially those for internal projects) can
focus a bit more on the business’s own needs than this one does, but not exclu-
sively. If UX quality is a high priority for the project because it’s the means

by which you except to accomplish some business goal, the project’s mission
should carry the UX focus.

Creating a Project Mission Statement

143

Note also that this mission makes no attempt to define specific aspects of
the solution. It doesn’t say, “help businesses better communicate with their
customers through email,” though email channel capabilities will certainly
be part of the product. The mission helps the project team decide whether
certain ideas and features should be implemented. If an idea furthers the
product’s mission, it’s included; if it offers some benefit that doesn’t further
the mission, it’s omitted. The mission also informs design decisions. There
are, for example, many ways to approach email channel marketing capabili-
ties, but only some of them will align with the project’s mission.

Determining Project Success Criteria

Success criteria are the end of the sentence that begins with, “We will have
been successful if we....” The best way of settling on success criteria is to
return to the financial and business models that you used to build support
for the project. The ROI proposition in the models will revolve around cer-
tain key variables, such as “percent change in customer retention” or “per-
cent change in call center volume,” that are at the heart of how the company
proposes to make or save money on the project. So, the degree to which the
project meets projections for these key variables will also be the degree to
which it succeeds in bringing about the anticipated ROI.

Success criteria are much more specific than the mission statement, but
maintain a focus on the high-level, overriding raison d’étre of the project.
They translate the key variables from the financial justification of the project
into clear, explicit goals. For example:

* Reduce call center volume 10-20 percent over a six-month period.

» Increase customer retention by 15 percent or more as measured over a one-
year period.

* Reduce the incidence of data input errors by 50 percent after a six-month
period.

Each of these example goals would have arisen from some key variable in
the project’s ROI model. For a project to succeed in meeting its ROI objec-
tives, it must meet projections for its key variables. Success criteria are best
when they’re specific and clear, readily measurable, and “timeboxed”—that
is, they have a specific period over which they will be measured.

There are numerous benefits to identifying success criteria:

144 Chapter 5: Getting the Business Perspective

o They provide another point of reference for project team members to use in
decision making and give them concrete goals to aim for.

* They help ensure, when the project is over, that stakeholders judge the
success of the product based on its original goals and mandate and not based
on personal, subjective misgivings.

o They give people outside the project a quick understanding of how the project
is meant to affect them and the company without having to understand the
product itself.

* They amount to a commitment on your part that you can be held accountable
to, which can be very helpful for your credibility.

Once the mission statement and success criteria have been identified, agreed
upon, and documented, make sure that they remain present and relevant
in the day-to-day progress of the project. They shouldn’t just be documents
that are produced at the beginning of the project and never looked at again.
Every stakeholder and member of the team should receive a printout of the
mission and success criteria at their desks, and every significant decision
and design concept should be filtered through them. Members of your team
should be able to tell you what mission and success criteria they’re working
toward without having to look at notes, since they should be thinking about
the mission and success criteria every day. And each time you engage stake-
holders to review progress and offer advice, you need to first reorient them
to the project’s mission and success criteria, to ensure that their reactions
and advice are framed by the project’s goals.

Exercising Restraint

As you examine the business goals, your greatest challenge is likely to be
encouraging a discipline of restraint in yourself and your stakeholders. In
the early days of a project there’s a tremendous amount of valuable thought
and enthusiasm. But left unguided and unrestrained, all of the ideas and
enthusiasm can run amok. This causes projects to be founded on unreason-
able goals and expectations—clearly a setup for failure. At the same time,
care must be taken to exercise restraint without quashing any of the enthusi-
asm or discarding any of the early ideas.

Therefore, much of the work of discovering business goals is a progression
of techniques that help you parlay all of the ideas and enthusiasm into busi-
ness goals that are reasonable and thoughtfully restrained. The process

Exercising Restraint

145

146

involves coalescing the information and value brought by your stakeholders,
and getting their expectations unified and their progress pointed in the right
direction. Getting the various perspectives of stakeholders to align around a
common vision can be a challenge, but you should encounter less difficulty
than you might expect. At the outset of a project, stakeholders are typically
concerned about the risk, uneasy with the scale of and lack of clarity sur-
rounding the problem, and unsure of how to proceed. The techniques and
restraint employed during this stage, and the focused objectives that should
result, do a lot to allay their uneasiness. Restraint helps eliminate a lot of the
complexity and noise, which in turn helps the project seem less difficult and
less risky.

Just as perfection is the enemy of the good, over-ambitiousness can set a
project up for failure—failure to launch, failure to meet expectations, failure
to engage users, and so on. There’s usually a strong impulse at the beginning
of a project to throw in every possible feature, and to dream up a product
that will appeal to every possible market or demographic. But the more
sprawling the initial conception of the product is, the harder it becomes to
actually build. And overlarge concepts leave too much room for stakeholders
and project team members to have very different mental images of and pre-
conceptions about the product.

So, in the interest of restraint, you should be continuously asking the ques-
tion: “Is this truly necessary for our product to succeed for our business?”
This is a useful filter for preventing guesses about aspects of the solution
from being confused with actual requirements. A concept is a requirement
only if the project would be considered to have failed to some degree if that
concept isn’t reflected in the finished product. Surprisingly few things actu-
ally pass the test of being truly necessary; many are just ideas for features

that are means to a more fundamental business goal.

Though it may seem like we’re asking you to give up hopes and dreams
before you even begin, we’re just encouraging you to exercise restraint at the
beginning of the project, to ensure that there will be room for those hopes and
dreams when their time comes. If you strive for something too ambitious from
the outset, you risk overstretching your resources. You typically don’t fully
recognize you've overreached until the project is too far along to make adjust-
ments and you either run over budget or underdeliver. Broader goals mean

Chapter 5: Getting the Business Perspective

broader susceptibility to change and risk. If you overreach in your original
conception of the product, you risk finding yourself in a position of having
to make cuts and compromises at the end of the project. This is costly and
difficult to do; it forces you to renege on prior commitments, which damages
your credibility with stakeholders.

It’s much easier to add in features and refinements after you’ve delivered a
successful, thoughtfully restrained first release (which may just be an inter-
nal demo release). By virtue of having gained the experience of having built
an actual working product, yow’ll be much better prepared to decide which
of the earlier ambitions are actually worth pursuing. You’ll also be much
more practiced at estimating how far your remaining resources can take

you.

A restrained first version of the product also requires less time to develop,
which means you can get it in front of actual users sooner. Those users will
be much better judges of what’s missing or problematic in the first version
of the product than you and your stakeholders; you, your stakeholders, and
your project team are too intimate with the product to have a clear perspec-
tive. If you exercised restraint, youw’ll be grateful that you have leftover time
and money to make changes in response to user feedback. Also, releasing
something acceptable and functional (even if it isn’t 100 percent of what
everyone wanted from the outset) relieves a tremendous burden of pres-
sure and risk. It’s far better to have something releasable and imperfect than
something that endeavored for perfection yet never got to the point of being
releasable. Too many projects die under the weight of overblown expecta-
tions and requirements. There will always be more you could have done, but
for a product to see the light of day, some sacrifices will always have to be
made.

The mindset of restraint, like that of the humility of unknowing, is both dif-
ficult and crucial to instill in your stakeholders. They need to understand
that restraint is a key discipline of risk reduction, and that “not now” doesn’t
mean “never.” It just means that you’re keeping your options as widely open
as possible and giving everyone the opportunity to gain experience before
making difficult decisions. As a military commander said to the president in
the TV show The West Wing, “A proportional [restrained] response doesn’t
empty the options box for the future, the way an all-out assault does.”

Exercising Restraint

147

Applying the Pareto Principle

The Pareto principle, more widely known as the “80/20 rule,” is a useful
cognitive tool for the exercise of restraint. Although some people believe

it means that one should focus on the 80 percent and not worry about the
other 20 percent, it actually means that the 20 percent portion is quite often
the cause of 80 percent of the effect. This suggests that attending to the piv-
otal 20 percent is the most effective use of resources. Retailers, for example,
may recognize that 20 percent of their offerings represent 80 percent of their
revenue and focus their inventory and marketing investments accordingly.

With user-focused software, it’s often the case that a product built to do an
excellent job of satisfying the needs of a small set of users will also work well
for almost every other user. The process of describing target users therefore
involves identifying the 20 percent of users who can serve as good ambassa-
dors for the rest.

What Not to Restrain

The practice of restraint should be a filtration and distillation of ideas that
happens in a collaborative environment. It should not be a self-censorship of
ideas and enthusiasm before they have a chance to enter the group conversa-
tion. Creativity and inspiration shouldn’t be headed off before they’re shared,
nor should ideas be discarded before they’ve had a chance to be considered.
Restraint is exercised through the process of deciding what ideas to include in
the framework requirements, not when initially generating those ideas.

Also, if you've identified some way your product is going to significantly dif-
ferentiate against the competition or drive compelling value and change to
your organization, that aspect should be given wide latitude. The proper
exercise of restraint should never dilute the core value and anticipated ROI
of the product. Restraint is meant to keep all of the other stuff at bay so the
core goals have room to breathe.

The nature of the solution you’re trying to create may demand that it be a
sprawling and complicated product and greater measures of restraint just
aren’t available. In cases like this, it’s useful to compartmentalize the prod-
uct into smaller concepts and approach them as separate projects, to make
the domain of your team’s focus narrow enough to keep them effective.

148 Chapter 5: Getting the Business Perspective

Refocusing Product Objectives

It’s typical for competing companies to try to retain their competitive edge by
matching and then outdoing each other’s feature lists. Product objectives are
set by what will look the most impressive on a feature matrix in comparison
to competitors and what marketing thinks they can message most effectively.
But getting into a feature parity war with your competitors puts you on a

long road to nowhere. The best you can ever hope for is to be a few months
ahead of your competitors with a number of features they’re already working
to replicate. The intrinsic usefulness of the product suffers as it grows into a
Frankenstein of fragmented features that render the product feature-complete
but a nightmare to use. And the more that gets bolted onto the product, the
harder it is to change, so companies get committed to a trajectory they can’t
control, because the inertial mass of the product is too great and simply main-
taining and supporting it is consuming all their resources.

It’s no wonder, then, that scrappy, focused startup products built by college
dropouts in their parents’ basements pose a serious challenge to previously
well-established products made by large companies. Unburdened by the
need to tilt against the overwhelming friction of an existing behemoth, these
startups are free to build products that differentiate on quality. They focus
on the intrinsic value and usefulness of the product, rather than on a long
list of mostly irrelevant features. Smaller projects are also easier to design
and build, because they can be held in one’s head all at once more easily.
And the less complexity there is in a project, the more thought and attention

is available to each of its details.

VS

If your company needs to offer a comprehensive range of capabilities
in some area, consider breaking the efforts into smaller standalone
products to be developed separately. Apple took this approach in m

building the suite of products that includes Mail, iCal, and Address | 12

Book. Those products handle many of the capabilities that Microsoft | el

crammed into its incredibly complex Outlook and Entourage prod- \
ucts. By breaking up the functionality into separate products, Apple |
was able to keep the development efforts smaller, more focused, and j"
less prone to risk. Smaller products generally do one thing very well,

whereas larger products tend to do a lot of things not as well. Smaller =

{0

products also make it possible to bring the suite to market in smaller

Refocusing Product Objectives 149

150

increments rather than one big one. This lets you get something out sooner,
to build a base of customers and receive real-world user feedback. That feed-
back can be applied to improve the quality of the subsequent products in the
suite that you develop.

As you investigate the business needs for your new or remodeled product,
don’t allow feature parity to control the conversation and product direction.
If you commit to matching a competitor’s feature from the outset, you’ve
limited the resources and latitude you have to pursue other avenues of dif-
ferentiation. Matching a competitor’s features ultimately may be the right
decision, but don’t let it pass by as an unchallenged assumption. Do some
research and try applying the Pareto principle to your feature list. You may
discover 20 percent of your features account for 80 percent of the product’s
usage, or that 20 percent of your features are the reason why 80 percent of
your customers use your product. There are many other ways to differenti-
ate your product than just feature lists—better UX, for example—and those
options need to be given due consideration.

Omissions Aren’'t Permanent

Rich internet applications (RIAs), software-as-a-service (SaaS) deployment
models, and desktop software auto-updaters allow software to be updated
much more easily, so product managers can breathe much freer. Decisions to
leave certain features out of a given release aren’t permanent. If user feed-
back ends up demonstrating that a decision to omit something was a mis-
take, that missing feature can be added in an automatic update.

What is permanent, however, is any expenditure of time and resources

that occurred before the release. This is another argument for exercis-

ing restraint in the product’s objectives. Whereas you can add a feature in
response to user feedback, you can’t undo the expense of building one that
wasn’t needed or doesn’t succeed. If restraint saved you from building an
unsuccessful feature, the time and resources you didn’t expend will be avail-
able to build something else in response to user feedback.

Chapter 5: Getting the Business Perspective

Describing the Product’s Users

Unless you’re catering to a very narrow and well-defined customer base or
audience, there’s a tendency for companies to try to build products that work
well for every possible user. Our UX architects call this the problem of design-
ing for “everyone with a neck.” Overly inclusive target user populations are
just as problematic as overambitious feature goals. Good UX happens when
software is built in a way that’s attentive to the specific and unique needs of its
users. That attentiveness and specificity is impossible if you’re trying to cater
to an overly broad group of users. This understanding is the basis of the fol-
lowing aphorism:

If you try to build software that works for everyone, yow’ll wind up
building something that works for no one.

Designing for an overly broad set of users can cause you to design a product
for the lowest common denominator in the group or for all of the disparate
weaknesses within the group. Here, again, is where some thoughtful restraint

can prevent your well-meaning ambition from bringing about poor results.

And so a key goal of the business planning stage is to reduce “everyone with a
neck” down to a more practicable understanding of who your key users will be.
This understanding will be applied in the user research stage to determine what
users to bring into the research. It will also help simplify and guide the remain-
der of the discussions about the business perspective, giving participants a nar-
rower set of potential users to bear in mind as they think about the product.

The identification of key users is more of an art based on experience than
something that can be learned from a book, so if it’s possible to involve a
UX professional, your project will be better off for it. The principal goal is

to provide a thoughtfully restrained starting place for user research as they
select as their sample users. By providing them with a diligently restrained
view of who the key users are, you avoid undue cost and loss of time in user
research. Be careful not to take the restraint too far, though; the key users
you describe should be a broad enough group to allow user researchers to
address a complete sample of users without inappropriately ruling any out
in advance. The group must also be broad enough that your stakeholders are
confident that user research will be based on the full diversity of potential

customers or users.

Describing the Product's Users

151

152

User Attributes

You will define your key users by discovering and describing their attri-
butes—the attributes of their lives, of their home or work environments,
and of their attitudes that affect how they will relate to your product. We’ve
generally found that the important attributes are different depending on
whether you’re building a business or enterprise application or you’re
building a consumer application. Business users tend to come to an applica-
tion through the context of their business and of their specific role within it.
Consumers, on the other hand, generally relate to an application in the con-
text of their own lives and the goals they’ve set for themselves.

Some examples of attributes for business or enterprise user types might be:

* Marketing directors who oversee staffs of 10-50 people and have budgets of
over $2 million

* Network administrators who either oversee a large internal network or
oversee multiple smaller ones for clients

* Call center operators who manage first-tier customer service requests

Attributes of the organizations the users work for also strongly influence
user types—for example, which industry or vertical their company oper-
ates in, its size, how technology is integrated into the organization, and so
on. Attributes of the users’ personal lives usually aren’t material to business
or enterprise application user types, though. Whether users have children
or cats, or whether they live in condos or houses, etc., has little influence

on their jobs, so these factors don’t influence how they will use a product.
People adopt a different persona when they walk through the office door;
they are guided much more strongly by the demands of their job than by
their personal lives.

User types for consumer applications, on the other had, can be strongly
influenced by personal and demographic information. It’s relevant to online
tax software, for example, whether many of its key users have children.
Parents have to puzzle over the complexities of family tax credits and juggle
tax preparation in their free time with other demands such as ballet lessons,
work, and family meals. Their individual attitudes toward technology and
data security will also play an important role.

Chapter 5: Getting the Business Perspective

As well, use of software for personal purposes is voluntary, whereas in a work
environment it tends to be a required part of the job. Software in a business
setting generally has a clear-cut function and relationship to the job, and the
decision to use a given usually isn’t up to the individual user. Users of con-
sumer products, on the other hand, decide for themselves whether to buy a

product and how it will fit into their lives. These decisions are heavily influ-
enced by personal attributes—age, gender, income level, and so on.

Your company’s existing marketing research and market segmentation can
be a good starting place for kicking off the discovery of user attributes. This
can provide a preliminary understanding of the broad categories of individ-
uals who will use the product. But a user and a customer are not the same
thing, even when the user is also the customer. Marketing seeks to under-
stand and influence customers’ purchasing behaviors and brand affinities;

UX design is concerned with a user’s interactions with the product. The attri-

butes that influence these two concerns are different, and the approach to
researching them is also different.

Exercises to Identify Key User Attributes

It’s essential to collaborate with stakeholders during the process of identify-
ing key user attributes. They bring a variety of perspectives that reflect the
complexity of your company, and their buy-in will be crucial as you move for-
ward. Involving them to help craft the user types helps produce better results
and instills a sense of ownership and understanding in your stakeholders.

This is also a good opportunity for you to build your own credibility. You need

to exercise effective leadership in helping the group distill noise and complexity
down to actionable, consensus-driven results. You may find yourself in a room of
higher-ranked people with differing attitudes and goals who will all be looking to
you to provide reassuring leadership and bring everyone to a good outcome.

First exercise: Getting to something narrower than “everyone”

As we’ve said, though it’s tempting to try to build software that works for
everyone, it isn’t a reasonable goal. Even if in your situation “everyone” is a
smaller group than “everyone with a neck,” it’s probably still a pretty expan-
sive group—everyone who follows financial markets, for example. Youw’ll
need to winnow this down to a more manageable size.

Exercises to Identify Key User Attributes 153

154

The first step along this path is a collaborative exercise conducted with your
stakeholders in a meeting room. The exercise is simple; you just pose the fol-
lowing question and encourage unfettered thinking:

Who is everyone?

Everyone in the group should start rattling off the attributes that they think
describe the full range of potential users of the product. In a group setting,
the ideas typically come out fast and furious and then peter off toward the
end. The role of the facilitator (either you or a UX professional) is to write
all of the attributes and ideas on sticky notes and post them on the wall. We
recommend using large sticky notes and writing with a Sharpie® for better
readability across the room. Encourage people to speak up and explore ter-
ritories that are being hinted at but missed.

By the time the brainstorming has finished, you’re likely to have an entire
wall plastered with sticky notes. We’ve conducted sessions like this where
we came close to running out of space on three walls. Even though the ulti-
mate goal is restraint, an overabundance of attributes should be encouraged
at this stage. For one, it ensures stakeholders have an opportunity to get their
ideas out and aren’t being frustrated, censored, or self-censored so early

in the project. It also helps stakeholders recognize the need for restraint; a
room covered from floor to ceiling with widely scattered attributes makes
clear the need to narrow the focus.

Even if hundreds of attributes are identified in first exercise, it should never-
theless also be clear that the group of target users is much more finite than
just “everyone.” Getting all of the attributes up on the wall makes the col-
lective understanding of the product’s users feel much more concrete. This
concreteness is reassuring to stakeholders who may be overwhelmed by the
scale of the undertaking.

Second exercise: Consolidating similar attributes

If the brainstorming in the first exercise was fast and free, many of the attri-
butes identified will be similar or substantially overlapping. The differences
between “VP of Marketing,” “CMO,” or “Senior marketing executive,” or
between “very busy,” “little free time,” or “many pressing demands” usually
aren’t meaningful enough to be kept separate.

Chapter 5: Getting the Business Perspective

This is where using sticky notes in the first exercise will come in handy. Ask

the group whether any of the attributes can be consolidated. Participants
will scan the wall covered in attributes and throw out suggestions. There’s
usually a lot of disagreement about these suggestions among stakeholders.
You can step back and allow the group to negotiate among themselves over
whether a certain set of attributes can be consolidated. As attributes are
identified for consolidation, take their sticky notes off of the wall and replace
them with one that describes the consolidated group.

With very large groups of people, consolidating attributes through open dis-
cussion and negotiation can be cumbersome. As an alternative for any size of
group, you can do this type of exercise using collaborative mind mapping. We
often use the software tool MindMeister (http;/www.mindmeister.com). This
web-based tool lets participants collaborate over a single mind map instead
of editing and emailing different versions.

Exercises to Identify Key User Attributes

155

http://www.mindmeister.com

156

The consolidation needn’t be too exhaustive. The goal is simply to ensure
that there aren’t redundancies or superfluous concepts remaining to compli-
cate progress. If possible, it’s also best to conduct this exercise immediately
after the first one. The ideas will still be fresh in everyone’s heads, and the
sticky notes will still be up on the walls in the same locations. Additionally,
writing with Sharpies on sticky notes forces complicated attributes to be
abbreviated, so doing this exercise right after the first one helps everyone
remember what the abbreviations mean. Before leaving the room for the
day, make sure to take notes on the abbreviated and complicated attributes
for future reference.

Third exercise: Distilling it to key user attributes

In the third exercise, you apply the Pareto principle to the collection of
attributes identified in the previous exercises. For this exercise, the group
dynamic can be very useful in quickly getting to a definitive result and
strong consensus. It’s very hard to apply the Pareto principle on your own,
and every individual who attempts it will come back with different results.
As a group, however, you can focus and clarify the process by running a
spending exercise.

Spending exercises

Spending exercises are a great way of facilitating tough prioritizations and
choices for small and large groups and can also be useful to individuals who
have a hard time making up their minds. These exercises work by helping
priorities and decisions become apparent from the aggregate of all the par-
ticipants’ opinions. Participants are given a limited amount of “currency”
(votes, essentially) to spend in favor of the options on the wall. The amount
of currency people have should be far less than the number of options
before them, so they’re forced to prioritize. In large group settings, the cur-
rency can take the form of the little round color-coding stickers you can get
from office supply stores. Each person comes to the wall where the options are
posted and puts stickers next to his preferred choices. In smaller group settings
or when the options are fewer, it may be simpler to have participants vote by
raising their hands.

So, with the consolidated sticky notes from the previous exercises still up on
the wall, pose this question to the group:

Chapter 5: Getting the Business Perspective

Which of these attributes describes users whose needs we can directly
address and in so doing will also address the majority of the needs

of the majority of all of our users? Or, in other words, which are the
attributes of the 20 percent of users who will be good representatives
for 80 percent of our users?

Then run the spending exercise. Participate in the exercise yourself, but also
make sure to observe how stakeholders are making decisions and negotiat-
ing aloud with themselves and each other. Make note of who may be favor-
ing user attributes that aren’t favored by the rest of the group.

Determining the amount of currency to distribute can sometimes be tricky.
If you’re not sure how much is appropriate, try giving every participant a
number of votes that’s one quarter of the number of options. If it later seems
that too few votes were distributed, you can give people more. If it turns too
many votes were distributed, you can run a second spending exercise on the

results of the first round with more limited currency.

At the end of one spending exercise, there should be a clear set of key user
attributes and some important secondary user attributes. If you find there’s
a large group of favored attributes but no clear primary priorities, you prob-
ably distributed too much currency and should

run another spending exercise. You should also xS
repeat the exercise if the list of primary and = oV
. . o il i _-_-_--H
secondary user attributes still seems too large peerate el By pert "
. . 4 W
or unfocused. When running another spending RMEALE Conned [Lepots Wy
oo I . . Fy
exercise, it should be limited to just those attri- Riild kererale Lo Pseres d
butes that survived the first round. b
I nnlt Eepods H‘LEHE:Q:;‘M
. s . . . = - :-Il""-"' Apea ol mor
Also, if the results don’t make it obvious, it may xhede. Reroris Ak Res byl & seled
. . .
be useful to decide as a group where the line enerste. TOF Yls/HTm fex M 50
between primary, secondary, and remaining ; OIS Shaee daka
. . . . WA (e Por'
attributes will be. This question may be solved s ;f-:-: s
. - . Tha nk e T)
through simple negotiation, or may require WM Mo QluickeiSer. @ mhw"‘\“!"
; ; ; B (o Lirarc) reperts 2 Tt
another quick spending exercise to give a more = F‘fggfiy e ks]4?;?
focused picture of the distribution of priorities. Crawt vt <unntim - s
AT [V uohze Data v g o) vase o)

= et A %

s 5L sonnn| Wiy]
dacs B4 wadl

Each of the dots represents a vote for that item.

Exercises to Identify Key User Attributes 157

158

Fourth exercise: Adding depth to the user attributes

Once you’ve identified the key user attributes, work with stakeholders to
bring an additional dimension of clarity and definition to the understanding
of the key users. Pose the following questions to the group:

o What are the triggers that are bringing these users to the product, or what
are the considerations that cause them to need the product?

* What do they expect out of the product?
e What would pleasantly surprise them?

e What would potentially disappoint them?

Encourage the group to consider the questions in light of the different key
user attributes. The attributes describe a range of users rather than a single,
unified user, so there will be many answers to the same questions. As with
the previous exercises, capturing these ideas in a group setting on sticky
notes is best. If you wind up with large collections of notes, you can use the
same consolidation and spending exercise techniques to hone the lists down
to something manageable.

Deepening the understanding of the key users in this way has value beyond
giving greater clarity to the rest of the project team. This exercise can help
draw out some of the assumptions and expectations that your stakehold-

ers may have about the users. This will be useful to know as you begin user
research and find yourself disproving or running counter to those assump-
tions and expectations. Discovering unexpected things in research is a sign
of effective research, but it’s also a warning sign that the project may begin
grating against stakeholder expectations. The project leader must be on alert
for issues like this that may challenge stakeholder support so she can proac-
tively address them.

Documenting the results

At the end of these exercises you’ll still only have a wall covered in sticky
notes and stickers, so the results will have to be reduced to documentation.
The documentation of this process has two audiences: the people performing
user research, and your stakeholders.

For the stakeholders, the goal for the documentation is to ensure that the
apparent consensus generated through the exercises is real and lasting.

Chapter 5: Getting the Business Perspective

Documentation is something stakeholders can hold onto as a reminder of
their decisions as the memory of the thought process behind those decisions
fades. For the user researchers, the documentation provides a condensa-
tion of all the thinking that took place during the exercises and a general
description of the range of users they’ll need to work with in their research.
The documentation should be simple so you can produce it quickly while the
exercises are still fresh in your stakeholders’ minds.

The main content of the documentation will be a catalog of the primary and
secondary user attributes. These can simply be listed. But the documentation
is also a good opportunity to record the basis of some of the more difficult
decisions, to serve as a reminder for your stakeholders if they start to drift
back toward wanting a product that works for everyone. This extra detail
also gives the user researchers deeper insight into the thinking that went
into the selection of key user attributes.

If there were any big or contentious debates during the exercises, note the
opposing arguments and the reasoning for the conclusion. If a collection of
attributes was consolidated into a single, complicated one, offer some explana-
tion of that consolidated attribute. In addition, if you noticed that any of your
stakeholders had particularly strong opinions on a given subject or stood
against popular opinion on some particular issue, seek out that person to

get his thoughts on the subject and include them in the documentation.

160

This may or may not be useful to the user researchers, but it will help ensure
that those stakeholders feel listened to and will support the results of the effort.
It can also be useful to include a list of the attributes that didn’t make the cut at
the end of the documentation, just to ensure that those thoughts aren’t lost.

Check back with each stakeholder individually before distributing the docu-

mentation to make sure they all feel comfortable with the results. If anyone

has concerns or objections, include a summary of them in the final draft of

the documentation. Stakeholders who don’t support the conclusions of this

stage probably won’t support anything that follows from them. Youw’ll need

to obtain a definitive assent to the results from each of your stakeholders to

be able to move forward with confidence. Ensuring that the final documen-

tation reflects their thoughts and concerns will help keep them on board.

Whether and how the user research team uses those thoughts is up to them.

BUSINESS USERS

Pizza Ordering System Administrator
Adds/edits/deletes stores

Maintains global food offerings
Maintains global coupons and discounts
Maintains global pricing rules

Store Manager

Adds/edits/deletes employees in the system (for his store)
Maintains prices in the system (for his store)

Maintains food offerings in the system (for his store)
Maintains coupons in the system (for his store)

Order Taker
Takes the order over the phone (writes on paper)
Enters order info from paper into the pizza system

Pizza Maker
Reads the order from the system
Produces pizza, etc., according to the order

CONSUMER USERS

College Student

Orders pizza about twice a week

Usually orders for self, but may also order for several people

S is very tight, but generally doesn't use coupons

Very comfortable with web, mobile devices, etc., and has access to and
uses all of these very regularly

Low tolerance for poor/dated interfaces

May not have or want to use a credit card

Mom

Orders pizza about twice a month

Always orders for the family—never just for herself

$ is always a consideration, but not the only consideration. Will use
coupons

Comfortable with web, somewhat less so with mobile devices, prefers
phone

Has credit card, may prefer to pay cash

Office Administrator

Orders pizza once or twice a month

Orders for the entire office of 60

Comfortable with web, prefers it to calling

Uses company credit card. Needs an itemized receipt

Creating Business Requirements

The term “requirements” is often applied to those phonebook-size binders of

detailed specifications that attempt to exhaustively define the solution. But

effective business requirements are instead an elaboration on and elucida-

tion of the needs of the business. As part of the framework requirements,

they provide a fuller description of the problem from the business perspec-

tive, but do not attempt to specify a solution.

Chapter 5: Getting the Business Perspective

Once again, there’s need for restraint on the part of those defining the busi-
ness requirements. The business requirements should include only those
things that are absolutely required. The rest will be worked out later during
the development stage. As with the selection of key user attributes, restraint
is essential. There will be a strong temptation to set a vision for an expansive
product with broad capabilities. But unless a given capability is clearly neces-
sary for the product to meet the business’s needs, it shouldn’t be listed as a
requirement. The less that’s specifically required from the outset, the more
room there will be for capabilities and requirements to be built when there’s
a much greater understanding of the user and the product. It costs less money
and political capital to add capabilities to restrained initial requirements than
it does to make cuts to overambitious ones.

Defining “Requirement”

There’s a tendency to treat “requirement” as being synonymous with “fea-
ture,” but they’re quite different. To describe a feature is to describe an aspect
of the solution, but to describe a requirement is to describe a facet of the prob-
lem. This understanding encapsulates the essence of the restraint necessary
to developing business requirements as a component of effective framework
requirements.

We took this approach with Herff Jones in creating their web-based year-
book creation tool, eDesign. Three of the key business requirements for the
product were:

* Make it easier for students and schools to create successful yearbooks.

* Help Herff Jones representatives provide better ongoing and active customer
service and support without having to go on-site.

* Make the yearbook creation process integrate better with the production
process to reduce the operational burden and risk of errors.

Notice that these requirements are expressed as goals and desired outcomes
and not as features. Requirements should stay within the realm of business
goals and avoid getting into product design specifics. This leaves room for
user research and professional product design to translate these business
requirements into specific functionality.

Defining "Requirement”

161

162

Had the stakeholders on this project been overly exuberant and unre-
strained, they might have put forward ideas for functionality as require-
ments. For example:

o The application must have email capability that enables students and Herff
Jones representatives to exchange emails within the application.

* The application must have social networking capabilities to allow students to
share ideas and build community among students at their school and other
schools.

In the minds of the well-meaning stakeholders, these two “requirements”
might seem like a natural extension of the business requirements in the pre-
vious list. But it’s not a given that supporting better customer service means
having built-in email capabilities. And including social networking capabili-
ties may be in vogue these days, but in this case it’s a catastrophic require-
ment. Students don’t need yet another narrow-purpose email account to pay
attention to, nor do their social networking proclivities extend to yearbook
class and the community of people working on other yearbook committees,
nor would email or social networking really make it easier for them to build
better yearbooks.

But if these feature ideas had been expressed as requirements, the project
team would have been forced develop them. Money and time would have
been spent on functionality that never had an opportunity to be vetted. User
researchers would have spent time looking into how to make email and
social networking work best for the users instead of looking into how to best
support the simple goal of better customer service. Design and engineering
time would have been consumed by useless functionality. And other, more
important features would have been crowded out.

A business requirement is an elaboration on the business problem the applica-
tion is intended to address, expressed in terms of goals rather than functional-
ity. To be a successful part of the framework requirements, business require-
ments must be concrete and certain about only what’s known for sure—the
business goals for the product—and restrained about everything else. This
leaves room for creative, effective product design to occur and avoids man-
dating wasted efforts.

Chapter 5: Getting the Business Perspective

Exercises to Develop Business Requirements

As with the selection of key user attributes, the development of business
requirements must be done in active collaboration with stakeholders. The
business requirements stand as an ambassador for the stakeholders’ inter-
ests throughout the project, so stakeholders must trust that they are com-
plete and correct.

The role of the facilitator (again, either you or a UX professional) through
this process is to encourage the free flow of participation, but also to help
keep everyone within the bounds of proper restraint. Stakeholders need fre-
quent reminders to think in terms of goals instead of features. This is again
an important opportunity for you to reinforce your credibility by exercising
leadership and influencing stakeholder expectations toward reasonableness.

The process of developing business requirements must be done with a con-
stant regard to:

o The key user attributes
o The product mission

* The success criteria

Keeping these considerations always in mind helps ensure that the busi-
ness requirements are consistent with and don’t stray beyond the existing
constraints. They also provide a very useful early framework for answer-
ing questions through this process. They provide a means for determining
whether a given requirement serves the needs of the target users, whether
it’s consistent with the project’s broad goals, and whether it supports meet-
ing the success criteria.

First exercise: Getting it all out there

The first step is to draw out everyone’s ideas and get them on sticky notes on
the wall. Kick off the exercise by asking this question:

What goals and capabilities would we like to see this product support?

Exercises to Develop Business Requirements

163

164

Send your stakeholders this question a week or two before you conduct the
exercise to give them plenty of time to explore all of the corners of their

ideas and expectations. If you can get them to send you notes of their ideas
ahead of time, too, yow’ll be better equipped to ask clarifying questions and
encourage the exploration of overlooked areas as you conduct the exercise.

This first exercise should be a mostly unrestrained brain dump on the part of
your stakeholders, and you should be liberal in accepting ideas. Try to avoid
letting anyone in the group dismiss ideas or argue them away so you can keep
up the momentum of the brainstorming and prevent politics or bruised egos
from impeding progress. It’s also OK at this point if the ideas are about specific
features and functionality, because those ideas can be reduced to goals later.

As the flow of ideas peters out, yow’ll again find yourself in a room com-
pletely covered in sticky notes. The presence of lots of ideas is a positive sign
that your stakeholders have had a chance to fully engage and be heard. An
overabundance of ideas also makes it easier to convince everyone of the
need to apply restraint moving forward.

Second exercise: Group things together

It’s likely that the first exercise produced a ton of ideas that are described
at a very granular level with many overlapping concepts. Also, many of the
ideas will have been expressed in terms of specific features and functional-
ity instead of as broader goals. Affinity diagramming exercises are useful to
begin to distill the ideas down to requirements.

Affinity diagramming

Affinity diagramming, also known as the KJ Method, is a technique that helps
bring order to large numbers of ideas. Presented with a large collection of
unorganized ideas, participants are asked to identify ideas that are simi-

lar, overlapping, connected, or logical siblings of the same parent concept.
Participants negotiate among themselves about whether two ideas are suf-
ficiently related or whether they deserve to stand apart. Having the ideas on
sticky notes makes it easy to organize them into logical groupings.

With the sticky notes from the previous exercise still up on the wall, ask the
participants to physically group logically related ideas. The goal of the exer-
cise is to group all of the ideas under headings that are clearly expressed

Chapter 5: Getting the Business Perspective

in terms of business goals. While grouping similar and overlapping items
together, participants also should try to identify categories for these group-
ings. These categories should be expressed in terms of business goals instead
of functionality. Returning to the Herff Jones example, you might consider
grouping these ideas (which are a collection of lower-level goals and specific
features) together:

* Proactive customer service
* Ease workflow between schools and account managers
* Built-in email system

» Faster responses to support requests

These could all fall under the high-level goal of “help Herff Jones repre-
sentatives provide better ongoing and active customer service and support
without having to go on-site.” This is a clear expression of a business goal
that’s specific enough to be actionable (as opposed to just “improve customer
service”) but flexible enough to allow a range of interpretations during user
research and professional product design. Fulfilling on the goal requires spe-
cific functionality to be designed and implemented, but those specifics are
left to be determined at a more appropriate time in the project—the develop-
ment stage.

Allow stakeholders to suggest groupings and negotiate and argue over them
without giving them much prompting. Your role is to ensure that ideas are
being given a fair hearing and that no one is allowed to either dominate or
drop out of the conversation. You should also work to ensure that ideas ulti-
mately fall into groupings expressed in terms of goals instead of features. If
the discussion needs a little nudge or certain areas are staying in the realm
of specific features, you can simply ask, “Why do we want this?” All ideas are
descendants of some business goal; asking “why?” allows you to work your
way up the chain of thought to the goal.

As you group and restate ideas, make sure the original ideas are preserved.
You can do this simply by making sure the sticky note holding the original
idea stays with the grouping it falls under. Even though the end purpose of
the exercise is to state everything in terms of business goals, the ideas that
lead to those goals and the feature ideas that resulted from brainstorming
can be tremendously valuable to the project team. They can also be useful
in planning subsequent versions or iterations of the product.

Exercises to Develop Business Requirements

165

166

Third exercise: Prioritize

Even if the group has been successful in reducing every idea and feature to
the business goal it reflects, you might still find yourself with an excess of
business goals. The number of business goals needs to be well aligned with
the time and budget you have available. An excess of goals spreads your
resources too thin and causes you to build a larger number of capabilities
that are all only partially baked. Unfortunately, that alignment is extremely
difficult to assess before development begins.

This is therefore another occasion for the exercise of restraint. The overall
risk in the project is greatly reduced if the initial focus of the project is on only
those business goals that are of core and utmost importance. The entire focus
of the team and resources should be on doing an excellent job of fulfilling
those core critical goals. Successfully meeting those goals may require all the
time and resources you have available. If nonessential goals are included in
the initial focus of the project, then resources will be committed to them; those
same resources might have been necessary to deliver fully on the core goals.
But if secondary goals are acknowledged as secondary, you allow yourself the
flexibility to bring them into the project only when you know that doing so
won’t force you to compromise the core goals of the project.

Chapter 5: Getting the Business Perspective

Determining the relative importance of business goals can be tricky. The
goals are reflections of the diverse interests of your stakeholders; each per-
son’s assessment of priorities will be different. Bringing the project’s mission
statement and success criteria back into the center of the conversation helps
refocus the group. Ask the group to look at the list of goals they’ve assembled
and think about how essential each goal is to fulfilling on the project’s mis-
sion and meeting its success criteria. After they’ve had time to consider the
question, run a spending exercise.

In this case, the amount of currency distributed should be more than the
amount distributed the first time. Some stakeholders may feel that nearly every
business goal needs to be a top priority, so they should have the opportunity to
distribute their votes evenly over a larger number of options. Other stakehold-
ers may be inclined to a more distinct prioritization, so they should be able to
cast multiple votes for a given goal to give it greater weight. At the end of this
exercise, yow'll hopefully have a clear picture of the weight of priority and a
good idea of where to draw the line between core, secondary, and tertiary goals.

Alternatively, you can ask the group to sort the business goals into three
groups:

e Essential (must have)

* Helpful (nice to have)

* Defer

Exercises to Develop Business Requirements

167

168

This approach can work in smaller group settings and may be preferable to a
spending exercise because it forces the group to discuss and negotiate every
decision rather than allowing them to rank things without having to share
and justify their thinking. Again, every participant should consider this pri-
oritization with the project mission and success criteria foremost in their

minds.

As with everything else you do with your stakeholders, the end result must
reflect a genuine consensus. There may be disagreements within the group,
but those disagreements should be discussed and resolved; don’t allow indi-
vidual stakeholders to be overruled by the majority. If the outvoted stake-
holders don’t assent to being overruled or aren’t brought around to agree-
ment, they’ll begin to hold the project in negative regard. This will cause
them to tend to disagree with future decisions, because the decisions will be
based on conclusions they don’t agree with.

Documenting the results

The process of documenting of the results of these exercises is very similar
to the process used for documenting user attributes. The documentation is
intended to inform the project team, but also to memorialize the decisions
and thinking that occurred for stakeholders. This helps them remember why
certain decisions were made and helps ensure a lasting assent to the results.

Besides documenting the final prioritized list of goals, the documentation
should also include summaries of the basis of the more important and
contentious decisions. As you prepare the documentation, seek out each
stakeholder to ensure they feel that their interests are properly taken into
account in the results. You’ll need to address specific concerns that they still
have before the documentation is finalized. Even if a stakeholder’s opinion
is in the minority and isn’t represented in the results, that person’s assent to
the results is nevertheless essential. Documenting their opinions along with
everything else can go a long way toward reassuring them that their con-
cerns have been heard and will be taken into account.

Chapter 5: Getting the Business Perspective

Maintaining Stakeholder Buy-in

Though the main purpose of this stage is to gain a clear understanding of
the business goals, you also need to use it as an opportunity to build and
maintain stakeholder buy-in. The process of investigating the business per-
spective is the first and perhaps most important opportunity for you to build
your credibility. You need to help stakeholders understand how uncertainty
affects the project and why restraint is such an important discipline. You
also need to work hard to obtain their enthusiastic buy-in. If their buy-in is
only tepid or skeptical, the project faces almost certain crises down the road.

You have an opportunity to build some early credibility by simply show-

ing up for these meetings and exercises with a clear plan and an informed
understanding of how everything should work. It’s likely that the stakehold-
ers will feel a bit overwhelmed as they contemplate what needs to be done,
so you will earn a lot of respect right out the gate if you bring clarity, focus,
and a sense of confidence to the group. And you will gain trust by going out
of your way to ensure that everyone’s views are heard and individually seek-
ing their approval.

A thoughtful, attractive packaging of the final documentation can also go a
long way to build credibility. Sloppy, rushed summaries of the work done in
this phase might belittle their contributions. A little attention to the quality
of the presentation will go a long way toward ensuring the documentation
will be treated as professional and complete.

Much or all of the thought and decision making that happens during this
phase will happen in a group setting, so remember that some people,
whether for personal or political reasons, don’t do very well in groups.
People might be quiet, easily talked down, or generally deferential—but they
still have strong opinions. Stakeholders who don’t feel they’ve been heard or
who think their ideas were unfairly dismissed or overlooked can lose trust in
you and potentially derail the project.

Maintaining Stakeholder Buy-in

169

Chapter 6
Getting to Know the User

The UX quality of your product will be determined by how success-
ful you are at making the user’s needs the central focus of the product’s devel-

opment. Though the broad scope of the project is set and constrained by the
goals of the business, attending to the needs of the user is the means of accom-
plishing those goals. The needs of the user must be a priority from day one and
must be central to the work of the whole project and team. Responsibility for
attending to the user’s needs is not isolated to a single phase or a specific few
members of the team. An understanding of and empathy for the user must suf-
fuse the project at every level, informing prioritizations and decisions made
by all members of the team. The framework for this kind of decision making is
what user research brings to the project.

User research discovers information about the user needs that is necessary
to form a key part of the framework requirements. You learned in Chapter

3 that framework requirements are an elucidation of the problem, not an
attempt to define a solution. They serve as a flexible but fixed framework of
constraints that help answer questions as they arise during the course of the
project. Accordingly, the end result of user research isn’t a set of complete
designs, nor is it a complete catalog of answers—in other words, it isn’t a
depiction of the solution. In user research, actual users are studied in order
to build a framework that will help the project team solve problems and
answer questions in the best interests of users during the development stage.

Recognizing the need to think about the user’s perspective is an important
first step—one that’s overlooked all too frequently. But just thinking about
it isn’t enough; the team’s understanding of that perspective must be sup-
ported by researched specifics. The details of user behaviors and goals help
the project team understand how users will approach the product, how the
product will fit into their lives, and how the product can successfully meet
their needs. This allows the project team to see the product from the user’s

172 Chapter 6: Getting to Know the User

perspective, and to determine answers to questions and solve problems in
ways that best honor the user’s needs.

As you proceed deeper into the project lifecycle, the need to employ spe-
cialized professionals to do the work gets more and more important. It’s
possible, though not advisable, for a project leader to conduct the exercises
described in the previous chapter without the support of a UX professional.
But trying to perform user research without the support of professional user
researchers is very risky. Misleading results from user research can be a
bigger problem than no research at all. User research serves as a key part

of the framework requirements, so getting user research wrong means that
your project will be built atop a weak foundation. Our goal in this chapter is
to equip you with an overview of how user research is performed, so ideally,
you can understand and support the work of professional user researchers.

Valuing User Research

With a UX-focused product, the needs of the user should trump nearly any
other consideration. Meeting user goals is an essential stepping stone to the
achievement of business goals. User research is an opportunity to verify or
challenge assumptions that the company, stakeholders, and project team have
about the users and project priorities. Whether they realize it or not, people
inside your company likely have a poor understanding of actual users. They
think users want the same things they want and think the same way they do,
but in most situations users are quite different from company employees. And
the understanding of customers that arises from interactions through sales
and marketing differs from the understanding of users needed to build a soft-
ware product. User research challenges and validates assumptions and offers
often surprising insights that help the team overcome false preconceptions or
a lack of information. Without research, the assumptions become the basis for
decision making and design all throughout the project, and weaknesses in the
assumptions will diminish the quality of the product.

User research is also a very useful tool in building and maintaining stake-
holder buy-in. Much of what you learn through user research is revelatory and
unexpected; it can give stakeholders insight into their customers that they’ll
appreciate. That will, in turn, help them to value the user-centricity of the
project. User research is also helpful as an objective point of reference for

Valuing User Research

173

174

resolving disagreements among stakeholders and project team members.

In every decision, the user should be the final arbiter of what’s right and
wrong; compelling user research makes it possible for the user’s perspective
to be represented in decision making.

User research benefits everyone involved in the project, including the UX
professionals; they aren’t immune from false preconceptions and assump-
tions. Users are diverse and frequently surprising, and revelatory discov-
eries found through actual user research can affect the course of a project in
unforeseen and positive ways.

We recently worked with a large company that engaged us to build a new,
radically improved portal for business-to-business (B2B) sales and account
self-management. Among the six major capabilities they wanted to build, high
on the priority list was a product configurator that would support advanced
configuration of their extremely complicated product suite. Our client also
wanted people from their customers’ companies to be able to use the B2B
portal to collaborate with other people in their companies as well as with the
client’s sales reps and technical support agents. The collaboration system was
given a lower priority (to the point of being considered optional) for the first
version of the product, but it was included in early planning to begin plotting
how these systems would eventually be integrated in the portal.

The configurator made a lot of sense to us, because their product suite was so
complicated that assisted configuration seemed necessary, and also because
we’d built a number of successful configurators for other clients. On the other
hand, we were very skeptical of the value of and need for the collaboration
system. We couldn’t figure out why business customers buying this particular
product suite would need a specialized collaboration system specific to this one
vendor’s product suite. We were also wary of the fact that collaboration and
social networking have become “me too” buzzword concepts that we’re often
asked to add in even when they make no sense at all for the product at hand.

This particular client understood the importance and value of user research
wholeheartedly and had allocated a great deal of money and time to an exten-
sive user research phase. As we started talking to real users, we made a num-
ber of interesting discoveries. First, the people who would be using this portal
were very experienced professionals. They knew exactly what they wanted,

Chapter 6: Getting to Know the User

what kinds and configurations of products their businesses required, and all
of the technical terminology and nuances associated with the domain. Their
intensive professional concentration and specialization meant that they didn’t
need any help when it came to configuring new product solutions.

But despite these customers’ deep professional experience, they weren’t in a
position to make independent decisions for their companies. In developing a
recommendation for a new configuration of the product, they had to bounce
all types of information and requests off of other decision makers in their
companies. They were also responsible for constantly communicating the
status of their purchased solutions and connecting the billing for the product
to their companies’ purchasing processes. And they were constantly spend-
ing time on the phone and collaborating with the product’s sales representa-
tives, sales engineers, and other support agents.

Based on these observations, it became clear that our initial assumptions were
dead wrong. The users of this new portal needed much greater assistance in
facilitating the volume and complexities of collaboration and communication
over the ordering and management of our client’s products. They needed little
or no help in designing configurations for the product. As a result, emphasis
of the project—in the form of attention, time, and money—was shifted away
from the configurator and onto the collaboration system.

Had we just proceeded based on our own assumptions, we would have
taken our client down the wrong path and wasted resources and time. But
part of the discipline of building user-focused software products involves
a cultivated humility and acknowledgment that users are full of surprises.
Products built on the assumptions of a few technical professionals or busi-
nesspeople—instead of on actual user feedback—suffer in quality and

success.

Combating Pressure to Skip User Research

The tendency of insights arising from user research to be revelatory and
unexpected should be welcomed and expected. This is part of the reason
why you should never dismiss user research. Proceeding without the benefit
of serious user research means that all of the subsequent design decisions

in the project will be based on assumptions about user needs instead of fac-
tual findings. This means the quality of the product will be a function of the

Combating Pressure to Skip User Research

175

176

quality of the assumptions. And, as we’ve just said, even UX professionals
and domain experts often get those assumptions very, very wrong.

But at the beginning of any project, there’s typically a strong impulse to save
time and money by skipping user research and immediately diving into
building the product. This is a result of the misconception that user research
is a “nice-to-have” component that increases costs, creates delays, and adds
only marginal benefit to the project. In our experience, however, spending
time and money on user research generally doesn’t increase the amount of
time and money the project requires. Good user research helps the project
proceed more rapidly and minimizes mistakes. It helps you set out on the
correct initial course and stay on course. It makes it easier for the project
team to determine the best solutions to problems, to make correct decisions,
and to keep the project focused on what is actually important instead of
what was presumed important. This has the general effect of improving your
project’s efficiency and pace of progress, which saves as much cost and time
as you expended in performing the research in the first place. And a product
built with the benefit of good user research will have a much better UX.

When you realize that allowing room for user research doesn’t add cost
and time to the project and results in higher-quality products and a greater
chance of success, the argument to skip user research is an argument to
spend the same amount of time and money for a lower-quality product at
greater risk of failure.

We recently worked with a large consumer-oriented financial institution
that was looking to modernize their online channel experience. During the
research phase, they were concerned about the time (about a month) that
was being spent on user research and worried that it was going to delay the
initial design deliverables. We reassured them that the user research would
reduce the time needed for the design phase. They allowed us to complete
the research, and after only two weeks of initial design, we delivered the
first concepts for a large portion of the product. This delivery came much
more quickly than our client had expected; they even requested that we slow
down to give them more time to respond to deliverables. We’ve found that
user research does nothing to delay a project because it allows designers to
make decisions much more quickly and accurately, shortens review cycles,
reduces churn, and ultimately leads to a higher quality of products.

Chapter 6: Getting to Know the User

® USER RESEARCH
e DEVELOPMENT e OPTIMIZATION

TIME SPENT / RESOURCES CONSUMED

e REWORKDUETO
. POORUSER
? DEVELOPMENT i ACCEPTANCE

TIME SPENT / RESOURCES CONSUMED

The time and cost of user research can make the overall project more efficient by
reducing churn and avoiding poor user acceptance.

Key Concepts in User Research

User research is more than just an exercise in collecting statistics, trivia, and
demographic information about users. Although that type of information is
useful, it provides an incomplete and overly flat picture of users. Your project
team needs a deep, rich understanding of users to be able to make correct
decisions from the user’s perspective. Since most members of the project team
won’t have the opportunity to get to know actual users, user research needs to
provide the team with a means of seeing things from the user’s perspective.

Empathy

By “empathy,” we don’t mean, of course, a sense of teary-eyed compassion
for the plight of the user (although bad software UX definitely has the capac-
ity to reduce users to tears). Rather, we mean it in the sense of the ability to
understand, on both an intellectual and intuitive level, the users’ needs and
to see things from their perspective.

Sometimes when we suggest that the experience of interacting with
software can be emotionally pleasurable and engaging, people (usually
engineers) act puzzled at the idea of software having anything to

do with emotion. But emotion underlies every human behavior and
interaction, and software is no exception. It’s often easier for people to
imagine negative emotional experiences with software than positive
ones, which indicates not the impossibility of positive experiences but
the relative dearth of them so far in the history of software.

Empathy

177

178

Just as with every other component of the framework requirements, the
goal in user research isn’t to answer every possible question about the user’s
needs and perspective in advance, but rather to provide a framework for the
team to answer those questions as they arise. Empathy on intellectual and
intuitive levels allows them to take thoughtfully focused but relatively sparse
information about users and use it to judge things and answer questions
from their perspectives.

User Goals Versus Product Features and Tasks

The concept of “goals” is particularly significant in user research and UX
design. To stakeholders and members of the project team, a product can
seem to be a collection of features that gives users access to a set of capabili-
ties. But to users, a product is a tool used to accomplish some higher-level
goal. Those goals are accomplished using the features and capabilities avail-
able in the product, but the user’s intention in using the product is to achieve
his goals, not to simply employ the product’s features and capabilities. Even
with games, which are a type of software that has no strictly utilitarian pur-
pose, the user’s primary goal is to be entertained. He accomplishes that goal
by operating the controller and progressing through the storyline, which are
features of the game software. The use of those features isn’t his goal, per se;
they’re the means by which he accomplishes his goal of being entertained.

Goals are also different from tasks. Tasks are the steps a user goes through
when using the product to accomplish his goals, but the tasks themselves,
like the employment of the features, aren’t the end goal. The desire to
achieve the goals is what motivates the user to employ a given set of features
of a given product to perform a series of tasks that ultimately accomplish the
goal. The meaningfulness of these distinctions is best demonstrated through
the following example.

Essentially every official business activity is at some point discussed and
formalized in some written form of communication: interoffice memos, sales
proposals, contracts, legal demands, letters of introduction, tickets for busi-
ness travel, and so on. Time is of the essence in almost every type of corre-
spondence and documentation, so the goal of quickly exchanging this docu-
mentation has long been an important goal in business. The means by which
that exchange has been facilitated—the features and capabilities of services

Chapter 6: Getting to Know the User

and products that have been employed to accomplish the tasks required to
achieve the goal—and the standards for quickness have changed dramati-
cally over the last couple of hundred years, although the goal itself has not.

As an example, consider that a business in St. Joseph, Missouri, wants to send
an agreement for the sale of a plot of land to its purchaser in Sacramento,
California. This is a business scenario that was as normal and plausible in
1860 as it is today. The two high-level tasks required to accomplish this goal
are first to prepare the agreement, and then to convey it to the purchaser.
The means by which these tasks are accomplished have changed dra-

matically over the past century and a half.
Agreement of Sale

In 1860, the agreement would likely have been written in longhand. 4
A couple of decades later, it would probably have been prepared 2
using a typewriter. Many decades later, it might have been []
prepared on an early computer and printed out on a dot-

matrix printer. In slightly more recent times, it would

Same Goal

be prepared and printed with more sophisticated com-
puter equipment and software.

|

In 1860, the handwritten agreement might have been deliv- ® Different
ered by the famed Pony Express on a 10-day horse ride across the)
country. Later, the agreement might have been conveyed across Sacramento Land
the country by the U.S. Postal Service using a combination of trains, Owner
horse carts, or early automobiles in a matter of about five days. Fast
forwarding past the era of the dot-matrix printer, the agreement might
never have been physically delivered; it might have been faxed for near-
instantaneous delivery. There was—honestly—a time when 14,400 bits (yes,
bits) per second was considered basically instantaneous. More recently, that
agreement might have been delivered in digital format as an email attach-

ment with no physical copy ever trading hands.

Though the nature of the tasks involved in achieving the goal of conveying a
legal document from one party to another has changed tremendously over
the years, the goal has remained the same. The tasks have required typewrit-
ers, fax machines, PCs, the Pony Express, the post office, and email. Each has
its own peculiar features and tasks required to successfully operate them,
but the goal has remained the same.

User Goals Versus Product Features and Tasks 179

180

Because user goals are constant and knowable while everything else is in
flux, they are the ideal conception of the user perspective for the framework
requirements. They exist at a high level and stay consistent through a long
history of changes in technology and product capabilities. Each new product
development effort entails tailoring the current technological capabilities
and business considerations to user goals. It also requires a fresh examina-
tion of user behaviors, which do change over time.

Qualitative Versus Quantitative Research Methods

It’s difficult to describe a person’s conscious experience in the form of quan-
titative data. Demographic research can yield quantitative results about the
target market segment or user base (62 percent are men, 14 percent spend
two or more hours a day watching television, and so on), and certain types of
ultra-clinical usability research can result in quantitative or quasi-quantitative
results. But there are limits to the value of this type of approach in user
research and design for UX.

Some researchers try to dress up all information collected through user
research in the clothing of quantitative results (for example, 47 percent of
people thought our product was 30-70 percent better than our competi-
tor’s). The appeal of this approach is that these points of data make a beauti-
ful line on a graph and hold greater credibility because of their apparently
solid, scientific quality. But representing qualitative feedback from users in
numeric form doesn’t change the nature of that feedback from qualitative to
quantitative.

Another reason why it’s appealing to portray qualitative feedback in a
numeric form is that it seems to suggest that statistical analyses could be
done on the data to expose new information, but that’s generally not the
case. If you discover that 18 percent of users rate your product’s UX at 2 or
worse and 45 percent rate it at a 3 or worse on a scale of 10, you’ve learned
something vaguely interesting but not terribly useful. You can’t extrapo-
late any new information from these findings; they just let you know that
improvements are needed...somewhere. This kind of information can
remind you that you’re on a damaged ship in a darkened sea full of rocks,
but offers no map or illumination to help you navigate safely to shore.

Chapter 6: Getting to Know the User

The principal goal of user research is to communicate findings about a lim-
ited sample of users to give the project team to the ability to understand the
broader user base and see things from the user’s perspective. As a result,
the information that user research produces must allow the project team

to make inferences and extrapolate from it. This would seem to be an argu-
ment for more numeric data, but in fact, the opposite is better.

Qualitative research on a sample of users, even if converted to numeric
form, cannot be extrapolated, interpolated, or inferred from using statisti-
cal methods. Most of it can’t even be plotted on a graph in any truly mean-
ingful way. Although there are formal methods of analysis (Grounded Theory,
for example) that are useful in building from qualitative research, in practical
reality anything that rigorous is seldom in the budget. Rather, the most effec-
tive mechanisms for making inferences from user research are human intu-
ition and empathy.

Members of the project team can look at stories about users’ lives and their
experiences using the product and, using intuition and empathy, make accu-
rate projections about the user’s point of view regarding things not specifi-
cally addressed in the research. The empathetic and intuitive capacity of the
team is what allows research on a limited sample of users to be used as an
intelligent, expansible, and flexible part of the framework requirements.

So, although at first blush, qualitative user research might seem to be less
scientific and therefore less credible, it’s actually much more useful to the
team. It gets closer to the core of the user’s subjective experience in a way
that allows the team to make the best intuitive and empathetic inferences.
This makes it possible for every member of the team to represent the user’s
interests, ensuring that the user’s goals—and, therefore, UX quality—are
kept at the center of decision making.

The apparent precision of quantitative data can also give the false impres-
sion that it’s the most simple and direct route to answers. Back in 2000, when
tools to gather website analytics were relatively new and expensive, people
were just beginning to understand the effect of “banner blindness”—the
tendency of website visitors to unconsciously ignore anything that looked
like a banner ad. A large online travel company conducted a study to find out
how people were using their site. Through quantitative analysis of the site’s

Qualitative Versus Quantitative Research Methods

181

The qualitative approach

was cheap, fast, and

offered an answer to the

182

question, “Why?”

analytics, they discovered that a significant percentage of users were not get-
ting beyond the home page. But the quantitative data offered no explanation
of why this might be.

Usability experts (as they were called back then) were able to convince the
travel company’s executives that a qualitative study would shed better light
on the situation. The first research participant who attempted to book travel
online didn’t make it past the first page. The “call-to-action” (the all-impor-
tant button that advances you to the next stage in the purchase or conversion
process) looked so much like a banner ad that the user simply did not see it.
After the second and third consecutive users had this same problem, it was
obvious that banner blindness was interfering with the site’s success. This
made both the problem and its solution quickly and plainly obvious. It was a
win for the usability team, but more importantly the user struggling to book
travel won relief and the business won increased revenue through radically
improved conversion. The qualitative approach was cheap, fast, and offered
an immediate answer to the question, “Why?” There are many cases like this
in UX design where quantitative data might indicate that a problem exists,
but a qualitative study is needed to know how to respond.

Who Should Be Involved in the Research

So much of user research is a combination of art and science that, as we’ve
said, you’d be hard pressed to get through it successfully without the assis-
tance of a professional user researcher. If you must press on without the aid
of a professional, spend some time reading books that go into significantly
greater depth on the process and discipline of user research than the high-
level view we present in this book. If this is the route you take, you’ll need

to acknowledge that the results of your user research will be less robust,
since it will be missing everything that the deep experience of a professional
brings. Ensure that the project team is aware of this as they make use of the
research results so they’ll be prepared to identify and respond to weaknesses
in the research. For the rest of this chapter, though, we’ll assume that you’ll
have professional assistance.

Chapter 6: Getting to Know the User

You should be present for much or all of the user research process. This

helps you get acquainted with the users directly and develop an early empa-
thy for user needs. During the research process, keep quiet and simply
observe. This prevents you from affecting the course of the discussion and
the discoveries that result, and allows the one-on-one, comfortable interac-
tion between the researcher and the user to proceed undisturbed.

It can also be helpful to bring stakeholders along for some of the interviews.
It gives them an opportunity to see the process, listen to the questions, and
understand the approach taken in user research. This reassures them that
the research is valuable and is representing their customers’ interests effec-
tively. Stakeholders often become very engaged during the process, helping to
ask questions and explore tasks that shed light on the problem. It’s also a good
opportunity for team building between the project leader, the researcher, and
the stakeholders. It typically has the effect of getting everyone energized about
the project and very considerate of the user’s needs. This has obvious value as
you continue through the project, and can also produce engaged stakeholders
who will help you keep the other stakeholders on board.

Who Should Be Involved in the Research

183

184

There are risks, however, in involving stakeholders in user research. It’s
helpful when they constructively engage in the interview process, but some
stakeholders might use it as an opportunity to push a particular agenda by
asking leading questions or trying to direct the course of the discussion. Also,
stakeholders who were involved with the previous version of the product
can get very frustrated when they see users having trouble using the old
system. We’ve seen some instances where a stakeholder intervened to try to
educate the user on how to use the old system rather than simply observing
the problems. There’s also a risk that a stakeholder might seize on one par-
ticular challenge or observation of one particular user that might be minor
or atypical and use it to try to push some personal agenda. But stakeholder
support is such an essential element of a successful project that any risks

to the research tend to be worth it. Good user research professionals know
how to accommodate stakeholders in their research processes while main-
taining its quality. You can also avoid many of these problems by preparing
the stakeholders properly about the goals and practice of research ahead of

time.

Finding Research Participants

In the business planning stage, you worked with stakeholders to produce a
restrained set of key user attributes. The task of assembling the sample user
set involves finding individuals who are good representatives of the key user
attributes and who are currently using or are likely to use your product or
one similar to it. The key user attributes will be useful in constraining the
possible field of sample users into a manageable set, but within those con-
straints it’s important to find a relatively diverse range of users. If your key
user attributes describe, for example, marketing executives who manage
budgets of $5-15M, then you might seek out:

» Users working for companies in different industries
e Users managing budgets scattered throughout that $5-15M range
e Users representing a mixture of men and women

e Users of varying ages

Chapter 6: Getting to Know the User

This practice leads to more roundly representative research. It’s not always
the case, by the way, that industry, gender, or age are the key variables of
diversity. This will vary by project.

Stakeholders, salespeople, marketing managers, and other customer-focused
colleagues help you identify potential research subjects. If the product is
meant for internal use, then the job of finding sample users can be as easy as
working through your company staff directory. Although it might seem like
an imposition to ask someone to participate as a subject in user research,
people often feel honored that you're interested in their perspective. Most
participants are eager to help shape a product to better suit their own needs
and to get a peek behind the curtain of software development. You can also
promise a free copy of the final product to customers who participate in
research, and people are usually more than happy to help out if there’s a

free lunch involved.

Determining the Research Sample Size

While quantitative research tends to require large sample sizes (usually in
the thousands), qualitative research usually succeeds with surprisingly small
sample sizes. This has been noted by the usability and UX experts Jakob
Nielsen, Jared Spool, and Allen Cooper in some of their books and articles,
and is something we encounter consistently in the user research we do.
During business planning on a recent project, we determined that the follow-
ing types of people would be the primary users of the product:

* Network administrators in large businesses

* Billing analysts in large businesses

* Business owners in mid-size and smaller businesses
* Help desk agents from the product company’s staff

* Sales representatives from the product company’s staff

We spoke to about 8-10 people in each group, for a total of 40-50 users in
the sample. Working with a sample of this size, the user research stage took
about three weeks.

Determining the Research Sample Size

185

186

There’s no rule of thumb for determining how many people you need to
work with; the size of the sample is dependent on project-specific consid-
erations. The number of key user attributes identified through your work
with stakeholders is a major factor. If only a small number of attributes
were identified, then you need only find a representative diversity within
the narrow constraints of those attributes. More user attributes will mean,
of course, a larger sample. You needn’t be overly meticulous when it comes
to finding a diverse group internal to a given user attribute. Looking back to
the example in the previous section, you needn’t ensure that you have one
male and one female marketing executive from every possible combination
of industry, budget size, and age bracket. Often just a few people represent-
ing a given user attribute will suffice.

User research needs to balance expedience with thoroughness, and there’s a
rapidly diminishing return of value as you start to work with more and more
people. This is particularly the case with user research for enterprise prod-
ucts, where we’ve found the user feedback is typically surprisingly homo-
geneous. The jobs found in large businesses—administrative assistant, help
desk agent, network administrator, and so on—are often very similar across
many companies. The reasons enterprise product users use the product, the
demands imposed on them by their jobs, and the environments they’re using
the product in are relatively consistent.

For consumer products where the user’s experience is guided less by stan-
dardized roles within organizations and more by personal considerations,
more (but not dramatically more) research subjects are valuable. The target
user attributes for consumer projects are typically strongly based on market
segments, which are broad categories of people. You may have as a key user
attribute, for example, the market segment “housewife.” Housewives aren’t a
homogeneous group of people. Their backgrounds, home lives, motivations,
brand loyalties, budget constraints, technical savvy, routines, and other
wide-ranging factors will influence their relationship with a software prod-
uct. Since “housewives” is such a broad user attribute, you’d need to plan to
work with more research subjects to get a full understanding of the group.
User researchers need to keep researching users until they notice and then
confirm consistent patterns in the feedback.

Chapter 6: Getting to Know the User

The point where researchers are able to establish and confirm patterns is
called saturation. It’s the point where researchers start hearing the same
things over and over, and stop identifying anything new or eye-opening.

As we’ve said, researchers will usually hit saturation faster in enterprise
products than in consumer ones, but in either case they may hit saturation
sooner than they had originally expected. In these cases, it can be sensible to
end the research early.

When choosing the size of the sample, be careful to consider your stakehold-
ers’ expectations and the effect on the credibility of your research. Your
stakeholders’ trust in and deference to the user’s perspective as discovered
and represented through user research will be critical to the project’s suc-
cess, so their expectations must be taken seriously. Sometimes talking to just
eight users will be entirely sufficient from a research perspective, but won’t
seem thorough and compelling enough to garner the trust of your stakehold-
ers. Small samples might also inadvertently exclude specific user or cus-
tomer types that one of your stakeholders cares deeply about. Before start-
ing the research, share your user researchers’ plans with your stakeholders,
whether individually or as a group. You need to ensure that they understand
how user research works, that they support the research approach, and that
they think the research sample is sufficiently representative. It’s critical that
the stakeholders support and respect the results of user research. You’ll be
pressing them to think about the product from the user’s perspective and to
be deferential to user needs, which are represented by the research results.
If they’re going to support and respect the research results, they first need to
support and respect the way the research is conducted.

We recently went through an extensive user research phase for a huge
enterprise product where we’d scheduled dozens of user interviews over a
period of several days. We started hitting saturation very early, but we still
continued on to complete over 60 hours of interviews. In this case, our client
was very sensitive to the size of the research sample and keen to ensure all
possible customers were included, so we continued on. Though the research
itself yielded rapidly diminishing value for the project team, the value of our
client’s confidence in the results of the research and our diligence in respect-
ing their interests trumped simple expedience.

Determining the Research Sample Size

187

188

Making Recordings

It will be useful all throughout the research process to make recordings

of the time spent with users. The recordings are useful as reference mate-
rial during the subsequent analysis and documentation of the research.
Recordings are also a good way to share the user research process with
stakeholders. They’re more effective in building emotional buy-in and defer-
ence to the user’s needs than documentation of the research findings alone.
In the research stage of a product redesign effort we were involved in, we
captured video of a user who got so frustrated and angry trying to use the
product that he actually screamed and smashed the keyboard with his fist.
When this video was shown to stakeholders, the product redesign suddenly
acquired a much higher priority and budget.

How you record the sessions will depend on the situation. For the purposes
of reference and stakeholder buy-in, video is preferable because it’s more
engaging and records more information, including the user’s actual activities
and workspace. You don’t need a person in the room operating the camera;
this is overkill and distracting. Just put a camcorder on a tripod in a position
that lets it capture as much of the user’s behavior and reactions as possible.
One downside to video cameras is they can affect the way people behave

and their comfort level in the conversation. Getting authentic information
and putting users at ease are more important goals than capturing video. In
some cases, placing the camera where it’s easy to forget about it can miti-
gate this effect. It also helps to spend a little time with users and just have a
casual conversation with them while the camera is running to get them accli-

mated to the environment and the presence of the camera.

If a video camera is too disruptive or intrusive, an audio recorder can work
just fine. Audio recorders are much less conspicuous and are easily forgot-
ten, even if they’re sitting on the desk next to the user. People don’t feel the
need to give a performance in quite the same way as they do when they’re

on camera.

Chapter 6: Getting to Know the User

Whether you’re recording video and audio or just audio alone, the quality

of the audio capture is tremendously important. It’s very aggravating to try
to work your way through noisy, unclear recordings to try to find that one
nugget of insight you’re looking for. It also detracts tremendously from the
emotional buy-in value to your stakeholders and makes the project look
less professional. When setting up the video or audio recorder, consider the
audio dynamics of the space and use decent quality equipment. When using
the equipment in a new environment, make sure to test it to ensure that the
recording will be usable. If positioning the video camera inconspicuously
leads to bad audio capture, consider using a separate audio recording device
as well. Also, be careful to keep audio recorders away from keyboards, air
conditioning vents, and other sources of ambient noise, and also away from
cell phones, as they cause interference in microphones even when they’re
not on a call.

Making Recordings

189

190

Research Through Speaking with Users

Getting direct feedback from users is the primary mechanism of user
research. It has its risks and drawbacks—users often misunderstand and
therefore misrepresent their own interests and activities—but skillful user
researchers can glean valuable insights through simple structured and
unstructured discussions with users. As with everything that’s done in user
research, the goals of these conversations are to:

o Alertresearchers to key points of difficulty and opportunity in the product
from the user’s perspective

e Find the facts and stories that will help communicate the user’s needs and
interests down the line

* Develop an intuitive understanding of and empathy for the users that will be
useful in conferring the same to other members of the project team

User Interviews

We rarely conduct or recommend user research through group sessions

or focus groups. The dynamics of the group and the difference in people’s
behavior within the group tends to lead to overly general or skewed informa-
tion. The best information comes through one-on-one interactions with the
users in the space where they will actually use the product. User interviews
should also be comfortable and conversational, rather than formal and rigid.
The goal is to elicit honest and insightful information from the users in what-
ever directions that might take you—not to simply work through a predeter-

mined set of interview questions.

The user researcher will prepare interview questions based on what they know
from the project’s mission, business requirements, and key user attributes. The
questions are open-ended and flexible, and during the interview, the researcher
invites meandering discussions. This openness allows the user to introduce sub-
jects and questions the researcher might not have anticipated, which enriches
that interview and all subsequent ones. The researcher is there to listen and
nudge the user occasionally to get important insights into the user’s goals, the
context in which the user uses the product, and the user’s primary concerns and
pain points. The researcher will also be trying to establish an empathic rapport
with the user and get herself into the user’s shoes in preparation for the task of
helping the rest of the team get into the same position.

Chapter 6: Getting to Know the User

As the researchers complete more and more interviews, they’ll start to get a
clearer picture of the problem and know better what questions they should
be asking and what issues they should be exploring. If they find something
interesting midway through the interviews and start asking questions about
it for the remaining interviewees, they’ll probably want to go back to the
prior interviewees to confirm the pattern and strengthen the data. So it’s
valuable to ask each research subject at the end of the interview for permis-
sion to contact them again to follow up. This can be as simple as making a
phone call or sending a brief survey of follow-up questions.

Ten Typical Questions We Ask in User Interviews

Understanding the Steps
“How do you do [a certain task]?"
“Where would you start?”
“What would you do next?”
“What information do you need to complete this task?”

“Can you show me how you do that?”

Understanding the Experience
“Is any part of this process difficult or frustrating?”
“Did that seem slow/fast/normal?”
“Is that what you were hoping for?”
“What's the most enjoyable part of this process for you?”

“What's a successful outcome?”

Structured Interview Techniques

Although user interviews generally allow the user’s thoughts to wander
broadly and remain open-ended to ensure that everything has a chance
to be said, there are a few structured interview techniques that can help
pull out additional insights and information. They help get to a deeper level
of detail than comes naturally through informal conversation, and uncover
things that are often missed in interviews.

Structured Interview Techniques

191

Guided storytelling

Guided storytelling is a useful technique in getting a specific picture of how a
user finds his way through tasks or attempts to achieve his goals in working
with a product. The researcher prompts the user with a question like: “Tell me
about the last time you tried to check out your investments online,” or “Tell me
about the most frustrating experience you've had working with this product.”
The user will tell the story of that situation and what issues occurred along the
way. Being near the user’s computer can be useful in this sort of exercise, as it
helps the user recreate the experience or refresh his memory by looking back
to the product. Because the user is being prompted to tell a specific story rather
than to make generalized statements about his experience with the product,
he’ll reveal more specifics, helping researchers detect unexplored avenues.

Task analysis

Task analysis is a means of getting into even greater specifics with key or prob-
lematic tasks within the system. The interviewer works with the user to either
list or diagram all of the steps required to complete a particular task or accom-
plish a particular goal, including any steps or tasks that might occur outside of
the software product itself. This kind of detail can reveal a lot about how users
think, how they interact with systems, and how they might have developed
unique workarounds for problematic interactions. It can also expose opportu-
nities to consolidate or simplify tasks, helping you mold the product to operate

more consistently with the way users approach tasks within the system.

Research Through Direct Observation

After speaking with users, there’s still much to be discovered about their
interests, challenges, and behaviors that they didn’t think to tell the
researchers. Users can be surprisingly unaware of certain details of their
interactions with a product because they’ve grown so adept at operating it
and sidestepping its problems that they’re not actively conscious of what
they’re doing.

To illustrate this outside the context of software, try telling the story of what
you do after you leave work for the day. Your story will likely be something
like, “I drive home, take the dogs out for a walk, cook and eat dinner with my
family, help the kids with their homework, watch some TV news, and then

go to bed.” What you will have omitted from this story, however, is a ton of
specifics.

For example:

o [jiggle the steering wheel while trying to start my car because the wheel lock
always makes the key stick.

o Iturndown Fourth Street, then Broadway, and then onto the frontage road,
avoiding the freeway because it’s always too congested at rush hour.

o Iparkin the driveway because my garage is too full of tools and junk to park
in it anymore.

* Ispend alot of my walk trying to keep my dogs from entangling me in their
leashes and trying to find a trash can to throw their poop bags in so I don’t
have to carry them all the way home.

e Either I or my spouse does all of the cooking because there’s only one sink
and not enough counter space for two people to work.

* Half'the time I spend helping my kids with their homework is spent trying to
understand the cryptic instructions given by their teachers and my kids’ hazy
recollection of what they’re supposed to do.

* Iwatch CNN for about 20 minutes before nodding off on the sofa.

If a researcher were charged with trying to help you have a better experi-
ence of life after leaving work, these details would be immensely useful. But
it’s all so routine that these tasks are performed without thought and with-
out much memory of having performed them. This is where direct observa-
tion can step in to capture the useful details.

Research Through Direct Observation

193

194

In direct observation for software, the researcher watches users operating
the product to accomplish real tasks and goals. The researcher looks for

a number of things the users won’t generally report themselves and also
observes the context in which those tasks are performed. The researcher

is watching in particular for tasks that users perform repeatedly; even if
the tasks aren’t dysfunctional, it’s still useful to know where users’ time

and mouse clicks are focused. The researchers are also watching for tasks
and behaviors that are common across most or all users, as well as specific
idiosyncrasies or workarounds that certain users might have consciously or
unconsciously developed. It’s also interesting to note how users are physi-
cally interacting with their systems—whether they’re always sitting or often
moving around, or where they’ve positioned their screen and keyboard, for
example. While the researcher is trying to be unobtrusive, she might occa-
sionally ask a user questions about peculiar behaviors she notices, being
careful to ensure that the questions don’t sound judgmental and don’t sug-
gest solutions to problems the user is encountering. If a user is doing some-
thing repeatedly or unexpectedly, it’s valuable to learn why he’s doing it.

A lot of valuable information and cues can be taken from looking at the
users’ workspaces, too. For example, users often tape cheat sheets to their
monitors or tack notes to the wall reminding them of important keyboard
shortcuts, account numbers, support phone numbers, and other informa-
tion they use daily. These cheat sheets are usually a coping mechanism for
something that’s problematic with the product. We were doing research for
a client that has franchise customers that manage a lot of individual loca-
tions and stores. Each location and store had a name, but our client’s product
used an account number—not an account name—to identify each location and
store. As a result, people using the product had spreadsheets taped to their
walls that associated account numbers with store and location names. This
observation made it clear that we could help reduce some mental anguish,
workspace clutter, and unneeded steps for users simply by adding the ability
to nickname accounts in the product.

Chapter 6: Getting to Know the User

The user’s experience of interacting with the product is also influenced
by factors that come from outside the product itself. Stakeholders and
users often don’t think to alert researchers to external factors that are
integral to the product experience, so researchers observe what external
systems, materials, and cues influence and accompany the user’s experi-
ence of the product. These observations can indicate the ways in which
the product can be more broadly useful or simplify greater swaths of the
user’s work life. For example, if users frequently have to retrieve informa-
tion from documents on the company network to accomplish tasks within
the product, those documents might need to be brought within the scope
of the product or the product might need to provide an alternative means
of accessing the same information.

Cheat sheets provide clues about what’s important or hard to remember.

JI—

g

-
g

by

196

Analyzing the Research Observations

The user researchers’ interviews and observations will reveal some clear
patterns of behavior, challenges, and opportunities that will be apparent on

at least an intuitive level. Throughout the research process, researchers will
gather far more information than you can deliver to the project team or incor-
porate into the framework requirements. Therefore, it’s necessary to analyze
the research observations to generate usable results for the rest of the team.

This analysis involves taking all of the raw research observations and looking for
meaningful patterns. These patterns are used to identify archetypal users, which
deepens the project team’s understanding of the target users. This analysis also
helps identify common patterns in interactions, problems, and opportunities.

Discovering Personas

The concept of personas might already be somewhat familiar to you if you’ve
had exposure to UX design, CX strategy, or certain modern types of market-
ing research. For the purposes of UX design for software, a persona is a
fictitious, archetypal user who—remembering back to the Pareto 80/20 prin-
ciple—can stand as a good ambassador for the interests of a large portion of
the rest of the users of the product.

The documentation of a user persona is often itself called a persona, but it’s
important to remember that a persona is a significant and complex concept and
framework for thinking that is much deeper than the documentation that repre-
sents it. The tendency to think that personas are simply documents is consistent
with the dangerous belief that software development is just a series of processes
and deliverables, rather than a complex, flexible system. Persona documenta-
tion is not the goal per se, but is rather an artifact of the goal of identifying,
understanding, and conveying that understanding of archetypal user personas.

User personas are usually the aggregate of a number of similar actual users
encountered in user research rather than just one individual who typifies
the rest. User researchers draw on their experience and various techniques
to identify trends and commonalities that can be used to bring together the
attributes, behaviors, and observations of a set of users into a single, roundly
representative persona. Researchers devise multiple personas to represent
the full diversity of the users in a distilled, thoughtfully focused form.

Chapter 6: Getting to Know the User

Example Persona: Mike S.

Mike is a recent college graduate. He still has the part-time job that he held while
he was in school, but no immediate prospects for full-time employment. He's wor-
ried about paying off his student loans now that getting a higher-paying job is
such a challenge due to the current state of the economy.

Mike and searches Monster.com and Craigslist frequently for jobs and applies online
for anything that seems to have potential. Understanding that he will likely have
to work from the bottom up, Mike is mostly concerned with the reputation of the
company that he's applying to. He researches the company online before he applies
and won't apply to most postings unless he knows who the employer is. If there are
indicators of growth potential, he may contact them for more information.

Mike shares a three-bedroom apartment with a roommate near downtown. Having a
roommate isn't ideal, but the high cost of living makes it necessary. Mike likes living
near the city because there's more nightlife and better job opportunities. He loathes
the idea of commuting, and keeps his late-model Civic around to use only when it's
convenient.

Mike uses a Motorola Razr to text more often than he talks on the phone. He's
confident that his next phone will be an iPhone. He has an Apple MacBook and
loves everything Apple. He's been trying to convince his parents to buy an Apple
computer to replace the current one that Mike is often called upon to fix.

Mike plays games on his XBox almost every night. He plays with friends online and
sees it as a great way to stay in touch with his buddies. He is beginning to down-
load videos more frequently, and gets excited about convergence of all things digi-
tal. The more things that can connect to each other, the better. Mike says that if
his Xbox had a web browser he would probably stop using his computer.

Facebook is his primary online social app, but he's starting to use Twitter a bit and has
a profile on LinkedIn. He had a blog for a while, but didn't feel he had time to keep it
updated. There are some people he doesn't allow to see his Facebook page (coworkers,
parents) but still wants to be able to communicate with. Privacy is still important. He
is using email less frequently.

Mike's Goals:

Find a better job at an established company
Work his way into a good position

Stay connected to friends

Specific Considerations:
Mike's job-search skills are basic
Mike is very convenience-motivated
Mike will likely adopt a mobile platform soon

He has an increasingly high consumption of media on multiple platforms and a
variety of touchpoints

His personal social media strategy is intermediate

“Pretty soon it’s just

going to be about
screen size. Either you
get it on the little screen
in your pocket or the

big one at home.”

e 4 b
Y, . ;—-’;ﬂ
N\
¢ Y
N\
S & intelli HD

Ul PolyMath

SED S

Harbinger

TOBRA

Brand affinities

Discovering Personas | 197

198

The main goal of personas for software UX design is to help the project team
develop empathy and accurate intuition for the needs of the user. And so
personas need to be rich with details that help people put themselves in the
shoes of the user. Many marketing personas you might have already encoun-
tered are limited to information such as the user’s name, job title, age,
income level, and a blurb about the challenges of their work. That superficial
level of information does little to help the project team develop an empathic
understanding of the user’s perspective.

Weaving User Stories

Your research should produce a tremendous collection of information about
the user’s goals, needs, insights, behaviors, idiosyncrasies, solutions to prob-
lems, and so on. This information will be scattered throughout the inter-
views and direct observations, and you will need to assemble it in a form
that’s both usable and compelling.

Presenting this information in the form of a bulleted list can be give the proj-
ect team some insight into the user’s perspective, but it’s a weak way of com-
municating the information; it just gives the information without trying to
organize or make sense of it. The information needs to be conveyed in a way
that connects the dots and reveals the implications of the findings to tell a
richer story. The aim is to turn the tidbits of information into something with
an emotive quality that generates a good response from stakeholders and
instills the necessary understanding and empathy in the project team. To do
this, researchers weave the tidbits together to tell user stories.

As the name suggests, user stories are narratives—either in written or story-
board form—of select aspects of the users’ lives and experiences that have
bearing on their relationship to the product. Like personas, a single user story
can be woven together from observations of multiple individual users whose

experiences have a common thread. These stories describe things like:

* How users try to achieve their goals

* Theissues and difficulties users encounter

o The user’s frustrations and hopes

* The way the product fits into the user’s broader work or home life

e Aday or moment in the life of a user

Chapter 6: Getting to Know the User

Ml iz pamng
mnthly bilks...

i

| ke that we can bank
online, bk | wish | eould
use al ths information bo
Hedp e plan oue finoneres

\ = i

e » B
- ‘-“Tll‘ i -‘--\-1-‘5{"’{ .--"ﬁ"’ .7
NS

‘\\ e
. Lz <=
B ez

i =

" :{% o

1T o

erHﬁ-&ua coall

Mow | can echadule the bills
and project totaks for dehits
that haven't gone through yet

This even takes into acoount &
unplanned expensss that A
abwnys P U off erack! L

Wi e st up) buckget and
realy plan ahead.
%,

A user story in storyboard form

By virtue of their form, user stories convey an understanding of the users’
interests and experiences to the team and stakeholders in an engaging, emo-
tionally appealing way. User stories are inherently richer than simple lists

of user factoids. This richness makes it easier for the project team to gain an
understanding of the user’s perspective and build the empathetic framework
that they’ll need during the project.

Discovering User Priorities

Since you developed the business requirements for the product, you’ll
already have a sense of user priorities. The sample users will also provide
you with a strong perspective on what the product’s priorities should be.
You’ll have learned the users’ perspectives on the problems, opportunities,
and likely goals for the product. Some opinions on priorities will have been
directly expressed by users, whereas other opinions can be inferred by look-
ing at the patterns and trends in the users’ behaviors and feedback.

Affinity diagramming exercises like the one you learned about in Chapter 5
can be a useful in getting a clearer picture of the relative priorities of issues,
goals, tasks, and opportunities. Take all of the tidbits of information and

199

Discovering User Priorities

200

observations that were collected from each user interview and put them

on sticky notes, and then cluster together the similar ideas. Clear priorities
will start to emerge. The size of any collection of similar ideas indicates how
important that idea is to users. This helps you determine how the impor-
tance of that particular idea for the project. You can do your affinity dia-
gramming with just the researchers, or you can do it with your stakeholders
in your ongoing efforts to build their buy-in and understanding of the user.

Guerilla User Research

Sometimes, despite your best efforts and an abundance of expert advice,
you still won’t garner the support, time, or money you’ll need for a full
user-research phase. Your project will surely suffer as a result, but it doesn’t
mean you should bypass entirely the end goals of user research. You’ll just
be forced to take a more scrappy, enterprising, and perhaps surreptitious
approach—what we call guerilla user research.

User research that’s fraught with assumptions because it lacks actual data is
still better than no user research at all. It helps keep the entire project focused
on user needs rather than ignoring the user’s perspective altogether. And

the assumptions you can build as a project leader will be more focused and
consistent than the various assumptions software engineers and stakeholders
might make themselves if you don’t provide them with any common point of
reference.

It might be possible to significantly shortcut the field research rather than
skip it altogether. Smaller sample sizes can be used, or the field research can
be approached with less detail or formality, allowing you to get through it
more quickly. Shortcutting it in this way might allow you to get some valu-
able research data without spending much time or money, possibly even
enabling you to do the research without your stakeholders being aware of it.
This approach can also make user research appear less wasteful to skeptical
stakeholders because it’s performed rapidly and isn’t as thoroughly packaged
or polished.

Field research can also be simplified by conducting focus groups rather
than individual interviews. But people behave differently and say differ-
ent things in groups than they do one-on-one. This puts an extra burden on

Chapter 6: Getting to Know the User

the researcher to mitigate the effects of the group dynamic during the focus
group. It might also be possible to accomplish some level of research through
simply emailing surveys and follow-up questions to a sampling of users. If
it’s just not possible to speak to any actual users, there are nevertheless some
useful sources of insight into the user’s perspective that can be found in your
company. Spending some time speaking to customer-facing departments and
colleagues (such as customer support, sales, and marketing) can give you
some valuable insight into what users are thinking and saying.

However you manage your guerilla user research, you must finish it off with
personas and user stories—just as if a full research phase had been com-
pleted. These personas and user stories will still be focal points of the design
and development of the product. They’re still critical to keeping the team
focused on the user’s perspective and needs and to providing a framework
for developing empathy and intuition for user needs. But you and your team
need to remember that the personas and user stories were based on incom-
plete research. As you progress through the project, you and the project team
will have opportunities to gain a better understanding of the users than you
were able to during the research stage. This will afford you valuable oppor-
tunities to revise and enrich the personas and user stories, and to recheck
old decisions and designs to ensure that you made the correct choices.

Stakeholders who were unwilling to approve full user research must be
made aware of the problems caused by their disapproval. They must be
constantly reminded that major decisions about the product are being made
based on assumptions rather than on research. As a project leader without
access to real user research, your ability to produce a product that satisfies
users will be hindered. It’s unfair to hold you accountable to meeting actual
user needs if you never had a chance to discover those needs.

Some things we’ve done to learn more about users:

o Used ourselves as guinea pigs on travel sites, web-based layout tools,
shipping applications

o Asked our mothers to try to use it

* Shown up at an oil change franchise and interviewed customers in the lobby
about their process for choosing an oil change place

o Asked relatives how they decided to open a particular franchise over another

Guerilla User Research

201

202

* Lurked on b-boy message boards to get a sense of the b-boy language and
culture

o Toured a tea production factory, coffee shops, and book clubs to get
inspiration for an online “tea experience”

o Shoehorned a prototype feedback session into a sales seminar for investment
brokers

* Surfed the blogs and Facebook profiles of college-age advocates of a certain
energy drink to better understand their personalities and motivations for
promoting the drink

* Mocked up a Ul in Flash for a laser waypoint measuring device and shown it
to engineers (the users) to get early feedback

Stakeholder Buy-in Through
User Research

The user research phase represents another critical opportunity to build
stakeholder buy-in. It’s also a chance to cultivate a sense of stakeholder def-
erence for the user’s perspective. That deference depends on the stakehold-
ers’ views of the credibility of the research and their sense that their inter-
ests—and the interests of their customers—were represented in the results.

Much of the advice we gave in the previous chapter also will be useful as you
wrap up user research. The stakeholders’ first exposure to the methods and
findings of the research shouldn’t come when you drop the documentation
on their desks. Their buy-in needs to be cultivated from the outset, and the
documentation should be a reflection of information that has already been
thoroughly sold to and understood by the stakeholders.

Involving stakeholders directly in the interview stage of the research, or at
least showing them some video of it, can help you gain their support. Seeing
that the research was performed professionally should help them to respect
the quality and authoritativeness of the results. Exposure to the research
recordings also helps them develop a real understanding of and empathy for
the user, which in turn helps them overcome any assumptions they might
have had and be deferential to the needs of the user.

Chapter 6: Getting to Know the User

As you compile the research findings, check back in with each stakeholder to
talk about the users you spoke to, how they were selected, and the methods
that were used to get valuable information from them. This is also an oppor-
tunity for you to confirm that stakeholders are satisfied with the size and
scope of the group you interviewed. You should also confirm that stakehold-
ers feel the right questions were asked, and you should answer any concerns
they might have about the research process.

This check-in is also a good chance for you to review the findings for any-
thing the stakeholders might see as unexpected or revelatory. By spending
time with stakeholders individually and discussing the research findings and
their implications, you give them a chance to air their concerns. Ultimately,
though, stakeholders should appreciate that the research uncovered differ-
ences between the user’s perspective and the stakeholders’ assumptions and
preconceptions. Such discoveries are early indications that your efforts are
successfully paving the way to better UX. Stakeholders need an opportunity
to discuss the findings with you; don’t leave them alone with their thoughts.
This will also give you the opportunity to help them better understand the
research, allowing them to use it to constructively channel their thinking
about the project.

Though researchers will have uncovered a ton of tidbits of information and
user statements, it’s best to keep this level of granular detail out of your
stakeholders’ view. Personas and user stories are representative aggrega-
tions of a large amount of information that has been studied, filtered, and
focused. While much of the user feedback will be carried through in some
form within the personas and user stories, some of the extraneous informa-
tion will fall by the wayside. If they’re exposed to too much detail, stakehold-
ers will sometimes overemphasize some specific observation or user state-
ment that was properly omitted or subsumed into a larger theme to press a
personal agenda.

Stakeholder Buy-in Through User Research

203

Chapter 7
Initial Product Architecture

206

In preceding chapters, we’ve argued against big upfront planning and
design efforts, using bridge-building as a counterexample. So you might find it
puzzling that we’re now presenting you with a chapter titled “Initial Product
Architecture.” What is architecture, after all, but a large upfront design effort
aimed at solving all of the design problems before construction begins?

UX and software professionals have needed to rely on analogies to other
fields to convey an understanding of their fields. Software development is
often compared to major design and engineering undertakings like building
architecture and bridge design because the comparison is actually aptin a
number of ways. The problem with the comparison isn’t that it’s completely
incorrect; the problem is that it isn’t completely correct, but people neverthe-
less swallow the analogy whole. The ways that the field of software develop-
ment differs are subtle yet fundamental, but the differences are too often

overlooked when considering the similarities.

So the practice of calling these stages “architecture” and calling the profession-
als involved “architects” descends from the similarities, and you just need to
keep the differences in mind. It’s also a practice that has been in place for a
while and predates EffectiveUl, so we’re inclined to defer to tradition.

Through the business planning and user research stages, you created the
framework requirements: the constraints around the problem that arise
from the user’s and business’s perspectives. The task of continuing to refine
the understanding of the problem and narrow the constraints continues in
initial product architecture. It is, in fact, the fundamental task of the entire
process of building software.

No matter how much planning you’ve done, you must always recognize that
more of the unknown lies ahead of you throughout the entire course of the
project. The scope and magnitude of that unknown diminishes as the project

Chapter 7: Initial Product Architecture

progresses because you continually improve your understanding of the problem
and its solution through ongoing exploration and development. The error in the
waterfall methodology is in supposing that the exploration of the problem and
design of its solution end after the first big design phase. In reality, they don’t end
until you decide to slap a “v1.0” sticker on the product and call it a day.

So while initial product architecture is a recognizably discrete stage in
software development, it is neither the beginning nor the end of the design
process. It is the first big effort on the part of professional UX and techni-
cal architects to elaborate on the framework requirements—to build on the
results of business planning and user research to develop a richer under-
standing of the problem and to begin to frame out its solution.

What makes the initial product architecture stage distinct from the rest of
the project is that one of its goals is to provide stable answers to the big ques-
tions that would be difficult to reverse course on later in the project. To lean
on the architecture analogy, these would be questions like:

o Are we building a garage, apartment building, or skyscraper? In software,
scale and ambition are important to define early.

e Are we building on a floodplain, mountainside, or a swamp? The platform
context in which a product exists determines what’s possible and how hard it
will be.

e Are there existing structures nearby that we’ll need to consider or connect
to, and will they need to be rebuilt to meet our needs? If so, how will that
rebuilding affect existing tenants of those structures? The need to rely on
and respect neighboring and dependent resources can be the single largest
constraint and risk factor in building a product.

* How will all of the major components come together to form a single,
stable structure? It’s important to understand how the various high-level
components of the system will come together, and to find ways of simplifying
the process by relying on existing components, much in the way buildings are
often constructed using components that are prefabricated off the build site.

* How will people use and move through the spaces we create? In software, an
early understanding of the basic workflow and the high-level organization of
data and interactions helps organize and focus design efforts.

* What kind of building materials should be used to meet the structural
requirements? The choice of which software engineering languages and
frameworks to use should be determined by what best serves the product’s
requirements.

Initial Product Architecture

207

208

o Will the external facade have a modern, art deco, gothic, or Roman-
influenced style? In software, broad style guidelines can be set early that set
the tone for future visual design on the product, ensuring everyone shares the
same understanding of the stylistic “mood” of the product.

e Does the design demonstrate strength and integrity on paper and against
a range of theoretic tests and stressors? Software architecture is an
opportunity to continue exploring the problem and trying to identify weak
spots and risks ahead of time so they can be bolstered, worked around, or
otherwise accounted for.

The answers to these questions become part of an enriched, deeper under-
standing of the product’s requirements. They provide further understanding
of the problem and narrower constraints for the solution, and they begin to
suggest solutions to the biggest questions. The initial product architecture
stage won’t answer all of the questions—just the big ones that need to be sta-
ble and certain. This restraint ensures product design solutions can be deter-
mined later during the development stage when the team is in the best posi-
tion to make the right decisions. But it will provide a more refined framework

for all of the remaining questions to be answered in their own time.

The Initial Product Architecture Team

Two types of software architects should be involved in the initial product
architecture:

e UX architects, who deal principally in design, interaction, and workflow issues

e Technical architects, who plan the technical underpinnings of the product

We’ve far passed the line where you can hope to do any of the work yourself
without the aid of professionals. There are software tools that can help you
create seemingly passable interface wireframes or to make system, data, and
flow diagrams. But the real work of software architecture requires special-
ized experience, creativity, and training. The software tools are useful in
documenting ideas but do nothing to turn a novice into a pro.

It’s crucial that the UX and technical architecture professionals are properly
specialized. Experience preparing graphical interface designs does not in
itself qualify a person to be a UX architect, nor is a usability expert necessar-
ily a UX architect. The discipline of UX architecture involves a range of expe-
rience and skills, including the following, among many others:

Chapter 7: Initial Product Architecture

e Usability

* Information architecture

e Graphic design

e Interaction design

* Human factors engineering

* Business process analysis

e Psychology

e Client or stakeholder management

* Deep exposure to software engineering practices and constraints

Good UX architects are rare and highly sought-after, but the value of their
contributions when contrasted with nonspecialists or nonprofessionals can-
not be overestimated.

Similarly, someone with experience writing software code isn’t necessarily
qualified to be a technical architect, nor is technical architecture experience on
one software platform necessarily an indication of qualification to be a techni-
cal architect on another platform. Every software platform has its own abun-
dance of idiosyncrasies and a wide array of available libraries and components
with which only experience can acquaint a person. And writing the code for the
components of a product doesn’t require the same skills as figuring out what
components in what configurations will be necessary. Experience as a technical
architect maintaining an existing product doesn’t necessarily qualify a person
to build the technical architecture for a new product from scratch. Poor deci-
sion making in technical architecture has profound and disabling ripple effects
through the whole project, so working with a specialized professional will save
you from a tremendous number of headaches and potential catastrophes.

Your role as project leader during the initial product architecture stage is
also very important. Though you’re not doing the substantive work of this
stage, your role is, as always, to keep the project on the rails. Ensure that the
UX and technical architects strongly understand the project mission, suc-
cess criteria, and existing framework requirements. You must also enforce
respect for the primacy of user needs. It might also fall to you to ensure

that the UX and technical architects are exercising proper restraint. They
shouldn’t attempt to define more of the solution than is required at this
stage, and they shouldn’t allow the perfect to be the enemy of the good.

The Initial Product Architecture Team

209

210

Since stakeholders and users generally aren’t available during this stage, you
also serve as the ambassador of their interests. If it becomes necessary to con-
sult stakeholders on certain key questions, youw’ll need to ensure this is done

in the best way possible. Every contact with stakeholders needs to be viewed

as an opportunity to improve their buy-in and maintain their expectations.
Professional UX architects should be adept in the role of acting as a liaison
between the project team and stakeholders, but since you’re ultimately account-
able, you should control the situation. If you involve stakeholders in initial prod-
uct architecture questions, you’ll need to educate them about the purpose and
limitations of the initial product architecture stage and make sure their input is

properly restrained and consistent with the existing framework requirements.

We will assume that you will be employing professionals in the UX and technical
architect roles. Our goal in this chapter is to provide you with an understanding
of what goes into UX and technical architecture, to help you better supervise,
interpret, and communicate the value, process, and results of this stage.

UX Architecture

UX architecture sheds greater light on the problem, further refines the
framework requirements, and defines solutions to the pivotal problems. UX
architects do this by looking at the problem through a variety of lenses, and
using a number of techniques that are effective at building clarity and sug-
gesting solutions. We use the words “lenses” and “techniques” to highlight
the fact that UX architecture, like software development, is not a stepwise
process. The organization of this chapter shouldn’t be interpreted as an
ordered list of steps as in an instruction manual where, if followed precisely,
success is guaranteed. It is an overview of techniques and methods of view-
ing the problem (lenses) that are used by UX professionals to deepen their
understanding of the problem and begin to propose aspects of the solution.

Contextual Scenarios

Contextual scenarios describe the product’s requirements from the user’s
perspective through narrative descriptions of the tasks users will undertake

to achieve their goals when using the product. They are a sort of storytelling
technique that’s meant to give a clearer picture of how the product will need to
behave and what tasks it will need to support, without enumerating them down

Chapter 7: Initial Product Architecture

to the tiniest detail. Much as user personas provide a framework for making
decisions through inference and empathy, contextual scenarios tell a story in
broad strokes, leaving the details to be filled in through inference in the minds
of the project team. UX professionals write them by intersecting business goals

with user stories, user goals, and other information discovered in user research.

This is a contextual scenario pulled from our work with Herff Jones to pro-
duce an online yearbook editing tool:

Tina is assembling the homecoming page of the yearbook. She logs in

to the site and sees the pages she is assigned to. This makes it easier
for her to navigate directly to the homecoming page. It’s mostly blank,
but the template her class worked on together over the summer has
already been applied, so all she needs to do is pick out some photos and
arrange them on the page in a fun and creative way. Tina opens the
photo browsing panel and sees lots of photos the photographers have
taken. She filters the images by “homecoming” and sees about 30 photos
that have been tagged that way. Tina clicks on a thumbnail to zoom in
to see the image more clearly and pages through the collection of full-
size photos. This is Tina’s favorite part of working on the yearbook. She
selects an image and the photo browsing panel goes away. The image
she selected is now on her layout and she resizes and crops it carefully.

To illustrate why contextual scenarios are a strong means of describing require-
ments, let’s look at just one sentence from this example: “She filters the images
by ‘homecoming’ and sees about 30 photos that have been tagged that way.” This
sentence alone implies the need for many features and capabilities, including:

e Photos are digital assets in the system.

* Some mechanism for importing digital photos into the system must exist.
* Photos can be tagged with properties that describe their subject.

* Some mechanism for tagging photos must exist.

o There must be some facility for browsing photos.

* The photo browsing facility must support filtering of photos based on tags.

Notice that the first four implied requirements fall outside the view of

the user’s activities described in the contextual scenario. The photos have
been imported and tagged before Tina’s activities begin. This demonstrates
the power and effect of designing products around the user’s perspective;
attending to the user’s needs implies requirements and functionality that the
user might never be aware of or personally encounter.

Contextual Scenarios

211

212

End result of the “homecoming” scenario

The practice of describing tasks using contextual scenarios that imply but
don’t specify details is in keeping with the discipline of restraint and the
acknowledgment of the weakness of written requirements. UX architects
allow decisions about the specifics of the solution to be made during devel-
opment (when the problem and possible solutions are better understood) by
leaving it to the project team to read between the lines from contextual sce-
narios. By leaving out specifics, it becomes possible to create a form of writ-
ten requirements that are comprehensive in their breadth and are entirely
reliable because they describe only what’s known at only the level of detail
that’s available.

Contextual scenarios are an effective means of elaborating on the framework
requirements because they have the trademark characteristics of framework
materials:

* Fixed, reliable, and certain about what’s known

* Flexible, inclusive, or permissive about what isn’t known

Chapter 7: Initial Product Architecture

The sample scenario requires, for example, that a mechanism for filter-

ing photos based on tags exists. But the scenario doesn’t attempt to specify
exactly how filtering will be accomplished, the nature of and constraints on
tags, what other activities might also be available through the same photo
browsing screen, and so on. The specifics are left to be decided when things
are better understood and when specific solutions are more apparent.

Contextual scenarios can be created in storyboard form in addition to textual
form. Storyboards are useful in creating an even more emotionally appeal-
ing and implication-rich view into the user’s life and needs. They also help
keep the project team focused on the wider context and environment in
which the user is using the product.

Mapping High-Level Workflows

A workflow is a sequence of steps the user will undertake to perform a task or
accomplish a goal. Workflows can be high-level (pertaining to major sections
or functions of the application) or low-level (pertaining to a specific, narrow
task). For example, the high-level workflow for sending an email is something
like this:

* Enter recipients in the “To,” “Cc,” and/or “Bcc” fields

* Enter a message subject in the “Subject” field

* Compose a message in the message body editor

o Optionally, choose which email account to send the message from

e (Click “Send”

Note that each step in this workflow is presented and organized in a single
application screen (the message composition window).

The Herff Jones example implies a number of different interconnected work-
flows. Let’s focus on just one part of it:

Tina opens the photo browsing panel and sees lots of photos the
photographers have taken. She filters the images by “homecoming”
and sees about 30 photos that have been tagged that way. Tina clicks
on a thumbnail to zoom in to see the image more clearly and pages
through the collection of full-size photos.... She selects an image and
the photo browsing panel goes away.

Mapping High-Level Workflows

213

At a high level, this describes the workflow for placing a picture into a year-
book layout. In the email workflow example, all of the workflow steps are
presented in a single application screen. In this contextual scenario, how-
ever, the need for multiple application screens is implied:

o A photo browsing “panel” comprising (at least):
— A photo thumbnail viewer
— A text-input filtering mechanism
— The ability to select a photo to view it full-size
o A full-size photo view comprising (at least):
— A single photo viewer
— A means of paging through full-size photos

— A means of selecting the image in view for placement in the layout

So, the high-level workflow implied in the contextual scenario itself implies
that certain application screens exist. Because the existence of application
screens is implied in a workflow, it’s premature and unnecessary to try to
figure out the organization of application screens at this stage. So, the job of
mapping high-level workflows involves identifying those workflows, figuring
out what steps they comprise, and determining an order or organization of
the steps that’s the easiest and most efficient for the users. Most high-level
workflows comprise a number of low-level workflows, too. But unless a low-
level workflow is very complicated, innovative, or represents an unusually
high degree of uncertainty, initial product architecture is typically only con-
cerned with high-level workflows.

The Herff Jones example shows how contextual scenarios can be very use-
ful. They describe what features need to be available to the user, they imply
sequences of tasks users will go through to accomplish goals, and they tell
stories that suggest how the functionality of the application needs to be
grouped and presented. The story of how a user uses the application should
clearly suggest the pathways she’ll take through it.

214 Chapter 7: Initial Product Architecture

It’s useful to document the high-level workflows of the application early so
the project team can understand how the application’s functionality should
be logically organized from the user’s perspective. The goal here is to map
the workflow from the user’s cognitive perspective rather than from a
systems design perspective. The UX architects also shouldn’t start making
guesses about what application screens need to exist or start detailing low-
level workflows; this should be done later during development.

The following figure is an example of a high-level workflow that shows a
single point of entry and several possible outcomes. The primary path is
highlighted.

Sketching Low-Fi Visual Representations of
Requirements

A full understanding of how functionality might be exposed to the user can be
elusive until you start to visualize it. Although the bulk of the work of building
detailed wireframes and mockups of application screens shouldn’t occur
until development begins, early sketches on a whiteboard or low-fidelity
“paper prototypes” can be useful as a technique for deepening the understand-
ing of the problem.

Sketching Low-Fi Visual Representations of Requirements

215

216

Sketches can be—and often are—simply pen and ink drawings on the back
of napkins and on scrap paper. The goal of the sketches isn’t to produce
detailed requirements or firmly suggest how screens should be organized
and composed, so they needn’t be detailed, polished, or even accurate.
Again, these sketches are simply a technique that can be used to explore and
build a better understanding of the requirements.

This picture shows some of the early thinking done for asset management
in the Herff Jones eDesign application. There are rough interface elements
shown in different arrangements and control clusters shown in different
positions on the “screens.”

Examining Key Features and Interactions

Though the initial UX architecture stops short of examining and specifying
low-level details of the solution, there might be some details that call for
early exploration. You might be planning a feature that has never been done
before, presents a significant challenge, or that introduces a radically new
approach to its workflow or interaction design. You might also be contending
with stakeholders who are skeptical or having difficulty picturing how key
components of the product will work. Anything that’s new, innovative, or
challenging is bound to come with more than its fair share of unknowns and
risks, and these should be examined during the initial product architecture
stage.

The success and viability of the product often depends on finding a good
solution to these key problems. You’ll want to proceed into development with
the confidence that they can be solved within the constraints of the project.
To reduce the degree of risk and uncertainty surrounding these problems,
UX architects can do a much deeper exploration of the problems and their
potential solutions than would ordinarily occur this early in the project.
These explorations can take the form of some basic wireframing to illustrate
interactions on paper, but might be as complex as a building a working pro-
totype of the feature. Success in an exploration might be in proving the tech-
nical feasibility of something, in receiving stakeholder approval and support,
or in receiving positive feedback on the feature from sample users. The more
risk there is in a given detail, or the more dependent its success is on user
acceptance, the more important it is to create a higher-fidelity prototype.

Chapter 7: Initial Product Architecture

Lo-fi sketches on a whiteboard

Setting a Style Vision

The visual design of a product’s UI can have different tones, moods, and
stylistic genres depending on the product’s audience and the purpose. Some
software—educational applications for children, for example—are resplen-
dent with candy-colored interface elements, use happy or goofy text styles,
and emphasize fun, simplicity, and accessibility. Products made for profes-
sional stock traders tend to have very subdued tones and a relatively austere
aesthetic, focusing on effective delivery of information without distractions
from the interface design itself.

This doesn’t mean that UI design is important for the children’s application
but unimportant for the stock trader’s application. UI design considerations
are critical to the experience of using the application, no matter what the
intended experience might be. Many people believe that in enterprise or
heavily data-focused applications, the UI design needs to “get out of the way”
and isn’t an important concern. But even in cases that demand an extremely
austere UI design approach, the design still significantly affects the subtleties

Setting a Style Vision

217

218

that create the experience of using the application. Stock traders don’t need
an application that will entertain them, delight their budding senses, and
seize their fickle attention like children do. But they do need to feel that the
application is high quality, professional, reliable, and sophisticated. So, one
of the goals in initial UX architecture is to set out a mood and style vision for
the product that sets the right genre and purpose associations for users.

Like art and fashion, software UI design has distinct genres as well as design
trends that change over time. Modern UI design trends are recognizable
even to people who aren’t actively paying attention. The Web 2.0 trend has
been accompanied by its own relatively distinct genre of web design. As long
as Web 2.0 is seen as cutting edge, design styles from the Web 2.0 genre will
be associated with modern, sophisticated software. We’re frequently asked
to design interfaces that are “clean” or “airy” or “crisp,” using “friendly” UI
elements and iconography. Clients requesting this are typically expressing
the desire that their application Ul look modern and sophisticated, because
at some conscious or subconscious level they’ve noted that those character-
istics are present in many of the cool new things. The product UI design is
also a means of expressing the brand goals of the product or of the company
generally.

It isn’t important during UX architecture to lock down the precise color pal-
ette, iconography, or other specific elements of the UI design for the product.
But it is useful to begin with a general sense of the mood, genre, and experi-
ence that the UI design will ultimately need to convey. The attributes of the
experience or of the brand that you’re trying to create are difficult to express
in words. In setting the style vision for the product during UX architecture,
vague understandings and expressions of visual ideas can be made concrete.
That will give clear direction going forward and ensure stakeholders are

all imagining and expecting the same things. This initial style vision will be
the framework within which future visual design work is done. It also helps
members of the project team visualize what the product will eventually look
like so they have an easier time imagining their contributions in context of
the whole product.

Chapter 7: Initial Product Architecture

To begin developing a style vision, UX architects often ask stakeholders to
make lists of other products, websites, print advertising, and brand design
that stakeholders feel are representative of their style goals for the product.
There’s rarely an existing product that exactly represents the stakehold-
ers’ goals for their own products, but with enough examples, UX architects
can get a clear sense of them. UX architects and UI designers are deeply
immersed in the genres and design trends of software Ul design, so they
can readily support stakeholders through this process. They can help stake-
holders clearly express subjective concepts, provide illustrative examples
of ideas, and work to corral opinions to an outcome that their professional
experience suggests is correct.

Based on the suggestions from stakeholders, and using some of their own
materials, UX architects and Ul designers document a vision of the design
goals for the product using what are called mood boards. Mood boards
are essentially collages of images, colors, and designs pulled from various
sources that, in aggregate, give a clear suggestion of the product’s design
mood, genre, and approximate color palette.

Mood boards can also be a useful tool in getting some early user feedback on
the design direction. On the Herff Jones eDesign project, we had internally
arrived at a visual direction for the product that was consistent with other
professional design applications. The interface was intentionally dark to
boost contrast with the lighter content that users would be developing. But
we began to worry that this approach might be off-putting to the primary
users of this app—teenage girls. We were both right and wrong. The users
we tested the visual concepts with appreciated the contrast but needed some
deeply saturated colors interjected to maintain their interest. A new set of
mood boards that balanced high contrast with very saturated colors in the
controls seemed to resonate well right away when we tested it with users.

Setting a Style Vision

219

£
=
v
=
=
.
S
=

Developing Nomenclature

The decision of what to call certain objects and features within an applica-
tion, or how to label its buttons and data, can be surprisingly difficult. Users
look to the names and labels of elements of the product for cues in under-
standing how to operate the product and what results to expect from the
actions they take. For example, we recently did usability testing on a product
where the word “Loupe” appeared next to a magnifying glass icon in an inter-
face that we designed. The target user set didn’t know what a loupe was, so
they avoided or overlooked the magnifying glass, even when asked how they
would zoom in on images. As soon as we removed the word, users found and

used the zoom feature without hesitation.

Nomenclature is also important to the project team as they build the prod-
uct so there’s no confusion about what they are discussing and how aspects
of the product are meant to work and be perceived. Simple words such as
“select,” for example, might have specific and important meanings in the
context of your product. In an image editing tool, “select” means to grab a
section of pixels in an image using a lasso, marquee, or magic wand tools; it
doesn’t mean to “choose” an option. Significant areas and high-level work-
flows in the application will need agreed-upon names so, for example, when
someone talks about “asset management,” everyone will know what he’s
talking about. One way to settle nomenclature questions is to use analytics
tools such as Google Keywords to see the words that people use when search-
ing for products like yours. Another way to learn what nomenclature to use
is by paying very careful attention to how users talk about the product dur-
ing user interviews. Often, the way that a business refers to features and
products will be very different than how their customers think about them.

You should start a centralized glossary of product-related terms during ini-
tial architecture and maintain it through the full course of the project. This
will simplify collaboration by project team members and stakeholders and
will also help the people doing QA and user documentation at the end of the
project. You can maintain the glossary in whatever way is most convenient
for you and your team. We’ve used Microsoft Excel and Word documents,
project wikis, and other online collaboration tools to manage this.

Opposite page: Example moodboards

Developing Nomenclature

221

While technical architec-
ture still aims to discover
the straightest, easiest,
least risky path for the
software engineers, it
does so without compro-
mising the user needs or
potential UX quality for
the sake of engineering
expediency.

Technical Architecture

Though the bulk of the software engineering work will be done during the
development stage, key aspects of the technical architecture need to be iden-
tified and locked down early. The issues addressed in technical architecture
are foundational decisions that are generally irreversible, or they are explo-
rations of anticipated stress points and dependencies to ensure that major
foreseeable issues have been identified and mitigated.

The traditional approach to building a complex product is usually to begin
with extensive technical architecture aimed at building out the “back-end”
infrastructure to near completion before seriously considering how a user
will interact with the product. In these cases, the interests of technical
expediency usually take precedence over user needs because the engineer-
ing decisions and progress are all made before the Ul and UX get serious
consideration. The “right” decision in engineering is the one that delivers
the quickest progress, not necessarily the one that enables the best UX.
When the team finally gets around to building the U], its design is primarily
directed and constrained by what the existing technical infrastructure made
possible, rather than what was in the best interests of the users.

For a UX-focused product, the user’s needs and the requirement for good UX
must guide all decision making that happens in technical architecture. While
technical architecture still aims to discover the straightest, easiest, least risky
path for the software engineers, it does so without compromising the user
needs or potential UX quality for the sake of engineering expediency. This
orientation toward user needs has both subtle and profound implications in
technical architecture.

As with UX architecture, the considerations and decisions of technical archi-
tecture should be handled by specialized professionals. Many of the big
decisions will be obvious to an experienced professional, and deep profes-
sional experience is essential to charting the most perilous challenges and
dependencies. This part of the chapter presents an overview of some of the
considerations addressed in technical architecture, but we will assume you
have the support of a professional technical architect.

222 Chapter 7: Initial Product Architecture

Getting a Lay of the Land

One of the first tasks in technical architecture is to look around the organi-
zation and discover what already exists that might serve as a resource or
shortcut in building the new product. If your company is building a new ver-
sion of a product with the goal of improving its UX, much of the work build-
ing the “guts” of the application for previous versions can, in large part, be
used for the new version. Even if certain materials and code aren’t directly
usable in the new project, they can nevertheless be instructive. They can
give indications of how specific key problems can be solved, what risks and
challenges prior efforts encountered, and how to locate resources to answer
key questions.

Getting a sense of the political landscape affecting the product’s technical
constraints is also important. The IT staff that maintains the existing systems
and acts as the gatekeeper to some of the resources that the engineering
team will require might feel threatened by your project. New projects often
signal changes in their priorities and budgets, or they might even threaten
their job security. Getting an early sense of where political issues might jeop-
ardize successful execution of the product will help you get an early start

on securing political footholds and heading off some of the resistance. In
addition, in cases where a product is deeply entwined with a key business
process, you should identify early on the ways in which the new version will
affect or force change in business processes. This will let you get a head start
on managing the politics and practical effects of the change. Your organiza-
tion’s ability to shift its process to conform to the new demands will be a sig-
nificant component of the risk associated with the project.

Making Platform and Framework Choices

The terms “platform” and “framework” are often used inconsistently and
interchangeably. We consider platforms to be the foundational basis for a
product, including the language used to code it. Frameworks are collections
of libraries, components, and other resources built on top of a given plat-
form to simplify the development of applications on that platform. For exam-
ple, Java Foundation Classes (JFC) is a framework built on the Java platform,
and Adobe Flex is a framework built on the Adobe Flash Platform. Each is
intended to make development of application Uls easier.

Making Platform and Framework Choices

223

224

The platform and framework choice affects the entire project because it deter-
mines who will develop the application and how they’ll go about it. It also deter-
mines what resources and utilities are available to the team and what constraints
they’ll operate under. Ideally, you’ll be able to select the platform that best suits
the needs of your product, but often the choice has already been made for you
by other factors. If you have access only to an internal development team, then
whatever platform that team is adept in will probably be your only choice. If
you’re building a new version that’s an integral extension of a previous version,

yow’ll probably be compelled to use the same platform as the original.

It might be possible to segregate the development efforts, to allow one aspect of
the product to be developed using one platform and another aspect to be built
using a different platform. In cases where the technical guts of the product have
been developed for a previous version and the new version aims to upgrade
the product’s UX, it’s frequently easiest to build the new UI on a platform more
conducive to good UI and UX design. You’ll just need to work in the original plat-
form to develop the API from the existing backend for the new Ul layer.

In principle and whenever possible, your desire to build a superior UX
should guide the platform and framework decision. The development plat-
forms and frameworks that represent the shortest engineering path to a
feature-complete solution often don’t lend themselves to high-quality UX. Sun
Microsystems’ Java platform is very mature, has a tremendous number of
available frameworks and libraries to suit any possible goal, and has one of
the largest communities of professional development talent. However, until
Sun’s recent release of the nascent JavaFX platform, it was extremely difficult
to create good UX using Java. On the other hand, technologies such as Adobe’s
Flash Platform and Flex framework, as well as Microsoft’s Silverlight, aren’t
good for developing the backend workings of the product but are vastly bet-
ter at building superior frontend UX.

Understanding Data Requirements

Generally speaking, software has three primary data considerations:

* How application data will be stored in and retrieved from databases
* How asset data (images, documents, files, and so on) will be stored and retrieved

* How data will be trafficked between the places it’s stored and the places it’s
needed or created

Chapter 7: Initial Product Architecture

It’s frequently the case that the databases will already exist—customer data-
bases, sources of financial market information, merchandise sales data, and

so on. In these cases, the main challenge is figuring out how the product will
access those databases and what the product will require that can’t be han-
dled using existing databases. Applications that deal with significant volumes
of asset data (Flickr, for example, handles millions of images for its users) must
have a plan for how those files will be stored and retrieved, as well as how the
storage requirements will scale as the volume of asset data increases.

When dealing with external databases and repositories of asset data, the
server managing that data usually isn’t in the same room as the computer run-
ning the software that needs that data. In rich Internet applications, for exam-
ple, the computer running the software (the “client”) is in the user’s home or
office, but the data is in a server farm somewhere in another state, country, or
continent. Also, large enterprise applications usually rest on third-party CRM
systems spread across multiple locations, all working off of the same data.
Technical architects need to develop a plan for how this data will get to and
from the client software securely and reliably and, if large volumes of data are
involved, how the bandwidth demands and costs will be managed.

Mapping Interactions with Other Systems

Software products often rely on external systems to handle certain functions,
provide access to certain types of data, and shortcut certain challenges. The
software that airline passenger service agents use, for example, relies on a tre-
mendous number of external resources. Each resource is a wholly separate
system of software, data, and hardware operating in other (“remote”) loca-
tions and based on different platforms. Each of the following functions avail-
able to a passenger agent is managed by a separate system:

o Searching available future flights and routes

* Booking reservations

* Managing frequent flyer information

o Creating tickets for reservations

* Managing check-in operations

* Creating baggage tags

* Managing preflight boarding and gate operations
* Checking flight statuses

* Handling lost baggage claims
Mapping Interactions with Other Systems

225

226

If airline passenger service agents had to connect to and be familiar with all
these systems individually, their jobs would be extremely difficult. Instead,
access to all of these capabilities that exist on different remote systems has
been brought together in the passenger service agent’s client application.

Developers of the client application need to be able to connect to and rely on
these external systems without having to understand how they work or hav-
ing to worry about whether they might be malfunctioning. This is a reflec-
tion of the concept of abstraction that’s at the core of how object-oriented
programming works. The use of external resources is meant to save the
project time by letting the current development effort focus only on new
and improved developments without having to reinvent any wheels. But this
benefit is realized only if the external systems are easy to interact with and
are entirely reliable in performing their designated roles.

One of the most critical parts of technical architecture, then, is investigating
the available external resources in an effort to understand their capabilities
and to assess their completeness and reliability. Following that investigation,
technical architects map precisely how the client application will interact
with the external resources in something called an application program-
mer interface (API). APIs allow the developers of the client application to
interact with the external resources without knowing how those resources
work. They also make it possible to make changes and improvements to the
external resources independently without disrupting how they interact with
the client applications. To put it simply, APIs define what requests the client
application will make, exactly how it will make them, and exactly how the
responses will be provided by the external resources. This makes it so the
only thing the developers of the client application need to be concerned with
in interacting with the external resources is making their requests conform
to the API and preparing for responses in the form defined in the API.

Although connecting to external resources presents some of the greatest

opportunities for cost savings, it can also represent the greatest risk to the
success of the project. It makes it so the project’s success is dependent not
only on the project’s own development effort, but also on the reliability of
the external system and its fidelity to the API. Problems with external sys-
tems can cause huge losses of time in software engineering. The problems

Chapter 7: Initial Product Architecture

often aren’t immediately apparent and engineers are forced to spend their
valuable time searching for the source of unexpected behaviors, only to dis-
cover they’re originating from an external system and not from their own
code.

Ideally, by the time your project begins, all of the external resource devel-
opment has long been finished and all APIs have been thoroughly tested

so they’re reliable and trustworthy. External resources are, however, fre-
quently under development at the same time as the client application.
Sometimes the resources are new, and sometimes old ones need additional
special development of an API to expose some capabilities that previously
weren’t available. In these cases, engineers on the client application project
can find themselves contending with unexpected changes to the API or inter-
acting with APIs that represent functionality that hasn’t been finished or
thoroughly tested. This always causes slowdowns in the project.

Even if the engineers are prepared for the possibility that the external
resource might not behave as expected, they’re still forced to spend time
developing coping measures that help them test their code in the absence

of a reliable external resource. And as the external resource development
nears completion and client application engineers begin connecting to it,

the bugs in the external resource become bugs in the client application.
Additionally, engineers on the external resource project might, unbeknownst
to the client application engineers, make well-intentioned changes that sud-
denly cause a cascade of failures in systems that were working just hours
prior.

External resources are very important to keeping the project focused and
efficient but can also be the source of nightmarish problems, so technical
architects pay special attention to these dependencies in planning the project
and assessing risk. Risk arises from unknowns and uncertainty, and external
resources represent their own set of unknowns and uncertainty. Issues in
the external resources can be especially pernicious because the client appli-
cation’s project team has less visibility into and control over the external
systems. Technical architects aim to reduce these risks by working to under-
stand to what degree the external resources can be trusted and by working
out thorough, thoughtful APIs that help narrow the field of risk.

Mapping Interactions with Other Systems

227

228

Finding Shortcuts Through Third-Party and
Open Source Components

As they assess the project’s requirements, technical architects will identify
features, required components, and other elements of the product that present
a particularly high degree of risk or difficulty. Wherever possible, it’s prefer-
able to employ an existing solution to these elements rather than develop
them from scratch. This not only saves engineering time, but greatly reduces
the risk contained in the unknowns of developing that element from scratch.
It’s also helpful to use existing solutions for elements of the application that
are disproportionately difficult to build in relation to their significance in the
broader product; this helps the team focus on the important problems.

A good example of this type of element, which occurs in many products, is

a “WYSIWYG” (what you see is what you get) HTML editor. These allow the
user to create and edit HTML documents complete with tables, pictures,
links, and other rich elements by manipulating the document visually rather
than by editing its code. This capability is tremendously complicated to
develop, but it’s frequently a necessity in products that need to allow users
to manipulate rich text, create emails, or build simple web pages visually.
Fortunately, a number of developers and companies have built highly con-
figurable standalone components to solve this problem so that developers
can just plug it into their applications without developing it themselves.

For all of the peculiar diversity of software, there are nevertheless a great
number of features and capabilities, such as WYSIWYG editors, that are com-
monly required. With a little research, technical architects can often identify
prebuilt components from third parties that can allow them to bypass the
effort and risk associated with developing the component’s capability from
scratch. These components might be available through a paid license (the
price is almost always worth it) or might be offered under an open source
licensing agreement that allows them to be used for free, with certain caveats.

Third-party components can save a great deal of time, but they can also pres-
ent risks and downsides that can negate their benefits:

o Aswith external resources, plugging third-party components into your product
makes your product partially dependent on the quality of those components.

Chapter 7: Initial Product Architecture

* They can be difficult to customize to fit seamlessly into your application,
whether functionally or visually. Prebuilt components provide some
mechanisms for customization, but they might not integrate fully with your
product. Constraints inherent to the component might limit your ability to
make it support good usability or UX. Or it might not integrate seamlessly,
both visually and in its approach to interaction design.

o A component’s breadth and complexity can cause it to be ungainly and
inefficient. Many components are made to be applicable and useful to a broad
range of implementations. This can mean the component includes a lot of stuff
that you don’t need in your product, and that imposes performance burdens.
Also, components that try to solve a broad range of problems tend to achieve
that breadth of applicability at the cost of the quality of their specific details.

o The licensing scheme for the product might be intolerable for your purposes.
There are certain open source licensing schemes that permit free use of the code
but in return require that any modifications you make to it be made publicly
available. Some even go so far as to require that products built using them be
offered for free and never sold commercially. Open source licensing schemes are
very standardized, so it’s usually easy to figure out whether a given component
bears intolerable requirements. Paid licenses for third-party components should
also be inspected thoroughly. They can incorporate bizarre and excessively
intrusive provisions that might be incompatible with the intellectual property
standards of your company or with future licensees of the product.

Discovering Business Logic

The term “business logic” has a very specific meaning in the field of software
development. Business logic comprises the algorithms, math, logic, and com-
putations that are specific to a business and necessary to the operation of the
product. For example, the business logic for an airline ticketing agent appli-
cation includes the algorithms used to determine optimal flight routes from
one city to another. The business logic for a product for a stock brokerage
company might include the financial analysis and proprietary computations
used to build the reports and charts available through the product.

Essentially, business logic is any complex math or logic that has already been
solved by the business and therefore needn’t be solved again by the engineer-
ing team. The engineers will be required to implement the business logic in
code, but simply by following a preexisting solution. It’s helpful to identify the
necessary business logic in advance during technical architecture, as it pro-
vides an understanding of what problems the engineers won’t need to solve.

Discovering Business Logic

229

Business logic typically

isn’t fully documented in

a binder labeled “Business

Logic” sitting on a shelf

somewhere in the build-

ing. Elements of the busi-

ness logic are usually

scattered about in exist-

ing software code, Excel

spreadsheets, or in the

minds of subject matter

230

experts.

It’s also important to start identifying the business logic early because it
typically isn’t fully documented in a binder labeled “Business Logic” sitting
on a shelf somewhere in the building. Elements of the business logic are
usually scattered about in existing software code, Excel spreadsheets, or in
the minds of subject matter experts. An early effort to bring it all together
ensures the business logic will be available to engineers just as soon as they
need it. It also helps identify where experts might need to do more work to
more fully develop the available business logic for the purposes of the product.

Software Architecture in Big Design
Up Front (BDUF)

In Big Design Up Front (BDUF) projects, the “big design” is essentially an
extra-extended initial product architecture stage. Ideally, the initial product
architecture stage should be limited to answering the big questions that can-
not be changed later without significant disruption. Initial architecture in
BDUF is taken far beyond that limit. Professional designers work for long
periods of time to provide a highly detailed description of the solution in
the form of wireframes, graphic comps, system design diagrams, and other
mostly visual materials.

This approach has its advantages. Elaborating on requirements in a visual
form gives a much more accurate and comprehensible picture of the prob-
lem and its solution than you get with written requirements alone. Since
professional product designers will be involved, the solutions described are
likely to be more accurate than thick binders of written requirements pre-
pared by stakeholders. And for some projects, a BDUF effort is absolutely nec-
essary to reassure stakeholders about the road ahead or to meet the require-
ments of a rigidly prescribed software services purchasing process. The per-
ceived advantage is that the end result is an impressively detailed collection
of materials that seem to paint a clear and certain picture of the solution.

This approach is vastly more effective than relying on a thousand pages of
written requirements prepared by nonprofessionals. But it suffers from the
same weaknesses as written requirements, as we discussed in Chapter 3. To
recap some of the key issues:

Chapter 7: Initial Product Architecture

* No matter how deeply you study the problem in the abstract and on paper,
you cannot eliminate uncertainty and the unknown. The earlier you are in
the project, the less you understand it because a great number of discoveries,
revelations, unknowns, risks, and changes have yet to surface. Any design
that’s done up front is design that’s done from a position of relative
ignorance.

o The big design effort delays the commencement of the development process and
keeps engineers on the bench and out of the process far longer than they should
be.

o It tends to exhaust the majority of the UX design time available to the project.
This deprives the rest of the development effort of ongoing support from
UX professionals to respond to the inevitable adjustments and changes that
result from the discovery of risks, unknowns, stakeholder direction, and
other unforeseeable eventualities. This places a greater burden on software
engineers to absorb the effects of the adjustments and changes. It also forces
them to play the ill-fitting role of UX designers.

o It gives stakeholders the false impression that there is great certainty and
a minimum of unknowns in the solution. This can cause them to think their
participation is no longer needed and that the rest of the project simply
entails fulfilling on the requirements described in this stage.

o It seems to specify a clear, locked-down scope, so stakeholders will expect to
have certainty in scope, schedule, and cost. Certainty of scope isn’t possible
this early in the project, so this sets up stakeholders for disappointments and
surprises as the inevitable changes occur.

The core of the error of BDUF as it relates to software architecture is that

it attempts to use software architecture to build a complete and accurate
picture of the solution. But the problem itself still needs deeper exploration,
and the project is ready to have only foundational, critical answers provided.
Software architecture should provide those critical answers, but the rest of
its purpose should be to improve upon the framework requirements. The
framework requirements address the problem, not the solution, enabling
correct, just-in-time decisions and solutions during the product’s develop-
ment. The exercise of restraint and a humble recognition of the unknown

demand that nothing be asserted as solved or certain before it actually is.

Software Architecture in Big Design Up Front (BDUF)

| 23

Project Infrastructure Needs

The practice of software development, including everything from UX archi-
tecture and design through to QA and deployment, requires some supporting
technical architecture that might not already be in place in your company.
This infrastructure supports the collaboration that occurs amongst project
team members, protects data against catastrophic loss, protects the code base
from errors, and supports testing of the code throughout the project. Although
most of the collaboration, coding, and asset development won’t happen until
later in the project, you should set up the infrastructure to support it early in
the project, to ensure that a lack of infrastructure doesn’t impede progress.

Code Source Control

No matter how big the project, and no matter how few developers are work-
ing on it, code source control infrastructure is always extremely important.
You might already be familiar with the names of common source control
systems: CVS, Subversion (SVN), Git, Visual SourceSafe, and others. You likely
won’t need to worry about choosing which is best for your project; develop-
ers usually have strong opinions about which is best or at least have more
experience with one or another.

Source control systems perform many critical functions:

* Maintaining one centralized code repository for everyone to work from so
everyone is working from the complete and most current version of the code.

e Periodically backing up the entire repository.

* Keeping copies of every single version of every element of code. This is useful
in cases where a new version of some element causes problems and needs
to be rolled back to the previous version; it also provides a record of what
changes were made by whom and for what reasons.

* Preventing engineers from accidentally overwriting one another’s work if
they’re working on the same element at the same time by alerting developers
to conflicting versions and allowing them to be easily merged.

* Supports “branching” of the code base in cases where two different versions

that share a common base need to be managed and maintained.

Even on projects with only one engineer, a source control system should be
considered mandatory. Besides preventing catastrophic losses of data, it elimi-
nates the risk that the developer will make some unknown mistake and spend

232 Chapter 7: Initial Product Architecture

substantial time trying to discover and fix it. It also serves as a good historical
reference so the developer doesn’t have to solve the same problems twice.

Graphic Asset Management

Through the course of the project, the UX and UI designers will generate a
tremendous number of graphic assets. Some will be intermediary or explor-
atory materials such as mood boards and wireframes, whereas others will
be files containing graphics intended for use directly in the product. Like
software code, the graphic assets will be the subject of collaboration. It’s
useful to maintain historical versions of all of these files to permit rollbacks
to previous versions, to provide a reference to earlier ideas, and to serve as
redundant backups. But unlike with software code, there aren’t strong solu-
tions for managing graphic assets in a controlled repository.

Nevertheless, it’s important to do some planning and put the necessary
infrastructure in place to support collaboration over and protection of
graphic assets. Without a plan and infrastructure, people will usually share
assets through email. Besides putting a strain on email bandwidth and stor-
age, this approach can lead to overlapping, competing, or diverging versions
of the same files. Everyone needs to be working off of one central source

of the most current assets to prevent duplicated work, confusion, and lost
data through accidental overwriting. The assets, along with significant prior
versions of the assets, should be stored in a central location that’s regularly
backed up so the death of a single designer’s laptop or a single server hard
drive can’t set the project back by weeks.

There are some products that help support centralized management of
files like graphic assets. We use Adobe Version Cue because it’s strongly
integrated into the Adobe suite of products that our designers use. As with
code source control systems, your designers will likely have a preference
of what system or method to use. Even without the aid of a product, most
of the needs of graphic asset management can be met by doing some basic
planning. A centralized, backed-up storage area should be set up. A simple
mechanism for designers to consistently “check out” files to work on and to
“check in” new versions of the files should be agreed upon. And a consistent
file-naming scheme should be established so specific assets can easily be
found and the most current version of each can easily be identified.

Graphic Asset Management

233

234

Testing Infrastructure and Environments

Testing software code isn’t something that happens all at once at the end of
a project during the QA stage. Software engineers constantly test their code
piece by piece (this is called unit testing) to ensure that each piece appears
to work properly in isolation. As the code base grows larger and these units
of code become more interdependent, it becomes important to test larger
sections of the code or even test the entire code base. These tests ensure that
recent changes or developments haven’t created adverse effects or caused
previously working pieces to start behaving abnormally.

Depending on the size of your project, the infrastructure requirements for
ongoing testing can be significant. In most large projects, the entire code
base is compiled at least once a day and a long series of scripted tests are
automatically run against it to check whether the changes made during the
day caused any of the automated tests to fail. In more complicated projects,
engineers and automated testing systems need to pull together and compile
subsets of the code, or a range of configurations of the code, to test larger
units and various test cases. This type of testing requires specialized soft-
ware and development environment configurations. The engineers on the
project should have a strong understanding of what they need and how to
set it up. It’s just up to you to anticipate and respond to their needs.

It is also typically necessary to test the code within hardware and software
environments that simulate how the final product will be deployed. If the
product has dependencies on external resources, the individual engineers’
development machines often won’t have direct or realistic access to those
resources, so they must test their code within an environment that does.
The engineers might also be using computers that aren’t similar to the cli-
ent machines that actual users will have. Engineers’ computers are usually
much higher performing and configured differently than users’ machines.
Or engineers might be developing on a Mac when the majority of the user
base uses Windows-based computers. In these cases, engineers must have
access to machines that have a range of capabilities and configurations that
are typical of the users’ machines.

Chapter 7: Initial Product Architecture

Chapter 8
The Iterative Development Process

SJOO000000O00O0O0O0O0OOLOOOLOOLOOLOOLOOOOOOLOODOOOLOOOLOOOOLOOLOOOOLOOOLOOOLOOLOOOOOLOOOOLOOOLOOLOOOLOODOOOLOOOOOLOOOLOLOOOOOOOU
O0000000O0OOO0OO0OO0
OD00O000O0O00OOLOOOOOOLOOOOOOOOOLOOOOOOO
OD00O000000O0O0O0OO0OO0
D000000000O0O00O0OOO0
D0000000O00OOOOOOOOOOOOOOOOOOOOOOOOOOOOOLOOOOOOOLOOOOLOOLOOOOLOOOOOOOOOOOOOLOOOOLOOOOOOO
D000000000O0O00O0OOO0
D0000000O00OOOOOOOOOOOOOOOOOOOOOOOOOOOOOLOOOOOOOLOOOOLOOLOOOOLOOOOOOOOOOOOOLOOOOOOOLOOOO
D000000000000O00O0O0O0O0O0OOOOHONMANANMNNMNMRAMAD T =T T 7

DOO NN mme s T T

Though the iterative development process gets only one chap-
ter in this book, it should represent the majority of your project’s work,
budget, and lifecycle. The business planning, user research, and initial prod-
uct architecture stages give a broad-strokes view of the solution, and the
development stage is where the understanding of the problem and its solu-
tion is deepened, refined, and finally implemented. Entering the development
process, you should have answers to the foundational questions that are the
high-level absolutes for the product, but every other question remains to be
answered. The development stage is the time where the team does the greatest
measure of investigation of the problem and its solution; in other words, most
of the project’s design work occurs during development. The development
stage is also the time when all of the unknowns finally surface, to which you
must quickly and flexibly respond. Through the preceding chapters, we’ve
encouraged you to exercise restraint in the early planning and architecture
of the product. In development, that restraint pays off. Having more room
for all of the design work involved in development makes it easier to deliver

a complete and high-quality product.

Remember that for UX-focused projects, the meaning of “development” is
more expansive than the ordinary connotation. The development stage
involves much more than just software engineering. It is a collaborative
problem-solving effort that includes (ideally) all perspectives—business,
UX design, UI design, software engineering, and users. Bit by bit, feature by
feature, the problem that was described in the framework requirements
and through initial product architecture is reduced into a working solution.
Each aspect of that solution will be discovered through some combination
of UX design, UI design, and software engineering, all within the governing
constraints set by the business and users.

Remember that software engineering is a design practice just as
much as UX and UI design are. Design, in the sense that we use it, is
a creative problem-solving effort. Sometimes the solutions to those
problems take a visual form: UI designers produce interface comps,
UX designers produce wireframes and storyboards. Sometimes the
solutions aren’t visual: UX architects create contextual scenarios and
software engineers produce code. But in every case the solution is
arrived at through a thoughtful, creative process of problem solving.

The notion that everyone on the team has a hand in the development process
is one of the key ideas that separates UX-focused projects from traditional
projects (where only software engineers work in development). The respon-
sibility for a good UX outcome falls on all members of the team working in
all professional disciplines, and their responsibility persists through the full
course of the project—including, and especially, through development.

Those who place too much trust in the value of upfront planning usually
think of the development stage as the time when existing designs are imple-
mented (like the construction stage in a bridge-building project). But the
work done in development is a process of tandem design, testing, and imple-
mentation. It’s more a process of creativity and directed experimentation
than it is a construction project. The majority of time is spent on the study-
ing, designing, and testing that lead to the solutions. Those solutions must be
discovered; they are not arrived at immediately or directly.

The Iterative Development Process

237

238

Software products are too enormously complex to approach as a single,
monolithic concept and development effort. For progress to be made, the
product must be broken into pieces that are small enough to be understood,
designed, built, and tested. Software engineers do this constantly by parcel-
ing a component’s functionality into approachable, reusable logical pieces
and devising ways of combining those pieces to create the desired compo-
nent. This assembly of smaller pieces into a large whole is one of the things
that seems to suggest that building software is like a construction project.

In Chapter 3, we discussed how in bridge-building projects there’s a perfect
design for the project to keep reorganizing around, even as unexpected
issues come up during the construction project. In software, though, there is
no such perfect design of the final product. That design is being developed in
tandem with the actual building of the product.

This means that, unlike a construction project, it isn’t possible to parcel up
everything in a software project in advance. Without knowing what the solu-
tion to the puzzle looks like, you can’t break it up into small pieces. So then
how can the project team break up the products into approachable, logically
significant pieces? By using an iterative approach to developing the product.
Iterations are essentially short, focused sprints in which a narrow problem
is investigated, and a possible solution is designed and implemented. The
entire development process consists of iterations, starting out with small
ones that address the narrow universe of what’s known, and growing to
much larger ones as the product is understood and implemented more fully.

In this chapter, you’ll learn how an iterative approach to development makes
progress easier and helps avert many of the common causes of failure in
software projects. Remember, though, that there’s no universal, perfect
approach to methodology or process in software. For this reason, we’ve

kept the discussion in this chapter at the level of the principles and benefits
sought after through an iterative approach to development, rather than
attempting to prescribe a one-size-fits-all approach for all projects.

Chapter 8: The Iterative Development Process

Regarding “Process”

There’s a risk that all the talk of process and flowchart-like diagrams coming
up in this chapter might make you fret too much about whether you’re prop-
erly adhering to prescribed procedures. Successful approaches to building
software are not about rigid processes, flow charts, or strict methodologies.
No project is alike, and so there’s no single approach that will work for all
possible projects. There are, however, a small number of principles that we’ll
describe in this chapter that serve as veritable beacons by which you can
navigate through the rocky, dark, unexplored sea of your project. By steer-
ing the project as closely as you can toward these principles, even if you’re
not able to fully achieve them, you will make the project less rocky and the

results more successful.

Iterations and Feedback

Much of what goes on during development is akin to the process a scientist
goes through to make a discovery. The scientist develops a hypothesis, and
then undertakes a series of experiments to test and explore it. At the end of
each experiment, the scientist looks at its results, and based on them decides
how to modify the hypothesis or the course of experimentation. This process
involves a lot of trial and error. Each experiment represents a single itera-
tion that helps the scientist incrementally develop a more accurate under-
standing of the truth he’s investigating.

An artist creating a painting follows a similar process. He applies a few lines
or a few strokes of the brush and steps back to look at the result. Responding
to what he sees, he then adds or modifies lines and brush strokes to bring

it closer to the goal and repeats this iteration until the painting is complete.
Neither the scientist nor the artist expects to get the theory, painting, or any
component of either right from the very first attempt. Neither has a perfect
image or design of what the solution to their problem should be. Both are
following processes of planning, experimentation, study, and trial and error
that require many iterations, each representing some degree of failure, to
home in on the right result. Figure 8-1 shows a very simple iterative process.

[terations and Feedback

239

Feedback in iteration is
the heart of what makes

an iterative process useful

240

or even purposeful.

........... P e AL

“ EXPERIMENTAND © REVIEWAND NOSUBSTANTIALFLAWS - g jccessruL
. CREATETESTS © ANALYZE g RESULT
.......... o S .

Figure 8-1. A simple iterative process

This should be a familiar process that is naturally at work in any software
development project. Designers iterate on their own work to produce final
designs, software engineers iterate on components to build robust results,
and stakeholders propose, discuss, analyze, and revise concepts and con-
straints. At this point in the history of software development, it would be

a surprise to discover a team that didn’t use an iterative process, at least
within the confines of each of the professional disciplines.

The crucial step in the scientific process is the moment the scientist takes

to analyze the results of the previous experiment and make thoughtful,
directed adjustments to the hypothesis or next experiment. For the artist,
that crucial step is when he steps back to the canvas to take in what he’s
done and decides what needs to be done next. This element of building feed-
back—of surveying and learning from the current state—into the design pro-
cess is what allows positive progress to be made. Without feedback, the sci-
entist would be lost in an endless series of random, aimless experimentation,
and the painter would toil endlessly on a painting that’s always changing but
never improving. Feedback in iteration is the heart of what makes an itera-
tive process useful; it’s what makes it productive and purposeful. This con-
cept applies just as much in software development as in art or science. The
goal is to make purposeful, intentional steps in an ever-improving direction.

Chapter 8: The Iterative Development Process

At the end of each iteration in software development, the project team
should have a better understanding of the overall problem and of the solu-
tion they’re attempting to craft. Each iteration represents an investigation,
the findings of which are analyzed and used to determine the course of the
next iteration. Each iteration exposes unknowns and advances the team’s
understanding of the problem and the solution. More iterations mean more
opportunities for the team members to refine their knowledge. As their
understanding develops and gains accuracy, they become better at designing
solutions and directing the course of development.

Frequent iterations mean that those moments of feedback—of stepping back to
assess what’s been done and determine what needs to happen next—happen
more frequently. And the shorter the iterations are, the less time it takes to
arrive at a point of receiving feedback and making a course adjustment. As
well, shorter iterations mean that less is invested in each round of trial and
error. Frequent, small errors are much easier to learn and progress from
than a few enormous, infrequent ones. The longer an iteration goes without
feedback, the wider and deeper the opportunity for the effort to go signifi-
cantly and irreversibly off-course becomes.

We briefly examined this concept in Chapter 3 in the section entitled
“Efficiency and the unknown.” A waterfall process is weak in its siloed and
limited opportunities for feedback. This tends to mean a lot of work is done
and most of the budget expended before anyone realizes how far off course
they’ve gone. This frequently results in total catastrophe and requires expen-
sive, major course corrections. The cost of this approach is further com-
pounded if the team fails to switch from a waterfall process to something
more iterative after the first delivery, such as an agile process. Though an
iterative project might head off in the same wrong direction as a waterfall
process, the discovery of the error and the resulting course correction occurs
much earlier and benefits from much more valuable feedback. Figure 8-2
demonstrates this clearly.

|[terations and Feedback

241

The frequency and timeli-
ness of feedback is what
distinguishes healthy proj-

ects from unhealthy ones.

242

TEAM AGILE METHODOLOGY

feedback feedback feedback feedback feedback

T

oo

feedback feedback feedback feedback feedback

[]
PROJECT START

TEAM WATERFALL METHODOLOGY

feedback feedback

!

s

feedback

PROJECT START
Figure 8-2. Error and course deviation in waterfall and iterative processes

The frequency and timeliness of feedback is what distinguishes healthy
projects from unhealthy ones. Generally speaking, the more feedback that

is built into a project, the more depth of understanding will go into it and

the more knowledgeable the project team will grow through the course of
the project. It’s also important that the feedback comes from all facets of the
project and from all the professional disciplines involved in building it; more
diverse perspectives provide more comprehensive, robust feedback.

Chapter 8: The Iterative Development Process

And so we’ve introduced the two most important principles behind an itera-
tive approach to development for UX-focused projects:

* Improve the efficiency of progress by building in more opportunities for
feedback.

o Improve the quality of the feedback by ensuring that it reflects diverse
perspectives.

The means by which you apply these principles depends on the particularities
of your project. But in choosing and then applying an approach to developing
your product, you can judge its likelihood to succeed based on its propensity to
generate more frequent, higher-quality feedback.

The Scope of Iterations

In order to build more frequent feedback into a project, iterations must be
small. As Figure 8-2 showed, the waterfall approach goes through only four
major iterations (each line segment). This means there are only three opportu-
nities for feedback. By contrast, the iterative process goes through about 40-50
smaller iterations (in the simplified diagram, anyway; a real iterative pro-

cess will go through far more than 50 iterations), which means there would

be 39-49 opportunities for feedback. So smaller iterations lead to greater
amounts of feedback, which in turn lead to a smoother ride and better results.

This begs the question of how you decide the scope of an iteration—that is,
how much progress should you expect of an iteration? Iterations need to be
small enough to allow for a high frequency of feedback, but not so small as
to be impracticable. The various submethodologies of Agile methodology
each has its own answer to this, some more complicated than others. For
example, Scrum frames iterations in terms of time, requiring “sprints” of
about two to four weeks. Feedback occurs through a regiment of short daily
meetings, forward-looking and retrospective post-sprint meetings, periodic
planning meetings, and through team structures.

Our inclination is to scope iterations based on functionality rather than
time. An iteration should ideally be concerned with the smallest meaningful
unit of functionality. By “meaningful,” we mean a unit that, though it might
be rather insignificant within the whole scope of the project, is whole unto
itself, meaning that it can stand alone from a UX and software engineer-

ing perspective. To discover these meaningful smallest units, and also to

The Scope of Iterations

243

244

determine in what order they must be developed, the hierarchy of applica-

tion components must be traced down to its lowest meaningful level.

One way to approach this problem in the beginning is to ask the question,
“What component or feature is the heart or essence of the product?” Think,
for example, of Twitter. What single feature or component truly defines
Twitter? It’s not the capability for users to choose a personal style for their
Twitter pages, nor is it the ability to add metatags to “tweets” (for example,
#iranelection, @someuser). It isn’t even the ability to follow Twitter feeds

of friends. The most basic and core feature of Twitter is the ability to post
140-character messages to a web page. Without this, you don’t have a prod-
uct remotely like Twitter. This capability would therefore be the first focus of
the project. It can be further broken down into two parts: a means for post-
ing new tweets into the Twitter service, and the means for displaying those
tweets on a web page. A system isn’t much good without any data, so you’d
likely start with the posting capability.

This is likely the smallest meaningful unit of functionality within the Twitter
example. This capability requires two components:

* A web page with a 140-character text input box and submit button.

* The capability of storing the submitted tweet in a database.

But each component cannot stand on its own; each requires the other. A
focus on just the web UI or just the backend mechanisms would make the
focus meaningless from the perspective of either the software engineers or
the UX team, respectively. But taken together, they comprise a function that
can stand on its own and is meaningful to the user, to the UX team, and to
the engineers. That gives stakeholders and users something meaningful to
look at and respond to.

As the project progresses, the focus of subsequent iterations will shift from
the smallest meaningful component to whatever is the next most important,
smallest meaningful increment of progress that can be made. Sometimes this
means that the development of a new component will be undertaken, but
more often this leads to a meaningful refinement of an existing component
or the bringing together of smaller units of functionality to build a larger
aspect of the product.

Chapter 8: The Iterative Development Process

Prioritizing the Subjects of Iterations

At the end of each iteration, you need to take stock of what exists and decide
what the subject of the next iteration will be. For a UX-focused product, the
decision should be based on the question: what advances the quality of the
UX the most? Youwll never truly know until the very end of the project how
much you’ll be able to accomplish and how many capabilities you’ll be able
to include. This is why it’s crucial to prioritize solely according to what will
deliver the best improvement to the product’s UX. If you’ve done that, then
when you run out of time and money, the product’s UX will be as good as it
possibly could have been.

The traditional approach to software is to attempt to solve almost all of the
backend engineering challenges before beginning to focus on the application
UI. With this approach, the software engineers must anticipate the needs

of the product’s UI and UX and build capabilities to service those needs.

But this presumes the UI and UX needs can be anticipated in advance from
the requirements, which is never true. This is a repeat of the problematic
approach of waterfall and BDUF, with the same problems: much of the time
and budget available to the development stage will have been expended
before the unknowns related to UX/UI design can be explored. Engineers are
left to make decisions without the benefit of feedback from UX/UI design.

If backend engineering work gets too far ahead of the UX and UI work, you
might run out of time or money without a truly complete product. There
might be a depth and thoroughness to the backend, but its capabilities won’t
be fully carried forward to the UX or UI of the product. This means that the
project will have failed to actually deliver on those capabilities, and that the
engineering time applied against them will have been wasted.

The UX/UI design and engineering of the product should be moving forward
closely in tandem. This ensures that every capability that is engineered is
also fully executed, and that everything that is designed is also implemented
by engineers. By working in tandem, each team also has the benefit of timely
feedback from the other, and can adjust course at the same time in response
to risks and unknowns as they’re uncovered.

Prioritizing the Subjects of Iterations

245

246

Finishing Iterations with Something Complete

With each iteration, the result should be something that can stand on its
own. At the end of an iteration, you should have something that every-
one—the software engineers, UX designers, Ul designers, stakeholders, and
users—can examine and provide feedback on. This is useful in making sure
everyone on the team has something to contribute to an iteration, leading
to more valuable collaboration and feedback. But it has another, extremely
valuable effect: at the end of each iteration, you have a product.

In the Twitter example, imagine if your project funding had been pulled
after the team had managed to develop only the capability to post 140-char-
acter messages to the Web. This would be a tragedy and loss of the larger
hopes and goals for the product. What wouldn’t be lost, however, is the value
of the work that was done. The capability to post 140-character messages to
the Web would still exist, despite the cancellation of the rest of the project. If
the company decided to resume the project or use that capability elsewhere,
the time spent building it wouldn’t have been wasted.

The value of this increases as the project grows. The longer a project goes on,
the more is on the table, gambled against a good outcome. Every time you
finish an iteration with a functioning product, you essentially take the cash
off the table and bank it in a secure outcome. Whatever might happen next
in the project, the money spent so far has bought something that functions.
And so with each iteration, you’re reducing the degree of financial risk rep-
resented by the project.

Contrast this against the approach often taken to large development efforts.
Rather than put small amounts of money on the table and bank on frequent
payouts, you have to put all of your cash on the table in hopes of one big
payout at the end. Without a focus on producing something complete in
frequent iterations, there’s a risk that everything will be in progress and
nothing will be complete up to the end of the project. When the time or
money runs out, it’s easy to wind up with a product that is 90 percent done
in most respects but not fully complete or releasable. A product that doesn’t
work or stand on its own can’t be released, and is therefore worth nothing.
To make matters worse, you usually don’t realize that you’re going to run out
of time and money without producing anything complete until it’s too late

Chapter 8: The Iterative Development Process

to do anything about it. Many projects run like this end up requiring budget
increases, forcing stakeholders to gamble even more money so that all the
money that’s still on the table isn’t wasted.

But if you’ve focused on producing something releasable with each iteration,
you’re in a much less risky position. As the money and time start to run out,
the final scope of the product becomes more apparent. That scope will be
whatever exists after the most recent, complete iteration, plus whatever can
be completed and refined before the timer runs out. Even if that final scope
is somewhat less than some might have hoped it would be, you still have a
finished, working product to show for your efforts. If the project has been
guided by strong framework requirements and a focus on UX, any shortfalls
should be minor in the context of a releasable product that conforms to the
business and user requirements. In this scenario, stakeholders have a choice
of either releasing the product as is or spending more time and money to
add to the scope. This is a much better set of options than the alternative of
choosing between risking more money in hopes of completion or deciding to
lose all of the money invested in the project.

Estimating Iterations

Scoping iterations according to functionality rather than in terms of time
doesn’t mean that time ceases to be an important consideration. As they go
through successive iterations, the team should not only refine their under-
standing of the product’s problems and solutions, they also should become
more practiced at estimating the complexity of what they need to do. The
accuracy with which the team can estimate the complexity and time require-
ment of reaching goals is a key factor in the risk associated with the project;
the greater the accuracy of estimates, the greater the certainty of being able
to meet objectives within the project’s constraints.

And so as the team scopes iterations, they should also be making time esti-
mates for them. They can do this by estimating how long a given iteration
will take, or by estimating how much can be completed within a given fixed
interval (usually four to six weeks). If the team is diligent and trustworthy,
missed estimates should be less of an indication of a failure and more of a
barometer of risk. If things are taking longer than professionals expect them

Estimating Iterations

247

248

to, that will apply pressure across the whole project timeline. If the team is
part of the way through an iteration but isn’t on track to meet the estimate,
you have an early warning about risk associated with what they’re working
on. This gives you and the team a chance to respond to that risk by mak-

ing adjustments to the scope of the current iteration or of future tasks and
iterations. How often and how significantly estimates are inaccurate are
also indications of how much unexpected friction the team is encountering,
which is in turn an indication of overall risk. If you’re encountering higher
risk, you’ll need to start preparing to reduce the ambitiousness of the project
to stay within schedule and cost constraints while also trying to mitigate the
causes of the friction creating the increased risk.

The routine of making estimates will, over time, help the project team to

be more and more accurate in making those estimates. The more reliable
their estimates become, the more accurately you can estimate what can be
completed within the project’s constraints. Risk in a project is greatest at
the beginning; this is when the team is the least practiced at making esti-
mates, and also when the least is known about the problem and its solution.
As development progresses, risk should be reduced as the team gets better
at estimating, as they come to understand the problem better, and as the

unknowns surface and are dealt with.

And, finally, setting time goals offers the ordinary benefits associated with
goals and deadlines. It helps focus the team, preserves momentum, and pro-
vides you with a mechanism of day-to-day accountability. Scheduled goals
are also a useful constraint to prevent perfectionism from causing problems.

Basic Iterative Process

To see how feedback operates to the benefit of the project, and why giving
more room to the development stage is important, let’s examine in depth
how iteration works. Figure 8-3 illustrates the flow of progress and feedback
in a basic iterative process.

Chapter 8: The Iterative Development Process

PROGRESS AND GUIDANCE }

PR, A, F e . X P L -1 F
STAKEHOLDER ~ : i E]

GUIDANCE i {UX ARCHITECTURE : - SOFTWARE
ANDREVIEW { ANDDESIGN : ENGINEERING
..... L ARTRRLES ACTRERY Liee e e
DEVELOPMENT STAGE

< FEEDBACK AND RESULTS

Figure 8-3. An iterative development stage

This is a “basic” process because, as we’ll discuss later in this chapter, many
more degrees and types of feedback can, and should, be added. This shows
how the flow of progress and feedback for each iteration works in a devel-
opment stage where everyone is involved. Rather than having the different
disciplines start and finish their work in isolation and iterating only on their
own progress and observations, each group has the opportunity to review
all progress being made and provide guidance forward through the project.
In any given iterative cycle, the progress and feedback activities would go
roughly like this:

1. The team decides what the next focus of progress should be.

2. The UX architecture/design team (which is now working inside the
development stage instead of before it) learns from guidance from
stakeholders and also from feedback and the results produced by the
software engineering team. They produce a more refined set of designs for
a given aspect of the product. This progress and any related guidance is
fed forward to software engineering, and the results, lessons learned, and
risks encountered through the work done during the cycle is fed back to
stakeholders.

3. The software engineering team receives guidance from stakeholder reviews of
results achieved thus far, along with designs and guidance fed forward from
the UX architecture/design team. They construct the component or perform
the required changes. The results of their work and any lessons learned or
risks encountered are fed back to the stakeholders and the UX architecture/
design team.

Basic Iterative Process 249

250

FRAMEWORK REQUIREMENTS

4. The stakeholders review the results of the work being done by the UX
architecture/design team and the software engineering team as well as
information about unknowns and risks encountered. They provide guidance
to the other teams about how to bring the product more closely in line
with goals and how to adjust course in response to eventualities that affect
schedule, cost, or expectations.

In this setting, all the teams are kept up to speed on the current state of the proj-
ect and any new information and unknowns that are discovered. The accuracy
and quality of their work benefits from their access to the fullest and most cur-
rent understanding of the state of the project. They’re also receiving feedback
from people who represent each of the critical perspectives in the project, which
enriches their understanding and improves the quality of their work.

Figure 8-3 was just focused on the development stage, but the development
stage is one part of a larger product development process. Figure 8-4 shows
the development stage in the context of the larger project.

PROGRESS AND GUIDANCE }

N T e I MR, it P, [A L LT e
]] 4 © STAKEHOLDER]]]
S INITIAL o-----» GUIDANCE © [UXARCHITECTURE : | SOFTWARE
RESEARCH : © ARCHITECTURE 5 © ANDREVIEW - | ANDDESIGN o ENGINEERING
e Wit e w b L o PN
DEVELOPMENT STAGE

4 FEEDBACK AND RESULTS

Figure 8-4. The whole project development lifecycle

The equivalent size of all the parts of the lifecycle in this diagram belies an
important requirement of UX-focused projects: that the vast majority of time
and resources should be spent during the development stage. Through the
preceding chapters, we encouraged you to:

o Take arealistic view of the value of upfront planning and minimize how
much time is spent on it.

* Exercise restraint in business planning, refraining from making guesses
about the solution before development begins.

Chapter 8: The Iterative Development Process

o Acknowledge the “initial” quality of the initial product architecture stage and
keep it focused on only the critical questions without delving into detailed
product design.

All this should add up to less time and money spent on the upfront stuff

and much more time and money available for the development stage. This

is especially important when you consider the bulk of UX, UL, and systems
design has been wrested from the upfront stages and placed into the devel-
opment stage. If plotted against time, or against resource allocation, the proj-
ect might look more like what’s shown in Figure 8-5.

o FRAMEWORK REQUIREMENTS
: INITIAL ARCHITECTURE
o DEVELOPMENT

‘ >
>

TIME SPENT / RESOURCES CONSUMED

Figure 8-5. Project stages against time and resources

The more time and money available to the development stage, the more iter-
ation that can take place—leading to more feedback and therefore greater
quality and smoother progress.

You might have already noted one very unrealistic aspect of the develop-
ment stage as we’ve described it so far: that the stakeholders could partici-
pate so intensively as to be involved in every iteration. This is rarely a pos-
sibility. We’ve included stakeholders in this way so far because it is the truly
ideal way of doing things; having well-informed, highly engaged stakehold-
ers who provide active feedback throughout the project will result in better
outcomes. And you’re unlikely to risk disappointing or blindsiding the stake-
holders, because they’ll have been involved in progress and decision making
all along the way.

But the ordinary impossibility of having stakeholders involved to this degree
is why we put such a strong emphasis on the role of the project leader in
Chapter 4. Even when the stakeholders have little time to be involved, it’s
critical that their point of view and the high-level business goals for the proj-
ect be taken into intensive consideration all throughout the project. This is
where the project leader, acting as a proxy for the business needs and the

Basic Iterative Process

251

goals of the stakeholders, can step in to relieve most of the burden from the
stakeholders. So, a more realistic view of an agile development stage might
look something like what’s shown in Figure 8-6.

PROGRESS AND GUIDANCE }

e o @I (RIS, 2R PN O PN n22900 TSR
oo - L
]] PROJECT 1 - UX ARCHITECTURE] SOFTWARE
STAKEHOLDERS 4 ° LEADER AND DESIGN ENGINEERING
b i v'.'.'_'_'_f_____i'_'_'.:'—O """""" N booae A
DEVELOPMENT STAGE

< FEEDBACK AND RESULTS

Figure 8-6. Project leader acts as a proxy for stakeholders in an iterative
development stage

In this diagram, the dashed lines represent less frequent feedback and guid-
ance. The project leader participates in the project in the stakeholders’ stead,
but this doesn’t mean the stakeholders drop out of the process altogether. They
must vest a high degree of trust in the project leader, but will naturally expect
periodic updates, and the project will strongly benefit from their guidance.

An additional benefit to this approach is it ensures that the stakeholders deal
only with the project leader and aren’t communicating with and receiving
materials from project team members directly. Most stakeholders, especially
those who are very detached from the project or who are unfamiliar with how
software gets made—like laws and sausages—will need to have feedback and
results “packaged” to a certain degree. The project leader will want to retain

a high degree of control over the stakeholders’ perceptions and expectations
and have an opportunity to properly introduce and explain things.

Mapping Progress and Feedback Across
Multiple Cycles

The diagrams so far have just shown the structure of iterations within the
development stage, but the development stage is comprised of many itera-
tions. These iterations don’t take place one at a time in sequence, with one

252 Chapter 8: The Iterative Development Process

being fully completed by everyone involved before the next one commences.
Instead, the progress of the project is a series of interlocking iterations.
There’s a natural order to how each of the professional disciplines partici-
pates in the project: the UX/UI design team proposes a particular solution

in visual terms, the engineering team builds that solution, and the project
leader (or stakeholders) offer feedback on it. While the software engineers
are building a given iteration, the UX/UI design team isn’t sitting idle, but
has rather moved on to the next cycle. At the same time, the project leader is
reviewing the results of the previous cycle. Thus a simplified view of every-
one’s activities across multiple iterative cycles looks something like what’s
shown in Figure 8-7.

CYCLE: 1 2 3 4 5
© FRAMEWORK Ux/ul ux/ul Ux/ul Ux/ul § UX/ul
© REQUIREMENTS o7 DESIGN DESIGN N DESIGN N DESIGN) DESIGN
© ANDINITIAL : 4 : T : E S A
ARCHITECTURE : : : : : : : : :
......................... ° : . : i : : N
SOFTWARE SOFTWARE SOFTWARE SOFTWARE SOFTWARE
ENGINEERING ENGINEERING ENGINEERING ENGINEERING °™ ENGINEERING
FUUTTTR TR] FUUTTTR TR o é ' é | s
© PROJECT LEADER : © PROJECTLEADER : ., PROJECTLEADER “., PROJECT LEADER “.» PROJECT LEADER
© (STAKEHOLDERS) : © (STAKEHOLDERS) : (STAKEHOLDERS) (STAKEHOLDERS) (STAKEHOLDERS)

Figure 8-7. Simplified multicycle map

So, for example, while the UX/UI design team is working on cycle 3, the soft-
ware engineers are implementing the component specified by UX/UI design
in cycle 2, and the project leader is reviewing the implemented results of
cycle 1. Each passes on feedback based on the discoveries and challenges
encountered and the course changes required as the project moves forward.
Figure 8-7 is, however, oversimplified for the sake of visual simplicity. In
this view, the flow of progress and feedback moves very rigidly from UX/UI
design to software engineering to the project leader, and never in the other
direction or in any other order. Additionally, the UX/UI design team alone
leads the entire project and receives all of the feedback. A highly structured
process like this might in fact be necessary to keep people from being over-
loaded with feedback, but the goal of increasing the amount of feedback still

Mapping Progress and Feedback Across Multiple Cycles 253

CYCLE:

FRAMEWORK

© REQUIREMENTS

AND INITIAL
ARCHITECTURE

254

exists. It’s therefore possible to conceive of a project where feedback and
progress is being shared quite vigorously, as shown in Figure 8-8.

1 2 3 4 S
uxyul UXx/ul UX/Ul uxyul Uxyul
DESIGN DESIGN DESIGN DESIGN DESIGN
LA 4 bR\ b A 3 b ARS ar e Janaanaand
_______________________ ’ I v : I v : I v
SOFTWARE Lo SOFTWARE SOFTWARE SOFTWARE SOFTWARE
ENGINEERING | ! ENGINEERING ENGINEERING ENGINEERING ENGINEERING

E P ° ° ° 3
................ A ST 2 vy \Ad
© PROJECT LEADER - PROJECT LEADER : PROJECT LEADER PROJECT LEADER PROJECT LEADER
© (STAKEHOLDERS) : © (STAKEHOLDERS) (STAKEHOLDERS) (STAKEHOLDERS) (STAKEHOLDERS)

Figure 8-8. Complex multicycle map

This complicated diagram is consistent with the previous diagrams in this chapter
that show the structure of iteration. Progress and guidance is fed forward from
everyone to everyone, and feedback and review is open to everyone, no matter
which cycle they’re currently working on. This level of collaboration is likely to

be difficult to achieve in practical reality, but it’s good to acknowledge the ideal.
Following the more simplified flow can be effective, but it means that it can take
the time span of two iterations before any team has the opportunity to give guid-
ance or receive feedback. This means their understanding of the product will
always be slightly behind the understanding that’s potentially available to them.

Increasing the Amount of Feedback

Increasing the amount of feedback that occurs during the project gener-

ally causes it to be more successful. The amount of feedback that occurs in

a development stage is a direct function of the frequency of iterations and
the amount of time allowed for iterations. The number of iterations can be
increased by giving the development stage the most room possible and by tai-
loring iterations to the smallest meaningful unit of progress. The amount of
feedback is also a direct function of the number of perspectives the feedback
is coming from. With that in mind, you can pull some levers to increase the
amount of feedback that occurs through the development stage.

Chapter 8: The Iterative Development Process

Increase collaboration efficiency

Sharing results and providing feedback across teams and iterative cycles is a
collaborative process. To the extent that this collaboration can be made more
effective and efficient, the average duration of iterations will decrease, lead-
ing to more feedback; the effectiveness of the feedback in influencing correct
change will also be increased. Effective collaboration also eases the strain
imposed on the project team by lots of incoming feedback, allowing them to
receive more of it from more sources without disrupting their forward prog-
ress. We usually use a product called Trac (http./trac.edgewall.org) to help
facilitate collaboration on a project. Trac ties into the engineers’ code base
and provides centralized issue-tracking, planning, and discussion features.
This provides a nexus of collaboration that helps us avoid the inefficiencies
inherent to decentralized, email-based approaches and gives the project
team access to information and decisions generated by other people.

Bring in more perspectives

So far we’ve discussed agile approaches in which the stakeholders or project
leader, the UX/UI design team, and the software engineers are working in
tandem and providing feedback to each other. These three points of view are
critical and cannot be excluded if the project is to end with a successful UX.
But there are points of view beyond these three that should, whenever pos-
sible, be included in the project’s iterative cycles.

New perspectives might be found in people within your company whose
views are important but might be underrepresented by the stakeholders. For
example, the Herff Jones eDesign application was conceived, in part, to make
it easier for sales representatives to convince schools to switch to Herff Jones
for their yearbook services. The sales representatives also act as account
managers and customer liaisons, so they are directly in touch with the needs
and concerns of the students and schools. Involving representatives of
groups like this in the development process (even if only for the major itera-
tions) can be a tremendous help.

QA is typically treated as a phase done at the end or near the end of the
development stage. But involving continuous, professional QA all through-
out the development process helps lead to more solid results and reduces
the risk of serious issues or unknowns coming up too late in the project. If
they’re involved in the whole of the development process, or at least in the

Increasing the Amount of Feedback

255

http://trac.edgewall.org

256

key milestones, professional QA teams can not only dramatically reduce risk,
but they also can add a valuable outside perspective of feedback to the pro-
cess. They might notice things that aren’t noticed by the other teams that are
more deeply engaged in the project. They can alert the engineering team to
problematic areas in the product as it progresses and help to quickly correct
faulty development practices.

The most important additional perspective that can be brought in is that

of the user. The business planning and user research stages should have
yielded a strong framework for making good decisions on the users’ behalf,
but that framework and its application will be imperfect. Many traditional
projects tack on a “user acceptance testing” phase at the end of a project
following QA, but if user feedback is held to after the development phase is
concluded, it doesn’t have an opportunity to positively influence the product
much. It’s impractical to involve users in every small unit of iteration, but
getting user feedback as frequently as possible makes a huge difference.
Testing wireframes, prototypes, components, rudimentary versions of fea-
tures, designs, and other major elements of the application with users on
an ongoing basis ensures the direction of progress is firmly aligned with the
user’s needs. Strong user feedback also gives the team tremendous confi-
dence in the correctness of their path and decisions.

Iteration in Sub-ldeal Project
Approaches

To better understand how abundant, well-rounded feedback leads to easier,
better results, it’s helpful to examine project approaches that interfere with
feedback: waterfall and BDUF. You might also find yourself forced to make
do with a sub-ideal project approach mandated by your company’s policy or
regulatory constraints. Sub-ideal doesn’t mean failure is guaranteed; it just
means that the path to success will be harder to discern and will be more
troubled. In any case, it’s interesting to note the ways in which a sub-ideal
process differs from a more ideal one, because these differences will be focal
points of weakness and risk that will need to be paid attention to, factored
into estimates, and actively mitigated.

Chapter 8: The Iterative Development Process

Strict Waterfall Process

As we discussed at length in Chapter 3, the central fallacy of the waterfall
process is its presumption that each stage of progress can be made perfect
before handing off to the next stage. Stakeholders must set out perfect speci-
fications that inform perfect design requirements, which, in turn, are meant
to leave engineers with a perfect blueprint and no unanswered questions.
Inevitability, though, the specifications and design requirements will be
highly inaccurate. This leaves the software engineers to contend with all of
the unknowns on their own without the benefit of stakeholder or UX design
feedback and within a schedule and budget set based on an inaccurate view
of scope. Figure 8-9 helps illustrate the other fundamental weaknesses of the

waterfall process.

PROGRESS AND GUIDANCE }
© STAKEHOLDER 4ooooooooooeeo s UX/UIDESIGN & SOFTWARE
. SPECIFICATIONS ° REQUIREMENTS . ENGINEERING

< FEEDBACK AND RESULTS

Figure 8-9. A strict waterfall process

At a high level, a waterfall process involves only three significant iterations:

o The first delivery of the specifications by the stakeholders
o The delivery of the UX/UI design requirements

o The delivery of the product by software engineering

Though minor iterations with feedback occur within the confines of each of
the three stages before being handed off to the next stage, there is no feed-
back between the stages. The waterfall process cuts off each professional
domain from the others, depriving them of the benefit of feedback from each
other.

Strict Waterfall Process 257

258

A waterfall process also makes it so the project has only two significant

opportunities for course correction:

e When the UX/UI designers attempt to translate the specifications into design
requirements

* When the software engineers attempt to turn the design requirements and
specifications into working software

But these two course corrections are hobbled by the inability to consult the
other professional domains and by the apparent need to adhere as closely
as possible to the inaccurate early specifications and requirements. At each
stage the teams are sure to find errors in the materials they’re handed and
be compelled to address previously unknown issues. But since the errors are
enshrined in unchangeable specifications and requirements (or, in the case
of client-vendor situations, in a contract), they tend to go uncorrected. And
since people from the other professional disciplines are mostly unavailable
when unknowns are encountered, decisions arising from those unknowns
must be made without the benefit of advice from the UX and business per-
spectives. The software engineers end up making a lot of business and UX
design decisions under pressure without advice, and without permission to
exercise thoughtful creative latitude.

If you’re forced to use a waterfall process, the inherent weaknesses of the
approach will trouble your progress and weaken your results. Sorry! You do,
however, have some limited control and opportunities to make things go a
little more smoothly.

Allow discretion and latitude down the line

It will be helpful if everyone involved (especially the stakeholders) can be
made to understand the inherent weaknesses of specifications, require-
ments, and designs formulated up front before development begins. If speci-
fications and design requirements can be treated as well-reasoned guidance
rather than sacrosanct marching orders, a degree of latitude is opened to the
UX/UI designers and software engineers to make thoughtful decisions based
on the guidance and the actual realities of the project as they emerge. The
UX/UI design team must have the discretion to change and improve upon the
specifications set out by the stakeholders, and the software engineering team
must have the discretion to improve upon the design requirements and the
specifications.

Chapter 8: The Iterative Development Process

One simple way of providing latitude is to change how you name documen-
tation. Rather than “requirements” or “specifications,” the early stages of a
waterfall process might produce “guidelines” or “recommendations.” These
documents, being produced so early in the project, will be based largely on
assumptions, so it’s also very helpful to identify those assumptions and
include them in the documentation. This will give the team reading the docu-
mentation a better understanding of what’s firm and what’s uncertain.

Don't segregate the professional disciplines

Waterfall processes typically require business requirements and specifica-
tions to be built first, then design requirements, and then a working product.
The business requirements and specifications are apparently the domain of
businesspeople, design requirements the domain of designers, and develop-
ment the domain of software engineers. This means there’s a tendency to
assign only businesspeople to the first stage, only designers to the second,
and only engineers to the third. But there’s nothing in the demands of a
strict waterfall process that requires this segregation of professional dis-
ciplines. When building the business requirements, involve the input of
designers and software engineers; when building the design requirements,
assign someone with software engineering experience to the team; and
when development begins, do your utmost to ensure that at least design, if
not also business, is actively involved. In the end, you’ll still have produced
the required sequence of major deliverables, but they’ll be better for having
benefited from rounder professional guidance.

It might seem that if this can be achieved that one is no longer using a water-
fall process, but the other major weaknesses of the waterfall process are

still present. Large amounts of time, money, and resources are still being
expended in wastefully extensive upfront specification and design processes,
depriving the development stage of the best measure of resources. Even if
all of the disciplines are participating all along the way, this deprivation of
resources from development will mean the number of significant iterations
will be drastically reduced. This reduces feedback and the frequency of
course corrections, increasing the frequency and severity of deviations and

€rrors.

Strict Waterfall Process

259

260

Allow the time and budget for major changes after the first delivery

If you’re using a waterfall process, you should be forewarned that the first
delivery by the engineering team is probably going to be far off the mark.

If the budget and schedule were based on the presumption that the speci-
fications and design requirements were perfect blueprints for the product
and the first delivery would therefore also be perfect, you're in big trouble.
Anticipating early failure—in fact, not considering it failure in the first
place—and reserving a large amount of time and budget for continued
development after the first delivery will permit you the opportunity to fix
what’s broken in a more relaxed atmosphere. This is essentially a backwards
way of circumventing the waterfall process by creating budgetary and sched-
ule room for additional major iterations that benefit from the feedback aris-
ing from the first and each subsequent delivery.

The more time and money you hold back for after the first delivery, the
healthier you make the development stage. Holding back money and time
will effectively reduce the scale of the first delivery, making it a smaller iter-
ation. Once that delivery drops, you’ll have an opportunity to solicit feedback
from stakeholders, and hopefully designers and even users as well. Based on
this input, you can free up another portion of the reserve of budget and time
for a second iteration, and then a third, and so on. But again, the other weak-
nesses of the waterfall process will still limit you, despite this sleight of hand.
Any resources consumed in substantial upfront specification and design
efforts will be unavailable to you for iterations in the development stage, and
it might take some effort to convince stakeholders to interpret the deliveries
as successive iterations instead of as a string of failed deliveries.

If you manage to make room for iterations following the first delivery, make
sure you'’re also set up to get good feedback against the early iterations. For
reasons that have never made much sense to us, a lot of companies plan to
do the user testing on a product only after it’s been built, when the feedback
is only of academic value and can’t improve the product. Bringing that user
feedback as far forward in the project as possible will give it a greater oppor-
tunity to positively affect the success of the project.

Chapter 8: The Iterative Development Process

Rush the first two stages

This is a trick with which you can effectively cram a more ideal process into
the form of a waterfall process. It’s absolutely guaranteed that specifications
and design requirements built up front are going to be full of errors and omis-
sions. This will be true whether you spend six months or six days on them.

So why not spend six days on them? Specifications and design deliverables,
especially those built to satisfy bureaucratic or regulatory requirements, typi-
cally get a cursory look-over to see if they’re credible, and are then stuffed

in a drawer or put on a shelf, never to be looked at again. Try to get your
stakeholders to acknowledge the weaknesses of too much upfront planning
and design and to secure their willingness to participate in a more dynamic
process. Then you can spend only as much time on the first two stages as is
required to satisfy the cursory review and to do the proper, restrained amount
of planning. This will give you the time, money, and prerogative to have more
frequent feedback within the scope of the development stage.

Iteration in a Big Design Up Front (BDUF) Process

It can be a bit difficult to distinguish between BDUF and waterfall. Both tend to
require that a significant portion of the time and budget be spent on upfront
planning and design. However, an important distinction between the two is
that BDUF acknowledges that the professional domains shouldn’t be segre-
gated. Since the upfront design is just “big” and not “wholly comprehensive,”
some UX/UI design resources are made available during the development stage.
It also inherently acknowledges that the design requirements arising out of the
second stage will be imperfect, necessitating the availability of design resources
during development to participate in their refinement. A BDUF process dia-
gram would look something like what’s shown in Figure 8-10.

PROGRESS AND GUIDANCE } DESIGN SUPPORT
......... P ZREE CRERERRN
© STAKEHOLDER &oooooeoomoeeee. o UX/UIDESIGN & .. SOFTWARE
© SPECIFICATIONS © REQUIREMENTS . ENGINEERING
DEVELOPMENT STAGE £ g g p

Front design process

< FEEDBACK AND RESULTS

Iteration in a Big Design Up Front (BDUF) Process 261

262

This is far from ideal, but it’s a huge step in the right direction. Besides build-
ing in the critical acknowledgement of the need for ongoing design during the
development stage, it also allows for a limited amount of cross-disciplinary
feedback. The software engineers will be using an iterative process to keep
progress moving, and now each iteration can benefit from guidance given by
UX/UI designers to the previous iteration. Unforeseen issues and unknowns
uncovered during the development stage (most of which will have UX/UI
design implications) can be addressed with the benefit of some support by
designers, rather than requiring the software engineers to hash it out on
their own.

But BDUF nevertheless suffers from many of the same problems as waterfall.
Although design might be less segregated from the development stage, stake-
holders are still often left siloed into the first stage rather than brought in to
participate in the development stage. The emphasis on big upfront design
also means that resources that ought to be available to the development
stage are consumed before development has a chance to begin. The degree
of feedback is also unduly limited in BDUF, and like waterfall, it tends to sug-
gest that specifications and design requirements can be treated as nearly
perfect for the purposes of scheduling and budgeting. This all adds up to the
concentration of a great amount of risk in the development stage, since it’s
still left to absorb all of the unknown and uncertainty in a setting of limited
resources and unrealistic expectations.

Because the problems with BDUF are just lesser versions of those in water-
fall processes, the advice for mitigating the problems is the same. The more
feedback across disciplines that can be forced in, the more the weakness of
upfront planning is acknowledged and the more room for iteration that can
be made; the smaller the big upfront design can be made, the closer you get
to a more effective process and a more successful project.

Chapter 8: The Iterative Development Process

Chapter 9
Release and Post-Release

264

If you were able to follow an iterative development process, the expe-
rience of bringing the product to release should be more pleasant than other
projects you might have worked on. Wrapping up a project should be much
more like winding down after a long run, rather than making a life-or-death
sprint. Releases should be anti-climactic, and anticlimax—the absence of
surprises, drama, and uncertainty—is a good thing in high-stakes situations
such as product development.

For projects that follow a waterfall or similarly sub-ideal process, releases are
often the first opportunities for serious QA efforts, user acceptance testing
(UAT), and stakeholder review. In other words, the releases—the moments
that are ostensibly the unveiling of a finished product—are some of the first
significant opportunities for feedback. The relative lack of feedback during
development guarantees that the first release will miss the marks of success,
quality, and expectations. This ensures that the unveiling of the first release
is stressful and fraught with acrimony; it will be viewed as a failure by stake-
holders and users. This underscores the importance of following an iterative
development process. It’s natural that the first major iterations of anything
are going to miss the mark; that’s the point of iterating—to check in and see
how to change course. But if an iteration is so long that it comprises the entire
development stage, no room is available for the major course corrections that
will necessary. The inevitable changes have to be made under a cloud of per-
ceived failure and the burden of scant remaining time and resources.

If you’ve made frequent releases in the form of iterations and feedback has
been continuous from QA, users, and stakeholders, “releases” are simply
special iterations and contain a minimum of uncertainty and surprises. And
if you’ve made sure each iteration ended in a working, meaningful product,
there shouldn’t be a lot of last-minute loose ends to tie up. Making a release
just means picking an iteration to polish up a bit, unveiling it with the proper
fanfare, and putting it out for broader feedback, or ultimately for deployment.

Chapter 9: Release and Post-Release

Managing Expectations

Ideally, your stakeholders should already be fully aware of what will be
released. They should have a sense of pride and ownership about it that is
a product of their active participation. If you have managed them properly,
they shouldn’t be in for any surprises. Any cuts, changes, or compromises
that were made during the course of the project should have been brought
to their attention immediately as they occurred. The audience for releases
of the product is generally much wider than just the team members and
stakeholders who worked on the project. Other stakeholders who initially
declined to participate, the stakeholders’ stakeholders, higher-ups in the
organization, and employees in the company generally will often see the
product for the first time when the alpha release is made.

Although you might have deftly managed your stakeholders’ expectations
during the project, before making a release you need to set expectations
properly more broadly in your company. During the whole of the planning
and development stages, nonparticipating people will have been left to
develop their own private preconceptions about what the product will look
like. Everything you discovered during the design and development of the
product will have led it down a different course than you initially repre-
sented. In addition, your stakeholders probably have done a relatively poor
job of managing their own stakeholders’ and bosses’ expectations as the
project evolved. Stakeholders who were fully supportive and were aware

of why the product turned out the way it did can quickly turn adversarial if
they start getting criticism from their own stakeholders and superiors. And a
staff that isn’t enthusiastic about the product will be less likely to adopt it as
an internal tool or will be less supportive of getting it out to customers.

Releases should never be shown to people without any introduction. Just as
the project leader needed to seize control of the stakeholders’ expectations
by, in part, managing their experience of viewing progress, releases need to
be properly packaged and presented as they’re shown around. Depending
on the scale and importance of the product, that might take the form of
company-wide meetings or presentations, one-on-ones with key higher-ups,
or internal marketing efforts. Prior to demonstrating the product to anyone,
you need to ensure that they’ve been primed to receive it well.

Managing Expectations

265

266

They should have heard and understood the product’s mission and success
criteria. They also need to understand the specific purpose the product was
built for, notwithstanding ancillary benefits they might have hoped for. You
want people to judge the product based on how it serves the needs of the
company and not just on how it might help out their individual departments
or roles. They should also be told how the product was built: the reason for
the primary focus on UX, the deep integration of user research and (hope-
fully) continuous user feedback, and any notable issues, opportunities, and
constraints that changed the course of the project and factored strongly into
the outcome.

Video or audio of the user research you did early in the project can be help-
ful here. Put together a sample of what users were saying early in the project
and compare them with their reactions to the new product. Customers that
switch from frustration to delight make an extremely compelling argument
that you’ve done something successful and important.

The Alpha and Beta Releases

Modes of product deployment are shifting away from physical media or
extensive on-site installs to web downloads, SaasS, “cloud” applications,
managed ASPs, and so on. This has caused the meaning of predeployment
releases to morph. Within heavily regimented, waterfall-like processes, the
alpha and beta releases might have a specific meaning and specific demands
to satisfy some bureaucratic requirement. But you should understand
releases in terms of their purpose and not simply as obligatory process steps.

Releases are major opportunities for an inundation of feedback. That is their
only truly important purpose, at least from the perspective of building the
product. Major releases should be planned and formulated around the goal of
receiving feedback. The type of feedback you're seeking will guide your choice
of who is included in the release audience and how complete or bug-free the
product should be prior to making the release. An alpha release is typically
made when the product is feature-complete but there is still a significant queue
of known issues; it is released to a limited internal audience, or a carefully
selected external audience. The purpose of the alpha release is usually to widen
the range of perspectives and increase the volume of feedback provided on
significant issues. Product teams, and even QA teams, can get so familiar with

Chapter 9: Release and Post-Release

Students working on an alpha release of the Herff Jones eDesign product

or submerged in the product that they overlook significant issues that fresh,
outside observers notice immediately. Alpha releases are also often the sales
and marketing teams’ first real look at the product. An early glimpse of the
product helps them get a head start on messaging and selling the product.

Beta releases are typically made when the product is functionally complete,
and the majority of significant issues have been repaired. Beta releases go
out to much wider audiences than alpha releases, often including a signifi-
cant number of actual customers. The purpose of beta releases from the per-
spective of developing the product is to again increase the range of perspec-
tives and the volume of feedback. Many of the minor or stranger bugs sur-
face only when the product is being prodded from every imaginable direc-
tion. Finding these bugs requires a large group of people to truly explore all
of the peculiar use cases for the product and find new and unexpected ways
of operating it improperly.

Alpha and beta releases are also often treated as opportunities to market the
product. Inviting people to a “sneak peek” of the predeployment releases

of a product can be a useful way of building closer relationships with key
customers or generating early buzz for the product. But unless the audience
for your product are themselves software professionals who understand how
predeployment releases work, you should consider for the sake of everyone’s

The Alpha and Beta Releases

267

268

sanity separating marketing-oriented releases from development releases.
The marketing alpha release should be more like the development beta
release so customers aren’t being exposed to significant defects. The market-
ing beta release should simply be a final or near-final deployment candidate.

Receiving Orderly Feedback

Since getting feedback is the purpose of making predeployment releases,
and since time and money are dwindling at the end of the project, it’s impor-
tant that the feedback is received in the most orderly, useful way possible.
As valuable as the feedback can be, it also can be distracting and damaging
if you make the mistake of soliciting it through email or letting participants
enter issues directly into the development issue queue. Email doesn’t work,
because of the high volume of feedback you will receive. It’s very difficult

to ensure important issues are triaged and addressed, and youw’ll get many,
many emails reporting the same issues over and over again. It’s also impor-
tant to mediate between this feedback and the project team. The team will be
blitzing to get as much done as possible before the project ends, and a flood
of unfiltered, untriaged feedback is a huge distraction. People who aren’t
software professionals usually don’t know how to report issues in an effec-
tive way, and amidst all of the stress, project teams have a tendency to get
irritated with inane, redundant, or poorly formulated feedback.

So, unless you’re dealing with very limited release audiences, you should
provide a special infrastructure through which participants can provide
feedback. Many issue tracking systems have a means of creating a separate
class of users and issue tickets that are held separate from the development
queue. Issue tracking systems give participants an easy, online means of
providing feedback that lets them see whether they’re reporting something
that’s already been reported by someone else. Issue tracking systems also
make it easier for you to manage and track the feedback. You, a product
manager, or another member of the project team can review participant
issue tickets, clean them up, and triage them into the development issue
queue. If it isn’t possible to segregate participant feedback from the develop-
ment issue pool within the development issue tracking system, set up a sepa-
rate bug-tracking system to receive the feedback, and manually transport the
important issues into the development system.

Chapter 9: Release and Post-Release

You can also improve the quality of the incoming feedback by providing
participants instructions on how to provide useful feedback. It can be mad-
dening to open a ticket that says something like, “When I click the OK button,
nothing happens.” There’s no way of telling where and under what condi-
tions the issue occurred and whether it’s important. When setting up the
feedback-tracking system, make sure to also create either individual logins
for participants or a required field for the participants to give their names.
This way, if you get a confusing or incomplete ticket, you know who to ask
about it.

Alpha/Beta Tester Feedback Filter, Clean & Triage Development Issue Cue

'’ —
SRl =

- AN AN J

Al
|

I
L]
f

Last-Minute Housekeeping

The project team will usually start out a project enforcing best practices
around organizing code and assets, documenting or automating builds, and
other helpful practices. But the effects of impatience, pressure, rushing, and
general entropy usually mean that at the end of the project things are a little
disorganized. This needs to be cleaned up. Things need to be left in a state
such that, whether two weeks or two years in the future, it’s easy to find

the necessary information and to build the product from the source in case
changes need to be made.

Without getting into the technical nitty-gritty, code repositories can get con-
fusing and disorganized through the course of the project. Multiple versions
or “branches” of the product might exist and cross-reference each other, or

Last-Minute Housekeeping

269

270

the code might reference special libraries that exist on only one engineer’s
laptop. All of this needs to be consolidated into one definitive repository that
either includes all of the required resources or comes with documentation
explaining what external resources are necessary and how to access them. If
the software engineers did a poor job of commenting their code throughout
the project, it’s usually not worth it to have them go back through and retro-
actively comment everything. However, they should identify critical, confus-
ing, or complicated areas of the code and provide future developers with
some guidance on how it all works.

The design team members also will have produced a considerable number of
assets through the course of the project. Most of these will be intermediary
materials or minor variations of the same asset. They will all be reflections
of not only the final design of the product but also the progression of think-
ing that went into the final design. These materials should be preserved and
organized. Besides being useful to future changes and improvements on the
product, they can have broader uses across the company and in the market-
ing of the product.

User Documentation

As hard as you might have tried to make everything intuitive and easy to use,
some level of user documentation is always necessary. A positive software
experience requires that users can figure out how to use it easily, without
frustration, and with confidence. The user documentation should be as
much a reflection of your care for the user’s experience as the software
itself. The archetypal example of bad UX in product design is that of the VCRs
of the 1980s and 1990s. That horrid UX was compounded by instructions

that were incomplete and poorly translated from Japanese into English. The
experience of using a new product should be a delight, not a frustration.

It’s usually best to make the user documentation available as part of the
application rather than as a separate binder of paper. And rather than
sequestering it in the “F1” help area, the current trend in products is to
make help documentation available in context. This allows users to directly
access help on the specific subject of the tasks they’re attempting to perform,
the controls they’re attempting to operate, the information they’re trying to
input, and so on. This type of contextual help requires infrastructure built

Chapter 9: Release and Post-Release

into the application itself, so if your product will be heavily reliant on sup-
port documentation, this feature should be accounted for in requirements
and designs. User documentation can take much longer to produce than

you might expect, so if your product requires a significant amount of docu-
mentation or uses an inline contextual system, you might consider giving
the technical writers an early start. In fact, technical writers attempting to
make sense of the product for users can be a very valuable source of QA and
quasi-user feedback, so building documentation in tandem with the final QA
efforts can be very helpful.

And Champagne Corks Fly...

Once all of the important issues have been addressed and the clock and money
have run out, it’s time to end the development effort and declare the product
done. This is cause for celebration. But because of the anticlimactic nature of
the end of an iterative development stage, it can be easy to forget to have your
“champagne moment.” If things have gone smoothly and you’ve managed to
apply the advice we’ve given, the moment of completing development on a
project should be less like collapsing across the finish line in an Olympic race
and more like watching the clock strike 5 p.m. on a Friday.

And Champagne Corks Fly...

271

272

But finishing development of a product is a major accomplishment—not unlike
finishing an Olympic event. For some members of the team, it might be the
most significant thing they have ever accomplished. The shockingly high inci-
dence of project failures also means that the release of any working product,
no matter what issues might yet haunt it, is a significant success. Your team
has overcome a challenge many, many companies have been beaten by.
Placing a ceremonious end-cap on a project acknowledges the magnitude of
the accomplishment and can be good for everyone’s spirits.

Adoption

The end of the development stage of the product shouldn’t mean the end of
giving it serious attention. After the long slog of developing the product, you
and your company might be tempted to launch the product and then try to
put it entirely behind you. But the joy and the curse of being successful in
developing a great new product—or a fantastic improvement on an existing

one—is that you’re going to be living with it for a long while.

Software products are meant to be useful to and used by people. A product
that doesn’t get used, though it might be an impressive accomplishment

in itself, is a failure and was a waste of money. Unfortunately, the Field of
Dreams adage—“If you build it, they will come”—is not at all true of soft-
ware. Adoption is something that must be aggressively sought after and
built. A company’s commitment to the success of a product can’t stop at the
point of completing its development; its adoption needs to be the focus of a
major effort.

In the case of products built for customers and clients, this should be pretty
obvious, since generating adoption is roughly the same thing as generating
sales. The exception to this is when the product you've developed is a new
version of an existing product. If salespeople and account managers are
going to make the effort to transition their current customers and clients
onto the new version and learn how to support it, they have to believe in the
new version and be excited about selling its benefits. This means that you
need to be prepared to do a significant amount of internal marketing of the
product. This supports adoption on the part of your sales and account man-
agement staff that will carry over to adoption by customers. Just announcing

Chapter 9: Release and Post-Release

the completion of the new version in a memo, email, or short presentation
isn’t close to sufficient. You should apply the same vigor to getting your staff
excited as is applied to getting customers excited.

The same is true of products that were built for internal use. Such products

are conceived to make some task or function easier for the company
and the staff, to simplify some complex process, or to contrib-

ute some other serious benefit to the company and its staff.
Unfortunately, though, many companies that produce
internal products don’t realize it’s necessary to market

the product to their own employees, falsely assuming

that it will be adopted as a simple matter of course.
Change, even to something superior, requires a bit of
discomfort and effort on the part of the employees,

and might temporarily make their work more difficult
before making it easier. Internal politics can also cre-

ate complications, as when departments that were left out
of the development process contrive resistance, or when false
preconceptions are left unchecked. All of these can add up to an inertial
resistance that must be overcome. The techniques that are applied to mar-
keting a product to customers should be applied to marketing it to employ-
ees. You need employees to be excited about the product before they use it
so they’re willing to commit the investment of time and energy it will take to
adopt it. Also remember that their enthusiasm will wane and adoption will
drop off if the product isn’t properly supported internally.

Post-Release

If your project has been successful, you and your company will be thrust
very quickly into repeating that success. You might start working on a new
version of the product or move on to improve some other aspect of your
company’s offerings or internal systems. The project you’ve just finished
provided valuable lessons about the product itself, how to deliver better UX,
and how to build software generally. This will set up you and your company
to succeed more easily in the next project. These lessons must be captured so
they can be a catalyst for a future success.

Post-Release

273

274

Review

Many companies call the post-deployment review a “post mortem,” but it really
should be something much more complete and far less morose than that expres-
sion suggests. In a sense, your team’s development of the product was one big
iteration in what will hopefully be careers full of new, better iterations on build-
ing a software product. The end of any iteration is an opportunity to look back

at what happened and decide what to do next and how to adjust tack. It’s also an
opportunity to judge the success of your efforts according to the original expecta-
tions and guidance that were set for you, and to take lessons from the unknowns
that emerged and the ways you found your early assumptions challenged.

Checking against the original business goals

The project mission, success criteria, and business requirements constrained
and guided the development of the product as part of the framework require-
ments, and they now offer you a clear, fair measure for your success. Make a
point of getting your team, stakeholders, and your stakeholders’ stakeholders
together for a meeting and reacquaint them with the product’s original goals.
Explore together how effectively the project responded to those goals. It might
take time for the project to be tested and adopted before you can be certain
about meeting the success criteria. But it should be easy to judge whether the
project met its mission and fulfilled on the high-level business requirements,
and whether it’s well poised to meet the success criteria. Any time the conver-
sation about success starts to deviate into realms where it’s being judged sub-
jectively based on a stakeholder’s or executive’s errant expectations, the origi-
nal business expectations are a useful tether to keep measures of your account-
ability fair. It’s fine to examine how the product might have failed to live up to
additional expectations that didn’t come to light during the business planning
process, but you shouldn’t be held accountable for those issues. For that sort of
issue, the conversation should be about why the expectations didn’t come up in
business planning and how to avoid that happening in the future.

The achievement of the success criteria is likely to require time and invest-
ment beyond the development of the product through aggressive marketing
or internal adoption initiatives. Part of reviewing the project against the suc-
cess criteria will be an opportunity to get your stakeholders focused on what
additional steps need to be taken to fully realize the product’s goals. They’ve
already invested a significant amount of money in building the product and

Chapter 9: Release and Post-Release

shouldn’t inadvertently waste that investment by failing to follow through on
final details such as marketing and infrastructure.

Reviewing the success against the original business goals is also an oppor-
tunity to learn how your organization can become better at setting those
business goals in the first place and responding to fundamental changes

that occur throughout the project. The emergence of unknowns, risks, and
opportunities probably forced you to alter the business goals to some degree.
The discoveries, events, and decision-making processes that led to those
changes should be examined to understand whether the process for making
the change was sound and whether it produced the right results. If it worked
well, it should be remembered for future projects. If it didn’t, the group
should settle on a better means of handling such important changes for the
future. Ways in which the project differed from the expectations of people
inside and outside of the project team should also be explored to see if there
are ways of improving how the business planning stage is conducted or how
expectations are managed in future efforts. And the project team should be
consulted to find out how effectively the business requirements guided their
progress and whether they felt sufficiently informed by those requirements.

This is also a good opportunity to haul out the lists of user attributes, feature ideas,
business requirements, and other thoughts that that were deferred or abandoned
during the business planning process. These lists make it clear that those details
and ideas were intentionally excluded as a result of planning efforts conducted
with stakeholders. Going back to the raw materials of the early thinking about the
project also often serves as a stark and interesting reminder of just how poorly
everyone understood the project in its early stages. With the benefit of hindsight,
many of the ideas will seem crazy or very off-base. If intelligent restraint was
exercised during business planning, this should serve as a reinforcement of the
value of restraint during the business planning process. It should also underscore
the importance of the humility of unknowing at early stages of the project.

The list of ideas that didn’t make it into the final product, along with the
list of things that, in the final evaluation, should have been included, can
form a good starting point for future product planning. New business plan-
ning efforts can be accelerated using old ideas that have been tempered in
the forge of an actual project. The ideas will be better understood and their
validity will be supported based on actual data and experience rather than
assumptions and guesswork.

Review

275

276

Checking against original user goals

Ideally you should already have done extensive UAT and should be quite
aware of how actual users are responding to the product. Like the business
perspective, user needs formed a critical piece of the framework require-
ments that constrained and guided the project. Since the discoveries from
the user research phase of the project were so fundamental in determining
where the project wound up, the success of the project should be judged
against the initial understanding of user needs.

This is especially true if your company took any shortcuts or bypassed the
user research phase. That decision to rely on either an absence of data

and guidance or on make-do assumptions would have directly affected the
framework requirements, and thus the whole rest of the project. Your product
may satisfy the needs you assumed users had, or it might be useful to users
you assumed were important, but if those assumptions were wrong, you may
have disappointed actual users. That failure is the fault of shortsighted early
decisions to shortcut user research, not of poor performance on the part of
the project leader or the team. The ways in which assumptions manifested in
the actual product to the disappointment of the actual users should be exam-
ined deeply to better understand the actual users and to help drive home an
appreciation for the value of user research.

The results of the user research phase were intended to provide the project
team with the empathetic framework for figuring out what actual users
would need and prefer, and the success of that framework and of its appli-
cation should be examined. UAT should have led to important new insights
about users and refinements to your understanding of their needs. You
might find that user research overlooked a set of users who formed a unique
nexus of needs. Or you might find that your team’s use of the research led to
some errors that hint at ways you can improve the research and the team’s
thinking about users.

We recommend a fresh user research phase for every project, even if it’s
just a new version of an existing one. User needs change over time and in
response to changes in the product, and research guided by prior real expe-
rience leads to stronger results. The research from the project you’ve just
finished and the new data arising from use of the product by actual users

Chapter 9: Release and Post-Release

will be enormously valuable to the next iteration of user research. Any avail-
able knowledge should be recorded in some way to ensure that it isn’t lost

in the weeks or months between the end of this project and the beginning of
the next one. And if you have to go through a new development effort with-
out the benefit of a user research phase, everything you learned about users
in building this product can give you at least some real data to work from.

Measurement and Tracking

At the end of the project, you should have plenty of qualitative input flowing
in from users, customer support, salespeople, and other sources. That input
should tell you what’s good, bad, or needs improvement. And if you have
the right means of observation, actual usage of your product can yield enor-
mously valuable feedback.

In web development, there’s a clear and universal understanding of the
value of tracking analytics for the site. Web analytics allow companies to see
how often their web pages are visited, where users are dropping out of busi-
ness-critical functions, where people are spending most of their time, and so
on. It’s just as important to look at real usage and performance of a software
product. And a software product can provide more informative data about
its use than a website can.

Everything in a software product can be tracked, right down to movements
of the mouse and every keystroke. The challenge in learning from usage of

a live application is less about collecting the usage data (though some engi-
neering is required to accomplish this) and more about determining what
aspects of the available usage data you need to pay attention to. You can col-
lect a tremendous amount of data, but only some of it will have something
meaningful to say about how your product is performing. Qualitative feed-
back can be useful in making decisions about what usage to observe and
what data to gather. If you’re receiving diffuse reports of difficulty operating
some particular feature, you can add mechanisms to track how that feature
is being used and under what circumstances. This gives greater specificity

to the problem and helps make the case for additional time and money to fix
the issue. Tracking can also be done by analyzing the data that accumulates
through ongoing use of the product, to try to detect the trends and implica-
tions hidden within it.

Measurement and Tracking

277

278

The fuzziness of some qualitative feedback can, in some cases, cause serious
problems for you and the product, owing to the assumptions people will
continue to make. They either overgeneralize certain negative feedback
(“no one uses this feature”) or dismiss the feedback as the outlier experi-
ences of unimportant users. Diving deeper into the negative feedback by
studying a question with a range of sample users will tell you what’s really

important and what isn’t.

Conducting usability studies on the product after it’s released can also be valu-
able, provided your company is prepared to act on the findings and recom-
mendations of the study. Jared Spool of User Interface Engineering tells an
interesting and now-famous story titled The $300 Million Button:

http://www.uie.com/articles/three_hund_million_button

As the name of the story suggests, Spool helped a major online retailer
increase its revenue by $300M by simply examining a key aspect of their

UX. This demonstrates that even the smallest change in response to actual
user feedback can drive major results for the business. Though the route

this particular company took to the $300M improvement was by way of user
research, the story also suggests that had the company done an in-depth look
at their own duplicate registration and password reset data (which are quan-
titative measures), they might have discovered the same issue.

Tracking the application can be helpful beyond just addressing critical
and $300M issues. Knowing how users are and aren’t using the application
is useful as you enter the early stages of building the next version of the
product or building another product. Real data and follow-up qualitative
research is useful in refining your understanding of the users’ needs, pri-
oritizing business requirements, and understanding where to concentrate
resources and efforts.

Measuring and tracking the application is also important in judging its suc-
cess in the context of the business. Many success criteria set in the early
planning for the project will take months to prove out. You must pay atten-
tion to the performance of the product to know whether you met the success

Chapter 9: Release and Post-Release

http://www.uie.com/articles/three_hund_million_button

criteria or to identify the circumstances that might have led to your failure to
meet them. Investments in UX also tend to have valuable effects through-
out an organization that go beyond the ones anticipated in setting the
success criteria. For example, the Herff Jones eDesign product exceeded
revenue and market share growth targets dramatically, but it also caused a
600 percent growth in the number of yearbooks produced online. Because
the new eDesign online process is strongly integrated with Herff Jones’s
customer support and production processes, greater adoption of the new
product led to reduced cost in support and production. Plus, the improved
UX is bound to confer benefits to the Herff Jones brand, reduce costs to
account management and customer retention, and provide a powerful new
selling tool for the outside sales staff. All of the effects of the product on the
company should be discovered and measured so that the full return of the
investment can be understood and appreciated.

All of this, in turn, will be useful as it again comes time to generate support
from stakeholders for additional investments in the product you’ve just fin-
ished or for new investments in another one. Measuring and proving the
return that was realized from the investment in UX eases the burden of sell-
ing people on the value of UX the second time around. If there are questions
as to why more money needs to be spent on the product, real quantitative
and qualitative data can help you sell the need to invest in certain improve-
ments and enhancements. The measurement and review process is a precur-
sor to returning to Chapter 2 and starting the process of generating support
and budget for the next critical initiative. Your new, proven success will give
you a boost of trust, data, and support for UX that might have been lacking
the first time around.

Measurement and Tracking

279

Afterword

In a way, the advice we’ve given in this book doesn’t end with the last chapter
on the last day of your project. As we discussed in Chapter 9, the learning and
success of one project feeds into the next project. If you’re finishing the work
that’s covered in Chapter 9, you’ll likely find yourself back in Chapter 2, trying
to build support for a new initiative. Once you’ve been through a UX-focused
development effort following our advice, you’ll be a pro yourself, better able
to understand how our experience and advice aligns with your experience
and situation.

The UX field is a cutting-edge area of the fast-moving domain of software
development. As such, the field is changing on a daily basis, and we’re learn-
ing things and developing new approaches to difficult problems every day. We
encountered many exciting ideas while researching this book that either came
too late or were far too complicated to make it into this book. And since the
book covers such a wide range of professional disciplines and fields, we were
forced to address some topics at only a high level. As a result, we’ve created

a page on our website to provide new information and access to extended
resources to you. And if you’re reading a printed or Kindle version of this
book, the page also has a list of the links found in this book.

http://effectiveui.com/book-resources/

We’ll also be posting updates on Twitter. Please follow us: @uitweet.

http://effectiveui.com/book-resources/

EffectiveUl
Senior Class of ‘09

Anderson, Eric
Anderson, Jonathan
Aron, Chris

Arries, Tiffany
Baca, David

Bagur, Michelle
Balzer, Jeremy
Barnum, Dave
Beeks, Lara
Bell, Ryan

Blagovirnyy, Roman
Blanco, John

Bonet, Brent

Bose, Sumi

Bowers, Jason

Branam, Jonathan
Breidenbach, Eddie
Casey, Greg

Cheng, Jim
Christmann, Lance

Christmann, Sean
Conboy, Kevin
Congleton, Aaron
Cordes, Shivanii
Crutchfield, Nathan J.

Fellin, Jason
Flavin, Rebecca
Franco, Anthony
Fritschen, Christine
Gagliardi, Amanda

Garcia Wolfe, Faye
Gorton, Elaine
Graston, Jeremy
Guiberson, Ken
Hansen, Patrick

Hefner, Allison
Henry, Jacob
Horning, Catherine
Jamison, Bobby
Jamison, Joshua

Johnson, Jim
Jordan, Lucas L.
Kirkland, Lori
Koloski, Beth
Lindley, Peyton

284 Afterword

Martelli, Nick
Mclntosh, Andy
McLean, Drew
McRee, John
Molla, Brook

Oliver, Erika
Olmsted, Michelle
Ossola, Melody
Owen, Greg
Owen, Phil

Owen, R]
Parker, Elias
Phillips, Carrie
Phillips, Heath
Pinter, Zachary

Reid, Jon

Rellos, Mahe
Robinson, George
Salamon, Michael
Salenieks, Karina

Saltzman, Dan
Sanchez, Juan
Schmidt, Doug
Singleton, Valerie
Smith, Mark

Smith, Tony
Strobert, Mike
Sykes, Joy

Teal, Ellen
Umbaugh, Brad

Afterword

285

286

Varnell, Tracey
Walt, Tony
Washburn, Shelley
Weborg, Daisy
Wilcox, Bret

Wilcox, Eileen
Will, Caroline
Williams, Chuck
Willis, Tiffinie
Wilson, Robb

Not Pictured
Blythe, Jason
Ortiz, Juan
Skrenes, Kevin
Stussman, Kevin
Wood, Tim

Afterword

Numbers
80/20 principle (see Pareto 80/20 principle)

A

Adobe Flash Platform 73, 202, 223, 224
Adobe Flex 223,224
Adobe InDesign 46
Adobe Photoshop 22
Adobe Version Cue 233
affinity diagramming 164-165
Agile methodology 108-111, 243
manifesto 109-111
alpha releases 266-269
feedback 268-269
analyzing research results 196-200
animatics 70-72
Apple 29, 55, 63, 136
Address Book 149

iCal 149

iPhone 29, 41, 48, 49, 63, 197
iPod 41

MacBook 197

Mail 149

application programmer interface (API) 224, 226
appropriateness to context 28-29, 29, 70
architecture
initial product architecture (see initial product
architecture)
technical (see technical architecture)
UX (see UX architecture)

B
beta releases 266-269
feedback 268-269
Big Design Up Front (BDUF) 105-108, 230-231
iteration in 261-262
problematic approach of 245
problem with 107

Index

project approaches that interfere with feedback
256
software architecture and 231
weaknesses 230
brands, recognizable 28
bridge design and planning, as comparison to
design planning for software 78-89
budget (see cost)
building trust and credibility (see trust)
business goals
accomplishment of 20, 21, 173
affinity diagramming 165
business planning 73, 100
checking against original 274, 275
connecting to user behavior 62-63
connecting to user goals 60-62
defining requirements 161, 162
examining 145
explaining how UX aligns with 39
gaining clear understanding of 169
prioritizing 165
product deviating from 142
project leaders pleasing stakeholders 141
reducing resistance against the accomplishment
of 10
reviewing success against 274-275
stakeholders and 251
user research 211
business logic 229
business or enterprise user types 152
business perspective 140-170
maintaining stakeholder buy-in 169
success, defining 141-150
exercising restraint 145-147
Pareto 80/20 principle, applying 148, 150,
156, 196
project mission statement 142-144, 167
project success criteria 144-145, 163, 167,
209, 266, 274, 278
refocusing product objectives 149-150

business perspective (continued) technical 223

users 151-160 third-party components 229
attributes 152-153 user’s and business’s perspectives 206
consumer applications user types 152 consumer applications user types 152
effect of organization’s attributes on 152 content, delivery of relevant, valuable 22-24
exercises to identify key attributes 153-160 context, appropriateness (see appropriateness to
work environment software 153 context)
business planning 73, 88, 140 contextual scenarios 210-213
business goals 73, 100 as elaboration on framework requirements 212
core purpose of 142 usefulness 214
exercising restraint 250 Cooper, Allen 185
improving 275 Cooper, Robbie 6
key goal of 151 cost
project leader 140 call centers 20, 62
requirements gathering 130 changes to scope, schedule, cost 99-101
user research sample size 185 insourcing versus oursourcing 130-138
business requirements 161-168 lowering training and support costs 18
defining “requirement” 161-162 measring how little is spent rather than
exercises to develop 163-168 investment 58
affinity diagramming 164-165 professional help 128
brainstorming 163-164 restrained versus overambitious requirements 161
documenting results 168 skipping user research 176
grouping things together 164 user research 177
prioritizing 166-168 Craigslist 22
measuring success 274 credibility of outside experts 74
money and time for better UX 50 credibility (see trust)
prioritizing 278 customer experience (see CX)
reviewing success against original business customer-facing products 10
goals 275 focus on UX in 57
user interviews 190 value of good UX and engagement 11
user priorities 199 customer relationship management (CRM) 7, 18,
waterfall methodology 103, 259 22,24, 225
business value of UX, quantifying 67 CX (customer experience) 10, 32, 51
connecting business of CX to technology of UX 39
C discovering personas 196

focus on UX in customer-facing products 57

call centers . 61 project leaders 120
anxious customers trend 51

call center support application or a customer- . ; ;
facing CRM tool 18 working with agencies 135
information systems 62

project success criteria 144 D
reducing costs 20 data considerations 224
reducing volume 22 design
champions of change 38 bridge designer 82
code source control 232 redefined 32-34
collaboration efficiency of project team 255 visual (see visual design)
Complex Adaptive Systems (CAS) 82-87 development
software 83-84 Agile (see Agile methodology)
software development 84-87 BDUF methodology (see BDUF methodology)
constraints 28 effective methodology 110-112
contextual scenarios 213 end of development stage 272
coping with business constraints 2 frameworks and libraries 49
cost and schedule 101, 248 getting professional help 127-130
designers being unaware of 126 initial product architecture 207
eBay desktop application 12 insourcing versus outsourcing 130-138
finding research participants 184 issue tracking systems 268
functional requirements 91, 94, 97, 100 iterative development process (see iterative
iPhone 29 development process)
iterative process and 240 mapping interactions with other systems 225-227
resources and utilities 224 personas 196-198

288 Index

planning and requirements (see planning and
requirements)
platform and framework choices 223-224
post-release 273-279
project infrastructure needs 232-234
code source control 232
graphic asset management 233
testing infrastructure and environments 234
project leaders (see project leaders)
redefined 34-36
RIA technology (see rich Internet applications)
software engineers (see software engineers)
stakeholders (see stakeholders)
tools for better UX 49
waterfall process (see waterfall methodology)
web development, measurement and tracking
277-279
wireframes and mockups of application screens
215
documentation 158-159, 270-271
Agile software development and 109
BDUF and 107
code repositories 270
early documentation and final product 91
estimates from 101
identifying key user attributes 158
naming 259
personas 196
prioritizing features 168
quickly exchanging 178
recording research 188
stakeholder buy-in 67, 169, 202
user 221,270

E

eBay Desktop application 12, 14, 74
effective UL, building 2-36
efficiency 18
Herff Jones eDesign, efficiency in the UX of a
product 19
project efficiency and the unknown 111
empathy
for user and decision making 127, 172
generating emotional buy-in for improving UX 66
personas 198, 201
user feedback and stakeholder buy-in 66
user research and 177, 181, 183
stakeholder buy-in 202
user stories 198, 201
engagement
as fourth wall 7-8
as immersion 6-7
elements of engaging UX 11-32
appropriateness of context 28-29
delivery of relevant, valuable content 22-24
efficiency 18
external consistency 25-28
familiarity 12-13
feedback 13-16
helpfulness 20-22
internal consistency 24-25

intuitiveness 18
performance 16-17
responsiveness 13-16
summing up 30-32
trustworthiness 29-30
frictionless user experience 8-9
why good engagement and UX matter 10-11
error and course deviation in waterfall and
iterative processes 242
E*TRADE 22
Excel 45
expectations, managing 68, 88, 94, 119, 140,
146-148, 158, 163, 187, 265-266
external consistency 25-28

F
familiarity 12-13
feature parity war 149
features, companies matching 150
feedback 13-16
alpha and beta releases 268-269
exposing stakeholders to user feedback 65-67
improving quality 269
increasing 254-256
issue tracking systems 268
iterative development process 239-256
mapping progress and feedback across multiple
cycles 252-254
progress and feedback activities 249
project approaches that interfere with 256
(see also user feedback)
focus groups 190, 200
Forrester 32, 67,74, 137
fourth wall, engagement as 8
framework choices 223-224
framework requirements 94-102, 110, 111, 119,
140, 143, 148, 160-162, 172-173, 180, 181,
206-207, 209, 212, 231, 276
extending 98
how they are built 97-98
frictionless user experience 8-9
functional requirements 90-92
future vision 71

G

Gartner 67, 74, 137
goals
business (see business goals)
connecting user’s to business 60-74
deadlines 248
user (see user goals)
Google Docs 45
Google Keywords 221
graphic asset management 233
graphic comps 68-73, 230, 237
guerilla user research 200-202
focus groups 200
personas 201
user stories 201
guided storytelling 192
Index 289

H

helpfulness in achieving real goals 20-22
Herff Jones eDesign 46, 211-213, 219, 279

asset management 216

contextual scenarios 211

Efficiency Versus Intuitiveness 19

Integrated Experience 26

key business requirements 161

online yearbook editing tool 211
housekeeping, last minute 269

iCal 149
immersion 6-35
information workplace 52
initial product architecture 206-234
BDUF (Big Design Up Front) 230-231
weaknesses 230
platform context 207
project infrastructure needs 232-234
code source control 232
graphic asset management 233
testing infrastructure and environments 234
scale and ambition 207
team 208-221
technical architecture 222-230
assessment 223
business logic 229
data considerations 224
interactions with other systems 225-227
open source components 228-229
platform and framework choices 223-224
third-party components 228-229
UX architecture
contextual scenarios 210-213
developing nomenclature 221
examining key features and interactions 216
mapping high-level workflows 213-215
success and viability of product 216
visual design 217-219
interactions 24, 79, 84, 153
Agile methodology 109
early understanding of 207
identifying common patterns in 196
illustrating on paper 216
observing 193
one-on-one 190
problematic 192
user research and 173
wireframes and 68
internal applications (see internal information
systems)
internal consistency 24-25
internal information systems 10, 11, 21, 40, 42, 52
interviewing users (see user interviews)
interview techniques 191-192
intuitiveness 18
Herff Jones eDesign 19
iPhone 29, 41, 48, 49, 197, 63

290 | Index

iPod 41
issue tracking systems 268
iterative development process 236-262, 249
basic iterative process 248-252
collaboration efficiency 255
components at heart of product 244
error and course deviation in waterfall and
iterative processes 242
estimating iterations 247-248
finishing iterations with something complete
246-247
goals and deadlines 248
increasing feedback 254-256
iteration and feedback 239-256
mapping progress and feedback across multiple
cycles 252-254
multicycle map 253
perspectives, bringing in more 255
prioritizing subjects of iterations 245
project leader, role of 251
project stages against time and resources 251
scope of iterations 243-244
components at heart of product 244
simple iterative process 240
sub-ideal project approaches 256
Big Design Up Front (BDUF) process 261-262
waterfall process 257-261
IT expenditures, building off of previous 52

J

Java Foundation Classes (JFC) 223
JavaFX platform 224
Jobs, Steve 41

K

key user attributes, identifying 153-160
adding depth 158
consolodating similar attributes 154
distilling 156
documenting results 158-160
narrowing “everyone” 153-154
spending exercises 156-157

M

Microsoft Excel 22

Microsoft, future vision 71

Microsoft Office 46

Microsoft Silverlight 224

Microsoft Word 46

Mint and Yodlee 64

mission statement (see project mission statement)
mood boards 219

Morris, Betsy 39

multicycle map 253

N

Nielsen, Jakob 185
nomenclature 221

(0]

observing users 31, 66, 180, 193-195
OmniGraffle Professional 73

online tax preparation software 63
online trading tools 23

open source components 228-229
outside experts 74

P

paper prototypes 215
Pareto 80/20 principle 148, 150, 156, 196
performance 16-17
consistency 17
quality 17
personas 196-198
documentation 196
empathy 198
example 197
guerilla user research 201
planning and requirements 76-112
bridge design and planning, as comparison to
design planning for software 78-89
business planning 73, 88, 140
core purpose of 142
exercising restraint 250
improving 275
key goal of 151
project leader 140
requirements gathering 130
user research sample size 185
changes to scope, schedule, cost 99-101
documentation (see documentation)
effective process 102-112
Agile development 108-111
Big Design Up Front (BDUF) 105-108
development, effective methodology 110-111
waterfall methodology 103-105
effective requirements 94-102
efficiency and the unknown 111
extending requirements 98
framework requirements 94-102
how they are built 97-98
framework requirements (see framework
requirements)
functional requirements (see functional
requirements)
purpose of requirements 96
uncertainty (see uncertainty)
platform choices 223-224
post release 273-279
conducting usability studies 278
measurement tracking 277-279
review 274-277
PowerPoint 46
prioritizing subjects of iterations 245
process types 102-112
Agile development 108-111
Big Design Up Front (BDUF) 105-108
waterfall methodology 103-105
product managers 31

product objectives, refocusing 149-150
product users (see users)
progress, mapping across multiple cycles 252-262
project infrastructure needs 232-234

code source control 232

graphic asset management 233

testing infrastructure and environments 234
project leaders 116-120

building trust with stakeholders 140

business planning 140

discovering unexpected things 158

initial product architecture stage 209

intolerance of uncertainty 93

iterative development process, role in 251

multiple cycles 253

real user research 201

relationship to product 116

relationship to project team 119

relationship to stakeholders 117-118

role 116

stakeholders’ perceptions and expectations 252

who should be 119-120
project mission statement 116, 209, 167, 274, 142-144
project planning (see planning and requirements)
project stages mapped against time and resources

251

project success criteria

business goals and 167, 274

business requirements 163

determining 144-145

managing expectations 266

project leaders and 209

set in early planning stage 279

Q
qualitative versus quantitative research methods
180-182
quality assurance (QA) 31, 81, 105
user research (see user research)
QuarkXPress 46

R

releases 264-274
alpha and beta 266-269
feedback 268-269
housekeeping 269
managing expectations 265-266
post release 273-279
conducting usability studies 278
measurement tracking 277-279
review 274-277
product adoption 272-273
user documentation 270-271
requirements (see planning and requirements)
resources mapped against project stages 251
responsiveness 13-16
restraint 150
BDUF methodology 231
business planning 275
creating business requirements 161
Index

291

292

restraint (continued)
exercising 145-147
identifying key users 151, 154
maintaining stakeholder buy-in 169
prioritizing features 166
role of project leader during the initial product
architecture stage 209
what not to restrain 148
rich Internet applications (RIAs) 43
RIA development technologies 49
risk management 55, 76
BDUF methodology 106, 108, 262
code source control 232
connecting to external resources 226
effective processes 102
examining key features and interactions 216
exercising restraint 146-147
framework requirements 96
initial product architecture stage 207
iterative development process 246-248
offshoring 132
prioritizing features 166
project leader’s relationship to stakeholders
117-118
quality assurance 255
stakeholders and 121, 122, 184
third-party and open source components 227
user research 176
(see also uncertainty and the unknown)
ROI model 56-58, 61, 67, 74, 141-144, 148
ROI-oriented business goal 142

S

sample size, determining research 185-187
scenario-based design (see contextual scenarios)
schedule, changes to 99-112
scope
approximating 87
certainty of 231
commitments to 92
errors and changes 99-101
of iterations 243-244
reexamining schedule, cost, and 99-101
solving problems like others 86
user research and 203
service-oriented architecture (SOA) 52
social networking 43
Socrates 78
software engineers 3, 30-34
Agile methodology and 108
BDUF methodology and 106, 231
commenting code 270
design 79
development 90
iterative process 240, 262
making assumptions 200
providing feedback 255-259
quick feedback cycles 132
technical architecture 222
UI design 49

Index

waterfall methodology and 104
working with designers 125
specifications (see functional requirements)
spending exercises 156-157
Spool, Jared 185,278
stakeholders 31,121-124
additional investments in the product 279
BDUF methodology 106, 107, 262
business goals and 251
change demanded by 87
collaboration and decision making 124
constraints and 102
defining success 141
developing a style vision 219
developing business requirements 163-169
documentation 67, 91
exercising restraint 145
exposing to user feedback 65-67
identifying key user attributes 153-160
identifying success criteria 145
initial product architecture stage 210
iterative development stage 252
managing expectations 88, 94, 169, 265-266
mission statements and 143
prioritzing goals 167
relationship with project leader 116-120, 251,
140-141
reviewing results 250
securing authority 121-124
authority afforded by trust 122-123
authority in rank 123-124
specifications and design requirements 258
too much upfront planning and design 261
trust (see trust)
uncertainty and 93
user research
buy-in 202-203
identifying participants 185
interviews 183
participating in 183, 201
recording 188
risks 184
sample size 187
valuing 173
waterfall process 257
winning support for better UX 53-57
storyboards 70
user story in storyboard form 199
success, defining 141-150
exercising restraint 145-147
omission of features 150
Pareto principle 148
project mission statement 142-144
project success criteria 144-145, 163, 167, 209,
266, 274, 278
refocusing product objectives 149-150
reviewing against buisiness goals 274-275
reviewing against user goals 276-277
viability of product 216
what not to restrain 148
Sun 224

T

task analysis 192
tasks 178-180
tax preparation software 63
team, bringing together 114-138
collaboration and decision making 124
project leader 116-120
relationship to product 116
relationship to project team 119
relationship to stakeholders 117-118
role 116
who should be 119-120
stakeholders 121-124
securing authority 121-124
team, characteristics of successful 125-138
insourcing versus outsourcing 130-138
evaluating outsource vendors 133-137
offshoring 132
professional help 127-130
cost considerations 128-130
specialized 128
TechCrunch 65
technical architects 31, 208-221
technical architecture 222-230
assessment 223
business logic 229
data considerations 224
interactions with other systems 225-227
open source components 228-229
platform and framework choices 223-224
third-party components 228-229
Teehan+Lax 58
testing infrastructure and environments 234
third-party components 228-229
downsides to 228
time
project stages mapped against time and
resources 251
user research 177
Trac 255
tracking analytics 277
trust
BDUF methodology 107
documentation and 169
iterative development stage 252
maintaining user trust 29
missed estimates 247
project leaders and 117, 120, 122, 140
scope, schedule, and cost 92, 101
stakeholder’s trust in user’s perspective 187
user’s trust of product 17
brands, recognizable 28
outdated interface 27
vendors and 134
trustworthiness 29-30
TurboTax 63
Twitter, core features 244

)

uncertainty and the unknown 77-88
Agile methodology and 109
development process 102-104
eliminating 231
extending requirements 98
further you are in the project, the wiser you are 89
helping stakeholders understand how
uncertainty affects projects 169
intolerence of 93-94
lessons from 89-94
functional requirements 90-92
scope 92
specifications 90-92
start development as soon as possible 90
unexpected challenges 92-93
project leaders and 116, 140
reducing risk and 121, 216
responsiveness and feedback 13-16
risk arising from 227
subjectivity and change 87-88
vendors managing 133
unexpected challenges 92-93
usability studies
conducting after product release 278
use cases 267
user acceptance testing (UAT) 31, 264, 276
user behavior, connecting to business goals 62-74
user documentation 221, 270-271
user experience (see UX)
user feedback
after development phase 256
building support 73
continuous 266
exposing stakeholders to 65-67
making changes in response to 147, 150, 278
mood boards 219
products built on assumptions rather than 175
receiving real-world 150
user goals
connecting to business goals 60-62
reviewing success against 276-277
versus product features and tasks 178-180
User Interface Engineering 278
user interviews 190-191
business requirements 190
guided storytelling 192
task analysis 192
user priorities and business requirements 199
user research 173-176
balancing expedience with thoroughness 186
business goals 211
determining sample size 185-187
stakeholders 187
direct observation 193-195
analyzing results 196-200
discovering priorities 199
empathy 177
finding research subjects 184-185
focus groups 190, 200

Index 293

294

user research (continued)
guerilla 200-202
key concepts 177-189
making recordings 188-190
people involved 182-184
personas 196-198
principal goal 181
qualitative versus quantitative research
methods 180-182
skipping 175-177
speaking with users 190-192
stakeholder buy-in 202-203
stakeholders 183, 201
time and cost 177
user goals versus product features 178-180
user stories 198-199
users 151-160
attributes 152-153
exercises to identify 153-160
attributes of organizations 152
behavior (see user behavior)
business or enterprise user types 152
consumer applications user types 152
discovering priorities 199
experience (see UX (user experience))
feedback (see user feedback)
goals (see user goals)
interviews (see user interviews)
priorities (see user priorities)
research (see user research)
work environment software 153
user stories 198-199
empathy 198
guerilla user research 201
storyboard form 199
UX architects 208-221
UX architecture 210-221
contextual scenarios 210-213
framework requirements 212
usefulness 214
developing nomenclature 221
examining key features and interactions 216
mapping high-level workflows 213-215
success and viability of product 216
visual design 217-219
UX Fund 58
UX Magazine xii
UX (user experience) x-xv, 72
aim of UX design 9
architects and designers 31
building support 53-74, 73-74
credibility of outside experts 74
education 57-67
materializing and proving the concept 67-73
quantifying business value 67
stakeholders 53-57
starting small 73
design and development 34-35
(see also UX architecture)
elements of engaging UX (see engagement,
elements of engaging UX)

Index

frictionless 8-9

interacting with the product 195

means 48-50
money and time for better UX 50
professional support 50
tools for better UX 49

motive 40-48
rich Internet applications (RIAs) 43-48
Web 2.0 42-49

opportunity 50-52
CX (customer experience) trend 51
information workplace 52
IT expenditures 52

understanding 4-32

what good UX accomplishes 6-9

why good engagement and UX matter 10-11

\Y

vendors, evaluating 133-137
video games 6
visual appearance of a software product 27
visual design 217-219
mood boards 219
von Clausewitz, Carl 79, 81, 84, 86
von Moltke, Helmuth 80

w

waterfall methodology 103-105, 257-261
business requirements 103, 259
discretion and latitude 258
error and course deviation in waterfall and

iterative processes 242
error in 207
problematic approach of 245

project approaches that interfere with feedback
2

rushing 261
segregating professional disciplines 259
time and budget 260
Web 2.0 42
Wikipedia 42
web development, measurement and tracking
277-279
Wells Fargo 71
Wikipedia 22
Web 2.0 42
wireframes 68-69, 73, 137, 208, 215, 237
graphic asset management 233
sketching requirements 215, 230
testing 256
work environment software 153
workflows, mapping high-level 213-234
workplace information systems (see internal
information systems)
WYSIWYG HTML editor 228

Y

Yodlee and Mint 64
YouTube 65

About the Authors

Jonathan Anderson helped found EffectiveUI before becoming managing edi-
tor of UX Magazine, an online resource for user experience professionals and
enthusiasts. In this role, Jonathan develops and oversees original content cre-
ation and sourcing that explores the maturing field of UX and details industry
trends and emerging technologies.

John McRee is a lead experience architect for EffectiveUI who has been design-
ing highly intuitive and engaging user interfaces for more than a decade.
Specializing in design process management, user research, information architec-
ture, and interaction design, John has designed software for a diverse group of
clients, including many Fortune 500 companies.

Robb Wilson is co-owner of UX Magazine and a technology research consultant
for many Fortune 500 companies, including Qwest and National Geographic. An
active member in the UX community, Robb’s work affords him the unique oppor-
tunity to meld business strategy with creative processes and emerging technolo-
gies. He has worked as a creative executive at Time Warner and is an industry
thought leader, providing innovative insight on emerging technologies and trends.
Robb has founded four successful technology companies.

EffectiveUI (www.effectiveui.com) is an award-winning, user-centered design
and development agency that creates and implements custom web, mobile, and
desktop applications. By fully engaging customers with innovative technologies
and user experience strategies, EffectiveUl delivers more exciting, meaningful,
and personalized interactions with software products. Since 2005, the company
has created applications for today’s most respected brands and industry inno-
vators. It has earned an Adobe Gold Partner distinction and membership in
Microsoft’s Global Agency Partners.

EffectiveUl leverages Adobe Flash, Flash Lite, Flex 3, AIR, and Microsoft Silverlight
technologies to create powerful, results-based business and consumer appli-
cations for major Fortune 1000 companies, including eBay, GE Health, NBC
Universal, United Airlines, Viacom, National Geographic, Discovery Channel, T.
Rowe Price, and Adobe.

www.effectiveui.com

Colophon

The animal on the cover of Effective UI is a rainbow lorikeet (Trichoglossus
haematodus), a small, brightly colored species of parrot found primarily in
northern and eastern Australia. It inhabits all types of forests (rainforests,

open forests, and mangrove forests) as well as heaths, parks, and orchards.

Named for its multicolored plumage, this striking bird features almost every
color of the rainbow: it sports a dark blue or violet head and stomach; an
emerald green back, tail, and vent; a deep orange breast and beak; and
accents of yellow and red. Its adult height is about 12 inches and it weighs
approximately 5 ounces. Its physical characteristics also include a short
curved beak and small feet with two toes aiming frontward and two aiming
backward. Unlike many other species of birds, males and females are diffi-
cult to distinguish, though females may be a bit smaller.

The rainbow lorikeet’s diet consists of flowers, pollen, nectar, seeds, insects,
and some fruit. It employs the sharp point of its beak to rip at fruits and
flowers, and then uses its paintbrush-like tongue to lick the juice or nectar.
The tip of the tongue is covered with hairy projections called papillae that
enable the birds to more easily catch pollen and extract nectar. They are
often observed hanging upside down as they feed, grasping tree branches
with their powerful claws.

Rainbow lorikeets can be very noisy (they have a shrill call while flying and
chatter while eating), active, and gregarious. These traits—as well as their
vibrant coloring—make them popular pets. However, they require a diligent
owner who is willing to accommodate their special dietary needs, clean up
their cage daily (lorikeets are notoriously untidy eaters), and provide contin-
ued obedience training. The owner must also be tolerant of the birds’ “chatti-
ness”; the lorikeet has an amazing talent for mimicry and has been known to
imitate household appliances such as the telephone and microwave.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe
ITC Garamond; the text font is Droid Serif; and the heading font is Pill Gothic.

	Oreilly - Effective UI (February 2010) (ATTiCA)
	Preface
	Chapter 1: Building an Effective UI
	Understanding UX
	What Good UX Accomplishes
	Why Engagement and Good UX Matter
	The Elements of Engaging UX

	Herff Jones eDesign: Intuitiveness Versus Efficiency
	Herff Jones eDesign: Integrated Experience
	Redefining Two Fundamental Terms
	Design
	Development

	Chapter 2: Building the Case for Better UX
	Why Now Is the Moment for UX
	Motive
	Means
	Opportunity

	Winning Support for Better UX
	Stakeholders
	Education
	Quantifying the Business Value
	Materializing and Proving the Concept
	Other Strategies for Building Support

	Chapter 3: Effective Planning and Requirements
	Uncertainty and the Unknown
	The Humility of Unknowing
	The Weakness of Foresight and Planning
	Friction in a Complex and Peculiar System
	Subjectivity and Change

	Lessons from Uncertainty and the Unknown
	The Further You Are in the Project, the Wiser You Are
	Start Development As Soon As Possible
	Written Functional Requirements and Specifications Are Inherently Flawed
	Commitments to Scope Are Untenable
	Relish and Respect the Unexpected
	Intolerance of Uncertainty Is Intolerable

	Effective Requirements
	How Framework Requirements Are Built
	Reexamining the Three-Legged Stool
	Commitments You Can Live Up To

	Effective Process
	Development Methodology

	Chapter 4: Bringing Together a Team
	The Project Leader
	Relationship to the Product
	Relationship to the Stakeholders
	Relationship to the Project Team
	Who Should Be the Project Leader

	The Stakeholders
	Securing Authority
	Collaboration and Decision Making

	The Characteristics of a Successful
Project Team
	Getting Professional Help
	Insourcing Versus Outsourcing

	Chapter 5: Getting the Business Perspective
	Defining Success
	Creating a Project Mission Statement
	Determining Project Success Criteria
	Exercising Restraint
	Applying the Pareto Principle
	What Not to Restrain
	Refocusing Product Objectives
	Omissions Aren’t Permanent

	Describing the Product’s Users
	User Attributes
	Exercises to Identify Key User Attributes

	Creating Business Requirements
	Defining “Requirement”
	Exercises to Develop Business Requirements

	Maintaining Stakeholder Buy-in

	Chapter 6: Getting to Know the User
	Valuing User Research
	Combating Pressure to Skip User Research

	Key Concepts in User Research
	Empathy
	User Goals Versus Product Features and Tasks
	Qualitative Versus Quantitative Research Methods
	Who Should Be Involved in the Research
	Finding Research Participants
	Determining the Research Sample Size
	Making Recordings

	Research Through Speaking with Users
	User Interviews
	Structured Interview Techniques

	Research Through Direct Observation
	Analyzing the Research Observations
	Discovering Personas
	Weaving User Stories
	Discovering User Priorities

	Guerilla User Research
	Stakeholder Buy-in Through
User Research

	Chapter 7: Initial Product Architecture
	The Initial Product Architecture Team
	UX Architecture
	Contextual Scenarios
	Mapping High-Level Workflows
	Sketching Low-Fi Visual Representations of Requirements
	Examining Key Features and Interactions
	Setting a Style Vision
	Developing Nomenclature

	Technical Architecture
	Getting a Lay of the Land
	Making Platform and Framework Choices
	Understanding Data Requirements
	Mapping Interactions with Other Systems
	Finding Shortcuts Through Third-Party and
Open Source Components
	Discovering Business Logic

	Software Architecture in Big Design
Up Front (BDUF)
	Project Infrastructure Needs
	Code Source Control
	Graphic Asset Management
	Testing Infrastructure and Environments

	Chapter 8: The Iterative Development Process
	Regarding “Process”
	Iterations and Feedback
	The Scope of Iterations
	Prioritizing the Subjects of Iterations
	Finishing Iterations with Something Complete
	Estimating Iterations
	Basic Iterative Process
	Mapping Progress and Feedback Across
Multiple Cycles
	Increasing the Amount of Feedback

	Iteration in Sub-Ideal Project Approaches
	Strict Waterfall Process
	Iteration in a Big Design Up Front (BDUF) Process

	Chapter 9: Release and Post-Release
	Managing Expectations
	The Alpha and Beta Releases
	Receiving Orderly Feedback

	Last-Minute Housekeeping
	User Documentation
	And Champagne Corks Fly…
	Adoption
	Post-Release
	Review
	Measurement and Tracking

	Afterword
	Effective UI Senior Class of ’09
	Index

