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Preface

To cope with the rapid development of Hong Kong, many slopes have been
made for land development. Natural hillsides have been transformed into res-
idential and commercial areas and used for infrastructural development.
Hong Kong’s steeply hilly terrain, heavy rain and dense development make it
prone to risk from landslides. Hong Kong has a high rainfall, with an annual
average of 2300 mm, which falls mostly in the summer months between May
and September. The stability of man-made and natural slopes is of major con-
cern to the Government and the public. Hong Kong has a history of tragic
landslides. The landslides caused loss of life and a significant amount of prop-
erty damage. For the 50 years after 1947, more than 470 people died, mostly
as a result of failures associated with man-made cut slopes, fill slopes and
retaining walls. Even though the risk to the community has been greatly
reduced by concerted Government action since 1977, on average about 300
incidents affecting man-made slopes, walls and natural hillsides are reported
to the Government every year.

There are various research works associated with the theoretical as well
as practical aspects of slope stability in Hong Kong. This book is based on
the research work by the authors as well as some of the teaching materials
for the postgraduate course at Hong Kong Polytechnic University. The con-
tent in this book is new and some readers may find the materials arguable.
A major part of the materials in this book is coded into the programs
SLOPE 2000 and SLOPE 3D. SLOPE 2000 is now mature and has been
used in many countries. The authors welcome any comment on the book or
the programs.

The central core of SLOPE 2000 and SLOPE3D was developed mainly by
Cheng while many research students helped in various works associated
with the research results and the programs. The authors would like to thank
Yip C.J., Wei W.B., Sandy Ng., Ling C.W., Li L. and Chen J. for help in
preparing parts of the works and the preparation of some of the figures in
this book.





1 Introduction

1.1 Introduction

The motive for writing this book is to address a number of issues in the current
design and construction of engineered slopes. This book sets out to review
critically the current situation and to offer alternative and, in our view, more
appropriate approaches to the establishment of a suitable design model, the
enhancement of basic theory, the locating of critical failure surfaces and the
overcoming of numerical convergence problems. The latest developments in
three-dimensional stability analysis and the finite element method will also be
covered. This book will provide helpful practical advice in ground investigation,
design and implementation on site. The objective is to contribute towards the
establishment of best practice in the design and construction of engineered
slopes. In particular, this book will consider the fundamental assumptions of
both limit equilibrium and finite element methods in assessing the stability of a
slope and give guidance in assessing their limitations. Some of the more up-to-
date developments in slope stability analysis methods based on the authors’
works will also be covered in this book.

Some salient case histories will also be given to illustrate how adverse
geological conditions can have serious implications for slope design and how
these can be dealt with. The last chapter touches on the implementation of
design on site. The emphasis is on how to translate the conceptual design
conceived in the design office into physical implementation on site in a holistic
way, taking account of the latest developments in construction technology.
Because of our background, a lot of cases and construction practices referred
to in this book are related to experience gained in Hong Kong, but the
engineering principles should nevertheless be applicable to other regions. 

1.2 Background

Planet Earth has an undulating surface and landslides occur regularly. Early
humans tried to select relatively stable ground for settlement. As populations
grow and human life becomes more urbanized, terraces and corridors have to
be created to make room for buildings and infrastructures such as quays,
canals, railways and roads. Man-made cut and fill slopes have to be formed to



facilitate such developments. Attempts have been made to improve upon the
rule-of-thumb approach of previous generations by mathematically calculating
the stability of such cut and fill slopes. One of the earliest attempts was by the
French engineer Alexander Collin (1846). In 1916, using the limit equilibrium
method, K.E. Petterson (1955) mathematically back calculated the rotational
stability of the Stigberg quay failure in Gothenburg, Sweden. A series of quay
failures in Sweden provided the impetus for the Swedes to make one of the
earliest attempts at quantifying slope stability using the method of slices and
the limit equilibrium method. The systematical method has culminated in the
establishment of the Swedish Method (or the Ordinary Method) of Slices
(Fellenius, 1927). A number of subsequent refinements to the method were
made: Taylor’s stability chart (Taylor, 1937); Bishop’s Simplified Method of
Slices (Bishop, 1955) ensures the moments are in equilibrium; Janbu extended
the circular slip to generalized slip surface (Janbu, 1973); Morgenstern and
Price (1965) ensured moments and forces are simultaneously in equilibrium;
Spencer’s (1967) parallel inter-slice forces; and Sarma’s (1973) imposed
horizontal earthquake approach. These various methods have resulted in the
modern Generalized Method of Slices (GMS) (e.g. Low et al., 1998).

In the classical limit equilibrium approach, the user has to a priori
define a slip surface before working out the stability. There are different
techniques to ensure a critical slip surface can indeed be identified. A
detailed discussion will be given in Chapter 3. As expected, the ubiquitous
finite element method (Griffiths and Lane, 1999) or the equivalent finite
difference method (Cundall and Strack, 1979), namely FLAC, can also be
used to evaluate the stability directly using the strength reduction algorithm
(Dawson et al., 1999). Zhang (1999) has proposed a rigid finite element
method to work out the factor of safety (FOS). The advantage of these
methods is that there is no need to assume any inter-slice forces or slip
surface, but there are also limitations to these methods which are covered
in Chapter 4. On the other hand, other assumptions will be required for the
classical limit equilibrium method that will be discussed in Chapter 2.

In the early days when computers were not as widely available, engineers
preferred to use the stability charts developed by Taylor (1937), for example.
Now that powerful and cheap computers are readily to hand, practitioners
invariably use computer software to evaluate the stability in design. However,
every numerical method has its own postulations and thus limitations. It is
therefore necessary for the practitioner to be fully aware of them, so that the
method can be used within its limitations in a real design situation. Apart
from the numerical method, it is equally important for the engineer to have
an appropriate design model for the design situation. 

There is, however, one fundamental question that has been bothering us for
a long time and this is that all observed failures are invariably 3D in nature but
virtually all calculations for routine design assume the failure is in plane strain.
Shear strengths in 3D and 2D (plane strain) are significantly different from
each other. For example, typical sand can mobilize in plane strain up to
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6° higher in frictional angle when compared with the shear strength in 3D or
axi-symmetric strain (Bishop, 1972). It seems we have been conflating the two
key issues: using 3D strength data but a 2D model, and thus rendering the
existing practice highly dubious. However, the increase in shear strength in
plane strain usually far outweighs the inherent higher FOS in a 3D analysis.
This is probably the reason why in nature all slopes fail in 3D as it is easier for
a slope to fail this way. Now that 3D slope stability analysis has been well
established, there is no longer any excuse for practitioners not to do the analy-
sis correctly, or at least take the 3D effect into account.

1.3 Closed-form solutions

For some simple and special cases, closed-form but non-trivial solutions do
exist. These are very important results because apart from being academically
pleasing, these should form the backbone of our other works presented in this
book. Engineers, particularly younger ones, tend to rely heavily on code
calculation using a computer and find it increasingly difficult to have a good
feel for the engineering problems they face in their work. We hope that by
looking at some of the closed-form solutions, we can put into our toolbox
some very simple and reliable back-of-the-envelope-type calculations to help
us develop a good feel for the stability of a slope and whether the computer
code calculation is giving us a sensible answer. We hope that we can offer
a little bit of help to engineers in avoiding the current tendency to over-rely
on ready-made black box-type solutions and use instead simple but reliable
engineering sense in their daily work so that design can proceed with greater
understanding and fewer leaps in the dark.

For a circular slip failure with c ≠ 0 and φ = 0, if we take moment at the
centre of rotation, the factor of safety will be obtained easily. This is the clas-
sical Swedish method that will be covered in Chapter 2. The factor of safety
from the Swedish method should be exactly equal to that from the Bishop
method for this case. On the other hand, the Morgenstern–Price method will
fail to converge easily for this case while Sarma’s method will give a result
very close to that from the Swedish method. Apart from the closed-form
solutions for the circular slip for c ≠ 0 and φ = 0 case which should already
be very testing for the computer code to handle, the classical bearing capacity
and earth pressure problem where closed-form solutions exist may also be
used to calibrate and verify a code calculation. A bearing capacity problem
can be seen as a slope with a very gentle slope angle but with substantial
surcharge loading. The beauty of this classical problem is that it is relatively
easy to extend the problem to the 3D or at least/axi-symmetric case where a
closed-form solution also exists. For example, for an applied pressure of 5.14
Cu for the 2D case and 5.69 Cu for the axi-symmetric case (Shield, 1955),
where Cu is the undrained shear strength of soil, the ultimate bearing capac-
ity will be motivated. The computer code should yield FOS = 1.0 if the
surcharge loadings are set to 5.14 Cu and 5.69 Cu, respectively. Likewise,
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similar bearing capacity solutions also exist for frictional material in both
plane strain and axi-symmetric strain (Cox, 1962 or Bolton and Lau, 1993).
It is surprising to find that many commercial programs have difficulty in
reproducing these classical solutions, and the limit of application of each
computer program should be assessed by the engineers.

Similarly, the earth pressure problems, both active and passive, would also
be a suitable check for the computer code. Here, the slope has a slope angle
of 90°. By applying an active or passive pressure at the vertical face, the
computer should yield FOS = 1.0 for both cases, which will be illustrated in
Section 3.9. Likewise, the problem can be extended to the 3D, or more
precisely axi-symmetric, case for a shaft stability problem (Kwong, 1991).

Our argument is that all codes should be benchmarked and validated
through being required to solve the classical problems where ‘closed-form’
solutions exist for comparison. Hopefully, the comparison will reveal both
their respective strengths and limitations so that users can put things into
perspective when using the code for design in real life. More on this topic can
be found in Chapter 2.

1.4 Engineering judgement

We all agree that engineering judgement is one of the most valuable assets of
an engineer because engineering is very much an art as well as a science. In
our view, however, the best engineers always use their engineering judgement
sparingly. To us, engineering judgement is really a euphemism for a leap in
the dark. So, in reality, the fewer leaps we make, the more comfortable we
will be. We would therefore like to be able to use simple and understandable
tools in our toolbox so that we can routinely do some back-of-the-envelope-
type calculations to assist us in assessing and evaluating the design situations
we are facing so that we can develop a good feel for the problem, thus
enabling us to do slope stabilization on a more rational basis.

1.5 Ground model

Before we can set out to check the stability of a slope, we need to find out
what it is like and what it consists of. From the topographical survey, or more
usually an aerial photograph interpretation and subsequent ground-truthing,
we can tell its height, its sloping angle and whether it has berms and is served
by a drainage system or not. In addition, we also need to know its history, in
terms of its geological past, whether it has suffered failure or distress and
whether it has been engineered previously. In a nutshell, we need to build a
geological model of the slope that features the key geological formations and
characteristics. After some simplification and idealization in the context of the
intended purpose of the site, a ground model can then be set up. Following
the nomenclature of the Geotechnical Engineering Office in Hong Kong
(GEO, 2007), a design model should finally be made, when the design
parameters and boundary conditions are also delineated. 
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1.6 The status quo

A slope, despite being ‘properly’ designed and implemented, can still become
unstable and collapse at an alarming rate. Wong’s (2001) study suggests that
the probability of an engineered slope failing in terms of major failures (defined
as >50 m3) is only about 50 per cent better than a non-engineered slope. Martin
(2000) pointed out that the most important factor with regard to major failures
is the adoption of an inadequate geological or hydrogeological model in the
design of slopes. In Hong Kong, it is established practice for the Geotechnical
Engineering Office to carry out a landslip investigation whenever there is a
significant failure or when there is fatality. It is of interest to note that past
failure investigations suggest the most usual causes of the failure are some
‘unforeseen’ adverse ground conditions and geological features in the slope. It
is, however, widely believed that such ‘unforeseen’ adverse geological features,
though unforeseen, really should be foreseeable if we set out to identify them at
the outset. Typical unforeseen ground conditions are the presence of adverse
geological features and adverse groundwater conditions. 

(I) Examples of adverse geological features in terms of strength are the
following:

1 adverse discontinuities, for example, relict joints;
2 relict instability caused by discontinuities: dilation of discontinu-

ities with secondary infilling of low-frictional materials, that is, soft
band, some time in the form of kaolin infill;

3 re-activation of pre-existing (relict) landslide, for example, slicken-
sided joint;

4 faults.

(II) Examples of complex and unfavourable hydrogeological conditions are
the following:

1 drainage lines;
2 recharge zones, for example, open discontinuities, dilated relict joints;
3 zones with large difference in hydraulic conductivity resulting in

perched groundwater table;
4 a network of soil pipes and sinkholes;
5 damming of the drainage path of groundwater;
6 aquifer, for example, relict discontinuities;
7 aquitard, for example, basalt dyke;
8 tension cracks;
9 local depression;

10 depression of the rockhead;
11 blockage of soil pipes;
12 artesian conditions – Jiao et al. (2006) have pointed out that the

normally assumed unconfined groundwater condition in Hong
Kong is questionable. They have evidence to suggest that it is not
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uncommon for a zone near the rockhead to have a significantly
higher hydraulic conductivity resulting in artesian conditions;

13 time delay in the rise of the groundwater table;
14 faults.

It is not too difficult to set up a realistic and accurate ground model for design
purposes using routine ground investigation techniques, but for the features
mentioned above. In other words, in actuality, it is very difficult to identify
and quantify the adverse geological conditions listed above. If we want to
address the ‘So what?’ question, the adverse geological conditions may have
two types of quite distinct impacts when it comes to slope design. We have to
remember that we do not want to be pedantic but we still have a real
engineering situation to deal with. The impacts boil down to two types: (1)
the presence of zones and narrow bands of weakness and (2) the existence of
complex and unfavourable hydrogeological conditions, that is, the transient
ground porewater pressure is high and may even be artesian. 

Although there is no hard-and-fast rule on how to identify adverse
geological conditions, the mapping of the relict joints at the outcrops and the
split continuous triple tube core (e.g. Mazier) samples may help to identify the
existence of zones and planes of weakness so that these can be properly
incorporated into the slope design. The existence of complex and unfavourable
hydrogeological conditions may be a lot more difficult to identify as the impact
would be more complicated and indirect. Detailed geomorphological mapping
may be able to identify most of the surface features, such as drainage lines,
open discontinuities, tension cracks, local depression and so on. More subtle
features would be recharge zones, soil pipes, aquifer, aquitard, depression of
the rockhead and faults. Such features may manifest as an extremely high-
perched groundwater table and artesian conditions. It would be ideal to
be able to identify all such hydrogeological features so that a proper
hydrogeological model can be built up for some very special cases. However,
under normal design situations, we would suggest a redundant number of
piezometers are installed in the ground instead so that the transient perched
groundwater table and artesian groundwater pressure, including any time
delay in the rise of the groundwater table, can be measured directly using the
compact and robust electronic proprietary groundwater pressure monitoring
devices, for example, DIVERs developed by Van Essen. Such devices may cost
a lot more than the traditional Halcrow buckets but can potentially provide
the designer with the much needed transient groundwater pressure in order
that a realistic design event can be built up for the slope design. 

While the ground investigation should be planned with the identification of
the adverse geological features firmly in mind, one must be aware that
engineers have to deal with a large number of slopes and it may not be
feasible to screen each and every slope thoroughly. One must accept, no
matter what one does, some will inevitably be missed from our design. It is
nevertheless still best practice to attempt to identify all potential adverse
geological features so that these can be properly dealt with in the slope design. 
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As an example, a geological model could be a rock at various degrees of
weathering resulting in the following geological sequence in a slope, that is,
completely decomposed rock (saprolite) overlying moderately to slightly
weathered rock. The slope may be mantled by a layer of colluvium. To get
this far, the engineer has had to spend a lot of time and resources already. But
this is probably still not enough. We know rock mass behaviour is strongly
influenced by discontinuities. Likewise, when rock mass decomposes, they
would still be heavily influenced by relict joints. An engineer has no choice,
but has to be able to build a geological model with all the salient details for
his design. It helps a lot if he also has a good understanding of the geological
processes and this can assist him in finding the existence of any adverse
geological features. Typically, such adverse features are the following: soft
bands, internal erosion soil pipes and fault zones and so on, as listed
previously. Such features may result in planes of weakness or create a very
complicated hydrogeological system. Slopes often fail along such zones of
weakness or as a result of the very high water table or even artesian water
pressure, if these are not properly dealt with in the design through the
installation of relief wells and sub-horizontal drains. With the assistance of a
professional engineering geologist if required, the engineer should be able to
construct a realistic geological model for his design. A comprehensive
treatment of engineering practice in Hong Kong can be found in GEO
Publication No. 1/2007 (GEO, 2007). This document may assist the engineer
in recognizing when specialist engineering geological expertise should be
sought.

1.7 Ground investigation

Ground investigation is defined here in the broadest possible sense as
involving desk study, site reconnaissance, exploratory drilling, trenching and
trial pitting, in situ testing, detailed examination during construction when
the ground is opened up and supplementary investigation during construction
planned, supervised and interpreted by a geotechnical specialist appointed at
the inception of a project. It should be instilled in the minds of practitioners
that a ground investigation does not stop when the ground investigation
contract is completed but should be conducted throughout the construction
period. In other words, mapping of the excavation during construction
should be treated as an integral part of the ground investigation. Greater use
of new monitoring techniques like differential Global Positioning Systems
(GPS; Yin et al., 2002) to detect ground movements should also be
considered. In Hong Kong, ground investigation typically constitutes less
than 1 per cent of the total construction costs of foundation projects but is
mainly responsible for overruns in time (85 per cent) and budget (30 per cent)
(Lau and Lau, 1998). The adage is that one pays for a ground investigation,
irrespective of whether one is having one or not! That is, you either pay up
front or else at the bitter end when things go wrong. So it makes good
commercial sense to invest in a thorough ground investigation at the outset.
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The geological model can be established by mapping the outcrops in the
vicinity and the sinking of exploratory boreholes, trial pitting and trenching.
A pre-existing slip surface of an old landslide where only residual shear
strength is mobilized can be identified and mapped through the splitting and
logging of a continuous Mazier sample (undisturbed sample) or even the
sinking of an exploratory shaft.

In particular, Martin (2000) advocated the need to appraise relict
discontinuities in saprolite and the more reliable prediction of a transient rise
in the perched groundwater table through the following:

1 more frequent use of shallow standpipe piezometers sited at potential
perching horizons;

2 splitting and examining continuous triple-tube drill hole samples, in
preference to alternative sampling and standard penetration testing;

3 more extensive and detailed walkover surveys during ground investiga-
tion and engineering inspection especially natural terrain beyond the
crest of cut slopes. Particular attention should be paid to drainage lines
and potential recharge zones. 

1.8 Design parameters

The next step would be to assign appropriate design parameters for the
geological materials encountered. The key parameters for the geological
materials are shear strength, hydraulic conductivity, density, stiffness and
in situ stress. Stiffness and in situ stress are probably of less importance
compared with the three other parameters. The boundary conditions are
also important. The parameters can be obtained by index, triaxial, shear
box and other in situ tests. 

1.9 Groundwater regime

The groundwater regime would be one of the most important aspects for any
slope design. As mentioned before, slope stability is very sensitive to the
groundwater regime. Likewise, the groundwater regime is also heavily influenced
by the intensity and duration of local rainfall and the drainage provision.
Rainfall intensity is usually measured by rain gauges, and the groundwater
pressure measured by standpipe piezometers installed in boreholes. Halcrow
buckets or proprietary electronic groundwater monitoring devices, for example,
DIVER by Van Essen and so on, should be used to monitor the groundwater
conditions. The latter devices are essentially miniature pressure transducers (18
mm OD) complete with a datalogger and multi-years battery power supply so
that they can be inserted into a standard standpipe piezometer (19 mm ID). They
usually measure the total water pressure so that a barometric correction should
be made locally to account for the changes in the atmospheric pressure. A typical
device can measure the groundwater pressure once every 10 min. for 1 year with
a battery lasting for a few years. The device has to be retrieved from the ground
and connected to a computer to download the data. The device, for example,
DIVER, is housed in a strong and watertight stainless steel housing. As the
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metallic housing acts as a Faraday cage, the device is hence protected from stray
electricity and lightning. More details on such devices can be found at the
manufacturer’s website (http://www.vanessen.com). One should also be wary of
any potential damming of the groundwater flow as a result of underground
construction work.

1.10 Design methodology

We have to tackle the problem from both ends: the probability of a design
event occurring and the consequence should such a design event occur. Much
more engineering input has to be given to cases with a high chance of occurring
and a high consequence should such an event occur. For such sensitive cases,
the engineer has to be more thorough in his identification of adverse geological
features. In other words, he has to follow best practice for such cases.

1.11 Case histories

Engineering is both a science and an art. Engineers cannot afford to defer
making design decisions until everything is clarified and understood as they
need to make provisional decisions in order that progress can be made on site.
It is expected that failures will occur whenever one is pushing further away from
the comfort zone. Precedence is extremely important in helping the engineer
know where the comfort zone is. Past success is obviously good for morale but,
ironically, it is past failures that are equally, if not more, important. Past fail-
ures are usually associated with working at the frontier of technology or design
based on extrapolating past experience. Therefore studying past mistakes and
failures is extremely instructive and valuable. In Hong Kong, the GEO carries
out detailed landslide investigations whenever there is a major landslide or land-
slide with fatality. We have selected some typical studies to illustrate some of
the controlling adverse geological features mentioned in Section 1.6.

1.11.1 Case 1

The Shum Wan Road landslide occurred on 13 August 1995. Figure 1.1
shows a simplified geological section through the landslide. There is a thin
mantle of colluvium overlying partially weathered fine-ash to coarse-ash
crystallized tuff. Joints within the partially weathered tuff were commonly
coated with manganese oxide and infilled with white clay of up to about
15 mm thick. An extensive soft yellowish brown clay seam typically
100–350 mm thick formed part of the base of the concave scar. Laboratory
tests suggest that the shear strengths of the materials are as follows:

CDT: c′ = 5 kPa; φ′= 38°
Clay seam: c′ = 8 kPa; φ′ = 26°
Clay seam (slickensided): c′ = 0; φ′ = 21°

One of the principal causes of the failure is the presence of weak layers in the
ground, that is, clay seams and clay-infilled joints. A comprehensive report on
the landslide can be found in GEO’s report (GEO, 1996b). 
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1.11.2 Case 2

The Cheung Shan Estate landslip occurred on 16 July 1993. Figure 1.2 shows
the cross-section of the failed slope. The ground at the location of the landslip
comprised colluvium of about 1 m thick over partially weathered granodiorite.
The landslip appears to have taken place entirely within the colluvium. When
rainwater percolated the colluvium and reached the less permeable partially
weathered granodiorite, a ‘perched water table’ could have developed and
caused the landslip. More details on the failure can be found in the GEO’s
report (GEO, 1996c).

1.11.3 Case 3

The three sequential landslides at milestone 14 Castle Peak Road occurred
twice on 23 July and once on 7 August 1994. 

The cross-section of the slope before failure is shown in Figure 1.3. The
granite at the site was intruded by sub-vertical basalt dykes of about 800 mm
thick. The dykes were exposed within the landslide scar. When completely
decomposed, the basalt dykes are rich in clay and silt, and are much less
permeable than the partially weathered granite. Hence, the dykes act as
barriers to water flow. The groundwater regime was likely to be controlled
by a number of decomposed dykes resulting in a damming of the
groundwater flow and thus the raising of the groundwater level locally. The
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high local groundwater table was the main cause of the failure. More details
can be found in the GEO’s report (GEO, 1996c).

1.11.4 Case 4

The Fei Tsui Road landslide occurred on 13 August 1995. A cross-section
through the landslide area comprises completely-to-slightly decomposed tuff
overlain by a layer of fill of up to about 3 m thick as shown in Figure 1.4. A
notable feature of the site is a laterally extensive layer of kaolinite-rich altered
tuff. The shear strengths are

Altered tuff: c′ = 10 kPa; φ′ = 34°
Altered tuff with kaolinite vein: c′ = 0; φ′ = 22–29°

The landslide is likely to have been caused by the extensive presence of weak
material in the body of the slope triggered by an increase in groundwater
pressure following prolonged heavy rainfall. More details can be found in the
GEO’s report (GEO, 1996a). 

1.11.5 Case 5

The landslides at Ching Cheung Road that involved a sequence of three
successively larger progressive failures occurred on 7 July 1997 (500 m3), 17
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July 1997 (700 m3) and 3 August 1997 (2000 m3) (Figure 1.5). The cut slope
was formed in 1967. Prior to its construction, the site was a borrow area and
had suffered two failures in 1953 and 1963. A major landslide occurred during
the widening of Ching Cheung Road (7500 m3). Remedial works involved
cutting back the slope and the installation of raking drains. Under the Landslip
Preventive Measures (LPM) programme, the slope was trimmed back further
between 1990 and 1992. Although this may have helped improve stability
against any shallow failures, there would have been a significant reduction in
the FOS of more deep-seated failures. In 1993, a minor failure occurred. In
terms of geology, there is a series of intrusion of basalt dykes up to 1.2 m thick
occasionally weathered to clayey silt. The hydraulic conductivity of the dykes
would have been notably lower than the surrounding granite and therefore the
dykes probably acted locally as aquitards, inhibiting the downward flow of the
groundwater. There is also a series of erosion pipes of about 250 mm diameter
at 6 m spacing. It seems likely that the first landslide occurred on 7 July 1997
and caused the blockage of natural pipes. The fact that the drainage line at the
slope crest remained dry despite heavy rainfall may suggest that water
recharged the ground upstream rather than ran off. There was a gradual
building up of the groundwater table as a dual effect of recharging at the back
and damming at the slope toe. The causes are likely to have been the
reactivation of a pre-existing slip surface. Also it is likely that the initial failure
caused the blockage of the raking drains and natural pipe system. The
subsequent recharging from upstream and the blockage of the sub-soil drains,
both natural and artificial, caused the final and most deep-seated third
landslide. It is of interest to note that after the multiple failures at Ching
Cheung Road, as a result of flattening of the slope and complex hydrogeology,
the engineer put ballast back at the toe as an emergency measure to stabilize
the slope. It seems the engineer knew intuitively that removing the toe weight
would reduce the stability of the slope against deep-seated failure and the first
solution that came to mind to stabilize the slope was to put dead weight back
on the slope toe. More details on the landslide at Ching Cheung Road can be
found in GEOs report No. 78 (GEO, 1998).

1.11.6 Case 6

The Kwun Lung Lau landslide occurred on 23 July 1994 (GEO, 1994). One
of the key findings was that leakage from the defective buried foul-water and
storm-water drains was likely to have been the principal source of sub-surface
seepage flow towards the landslide location causing the failure. 

In retrospect, standpipe piezometers should have been installed at
the interface between the colluvium and underlying partially weathered
granodiorite and within the zone blocked by aquitards, and the groundwater
pressure monitored accordingly using devices such as DIVER for at least one
wet season. The location of the weak zones ought also to have been found
and taken into account in the design. The buried water-bearing services in the
vicinity also need taking good care of.
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2 Slope stability analysis methods

2.1 Introduction

In this chapter, the basic formulation of the two-dimensional (2D) slope
stability method will be discussed. Presently, the theory and software for
two-dimensional slope stability are rather mature, but there are still some
important and new findings which will be discussed in this chapter. Most
of the methods discussed in this chapter are available in the program
SLOPE 2000 developed by Cheng, an outline of which is given in the
Appendix.

2.1.1 Types of stability analysis

There are two different ways for carrying out slope stability analyses. The
first approach is the total stress approach which corresponds to clayey slopes
or slopes with saturated sandy soils under short-term loadings with the pore
pressure not dissipated. The second approach corresponds to the effective
stress approach which applies to long-term stability analyses in which
drained conditions prevail. For natural slopes and slopes in residual soils,
they should be analysed with the effective stress method, considering the
maximum water level under severe rainstorms. This is particularly important
for cities such as Hong Kong where intensive rainfall may occur over a long
period, and the water table can rise significantly after a rainstorm.

2.1.2 Definition of the factor of safety (FOS)

The factor of safety for slope stability analysis is usually defined as the ratio
of the ultimate shear strength divided by the mobilized shear stress at incip-
ient failure. There are several ways in formulating the factor of safety F. The
most common formulation for F assumes the factor of safety to be constant
along the slip surface, and it is defined with respect to the force or moment
equilibrium:
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1 Moment equilibrium: generally used for the analysis of rotational land-
slides. Considering a slip surface, the factor of safety Fm defined with
respect to moment is given by:

(2.1)

where Mr is the sum of the resisting moments and Md is the sum of the
driving moment. For a circular failure surface, the centre of the circle is
usually taken as the moment point for convenience. For a non-circular
failure surface, an arbitrary point for the moment consideration may be
taken in the analysis. It should be noted that for methods which do not
satisfy horizontal force equilibrium (e.g. Bishop Method), the factor of
safety will depend on the choice of the moment point as ‘true’ moment
equilibrium requires force equilibrium. Actually, the use of the moment
equilibrium equation without enforcing the force equilibrium cannot
guarantee ‘true’ moment equilibrium.

2 Force equilibrium: generally applied to translational or rotational fail-
ures composed of planar or polygonal slip surfaces. The factor of safety
Ff defined with respect to force is given by:

(2.2)

where Fr is the sum of the resisting forces and Fd is the sum of the driving
forces.

For ‘simplified methods’ which cannot fulfil both force and moment equilib-
rium simultaneously, these two definitions will be slightly different in the val-
ues and the meaning, but most design codes do not have a clear requirement
on these two factors of safety, and a single factor of safety is specified in many
design codes. A slope may actually possess several factors of safety according
to different methods of analysis which are covered in the later sections.

A slope is considered as unstable if F ≤ 1.0. It is however common that many
natural stable slopes have factors of safety less than 1.0 according to the
commonly adopted design practice, and this phenomenon can be attributed to:

1 application of additional factor of safety on the soil parameters is quite
common;

2 the use of a heavy rainfall with a long recurrent period in the analysis;
3 three-dimensional effects are not considered in the analysis;
4 additional stabilization due to the presence of vegetation or soil suction

is not considered.

An acceptable factor of safety should be based on the consideration of the
recurrent period of heavy rainfall, the consequence of the slope failures, the
knowledge about the long-term behaviour of the geological materials and
the accuracy of the design model. The requirements adopted in Hong Kong

Ff = Fr

Fd
,

Fm = Mr

Md
,



are given in Tables 2.1 and 2.2, and these values are found to be
satisfactory in Hong Kong. For the slopes at the Three Gorges Project in
China, the slopes are very high and steep, and there is a lack of previous
experience as well as the long-term behaviour of the geological materials;
a higher factor of safety is hence adopted for the design. In this respect, an
acceptable factor of safety shall fulfil the basic requirement from the soil
mechanics principle as well as the long-term performance of the slope.

The geotechnical engineers should consider the current slope conditions as
well as the future changes, such as the possibility of cuts at the slope toe, defor-
estation, surcharges and excessive infiltration. For very important slopes, there
may be a need to monitor the pore pressure and suction by tensiometer and
piezometer, and the displacement can be monitored by the inclinometers, GPS
or microwave reflection. Use of strain gauges or optical fibres in soil nails to
monitor the strain and the nail loads may also be considered if necessary. For
larges-scale projects, the use of the classical monitoring method is expensive and
time-consuming, and the use of the GPS has become popular in recent years.

2.2 Slope stability analysis – limit equilibrium method

A slope stability problem is a statically indeterminate problem, and there are
different methods of analysis available to the engineers. Slope stability analysis
can be carried out by the limit equilibrium method (LEM), the limit analysis
method, the finite element method (FEM) or the finite difference method. By far,
most engineers still use the limit equilibrium method with which they are famil-
iar. For the other methods, they are not commonly adopted in routine design,
but they will be discussed in the later sections of this chapter and in Chapter 4. 
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Table 2.1 Recommended factors of safety F (GEO, Hong Kong, 1984)

Risk of economic losses Risk of human losses

Negligible Average High

Negligible 1.1 1.2 1.4
Average 1.2 1.3 1.4
High 1.4 1.4 1.5

Table 2.2 Recommended factor of safeties for rehabilitation of failed slopes (GEO,
Hong Kong, 1984)

Risk of human losses F

Negligible >1.1
Average >1.2
High >1.3

Note: F for recurrent period of 10 years.



Presently, most slope stability analyses are carried out by the use of
computer software. Some of the early limit equilibrium methods are
however simple enough that they can be computed by hand calculation,
for example, the infinite slope analysis (Haefeli, 1948) and the φu = 0
undrained analysis (Fellenius, 1918). With the advent of computers, more
advanced methods have been developed. Most of limit equilibrium
methods are based on the techniques of slices which can be vertical,
horizontal or inclined. The first slice technique (Fellenius, 1927) was based
more on engineering intuition than on a rigorous mechanics principle.
There was a rapid development of the slice methods in the 1950s and
1960s by Bishop (1955); Janbu et al. (1956); Lowe and Karafiath (1960);
Morgenstern and Price (1965); and Spencer (1967). The various 2D slice
methods of limit equilibrium analysis have been well surveyed and
summarized (Fredlund and Krahn, 1984; Nash, 1987; Morgenstern, 1992;
Duncan, 1996). The common features of the methods of slices have been
summarized by Zhu et al. (2003):

(a) The sliding body over the failure surface is divided into a finite number
of slices. The slices are usually cut vertically, but horizontal as well as
inclined cuts have also been used by various researchers. In general, the
differences between different methods of cutting are not major, and the
vertical cut is preferred by most engineers at present.

(b) The strength of the slip surface is mobilized to the same degree to bring
the sliding body into a limit state. That means there is only a single
factor of safety which is applied throughout the whole failure mass.

(c) Assumptions regarding inter-slice forces are employed to render the
problem determinate.

(d) The factor of safety is computed from force and/or moment equilibrium
equations.

The classical limit equilibrium analysis considers the ultimate limit state of the
system and provides no information on the development of strain which
actually occurs. For a natural slope, it is possible that part of the failure mass
is heavily stressed so that the residual strength will be mobilized at some loca-
tions while the ultimate shear strength may be applied to another part of the
failure mass. This type of progressive failure may occur in overconsolidated or
fissured clays or materials with a brittle behaviour. The use of the finite
element method or the extremum principle by Cheng et al. (2007c) can pro-
vide an estimation of the progressive failure.

Whitman and Bailey (1967) presented a very interesting and classical
review of the limit equilibrium analysis methods, which can be grouped as:

1 Method of slices: the unstable soil mass is divided into a series of verti-
cal slices and the slip surface can be circular or polygonal. Methods of
analysis which employ circular slip surfaces include: Fellenius (1936);
Taylor (1949); and Bishop (1955). Methods of analysis which employ
non-circular slip surfaces include: Janbu (1973); Morgenstern and Price
(1965); Spencer (1967); and Sarma (1973).
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2 Wedge methods: the soil mass is divided into wedges with inclined inter-
faces. This method is commonly used for some earth dam (embankment)
designs but is less commonly used for slopes. Methods which employ the
wedge method include: Seed and Sultan (1967) and Sarma (1979).

The shear strength mobilized along a slip surface depends on the effective
normal stress σ′ acting on the failure surface. Frohlich (1953) analysed the
influence of the σ′ distribution on the slip surface on the calculated F. He
suggested an upper and lower bound for the possible F values. When the
analysis is based on the lower bound theorem in plasticity, the following
criteria apply: equilibrium equations, failure criterion and boundary condi-
tions in terms of stresses. On the other hand, if one applies the upper bound
theorem in plasticity, the following alternative criteria apply: compatibility
equations and displacement boundary conditions, in which the external
work equals the internal energy dissipations.

Hoek and Bray (1977) suggested that the lower bound assumption gives
accurate values of the factor of safety. Taylor (1948), using the friction method,
also concluded that a solution using the lower bound assumptions leads to
accurate F for a homogeneous slope with circular failures. The use of the lower
bound method is difficult in most cases, so different assumptions to evaluate the
factor of safety have been used classically. Cheng et al. (2007c,d) has developed
a numerical procedure in Sections 2.8 and 2.9, which is effectively the lower
bound method but is applicable to a general type of problem. The upper bound
method in locating the critical failure surface will be discussed in Chapter 3.

In the conventional limiting equilibrium method, the shear strength τm

which can be mobilized along the failure surface is given by:

(2.3)

where F is the factor of safety (based on force or moment equilibrium in the
final form) with respect to the ultimate shear strength τf which is given by
the Mohr–Coulomb relation as

(2.4)

where c′ is the cohesion, σ′n is the effective normal stress, φ′ is the angle of
internal friction and cu is the undrained shear strength. 

In the classical stability analysis, F is usually assumed to be constant along
the entire failure surface. Therefore, an average value of F is obtained along
the slip surface instead of the actual factor of safety which varies along the failure
surface if progressive failure is considered. There are some formulations
where the factors of safety can vary along the failure surface. These kinds of
formulations attempt to model the progressive failure in a simplified way, but
the introduction of additional assumptions is not favoured by many engineers.
Chugh (1986) presented a procedure for determining a variable factor of safety
along the failure surface within the framework of the LEM. Chugh predefined
a characteristic shape for the variation of the factor of safety along a failure
surface, and this idea actually follows the idea of the variable inter-slice shear

τf = c0+s0ntanφ0 or cu

τm = τf=F
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force function in the Morgenstern–Price method (1965). The suitability of this
variable factor of safety distribution is however questionable, as the local
factor of safety should be mainly controlled by the local soil properties. In view
of these limitations, most engineers prefer the concept of a single factor of
safety for a slope, which is easy for the design of the slope stabilization meas-
ures. Law and Lumb (1978) and Sarma and Tan (2006) have also proposed
different methods with varying factors of safety along the failure surface.
These methods however also suffer from the use of assumptions with no strong
theoretical background. Cheng et al. (2007c) has developed another stability
method based on the extremum principle as discussed in Section 2.8 which can
allow for different factors of safety at different locations.

2.2.1 Limit equilibrium formulation of slope stability analysis methods 

The limit equilibrium method is the most popular approach in slope stability
analysis. This method is well known to be a statically indeterminate problem,
and assumptions on the inter-slice shear forces are required to render the prob-
lem statically determinate. Based on the assumptions of the internal forces and
force and/or moment equilibrium, there are more than ten methods developed
for slope stability analysis. The famous methods include those by Fellenius
(1936), Bishop (1955), Janbu (1973), Janbu et al. (1956), Lowe and Karafiath
(1960), Spencer (1967), Morgenstern and Price (1965) and so on.

Since most of the existing methods are very similar in their basic formulations
with only minor differences in the assumptions on the inter-slice shear forces, it
is possible to group most of the existing methods under a unified formulation.
Fredlund and Krahn (1977) and Espinoza and Bourdeau (1994) have proposed
a slightly different unified formulation to the more commonly used slope stabil-
ity analysis methods. In this section, the formulation by Cheng and Zhu (2005)
which can degenerate to many existing methods of analysis will be introduced. 

Based upon the static equilibrium conditions and the concept of limit
equilibrium, the number of equations and unknown variables are summa-
rized in Tables 2.3 and 2.4.

From these tables it is clear that the slope stability problem is statically inde-
terminate in the order of 6n – 2 – 4n = 2n – 2. In other words, we have to intro-
duce additional (2n – 2) assumptions to solve the problem. The locations of
the base normal forces are usually assumed to be at the middle of the slice,
which is a reasonable assumption if the width of the slice is limited. This
assumption will reduce unknowns so that there are only n – 2 equations to be
introduced. The most common additional assumptions are either the location
of the inter-slice normal forces or the relation between the inter-slice normal
and shear forces. That will further reduce the number of unknowns by n – 1
(n slice has only n – 1 interfaces), so the problem will become over-specified
by 1. Based on different assumptions along the interfaces between slices, there
are more than ten existing methods of analysis at present. 

The limit equilibrium method can be broadly classified into two main
categories: ‘simplified’ methods and ‘rigorous’ methods. For the simplified
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methods, either force or moment equilibrium can be satisfied but not both at
the same time. For the rigorous methods, both force and moment equilibrium
can be satisfied, but usually the analysis is more tedious and may sometimes
experience non-convergence problems. The authors have noticed that many
engineers have the wrong concept that methods which can satisfy both the force
and moment equilibrium are accurate or even ‘exact’. This is actually a wrong
concept as all methods of analysis require some assumptions to make the prob-
lem statically determinate. The authors have even come across many cases
where very strange results can come out from the ‘rigorous’ methods (which
should be eliminated because the internal forces are unacceptable), but the sit-
uation is usually better for those ‘simplified’ methods. In this respect, no
method is particularly better than others, though methods which have more
careful consideration of the internal forces will usually be better than the sim-
plified methods in most cases. Morgenstern (1992), Cheng as well as many other
researchers have found that most of the commonly used methods of analysis give
results which are similar to each other. In this respect, there is no strong need to
fine tune the ‘rigorous’ slope stability formulations except for isolated cases, as the
inter-slice shear forces have only a small effect on the factor of safety in general.

To begin with the generalized formulation, consider the equilibrium of
force and moment for a general case shown in Figure 2.1. The assumptions
used in the present unified formulation are:

1 The failure mass is a rigid body.
2 The base normal force acts at the middle of each slice base.
3 The Mohr–Coulomb failure criterion is used.

Table 2.3 Summary of system of equations (n = number of slices)

Equations Condition

n Moment equilibrium for each slice
2n Force equilibrium in X and Y directions for each slice
n Mohr–Coulomb failure criterion

4n Total number of equations

Table 2.4 Summary of unknowns

Unknowns Description

1 Safety factor
n Normal force at the base of slice
n Location of normal force at base of slice
n Shear force at base of slice
n – 1 Inter-slice horizontal force
n – 1 Inter-slice tangential force
n – 1 Location of inter-slice force (line of thrust)

6n – 2 Total number of unknowns



2.2.1.1 Force equilibrium

The horizontal and vertical force equilibrium conditions for slice i are given by:

(2.5)

(2.6)

The Mohr–Coulomb relation is applied to the base normal force Ni and
shear force Si as

(2.7)

The boundary conditions to the above three equations are the inter-slice
normal forces, which will be 0 for the first and last ends:

(2.8)

When i = 1 (first slice), the base normal force N1 is given by eqs (2.5)–(2.7) as

(2.9)

P1,2 is a first order function of the factor of safety F. For slice i the base nor-
mal force is given by

(2.10)
Ni = ðtanφi− 1, i − tanφi, i+1ÞF×Pi− 1, i +Ai × F+Ci

Hi +Ei × F

Wi +VLi −Ni cosαi − Si sinαi =Pi, i+1 tanφi, i+1 −Pi−1, i tan φi−1, i

N1 = A1 ×F+Ci

H1 +E1 × F
, P1, 2 = L1 +K1 × F+M1

H1 +E1 × F

P0, 1 =0; Pn, n+ 1 = 0:

Si = Ni tan φi + cili
F

Ni sinαi − Si cosαi +HLi =Pi, i+ 1 −Pi− 1, i
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(2.11)

When i = n (last slice), the base normal force is given by

(2.12)

Eqs (2.11) and (2.12) relate the left and right inter-slice normal forces of a slice,
and the subscript i,i + 1 means the internal force between slice i and i + 1.
Definitions of symbols used in the above equations are:

where

α – base inclination angle, clockwise is taken as positive;
β – ground slope angle, counter-clockwise is taken as positive;
W – weight of slice; VL – external vertical surcharge; 
HL – external horizontal load; P – inter-slice normal force;
V – inter-slice shear force; N – base normal force; 
S – base shear force; F – factor of safety;
c, f – base cohesion c′ and tanφ′;
l – base length l of slice, tanΦ = λf(x);

{BX, BY}, coordinates of the mid-point of base of each slice; {wx, wy},
coordinates for the centre of gravity of each slice; {sx, sy}, coordinates for
point of application of vertical load for each slice; {hx, hy} coordinates
for the point of application of the horizontal load for each slice; Xw, Xs,
Xh, Xp are lever arm from middle of base for self weight, vertical load,
horizontal load and line of thrust, respectively, where Xw = BX – wx;
Xs = BX – sy; Xh = BY – hy.

2.2.1.2 Moment equilibrium equation

Taking moment about any given point O in Figure 2.1, the overall moment
equilibrium is given:

(2.13)

Xn

i= 1

Wiwxi +VLisxi +HLihyi + ðNi sinαi − Si cosαiÞBYi½

− ðNi cosi − Si sinαiÞBXi�= 0

Ai =Wi +VLi −HLi tanφi, i+1, AAi =Wi +VLi −HLi tanφi−1, i

Ci = ðsinαi + cosαi tanφi, i+1ÞciAi, Di = ðsinαi + cosαi tanφi−1, iÞciAi

Ei = cosαi + tanφi, i+1 sinαi, Gi= cosαi + tanφi−1, i sinαi

Hi = ð− sinαi − tanφi, i+1 cosαiÞf i, Ji = ð− sinαi − tanφi−1, i cosαiÞf i

Ki = ðWi +VLiÞ sinαi +HLi cosαi Vi =Pi, i+1 tanΦi, i+1

Li = ð− ðWi +VLiÞ cosαi −HLi sinαiÞfi, Mi = ðsin2 αi − cos2 αiÞciAi

Ai =Wi +VLi −HLi tanφi, i+1, Bi =Wi +VLi −HLi tanφi−1, i

Nn = AAn × F+Dn

Jn +Gn × F
, Pn−1,n = − Ln +Kn × F+Mn

Jn +Gn × F

Pi, i+ 1 = ðJi × fi +Gi × FÞPi− 1, i +Li +Ki × F+Mi

Hi +Ei × F



It should be noted that most of the ‘rigorous’ methods adopt the overall
moment equilibrium instead of the local moment equilibrium in the
formulation, except for the Janbu rigorous method and the extremum method
by Cheng et al. (2007c) which will be introduced in Section 2.8. The line of
thrust can be back-computed from the internal forces after the stability analy-
sis. Since the local moment equilibrium equation is not adopted explicitly, the
line of thrust may fall outside the slice which is clearly unacceptable, and it can
be considered that the local moment equilibrium cannot be maintained under
this case. The effects of the local moment equilibrium are however usually not
critical towards the factor of safety, as the effect of the inter-slice shear force
is usually small in most cases. The engineers should however check the
location of the thrust line as a good practice after performing those ‘rigorous’
analyses. Sometimes, the local moment equilibrium can be maintained by fine
tuning of the inter-slice force function f(x), but there is no systematic way to
achieve this except by manual trial and error or the lower bound method by
Cheng et al. (2007d) as discussed in Section 2.9.

2.2.2 Inter-slice force function 

The inter-slice shear force V is assumed to be related to the inter-slice normal
force P by the relation V = λf(x)P. There is no theoretical basis to determine f(x)
for a general problem, as the slope stability problem is statically indeterminate
by nature. More detailed discussion about f(x) by the lower bound method will
be given in Section 2.9. There are seven types of f(x) commonly in use:

Type 1: f(x) = 1.0. This case is equivalent to the Spencer method and is
commonly adopted by many engineers. Consider the case of a sandy soil
with c′ = 0. If the Mohr–Coulomb relation is applied to the inter-slice force
relation, V = P tanφ′, then f(x) = 1.0 and λ = tanφ. Since there is no strong
requirement to apply the Mohr–Coulomb relation for the inter-slice forces,
f(x) should be different from 1.0 in general. It will be demonstrated in
Section 2.9 that f(x) = 1.0 is actually not a realistic relation.

Type 2: f(x) = sin(x). This is a relatively popular alternative to f(x) = 1.0.
This function is adopted purely because of its simplicity.

Type 3: f(x) = trapezoidal shape shown in Figure 2.2. Type 3 f(x) will
reduce to type 1 as a special case, but it is seldom adopted in practice.

Type 4: f(x) = error function or the Fredlund–Wilson–Fan force function
(1986) which is in the form of f(x) = Ψ exp(−0.5cnηn), where Ψ, c and n
have to be defined by the user. η is a normalized dimensional factor which
has a value of −0.5 at left exit end and =0.5 at right exit end of the failure
surface. η varies linearly with the x-ordinates of the failure surface. This
error function is actually based on an elastic finite element stress analysis by
Fan et al. (1986). Since the stress state in the limit equilibrium analysis is
the ultimate condition and is different from the elastic stress analysis by Fan
et al. (1986), the suitability of this inter-slice force function cannot be
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justified by the elastic analysis. It is also difficult to define the suitable
parameters for a general problem with soil nails, water table and external
loads. This function is also not applicable for complicated cases, and a
better inter-slice force function will be suggested in Section 2.9.

For the first four types of functions shown above, they are commonly
adopted in the Morgenstern–Price and GLE methods, and both the moment
and force equilibrium can be satisfied simultaneously. A completely arbitrary
inter-slice force function is theoretically possible, but there is no simple way
or theoretical background in defining this function except for the extremum
principle introduced in Section 2.9, so the arbitrary inter-slice force function
is seldom considered in practice. 

Type 5: Corps of Engineers inter-slice force function. f(x) is assumed to be
constant and is equal to the slope angle defined by the two extreme ends of
the failure surface.

Type 6: Lowe–Karafiath inter-slice force function. f(x) is assumed to be the
average of the slope angle of the ground profile and the failure surface at
the section under consideration. 

Type 7: f(x) is defined as the tangent of the base slope angle at the section under
consideration, and this assumption is used in the Load factor method in China.

For type 5 to type 7 inter-slice force functions, only force equilibrium is enforced
in the formulation. The factors of safety from these methods are however usually
very close to those by the ‘rigorous’ methods, and are usually better than the
results by the Janbu simplified method. In fact, the Janbu method is given by the
case of λ = 0 for the Corps of Engineers method, Lowe–Karafiath method and
the Load factor method, and results from the Janbu analysis can also be taken
as the first approximation in the Morgenstern–Price analysis.

Based on a Mohr circle transformation analysis, Chen and Morgenstern
(1983) have established that λf(x) for the two ends of a slip surface which is

0

1

f(x)

trapezoidal

f (x) = sinx

x1

f (x) = ψe
−0.5cn

Figure 2.2 Shape of inter-slice shear force function.



the inclination of the resultant inter-slice force should be equal to the ground
slope angle. Other than this requirement, there is no simple way to establish
f(x) for a general problem. Since the requirement by Chen and Morgenstern
(1983) applies only under an infinitesimal condition, it is seldom adopted in
practice. Even though there is no simple way to define f(x), Morgenstern
(1992), among others, has however pointed out that, for normal problems,
F from different methods of analyses are similar so that the assumptions on
the internal force distributions are not major issues for practical use except
for some particular cases. In views of the difficulty in prescribing a suitable
f(x) for a general problem, most engineers will choose f(x) = 1.0 which is
satisfactory for most cases. Cheng et al. (2007d) have however established
the upper and lower bounds of the factor of safety and the corresponding
f(x) based on the extremum principle which will be discussed in Section 2.9. 

2.2.3 Reduction to various methods and discussion

The present unified formulation by Cheng and Zhu (2005) can reduce to most of
the commonly used methods of analysis which is shown in Table 2.5. In Table 2.5,
the angle of inclination of the inter-slice forces is prescribed for methods 2–9.

The classical Swedish method for undrained analysis (Fellenius analysis)
considers only the global moment equilibrium and neglects all the internal forces
between slices. For the Swedish method under drained analysis, the left and right
inter-slice forces are assumed to be equal and opposite so that the base normal
forces become known. The factor of safety can be obtained easily without the
need of iteration analysis. The Swedish method is well known to be
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Table 2.5 Assumptions used in various methods of analysis (� means not satisfied
and √ means satisfied)

Method Assumptions Force equilibrium Moment

XX YY
equilibrium

1 Swedish P = V = 0 � � √
2 Bishop simplified V = 0 or Φ = 0 � √ √
3 Janbu simplified V = 0 or Φ = 0 √ √ �
4 Lowe and Karafiath Φ = (α + β)/2 √ √ �
5 Corps of Engineers Φ = β or √ √ �

6 Load transfer Φ = α √ √ �
7 Wedge Φ = φ √ √ �
8 Spencer Φ = constant √ √ √
9 Morgernstern–Price Φ = λf (x) √ √ √

and GLE
10 Janbu rigorous Line of thrust (Xp) √ √ √
11 Leshchinsky Magnitude and √ √ √

distribution of N

Φi−1,i = αi−1 +αi

2
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conservative, and sometimes the results from it can be 20–30 per cent
smaller than those from the ‘rigorous’ methods, hence the Swedish
method is seldom adopted in practice. This method is however simple
enough to be operated by hand or spreadsheet calculation, and there are
no non-convergence problems as iteration is not required.

The Bishop method is one of the most popular slope stability analysis meth-
ods and is used worldwide. This method satisfies only the moment equilibrium
given by eq. (2.13) but not the horizontal force equilibrium given by eq. (2.5),
and it applies only for a circular failure surface. The centre of the circle is taken
as the moment point in the moment equilibrium equation given by eq. (2.13).
The Bishop method has been used for some non-circular failure surfaces, but
Fredlund et al. (1992) have demonstrated that the factor of safety will be
dependent on the choice of the moment point because there is a net unbalanced
horizontal force in the system. The use of the Bishop method to the non-circular
failure surface is generally not recommended because of the unbalanced
horizontal force problem, and this can be important for problems with loads
from earthquake or soil reinforcement. This method is simple for hand calcula-
tion and the convergence is fast. It is also virtually free from/convergence prob-
lems, and the results from it are very close to those by the ‘rigorous’ methods.
If the circular failure surface is sufficient for the design and analysis, this method
can be a very good solution for engineers. When applied to an undrained
problem with φ = 0, the Bishop method and the Swedish method will become
identical.

For the Janbu simplified method (1956), force equilibrium is completely sat-
isfied while moment equilibrium is not satisfied. This method is also popular
worldwide as it is fast in computation with only few convergence problems.
This method can be used for a non-circular failure surface which is commonly
observed in sandy-type soil. Janbu (1973) later proposed a ‘rigorous’ formula-
tion which is more tedious in computation. Based on the ratio of the factors of
safety from the ‘rigorous’ and ‘simplified’ analyses, Janbu proposed a correc-
tion factor f0 given by eq. (2.14) for the Janbu simplified method. When the
factor of safety from the simplified method is multiplied with this correction
factor, the result will be close to that from the ‘rigorous’ analysis.

(2.14)

For the correction factor shown above, l is the length joining the left and right
exit points while D is the maximum thickness of the failure zone with reference
to this line. Since the correction factors by Janbu (1973) are based on limited

For c,φ > 0, f0 = 1+ 0:5
D

l
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D

l
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l
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case studies, the uses of these factors to complicated non-homogeneous slopes
are questioned by some engineers. Since the inter-slice shear force can some-
times generate a high factor of safety for some complicated cases which may
occur in dam and hydropower projects, the use of the Janbu method is pre-
ferred over other methods in these kinds of projects in China.

The Lowe and Karafiath method and the Corps of Engineers method are
based on the inter-slice force functions type 5 and type 6. These two meth-
ods satisfy force equilibrium but not moment equilibrium. In general, the
Lowe and Karafiath method will give results close to that from the ‘rigor-
ous’ method even though the moment equilibrium is not satisfied. For the
Corps of Engineers method, it may lead to a high factor of safety in some
cases, and some engineers actually adopt a lower inter-slice force angle to
account for this problem (Duncan and Wright, 2005), and this practice is
also adopted by some engineers in China. The load transfer and the wedge
methods in Table 2.5 satisfy only the force equilibrium. These methods are
used in China only and are seldom adopted in other countries. 

The Morgenstern–Price method is usually based on the inter-slice force
function types 1 to 4, though the use of the arbitrary function is possible
and is occasionally used. If the type 1 inter-slice force function is used, this
method will reduce to the Spencer method. The Morgenstern–Price method
satisfies the force and the global moment equilibrium. Since the local
moment equilibrium equation is not used in the formulation, the internal
forces of an individual slice may not be acceptable. For example, the line of
thrust (centroid of the inter-slice normal force) may fall outside the soil
mass from the Morgenstern–Price analysis. The GLE method is basically
similar to the Morgenstern–Price method, except that the line of thrust is
determined and is closed at the last slice. The acceptability of the line of
thrust for any intermediate slice may still be unacceptable from the GLE
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analysis. In general, the results from these two methods of analysis are very
close.

The Janbu rigorous method appears to be appealing in that the local
moment equilibrium is used in the intermediate computation. The internal
forces will hence be acceptable if the analysis can converge. As suggested by
Janbu (1973), the line of thrust ratio is usually taken as one-third of the
inter-slice height, which is basically compatible with the classical lateral
earth pressure distribution. It should be noted that the equilibrium of the
last slice is actually not used in the Janbu rigorous method, so the moment
equilibrium from the Janbu rigorous method is not strictly rigorous. A lim-
itation of this method is the relatively poor convergence in the analysis, par-
ticularly when the failure surface is highly irregular or there are external
loads. This is due to the fact that the line of thrust ratio is pre-determined
with no flexibility in the analysis. The constraints in the Janbu rigorous
method are more than that in the other methods, hence convergence is
usually poorer. If the method is slightly modified by assuming ht/h = λf(x),
where ht = height of line of thrust above slice base and h = length of the ver-
tical inter-slice, the convergence of this method will be improved. There is
however difficulty in defining f(x) for the line of thrust, and hence this
approach is seldom considered. Cheng has developed another version of the
Janbu rigorous method which is implemented in the program SLOPE 2000.

For the Janbu rigorous (1973) and Leshchinsky (1985) methods, Φ (or λ
equivalently) is not known in advance. The relationship between the line of
thrust Xp and angle Φ in the Janbu rigorous method can be derived in the
following ways: 

(a) Taking moment about middle of the slice base in the Janbu rigorous
method, the moment equilibrium condition is given by:

(2.15)

From above, the inter-slice normal force is obtained as:

(2.16)
where

(2.17)

From eq. (2.9) the inter-slice normal force is also obtained as

(2.18)

Pi, i+ 1 = A2i

− fi sinαi − fi cosαi tanΦi, i+ 1 +K cosαi +K sinαi tanΦi, i+ 1

Ali = 2WiXwi +2VLiXsi − 2VLiXhi

+ 2Pi− 1, iXpi−1 −BiPi−1, i tanΦi−1, i

Pi, i+ 1 = Ali
2Xpi +Bi tanΦi, i+ 1

WiXwi +VliXsi −HLiXhi =Pi, i+1Xpi −Pi−1, iXpi−1

+ 1

2
ðPi, i+1 tan �i, i+1 +Pi−1,i tan �i−1,iÞBi



where

(2.19)

From eqs (2.15) and (2.17), the relation between line of thrust Xp and
angle Φ is given by: 

(2.20)

(b) For the Leshchinsky method where the distribution of the base normal
force N is assumed to be known, Φ can then be determined as:

(2.21)

Once Φ is obtained from eq. (2.19) or (2.20), the calculation can then
proceed as described previously.

2.2.4 Solution of the non-linear factor of safety equation

In eq. (2.11), the inter-slice normal force for slice i, Pi,i+1, is controlled by
the inter-slice normal Pi−1,i . If we put the equation for inter-slice normal
force P1,2 (eq. 2.9) from slice 1 into the equation for inter-slice normal force
P2,3 for slice 2 (eq. 2.11), we will get a second order equation in factor of
safety F as 

(2.22)

The term (J2 × f2 + G2 × F)P1,2 is a second order function in F. The numer-
ator on the right hand side of eq. (2.22) is hence a second order function
in F. Similarly, if we put the equation P2,3 into the equation for P3,4, a
third order equation in F will be achieved. If we continue this process to
the last slice, we will arrive at a polynomial for F and the order of the
polynomial is n for Pn,n+1 which is just 0! Sarma (1987) has also arrived at
a similar conclusion for a simplified slope model. The importance of this
polynomial under the present formulation is that there are n possible fac-
tors of safety for any prescribed Φ. Most of the solutions will be physically
unacceptable and are either imaginary numbers or negative solutions.
Physically acceptable factors of safety are given by the positive real solu-
tions from this polynomial. 

λ and F are the two unknowns in the above equations and they can be
determined by several different methods. In most of the commercial
programs, the factor of safety is obtained by the use of iteration with an
initial trial factor of safety (usually 1.0) which is efficient and effective for

tanΦi, i+1

= − −Nifi sinαi +NiF cosαi −Pi−1, iF tanΦi−1, i − ciAi sinαi −WiF−VLiF

−Nifi cosαi +NiF sinαi +Pi−1, iF− ciAi sinαi +VLiF

P2, 3 = ðJ2 × f2 +G2 × FÞP1, 2 +L2 +K2 ×F+M2

H2 +E2 × F

tanΦi, i+ 1 = − −2A2iXpi −Alifi sinαi +AliF cosαi

−A2iBi −Alifi cosαi +AliF sinαi

A2i = ðJi +Gi × FÞPi− 1, i +Mi +Li +KiF
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most cases. The use of the iteration method is actually equivalent to express-
ing the complicated factor of safety polynomial in a functional form as:

(2.23)

Chen and Morgenstern (1983) and Zhu et al. (2001) have proposed the use
of the Newton–Rhapson technique in the evaluation of the factor of safety F
and λ. The gradient type methods are more complicated in the formulation
but are fast in solution. Chen and Morgenstern (1983) suggested that the ini-
tial trial λ can be chosen as the tangent of the average base angle of the fail-
ure surface, and these two values can be determined by the use of the
Newton–Rhapson method. Chen and Morgenstern (1983) have also provided
the expressions for the derivatives of the moment and shear terms required
for the Newton–Rhapson analysis. Zhu et al. (2001) admitted that the initial
trials of F and λ can greatly affect the efficiency of the computation. In some
cases, poor initial trials can even lead to divergence in analysis. Zhu et al. pro-
posed a technique to estimate the initial trial value which appears to work fine
for smooth failure surfaces. The authors’ experience is that, for non-smooth
or deep-seated failure surfaces, it is not easy to estimate a good initial trial
value, and Zhu et al.’s proposal may not work for these cases. 

As an alternative, Cheng and Zhu (2005) have proposed that the factor
of safety based on the force equilibrium is determined directly from the
polynomial as discussed above, and this can avoid the problems that may
be encountered using the Newton–Rhapson method or iteration method.
The present proposal can be effective under difficult problems while Chen’s
or Zhu’s methods are more efficient for general smooth failure surfaces.
The additional advantage of the present proposal is that it can be applied
to many slope stability analysis methods if the unified formulation is
adopted. To solve for the factor of safety, the following steps can be used:

1 From slice 1 to n, based on an assumed value of λ and f(x) and hence
Φ for each interface, the factors of safety can be determined from the
polynomial by the Gauss–Newton method with a line search step selec-
tion. The internal forces P, V, N and S can be then be determined from
eqs (2.5) to (2.11) without using any iteration analysis. The special fea-
ture of the present technique is that while determination of inter-slice
forces is required for calculating the factor of safety in iterative analy-
sis (for rigorous methods), the factor of safety is determined directly
under the present formulation. Since the Bishop analysis does not sat-
isfy horizontal force equilibrium, the present method cannot be applied
to the Bishop analysis. This is not important as the Bishop method can
be solved easily by the classical iterative algorithm.

2 For those rigorous methods, moment equilibrium has to be checked.
Based on the internal forces as determined in step 1 for a specific phys-
ically acceptable factor of safety, the moment equilibrium equation
(2.13) is then checked. If moment equilibrium is not satisfied with that

F= f ðFÞ



specific factor of safety based on the force equilibrium, repeat the step
with the next factor of safety in checking the moment equilibrium. 

3 If no acceptable factor of safety is found, try the next λ and repeat steps 1
and 2 above. In the actual implementation, the sign of the unbalanced
moment from eq. (2.13) is monitored against λ and interpolation is used to
accelerate the determination of λ which satisfies the moment equilibrium.

4 For the Janbu rigorous method or the Leshchinsky method, eqs (2.20) and
(2.21) have to be used in the above procedures during each step of analysis.

It will be demonstrated in Chapter 3 that there are many cases where iter-
ation analysis may fail to converge but the factors of safety actually exist.
On the other hand, using the Gauss–Newton method and the polynomial
from by Cheng and Zhu (2005) or the matrix form and the double QR
method by Cheng (2003), it is possible to determine the factor of safety
without iteration analysis. The root of the polynomial (factor of safety)
close to the initial trial can be determined directly by the Gauss–Newton
method. For the double QR method, the factor of safety and the internal
forces are determined directly without the need of any initial trial at the
expense of computer time in solving the matrix equation.

Based on the fact that the inter-slice forces at any section are the same for
the slices to the left and to the right of that section, an overall equation can be
assembled in a way similar to that in the stiffness method which will result in
a matrix equation (Cheng, 2003). The factor of safety equation as given by eq.
(2.22) can be cast into a matrix form instead of a polynomial (actually equiv-
alent). The complete solution of all the real positive factors of safety from the
matrix can be obtained by the double QR method by Cheng (2003), which is
a useful numerical method to calculate all the roots associated with the
Hessenberg matrix arising from eq. (2.22). It should be noted that imaginary
numbers may satisfy the factor of safety polynomial, so the double QR method
instead of the classical QR method is necessary to determine the real positive
factors of safety. If a F value from the double QR analysis cannot satisfy the
above requirement, the next F value will be computed. Processes 1 to 4 above
will continue until all the possible F values are examined. If no factor of safety
based on the force equilibrium can satisfy the moment equilibrium, the analy-
sis is assumed to fail in convergence and only imaginary roots will be available. 

The advantage of the present method is that the factor of safety and the
internal forces with respect to force equilibrium are obtained directly without
any iteration analysis. Cheng (2003) has also demonstrated that there can be
at most n possible factors of safety (including negative value and imaginary
number) from the double QR analysis for a failure mass with n slices. The
actual factor of safety can be obtained from the force and moment balance at
a particular λ value. The time required for the double QR computation is not
excessively long as inter-slice normal and shear forces are not required to be
determined in obtaining a factor of safety. In general, if the number of slices
used for the analysis is less than 20, the solution time for the double QR
method is only 50–100 per cent longer than the iteration method.
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Since all the possible factors of safety are examined, this method is the
ultimate method in the determination of the factor of safety. If other meth-
ods of analysis fail to determine the factor of safety, this method may still
work which will be demonstrated in Chapter 3. On the other hand, if no
physically acceptable solution is found from the double QR method, the
problem under consideration has no solution by nature. More discussion
about the use of the double QR method will be given in Section 2.9.

2.2.5 Examples on slope stability analysis

Figure 2.4 is a simple slope given by coordinates (4,0), (5,0), (10,5) and
(12,5) while the water table is given by (4,0), (5,0), (10,4) and (12,4). The
soil parameters are: unit weight = 19 kNm-3, c′ = 5 kPa and φ′ = 36°. To
define a circular failure surface, the coordinates of the centre of rotation
and the radius should be defined. Alternatively, a better method is to define
the x-ordinates of the left and right exit ends and the radius of the circular
arc. The latter approach is better as the left and right exit ends can usually
be estimated easily from engineering judgement. In the present example, the
x-ordinates of the left and right exit ends are defined as 5.0 and 12.0 m
while the radius is defined as 12 m. The soil mass is divided into ten slices
for analysis and the details are given below:

Slice Weight (kN) Base angle (°) Base length (m) Base pore pressure (kPa)

1 2.50 16.09 0.650 1.57 
2 7.29 19.22 0.662 4.52 
3 11.65 22.41 0.676 7.09 
4 15.54 25.69 0.694 9.26 
5 18.93 29.05 0.715 10.99 
6 21.76 32.52 0.741 12.23 
7 23.99 36.14 0.774 12.94 
8 25.51 39.94 0.815 13.04 
9 32.64 45.28 1.421 7.98 

10 11.77 52.61 1.647 0.36

The results of analyses for the problem in Figure 2.4 are given in Table 2.6.
For the Swedish method or the Ordinary method of slices where only the
moment equilibrium is considered while the inter-slice shear force is neglected,
the factor of safety from the global moment equilibrium takes the form of:

(2.24)

A factor of safety 0.991 is obtained directly from the Swedish method for
this example without any iteration. For the Bishop method, which assumes
the inter-slice shear force V to be zero, the factor of safety by the global
moment equilibrium will reduce to

Fm =
P

c0l+ W cosα− ulð Þ tanφ
0� �

P
W sinα



(2.25)

where

Based on an initial factor of safety 1.0, the successive factors of safety
during the Bishop iteration analysis are 1.0150, 1.0201, 1.0219, 1.0225
and 1.0226. For the Janbu simplified method, the factor of safety based on
force equilibrium using the iteration analysis takes the form of:

(2.26)

The successive factors of safety during the iteration analysis using the Janbu sim-
plified method are 0.9980, 0.9974 and 0.9971. Based on a correction factor of
1.0402, the final factor of safety from the Janbu simplified analysis is 1.0372. If

Ff =
P
½c0b+ ðW − ubÞ tan φ0�=nαP

W tanα
and nα = cosα ·mα

mα = cosαð1+ tanα
tanφ0

F
Þ

Fm =
P

c0b+ W − ulð Þ tan φ
0� �

sec α=mαP
W sinα
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Table 2.6 Factors of safety for the failure surface shown in Figure 2.4

Bishop Janbu Janbu Swedish Load Sarma Morgenstern–
simplified rigorous factor Price

F 1.023 1.037 1.024 0.991 1.027 1.026 1.028

Note: The correction factor is applied to the Janbu simplified method. The results for the
Morgenstern–Price method using f(x) = 1.0 and f(x) = sin(x) are the same. Tolerance in itera-
tion analysis is 0.0005.
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Figure 2.4 Numerical examples for a simple slope.
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the double QR method is used for the Janbu simplified method, a value of
0.9971 is obtained directly from the first positive solution of the Hessenberg
matrix without using any iteration analysis. For the Janbu rigorous method, the
successive factors of safety based on iteration analysis are 0.9980, 0.9974,
0.9971, 1.0102, 1.0148, 1.0164, 1.0170, 1.0213, 1.0228, 1.0233 and 1.0235.
For the Morgenstern–Price method, a factor of safety 1.0282 and the internal
forces are obtained directly from the double QR method without any iteration
analysis. The variation of Ff and Fm with respect to λ using the iteration analysis
for this example is shown in Figure 2.5. It should be noted that Ff is usually more
sensitive to λ than Fm in general, and the two lines may not meet for some cases
which can be considered as no solution to the problem. There are cases where
the lines are very close but actually do not intersect. If a tolerance large enough
is defined, then the two lines can be considered as having an intersection and the
solution converge. This type of ‘false’ convergence is experienced by many engi-
neers in Hong Kong. These two lines may be affected by the choice of the
moment point, and convergence can sometimes be achieved by adjusting the
choice of the moment point. The results shown in Figure 2.5 assume the inter-
slice shear forces to be zero in the first solution step, and this solution procedure
appears to be adopted in many commercial programs. Cheng et al. (2008a) have
however found that the results shown in Figure 2.5 may not be the true result
for some special cases, and this will be further discussed in Chapter 3.

From Table 2.6, it is clear that the Swedish method is a very conservative
method as first suggested by Whitman and Bailey (1967). Besides, the Janbu
simplified method will also give a smaller factor of safety if the correction
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factor is not used. After the application of the correction factor, Cheng found
that the results from the Janbu simplified method are usually close to those
‘rigorous’ methods. In general, the factors of safety from different methods of
analysis are usually close as pointed out by Morgenstern (1992).

2.3 Miscellaneous consideration on slope stability analysis

2.3.1 Acceptability of the failure surfaces and results of analysis

Based on an arbitrary inter-slice force function, the internal forces which
satisfy both the force and moment equilibrium may not be kinematically
acceptable. The acceptability conditions of the internal forces include:

1 Since the Mohr–Coulomb relation is not used along the vertical interfaces
between different slices, it is possible though not common that the inter-slice
shear forces and normal forces may violate the Mohr–Coulomb relation.

2 Except for the Janbu rigorous method and the extremum method as
discussed in Section 2.8 under which the resultant of the inter-slice
normal force must be acceptable, the line of thrust from other ‘rigor-
ous’ methods which are based on overall moment equilibrium may lie
outside the failure mass and is unacceptable.

3 The inter-slice normal forces should not be in tension. For the inter-slice
normal forces near to the crest of the slope where the base inclination
angles are usually high, if c′ is high, it is highly likely that the inter-slice
normal forces will be in tension to maintain the equilibrium. This situation
can be eliminated by the use of a tension crack. Alternatively, the factor of
safety with tensile inter-slice normal forces for the last few slices may be
accepted, as the factor of safety is usually not sensitive to these tensile
forces. On the other hand, tensile inter-slice normal forces near the slope
toe are usually associated with special shape failure surfaces with kinks,
steep upward slope at the slope toe or an unreasonably high/low factor of
safety. The factors of safety associated with these special failure surfaces
need special care in the assessment and should be rejected if the internal
forces are unacceptable. Such failure surfaces should also be eliminated
during the location of the critical failure surfaces.

4 The base normal forces may be negative near the toe and crest of the
slope. For negative base normal forces near the crest of the slope, the
situation is similar to the tensile inter-slice normal forces and may be tol-
erable. For negative base normal forces near the toe of the slope which is
physically unacceptable, it is usually associated with deep-seated failure
with a high upward base inclination. Since a very steep exit angle is not
likely to occur, it is possible to limit the exit angle during the automatic
location of the critical failure surface.

If the above criteria are strictly enforced to all slices of a failure surface, many
slip surfaces will fail to converge. One of the reasons is the effect of the last
slice when the base angle is large. Based on the force equilibrium, the tensile
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inter-slice normal force will be created easily if c′ is high. This result can prop-
agate so that the results for the last few slices will be in conflict with the cri-
teria above. If the last few slices are not strictly enforced, the factor of safety
will be acceptable when compared with other methods of analysis. A sug-
gested procedure is that if the number of slices is 20, only the first 15 slices
are checked against the criteria above. The authors found that this approach
is sufficiently good and is acceptable. 

2.3.2 Tension crack

As the condition of limiting equilibrium develops with the factor of safety
close to 1, a tension crack shown in Figure 2.3 may be formed near the top
of the slope through which no shear strength can be developed. If the ten-
sion crack is filled with water, a horizontal hydrostatic force Pw will
generate additional driving moment and driving force which will reduce the
factor of safety. The depth of a tension crack zc can be estimated as:

(2.27)

where Ka is the Rankine active pressure coefficient. The presence of tension crack
will tend to reduce the factor of safety of a slope, but the precise location of a
tension crack is difficult to be estimated for a general problem. It is suggested that
if a tension crack is required to be considered, it should be specified at different
locations and the critical results can then be determined. Sometimes, the critical
failure surface with and without a tension crack can differ appreciably, and the
location of the tension crack needs to be assessed carefully. In SLOPE 2000 by
Cheng or some other commercial programs, the location of the tension crack can
be varied automatically during the location of the critical failure surface.

2.3.3 Earthquake

Earthquake loadings are commonly modelled as vertical and horizontal
loads applied at the centroid of the sliding mass, and the values are given by
the earthquake acceleration factors kv/kh (vertical and horizontal) multiplied
with the weight of the soil mass. This quasi-static simulation of earthquake
loading is simple in implementation but should be sufficient for most design
purposes, unless the strength of soil may be reduced by more than 15 per
cent due to the earthquake action. Beyond that, a more rigorous dynamic
analysis may be necessary which will be more complicated, and more
detailed information about the earthquake acceleration as well as the soil
constitutive behaviour is required. Usually, a single earthquake coefficient
may be sufficient for the design, but a more refined earth dam earthquake
code is specified in DL5073-2000 in China. The design earthquake
coefficients will vary according to the height under consideration which will
be different for different slices. Though this approach appears to be more
reasonable, most of the design codes and existing commercial programs do

zc = 2c
ffiffiffiffiffiffi
Ka

p

γ



not adopt this approach. The program SLOPE 2000 by Cheng can however
accept this special earthquake code.

2.3.4 Water

Increase in pore water pressure is one of the main factors for slope failure. Pore
water pressure can be defined in several ways. The classical pore pressure ratio
ru is defined as u/γh, and an average pore pressure for the whole failure mass is
usually specified for the analysis. Several different types of stability design charts
are also designed using an average pore pressure definition. The use of a
constant averaged pore pressure coefficient is obviously a highly simplified
approximation. With the advancement in computer hardware and software, the
uses of these stability design charts are now mainly limited to the preliminary
designs only. The pore pressure coefficient is also defined as a percentage of the
vertical surcharge applied on the ground surface in some countries. This
definition of the pore pressure coefficient is however not commonly used.

If pore pressure is controlled by the groundwater table, u is commonly
taken as γwhw, where hw is the height of the water table above the base of
the slice. This is the most commonly used method to define the pore pres-
sure, which assumes that there is no seepage and the pore pressure is
hydrostatic. Alternatively, a seepage analysis can be conducted and the pore
pressure can be determined from the flow-net or the finite element analysis.
This approach is more reasonable but is less commonly adopted in practice
due to the extra effort to perform a seepage analysis. More importantly, it
is not easy to construct a realistic and accurate hydrogeological model to
perform the seepage analysis.

Pore pressure can also be generated from the presence of a perched water
table. In a multi-layered soil system, a perched water table may exist together
with the presence of a water table if there are great differences in the perme-
ability of the soil. This situation is rather common for the slopes in Hong
Kong. For example, slopes at mid-levels in Hong Kong Island are commonly
composed of fill at the top which is underlain by colluvium and completely
decomposed granite. Since the permeability of completely decomposed granite
is 1 to 2 orders less than that for colluvium and fill, a perched water table can
be easily established within the colluvium/fill zone during heavy rainfall while
the standing water table may be within the completely decomposed granite
zone. Considering Figure 2.6, a perched water table may be present in soil
layer 1 with respect to the interface between soils 1 and 2 due to the perme-
ability of soil 2 being ten times less than that of soil 1. For the slice base
between A and B, it is subjected to the perched water table effect and pore
pressure should be included in the calculation. For the slice base between B and
C, no water pressure is required in the calculation, while the water pressure at
the slice base between C and D is calculated using the groundwater table only. 

For the problem shown in Figure 2.7, if EFG which is below the ground
surface is defined as the groundwater table, the pore water pressure will be
determined by EFG directly. If the groundwater table is above the ground
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surface and undrained analysis is adopted, ground surface CDB is imper-
meable and the water pressure arising from AB will become external load
on surface CDB. For drained analysis, the water table given by AB should
be used, but vertical and horizontal pressure corresponding to the hydro-
static pressure should be applied on surfaces CD and DB. Thus, a trape-
zoidal horizontal and vertical pressure will be applied to surfaces CD and
DB while the water table AB will be used to determine the pore pressure.

For the treatment of the inter-slice forces, usually the total stresses instead
of the effective stresses are used. This approach, though slightly less rigorous
in the formulation, can greatly simplify the analysis and is adopted in virtually
all the commercial programs. Greenwood (1987) and Morrison and Greenwood
(1989) have reported that this error is particularly significant where the slices
have high base angles with a high water table. King (1989) and Morrison and
Greenwood (1989) have also proposed revisions to the classical effective stress
limit equilibrium method. Duncan and Wright (2005) have in addition reported
that some ‘simplified’ methods can be sensitive to the assumption of the total
or effective inter-slice normal forces in the analysis.

2.3.5 Saturated density of soil

The unit weights of soil above and below the water table are not the same and
may differ by 1–2 kNm−3. For computer programs which cannot accept the
input of saturated density, this can be modelled by the use of two different types
of soil for a soil which is partly submerged. Alternatively, some engineers assume
the two unit weights to be equal in view of the small differences between them.
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Figure 2.6 Perched water table in a slope.



2.3.6 Moment point

For simplified methods which satisfy only the force or moment equilibrium,
the Janbu and the Bishop methods are the most popular methods adopted by
engineers. There is a perception among some engineers that the factor of
safety from the moment equilibrium is more stable and is more important
than the force equilibrium in stability formulation (Abramson et al., 2002).
However, true moment equilibrium depends on the satisfaction of force
equilibrium. Without force equilibrium, there is actually no moment equi-
librium. Force equilibrium is, however, totally independent of the moment
equilibrium. For methods which satisfy only the moment equilibrium, the
factor of safety actually depends on the choice of the moment point. For the
circular failure surface, it is natural to choose the centre of the circle as the
moment point, and it is also well known that the Bishop method can yield a
very good result even when the force equilibrium is not satisfied. Fredlund et
al. (1992) have discussed the importance of the moment point on the factor
of safety for the Bishop method, and the Bishop method cannot be applied
to a general slip surface because the unbalanced horizontal force will create
a different moment contribution to a different moment point. Baker (1980)
has pointed out that for ‘rigorous’ methods, the factor of safety is independ-
ent of the choice of the moment point. Cheng et al. (2008a) have however
found that the mathematical procedures to evaluate the factor of safety may
be affected by the choice of the moment point. Actually, many commercial
programs allow the user to choose the moment point for analysis. The
double QR method by Cheng (2003) is completely not affected by the choice
of the moment point in the analysis and is a very stable solution algorithm.

2.3.7 Use of soil nail/reinforcement

Soil nailing is a slope stabilization method that introduces a series of thin
elements called nails to resist tension, bending and shear forces in the slope.
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The reinforcing elements are usually made of round cross-section steel bars.
Nails are installed sub-horizontally into the soil mass in a pre-bore hole,
which is fully grouted. Occasionally, the initial portions of some nails are not
grouted but this practice is not commonly adopted. Nails can also be driven
into the slope, but this method of installation is uncommon in practice.

2.3.7.1 Advantages of soil nailing

Soil nailing presents the following advantages that have contributed to the
widespread use of this technique:

• Economy: economical evaluation has led to the conclusion that soil
nailing is a cost-effective technique as compared with a tieback wall.
Cost of soil nailing may be 50 per cent of a tieback wall.

• Rate of construction: fast rates of construction can be achieved if ade-
quate drilling equipment is employed. Shotcrete is also a rapid tech-
nique for placement of the facing.

• Facing inclination: there is virtually no limit to the inclination of the
slope face.

• Deformation behaviour: observation of actual nailed structures demon-
strated that horizontal deformation at the top of the wall ranges from
0.1 to 0.3 per cent of the wall height for well-designed walls (Clouterre,
1991; Elias and Juran, 1991).

• Design flexibility: soil anchors can be added to limit the deformation in
the vicinity of existing structures or foundations.

• Design reliability in saprolitic soils: saprolitic soils frequently present
relict weak surfaces which can be undetected during site investigation.
Such a situation has happened in Hong Kong, and slope failures in such
weak planes have also occurred. Soil nailing across these surfaces may
lead to an increased factor of safety and increased reliability, as com-
pared with other stabilization solutions.

• Robustness: deep-seated stability would be maintained.

The fundamental principle of soil nailing is the development of tensile force
in the soil mass and renders the soil mass stable. Although only tensile force
is considered in the analysis and design, soil nail function by a combination
of tensile force, shear force and bending action is difficult to be analysed.
The use of the finite element by Cheng has demonstrated that the bending
and shear contribution to the factor of safety is generally not significant,
and the current practice in soil nail design should be good enough for most
cases. Nails are usually constructed at an angle of inclination from 10° to
20°. For an ordinary steel bar soil nail, a thickness of 2 mm is assumed as
the corrosion zone so that the design bar diameter is totally 4 mm less than
the actual diameter of the bar according to Hong Kong practice.The nail is
usually protected by galvanization, paint, epoxy and cement grout. For the
critical location, protection by expensive sleeving similar to that in rock



anchor may be adopted. Alternatively, fibre reinforced polymer (FRP) and
carbon fibre reinforced polymer (CFRP) may be used for soil nails which
are currently under consideration.

The practical limitations of soil nails include:

1 Lateral and vertical movement may be induced from excavation and
the passive action of the soil nail is not as effective as the active action
of the anchor.

2 Difficulty in installation under some groundwater conditions.
3 Suitability of the soil nail in loose fill is doubted by some engineers –

the stress transfer between nail and soil is difficult to be established.
4 The collapse of the drill hole before the nail is installed can happen eas-

ily in some ground conditions.
5 For a very long nail hole, it is not easy to maintain the alignment of the

drill hole.

There are several practices in the design of soil nails. One of the precautions
in the adoption of soil nails is that the factor of safety of a slope without a
soil nail must be greater than 1.0 if a soil nail is going to be used. This is
due to the fact that the soil nail is a passive element, and the strength of the
soil nail cannot be mobilized until the soil tends to deform. The effective
nail load is usually taken as the minimum of:

(a) the bond strength between cement grout and soil;
(b) the tensile strength of the nail, which is limited to 55 per cent of

the yield stress in Hong Kong, and 2 mm sacrificial thickness of the bar
surface is allowed for corrosion protection;

(c) the bond stress between the grout and the nail.

In general, only factors (a) and (b) are the controlling factors in design. The
bond strength between cement grout and soil is usually based on one of the
following criteria:

(a) The effective overburden stress between grout and soil controls the unit
bond stress on the soil nail, and is estimated from the formula (πc′D +
2Dσv′tanφ′) for Hong Kong practice, while the Davis method allows an
inclusion of the angle of inclination; D is the diameter of the grout hole.
A safety factor of 2.0 is commonly applied to this bond strength in
Hong Kong. During the calculation of the bond stress, only the portion
behind the failure surface is taken into the calculation. 

(b) Some laboratory tests suggest that the effective bond stress between nail
and soil is relatively independent of the vertical overburden stress. This is
based on the stress-redistribution after the nail hole is drilled and the
surface of the drill hole should be stress free. The effective bond load will
then be controlled by the dilation angle of the soil. Some of the laboratory
tests in Hong Kong have shown that the effective overburden stress is not

42 Slope stability analysis methods



Slope stability analysis methods 43

important for the bond strength. On the other hand, some field tests in
Hong Kong have shown that the nail bond strength depends on the depth
of embedment of the soil nail. It appears that the bond strength between
cement grout and soil may be governed by the type of soil, method of
installation and other factors, and the bond strength may be dependent on
the overburden height in some cases, but this is not a universal behaviour.

(c) If the bond load is independent of the depth of embedment, the effective nail
load will then be determined in a proportional approach shown in Figure 2.8.

For a soil nail of length L, bonded length Lb and total bond load Tsw, Le for each
soil nail and Tmob for each soil nail are determined from the formula below:

For slip 1: Tmob = Tsw

In this case, the slip passes in front of the bonded length and the full mag-
nitude is mobilized to stabilize the slip.

For slip 2: Tmob = Tsw × (Le/Lb) 

In this case the slip intersects the bonded length and only a proportion of
the full magnitude provided by the nail length behind the slip is mobilized
to stabilize the slip.

The effective nail load is usually applied as a point load on the failure sur-
face in the analysis. Some engineers however model the soil nail load as a
point load at the nail head or as a distributed load applied on the ground
surface. In general, there is no major difference in the factors of safety from
these minor variations in treating the soil nail forces.

The effectiveness of the soil nail can be illustrated by adding two rows of 5
m length soil nails inclined at an angle of 15° to the problem shown in Figure
2.4 which is shown in Figure 2.9. The x-ordinates of the nail heads are 7.0
and 9.0. The total bond load is 40 kN for each nail which is taken to be
independent of the depth of embedment, while the effective nail loads are
obtained as 27.1 and 24.9 kN considered by a simple proportion as given in
Figure 2.8. The results of analysis shown in Table 2.7 have illustrated that:
(1) the Swedish method is a conservative method in most cases; (2) the Janbu

1

2
Lb

Le

Figure 2.8 Definition of effective nail length in the bond load determination.



rigorous method is more difficult to converge as compared with other
methods. It is also noticed that when external load is present, there are greater
differences between the results from different methods of analysis.

During the computation of the factor of safety, the factor of safety can be
defined as

(2.28a)

(2.28b)

The results shown in Table 2.7 are based on eq. (2.28a) which is the more
popular definition of the factor of safety with soil reinforcement. Some
commercial software also offers an option for eq. (2.28b), and engineers must
be clear about the definition of the factor of safety. In general, the factor of
safety using eq. (2.28a) will be greater than that based on eq. (2.28b).

2.3.8 Failure to converge 

Failure to converge in the solution of the factor of safety is sometimes found
for ‘rigorous’ methods which satisfy both force and moment equilibrium. If

F= shear strength

mobilized shear− contribution from reinforcement

or

F= shear strength+ contribution from reinforcement

mobilized shear

44 Slope stability analysis methods

0
4 5 6 7 8 9 10 11 12 13 14 15

.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 2.9 Two rows of soil nail are added to the problem in Figure 2.4.

Table 2.7 Factors of safety for the failure surface shown in Figure 2.4

Bishop Janbu Janbu Swedish Load Sarma Morgenstern–
simplified rigorous factor Price

F 1.807 1.882 Fail 1.489 1.841 1.851 1.810
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this situation is found, the initial trial factor of safety can be varied and con-
vergence is sometimes achieved. Alternatively, the double QR method by
Cheng (2003) can be used as this is the ultimate method in the solution of the
factor of safety. If no physically acceptable answer can be determined from the
double QR method, there is no result for the specific method of analysis.
Under such conditions, the simplified methods can be used to estimate the fac-
tor of safety or the extremum principle in Sections 2.8 and 2.9 may be adopted
to determine the factor of safety. The convergence problem of the ‘rigorous’
method will be studied in more detail in Section 2.9 and Chapter 3, and there
are more case studies which are provided in the user guide of SLOPE 2000.

2.3.9 Location of the critical failure surface

The minimum factor of safety as well as the location of the critical failure
surface are required for the proper design of a slope. For a homogeneous
slope with a simple geometry and no external load, the log-spiral failure
surface will be a good solution for the critical failure surface. In general, the
critical failure surface for a sandy soil with a small c′ value and high φ′ will
be close to the ground surface while the critical failure surface will be a deep-
seated one for a soil with a high c′ value and small φ′. With the presence of
the external vertical load or soil nail, the critical failure surface will generally
drive the critical failure surface deeper into the soil mass. For a simple
slope with a heavy vertical surcharge on top of the slope (typical abutment
problem), the critical failure surface will be approximately a two-wedge
failure from the non-circular search. This failure mode is also specified by the
German code for abutment design. For a simple slope without any external
load or soil nail, the critical failure surface will usually pass through the toe.
Based on the above characteristics of the critical failure surface, engineers can
manually locate the critical failure surface with ease for a simple problem.
The use of the factor of safety from the critical circular or log-spiral failure
surface (Frohlich, 1953; Chen, 1972) which will be slightly higher than that
from the non-circular failure surface is also adequate for simple problems.

For complicated problems, the above guidelines may not be applicable, and
it will be tedious to carry out the manual trial and error in locating the critical
failure surface. Automatic search for the critical circular failure surface is avail-
able in nearly all of the commercial slope stability programs. A few commercial
programs also offer the automatic search for the non-circular critical failure
surface with some limitations. Since the automatic determination of the effective
nail load (controlled by the overburden stress) appears to be not available in
most of the commercial programs, engineers often have to perform the search
for the critical failure surface by manual trial and error and the effective nail
load is separately determined for each trial failure surface. To save time, only
limited failure surfaces will be considered in the routine design. The authors
have found that reliance only on the manual trial and error in locating the
critical failure surface may not be adequate, and the adoption of the modern
optimization methods to overcome this problem will be discussed in Chapter 3.



2.3.10 3D analysis

All failure mechanisms are 3D in nature but 2D analysis is performed at pres-
ent. The difficulties associated with true 3D analysis are: (1) sliding direction,
(2) satisfaction of 3D force and moment equilibrium, (3) relating the factor of
safety to the previous two factors and (4) a great amount of computational
geometrical calculations is required. At present, there are still many practical
limitations in the adoption of 3D analysis, and there are only a few 3D slope
stability programs which is suitable for ordinary use. Simplified 3D analysis
for a symmetric slope is available in SLOPE 2000 by Cheng, and true 3D
analysis for a general slope is under development in SLOPE3D. 3D slope
stability analysis will be discussed in detail in Chapter 5.

2.4 Limit analysis

The limit analysis adopts the concept of an idealized stress–strain relation, that
is, the soil is assumed as a rigid, perfectly plastic material with an associated
flow rule. Without carrying out the step-by-step elasto-plastic analysis, the limit
analysis can provide solutions to many problems. Limit analysis is based on the
bound theorems of classical plasticity theory (Drucker et al., 1951; Drucker and
Prager, 1952). The general procedure of limit analysis is to assume a kinemati-
cally admissible failure mechanism for an upper bound solution or a statically
admissible stress field for a lower bound solution, and the objective function
will be optimized with respect to the control variables. Early efforts of limit
analysis were mainly made on using the direct algebraic method or analytical
method to obtain the solutions for slope stability problems with simple geome-
try and soil profile (Chen, 1975). Since closed form solutions for most practical
problems are not available, later attention has been shifted to employing the
slice techniques in traditional limit equilibrium to the upper bound limit
analysis (Michalowski, 1995; Donald and Chen, 1997).

Limit analysis is based on two theorems: (a) the lower bound theorem,
which states that any statically admissible stress field will provide a lower
bound estimate of the true collapse load, and (b) the upper bound theorem,
which states that when the power dissipated by any kinematically
admissible velocity field is equated with the power dissipated by the
external loads, then the external loads are upper bounds on the true
collapse load (Drucker and Prager, 1952). 

A statically admissible stress field is one that satisfies the equilibrium
equations, stress boundary conditions, and yield criterion. A kinematically
admissible velocity field is one that satisfies strain and velocity compatibil-
ity equations, velocity boundary conditions and the flow rule. When
combined, the two theorems provide a rigorous bound on the true collapse
load. Application of the lower bound theorem usually proceeds as stated in
the following. (a) First, a statically admissible stress field is constructed.
Often it will be a discontinuous field in the sense that we have a patchwork
of regions of constant stress that together cover the whole soil mass. There
will be one or more particular value of stress that is not fully specified by
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the conditions of equilibrium. (b) These unknown stresses are then adjusted
so that the load on the soil is maximized but the soil remains unyielded. The
resulting load becomes the lower bound estimate for the actual collapse load.

Stress fields used in lower bound approaches are often constructed with-
out a clear relation to the real stress fields. Thus, the lower bound solutions
for practical geotechnical problems are often difficult to find. Collapse
mechanisms used in the upper bound calculations, however, have a distinct
physical interpretation associated with actual failure patterns and thus have
been extensively used in practice.

2.4.1 Lower bound approach

The application of the conventional analytical limit analysis was usually limited
to simple problems. Numerical methods therefore have been employed to
compute the lower and upper bound solutions for the more complex problems.
The first lower bound formulation based on the finite element method was
proposed by Lysmer (1970) for plain strain problems. The approach used the
concept of finite element discretization and linear programming. The soil mass
is subdivided into simple three-node triangular elements where the nodal
normal and shear stresses were taken as the unknown variables. The stresses
were assumed to vary linearly within an element, while stress discontinuities
were permitted to occur at the interface between adjacent triangles. The
statically admissible stress field was defined by the constraints of the
equilibrium equations, stress boundary conditions and the linearized yield
criterion. Each non-linear yield criterion was approximated by a set of linear
constraints on the stresses that lie inside the parent yield surface, thus ensuring
that the solutions are a strict lower bound. This led to an expression for the
collapse load which was maximized, subjected to a set of linear constraints on
the stresses. The lower bound load could be solved by optimization, using the
techniques of linear programming. Other investigations have worked on similar
algorithms (Anderheggen and Knopfel, 1972; Bottero et al., 1980). The major
disadvantage of these formulations was the linearization of the yield criterion
which generated a large system of linear equations, and required excessive
computational times, especially if the traditional simplex or revised simplex
algorithms were used (Sloan, 1988a). Therefore, the scope of the early investi-
gations was mainly limited to small-scale problems. 

Efficient analyses for solving numerical lower bounds by the finite element
method and linear programming method have been developed recently
(Bottero et al., 1980; Sloan, 1988a,b). The key concept of these analyses was
the introduction of an active set algorithm (Sloan, 1988b) to solve the linear
programming problem where the constraint matrix was sparse. Sloan
(1988b) has shown that the active set algorithm was ideally suited to the
numerical lower bound formulation and could solve a large-scale linear
programming problem efficiently. A second problem associated with the
numerical lower bound solutions occurred when dealing with statically
admissible conditions for an infinite-half space. Assdi and Sloan (1990) have



solved this problem by adopting the concept of infinite elements, and hence
obtained rigorous lower bound solutions for general problems.

Lyamin and Sloan (1997) proposed a new lower bound formulation which
used linear stress finite elements, incorporating non-linear yield conditions,
and exploiting the underlying convexity of the corresponding optimization
problem. They showed that the lower bound solution could be obtained
efficiently by solving the system of non-linear equations that define the Kuhn–
Tucker optimality conditions directly. 

Recently, Zhang (1999) presented a lower bound limit analysis in con-
junction with another numerical method – the rigid finite element method
(RFEM) to assess the stability of slopes. The formulation presented satisfies
both static and kinematical admissibility of a discretized soil mass without
requiring any assumption. The non-linear programming method is employed
to search for the critical slip surface.

2.4.2 Upper bound approach

Implementation of the upper bound theorem is generally carried out as fol-
lows. (a) First, a kinematically admissible velocity field is constructed. No
separations or overlaps should occur anywhere in the soil mass. (b) Second,
two rates are then calculated: the rate of internal energy dissipation along
the slip surface and discontinuities that separate the various velocity
regions, and the rate of work done by all the external forces, including grav-
ity forces, surface tractions and pore water pressures. (c) Third, the above
two rates are set to be equal. The resulting equation, called the energy–
work balance equation, is solved for the applied load on the soil mass. This
load would be equal to or greater than the true collapse load.

The first application of the upper bound limit analysis to the slope stability
problem was by Drucker and Prager (1952) in finding the critical height of
a slope. A failure plane was assumed, and analyses were performed for
isotropic and homogeneous slopes with various angles. In the case of a
vertical slope, it was found that the critical height obtained by the upper
bound theorem was identical with that obtained by the limit equilibrium
method. Similar studies have been done by Chen and Giger (1971) and Chen
(1975). However, their attention was mainly limited to a rigid body sliding
along a circular or log-spiral slip surface passing both through the toe and
below the toe in cohesive materials. The stability of slopes was evaluated by
the stability factor, which could be minimized using an analytical technique. 

Karel (1977a,b) presented an energy method for soil stability analysis.
The failure mechanisms used in the method included: (a) a rigid zone with
a planar or a log-spiral transition layer; (b) a soft zone confined by plane or
log-spiral surfaces; and (c) a composed failure mechanism consisting of
rigid and soft zones. The internal dissipation of energy occurred along the
transition layer for the rigid zone, and within the zone and along the
transition layer for the soft zone. However, no numerical technique was
proposed to determine the least upper bound of the factor of safety.
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Izbicki (1981) presented an upper bound approach to slope stability
analysis. A translational failure mechanism, which was confined by a cir-
cular slip surface in the form of rigid blocks similar to the traditional slice
method, was used. The factor of safety was determined by an energy bal-
ance equation and the equilibrium conditions of the field of force associated
with the assumed kinematically admissible failure mechanism. However, no
numerical technique was provided to search for the least upper bound of
the factor of safety in the approach. 

Michalowski (1995) presented an upper bound (kinematical) approach of
limit analysis in which the factor of safety for slopes derived is associated with
a failure mechanism in the form of rigid blocks analogous to the vertical slices
used in traditional limit equilibrium methods. A convenient way to include
pore water pressure has also been presented and implemented in the analysis
of both translational and rotational slope collapse. The strength of the soil
between blocks was assumed explicitly that it was taken as zero or its maxi-
mum value set by the Mohr–Coulomb yield criterion.

Donald and Chen (1997) proposed another upper bound approach to eval-
uate the stability of slopes based on a multi-wedge failure mechanism. The slid-
ing mass was divided into a small number of discrete blocks, with linear
interfaces between the blocks and with either linear or curved bases to individ-
ual blocks. The factor of safety was iteratively calculated by equating the work
done by external loads and body forces to the energy dissipated along the bases
and interfaces of the blocks. Powerful optimization routines were used to search
for the lowest factor of safety and the corresponding critical failure mechanism.

Other efforts have been made in solving the limit analysis problems by the
finite element method, which represents an attempt to obtain the upper bound
solution by numerical methods on a theoretically rigorous foundation of plas-
ticity. Anderheggen and Knopfel (1972) appeared, having developed the first
formulation based on the upper bound theorem, which used constant-strain
triangular finite elements and linear programming for plate problems. Bottero
et al. (1980) later presented the formulation for plain strain problems. In the
formulation, the soil mass is discretized into three-node triangular elements
whose nodal velocities were the unknown variables. Each element was
associated with a specific number of unknown plastic multiplier rates. Velocity
discontinuities were permitted along pre-specified interfaces of adjacent
triangles. Plastic deformation could occur within the triangular element and at
the velocity discontinuities. Kinematically admissible velocity fields were
defined by the constraints of compatibility equations, flow rule of the yield
criterion and velocity boundary conditions. The yield criterion was linearized
using a polygonal approximation. Thus, the finite element formulation of the
upper bound theorem led to a linear programming problem whose objective
function was the minimization of the collapse load and was expressed in terms
of the unknown velocities and plastic multipliers. The upper bound loads were
obtained using the revised simplex algorithm. Sloan (1988b, 1989) adopted
the same basic formulation as Bottero et al. (1980) but solved the linear
programming problem using an active set algorithm. The major problem



encountered by Bottero et al. (1980) and Sloan (1988b, 1989) was caused
by the incompressibility condition of the perfectly plastic deformation. The
discretization using linear triangular elements must be arranged such that four
triangles form a quadrilateral with the central nodes lying at its centroid. Yu
et al. (1994) have shown that this constraint can be removed using higher
order (quadratic) interpolation of the nodal velocities.

Another problem of the formulation used by Bottero et al. (1980) and
Sloan (1988b, 1989) was that it could only handle a limited number of
velocity discontinuities with pre-specified directions of shearing. Sloan and
Kleeman (1995) have made significant progress in developing a more
general numerical upper bound formulation in which the direction of
shearing was solved automatically during the optimization solution. Yu
et al. (1998) compare rigorous lower and upper bound solutions with con-
ventional limit equilibrium results for the stability of simple earth slopes.

Many researchers (Mroz and Drescher, 1969; Collins, 1974; Chen, 1975;
Michalowski, 1989; Drescher and Detournay, 1993; Donald and Chen, 1997;
Yu et al., 1998) pointed out that an upper bound limit analysis solution may be
regarded as a special limit equilibrium solution but not vice versa. The equiva-
lence of the two approaches plays a key role in the derivations of the limit load
or factor of safety for materials following the non-associated flow rule.

Classically, algebraic expressions for the upper bound method are deter-
mined for the simple problems. Assuming a log-spiral failure mechanism for
failure surface A shown in Figure 2.10, the work done by the weight of the
soil is dissipated along the failure surface based on the upper bound
approach by Chen (1975) using an associated flow rule, and the height of
the slope can be expressed as

(2.29)
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The critical height of the slope is obtained by minimizing eq. (2.29) with
respect to θ0 and θh which has been obtained by Chen (1975). Chen has also
found that failure surface A is the most critical log-spiral failure surface
unless β is small. When β and φ′ are small, a deep-seated failure shown by
failure surface B in Figure 2.10 may be more critical. The basic solution as
given by eq. (2.29) can however be modified slightly for this case. The
critical result of f(φ′,α,β) as given by eq. (2.29) can be expressed as a dimen-
sionless stability number Ns which is given by Chen (1975). In general, the
stability numbers by Chen (1975) are very close to that by Taylor (1948).

Within the strict framework of limit analysis, 2D slice-based upper
bound approaches have also been extended to solve 3D slope stability prob-
lems (Michalowski, 1989; Chen et al. 2001a,b). The common features for
these approaches are that they all employ the column techniques in 3D limit
equilibrium methods to construct the kinematically admissible velocity
field, and have exactly the same theoretical background and numerical
algorithm which involves a process of minimizing the factor of safety. More
recently, a promising 2D and 3D upper bound limit analysis approach by
means of linear finite elements and non-linear programming (Lyamin and
Sloan, 2002b) has emerged. The approach obviates the need to linearize the
yield surface as adopted in the 2D approach using linear programming
(Sloan, 1989; Sloan and Kleeman, 1995). However, the approach nonethe-
less has stress involvement in performing the upper bound calculations.

2.5 Rigid element

The rigid element method (REM) originated from the rigid body-spring model
(RBSM) proposed by Kawai (1977). More recently, Zhang and Qian (1993) used
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Figure 2.10 Critical log-spiral failure surface by limit analysis for a simple homo-
geneous slope.



the RBSM to evaluate the static and dynamic stability of slopes or dam founda-
tions within the framework of stress-deformation analysis. Qian and Zhang
(1995), and Zhang and Qian (1993) expanded the research field of REM to sta-
bility analysis. Zhang (1999) performed a lower bound limit analysis in conjunc-
tion with the rigid elements to assess the stability of slopes. Recently, Zhuo and
Zhang (2000) conducted a systematical study on the theory, methodologies and
algorithms of the REM, and demonstrated its application to a wide range of dis-
continuous mechanics problems with linear and non-linear material behaviour,
beam and plate bending, as well as to the static and dynamic problems. It should
be noted that there exist some different titles such as the RBSM, rigid finite
element method and interface element method, and a uniform name REM is
adopted here. The REM provides an effective approach to the numerical analysis
of the stability of soils, rocks or discontinuous media. Further studies and appli-
cations of the REM are still being made, attracting the interest of many researchers.

The pre-processing and solution procedure in the REM is quite similar to that
in the conventional FEM, except that the two main components in the REM are
elements and interfaces while they are nodes and elements in the FEM. 

In the REM, each element is assumed to be rigid. The medium under study
is partitioned into a proper number of rigid elements mutually connected at
the interfaces. Displacement of any point in a rigid element can be described
as a function of the translation and rotation of the element centroid. The
deformation energy of the system is stored only at the interfaces between
rigid elements. The concept of contact ‘overlap’, though physically inadmis-
sible because elements should not interpenetrate each other, may be accepted
as a mathematical means to represent the deformability of the contact inter-
faces. In such a discrete model, though the relative displacements between
adjacent elements show a discontinuous feature of deformation, the studied
media can still be considered to be a continuum as a whole mass body. 

In the REM, the element centroid displacements are the primary variables,
while in the FEM the nodal displacements are selected. For the case of stress-
deformation analysis, the forces on the element interfaces are calculated in the
REM, different from the Gauss point stress tensor as calculated in the FEM.
Thus, while using the Mohr–Coulomb failure (yield) condition, the normal
and shear stresses on each interface can be directly incorporated into the
failure function to have a check. This treatment in fact assumes that interfaces
between the adjacent rigid elements may be the failure surfaces, and makes
the calculation results quite sensitive to the mesh partition.

2.5.1 Displacements of the rigid elements

For the sake of convenience, a local reference coordinate system of n–d–s
axes for the REM calculations is introduced. Consider the face in Figure
2.11: the n-axis is pointing along the outward normal of the face; the d-axis
is the dip direction (the steepest descent on the face); the and the s-axis is the
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strike direction (parallel to the projected intersection between the xy-plane
and the face). The n–d–s axes form a right-handed coordinate system.

To illustrate the key features of rigid element analysis in a simple way, we
restrict our attention on 2D computation in this chapter. In the 2D case, any
point has two degrees of freedom, the x and y displacements denoted as ux

and uy. Each rigid element is associated with a three-dimensional vector ug

of displacement variables at its centroid (similar to the discontinuous defor-
mation analysis (DDA) by Shi, 1996, Cheng, 1998 and Cheng and Zhang,
2000, 2002), that is, the rigid element has both translational displacements
uxg and uyg, and rotational displacement uθg. The displacements at any point
P(x, y) of an interface in the global coordinate system can then be written as

(2.30)

(2.31) 

(2.32)

Superscript T denotes transpose; xg and yg are the abscissa and ordinate val-
ues of the centroid of the element, respectively; N is termed shape function.

N = 1 0 yg − y
0 1 x− xg

� �
where u= ux uy½ �T; ug = uxg uyg uθg½ �T

u=Nug
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Figure 2.11 Local coordinate system defined by n (normal direction), d (dip direc-
tion) and s (strike direction).



As shown in Figure 2.12, the relative displacement δ at a point P can be
decomposed into two components in the n-axis and s-axis:

(2.33)

The relative displacement δ can be further represented by

(2.34)

where the subscripts (1) and (2) denote elements (1) and (2), respectively;
L(1) is the matrix of direction cosines of the local n–s axes on the interface
of Element (1) with respect to the global coordinate system and is expressed
by

(2.35)

2.5.2 Contact stresses between rigid elements

From elasticity theory, the relation of the contact stress and displacement in
the REM is expressed as

Lð1Þ= cosðn, xÞ cosðn, yÞ
cosðs, xÞ cosðs, yÞ

� �

δ= −Lð1ÞðNð1Þuð1Þg −Nð2Þuð2Þg Þ

δ= δn δs½ �T
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(2.36)

(2.37)

(2.38)

D is termed the elasticity matrix, and for the plane strain problem it is
given by

(2.39)

For the plane stress problem, it is given by

(2.40)

where h1 and h2 are the distances from the centres of the two elements to the inter-
face shown in Figure 2.12; E1 and E2 are the elastic moduli; and μ1 and μ2 are
Poisson ratios of the materials to which elements (1) and (2) belong, respectively.

An interface is called a restriction interface while it is subjected to a cer-
tain displacement restriction, for example, a fixed interface or a symmetric
interface. Such an interface also has contributions to the global stiffness
matrix. For example, for a fixed interface

(2.41)

(2.42)

(2.43)

(2.44)

2.5.3 Principle of virtual work

The previous section describes how all the important quantities can be expressed
in terms of the displacements of the element centroid. These relationships can be
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used to derive the rigid element stiffness matrix. The principle of virtual work
states that when a structure is in equilibrium the external work done by any
virtual displacement is equal to the internal energy dissipation. For the REM, the
deformation energy of the system is stored only at the interfaces between the
rigid elements. The rigid element itself has no strain and thus there is no inter-
nal energy dissipation within the element. The virtual work done by the traction
force at the interface can be viewed as an external work for the observed ele-
ment. The total virtual external work done is the sum of the work done by the
individual elements. The virtual work equation can be written as

(2.45)

where F and X are body forces and boundary loadings; ul is the interface
displacement represented in the local reference coordinate system; and S
and Ω are the surface and volume of the structure body, respectively.

Using eqs (2.34) and (2.36) in eq. (2.45) gives:

(2.46)

In REM formulations, we introduce a selection matrix Ce for each ele-
ment which is defined by

(2.47)

and for element i, Cie is given by

(2.48)

where U is the global displacement matrix

(2.49)

Using the notations given by eqs (2.50) and (2.51), eq. (2.46) can be written as

(2.50)

(2.51)N * = Nð1Þ Nð2Þ
� �

Ce* = Cð1Þe −Cð2Þe

� �T

U = uð1Þg , uð2Þg , . . .
h iT

Cie = 0 . . . 1
z}|{3i− 2

0
z}|{3i− 1

0
z}|{3i

. . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 1 . . . 0
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(2.52)

2.5.4 Governing equations

Considering the arbitrary feature of a virtual displacement δU in eq. (2.52),
the governing equation can be given in the form

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

K and R are the global stiffness matrix and global force matrix, respectively;
ki is the stiffness matrix of each interface; and Re is the force matrix at the
centroid of the rigid element.

2.5.5 General procedure of the REM computation

The REM is a numerical procedure for solving engineering problems.
Linear elastic behaviour is assumed here. The six steps of the REM analysis
are summarized as follows:

1 Discretize the domain – this step involves subdividing the domain into
elements and nodes. As one of the main components of the REM is the
interface, it is necessary to set up the topological relations of nodes,
elements and interfaces. 

2 Select the element centroid displacements as primary variables – the
shape function and elastic matrix need to be set up.

3 Calculate the global loading matrix – this will be done according to eqs
(2.56) and (2.57).

4 Assemble the global stiffness matrix – this will be done according to eqs
(2.54) and (2.55) after calculating the stiffness matrix for each interface.

Re =
ZZZ

�e

NTFd�+
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se
σ
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e
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si
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DLð1ÞN * ds

K =
X

C* T
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5 Apply the boundary conditions – add supports and applied loads and
displacements. 

6 Solve the global equations – to obtain the displacement of each element
centroid. The relative displacement and stress of each interface can then
be obtained according to eqs (2.34) and (2.36), respectively.

2.5.6 Relation between the REM and the slice-based approach

This section demonstrates that the present formulation based on the REM can
be easily reduced to the formulations of other upper bound limit analysis
approaches proposed by Michalowski (1995) and Donald and Chen (1997),
respectively, where slice techniques and translational failure mechanics are used. 

We herein purposely divide the failing mass of the soil into rigid elements in
the same way as the case of inclined slices (or 2D wedges) considered in the
upper bound limit analysis approach by Donald and Chen (1997). As shown
in Figure 2.13, the rigid elements below the assumed failure surface ABCDE
are fixed with zero velocities and thus called base elements. The index k
denotes the element number, φk is the internal friction angle on the base inter-
face (the interface between element k and the base element below) and 

_
φk the

internal friction angle at the left interface (the interface between elements k and
k – 1) of the kth element, respectively. αk is the angle of inclination of the kth
element base from the horizontal direction (anti-clockwise positive) and βk is
the inclination angle of the kth element’s left interface from the vertical direc-
tion (anti-clockwise positive). Suppose the kth element has a velocity Vk (mag-
nitude denoted as Vk, with vxk and vyk in x and y directions, respectively) in the
global coordinate system. Note here that, due to the assumption of a transla-
tional collapse mechanism, the rotation velocity of the kth element equals zero.

As shown in Figure 2.13(b), the direction cosine matrix of the base inter-
face of the kth element with respect to the base element can be written as

(2.58)

The relative velocity of the base interface, V ′k , can be expressed as

(2.59)

As shown in Figure 2.13(b), the element k has the tendency to move leftward
with respect to the base element. According to the Mohr–Coulomb failure
criterion (or yield criterion for perfect plasticity material) and the associated
flow rule, the relationship between the normal velocity magnitude (Δvn) and
tangential velocity magnitude (Δvs) jumps across the discontinuity and can
be written as

(2.60)Δvn = − Δvsj j tanφ
0

V
0
k = vnk

vsk

� �
= − vxk sinαk + vyk cos αk

− vxk cosαk − vyk sinαk

� �

Lð1Þ= − sinαk cos αk

− cosαk − sinαk

� �
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Figure 2.13 Failure mechanism similar to traditional slice techniques.

Using eq. (2.60), we have 

(2.61)

Thus, the following relationships can be obtained:

(2.62)

vxk =Vk cosðαk −φkÞ
vyk =Vk sinðαk −φkÞ

vnk

vsk
= tanφk



Similarly, we can get

(2.63)

From Figure 2.13(c), the direction cosine matrix of the left interface of the
kth element with respect to the (k – 1)th element can be written as

(2.64)

Similarly, the relative velocity of the left interface of the kth element, ΔVk,
can be given in the form

(2.65)

From eq. (2.60), we can get

(2.66)

where the case with a negative sign in the above equation coincides with the
case where the (k – 1)th element has a tendency to move upward with
respect to the kth element shown in Figure 2.13(c) with the dashed lines. It
is noted that this case is identical to Case 1 defined in the method proposed
by Donald and Chen (1997), and similarly the case with the positive mark
in the above equation corresponds to Case 2 as discussed in Donald and
Chen’s method.

Putting eqs (2.62), (2.63) and (2.65) into eq. (2.66), we can get the
following relationship:

(2.67)

With above eq. (2.67), and according to eq. (2.62), we can express vxk and
vyk in terms of Vk − 1

(2.68)

Together with eq. (2.63), we put eq. (2.68) into (2.65) and then we have:

(2.69)
ΔVk =Vk− 1

sinðαk −φk −αk− 1 +φk−1Þ
cos½ðαk −φkÞ− ðβk � φkÞ�

vxk =Vk− 1
cos½ðαk− 1 −φk− 1Þ− ðβk � φkÞ�

cos½ðαk −φkÞ− ðβk � φkÞ�
cosðαk −φkÞ

vyk =Vk− 1
cos½ðαk− 1 −φk− 1Þ− ðβk � φkÞ�

cos½ðαk −φkÞ− ðβk � φkÞ�
sinðαk −φkÞ

Vk =Vk−1
cos½ðαk− 1 −φk−1Þ− ðβk � φkÞ�

cos½ðαk −φkÞ− ðβk � φkÞ�

Δvnk

Δvsk
= ± tanφk

ΔVk = Δvnk

Δvsk

� �
= cos βkðvxk − vx, k− 1Þ + sin βkðvyk − vy, k− 1Þ

− sin βkðvxk − vx, k− 1Þ+ cos βkðvyk − vy, k−1Þ

�

Lð1Þ= − cos βk − sin βk

sin βk − cos βk

� �

vx, k− 1 =Vk− 1 cosðαk− 1 −φk− 1Þ
vy, k− 1 =Vk−1 sinðαk− 1 −φk− 1Þ
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In the method proposed by Donald and Chen (1997), the velocities of 2D
wedges can be determined by a hodograph:

(2.70)

Using the following definitions:

(2.71)

and

(2.72)

Variables Vl, Vr, Vj, αl, φel, αr, φer and φej in Donald and Chen’s approach are
identical to those Vk–1, Vk, ΔVk , αk–1, αk, φk and 

_
φk defined in the present

method, respectively. It should be noted that δ in their formulations equal
to −βk in the present formulation, since the direction definition of δ (clock-
wise positive) is opposite to that of βk used in the present method (anti-
clockwise positive).

Substituting Vk–1, Vk, ΔVk , αk–1, φk–1, αk, φk, 

_
φk and βk into eq. (2.70), and

keeping the consistency between corresponding cases in the two approaches,
eq. (2.70) arrives at exactly the same form of eqs (2.67) and (2.69) in the
proposed method.

In the method proposed by Michalowski (1995), vertical slices were
employed. For vertical slices, βk equals to zero, and eqs (2.67) and (2.69)
can be reduced to the following two equations. 

(2.73)

(2.74)

It is noted that the above equations correspond to the case where the (k – 1)th
element moves downward with respect to the kth element, that is, ΔVnk/ΔVsk =
tan 

_
φk. In such a case, the velocity relationships in the present method are identi-

cal to those under the translational failure mechanism in the method proposed
by Michalowski (1995).

It has been proved above that the present formulations in the REM
reduce to exactly the same formulations of the methods proposed by

ΔVk =Vk
sinðφk −φk− 1 −αk +αk− 1Þ

cosðαk− 1 −φk− 1 −φkÞ

Vk =Vk−1
cosðαk− 1 −φk− 1 −φkÞ

cosðφk +φk −αkÞ

θj = π

2
− δ+φej for case 1

θj = 3π

2
− δ−φej for case 2

θl =π+αl −φel

θr =π+αr −φer

Vr =Vl
sinðθl − θjÞ
sinðθr − θjÞ

Vj =Vl
sinðθr − θlÞ
sinðθr − θjÞ



Donald and Chen (1997) and Michalowski (1995) if the same slices with
the same translational failure mechanism are used. In other words, the
upper bound limit analyses using slices (or 2D wedges) may be viewed as a
special and simple case of the formulation of the present method.

As shown in Figure 2.14, Kim et al. (1999) have studied the slope in nine
cases with different depth factors D and slope inclinations β. In this study,
we only take one case to investigate the feasibility of the present method, for
example, consider the slope with depth factor D = 2, H = 10 m and β = 45°,
and with soil properties γ = 18 kNm−3, c′ = 20 kNm−3 and φ′ = 15°. To assess
the effects of pore water pressure, two locations of a water table with Hw =
4 and 6 m are considered in this study. Figure 2.15 shows three rigid finite
element meshes (coarse, medium and fine meshes) used in the analysis, for
the case of a water table Hw = 6 m. The relations between the number of
rigid elements used in the mesh and calculated factor of safety, for the case
of a water table Hw = 4 m and Hw = 6 m, are shown in Table 2.8.

2.6 Design figures and tables

For a simple homogeneous slope with geometry shown in Figure 2.17,
the critical factor of safety can be determined from the use of a stability
table instead of using a computer program. Stability tables and figures
have been prepared by Taylor (friction circle), Morgenstern (Spencer
method), Chen (limit analysis) and Cheng. In general, most of the results
from these stability tables are closer. All the previous stability
tables/figures are however designed for 2D problems. Cheng has prepared
stability tables using both the 2D and 3D Bishop methods based on
SLOPE 2000 which are given below (Tables 2.9 and 2.10). 

For the 2D stability table by Cheng, the results are very close to those of
Chen (1975) using a log-spiral failure surface. This also indicates that a
circular failure surface is adequate to represent the critical failure surface
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Figure 2.14 A simple homogeneous slope with pore water pressure.
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Mesh parameters:
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128 discontinuities
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Figure 2.15 REM meshes – with Hw = 6 m: (a) coarse mesh, (b) medium mesh and
(c) fine mesh.



for a simple slope. When the slope angle and angle of shearing resistance
are both small, the critical failure surface will be below the toe of the slope,
which is equivalent to a deep-seated failure. Other than that, the critical
failure surface will pass through the toe of the slope. 
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Figure 2.16 Velocity vectors (medium mesh).

Table 2.8 Comparisons of factors of safety for various conditions of a water table 

Study by Kim Present method 
et al. (1999) (upper bound)

Lower Bishop method Upper Coarse Medium Fine 
bound (Bishop, 1955) bound mesh mesh mesh

4 1.036 1.101 1.166 1.030 1.403 1.276 1.202
6 0.971 1.036 1.068 0.973 1.284 1.162 1.096

Hw
(m)

Janbu
chart
(Janbu et al.,
1956)

H

β

α

Figure 2.17 A simple slope for a stability chart by Cheng.



Table 2.9 Stability chart using 2D Bishop simplified analysis (* means below toe
failure)

φ α\β
(o) (o) 70 65 60 55 50 45 40 35 30 25 20 15

0 0 4.80 5.03 5.25 5.46 5.67 5.87 5.41* 5.43* 5.45* 5.43* 5.45* 5.46*
5 0 5.41 5.73 6.09 6.46 6.85 7.29 7.79 8.37 9.08* 9.97* 11.43* 14.38*

5 5.30 5.63 5.96 6.32 6.70 7.11 7.59 8.14 8.77* 9.60* 10.96* 13.69*
10 0 6.05 6.52 7.09 7.71 8.40 9.21 10.22 11.54 13.45 16.62 23.14 45.57

5 5.95 6.44 6.99 7.58 8.26 9.05 10.06 11.36 13.24 16.33 22.78 45.00
10 5.84 6.33 6.86 7.41 8.07 8.83 9.78 11.11 12.84 15.79 21.90 42.86

15 0 6.94 7.58 8.37 9.36 10.50 11.94 13.90 16.79 21.69 32.14 69.23 —
5 6.77 7.50 8.30 9.25 10.36 11.80 13.74 16.59 21.48 31.86 68.97

10 6.67 7.38 8.18 9.09 10.20 11.61 13.51 16.33 21.13 31.36 68.18
15 6.53 7.22 8.01 8.89 9.96 11.25 13.14 15.85 20.45 30.25 68.18

20 0 7.97 9.01 10.14 11.61 13.51 16.07 20.00 26.67 41.38 94.74 —
5 8.04 8.91 10.04 11.50 13.38 15.93 19.82 26.55 41.10 94.74

10 7.69 8.82 9.92 11.35 13.22 15.76 19.61 26.28 40.72 93.75
15 7.60 8.66 9.75 11.16 12.97 15.49 19.25 25.79 40.18 92.78
20 7.59 8.44 9.55 10.91 12.66 15.06 18.71 25.00 38.54 88.24

25 0 9.42 11.01 12.57 14.80 18.04 22.93 31.47 50.28 120.00 —
5 9.28 10.91 12.46 14.69 17.91 22.78 31.03 50.00 120.00

10 9.50 10.84 12.33 14.57 17.73 22.56 31.03 49.72 119.21
15 9.00 10.60 12.16 14.35 17.51 22.28 30.72 49.32 118.42
20 8.97 10.51 12.00 14.12 17.22 21.95 30.25 48.65 116.88
25 8.81 10.17 11.73 13.74 16.74 21.25 29.27 46.75 111.80

30 0 11.89 13.79 16.07 19.65 25.53 35.64 58.63 144.00 —
5 11.54 13.74 16.00 19.52 25.35 35.64 58.44 144.00

10 11.43 13.75 15.83 19.35 25.17 35.43 58.25 144.00
15 11.04 13.53 15.65 19.19 25.00 35.16 57.32 142.86
20 10.71 13.31 15.49 18.95 24.66 34.75 57.32 142.29
25 10.81 12.93 15.23 18.60 24.19 34.16 56.60 140.63
30 10.43 12.11 14.86 18.09 23.44 32.97 54.22 134.33

35 0 14.83 18.00 21.25 27.48 39.30 65.93 166.67 —
5 14.94 17.82 21.18 27.40 39.30 65.69 166.67

10 14.25 17.65 21.08 27.27 39.13 65.45 165.90
15 14.04 17.54 20.93 27.03 38.79 65.45 165.14
20 13.85 17.65 20.69 26.87 38.63 64.98 165.14
25 13.19 16.32 20.55 26.55 38.30 64.29 165.14
30 12.82 15.76 20.18 26.01 37.50 63.16 163.64
35 12.54 15.67 19.35 25.14 36.14 61.02 155.17

40 0 20.07 24.03 30.10 42.35 72.29 185.57 —
5 19.13 23.68 29.41 42.06 72.00 185.57

10 19.82 23.72 29.27 42.35 71.43 185.57
15 18.95 23.53 30.28 41.86 71.43 183.67
20 17.61 23.38 29.32 41.47 71.43 183.67
25 16.93 23.23 28.85 41.10 70.87 183.67
30 16.36 22.70 28.57 40.72 70.04 181.82
35 16.04 21.05 28.13 40.00 68.97 180.00
40 15.72 20.00 27.69 38.46 65.93 171.43



Table 2.10 Stability chart using 3D Bishop simplified analysis by Cheng (* means
below toe failures)

φ α\β
(o) (o) 70 65 60 55 50 45 40 35 30 25 20 15

0 0 6.16 6.43* 6.55* 6.67* 6.79* 6.92* 6.27* 6.25* 6.25* 6.25* 6.21* 6.15*
5 0 6.81 7.20 7.66 8.11* 8.57* 9.04* 9.52* 10.11* 10.84* 12.00* 13.74* 17.48*

5 6.72 7.09 7.53 7.96* 8.41* 8.82* 9.23* 9.73* 10.47* 11.46* 13.14* 16.45*
10 0 7.74 8.20 8.96 9.78 10.71 11.69 12.86 14.52 16.82 20.69 29.03 58.06

5 7.77 8.09 8.82 9.68 10.53 11.52 12.68 14.17 16.44 20.36 28.48 56.25
10 7.63 7.99 8.70 9.50 10.29 11.26 12.33 13.74 15.93 19.57 27.27 53.25

15 0 9.23 9.78 10.65 11.92 13.33 15.25 17.65 21.43 27.69 41.10 90.00 —
5 9.23 9.68 10.53 11.76 13.24 15.06 17.48 21.18 27.27 40.72 90.00

10 9.08 9.57 10.40 11.61 12.99 14.75 17.14 20.69 26.87 40.18 86.54
15 8.96 9.40 10.23 11.39 12.77 14.40 16.82 20.22 26.09 38.30 87.38

20 0 11.39 11.84 13.28 15.13 17.22 20.45 25.35 33.96 52.94 124.14 —
5 11.46 11.84 12.90 15.03 17.14 20.22 25.35 33.96 52.94 122.45

10 11.39 11.69 12.77 14.52 16.98 20.00 25.00 33.33 51.72 121.62
15 11.07 11.54 12.59 14.42 16.67 19.78 24.66 32.73 51.43 118.42
20 10.17 11.39 12.41 13.95 16.32 19.19 23.97 31.86 49.18 112.50

25 0 14.46 14.81 16.81 19.62 23.68 29.03 40.00 64.29 155.17 —
5 14.63 14.88 16.67 20.00 23.62 29.03 40.00 64.29 155.17

10 13.93 14.75 17.82 19.21 22.78 28.57 39.30 63.38 153.85
15 14.62 14.81 15.93 18.71 22.50 28.21 38.30 63.38 152.54
20 12.68 14.52 15.79 18.09 21.95 27.69 38.22 61.64 151.26
25 12.00 14.40 15.57 17.65 21.18 26.87 37.11 59.02 142.86

30 0 18.56 18.95 21.95 28.13 33.33 45.23 75.00 187.50 —
5 18.37 18.91 21.63 28.13 33.33 45.23 75.00 183.67

10 18.56 18.93 21.18 28.13 32.85 45.00 73.77 183.67
15 17.79 18.87 20.93 25.64 32.61 44.33 72.00 183.67
20 16.29 18.95 20.69 24.39 32.73 44.12 72.58 183.67
25 15.25 18.65 20.22 24.00 31.03 43.27 72.00 176.47
30 14.63 17.14 20.16 23.38 29.51 41.67 69.23 168.22

35 0 23.38 25.00 30.00 40.00 50.56 82.57 209.30 —
5 24.03 25.00 30.03 38.22 51.43 82.57 209.30

10 23.50 24.49 29.80 38.30 51.28 81.82 206.90
15 23.47 24.26 28.57 38.30 51.58 82.57 206.90
20 21.69 24.39 28.13 35.86 50.56 82.57 206.90
25 20.00 24.32 27.69 34.62 48.91 80.36 209.30
30 19.15 24.23 26.87 33.33 48.65 78.95 204.55
35 20.11 21.69 26.09 32.14 45.00 76.92 195.65

40 0 29.95 34.09 45.23 60.40 90.91 236.84 —
5 30.00 33.64 43.90 58.06 90.00 236.84

10 30.15 33.33 43.90 60.00 90.00 233.77
15 30.86 32.73 41.47 59.21 90.00 233.77
20 30.82 32.26 40.91 59.41 90.00 230.77
25 28.13 32.14 39.13 59.02 88.24 230.77
30 26.47 32.49 38.30 54.55 85.71 227.85
35 25.55 33.09 37.50 51.43 86.54 227.85
40 22.73 28.57 36.79 48.65 84.11 214.29
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2.7 Method based on the variational principle or extremum
principle

The most critical limitation of the LEM is the requirement on the inter-slice force
function which is specified by the user before the analysis. To overcome this lim-
itation, the lower bound method can be adopted. Based on the lower bound the-
orem, any statically admissible stress field not exceeding the yield will be a lower
bound of the ultimate state. Pan (1980) has stated that the slope stability prob-
lem is actually a dual optimization problem, which is actually equivalent to the
upper and lower bound but appears to be not well known outside China. On the
one hand, the soil mass should redistribute the internal forces to resist the failure,
which will result in a maximum factor of safety for any given slip surface. This
is called the maximum extremum principle which is actually a lower bound
method as demonstrated by Chen (1988). On the other hand, the slip surface
with the minimum factor of safety is the most possible failure surface, which is
called the minimum extremum principle. The minimum extremum principle
is actually equivalent to the upper bound method which will be covered in
Chapter 3. The maximum extremum principle is not new in engineering, and the
ultimate limit state of a reinforced concrete beam is actually the maximum
extremum state where the stresses in the compressive zone of the concrete beam
redistribute until a failure mechanism is formed. The ultimate limit state design
of a reinforced concrete beam under moment is equivalent to the maximum
extremum principle. Pan’s extremum principle (1980) can provide a practical
guideline for the slope stability analysis, and it is very similar to the calculus of
the variation method by Baker and Garber (1978), Baker (1980) and Revilla and
Castillo (1977). This dual extremum principle is proved by Chen (1998) based
on the lower and upper bound analysis, and is further elaborated with
applications to rock slope problems by Chen et al. (2001a,b). 

Pan (1980) has only stated a general extremum principle without providing an
actual formulation suitable for numerical analysis. Baker’s (1980) variational
approach which is equivalent to the extremum principle is not suitable for
application in complicated non-homogeneous problems or problems with soil
reinforcement. Cheng et al. (2007c) have provided a discretized numerical for-
mulation based on the extremum principle, and an improved global optimization
scheme based on the particle swarm optimization algorithm (PSO) and harmony
search (HS) by Cheng et al. (2007e,f) considered suitable for the extremum
optimization analysis.

There are two possible approaches to implement the lower bound method
or the maximum extremum principle: single factor of safety and different local
factors of safety. The single factor of safety approach is covered in Section 2.9
while the varying local factor of safety approach is covered in this section. The
actual failure of a slope is usually a progressive phenomenon. If the shear
strength of a certain slice has been fully mobilized, the unbalanced forces will



distribute to the adjacent slices until a failure mechanism is formed. This
process is called the progressive failure of slope. This may not be significant for
work hardening materials, but can be very important for work softening mate-
rials. This phenomenon is well known, but is difficult to be considered by the
classical LEM. Chugh (1986) presented a procedure for determining a variable
factor of safety along the failure surface within the framework of the LEM.
Chugh pre-defined a characteristic shape for the variation of the local factor of
safety along a failure surface, and this idea actually follows the idea of the vari-
able inter-slice shear force function in the Morgenstern–Price method (1965).
The suitability of this variable factor of safety distribution function is however
questionable, and there is no simple way to define this function for a general
problem, as the local factor of safety should be mainly controlled by the local
soil properties, topography and shape of failure surface.

Lam et al. (1987) proposed a limit equilibrium method for the study of
the progressive failure in a slope under a long-term condition. His main idea
involved the recognition of the local failure and the operation of the post-
peak strength. This concept is one of the progressive failure phenomena
which applies when the deformation is very large and there is a major
reduction in the shear strength of soil, but this approach cannot be applied
to the general progressive failure phenomenon. 

Baker and Garber (1978), Baker (1980) and Revilla and Castillo (1977)
have applied the calculus of variation to the determination of the factor of
safety of a slope. Baker (1980) has also prepared design figures for simple
slopes based on the variational principle. Although this principle requires
very few assumptions with no convergence problems during the solution, it
is difficult to be adopted when the geometry or the ground/loading condi-
tions are complicated. Furthermore, for problems where the global mini-
mum is not governed by the condition of the gradient of the objective
function being zero (e.g. see Cheng, 2003), the global minimum will not be
determined by the calculus of variation. The variational formulation by
Baker (1980) was criticized by De Jong (1980, 1981) who argued that the
stationary value may have an indefinite character rather than a minimum.
Consequently, he concluded that the variational formulation is, in princi-
ple, meaningless, despite its apparent advantages. This conclusion was sup-
ported by Castilo and Luceno (1980, 1982) which was based on a series of
counter-examples. Baker (2003) later incorporated some additional physi-
cal restrictions into the basic limiting equilibrium framework, and has ver-
ified that those restrictions guarantee that the slope stability problem has a
well-defined solution (minimum). These restrictions are implied, without
being explicitly stated, in all practical applications of this methodology, and
under usual circumstances they do not change the solution of the problem
(they are non-active constraints).

In the maximum extremum principle, the values and locations of
the inter-slice forces are viewed as the control variables, and the group of
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inter-slice forces satisfying static equilibrium will be optimized to determine
the maximum factor of safety for a prescribed failure surface. Consider the
slope shown in Figure 2.1; the soil mass between the potential slip surface
and the ground surface is divided into n vertical slices, numbering from 1
to n and from left to right. The local factor of safety for slice i is defined as
the ratio of the available shear strength along a slice base on the driving
shear stress along the slice as:

(2.75)

where Fi
s is the local factor of safety for slice i, φi is the effective friction angle

of the slice base, ci equals ci′li and li is the base length of slice i. The
total/global factor of safety is defined as the ratio of the available shear
strength along the slip surface to the driving shear stress along the whole
slip surface, and it is given by eq. (2.76) as:

(2.76)

If the magnitude and locations of the internal forces are taken as the control
variables and Fs defined by eq. (2.76) is optimized, the internal forces and the
local/global factors of safety can be evaluated without defining a f(x). This
idea was recently developed by Cheng et al. (2007c), which takes two forms:
Ailc and Aglc. In Ailc, the local factor of safety can take any arbitrary value
greater than 0. In Aglc, the minimum factor of safety on each slice is main-
tained to be 1.0 by distributing the residual force/moment to adjacent slices.
In doing so, the residual strength approach by Lam et al. (1987) can be
adopted easily. In formulating the optimization process, the upper and lower
bounds of the control variables have to be controlled within acceptable lim-
its, otherwise unreasonable results can appear from the optimization process.

Consider the problems shown in 2.9; the use of the present extremum prin-
ciple gives a factor of safety of 1.876 and 1.86 for Ailc and Aglc analyses. The
line of thrust for this problem is determined from the optimization analysis
and is shown in Figure 2.18, while the local factor of safety along the failure
surface is shown in Figure 2.19. It is noticed that the local factor of safety for
the Ailc formulation has a higher fluctuation than the Aglc formulation,
which is true for other examples as well.

Sarma and Tan (2006) have assumed that the factor of safety along the
interfaces between slices is unity at all the interfaces. The limit analysis by
Chen (1975) and Chen et al. (2001a,b) also implicitly assumes this factor of
safety to be unity. Chen et al. (2001a,b) have found that this factor of safety
is not unity by using the rigid element method. The authors view that there is
no strong theoretical background behind this assumption, and this assumption
will be checked against the present formulation as well as the Spencer method. 

Fs =
Pn

i= 1 ðNi tanφi + ciÞPn
i= 1 Si

Fi
s =

Ni tanφi + ci

Si
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Figure 2.18 Line of thrust (LOT) computed from extremum principle for the problem
in Figure 2.9.
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The local factor of safety along the interface between two adjoining slices

is defined as where φvi is the average friction

angle along the ith inter-slice and Cvi is the average cohesion along the ith
inter-slice. It is however found that this interface factor of safety is much
greater than unity as shown in Figure 2.20, which is greatly different from
the assumption by Sarma and Tan (2006). If the Spencer method is used for
this problem, the local factor of safety is also not equal to 1.0, and the
assumption in limit analysis and the formulation by Sarma and Tan may
not be applicable. In this respect, the present approach has the advantage
of requiring less assumptions in the basic formulation. To avoid the
violation of the Mohr–Coulomb relation along the interface, this relation
can be added as a constraint in the optimization analysis which is available
in SLOPE 2000.

2.8 Upper and lower bounds to the factor of safety and
f(x) by the lower bound method

The previous extremum principle assumes the factor of safety to be different
among different slices. The extremum principle can also be formulated
assuming a single factor of safety by utilizing the Morgenstern–Price method
which is based on the force and moment equilibrium with an assumption of
f(x). Then the bounds to the actual factor of safety will be given by the upper

ζi = Fi cos βi tanφvi +Cvi

Fi sin βi

,
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and lower bounds of the factor of safety arising from all combinations of f(x).
If a pattern search is used where 10 combinations are assigned for each f(x),
a problem with 11 slices will require 1010 combinations with tremendous
computation and has hence never been tried in the past. This approach
appears to be impossible until the modern artificial intelligence-based
optimization methods are developed, which will be discussed in Chapter 3.

To determine the bounds of the factor of safety and f(x), the slope shown
in Figure 2.18 can be considered. For a failure surface with n slices, there
are n – 1 interfaces and hence n – 1 control variables representing f(xi). f(x)
will lie within the range 0–1.0, while the mobilization factor l and the objec-
tive function FOS based on the Morgenstern–Price method will be deter-
mined for each set of f(xi). The maximum and minimum factors of safety of
a prescribed failure surface satisfying force and moment equilibrium will
then be given by the various possible f(xi) which requires the use of modern
global optimization methods with the requirement given by eq. (2.77),

Maximize (or minimize) FOS subject to 0 ≤ f(xi) ≤ 1.0 for all i (2.77)

In carrying out the optimization analysis as given by eq. (2.77), the con-
straints from the Mohr–Coulomb relation along the interfaces between
slices as given by eq. (2.78) should be considered.

(2.78)

where L is the vertical length of the interface between slices. The con-
straint by eq. (2.78) can have a major impact on λ but not the FOS, and
this will be illustrated by the numerical examples in the following section.
Since other than f(x) the Morgenstern–Price method is totally governed by
the force and moment equilibrium, the maximum and minimum factors
of safety from varying f(x) will provide the upper and lower bounds to the
factor of safety of the slope which is not possible with the classical
approach.

Cheng (2003) and Cheng and Yip (2007) have applied the simulated
annealing method complying with eqs (2.77) and (2.78) to evaluate the
bounds to the factor of safety and have coded the method into a general
purpose commercially available program, SLOPE 2000. Consider the
cases shown in Figures 2.4 and 2.9; the bounds to the factor of safety are
given as 1.032/1.022 (Figure 2.4) and 1.837/1.826 (Figure 2.9) if eq.
(2.78) is enforced. It is noticed that while for normal problems with no
soil nail or external loads, the upper and lower bounds to the factor of
safety are usually close so that f(x) has a negligible effect on the analysis;
the results for Figure 2.9 is extreme in that there is significant difference
between the upper and lower bounds of the factors of safety. Based on
lots of trial tests, the authors have found that this situation is rare but is
not uncommon. The f(x) associated with the maximum and minimum

V ≤Ptanφ0+ c0L,
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extrema can be approximated by the relations shown in Figure 2.21,
where f(x) is plotted from the toe of slope to the crest of slope along the
increasing x direction. It should be noted that this figure applies only to
a simple slope passing through the toe of slope, and the slope has a level
instead of inclined back. For a general slope with external load and soil
nails, the use of a simple inter-slice force function is difficult, and the use
of the numerical method available in SLOPE 2000 is recommended. A
worked example in evaluating f(x) by the lower bound method is given in
the Appendix of this book.

The previous studies on convergence by Baker (1980) or by Cheng et al.
(2008a) are mainly concerned with the numerical results instead of investi-
gating the fundamental importance of f(x). For a problem with a set of con-
sistent and acceptable internal forces, the FOS must exist as it can be
determined explicitly if the internal forces are known. Failure to converge
will not occur if the double QR method is used, though the use of the iteration
method may fail to converge due to the limitation of the mathematical
method. If no FOS can be determined from the double QR method, this is
equivalent to a consistent set of internal forces under the specified f(x) not
existing. If a problem fails to converge for a particular f(x), a FOS can
usually be found by tuning f(x). Physically, it means that f(x) cannot be
arbitrarily assigned to a slope. If f(x) is not associated with a consistent set
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of internal forces, then that f(x) is not acceptable. That means that f(x) can-
not be randomly specified or else there will be no consistent internal forces
(and hence FOS) associated with the f(x). The present approach provides a
systematic way to determine f(x) for an arbitrary problem, and convergence
is virtually eliminated in the analysis. The basic trend of f(x) shown in
Figure 2.21 for the two extrema established by Cheng et al. (2007d) is good
enough for practical purposes.

For the two extrema from the present analysis, the authors view that the
maximum extremum should be taken as the factor of safety of the pre-
scribed failure surface. As discussed, the internal forces within the soil mass
should re-distribute until the maximum resisting capacity of the soil mass is
fully mobilized, which is the lower bound approach. The present definition
also possesses an advantage in that it is independent of the definition of f(x).
It is well known that there are cases where f(x) may have a noticeable influ-
ence on the factor of safety. There is no clear guideline on the acceptance
of the FOS due to the use of different f(x). The use of the maximum
extremum can also avoid this dilemma which has been neglected in the past.
Using the lower bound approach, f(x) is not an arbitrary function and can
be uniquely determined, so the question on f(x) can be viewed as settled as
far as the lower bound theorem is concerned.

2.9 Finite element method

In the classical limit equilibrium and limit analysis methods, the progres-
sive failure phenomenon cannot be estimated except for the method by
Pan. Some researchers propose to use the finite element method to
overcome some of the basic limitations in the traditional methods of
analysis. At present, there are two major applications of the finite element
in slope stability analysis.

The first approach is to perform an elastic (or elasto-plastic) stress analysis
by applying the body force (weight) due to soil to the slope system. Once the
stresses are determined, the local factors of safety can be determined easily
from the stresses and the Mohr–Coulomb criterion. The global factor of
safety can also be defined in a similar way by determining the ultimate shear
force and the actual driving force along the failure surface. Pham and
Fredlund (2003) have adopted the dynamic programming method to perform
this optimization search, and they suggested that this approach can overcome
the limitations of the classical limit equilibrium method. The authors however
view that the elastic stress analysis is not a realistic picture of the slope at the
ultimate limit state. In view of these limitations, the authors do not think that
this approach is really better than the classical approach. It is also interesting
to note that both the factor of safety and the location of the critical failure
surface from such analysis are usually close to that by the limit equilibrium
method. To adopt the elasto-plastic finite element slope stability analysis, one
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precaution should be noted. If the deformation is too large so that the finite
element mesh is greatly modified, the geometric non-linear effect may induce
a major effect on the results. The authors have come across a case where the
geometric non-linear effect has induced more than a 10 per cent change in the
factor of safety. An illustration of this approach will be given in Chapter 4.

The second finite element slope stability approach is the strength
reduction method (SRM). In the SRM, the gravity load vector for a mate-
rial with unit weight γs is determined from eq. (2.79) as:

(2.79)

where {f} is the equivalent body force vector and [N] is the shape factor
matrix. The constitutive model adopted in the non-linear element is usually
the Mohr–Coulomb criterion, but other constitutive models are also possi-
ble, though seldom adopted in practice. The material parameters c′ and φ′
are reduced according to 

(2.80)

The factor of safety F keeps on changing until the ultimate state of the system
is attained, and the corresponding factor of safety will be the factor of safety of
the slope. The termination criterion is usually based on one of the following:

1 the non-linear equation solver cannot achieve convergence after a
pre-set maximum number of iteration;

2 there is a sudden increase in the rate of change of displacement in the system;
3 a failure mechanism has developed.

The location of the critical failure surface is usually determined from the
contour of the maximum shear strain or the maximum shear strain rate.

The main advantages of the SRM are as follows: (i) the critical failure
surface is found automatically from the localized shear strain arising from
the application of gravity loads and the reduction of shear strength; (ii) it
requires no assumption on the inter-slice shear force distribution; (iii) it is
applicable to many complex conditions and can give information such as
stresses, movements and pore pressures which are not possible with the
LEM. Griffiths and Lane (1999) pointed out that the widespread use of
the SRM should be seriously considered by geotechnical practitioners as
a powerful alternative to the traditional limit equilibrium methods. One
of the important criticisms of the SRM is the relative poor performance
of the finite element method in capturing the localized shear band forma-
tion. Although the determination of the factor of safety is relatively easy
and consistent, many engineers find that it is not easy to determine the
critical failure surfaces in some cases as the yield zone is spread over a

cf = c0=F; φf = tan−1ftanðφ0=FÞg

ffg= γs

Z
½N�Tdv
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(a) 500 time steps

Displacement
Maximum = 367 × −002

(b) 1500 time steps

Displacement
Maximum = 1.002 × −001

(c) 3000 time steps

Displacement
Maximum = 1.58 × −001

(d) 5000 time steps

Displacement
Maximum = 2288 × −001

(e) 7000 time steps

Displacement
Maximum = 3.380 × −001

(f) 9000 time steps

Displacement
Maximum = 5.118 × −001

(g) 11,000 time steps

Displacement
Maximum = 5.867 × −001

(h) 13,000 time steps

Displacement
Maximum = 6.193 × −001

Figure 2.22 Displacement of the slope at different time steps when a 4 m water level
is imposed.



(i) 15,000 time steps

Displacement
Maximum = 6.885 × −001

(j) 19,000 time steps

Displacement
Maximum = 8.383 × −001

(k) 23,000 time steps

Displacement
Maximum = 9.78 × −001

(l) 27,000 time steps

Displacement
Maximum = 1.00 × +000

(m) 31,000 time steps

Displacement
Maximum = 1.1750 × +000

(n) 35,000 time steps

Displacement
Maximum = 1.333 × +000

(o) 39,000 time steps

Displacement
Maximum = 1.368 × −000

(p) 43,000 time steps

Displacement
Maximum = 1.08 × +000

Figure 2.22 (Continued).



wide domain instead of localizing within a soft band. Other limitations of
the SRM include the choice of an appropriate constitutive model and
parameters, boundary conditions and the definition of the failure condition/
failure surface, and the detailed comparison between the SRM and LEM
will be given in Chapter 4.

2.10 Distinct element method

The finite element method which is based on continuity theory is not
applicable after the failure has initialized. To assess the complete failure
mechanism, the distinct element method can provide a qualitative assess-
ment. Two distinct element approaches have been used by Cheng. A slope
can be formed by an assembly of particles or triangular rigid blocks. To
avoid the use of an excessive number of particles or rigid blocks which
requires extensive computation time for analysis, a limited number in the
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(q) 47,000 time steps

Displacement
Maximum = 1.475 × +000

(r) 51,000 time steps

Displacement
Maximum = 1523 × +000

Figure 2.22 (Continued)

(a) 2 soil nails inclined at 10° installed
(b) Displacement field after 4m water is

imposed

Figure 2.23 Effect of soil nail installation. (a) Two soil nails inclined at 10° installed
and (b) displacement field after 4 m water is imposed.



range of 10,000—100,000 is used by Cheng. Initially, the initial stress
state of the system is generated from known soil mechanism principle.
The vertical stress is practically equal to the overburden stress while the
horizontal stress is evaluated by an assumed at-rest pressure coefficient.
Once the initial state is established, the change of the water table/pore
pressure or the application of external load will be applied to the system.
The complete displacement history of the system from initial movement
to a complete collapse can be qualitatively assessed. While the use of the
distinct element method is difficult to provide a factor of safety for design,
the collapse mechanism can be assessed which is not possible with all the
classical methods as discussed.

The distinct element approach by Cheng (1998) can reproduce the results
obtained by the classical analytical/numerical method. When the applied
load is large enough, failure starts to initiate, which can be captured easily
by the distinct element method but not the classical method. The limitations
of the distinct element method in slope stability analysis include:

1 A very long computation time is required.
2 The contact material parameters for the contact cannot be assessed easily.
3 The classical soil parameters cannot be introduced directly in the parti-

cle form distinct element analysis.
4 Sensitivity of the method to the various parameters and modelling

method.

As an illustration, a 5 m 45° slope is modelled with the distinct element
method by imposing the initial condition in the first step (Figure 2.22). The
vertical stress is basically equal to the overburden stress while an at-rest
pressure coefficient 0.5 is employed in the present example. The unit
weight of the particle is 17 kNm−3 while the friction factor is 0.5. Due to
raining, a 4 m water table is established which is equivalent to a body force
of −9.81 kNm−3 applied to the particle system. The slope finally collapses
which is shown in Figure 2.22r. The results of the intermediate analysis
shown in Figure 2.22 are actually interesting. When the number of time
steps is small, no distinct failure zone can be observed. Starting from 3000
time steps, a failure zone is observed from the displacement vector plot,
and this failure zone stops to expand at a time step of about 13,000. The
failure domain is relatively stable over the remaining analysis and keeps
moving until the slope finally collapses at a time step of 51,000. It should
be noted that the failure mass moves above the stable zone which is basi-
cally constant after a time step of 13,000. The power of the distinct ele-
ment is that while the ultimate limit state can be estimated from the limit
equilibrium and finite element method, the final collapse mechanism or the
flow of the failure mass can be estimated from the distinct element which
is not possible with the classical methods. The results shown in Figure 2.22
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are however qualitative and precise results for design are difficult to be
determined from the distinct element method at present.

To stabilize the slope, two soil nails are added to the system shown in
Figure 2.23a. The soil nails are modelled by a collection of particles con-
nected together, and 4 m water is then applied to the system. The final dis-
placement field is shown in Figure 2.23b, which indicates that the soil nails
have effectively inhibited the collapse of the slope.
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3 Location of critical failure surface,
convergence and other problems

The various methods for the analysis of two-dimensional slope stability prob-
lems have been discussed in Chapter 2. There are other issues in slope stability
analysis which have not been well addressed in the past, and some of these
important issues will be addressed here.

3.1 Difficulties in locating the critical failure surface

According to the upper bound theory, any prescribed failure surface will be
an upper bound to the true solution. For the critical failure surface which cor-
responds to the global minimum, some of the difficulties and interesting phe-
nomena in locating the critical failure surface will be discussed. Consider a
one-dimensional function y = f(x) defined over a solution domain AB shown
in Figure 3.1. The local minima where the gradients of the function are equal
to 0 (f ′(x) = 0) are given by points C and D, while the global minimum is
defined by point E. If the y-ordinate of B is lower than the y-ordinate of E,
point B will then be the global minimum, but the gradient of the function is
not equal to 0 at B. Cheng (2003) has demonstrated that this situation can
happen for a slope stability problem using an example from the ACADS
(1989) study. For the multi-variable optimization analysis required by the
slope stability problem, the factor of safety objective function is highly com-
plicated, and the problem will be a complicated N-P hard type, which has
attracted the attention of many researchers.

Another special feature about the critical failure surface for a simple slope
is shown in Figure 3.2. There are only minor changes in the factors of safety
if the trial failure surfaces fall within the shaded region as shown in Figure
3.2. In this respect, there is no strong need to determine the precise location
of the critical failure surface if the geometry and ground conditions for a slope
are simple. For complicated slopes or slopes with a soft band which will be
illustrated in this chapter, it is however possible that a minor change in the
location of the failure surface can induce a major change in the factor of
safety. Under this case, the robustness of the optimization algorithm will be
important for the success in locating the critical solution.

Failure surfaces can be divided into the circular and the non-circular failure
surfaces. A circular failure surface is actually a sub-set of the non-circular



failure surface, but it is useful because: (1) some stability formulations apply
to the circular failure surface only and (2) the critical circular failure surface
is a good approximation to the critical solution for some simple problems and
is simple to be evaluated. For the circular failure surface, the location of the
critical failure surface is usually determined by the method of grids shown in
Figure 3.3. There are three control variables in this case: x and y ordinates of
the centre of rotation and the radius of the failure surface. Each grid point is
used as the centre of rotation while different radii are considered for the
circular failure surface, and the minimum factor of safety from different radii
is assigned to this grid point. Different factors of safety are hence assigned to
different grid points, and the trend of the global minimum can be assessed by
drawing the factor of safety contours from the factors of safety associated
with the grid points. This method is robust and is simple to operate, but the
accuracy will depend on the spacing between the grid points. The specified
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Figure 3.1 A simple one-dimensional function illustrating the local minima and the
global minimum.
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grid must also be large enough to embrace all the possible local minima and
the global minimum to obtain a clear picture about the distribution of the
factor of safety. The grid method is simple to implement and is available in
most of the commercial slope stability programs.

For the general non-circular failure surface, the number of control variables
which is controlled by the number of points for the failure surface is usually
much greater than three. To locate the critical failure surface, the geometric
method similar to that for the circular failure surface will be very inefficient in
application and requires a lot of effort in defining the solution domain for each
control variable (though adopted by some commercial programs). Special
features of the objective function of the safety factor F for this case include:

1 The objective function of the safety factor F is usually non-smooth, non-convex
and discontinuous over the solution domain. Discontinuity of the objective
function can be generated by: generation of an unacceptable failure surface;
‘failure to converge’ of the objective function; presence of obstructions in the
form of a sheet pile, retaining wall, large boulders, a tension crack or others.
Gradient-type optimization methods are applicable only to the continuous
function and will break down if there are discontinuities in the objective function. 

2 Chen and Shao (1988) have demonstrated that multiple minima similar
to that shown in Figure 3.3 will exist in general. Duncan and Wright
(2005) have also shown the existence of multiple local minima even for
a simple homogeneous slope which is also illustrated by Cheng et al.
(2007e). The local minimum close to the initial trial will be obtained by
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Figure 3.3 Grid method and presence of multiple local minima.



the classical gradient-type optimization methods. If an initial trial close to
the global minimum is used, the global minimum can usually be found by
classical methods, but a good initial trial is difficult to be established for
a general multi-variable problem. The success of a global optimization
algorithm to escape from the local minima for an initial solution far from
the global minimum is crucial in the slope analysis problem. 

3 A good optimization algorithm should be effective and efficient over
different topography, soil parameters and loadings. The analysis should
also be insensitive to the optimization parameters as well.

Various classical optimization methods for the non-circular failure surface
have been proposed and used in the past. Baker and Garber (1978) have
proposed the use of the variational principle, but this method is complicated
even for a simple slope and is not adopted for practical problems. Moreover,
if the gradient of the global minimum is not zero, the variational principle will
miss the critical solution. Chen and Shao (1988) and Nguyen (1985) have
suggested the use of the simplex method for this problem which is actually
suitable only for linear problems. The simplex method has been adopted by the
program EMU, developed by Chen, and it works fairly well for simple prob-
lems. The authors have however come across many complicated cases in China
where manual interaction is required with the simplex method before a good
solution can be found. The simplex method also fails to work automatically
for cases where the local minimum and global minimum differ by a very small
value but differ significantly in the location. Celestino and Duncan (1981) have
adopted the alternating variable method while Arai and Tagyo (1985) and
Yamagami and Jiang (1997) have adopted the conjugate-gradient method and
dynamic programming, respectively. These classical methods are applicable
mainly to continuous functions, but they are limited by the presence of the
local minimum, as the local minimum close to the initial trial will be obtained
in the analysis. There is also a possibility that the global minimum within the
solution domain is not given by the condition that the gradient of the objective
function ∇f = 0, and a good example has been illustrated by Cheng (2003).
The presence of the other local minima or the global minimum will not be
obtained by the classical methods unless a good initial trial is adopted, but a
good initial trial is difficult to be established for a general problem.

In view of the limitations of the classical optimization methods, the current
approach to locate the critical failure surface is the adoption of the heuristic
global optimization methods. The term heuristic is used for algorithms which
find solutions among all the possible ones, but they do not guarantee that the
best will be found; therefore, they may be considered as approximate and not
accurate algorithms. These algorithms usually find a solution close to the best
one, and they find it fastly and easily. Another important feature is that the
requirement of human judgement or interaction should be minimized or even
eliminated if possible, and the authors have come across some hydropower
projects in China where there are several weak zones (strong local minima) for
which nearly all existing methods fail to work well.
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Greco (1996) and Malawi et al. (2001) have adopted the Monte Carlo
technique for locating the critical slip surface with success for some cases, but
there is no precision control on the accuracy of the global minimum.
Zolfaghari et al. (2005) adopted the genetic algorithm while Bolton et al.
(2003) used the leap-frog optimization technique to evaluate the minimum
factor of safety. All of the above methods are based on the use of static
bounds to the control variables, which means that the solution domain
for each control variable is fixed and is pre-determined by engineering
experience. Cheng (2003) has developed a procedure which transforms the
various constraints and the requirement of a kinematically acceptable failure
mechanism to the evaluation of upper and lower bounds of the control
variables, and the simulated annealing algorithm is used to determine the
critical slip surface. The control variables are defined with dynamic domains
which are changing during the solution, and the bounds are controlled by the
requirement of a kinematically acceptable failure mechanism. Through such
an approach, there is no need to define the pre-determined static solution
domain to each control variable based on engineering experience, and a
precision control during the search for the critical solution will be possible.

There are two major aspects in the location of the critical failure surface
which will be discussed in the following sections, and they are the generation
of the trial failure surface and the global optimization algorithms for the
search for the critical failure surface. 

3.2 Generation of the trial failure surface

For the classical gradient-type optimization method, once an initial trial is
defined the refinement of the critical failure surface will be given by the gradient
of the objective function (which can be obtained by a simple finite difference
operation). On the other hand, for the heuristic global optimization methods,
trial failure surfaces are required to be generated which are controlled by the
bounds for each control variable. Different methods in generating the failure
surfaces have been proposed by Greco (1996), Malkwai et al. (2001), Cheng
(2003), Cheng et al. (2007b,e,f), Bolton et al. (2003), Li et al. (2005) and
Zolfaghari et al. (2005). In general, these methods are very similar in the basic
operations. The coordinates of the points defining the failure surface are taken
as the control variables, and lower and upper bounds are assigned to each
control variable. Consider the failure defined by ABCDEF shown in Figure 3.4.
If each control variable is defined over static lower and upper bounds, point D,
which is unlikely to be acceptable for a normal problem, can be generated by
the random number generator. Since segment CD will be a kink which hinders
the development of the failure, D is highly unlikely to be acceptable except for
some special cases which will be discussed later. 

To generate a convex surface by the method proposed by Cheng
(2003), consider a typical failure surface ACDEFB shown in Figure 3.5. The
x-ordinates of the two exit ends A and B are taken as the control variables of
the objective function and the upper and lower bounds of these two variables
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are specified by the engineer (bounds for the first two control variables are
fixed). The static bounds for the first two control variables can be defined
easily for the present problem with engineering experience. Once the two
exit ends A and B of the failure surface are defined, the requirements on the
kinematically acceptable mechanism can be implemented as:

1 The x-ordinates of the interior points C, D, E and F of the failure sur-
face can be obtained by the uniform division of the horizontal distance
between A and B which is Xright–Xleft. The x-ordinates of C, D, E and
F are hence not control variables. Alternatively, the division can be
made to follow the slope profile and the x-ordinates of the interior
points are also not control variables.

2 Points A and B are connected and C1 is determined as a point located
vertically above C. The y-ordinate of C1 is the lower value of either: (1) the
y-ordinate of the ground profile as determined by the x-ordinate of C;
(2) the y-ordinate of the point lying along the line joining points A and B and
determined by the x-ordinate of C. C1 is the upper bound to the y-ordinate
of the first inter-slice. The lower bound of the y-ordinate of C (third control
variable) is set by Cheng (2003) as C1–AB/4. In fact, such a lower bound
can allow for a deep-seated failure surface and is adequate for all the cases
that Cheng has encountered. The lower bound of the y-ordinate of C can
be set to C1–AB/5 (instead of C1–AB/4 which is a conservative estimation
of the lower bound) in most situations without affecting the solution. The
y-ordinate of point C is a control variable of the objective function and it is
confined within the upper and lower bounds as determined in Step 2.

3 Once a y-ordinate of C is chosen in the simulated annealing analysis, it
connects A and C and extrapolates the line to G which is defined by the
x-ordinate of point D. The lower bound of the y-ordinate of point D will
be point G to maintain a concave failure shape. The upper bound of D
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Figure 3.4 A failure surface with a kink or non-convex portion.

Source: Reproduced with permission of Taylor & Francis.
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which is D1 is determined in the same way as for point C1. If part of the
ground profile lies below the line joining B and C and affects the deter-
mination of D1 (e.g. point J in Figure 3.5), it connects C and J instead
of B and C and determines the upper bound as D2 instead of D1.

4 Perform Step 3 for the remaining points until all upper and lower
bounds of the control variables are defined.

5 To allow for a non-concave failure surface which is unlikely to occur in
reality, an option where the lower bound of point E will be set to a lower
value as determined in Step 3 or the y-ordinate of point D is allowed. The
y-ordinate of point E cannot be lower than that of D or else there will be
a kink in the failure surface which prevents failure to occur. The lower
bound to the y-ordinate is sometimes totally eliminated which is required
for problems with a soft band. A non-convex failure surface can hence be
generated from the present proposal by removing the lower bound
requirement as required in the present method.

In Figure 3.5, the control variables are the x-ordinates of A and B the
y-ordinates of points C, D, E and F. A control variable vector X is used to store
these control variables and the order of the control variables must be in (XA, XB,
YC, YD, YE, YF). For the location of the global minimum of the objective function,
engineers need to define only the upper and lower bounds of the first two con-
trol variables. An initial trial will be determined in a way similar to the
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Figure 3.5 Generation of dynamic bounds for the non-circular surface.

Source: Reproduced with permission of Taylor & Francis.
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approaches shown above. The upper and lower bounds of the other control vari-
ables will then be calculated according to Steps 2 and 3. If the number of slices
is n, then the number of control variables will be n + 1. If rock is encountered in
the problem, the lower bound determination shown above has to be modified
slightly. In Steps 2 and 3, the lower bound will either be the y-ordinate of point
G or the y-ordinate of the rock profile as determined by the x-ordinate of D.

For the circular failure surface, there are only three control variables which are
the x and y coordinates of the centre of rotation and the radius of the failure sur-
face. Cheng (2003) however adopts the x-ordinates of the two exit ends and the
radius of the failure surface as the three control variables in analysis as it is eas-
ier to define the upper and lower bounds for the two exit ends (see Figure 3.6).
This approach is also used by many commercial programs. The control variable
vector X will be (XA, XB, r). For the lower and upper bounds of the radius, the
lower bound is set to half of the length of line AB which is the minimum possi-
ble radius. The upper bound of the radius is set to 50× AB (any value which is
not too small will be acceptable). An unacceptable failure surface will not be gen-
erated in the analysis and the constraints will control the lower and upper
bounds of the radius when the two exit ends are defined. The constraints include:

1 The failure surface cannot cut the ground profile at more than two
points within the two exit ends. As seen in Figure 3.6, point C will con-
trol the upper bound of the radius.

2 The failure surface cannot cut into the rock stratum which will control
the lower bound of the radius.

3 The y-ordinate of the centre of rotation is higher than the y-ordinate of
the right exit end. For this case, the last slice cannot be defined. This
constraint will also control the lower bound of the radius.
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Figure 3.6 Dynamic bounds to the acceptable circular surface.

Source: Reproduced with permission of Taylor & Francis.
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In the present method, the first two variables which are the x-ordinates for
the left and right ends are varied within the user defined lower and upper
bounds which are constant during the analysis. Besides these two variables, the
bounds for the remaining variables (y-ordinates of the failure surface) are com-
puted sequentially according to the guidelines shown above for circular and
non-circular failure surfaces. The bounds from the present method are
dynamic and are different from the classical simulated annealing methods or
other global optimization methods where the bounds remain unchanged dur-
ing the analysis. The generation of trial failure surfaces and the search direc-
tion will then proceed in accordance with the normal simulated annealing
procedure and the global minimum can be located easily with a very high accu-
racy under the present proposal. The minimization process in the present for-
mulation will depend on the lower and upper bounds of the left and right exit
ends shown in Figure 3.7, which can be decided easily with experience and
engineering principle. For inexperienced engineers, a wide range can be defined
for the lower and upper bounds and the number of trials required for analysis
will only increase slightly with the increase in the left and right ranges, which
is another major advantage of the approach by Cheng (2003). For example,
Cheng found that when the ranges for the left and right exit ends are increased
by two times, the number of trials required will remain unchanged in many
cases and may increase by less than 15 per cent in some rare cases.

In the present algorithm, the x-ordinates are not considered as the control
variables to reduce the number of control variables. This is usually
satisfactory as Cheng (2003) found that the y-ordinates are more important
than the x-ordinates in the factor of safety. Cheng et al. (2008b) have also
proposed that the x-ordinates can be adopted as the control variables. This
approach will approximately double the number of control variables, and is
considered to be useful only for those problems controlled by a soft band
where the factor of safety is highly sensitive to the x-ordinates as well.
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Figure 3.7 Domains for the left and right ends decided by engineers to define a
search for the global minimum.
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3.3 Global optimization methods

Global optimization problems are typically difficult to be solved, and in the con-
text of combinatorial problems, they are often N-P hard type. The difficulties in
performing the global optimization analysis and the requirement for a robust
optimization algorithm have been discussed in Section 3.1. With the development
of computer software and hardware, many artificial intelligence-based algorithms
based on natural selection and the mechanisms of population genetics have been
developed. These algorithms are commonly applied in pattern recognition,
electronic, production/ control engineering or signal processing systems. These
new heuristic optimization algorithms have been successfully applied to many dif-
ferent disciplines for both continuous and discrete optimization problems, but
there are only limited uses of these methods in slope stability problems. 

Since most of the heuristic algorithms which are artificial intelligence-based
methods are relatively new and are not familiar to the geotechnical practi-
tioners, a brief review on several simple but effective methods (with various
improvements by Cheng et al.) will be given in this section. Readers can try
the performance of all these optimization methods by using the demo SLOPE
2000 which is given in the Appendix. These modern optimization methods
can be easily adapted to other types of geotechnical problems which are under
consideration by Cheng.

3.3.1 Simulated annealing algorithm (SA)

The simulated annealing algorithm (Kirkpatrick, 1983) is a combinatorial opti-
mization technique based on the simulation of a very slow cooling process of
heated metal called annealing. The concept of this algorithm is similar to heat-
ing a solid to a high temperature, and cooling the molten material slowly in a
controlled manner until it crystallizes, which is the minimum energy level of the
system. The solution starts with a high temperature t0, and a sequence of trial
vectors are generated until the inner thermal equilibrium is reached. Once the
thermal equilibrium is reached at a particular temperature, the temperature is
reduced by using the coefficient λ and a new sequence of moves will start. This
process is continued until a sufficiently low temperature te is reached, at which
point no further improvement in the objective function can be achieved. 

The flowchart of the SA is shown in Figure 3.8, where t0, te and λ are the
initial temperature, the stopping temperature and the cooling temperature
coefficient, respectively. Usually, the higher the value of t0, the lower will be
the value of te and hence the smaller will be the value of λ; more trials will be
required in the optimization analysis. The parameter N identifies the number
of iterations for a given temperature to reach its inner thermal equilibrium,
and the array ft(neps) restores the objective function values obtained at
the consecutive neps inner thermal equilibriums and to terminate the
optimization algorithm. Vg and fg are the best solution found so far and its
associated objective function value. Nit is the number of iterations for the cur-
rent temperature. rs is a random number in the range [0,1], after N iterations
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are performed. If the termination criterion is not satisfied, Vg and fg are given
to V0 and f0, and the procedure by Cheng (2003) is different from the classical
SA in that the best solution found so far is used instead of the randomly
adjusted solution to generate the next solution.
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Figure 3.8 Flowchart for the simulated annealing algorithm.

Initialize the parameters:
t0, λ, te, N, Vg, fg, ft(neps)

Randomly generate an initial slip surface V0 and evaluate the factor of safety
f0, Vg = V0; fg = f0, ft(i) = 1.0e + 10, i = 1,2,...,neps

V0 is adjusted and new slip surface V1 is
obtained and its factor of safety f1

t = t0, Nit = 0

Nit = 0

t = λt

Nit ≤ N Nit = Nit + 1

er = f1 − f0

V0 = V1; f0 = f1, if f1 < fg then Vg = V1; fg = f1

V0 = Vg; f0 = fg

⏐f0 − fg⏐ ≤ ε ⏐ft(1) − ft(i)⏐ ≤ ε
i = 2,..,neps

t ≤ te

ft(1) = f0,
ft(i) = ft(i −1), i = neps,...,2

rs ≤ e−erit

Yes

Yes

Yes Yes Yes

No

No

No

Take Vg as the optimum solution
and terminate the algorithm

No
No



3.3.2 Genetic algorithm (GA)

The genetic algorithm is developed by Holland (1975) and has received great
attention in various disciplines. It is an optimization approach based on the
concepts of genetics and natural reproduction and the evolution of living crea-
tures, in which an optimum solution evolves through a series of generations.
Each generation consists of a number of possible solutions (individuals) to the
problem, defined by an encoding. The fitness of an individual within the gen-
eration is evaluated, and it influences the reproduction of the next generation.
The algorithm starts with an initial population of M individuals. An individ-
ual is composed of real coordinates associated with the variables of the objec-
tive function. The current generation is called parent generation, by which
offspring generations are created using operators such as crossover and muta-
tion. Other M individuals are re-chosen from the parent and offspring gener-
ations according to their fitness value. The flowchart for the genetic algorithm
is given in Figure 3.9, where ρc and ρm are the probabilities of crossover and
mutation in the algorithm. Usually, the value of ρc varies from 0.8 to 0.9 while
ρm falls in the range of 0.001–0.1. N1 represents the number of iterations in the
first stage, while N2 represents the time interval by which the termination cri-
terion is defined. If the best individual with the fitness value fg remains
unchanged after N2 iterations, the algorithm will stop. Niter is the variable
restoring the total iterations performed by the algorithm. j1 and j2 are used to
perform the non-uniform mutation operations. The crossover operator is given
by eq. (3.1).

(3.1)

where voj+1,l and voj+2,l mean the lth element of the vector Voj+1 and Voj+2,
respectively, given by eq. (3.2). Similarly, vmi,l and vfi,l represent the lth ele-
ment of the mother parent and father parent vectors Vmi and Vfi, respectively,
and n + 1 is the number of control variables in this study.

(3.2)

where rm and rnd are random numbers in the range 0–1. vlmin and vlmax are the
lower and upper bounds to the lth variable in (V = x1, xn+1, σ2,…,σn). ε is
the tolerance for termination of the search.

3.3.3 Particle swarm optimization algorithm (PSO)

The PSO is an algorithm developed by Kennedy and Eberhart (1995).
This method has received wide applications in continuous and discrete
optimization problems, and an improved version for slope stability analysis

voj+1;l = voj+ 1;l − voj+ 1;l − vl min
� �× 1:0− j1

j2

� �2 × rm rnd ≤ 0:5

voj+1;l = voj+ 1;l + vl max − voj+ 1;l
� �× 1:0− j1

j2

� �2 × rm rnd > 0:5

8
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>:

voj+1;l = vfi, l × rc + 1:0− rcð Þ× vmi, l

voj+2;l = vmi, l × rc + 1:0− rcð Þ× vfi, l

l=1; 2; . . . , n+ 1
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<

:
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Figure 3.9 Flowchart for the genetic algorithm.
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has been developed by Cheng et al. (2007e). Yin (2004) has proposed a
hybrid version of the PSO for the optimal polygonal approximation of digital
curves, while Salman et al. (2002) and Ourique et al. (2002) have adopted the
PSO for the task assignment problem and dynamical analysis in chemical
processes, respectively. The PSO is based on the simulation of simplified
social models, such as bird flocking, fish schooling and the swarming theory.
It is related to evolutionary computation procedures, and has strong ties with
the genetic algorithms. This method is developed on a very simple theoretical
framework, and it can be implemented easily with only primitive mathematical
operators. Besides, it is computationally inexpensive in terms of both the
computer memory requirements and the speed of the computation.

In the PSO, a group of particles (generally double the number of the control
variables, M) referred to as the candidates or the potential solutions [as V
described above] are flown in the problem search space to determine their
optimum positions. This optimum position is usually characterized by the
optimum of a fitness function (e.g. factor of safety for the present problem).
Each ‘particle’ is represented by a vector in the multi-dimensional space to
characterize its position (Vk

i), and another vector to characterize its velocity
(Wk

i) at the current time step k. The algorithm assumes that particle i is able
to carry out simple space and time computations to respond to the quality
environment factors. That is, a group of birds can determine the average
direction and speed of flight during the search for food, based on the amount
of the food found in certain regions of the space. The results obtained at the
current time step k can be used to update the positions of the next time step.
It is also assumed that the group of particles is able to respond to the
environmental changes. In other words, after finding a good source of food
in a certain region of the space, the group of particles will take this new piece
of information into consideration to formulate the ‘flight plan’. Therefore, the
best results obtained throughout the current time step are considered to
generate the new set of positions of the whole group.

To optimize the fitness function, the velocity Wk
i and hence the position Vk

i

of each particle are adjusted in each time step. The updated velocity Wk+1
i is

a function of the three major components: 

1 the old velocity of the same particle (Wk
i); 

2 difference of the ith particle’s best position found so far (called Pi) and
the current position of the ith particle Vk

i;
3 difference of the best position of any particle within the context of the

topological neighbourhood of the ith particle found so far (called Pg; its
objective function value called fg) and current position of the ith particle Vk

i.

Each of the components 2 and 3 mentioned above are stochastically
weighted and added to component 1 to update the velocity of each
particle, with enough oscillations that should empower each particle to
search for a better pattern within the problem space. In brief, each particle
employs eq. (3.3) to update its position.
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(3.3)

where c1 and c2 are responsible for introducing the stochastic weighting to
components 2 and 3, respectively. These parameters are commonly chosen as
2 which will also be used in this study. r1 and r2 are two random numbers in
the range [0,1], and ω is the inertia weight coefficient. A larger value for ω
will enable the algorithm to explore the search space, while a smaller value of
ω will lead the algorithm to exploit the refinement of the results. Chatterjee
and Siarry (2006) have introduced a nonlinear inertia weight variation for
dynamic adaptation in the PSO. The flowchart for the PSO in searching for
the critical slip surface is shown in Figure 3.10.

The termination criterion for the PSO is not stated explicitly by Kennedy
and Eberhart (1995) (same for other modern global optimization methods).
Usually a fixed number of trials are carried out with the minimum value from
all the trials taken as the global minimum, and this is the limitation of the
original PSO or other global optimization algorithms. Based on the termina-
tion proposal by Cheng et al. (2007e), if Pg remains unchanged after N2

iterations are performed, the algorithm will terminate as given by eq. (3.4):

(3.4)

where Vsf, fsf mean the best solution found so far and its related objective
function value. ε is the tolerance of termination. All global optimization
methods require some parameters which are difficult to be established for
general problems. Based on extensive internal tests, it is found that the PSO
is not sensitive to the optimization parameters in most problems, which is
an important consideration for recommending this method to be used for
slope stability analysis. 

3.3.4 Simple harmony search algorithm (SHM)

Geem et al. (2001) and Lee and Geem (2005) developed a harmony search
meta-heuristic algorithm that was conceptualized using the musical process of
searching for a perfect state of harmony. Musical performances seek to find
pleasing harmony (a perfect state) as determined by an aesthetic standard, just
as the optimization process seeks to find a global solution determined by an
objective function. The harmony in music is analogous to the optimization
solution vector, and the musician’s improvisations are analogous to local and
global search schemes in the optimization process. The SHM uses a stochastic
random search that is based on the harmony memory considering rate HR
and the pitch-adjusting rate PR, and it is a population-based search method.
A harmony memory HM of size M is used to generate a new harmony, which
is probably better than the optimum in the current harmony memory. The

fsf − fg
�� ��≤ ε
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harmony memory consists of M harmonies (slip surfaces), and M harmonies
are usually generated randomly. Consider HM = {hm1, hm2,…, hmM}

(3.5)

where each element of hmi corresponds to that in vector V described above.
Consider the following function optimization problem, where M = 6, m = 3.
Suppose HR = 0.9 and PR = 0.1.

(3.6)

Six randomly generated harmonies comprise the HM shown in Table 3.1.
The new harmony can be obtained by the harmony search algorithm with the
following procedures. A random number in the range [0, 1] is generated, for

min f x1; x2; x3ð Þ = x1 − 1ð Þ2 + x2
2 + x3 − 2:0ð Þ2

s:t: 0≤ x1 ≤2 1≤x2 ≤ 3 0≤x3 ≤ 2

�

hmi = vi1; vi2; :::; vimð Þ
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Figure 3.10 Flowchart for the particle swarm optimization method.
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example, 0.6(<HR), and one of the values from {1.0, 1.5, 0.5, 1.8, 0.9, 1.1}
should be chosen as the value of x1 in the new harmony. Take 1.0 as the value
of x1; then another random number of 0.95(>HR) is obtained. A random value
in the range [1, 3] for x2 is generated (say 1.2), and similarly 0.5 is chosen from
the HM as the value of x3, thus a coarse new harmony hm'n = (1.0,1.2,0.5) is
generated. The improved new harmony is obtained by adjusting the coarse
new harmony according to the parameter PR. Suppose three random values in
the range [0, 1] (say 0.7, 0.05, 0.8) are generated. Since the former value 0.7
is greater than PR, the value of hm'n remains unchanged. The second value
0.05 is lower than PR, so the value of 1.2 should be adjusted (say 1.10). The
above procedures proceed until the final new harmony hmn = (1.0,1.10,0.5) is
obtained. The objective function of the new harmony is determined as 3.46.
The objective function value of 3.46 is better than that of the worst harmony
hm4, thereby hm4 is excluded from the current HM, while hmn is included in
the HM. Up to this stage, one iteration step has finished. The algorithm will
continue until the termination criterion is achieved.

The iterative steps of the harmony search algorithm in the optimization of
eq. (3.6) as given in Figure 3.11 are as follows:

Step 1: Initialize the algorithm parameters HR, PR, M and randomly
generate M harmonies (slip surfaces) and evaluate the harmonies.

Step 2: Generate a new harmony (shown in Figure 3.11) and evaluate it.
Step 3: Update the HM. If the new harmony is better than the worst

harmony in the HM, the worst harmony is replaced with the new harmony.
Take the ith value of the coarse harmony, for reference. Its lower bound and
upper bounds are named as vimin and vimax, respectively. A random number r0

in the range [0, 1] is generated. If r0 > 0.5, then v'ni is adjusted to vni using eq.
(3.7); otherwise, eq. (3.8) is used to calculate the new value of vni.

(3.7)

(3.8)

where rand means a random number in the range [0, 1].

vni = v
0
ni − v

0
ni − vi min

� �
× rand r0 ≤0:5

vni = v
0
ni + vi max − v

0
ni

� �
× rand r0 >0:5
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Table 3.1 The structure of the HM

HM Control variables Objective function

x1 x2 x3

hm1 1.0 1.5 0.5 4.50
hm2 1.5 2.0 1.8 4.29
hm3 0.5 1.5 1.0 3.50
hm4 1.8 2.5 0.9 8.10
hm5 0.9 2.2 1.2 5.49
hm6 1.1 1.9 1.5 3.87



Step 4: Repeat Steps 2 and 3 until the termination criterion is achieved.

In the original harmony search by Geem et al. (2001) and Lee and Geem
(2005), an explicit termination criterion is not given. Cheng et al. (2007b,f)
have proposed a termination criterion for the optimization process.
Suppose M × N1 iterations are first performed, and the best solution found
so far is called Vsf, with the objective function value equal to fsf. Another
M × N2 iteration is then performed, and the best harmony in the current
HM is called Vg, with the objective function value equal to fg. The
optimization process can terminate if eq. (3.9) is satisfied.

(3.9)

3.3.5 Modified harmony search algorithm (MHM)

Based on many trials by Cheng, it is found that the SHM works fast and gives
good solutions for simple problems with less than 25 control variables. For
more complicated problems with a large number of control variables, the
original harmony search algorithm becomes inefficient and can be trapped by
the local minima easily. Cheng et al. (2007f) have developed improved

fsf − fg
�� ��≤ ε
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Figure 3.11 Flowchart for generating a new harmony.
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harmony search algorithms (MHM) to overcome the limitations of the SHM,
which differs from the SHM in the following two aspects. 

1 Instead of using a uniform probability in the original harmony search
method, the better the objective function value of one harmony, the
more probable will it be chosen for the generation of a new harmony.
A parameter δ (0 < δ ≤ 1) is introduced and all the harmonies in HM
are sorted by ascending order, and a probability is assigned to each of
them. For instance, pr(i) means the probability to choose the ith
harmony which is given as

(3.10)

for i = 1,2,...,M. From eq. (3.10), it can be seen that the larger the value
of δ, the more probable will be the first harmony being chosen. An
array  ST(i),i = 0,1,2,...,M as given by eq. (3.11) should be used to
implement the above procedures for choosing the harmony.

(3.11)

where ST(i) represents the accumulating probability for the ith
harmony. ST(0) equals 0.0 for the sake of implementation. A random
number rc is generated from the range [0, ST(M)], and the kth harmony
in HM is to be chosen if the following criterion is satisfied.

(3.12)

2 Instead of one new harmony, a certain number of new harmonies
(Nhm) are generated during each iteration step in the modified
harmony search algorithm. The utilization of the HM is intuitively
more exhaustive by generating several new harmonies than by
generating one new harmony during one iteration. To retain the struc-
ture of the HM unchanged, the M harmonies with lower objective
functions (for the minimization optimization problem) from M + Nhm
harmonies are included in the HM again, and the harmonies of the
higher objective function values are rejected.

The HM shown in Table 3.1 is now reordered increasingly, and the new
structure is illustrated in Table 3.2. Suppose δ = 0.5 and Nhm = 2; the arrays pr
and ST obtained are listed in columns 6 and 7, respectively, in Table 3.2. A
random number in the range [0, 1] is generated, say 0.6(<HR). One of the values
from {1.0, 1.5, 0.5, 1.8, 0.9, 1.1} should be chosen as the value of x1 in the new
harmony. Given the value of rc is equal to 0.4 for example, by using criterion (18),
0.5 is chosen to be the value of x1. Another random number of 0.95(>HR) is
obtained, and a random value in the range [1, 3], 1.2, is generated. Similarly, a ran-
dom number of 0.6 and rc = 0.80 are also obtained. The value of x3 is chosen from

ST k−1ð Þ< rc ≤ ST kð Þ; k= 1; 2; :::;M

ST ið Þ=
Xi

j= 1

pr jð Þ

pr ið Þ= δ× 1− δð Þi− 1
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the HM as 1.8, thus a coarse new harmony hm'n = (0.5,1.2,1.8) is generated. The
fine new harmony is obtained by adjusting the coarse new harmony according to
the parameter PR. Suppose two random values in the range [0, 1], say 0.7, 0.05,
0.8, are generated randomly. Since the former is greater than the PR, the value of
x1 in hm′n remains unchanged. The latter value is lower than the PR, so the value
of 1.2 should be adjusted. Suppose 1.10 is the new value of x2; the improved new
harmony hm′n = (0.5,1.10,1.8) is obtained. Similarly, the second new harmony
hm′n = (0.9,1.5,1.3) is also obtained. The objective functions of the two new
harmonies are calculated as 1.5 and 2.75, respectively. So the six harmonies with
lower objective functions hm1, hm2, hm3, hm6, hm′n, hm′′n are introduced into the
HM as illustrated in Table 3.3 and one iteration is finished. The algorithm
continues until the termination criterion is satisfied.

Based on extensive numerical tests by Cheng et al. (2007b), it is found that
the modified harmony search algorithms shown in Figure 3.12 are more
effective in overcoming the local minima as compared with the original
harmony search method for complicated problems. It is also more efficient
than the original HM when the number of control variables is large, but is
less efficient when there are only a few control variables.

3.3.6 Tabu search algorithm

The Tabu search (Glover, 1989, 1990) is not exactly an optimization algo-
rithm, but a collection of guidelines to develop optimization algorithms. The
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Table 3.2 The reordered structure of HM

HM Control variables Objective function pr() ST()

x1 x2 x3

hm1 0.5 1.5 1.0 3.50 0.5 0.5
hm2 1.1 1.9 1.5 3.87 0.25 0.75
hm3 1.5 2.0 1.8 4.29 0.125 0.875
hm4 1.0 1.5 0.5 4.50 0.0625 0.9375
hm5 0.9 2.2 1.2 5.49 0.03125 0.9687
hm6 1.8 2.5 0.9 8.10 0.01562 0.9843

Table 3.3 Structure of HM after first iteration in the MHM

HM Control variables Objective function pr() ST()

x1 x2 x3

hm1 0.5 1.10 1.8 1.50 0.5 0.5
hm2 0.9 1.5 1.3 2.75 0.25 0.75
hm3 0.5 1.5 1.0 3.50 0.125 0.875
hm4 1.1 1.9 1.5 3.87 0.0625 0.9375
hm5 1.5 2.0 1.8 4.29 0.03125 0.9687
hm6 1.0 1.5 0.5 4.50 0.01562 0.9843



basic idea of the Tabu search is to explore the trial solutions for the problem,
moving from a point to another point in its neighbourhood with solutions
which have little difference from the point under consideration. Reverse
moves and cycles are avoided by the use of a ‘tabu list’, where the moves pre-
viously done are memorized. To implement the Tabu search, the first step is
the discretization of the problem space. Each dimension is divided into d ele-
ments, and altogether dm hyper-cubes are obtained. If a solution is tabu, it
means that the super-cube in which the solution locates is also tabu. It is very
difficult to directly generate a solution within the super-cubes which are not
tabu, and a trial procedure is proposed by Cheng et al. (2007b). The proce-
dure by which the new harmonies are obtained in the harmony search algo-
rithm is used to obtain the trial solutions. If the super-cube of the new trial
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Figure 3.12 Flowchart for the modified harmony search algorithm.
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solution is tabu, another trial solution will be tested until a trial solution
which does not belong to the tabu super-cubes is found. The flowchart for the
Tabu search algorithm is shown in Figure 3.13.

In Figure 3.13 fg is the objective function value of the best harmony in the
HM, and the parameters of N1, N2, N3 are used to terminate the algorithm.
ε is the tolerance for the termination of the search.

3.3.7 Ant-colony algorithm

The ant-colony algorithm is a meta-heuristic method using natural metaphors
to solve the complex combinatorial optimization problems, which is origi-
nated by Dorigo (1992). It is inspired by the natural optimization mechanism
conducted by real ants. Basically, a problem under the study is transformed
into a weighted graph. The ant-colony algorithm iteratively distributes a set
of artificial ants onto the graph to construct tours corresponding to the poten-
tial optimal solutions. The optimization mechanism of the ant-colony algo-
rithm is based on two important features: (1) the probabilistic state transition
rule that is applied when an ant is choosing the next vertex to visit and (2) the
pheromone updating rule that dynamically changes the preference degree for
the edges that have been travelled through. 

The continuous optimization problem should be first transformed into
a weighted graph. In the case of locating the critical slip surface, each
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Figure 3.13 Flowchart for the Tabu search.
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dimension is equally divided into d subdivisions and m dimensions (5 and 3,
respectively, in Figure 3.14) in the optimization problem. The solid circles
located in adjacent columns are connected between each other.

An ant is first located at the initial point. Based on the probabilistic transi-
tion rule, one solid circle in the ‘first variable’ column is chosen and thus the
value of the first variable is determined, and the procedures proceed to other
variables. When an ant finishes determining the value of the end variable, it
will go back to the initial point through the end point for the next iteration.
Figure 3.15 shows the flowchart for the ant-colony algorithm. In Figure 3.15,
Na means the total number of ants. The probabilistic transition rule and
pheromone updating rule are described briefly as follows:

1 Probabilistic transition rule:

(3.13)

where τk
ij represents the pheromone deposited on the ith solid circle of the jth

variable within the kth iteration step, and ρij means the probability of the ith
solid circle of the jth variable to be chosen.

2 Pheromone updating rules:

(3.14)

where μ ∈ [0,1] is a parameter which simulates the evaporation rate of the
pheromone intensity. Δτij is obtained using eq. (3.15)

(3.15)

where fsl represents the objective function value of the solution found by the
lth ant; condition1 means that the lth ant has chosen the ith solid circle of the

�τij =
PNa

l= 1
Q=fsl condition1

0 condition2

8
<

:

τk+ 1
ij = 1:0−μð Þ× τk

ij +�τij

ρij =
τk

ijPd
i= 1 τ

k
ij

; j= 1; 2:::;m
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Figure 3.14 The weighted graph transformed for the continuous optimization problem.
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jth variable. Correspondingly, condition2 means that no ant has chosen the
ith solid circle of the jth variable within the kth iteration step.

3.4 Verification of the global minimization algorithm

The majority of the modern global optimization schemes have not been used
in slope stability analysis in the past. The SA, SHM, MHM, PSO, Tabu and
ant-colony methods were first used by Cheng (2003), Cheng et al. (2007b,e,f)
and Cheng (2007) with various modifications to suit the slope stability
problems. For the first demonstration of the applicability of these modern
optimization methods, eight test problems are used to illustrate the effective-
ness of Cheng’s (2003) proposal on the modified SA algorithm, and problems
4 and 8 are shown in Figures 3.16 and 3.17. Problems 1–3 are similar to
problem 4 except for the external load. For problems 1–4 which are shown
in Figure 3.16, in total there are two types of soils with a water table. In prob-
lem 1, there is no external load while the horizontal load is applied in prob-
lem 2. Vertical load is applied in problem 3 while both vertical load and
horizontal loads are applied in problem 4. Problems 5–7 are also similar to
problem 8 except for the external load. For problems 5–8 which are shown
in Figure 3.17, in total there are three types of soils, a water table and a perched
water table. In problem 5, there is no external load while the horizontal load is
applied in problem 6. Vertical load is applied in problem 7 while both verti-
cal and horizontal loads are applied in problem 8. The cohesive strengths of

104 Location of critical failure surface, convergence and other problems

Figure 3.15 Flowchart for the ant-colony algorithm.
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soils for problems 1–4 are 5 and 2 kPa, respectively, for soil 1 and soil 2 while
the corresponding cohesive strengths for problems 5–8 are 5, 2 and 5 kPa.
The friction angles of soils for problems 1–4 are 35° and 32°, respectively, for
soil 1 and soil 2 while the corresponding friction angles for problems 5–8 are
32°, 30° and 35°. The unit weight of soil is kept constant at 19 kNm−3 in all
these cases. It is not easy to minimize the factor of safety for these problems
by a manual trial and error approach as the precise location of the failure sur-
face will greatly influence the factor of safety. The minimum reference factors
of safety are determined by an inefficient but robust pattern search approach.
To limit the amount of computer time used, the number of slices is limited to
5 in these studies and the slices are divided evenly.

The critical solution from the present study is shown in Figures 3.16 and
3.17 by ABCDEF. The x-ordinates of the left exit end A (4.0 for problems 1–
4 and 5.0 for problems 5–8) and right exit end F (14.0 for all problems) of
the failure surfaces are fixed so that only the y-ordinates of B, C, D, E are
variables (x-ordinates of B, C, D, E are obtained by even division). There are
hence four control variables in the present study. Based on the critical result
BCDE obtained from the minimization analysis (round up to two decimal

Location of critical failure surface, convergence and other problems 105

0
8

10

12

14 A

B
C

D

E

F soil 1

soil 2

16

18

20

22

24

2 4 6 8 10 12 14 16 18

Figure 3.16 Problem 4 with horizontal and vertical load (critical failure surface is
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Source: Reproduced with permission of Taylor & Francis.



places), a grid is set up 0.5 m directly above and below B, C, D, E as obtained
by the simulated annealing analysis. The spacings between the upper and
lower bounds are hence 1.0 m for all the four control variables. The grid spac-
ing for each control variable is 0.01 m so that each control variable can take
101 possible locations. The present grid spacing is fine enough for pattern
search minimization and all the possible combinations of failure surfaces are
tried, which are 101 × 101 × 101 × 101 or 10,406,041 combinations.

The factors of safety shown in Table 3.4 have clearly illustrated that the
combined use of the failure surface generation and the simulated annealing
method is able to minimize the factors of safety with high precision, and the
results are similar to those obtained by a pattern search based on 10,406,041
trials. The location of the critical failure surface obtained from the simulated
annealing analysis for problem 4 shown in Table 3.5 is very close to that
obtained by the pattern search and similar results are also obtained for all the
other problems. The results in Tables 3.4 and 3.5 have clearly illustrated the
capability of the proposed modified SA algorithm in minimizing the factors of
safety, so that the burden of engineers can be relieved by the adoption of mod-
ern global optimization techniques. Besides the simulated annealing method,
the other global optimization techniques as modified by Cheng’s methods
(2007b) can also be worked with satisfaction for all these eight problems. 

To illustrate the advantages of the present dynamic bound technique as
compared with the classical static bounds to the control variables, the same
problems are considered with static bounds analysis. The static bounds are
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defined as 0.5 m above and below the critical failure surface BCDE and the
results are shown in Table 3.6 (the same minimum values are obtained from
the two analyses). It is clear that the present proposal can greatly reduce the
time of computation as compared with the classical simulated annealing tech-
nique which is highly beneficial for real problems. This advantage is particu-
larly important when the number of control variables is great.

3.5 Presence of a Dirac function

If there is a very thin soft band where the soil parameters are particularly low,
the critical failure surface will be controlled by this soft band. This type of
problem poses a great difficulty as normal random number generation (uniform
probability) is used within the solution domain, and this feature is difficult to be
captured automatically. The thickness of the soft band can be so small that it can
be considered as a Dirac function within the solution domain. Such failures have
been reported in Hong Kong, and the slope failure at Fei Tsui Road is one of the
famous examples in Hong Kong where failure is controlled by a thin band of soil.

Location of critical failure surface, convergence and other problems 107

Table 3.4 Comparison between minimization search and pattern search for eight test
problems using the simulated annealing method (tolerance in minimization
search = 0.0001)

Case Trials required in SA FS from SA FS from pattern search

1 10081 0.7279 0.7279
2 10585 0.8872 0.8872
3 9577 0.7684 0.7685
4 10585 0.9243 0.9243
5 12097 0.7727 0.7726
6 13105 1.1072 1.1072
7 11593 0.7494 0.7492
8 12601 1.0327 1.0327

FS = factor of safety, SA = simulated annealing analysis.
Source: Reproduced with permission of Taylor & Francis.

Table 3.5 Coordinates of the failure surface with minimum factor of safety from SA
and from pattern search for Figure 3.4 (values with * are fixed and are not
control variables)

Point x-ordinate y-ordinate from SA y-ordinate from pattern
search

A 4 13.5* 13.5*
B 6 12.677 12.67
C 8 12.831 12.82
D 10 13.784 13.78
E 12 15.539 15.54
F 14 22.0* 22.0*

Source: Reproduced with permission of Taylor & Francis.



For a thin soft band, the probability of the control variables falling
within this region will be small with the use of the classical random
number. From principles of engineering, the probability of the control
variables falling within this soft-band region should however be greater
than that falling within other regions. For this difficult case, Cheng
(2007) proposes to increase the probability of the search within the soft
band. Since the location of the soft-band region is not uniform within the
solution domain, it is difficult to construct a random function with
increased probability within the soft-band region at different locations.
This problem can be solved by a simple transformation proposed by
Cheng, as shown in Figure 3.18, where a classical random function is
used in simulated annealing analysis. In Figure 3.18, the actual domain
for a control variable xi (N + 1 > i > 2 in present method) is represented
by a segment AB with a soft band CD in between AB. For control vari-
ables xj where i ≠ j, the location of the soft band CD and the solution
bound AB for control variable xi will be different from that for control
variable xj. For segment AB, several virtual domains with a width of CD
for each domain are added adjacent to CD as shown in Figure 3.18. The
transformed domain AB′ is used as the control domain of variable xi.
Every point generated within the virtual domain D1–D2, D2–D3, D3–D4
is mapped to the corresponding point in segment CD1. This technique is
effectively equivalent to giving more chances to those control variables
within the soft band. The weighting to the variables within the soft-band
zone can be controlled easily by the simple transformation as suggested in
Figure 3.18. To Cheng’s knowledge, the search for the critical failure
surface with a 1 mm thick soft band has never been minimized success-
fully, but this has been solved effectively by the proposed domain transfor-
mation by Cheng (2007). The transformation technique is coded into SLOPE
2000 and has been used to overcome several very difficult hydropower proj-
ects in China where there are several layers of highly irregular soft bands.
For that project, several commercial programs have been used to locate the
critical failure surface without satisfaction.
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Table 3.6 Comparisons between the number of trials required for dynamic bounds
and static bounds in simulated annealing minimization

Case Trials in DB Trials from SB

1 10,081 19,823
2 10,585 21,023
3 9577 17,234
4 10,585 22,131
5 12,097 23,968
6 13,105 25,369
7 11,593 23,652
8 12,601 25,104

SB = static bounds, DB = dynamic bounds.
Source: Reproduced with permission of Taylor & Francis.



3.6 Numerical studies of the efficiency and effectiveness of
various optimization algorithms

The greater the number of control variables, the more difficult will be the global
optimization analysis. For the heuristic global optimization methods which
have been discussed in the previous section, all of them are effective for simple
cases with a small number of control variables. The practical differences
between these methods are the effectiveness and efficiency under some special
conditions with a large number of control variables. Consider example 1 shown
in Figure 3.19. It is a simple slope taken from the study by Zolfaghari et al.
(2005). The soil parameters are: unit weight 19.0 kNm−3, cohesion 15.0 kPa,
and effective friction angle 20°. Zolfaghari et al. used a simple genetic algorithm
and the Spencer method and obtained a minimum factor of safety of 1.75 for
the non-circular failure surface.

For this simple slope example, the results of analyses are shown in Table
3.7 and Figure 3.19. All of the methods under consideration are effective in
the optimization analysis. The SA and the SHM give the lowest factors of
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Figure 3.18 Transformation of domain to create a special random number with
weighting.

Table 3.7 Minimum factor of safety for example 1 (Spencer method)

Optimization methods Minimum NOFs
factors of safety

Total Critical

Simple genetic algorithm by 1.75 Unknown
Zolfaghari et al. (2005)

SA 1.7267 103,532 102,590
GA 1.7297 49,476 49,476
PSO 1.7282 61,600 60,682
SHM 1.7264 107,181 98,607
MHM 1.7279 28,827 28,827
Tabu 1.7415 58,388 988
Ant-colony 1.7647 83,500 16,488

NOFs = number of trials.



safety, which are only slightly smaller than those by the other methods, but
the NOFs are up to about 100,000, which is much greater than those for the
other methods. The MHM finds a minimum of 1.7279 which is slightly larger
than those by the SA and SHM, but only 28,827 trials are required which is
much more efficient in the analysis. The PSO and GA give slightly larger fac-
tors of safety which are 1.7297 and 1.7282, but the number of evaluations
are modest when compared with those required by the SA and SHM.

Example 2 is taken from the work by Bolton et al. (2003). There is a weak
soil layer sandwiched between two strong layers. Unlike the previous
example, the minimum factor of safety will be very sensitive to the precise
location of the critical failure surface. The soil parameters for soil layers 1, 2
and 3, respectively, are friction angles 20°, 10° and 20°; cohesive strength
28.73, 0.0 and 28.73 kPa; and unit weight is 18.84 kNm−3 for all three soil
layers. The results of analysis are shown in Table 3.8.

For this problem, all the methods are basically satisfactory except for the
Tabu search and the ant-colony methods. The performance of the Tabu
search and the ant-colony method are poor for this example, which indicates
that these two methods are trapped by the presence of the local minima in the
analysis. Overall, the PSO is the most effective method for this problem, while
the MHM ranks the second with the least trials. The critical failure surfaces
from the different methods of optimization are shown in Figure 3.20.

Example 3 is a case considered by Zolfaghari et al. (2005), where there is
a natural slope with four soil layers, shown in Figure 3.21. Zolfaghari et al.
have adopted the GA and the Spencer method for this example. The
geotechnical parameters for this example are shown in Table 3.9. Four
loading cases are considered by Zolfaghari et al.: no water pressure and no
earthquake loadings (case 1); water pressure and no earthquake loading (case
2); earthquake loading (coefficient = 0.1) and no water pressure (case 3); and
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Figure 3.19 Example 1: Critical failure surface for a simple slope example 1
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failure surfaces by Tabu and Zolfaghari are virtually the same).



water pressure and earthquake loading (case 4). The numbers of slices are 40,
41, 44 and 45 for case 1 to case 4. The critical failure surfaces are given in
Figures 3.22–3.25 and Table 3.10. For this example, the Tabu search and the
ant-colony methods are not good while all the other methods are basically
satisfactory. The PSO, the GA and the MHM are the most effective and effi-
cient methods for this example.

The minimization of the factor of safety for a general slope stability problem is
a difficult N-P hard-type problem because of the special features of the objective
functions which have been discussed before. Since there are many limitations in
using the classical optimization methods in the slope stability problem, the current
trend is the adoption of the modern global optimization methods in this type of
problem. All these six types of heuristic algorithms can function well for normal
problems which are demonstrated in examples 1 and 2 and some other internal
studies by Cheng. For simple problems where the number of control variables is
less than 25, it appears that the SHM and MHM are the most efficient optimiza-
tion methods. The SHM, the Tabu search and the ant-colony method can
perform well in many other applications, but they have been demonstrated to be
less satisfactory for slope stability problems. Since the ant-colony method aims at
continuous optimization problems, it is not surprising that it is less satisfactory for
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Table 3.8 Results for example 2 (Spencer method)

Optimization methods Minimum factors NOFs
of safety

Total Critical

Leap-frog (Bolton et al., 1.305 Unknown
2003)

SA          20 slices 1.2411 51,770 51,745
30 slices 1.2689 77,096 75,314
40 slices 1.3238 190,664 190,648

GA          20 slices 1.2819 28,808 28,808
30 slices 1.2749 39,088 39,088
40 slices 1.2855 115,266 115,202

PSO            20 slices 1.2659 42,000 33,012
30 slices 1.2662 64,800 55,810
40 slices 1.2600 94,400 94,400

SHM         20 slices 1.3414 29,942 29,760
30 slices 1.2784 118,505 97,055
40 slices 1.2521 123,581 106,210

MHM        20 slices 1.2813 34,668 34,648
30 slices 1.2720 26,891 26,891
40 slices 1.2670 38,827 38,817

Tabu        20 slices 1.5381 30,548 1148
30 slices 1.5354 44,168 768
40 slices 1.5341 58,188 788

Ant-colony   20 slices 1.4897 43,500 4721
30 slices 1.5665 63,500 7726
40 slices 1.5815 83,500 1501



slope stability problems where the discontinuity of the objective function is
generated by divergence of the factor of safety. Similarly, when there are great
differences in the soil properties between different soils, the SHM will be less
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Figure 3.20 Critical slip surfaces for example 2 (failure surfaces by GA, PSO and
SHM are virtually the same).

Table 3.9 Geotechnical parameters of example 3

Layers γ (kNm–3) c′ (kPa) φ′(º)

1 19.0 15.0 20.0
2 19.0 17.0 21.0
3 19.0 5.0 10.0
4 19.0 35.0 28.0
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Figure 3.21 Geotechnical features of example 3.



Location of critical failure surface, convergence and other problems 113

satisfactory due to the use of uniform probability to individual harmony. The
present study has illustrated the special feature of slope stability analysis during
the optimization analysis, which is not found in other applications as production,
system control or other similar disciplines.

On the other hand, for large-scale optimization problems or problems sim-
ilar to example 3 with the presence of a thin layer of soft band which will cre-
ate difficulties in the optimization analysis, the effectiveness and the efficiency
of the different heuristic optimization methods vary significantly between dif-
ferent problems. The Tabu search and the ant-colony methods have been

Table 3.10 Example 6 with four loading cases for example 3 (Spencer method)

Optimization methods Minimum factors NOFs
of safety

Total Critical

Case 1 GA by Zolfaghari et al. 1.48 Unknown
(2005)

Case 2 GA by Zolfaghari et al. 1.36 Unknown
(2005)

Case 3 GA by Zolfaghari  et al. 1.37 Unknown
(2005)

Case 4 GA by Zolfaghari et al. 0.98 Unknown
(2005)

SA            Case 1 1.3961 135,560 135,069
Case 2 1.2837 106,742 106,662
Case 3 1.1334 108,542 106,669
Case 4 1.0081 111,386 109,667

GA             Case 1 1.3733 63,562 63,496
Case 2 1.2324 77,178 77,114
Case 3 1.0675 98,332 98,332
Case 4 0.9631 84,272 84,272

PSO                  Case 1 1.3372 62,800 33,116
Case 2 1.2100 83,400 83,400
Case 3 1.0474 69,600 69,600
Case 4 0.9451 68,600 24,440

SHM    Case 1 1.3729 172,464 149,173
Case 2 1.2326 126,445 100,529
Case 3 1.0733 99,831 98,070
Case 4 0.9570 212,160 186,632

MHM Case 1 1.3501 32,510 32,500
Case 2 1.2247 40,697 40,687
Case 3 1.0578 40,476 40,440
Case 4 0.9411 33,236 33,236

Tabu          Case 1 1.4802 58,588 1188
Case 2 1.3426 59,790 990
Case 3 1.1858 63,796 796
Case 4 1.0848 65,398 998

Ant-colony     Case 1 1.5749 100,200 13,400
Case 2 1.4488 102,600 1801
Case 3 1.3028 109,800 5689
Case 4 1.1372 112,200 18,436



demonstrated to give poor results in some of the problems, while the PSO
method appears to be the most stable and efficient and is recommended for
use in such cases. The presence of a thin soft band is difficult for analysis, as
a random number with equal opportunity in every solution domain is used in
the generation of the trial failure surface. In the present study, the domain
transformation method has not been used. If the domain transformation tech-
nique as suggested by Cheng (2007) is adopted, all six methods can work
effectively and efficiently for problems with soft bands, with the MHM and
PSO being the best solution algorithms in terms of efficiency.

For Figure 3.26 where the water table is above the ground surface at the left-
hand side of the slope, the SHM and the MHM cannot locate the global
minimum using the Spencer method even when the optimization parameters
are varied, unless the initial trial failure surface is close to the critical solution.
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Figure 3.22 Critical slip surfaces for case 1 of example 3.
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Figure 3.23 Critical slip surfaces for case 2 of example 3 (failure surfaces by GA,
MHM, SHM and Tabu are virtually the same).



Cheng has noted that many of the trial failure surfaces (20 per cent) fail to con-
verge in the optimization analysis, which is equivalent to the presence of dis-
continuity in the objective function. The SHM and the MHM are trapped by
the local minima under such cases if the initial trial is not close to the critical
solution and there are major discontinuities in the objective function. The GA,
the Tabu search and the ant-colony methods all suffer from this limitation. On
the other hand, the PSO and the SA can locate the critical solution effectively. 

Another interesting case is a steep slope in Beijing, where there is a thin layer
of soft material, a tension crack, two soil nails, an external surcharge and water
pressure at the tension crack (Figure 3.27). Only the SA method can work
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Figure 3.24 Critical slip surfaces for case 3 of example 3 (failure surfaces by GA,
PSO, MHM and SHM are virtually the same).
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properly with the Spencer method for this case, while all the methods fail to
work properly unless a good initial trial is used. For this problem, Cheng et al.
(2007b) noticed that all the initial 400–500 trials failed to converge with the
Spencer method. Such a major discontinuity in the objective function creates a
great difficulty in determining the directions of search for all the global opti-
mization methods, and no solution is obtained from all the optimization
methods (complete breakdown) except for the SA. This case is particularly
interesting because the optimization methods (except for the SA) lose the direc-
tion of search and fail to find even one converged result before termination,
unless the optimization parameters and the initial trial are specially tuned. This

116 Location of critical failure surface, convergence and other problems

−1

0

2 4 6 8 10 12 14

1

2

3

4

5

6

Figure 3.26 Slope with pond water.

−10
−10 0 10 20 30 40 50 60

−5

0

5

10

15

20

25

30

Figure 3.27 Steep slope with tension crack and soil nail.



special example has also illustrated the difficulty in locating the critical failure
surface for some special problems, where convergence is a critical issue. The SA
is less sensitive to the discontinuity of the objective function because it is based
on the Markov chain with a double looping search technique. 

3.7 Sensitivity of the global optimization parameters on the
performance of the global optimization method

In all of the heuristic global optimization methods, there is no simple rule to
determine the parameters used in the analysis. In general, these parameters
are established by experience and numerical tests. It is surprising to find that
the sensitivity of different global optimization methods with respect to
different parameters is seldom considered in the past, and the sensitivity of
the parameters in slope stability analysis has not been reported. The authors
consider this issue to be important for geotechnical engineering problems as
there are different topographies, sub-soil conditions, ground water condi-
tions, soil parameters, soil nails and external loads controlling the problem.
It appears that many researchers have not appreciated the importance of the
parameters used for the global optimization. The sensitivity of each param-
eter can be obtained through the nine numerical tests by the statistical
orthogonal tests given in Tables 3.11–3.17 for examples 1 and 3. If the F
value (Factorial Analysis of Variance after Fisher; Fisher and Yates, 1963) of
one parameter is larger than the critical value F0.05 and is smaller than F0.01,
it implies that the calculated result is sensitive to this parameter; otherwise if
the F value is smaller than F0.05, the result is insensitive to this parameter. If
the F value is larger than F0.01, the result is hyper-sensitive to this parameter.

For the simple problem given by example 1, every method can be worked with
satisfaction for different optimization parameters. For example 3 which is a dif-
ficult problem with a soft band (similar to a Dirac function), the Tabu search and
the ant-colony methods are poor in performance (the domain transformation
technique is not used) while all the other optimization methods are basically
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Table 3.11 The effects of parameters on SA analysis for examples 1 and 3 (Fλ = 0.14,
Ft0

= 0.47, FN = 3.86, F0.05 = 7.7, F0.01 = 21.2)

1 – 0.5 1 – 10.0 1 – 100 Ex. 1 Ex. 3 NOFs
2 – 0.8 2 – 20.0 2 – 300

Ex. 1 Ex. 3

1 1 1 1 1.7256 1.3232 176,562 140,522
2 2 2 2 1.7241 1.2990 915,902 956,523
3 1 2 2 1.7235 1.2514 339,602 408,482
4 2 1 1 1.7264 1.2745 423,522 349,422
5 2 1 2 1.7258 1.2846 852,602 986,534
6 1 2 1 1.7239 1.3193 183,422 135,262
7 2 2 1 1.7262 1.3213 463,782 360,242
8 1 1 2 1.7268 1.2582 492,122 252,302



acceptable with the F value less than F0.05. The efficiency of different methods for
this case is however strongly related to the choice of the parameters, unless the
transformation technique by Cheng (2007) is adopted, which is equivalent to the
use of a random number with more weighting in the soft-band region.

Every global optimization method can be tuned to work well if suitable opti-
mization parameters or an initial trial are adopted. Since the suitable optimization
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Table 3.12 The effects of parameters on GA analysis for examples 1 and 3 (Fρc
=

0.18, Fρm
= 0.38, F0.05 = 161.4, F0.01 = 4052)

ρc ρm Results NOFs

1 – 0.85 1 – 0.001 Ex. 1 Ex. 3 Ex. 1 Ex. 3
2 – 0.95 2 – 0.1

1 1 1 1.7273 1.2849 80,384 94,418
2 1 2 1.7266 1.2794 52,544 40,626
3 2 1 1.7272 1.2767 89,806 104,116
4 2 2 1.7266 1.2998 58,612 45,224

Table 3.13 The effects of parameters on PSO analysis for examples 1 and 3 (Fc1
=

0.60, Fc2
= 0.37, Fω = 0.52, F0.05 = 7.7, F0.01 = 21.2)

c1 c2 ω Results NOFs

1 – 1.0 1 – 1.0 1 – 0.3 Ex. 1 Ex. 3 Ex. 1 Ex. 3
2 – 3.0 2 – 3.0 2 – 0.8

1 1 1 1 1.7287 1.4430 59,200 45,200
2 2 2 2 1.7401 1.2671 59,200 45,200
3 1 2 2 1.7353 1.2692 59,200 94,800
4 2 1 1 1.7226 1.2368 108,400 231,800
5 2 1 2 1.7309 1.2545 59,800 46,400
6 1 2 1 1.7269 1.2405 75,600 57,600
7 2 2 1 1.7376 1.2747 59,200 45,200
8 1 1 2 1.7266 1.2479 59,200 58,200

Table 3.14 The effects of parameters on SHM analysis for examples 1 and 3 (FHR =
1.91, FPR = 1.13, F0.05 = 161.4, F0.01 = 4052)

HR PR Results NOFs

1 – 0.80 1 – 0.05 Ex. 1 Ex. 3 Ex. 1 Ex. 3
2 – 0.95 2 – 0.10

1 1 1 1.7330 1.2947 57,717 180,221
2 1 2 1.7438 1.3748 57,763 81,194
3 2 1 1.7231 1.2799 107,191 68,529
4 2 2 1.7259 1.2824 57,931 118,340



Table 3.15 The effects of parameters on MHM analysis for examples 1 and 3 (FHR
= 0.97, FPR = 0.07, FNhm = 0.10, Fδ = 0.26, F0.05 = 10.1, F0.01 = 34.1)

HR PR Nhm δ Results NOFs

1 – 0.80 1 – 0.05 1 – 0.1 1 – 0.3 Ex. 1 Ex. 3 Ex. 1 Ex. 3
2 – 0.95 2 – 0.10 2 – 0.3 2 – 0.8

1 1 1 1 1 1.7348 1.2838 7654 13,547
2 1 1 1 2 1.7323 1.3523 13,654 9545
3 1 2 2 1 1.7295 1.3102 31,446 34,436
4 1 2 2 2 1.7347 1.3025 31,446 45,235
5 2 1 2 1 1.7270 1.2976 17,159 27,053
6 2 1 2 2 1.7271 1.2874 16,986 26,591
7 2 2 1 1 1.7273 1.2989 9640 15,219
8 2 2 1 2 1.7271 1.2878 19,621 13,128

Table 3.16 The effects of parameters on Tabu analysis for examples 1 and 3 (Fd =
0.63, FNt

= 0.17, FHR = 0.49, FPR = 1.43, F0.05 = 10.1, F0.01 = 34.1)

d Nt HR PR Results NOFs

1 – 2 1 – 30 1 – 0.80 1 – 0.05 Ex. 1 Ex. 3 Ex. 1 Ex. 3
2 – 5 2 – 50 2 – 0.95 2 – 0.10

1 1 1 1 1 1.7411 1.5714 58,388 44,168
2 1 1 1 2 1.7413 1.5391 58,188 44,168
3 1 2 2 1 1.7424 1.5661 58,188 44,168
4 1 2 2 2 1.7413 1.5661 58,188 44,168
5 2 1 2 1 1.7429 1.5661 58,588 44,168
6 2 1 2 2 1.7415 1.5427 58,188 44,168
7 2 2 1 1 1.7415 1.5470 58,188 44,368
8 2 2 1 2 1.7354 1.5561 59,188 44,168

Table 3.17 The effects of parameters on ant-colony analysis for examples 1 and 3
(Fμ = 11.8, FQ = 0.002, Fd = 39.7, F0.05 = 7.7, F0.01 = 21.2)

μ Q d Results NOFs

1 – 0.3 1 – 10.0 1 – 10 Ex. 1 Ex. 3 Ex. 1 Ex. 3
2 – 0.8 2 – 50.0 2 – 20

1 1 1 1 1.7447 1.5332 83,500 76,200
2 2 2 2 1.7404 1.9239 66,800 50,800
3 1 2 2 1.7636 1.8787 66,800 50,800
4 2 1 1 1.7717 1.7420 83,500 76,200
5 2 1 2 1.7377 1.9239 66,800 50,800
6 1 2 1 1.7538 1.5049 83,500 76,200
7 2 2 1 1.7569 1.7420 83,500 76,200
8 1 1 2 1.7591 1.8435 66,800 50,800



parameters or the initial trial is difficult to be established for a general problem,
the performance of a good optimization method should be relatively insensitive
to these factors. Based on the numerical examples and the two special cases
shown in Figures 3.26 and 3.27 and some other internal studies by the authors,
the general comments on the different heuristic artificial intelligence-based
global optimization methods are:

1 For normal and simple problems, practically every method can work well.
The harmony method and the genetic algorithm are the most efficient
methods when the number of control variables is less than 20. The Tabu
search and the ant-colony method are sometimes extremely efficient in the
optimization process, but the efficiency of these two methods fluctuate sig-
nificantly between different problems and are not recommended.

2 For normal and simple problems where the number of control variables
exceeds 20, the MHM and the PSO are the recommended solutions as
they are more efficient in the solution, and the solution time will not
vary significantly between different problems.

3 For more complicated problems or when the number of control vari-
ables is great, the effectiveness and efficiency of the PSO is nearly the
best in all of the examples. 

4 A thin soft band creates great difficulty in the global optimization
analysis and the PSO will be the best method in this case. However,
using the domain transformation strategy by Cheng (2007), all the
global optimization methods can work well for this case.

5 For problems where an appreciable amount of trial failure surfaces will
fail to converge, the simulated annealing method and the PSO are the
recommended solutions.

In view of the differences in the performance between different global
optimization algorithms, a more satisfactory solution is the combined use of
two different algorithms. For example, the PSO or the MHM can be adopted
for normal problems, while the SA can be adopted when the ‘failure to
convergence’ counter is high. Further improvement can be achieved by using
the optimized results from a particular optimization method as a good initial
trial, and a second optimization method adopts the optimized result from the
first optimization algorithm for the second stage of optimization with a
reduced solution domain for each control variable.

3.8 Convexity of critical failure surface

From Cheng’s extensive trials, it can be concluded that most of the critical fail-
ure surfaces are convex in shape. The generation of the convex failure surfaces
as given in Section 3.2 is adequate for most cases. There are, however, some
cases where the ground conditions may generate non-convex critical failure sur-
faces, which have been discussed by Janbu (1973), and this is further investi-
gated in this section. The slope with a middle soft band is shown in Figure 3.28.
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The soil properties for the three soils are: c′ = 4 kPa, φ ′ = 33°;
c′ = 0 kPa, φ′ = 25°; and c′ = 10 kPa, φ′ = 36°, measured from top to bottom.
This slope is analysed using the Janbu simplified method and the Morgenstern–
Price method, and the critical failure surfaces from the analyses are shown in
Figure 3.28. The two critical failure surfaces are controlled by the soft band and
are similar in location except for section AB. Using the Janbu simplified
method, which satisfies only force equilibrium, the critical failure surface (FOS
= 0.985 without correction factor) basically follows the profile of the soft band
even though the kink AB should hinder the failure of the slope. On the other
hand, if the Morgenstern–Price method is used, the kink AB becomes important
in the moment equilibrium and no kink is found for the critical failure surface
unless the friction angle of soil 2 is lowered to 20° (a mild kink only). This result
illustrates that different stability formulations may require different generations
of the slip surface algorithm. These kinds of non-convex critical failure surfaces
are not commonly encountered but should be allowed in the generation of trial
failure surfaces if necessary. The slip surface generation scheme outlined in
Section 3.2 can achieve this requirement easily by simply eliminating the
requirement on the lower bound of each control variable. This option is also
available in SLOPE 2000 which can be chosen if required.

3.9 Lateral earth pressure determination

Slope stability analysis methods based on the limit equilibrium approach
are upper bound methods. In the Janbu simplified approach, the basic
assumptions are: 
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Figure 3.28 Critical failure surfaces for a slope with a soft band by the Janbu simplified
method and the Morgenstern–Price method.



1 upper bound limit equilibrium approach;
2 Mohr–Coulomb relation; and
3 force equilibrium.

In the classical earth pressure problems, the Coulomb earth pressure theory
is also based on the upper bound approach with consideration of force equi-
librium but not moment equilibrium. The assumption used in the Coulomb
theory is actually the same as that in the Janbu simplified method, so the two
problems should actually be equivalent problems. Consider a 5 m height
slope with a level back. The soil parameters are c′ = 0, φ ′ = 30° and unit
weight = 20 kNm-3. The horizontal lateral pressure 16.665 kNm−1 is found by
a trial and error approach when the minimum factor of safety is equal to 1.0.
It should be noted that since force equilibrium is used in the Janbu simplified
method, the use of point load, uniformly distributed load or triangular load
will be completely equivalent in the present analysis. The correction factor f0

should not be used in this case because only force equilibrium is considered
in the Coulomb mechanism while f0 will correct the inter-slice shear force and
moment equilibrium for the Janbu simplified analysis.

The minimum factor of safety as found is 1.0001 and the critical failure
surface shown in Figure 3.29 is completely equivalent to the classical Rankine
solution. The total load on this slope is 16.665 × 5 = 83.325 kN. The active
pressure coefficient can be back calculated as

83.325 = 0.5 Ka × 20 × 52 ⇒ Ka = 0.3333 = (1 – sinφ)/(1 + sinφ) 

This result is exactly the same as the Rankine solution or the Coulomb
solution. The critical failure surface from the non-circular search is also found
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to be a plane surface inclined at an angle of 60° with the horizontal direction,
which is equivalent to 45° + φ/2 from the Rankine solution. The next example
is the same as the previous one with a 20° slope behind the 5 m high slope.
The total load on this slope for a minimum factor of safety of 1.0 is 110.25
kN. The active pressure coefficient can be calculated as

110.25 = 0.5 Ka × 20 × 52 ⇒ Ka = 0.441

This result is exactly the same as the Coulomb solution for a slope with a
20° back which is shown in Figure 3.30. The failure surface is also found to
incline at an angle of 52°. The angle of inclination for this case can be found
from Design Manual 7 (see 7.2–65) which is given by

tanθ = tanφ + (1 + tan2φ – tanβ/sinφ/cosφ)0.5

If we put in β = 20°, θ is obtained as 52°, and this is exactly the same as
that obtained from the non-circular search as discussed before (see also the
user guide of SLOPE 2000 for the detailed results).

The point of application of the active pressure can be determined from the
moment balance of the failure mass and is found to be at one-third the height
of the retaining wall. The present technique can be extended for a retaining
wall with a non-homogeneous backfill, and the point of application of the
active pressure can be determined by the moment equilibrium between the
base normal and shear forces, the weight of soil and the total active pressure
from slope stability analysis.
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3.10 Convergence

The factor of safety function is a highly nonlinear equation (Sarma, 1987).
Presently, most of the slope analysis programs are based on the iteration
method which requires an initial trial in the analyses (commonly 1.0). Cheng
et al. (2008a) have noticed that while the iteration method has been used for
a long time, it has never been proved to be effective under all the cases. Many
engineers have experienced the problem of convergence with the M–P method
or similar methods in determining the factor of safety, in particular when
there are soil nails or external loads in the problems. In all the slope stability
programs, if convergence is not achieved during evaluation of the factor of
safety, an arbitrary large factor of safety is usually assigned to the trial failure
surface. If the phenomenon of ‘failure to converge’ is not a true phenomenon,
the use of a large factor of safety (discontinuity of the safety factor function)
can greatly affect the search for the critical failure surface, in particular when
the gradient-type method is used for the optimization analysis. This problem
will be serious if convergence is important, and this will be demonstrated in
a later section by some cases from Hong Kong.

In the search for the critical failure surface by the manual trial and error
approach, most engineers tackle the problem of ‘failure to converge’ by
modifying the shape and location of the prescribed failure surface until a
converged result is achieved. The minimum factor of safety will then corre-
spond to the minimum value from the limited trial failure surfaces which can
converge by iteration analysis. It is also interesting to note that it has never
been proved that a failure surface which fails to converge by iteration analy-
sis is not a critical failure surface!

Failure to converge for the ‘rigorous’ method is experienced by many geot-
echnical engineers as the iteration method is used in most of the commercial
programs. Cheng (2003) has formulated the slope stability problem in a
matrix approach where the factor of safety and internal forces can be deter-
mined directly from a complex double QR matrix method without the need
of an initial factor of safety. Cheng has proved that there are N factors of
safety associated with the nonlinear factor of safety equation for a problem
with N slices. In the double QR method, all the N factors of safety can be
determined directly from the tedious matrix equation without using any
iteration, and the factors of safety can be classified into three groups:

1 imaginary number;
2 negative number; and
3 positive number.

If all the factors of safety are either imaginary or negative, the problem
under consideration has no physically acceptable answer by nature.
Otherwise, the positive number (usually 1–2 positive numbers left) will be
examined for the physical acceptability of the corresponding internal forces
and a factor of safety will then be obtained. Under this new formulation, the
fundamental nature of the problem is fully determined. If no physically
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acceptable answer is obtained from the double QR method (all results are
imaginary or negative numbers), the problem under consideration has no
answer by nature, and the problem can be classified as ‘failure to converge’
under the assumption of the specific method of analysis. If a physically
acceptable answer exists for a specific problem, it will be determined by this
double QR method. The authors have found that many problems which fail
to converge with the classical iteration method actually possess meaningful
answers by the double QR method. That means that the phenomenon of ‘fail-
ure to converge’ may come from the use of the iteration analysis and may be
a false phenomenon in some cases. Cheng et al. (2008a) have found that
many failure surfaces which fail to converge are normal in shape and should
not be neglected in ordinary analysis and design. This situation is usually not
critical for the slope with simple geometry and no soil nail/external load, but
convergence for the ‘rigorous’ method will be a more critical issue when soil
nails/external loads are present in a problem. Since the use of the soil nail is
now very common in many countries, the problem of convergence which is
faced by many geotechnical engineers should not be overlooked.

To evaluate the importance of the convergence on the analysis, specific prob-
lems and parametric studies using commercial programs will be considered.
Figure 3.31 shows a simple slope with no water or soil nail, and the soil param-
eters are c′ = 5 kPa, φ ′ = 36° and unit weight = 20 kNm −3. The prescribed cir-
cular failure surface fails to converge with the iteration method (even when the
correct factor of safety is used as the initial solution), but a factor of safety equal
to 1.129 for M–P analysis is found by using the double QR method. The cor-
responding result for Sarma analysis is 1.126 which is also similar to that by
M–P analysis. This simple problem has illustrated that a failure surface which
fails to converge by the iteration method may actually possess physically accept-
able answers. Since many Hong Kong engineers have encountered convergence
problems with a soil-nailed slope, the second problem shown in Figure 3.32 is
considered, where the soil nail loads are 30, 40 and 50 kN from left to right.
The soil parameters for the top soil are c′ = 3 kPa, φ ′ = 33° and unit weight =
18 kNm–3 while the soil parameters for the second layer of soil are c′= 5 kPa,
φ ′ = 35° and unit weight = 19 kNm−3. The nail loads are applied at the nail head
as well as on the slip surface for comparisons in this study. The results of
analyses based on the iteration method by three commercial programs and the
double QR method by Cheng (2003) are shown in Table 3.18.

For those in Table 3.18, the double QR method gives physically acceptable
answers (or converged answers) for all the cases while the iteration method fails to
work for some of the M–P analyses. It is clear from Table 3.18 that the M–P
method using the iteration method suffers from the ‘failure to converge’ problem,
but answers actually exist for some of these problems. When only soil nail 3 is
applied to the slope, it is noticed from Table 3.18 that one of the commercial
programs can converge while the other commercial program fails to converge. It
appears that convergence also depends on the specific procedures in the iteration
analysis or the use of moment point in the individual program. Cheng et al. (2008a)
have also found that the use of over-shooting in iteration analysis may generally
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improve the computation speed but is slightly poorer in convergence (from internal
study). For the slope with no soil nail shown in Figure 3.31, Cheng et al. (2008a)
have tried different moment points but convergence is still not achieved with the
iteration method. The authors have also found that some problems may converge
by the iteration method if a suitable moment point is chosen for analysis, but great
effort will be required to try this moment. For an arbitrary problem, the region suit-
able for use as the moment point has to be established by a trial and error
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approach, and there is no simple way to pre-determine this region in general. The
convergence problem is critical for the M–P method but is rare for the Janbu sim-
plified method. Cheng et al. (2008a) have however constructed a deep-seated non-
circular failure surface shown in Figure 3.33 where c′ = 5 kPa, φ′ = 36° and unit
weight = 20 kNm−3. The Janbu analysis fails to converge with an initial factor of
safety equal to 1.0, but convergence is possible with an initial trial of 2.0. The dou-
ble QR method can work satisfactorily for this problem as no initial factor of safety
is required and the factor of safety is obtained directly. For this problem, the itera-
tion method can work by changing the initial factor of safety, but this technique
seldom works for those ‘rigorous’ methods. In general, convergence is important
mainly for ‘rigorous’ methods, but is rare for those ‘simplified’ methods. Up to
present, Cheng et al. cannot construct a problem where the Bishop method fails to
converge but possesses a physically acceptable answer, and it appears that the
Bishop method is virtually free from convergence problems. In fact, if the failure
surface is circular in shape, Cheng et al. are not able to construct any case for
Bishop or Janbu analysis where the iteration method fails to work, but a physically
acceptable answer can be determined from the double QR method.

Cheng et al. (2008a) have come across an interesting case in Hong Kong
which is shown in Figure 3.34. For this slope with a retaining wall, the
Morgenstern–Price method is adopted in the analysis. Engineers have experi-
enced great difficulties in drawing suitable failure surfaces which can con-
verge in the analysis, and a minimum factor of safety of 1.73 is determined
from several trials which can converge. When the iteration analysis is used by
the authors using an automatic location of the critical failure surface, no
solution can be found for the first 20,162 trials during the simulated
annealing analysis, which has demonstrated that this problem is difficult to
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Soil nail Soil nail Soil nail No nail
1 – 30 kN 2 – 40 kN 3 – 30 kN

Load applied at nail head
Spencer c/c/c c/c/c c/c/c c/c/c
Load applied at slip surface 
Spencer Fail/fail/c Fail/fail/fail c/fail/c c/c/c

Table 3.18 Performance of iteration analysis with three commercial programs based
on iteration analysis for the problem in Figure 3.35 (c means converged
by iteration analysis; fail means failure to converge by iteration analysis)

Soil nail Soil nail Soil nail Soil nail
1 + 2 1 + 3 2 + 3 1 + 2 + 3

Load applied at nail head
Spencer c/c/c Fail/fail/fail c/c/c c/c/c
Load applied at slip surface
Spencer Fail/fail/fail c/c/c Fail/fail/fail Fail/fail/fail



converge by the iteration analysis. When Cheng et al. re-considered this prob-
lem using the double QR method, ‘failure to converge’ was greatly reduced
and a minimum factor of safety of 1.387 was found, which is much lower
than that found by the engineers. The critical failure surface shown in
Figure 3.34 is re-considered by the iteration analysis using some commercial
programs, but convergence cannot be achieved even if the correct answer is used
as the initial factor of safety. This case has clearly illustrated the importance of
the convergence for some difficult problems.

3.10.1 Parametric study on convergence

To investigate the phenomenon of convergence, a systematic parametric study
using the Morgenstern–Price method is carried out for the simple slope shown
in Figure 3.35 with only soil 1 and water. Nearly 20 test cases with different
c′ and φ′ are used in the parametric tests, and the soil parameters are shown
in Table 3.19. For the 20 test cases, three conditions are considered: no soil
nail, three soil nails with each nail load equal to 30 kN and three soil nails
with each nail load equal to 300 kN (maximum nail load in Hong Kong is
400 kN). A search for the critical circular failure surface is considered in gen-
erating trial failure surfaces by using a commercial program. The x-ordinates
of the left exit end of the failure surface is controlled within x = 0 m to x =
3.0 m, while the x-ordinate of the right exit is controlled within x = 3.1 m to
x = 16 m. Several thousands of failure surfaces are generated during the
optimization search for each test case, and the percentage of ‘failure to
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converge’ is determined. Those cases which fail to converge with the iteration
method are analysed by the double QR method individually, and many of
these cases actually possess physically acceptable answers. The results of these
analyses are shown in Figures 3.36–3.41. 

There are two types of ‘failure to converge’ in the commercial program
adopted for the comparison which are worth discussion. For type 1, the con-
verged result is not obtained with respect to the tolerance of iteration analy-
sis. For type 2, the ‘converged’ results are very small with unreasonable
internal forces. The authors have also independently obtained very small
‘converged’ factors of safety based on iteration analysis and the internal
forces are all extremely large. If the factor of safety during the iteration analy-
sis becomes very small, the difference between two successive trials can be less
than the tolerance and a ‘false’ convergence is achieved. If the tolerance is fur-
ther reduced towards 0, the factor of safety will also further reduce and tends
to 0 while the internal forces will tend to infinity. When the double QR
method is used, the small factor of safety is actually not the root of the factor
of safety matrix, so the use of the double QR method will not experience such
‘false’ convergence as in the iteration analysis.
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Case c′ (kPa) φ′ (°) Case c′ (kPa) φ′ (°) Case c′ (kPa) φ′ (°) Case c′ (kPa) φ′ (°)

1 0 10 6 0 20 11 0 30 16 0 40
2 5 10 7 5 20 12 5 30 17 5 40
3 10 10 8 10 20 13 10 30 18 10 40
4 15 10 9 15 20 14 15 30 19 15 40
5 20 10 10 20 20 15 20 30 20 20 40

Source: Reproduced with permission of Taylor & Francis.

Table 3.19 Soil properties for Figure 3.35
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As shown in Figures 3.36–3.38, the use of the iteration method by a com-
mercial program experiences ‘failure to converge’ with an interesting wave
pattern for both type 1 and type 2 ‘failure to converge’. It is noticed that when
φ′ is 0 or very small, the use of the iteration method will experience more fail-
ure to converge while the double QR method is effective in determining
meaningful answers for most of the cases. When the friction angle is high, the
iteration method appears to perform well. Besides that, the use of great soil
nail forces will create great difficulties in convergence, which is also shown in
Figures 3.38 and 3.41. The double QR method can however provide mean-
ingful answers to many of the problems with great soil nail forces. The results
shown in Figures 3.38 and 3.41 are particularly important to Hong Kong, as
large diameter soil nails with a maximum load of 400 kN for each bar are
sometimes used there. Many Hong Kong engineers have also experienced the
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Figure 3.37 Percentage of failure type 1 for 30 kN soil nail loads.
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Figure 3.38 Percentage of failure type 1 for 300 kN soil nail loads.



problem of convergence with the presence of soil nails, and the problem in
Figure 3.34 is a good illustration of the importance of the convergence in
slope stability analysis.
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3.10.2 Combined impact of optimization and double
QR analysis

The previous section has illustrated the importance of the convergence on
slope stability analysis. In this section, some cases from Hong Kong which are
analysed by experienced engineers are re-considered by the authors. For the 13
cases shown below, all of them are analysed by engineers using the classical
approach: manual location of the critical non-circular failure surface with 10–
20 trials, while those failure surfaces which fail to converge will be neglected
in the analysis. Cheng et al. (2008a) have used the double QR method in
reducing convergence in the Morgenstern–Price analyses, and the critical fail-
ure surfaces are located by the use of the simulated annealing method (Cheng
2003). The results of analyses and the comparisons are shown in Table 3.20.

In Table 3.20, the differences between the results by the engineers and
those by Cheng et al. (2008a) are due to the optimization search and the con-
vergence problems, but the individual contribution from these two factors
cannot be separated clearly. Out of these 13 cases, the percentage differences
are smallest for cases 7, 8 and 11, where the slope angles are not high and
only a small amount of soil nails is required. The convergence problem is also
less critical for these cases during the optimization search. The critical failure
surfaces for cases 2 and 5 are the deep-seated type which lie below the retain-
ing wall, and convergence is difficult for these deep-seated failure surfaces by
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iteration analysis with some commercial programs. The slopes are steep for
cases 3, 4, 9 and 12, and convergence with iteration analysis is difficult for
these cases. It is noticed that, for steep slopes, deep-seated failure mechanisms
or slopes stabilized with many soil nails, greater differences are found
between the engineers’ results and the refined results by the authors. For these
cases, convergence is usually a problem, and only limited trials can be
achieved by the manual trial and error approach.

3.10.3 Reasons for failure to converge

To investigate the reason behind ‘failure to converge’ even when the correct
answer is used as the initial solution, the equilibrium equations shown below
should be considered.

For the slice shown in Figure 3.42, the total base normal force P and the
inter-slice normal forces are given by:

(3.16)

(3.17)

In solving the equilibrium equations to determine the factor of safety F,
the inter-slice shear force VR and VL are usually assumed to be 0 in eq. (3.16)
in the first step during the classical iteration method or the Newton–Rhapson
method by Chen et al. (1983) or Zhu et al. (2001, 2005). When the correct
factor of safety is used as the initial trial in eq. (3.16), N and hence F will not

where ma = cosað1+ tana
tanφ0

F
Þ

PR −PL =N sina− ½c0l+ ðN − ulÞ tanφ0� cosa=F

N = ½W − ðVR −VLÞ− 1
F
ðc0l sina− ul tanφ0 sinaÞ�=ma
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Table 3.20 Impact of convergence and optimization analysis for 13 cases with
Morgenstern–Price analysis

Case FS by FS by % difference Remark
engineer double QR

1 1.404 1.196 17.4 3 soil, no soil nail
2 1.458 1.152 26.6 4 soil, retaining wall, surcharge
3 1.5 1.18 27.1 2 soil, 12 soil nails
4 1.43 1.09 31.2 4 soil, 8 soil nails, surcharge
5 1.73 1.388 24.6 2 soil, retaining wall, 3 soil nails
6 1.406 1.253 12.2 3 soil, 7 soil nails
7 1.406 1.324 6.2 2 soil, 3 soil nails
8 1.4 1.293 8.3 3 soil, 4 soil nails
9 1.41 1.05 34.3 3 soil, 6 soil nails, steep slope
10 1.5 1.279 17.3 3 soil, 5 soil nails
11 1.408 1.328 6 2 soil, 3 soil nails
12 1.51 1.027 47 4 soil, 9 soil nails, steep slope
13 1.25 1.059 18 2 soil, 3 soil nails



be correct even when F is correct in the right-hand side of eq. (3.16), as VR and
VL are assumed to be 0 which is clearly not correct. The inter-slice normal
force from eq. (3.17) will then be incorrect, which leads to the inter-slice shear
force which is computed based on V = λf(x)P to be incorrect. Eq. (3.17) which
is one step behind eq. (3.16) will not be correct as F is not correctly obtained
from the left-hand side of eq. (3.16) in the first step. This iteration approach
based on V = 0 in the first step is used classically and is possibly the solution
algorithm adopted in the commercial programs. Referring to Figure 3.42
which is example 1 shown in Figure 3.31, the initial Fm based on the iteration
analysis is close to the correct solution 1.553 when λ is 0 (factor of safety is
not sensitive to the inter-slice shear force when λ is small). However, Ff is sen-
sitive to the inter-slice shear force V when it is assumed to be 0 in the first step.
When λ increases, V is no longer zero but will deviate more and more from
the correct value, and the effect on Ff becomes worse when an incorrect V is
used in the iteration process. The results shown in Figure 3.43 will however be
completely different when 10 per cent of the correct inter-slice shear force is
specified in the first step of iteration analysis. As long as a constant ratio of 10
per cent (or more) is specified for all the slices, Ff will be much closer to Fm ini-
tially by iteration analysis, and convergence can be achieved easily with λ =
0.71 and F = 1.553. While many problems are not sensitive to the inter-slice
shear force so that the iteration method can work well, example 1 is very sen-
sitive to the inter-slice shear force so that the iteration analysis leads to a wrong
solution path during the nonlinear equation solution, even when the correct F
is used for the right-hand side of eq. (3.16) in the first step. 

In Figure 3.43, the centroid of the soil mass is taken as the moment point
for the analysis. If the moment point is varied, the results can be different and
sometimes some problems may get converged using a different moment point.
This practice is sometimes adopted by engineers to overcome the convergence
problem, and many commercial programs allow the use of different moment
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points in the evaluation of the factors of safety. There is however no systematic
and automatic way to change the moment point for general cases, so the
moment point will be kept constant during the optimization search in
commercial programs.

Cheng et al. (2008a) have also tried to adopt the approach by Baker
(1980) where the iteration method does not require V = 0 in the first step. It
is found that convergence is improved by removing this requirement, but
there are still cases where ‘failure to converge’ exists while the double QR
method can find physically acceptable solutions. It can be concluded that the
inter-slice shear force is the main cause for the ‘failure to converge’ in the clas-
sical iteration method. To overcome the convergence problem, the extremum
principle outlined in Section 2.9 can be used. This approach will give the factor
of safety practically for every failure surface.

3.11 Importance of the methods of analysis

In general, different methods will give a similar factor of safety, and the dif-
ferences between the ‘rigorous’ and the ‘simplified’ methods are small. Cheng
has however come across many cases where there are noticeable differences
in the factor of safety which is worth discussing. Consider the problem in
Figure 3.44 which is a project in China. For the prescribed failure surface, the
factors of safety for the simplified methods are 2.358 (f0 = 1.068), 2.159,
2.796 and 3.563 for the Janbu simplified, Corps of Engineers, Lowe–
Karafiath and load factor methods. The factors of safety for the rigorous
methods are 3.06, 3.38, 3.857, 3.361 and 3.827 for the Sarma, M–P (f(x) = 1.0
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and sin(x)) and GLE methods (f(x) = 1.0 and sin(x)). Since there is a wide
scatter in the results which means that the effect of the inter-slice shear force
is critical in the analysis, there is a great difficulty in the interpretation of the
results. The result by the Janbu simplified method was finally accepted by the
engineers for the sake of safety. As a good practice, the factors of safety for
complicated projects using different limit equilibrium methods should be
determined and assessed before the final interpretation.
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4 Discussions on limit equilibrium
and finite element methods for
slope stability analysis

The limit equilibrium method (LEM) and the strength reduction method (SRM)
based on the finite element/finite difference method are currently the most pop-
ular methods among engineers. The limit analysis (including the rigid element)
and distinct element method, by contrast, remain unpopular with engineers,
and comparisons between the two methods will not be demonstrated in this
chapter. Some of the engineers responsible for the design of dams in China even
have doubts as to the activation of the energy balance along the vertical inter-
faces in limit analysis that is shown to be not valid in Figure 2.20 (see page 71).

4.1 Comparisons of the SRM and LEM

The LEM, which is based on the force and moment equilibrium, is a popular
method among engineers. Besides the LEM (introduced previously in
Chapter 2), the use of the finite difference/finite element methods has also
attracted engineers in recent times (introduced in Section 2.9). This approach
is currently adopted in several well-known commercial geotechnical finite
element programs. The SRM by finite element analysis was used for slope
stability analysis as early as 1975 by Zienkiewicz et al. Later, the SRM was
applied by Naylor (1982), Donald and Giam (1988), Matsui and San
(1992), Ugai and Leshchinsky (1995), Song (1997), Dawson et al. (1999),
Griffiths and Lane (1999), Zheng et al. (2005) and others. In the SRM, the
domain under consideration is discretized and the equivalent body forces are
applied to the system. The yield criterion adopted is usually the Mohr–
Coulomb criterion, but the use of other yield criteria is also possible.
Different researchers and commercial programs have adopted different
definitions to assess the factor of safety (FOS). The most popular definitions
for the FOS include the following: (1) a sudden change in the displacement
of the system; (2) failure to converge after a pre-determined number of
iterations have been performed; (3) a continuous yield zone is formed.

Many researchers have compared the results between the SRM and LEM
and found that generally both the methods will give similar FOS. Most stud-
ies are, however, limited to homogeneous soil slopes where the geometry of
the problem is relatively regular with no special features (e.g. the presence of
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a thin layer of soft material or special geometry). Furthermore, there are only
limited studies that compare the critical failure surfaces from the LEM and
SRM as the FOS appears to be the primary quantity of interest. In this
chapter, these two methods are compared under different conditions and
both the FOS and the locations of the critical failure surfaces are considered
in the comparisons. In this chapter, both a non-associated flow rule (SRM1
and dilation angle = 0) and an associated flow rule (SRM2 and dilation angle
= friction angle) are applied in the SRM analyses. To define the critical fail-
ure surface from the SRM, both the maximum shear strain and the maximum
shear strain increment definition can be used. Cheng et al. (2007e) have found
that these two definitions will give similar results in most cases and the max-
imum shear strain increment is chosen for the present study.

In this chapter, the LEM is considered using the Morgenstern–Price method
with f(x) = 1.0 (equivalent to the Spencer method). It is also found that the
differences of the FOS and the critical failure surfaces from f(x) = 1.0 and f(x)
= sin(x) are small for the present study. In performing the SRM analysis,
many soil parameters and boundary conditions are required to be defined
that are absent in the corresponding LEM analysis. The importance of the
various parameters and the applicability of the SRM in several special cases
are considered in the following sections.

4.2 Stability analysis for a simple and homogeneous soil
slope using the LEM and SRM

To investigate the differences between the LEM and SRM, a homogeneous soil
slope with a slope height equal to 6 m and slope angle equal to 45° (Figure
4.1) is considered in this section. For the three cases in which the friction
angle is 0°, because the critical slip surface is a deep-seated surface with
a large horizontal extent, the models are larger than the one shown in

4m 6m

6m

4m

10m

20m

10m

Figure 4.1 Discretization of a simple slope model.



Table 4.1 Factors of safety (FOS) by the LEM and SRM

Case c′ φ′ (°) FOS FOS FOS FOS FOS FOS 
(kPa) (LEM) (SRM1, (SRM2, difference difference difference 

non- associated) with LEM with LEM between 
associated) (SRM1, %) (SRM2, %) SRM1 and 

SRM2

1 2 5 0.25 0.25 0.26 0 4.0 4.0
2 2 15 0.50 0.51 0.52 2.0 4.0 2.0
3 2 25 0.74 0.77 0.78 4.0 5.4 1.3
4 2 35 1.01 1.07 1.07 5.9 5.9 0
5 2 45 1.35 1.42 1.44 5.2 6.7 1.4
6 5 5 0.41 0.43 0.43 4.9 4.9 0
7 5 15 0.70 0.73 0.73 4.3 4.3 0
8 5 25 0.98 1.03 1.03 5.1 5.1 0
9 5 35 1.28 1.34 1.35 4.7 5.5 0.7

10 5 45 1.65 1.68 1.74 1.8 5.5 3.6
11 10 5 0.65 0.69 0.69 6.2 6.2 0
12 10 15 0.98 1.04 1.04 6.1 6.1 0
13 10 25 1.30 1.36 1.37 4.6 5.4 0.7
14 10 35 1.63 1.69 1.71 3.7 4.9 1.2
15 10 45 2.04 2.05 2.15 0.5 5.4 4.9
16 20 5 1.06 1.20 1.20 13.2 13.2 0
17 20 15 1.48 1.59 1.59 7.4 7.4 0
18 20 25 1.85 1.95 1.96 5.4 5.9 0.5
19 20 35 2.24 2.28 2.35 1.8 4.9 3.1
20 20 45 2.69 2.67 2.83 0.7 5.2 6.0
21 5 0 0.20 — 0.23 — 15.0 —
22 10 0 0.40 — 0.45 — 12.5 —
23 20 0 0.80 — 0.91 — 13.8 —
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Figure 4.1 and have a width of 40 m and a height of 16 m. In the parametric
study, different shear strength properties are used and the LEM, SRM1 and
SRM2 analyses are carried out. The cohesive strength c′ of the soil varies from
2 kPa, 5 kPa, 10 kPa to 20 kPa, whereas the friction angle varies from 5°,
15°, 25°, 35° to 45°. The density, elastic modulus and Poisson ratio of the soil
are kept at 20 kN/m3, 14 MPa and 0.3, respectively, in all the analyses. As
shown in Figure 4.1, the size of the domain for the SRM analyses is 20 m in
width and 10 m in height and there are 3520 zones and 7302 grid points in
the mesh for analysis. Based on limited mesh refinement studies, it was found
that the discretization shown in Figure 4.1 is sufficiently good, so that the
results of analyses are practically insensitive to a further reduction in the ele-
ment size. For the LEM, the Spencer method that satisfies both the moment
and force equilibrium is adopted and the critical failure surface is evaluated
by the modified simulated annealing technique proposed by Cheng (2003).
The tolerance for locating the critical failure surface by the simulated anneal-
ing method is 0.0001, which is sufficiently accurate for the present study.

From Table 4.1 and Figures 4.2 and 4.3, it is found that the FOS and crit-
ical failure surfaces determined by the SRM and LEM are very similar
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under different combinations of soil parameters for most cases, except
when φ′ = 0. When the friction angle is greater than 0, most of the FOS by
the SRM differ by less than 7.4 per cent with respect to the LEM results,
except for case 16 (c′ = 20 kPa, φ′ = 5°) where the difference is up to 13.2
per cent. When the friction angle is very small or zero, there are relatively
major differences between the SRM and LEM for both the FOS and the crit-
ical slip surface (Table 4.1 and Figure 4.4). The differences in the FOS
between the LEM and SRM reported by Saeterbo Glamen et al. (2004) are
greater than those found in the present study. Cheng et al. (2007a) suspect
that this is due to the manual location of the critical failure surfaces by
Saeterbo Glamen et al., as opposed to the global optimization method used
here. Based on Table 4.1 and Figures 4.2 and 4.3, some conclusions can be
made as follows:

1 Most of the FOS obtained from the SRM are slightly larger than those
obtained from the LEM with only few exceptions.

2 The FOS from an associated flow rule (SRM2) are slightly greater than
those from a non-associated flow (SRM1), and this difference increases
with an increasing friction angle. These results are reasonable and are

Figure 4.3 Slip surface comparison with increasing cohesion (phi = 5°).

Figure 4.2 Slip surface comparison with increasing friction angle (c′ = 2kPa).
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expected. The differences between the two sets of results are, however,
small because the problem has a low level of ‘kinematic constraint’.

3 When the cohesive strength of the soil is small, the differences in FOS
between the LEM and SRM (SRM1 and SRM2) are greatest for higher
friction angles. When the cohesion of the soil is large, the differences in
FOS are greatest for lower friction angles. This result is somewhat dif-
ferent from that of Dawson et al. (2000), who concluded that the
differences are greatest for higher friction angles when the results
between the SRM and limit analysis are compared.

4 The failure surfaces from the LEM, SRM1 and SRM2 are similar in
most cases. In particular, the critical failure surfaces obtained by the
SRM2 appear to be closer to those from the LEM than those obtained
from the SRM1. The critical failure surfaces from the SRM1, SRM2
and LEM are practically the same when the cohesive strength is small
(it is difficult to differentiate clearly in Figures 4.2a, 4.2b, 4.3a and
4.5a), but noticeable differences in the critical failure surfaces are found
when the cohesive strength is high (Figures 4.3b, 4.4a, 4.4b and 4.5b).

Figure 4.5 Slip surface comparison with increasing cohesion (phi = 35°).

Figure 4.4 Slip surface comparison with increasing cohesion (phi = 0).
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5 The right end of the failure surface moves closer to the crest of the slope
as the friction angle of the soil is increased (which is a well-known
result). This behaviour is more obvious for those failure surfaces
obtained from the SRM1. For example, for the five cases where the
cohesion of the soil is 2 kPa (Figure 4.2), when the friction angles are
5°, 15° and 25°, the right end-point of the failure surface derived from
the SRM1 is located to the right of the right end-point of the critical
failure surface obtained from the LEM. When the friction angle is 35°,
the right end-point of the failure surface obtained by the SRM1 and
LEM is nearly at the same location. When the friction angle is 45°, the
distance of the right end-point derived from the SRM1 is located to the
left of the right end-point derived from the LEM.

6 For SRM analyses, when the friction angle of soil is small, the
differences between the slip surfaces for the SRM1 and SRM2 are
greatest for a smaller cohesion (Figure 4.3). When the friction angle is
large, the differences between the slip surface for the SRM1 and SRM2
are greatest for a higher cohesion (Figure 4.5).

7 It can also be deduced from Figures 4.2 to 4.5 that the potential failure
volume of the slope becomes smaller with the increasing friction angle
but increases with increasing cohesion. This is also a well-known
behaviour, as when the cohesive strength is high, the critical failure sur-
face will be deeper.

Although there are some minor differences in the results between the SRM
and LEM in this example, the results from these two methods are generally
in good agreement, which suggests that the use of either the LEM or SRM is
satisfactory in general. Cheng et al. (2007a) have, however, constructed an
interesting case where the limitations of the SRM are demonstrated.

Figure 4.6 A slope with a thin soft band.
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4.3 Stability analysis of a slope with a soft band

A special problem with a soft band has been constructed by Cheng et al.
(2007a) as it appears that similar problems have not been considered previ-
ously. The geometry of the slope is shown in Figure 4.6 and the soil properties
are shown in Table 4.2. It is noted that c′ is zero and φ′ is small for soil layer
2 that has a thickness of just 0.5 m. The critical failure surface is obviously
controlled by this soft band, and slope failures in similar conditions have
actually occurred in Hong Kong.

To consider the size effect (boundary effect) in the SRM, three different
numerical models are developed to perform the SRM using Mohr–Coulomb
analysis, and the widths of the domains are 28 m, 20 m and 12 m, respec-
tively (Figure 4.7). In these three SRM models, various mesh sizes were tried
until the results were insensitive to the number of elements used for the analy-
sis. For example, when the domain size is 28 m, the FOS was found to be 1.37
(Table 4.3) with 12,000 elements, 1.61 with 6000 elements and 1.77 with
3000 elements using SRM1 analysis and the program Phase.

Because the FOS for this special problem have great differences from those
found using the LEM, Cheng et al. (2007a) have tried several well-known com-
mercial programs and obtained very surprising results. The locations of the crit-
ical failure surfaces from the SRM for solution domain widths of 12 m, 20 m
and 28 m are virtually the same. The local failures from the SRM, shown in
Figure 4.8b, range from x = 5 m to x = 8 m, and the failure surfaces are virtu-
ally the same for the three different solution domains. A majority part of the
critical failure surface lies within layer 2, which has a low shear strength, and is
far from the right boundary. It is surprising to find that different programs pro-
duce drastically different results (Table 4.3A) for the FOS, even though the loca-
tions of the critical failure surface from these programs are very similar. For the
cases shown in Figure 4.1, and other cases in a latter part of this study, the
results are practically insensitive to the domain size, whereas the cases shown in
Figure 4.6 are very sensitive to the size of domain for the programs Flac3D
(SRM1 and SRM2) and Phase (SRM2). Results from the Plaxis program appear
not to be sensitive to the domain size but are quite sensitive to the dilation angle
(which is different from the previous example). The SRM1 results from the
program Phase are also not sensitive to the domain size for SRM1, but results
from SRM2 behave differently. The FOS from Flac3D appear to be overesti-
mated when the soil parameters for the soft band are low, but the results from
this program are not sensitive to the dilation angle that is similar to all the other

Table 4.2 Soil properties for Figure 4.6

Soil name Cohesion (kPa) Friction angle Density Elastic Poisson 
(degree) (kN/m3) modulus (MPa) ratio

Soil1 20 35 19 14 0.3
Soil2 0 25 19 14 0.3
Soil3 10 35 19 14 0.3



Discussions on limit equilibrium and finite element methods 145

examples in the present study. For the SRM1, the results from Phase and Plaxis
appear to be more reasonable as the results are not sensitive to the domain sizes,
whereas for the SRM2, Cheng et al. (2007a) take the view that the results from

Figure 4.7 Mesh plot of the three numerical models with a soft band.

Table 4.3A FOS by SRM from different programs when c′ for soft band is 0. The
values in each cell are based on SRM1 and SRM2, respectively (min.
FOS = 0.927 from Morgenstern–Price analysis)

Program/FOS 12 m domain 20 m domain 28 m domain

Flac3D 1.03/1.03 1.30/1.28 1.64/1.61
Phase 0.77/0.85 0.84/1.06 0.87/1.37
Plaxis 0.82/0.94 0.85/0.97 0.86/0.97
Flac2D No solution No solution No solution
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Plaxis may be better. It is also surprising to find that Flac2D cannot give any
result for this problem, even after many different trials, but the program worked
properly for all the other examples in this chapter.

Table 4.3B FOS by SRM from different programs when φ′ = 0 and c′ = 10 kPa for
soft band. The values in each cell are based on SRM1 and SRM2,
respectively (min. FOS = 1.03 from the Morgenstern–Price analysis)

Program/FOS 28 m domain

Flac3D 1.06/1.06
Phase 0.99/1.0
Plaxis 1.0/1.03
Flac2D No solution

Figure 4.8 Locations of critical failure surfaces from the LEM and SRM for the
frictional soft band problem. (a) Critical solution from LEM when
soft band is frictional material (FOS = 0.927). (b) Critical solution
from SRM for 12m width domain.

(b)

(a)
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There is another interesting and important issue when the SRM is adopted for
the present problems. For the problem with a 12 m domain, Phase cannot pro-
vide a result with the default settings and the default settings are varied (including
the tolerance and number of iterations allowed) until convergence is achieved. The
results of analysis for a 12 m domain with Phase are shown in Tables 4.4 and 4.5.

Table 4.4 FOS with non-associated flow rule for 12 m domain

Element Tolerance Maximum number FOS
number (stress analysis) of iterations

1500 0.001 100 0.8
2000 0.001 100 No result
2000 0.003 100 No result
2000 0.004 100 No result
2000 0.005 100 No result
2000 0.008 100 0.81
2000 0.01 100 0.82
2000 0.001 500 0.74
2000 0.003 500 0.77
2000 0.004 500 0.77
2000 0.005 500 0.79
3000 0.001 100 No result
3000 0.003 100 0.79
3000 0.004 100 0.8
3000 0.005 100 0.8
3000 0.01 100 0.84
3000 0.001 500 0.77

Table 4.5 FOS with associated flow rule for 12 m domain

Element Tolerance Maximum number FOS
number (stress analysis) of iterations

1000 0.001 100 1.03
1200 0.001 100 1
1500 0.001 100 No result
1500 0.003 100 No result
1500 0.004 100 1
1500 0.005 100 1.39
1500 0.01 100 2.09
1500 0.001 500 0.86
1500 0.003 500 0.98
3000 0.001 100 No result
3000 0.003 100 No result
3000 0.004 100 No result
3000 0.005 100 No result
3000 0.01 100 No result
3000 0.001 500 0.85
3000 0.003 500 0.89
3000 0.004 500 0.9
3000 0.005 500 1.5
3000 0.01 500 2.09
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It is observed that the number of elements used for the analysis has a very signif-
icant effect on the FOS, which is not observed for the cases in Table 4.1. The tol-
erance used in the nonlinear equation solution also has a major impact on the
results for this case. This is less obvious for other cases considered in this chapter.

Besides the special results shown above, the FOS from the 28 m domain
analysis appear to be large for Flac3D and Phase when the strength parame-
ters for the soil layer 2 are low. In fact, it is not easy to define an appropriate
FOS from the SRM analysis for this problem. If the cohesive strength of the
top soil is reduced to zero, the FOS can be estimated as 0.57 from the rela-
tion tanφ/tanθ, where q is the slope angle. It can be seen that, for the LEM,
the cohesive strength 20 kPa for soil 1 helps to bring the FOS to 0.927 and a
high FOS for this problem is not reasonable. Without the results from the
LEM for comparison, it may be unconservative to adopt the values of 1.64
(1.61) from the SRM based on Flac3D.

When the soil properties of the soft band are changed to c′ = 10 kPa and
φ′ = 0, the results of analyses are shown in Table 4.3B. It is found that the crit-
ical failure will extend to a much greater distance so that a 28 m wide domain
is necessary. The FOS from the different programs are virtually the same,
which is drastically different from the results in Table 4.3A (the same meshes
were used for Tables 4.3A and 4.3B).

If the soil properties of soils 2 and 3 are interchanged so that the third layer
of soil is the weak soil, the FOS from the SRM2 are 1.33 (with all programs)
for all three different domain sizes. The corresponding FOS from the LEM is
1.29 from the Spencer analysis. The locations of the critical failure surface from
the SRM and LEM for this case are also very close, except for the initial por-
tion shown in Figures 4.9a and 4.9b. It appears that the presence of a soft band
with frictional material, instead of major differences in the soil parameters, is
the actual cause for the difficulties in the SRM analysis. Great care is required
in the implementation of a robust nonlinear equation solver for the SRM.

The problems shown in Table 4.3A may reflect the limitations of commer-
cial programs rather than the limitations of the SRM, but they illustrate that
it is not easy to compute a reliable FOS for this type of problem using the
SRM. The results are highly sensitive to different nonlinear solution algo-
rithms that are not clearly explained in the commercial programs. Great care,
effort and time are required to achieve a reasonable result from the SRM for
this special problem and comparisons with the LEM are necessary. It is not
easy to define a proper FOS from the SRM alone for the present problem, as
the results are highly sensitive to the size of domain and the flow rule. In this
respect, the LEM appears to be a better approach for this type of problem.

4.4 Local minimum in the LEM

For the LEM, it is well known that many local minima may exist besides the
global minimum. This makes it difficult to locate the critical failure surface by
classical optimization methods. Comparisons of the LEM and SRM with
respect to local minima have not been considered in the past, but this actually



is a very important issue that is illustrated by the following examples. In the
SRM, there is no local minimum as the formation of the shear band will
attract strain localization in the solution process. To investigate this issue, an
11 m height slope shown in Figure 4.10 is considered. The slope angle for the
lower part of the slope is 45°, whereas the slope angle for the upper part of
the slope is 26.7°. The cohesion and friction angle of the soil are 10 kPa and
30°, respectively, and the density of the soil is 20 kN/m3.

The failure mechanism by the SRM is shown in Figure 4.11 and the FOS is
1.47 for both non-associated flow and associated flow. The right end-point
of the failure surface is located to the right of the crest of the slope. The results
derived from the LEM are presented in Figure 4.12 (number of slices is 50).
The global minimum FOS is 1.383 but a local minimum FOS of 1.3848 is
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Figure 4.9 Critical solutions from the LEM and SRM when the bottom soil layer
is weak. (a) Critical failure surface from LEM when the bottom soil
layer is weak (FOS = 1.29). (b) Critical failure surface from SRM2 and
12 m domain (FOS = 1.33).

(a)

(b)
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also found. The location of the failure surface for the local minimum 1.3848
is very close to that from the SRM, and the failure surface for the global min-
imum from the LEM is not the critical failure surface from the SRM. Because
the FOS for the two critical failure surfaces from the LEM are so close, that
both failure surfaces are probable failure surfaces should be considered in
slope stabilization. For the SRM, there is only one unique failure surface from
the analysis and another possible failure mechanism cannot be easily deter-
mined. Thus, the SRM analysis may yield a local failure surface of less impor-
tance while a more severe global failure surface remains undetected, as
illustrated in the next example. This is clearly a major drawback of the SRM
as compared with the LEM.

Cheng et al. (2007a) have also constructed another interesting case that is
worth discussion. Figure 4.13 shows a relatively simple slope with a total
height of 55 m in a uniform soil. The soil parameters are c′ = 5 kPa and φ′ =
30° while the unit weight is 20 kN/m3. The global minimum and local minima
are determined in accordance with the procedures of Cheng (2003) and dif-
ferent boundaries for the left and right exit ends are specified in the study.
Using the LEM, the global minimum FOS is obtained as 1.33 (Figure 4.13a)

Figure 4.10 Slope geometry and soil property.

Figure 4.11 Result derived by SRM.



Discussions on limit equilibrium and finite element methods 151

but several local minima are found with factors of safety in the range 1.38 to
1.42 shown in Figure 4.13a. From the SRM, only the FOS 1.327 shown in
Figure 4.13b is found that is similar to the global minimum shown in Figure
4.13a. If slope stabilization is only carried out for this failure surface, the pos-
sible failure surfaces given by the local minimum in Figure 4.13a will not be
considered. Baker and Leshchinsky (2001) have proposed the concept of the
‘safety map’, which enables the global minimum and local minima from the
LEM to be visualized easily, but the construction of such a map using the SRM
is tedious. In this respect, the LEM is a better tool for slope stability analysis.
It is possible that the use of the SRM may miss the location of the next critical
failure surface (with a very small difference in the FOS but a major difference
in the location of the critical failure surface) so that the slope stabilization
measures may not be adequate. This interesting case has illustrated a major
limitation of the SRM for the design of slope stabilization works. It is true that
the use of the safety map by the SRM can also overcome the limitation of the
local minimum, but the evaluation of all the local minima using the LEM and
the modern optimization method requires only 10 min for the complete analy-
sis, which is much faster than using the safety map. The assessment of the local
minima and the global minimum can also give a picture similar to that by the
safety map. In the authors’ view, there is not a strong need to use the safety
map concept.

4.5 Discussion and conclusion

In the present study, a number of interesting features of the SRM were high-
lighted that are important for a proper analysis of a slope. Although most
research has concentrated on the FOS between the LEM and SRM, the
present works have compared the locations of the critical failure surfaces
from these two methods. In a simple and homogeneous soil slope, the
differences in the FOS and locations of the critical failure surfaces from the

Figure 4.12 Global and local minima by LEM.
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SRM and LEM are small and both methods are satisfactory for engineering
use. It is found that when the cohesion of the soil is small, the difference in
the FOS from the two methods is greatest for higher friction angles. When the
cohesion of the soil is large, the difference in the FOS is greatest for lower
friction angles. With regard to the flow rule, the FOS and locations of the crit-
ical failure surface are not greatly affected by the choice of the dilation angle
(which is important for the adoption of the SRM in slope stability analysis).
When an associated flow rule is assumed, the critical slip surfaces from the
SRM2 appear to be closer to those from the LEM than those from the SRM1.
The use of the SRM requires Young’s modulus, Poissons’ ratio and the flow
rule being defined. The importance of the flow rule has been discussed in the
previous section. Cheng et al. (2007a) have also tried different combinations
of Young’s modulus and Poissons’ ratio and found these two parameters to
be insensitive to the results of analysis.

For the SRM, the effects of the dilation angle, the tolerance for nonlinear
equation analysis, the soil moduli and the domain size (boundary effects) are

Figure 4.13 (a) Global and local minimum factors of safety are very close for a
slope. (b) FOS = 1.327 from SRM.

(b)

(a)



usually small but still noticeable. In most cases, these factors cause differ-
ences of just a few per cent and are not critical for engineering use of the
SRM. Because the use of different LEM methods will also give differences in
the FOS of several per cent, the LEM and SRM can be viewed as similar in
performance for normal cases.

Drastically different results are determined from different computer
programs for the problem with a soft band. For this special case, the FOS is
very sensitive to the size of the elements, the tolerance of the analysis and the
number of iterations allowed. It is strongly suggested that the LEM be used
to check the results from the SRM. This is because the SRM is highly sensi-
tive to the nonlinear solution algorithms and flow rule for this special type of
problem. The SRM has to be used with great care for problems with a soft
band of this nature.

The two examples with local minima for the LEM illustrate another limi-
tation of the SRM in engineering use. With the SRM, there is strain localiza-
tion during the solution and the formation of local minima is unlikely. In the
LEM, the presence of local minima is a common phenomenon, and this is a
major difference between the two methods. Thus, it is suggested that the LEM
should be preformed in conjunction with the SRM as a routine check.

Through the present study, two major limitations of the SRM have been
established: (1) it is sensitive to nonlinear solution algorithms/flow rule for
some special cases and (2) it is unable to determine other failure surfaces that
may be only slightly less critical than the SRM solution but still require
treatment for good engineering practice. If the SRM is used for routine analy-
sis and design of slope stabilization measures, these two major limitations
have to be overcome and it is suggested that the LEM should be carried out
as a cross-reference. If there are great differences between the results from the
SRM and LEM, great care and engineering judgement should be exercised in
assessing a proper solution. There is one practical problem in applying the
SRM to a slope with a soft band. When the soft band is very thin, the number
of elements required to achieve a good solution is extremely large, so that very
significant computer memory and time are required. Cheng (2003) has tried
a slope with a 1 mm soft band and has effectively obtained the global mini-
mum FOS by the simulated annealing method. If the SRM is used for a prob-
lem with a 1 mm thick soft band, it is extremely difficult to define a mesh with
a good aspect ratio unless the number of elements is huge. For the SRM with
a 500 mm thick soft band, about 1 hr of CPU time for a small problem (sev-
eral thousand elements) and several hours for a large problem (more than
10,000 elements) were required for the Phase program, whereas the program
Flac3D required 1–3 days (for small to large meshes). If a problem with a
1 mm thick soft band is to be modelled with the SRM, the computer time
and memory required will be huge and the method is not applicable for this
special case. The LEM is perhaps better than the SRM for these cases.

For the SRM, there are further limitations that are worth observing.
Shukha and Baker (2003) have found that there are minor but noticeable
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differences in the factors of safety from Flac using square elements and
distorted elements. The use of distorted elements is however unavoidable in
many cases. Furthermore, when both the soil parameters c′ and φ′ are very
small, it is well known that there are numerical problems with the SRM. The
failure surface in this case will be deep and wide and a large domain is
required for analysis. It has been found that the solution time is extremely
long and a well-defined critical failure surface is not well established from the
SRM. For the LEM, there is no major difficulty in estimating a FOS and the
critical failure surface under these circumstances.

The advantage of the SRM is the automatic location of the critical failure
surface without the need for a trial and error search. With the use of modern
global optimization techniques, the location of critical failure surfaces by a
simulated annealing method, a genetic algorithm or other methods as dis-
cussed in Chapter 3 is now possible and a trial and error search with the LEM
is no longer required. Although the LEM suffers from the limitation of an
interslice shear force assumption, the SRM requires a flow rule and suffers
from being sensitive to the nonlinear solution algorithm/flow rule for some
special cases.

Griffith and Lane (1999) have suggested that a non-associated flow rule
should be adopted for slope stability analysis. As the effect of flow rule on the
SRM is not negligible in some cases, such as those involving a soft band, the
flow rule is indeed an issue for a proper slope stability analysis. It can be con-
cluded that both the LEM and SRM have their own merits and limitations,
and the use of the SRM is not really superior to the use of the LEM in rou-
tine analysis and design. Both methods should be viewed as providing an esti-
mation of the FOS and the probable failure mechanism, but engineers should
also appreciate the limitations of each method when assessing the results of
their analyses.

Although 2D SRM is available in several commercial programs, there are still
various difficulties with 3D SRM and the authors have tested two commercial
softwares. For simple and normal problems, there is no major problem with the
3D SRM, and the results are also close to the 3D LEM. There are, however,
various difficulties with the 3D SRM for complicated non-homogeneous prob-
lems with contrasting soil parameters. More importantly, many strange results
may appear when soil nails are present, and there is a lack of good termination
criteria for the FOS determination in this case. The authors have also found that
the reliance on the default setting for 3D SRM programs may not be adequate
for many cases, and there is a lack of a clear and robust method for the FOS
determination when a soil nail is present. The authors are still working on this
issue in various aspects, and, in general, the authors’ view is that the 3D SRM
is far from being mature for ordinary engineering use.
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5 Three-dimensional slope stability
analysis

5.1 Limitations of the classical limit equilibrium methods –
sliding direction and transverse load

All slope failures are three-dimensional (3D) in nature, but two-dimensional
(2D) modelling is usually adopted as this will greatly simplify the analysis. At
present, there are many drawbacks in most of the existing 3D slope stability
methods that include the following:

1 Direction of slide is not considered in most of the existing slope stability
formulations so that the problems under consideration must be symmet-
rical in geometry and loading.

2 Location of the critical non-spherical 3D failure surface under general
conditions is a difficult N-P hard-type global optimization problem that
has not been solved effectively and efficiently.

3 Existing methods of analyses are numerically unstable under transverse
horizontal forces.

Because of the above-mentioned limitations, 3D analysis based on limit
equilibrium is still seldom adopted in practice. Cavounidis (1987) has demon-
strated that the factor of safety (FOS) for a normal slope under 3D analysis
is greater than that under 2D analysis, and this can be important for some
cases.

Baligh and Azzouz (1975) and Azzouz and Baligh (1983) presented a
method that extended the concepts of the 2D circular arc shear failure
method to 3D slope stability problems. The method was just appropriate for
a slope in cohesive soil. The results obtained by the method showed that the
3D effects could lead to a 4–40 per cent increase in the FOS. Hovland (1977)
proposed a general 3D method for cohesion-frictional soils. The method was
an extension of the 2D ordinary method of slices (Fellenius, 1927). The
inter-column forces and pore-water pressure were not considered in this for-
mulation. Two special cases have been analysed: (a) a cone-shaped slip sur-
face on a vertical slope and (b) a wedge-shaped slip surface. It was shown
that the 3D factors of safety were generally higher than the 2D ones, and the



ratio of FOS in 3D to that in 2D was quite sensitive to the magnitudes of
cohesion and friction angles and to the shape of the slip surface in 3D.

Chen and Chameau (1982) extended the Spencer 2D method to 3D. The
sliding mass was assumed to be symmetrical and divided into several vertical
columns. The inter-column forces had the same inclination throughout the
mass, and the shear forces were parallel to the base of the column. It was
shown that: (a) The configuration of a sliding mass in 3D had significant
effects on the FOS when the length of the sliding mass was small. (b) For gen-
tle slopes, the dimensional effects were significant for soils with high cohesion
and low friction angles. (c) In certain circumstances, the 3D FOS for cohe-
sionless soils may be slightly less than the 2D one.

Hungr (1987) directly extended Bishop’s simplified 2D method of slices
to analyse the slope stability in 3D. The method was derived based on the
two key assumptions: (a) the vertical forces of each column were neglected;
(b) both the lateral and the longitudinal horizontal force equilibrium con-
ditions were neglected. Hungr et al. (1989) presented a comparison of the
3D Bishop and Janbu simplified methods with other published limit equi-
librium solutions. It was concluded that Bishop’s simplified method might
be conservative for some slopes with non-rotational and asymmetric slip
surfaces. The method appeared reasonably accurate in the important class
of problems involving composite surfaces with weak basal planes.

Zhang (1988) proposed a simple and practical method of 3D stability
analysis for concave slopes in plane view using equilibrium concepts. The slid-
ing mass was symmetrical and divided into many vertical columns. The slip
surface was approximately considered as the surface of an elliptic revolution.
To render the problem statically determinate, the forces acting on the sides
and ends of each column, which were perpendicular to the potential direction
of movement of the sliding mass, were neglected in the equilibrium condi-
tions. The investigations using the method showed that: (a) The stability of
concave slopes in a plane view increased with the decreases in their relative
curvature. (b) The effect of a plane curvature on the stability of concave
slopes in the plane view increased with the increase in the lateral pressure
coefficient. However, the lateral pressure coefficient had only a small effect
on the stability of the straight plane.

By using the method of columns, Lam and Fredlund (1993) extended the
2D general limit equilibrium formulation (Fredlund and Krahn, 1977) to
analyse a 3D slope stability problem. The inter-column force functions of an
arbitrary shape to simulate various directions for the inter-column resultant
forces were proposed. All the inter-column shear forces acting on the various
faces of the column were assumed to be related to their respective normal
forces by the inter-column force functions. A geostatistical procedure (i.e. the
Kriging technique) was used to model the geometry of a slope, the stratigra-
phy, the potential slip surface and the pore-water pressure conditions. It was
found that the 3D factors of safety determined by the method (Lam and Fredlund,
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1993) were relatively insensitive to the form of the inter-column force 
functions used in the method. Lam and Fredlund (1993), however, have not
given a clear and systematic way for solving a general 3D problem.

Chang (2002) developed a 3D method of analysis of slope stability based
on the sliding mechanism observed in the 1988 failure of the Kettleman Hills
Landfill slope and the associated model studies. Using a limit equilibrium
concept, the method assumed the sliding mass as a block system in which
the contacts between blocks were inclined. The lines of intersection of the
block contacts were assumed to be parallel, which enabled the sliding
kinematics. In consideration of the differential straining between blocks, the
shear stresses on the slip surface and the block contacts were evaluated based
on the degree of shear strength mobilization on those contacts. The overall
FOS was calculated based on the force equilibrium of the individual block
and the entire block system as well. Due to the assumed inter-block boundary
pattern, the method was not fully applicable for dense sands or overly
consolidated materials under drained conditions.

In addition, 3D stability formulations based on the limit equilibrium
method and variational calculus have been proposed by Leshchinsky et al.
(1985), Ugai (1985) and Leshchinsky and Baker (1986). The functionals are
the force and/or moment equations where the FOS can be minimized while
satisfying several other conditions. The shape of a slip surface can be deter-
mined analytically. In such approaches, the minimum FOS and the associ-
ated failure surface can be obtained at the same time. These methods were
however limited to homogeneous and symmetrical problems only. In the fol-
low-up studies, Leshchinsky and Huang (1992) developed a generalized
approach that is appropriate for symmetrical slope stability problems only.
The analytical solutions approach based on the variational analysis is diffi-
cult to obtain for practical problems with complicated geometric forms and
loading conditions. Cheng is currently working in this direction of using the
modern optimization method to replace the tedious variational principle.

Most of the existing 3D methods rely on an assumption of a plane of
symmetry in the analysis which are summarized in Table 5.1. For compli-
cated ground conditions, this assumption is no longer valid, and the failure
mass will fail along a direction with least resistance so that the sliding direc-
tion will also control the FOS of a slope. Stark and Eid (1998) have also
demonstrated that the FOS of a 3D slope is controlled by the direction of
slide and a symmetric failure may not be suitable for a general slope.
Yamagami and Jiang (1996, 1997) and Jiang and Yamagami (1999) have
developed the first method for asymmetric problems where the classical sta-
bility equations (without direction of slide/direction of slide is zero) are
used while the direction of slide is considered by a minimization of the FOS
with respect to rotation of axes. Yamagami and Jiang’s formulation can be
very time consuming even for a single failure surface as the formation of
columns and the determination of geometry information with respect to
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rotation of axes is the most time-consuming computation in the stability
analysis. Huang and Tsai (2000) have proposed the first method for the 3D
asymmetrical Bishop method where the sliding direction enters directly into
the determination of the safety factor. The generalized 3D slope stability
method by Huang et al. (2002) is practically equivalent to the Janbu rigor-
ous method with some simplifications on the transverse shear forces.
Because it is difficult to satisfy completely the line of thrust constraints in
the Janbu rigorous method, which is well known in 2D analysis, the gener-
alized 3D method by Huang et al. (2002) will also face converge problems
so that this method is less useful to practical problems.

At the verge of failure, the soil mass can be considered as a rigid body. The
direction of slide can take three possibilities:

1 soil columns are moving in the same direction with a unique sliding
direction – adopted by Cheng and Yip (2007) and many other researchers
in the present formulation;

2 soil columns are moving towards each other – this violates the assumption
of a rigid failure mass and is not considered;

3 soil columns are moving away from each other – adopted by Huang and
Tsai (2000) and Huang et al. (2002).

Because the sliding directions of soil columns are not unique in Huang and
Tsai’s (2000) and Huang et al.’s (2002) formulations and some columns are
moving apart, the summation process in determining the FOS may not be
applicable as some of the columns are separating from the others. Cheng and
Yip (2007) have demonstrated in a later section that, under transverse load,
the requirement of different sliding directions for different soil columns may
lead to failure to converge. For soil columns moving away from each other,
the distinct element method is the recommended method of analysis and a
simple illustration is given in Section 2.11. Because the parameters required
for the distinct element analysis are different from the classical soil strength
parameters, it is not easy to adopt the results from the distinct element analy-
sis directly, and the results should be considered as the qualitative analysis of
the slope stability problem.

The assumption of a unique sliding direction may be an acceptable
formulation for the analysis of the ultimate limit state, and the present
formulation is based on this assumption. It is not a bad assumption to assume
that all soil columns slide in one unique direction at the verge of failure. After
failure has initiated, the soil columns may separate from each other and slid-
ing directions can be different among different columns.

5.2 New formulation for 3D slope stability analysis –
Bishop, Janbu simplified and Morgenstern–Price by Cheng

For 3D analysis, the potential failure mass of a slope is divided into a number
of columns. At the ultimate equilibrium condition, the internal and external
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forces acting on each soil column are shown in Figure 5.1. The weight of soil
and vertical load are assumed to act at the centre of each column for simplic-
ity. This assumption is not exactly true but is good enough if the width of each
column is small enough, and the resulting equations will be highly simplified
and should be sufficiently good for practical purposes. The assumptions
required in the present 3D formulation are the following:

1 The Mohr–Coulomb failure criterion is valid.
2 For the Morgenstern–Price method, the FOS is determined based on the slid-

ing angle where factors of safety with respect to force and moment are equal.
3 The sliding angle is the same for all soil columns (Figure 5.2).
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Figure 5.1 External and internal forces acting on a typical soil column.
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Where:
ai = space sliding angle for sliding direction with respect to the direction of slide projected
to the x–y plane (see also a′ in Figure 5.2 and eq. 5.3);
ax, ay = base inclination along x and y directions measured at centre of each column (shown
at the edge of column for clarity);
Exi, Eyi = inter-column normal forces in x and y directions, respectively;
Hxi, Hyi = lateral inter-column shear forces in x and y directions, respectively;
Ni, Ui = effective normal force and base pore water force, respectively;
Pvi, Si = vertical external force and base mobilized shear force, respectively;
Xxi, Xyi = vertical inter-column shear force in plane perpendicular to x and y directions.



By Mohr–Coulomb criteria, the global FOS, F, is defined as

(5.1)

where F is the FOS, Sfi is the ultimate resultant shear force available at
the base of column i, N′i is the effective base normal force and Ci is c′Ai

and Ai is the base area of the column. The base shear force S and base
normal force N with respect to x, y and z directions for column i are
expressed as the components of forces by Huang and Tsai (2000) and
Huang et al. (2002):

(5.2)

in which {f1 × f2 × f3} and {g1 × g2 × g3} are unit vectors for Si and Ni (see Figure
5.1). The projected shear angle a′ (individual sliding direction) is the same for
all the columns in the x–y plane in the present formulation, and by using this
angle, the space shear angle ai (see Figure 5.3) can be found for each column
and is given by Huang and Tsai (2000) as eq. (5.3):

(5.3)

ai = tan−1 sin yi

cos yi + cos ayi

tan a0× cos axi

� �� �

8
>><

>>:

9
>>=

>>;

F= Sfi

Si
= Ci +N0i × tanφi

Si

Nxi = g1 ×Ni; Nyi = g2 ×Ni; and Nzi = g3 ×Ni

Sxi = f1 × Si; Syi = f2 × Si; and Szi = f3 × Si

160 Three-dimensional slope stability analysis

Overall sliding direction

Mobilized shear force, Si'

Figure 5.2 Unique sliding direction for all columns (on plan view).



[–ve adopted by Huang

and Tsai (2000) and +ve adopted by Cheng and Yip (2007)]

in which 

An arbitrary inter-column shear force function f(x, y) is assumed in the
present analysis, and the relationships between the inter-column shear and
normal forces in the x and y direction are given as follows:

(5.4)

(5.5)

where λx and λy = inter-column shear force X mobilization factors in x and
y directions, respectively; λxy and λyx = inter-column shear force H mobiliza-
tion factors in xy and yx planes, respectively.

Hxi =Eyi × f ðx, yÞ× λxy; Hyi =Exi × f ðx, yÞ× λyx,

Xxi =Exi × f ðx, yÞ× λx; Xyi =Eyi × f ðx, yÞ× λy

ni = ± tan axi

J

�
,
± tan ayi

J
,
1

J

�
= fg

1
, g

2
, g

3
g

J=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 axi + tan2 ayi + 1

q

si = sinðyi − aiÞ× cos axi

sin yi

�
,

sin ai × cos ayi

sin yi
,

sinðyi − aiÞ× sin axi + sin ai × sin ayi

sin yi

�
= f1, f2, f3
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Figure 5.3 Relationship between projected and space shear angle for the base of
column i.
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Taking moment about the z axis at the centre of the ith column, the rela-
tions between lateral inter-column shear forces can be expressed as follows:

(5.6)

from (5.6), 

(5.7) 

from (5.6),

(5.8)

where Δxi and Δyi are the widths of the column defined in Figure 5.4. Hxi and Hyi

for the exterior columns should be zero in most cases or equal to the applied
horizontal forces if defined. By using the property of the complementary shear (or
moment equilibrium in the xy-plane), Hyi+1 or Hxi+1 can then be determined from
eqs. (5.5) and (5.7) or (5.8) accordingly, so only λxy or λyx is required to be deter-
mined but not both. The important concept of complementary shear force which
is similar to the complementary shear stress (τxy = τyx) in elasticity has not been used
in any 3D slope stability analysis method in the past but is crucial in the present
formulation. It should be noted that Huang et al. (2002) have actually assumed
Hyi to be 0 for an asymmetric problem to render the problem determinate, which
is valid for symmetric failure only. Although the concept of complementary shear
is applicable only in an infinitesimal sense, if the size of column is not great, this
assumption will greatly simplify the equations. More importantly, Cheng and Yip
(2007) have demonstrated that the effect of λxy or λyx is small in a later section of
this chapter and the error in this assumption is actually not important.

�yi × Hxi+1 +Hxið Þ=�xi × Hyi+1 +Hyið Þ

Hyi+1 = Dyi

Dxi
× Hxi+1 +Hxið Þ−Hyi,

Hxi+1 = Dxi

Dyi
× Hyi+1 +Hyið Þ−Hxi
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Figure 5.4 Force equilibrium in x–y plane.

Where:
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Force equilibrium in X, Y and Z directions
Considering the vertical and horizontal forces, equilibrium for the ith column
(Figures 5.5 and 5.6) in z, x and y directions gives the following:

(5.9)

(5.10)

(5.11)
X

Fy = 0! Si × f2i −Ni × g2i +Phyi −Hyi +Hyi+1 =Eyi+1 −Eyi

X
Fx = 0! Si × f1i −Ni × g1i +Phxi −Hxi +Hxi+1 =Exi+1 −Exi

X
Fz=0!Ni×g3i+Si×f3i−ðWi+PviÞ=ðXxi+1−XxiÞ+ðXyi+1−XyiÞ
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Figure 5.5 Horizontal force equilibrium in x direction for a typical column (ΔHxi
= Net lateral inter-column shear force).
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Figure 5.6 Horizontal force equilibrium in y direction for a typical column (ΔHyi
= Net lateral inter-column shear force).
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Solving eqs. (5.1), (5.4) and (5.9), the base normal and shear forces can be
expressed as follows:

(5.12)

(ui = average pore pressure at the ith column)

Overall force and moment equilibrium in X and Y directions
Considering the overall force equilibrium in the x direction: 

(5.13)

Let Fx = F in eq. (5.1); using eq. (5.12) and rearranging eq. (5.13), the direc-
tional safety factor Fx can be determined as follows:

(5.14)

From the overall moment equilibrium in the x direction (Figure 5.7):

(5.15)

RX, RY and RZ are the lever arms to the moment point. Similarly, consider-
ing the overall force equilibrium in the y direction:

X
ðWi +Pvi −Ni × g3i − Si × f3iÞ×RX

+
X
ðNi × g1i − Si × f1iÞ×RZ= 0

Fx = S ðNi −UiÞ× ðtanφi +CiÞ½ �× f1i

SNi × g1i −SHxi
, 0< Fx <∞:

−
X

Hxi +
X

Ni × g1i −
X

Si × f1i = 0:

Ai = Wi +Pvi +DExi × lx +DEyi ×ly

g3i
; Bi = − f3i

g3i
; Ui = uiAi

Ni =Ai +Bi × Si; Si = Ci + Ai −Uið Þ× tanφi

F 1− Bi × tan φi

F

� � ,
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Figure 5.7 Moment equilibrium in x and y directions (earthquake loads and net
external moments are not shown for clarity).
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(5.16)

Let Fy = F in eq. (5.1); using eq. (5.12) and rearranging eq. (5.16), the direc-
tional safety factor (Fy) can be determined as follows:

(5.17)

Overall moment equilibrium in the y direction (Figure 5.7):

(5.18)

Based on a trial sliding angle, λx is kept on changing with a specified interval in
eq. (5.14), until the calculated Fx satisfies the overall moment equilibrium eq.
(5.15) in the x direction. A similar procedure is applied to λy until the calculated
Fy also satisfies the overall moment equilibrium eq. (5.18) in the y direction. If Fx

is not equal to Fy, the sliding angle will be varied until Fx = Fy and then force as
well as moment equilibrium will be achieved. Because all the equilibrium equa-
tions have been used in the formulation, there is no equation to determine λxy

unless additional assumptions are specified. In the present formulation, Cheng and
Yip (2007) suggest that λxy can be specified by the user or can be determined from
the minimization of the FOS with respect to λxy. The problem associated with λxy

and the importance of this parameter will be further discussed in Section 5.2.7.

5.2.1 Reduction to the 3D Bishop and Janbu simplified
methods

The 3D asymmetric Morgenstern–Price method takes a relative long time for
a solution and the convergence is less satisfactory as compared with the sim-
plified method. The initial solutions from the 3D Janbu or Bishop analysis can
be adopted to accelerate the Morgenstern–Price solution, and many engineers
may still prefer to use the simplified method for routine design. The proposed
Morgenstern–Price formulation will be simplified by considering only force or
moment equilibrium equations and neglecting all the inter-column vertical and
horizontal shear forces. Consider overall moment equilibrium in the x direc-
tion and about an axis passing through (xo, yo, zo) (centre of rotation of the
spherical failure surface) and parallel to the y axis. Letting Fmy = F in eq. (5.1)
and rearranging eq. (5.15) gives the following:

(5.19)

The corresponding Fmx is obtained from eq. (5.18) as

(5.20)

−
X

Hyi +
X

Ni × g2i −
X

Si × f2i = 0:

Fmx =
P
fKxi × ½f2iRZi + f3iRYi�gP

ðWi +PviÞ×RYi + P
Ni× ðg2i ×RZi − g3i ×RYiÞ

Fmy =
P
f½Kyi × ½f1iRZi + f3iRXi�gP

ðWi +PviÞ×RXi + P
Ni× ðg1i ×RZi − g3i ×RXiÞ

:

X
ðWi +Pvi −Ni × g3i − Si × f3iÞ×RY

+
X
ðNi × g2i − Si × f2iÞ×RZ= 0:

Fy = S ðNi −UiÞ× ðtanφi +CiÞ½ �× f2i

SNi × g2i −SHyi
, 0< Fy <∞:
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in which

Considering overall moment equilibrium about an axis passing through
(xo, yo, zo) and parallel to the z axis gives the following:

(5.21)

Letting Fmz = F in eq. (5.1) and rearranging eq. (5.21) gives,

(5.22)

For the 3D asymmetric Bishop method, at the moment equilibrium point
the directional factors of safety, Fmx, Fmy and Fmz, are equal to each other.
Under this condition, the global FOS Fm based on moment can be determined
as follows:

(5.23)

The sliding direction can be found by changing the projected shear direc-
tion at a specified angular interval, until Fmx, Fmy and Fmz are equal to each
other. In reality, there is no way to ensure complete 3D moment equilibrium
in the Bishop method as eq. (5.21) is redundant and is not used in the pres-
ent method or the method by Huang and Tsai (2000) and Huang et al. (2002)
as eqs. (5.19) and (5.20) are already sufficient for the solution of the FOS.
The left-hand side of eq. (5.21) can hence be viewed as an unbalanced
moment term. For a completely symmetric slope, this term is exactly zero and
the 3D moment equilibrium is automatically achieved. In general, this term is
usually small if the asymmetrical loading or sliding direction is not great.
Cheng and Yip (2007) hence adopt eqs. (5.19) and (5.20) in the formulation
which is equivalent to assigning Fmx = Fmy. This is a limitation of the present
3D asymmetric Bishop simplified method as well as all the other existing 3D

Fm = Fmx = Fmy = Fmz

Fmz =
P

Kzi × f2i ×RXi − f3i ×RYið Þ½ �P
N g2i ×RXi − g1i ×RYið Þ ;

Kzi =
Ci + ðWi +PviÞ

g3i
−Ui

� �
tanφi

� �

1+ f3i × tanφi

g3i × Fmz

:

X
ð−Ni × g1i + Si × f1iÞ×RY +

X
ðNi × g2i − Si × f2iÞ×RX= 0:

Kyi =
Ci + ðWi +PviÞ

g3i
−Ui

� �
tan φi

� �

1+ f3i × tan φi

g3i × Fmy

;

Kxi =
Ci + ðWi +PviÞ

g3i
−Ui

� �
tanφi

� �

1+ f3i × tanφi

g3i × Fmx

:
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Bishop methods for the general asymmetric problem as eq. (5.21) is a
redundant equation.

By neglecting the inter-column shear forces for the Janbu analysis,
eqs. (5.14) and (5.17) simplify to

(5.24)

(5.25)

For the 3D asymmetric Janbu method, at the force equilibrium point the
directional factors of safety, Fsx and Fsy, are equal to each other. Under this
condition, the global FOS Ff based on force can be determined as 

Ff = Fsx = Fsy. (5.26)

Because the FOS is also used in vertical force equilibrium, 3D force equi-
librium is completely achieved in the 3D Janbu simplified method.

5.2.2 Numerical implementation of the Bishop, Janbu and
Morgenstern–Price methods

To determine the FOS, the domain under consideration is divided into a reg-
ular grid. An initial value for the projected shear angle a′ is chosen for analy-
sis and ai is then computed by eq. (5.3). In the program SLOPE3D developed
by Cheng, an initial value of 2° is chosen for a′ and an increment of a′ is cho-
sen to be 1° in the analysis. Once ai is defined, the unit vectors ni and si as given
in Figure 5.1 can then be determined. Equations (5.19) and (5.20) are used to
compute Fmy and Fmx for the Bishop method until convergence is achieved. For
the Janbu method, eqs. (5.24) and (5.25) are used to compute Fsx and Fsy until
convergence is achieved. If Fmy ≠ Fmx or Fsx ≠ Fsy, a′ will increase by 1° for the
next loop. From the difference between two consecutive directional safety fac-
tors, the bound between a′ can then be determined. Suppose a′ is bounded
between 10° and 11°; the directional safety factors will be computed again for
a′ based on 10.5°. The a′ will then be bounded within the 0.5° range and a
simple interpolation will be used to compute a refined value for a′. This
formulation is relatively simple to operate and is good enough for analysis.

There are four major parameters to be determined for the 3D
Morgenstern–Price analysis: F, sliding angle, λx and λy, whereas λxy will be
prescribed by the engineer or determined from a minimization of the FOS.

Fsy =
P

Ayi f2i + f3i × g2i

g3i

� �

P g2i

g3i
× ðWi +PviÞ

; Ayi =
Ci + ðWi +PviÞ

g3i
−Ui

� �
tanφi

� �

1+ f3i × tan φi

g3i × Fsy

Fsx =
P

Axi f1i + f3i × g1i

g3i

� �

P g1i

g3i
× ðWi +PviÞ

; Axi =
Ci + ðWi +PviÞ

g3i
−Ui

� �
tan φi

� �

1+ f3i × tanφi

g3i × Fsx
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To accelerate the Morgenstern–Price solution, 3D Janbu simplified analysis
or Bishop analysis is performed in the first stage. The sliding angle and the
inter-column normal forces Exi and Eyi from the simplified analysis will be
taken as a trial initial solution for the calculation of the inter-column shear
forces Xxi and Xyi in the first step. To solve for the FOS, Cheng and Yip
(2007) have tried two methods that are as follows:

1 Simple triple looping technique: To solve for a′, λx and λy, a triple looping
technique can be adopted. That means that a′, λx and λy will be varied
sequentially until all the previous equations are satisfied. This formulation
is simple to be programmed but convergence is extremely slow even for a
modern CPU.

2 Double looping Brent method: Cheng and Yip (2007) have found that the
non-linear equations solver by Brent (1973) can perform well for the 3D
Janbu and Bishop method. If the directional safety factors from simplified
methods are used as the initial values in the Brent method, convergence
with the Brent method will be good. Using the Brent method, one level of
looping is removed and is replaced by a solution of a system of nonlinear
equations Fsx – Fsy = 0 and Fmx – Fmy = 0. Unlike the simplified 3D method
of analysis, if arbitrary values of the directional safety factors (other than
those from the simplified 3D analysis) are used as the initial values in the
Brent method, failure to convergence can happen easily. Such behaviour is
possibly induced by the effect of inter-column shear forces on the analysis
that is neglected in the corresponding simplified 3D stability analysis.

5.2.3 Numerical examples and verification

Based on the present formulation and the formulation by Huang and Tsai
(2000), Cheng et al. (2005) and Cheng and Yip (2007) have developed the
program SLOPE3D and several examples are used for the study of the proposed
formulations. In this chapter, function f(x, y) is taken to be 1.0 for the
Morgenstern–Price analysis and the method is hence actually Spencer analysis.
Cheng and Yip (2007) have tried f(x, y) for limited cases and the results from the
use of f(x) = 1.0 and f(x, y) = sin(x, y) are virtually the same which is similar to
the corresponding 2D analysis. It is expected that, for a highly irregular failure
surface, the results may be sensitive to the choice of f(x, y). The first example is
a laterally symmetric slope (Figure 5.8) considered by Baligh and Azzouz (1975)
with an assumed spherical sliding surface, and the results of analysis are shown
in Table 5.2. For Example 1, SLOPE3D gives a sliding angle exactly equal to 0
and the results are also very close to those by other researchers except the one by
Hungr (1987). Cheng and Yip (2007) view that the result by Hungr (1987),
1.422, is actually not correct as he obtained this result based on eq. (5.27):

(5.27)
F=

P
ðWi tanφi +CiAi cos gzÞ=maP

Wi sin ay
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Figure 5.8 Slope geometry for Example 1.
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Table 5.1 Summary of some 3D limit equilibrium methods

Method Related 2D method Assumptions Equilibrium

Hovland (1977) Ordinary method No inter-column Overall moment
of slice force equilibrium

Chen and Spencer method Constant Overall moment
Chameau inclination equilibrium
(1982) Overall force

equilibrium
Hungr Bishop simplified Vertical Overall moment

(1987) method equilibrium equilibrium
Vertical force
equilibrium

Lam and General limit Inter-column Overall moment
Fredlund equilibrium force function equilibrium
(1993) Overall force

equilibrium
Huang and Bishop simplified Consider Overall moment

Tsai (2000) method direction equilibrium
of slide Vertical force

equilibrium
Cheng and Bishop and Janbu Consider Overall force

Yip (2007) simplified, direction equilibrium, and
Morgenstern–Price of slide overall moment

equilibrium for
Morgenstern–Price

Equation (5.27) is not correct because moment equilibrium is considered
about the centre of rotation of the spherical failure surface. Moment is a
vector and should be defined about an axis instead of a point so that the
moment contribution from each section cannot be added directly as in eq.
(5.27). To correct eq. (5.27), the moment equilibrium should be considered



about an axis passing through the centre of rotation and the smaller radius at
each section should be adopted and is given by the following:

(5.28)

where and R is the radius of the spherical failure mass. In
eq. (5.28), the radius at each section, ri, is smaller than the global radius of
rotation R and cannot be cancelled out because ri is changing at different
sections. Cheng and Yip (2007) have tried eq. (5.27) and have obtained the
value 1.42 (same as Hungr), whereas an answer of 1.39 is obtained by eq.
(5.28) for Example 1.

ri =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − y2

p

F=
P
ðWi tanφi +CiAi cos gzÞri=maP

Wiri sin ay
,
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Table 5.2 Comparison of Fs for Example 1

Method Baligh and Hungr Lam and Huang SLOPE3D SLOPE3D
Azzouz et al. Fredlund and Tsai (Huang’s (Cheng’s
(1975) (1989) (1993) (2000) approach) approach)

Bishop 1.402 1.422 1.386 1.399 1.390 1.390
simplified (1.39) (1200c) (5300c) (8720c) (8720c)

Janbu — — — — 1.612 1.612
simplified (8720c) (8720c)

Note: Number of columns in the analyses. For Hungr’s result, the factor of safety after
correction is 1.39.

Example 2 (Huang and Tsai, 2000) is a vertical cut slope (Figure 5.9) with
an assumed spherical sliding surface. The failure mass is symmetrical about
an axis inclined at 45° to the x axis, and this result is predicted with both
Huang and Tsai’s formulation and the present formulation. The results by
the present formulations agree well with the results by Huang and Tsai,
which have demonstrated that the new formulation gives results close to
those from Huang and Tsai’s formulation.

Example 3 is a vertical cut slope (Figure 5.10) in which a wedge-like failure
is considered in the analysis. The FOS for this rigid block failure is determined
explicitly from the simple rigid block failure as 0.726. Similar results are deter-
mined by the present 3D Janbu and Morgenstern–Price analyses (Table 5.3).
This has demonstrated that if the correct failure mode is adopted, the present
formulation can give reasonable results for 3D analysis. For 3D Bishop analy-
sis, the FOS based on the moment point (x0, y0, z0) is not correct as the pres-
ent failure mode is a sliding failure while the Bishop method does not fulfil
horizontal force equilibrium. The value of 0.62 from the Bishop method
should not be adopted because the Bishop method does not satisfy horizontal
force equilibrium while the wedge actually fails by sliding. If any moment
point is chosen for the Bishop analysis, the FOS will be different and this is a



well-known problem for the Bishop method. For the determination of the 3D
FOS, the failure mechanism should be considered in the selection of a suitable
method of analysis. Example 4 is an asymmetric rigid block failure with a size
2 m × 4 m, shown in Figure 5.11. The FOS and the sliding with respect to the x
axis can be determined explicitly as 0.2795 and 63.4°, respectively, which are
also determined exactly from SLOPE3D with the 3D Janbu and Morgenstern–
Price analyses. The factors of safety for Examples 3 and 4 are correctly pre-
dicted by the present formulation that is a support to the present formulation.

For the FOS of a simple slope where c′ = 0, Fs is given as tanφ′/tanθ, where
θ is the slope angle. The critical failure surface is a planar surface parallel to
the ground surface. From a spherical/elliptical optimization search, the mini-
mum factors of safety for a simple slope from the present formulations are
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equal to tanφ/tanθ for the Bishop, Janbu and Morgenstern–Price analyses,
and the results comply well with the requirement of basic soil mechanics.

The results in Examples 1 to 4 show that the present theory gives sliding
directions similar to those computed by Huang and Tsai’s (2000) method.
Cheng and Yip (2007) have also tried many other examples, and the dif-
ferences between the FOS and sliding direction from Huang and Tsai’s
(2000) formulation and the present formulation are small in general, if
there is no transverse load.

5.2.4 Comparison between Huang and Tsai’s method and the present
methods for transverse earthquake load

In Huang and Tsai’s (2000) method, the mobilized shear force, Si, has two
components at the bottom plane of each column, namely Sxzi and Syzi. Besides
the global safety factor Fs, two additional safety factors are further defined as
Fsx and Fsy for the mobilized shear force in the x and y direction, respectively.
The individual sliding direction ai can be obtained by using the calculated and
converged values of Fsx and Fsy based on different methods (such as the Bishop
method). By using the value of Fsx, Fsy and ai, the corresponding Fs can be
determined in each iteration. The final solution can then be obtained if the
tolerance of the analysis is achieved. However, by using this method, before
the final solution of Fs is achieved, three convergent criteria are required to be
satisfied. They are the criteria for Fsx, Fsy and ai, respectively. As ai is mainly
determined by Fsx and Fsy, a correct solution cannot be obtained for Fs unless
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Figure 5.11 Slope geometry for Example 4 (F = 0.2795, sliding direction = 63.4°
with respect to the x axis).
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the computational process can converge for Fsx and Fsy, respectively.
Furthermore, ai appears in the solution of Fs as well as the solution of Fsx and
Fsy in each iteration; therefore, if ai is determined incorrectly, Fsx and Fsy will
be incorrectly determined that gives a wrong Fs value. Huang and Tsai’s
(2000) formulation may hence face difficulty in convergence for more com-
plicated problems.

By using the present method, only two convergent criteria are required to
be satisfied. They are the criteria for Fsx and Fsy, respectively. The ai is unique
in the present formulation and is determined by a simple looping process
instead of the three convergent criteria so that the propagation of errors as
that in Huang and Tsai’s (2000) method will be eliminated. Fs is determined
directly by the values of the directional safety factor Fsx or Fsy at the equilib-
rium point. To illustrate the important difference between the two methods,
Example 5 (Figure 5.12), where transverse earthquake load Qy is applied
normal to the section as shown, is considered and the results of analysis are
shown in Table 5.4. Huang and Tsai’s method fails to converge in analysis.
In examining the intermediate results, Cheng and Yip (2007) find that even
though Fsx and Fsy can converge in the first and second iteration, the con-
verged values appear to be unreasonable. It is because, in Huang and Tsai’s
method, an initial constant value is assigned for all ai values. As the compu-
tation process starts, Fsy is determined incorrectly based on these initial ai val-
ues that are the same among different columns in the first step. This leads to
the value of Fs being determined wrongly in the consequent iteration that is
shown in Table 5.5. Also, based on the value of Fsy, new set of ai values is cal-
culated with Fsx. Thus, both Fsx and Fsy are determined incorrectly in the sub-
sequent iteration because both Fsx and Fsy are directly determined by the ai
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Figure 5.12 Slope geometry for Example 5.
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Table 5.3 Comparison of Fs for Examples 2, 3 and 4

Example 2 Example 3

Method Huang SLOPE3D SLOPE3D Analytical SLOPE3D SLOPE3D
and Tsai (Huang’s (Cheng’s (Huang’s (Cheng’s
(2000) approach) approach) approach) approach)

Bishop 1.766 1.781 1.801
0.726

0.620 0.620 
simplified (45o)a (45o)b (45o)a (45o)b

Janbu — 2.820 2.782 0.722 0.722
simplified (45o)a (45o)b (45o)a (45o)b

Morgenstern– — — 1.803 — 0.724 
Price (45o)b (45o)b

Notes: For Examples 2 and 3, 2039 columns are used by Huang and Tsai. For Examples 2, 3
and 4, 10,000, 23,871 and 2500 columns, respectively, have been used by Cheng.

a The average overall sliding direction in degrees.
b The unique overall sliding direction [or the equilibrium point] in degrees.

values. In the present study, ai has been assigned from 0.05 to the 0.5 radian
(2.9° to 28.6°) in an increment of 0.05 using Huang and Tsai’s method but
convergence is still not achieved.

On the other hand, the present formulation can converge without
problem that is demonstrated in Figures 5.13 and 5.14. Although the Fsy is
unreasonable when the sliding angle is small, once the sliding angle is
reasonable, Fsy will also be reasonable. Cheng and Yip (2007) suspect that the
non-unique sliding direction in Huang and Tsai’s formulation is the main
cause for the failure to converge, as this method gives larger sliding angles for
those soil columns near the edge of the failure mass from the figures by
Huang and Tsai (2000). Figures 5.13 and 5.14 have also demonstrated that
the FOS can be very sensitive to the sliding angle, and the use of varying
sliding angles between different soil columns may not be a good assumption.
When a transverse load is present, the sliding angles at the edge of the failure
soil mass are greatly increased and loss of contact will generate internal ten-
sile forces between soil columns and unreasonable Fsy so that convergence
cannot be achieved.

5.2.5 Relation with the classical 3D analysis methods

Most of the existing 3D slope stability methods have not considered sliding
direction explicitly in their formulation and transverse direction is not consid-
ered. Jiang and Yamagami (1999) and Yamagami and Jiang (1996, 1997) have
proposed to rotate the axes while the classical 3D methods (without consider-
ation of sliding direction) are used until the minimum FOS is obtained. The
FOS and sliding direction as determined from this axes rotation procedure 
are reasonable but tedious work is required for this formulation and it is not
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commonly adopted. Cheng and Yip (2007) have tried the Bishop and Janbu
methods for Examples 2 and 3 and the results are shown in Figure 5.15. The
curves shown in Figure 5.15 are symmetric about a sliding direction of 45° and
the minimum factors of safety are equal to that shown in Table 5.2 using the
present formulation where the sliding direction is considered. If a high accuracy
for the sliding direction is required, Jiang and Yamagami’s formulation can be
very time consuming, which is experienced by Cheng and Yip (2007) for the
cases shown in Figure 5.15. For the cases shown in Figure 5.15, the computer
time required for Jiang and Yamagami’s formulation by the rotation of axes is
approximately three times that for the present formulation if the accuracy of the
sliding direction is controlled within 1°. The present formulation is actually
equivalent to Jiang and Yamagami’s formulation but re-formulations of mesh
and geometry computations with rotation of axes are not required.
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Figure 5.13 Convergent criteria based on the present method – by using the Bishop
simplified method (30 per cent earthquake load in both the x and y
directions).
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Figure 5.14 Convergent criteria based on the present method – by using the Janbu
simplified method (30 per cent earthquake load in both the x and y
directions).
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5.2.6 Problem of cross-section force/moment equilibrium for the
Morgenstern–Price method

The three-dimensional asymmetric Morgenstern–Price formulation is highly
statically indeterminate, which indicates that cross-sectional force or moment
equilibrium cannot be enforced simultaneously in the analysis. In fact, it is one
of the major theoretical difficulties in 3D limit equilibrium analysis as the
number of redundant equations is much more than the corresponding 2D
analysis. In the 2D Morgenstern–Price method, the inter-slice normal (and
shear) force of the last slice can be determined from the last interface (from sec-
ond last slice). The equation of horizontal force equilibrium becomes redundant
for the last slice. However, horizontal force equilibrium can still be maintained
for all slices as overall horizontal force equilibrium is enforced. In the calcula-
tion of the inter-slice normal force, the calculation progresses from slice to slice,
automatically ensuring that horizontal force equilibrium is satisfied even for the
last slice. However, this condition cannot be enforced automatically for 3D
analysis as the safety factor equations are based on the overall force equilibrium
as given by eqs. (5.13) and (5.15) instead of section horizontal force equilib-
rium. That means that horizontal force equilibrium cannot be automatically
enforced in each cross-section. Also, there is no way to enforce cross-section
moment equilibrium in the analysis, as the overall moment equilibrium instead
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Figure 5.15 Factor of safety against sliding direction using classical 3D analysis
methods (Curves 1 and 2 are Bishop and Janbu analyses for Example 3,
whereas Curves 3 and 4 are Bishop and Janbu analyses for Example 2).
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of sectional moment equilibrium is used in the analysis. In fact, cross-section
force or moment equilibrium is a common problem in all 3D analysis methods.
To investigate the importance of the cross-section equilibrium, Example 5
shown in Figure 5.12 with one half of the soil mass loaded with a surcharge as
shown in Figure 5.16 is considered with λxy = 0 in the analysis and the results
are shown in Figures 5.17–5.20. In these figures, it can be seen that net
forces/moments on each section exist and are fluctuating about ‘zero’ even
though the global equilibrium for moment and force is satisfied.

As sectional force and moment equilibrium conditions have not been
enforced in the 3D Morgenstern–Price method, force and moment equilib-
rium in each cross-section cannot be automatically achieved unless the
following additional assumptions are used:

1 λx or λy is a function of y or x.
2 The safety factor is considered as different in different cross-sections, and

it is subjected to the force and moment equilibrium on each cross-section
in x and y directions.

For the first assumption, Hungr (1994) has a similar suggestion but Lam and
Fredlund (1994) pointed out that these λ values should be considered as per-
centages of the inter-column shear forces used in the analysis and suggested that
this value should be a constant rather than a function. As there is no theoreti-
cal background to determine the functions for λx or λy, and the number of
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Figure 5.16 Column–row within potential failure mass of slope for Example 1.

j-th column-row in y-direction

i-th column-row in x-direction

Last column in i-th column-row
j

i

Plan view of slip surface

1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

2 3 4 5 6 7 8 9 1011121314151617181920

Last column in j-th column-row

Slip surface (Plan view)

Sliding direction (Plan view)

Soil column



Figure 5.19 Cross-section moment equilibrium condition in x direction. 
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Figure 5.17 Cross-section force equilibrium condition in x direction.
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Figure 5.18 Cross-section force equilibrium condition in y direction.
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iterations required for a solution is extremely high for such a formulation, this
formulation has not been used in any existing 3D slope analysis model. For the
second assumption, a huge number of iterations is also required. Additional
assumptions about the distribution of the safety factors are also required for
analysis. Besides these limitations, it is also difficult to define the overall safety
condition of a slope with different directional safety factors. Also, at the failure
stage, the failure mode should be ‘whole rigid mass movement’ which will be in
conflict with the requirement of different safety factors at different sections.

To ensure cross-section horizontal force equilibrium, Cheng and Yip
(2007) propose that the base shear and normal forces on the last (or first)
column in each section can be determined by using eqs. (5.9) and (5.10) for
the x direction and eqs. (5.9) and (5.11) for the y direction. By solving eqs.
(5.9) and (5.10) and (5.9) and (5.11) based on sectional force equilibrium,
the base normal force on the last column can be expressed as eq. (5.29) for
the x direction and eq. (5.30) for the y direction, respectively, as follows:

(5.29)

(5.29)

(5.30)

Ni = 1

g3i × 1+ g2i × f3i

f2i × g3i

� � × ½ð−Xxi −Xyi +Wi +PviÞ

− f3i

f2i
× ð−Eyi −Hyi+1 +HyiÞ�

Ni = 1

g3i × 1+ g1i × f3i

f1i × g3i

� � × ½ð−Xxi −Xyi +Wi +PviÞ

− f3i

f1i
× ð−Exi −Hxi+1 +HxiÞ�
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Figure 5.20 Cross-section moment equilibrium condition in y direction.
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In the present formulation, the inter-column normal and shear forces are
calculated based on the adjoining column of the last column by using eqs.
(5.9), (5.10) and (5.11); the base shear and normal force can then be found
in the iteration process. The use of eqs. (5.29) and (5.30) is equivalent to
enforcing cross-sectional horizontal force equilibrium in the last column of
each section; hence, cross-sectional force equilibrium can be achieved. If eq.
(5.29) or (5.30) is used, sectional force equilibrium can be achieved in either
direction only and equilibrium along both x and y sections cannot be main-
tained simultaneously. For 2D analysis, the base normal forces for the last one
or two slices may be negative if the cohesive strength is high (Abramson et al.,
2002). If the base force for the last column is not realistic, unrealistic numer-
ical results may be introduced in the back calculation of the base and inter-
column forces from the last column. After carrying out the computational
analysis, it is found that the iteration process is more difficult to converge
with the use of eq. (5.29) or (5.30). This situation is not surprising, as eqs.
(5.29) and (5.30) become additional constraints to the convergence. The more
constraints to a problem, the more difficult it will be for the analysis to get
converged. For those problems where the cross-section force equilibrium can
be achieved with converged results, the safety factors are virtually the same as
those where the cross-section force equilibrium is not enforced and the results
are shown in Table 5.6. In general, Cheng and Yip (2007) do not suggest the
enforcement of the cross-section force equilibrium in the analysis, as conver-
gence is usually more difficult to be achieved. If the cross-section horizontal
force equilibrium is not enforced in the analysis, there will be overall unbal-
anced moment about the z axis. It appears that it is not possible to achieve
better convergence and eliminate unbalanced moment about the z axis unless
additional assumptions are introduced in the solution.

5.2.7 Discussion on λxy for Morgenstern–Price analysis

To examine the effect of λxy on the safety factor, a uniform distributed pres-
sure of 300 kPa is applied to half of the failure mass for the problem shown
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Table 5.6 Comparison between the overall equilibrium method and cross-sectional
equilibrium method using the 3D Morgenstern–Price method for Example 5

Q (kPa) Method FOS SD x y

300 1 0.616 10.99o 0.894 –0.1835
2 0.619 10.93o 0.9195 0.2886

200 1 0.649 9.39o 0.8361 –0.1512
2 0.651 9.33o 0.8941 0.2586

100 1 0.704 6.54o 0.708 –0.0857
2 0.706 6.48o 0.8451 0.1944

Note: Method 1 = overall equilibrium method; Method 2 = cross-sectional equilibrium method.



in Figure 5.12 and the results are shown in Table 5.7. It can be seen that λxy

is not sensitive to the analysis. This situation is not surprising, as the vertical
shear forces Xxi and Xyi (with same direction as weight of soil) will be more
important than the horizontal shear forces Hxi and Hyi in the present prob-
lem. However, if λxy becomes greater than 0.2, the iteration process tends to
fail to converge (unless a relatively large tolerance is adopted).

Huang et al. (2002) believe that the disturbing force induced by the torque
due to Hx/Hy is minor and Hy is actually taken as 0 in their formulation,
which is in conflict with the concept of a complementary shear. Actually, no
additional equation is available to determine λxy. Cheng and Yip (2007) have
considered the use of moment equilibrium about the z axis to determine λxy,
but unbalanced moment ΣMz can actually come from the sectional force equi-
librium problem as mentioned before. If sectional equilibrium is enforced, ΣMz
will actually be 0 so that λxy will be indeterminate. To avoid the introduction
of an additional assumption in determining λxy, λxy is suggested to be
prescribed by the engineer in the present formulation. Alternatively, Cheng
and Yip suggest that λxy can be determined from the minimization of the FOS
with respect to λxy. Because λxy is not a major factor in the analysis, λxy can be
prescribed to be 0 for most cases without a major problem.

5.2.8 Discussion on the 3D stability formulation

In this chapter, new 3D slope stability methods are developed that are based
on force/moment equilibrium. Fundamental principles of limit equilibrium are
used with an extension of either the 2D Bishop simplified method, the Janbu
simplified method or the Morgenstern–Price method. The new formulations
possess several important advantages that are as follows:

1 simple extension of the corresponding 2D formulation;
2 a unique sliding direction can be determined;
3 better convergence that is not affected by the initial choice of ai;
4 the results from the present study are comparable to those by other

researchers for some well-known cases;
5 applicable to highly non-symmetric problems with transverse load.
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Table 5.7 Effect of λxy on the safety factor and sliding direction for Example 5 (292
columns)

λxy 0 0.05 0.1 0.15 0.2 0.25

F 0.6186 0.6187 0.6188 0.6188 Fail Fail
SD 10.929o 10.920o 10.911o 10.902o Fail Fail
λx 0.9195 0.926 0.9325 0.9384 Fail Fail
λy 0.289 0.289 0.289 0.289 Fail Fail



By using this new formulation, the unique sliding direction can be deter-
mined with the corresponding safety factor. The limitations of Huang and
Tsai’s (2000) method are overcome by the new formulations as proposed
while the assumption of a plane of symmetry can be eliminated in the analy-
sis of 3D slopes. Cheng and Yip (2007) have tried more than 100 cases for
3D Bishop and Janbu analysis using Huang and Tsai’s formulation and the
present formulation for both symmetric and asymmetric problems. The fac-
tors of safety and sliding directions from all these examples are extremely
close between these two formulations and the differences are small and neg-
ligible for all these cases. It can be viewed that for a normal problem with no
transverse load, the present formulation and Huang and Tsai’s formulation
are practically the same.

The transverse earthquake load has not been considered in the past due to
the lack of a suitable 3D analysis model. The present study on transverse earth-
quake load has demonstrated the limitation of Huang and Tsai’s method, as
transverse loads greatly affect the spread of the sliding directions and hence
the convergence. Huang and Tsai’s method faces difficulty in convergence
with transverse load, as the sliding direction is not unique. For the present
formulation, the sliding direction is unique and only two convergent criteria
have to be met for directional safety factors to be determined. Convergence is
hence greatly improved under the present formulation.

In the numerical examples, the present formulation is found to be reasonable
in the determination of the safety factor and sliding direction of a 3D slope. In
particular, the analytical results for the wedge-type failure in Examples 3 and 4
are exactly the same as those obtained by the present formulations. In Examples
1 and 2, Huang and Tsai’s (2000) method gives results similar to those from the
present formulation. However, the sliding direction from Huang and Tsai’s
analysis is based on the average sliding directions of all the columns.
Conceptually, this is a major limitation as the spread of the individual sliding
direction can be major if the problem is highly asymmetric. In fact, there is
another fundamental problem in taking the average individual sliding direction.
If there is a major variation in the sizes of columns, it is not clear whether the
size of the column should be considered in the averaging process or not. Finally,
if the sliding direction is not unique, some of the columns could be separating
from each other and the summation of the overturning and restoring moment/
force process is strictly not applicable. In view of all these limitations, the
requirement on unique sliding direction appears to be important for 3D analysis
and this has been solved effectively by the present formulation.

Cheng and Yip (2007) have demonstrated that the present formulation is
equivalent to Yamagami and Jiang’s (1996, 1997) formulation but is more
convenient to be used for general conditions. No rotation of axes is required
to determine the FOS and there is a significant reduction of work for the
location of critical failure surfaces where thousands of trials are required.

In general, the behaviour of the present formulation is similar to the
corresponding 2D formulation in most cases. For example, based on limited
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case studies, it is found that the FOS is usually not sensitive to f(x, y)
(f(x) = sin(x, y) has been tried) in most cases. Although the 3D Janbu and
Bishop methods suffer from the limitation of incomplete equilibrium condi-
tions the 3D Morgenstern–Price method suffers from the limitation that exists
only for 3D analysis. Overall force and moment equilibrium can be maintained
under the Morgenstern–Price formulation while the cross-section equilibrium
will be violated unless eqs. (5.29) and (5.30) are used, and cross-sectional equi-
librium in both directions cannot be maintained simultaneously. As there are
more equations than unknowns (more serious than the 2D condition), con-
vergence with the Morgenstern–Price method is also more difficult as com-
pared with the corresponding 2D condition. Due to the indeterminacy of the
system, Cheng and Yip (2007) view that it is not possible to maintain overall
and local equilibrium without additional assumptions in general 3D analysis.
In the present formulation, enforcement of cross-section horizontal and
moment equilibrium may affect convergence of the solution, and Cheng and
Yip suggest that it is not worth imposing these constraints in analysis.

In spite of the limitations in the 3D Morgenstern–Price formulation, the
applicability of the proposed 3D asymmetrical analysis has been demonstrated
by several examples, where the results from the 3D Morgenstern–Price method
are similar to those from the 3D Bishop simplified method and 3D Janbu sim-
plified method. The proposed formulation can also predict the exact sliding
directions and safety factors for the simple sliding wedge in Examples 3 and 4,
which is a support to the applicability of the present formulation.

5.3 3D limit analysis

The extensions of the upper-bound technique to 3D geotechnical problems
are being investigated. Michalowski (1989) presented a 3D slope stability
method for drained frictional-cohesive material based on the upper-bound
technique of limit analysis. The slip surface was approximated by a number
of planar surfaces, whose lines of intersection were perpendicular to the plane
of symmetry, in combination with so-called end surfaces that extended to the
slope top or the slope surface. A typical failure mechanism used in the method
consists of rigid-motion blocks separated by planar velocity discontinuity sur-
faces. The limit load involved in an energy balance equation was found
directly. The minimum of the FOS or the limit load was obtained by search-
ing all kinematically admissible mechanisms of failure. The simplification
regarding the geometry of a slip surface and the surface of a slope made in the
method limited the application to practical problems. Although the approach
proposed by Michalowski was limited to homogeneous slopes, more recently
Farzaneh and Askari (2003) modified and extended Michalowski’s approach
to deal with inhomogeneous symmetrical cases.

Chen et al. (2001a, 2001b) presented another 3D method based on the
upper-bound theorem, in which an assumption of a so-called ‘neutral plane’
is needed so that the failure surface is generated by elliptical lines based on
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the slip surface in the neutral plane and extended in the direction perpendicular
to the neutral plane. Wang (2001) demonstrated its applications to several
large-scale hydropower projects.

The common features for the upper-bound methods proposed by
Michalowski (1989) and Chen et al. (2001a, 2001b) are that they both employ
the column techniques in 3D limit equilibrium methods to construct the kine-
matically admissible velocity field, and have exactly the same theoretical back-
ground and numerical algorithm that involves a process of minimizing the
FOS. The only difference is that Michalowski (1989) and Farzaneh and Askari
(2003) use vertical columns, whereas Chen et al. (2001a, 2001b) and Wang
(2001) use non-vertical columns, allowing flexibility in handling relatively
complicated geometry and layered rocks and soils.

Lyamin and Sloan (2002b) presented a new upper-bound limit analysis
using linear finite elements and nonlinear programming. The formulation per-
mitted kinematically admissible velocity discontinuities at all inter-element
boundaries and furnished a kinematically admissible velocity field by solving
a nonlinear programming problem. The objective corresponded to the dissi-
pated power (which was minimized) and the unknowns were subject to lin-
ear equality constraints as well as linear and nonlinear inequality constraints.
The optimization problem could be solved very efficiently using an interior
point, two-stage, quasi-Newton algorithm.

As an illustration, a landslide that occurred in Hong Kong is considered by
the 3D rigid element method (Chen, 2004). During the morning of 23 July
1994, a minor landslide occurred at a cut slope at milestone 14 1–2, Castle Peak
Road, New Territories, Hong Kong (Figure 5.21). In the afternoon on the
same day, a second landslide occurred. On 7 August 1994, a further landslide
took place at the same slope. This landslide caused 1 man to be killed and 17
other people taken to hospital. Due to the limited available information on the
first and second landslides, only the third landslide, called the Castle Peak
Road landslide herein, is analysed in this section. This landslide is of typical
three dimensions and encompassed approximately 300 m3 of soil and rock.

Site investigation showed that the ground at the location of the landslides
generally comprised partially weathered fine-grained and medium-grained
granite, which was a soil of silty sand. Rock of medium-grained granite (slightly
to moderately decomposed) was exposed in the cut slope at the western edge of
the landslide scar. The partially weathered granite exhibited a well-developed,
black-stained relict joint structure. Results of laboratory tests on undisturbed
samples of the weathered granite have shown that the strength of soil at this site
is akin to that of similar material found in other parts of Hong Kong.

The granite at the site was intruded by a number of sub-vertical basalt dykes,
which ran in a northeast direction. Two completely decomposed basalt dykes
approximately 800 mm thick were exposed within the landslide scar. Field
assessment and laboratory tests have revealed that the completely decomposed
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Figure 5.21 A plan view of a landslide in Hong Kong.
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basalt dykes were much less permeable than the partially weathered granite.
Therefore, the dykes acted as barriers to water (Pun and Yeo, 1995).

Before the landslide on 7 August, on 6 August rain was heavy in the area
along Castle Peak Road, with a total of about 287 mm of rain being recorded.
Water seepage was observed in the landslide scar on the uphill side of the two
decomposed basalt dykes for a period of at least 1 week after the landslide on
7 August, indicating that the groundwater level was high behind the dykes. In
addition, inspection of the access road on the hillside above the landslide scar
found that a drainage channel along the edge of the road was completely
blocked. This indicates, to a certain degree, the groundwater level in front of
the dykes flowed along the ground surface. However, no measured data for
the exact value of the groundwater level behind the basalt dykes are available.
A parametric study of the different groundwater levels is to be conducted to
reveal the essential influence of the groundwater level in the landslide mass on
the stability of the slope.

A 3D slope stability analysis was conducted for the landslide on 7 August
shown in Figure 5.21. The unit weight of the landslide material was taken to
be 20.6 kN/m3. The peak strength parameters were measured to be c′ = 6.7
kPa and φ′ = 35.5°. The groundwater level in the sliding mass plays an impor-
tant role on the stability of the landslide. Four different cases were therefore
investigated in the 3D slope stability analyses, that is, (1) no groundwater
involved in the failure mass, (2) water level at 5.50 m, (3) water level at 6.15
m and (4) water level at 6.80 m.

Because the slip surface of the landslide exhibits apparent 3D characteris-
tics, the 3D upper-bound method is suitable for the analysis. Figure 5.22(a)
illustrates how to generate the slip body in a slope model; Figure 5.22(b)
shows the geometry model. The mesh generated for the slip body is shown in
Figure 5.22(d). When the groundwater table is at the toe of the landslide
(Case 1), the 3D FOS is 1.463, which indicates that the slope is stable if no
water is infiltrated into the sliding mass. However, while the groundwater
level increases gradually, the 3D FOS decreases accordingly. At the level of
the groundwater 5.50 m over the base line (Case 2), the 3D FOS is 1.108.
While the level of groundwater is 6.15 m (Case 3), the FOS calculated is
1.002, which is close to 1.0. It indicates that the slope has arrived in the limit
state and the slope would collapse at the level of the groundwater at 6.15 m.
When groundwater relative to the base line is 6.92 m (Case 4), the 3D FOS
is 0.922, which is less than unity and the slope has collapsed.

5.4 Location of the general critical non-spherical
3D failure surface

Up to present, there is only limited research in determining the critical 3D slip
surface due to the difficulties in performing large-scale global optimization
analysis of the N-P type function. Searching for the 3D critical slip surface can
be classified into two major groups: (a) the first assumes a slip surface to have
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a particular shape, for example, an extended circular arc (Baligh and Azzouz,
1975), a cylindrical surface (Ugai, 1985) or an ellipsoidal surface (Zhang,
1988); and (b) the second is valid for an arbitrary slip surface. When the
analysis of slope stability is carried out by the first group of methods, the slip
surface can be expressed analytically and the critical slip surface can be found
easily through simple numerical computations.

Based on the methods that were valid for the slip surface of an arbitrary
shape, however, it was quite difficult to search for the critical surface because
possible slip surfaces exist infinitely. Thomaz and Lovell (1988) recommend a
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Figure 5.22 3D slope model: (a) Schematic diagram of generation of slip body;
(b) Geometry model; (c) Schematic diagram of groundwater; and
(d) Mesh generation for slip body.
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procedure for 3D slope stability analysis using the method of random
generation of surfaces. It has been indicated that the critical slip surface
determined using the method was probably not the most critical one because
the convergence criterion for solutions with the required precision did not exist.

Leshchinsky et al. (1985) and Leshchinsky and Baker (1986) presented a
mathematical approach based on the limit equilibrium and variational
calculus for 3D slope stability analysis. Solving the variational limit
equilibrium equations made it possible to obtain the minimum FOS and the
associated critical surface at the same time. However, the method based on
the variational analysis has not yet been applied to practical problems because
of the required mathematical format.

Yamagami and Jiang (1997) proposed an approach based on dynamic
programming and random number generation. The approach could
determine the location and shape of the 3D critical slip surface as well as the
associated FOS for a slope of arbitrary shape, including layered soils and/or
the phreatic surface. The random number generation was employed to
generate states and thus transformed the 3D dynamic programming problem
into a 2D one while 3D slope stability analysis could not directly be
performed using a dynamic programming algorithm only. The dynamic pro-
gramming approach by Yamagami and Jiang is generally applicable for
simple problems, but there is no mechanism behind the dynamic program-
ming method to escape from the local minimum during the optimization. The
problem of the local minimum for some complicated 2D problems has been
studied by Cheng (2003) and this is a difficult problem for the arbitrary slope
problem. For complicated problems where the presence of the local minimum
may be a critical factor in the search for the global minimum, the solution will
be a difficult N-P type optimization problem for both 2D and 3D problems.

5.4.1 3D NURBS surfaces

The success of 3D global optimization requires the description of a general
3D surface using limited control variables but is able to model arbitrary
geometry. This is extremely difficult, and there is no simple way to ensure a
very special shape can be generated for an arbitrary solution domain.
However, for most of the normal cases, a relatively smooth function may be
good enough to model the 3D surface. NURBS or Non-Uniform Rational B-
Splines (Les and Wayne, 1997; David, 2001) are now commonly adopted for
describing and modelling curves and surfaces in solid modelling, computer
aided design and computer graphics. It has a great ability to represent a reg-
ular surface such as flat planes and quadric surfaces as well as complex fully
sculptured surfaces with only few local and global controls. A NURBS sur-
face is a special case of a general rational B-spline surface that uses a partic-
ular form of knot vector. For a NURBS surface, the knot vector has a
multiplicity of duplicate knot values equal to the order of the basis function
at the ends, that is, a NURBS surface uses an open knot vector. The knot
vector may or may not have uniform internal knot points and this can be
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controlled by the user easily. Non-uniform spaced knot points are important
for slope stability analysis as the critical failure surface may have its arbitrary
extent controlled by the topography, and the use of the non-uniform spaced
knot point is necessary for general problems.

A Cartesian product of the rational B-spline surface in a four-dimensional
homogeneous coordinate space is given by (Les and Wayne, 1997; David, 2001)

(5.31)

where Bh
i,j s are the four-dimensional homogeneous polygonal control vertices

(3D coordinates and coordinate weight factor which are stored in the matrix
NURBS surface as discussed later) and Ni,k(u) and Mj,l(w) are the non-rational
B-spline basis functions in the x and y directions, respectively, given in eq. (5.32):

(5.32a)

(5.32b)

(5.32c)

(5.32d)

Projecting back into the 3D space by dividing with the homogeneous coor-
dinate gives the rational B-spline surface as

(5.33)

where Bi,j s are the 3D control net vertices (3D coordinates which are a sub-
matrix of the matrix NURBS surface) and Si,j(u,w) are the bivariate rational
B-spline surface basis functions given by

(5.34)

Si,jðu, wÞ= hi,jNi,kðuÞMj,lðwÞ
Pn+1

i1=1

Pm+1

j1=1

hi1,j1Ni1,kðuÞMj1,lðwÞ
= hi,jNi,kðuÞMj,lðwÞ

Sðu,wÞ ,

Qðu, wÞ=
Xn+1

i=1

Xm+1

j=1

Bh
i,jNi,kðuÞMj,lðwÞ,

Qðu, wÞ=
Pn+1

i=1

Pm+1

j=1

hi,jBi,jNi,kðuÞMj,lðwÞ

Pn+1

i=1

Pm+1

j=1

hi,jNi,kðuÞMj,lðwÞ
=
Xn+1

i=1

Xm+1

j=1

Bi,jSi,jðu, wÞ,

and Mj,lðwÞ=
ðw− yjÞMj,l−1ðwÞ

yj+l−1 − yj
+ ðyj+l −wÞMj+1,l−1ðwÞ

yj+l − yj+1

wmin ≤w<wmax, 2≤ l≤m+ 1:

Mj,1ðwÞ= 1 if yj ≤w< yj+1

0 otherwise

�

Ni,kðuÞ= ðu− xiÞNi,k−1ðuÞ
xi+k−1 − xi

+ ðxi+k − uÞNi+1,k−1ðuÞ
xi+k −xi+1

umin ≤ u< umax, 2≤ k≤ n+ 1,

Ni,1ðuÞ= 1 if xi ≤ u< xi+1

0 otherwise

�
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where

It is convenient, though not necessary, to assume hi,j ≥ 0 for all i,j. The
smooth NURBS surface will be controlled by the coordinates of the control
points but will not pass through the control points exactly. The greater the
values of hi,j, the closer will be the NURBS surface to the control points.

In the above-mentioned formulas, the symbols are as follows:
u, w – the NURBS surface’s transverse and longitudinal directions, being
similar to the x and y axes;
n, m – the numbers of control net vertices in the u, w direction;
k, l – order in the u, w directions;
b() – array containing the control net vertex:

b(,1) contains the x component of the vertex,
b(,2) contains the y component of the vertex,
b(,3) contains the z component of the vertex,
b(,4) contains the homogeneous coordinate weighting factor, h;

Bi,j – are the 3D control net vertices. Bi,j = b (n × m,1 ~ 3);
Bh

i,j – are the 4D homogeneous polygonal controls. Bh
i,j = b (n × m,1 ~ 4).

When eqs. (5.31) to (5.34) are used, the number of control net vertices
must be equal to n × m. However, for slope stability analysis, it is not always
practical to have n × m control net vertices. In the optimization analysis, the
coordinates of the control nodes will be changing and a n × m net vertices reg-
ular grid cannot be adopted. If the control net vertices are not arranged reg-
ularly to form a regular grid, the NURBS surface may twist seriously (cusps).
A cusp is highly unlikely to occur in a real situation and should be avoided in
the generation of a non-spherical failure surface. In fact, restraining forces
will be provided by the cusp (if present) and this situation can be eliminated
in the generation of non-spherical failure surfaces. Excessive unacceptable
failure surfaces generated from the NURBS points will greatly reduce the effi-
ciency of analysis and this has been experienced by Cheng et al. (2005) in the
preliminary study, and a simple method is proposed to generate a NURBS
surface that can avoid this problem.

First, four extreme fixed corners (net vertices) will define a domain similar
to a net of n × m points (see Figure 5.23). The z ordinates of these four extreme
fixed corners can change during the optimization analysis and they are the
control variables. In general, the user should define a solution domain large
enough to cover all possible failure mechanisms and this is usually not diffi-
cult. To eliminate the formation of a cusp, a NURBS surface can be viewed as
a net stretched tightly within the plane force. Second, each control node should
affect the net in order in forming the 3D sliding surface. The coordinates of
every point on the regular grid are controlled by the control node. This
approach is equivalent to putting a stone on a net stretched tightly and every

Sðu, wÞ=
Xn+1

i1=1

Xm+1

j1=1

hi1, j1Ni1,kðuÞMj1,lðwÞ:
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net point sinks with the stone. A NURBS surface with no kink will then be
generated even if the control points are not spaced regularly. Obviously,
the more control nodes used for modelling, the better will be the quality of the
the NURBS surface. Third, the shape of the NURBS surface will change with the
coordinates and weighting factors of control nodes. The greater the weight fac-
tor of a control node, the closer the NURBS net is to the control node. It is easy
to modify the shape of the NURBS surface by changing the weighting factors.

During the simulated annealing analysis, each control variable will vary
sequentially and Cheng (2003) has proposed a simple trick to avoid generat-
ing an unacceptable 2D failure surface by changing the requirement of ‘kine-
matically acceptable mechanism’ to ‘dynamic boundaries’ of control variables.
Such a technique has been used by Cheng et al. (2005) for 3D analysis. That
means that the shape of the trial failure surfaces will be examined in longitu-
dinal as well as transverse directions so that the boundaries of the control
variables will be modified, which is effectively Cheng’s (2003) approach
applied in two directions. Using this technique, most of the failure surfaces
generated will be kinematically acceptable. By using the concept of the
stretched net and the requirement of a ‘kinematically acceptable mechanism’,
most of the failure surfaces as generated from NURBS functions will be suit-
able for optimization analysis.

5.4.2 Spherical and ellipsoidal surfaces

For simple problems, the use of spherical and ellipsoidal failure surfaces may
be sufficiently good in application. For a spherical failure surface, it is simple
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Figure 5.23 The NURBS surface with nine control nodes.
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to operate and the number of control variables are four: (xc, yc, zc, r), where
(xc, yc, zc) are the coordinates of the centre of the sphere and r is the radius
of the sphere. For an ellipsoidal failure surface defined by global axes x, y, z,
the equation will be 

(5.35)

The ellipsoid can be defined in terms of the rotated axes x′, y′ and z′ so that
two more additional control variables for the rotation of the axes are required
in the optimization process. The number of control variables are hence eight:
(xc, yc, zc, a, b, c, θx, θy), where (xc, yc, zc) is the centre of the ellipsoid, a,
b, c are the axes lengths of the ellipsoidal and θx and θy are the rotation of
the xy and yz planes, respectively. The use of an ellipsoidal failure surface is
attractive in that the number of control variables is not great and the solution
time is acceptable for an ordinary design. Every ellipsoid is convex in shape
and includes the spherical shape as a special case so that it is suitable for ordi-
nary problems. Example 3 in Section 5.5 will illustrate the advantage of using
the ellipsoid in analysis.

5.4.3 Selection of sliding surfaces

For 3D limit equilibrium analysis, the potential failure mass of a slope is
divided into the number of columns. The NURBS/spherical or ellipsoidal sur-
face intersects with the ground profile and generates soil columns and a slid-
ing mass. For the 3D failure surfaces as generated, some surfaces are not
unacceptable and should be removed from the analysis. The following failure
surfaces should be eliminated in the optimization analysis:

1 The number of columns formed is too small. Cheng et al. (2005) have
found that if the number of columns used for stability analysis is too
small, the results on the safety factor will be greatly affected. This kind
of problem may come up if the size of each column is too large (see Figure
5.24a). Generally, this problem can be avoided by a good pre-processing
of the mesh for generating the soil columns and is only a minor problem.

2 The sliding surface is not a complete concave surface. Most sliding sur-
faces are completely concave. Any sliding surface that is composed of con-
cave and convex portions can be eliminated in the analysis (see Figure
5.24b). This case is absent for spherical and ellipsoidal failure surfaces and
is also not commonly found as the concave portion will induce additional
restraining forces and is not critical in general. However, the user should
be given the choice that this type of composite failure surface can be
accepted in the optimization process. Based on the present proposal on the
use of dynamic domains to the control variables in longitudinal and
transverse directions, this situation is practically eliminated.

ðx− xcÞ2

a2
+ ðy− ycÞ2

b2
+ ðz− zcÞ2

c2
= 1:
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3 If the failure mass is divided into several unconnected parts as shown in
Figure 5.24c, the failure surface will not be accepted. For the case shown
in Figure 5.24c, only the larger failure mass will be considered as accept-
able in the analysis, whereas the smaller failure zone is not considered.

A typical valid failure surface is shown in Figure 5.25.

5.4.4 Optimization analysis of the NURBS surface

The critical failure surface corresponds to the global minimum of the FOS func-
tion over the solution domain that can be determined from the heuristic opti-
mization methods discussed in Chapter 3. For a spherical failure surface, the x,
y, z coordinates of the centre of rotation and the radius of sliding sphere are the
multidimensional variables and there are in total four control variables. The x,
y, z coordinates of nodes on the NURBS surface are the multidimensional
variables but the number of control variables will be much greater than the
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Figure 5.24 Three cases should be considered.
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corresponding spherical failure surface. The x, y, z coordinates of the control
nodes are the control variables and upper and lower bounds to these control
variables are required to be defined by the user. For the upper and lower bounds
of z ordinates of the control variables, the upper bound will be dynamic in that
the upper bound should not exceed the ground level based on the current x and
y ordinates. To achieve this requirement, the order of the control variables must
be in the form of (x, y, z, . . .) or (y, x, z, . . .) in simulated annealing analysis.
The order of x and y are not important in the analysis but the order of z must
follow (x, y) or (y, x) to control the upper bound of z by the updated x and y
ordinates. The restraints as provided to the control variables are basically sim-
ilar to the 2D optimization method as proposed by Cheng (2003) but are
applied in both longitudinal and transverse directions so as to impose a kine-
matically acceptable mechanism in the failure surface generation.

5.5 Case studies in 3D limit equilibrium global
optimization analysis

Based on the discussion in the previous section, Cheng et al. (2005) have
developed a program, SLOPE3D, that is designed for a general asymmetric
slope with arbitrary geometry and arbitrary external load in longitudinal and
transverse directions. After generating an acceptable sliding surface based on
the simulated annealing rule, the FOS will be calculated by the 3D Bishop,
Janbu or Morgenstern–Price methods by Cheng and Yip (2007). The numer-
ical examples in this section can illustrate the effectiveness of the proposed
NURBS function in the optimization analysis.

Example 1:
To validate the applicability of the NURBS function in the location of the
non-spherical failure surface, a simple problem where the exact solution is
known is chosen for the study. The problem under consideration has only one
type of soil where the unit weight, cohesion and internal friction angle are 20
kN/m3, 0 kPa and 36°, respectively. Slope angles for 30°, 45° and 60°,
respectively, are considered in the analysis. Theoretically, the critical failure
surface is a very shallow symmetrical failure surface parallel to the slope sur-
face and the FOS is equal to tanφ/tanθ. The minimum factors of safety after
the optimization calculation are shown in Table 5.8.

In the present example, 17 control nodes are used to generate the NURBS
failure surface and very good results are obtained from the analysis. All the
critical failure surfaces are very shallow-type surfaces parallel to the ground
surface, which is in accordance with classical soil mechanics theory. The small
differences between the optimized values and the theoretical values can be
considered to be acceptable in view of the discretization required for compu-
tation. These results have demonstrated the effectiveness of the NURBS func-
tion under this simple condition. For the present problem, the results are
practically independent of the number of control points (unless the number is
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very small) as the critical failure surface is a very shallow surface. As long as
the control points are near to the ground surface, a good shallow failure sur-
face practically parallel to the ground surface will be generated. For the two
following examples where the critical failure surfaces are not parallel to the
ground surface, the results are more sensitive to the number of control points.

Example 2:
To illustrate the differences between the minimum factors of safety from
spherical and NURBS failure surfaces, a special problem is devised with 3D
Janbu analysis. The geometry of the slope is shown in Figure 5.26. There are
two kinds of soils with a groundwater table. The geological profile remains
constant in the direction normal to the figure. The cohesion of upper soil is
much less than the lower soil so that the critical failure surface will be con-
trolled by the boundary between the two layers of soil. First, the critical
spherical sliding surface is evaluated by a simulated annealing algorithm.
After 11,521 calculation steps, a minimum FOS of 0.6134 is obtained for the
3D Janbu analysis. The x, y, z coordinates of the centre of rotation and the
radius of the spherical sliding surface with the minimum FOS are (0.0000, –
0.3462, 8.5384) and 6.1879 m, respectively. The spherical critical failure sur-
face shown in Figure 5.27(b) is tangential to the boundary between Layer 1
and Layer 2 at 1 point (geometry requirement).

Second, a NURBS sliding surface is constructed with 17 nodes. The dimen-
sion of the control net SS′T ′T shown in Figure 5.27c is 8 m × 6 m, and there
are in total 361 columns used for analysis. After 78,943 calculation steps, a
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Figure 5.25 Sliding columns intersected by the NURBS sliding surface.
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minimum FOS of 0.5937 that is smaller than that by the spherical failure sur-
face search is attained. The finer mesh shown in Figure 5.27c is the failure sur-
face and the greater mesh is the NURBS grids as discussed before. The critical
symmetrical NURBS failure surface formed by the control net SS′T′T and the
NURBS surface is tangential to the boundary between Layers 1 and 2 over a
region instead of just a single point touch, which is the expected solution. In
Figure 5.27d, the failure mass is the lower part of the complete NURBS surface
formed by the control net. This example has illustrated the importance of the
non-spherical search for the critical 3D failure surface under the general condi-
tion. For 5 NURBS points, the minimum factors of safety and number of trials
are 0.751 and 46,082, respectively, from the optimization search, whereas the
corresponding figures for 10 NURBS points are 0.647 and 65,090. It is also
found that the minimum FOS is practically insensitive to the number of NURBS
points if the number is 15 or above. Unlike the previous case which is practi-
cally a planar failure mode, the present critical failure surface requires 15 or
more NURBS points for a good description of the 3D failure surfaces.

Example 3:
In this example, a typical slope in Hong Kong with a soft band is considered.
As shown in Figure 5.28, there are three kinds of soils and no groundwater
table. The unit weight, cohesion and internal friction angle of the first layer
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Figure 5.26 Slope geometry for Example 2.
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of soil are 18 kN/m3, 10 kPa and 30°, respectively. The soil parameters for
the second layer, which is thin in thickness, are 18.5 kN/m3, 2.0 kPa and 5°,
respectively. The soil parameters for the third layer are 19 kN/m3, 20 kPa and
25°, respectively. Actually, this is a slope with a soft band soil and each soil
boundary surface is an irregular surface fluctuating in 3D space. Because the
soil parameters for the second layer of soil are low, a major portion of the
failure surface will lie within Layer 2, which is thin in thickness, and a spher-
ical surface will not be adequate for the optimization analysis.

For the critical spherical asymmetric failure search that is obtained after
7488 calculation steps, the minimum FOS is 0.6177 from 3D Janbu analysis.
The x, y, z coordinates of the centre of rotation and the radius of the spherical
sliding surface with the minimum FOS are (59.8299, 52.8347, 42.2479) and
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Figure 5.27 Sliding surface with the minimum FOS for Example 2.
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20.4227, respectively, and is shown in Figure 5.29a and b. For the critical
spherical surface, the middle part of the failure surface lies within Soil 3,
whereas the outer part lies within Soil 2.

For the NURBS sliding surface search, 15 nodes are used to form the
NURBS surface. The dimension of the control net SS′T′T is 54.8 m × 34.4 m
with 361 columns. In the present analysis, Cheng et al. (2005) have tried two
options for the initial failure surface:

1 Fifteen nodes are used based on the most critical spherical failure surface
and this initial solution is far from the critical solution (63,507 trials).

2 Fifteen nodes are chosen within the second layer of soil so that the initial
NURBS surface is close to the critical solution (53,424 trials).

Under both cases, the minimum FOS of 0.517 is obtained which is much
smaller than the spherical search result of 0.6177. As shown in Figure 5.29e,
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Figure 5.28 Slope geometry of Example 3.
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a major portion of the critical failure surface lies within Soil 2, which is the
expected result. The failure mass is the region formed by the NURBS surface
from the control net SS′T′T and the ground profile shown in Figure 5.29e.
This study has also demonstrated the advantage of using the simulated
annealing technique in the global optimization search as the global minimum
is practically independent of the initial solution. It is true that, for relatively
regular geometry or soil conditions, other global optimization methods may
work faster than the simulated annealing method that is also found by Cheng
(2003). For a difficult problem where a good initial solution is hard to find,
the simulated annealing method has the advantage of being insensitive to the
initial solution and escaping from the local minimum during the search in its
basic formulation.

The mesh shown in Figure 5.29d is the grid for computation of the NURBS
surface while the centre portion within the grid is the actual failure mass.
From Figure 5.29e, it is noticed that the shape of the critical asymmetric
NURBS failure surface is greatly different from the critical spherical failure
surface. The majority of the sliding surface is located in the second layer of
soil which is as expected.

For the present problem, the FOS and the number of trials to achieve the
critical solution are 0.9345 and 8425, respectively, for 5 NURBS points, and
0.5611 and 63,611, respectively, for 10 NURBS points. As shown in Figure
5.29f, the critical failure surface by 10 points is basically acceptable except
that the extent of the failure surface within Soil 2 is not sufficient, which is
the limitation of using the insufficient NURBS point to form the critical fail-
ure surface. For the critical failure surface shown in Figure 5.29g, the number
of NURBS points is too small so that only the outer edge of the critical fail-
ure surface lies within Soil 2. It is also found that the critical solution is
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Figure 5.29 Sliding surfaces with the minimum FOS: (a) Spherical sliding surface;
(b) Section along A–D for spherical search; (c) Section along A′–D′ for
spherical search; (d) NURBS sliding surface; (e) Section along A–D for
15 points; (f) Section along middle for 10 points; (g) Section along
middle for 5 points; (h) Ellipsoid sliding surface; (i) Section along ABCD
for ellipsoid search; (j) Section along A′B′C′D′ for ellipsoid search.



practically not sensitive to the number of NURBS points if the number
exceeds 15 and this is similar to the situation for the second case.

For the critical ellipsoidal failure surface, the results are shown in Figure
5.29h–j. The minimum FOS is 0.521 and the number of trials is 10,605. Xc,
yc and zc in eq. (5.35) for the critical ellipsoidal failure surface are (57.72,
63.96, 36.21), whereas a, b, c are 2.41 m, 15.1 m and 5.27 m, respectively.
This critical ellipsoidal failure surface is greatly different from the critical
spherical failure surface and this is obvious. The FOS from the ellipsoidal
search is very close to that by the NURBS search but the number of trials in
the optimization analysis can be greatly reduced. It appears that, for a normal
problem, an ellipsoidal search will be sufficiently good for the design purpose.
It should be noted that there are noticeable differences in the critical NURBS
surface and the ellipsoidal surface even though the factors of safety from these
surfaces are close to each other.

5.6 Effect of curvature on the FOS

Many highway slopes have curvatures that can affect the stability of slopes
but this problem is seldom considered in the past. Xing (1988) has considered
the case of a concave slope and has demonstrated that curvature can play an
important part in the stability of the slope. In the present study, the effect of
curvature is investigated in more detail. Consider a simple slope with a typical
section in Figure 5.30.

The typical section of the slope is shown in Figure 5.30, whereas the 3D
view of the slope is shown in Figure 5.31 for clarity. For the present prob-
lem, the curvature at the bottom of the slope and the corresponding factors
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Figure 5.30 A simple slope with curvature.
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of safety for Bishop and Janbu analyses using spherical failure surfaces are
shown in Figure 5.32. Conceptually, a concave slope should possess the
greatest FOS, whereas a convex slope should possess the smallest FOS, and
such results are given in Figure 5.32. It is found that curvature has played a
major part in the FOS determination. These results are reasonable as a con-
cave slope will provide more confinement from the two ends of a failure
mass, whereas a convex slope has no confinement from the two ends. Xing
(1988) has obtained the results for a concave slope with similar behaviour
that is further extended for a convex slope. Interestingly, the relation of FOS
and the radius of curvature of a slope appear to be approximately linear for
the present problem.
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Figure 5.31 Layout of concave and convex slopes.
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6 Site implementation of some new
stabilization measures

6.1 Introduction

When the British first occupied Hong Kong in the 1840s, they immediately
put into place a network of military roads on Hong Kong Island. A road
required the formation of a corridor by cut and fill. Both the resulting cut and
fill slopes were designed using a rule-of-thumb, namely 10 on 6 for a cut soil
slope and 1 on 1.5 for a fill slope (HK Government, 1972). The fill slope of
the course was formed by end-tipping and not compacted. This practice
would allow the roads to be built quickly and it was accepted that some
of the slopes might fail from time to time. Corridors and platforms for
other developments were also created in a similar fashion. As Hong Kong
developed and grew, such slopes would become too hazardous for civilian
use. One of the first engineered cut slopes in Hong Kong was the aviation
chequerboard at Kai Tak airport and was analysed using the Bishop method
of slices in the 1960s.

Two disastrous landslides that took place on 18 June 1972 following 653
mm of rainfall from 16–18 June were to fundamentally change the control of
design and implementation of engineered slopes in Hong Kong. The first
landslide was in Sau Mau Ping in eastern Kowloon, killing 71 people, and the
second one occurred at Kotewall Road in Mid-levels, Hong Kong Island,
killing 67 people. On the afternoon of 18 June 1972, an earth embankment
failed, leaving tonnes of landslide debris in the resettlement area in Sau Mau
Ping. By nightfall, on Hong Kong Island, landslide debris originating from Po
Shan Road completely destroyed the 12-storey Kotewall Court and a 6-storey
house, partially damaging an unoccupied block in its way. The Hong Kong
Government then decided to start controlling all man-made cut slopes. This
was not the case, however, for loose fill slopes where the relatively gentle
slope angle gave the false impression that the slope was safe – loose fill is
meta-stable and when shear may collapse and thus compact. If the soil is fully
saturated, the slope may generate sufficient pore water pressure to liquefy. On
25 August 1976, a loose fill slope 40 m away from the previous landslide
failed. The rainstorm associated with tropical storm ‘Ellen’ triggered many
landslides across the territory, but the worst failure was in Sau Mau Ping. At



around 9 a.m. on 25 August 1976, the fill slope behind Block 9 of the
Sau Mau Ping Estate in Kwun Tong collapsed, killing 18 people and injuring
24. A comprehensive report on these landslides can be found in the Civil
Engineering Development Department publication (CEDD, 2005). After
major landslides at Po Shan Road in 1972 for cut slopes and Sau Mau Ping
in 1976 for fill slopes in Hong Kong, an extensive programme of rehabilitating
and upgrading the man-made slopes to meet modern safety standards was put
in place.

It is of note that, because soil nailing first became popular in the late 1980s,
there have been no significant failures of permanently nailed cut slopes. Apart
from a few exceptional cases, for example Ching Cheung Road, most cut
slopes were upgraded by soil nailing. It can be concluded that soil nailing is a
cost-effective and robust means to stabilize an over-steepened cut slope and,
in so doing, also maintain the stability of the more deep-seated overall failure
mode of a slope.

There are, however, a number of aspects for which a critical review of
existing practice is in order. First is the uncontrolled grouting pressure of the
soil nails and, second, the soil nail head design. The first problem arises from
the configuration and arrangement of the soil nail, that is, a nail and grout
tube within a hole. In the soil nailing design, it had been assumed that the
bond strength between the grout and the ground is a function of the
overburden pressure only (Watkins and Powell, 1992). However, recent
researches have suggested that it is actually dependent on the grout pressure
and not the overburden pressure (Yeung et al., 2007). If we step back from
the problem for a while and ask ourselves what the best method to pressure
grout the ground is, the tube-a-manchette would immediately come to mind.
And the response would be ‘Why not?’. A tube-a-manchette would allow
pressure grouting to be carried out at a particular location at a particular
time. This flexibility would be most welcomed by practitioners. If we go back
to the nail proper, there is no reason why the nail cannot be in the form of a
pipe or for that matter constructed in either steel or another material such as
fibre-reinforced plastic (FRP). If the nail is the form of a pipe, it can double
up as a tube-a-manchette pipe and so grouting can be to a designed grouting
pressure. Currently, the authors are considering the use of an FRP pipe as a
possible new soil nail material. The FRP pipe is manufactured from a pultru-
sion process shown in Figures 6.3 to 6.6. As an example, an FRP nail can be
grouted up to eight bars (Yeung et al., 2005, 2007).

The other aspect that may be further improved is the nail head design. At
the moment, it can either be through a bearing capacity-type calculation or
prescriptive based on past experience (Pun and Shiu, 2007). Recent soil-nailed
slope failure has suggested that the weak points of a nailed slope would be in
the vicinity of the nail heads (Figure 6.1). This begs the second question: ‘Why
is local failure between soil nail heads not normally considered in a design at
present?’ With the advent of the high-tensile alloyed steel wire (3 mm
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diameter, with a tensile strength of 1770 N/mm2) and net weaving
technology, there is no reason why local slip involving the soil body between
soil nail heads should not be properly designed against failure. One of the
solutions is to do away with the soil nail heads and replace them with a high-
tensile alloyed steel wire mesh (Ruegger and Flum, 2001). One example is the
TECCO system developed by Geobrugg. The system consists of a TECCO
wire mesh, TECCO spike plates (facilitating force transmission from mesh to
nails), TECCO compression claws (connecting mesh sheets and for fixing
along the outer edges) and soil nails (grouted anchor bars) (Figure 6.2). What
we are proposing here is that the practitioner should deal with local failure,
shallow failure and global failure simultaneously.

6.2 The FRP nail

Corrosion protection is of paramount importance to the durability of steel
soil nails installed in slopes. The provision of a 2 mm sacrificial steel thick-
ness is the most widely used method of corrosion protection of soil nails in
Hong Kong. Corrosion protection of a steel bar by hot-dip galvanizing or
epoxy coating is also commonly adopted in Hong Kong in some corrosive
conditions (Shiu and Cheung, 2003). Anyhow, there is a reduction of 4 mm
in diameter for the tensile capacity of the soil nail. When the required stabi-
lizing force is large, soil nails of 40 mm diameter steel reinforcement are often
installed at very close spacing (1–1.5 m in Hong Kong). Such steel bars are

Figure 6.1 Failure of soil mass in between soil nail heads.
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heavy and thus difficult to manoeuvre on site. As a result, the zinc coating can
be easily damaged. The length of each 40 mm diameter steel bar that can be
handled on site is limited by its weight and individual site conditions and the
typical length of each segment is approximately 3–5 m (due to lack of ade-
quate working space in Hong Kong). Couplers are often used to connect bars
to the required total length. When soil nails are required in aggressive ground,
a double corrosion system similar to that for pre-stressed ground anchors is
required, resulting in a significant increase in construction costs and time. The
total cost of soil nail construction in Hong Kong, including the steel nails,
couplers, handling and transportation costs, drilling and the corrosion pro-
tection system, is hence much higher than those in many other countries.

a a

a

a

b

b
b

b

b

b

Main nail with spike plate

Main nail with spike plate

TECCO© steel wire mesh

Figure 6.2 The TECCO system developed by Geobrugg.
Source: Reproduced by kind permission of Geobrugg AG.
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Usually, no pressure is applied during the grouting of conventional soil
nails (gravity flow of grout) as the application of pressure with current soil
nail systems is difficult to carry out. There are many reported cases in Hong
Kong where the shrinkage of grout has resulted in a significant reduction in
bond stress between cement grout and soil and remedial work has been
required. Many engineers also have reservations on the bond stress transfer
of soil nails within a loose fill slope. In particular, it is found that, even when
good compaction has been carried out to loose fill, the compacted dry den-
sity of the fill will decrease with time, possibly due to the washout of fines by
groundwater. In view of this concern, expensive and visually displeasing con-
crete grillage is commonly used in Hong Kong for loose fill slopes.

In view of the various problems associated with the use of reinforcement
bars as soil nails, there is various research being carried out in Hong Kong,
China and many other countries. The features that are required for the soil
nails in Hong Kong include the following:

1 light weight and high strength;
2 the application of pressure to control the grouting zone, quality of

grouting and bond strength;
3 resistance to corrosion;
4 acceptable cost;
5 ease of construction – handling, joining, cutting.

Recently, there have been rapid developments in the use of FRP for various
structural purposes (Dolan, 1993; Dowling, 1999). The authors have carried
out research works on the use of glass fibre reinforced polymer (GFRP) and
carbon fibre reinforced polymer (CFRP) bars as soil nails for the project at
the Sanatorium Hospital in Hong Kong, as bar-type FRP can be found easily
on the market. From pilot studies carried out by the authors, the limitations
of the GFRP bar are the following: (1) the pressure grouting system is com-
plicated; (2) the joining of the bar is not easy; (3) low shear strength. The lim-
itations of the CFRP bar are the following: (1) the pressure grouting is
complicated; (2) the joining of the bar is not easy; (3) the cost is high. An
innovative system of GFRP pipes has been devised by the Dae Won Soil
Company Limited of Korea and is used for the present study. The system can
fulfil the five criteria for a new soil nail system listed above and may be suit-
able for use in Hong Kong and other countries to improve the economy and
constructability of soil nails.

GFRP is a material of light weight, high corrosion resistance and high
strength. For the present system, a GFRP pipe of 37 mm internal diameter
and 5 mm thick is used. It is fabricated by a pultrusion process, during which
glass fibres are drawn through a die and bundled together through a resin
matrix (Figure 6.3). The fibres are coated with sheeting and are pulled
through a shaping die (Figure 6.4) to form the pipe. Pultrusion is a continu-
ous moulding process using fibre reinforcement in polyester or other ther-
mosetting resin matrices. Pre-selected reinforcements such as fibreglass, mat
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or cloth are drawn through a resin bath in which all materials are thoroughly
impregnated with a liquid thermosetting resin. The wetted fibre is formed to
the desired geometric shape and pulled through a heated steel die. The resin
is cured inside the die by controlling the precise temperature of curing. The

Figure 6.3 Glass fibre drawn through a die and coated with epoxy.

Figure 6.4 Fibre drawn and coated with sheeting to form a pipe bonded with epoxy.
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laminates solidify to the shape of the die, and it is continuously but slowly
pulled by the pultrusion machine. Typical FRP lamination formed by the pul-
trusion process is shown in Figure 6.5. This process of manufacturing has the
advantage of forming various shapes suitable for different engineering uses.
The mechanical properties and strengths of the laminates can be controlled
easily through the use of different types of resin. For example, suitable filler,
catalysts, ultra-violet inhibitors and pigments can be used to form the resin
matrix, binding the fibres together and providing structural corrosion resist-
ance as well as strength.

Field tests on the effect of the tube-a-manchette grouting technique have
demonstrated a major beneficial improvement in the soil properties. The effec-
tive cohesive strength of soil can be greatly increased which is highly beneficial
to the stability of a slope. Furthermore, the deformation and elastic modulus
of soil are also greatly improved by the soil improvement process while the
FRP pipe can act as the grouting tube as well as the reinforcement to the
grouted soil mass. Because the quality of grouting is good due to the use of
pressure grouting, this new material and grouting technique will be useful in
loose fill where the bond stress is always a problem. The use of expensive and
visually displeasing concrete grillage in loose fill slopes can also be avoided by
the use of tube-a-manchette grouting and additional cost saving is possible.

The installation of the system in Hong Kong indicates there are no insur-
mountable installation difficulties encountered on site. The nail can be
installed and grouted easily, and high strengths have been obtained from the
pull out tests. The maximum test loads for the four pull out tests are all about
21.1 tonnes. Although the allowable tensile strength of an FRP pipe was set
as 11.5 tonnes in design, it can be seen that the design value for the FRP pipe
is quite safe and conservative.

Because there are doubts as to the transfer of bond stress from the soil nail
in poor soil, a grillage system is also commonly adopted in conjunction with
the use of soil nails for loose fill slopes or slopes with very poor quality soil

Surface veil

Surface veil

Continuous mat

Continuous mat

Continuous strand mat

Continuous fibre

Continuous fibre

Figure 6.5 Lamination of FRP as produced from the pultrusion process.



in Hong Kong, Taiwan and Japan. There are various possible methods to sta-
bilize slopes in different kinds of soil, and only those systems commonly
adopted in Hong Kong are covered in this book.

6.3 Drainage

Inadequate surface drainage design and detailing are quite common. This is
mainly due to the local concentration of flow. It is commonly observed that
while most of the storm drainage provisions for slopes in Hong Kong are
adequate, some are under-designed by a wide margin. For example, drainage
lines are something we have to take note of and ensure that, if present, they
are properly accounted for in the drainage system design. Such concentrated
flow may also have an impact on the slope groundwater table level if not
diverted from the recharge zones where open discontinuities are present.
Horizontal drains and sub-soil drains are useful in drawing down the
groundwater table and relieving artesian water pressure.

In Hong Kong, a slope normally tends to have a lower hydraulic conductivity
as it gets deeper. When there are zones with a large difference in hydraulic
conductivity such as colluvium on top of Grade V granite, perched water may
develop. A rise in transient perched and regional groundwater levels should be
taken into account in the design. Persistent clay layers and kaolin-infilled
discontinuities may also have an adverse impact on the design groundwater
table assumptions. Ideally, an accurate hydrogeological model should be set up.
Failing this, sensitivity analysis on the groundwater regime assumptions should
be carried out, and, where necessary, more pessimistic assumptions should be
used in the design.

6.4 Construction difficulties

Difficulties during the installation of soil nails should also be addressed.
Certain geological features may also cause construction difficulties during the
installation of the soil nails. For example, volcanic tuff is very hard to drill
through, resulting in excessive wear and tear to the drill bits. The presence of
core stones may catch the drill bit and stop it from being withdrawn easily.
These may slow down the drilling process and cause drill hole collapse. The
presence of a network of soil pipes may result in an excessive loss of grout
during the grouting stage. All such problems can be overcome if identified
early on. Examples are the following: (1) to use a drill bit with harder cutting
beads; (2) to use the odex (or under-reaming) drilling system where a
temporary casing can be introduced to avoid drill hole collapse; and (3)
drilling and grouting can be carried out in two stages. After first-stage
drilling, a quick-set cement grout should be injected followed by second-stage
drilling before the second and final stage grouting. Such steps should be able
to avoid excessive grout loss in most cases.
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General introduction to SLOPE 2000

The 2D and 3D formulations as well as the optimization search outlined in
this book have been coded into two general purpose programs: SLOPE 2000
and SLOPE3D. SLOPE3D is under development and a relatively nice 3D
interface has been completed recently. It can be obtained from Cheng for
testing and evaluation. SLOPE 2000 is a mature 2D program with the sup-
port of some simple 3D cases. Most of the examples in this book were
carried out using versions 2.1 and 2.2 of this program. This program has
been used for many projects in different countries, and the latest English and
Chinese versions can be downloaded from Cheng’s web site at http://www.
cse.polyu.edu.hk/~ceymcheng/download.htm. This program (version 1.8) is
also incorporated into the Geo-Suite delivered by Vianova Finland System
Oy. SLOPE 2000 has many important and useful features which include:

1 The location of a critical failure surface with evaluation of the global mini-
mum factor of safety for both circular as well as non-circular failure surfaces
under general conditions. Very difficult problems with multiple soft band
problems have also been tested with satisfaction. The verification examples
in the user guide have demonstrated the power of the modern optimization
methods in SLOPE 2000 as compared with other slope stability programs.

2 The generation of graphics files in the form of Autocad DXF, bitmap
BMP, postscript, HP plotter format or vector format (CGM and Lotus
PIC) for incorporation into other programs. For the Windows version,
clipboard and Windows print manager are also supported.

3 Bishop simplified, Fellenius, Swedish, Janbu simplified and Janbu rig-
orous, China load factor (including the simplified version required by
some China codes), Sarma, Morgenstern–Price, Corps of Engineers,
Lowe–Karafiath and GLE methods and extremum principles are imple-
mented under the 2D analysis (12 methods). For 3D analysis, the load
factor, extremum and GLE methods are not implemented while all the
other corresponding 2D analyses are extended to 3D analyses.
A true 3D slope stability analysis for spherical and non-spherical fail-
ure surfaces is covered by a separate program, SLOPE3D, by Cheng.
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4 f0 for the Janbu simplified method is incorporated into the program
(optional) so that the user need not determine it from the design graph
by Janbu. 

5 The China load factor method is available.
6 The Janbu rigorous method and Sarma method (2D and 3D) are avail-

able which are not present in many commercial programs.
7 Windows and Linux versions are available. For the older version of

SLOPE 2000, DOS and other platforms are available as well. 
8 Water tables, pore pressure coefficients, perch water tables and excess

pore pressure contours can all be defined.
9 Earthquake loading in the form of horizontal/vertical acceleration can

be accepted by this program.
10 It is able to accept vertical surcharge and horizontal loads with the pres-

ence of a rock boundary. Loading can be applied on or below ground
level.

11 Many options are available for soil nail modelling which is shown in
Figure A2. Nail loads can be controlled by the tensile strength of the nail,
the bond length proportional to the effective zone or the bond stress from
vertical overburden stress (unique). The bond stress from overburden

Figure A1 Various types of stability methods available for analysis in SLOPE 2000.
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stress can be determined from Hong Kong practice or the US Davis
method. Furthermore, the nail horizontal spacing can be controlled for
individual rows which is also unique among other similar programs. The
nail load can be applied to the failure surface by default or to the nail head
if necessary. If part of the nail is not grouted or the end of the nail is sock-
eted into rock, these options can also be modelled by SLOPE 2000.

12 Cheng (2003) has formulated the slope stability problem in a matrix
approach and the factor of safety can be determined directly from a
complex double QR matrix method. The special advantage of this
double QR method is that the factor of safety and internal forces for
‘rigorous’ methods can be determined directly from the matrix equa-
tion and no initial factor of safety is required. Cheng has proved that
there are N factors of safety for a problem with N slices. In this new
approach, all the N factors of safety are determined directly from the
tedious matrix equation without using any iteration, and the factors of
safety can be classified into three groups: imaginary numbers, negative
numbers and positive numbers.

If all the factors of safety are either imaginary or negative, the prob-
lem under consideration has no physically acceptable answer by nature.
Otherwise, the positive number (usually 1–2 positive numbers left) will
be examined for the physical acceptability of the corresponding internal
forces and the final answer will be then obtained. Under this new for-
mulation, the fundamental nature of the problem is fully determined.

Figure A2 Extensive options for modelling soil nails.
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If a physically acceptable answer exists for a specific problem, it will be
determined by this double QR method. If no physically acceptable
answer exists for the double QR method (all are imaginary or negative
numbers), the problem under consideration has no answer by nature
and the problem can be classified as ‘failure to converge’ under the
assumption of the specific method of analysis. The authors have found
that many problems which fail to converge with the classical iteration
method actually possess meaningful answers by the double QR method.
That means that the phenomenon of ‘failure to converge’ which comes
out from the use of the iteration method of analysis may be a false phe-
nomenon in some cases. The authors have also found that many failure
surfaces which fail to converge are normal in shape and should not be
neglected in ordinary analysis and design.

13 China’s earthquake code for dam design is available. The coefficient
varies with height according to the formula ahξai which is different
between different slices.

14 Ponded water (water table above ground) can be modelled automatically.
15 The interslice force function f(x) can be determined from the lower

bound/extremum principle. This is unique among all existing slope sta-
bility programs.

16 Soil parameters can vary with depth from ground surface or from con-
tour lines.
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Figure A3 A simple slope with 2 soil nails, 3 surface loads, 1 underground trape-
zoidal vertical load and a water table.
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Illustration

For the slope as shown in Figure A3, the bond load on the soil nail is defined
by the overburden stress acting on the soil nail according to Hong Kong
practice. To perform the analysis, choose extremum principle from the
method of analysis and select the parameters as shown in Figure A4. Choose
type 4 extremum formulation and select option 1 for type 4 formulation
(maximum extremum). Click the checkbox for checking the Mohr–Coulomb
relation along the interfaces and then perform the analysis.

The factor of safety from the lower bound theorem/extremum principle
is 1.558 while λ = 0.134. The complete output with the interslice force func-
tion f(x) for this case from SLOPE 2000 is shown below:

SLOPE 2000 ver. 2.3 by Dr. Y.M. Cheng
Dept. of Civil and Structural Engineering
Hong Kong Polytechnic University

**********************************
*       SINGLE SLIP SURFACE *
**********************************

=====================
= Basic Data   =

=====================

Figure A4 Parameters for extremum principle.
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Density of water :  9.81 (kNm−3)
Tolerance in analysis :  0.00050 
Slip surface is :  circular
No. of slice is :  10

*****************************
FOS for Bishop method = 1.5298
FOS for Janbu simplified method = 1.4514
FOS for Swedish method = 1.3020
FOS for Load factor method = 1.6211
FOS for Sarma method = 1.6471
FOS for Morgenstern–Price method = 1.4982

*  Factor of safety and internal forces for chosen method of analysis  *

**********************************************************
Method of analysis = 2D extremum principle 
Factor of safety = 1.5576
Max. extremum factor of safety 
Lambda = .134E+01

Material type = 0

**      Soil Properties      **

Soil name Density Cohesion Phi Saturated Delta C Delta Phi
(kNm−3) (kNm−2) (º) density

CDG 18.00 5.00 36.00 20.00 0.00 0.00

===============================
= Soil Profile Co-ordinates =
===============================

X/Y Coor (m) 4.00 5.00 10.00 15.00 

CDG 0.00 0.00 5.00 5.00 
Water (m) 0.00 0.00 2.50 3.00 

==========================================
== Slip Surface Co-ordinates    ==
==========================================

No. X (m) Y (m) Line of thrust (m)

1 5.000 0.000 0.000
2 5.625 −0.066 −0.066

(Continued overleaf)
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3 6.250 −0.073 0.945
4 6.875 −0.021 1.352
5 7.500 0.091 1.580
6 8.125 0.266 1.808
7 8.750 0.510 2.043
8 9.375 0.831 2.290
9 10.000 1.243 2.571

10 11.250 2.455 3.459
11 12.500 5.000 5.000

Centre of circle (X,Y) = (6.011, 6.608)
Radius of circle = 6.685 

========================
= Surface Load    =
========================

No. StartX EndX VPress VPress2 HPress HPress2 Depth1 Depth2
(m) (m) (kN/m2) (kN/m2) (kN/m2) (kN/m2) (m) (m)

1 5.000 15.000 5.000 15.000 0.000 0.000
2 10.000 15.000 5.000 10.000 0.000 0.000
3 12.000 12.000 0.000 0.000 10.000 20.000
4 10.120 13.068 10.000 4.000 0.000 0.000 3.802 3.802

==========================
= Soil Nail Information =
==========================

Diameter of grout hole = 0.07500
Soil/Grout Bond stress factor of safety = 2.000
Bond load determined from Hong Kong Practice by the overburden stresses

No. of rows of Soil Nails : 2
Soil nail horizontal spacing : 1.000
All the loads are defined per nail

No. Nail head Nail Bond Length Tensile Actual 
coordinates angle strength (m) strength load 
X (m)  Y (m) (degree) (kN) (kN) (kN) 

1 7.000  2.000 5.00 7.00 12.24
2 8.000  3.000 5.00 7.00 10.40



Appendix 221

No. Nail/slip Ungrout Bond Nail
coordinates length length spacing
X (m) Y (m) (m) (m) (m)

1 10.467 1.697 0.00 3.519 1.000
2 11.373 2.705 0.00 3.615 1.000

Nail load applied at the ground surface

=========================
Slice details 

=========================

No. Weight Surchage Horiz Base Base Base Base Base 
(kN) load load angle length pore p. frict. cohe

(kN) (kN) (deg) (m) (kPa) tan(phi) (kPa)

1 4.12 3.32 0.00 –6.01 0.628 1.86 0.727 5.000
2 12.00 3.71 0.00 –0.63 0.625 5.28 0.727 5.000
3 19.14 4.10 0.00 4.73 0.627 8.12 0.727 5.000
4 25.54 4.49 0.00 10.15 0.635 10.39 0.727 5.000
5 31.17 4.88 0.00 15.65 0.649 12.04 0.727 5.000
6 35.97 5.27 0.00 21.31 0.671 13.06 0.727 5.000
7 39.86 5.66 0.00 27.20 0.703 13.35 0.727 5.000
8 42.70 6.05 0.00 33.42 0.749 12.82 0.727 5.000
9 72.67 30.32 0.00 44.11 1.741 7.00 0.727 5.000

10 28.64 28.09 0.00 63.84 2.835 0.06 0.727 5.000

No. Base normal (kN) Base shear (kN) 

1 52.455 25.941
2 11.536 5.849
3 7.892 3.318
4 17.313 7.038
5 67.494 29.920
6 −2.152 −2.936
7 70.049 30.555
8 21.101 7.770
9 101.881 47.430

10 46.455 30.693

Nail Nail loads at slice 

slice Hori. (kN) Vert. (kN)

1 0.00 0.00
2 0.00 0.00

(Continued overleaf)



3 0.00 0.00
4 12.19 1.07
5 10.36 0.91
6 0.00 0.00
7 0.00 0.00
8 0.00 0.00
9 0.00 0.00

10 0.00 0.00

Interface Interface Interface Interface Interface Interface f(x)
No. length friction cohesion normal force shear force

l(i,i+1) tan(phi) c(i,i+1) E(i,i+1) X(i,i+1) 
(m) (kPa) (kN) (kN) 

1 0.69 0.73 5.00 31.29 −42.01 1.000 
2 1.32 0.73 5.00 37.26 −37.77 0.755 
3 1.90 0.73 5.00 39.92 −22.67 0.423 
4 2.41 0.73 5.00 55.99 −9.85 0.131 
5 2.86 0.73 5.00 76.96 −45.96 0.445 
6 3.24 0.73 5.00 75.01 −1.64 0.016 
7 3.54 0.73 5.00 70.17 −32.39 0.344 
8 3.76 0.73 5.00 65.03 −5.52 0.063 
9 2.54 0.73 5.00 28.16 −8.70 0.230 

Total weight of the soil mass = 311.81
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Figure A5 Defining the search range for optimization analysis.

(Continued)



Figure A6 Choose the stability method for optimization analysis.

SLOPE 2000 - Version 2.3

TITLE: 
DESCRIPTION:
DATE:
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min.FOS = 1.4005
lambda = 0.3664

Figure A7 The critical failure surface with the minimum factor of safety corre-
sponding to Figure A6.
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To search for the critical failure surface corresponding to the problem in
Figure A3, define the left and right search range as (4.0,6.0) and (10.0,15.0)
as shown in Figure A5. That means that the left exit end will be controlled
within (4.0,6.0) and the right exit end will be controlled within (10.0,15.0).
Choose the shape of the failure surface from the Failure Surface option
under the Define menu (default to non-circular in SLOPE 2000), then pro-
ceed to the selection of the method of analysis as shown in Figure A6. The
minimum factor of safety of 1.4 for the Spencer method is obtained as
shown in Figure A7, and the default tolerance in locating the critical failure
surface is 0.0001, which can be adjusted in the default if necessary. SLOPE
2000 is the only program at present for which a tolerance in the optimiza-
tion search can be defined.

SLOPE 2000 is robust and has been used in many countries (Hong Kong,
Taiwan, China, Italy, United States, Finland, Syria, Argentina). This
program has been used in China for many major national projects and a sim-
plified Chinese version is available. The interface is completely the same as
the English one except the words are all simplified in to Chinese language.
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