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Preface to third edition

The continuing interest in our textbook together
with the ongoing development of statistical
applications in veterinary and animal science has
encouraged us to prepare this third edition of
Statistics for Veterinary and Animal Science. We
have introduced some new material but we want
to reassure all readers that our original intention
of this being an introductory text still stands.
Again, you will find everything that you need
to begin to understand statistics and its applica-
tion to your scientific and clinical endeavours;
it remains an introduction for the novice with
emphasis on understanding the application,
rather than exhibiting mathematical competence
in the calculations. Readily available statistical
software packages, which provide the mechanics
of the calculations, have become more extensive
in the range of procedures they offer. Accord-
ingly, we have augmented our text, within the
bounds of an introductory exposition, to match
their development.

As in previous editions, we use two commonly
employed statistical software packages, SPSS
and Stata, to analyse the data in our examples.
We believe that by presenting you with different
forms of computer output, you will have the con-
fidence and proficiency to interpret output from
other statistical packages. The previous edition of
the book had an accompanying CD which con-
tained the data sets (in ASCII, Excel, SPSS and
Stata) used as examples in the text. These data
sets are now available at www.wiley.com/go/
petrie/statisticsforvets, and will be helpful if you
wish to get to grips with various statistical tech-
niques by attempting the analyses yourselves.
You will find a website icon next to the examples
for which the data are available on the website.

Please note that, although we have provided
details of a considerable number of websites that
you may find useful, we cannot guarantee that
these website addresses will remain correct over
the course of time because of the mutability of
the internet.

Some sections of the book are, as in previous
editions, in small print and are accompanied by
a jumping horse symbol. These sections contain
information that relates to more advanced or
obscure topics, and you may skip (jump over)
them without loss of continuity. Our teaching
experience has demonstrated that one of hardest
tasks for the novice when analysing his or her
own data set is deciding which test or procedure
is most appropriate. To overcome this difficulty,
we provide two flow charts (Figure E.2 for binary
data and Figure E.3 for numerical data) which
lead you through the various questions that need
to be asked to aid that decision. Another flow
chart (Figure E.1) organizes the tests and proce-
dures into relevant groups and indicates the par-
ticular section of the book where each is located:
you can find these flow charts in the Appendix
as well as on the inside back/front covers for easy
reference.

Many of the chapters in this third edition are
similar to those in the second edition, apart from
some minor modifications and additional exer-
cises. However, Chapter 5 has been extended to
include techniques for recognizing and dealing
with confounding, and this chapter now provides
a description of the different types of missing
data that might be encountered. We have added
a section on checking the assumptions underly-
ing a logistic regression model to Chapter 11,
and have included modifications of the sample
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size estimation process to take account of dif-
ferent group sizes and losses to follow-up in
Chapter 13. Chapter 14 has been expanded con-
siderably by extending the sections on diagnostic
tests, measuring agreement and survival analysis
as well as Bayesian analysis. Chapter 15 is
entirely new, bringing together a group of spe-
cialist topics — ethical issues of animal investiga-
tion (some of which was in Chapter 5 of the
second edition), spatial statistics, surveillance
and its importance, and statistics in molecular
and quantitative genetics. While none of these is
intended as more than an introduction, you will
find references to help you explore the topics
more fully should you so desire. The section on
evidence-based veterinary medicine (EBVM) in
Chapter 16 is unchanged from that in the second
edition’s Chapter 15, but in the third edition this
chapter no longer provides guidelines for report-
ing results. Instead, we have devoted the new
Chapter 17 to this topic by presenting different
published guidelines relevant to veterinary med-
icine (i.e. for reporting of livestock trials, research
using laboratory animals, diagnostic accuracy
studies, observational studies in epidemiology,
and systematic reviews and meta-analyses) as a
ready reference for those wanting to follow best
practice both in planning and in writing up their
research. Lastly, in Chapter 18, which is entirely
new, we bring together the concepts of EBVM
and the guidelines provided in Chapter 17 by
proffering a template for the critical appraisal of
randomized controlled trials and observational
studies. We use this template to critically appraise
two published papers, both of which are repro-
duced in full, and hope that by providing these
examples, we will help you develop your own
skills in what is an essential, but frequently over-
looked, component of statistics.

We are indebted as always to those who, for
earlier editions of this book, have offered their
data to us to use for examples or exercises, have
assisted with the presentation of the illustrations
and tables, and have provided critical advice on
the text. These colleagues are all identified in the
prefaces to the first and second editions. As in
earlier editions, we have occasionally taken
summary data or abstracts from published papers
and have used them to develop exercises or to
illustrate techniques: we extend our thanks to the
authors and the publishers for the use of this
material. For this third edition, we are most grate-
ful to Dr Geoff Pollott and Professor Dirk Pfeiffer
(both of the Royal Veterinary College, University
of London) for their critical reading and sugges-
tions for sections of Chapter 15. We wish to
record our particular thanks to Professor Garry
Anderson (University of Melbourne) for his cri-
tique of much of the new text. His suggestions
have drawn our attention to errors and have con-
siderably improved the presentation. Nonethe-
less, we remain responsible for all contained
herein, and offer it, with all its shortcomings, to
our readership.

This preface would not be complete without
acknowledging our marriage partners, Gerald
and Rosie, and our children, Nina, Andrew and
Karen, and Oliver and Anna, who have allowed
us once again to engage with this task to their
inevitable exclusion, and offer them our most
grateful thanks.

Aviva Petrie
Paul Watson
2013



Preface to second

It is six years since this book was first available,
and we are glad to acknowledge the positive
responses we have received to the first edition
and the evident uptake of the text for a number
of courses around the world. In the intervening
period much has happened to encourage us to
update and expand our initial text. However,
many of the chapters which were in the first
edition of the book are changed only slightly, if
at all, in this second edition. To these chapters,
we have added some exercises and further expla-
nations (for example, on equivalence studies,
confounding, interactions and bias, Bayesian
analysis and Cox survival analysis) to make the
book more comprehensive. We have neverthe-
less retained our original intent of this being an
introductory text starting with very basic con-
cepts for the complete novice in statistics. You
will still find sections marked for skipping unless
you have a particular need to explore them, and
these include the newer more complex analysis
methods. This edition also contains the glossaries
of notation and of terms, but we have expanded
them to reflect the enhanced content of the text.
For easy reference, the flow charts for choosing
the correct statistical analyses in different situa-
tions are now found immediately before the
index, and we hope these will serve to guide you
to the appropriate procedures and text relating
to their use.

Computer software to deal with increasingly
sophisticated analytical tools has been developed
in recent years in such a way that the associated
methodology is more readily accessible to those
who previously believed such techniques were
out of their reach. As a consequence, we have
substantially enhanced the material relating to

edition

regression analysis and created a new chapter
(Chapter 11) to describe some advanced regres-
sion techniques. The latter incorporates the sec-
tions on multiple regression and an expanded
section on logistic regression from Chapter 10 of
the first edition, and introduces Poisson regres-
sion, different regression methods which can be
used to analyse clustered data, maximum likeli-
hood estimation and the concept of the general-
ized linear model. Because we have inserted this
new Chapter 11, the numbering of the chapters
which follow does not accord with that of the
corresponding chapters in the first edition.
Chapter 15 is an entirely new chapter which is
devoted in large part to introducing the concepts
of evidence-based veterinary medicine (EBVM),
stressing the role of statistical knowledge as a
basis for its practice. The methodology of EBVM
describes the processes for integrating, in a sys-
tematic way, the results of scientifically con-
ducted studies into day-to-day clinical practice
with the aim of improving clinical outcome. This
requires the practitioner to develop the skills to
evaluate critically the efforts of others in respect
of the design of studies, and of the presenta-
tion, analysis and interpretation of results. The
recognition of the value of the evidence-based
approach to veterinary medicine has followed a
similar emphasis in human clinical medicine, and
is influencing the whole veterinary profession.
Accordingly, it is also very much a part of the
mainstream veterinary curriculum. Whether you
are a practitioner of veterinary medicine or of
one of the allied sciences, you will now more than
ever need to be conversant with modern biosta-
tistical analysis. Knowing how best to report your
own results is also vital if you are to impart
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knowledge correctly, and so, to this end, we
include in Chapter 15 a section on the CONSORT
Statement, designed to standardize clinical trial
reporting.

Although we refer only to two common statis-
tical packages in the text, SPSS and Stata, suffi-
cient information is given to interpret output
from other packages, even though the layout
and content may differ to some degree. We have
also mentioned a number of websites containing
useful information, and which were correct at
the time of printing. Given the mutability of the
internet, we cannot guarantee that such sites will
stay available.

Also included with this edition is a CD con-
taining the data sets used as examples in the text.
You can use these data sets to consolidate the
learning process. It is only when you attempt the
analyses yourself that you are fully able to get to
grips with the techniques. Each data set is pre-
sented in four different formats (ASCII, Excel,
SPSS and Stata), so you should be able to access
the data and use the software that is available
to you.

We would like to acknowledge the generosity
of the late Dr Penny Barber, Mark Corbett, Dr
J. E. Edwards, Professor Jonathan Elliott, Profes-
sor Gary England, Dr Oliver Garden, Dr Ilke
Klaas, Dr Teresa Martinez, Dr Anne Pearson, Dr
P. D. Warriss, Professor Avril Waterman-Pearson
and Dr Susannah Williams who shared their
original data with us, and to others who have
allowed us to use their published data. In places,
we have taken published summary data and

constructed a primary data set to suit our own
purposes; if we have misrepresented our col-
leagues’ data, we accept full responsibility. We
are particularly grateful to Alex Hunte who
lent us his skills in refining the illustrations in
the first edition, and to Dr David Moles who
assisted with the preparation of the statistical
tables. We especially thank Dr Ben Armstrong,
Professor Caroline Sabin and Dr Ian Martin
who kindly gave us their critical advice as the
text of the first edition was developed, and Pro-
fessor John Smith who was instrumental in
getting us to consider writing the book in the
first place. In addition, we acknowledge our debt
to a host of other colleagues who have helped
with discussions over the telephone, with their
expertise in areas we are lacking, and in their
encouragement to complete what we hope will
be a useful contribution to the field of veterinary
and animal science. We are particularly indebted
to those of our colleagues who have graciously
pointed us to our errors, which we hope are now
corrected.

Lastly, we again acknowledge with gratitude
the patience and encouragement of our marriage
partners, Gerald and Rosie, and our children,
Nina, Andrew and Karen, and Oliver and Anna,
who have once more graciously allowed us to
become absorbed in the book and have had to
suffer neglect in the process. We trust that they
still appreciate the worthiness of the cause!

Aviva Petrie
Paul Watson



Preface to first edition

Although statistics is anathema to many, it is,
unquestionably, an essential tool for those
involved in animal health and veterinary science.
It is imperative that practitioners and research
workers alike keep abreast with reports on animal
production, new and emerging diseases, risk
factors for disease and the efficacy of the ever-
increasing number of innovations in veterinary
care and of developments in training methods
and performance. The most cogent information is
usually contained in the appropriate journals;
however, the usefulness of these journals relies
on the reader having a proper understanding of
the statistical methodology underlying study
design and data analysis. The modern animal sci-
entist and veterinary surgeon therefore need to
be able to handle numerical data confidently and
properly. Often, for us, as teachers, there is little
time in busy curricula to introduce the subject
slowly and systematically; students find they are
left bewildered and dejected because the con-
cepts seem too difficult to grasp. While there are
many excellent introductory books on medical
statistics and on statistics in other disciplines such
as economics, business studies and engineering,
these books are unrelated to the world of animal
science and health, and students soon lose heart.
It is our intention to provide a guide to statistics
relevant to the study of animal health and disease.
In order to illustrate the principles and methods,
the reader will find that the text is well endowed
with real examples drawn from companion and
agricultural animals. Although veterinary epide-
miology is closely allied to statistics, we have con-
centrated only on statistical issues as we feel that
this is an area which, until now, has been neglected
in veterinary and animal health sciences.

Our book is an introductory text on statistics.
We start from very simple concepts, assuming no
previous knowledge of statistics, and endeavour
to build up an understanding in such a way
that progression on to advanced texts is possible.
We intend the book to be useful for those without
mathematical expertise but with the ability to
utilize simple formulae. We recognize the influ-
ence of the computer and so we avoid the descrip-
tion of complex hand calculations. Instead,
emphasis is placed on understanding of concepts
and interpretation of results, often in the context
of computer output. In addition to acquiring an
ability to perform simple statistical techniques on
original data, the reader will be able critically to
evaluate the efforts of others in respect of the
design of studies, and of the presentation, analysis
and interpretation of results. The book can be
used either as a self-instructional text or as a basis
for courses in statistics. In addition, those who are
further on in their studies will be able to use the
text as a reference guide to the analysis of their
data, whether they be postgraduate students,
veterinary practitioners or animal scientists in
various other settings. Every section contains suf-
ficient cross referencing for the reader to find the
relevant background to the topic.

We would like to acknowledge the generosity
of Penny Barber, Mark Corbett, Dr J. E. Edwards,
Dr Jonathan Elliott, Dr Gary England, Dr Oliver
Garden, Dr Anne Pearson, Dr P. D. Warriss, Pro-
fessor Avril Waterman-Pearson and Susannah
Williams, who shared their original data with us.
In places, we have taken published summary
data and constructed a primary data set to suit
our own purposes; if we have misrepresented
our colleagues’ data, we accept full responsibility.
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We are particularly grateful to Alex Hunte who
lent us his skills in preparing the illustrations,
and to Dr David Moles who assisted with the
preparation of the statistical tables. We espe-
cially thank Dr Ben Armstrong, Dr Caroline
Sabin and Dr Ian Martin who kindly gave us
their critical advice as the text was developed.
Professor John Smith was instrumental in getting
us to consider writing the text in the first place,
and we thank him for his continual encourage-
ment. In addition, we acknowledge our debt to
a host of other colleagues who have helped with
discussions over the telephone, with their exper-
tise in areas we are lacking, and in general
encouragement to complete what we hope will

be a useful contribution to the field of veterinary
and animal science.

Lastly, we acknowledge with gratitude the
patience and encouragement of our families.
Our marriage partners, Gerald and Rosie, have
endured with fortitude our neglect of them while
this work was in preparation. In particular, our
children, Nina, Andrew and Karen, and Oliver
and Anna, have had to cope with our absorption
with the project and lack of involvement in their
activities. We trust they will recognize that it was
in a good cause.

Aviva Petrie
Paul Watson



About the companion website

This book is accompanied by a companion website:
www.wiley.com/go/petrie/statisticsforvets

The website includes:

e Data files which relate to some of the examples in the text. Each data file is provided for
download in four different formats: ASCII, Excel, SPSS and Stata.

e Examples relating to the data files are indicated in the text using the following icon: @
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The whys and wherefores

of statistics

1.1 Learning objectives
By the end of this chapter, you should be able to:

e State what is meant by the term ‘statistics’.

e Explain the importance of a statistical under-
standing to the animal scientist.

e Distinguish between a qualitative/categorical
and a quantitative/numerical variable.

e List the types of scales on which variables are
measured.

e Explain what is meant by the term ‘biological
variation’.

e Define the terms ‘systematic error’ and
‘random error’, and give examples of circum-
stances in which they may occur.

e Distinguish between precision and accuracy.

e Define the terms ‘population’ and ‘sample’,
and provide examples of real (finite) and hypo-
thetical (infinite) populations.

e Summarize the differences between descrip-
tive and inferential statistics.

1.2 Aims of the book

1.2.1 What will you get from
this book?

All the biological sciences have moved on
from simple qualitative description to concepts
founded on numerical measurements and counts.
The proper handling of these values, leading to

a correct understanding of the phenomena, is
encompassed by statistics. This book will help
you appreciate how the theory of statistics can
be useful to you in veterinary and animal science.
Statistical techniques are an essential part of
communicating information about health and
disease of animals, and their agricultural produc-
tivity, or value as pets, or in the sporting or
working environment. We, the authors, aim to
introduce you to the subject of statistics, giving
you a sound basis for managing straightforward
study design and analysis. Where necessary, we
recommend that you extend your knowledge by
reference to more specialized texts. Occasionally,
we advocate that you seek expert statistical
advice to guide you through particularly tricky
aspects.
You can use this book in two ways:

1. The chapter sequence is designed to develop
your understanding systematically and we
therefore recommend that, initially, you work
through the chapters in order. You will find
certain sections marked in small type with a

symbol, which indicates that you

can skip these, at a first read through,

3 without subsequent loss of continuity.
These marked sections contain information
you will find useful as your knowledge devel-
ops. Chapters 11, 14 and 15 deal with particu-
lar types of analyses which, depending on your
areas of interest, you may rarely need.

2. When you are more familiar with the concepts,
you can use the book as a reference manual;

Statistics for Veterinary and Animal Science, Third Edition. Aviva Petrie and Paul Watson.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



2 Statistics for Veterinary and Animal Science

you will find sufficient cross-referenced infor-
mation in any section to answer specific
queries.

1.2.2 What are learning
objectives?

Each chapter has a set of learning objectives
at the beginning. These set out in task-oriented
terms what you should be able to ‘do’ when you
have mastered the concepts in the chapter. You
can therefore test your growing understanding; if
you are able to perform the tasks in the learning
objectives, you have understood the concepts.

1.2.3 Should you use a computer
statistics package?

We encourage you to use available computer sta-
tistics packages, and therefore we do not dwell
on the development of the equations on which
the analyses are based. We do, however, present
the equations (apart from when they are very
complex) for completeness, but you will nor-
mally not need to become familiar with them
since computer packages will provide an auto-
matic solution. We provide computer output,
produced when we analyse the data in the
examples, from two statistical packages, mostly
from SPSS (IBM SPSS Version 20 (www-01.ibm.
com/software/analytics/spss, accessed 9 October
2012)) and occasionally from Stata (Stata 12,
StataCorp,2011, Stata Statistical Software: Release
12. College Station, TX: StataCorp LP (www.
stata.com/products, accessed 9 October 2012)).
Although the layout of the output is particular
to each individual package, from our description
you should be able to make sense of the output
from any other major statistical package.

1.2.4 Will you be able to decide
when and how to use a particular
procedure?

Our main concern is with the understanding that
underlies statistical analyses. This will prevent
you falling into the pitfalls of misuse that sur-

round the unwitting user of statistical packages.
We present the subject in a form that we hope is
accessible, using examples showing the applica-
tion of the subject to veterinary and animal
science. A brief set of exercises is provided at the
end of each chapter, based on the ideas presented
within. These exercises should be used to check
your understanding of the concepts and proce-
dures; solutions to the exercises are given at
the back of the book. The two exceptions are
Chapter 17, which provides reporting guidelines
and Chapter 18 in which we ask you to critically
appraise two published articles, preferably before
looking at the ‘model answers’ provided in the
chapter.

1.2.5 Use of the glossaries of
notation and terms

Statistical nomenclature is often difficult to
remember. We have gathered the most common
symbols and equations used throughout this
book into a Glossary of notation in Appendix C.
This gives you a readily accessible reminder of
the meaning of the terminology.

You will find a Glossary of terms in Appendix
D. In this glossary, we define common statistical
terms which are used in this book. They are
also defined at the appropriate places in relevant
chapters, but the glossary provides you with a
ready reference if you forget the meaning of a
term. Terms that are in the glossary are intro-
duced in the text in bold type. Note, however,
that there are some instances where bold is
purely used for extra emphasis.

1.3 What is statistics?

The number of introductory or elementary texts
on the subject of statistics indicates how impor-
tant the subject has become for everyone in the
biological sciences. However, the fact that there
are many texts might also suggest that we have
yet to discover a foolproof method of presenting
what is required.

The problem confronted in biological statistics
is as follows. When you make a set of numerical
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observations in biology, you will usually find
that the values are scattered. You need to know
whether the values differ because of factors you
are interested in (e.g. treatments) or because
they are part of a ‘background’ natural variation.
You need to evaluate what the numbers actually
mean, and to represent them in a way that readily
communicates their meaning to others.
The subject of statistics embraces:

e The design of the study in order that it will
reveal the most information efficiently.

e The collection of the data.

e The analysis of the data.

e The presentation of suitably summarized infor-
mation, often in a graphical or tabular form.

e The interpretation of the analyses in a manner
that communicates the findings accurately.

Strictly, this broad numerical approach to
biology is correctly termed ‘biometry’ but we
shall adopt the more generally used term ‘statis-
tics’ to cover all aspects. Statistics (meaning this
entire process) has become one of the essential
tools in modern biology.

1.4 Statistics in veterinary and
animal science

One of the common initial responses of both
veterinary students and animal science students
is: Why do I need to study statistics? The math-
ematical basis of the subject causes much uncer-
tainty, and the analytical approach is alien.
However, in professional life, there are many
instances of the relevance of statistics:

e The published scientific literature is full of
studies in which statistical procedures are
employed. Look in any of the relevant scien-
tific journals and notice the number of times
reference is made to mean = SEM (standard
error of mean), to statistical significance, to
P-values or to r-tests or Chi-squared analysis
or analysis of variance or multiple regression
analysis. The information is presented in the
usual brief form and, without a working knowl-
edge of statistics, you are left to accept the

conclusions of the author, unable to examine
the strength of the supporting data. Indeed,
with the advent of computer-assisted data han-
dling, many practitioners can now collect their
own observations and summarize them for the
advantage of their colleagues; to do this, they
need the benefit of statistical insights.

The subject of epidemiology (see Section 5.2)
is gaining prominence in veterinary and animal
science, and the concepts of evidence-based
veterinary medicine (see Section 1.5 and
Chapter 16) are being explicitly introduced
into clinical practice. As never before, there
is an essential need for you to understand
the types of trials and investigations that are
carried out and to know the meaning of the
terms associated with them.

In the animal health sciences, there are an
increasing number of independent diagnostic
services that will analyse samples for the
benefit of health monitoring and maintenance.
Those running such laboratory services must
always be concerned about quality control and
accuracy in measurements made for diagnostic
purposes, and must be able to supply clear
guidelines for the interpretation of results
obtained in their laboratories.

The pharmaceutical and agrochemical indus-
tries are required to demonstrate both the
safety and the efficacy of their products in
an indisputable manner. Such data invariably
require a statistical approach to establish and
illustrate the basis of the claim for both these
aspects. Those involved in pharmaceutical
product development need to understand the
importance of study design and to ensure the
adequacy of the numbers of animals used in
treatment groups in order to perform meaning-
ful experiments. Veterinary product licensing
committees require a thorough understanding
of statistical science so that they can appreciate
the data presented to substantiate the claims
for a novel therapeutic substance. Finally,
practitioners and animal carers are faced with
the blandishments of sales representatives with
competing claims, and must evaluate the litera-
ture which is offered in support of specific
agents, from licensed drugs to animal nutrition
supplements.
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¢ Increasingly, there is concern about the regula-
tion of safety and quality of food for human
consumption. Where products of animal origin
are involved, the animal scientist and the
veterinary profession are at the forefront.
Examples are: pharmaceutical product with-
drawal times before slaughter based on the
pharmacokinetics and pharmacodynamics of
the products, the withholding times for milk
after therapeutic treatment of the animal,
tissue residues of herbicides and insecticides,
and the possible contamination of carcasses by
antibiotic-resistant bacteria. In every -case,
advice and appropriate regulations are estab-
lished by experimental studies and statistical
evaluation. The experts need to be aware of
the appropriate statistical procedures in order
to play their proper roles.

In all these areas, a common basic vocabulary
and understanding of biometrical concepts is
assumed to enable scientists to communicate
accurately with one another. It is important that
you gain mastery of these concepts if you are to
play a full part in your chosen profession.

1.5 Evidence-based veterinary
medicine

The veterinary profession is following the
medical profession in introducing a more objec-
tive basis to its practice. Under the term evidence-
based veterinary medicine (EBVM) — by which
we mean the conscientious, explicit and judicious
use of current best evidence to inform clinical
judgements and decision-making in veterinary
care (see Cockcroft and Holmes, 2003) — we are
now seeing a move towards dependence upon
good scientific studies to underpin clinical deci-
sions. In many ways, practice has implicitly been
about using clinical experience to make the best
decisions, but what has changed is the explicit use
of the accessible information. No longer do clini-
cians have to depend on their own clinical expe-
rience and judgement alone;now they can benefit
from other studies in a formalized manner to
assist their work. The clinician has to know what
information is relevant and how to access this

evidence, and be able to use rigorous methods to
assess it. Generally, this requires a familiarity
with the terminology used and an understanding
of the principles of statistical analysis. Moreover,
the wider world of animal science is finding a
need to understand these ideas as the evidence-
based concepts are being applied not only in the
treatment of clinical disease but also in aspects
of production and performance.

One of the differences between the applica-
tion of EBVM in veterinary science and in
human medicine is that in the latter the body
of literature is now very large, and this makes
finding relevant information easier. In the vet-
erinary field, EBVM is still hampered by the
relatively small amount and variable quality
of the evidence available. Nevertheless, EBVM
is gaining momentum, and we have devoted
Chapter 16 to its concepts. One of the key re-
quirements of EBVM is reliably reported infor-
mation and, as in the human medical field, the
veterinary publishing field is in the process of
consolidating a set of guidelines for good re-
porting. We have addressed this in Chapter 17,
outlining the information that is available at the
time of writing. As critical appraisal of the pub-
lished literature is invariably an essential compo-
nent of evaluating evidence, we have devoted
Chapter 18 to it. In this chapter, we provide tem-
plates for critically appraising randomized con-
trolled trials and observational studies, and invite
you to develop your skills by critically appraising
two published articles.

1.6 Types of variable

A variable is a characteristic that can take values
which vary from individual to individual or group
to group, e.g. height, weight, litter size, blood
count, enzyme activity, coat colour, percentage
of the flock which are pregnant, etc. Clearly
some of these are more readily quantifiable
than others. For some variables, we can assign a
number to a category and so create the appear-
ance of a numerical scale, but others have a true
numerical scale on which the values lie. We take
readings of the variable which are measurements
of a biological characteristic, and these become
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the values which we use for the statistical proce-
dures. Both these terms are in general use, and
both refer to the original measurements, the
raw data.

Numerical data take various forms; a proper
understanding of the nature of the data and
the classification of variables is an important
first step in choosing an appropriate statistical
approach. The flow charts shown in Appendix E,
and on the inside front and back covers, illustrate
this train of thought, which culminates in a suit-
able choice of statistical procedure to analyse a
particular data set.

We distinguish the main types of variable in a
systematic manner by determining whether the
variable can take ‘one of two distinct values’,
‘one of several distinct values’ or ‘any value’
within the given range. In particular, the variable
may be one of the following:

1. Categorical (qualitative) variable — an indi-
vidual belongs to any one of two or more dis-
tinct categories for this variable. A binary or
dichotomous variable is a particular type of
categorical variable defined by only rwo cat-
egories;forexample,pregnant ornon-pregnant,
male or female. We customarily summarize the
information for the categorical variable by
determining the number and percentage (or
proportion) of individuals in each category in
the sample or population. Particular scales of
a categorical variable are:

* Nominal scale — the distinct categories that
define the variable are unordered and each
can be assigned a name, e.g. coat colours
(piebald, roan or grey).

* Ordinal scale — the categories that con-
stitute the variable have some intrinsic
order; for example, body condition scores,
subjective intensity of fluorescence of cells
in the fluorescence microscope, degree of
vigour of motility of a semen sample. These
‘scales’ are often given numerical values 1
to n.

2. Numerical (quantitative) variable — consisting
of numerical values on a well-defined scale,
which may be:
¢ Discrete (discontinuous) scale, i.e. data can

take only particular integer values, typically

counts, e.g. litter size, clutch size, parity
(number of pregnancies within an animal).

e Continuous scale, for which all values are
theoretically possible (perhaps limited by
an upper and/or lower boundary), e.g.
height, weight, speed, concentration of a
chemical constituent of the blood or urine.
Theoretically, the number of values that the
continuous variable can take is infinite since
the scale is a continuum. In practice, con-
tinuous data are restricted by the degree of
accuracy of the measurement process. By
definition, the interval between two adja-
cent points on the scale is of the same mag-
nitude as the interval between two other
adjacent points, e.g. the interval on a tem-
perature scale between 37°C and 38°C is
the same as the interval between 39°C and
40°C.

1.7 Variations in measurements

It is well known that if we repeatedly observe
and quantify a particular biological phenome-
non, the measurements will rarely be identical.
Part of the variability is due to an inherent vari-
ation in the biological material being measured.
For example, not all cows eat the same quantity
of grass per day even if differences both in body
weight and water content of the feed are taken
into account. We shall use the term ‘biological
variation’ for this phenomenon, although some
people use the term ‘biological error’. (Biological
error is actually a misleading term since the vari-
ability is not in any sense due to a mistake.)

By the selection of individuals according to
certain characteristics in advance of the collec-
tion of data, we may be able to reduce the range
of biological variation but we cannot eliminate
it. Selection is often based on animal character-
istics (e.g. species, strain, age, seX, degree of matu-
rity, body weight, show-jumpers, milking herds,
hill sheep, etc.), the choice of which depends
upon the particular factors under investigation.
However, the result is then only valid for that
restricted population and we are not justified
in extrapolating beyond that population. For
example, we should not assume that a study
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based on beef cattle applies to other types of
cattle.

In addition to biological variation, there will
most likely be differences in repeated measure-
ments of the same subject within a very short
period of time. These are technical variations or
errors, due to a variety of instrumental causes
and to human error. We may properly consider
them to be errors since they represent depar-
tures from the true values.

1.7.1 Biological variation

The causes of biological variation, which makes
one individual differ from the next or from one
time to another, may be obvious or subtle. For
example, variations in any characteristic may be
attributable to:

e Genetics — e.g. greater variability in the whole
cow population compared with just Friesians.

e Environment — e.g. body weight varies with
diet, housing, intercurrent disease, etc.

e Gender — sexual dimorphism is common.

e Age — many biological data are influenced by
age and maturity, e.g. the quantity of body fat.

In a heterogeneous population, the biological
variation may be considerable and may mask the
variation due to particular factors under investi-
gation. Statistical approaches must take account
of this inherent variability. The problem for the
scientist, having measured a range of results of a
particular feature in a group of individuals, is to
distinguish between the sources of variation.

Here are two examples of problems created by
biological variation:

e Two groups of growing cattle have been fed
different diets. The ranges of the recorded
weights at 6 months of age show an overlap in
the two groups. Is there a real difference
between the groups?

® You have the results of an electrolyte blood
test which shows that the serum potassium
level is elevated. By how much must it be ele-
vated before you regard it as abnormal?

1.7.2 Technical errors

A technical or measurement error is defined as
the difference between an observed reading and
its ‘true’ value. Measurement errors are due to
factors which are, typically, human (e.g. varia-
tions within and between observers) or instru-
mental, but may also be attributed to differences
in conditions (e.g. different laboratories).

Technical errors may be systematic or random.
A systematic error is one in which the observed
values have a tendency to be above (or below)
the true value; the result is then said to be biased.
When the observed values are evenly distributed
above and below the true value, random errors,
due to unexplained sources, are said to be occur-
ring. Random variation can be so great as to
obscure differences between groups but this
problem may be minimized by taking repeated
observations.

(a) Human error

Human error can occur whenever a person is
performing either an unfamiliar task or a routine
or monotonous task;fatigue increases the chances
of error. Errors due to these factors are usually
random, and providing steps are taken to mini-
mize them (e.g. practice to acquire a proper
level of skill, avoiding long periods of monoto-
nous labour, and checking results as measure-
ments are made), they are generally not of great
concern.

Other sorts of human error can arise because
of data handling. Rounding errors can introduce
inaccuracies if performed too early in an analysis.
If you use a computer to manage your data, you
need not be concerned about this, since compu-
ter algorithms generally avoid rounding errors
by carrying long number strings even if these are
not displayed.

Another recognized human error is called
digit preference. Whenever there is an element
of judgement involved in making readings from
instruments (as in determining the last digit of
a number on a scale), certain digits between 0
and 9 are more commonly chosen than others
to represent the readings; such preferences differ
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between individuals. This may introduce either a
random or a systematic error, the magnitude of
which will depend on the importance of the last
digit to the results.

(b) Instrumental error

Instrumental errors arise for a number of reasons
(Figure 1.1). Providing we are aware of the poten-
tial problem, the causes are often correctable or
reducible.

e With a systematic offset or zero error, a ‘blank’
sample consistently reads other than zero.
It is common in colorimetry and radioisotope
measurements (Figure 1.1a).

e Non-linearity is a systematic error, commonly
seen in the performance of strain gauges, ther-
mocouples and colorimeters (Figure 1.1b).

e Proportional or scale error is usually due to
electronic gain being incorrectly adjusted or
altered after calibration; it results in a system-
atic error (Figure 1.1c).

e Hysteresis is a systematic error commonly
encountered in measurements involving galva-
nometers. It may require a standard measure-
ment procedure, e.g. always adjusting input
down to desired level (Figure 1.1d).

e [nstability or drift — electronic gain calibra-
tion may drift with temperature and humidity
giving rise to an intermittent but systematic
error, resulting in an unstable baseline (Figure
1.1e).

® Random errors are commonly seen in attempts
to measure with a sensitivity beyond the limits
of resolution of an instrument (Figure 1.1f).
Most instruments carry a specification of their
accuracy, for example it is no use attempting
to measure to the nearest gram with a balance
accurate only to 10g.

Two or more of these sources of error may
occur simultaneously. Technical errors of all
kinds can be minimized by careful experimenta-
tion. This is the essence of quality control and is
of paramount importance in a diagnostic labora-
tory. Quality control in the laboratory is about
ensuring that processes and procedures are
carried out in a consistently satisfactory manner

so that the results are trustworthy. We introduce
some additional terms in order to understand
these concepts more fully.

1.8 Terms relating to
measurement quality

Two terms which are of major importance in
understanding the principles of biological meas-
urement are precision and accuracy. It is essen-
tial they are understood early in a consideration
of the nature of data measurement.

¢ Precision refers to how well repeated observa-
tions agree with one another.

e Accuracy refers to how well the observed
value agrees with the true value.

To understand these terms consider the dia-
grams in Figure 1.2, in which the bull’s-eye rep-
resents the true value: in Figure 1.2a there is poor
accuracy and poor precision, in Figure 1.2b there
is poor accuracy and good precision, while in
Figure 1.2c there is both good accuracy and good
precision.

It is possible to have a diagnostic method (e.g.
blood enzyme estimation) that gives good preci-
sion but poor accuracy (Figure 1.2b) because of
systematic error. In an enzyme activity estima-
tion, such an error might be due to variation in
temperature.

Several other terms, all of which describe
aspects of reliability, are in use and these are
defined as follows:

¢ Repeatability is concerned with gauging the
similarity of replicate, often duplicate, meas-
urements of a particular technique or instru-
ment or observer under identical conditions,
e.g. measurements made by the same observer
in the same laboratory. It assesses technical
errors (see Section 14.4).

¢ Reproducibility (sometimes called method
agreement) is concerned with determining
how well two or more approaches to measur-
ing the same quantity agree with one another,
e.g. measurements made by the same observer
but using different methods, or by different
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observers using the same method, or by observ-
ers using the same method but in different
laboratories (see Section 14.4).

e Stability concerns the long-term repeatability
of measurement. Diagnostic laboratories will
usually have reference material kept for check-
ing stability over time.

e Validity is concerned with determining
whether the measurement is actually measur-
ing what it purports to be measuring. In the
clinical context, the measurement is compared
with a ‘gold standard’ (see Section 14.2).

1.9 Populations and samples

The concept of a population from which our
measurements are a sample is fundamental. A
population includes all representatives of a par-
ticular group, whereas a sample is a subgroup
drawn from the population. We aim to choose a
sufficiently large sample in such a manner that it
is representative (i.e. is typical) of the population
(see Sections 1.9.2,4.2 and 13.3).

1.9.1 Types of population

In this book we usually use the word ‘animal’ to
suggest the unit of investigation, but we also
use other terms such as ‘individual’ or ‘case’. We
want you to become familiar with different ter-
minology. A population of animals may be rep-
resented by:

e The individuals, e.g. all cattle, all beef cattle, all
Herefords, all the herd.

e The measurements of a particular variable on
every animal, e.g. liver weight, bone length,
blood hormone or enzyme level.

e Numbers of items (in a given area, volume or
time), e.g. blood cell counts or faecal egg counts,
counts of radioactive particle emissions.

The population may be either a real (or finite)
group or a hypothetical (or infinite) group. For
example, if we are interested in the growth rate
of pigs in Suffolk, then the population is all pigs
in Suffolk. This is a real or finite population. If,

however, we want to know the effect of an exper-
imental diet in these pigs, we will feed the test
diet to a sample of pigs which now comprises
the only representatives of a hypothetical popu-
lation fed on the test diet. Theoretically, at least,
we could actually measure the entire population
in finite cases, but infinite populations are repre-
sented only by the sample.

1.9.2 Random sampling and
random allocation

We examine a sample with a view to making
statements about the population. The sample
must therefore be representative of the popula-
tion from which it is taken if it is to give useful
results applicable to the population at large. In
order for the sample to be representative, strictly,
there should be random selection from all pos-
sible members of the entire population, imply-
ing that the individuals should be selected using
a method based on chance (see Section 13.6).
However, in reality, random selection is generally
not feasible (for example, in an observational
study (see Section 5.2.1) or in a clinical study
when the disease under investigation is rare). In
that case, it is important that we try to ensure that
the individuals in the sample are a true reflection
of those in the population of interest, and that,
if groups are to be compared, we check that the
individuals in the different groups are compara-
ble with similar baseline characteristics.

It is essential to use an objective method to
achieve random sampling, and a method based
on a random number sequence is the method of
choice. The sequence may be obtained from a
table of random numbers (see Table A.11) or be
generated by a computer random number gen-
erator or, if only a small sequence, it could be
generated by a mechanical method such as
rolling a die, although the latter approach is not
recommended.

Note that for allocating individuals into treat-
ment groups in an experimental situation,
principles of random allocation (randomization)
should also be employed to avoid subjective
influence and ensure that the groups are compa-
rable (see Section 5.6). Again, a random number
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sequence is recommended to provide objective
allocation of individuals or treatments so that
the causes of any subsequent differences in per-
formance between the groups can be properly
identified.

1.10 Types of statistical procedures

Statistical procedures can be divided into descrip-
tive statistics and inferential statistics.

¢ Descriptive statistics. We use these techniques
to reduce a data set to manageable propor-
tions, summarizing the trends and tendencies
within it, in order to represent the results
clearly. From these procedures we can produce
diagrams, tables and numerical descriptors.
Numerical descriptors include measures that
convey where the centre of the data set lies,
like the arithmetic mean or median, and meas-
ures of the scatter or dispersion of the data,
such as the variance or range. These are
described more fully in Chapter 2.

¢ Inferential statistics. Statistical inference is the
process of generalizing from the sample to the
population: it enables us to draw conclusions
about certain features of the population when
only a subset of it, the sample, is available for
investigation. One aspect of inferential statis-
tics is the estimation of population parameters
using sample data. A parameter, such as the
mean or proportion, describes a particular
feature of the distribution of a variable in the
entire population (see Section 4.3.2). Usually,
estimation is followed by a procedure called
hypothesis testing, another aspect of inferen-
tial statistics that investigates a particular
theory about the data. Hypothesis tests allow
conclusions relating to the population to be
drawn from the information in a sample. You
can only use these tests properly, and so avoid
the pitfalls of misinterpretation of the data,
when you have a knowledge of their inherent
assumptions. Some of these techniques are
simple and require little expertise to master,
while others are complex and are best left to
the qualified statistician. Details of these pro-
cedures can be found in Chapters 6-14; the

flow charts in Appendix E provide a quick
guide to the choice of the correct test.

1.11 Conclusion

We develop the ideas presented in this chapter
in subsequent chapters. As we have said, the con-
cepts are introduced building on one another,
and you will need a sound understanding of the
earlier theory in order to appreciate the material
presented later.

The best incentive for wrestling with statistical
concepts is the need to know the meaning of a
data set of your own. Remember - statistical pro-
cedures cannot enhance poor data. Providing the
data have been acquired with sufficient care and
in sufficient number, the statistical procedures
can supply you with sound summary statements
and interpretative guidelines; the interpretation
is still down to you! In the chapters that follow,
the emphasis is on developing your understand-
ing of the procedures and their limitations to aid
your interpretation. We hope you find the experi-
ence of getting to grips with your data rewarding,
and discover that statistics can be both satisfying
and fun!

Exercises

The statements in questions 1.1-1.3 are either
TRUE or FALSE.

1.1 Biological variation:

(a) Is the main cause of differences between
animals.

(b) Is the term given to differences between
animals in a population.

(c) Is the reason why statistics is necessary in
animal science.

(d) Makes it impossible to be sure of any aspect
of animal science.

(e) Is the term given to the variation in ability
of a technician performing a monotonous
task throughout the day.

1.2 A sample is randomly drawn from a
population:
(a) To reduce the study to a manageable size.
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(b) To ensure that the full range of possibilities
is included.

(c) To obtain ‘normal’ animals.

(d) To obtain a representative group.

(e) To avoid selector preferences.

1.3 A nominal scale of measurement is used for

data that:

(a) Comprise
ordered.

(b) Are not qualitative.

(c) Take many possible discrete quantitative
values.

(d) Are evaluated as percentages.

(e) Are ranked.

categories which cannot be

1.4 Decide whether the following errors are

likely to be systematic or random (S or R):

(a) The water bath that holds samples for an
enzyme assay fails during incubation.

(b) A clinician reading a clinical thermometer
has a digit preference for the numbers 0 and 5.

(c) The calibration on a colorimeter was not
checked before use.

(d) Scales for measuring the weight of animal
feed packs are activated sometimes before
the sack is put on and sometimes after,
depending on the operator.

(e) A chemical balance weighing to 100mg is
used to weigh quantities of 2550 mg.

1.5 Decide whether the following are either

real or hypothetical populations (R or H):

(a) Milking cows in a trial for the effectiveness
of a novel mastitis treatment.

(b) Horses in livery stables in the southeast of
England.

(c) Fleas on dogs in urban Liverpool.

(d) Fleas on dogs treated with an oral monthly
ectoparasite treatment.

(e) Blood glucose levels in diabetic dogs.

1.6 Identify the appropriate type of variable
(nominal, ordinal, discrete or continuous: N, O, D
or C) for the following data:

(a) Coat colour of cats: in a colony of 35 cats
there were one white, three black, seven
ginger, seven agouti, 11 tortoiseshell and six
of other colours.

(b) Percentages of motile spermatozoa in the
ejaculates of six bulls at an artificial insemi-
nation centre collected on a single day during
March: they were 73%,81%,64%,76%,69%
and 84%.

(c) Spectrophotometer measurements of max-
imum light absorbance at a wavelength of
280nm of solutions of egg yolk proteins:
they were 0.724, 0.591 and 0.520 arbitrary
units.

(d) The motility of a series of frozen and thawed
samples of spermatozoa estimated on an
arbitrary scale of 0-10 (0 indicating a com-
pletely immotile sample).

(e) Plasma progesterone levels (ng/ml) meas-
ured monthly in pregnant sheep throughout
gestation by means of radioimmunoassay.

(f) Kittens classified 1 week post-natally as
either flat-chested (abnormal) or normal.

(g) The optical density of negative micrographs
of fluorescent cells calculated from measure-
ments obtained with a densitometer: the
results for groups A, B and C were 0.814,
0.986 and 1.103 units, respectively.

(h) Litter sizes of rabbits during an investigation
of behavioural disturbances about the time
of implantation.

(i) Body condition scores of goats.

(j) Numbers of deaths due to particular diseases
in a year studied in an epidemiological
investigation.

(k) Radioactivity determined by scintillation
counts per minute in a -counter.

(I) The gestation length (days) in cattle carrying
twins and in those carrying singletons.
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2.1 Learning objectives

By the end of this chapter, you should be able to:

e Explain, with diagrams, the concepts of fre-
quency distributions.

e Interpret diagrams of the frequency distribu-
tions of both categorical and numerical data.

e Identify frequency distributions that are
skewed to the right and skewed to the left.

e Describe and conduct strategies to compare
frequency distributions that have different
numbers of observations.

e List the essential attributes of good tables and
good diagrams.

e Interpret a pie chart, bar chart, dot diagram
and histogram and state their appropriate uses.

e Interpret a stem-and-leaf diagram and a box-
and-whisker plot, and state their appropriate
uses.

e Interpret a scatter diagram and explain its
usage.

e List different measures of location and iden-
tify their strengths and limitations.

e List different measures of dispersion and iden-
tify their strengths and limitations.

e Summarize any given data set appropriately in
tabular and/or diagrammatic form to demon-
strate its features.

2.2 Summarizing data

We collect data with the intention of gleaning
information which, usually, we then convey to

interested parties. This presents little problem
when the data set comprises relatively few obser-
vations made on a small group of animals.
However, as the quantity of information grows,
it becomes increasingly difficult to obtain an
overall ‘picture’ of what is happening.

The first stage in the process of obtaining this
picture is to organize the data to establish how
often different values occur (see frequency dis-
tributions in Section 2.3). Then it is helpful to
further condense the information, reducing it to
a manageable size, and so obtain a snapshot view
as an aid to understanding and interpretation.
There are various stratagems that we adopt; most
notably, we can use:

e Tables to exhibit features of the data (see
Section 2.4).

e Diagrams to illustrate patterns (see Section
2.5).

e Numerical measures to summarize the data
(see Section 2.6).

2.3 Empirical frequency
distributions

2.3.1 What is a frequency
distribution?

A frequency distribution shows the frequencies
of occurrence of the observations in a data set.
Often the distribution of the observed data is

Statistics for Veterinary and Animal Science, Third Edition. Aviva Petrie and Paul Watson.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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called an empirical frequency distribution, in
contrast to the theoretical probability distribu-
tion (see Section 3.3) determined from a math-
ematical model.

It is vital that you clearly understand the dis-
tinction between categorical and numerical
variables (see Section 1.6) before you make any
attempt to form a frequency distribution since
the variable type will dictate the most appropri-
ate form of display.

e When a variable is categorical or qualitative,
then the observed frequency distribution of
that variable comprises the frequency of occur-
rence of the observations in every class or cat-
egory of the variable (see Section 2.5.1). We
can display this information in a table in which
each class is represented, or in a diagram such
as a bar chart or a pie diagram.

For example, if the variable represents
different methods of treatment to prevent
hypomagnesaemia in dairy cows, the numbers
of farms observed using each method would
comprise the frequency distribution. The
data can be illustrated in a pie chart (see
Figure 2.3).

e When the variable of interest is numerical or
quantitative (either discrete or continuous),
then the information is most easily assimilated
by creating between five and 15 non-overlap-
ping, preferably equal, intervals or classes that
encompass the range of values of the variable.
It is essential that the class intervals are unam-
biguously defined such that an observation
falls into one class only. These classes are
adjacent when the data are discrete, and
contiguous when the data are continuous. We
determine the number of observations belong-
ing to each class (the class frequency). The
complete set of class frequencies is a frequency
distribution. We can present it in the form of a
table or a diagram (see Section 2.5.2) such as
a bar chart (discrete variable) or a histogram
(continuous variable).

For example, columns 1 and 2 of Table 2.1
show the frequency distribution of the thresh-
old response of sheep to a mechanical stimulus
applied to the forelimb; Figure 2.5 is a histo-
gram of the data. These data reflect sensitivity

to pain sensation in the extremities of sheep at
pasture, and were derived as the control data
in a study of the relationship of pain threshold
and the incidence of foot rot; a higher thresh-
old was associated with a greater incidence of
disease (Ley et al., 1995).

2.3.2 Relative frequency
distributions

Although creating a frequency distribution is a
useful way of describing a set of observations,
it is difficult to compare two or more frequency
distributions if the total number of observations
in each distribution is different. A way of over-
coming this difficulty is to calculate the propor-
tion or percentage of observations in each class
or category. These are called relative frequencies
and each is obtained by dividing the frequency
for that category by the total number of obser-
vations (column 3 of Table 2.1). The sum of the
relative frequencies of all the categories is unity
(or 100%) apart from rounding errors.

Table 2.1 Frequency distribution of mechanical threshold
of 470 sheep.

Class limits Cumulative
of mechanical Relative relative
threshold frequency frequency
(newtons) Frequency (%) (%)
1.0-1.9 9 1.9 1.9
2.0-2.9 44 9.4 11.3
3.0-3.9 88 18.7 30.0
4.0-4.9 137 29.1 59.1
5.0-5.9 69 14.7 73.8
6.0-6.9 37 7.9 81.7
7.0-7.9 21 4.5 86.2
8.0-8.9 17 3.6 89.8
9.0-9.9 19 4.0 93.8
10.0-10.9 14 3.0 96.8
11.0-11.9 4 0.9 97.7
12.0-12.9 6 1.3 98.9
13.0-13.9 2 0.4 99.4
14.0-14.9 3 0.6 100.0
Total 470 100.0
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2.3.3 Cumulative relative
frequency distributions

Sometimes it is helpful to evaluate the number
(the cumulative frequency) or percentage (cumu-
lative relative frequency) of individuals that are
contained in a category and in all lower catego-
ries. Generally, we find that cumulative relative
frequency distributions are more useful than
cumulative frequency distributions. For example,
we may be interested in using the data of Table
2.1 to determine the percentage of sheep whose
mechanical threshold is less than 7.01 newtons.
We form a cumulative relative frequency distri-
bution by adding the relative frequencies of indi-
viduals contained in each category and all lower
categories, and repeating this process for each
category. The cumulative relative frequencies are
tabulated in column 4 of Table 2.1 and the distri-
bution is drawn in the cumulative relative fre-
quency polygon of Figure 2.1.

We can evaluate the percentiles (often called
centiles) of the frequency distribution from this
cumulative frequency distribution. Percentiles
are the values of the variable that divide the total
frequency into 100 equal parts. They are used to
divide the frequency distribution into useful
groups when the observations are arranged in

-
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Cumulative relative frequency (%)

order of magnitude. In particular, the 50th per-
centile (called the median — see Section 2.6.1(b))
is the value of the variable that divides the dis-
tribution into two halves; 50% of the individuals
have observations less than the median, and 50%
of the individuals have observations greater than
the median. Often the 25th and the 75th percen-
tiles are quoted (these are called the lower (first)
quartile and upper (third) quartile, respectively);
25% of the observations lie below the lower
quartile and 25% of the observations lie above
the upper quartile, the distance between these
quartiles being the interquartile range. The 5th
and 95th percentiles enclose the central 90% of
the observations. We show how to evaluate these
percentiles from the cumulative frequency distri-
bution polygon in Figure 2.1.

2.4 Tables

A table is an orderly arrangement, usually of
numbers or words in rows and columns, which
exhibits a set of facts in a distinct and compre-
hensive way. The layout of the table will be dic-
tated by the data, and therefore will vary for
different types of data. It is useful, however, to
remember the most important principles that

Mechanical threshold (newtons)

T Median

|e—>{
Interquartile range

o T
percentile

T 95t percentile

0 . + - .
01 2 3 45 6 7 8 9 10111213 1415

Figure 2.1 Cumulative relative frequency
polygon of the mechanical threshold of sheep
(data from Ley et al., 1995, with permission
from the authors and BMJ Publishing Group
Ltd).
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Box 2.1 Rules for well-constructed tables

Box 2.2 Rules for well-constructed diagrams

e Include a concise, informative and unambiguously

defined title.

Give a brief heading for each row and column.

Include the units of measurement.

Give the number of items on which any summary

measure (e.g. a percentage) is based.

e When providing a summary statistic (e.g. the mean)
always include a measure of precision (e.g. a confi-
dence interval — see Section 4.5).

e Give figures only to the degree of accuracy that is

appropriate (as a guideline, one significant figure more

than the raw data).

Do not give too much information in a table.

Remember that it is easier to scan information down

columns rather than across rows.

govern well-constructed tables; we outline them
in Box 2.1.

2.5 Diagrams

A diagram is a graphic representation of data
and may take several forms. It is often easier to
discern important patterns from a diagram rather
than a table, even though the latter may give
more precise numerical information. Diagrams
are most useful when we want to convey infor-
mation quickly, and they should serve as an
adjunct to more formal statistical analysis. You
will find the guidelines in Box 2.2 helpful when
you construct a diagram.

2.5.1 Categorical (qualitative) data

When data are categorical or qualitative, then
each observation belongs to one of a number of
distinct categories or classes. We can determine
the number or percentage of individuals falling
into each class or category and display this infor-
mation in a bar chart or a pie chart.

(a) Bar chart

A bar chart is a diagram in which every category
of the variable is represented; the length of each
bar, which should be of constant width, depicts

e Keep it simple and avoid unnecessary ‘frills’ (e.g.
making a simple pie chart, histogram or bar chart
three-dimensional).

e Include a concise, informative and unambiguously

defined title.

Label all axes, segments and bars, if necessary using a

legend or key showing the meaning of the different

symbols used.

Present the units, the numbers on which summary

measures are based, and measures of variability where

appropriate.

Avoid exaggerating the scale on an axis, perhaps by

omitting the zero point, so as to distort the results.

Include a break in the scale only if there is no other

satisfactory way of demonstrating the extremes.

Show coincident points in a scatter diagram.

Ensure that the method of display conveys all the

relevant information (e.g. pairing).

the number or percentage of individuals belong-
ing to that category. Figure 2.2 is an example of
a bar chart. The length of the bar is proportional
to the frequency or relative frequency in the rel-
evant category, so it is essential that the scale
showing the frequency or relative frequency
should start at zero for each bar.

You may find in other people’s work that the
frequency in a category is indicated by a pictorial
representation of a relevant object. Typically, this
object in a veterinary study will be the animal
under investigation. Such a diagram is called a
pictogram. There is an inherent danger of misin-
terpretation when making crude comparisons by
eye of the frequencies in different categories. Is
it height or area or volume of the object which
represents the frequencies? To a certain extent,
this problem can be overcome by using equally
sized images, so that the frequency in a category
is indicated by the appropriate number of repeti-
tions of the image. The effect is similar to a bar
chart, with each ‘bar’ containing varying numbers
of images. However, because of the potential for
confusion, we do not recommend that you use
pictograms to display frequencies.

(b) Pie chart

A pie chart is a circle divided into segments with
each segment portraying a different category
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Blocks
n =53 (19.1%)
Others
n =39 (14.0%)
Pasture
n =14 (5.0%)
Concentrates Figure 2.3 Pie chart showing the percentage

Bullets
n=28(2.9%)

of the qualitative variable (Figure 2.3). The total
area of the circle represents the total frequency,
and the area or angle of a given sector is propor-
tional to the percentage of individuals falling
into that category. A pie chart should include a
statement of the percentage or actual number of
individuals in each segment. Generally, we prefer
the bar chart to the pie chart as the former is
easier to construct and is more useful for com-
parative purposes, partly because it is easier to
compare lengths by eye rather than angles.

2.5.2 Numerical (quantitative) data

When the data are numerical or quantitative, we
may show every data value, for example in a dot

n = 164 (59.0%)

of herds in which specific methods of control of
hypomagnesaemia were used by dairy farmers
in 278 dairy herds (redrawn from McCoy et al.,
1996, with permission from BMJ Publishing
Group Ltd).

diagram, or we may display only a summary of
the data, for example in a histogram.

(a) Dot diagram

If the data set is of a manageable size, the best
way of displaying it is to show every value in a
dot diagram/plot. When we investigate a single
numerical variable, we can mark each observa-
tion as a dot on a line calibrated in the units of
measurement of that variable, plotted horizon-
tally or vertically.

e If the data are in a single group, the diagram
will look like Figure 2.9.

e When we are comparing the observations in
two or more groups, we can draw a dot diagram

(S
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with the horizontal axis designating the groups,
and the vertical axis representing the scale of
measurement of the variable. Then, in a single
diagram, we can show the values for each
group in a vertical dot plot, facilitating the
comparison of groups as well as providing a
visual display of the distribution of the varia-
ble in each group (Figure 2.4a).

e When an individual reading in one group
bears a direct relationship to that in another
group (e.g. from two litter mates, or before
and after within an individual) we can join
the related dots in a pair by a straight line
(Figure 2.4b). The directions of the slope of
the lines may indicate a difference between
the groups.

(b) Histogram

The frequency distribution of a quantitative vari-
able (see Section 2.3.1) can be displayed as a

Figure 2.5 Histogram of the mechanical
threshold of 470 sheep (data from Ley et al.,
1995, with permission from the authors and
BMIJ Publishing Group Ltd).

183 14 15

histogram. This is a two-dimensional diagram in
which usually the horizontal axis represents the
unit of measurement of the variable of interest,
with each class interval being clearly delineated.
We construct rectangles above each class interval
so that the area of the rectangle is proportional
to the frequency for that class. If the intervals are
of equal width, then the height of the rectangle
is proportional to the frequency.

The histogram gives a good picture of the fre-
quency distribution of the variable (Figure 2.5).
The distribution is symmetrical if its shape to the
right of a central value is a mirror image of that
to the left of the central value. The tails of the
frequency distribution represent the frequencies
at the extremes of the distribution. The frequency
distribution is skewed to the right (positively
skewed) if the right-hand tail is extended, and
skewed to the left (negatively skewed) if the
left-hand tail is extended. The distribution of the
data in Figure 2.5 is skewed to the right; it is
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Frequency  Stem and leaf
6 1* 04&
3 1. &
20 2*  111123344&
24 2. 5566778889
40 3* 0011111222222334444
48 3. 55555556666677778888899
65 4* 0001111111112222222233333334444
72 4 . 55555556666666777777788888888899999
39 5* 000011112222334444
30 5. 55666777889999
18 6* 00123344
19 6 . 55778889&
9 7* 014&
12 7. 5689&
8 8* 024&
9 8. 59&
8 9* 34&
6 9 56

Extremes (9.7), (9.8), (9.9), (10.0), (10.2), (10.3), (10.4)
Extremes (10.5), (10.7), (10.8), (10.9), (11.0), (11.3), (11.5)
Extremes (11.8), (12.0), (12.3), (12.4), (12.6), (12.8), (12.9)

Stem width:  1.00
Each leaf: 2 case(s)
& denotes a fractional leaf (i.e. one case)

* indicates that there are 2 branches for that stem unit

not uncommon to find biological data which are
skewed to the right.

You should note that although the histogram
is similar to the bar chart, the rectangles in a
histogram are contiguous because the numerical
variable is continuous, whereas there are spaces
between the bars in a bar chart.

(c) Stem-and-leaf diagram

We often see a mutation of the histogram, called
a stem-and-leaf diagram, in computer outputs.
Each vertical rectangle of the histogram is
replaced by a row of numbers that represent the
relevant observations. The stem is the core value
of the observation (e.g. the unit value before the
decimal place) and the leaves are represented by
a sequence of ordered single digits, one for each
observation, that follow the core value (e.g. the
first decimal place). Plotting the data in this way
provides an easily assimilated description of the
distribution of the data whilst, at the same time,

Figure 2.6 Stem-and-leaf diagram of the
mechanical threshold of sheep (data from Ley
et al., 1995, with permission from the authors
and BMJ Publishing Group Ltd).

showing the raw data. Figure 2.6 is a stem-and-
leaf diagram for the mechanical threshold data
for sheep.

(d) Box-and-whisker plot

Another diagram that we often see in computer
outputs, the box-and-whisker plot (or box plot),
provides a summary of the distribution of a data
set. The scale of measurement of the variable is
usually drawn vertically. The diagram comprises
a box with horizontal limits defining the upper
and lower quartiles (see Section 2.3.3) and rep-
resenting the interquartile range (see Section
2.6.2(b)), enclosing the central 50% of the obser-
vations, with the median (see Section 2.6.1(b))
marked by a horizontal line within the box. The
whiskers are vertical lines extending from the
box as low as the 2.5th percentile and as high as
the 97.5th percentile (sometimes the percentiles
are replaced by the minimum and maximum
values of the set of observations). Figure 2.7 is a
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Figure 2.7 Box-and-whisker plot of the
mechanical threshold of sheep. Note that
extreme values are indicated in the diagram
(data from Ley et al., 1995, with permission
from the authors and BMJ Publishing

Group Ltd).

Figure 2.8 Scatter diagram showing the
relationship between two measures of bone
formation:bone alkaline phosphatase activity
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box-and-whisker plot of the mechanical thresh-
old data for sheep. The box-and-whisker plot is
particularly useful when a number of data sets
are to be compared in a single diagram (see
Figure 7.2).

(e) Scatter diagram

The scatter diagram is an effective way of pre-
senting data when we are interested in examin-
ing the relationship between two variables which
may be numerical or ordinal. The diagram is a
two-dimensional plot in which each axis repre-
sents the scale of measurement of one of the
two variables. Using this rectangular co-ordinate
system, we relate the value for an individual on
the horizontal scale (the abscissa) to the corre-

(WBAP) and Type I collagen concentration
(PICP) (redrawn from Jackson et al., 1996,
with permission from Elsevier Ltd).

sponding value for that individual on the vertical
scale (the ordinate) by marking the relevant
point with an appropriate symbol (Figure 2.8).
Coincident points should be identifiable. We can
discern possible relationships between the vari-
ables by observing the scatter of points, and then
we may join the points to produce a line graph,
or draw a line that best represents the relation-
ship (see Chapter 10). If two or more treatment
groups are represented, they can be distinguished
by colour or dot symbols, such as a cross or circle.

2.6 Numerical measures

Using a visual display as a means of describing a
set of data helps us get a ‘feel’ for the data, but

e
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our impressions are subjective. It is usually essen-
tial that we supplement the visual display with
the appropriate numerical measures that sum-
marize the data. If we are able to determine some
form of average that measures the central ten-
dency of the data set, and if we know how widely
scattered the observations are in either direction
from that average, then we will have a reasonable
‘picture’ of the data. These two characteristics of
a set of observations measured on a numerical
variable are known as measures of location and
measures of dispersion.

Note thatitis customary to distinguish between
measures in the population (called parameters)
and their sample estimates (called statistics) by
using Greek letters for the former and Roman
letters for the latter (see the Glossary of notation
in Appendix C).

2.6.1 Measures of location
(averages)

The term average refers to any one of several
measures of the central tendency of a data set.

(a) Arithmetic mean

The most commonly used measure of central
tendency is the arithmetic mean (usually abbre-
viated to the mean). It is obtained by adding
together the observations in a data set and divid-
ing by the number of observations in the set.

If the continuous variable of interest is denoted
by x and there are n observations in the sample,
then the sample mean (pronounced x bar) is

Example
The following are plasma potassium values
(mmol/l) of 14 dogs:

4.37, 4.87, 4.35, 3.92, 4.68, 4.54, 5.24, 4.57, 4.59,
4.66, 4.40,4.73,4.83,4.21

X = @ =4.57 mmol/l
14

e The mean has the disadvantage that its value
is influenced by outliers (see Section 5.9.3). An
outlier is an observation whose value is highly
inconsistent with the main body of the data.
An outlier with an excessively large value will
tend to increase the mean unduly, whilst a par-
ticularly small value will decrease it.

e The mean is an appropriate measure of central
tendency if the distribution of the data is sym-
metrical. The mean will be ‘pulled’ to the right
(increased in value) if the distribution is
skewed to the right, and ‘pulled’ to the left
(decreased in value) if the distribution is
skewed to the left.

(b) Median

Another frequently used measure of central ten-
dency is the median. The median is the central
value in the set of n observations which have
been arranged in rank order, i.e. the observations
are arranged in an increasing (or decreasing)
order of magnitude. The median is the middle
value of the ordered set with as many observa-
tions above it as below it (Box 2.3). The median
is the 50th percentile (see Section 2.3.3).

Example
The weights (grams) of 19 male Hartley guinea
pigs were:

314,991,789, 556,412,499, 350, 863, 455,297, 598,
510, 388, 642, 474, 333, 421, 685, 536

If we arrange the weights in rank order, they
become:

297,314,333,350,388, 412, 421,455,474, 499, 510,
536, 556, 598, 642, 685, 789, 863, 991

The median, shown in bold, is the (19 + 1)/2 =
10th weight in the ordered set; this is 499 g.

Box 2.3 Calculating the median

e [fn is odd, then the median is found by starting with
the smallest observation in the ordered set and then
counting until the (n + 1)/2th observation is reached.
This observation is the median.

e [fn is even, then the median lies midway between the

central two observations.

Q
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The arithmetic mean and the median are
close or equal in value if the distribution is
symmetrical.

The advantage of the median is that it is not
affected by outliers or if the distribution of the
data is skewed. Thus the median will be less
than the mean if the data are skewed to the
right, and greater than the mean if the data are
skewed to the left.

A disadvantage of the median is that it
does not incorporate all the observations in
its calculations, and it is difficult to handle
mathematically.

(c) Geometric mean

If we take the logarithm (generally to base 10 or
to base e) of each value of a data set which is
skewed to the right, we usually find that the dis-
tribution of the log-transformed data becomes
more symmetrical. In this case, the arithmetic
mean of the log-transformed values is a useful
measure of location. However, it has the disad-
vantage that it is measured on a log scale. We
therefore convert it back to the original scale by
taking its antilogarithm; this is the geometric

3.0

Figure 2.9 Dot plots for (a) the weights, and (b) the log,,
weights of 19 guinea pigs.

mean. The distribution of biological data, if not
symmetrical, is frequently skewed to the right;
we could then calculate the geometric mean to
represent an average value.

For example, Figure 2.9 shows the distribution
of the guinea pig weights given in the example in
Section 2.6.1(b) illustrated in a dot plot, first as
the untransformed data (Figure 2.9a) and then
as the log-transformed data (Figure 2.9b). You
can see that the transformation improves sym-
metry, and the geometric mean is smaller than
the arithmetic mean and closer to the median. It
is important to realize that we apply the trans-
formation to each value of the raw data and not
to the class limits of grouped data, even when the
data are presented as a frequency distribution.
Figure 2.10b shows the effect of this log transfor-
mation on the distribution of the mechanical
threshold data summarized in Table 2.1 and
displayed in Figure 2.10a. The mean of the log
mechanical threshold data is 0.6778 log newtons;
the antilog of this mean, the geometric mean, is
4.76 newtons. Note that the arithmetic mean is
5.25 newtons and the median is 4.65 newtons.
You can see that the distribution is more sym-
metrical, and the geometric mean represents the
central tendency of the transformed data much

e
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(a) Histogram of raw data
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better than the arithmetic mean of the untrans-
formed data.

e The geometric mean is always less than the
arithmetic mean if the data are skewed to the
right.

e The geometric mean is usually approximately
equal to the median if the data are skewed to
the right. We often prefer to use the geometric
mean rather than the median for right-skewed
data because the properties of the distribution
of the mean (from which the geometric mean
is calculated using the log data) are more
useful than those of the median.
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14 15

Figure 2.10 Histograms of the mechanical

1.20 threshold of sheep showing (a) the raw data, and
1.10 (b) the logy,-transformed data (data from Ley et
al., 1995, with permission from the authors and
BMJ Publishing Group Ltd).
(d) Mode

A well-known but infrequently used measure of
central tendency is the mode. It is the most com-
monly occurring observation in a set of observa-
tions. The mode often has a different value from
both the arithmetic mean and the median. The
modal group or modal class is the group or
class into which most observations fall in a
histogram.

In the mechanical threshold data of Table 2.1
and Figure 2.5, the modal group represents
values from 4.0 to 4.9 newtons. In another
context, we might use the mode to indicate the
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most common litter size in a breed of dogs, e.g.
the most common litter size of bearded collie
dogs is seven.

For the following reasons, statisticians tend not
to favour the mode as a tool for summarizing
data:

e The mode is determined by disregarding most
of the observations.

e The mode depends on the accuracy with which
the data are measured.

e Some distributions do not have a mode, whilst
other distributions may have more than one
mode. A distribution that has a single mode
or modal group is called unimodal; a distribu-
tion that has two humps (i.e. modes or modal
groups) separated by a trough is called bimodal
even if the frequency of occurrence of the
observations in the two modes or modal classes
is not equal.

2.6.2 Measures of dispersion
(spread)

There are a number of measures of the spread of
the data, each of which has different attributes.

(a) Range

The range is defined as the difference between the
largest and smallest observations. In the mechani-
cal threshold data from Table 2.1, the range is
13.9 newtons, being the difference between the
maximum value of 14.9 newtons and the minimum
value of 1.0 newton.

e The range is an easily determined measure of
dispersion of the observations of a numerical
variable.

e It gives undue weight to extreme values and
will, therefore, overestimate the dispersion of
most of the observations if outliers are present.

e The range tends to increase in value as the
number of observations in the sample increases.

(b) Interquartile range

The interquartile range is the range of values
that encloses the central 50% of the observations

if the observations are arranged in order of
magnitude. It is defined as the difference between
the first and third quartiles (see Section 2.3.3).
In the mechanical threshold data, the interquar-
tile range is from 3.68 to 6.10 newtons (see
Figure 2.1).

e The interquartile range is influenced neither
by the presence of outliers nor by the sample
size.

e It suffers from the disadvantage, in common
with the range, of ignoring most of the obser-
vations as it is calculated from just two of
them.

(c) Variance

The variance is determined by calculating the
deviation of each observation from the mean.
This deviation will be large if the observation is
far from the mean, and it will be small if the
observation is close to the mean. Some sort of
average of these deviations therefore provides a
useful measure of spread. However, some of the
deviations are positive and some are negative,
depending on whether the observation is greater
or less than the mean, and their arithmetic
mean is zero. The effect of the sign of the devia-
tion can be annulled by squaring every devia-
tion, since the square of both positive and
negative numbers is always positive. The arith-
metic mean of these squared deviations is called
the variance.

In fact, when we select a sample of n observa-
tions from our population, we divide the sum of
the squared deviations in the sample by n — 1
instead of n. It can be shown that this produces
a better estimate (i.e. unbiased, see Sections 4.4.3
and 4.4.4) of the population variance. Thus, the
sample variance, s*, which estimates the popula-
tion variance, @, is given by

, zl(x—)?)2

ST =
n-1

We rarely calculate the variance from first
principles in this age of hand-held calculators
and computers, and so we make no attempt here
to show the mechanics of the calculation.
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Example

The plasma potassium data of 14 dogs, for which
the mean was calculated as 4.57mmol/l (see
Section 2.6.1(a)), gives a sample variance of

, 132297
ST =

=0.10177 (mmol/1)*

If you were reporting the variance, you would
probably correct it to one decimal place more
than the original data. This variance would there-
fore be reported as 0.102 (mmol/1)*

e The variance uses every available observation.

e Although the variance is a sensible measure
of spread, it is not intuitively appealing as its
dimensionality is different from that of the
original measurements.

(d) Standard deviation

The standard deviation (often abbreviated to
SD) is equal to the square root of the variance.
The standard deviation may be regarded as a
kind of average of the deviations of the observa-
tions from the arithmetic mean. It is often
denoted by s in the sample, estimating o in the
population, and is given by

(x—%)
s =+/Variance = z—

n—1

We can calculate the standard deviation on
a calculator rather than by substituting the
actual observations into the above formula.
(Note: most calculators have two SD function
keys, one for the population SD and one for its
estimate from the sample. These may be marked
as o (for the population) and s (for the sample).
On some calculators, you may find them marked
as o, (for the population) and s, or o, (for the
sample). The use of o, is confusing because it is
contrary to the generally accepted convention of
nomenclature.)

Example

In the plasma potassium data of 14 dogs used as
the example for the calculations of the mean and
the variance

5 =+/0.10177 = 0.319 mmol/l

e The SD uses all the observations in the data
set.

e The SD is a measure of spread whose dimen-
sionality is the same as that of the original
observations, i.e. it is measured in the same
units as the observations.

e The SD is of greatest use in relation to a sym-
metrically distributed data set that follows the
Gaussian or Normal distribution (see Section
3.5.3). In this case, it can be shown that the
interval defined by the (mean =2 SD) encom-
passes the central 95% (approximately) of the
observations in the population. In the example
above, the interval is 4.57 £ 2(0.319), i.e. from
3.93 to 5.21 mmol/L.

e For data that are Normally distributed, four
times the standard deviation gives us an indi-
cation of the range of the majority of the values
in the population. In the plasma potassium
example, this is 4 x 0.319 = 1.28 mmol/l.

Sometimes the standard deviation is expressed
as a percentage of the mean; we call this measure
the coefficient of variation (CV). It is a dimen-
sionless quantity that can be used for comparing
relative amounts of variation. However, these
comparisons are entirely subjective because its
theoretical properties are complex, so we do not
recommend its use.

2.7 Reference interval

Sometimes we are interested in describing the
range of values of a variable that defines the
healthy population; we call this the reference
interval or the reference range. Because of the
problem caused by outliers, we calculate the ref-
erence range as the interval that encompasses,
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say, the central 90%, 95% or 99% of the observa-
tions obtained from a large representative sample
of the population. We usually calculate the values
encompassing 95% of the observations; the ref-
erence range is then defined by the mean + 1.96
SD (the 1.96 is often approximated by 2) pro-
vided the data have an approximately Normal
distribution (see Section 3.5.3). If the data are
not Normally distributed, we can still calculate
the reference range as the interval defined by
the 2.5th and 97.5th percentiles of the empirical
distribution of the observations. More informa-
tion about the calculation of the reference inter-
val may be found in, for example, Geffré et al.
(2011).

We can use the reference interval to determine
whether an individual animal may be classified
as belonging to the population of healthy animals.
If the animal under consideration has a value for
this variable which lies outside the specified
range for the healthy population, we may con-
clude that the animal is unlikely to belong to the
normal population and is a diseased animal. For
example, plasma creatinine values above the ref-
erence interval of 40-180 mmol/l were used to
diagnose renal failure in cats in a study by Barber
and Elliott (1998).

Note that the reference interval or range is
sometimes called the normal range. The latter
term is best avoided because of the confusion
between ‘normal’ implying healthy and ‘Normal’
in the statistical sense describing a particular
theoretical distribution. In this book we distin-
guish the two by small and capital letters but they
may still be misconstrued.

Exercises

The statements in questions 2.1-2.4 are either
TRUE or FALSE.

2.1 An appropriate diagram to show the fre-
quency distribution of a continuous variable is:
(a) A histogram.

(b) A pie chart.

(c) A stem-and-leaf plot.

(d) A bar chart.

(e) A box-and-whisker plot.

2.2 An appropriate measure of central ten-

dency for continuous data that are skewed to the

right is:

(a) The arithmetic mean.

(b) The geometric mean.

(c) The antilog of the arithmetic mean of the
log-transformed data.

(d) The median.

(e) The 50th percentile.

2.3 The standard deviation:

(a) Is a measure of dispersion.

(b) Is the difference between the 5th and 95th
percentiles.

(c) Is greater
observations.

(d) Measures the average deviation of the obser-
vations from the mean.

(e) Is the square of the variance.

than the range of the

2.4 The reference range (containing 95% of the

observations) for a particular variable:

(a) Cannot be calculated if the data are skewed.

(b) May be used to determine whether or not an
animal is likely to be diseased if its value for
the variable is known.

(c) Can be evaluated from a small sample of
data.

(d) Is equal to the mean £ SD if the data are
Normally distributed.

(e) Isequalto the difference between the largest
and smallest observations in the data set.

2.5 The following data show the resting pulmo-
nary ventilation in 25 adult sheep (I/min):

83 80 99 61 55
103 65 76 76 7.6
69 103 78 73 89
101 7.6 91 83 48
102 65 91 7.0 119

Draw histograms of the data with:

(a) Class interval 1.0 1/min, lowest class 4.25-
5.24 1/min.

(b) Class interval 0.2 1/min, lowest class 4.80-
4.99 1/min.

(c) Class interval 5.0 1/min, lowest class 4.50—
9.49 l/min.
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(ng/ml plasma)
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(a) Progesterone concentrations measured in plasma from
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Figure 2.11 Illustrations taken from the literature: (a) Parker et al. (1988), reproduced from the Veterinary Record with per-
mission from BMJ Publishing Group Ltd; (b) Ley ez al. (1995), reproduced with permission from the authors and BMJ Publish-
ing Group Ltd; (c) Tamuli and Watson (1994), reproduced from the Veterinary Record with permission from BMJ Publishing
Group Ltd; and (d) Merrell (1998), redrawn with permission from the author.

All the histograms should appear on the same
sheet of graph paper and should not be superim-
posed. Use the same scales for all of them. Which
is the most appropriate histogram for demon-
strating the distribution of the data? Explain
your answer.

2.6 The diagrams in Figure 2.11 have errors
in their presentation. Identify the incorrect fea-
tures and suggest what is required to rectify the
errors.

2.7 The following data, 44.4, 67.6, 76.2, 64.7,
80.0,64.2,75.0,34.2,29.2, represent the infection
of goats with the viral condition peste des petits
ruminants, expressed as the percentage morbid-
ity in Indian villages (Kulkarni et al., 1996, repro-
duced from the Veterinary Record with permission
from BMJ Publishing Group Ltd). Calculate the
median.

2.8 Calculate the mean and the median of the
following data set. What evidence is there for
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concluding that the data are or are not symmetri-
cally distributed?

Body weights of 16 weanling female mice in
grams:

541 49.8 24.0 46.0 441 340 52.6 54.4
56.1 52.0 51.9 54.0 58.0 39.0 32.7 58.5

2.9 Use a calculator with statistical functions to
calculate the range, the variance and the stand-
ard deviation of the sample data which follows
(Gunning & Walters, 1994, reproduced from the
Veterinary Record with permission from BMJ
Publishing Group Ltd).

Vitamin E concentration (mmol/l) in 12 heifers
showing clinical signs of an unusual myopathy:

42 33 70 69 51 34 25 86 35
29 49 54

2.10 Explain the meaning of the following
terms, indicating how each is determined:

(a) Percentile.

(b) Median.

(¢) Interquartile range.

(d) Reference range.



Probability and probability

distributions

3.1 Learning objectives

By the end of this chapter, you should be able to:

e Calculate the mathematical probability of the
occurrence of particular outcomes in simple
events, such as dice-throwing and coin-
tossing.

e Elaborate the simple rules of probability — the
addition rule and the multiplication rule for
independent and dependent events — and illus-
trate each with a simple example.

e Explain what is meant by a probability density
function.

e List the properties of the Normal distribution.

¢ Describe the Standardized Normal Deviate.

e Explain how you might verify approximate
Normality in a data set.

e List situations when a Lognormal distribution
might apply.

e Define conditions under which measure-
ments follow the Binomial distribution, and
give an example.

e State when the Binomial distribution is
approximated by the Normal distribution.

¢ Define conditions under which measure-
ments follow the Poisson distribution, and give
an example.

e State when the Poisson distribution is approxi-
mated by the Normal distribution.

3.2 Probability

3.2.1 Relevance of probability
to statistics

So far, we have discussed the processes involved
in summarizing and displaying the results
obtained from a group of animals. The approaches,
collectively known as descriptive statistics, are an
important first step to any analysis. However,
usually we want to generalize the results from a
representative sample to the larger population
from which they came; that is, we want to make
inferences about the population using the sample
data.

For example, suppose the mean and standard
deviation of serum iron concentration in a
random sample of 59 Simmental cows are
27.64 umol/l and 6.36 umol/l, respectively. It is
unlikely that the results obtained in this sample
are identical to those that would be observed in
the population of Simmental cows. However, we
want to use this information to infer something
about this population. There is invariably some
doubt associated with the inferences drawn
about the population; this doubt is quantified by
a probability which is fundamental to statistical
inference as it provides the link between the
sample and the population. We discuss the con-
cepts of inferential statistics in Chapter 4 when

Statistics for Veterinary and Animal Science, Third Edition. Aviva Petrie and Paul Watson.
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the notion of sampling and sampling distribu-
tions is introduced, and develop the theory in
subsequent chapters. Here we introduce the con-
cepts of probability.

3.2.2 Definitions of probability

There are several approaches to defining a
probability:

e We can take the subjective or personal view of
probability, which is to regard it as a measure
of the strength of belief an individual has
that a particular event will occur. For example,
“That cow has a 60% chance of calving tonight’.
This subjective or personal view of probability
is often called Bayesian probability (see
Section 14.3.4) when it represents the extent
to which it is supported by the available evi-
dence. Whilst this approach to defining a prob-
ability has the advantage that it is possible to
assign a probability to any event, this is more
than offset by the fact that different people
are likely to assign different probabilities to
the same event, often influenced by irrelevant
considerations.

e A second approach to defining a probability
relies on having an understanding of the theo-
retical model defining the set of all possible
outcomes of a trial; we evaluate the probability
solely on the basis of this model, without
recourse to performing the experiment at all.
It is often called an a priori probability. So, for
example, we know that there are two equally
likely outcomes when an unbiased coin is
tossed: either a head or a tail. This is the model
from which we can deduce that the probability
of a defined event, obtaining a head, say, is
1/2=0.5.

e The third approach to defining a probability,
and the one commonly used in statistical infer-
ence, is to regard a probability as the propor-
tion of times a particular outcome (the event)
will occur in a very large number of ‘trials’ or
‘experiments’ performed under similar condi-
tions. The result of any one trial should be
independent of the result of any other trial,
so whether or not the event occurs in any one

trial should not affect whether or not the
event occurs in any other trial. As an example,
if we are interested in estimating the probabil-
ity of a litter size greater than three in a colony
of guinea pigs, we would have to count the
number of such litters over a lengthy period,
say a year, and divide it by the total number of
litters. This is the frequency definition of prob-
ability because it relies on counting the fre-
quency of occurrence of the event in a large
number of repetitions of similar trials. The
probability defined in this way is thus the rela-
tive frequency of the event in repeated trials
under similar conditions. See also Section
14.3.3 for the distinction between the frequen-
tist understanding of probability and signifi-
cance testing propounded by Ronald Fisher,
Jerzy Neyman and Egon Pearson and the
more abstract interpretation of probability put
forward by Bayesians.

It is interesting to note that the various defini-
tions of probability are not entirely distinct.
The proportion of times that an event would be
observed if an experiment were to be repeated a
large number of times approaches the a priori
probability. So, if a coin were tossed five times,
we would not be very surprised to observe four
heads; however if the coin were tossed 1000
times, we would be more likely to observe
approximately 500 heads. Thus, the values for
the probability defined using both the a priori
approach and the frequency approach coincide
when the experiment is repeated many times.
Similarly, the subjective view of probability
cannot be divorced from the frequency view, as
the former is usually based on experience, which
in turn relies on previous occurrences of similar
events. For example, the likely incidence of
liver fluke infestation can be forecast on the basis
of the previous year’s rainfall, and is founded
on a large database of rainfall/fluke incidence
relationships.

3.2.3 Properties of a probability

It is clear that, since a probability can be defined
as a relative frequency or a proportion, its
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numerical value must be equal to or lie between
0 and 1.

e A probability of 0 means that the event cannot
occur.

e A probability of 1 (unity) means that the event
must occur.

We often convert probabilities into percent-
ages (with a range 0-100%) or express them as
ratios (e.g. a one-in-three chance of an event
occurring).

Sometimes we focus our interest not on a par-
ticular event occurring but on that event not
occurring, i.e. on the complementary event. It
follows from the properties of a probability that
the probability of the event not occurring is 1
minus the probability of the event occurring. So,
if the probability of a kitten contracting feline
viral rhinotracheitis after vaccination at 9 and 13
weeks of age is 0.04 (in a particular location and
time), then the probability of being adequately
protected is 0.96.

3.2.4 Rules of probability

Two simple rules governing probabilities are the
addition and multiplication rules. For simplicity,
we define them for only two events, A and B, but
they can be extended to multiple events.

e Addition rule. When two events are mutually
exclusive, implying that the two events cannot
occur at the same time, then the probability of
either of the two events occurring is the sum of
the probability of each event. Thus,

Pr(A or B)= Pr(A)+ Pr(B)

For example, assuming that we have a carton
of 50 dog biscuits, with 10 of each of five dif-
ferent shapes, the probability of picking either
a diamond shape or a round shape from the
carton is the sum of the probability of a
diamond (10/50 = 1/5) and the probability of a
round (10/50 = 1/5) which is 2/5 or 0.4.

e Multiplication rule. When two events are
independent, so that the occurrence or non-

occurrence of one event does not affect the
occurrence or non-occurrence of the other
event, then the probability of both events
occurring is the product of the individual prob-
abilities. Thus,

Pr(A or B)= Pr(A)x Pr(B)

For example, if we have two cartons of dog
biscuits, as in the addition rule example, the
probability of picking a diamond shape from
both cartons is 1/5 x 1/5, equal to 1/25 or 0.04.

When two events are not independent, we
have to adopt a different rule, which relies on
an understanding of conditional probability.
The probability of an event B occurring when
we know that A has already occurred is called
the conditional probability of B, and is written
as Pr(B given A) or Pr(BIA). Thus the event
B is dependent on A. If we have two such
dependent events, the probability of both
events occurring is equal to the probability of
one of them occurring times the conditional
probability of the other occurring. So,

Pr(A or B) = Pr(A)x Pr(B given A)

For example, if we have a carton of dog
biscuits as in the addition rule example, the
probability of picking a second diamond shape
after we have already picked one diamond
shape (and given it to Max to eat!) is equal to
the probability of picking the first diamond
shape (10/50 = 1/5) times the probability of
picking the second diamond shape out of the
remaining 49 biscuits (9/49), i.e. it is 0.037.

3.3 Probability distributions
3.3.1 Introduction

We introduced empirical frequency distributions
in Section 2.3; these allow us to assimilate a
large amount of observed data and condense
them into a form, typically a table or a diagram,
from which we can interpret their salient fea-
tures. Another type of distribution is a probabil-
ity distribution; this is a theoretical model that
we use to calculate the probability of an event
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occurring. The probability distribution shows
how the set of all possible mutually exclusive
events is distributed, and can be presented as an
equation, a chart or a table. We may regard a
probability distribution as the theoretical equiv-
alent of an empirical relative frequency distribu-
tion, with its own mean and variance.

A variable which can take different values
with given probabilities is called a random vari-
able. A probability distribution comprises all the
values that the random variable can take, with
their associated probabilities. There are numer-
ous probability distributions which may be dis-
tinguished by whether the random variable is
discrete, taking only a finite set of possible values,
or continuous, taking an infinite set of possible
values in a range of values (see Section 1.6). A
discrete random variable with only two possible
values is called a binary variable, e.g. pregnant or
not pregnant, diseased or healthy.

3.3.2 Avoiding the theory!

We discuss some of the more common distribu-
tions in this chapter although, for simplicity, we
omit the mathematical equations that define the
distributions. You do not need to know the equa-
tions for the procedures we describe in this text,
since the required probabilities are tabulated.

We are aware that much of the theory associ-
ated with probability distributions presents dif-
ficulties to the novice statistician. Moreover, it
is possible to perform analyses on a variable
without this knowledge. We have therefore
chosen not to present more details of these dis-
tributions than we believe are absolutely neces-
sary for you to proceed. Advanced statistics texts
and many elementary texts cover this in more
detail.

3.4 Discrete probability
distributions

3.4.1 Definition

Box 3.1 defines a discrete probability distribu-
tion. An example of a discrete random variable

Box 3.1 Definition of a discrete probability distribution

A discrete probability distribution attaches a probability
to every possible mutually exclusive event defined by a
discrete random variable; the sum of these probabilities
is 1 (unity).

is seen in simple Mendelian inheritance. Con-
sider the situation where we have a pair of alleles
represented by T, the dominant allele, and ¢, the
recessive allele. In Manx cats the dominant
mutant, 7, is associated with the tailless condi-
tion but the homozygous combination, 77, is
lethal and these embryos do not develop. The
heterozygous condition, 7t or ¢7, results in the
tailless Manx cat, and the homozygous # condi-
tion is the normal cat with a tail. When two Manx
cats (heterozygous) are mated, there are four
equally likely genotypic outcomes: 77, Tt,tT and
1t (Figure 3.1a).

Figure 3.1b is a chart of the discrete probabil-
ity distribution of the dominant allele, 7. The
probability distribution for this random variable
is the complete statement of the three possible
phenotypic outcomes with their associated prob-
abilities. In the chart, the horizontal axis describes
the set of the three possible outcomes defining
the random variable, and the vertical axis meas-
ures the probability of each outcome. Each prob-
ability is quantified by the length of a bar; the
sum of the three probabilities attached to the
possible outcomes is unity (i.e. 0.25 + 0.50 +
0.25 = 1). As can be seen in Figure 3.1b, in this
case there are only three viable genotypes (i, Tt,
tT), giving rise to a ratio of phenotypically Manx
cats to normal cats of 2:1. It is easy to see that
the diagrammatic representation of a probability
distribution bears a strong resemblance to the
empirical bar chart in which the vertical axis rep-
resents relative frequency, as in Figure 2.2.

There are many different discrete probability
distributions. The two distributions which are
particularly relevant to biological science are
the Binomial and Poisson distributions. As we
explain in Section 3.6.1, these two discrete distri-
butions are often approximated by a continuous
distribution.
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(a)
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Figure 3.1 Genetic characteristics of
cats whose parents are each of Manx
genotype Tt. (a) The four possible geno-
typic outcomes. (b) The probability distri-
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3.4.2 Binomial distribution

The Binomial distribution is relevant in the situ-
ation in which we are investigating a binary
response. There are only two possible outcomes
to what we shall term a ‘trial’: either the animal
is pregnant or it is not; either the animal shows
clinical signs of infectious disease or it does
not. It is common in statistical theory to use the
terminology ‘success’ in a trial to represent the
situation when the individual possesses the char-

bution of the number of T genes, the
random variable that determines the phe-
notype of the cat.

No: of T genes
Genotype

acteristic (e.g. disease) or the event occurs (e.g.
pregnancy). Likewise, ‘failure’ is used to repre-
sent the complementary event, i.e. the situation
when the individual does not possess the charac-
teristic (e.g. is disease-free) or the event does not
occur (e.g. not pregnant). We define the Binomial
distribution in Box 3.2.

So for example, suppose we take blood
samples from six cattle randomly selected from
the population. Each animal in the population
is either seropositive for Leptospira (success)
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Box 3.2 The Binomial distribution

Box 3.3 The Poisson distribution

The random variable in the Binomial distribution repre-
sents the number of successes in a series of n independ-
ent trials in which each trial can result in either a success
(with probability, 7) or a failure (with probability, 1 — 7).
In theory, there are n + 1 possible outcomes in this situ-
ation as it is possible to observe either 0 successes or 1
or 2 or 3 or ...up to n successes in the n trials. The
Binomial distribution attaches a probability to each
outcome. The mean and variance of the distribution are
nm and nn(1 — ), respectively.

or not (failure), i.e. we have a binary response
variable. We know that the prevalence (see Box
5.1) of Leptospira in the cattle population is
approximately 30% (this is 7). We can use this
information and our knowledge of the Binomial
distribution to attach a probability to each of the
possible outcomes — the probability that none is
positive for Leptospira, or alternatively, that 1,2,
3,...,up to 6 are positive. These probabilities
are, respectively, 0.1176, 0.3025, 0.3241, 0.1852,
0.0595, 0.0102 and 0.0007, which, when added,
sum to 1 (apart from rounding errors).

(a) Importance of the Binomial
distribution

The Binomial distribution is particularly impor-
tant in statistics because of its role in analysing
proportions. A proportion is derived from a
binary response variable, e.g. the proportion of
animals with disease if each animal either has or
does not have the disease. We can use our knowl-
edge of the Binomial distribution (usually its
Normal approximation, see Section 3.6.1) to
make inferences about proportions (see Sections
4.7 and 9.3.1). As an example, Little et al. (1980)
used the differences in the proportions of
leptospiral-positive antisera in groups of abort-
ing and normal animals to investigate the role of
leptospiral infection in abortion in cows. It was
shown that the aborting cows had a significantly
higher proportion of Leptospira-positive anti-
body levels than the normal animals.

3.4.3 Poisson distribution

Another discrete probability distribution which
occurs in veterinary and animal science is the

The random variable of a Poisson distribution represents
the count of the number of events occurring randomly
and independently in time or space at a constant rate, (i,
on average. The mean and variance of the distribution
are equal to L.

Poisson distribution. We define the Poisson dis-
tribution in Box 3.3.

For example, using the Poisson distribution,
we can attach probabilities to a particular count
— the number (say, 5550) of scintillation events
caused by a radioactive sample in a scintillation
counter per unit time, or the number (say, 35)
of blood cells per unit volume of a diluted
sample, or the number (say, 60) of parasitic eggs
per unit volume or weight of faecal sample,
or the number (say, 2) of poisonous plants per
quadrat across a field. Usually, for convenience,
we employ the Normal approximation to the
Poisson distribution for analysing these data (see
Section 3.6.1).

3.5 Continuous probability
distributions

3.5.1 Relationship between
discrete and continuous probability
distributions

In order to understand the relationship between
discrete and continuous probability distributions:

e Refer to Figure 3.2a, an example of a very
simple discrete probability distribution. All
possible events are represented on the hori-
zontal axis. The vertical length of each line
represents the probability of the event. Since
all events are represented, and the total prob-
ability must equal unity, the sum of the lengths
of all the lines also equals 1.

e Refer to Figure 3.2b, an illustration of a dis-
crete probability distribution in which there
are a large, but still finite, number of possible
discontinuous values of the random variable.
Again, the sum of the lengths of all the lines
equals unity.
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(a) Categorical random variable taking only three values
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(b) Discrete random variable taking 15 values
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(c) Probability density function of a continuous random variable

Figure 3.2 Example showing the prob-
ability distributions of categorical and
numerical random variables: (a) x = coat
colour of Shorthorn cattle, (b) x =
raccoon litter size, and (c) x = height of
80 90 100 110 120 130 X donkeys (cm).

Probability density function
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Box 3.4 Properties of a continuous probability
distribution

e A continuous probability distribution is defined by a
probability density function.

e The total area under the probability density function
is 1 (unity).

e The probability that the continuous random variable
lies between certain limits is equal to the area under
the probability density function between these limits.

e Now refer to Figure 3.2c. This figure represents
the probability distribution of a continuous
random variable. In contrast to a discrete prob-
ability distribution, here the variable can take
an infinite number of values so it is impossible
to draw separate lines. The shaded area now
represents the total probability of unity. The
curve that defines the area is called a probabil-
ity density function which is described by an
equation. Box 3.4 summarizes the properties
of a continuous probability distribution.

3.5.2 Calculating probabilities from
the probability density function

If the variable of interest is continuous, then the
probability that its value lies in a particular inter-
val is given by the relevant area under the curve
of the probability density function (Figure 3.3).
We can determine the area under the curve
for a range of values of the random variable
by a mathematical process (called integration)
applied to the equation. Rather than having
to do this, there are special tables that relate
areas under the curve to probabilities for the
well-known continuous distributions, such as
the Normal, Student’s #-, Chi-squared and F-
distributions, each defined by its own equation.

3.5.3 Normal (or Gaussian)
distribution

(a) Empirical distributions and
Normality

The Normal or Gaussian distribution, named
after C. F. Gauss, an 18th century German math-

ematician, is the most important of the continu-
ous distributions because of its role in sampling
theory, which we consider in Chapter 4. The term
‘Normal’ is not meant to imply that the probabil-
ity distribution of the random variable is typical,
even though it is a good approximation to the
distribution of many naturally occurring varia-
bles, or that it represents a ‘non-diseased’ group
of individuals. To distinguish the Normal distri-
bution from any other interpretation of normal,
we use an upper case N in the former instance
throughout this book.

The Normal distribution is a theoretical distri-
bution. We often find that observations made on
a variable in a group of individuals have an
empirical frequency distribution which is similar
to a Normal distribution. We then make the
assumption that the distribution of that variable
in the population is Normal. If this is a reason-
able assumption, we can use the properties of the
Normal distribution to evaluate required prob-
abilities. For example, the 6-furlong finish times
for Thoroughbreds on Louisiana racetracks have
an empirical distribution which is approximately
Normal (Martin et al., 1996). We show, in Section
3.5.3(c), how we can use the 6-furlong finish time
to calculate the probability that a racehorse has
a finish time faster than 72 seconds.

(b) Description

As well as possessing the property, in common
with other continuous distributions, that the area
under the curve defined by its probability density
function is unity, the Normal distribution has
several useful properties. These are listed in Box
3.5 and demonstrated in Figure 3.4.

(c) Areas under the curve and the
Standard Normal distribution

In order to calculate the probability that a value
of the variable, x, is greater than x; (see Figure
3.3c), you can use Appendix Table A.1. We will
take you through a four-step process:

1. Recognize that the probability that x has a
value greater than x; is equal to the area under
the Normal distribution curve to the right of x;.
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Figure 3.3 Relationship between the area under
the probability density function, y = f(x), for the
random variable, x, and probability. The total area
under f(x) is 1; the shaded area in (a) represents
Prob {x, < x < x1}, in (b) Prob {x < x}, and in (c)
X, X Prob {x > x,}.
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Box 3.5 Properties of the Normal distribution

e The Normal distribution is completely described by
two parameters: the mean and the standard deviation.
These are usually denoted by the Greek letters u and
o, respectively. The mathematical formula for the
probability density function is omitted for simplicity.
It is unimodal.

It is symmetrical about its mean. This implies that the
curve to the right of the mean is a mirror image of the
curve to the left of the mean. It is often described as
‘bell-shaped’.

Its mean, median and mode are all equal.

If the standard deviation remains unchanged, increas-
ing the value of the mean shifts the curve horizontally
to the right. Conversely, decreasing the value of
the mean shifts the curve horizontally to the left
(Figure 3.4a).

® A decrease in the standard deviation of the curve
makes the curve thinner, taller and more peaked. Con-
versely, an increase in the standard deviation makes
the curve fatter, shorter and flatter (Figure 3.4b).

The limits (4 — o) and (u + o) contain 68.3% of the
distribution (Figure 3.5a).

The limits (u — 1.960) and (1 + 1.960) contain 95% of
the distribution (see Figure 3.5a). This fact is often
used in the calculation of a reference range (see
Section 2.7).

The limits (u — 2.580) and (u + 2.580) contain 99% of

the distribution (Figure 3.5a).

2. Define the mean and the standard deviation
of your Normal distribution. In general terms,
we call these y and o, respectively.

3. Convert this Normal distribution into a Stand-
ard Normal distribution (see Figure 3.5b)
which has a mean of 0 and a standard devia-
tion of 1 (unity). This is the distribution of a
new variable, z, which is called a Standardized
Normal Deviate (SND). In general terms

_x-H
o

z
And, in this particular example, the value of
the SND which corresponds to x; is

X —p
c

=

4. Use Table A.1 to determine the specified area.
Instructions for the procedure are given with
the table, which has an accompanying illustra-
tive diagram. It is important to realize that:

e The Standard Normal distribution is sym-
metrical around its mean of 0. Thus the tail
area to the right of a value z; is the same as
the tail area to the left of —z;; equivalently,
the probability that z > z; is equal to the
probability that z < —z,. Table A.1 provides
the sum of these two tail area probabilities
for various values of z. The values of z are
sometimes called critical values or percent-
age points, as each defines a percentage of
the total area under the probability density
function.

e To obtain the area to the right of z; from
Table A.1, we have to divide the probability
obtained from the table by 2. This is because
the probabilities in the table relate to both
tails of the Standard Normal distribution,
whereas here we are interested only in the
right tail.

® You should be aware that the Standard
Normal distribution is not always tabulated
in the same way as in Table A.1. For example,
you might find that only the right tail or
the left tail area is tabulated. However, you
can always determine the probability that is
required for your problem by subtraction
and/or multiplying or dividing by 2, as long
as you remember that the Standard Normal
distribution is symmetrical and that the
total area under the curve is 1.

Suppose we want to apply this theory to a
practical example. We know that the six-furlong
finish time for Thoroughbreds on Louisiana race-
tracks is approximately Normally distributed in
the population with a mean of 75.2 seconds (s)
and a standard deviation of 2.2s (Martin et al.,
1996). We want to determine the probability of a
racehorse having a finish time of less than, say,
72.0s. The value of z corresponding to x; = 72.0
is 2;=(72.0-75.2)/(2.2) =-1.45 (which is —1.4545
corrected to two decimal places). Since we are
only interested in the probability in the lower tail
of the distribution, and the Standard Normal dis-
tribution is symmetrical about zero so that the
area to the left of a SND of —1.45 is equal to that
to the right of a SND of +1.45, the required prob-
ability is half the tabulated two-tailed probability
corresponding to a SND of 1.45. Thus, from Table
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Figure 3.4 The effect on the Normal distribution of changing the parameters ¢ and o (a) with different means, 1, < t, < s,
and the same standard deviation, o, and (b) with different standard deviations, o; < 0, < 03, and the same mean, .

A.1 we find that the probability is 0.5 x 0.1471 =
0.0736; we would expect about 7% of the race-
horses to have finish times quicker than 72.0s.

(d) Determining the Standardized
Normal Deviate from a defined
probability

It may be that we are interested not in evaluating
a probability (area under the curve) from a par-
ticular value of the SND, z, but in the reverse
procedure, i.e. in determining the value of z from
a specified probability. Naturally, it is possible
to do this from Table A.1 but, for simplicity
and convenience, we give the z-values for some
common probabilities in Appendix Table A.2. We
show z-values both for the situation in which the

probability of interest corresponds to the sum of
the right- and left-hand tail areas (a two-tailed
probability), and for the situation in which all the
probability of interest corresponds only to the
right-hand tail area (a one-tailed probability).
Two-tailed probabilities are more often relevant
than one-tailed probabilities; we discuss this in
Section 6.3 in relation to one- and two-sided tests
of hypotheses. Note that we may also require a
z-value in order to calculate a confidence inter-
val (see Sections 4.5.2 and 4.7).

Suppose we want to know the two values of z
that encompass the central 95% of the distribu-
tion; this leaves 2.5% of the distribution in each
tail, i.e. 5% of the entire distribution is in the two
tails. Thus, we enter Table A.2 and note that the
value of z which corresponds to a two-tailed
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Figure 3.5 Areas under (a) the Normal
curve; the random variable, x, has mean = u
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and standard deviation = o; and (b) the

4 -1 0 +1 A z Standard Normal curve; the random variable,
-2.58 +2.58 z = (x — p)/o, has mean = 0 and standard
-1.96 +1.96 deviation = 1.

probability of 0.05 is 1.96. You can now see how
the value given in the penultimate bullet point of
Box 3.5 is derived.

(e) Establishing Normality

The assumption of Normality is important if we
wish to use the properties of the Normal distribu-

tion to calculate relevant probabilities. We stress,
however, that although the assumption of Nor-
mality is inherent in many statistical procedures,
the procedures are often valid providing the data
are approximately Normally distributed.

e The easiest approach to establishing approxi-
mate Normality is to produce a histogram of
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the empirical frequency distribution and deter-
mine, by eye, whether the distribution appears
unimodal, bell-shaped and symmetrical. Alter-
natively, a box-and-whisker plot will indicate
whether or not the distribution is symmetrical
and approximately Normal. This subjective
approach is often adequate but it does not
work well when the number of observations is
small, say, less than 20.

e We can use more formal ways of establishing
whether data approximate a Normal distribu-
tion. One such method is to produce a graph
called a Normal plot in which the horizontal
axis represents the ordered numerical values
of the variable, and the vertical axis represents
the corresponding Standardized Normal Devi-
ates. If the data are Normally distributed,
then the plot points will conform to a straight
line; if the data are not Normally distributed,
then the points will deviate from the straight
line so that a curve is produced. Often, we find
it easier to judge whether the data follow a
straight line than whether the histogram of the
raw data is symmetrical. Hence, although this
technique is also subjective, the Normal plot is
commonly produced, usually on a computer, in
an attempt to verify the assumption of Nor-
mality. We show an example in Figure 3.6 in
which the distribution of the sheep mechanical
threshold data is not Normal (Figure 3.6a) but
that of the log-transformed data is more nearly
Normal (Figure 3.6b).

e QOccasionally, an objective test for Normality is
required. The Shapiro-Wilk W test is available
in many computer packages, as is the Lilliefors
modification of the Kolmogorov—-Smirnov test,
both of which are extremely tedious to perform
by hand. We can also derive measures of
skewness (describing symmetry) and kurtosis
(describing peakedness) for the observed data
set and determine how these measures deviate
from what would be expected if the data were
Normally distributed.

(f) Lognormal distribution

Many biological variables, such as, for example,
parasite infestation data, display a distribution
with a long tail to the right. When data are

skewed to the right, we can generally Normalize
the data by taking the logarithm (usually to base
10 or to base ¢) of each observation (see Sections
2.6.1(c) and 13.2.1). The distribution of the result-
ing transformed variable will often be approxi-
mately Normal (Figure 3.6). The original variable
is then said to have a Lognormal distribution,
approximating the theoretical distribution of the
same name.

The advantage of transforming data in this
way so as to produce a transformed variable
which is Normally distributed is that the proper-
ties of the Normal distribution are relevant to the
transformed variable. In particular:

e We can use the probabilities (areas) of the
Standard Normal curve to evaluate particular
population limits. So, 95% of the distribution
of the logarithmic values lie in the interval
defined by their mean + 1.96 times their stand-
ard deviation. For example, for the sheep
mechanical threshold data in Figure 2.10, 95%
of the log-transformed threshold values would
be expected to fall between 0.6778 + 1.96 x
0.1927,i.e. between 0.3001 and 1.0555 log new-
tons. Hence, by finding the antilogs of these
values, we would expect 95% of the threshold
values in the population to lie between 1.20
and 11.36 newtons.

e Furthermore, it is interesting to note that the
antilog of the arithmetic mean of the logarith-
mic values is a sensible summary measure of
the location of the raw data; it is called the
geometric mean (see Section 2.6.1(c)).

3.5.4 Other continuous
probability distributions

There are numerous continuous probability dis-
tributions apart from the Normal distribution.
Three particularly well known and useful distri-
butions are the -, Chi-squared (¥°) and F-
distributions. You may find the discussions of
these distributions too theoretical and laborious
for comfort. You could skip them at this stage
and refer to them only when (or if!) the need
arises.
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(a) Student’s t-distribution

‘Student’, a pseudonym for W. S. Gosset, described
the #-distribution in 1908 although it was perfected by R. A.
Fisher in 1926. This distribution has revolutionized the statis-
tical analysis of small samples. We give the percentage points
of the t-distribution in Appendix Table A.3, and summarize
its properties in Box 3.6.

As we explain in Chapter 7, we use the ¢-distribution when
we wish to test a hypothesis about a mean or a difference
between two means.

(b) Chi-squared distribution

We give the percentage points of the Chi-squared ()?) distri-
bution in Appendix Table A.4, and summarize its properties
in Box 3.7. We use the Chi-squared distribution when we
analyse categorical data (see Chapter 9).

TITT
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1.1

Box

in Figure 2.10. (a) Normal plot of mechanical
threshold. (b) Normal plot of log mechanical
threshold.

1.2

3.6 Properties of the -distribution

The t-distribution is symmetrical about the mean and
is bell-shaped.

It is completely characterized by what are called the
degrees of freedom (df) so that knowledge of the
degrees of freedom allows the probabilities of the ¢
distribution to be computed. We consider the degrees
of freedom more fully in Section 6.3.6. For the moment,
it is sufficient to note that they have a close affinity to
sample size.

The ¢-distribution is indistinguishable from the Stand-
ard Normal distribution when the degrees of free-
dom are large; as the degrees of freedom decrease, the
t-distribution becomes more and more spread out
compared with the Standard Normal distribution.




42 Statistics for Veterinary and Animal Science

Box 3.7 Properties of the Chi-squared distribution

e The Chi-squared distribution can only take positive
values and is highly skewed (see diagram attached to
Table A.4).

e The degrees of freedom characterize this distribution,
so that knowledge of them allows us to determine the
relevant probabilities under the curve.

e As the degrees of freedom increase, the distribution
becomes more and more symmetrical and eventually
approaches Normality.

Box 3.8 Properties of the F-distribution and use of
Table A.5

e The F-distribution is the distribution of a ratio (see
Section 3.6.2).

e Itis characterized by two separate degrees of freedom:
those attached to the numerator and those attached to
the denominator of the ratio that defines it.
Although the ratio could be either greater or less than
1, the tabulated probabilities of the F-distribution
relate to a ratio that is always greater than or equal to
1, i.e. the numerator is greater than or equal to the
denominator. Thus the tabulated values refer only to
the upper tail of the distribution. Extra care has to be
taken in evaluating the appropriate probabilities from
Table A.5 (see Sections 8.3.1 and 8.3.3).

(c) F-distribution

We give the percentage points of the F-distribution in
Appendix Table A.5, and summarize its properties in Box 3.8.
We may use the F-distribution to compare two variances if
each is calculated from Normally distributed data (see
Section 8.3). The main use of the F-distribution, however,
is in a technique called the analysis of variance, which we
discuss in Section 8.5. a

3.6 Relationships between
distributions

3.6.1 Normal approximations
of the Binomial and Poisson
distributions

The Binomial and Poisson distributions are
skewed when sample sizes are small, although
they become more symmetrical as sample sizes

increase. In fact, each distribution approaches
Normality for large enough sample sizes when a
smooth curve is drawn joining the discrete prob-
ability values.

(a) Binomial distribution

Consider a Binomial situation in which we
observe a proportion, p, of successes in » trials.
It is reasonable to use the Normal approxima-
tion of the Binomial distribution if both np and
n(1 - p) are greater than 5. The mean and vari-
ance of this Normal distribution are estimated by
np and np(1 — p), respectively. This approxima-
tion is particularly useful in statistical inference,
for testing hypotheses about and calculating con-
fidence intervals for proportions (see Chapter 9).

Example

Suppose that on a typical day, 18 cats are pre-
sented to a veterinary clinic, and six are seen
to have fleas. The observed proportion (an
estimate of the true proportion) of infested cats
is 6/18 = 0.33. Hence, np = 18 x 033 = 6,
and n(1 - p) = 18 x 0.67 = 12, and a Normal
approximation is appropriate. The mean and
variance of this Normal distribution are esti-
mated by np = 18 x 0.33 = 6 and np(1 - p) =
18 % 0.33 x 0.67 = 3.98, respectively. Thus, if we
want to evaluate the probability that 10 or
more cats will present with fleas, we determine
2 =(10-6)/+/3.98 = 2.01, and refer this value to
Table A.1. Dividing the tabulated probability by
2 because we are only interested in the upper tail
of the distribution, we find that the required
probability is approximately 0.02 (this is 0.0222
corrected to two decimal places). In fact, we
should have applied the continuity correction
(see Section 3.6.1(c)).

(b) Poisson distribution

TITT

The Normal approximation of a Poisson distribu-
tion is acceptable if the average rate of occurrence
of the event of interest, u, is not too small (it should be
greater than, say, 5). You will then find that the sample mean
and variance are approximately equal to u. This follows from
the property of the Poisson distribution that the variance
equals the mean. For example, we could analyse worm
burden data using the Normal approximation to the Poisson
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distribution, providing that the average faecal egg counts per
gram of wet weight faeces does not fall below 5. O

(c) Continuity correction

These two Normal approximations are useful
because we can use tables of the Standard Normal
distribution to evaluate probabilities for random
variables that follow the Binomial or Poisson dis-
tributions. However, note the following:

e The Poisson and Binomial distributions both
relate to discrete random variables.

e The Normal distribution relates to continuous
random variables.

Therefore, if we use tables of the Normal dis-
tribution to provide approximations of the Bino-
mial and Poisson distributions, we should apply
a continuity correction to adjust for this discrep-
ancy. We subtract 0.5 from the absolute value (i.e.
ignoring the sign) of the difference between x
and p in the numerator of the Standardized
Normal Deviate, so our adjusted value is

_lx—p[-05
(o2

ZI

So, strictly, in the flea-infested cats example
described in Section 3.6.1(a), we should have
applied the continuity correction to the determi-
nation of the probability that 10 or more cats will
present with fleas, i.e. z; = {{10—6/—0.5}/v/3.98 =
1.75. Referring to Table A.1, we find that the
required probability is (0.0801)/2 = 0.04. We can
see that, for small numbers, the continuity cor-
rection makes a substantial difference.

3.6.2 Mathematical
interrelationships ’é‘

You may find these theoretical concepts difficult, immaterial
or boring, in which case you should skip this section! Other-
wise, you may find it interesting to note the following:

e The t-, Chi-squared (¥°) and F-distributions each represent
a specific function, expressed mathematically, of a Nor-
mally distributed variable.

e The Chi-squared distribution with k degrees of freedom
is defined as the distribution of the sum of the squares of

k independent variables, each of which has a Standard
Normal distribution.

If the degrees of freedom are 1, then the Chi-squared
distribution is the square of the Standard Normal
distribution.

The distribution of a mean of a Normally distributed vari-
able divided by its estimated standard error follows a
t-distribution.

The variance estimated from a sample of observations of
a Normally distributed variable follows a Chi-squared dis-
tribution multiplied by ¢, where ¢ is the true variance of
the variable in the population.

The F-distribution is the distribution of the ratio of two
independent variables, each with a Chi-squared distribu-
tion and each divided by its degrees of freedom.

The ratio of two variances estimated from independent
samples of observations of a Normally distributed variable
follows the F-distribution.

The F-distribution is related to both the #- and Chi-squared
distributions. When the degrees of freedom of the numera-
tor of the F-ratio are 1, the tabulated values of the F-
distribution correspond to those of the ¢-distribution on the
same number of degrees of freedom as those in the denom-
inator of the F-ratio. When the degrees of freedom of the
denominator are extremely large, tending to infinity, then
the tabulated values of the F-distribution are the same as
those of the Chi-squared distribution when the latter are
divided by the degrees of freedom of the numerator of the
F-ratio. O

Exercises

The statements in questions 3.1-3.3 are either
TRUE or FALSE.

3.1 The random variable, x, is Normally distrib-

uted. This implies that:

(a) Its distribution is skewed to the right.

(b) The mean and the median of its distribution
are equal.

(c) The limits defined by the mean + SD contain
approximately 95% of the distribution.

(d) The distribution has a mean of 0 and a stand-
ard deviation of 1.

(e) All the animals on which this variable is
measured are healthy.

3.2 The random variable, z, has a Standard

Normal distribution. This implies that:

(a) zis a discrete random variable.

(b) The mean and standard deviation of its dis-
tribution are equal.

(c) The total area under its probability density
function is 1.
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(d) If z = (x — u)/o, where x is a Normally dis-
tributed random variable, then z has a mean
equal to y and a standard deviation equal
to o.

(e) Approximately 68% of the distribution lies
between the limits z =-1 and z = +1.

3.3 Indicate whether the following statements

are true or false:

(a) A random variable that follows the Binomial
distribution can take more than two values.

(b) The Binomial distribution is the most widely
used theoretical distribution in biological
statistics.

(c) If sample data approximate a Normal distri-
bution, then the data have been selected
from a healthy population.

(d) The mean and variance of the Standard
Normal distribution depend on the data set.

(e) The Lognormal distribution is obtained after
we take logs of data that follow the Normal
distribution.

3.4 A family is trying to decide whether to pur-
chase a puppy bitch or a dog. Dad wants to have
a bitch. Because they cannot agree on the pros
and cons, Dad suggests that they roll dice to
make the decision:

(a) He suggests that his youngest daughter has
a go at rolling the two dice once; if she suc-
ceeds in getting a ‘double’ (i.e. two sixes, two
fives, ..., or two ones), then they will opt for
a bitch, but if not they will have a dog. As she
is about to roll, he does his calculations in his
head of the probabilities involved and he has
second thoughts.

(b) Instead, he proposes that his daughter rolls
just one die, but three times. If she fails to get
a ‘six’ in the three tries, then they will pur-
chase a bitch. He believes that now he has
the odds with him. Is he right?

Calculate the probability of getting a bitch in
(a) and (b). Show how these dice rollings illus-
trate both the addition and the multiplication
rules of probability. What type of probability
approach is this (subjective, model, frequency)?

3.5 Do you think the data sets in (a) and (b)
which follow are Normally distributed? If you
conclude that either is not approximately Normal,

would a log transformation achieve approximate

Normality?

(a) The following data (based on the summary
data in Coyne et al.,1996) are oxytetracycline
measurements from muscle samples from
Atlantic salmon (Salmo salar). The antibiotic
was added to the water over a 10-day period
for therapeutic purposes; measurements
were taken of muscle concentrations (ug/g of
muscle tissue) at the 8th day to check effec-
tive levels after dosing.

13 16 15 05 18
1.9 25 14 00 21
21 04 03 07 038
12 01 12 08 19
06 17 25 25 24

(b) The following are alkaline phosphatase
levels in the serum of 12 normal adult dogs
(ran.

54 73 203 175 359 168
28.6 543 100 140 11.7 243

3.6 The cell counts of erythrocytes in horse
blood per small square of the counting chamber
are determined. What theoretical distribution
would these counts be expected to follow most
closely? How can you check whether the counts
follow this distribution?

3.7 The mean packed cell volume (PCV) of

healthy cats approximates a Normal distribution

with mean of 0.371/1 and a standard deviation of

0.0661/1.

(a) What percentage of cats have values above
0.4011?

(b) What percentage of cats have values below
0.3011?

(c) What percentage of cats have values between
0.30 and 0.4011?

(d) What is the range containing the central 90%
of PCV values?

3.8 (a) Whatisthe area of the Standard Normal
curve:
(i) Above 2.00?
(i) Below —1.00?
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(b) What is the percentage point (i.e. z-
value) of the Standard Normal curves
for which there is:

(i) 5% of the total area in the upper
tail?

(ii) 2.5% of the total area in the lower
tail?

3.9 A Friesian cow is inseminated on a particu-
lar day and sustains the pregnancy to term. The
gestation period has an assumed Normal distri-
bution with a mean of 278 days. What is the
probability of the cow calving later than 278
days from insemination? If two Friesian cows
are inseminated on the same day (and both
sustain their pregnancies to term), what is the
probability of both of them calving before 278
days later?

3.10 Mollie is very excited as her guinea pigs
have just produced four pups (two male and two

female) and she is giving her friends, Stephen
and Stephanie, one each as a present. She thinks
it would be fun to give Stephen a male pup and
Stephanie a female pup; she does not want to
demonstrate bias in her selection so she decides
she will choose them randomly from the litter.
Each pup is of approximately the same weight
and is equally active. She closes her eyes and
reaches for a pup to give to Stephen. She finds
that it is male. So far so good! She closes her eyes
again and reaches for a second pup out of those
remaining. What is the probability that the
second guinea pig that she chooses, and which
she will give to Stephanie, is female? What, then,
is the probability that she can achieve her aim of
giving a male pup to Stephen and a female pup
to Stephanie after random selection?



Sampling and sampling

distributions

4.1 Learning objectives
By the end of this chapter, you should be able to:

e Explain the need to distinguish between a
sample and the population.

e Explain the concept of a sampling distribution.

e Give the formula for the standard error of the
mean.

¢ Calculate the standard error of the mean.

e Distinguish between the standard deviation
and the standard error of the mean.

e Give applications of the standard deviation
and the standard error of the mean.

e Explain why a confidence interval is useful.

e Calculate a confidence interval for the mean
when the population standard deviation is
unknown.

e Interpret the confidence interval for the mean.
e Explain how the standard error of the propor-
tion is calculated and interpret it.

e Calculate a confidence interval
proportion.

for the

4.2 Distinction between the
sample and the population

It is a rare situation, indeed, when we are able to
study a whole population of individuals. There
may be constraints imposed by time and eco-
nomic or practical considerations that preclude
examination of the whole population. It would

be most unusual, for example, to be able to inves-
tigate all the Thoroughbred mares in Great
Britain. In this situation, we would be most likely
to take what we would hope to be a representa-
tive sample of animals from the Thoroughbred
population (we discuss, in Section 13.6, the prin-
ciples of sampling and the methods by which we
can select our sample). We then have to general-
ize the results from our sample to the population
from which it was taken.

The price that we pay for sampling is that we
cannot make statements of absolute certainty
about the population. Instead, we are able only
to surmise about what we expect in the popula-
tion, and there will always be some doubt associ-
ated with the conclusions that we draw about the
population. We express this doubt as a probabil-
ity (see Section 3.2). The larger the sample and
the more representative it is of the population,
the smaller our uncertainty and the more likely
it is that our conclusions are correct.

4.3 Statistical inference

4.3.1 Introduction

This process of generalizing to the population
from the sample is called statistical inference.
Statistical inference enables us to draw conclu-
sions about certain features of a population when
only a subgroup of that population, the sample,
is available for investigation. It is very important

Statistics for Veterinary and Animal Science, Third Edition. Aviva Petrie and Paul Watson.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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that we are aware of the distinction between the
sample and the population from which it is taken,
as a major component of statistical theory is sta-
tistical inference.

There are two aspects of statistical inference
that play an important role in statistical analysis:
these are estimation and hypothesis testing. We
discuss estimation in this chapter. Hypothesis
testing is concerned with deciding whether the
results we obtain from our sample enable us to
discredit a particular hypothesis about the popu-
lation or whether they lend support to it. We
introduce the concepts of hypothesis testing in
Chapter 6.

4.3.2 Estimation of population
parameters by sample statistics

The purpose of sampling is to learn something
about the population. Usually, we want to know
about various features, termed parameters, which
characterize the distribution of a variable in the
population. We can describe the distribution if
we know their values. The parameters that char-
acterize the better-known discrete and continu-
ous probability distributions are discussed in
Sections 3.4 and 3.5. In particular, the parameters
that characterize the Normal distribution are the
arithmetic mean and the standard deviation.

It is impossible to determine the population
mean exactly when we have selected only a
sample of observations from that population. For
example, we do not know the precise value for
the mean number of races that Thoroughbred
mares have run when we only have the results of
a selected sample. The best we can do is estimate
its value from the sample, i.e. we have to calcu-
late the sample statistic whose value is as close
as possible to the true value of the parameter in
the population. The population parameter and its
sample statistic are usually calculated using the
same formula, but the former uses population
values and the latter uses sample values. For
example, it can be shown that the sample mean
is the best estimate of the population mean. The
sample mean is the sum of all the observations
in the sample divided by the number of observa-
tions in the sample; the population mean is the

sum of all the observations in the population
divided by the number of observations in the
population. However, one noteworthy exception
is that the population variance and its sample
estimate are not calculated using exactly the
same formula (see Section 2.6.2(c)).

4.3.3 Notation for population
parameters and sample statistics

As it is important to maintain a distinction
between the population parameters and the
sample statistics that estimate them, it is helpful
to use different notation for each. It is customary
to use Greek letters for the population param-
eters and Roman letters for the sample statistics
(see Glossary of notation in Appendix C).

4.3.4 Sampling error

It is unlikely that the value of the sample statistic
is exactly equal to the value of the population
parameter that it is estimating. We have to rec-
ognize that there is always likely to be error in
the estimate because we have sampled the popu-
lation and are not looking at it in its entirety. We
call this sampling error. We need to establish the
precision (see Section 1.8) of the sample statistic
as an estimate of the population parameter. For
this purpose, we calculate the standard error of
the estimate.

Suppose we want to know the average milk
yield of Holstein—Friesian dairy cows. Milk yield
is a continuous variable so we will use this
example to develop the ideas of sampling error
in relation to the mean (see Section 4.4).

Furthermore, we might be interested in the
proportion of cows that had been exposed to
leptospirosis. Either a cow has or does not have
a positive titre for Leptospira (Little et al., 1980),
so this is a binary variable. We will use this
example to explore sampling error in relation to
a proportion (see Section 4.6).

We will not discuss sampling error in relation
to the variance as you are unlikely to need it in
practice; you can obtain details in texts such as
Armitage et al. (2002).
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4.4 Sampling distribution of
the mean

4.4.1 Sampling error in relation to
the sample mean

Let us suppose that we are interested in making
inferences about the population mean of a numer-
ical variable, such as milk yield.

The first step is to take a representative sample
of observations from the population. By ‘repre-
sentative’ we mean, of course, that we have taken
steps, such as random selection, to ensure that we
have a sample that properly reflects the popula-
tion. (Further details of sampling methods are
given in Section 13.6.) We calculate the mean
milk yield of this sample of observations to
provide an estimate of the true mean milk yield
in the population. Because of sampling error (see
Section 4.3.4), it is unlikely that its value is exactly
equal to the population mean. The extent to
which a sample mean differs from the population
mean depends on both the following:

e The size of the sample (the sampling error is
greater for a smaller sample).

e The variability of the observations (the sam-
pling error is greater if the observations are
more diverse).

4.4.2 Concept of the distribution
of the sample means

The sample mean from one sample will probably
be slightly different from that obtained if we
were to take another sample of the same size
from the population. Expressed in another way,
there is sampling variation resulting from the fact
that the value of the sample mean varies accord-
ing to the particular sample chosen.

We can get some feel for this sampling varia-
tion by considering a hypothetical probability
distribution, i.e. the distribution of sample means
that we would obtain if we were to repeat the
sampling procedure and take all possible samples,
each of the same size, from the population and
calculate the sample mean from every sample.

We must stress that this is a hypothetical distri-
bution because, in practice, we usually make
inferences about the population mean from only
a single sample from a population. However, by
studying the properties of this theoretical distri-
bution of the sample means, called the sampling
distribution of the mean, we can evaluate the
sampling error of the sample mean.

4.4.3 Properties of the sampling
distribution of the mean

Figure 4.1 shows a diagrammatic representation
of the distribution of the sample means. Just as
with any other continuous distribution, we can
look at its shape, and obtain measures of location
and spread as summary measures of its impor-
tant features. We list the properties of the distri-
bution of the sample means below:

e Its distribution is Normal if the distribution of
the parent population is Normal. Furthermore,
the sampling distribution is approximately
Normal even if the distribution of the parent
population is not Normal, provided the size of
the samples, assumed constant, is large enough,
say greater than about 30. This is expressed
mathematically in the central limit theorem,
and is a very useful result which contributes to
the importance of the Normal distribution in
statistical inference. The resemblance of the
sampling distribution of the mean to a Normal
distribution improves as the size of the samples
increases.

e The mean of the distribution of sample means
is the mean of the parent population. We say
that the sample mean is an unbiased (free from
bias — see also Section 5.4) estimate of the
population mean; i.e. it is unbiased because the
mean of the sampling distribution of the sample
statistic coincides with the parameter that the
statistic is estimating. Furthermore, we know
that the sample means are distributed sym-
metrically around the true mean because of
the Normality property.

e The standard deviation of the distribution of
the sample means, each from a sample of size
n, is given by o/<n, where o is the standard
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deviation of the observations in the popula-
tion. The standard deviation of the sampling
distribution of the mean is a measure of the
dispersion of the sample means. It is known
as the standard error of the mean. When there
is no ambiguity, it may be called simply the
standard error, and is often abbreviated to SE
or SEM. So

o
SEM = —
Jn

From the formula, we can see that the standard
error of the mean increases with increasing
values of o (i.e. as the variability of the parent
population increases) and is smaller with

larger samples. For example, for a given popu-
lation with a fixed standard deviation, if we
want to halve the standard error, we must
quadruple the sample size. Therefore, we have
a more precise estimate of the population
mean if the sample size is large.

4.4.4 Estimation of the standard
error using sample data

The SEM = 0'/\/;, where ois the standard devia-
tion of the observations in the population. If
we are using our sample to estimate the popula-
tion mean, it is very unlikely that we will have
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knowledge of 0. Hence we will have to replace o
in the formula for the SEM by its sample esti-
mate, s. Thus, the estimate from the sample is

SEM = —

wheres:\,M
n-1

Example

The most recent standard lactations (305 days)
of a random sample of 256 Holstein—Friesian
cows, of mixed numbers of lactations, gave an
estimated mean milk yield of 9414 kg with an
estimated standard deviation of 2353 kg. The
estimated standard error of the mean is there-
fore 2353/+/256 = 147 kg.

S

4.4.5 Distinction between the
standard deviation and the
standard error of the mean

We have introduced you to the SD in Section
2.6.2(d) and the SEM in this chapter. But what
are they for? They have very different applica-
tions; it is important that you have a clear under-
standing of the distinction between the standard
deviation of the observations and the standard
error of the mean. The two are frequently con-
fused, with the consequence that the wrong
measure is used to describe the variability of
interest; this may lead to a misinterpretation of
the data.

e The standard deviation is a measure of the
scatter of the observations (see Section
2.6.2(d)). It gives an indication of how close
the observations are to their mean; it may be
thought of as a kind of average measure of the
deviation of each observation from the mean.
It may be used to construct a reference inter-
val (see Section 2.7) which defines the range of
most of the observations in a population.

e The standard error of the mean is a measure
of the precision of the sample mean as an esti-
mate of the population mean. It evaluates the
sampling error by giving an indication of how

close a sample mean is to the population mean
it is estimating. As we show in Section 4.5, the
SEM may be used to construct a confidence
interval which allows us to judge the precision
of our estimate of the population mean.

4.5 Confidence interval for a mean

4.5.1 Understanding confidence
intervals

We have stressed that the sampling distribution
of the mean is a hypothetical distribution. In
practice, we do not take repeated samples from
our population; we usually take just one sample
and use the mean from this sample as an estimate
of the population mean. However, we can exploit
the properties of the sampling distribution of the
mean to indicate how ‘good’ our estimate is.

The best way of establishing whether the esti-
mate is good is to calculate what is called the
confidence interval for the mean. This interval,
defined by its upper and lower limits (the confi-
dence limits), is generally interpreted as the
range of values within which we expect the
true population mean to lie with a certain
probability.

e If the confidence interval is wide, then the
sample mean is a poor estimate of the popula-
tion mean.

e If the confidence interval is narrow, then the
sample mean is a good estimate, i.e. it is a
precise estimate of the population mean.

If we have a 95% confidence interval for the
mean, then we say that we are 95% certain that
the population mean lies within this interval.
Strictly, this interpretation is flawed because the
population mean is a fixed number and it is the
confidence interval that varies from one sample
to another. The proper interpretation of the 95%
confidence interval is that, if we were to take
repeated samples of the same size from the pop-
ulation and calculate the 95% confidence inter-
val from each sample, we would expect 95% of
them to contain the true population mean.
However, because it is intuitively more appeal-
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ing, we interpret confidence intervals in this book
using the first and more simplistic approach.
Typically, we calculate the 95% confidence inter-
val for a parameter but we may sometimes find
that 90% or 99% confidence intervals are quoted.
A 99% confidence interval will inevitably be
wider than a 95% confidence interval because we
need to be more confident that the parameter is
contained in the interval.

The width of the confidence interval depends
on:

e The degree of confidence required.

e The sample size (a larger sample provides a
more precise estimate and therefore a nar-
rower confidence interval).

e The variability of the characteristic under
investigation (a more variable set of observa-
tions provides a less precise estimate and a
wider confidence interval).

We develop the uses of confidence intervals in
Section 6.6. We summarize the formulae for con-
fidence intervals for frequently used parameters
in the tables in Appendix B.

4.5.2 Calculating the confidence
interval for the mean

The upper limit of a confidence interval for the
mean is calculated by adding a multiple of the
standard error to the sample mean; the lower
limit is obtained by subtracting that multiple of
the standard error from the sample mean. This is
the general approach to calculating the confi-
dence interval for most parameters. The difficulty
is in deciding which multiple of the standard
error to use to determine an interval of a particu-
lar confidence.

(a) Where o is known

Provided we have knowledge of o, the 95% confi-
dence interval for the meanis x £+1.96 x SEM, i.e.

o o o
X+1.96—= ()?—1.96—, x+1.96—)
Jn Jn Jn

Here, the upper and lower limits of the confi-
dence interval within the bracket are separated
by the comma. For the 95% confidence interval,
the multiple is 1.96 (often approximated by 2).
The multiple is 2.58 for a 99% confidence inter-
val;note that a multiple of 1.00 only gives approx-
imately a 68 % confidence interval. The values for
the multiples are obtained from Table A.2.

Justification
We know that the sampling distribution of the /ﬂ
mean is approximately Normal, and that its mean =
is equal to the population mean, u, and its standard deviation
is equal to the SEM = /+/n (see Section 4.4.3). Thus, 95% of
the sample means in the sampling distribution of the mean
are contained in the interval, u £ 1.96 SEM (see Box 3.5).
An alternative way of saying this is that there is a 95%
chance that a sample mean, X, is contained in the interval
1 +1.96 SEM. If we now interchange the y and the X, we can
say that there is a 95% chance that u is contained in the
interval X £1.96 SEM or, strictly, that 95% of such confidence
intervals on repeated sampling would contain 4. O

(b) Where o is unknown

Usually we do not know the value of the popula-
tion standard deviation, o, so we replace it by the
sample estimate

[T
5= n-1

We can no longer use the Normal distribu-
tion to determine the multiple (e.g. 1.96) for the
confidence interval;, instead, we use the -
distribution. Then the 95% confidence interval
for the mean is

— N — N — S
Xtityps——= (x —loos ==, X tloos _)
Jn Jn Jn

where the multiple, s, is the percentage point
of the t-distribution (see Table A.3) with n — 1
degrees of freedom; it gives a total tail area prob-
ability of 0.05.

Justification
The distribution of the sample mean divided by its /ﬂ
estimated standard error follows the r-distribution, =———

provided the observations come from a Normal distribution
(see Section 3.6.2). The multiple is affected by the sample size
and increases as the sample size decreases. O
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We should be aware that the multiple of the
standard error obtained from the z-distribution is
a slightly larger number than that obtained from
the Normal distribution unless n is extremely
large. This means that if we need to estimate the
standard deviation from the sample, we will
obtain a wider confidence interval than if we
have knowledge of 0. However, the two intervals
are much the same when the sample size is large,
because the t-distribution approaches Normality
when the degrees of freedom are large (see
Section 3.5.4).

Example

In Section 4.4.4 we summarized the results of the
milk yields of a sample of 256 Holstein—Friesian
cows; the sample mean was 9414 kg and the esti-
mated SEM was 147 kg. From Table A.3, f,s for
df = 255 is approximately 1.96. The 95% confi-
dence interval for the true mean milk yield is
given by

T los— = (9414 — 1.96 X 147, 9414 + 1.96 x 147)

Jn
=(9125.9,9702.1) kg

Hence we are 95% certain that the mean milk
yield for the population of Holstein—Friesian
cows lies between 9126 and 9702 kg.

4.6 Sampling distribution of
the proportion

4.6.1 Concept of the distribution
of sample proportions

The concept of the distribution of sample pro-
portions is the same as that of the distribution
of sample means. It is a hypothetical distribu-
tion whose properties are useful if we want to
make statistical inferences about the population
proportion.

Suppose we are interested in the proportion
of individuals in a population, x, who possess a
certain attribute. For example, we may want to
know the proportion of cattle in an area that has
been exposed to Leptospira infection. We select
a random sample of size n from this population
and observe the number, r, with the attribute in

the sample. We then take the proportion with
the attribute in the sample, p = #/n, as our esti-
mate of n. The sampling distribution of the
proportion is the distribution of sample propor-
tions that we would obtain if we were to repeat
the sampling procedure and take all possible
samples, each of the same size, from the popula-
tion and calculate the proportion from each
sample. It is a hypothetical distribution because,
in reality, we only take a single sample from the
population.

4.6.2 Properties of the sampling
distribution of the proportion

The distribution of sample proportions has the
following properties:

e Its distribution is approximately Normal if the
sample size is large; in fact, the distribution of
a proportion is really a Binomial distribution
(see Section 3.4.2) but, as we explained, this
is approximately a Normal distribution for
large n.

e The mean of the sampling distribution of the
proportion is the population proportion, 7.
Thus the sample proportion, p, determined
from a single sample, is an unbiased estimate
of the population proportion.

e The standard deviation of the sampling
distribution of the proportion is \/z(1—7)/n. It
is called the standard error of the proportion
and is a measure of the precision of p as
an estimate of m It is estimated from the
sample by

Even though we estimate r by p, the sampling
distribution of the proportion is still approxi-
mately Normal for large n.

Note that if we replace the estimated pro-
portion (p) by a percentage (p%), then the
estimated standard error of the estimated per-

centage is
SE(p%) = [p% (100 - p%)
n
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4.7 Confidence interval for
a proportion

The confidence interval for the population pro-
portion, 7, is calculated by adding to, and sub-
tracting from, the sample proportion, p,a multiple
of its standard error. The multiple is obtained
from Table A.2 because the sampling distribution
of the proportion is approximately Normal (see
Section 4.6). In practice, we use the estimated
standard error.

The 95% confidence interval for the popula-
tion proportion is estimated by

px1.96 SE(p)

PPN =D ED

The interpretation of this confidence interval
is that we are 95% certain that the true popula-
tion proportion is contained in the interval that
spans p by 1.96 times SE(p). (Strictly, 95% of
such confidence intervals contain 7 in repeated
sampling.)

Note that we can modify this formula if we are
working with percentages, rather than propor-
tions, by replacing each proportion by the appro-
priate percentage and replacing the 1 inside each
square root by 100.

Example

A sample of 115 cattle is randomly selected from
the population in the area. Blood samples from
the cattle are tested for the presence of antisera
to Leptospira and, according to the titres, are
classified as either positive or negative. In this
sample, there are 36 cattle with positive titres.
The estimated proportion of cattle exposed to
Leptospira is thus 36/115 =0.31 (corrected to two
decimal places). The estimated standard error of
this proportion is

SE(p) = \/p(ln— p) _ \/0.313(;1—50.313) 0043

The 95% confidence interval for the true propor-
tion exposed is given by

px1.96 SE(p)
=(0.313-1.96x0.043,0.313+1.96 x0.043)
=(0.228, 0.398)

Hence, we are 95% certain that the true propor-
tion of cattle exposed to Leptospira lies between
0.23 and 0.40.

4.8 Bootstrapping and
jackknifing

TTT-T

Two other approaches to obtaining confidence intervals for
parameters are bootstrapping and jackknifing. Both rely on
simulation techniques that are extremely computer intensive
and are, therefore, not performed by hand. We might use
them to estimate or provide a confidence interval for a
parameter when it is difficult or impossible to do so by assum-
ing a known probability distribution for the sampling distri-
bution of the parameter. In each case, we generally start by
taking a simple random sample of individuals from our
population.

e Bootstrapping. We create a set of simple random subsam-
ples (often 999 or more) from our original sample. Each of
the subsamples in the set is of the same size as the original
sample. This is feasible because the process for each sub-
sample involves sampling with replacement; this means that
once a particular individual is selected to be in a subsam-
ple, it is ‘put back’ into the original sample so that it is
available for reselection, and therefore may occur more
than once in that subsample. So a subsample is created by
taking a single unit from the original sample, noting it, and
then replacing it; a second is taken, it is noted, and so on
until the subsample size equals the size of the original
sample. Each of the subsamples in the set is produced in
this way. A single estimate of the parameter of interest (e.g.
the population mean) is determined from each subsample.
By considering the distribution of the estimates from all
the subsamples, it is possible to obtain an overall estimate
of the parameter and its associated confidence interval. In
particular, the confidence limits for the parameter are
usually taken as the relevant percentiles of the simulated
distribution. So they would be the 5th and 95th percentiles
for a 90% confidence interval. We discuss an application of
bootstrapping in Section 13.6.4(b).

Jackknifing. Here we take a simple random sample of n
observations from our population. We then omit a single
observation from the original sample to obtain a subsam-
ple of size (n — 1), and estimate the parameter of interest
in this subsample. If we repeat this process, omitting every
observation in turn, we produce n subsamples, each con-
taining one observation less than the number of observa-
tions in the original sample. We then use the distribution
of the n estimates of the parameter from these subsamples
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to obtain an overall estimate of the parameter of interest
and the relevant confidence interval. O

Exercises

The statements in questions 4.1-4.3 are either
TRUE or FALSE.

4.1 The standard error of the mean:

(a) Measures the accuracy of each observation
in the sample.

(b) Is a measure of spread of the observations in
the sample.

(c) Isameasure of precision of the sample mean
as an estimate of the population mean.

(d) Is always less than the estimated standard
deviation of the population.

(e) Decreases as the size of the sample from a
given population increases.

4.2 The 95% confidence interval for the mean:

(a) Contains the sample mean with 95% certainty.

(b) Is less likely to contain the population mean
than the 99% confidence interval.

(c) Contains 95% of the observations in the
population.

(d) Is approximately equal to the sample
mean * 2 X standard deviation.

(e) Can be used to give an indication of whether
the sample mean is a precise estimate of the
population mean.

43 A sample of 14 dogs shows they have
a mean plasma potassium of 4.57 mmol/l
(see Section 2.6.1(a)), and an estimated SD
of 0.32 mmol/l (see Section 2.6.2(d)); the stand-
ard error of the mean is thus 0.085 mmol/l
The 95% confidence interval for the mean is
4.42-4.72 mmol/l.

This means that:

(a) There is a 95% chance that a dog’s plasma
potassium lies between 4.42 and 4.72 mmol/l.

(b) We can be 95% certain that the mean plasma
potassium of the population of dogs lies
between 4.42 and 4.72 mmol/L

(c) 95% of sample means of the dogs’ plasma
potassium levels would lie between 4.42 and
4.72 mmol/l in repeated sampling.

(d) 95% of dogs have a plasma potassium that
lies between 4.42 and 4.72 mmol/L

(e) There is a 5% chance that the sample mean
of the dogs’ plasma potassium levels lies
outside the interval 4.42-4.72 mmol/l.

4.4 Calculate the 95% and 99% confidence
intervals for the population means, given the fol-
lowing information:

(a) Analysis of 100 grass samples gave a
mean magnesium content of 2.35 mg/kg dry
matter with a known population variance of
0.16 (mg/kg)*.

(b) Milk progesterone values in 25 cows taken
24 days after insemination had a sample
mean of 34.8 ng/ml and a sample SD of
13.0 ng/ml.

4.5 A representative sample of 60 sows from
piggeries in Suffolk showed that five animals had
joint lameness.

(a) Calculate the 95% confidence interval for
the true proportion of joint lameness in the
population of Suffolk sows.

(b) Would you expect the 99% confidence inter-
val for this proportion to be wider or nar-
rower than the 95% confidence interval?

(c) If you had a larger sample of sows, would
your 95% confidence interval be wider or
narrower than the one you have calculated?



Experimental design and

clinical trials

5.1 Learning objectives
By the end of this chapter, you should be able to:

e Distinguish between observational and experi-
mental studies.

e Describe what is meant by a clinical trial, lon-
gitudinal study, cohort study and case—control
study.

e Calculate and interpret the relative risk,
various forms of attributable risk, the odds of
disease and the odds ratio.

e Explain the need for a ‘control’ group in a
clinical trial.

e Explain the importance of randomization and
describe methods for ensuring appropriate
random allocation of individuals or groups.

e Explain the importance of ‘blinding’.

e Describe the value of replication and blocking
in experimental design.

e Explain the terms ‘confounding’, ‘interaction’
and ‘analysis by intention-to-treat’.

e Describe various approaches to handling
confounders.

e Distinguish between different types of missing
data and explain ways in which missing data
may be handled.

e Distinguish between parallel group designs
and cross-over studies.

e Define the term ‘outlier’ and describe methods
to deal correctly with them.

5.2 Types of study

A study of statistics in veterinary and animal
science overlaps with epidemiology, the study
of disease patterns and their determinants in
the population. In this chapter, we introduce
you to some of the important concepts in
epidemiology; they can be explored more fully
in specialist texts, such as that by Thrusfield
(2005).

Usually, there are restrictions on the availa-
bility of cases in studies of clinical conditions
in animal populations. This may be because
the condition is rare, or the cost of animals is
too high, or there are time restrictions in a
busy practice or animal industry. In order to
make the most of the material available, it is
important to design the study in the most pro-
ductive way. Several different approaches are
available.

In the planning stage of your study, you
are faced with a number of choices which are
dictated by the problem you are investigating.
Do you wish to intervene or are you simply
going to observe what is there? Do you intend
to study your animals at a single point in time
or do you wish to follow them over time? Do
you want to start with healthy animals and
observe whether the disease occurs, or do you
start with diseased animals and investigate the
causes?

Statistics for Veterinary and Animal Science, Third Edition. Aviva Petrie and Paul Watson.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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5.2.1 Distinction between
observational and experimental
studies

(a) Observational study

In an observational study, we merely observe the
animals in the study and record the relevant
measurements on those animals. We make no
attempt to intervene, for example, by administer-
ing treatments or withholding factors that we
feel may affect the course of the disease. Clearly,
we cannot randomly allocate animals to treat-
ment groups in an observational study. A particu-
lar type of observational study is a survey in
which we examine an aggregate of animals in
order to derive values for various parameters
in the population. This may be one of the
following:

¢ A population survey which includes the entire
population, e.g. a census.

e A sample survey in which we examine a rep-
resentative sample of animals so that we may
draw conclusions about the whole population
of animals, as discussed in Section 4.3.

However, many observational studies are con-
cerned with investigating associations. In particu-
lar, an epidemiological study is concerned with
investigating the aetiology of a disease by deter-
mining whether various factors (termed risk
factors) are associated with the occurrence and
distribution of the disease. For example, the prev-
alence of Cushing’s syndrome in dogs is greater
in toy breeds, a fact established by epidemiologi-
cal studies comparing breeds.

(b) Experimental study

In an experimental study, we intervene in the
study by, for example, deliberately applying a pre-
ventative measure, such as a treatment, or reduc-
ing the exposure of the animal to a factor, such as
temperature. We then observe the effect of our
intervention on the response of interest, usually
with a view to establishing whether a change in
response may be directly attributable to our
action. Random allocation is an essential design

component of an experimental study. Two exam-
ples of different types of experimental studies are
laboratory experiments and clinical trials.

In laboratory experiments, the units of inves-
tigation may typically be cells, tissues or whole
animals, and the interventions can be very varied.
For example, we may be concerned with studying
the role of growth promoters or hormones on cell
processes (e.g. protein phosphorylation or mRNA
expression), the effects of feed additives on
growth rates of growing animals, or the quality
of wound healing with different suture tech-
niques. On the other hand, clinical trials, taken in
their widest sense, are concerned with investigat-
ing the efficacy of particular treatments or pro-
phylactic measures in resolving or preventing
clinical conditions, and the units are generally
individual cases. Much, but not all, of what follows
is concerned with the design of clinical trials.

A helpful reference for the design of studies,
both observational and experimental, is the text
by Machin and Campbell (2005).

5.2.2 Distinction between cross-
sectional and longitudinal studies

(a) Cross-sectional study

A cross-sectional study is one in which we take
all our measurements on the animals included in
the study at a given point in time. In an epidemio-
logical investigation, this means we observe both
the values of the risk factors and the disease
state for every animal at the same time, within
the bounds of practicality. Cross-sectional studies
provide only limited information because they
do not take into account the temporal relation-
ship between the risk factors and the disease
state. However, cross-sectional studies are useful
when the aims of the study are essentially descrip-
tive; for example, when we are estimating the
point prevalence of a particular disease from a
sample survey (Box 5.1).

(b) Longitudinal study

A longitudinal study is one in which we investi-
gate changes over time. The clinical trial is an
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Box 5.1 The distinction between prevalence and incidence

The prevalence and incidence of a disease are two terms
which are often confused.

e The prevalence of a disease relates to the number of
cases of the disease that exist at a specific instant in
time (point prevalence) or in a defined interval of time
(period prevalence).

e The incidence of a disease relates to the number of
new cases of the disease that develop in a defined time
period.

Both prevalence and incidence are generally expressed
as proportions (percentages) of the population at risk
(i.e. those individuals who could succumb to the disease)
at the midpoint of the study period or at a specified
instant in time, as relevant.

example of a longitudinal study; we administer
a treatment at one point in time, and observe
the effect of that treatment at a later time. There
are two types of longitudinal studies, which are
defined according to whether the changes over
time are investigated prospectively (as in most
cohort studies) or retrospectively (as in the case—
control study) — see Section 5.2.3.

5.2.3 Distinction between
cohort and case-control
observational studies

(a) Cohort study

In a cohort study of disease aetiology, we start by
defining groups (cohorts) of disease-free animals
according to the exposure of the animals in the
groups to the factor(s) of interest. Generally, we
follow these groups forward in time to see which
animals develop the disease under investigation.
An example of a cohort study is one in which
Wilesmith ez al. (1997), in exploring the mode of
transmission of bovine spongiform encephalop-
athy (BSE), wanted to determine if BSE-positive
cows were more likely to produce offspring who
developed BSE than those dams who were BSE
negative. Their cohort comprised two groups of
cows: those that had developed BSE and those
that had not shown clinical signs of BSE within
6 years (matched for age and herd). The offspring

of these cows, born in the same calving season,
were then followed until their 7th year of life, or
until they developed clinical signs of the disease
if this occurred earlier. Thus, in this example, the
exposure groups were the cows with and without
BSE, and the disease outcome assessed was
whether the calves developed BSE over a 7-year
period.

A cohort study has the advantage that we can
use it to collect information on exposure to a
wide range of factors, even rare ones, and on dif-
ferent outcomes. However, it is not sensible to
embark on a cohort study when the disease
outcome is rare and, because its time span can be
quite long, it tends to be expensive and may
suffer from inconsistencies.

We usually analyse data from cohort studies
by estimating the true risk of the disease in the
populations of animals that have been ‘exposed’
and ‘unexposed’ to the factor. The true risk of
disease is the proportion of animals in a popula-
tion of susceptible animals that develop the
disease in the time interval under consideration;
it represents the probability that an animal will
develop the disease in the time period. The
disease risk will be greater if the study period is
longer as animals will then have more time in
which to contract the disease, and so it is essential
that the study period is the same for all animals
when evaluating risk. The risk of the disease in a
particular exposure group is estimated as the pro-
portion of animals in the relevant cohort who
develop the disease during the study period.

Relative risk

The relative risk (RR), the ratio of the disease
risks in the exposed and unexposed groups, pro-
vides a measure of the strength of the association
between the disease and the exposure to the
factor. If the relative risk is unity, then exposure
to the factor does not affect the animal’s chance
of developing the disease. If the relative risk
(generally, the risk in the exposed cohort, divided
by the risk in the unexposed cohort) is substan-
tially greater than unity, then an animal has an
increased risk of developing the disease if it
has been exposed to the factor. For example,
Wilesmith et al. (1997) found that 42 (14.0%)
offspring of the 301 animals born to BSE-positive
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dams developed BSE within the first 7 years of
their lives, compared with 13 (4.3%) offspring of
the 301 born to BSE-negative dams. This repre-
sents an estimated relative risk of 42/13 = 3.23
(95% confidence interval 1.77-5.89, P < 0.001),
i.e. those calves born to BSE-positive mothers
had more than a threefold greater chance of
developing BSE than those from BSE-negative
mothers. Another way of expressing this is to
say that the risk of offspring developing BSE
increased by over 200% when the dam was
infected. However, these data do not distinguish
a possible genetic component from true maternal
transmission. (We provide the formula for the
confidence interval for the true relative risk in
Table B.1, and you can find details of how to test
the hypothesis (see Chapter 6) that this relative
risk is unity in texts such as Armitage et al. (2002).
For an explanation of P, see Section 6.3.3.)

Attributable risk

It may be more appropriate in studies relating to
veterinary public health, rather than those con-
cerned with disease aetiology, to consider the dif-
ference in relevant disease risks, and evaluate
some form of attributable risk.This can be meas-
ured in various ways: you may find that the nota-
tion and terminology for the different measures
is not consistent in different texts.

We may calculate the population attributable
risk (PAR) which is equal to the difference
between the risk in the whole population (esti-
mated by Risk,,;) and the risk in the unexposed
group (estimated by Riskunep). It describes the
excess risk in the population attributable to the
risk factor — see also Table B.1 (for the confi-
dence interval) and Section 16.5.3. In the BSE
example, Risk.. is the estimated proportion of
offspring with the disease in the whole popula-
tion of dams = (42 + 13)/602 = 0.091 and Risk exp
=13/301 = 0.043. Hence the PAR is estimated as
0.091 — 0.043 = 0.048 (i.e. approximately 5%), i.e.
for every 100 dams in the population, five of the
offspring had BSE attributable to the dams being
BSE positive. Sometimes, we calculate the PAR
as a proportion of the risk in the whole group.
This population attributable fraction (PAF), also
called the population proportional attributable
risk, is estimated as PAR/Risk;. It describes the
proportion of the disease in the whole popula-

tion attributable to exposure that would be
avoided if exposure were removed from the pop-
ulation. The PAF therefore provides a measure
of preventable disease. In the BSE example, the
PAF is estimated as 0.048/0.091 = 0.527, i.e. 53%
of BSE in the offspring is attributable to some of
the dams being BSE positive.

Sometimes our focus is on evaluating the effect
of a risk factor on individuals who have been
exposed to the risk factor rather than evaluating
the excess risk in the population. In this case we
estimate the attributable risk (AR), also referred
to as the absolute risk reduction (ARR) or the
risk difference (RD). It is equal to the difference
in the risks in the exposed and unexposed por-
tions of the population, i.e. it is estimated by
Riskey, — Riskynexp. It evaluates the increase in the
risk of disease in exposed individuals, compared
to unexposed individuals, that results from the
exposure. In the BSE example, the estimated
Riske, = 42/301 = 0.140, so the estimated
AR =0.140 — 0.043 = 0.097. Hence for every 100
BSE-positive dams, approximately 10 of the off-
spring were BSE positive as a consequence of the
disease status of the dams. Furthermore, the
attributable fraction (AF), also called the attrib-
utable fraction (exposed) or the proportional
attributable risk, is the proportion of disease in
the exposed group that would be avoided if the
exposure were removed, and is equal to
AR/Risk.y, The attributable fraction does not
take the prevalence of exposure to the risk factor
into account so is not very helpful as a public
health measure of preventable disease. In par-
ticular, when the prevalence of the risk factor is
low, exposure to the risk factor will have little
effect on the number of animals with the disease,
even if the AF is high. In the BSE example, the
estimated AF =0.097/0.140 = 0.693. Thus, 69 % of
cases of BSE in the offspring of BSE-positive
dams is attributed to these dams being BSE posi-
tive. It may be of interest to note that the
AF = (RR - 1)/RR, where RR is the relative risk.

(b) Case—control study

In a case—control study of disease aetiology, we
start by defining the groups of diseased and
healthy animals; these are the cases and the con-
trols, respectively. Then we assess whether the
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animals in the two groups have differences in past
exposure to various risk factors. Case—control
studies are often termed retrospective studies
because we have to go back in time in order to
determine an animal’s exposure to the risk factor.
There are two types of case—control design which
depend on the way in which we select our controls.
Either we choose the controls so that each (or
more than one) control animal is matched with a
case with respect to variables that may be likely to
influence the development of disease, such as the
animal’s breed, sex and/or age; this leads to what
is termed a matched design. Sometimes, we have
frequency or group matching when the controls
are selected so that the potential risk factor is the
same, on average, in the groups of cases and con-
trols. On the other hand, we may have an
unmatched design in which the disease-free or
control animals are selected from the population,
but without any attempt at matching.

Although a case—control study is relatively
quick, easy and cheap to perform, does not suffer
from losses to follow-up and can be used when
the disease outcome is rare, it may suffer from
recall bias (there is a differential ability between
carers in remembering relevant facts about cases
and controls relating to exposure), and it is not
suitable when exposures to the risk factor are
rare. Furthermore, we cannot estimate the rela-
tive risk directly in a case—control study since the
relative risk is a ratio of the risks of the disease
in the exposed (to the factor) and unexposed
groups of animals. In a case—control study, we
start with animals with and without the disease
rather than with different exposure groups, so we
can only estimate the relative risk indirectly. We
do this by calculating what is called the odds
ratio (OR), which is the ratio of two odds, usually
the odds of disease in the group exposed to the
factor divided by the odds of disease in the group
not exposed to the factor. The odds of disease in
a group of animals is the ratio of the probability
of having the disease to the probability of not
having the disease. Analogous to the relative risk,
we can test the hypothesis that the true odds
ratio in the population is one (details are given
in Armitage et al.,2002) and provide confidence
intervals for the odds ratio (see Table B.1). Note
that the odds ratio is a reasonable estimate of the
relative risk only if the prevalence of the disease

is very low (say, <10%). If the disease is not rare,
the odds ratio will be greater than the relative
risk if the relative risk is greater than one, and it
will be less than the relative risk otherwise.

As an illustration of a case—control study, con-
sider the study (based on Clark et al., 2004) that
examined the relationship between the forma-
tion of vertical fissures or sandcracks in the
hooves of adult beef cattle and the presence of
horizontal grooves. At a local abattoir, all four
feet were collected from 20 mature beef cows
with no vertical fissures present on any claw (the
controls) and 20 mature beef cows with a vertical
fissure present on at least one claw (the cases). A
cow was categorized as suffering from horizontal
grooves if one or more hooves showed evidence
of a lesion. Of 20 cows classified as having a verti-
cal fissure, 19 had at least one horizontal groove
and one cow had no horizontal groove; 13 of the
20 control cows had at least one horizontal groove
and seven of the control cows had no horizontal
groove. There were therefore a total of 32 cows
with at least one horizontal groove and eight
cows with no horizontal groove. Thus, the odds of
having a vertical fissure in the cows with at least
one horizontal groove was estimated as (19/32)/
(13/32) =1.4615, and the odds of having a vertical
fissure in the cows with no horizontal groove was
estimated as (1/8)/(7/8) = 0.1429. Hence the odds
ratio was estimated as (1.4615)/(0.1429) = 10.2
(95% confidence interval 1.1 to 484.7, P = 0.04),
i.e. the odds of having a vertical fissure was esti-
mated as being 10.2 times greater in a cow with a
horizontal groove than in a cow without a hori-
zontal groove. However, the extremely wide con-
fidence interval for the odds ratio indicates that
although the true odds of having a vertical fissure
could be nearly 500 times greater in a cow with a
horizontal groove, there could be very little dif-
ference in the two odds.

5.3 Introducing clinical trials

We use the term clinical trial to describe any
planned experiment that involves human or
animal subjects, and is designed to assess the
effectiveness of one or more treatments or pre-
ventive measures such as vaccines. The term has
been expanded from human clinical medicine to
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include studies in veterinary clinical medicine
and animal health sciences; for example, the
testing of the efficacy of novel pharmacological
agents to control ectoparasites in dogs and cats,
or a formal study of a novel method of repair of
the anterior cruciate ligament in dogs. You can
obtain a full discussion of clinical trials in Hack-
shaw (2009), Machin et al. (2006), Matthews
(2006) and Pocock (1983).

In the course of the development of veterinary
treatments, there is usually a stage of experiment
using laboratory animals to establish safety and
efficacy of the treatment. If this is a drug devel-
opment, this stage would also include pharmaco-
logical studies. A treatment that passes these
preliminary assessments would then be exam-
ined in a clinical trial in which the treatment is
applied to the species of interest but with a
narrow range of its potential variation, e.g. beagles
or Labradors as ‘model’ dogs. Up to this point,
all these trials would usually be carried out in the
UK under the Animals (Scientific Procedures)
Act 1986 (see Section 15.3.4).

We should distinguish the clinical trial from
the clinical field trial. The former is a trial that
takes place in well-regulated conditions; the clin-
ical field trial is a comparative study involving
new treatments or preventive measures applied
under natural, field or semi-field conditions. It is
usually carried out in the UK under the Veteri-
nary Surgeons Act 1966.

e The clinical field trial introduces elements
of variation attributable to the involvement
of the owners or stockmen, and these are
important in assessing the final efficacy of a
treatment in a pragmatic setting. The overall
effectiveness of a drug treatment, for example,
involves not just the pharmacological action
of the drug but the ability of the owner/
stockman to administer it correctly, e.g. the use
of helminthological treatments under farm
conditions.

e The clinical field trial also introduces the full
range of genetic and environmental variation
in a species, e.g. Chihuahuas to Great Danes
kept under a variety of different conditions.

We would like to refer you to the REFLECT
statement (see Section 17.3) which is an evidence-

based minimum set of items for reporting
livestock trials with production, health and
food safety outcomes. Following these proposed
guidelines may help alleviate the problems
arising from inadequate reporting of veterinary
randomized controlled trials.

5.4 Importance of design in the
clinical trial

We undertake a clinical trial in order to evaluate
the benefit to be derived from introducing a new
therapy or intervention in given circumstances.
Our interest is in projecting the results from the
sample of animals studied in the trial to some
future population of similar animals suffering
from the same condition and treated in compa-
rable circumstances. In order to ensure that this
hypothetical future population receives what is
truly the best treatment, it is essential that the
trial is based on rigorous scientific principles and
is free from bias, i.e. from an effect that deprives
a statistical result of representativeness by sys-
tematically distorting it (see also Section 4.4.3).
Biases can arise in a clinical trial for a variety of
reasons. For example, there may be selection bias
(the animals in the study are not representative
of the population of interest), observer bias (say,
when one observer tends to over-report a par-
ticular variable) or publication bias (the ten-
dency for journals to publish only papers with
statistically significant results). Two particularly
important biases are:

e Allocation bias, which may arise if the treat-
ment groups are not comparable when we
allocate the experimental animals to the treat-
ment groups.

e Assessment bias, which may arise if we are
influenced by preconceived ideas about the
superiority of one treatment over another
when we evaluate the response to treatment.

If we incorporate measures into the trial design
that avoid biases arising, we can then contem-
plate ways in which we can optimize the quality
of the estimate of response to treatment, most
notably by attempting to maximize its precision.
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In the sections that follow, we describe the
important features of design that contribute to a
worthwhile trial leading to useful and valid con-
clusions concerning the effectiveness of the
treatments or interventions. Note that a compe-
tent trial is invariably:

e Comparative — comprising more than one
treatment group. We are then able to make
judgements about the response to the new
therapy or intervention in relation to the
response that is obtained in the absence of
therapy or compared with a standard therapy
(see Section 5.5).

® Randomized — we assign the animals to the
treatment groups by some chance process to
ensure that the comparison groups are alike
with respect to any variables that may influ-
ence response (see Section 5.6).

Incorporating both of these features into a trial
leads to a randomized controlled trial, often
abbreviated to RCT.

5.5 Control group
5.5.1 Why do we need a control?

In any experimental investigation, whether a
clinical trial or a laboratory investigation, without
some basis for comparison we cannot establish,
with any degree of certainty, that the new treat-
ment under investigation is preferable to the
standard treatment or even to no treatment at
all. In a clinical trial, for example, the condition
of the animal may improve over a defined period,
purely as a consequence of time and the natural
curative and healing properties of the body, and
irrespective of the treatment the animal receives.
Similarly, in a laboratory investigation, changes
in the variable under investigation can occur by
chance alone. Thus, we cannot make an inference
that the new treatment is more beneficial than
the standard treatment if we do not have any
information about the response to the standard
treatment given over the same period to a similar
group of animals. Similarly, we may doubt the
effectiveness of a new vaccine on a given popula-

tion if there is no comparable information on a
similar population of animals who are not given
the vaccine.

Furthermore, in the absence of a comparison
or control group, we know that every animal is
receiving the new treatment (i.e. there is no
blinding — see Section 5.7), and in our enthusi-
asm for this treatment, we may compromise the
results, particularly if the assessment of response
is subjective. A clinical trial which is not com-
parative is likely to lead to over-optimistic and
therefore biased results.

5.5.2 Positive or negative control?

A comparative clinical trial is often termed a
controlled clinical trial. The choice of control
group depends on the exact circumstances of the
trial. If a standard therapy exists, then it is ethi-
cally unacceptable to conduct the trial without
including the standard therapy as the control,
which may then be termed a positive control. If,
however, there is no known effective treatment,
or if the condition is not so serious that the
absence of treatment does not pose an ethical
dilemma, then it is justifiable to have a control
group, sometimes described as a negative control
group, in which the animals receive no active
treatment. (NB In some laboratory studies, the
term ‘positive control’ implies a treatment giving
a maximum response, e.g. in some immunodetec-
tion assays it is usual to include a treatment
with cells known to respond positively to the
antibody.)

5.5.3 Historical controls

A historical control group is one in which the
animals have previously been exposed to the
control treatment and their results obtained
prior to the onset of the trial. Occasionally, we
may be tempted to use historical controls instead
of contemporary controls in an attempt to reduce
the number of animals needed in the experiment
or from a desire to administer the new treatment
to all animals in the trial. The major disadvantage
of using historical controls in a retrospective
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comparison is that the test and control groups
may not be truly comparable, both with respect
to the type, source and condition of the animal
and also to the experimental environment, so
that biases may result. The consequence of
including historical controls in a clinical trial is,
again, a tendency to exaggerate the benefits of
the new treatment.

5.6 Assignment of animals to the
treatment groups

5.6.1 Need for random assignment

One important potential source of bias in the
conduct of a controlled clinical trial is in the
allocation of experimental animals to the treat-
ment (test and control) groups. This bias may
arise, either consciously or subconsciously, if we
exercise personal judgement when we allocate
the animals to the treatment groups. If the com-
position of the test and control groups differs in
a systematic fashion (e.g. if one group comprises
more severely affected animals), then we may not
be able to attribute any differences in response
to the effect of treatment. In order to do so, the
test and control groups should be as similar as
possible and so are balanced in the factors that
influence response, known as covariates or prog-
nostic factors, whether or not these are known.
However, if they are known and we find that the
groups are not comparable at baseline, it may be
possible to adjust for the effects of these covari-
ates in the analysis (see Section 5.9.1).

The most appropriate method of removing
allocation bias and achieving this balance is the
process of random allocation or randomization
of the animals to the test and control groups. In
random allocation, we assign the animals to the
treatment groups in such a way that:

¢ All animals have the same chance of receiving
any treatment.

e The assigning of one animal to a particular
treatment has no influence on the assigning of
any other animal.

e We cannot know in advance the treatment that
each animal is to receive.

Thus, assigning the animals to the treatment
groups in a systematic fashion by, for example,
alternating the allocation, i.e. test, control, test,
control, etc., would not comply with this defini-
tion. Systematic allocation is more likely to lead
to bias than is a strictly random process of alloca-
tion. The investigator’s knowledge of the alloca-
tion sequence may influence the allocation of
particular animals to certain treatments.

Randomization has the following advantages:

e It removes bias from the allocation procedure
in that the prognostic factors are, in principle,
balanced in the different treatment groups.

e We do not require prior knowledge of factors
likely to influence response, as the procedure
should result in treatment groups which are
comparable in unknown, as well as known,
factors (apart from the actual treatment being
given).

e We do not know in advance the particular
treatment that each animal will receive.

e Statistical theory is based on the concept of
random sampling. If we construct the treat-
ment groups using random allocation, then the
differences between treatment groups are akin
to those between random samples. We can,
therefore, utilize the process of statistical infer-
ence (see Sections 1.10 and 4.3) to evaluate
treatment differences.

After the results from the clinical trial have
been collected, we should check that randomiza-
tion has been effective in that the prognostic
factors are balanced in the different treatment
groups at baseline. To this end, we should scan
the results of a table containing the summary
statistics for each prognostic factor (e.g. means
and standard deviations for Normally distributed
numerical variables and proportions for categor-
ical variables) to confirm that any differences in
these factors between the treatment groups are
negligible. We should not compare the groups for
each covariate by performing a hypothesis test
(see Chapter 6) and providing a P-value. This is
because the hypothesis test assesses whether a
difference between the groups could be due to
chance, and if randomization — a method based
on chance — has been used for allocation pur-
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poses in a clinical trial, any difference between
the baseline values must be due to chance.

As a practical tip, you may find it helpful to
mask the allocation sequence by using sealed
envelopes in the randomization process. These
are numbered consecutively; each contains the
specification of the treatment regimen (deter-
mined by random allocation) to be administered
to the next available animal.

5.6.2 Methods of randomization

It is best if you avoid mechanical methods,
such as tossing a coin or throwing a die, for
allocating the experimental animals to the treat-
ment groups. Although they are probabilistically
acceptable procedures that adhere to the defini-
tion of randomization, these techniques are cum-
bersome and cannot be verified.

A common way of employing randomization
in the allocation process is to utilize a table of
random numbers (see Table A.11). This com-
prises the digits 0 to 9 generated in a random
manner such that each digit occurs the same
number of times, and there is no discernible
pattern in the arrangement 