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Preface to third edition

The continuing interest in our textbook together 
with the ongoing development of statistical 
applications in veterinary and animal science has 
encouraged us to prepare this third edition of 
Statistics for Veterinary and Animal Science. We 
have introduced some new material but we want 
to reassure all readers that our original intention 
of this being an introductory text still stands. 
Again, you will find everything that you need  
to begin to understand statistics and its applica-
tion to your scientific and clinical endeavours;  
it remains an introduction for the novice with 
emphasis on understanding the application, 
rather than exhibiting mathematical competence 
in the calculations. Readily available statistical 
software packages, which provide the mechanics 
of the calculations, have become more extensive 
in the range of procedures they offer. Accord-
ingly, we have augmented our text, within the 
bounds of an introductory exposition, to match 
their development.

As in previous editions, we use two commonly 
employed statistical software packages, SPSS 
and Stata, to analyse the data in our examples. 
We believe that by presenting you with different 
forms of computer output, you will have the con-
fidence and proficiency to interpret output from 
other statistical packages. The previous edition of 
the book had an accompanying CD which con-
tained the data sets (in ASCII, Excel, SPSS and 
Stata) used as examples in the text. These data 
sets are now available at www.wiley.com/go/
petrie/statisticsforvets, and will be helpful if you 
wish to get to grips with various statistical tech-
niques by attempting the analyses yourselves. 
You will find a website icon next to the examples 
for which the data are available on the website. 

Please note that, although we have provided 
details of a considerable number of websites that 
you may find useful, we cannot guarantee that 
these website addresses will remain correct over 
the course of time because of the mutability of 
the internet.

Some sections of the book are, as in previous 
editions, in small print and are accompanied by 
a jumping horse symbol. These sections contain 
information that relates to more advanced or 
obscure topics, and you may skip (jump over) 
them without loss of continuity. Our teaching 
experience has demonstrated that one of hardest 
tasks for the novice when analysing his or her 
own data set is deciding which test or procedure 
is most appropriate. To overcome this difficulty, 
we provide two flow charts (Figure E.2 for binary 
data and Figure E.3 for numerical data) which 
lead you through the various questions that need 
to be asked to aid that decision. Another flow 
chart (Figure E.1) organizes the tests and proce-
dures into relevant groups and indicates the par-
ticular section of the book where each is located: 
you can find these flow charts in the Appendix 
as well as on the inside back/front covers for easy 
reference.

Many of the chapters in this third edition are 
similar to those in the second edition, apart from 
some minor modifications and additional exer-
cises. However, Chapter 5 has been extended to 
include techniques for recognizing and dealing 
with confounding, and this chapter now provides 
a description of the different types of missing 
data that might be encountered. We have added 
a section on checking the assumptions underly-
ing a logistic regression model to Chapter 11, 
and have included modifications of the sample 

http://www.wiley.com/go/petrie/statisticsforvets
http://www.wiley.com/go/petrie/statisticsforvets
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size estimation process to take account of dif-
ferent group sizes and losses to follow-up in 
Chapter 13. Chapter 14 has been expanded con-
siderably by extending the sections on diagnostic 
tests, measuring agreement and survival analysis 
as well as Bayesian analysis. Chapter 15 is 
entirely new, bringing together a group of spe-
cialist topics – ethical issues of animal investiga-
tion (some of which was in Chapter 5 of the 
second edition), spatial statistics, surveillance 
and its importance, and statistics in molecular 
and quantitative genetics. While none of these is 
intended as more than an introduction, you will 
find references to help you explore the topics 
more fully should you so desire. The section on 
evidence-based veterinary medicine (EBVM) in 
Chapter 16 is unchanged from that in the second 
edition’s Chapter 15, but in the third edition this 
chapter no longer provides guidelines for report-
ing results. Instead, we have devoted the new 
Chapter 17 to this topic by presenting different 
published guidelines relevant to veterinary med-
icine (i.e. for reporting of livestock trials, research 
using laboratory animals, diagnostic accuracy 
studies, observational studies in epidemiology, 
and systematic reviews and meta-analyses) as a 
ready reference for those wanting to follow best 
practice both in planning and in writing up their 
research. Lastly, in Chapter 18, which is entirely 
new, we bring together the concepts of EBVM 
and the guidelines provided in Chapter 17 by 
proffering a template for the critical appraisal of 
randomized controlled trials and observational 
studies. We use this template to critically appraise 
two published papers, both of which are repro-
duced in full, and hope that by providing these 
examples, we will help you develop your own 
skills in what is an essential, but frequently over-
looked, component of statistics.

We are indebted as always to those who, for 
earlier editions of this book, have offered their 
data to us to use for examples or exercises, have 
assisted with the presentation of the illustrations 
and tables, and have provided critical advice on 
the text. These colleagues are all identified in the 
prefaces to the first and second editions. As in 
earlier editions, we have occasionally taken 
summary data or abstracts from published papers 
and have used them to develop exercises or to 
illustrate techniques: we extend our thanks to the 
authors and the publishers for the use of this 
material. For this third edition, we are most grate-
ful to Dr Geoff Pollott and Professor Dirk Pfeiffer 
(both of the Royal Veterinary College, University 
of London) for their critical reading and sugges-
tions for sections of Chapter 15. We wish to 
record our particular thanks to Professor Garry 
Anderson (University of Melbourne) for his cri-
tique of much of the new text. His suggestions 
have drawn our attention to errors and have con-
siderably improved the presentation. Nonethe-
less, we remain responsible for all contained 
herein, and offer it, with all its shortcomings, to 
our readership.

This preface would not be complete without 
acknowledging our marriage partners, Gerald 
and Rosie, and our children, Nina, Andrew and 
Karen, and Oliver and Anna, who have allowed 
us once again to engage with this task to their 
inevitable exclusion, and offer them our most 
grateful thanks.

Aviva Petrie
Paul Watson

2013



Preface to second edition

It is six years since this book was first available, 
and we are glad to acknowledge the positive 
responses we have received to the first edition 
and the evident uptake of the text for a number 
of courses around the world. In the intervening 
period much has happened to encourage us to 
update and expand our initial text. However, 
many of the chapters which were in the first 
edition of the book are changed only slightly, if 
at all, in this second edition. To these chapters, 
we have added some exercises and further expla-
nations (for example, on equivalence studies, 
confounding, interactions and bias, Bayesian 
analysis and Cox survival analysis) to make the 
book more comprehensive. We have neverthe-
less retained our original intent of this being an 
introductory text starting with very basic con-
cepts for the complete novice in statistics. You 
will still find sections marked for skipping unless 
you have a particular need to explore them, and 
these include the newer more complex analysis 
methods. This edition also contains the glossaries 
of notation and of terms, but we have expanded 
them to reflect the enhanced content of the text. 
For easy reference, the flow charts for choosing 
the correct statistical analyses in different situa-
tions are now found immediately before the 
index, and we hope these will serve to guide you 
to the appropriate procedures and text relating 
to their use.

Computer software to deal with increasingly 
sophisticated analytical tools has been developed 
in recent years in such a way that the associated 
methodology is more readily accessible to those 
who previously believed such techniques were 
out of their reach. As a consequence, we have 
substantially enhanced the material relating to 

regression analysis and created a new chapter 
(Chapter 11) to describe some advanced regres-
sion techniques. The latter incorporates the sec-
tions on multiple regression and an expanded 
section on logistic regression from Chapter 10 of 
the first edition, and introduces Poisson regres-
sion, different regression methods which can be 
used to analyse clustered data, maximum likeli-
hood estimation and the concept of the general-
ized linear model. Because we have inserted this 
new Chapter 11, the numbering of the chapters 
which follow does not accord with that of the 
corresponding chapters in the first edition.

Chapter 15 is an entirely new chapter which is 
devoted in large part to introducing the concepts 
of evidence-based veterinary medicine (EBVM), 
stressing the role of statistical knowledge as a 
basis for its practice. The methodology of EBVM 
describes the processes for integrating, in a sys-
tematic way, the results of scientifically con-
ducted studies into day-to-day clinical practice 
with the aim of improving clinical outcome. This 
requires the practitioner to develop the skills to 
evaluate critically the efforts of others in respect 
of the design of studies, and of the presenta
tion, analysis and interpretation of results. The 
recognition of the value of the evidence-based 
approach to veterinary medicine has followed a 
similar emphasis in human clinical medicine, and 
is influencing the whole veterinary profession. 
Accordingly, it is also very much a part of the 
mainstream veterinary curriculum. Whether you 
are a practitioner of veterinary medicine or of 
one of the allied sciences, you will now more than 
ever need to be conversant with modern biosta-
tistical analysis. Knowing how best to report your 
own results is also vital if you are to impart 
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knowledge correctly, and so, to this end, we 
include in Chapter 15 a section on the CONSORT 
Statement, designed to standardize clinical trial 
reporting.

Although we refer only to two common statis-
tical packages in the text, SPSS and Stata, suffi-
cient information is given to interpret output 
from other packages, even though the layout  
and content may differ to some degree. We have 
also mentioned a number of websites containing 
useful information, and which were correct at  
the time of printing. Given the mutability of the 
internet, we cannot guarantee that such sites will 
stay available.

Also included with this edition is a CD con-
taining the data sets used as examples in the text. 
You can use these data sets to consolidate the 
learning process. It is only when you attempt the 
analyses yourself that you are fully able to get to 
grips with the techniques. Each data set is pre-
sented in four different formats (ASCII, Excel, 
SPSS and Stata), so you should be able to access 
the data and use the software that is available  
to you.

We would like to acknowledge the generosity 
of the late Dr Penny Barber, Mark Corbett, Dr 
J. E. Edwards, Professor Jonathan Elliott, Profes-
sor Gary England, Dr Oliver Garden, Dr Ilke 
Klaas, Dr Teresa Martinez, Dr Anne Pearson, Dr 
P. D. Warriss, Professor Avril Waterman-Pearson 
and Dr Susannah Williams who shared their 
original data with us, and to others who have 
allowed us to use their published data. In places, 
we have taken published summary data and  

constructed a primary data set to suit our own 
purposes; if we have misrepresented our col-
leagues’ data, we accept full responsibility. We 
are particularly grateful to Alex Hunte who  
lent us his skills in refining the illustrations in 
the first edition, and to Dr David Moles who 
assisted with the preparation of the statistical 
tables. We especially thank Dr Ben Armstrong, 
Professor Caroline Sabin and Dr Ian Martin 
who kindly gave us their critical advice as the 
text of the first edition was developed, and Pro-
fessor John Smith who was instrumental in 
getting us to consider writing the book in the 
first place. In addition, we acknowledge our debt 
to a host of other colleagues who have helped 
with discussions over the telephone, with their 
expertise in areas we are lacking, and in their 
encouragement to complete what we hope will 
be a useful contribution to the field of veterinary 
and animal science. We are particularly indebted 
to those of our colleagues who have graciously 
pointed us to our errors, which we hope are now 
corrected.

Lastly, we again acknowledge with gratitude 
the patience and encouragement of our marriage 
partners, Gerald and Rosie, and our children, 
Nina, Andrew and Karen, and Oliver and Anna, 
who have once more graciously allowed us to 
become absorbed in the book and have had to 
suffer neglect in the process. We trust that they 
still appreciate the worthiness of the cause!

Aviva Petrie
Paul Watson
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Although statistics is anathema to many, it is, 
unquestionably, an essential tool for those 
involved in animal health and veterinary science. 
It is imperative that practitioners and research 
workers alike keep abreast with reports on animal 
production, new and emerging diseases, risk 
factors for disease and the efficacy of the ever-
increasing number of innovations in veterinary 
care and of developments in training methods 
and performance. The most cogent information is 
usually contained in the appropriate journals; 
however, the usefulness of these journals relies 
on the reader having a proper understanding of 
the statistical methodology underlying study 
design and data analysis. The modern animal sci-
entist and veterinary surgeon therefore need to 
be able to handle numerical data confidently and 
properly. Often, for us, as teachers, there is little 
time in busy curricula to introduce the subject 
slowly and systematically; students find they are 
left bewildered and dejected because the con-
cepts seem too difficult to grasp. While there are 
many excellent introductory books on medical 
statistics and on statistics in other disciplines such 
as economics, business studies and engineering, 
these books are unrelated to the world of animal 
science and health, and students soon lose heart. 
It is our intention to provide a guide to statistics 
relevant to the study of animal health and disease. 
In order to illustrate the principles and methods, 
the reader will find that the text is well endowed 
with real examples drawn from companion and 
agricultural animals. Although veterinary epide-
miology is closely allied to statistics, we have con-
centrated only on statistical issues as we feel that 
this is an area which, until now, has been neglected 
in veterinary and animal health sciences.

Our book is an introductory text on statistics. 
We start from very simple concepts, assuming no 
previous knowledge of statistics, and endeavour 
to build up an understanding in such a way  
that progression on to advanced texts is possible. 
We intend the book to be useful for those without 
mathematical expertise but with the ability to 
utilize simple formulae. We recognize the influ-
ence of the computer and so we avoid the descrip-
tion of complex hand calculations. Instead, 
emphasis is placed on understanding of concepts 
and interpretation of results, often in the context 
of computer output. In addition to acquiring an 
ability to perform simple statistical techniques on 
original data, the reader will be able critically to 
evaluate the efforts of others in respect of the 
design of studies, and of the presentation, analysis 
and interpretation of results. The book can be 
used either as a self-instructional text or as a basis 
for courses in statistics. In addition, those who are 
further on in their studies will be able to use the 
text as a reference guide to the analysis of their 
data, whether they be postgraduate students,  
veterinary practitioners or animal scientists in 
various other settings. Every section contains suf-
ficient cross referencing for the reader to find the 
relevant background to the topic.

We would like to acknowledge the generosity 
of Penny Barber, Mark Corbett, Dr J. E. Edwards, 
Dr Jonathan Elliott, Dr Gary England, Dr Oliver 
Garden, Dr Anne Pearson, Dr P. D. Warriss, Pro-
fessor Avril Waterman-Pearson and Susannah 
Williams, who shared their original data with us. 
In places, we have taken published summary 
data and constructed a primary data set to suit 
our own purposes; if we have misrepresented 
our colleagues’ data, we accept full responsibility. 
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We are particularly grateful to Alex Hunte who 
lent us his skills in preparing the illustrations, 
and to Dr David Moles who assisted with the 
preparation of the statistical tables. We espe-
cially thank Dr Ben Armstrong, Dr Caroline 
Sabin and Dr Ian Martin who kindly gave us 
their critical advice as the text was developed. 
Professor John Smith was instrumental in getting 
us to consider writing the text in the first place, 
and we thank him for his continual encourage-
ment. In addition, we acknowledge our debt to 
a host of other colleagues who have helped with 
discussions over the telephone, with their exper-
tise in areas we are lacking, and in general 
encouragement to complete what we hope will 

be a useful contribution to the field of veterinary 
and animal science.

Lastly, we acknowledge with gratitude the 
patience and encouragement of our families.  
Our marriage partners, Gerald and Rosie, have 
endured with fortitude our neglect of them while 
this work was in preparation. In particular, our 
children, Nina, Andrew and Karen, and Oliver 
and Anna, have had to cope with our absorption 
with the project and lack of involvement in their 
activities. We trust they will recognize that it was 
in a good cause.

Aviva Petrie
Paul Watson



About the companion website

This book is accompanied by a companion website:
www.wiley.com/go/petrie/statisticsforvets

The website includes:
•	 Data files which relate to some of the examples in the text. Each data file is provided for 

download in four different formats: ASCII, Excel, SPSS and Stata.
•	 Examples relating to the data files are indicated in the text using the following icon: 

http://www.wiley.com/go/petrie/statisticsforvets




Statistics for Veterinary and Animal Science, Third Edition. Aviva Petrie and Paul Watson.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

1.1  Learning objectives

By the end of this chapter, you should be able to:

•	 State what is meant by the term ‘statistics’.
•	 Explain the importance of a statistical under­

standing to the animal scientist.
•	 Distinguish between a qualitative/categorical 

and a quantitative/numerical variable.
•	 List the types of scales on which variables are 

measured.
•	 Explain what is meant by the term ‘biological 

variation’.
•	 Define the terms ‘systematic error’ and 

‘random error’, and give examples of circum­
stances in which they may occur.

•	 Distinguish between precision and accuracy.
•	 Define the terms ‘population’ and ‘sample’, 

and provide examples of real (finite) and hypo­
thetical (infinite) populations.

•	 Summarize the differences between descrip­
tive and inferential statistics.

1.2  Aims of the book

1.2.1  What will you get from  
this book?

All the biological sciences have moved on  
from simple qualitative description to concepts 
founded on numerical measurements and counts. 
The proper handling of these values, leading to  

1 The whys and wherefores 
of statistics

a correct understanding of the phenomena, is 
encompassed by statistics. This book will help 
you appreciate how the theory of statistics can 
be useful to you in veterinary and animal science. 
Statistical techniques are an essential part of 
communicating information about health and 
disease of animals, and their agricultural produc­
tivity, or value as pets, or in the sporting or 
working environment. We, the authors, aim to 
introduce you to the subject of statistics, giving 
you a sound basis for managing straightforward 
study design and analysis. Where necessary, we 
recommend that you extend your knowledge by 
reference to more specialized texts. Occasionally, 
we advocate that you seek expert statistical 
advice to guide you through particularly tricky 
aspects.

You can use this book in two ways:

1.	 The chapter sequence is designed to develop 
your understanding systematically and we 
therefore recommend that, initially, you work 
through the chapters in order. You will find 
certain sections marked in small type with a 

symbol, which indicates that you  
can skip these, at a first read through, 
without subsequent loss of continuity. 

These marked sections contain information 
you will find useful as your knowledge devel­
ops. Chapters 11, 14 and 15 deal with particu­
lar types of analyses which, depending on your 
areas of interest, you may rarely need.

2.	 When you are more familiar with the concepts, 
you can use the book as a reference manual; 
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round the unwitting user of statistical packages. 
We present the subject in a form that we hope is 
accessible, using examples showing the applica­
tion of the subject to veterinary and animal 
science. A brief set of exercises is provided at the 
end of each chapter, based on the ideas presented 
within. These exercises should be used to check 
your understanding of the concepts and proce­
dures; solutions to the exercises are given at  
the back of the book. The two exceptions are  
Chapter 17, which provides reporting guidelines 
and Chapter 18 in which we ask you to critically 
appraise two published articles, preferably before 
looking at the ‘model answers’ provided in the 
chapter.

1.2.5  Use of the glossaries of 
notation and terms

Statistical nomenclature is often difficult to 
remember. We have gathered the most common 
symbols and equations used throughout this 
book into a Glossary of notation in Appendix C. 
This gives you a readily accessible reminder of 
the meaning of the terminology.

You will find a Glossary of terms in Appendix 
D. In this glossary, we define common statistical 
terms which are used in this book. They are  
also defined at the appropriate places in relevant 
chapters, but the glossary provides you with a 
ready reference if you forget the meaning of a 
term. Terms that are in the glossary are intro­
duced in the text in bold type. Note, however, 
that there are some instances where bold is 
purely used for extra emphasis.

1.3  What is statistics?

The number of introductory or elementary texts 
on the subject of statistics indicates how impor­
tant the subject has become for everyone in the 
biological sciences. However, the fact that there 
are many texts might also suggest that we have 
yet to discover a foolproof method of presenting 
what is required.

The problem confronted in biological statistics 
is as follows. When you make a set of numerical 

you will find sufficient cross-referenced infor­
mation in any section to answer specific 
queries.

1.2.2  What are learning 
objectives?

Each chapter has a set of learning objectives 
at the beginning. These set out in task-oriented 
terms what you should be able to ‘do’ when you 
have mastered the concepts in the chapter. You 
can therefore test your growing understanding; if 
you are able to perform the tasks in the learning 
objectives, you have understood the concepts.

1.2.3  Should you use a computer 
statistics package?

We encourage you to use available computer sta­
tistics packages, and therefore we do not dwell 
on the development of the equations on which 
the analyses are based. We do, however, present 
the equations (apart from when they are very 
complex) for completeness, but you will nor­
mally not need to become familiar with them 
since computer packages will provide an auto­
matic solution. We provide computer output, 
produced when we analyse the data in the  
examples, from two statistical packages, mostly  
from SPSS (IBM SPSS Version 20 (www-01.ibm. 
com/software/analytics/spss, accessed 9 October 
2012)) and occasionally from Stata (Stata 12, 
StataCorp, 2011, Stata Statistical Software: Release 
12. College Station, TX: StataCorp LP (www.
stata.com/products, accessed 9 October 2012)). 
Although the layout of the output is particular 
to each individual package, from our description 
you should be able to make sense of the output 
from any other major statistical package.

1.2.4  Will you be able to decide 
when and how to use a particular 
procedure?

Our main concern is with the understanding that 
underlies statistical analyses. This will prevent 
you falling into the pitfalls of misuse that sur­

http://www-01.ibm.com/software/analytics/spss
http://www-01.ibm.com/software/analytics/spss
http://www.stata.com/products
http://www.stata.com/products


	 The whys and wherefores of statistics	 3

conclusions of the author, unable to examine 
the strength of the supporting data. Indeed, 
with the advent of computer-assisted data han­
dling, many practitioners can now collect their 
own observations and summarize them for the 
advantage of their colleagues; to do this, they 
need the benefit of statistical insights.

•	 The subject of epidemiology (see Section 5.2) 
is gaining prominence in veterinary and animal 
science, and the concepts of evidence-based 
veterinary medicine (see Section 1.5 and 
Chapter 16) are being explicitly introduced 
into clinical practice. As never before, there  
is an essential need for you to understand  
the types of trials and investigations that are 
carried out and to know the meaning of the 
terms associated with them.

•	 In the animal health sciences, there are an 
increasing number of independent diagnostic 
services that will analyse samples for the 
benefit of health monitoring and maintenance. 
Those running such laboratory services must 
always be concerned about quality control and 
accuracy in measurements made for diagnostic 
purposes, and must be able to supply clear 
guidelines for the interpretation of results 
obtained in their laboratories.

•	 The pharmaceutical and agrochemical indus-
tries are required to demonstrate both the 
safety and the efficacy of their products in  
an indisputable manner. Such data invariably 
require a statistical approach to establish and 
illustrate the basis of the claim for both these 
aspects. Those involved in pharmaceutical 
product development need to understand the 
importance of study design and to ensure the 
adequacy of the numbers of animals used in 
treatment groups in order to perform meaning­
ful experiments. Veterinary product licensing 
committees require a thorough understanding 
of statistical science so that they can appreciate 
the data presented to substantiate the claims 
for a novel therapeutic substance. Finally,  
practitioners and animal carers are faced with 
the blandishments of sales representatives with 
competing claims, and must evaluate the litera­
ture which is offered in support of specific 
agents, from licensed drugs to animal nutrition 
supplements.

observations in biology, you will usually find  
that the values are scattered. You need to know 
whether the values differ because of factors you 
are interested in (e.g. treatments) or because 
they are part of a ‘background’ natural variation. 
You need to evaluate what the numbers actually 
mean, and to represent them in a way that readily 
communicates their meaning to others.

The subject of statistics embraces:

•	 The design of the study in order that it will 
reveal the most information efficiently.

•	 The collection of the data.
•	 The analysis of the data.
•	 The presentation of suitably summarized infor­

mation, often in a graphical or tabular form.
•	 The interpretation of the analyses in a manner 

that communicates the findings accurately.

Strictly, this broad numerical approach to 
biology is correctly termed ‘biometry’ but we 
shall adopt the more generally used term ‘statis-
tics’ to cover all aspects. Statistics (meaning this 
entire process) has become one of the essential 
tools in modern biology.

1.4  Statistics in veterinary and 
animal science

One of the common initial responses of both 
veterinary students and animal science students 
is: Why do I need to study statistics? The math­
ematical basis of the subject causes much uncer­
tainty, and the analytical approach is alien. 
However, in professional life, there are many 
instances of the relevance of statistics:

•	 The published scientific literature is full of 
studies in which statistical procedures are 
employed. Look in any of the relevant scien­
tific journals and notice the number of times 
reference is made to mean ± SEM (standard 
error of mean), to statistical significance, to 
P-values or to t-tests or Chi-squared analysis 
or analysis of variance or multiple regression 
analysis. The information is presented in the 
usual brief form and, without a working knowl­
edge of statistics, you are left to accept the 
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evidence, and be able to use rigorous methods to 
assess it. Generally, this requires a familiarity 
with the terminology used and an understanding 
of the principles of statistical analysis. Moreover, 
the wider world of animal science is finding a 
need to understand these ideas as the evidence-
based concepts are being applied not only in the 
treatment of clinical disease but also in aspects 
of production and performance.

One of the differences between the applica­
tion of EBVM in veterinary science and in  
human medicine is that in the latter the body  
of literature is now very large, and this makes 
finding relevant information easier. In the vet­
erinary field, EBVM is still hampered by the 
relatively small amount and variable quality  
of the evidence available. Nevertheless, EBVM 
is gaining momentum, and we have devoted 
Chapter 16 to its concepts. One of the key re­
quirements of EBVM is reliably reported infor­
mation and, as in the human medical field, the 
veterinary publishing field is in the process of 
consolidating a set of guidelines for good re­
porting. We have addressed this in Chapter 17, 
outlining the information that is available at the 
time of writing. As critical appraisal of the pub­
lished literature is invariably an essential compo­
nent of evaluating evidence, we have devoted 
Chapter 18 to it. In this chapter, we provide tem­
plates for critically appraising randomized con­
trolled trials and observational studies, and invite 
you to develop your skills by critically appraising 
two published articles.

1.6  Types of variable

A variable is a characteristic that can take values 
which vary from individual to individual or group 
to group, e.g. height, weight, litter size, blood 
count, enzyme activity, coat colour, percentage  
of the flock which are pregnant, etc. Clearly  
some of these are more readily quantifiable  
than others. For some variables, we can assign a 
number to a category and so create the appear­
ance of a numerical scale, but others have a true 
numerical scale on which the values lie. We take 
readings of the variable which are measurements 
of a biological characteristic, and these become 

•	 Increasingly, there is concern about the regula­
tion of safety and quality of food for human 
consumption. Where products of animal origin 
are involved, the animal scientist and the  
veterinary profession are at the forefront. 
Examples are: pharmaceutical product with­
drawal times before slaughter based on the 
pharmacokinetics and pharmacodynamics of 
the products, the withholding times for milk 
after therapeutic treatment of the animal, 
tissue residues of herbicides and insecticides, 
and the possible contamination of carcasses by 
antibiotic-resistant bacteria. In every case, 
advice and appropriate regulations are estab­
lished by experimental studies and statistical 
evaluation. The experts need to be aware of 
the appropriate statistical procedures in order 
to play their proper roles.

In all these areas, a common basic vocabulary 
and understanding of biometrical concepts is 
assumed to enable scientists to communicate 
accurately with one another. It is important that 
you gain mastery of these concepts if you are to 
play a full part in your chosen profession.

1.5  Evidence-based veterinary 
medicine

The veterinary profession is following the 
medical profession in introducing a more objec­
tive basis to its practice. Under the term evidence-
based veterinary medicine (EBVM) – by which 
we mean the conscientious, explicit and judicious 
use of current best evidence to inform clinical 
judgements and decision-making in veterinary 
care (see Cockcroft and Holmes, 2003) – we are 
now seeing a move towards dependence upon 
good scientific studies to underpin clinical deci­
sions. In many ways, practice has implicitly been 
about using clinical experience to make the best 
decisions, but what has changed is the explicit use 
of the accessible information. No longer do clini­
cians have to depend on their own clinical expe­
rience and judgement alone; now they can benefit 
from other studies in a formalized manner to 
assist their work. The clinician has to know what 
information is relevant and how to access this 
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counts, e.g. litter size, clutch size, parity 
(number of pregnancies within an animal).

•	 Continuous scale, for which all values are 
theoretically possible (perhaps limited by 
an upper and/or lower boundary), e.g. 
height, weight, speed, concentration of a 
chemical constituent of the blood or urine. 
Theoretically, the number of values that the 
continuous variable can take is infinite since 
the scale is a continuum. In practice, con­
tinuous data are restricted by the degree of 
accuracy of the measurement process. By 
definition, the interval between two adja­
cent points on the scale is of the same mag­
nitude as the interval between two other 
adjacent points, e.g. the interval on a tem­
perature scale between 37°C and 38°C is 
the same as the interval between 39°C and 
40°C.

1.7  Variations in measurements

It is well known that if we repeatedly observe 
and quantify a particular biological phenome­
non, the measurements will rarely be identical. 
Part of the variability is due to an inherent vari­
ation in the biological material being measured. 
For example, not all cows eat the same quantity 
of grass per day even if differences both in body 
weight and water content of the feed are taken 
into account. We shall use the term ‘biological 
variation’ for this phenomenon, although some 
people use the term ‘biological error’. (Biological 
error is actually a misleading term since the vari­
ability is not in any sense due to a mistake.)

By the selection of individuals according to 
certain characteristics in advance of the collec­
tion of data, we may be able to reduce the range 
of biological variation but we cannot eliminate 
it. Selection is often based on animal character­
istics (e.g. species, strain, age, sex, degree of matu­
rity, body weight, show-jumpers, milking herds, 
hill sheep, etc.), the choice of which depends 
upon the particular factors under investigation. 
However, the result is then only valid for that 
restricted population and we are not justified 
in extrapolating beyond that population. For 
example, we should not assume that a study 

the values which we use for the statistical proce­
dures. Both these terms are in general use, and 
both refer to the original measurements, the  
raw data.

Numerical data take various forms; a proper 
understanding of the nature of the data and  
the classification of variables is an important  
first step in choosing an appropriate statistical 
approach. The flow charts shown in Appendix E, 
and on the inside front and back covers, illustrate 
this train of thought, which culminates in a suit­
able choice of statistical procedure to analyse a 
particular data set.

We distinguish the main types of variable in a 
systematic manner by determining whether the 
variable can take ‘one of two distinct values’, 
‘one of several distinct values’ or ‘any value’ 
within the given range. In particular, the variable 
may be one of the following:

1.	 Categorical (qualitative) variable – an indi­
vidual belongs to any one of two or more dis­
tinct categories for this variable. A binary or 
dichotomous variable is a particular type of 
categorical variable defined by only two cat­
egories; for example, pregnant or non-pregnant, 
male or female. We customarily summarize the 
information for the categorical variable by 
determining the number and percentage (or 
proportion) of individuals in each category in 
the sample or population. Particular scales of 
a categorical variable are:
•	 Nominal scale – the distinct categories that 

define the variable are unordered and each 
can be assigned a name, e.g. coat colours 
(piebald, roan or grey).

•	 Ordinal scale – the categories that con­
stitute the variable have some intrinsic  
order; for example, body condition scores, 
subjective intensity of fluorescence of cells 
in the fluorescence microscope, degree of 
vigour of motility of a semen sample. These 
‘scales’ are often given numerical values 1 
to n.

2.	 Numerical (quantitative) variable – consisting 
of numerical values on a well-defined scale, 
which may be:
•	 Discrete (discontinuous) scale, i.e. data can 

take only particular integer values, typically 
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1.7.2  Technical errors

A technical or measurement error is defined as 
the difference between an observed reading and 
its ‘true’ value. Measurement errors are due to 
factors which are, typically, human (e.g. varia­
tions within and between observers) or instru-
mental, but may also be attributed to differences 
in conditions (e.g. different laboratories).

Technical errors may be systematic or random. 
A systematic error is one in which the observed 
values have a tendency to be above (or below) 
the true value; the result is then said to be biased. 
When the observed values are evenly distributed 
above and below the true value, random errors, 
due to unexplained sources, are said to be occur­
ring. Random variation can be so great as to 
obscure differences between groups but this 
problem may be minimized by taking repeated 
observations.

(a)  Human error

Human error can occur whenever a person is 
performing either an unfamiliar task or a routine 
or monotonous task; fatigue increases the chances 
of error. Errors due to these factors are usually 
random, and providing steps are taken to mini­
mize them (e.g. practice to acquire a proper  
level of skill, avoiding long periods of monoto­
nous labour, and checking results as measure­
ments are made), they are generally not of great 
concern.

Other sorts of human error can arise because 
of data handling. Rounding errors can introduce 
inaccuracies if performed too early in an analysis. 
If you use a computer to manage your data, you 
need not be concerned about this, since compu­
ter algorithms generally avoid rounding errors 
by carrying long number strings even if these are 
not displayed.

Another recognized human error is called 
digit preference. Whenever there is an element 
of judgement involved in making readings from 
instruments (as in determining the last digit of  
a number on a scale), certain digits between 0 
and 9 are more commonly chosen than others  
to represent the readings; such preferences differ 

based on beef cattle applies to other types of 
cattle.

In addition to biological variation, there will 
most likely be differences in repeated measure­
ments of the same subject within a very short 
period of time. These are technical variations or 
errors, due to a variety of instrumental causes 
and to human error. We may properly consider 
them to be errors since they represent depar­
tures from the true values.

1.7.1  Biological variation

The causes of biological variation, which makes 
one individual differ from the next or from one 
time to another, may be obvious or subtle. For 
example, variations in any characteristic may be 
attributable to:

•	 Genetics – e.g. greater variability in the whole 
cow population compared with just Friesians.

•	 Environment – e.g. body weight varies with 
diet, housing, intercurrent disease, etc.

•	 Gender – sexual dimorphism is common.
•	 Age – many biological data are influenced by 

age and maturity, e.g. the quantity of body fat.

In a heterogeneous population, the biological 
variation may be considerable and may mask the 
variation due to particular factors under investi­
gation. Statistical approaches must take account 
of this inherent variability. The problem for the 
scientist, having measured a range of results of a 
particular feature in a group of individuals, is to 
distinguish between the sources of variation.

Here are two examples of problems created by 
biological variation:

•	 Two groups of growing cattle have been fed 
different diets. The ranges of the recorded 
weights at 6 months of age show an overlap in 
the two groups. Is there a real difference 
between the groups?

•	 You have the results of an electrolyte blood 
test which shows that the serum potassium 
level is elevated. By how much must it be ele­
vated before you regard it as abnormal?
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so that the results are trustworthy. We introduce 
some additional terms in order to understand 
these concepts more fully.

1.8  Terms relating to  
measurement quality

Two terms which are of major importance in 
understanding the principles of biological meas­
urement are precision and accuracy. It is essen­
tial they are understood early in a consideration 
of the nature of data measurement.

•	 Precision refers to how well repeated observa­
tions agree with one another.

•	 Accuracy refers to how well the observed 
value agrees with the true value.

To understand these terms consider the dia­
grams in Figure 1.2, in which the bull’s-eye rep­
resents the true value: in Figure 1.2a there is poor 
accuracy and poor precision, in Figure 1.2b there 
is poor accuracy and good precision, while in 
Figure 1.2c there is both good accuracy and good 
precision.

It is possible to have a diagnostic method (e.g. 
blood enzyme estimation) that gives good preci­
sion but poor accuracy (Figure 1.2b) because of 
systematic error. In an enzyme activity estima­
tion, such an error might be due to variation in 
temperature.

Several other terms, all of which describe 
aspects of reliability, are in use and these are 
defined as follows:

•	 Repeatability is concerned with gauging the 
similarity of replicate, often duplicate, meas­
urements of a particular technique or instru­
ment or observer under identical conditions, 
e.g. measurements made by the same observer 
in the same laboratory. It assesses technical 
errors (see Section 14.4).

•	 Reproducibility (sometimes called method 
agreement) is concerned with determining 
how well two or more approaches to measur­
ing the same quantity agree with one another, 
e.g. measurements made by the same observer 
but using different methods, or by different 

between individuals. This may introduce either a 
random or a systematic error, the magnitude of 
which will depend on the importance of the last 
digit to the results.

(b)  Instrumental error

Instrumental errors arise for a number of reasons 
(Figure 1.1). Providing we are aware of the poten­
tial problem, the causes are often correctable or 
reducible.

•	 With a systematic offset or zero error, a ‘blank’ 
sample consistently reads other than zero.  
It is common in colorimetry and radioisotope 
measurements (Figure 1.1a).

•	 Non-linearity is a systematic error, commonly 
seen in the performance of strain gauges, ther­
mocouples and colorimeters (Figure 1.1b).

•	 Proportional or scale error is usually due to 
electronic gain being incorrectly adjusted or 
altered after calibration; it results in a system­
atic error (Figure 1.1c).

•	 Hysteresis is a systematic error commonly 
encountered in measurements involving galva­
nometers. It may require a standard measure­
ment procedure, e.g. always adjusting input 
down to desired level (Figure 1.1d).

•	 Instability or drift – electronic gain calibra­
tion may drift with temperature and humidity 
giving rise to an intermittent but systematic 
error, resulting in an unstable baseline (Figure 
1.1e).

•	 Random errors are commonly seen in attempts 
to measure with a sensitivity beyond the limits 
of resolution of an instrument (Figure 1.1f). 
Most instruments carry a specification of their 
accuracy, for example it is no use attempting 
to measure to the nearest gram with a balance 
accurate only to 10 g.

Two or more of these sources of error may 
occur simultaneously. Technical errors of all 
kinds can be minimized by careful experimenta­
tion. This is the essence of quality control and is 
of paramount importance in a diagnostic labora­
tory. Quality control in the laboratory is about 
ensuring that processes and procedures are 
carried out in a consistently satisfactory manner 
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Figure 1.2  Diagram representing the concepts 
of accuracy and precision: (a) represents poor 
accuracy and precision, (b) represents poor accu­
racy but good precision, and (c) represents both 
good accuracy and precision.

Figure 1.1  Types of instrumental error. 
‘Input’ refers to the true value of the meas­
urements being recorded, ‘output’ refers to 
the recorded response, and the solid line 
refers to the situation when the output 
values equal the input values. Errors in 
measurements are represented by dots or 
dashed lines.
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however, we want to know the effect of an exper­
imental diet in these pigs, we will feed the test 
diet to a sample of pigs which now comprises  
the only representatives of a hypothetical popu­
lation fed on the test diet. Theoretically, at least, 
we could actually measure the entire population 
in finite cases, but infinite populations are repre­
sented only by the sample.

1.9.2  Random sampling and 
random allocation

We examine a sample with a view to making 
statements about the population. The sample 
must therefore be representative of the popula­
tion from which it is taken if it is to give useful 
results applicable to the population at large. In 
order for the sample to be representative, strictly, 
there should be random selection from all pos­
sible members of the entire population, imply­
ing that the individuals should be selected using 
a method based on chance (see Section 13.6). 
However, in reality, random selection is generally 
not feasible (for example, in an observational 
study (see Section 5.2.1) or in a clinical study 
when the disease under investigation is rare). In 
that case, it is important that we try to ensure that 
the individuals in the sample are a true reflection 
of those in the population of interest, and that,  
if groups are to be compared, we check that the 
individuals in the different groups are compara­
ble with similar baseline characteristics.

It is essential to use an objective method to 
achieve random sampling, and a method based 
on a random number sequence is the method of 
choice. The sequence may be obtained from a 
table of random numbers (see Table A.11) or be 
generated by a computer random number gen­
erator or, if only a small sequence, it could be 
generated by a mechanical method such as 
rolling a die, although the latter approach is not 
recommended.

Note that for allocating individuals into treat­
ment groups in an experimental situation,  
principles of random allocation (randomization) 
should also be employed to avoid subjective 
influence and ensure that the groups are compa­
rable (see Section 5.6). Again, a random number 

observers using the same method, or by observ­
ers using the same method but in different 
laboratories (see Section 14.4).

•	 Stability concerns the long-term repeatability 
of measurement. Diagnostic laboratories will 
usually have reference material kept for check­
ing stability over time.

•	 Validity is concerned with determining 
whether the measurement is actually measur­
ing what it purports to be measuring. In the 
clinical context, the measurement is compared 
with a ‘gold standard’ (see Section 14.2).

1.9  Populations and samples

The concept of a population from which our 
measurements are a sample is fundamental. A 
population includes all representatives of a par­
ticular group, whereas a sample is a subgroup 
drawn from the population. We aim to choose a 
sufficiently large sample in such a manner that it 
is representative (i.e. is typical) of the population 
(see Sections 1.9.2, 4.2 and 13.3).

1.9.1  Types of population

In this book we usually use the word ‘animal’ to 
suggest the unit of investigation, but we also  
use other terms such as ‘individual’ or ‘case’. We 
want you to become familiar with different ter­
minology. A population of animals may be rep­
resented by:

•	 The individuals, e.g. all cattle, all beef cattle, all 
Herefords, all the herd.

•	 The measurements of a particular variable on 
every animal, e.g. liver weight, bone length, 
blood hormone or enzyme level.

•	 Numbers of items (in a given area, volume or 
time), e.g. blood cell counts or faecal egg counts, 
counts of radioactive particle emissions.

The population may be either a real (or finite) 
group or a hypothetical (or infinite) group. For 
example, if we are interested in the growth rate 
of pigs in Suffolk, then the population is all pigs 
in Suffolk. This is a real or finite population. If, 
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flow charts in Appendix E provide a quick 
guide to the choice of the correct test.

1.11  Conclusion

We develop the ideas presented in this chapter 
in subsequent chapters. As we have said, the con­
cepts are introduced building on one another, 
and you will need a sound understanding of the 
earlier theory in order to appreciate the material 
presented later.

The best incentive for wrestling with statistical 
concepts is the need to know the meaning of a 
data set of your own. Remember – statistical pro­
cedures cannot enhance poor data. Providing the 
data have been acquired with sufficient care and 
in sufficient number, the statistical procedures 
can supply you with sound summary statements 
and interpretative guidelines; the interpretation 
is still down to you! In the chapters that follow, 
the emphasis is on developing your understand­
ing of the procedures and their limitations to aid 
your interpretation. We hope you find the experi­
ence of getting to grips with your data rewarding, 
and discover that statistics can be both satisfying 
and fun!

Exercises

The statements in questions 1.1–1.3 are either 
TRUE or FALSE.

1.1  Biological variation:
(a)	 Is the main cause of differences between 

animals.
(b)	 Is the term given to differences between 

animals in a population.
(c)	 Is the reason why statistics is necessary in 

animal science.
(d)	 Makes it impossible to be sure of any aspect 

of animal science.
(e)	 Is the term given to the variation in ability 

of a technician performing a monotonous 
task throughout the day.

1.2  A sample is randomly drawn from a 
population:
(a)	 To reduce the study to a manageable size.

sequence is recommended to provide objective 
allocation of individuals or treatments so that  
the causes of any subsequent differences in per­
formance between the groups can be properly 
identified.

1.10  Types of statistical procedures

Statistical procedures can be divided into descrip­
tive statistics and inferential statistics.

•	 Descriptive statistics. We use these techniques 
to reduce a data set to manageable propor­
tions, summarizing the trends and tendencies 
within it, in order to represent the results 
clearly. From these procedures we can produce 
diagrams, tables and numerical descriptors. 
Numerical descriptors include measures that 
convey where the centre of the data set lies, 
like the arithmetic mean or median, and meas­
ures of the scatter or dispersion of the data, 
such as the variance or range. These are 
described more fully in Chapter 2.

•	 Inferential statistics. Statistical inference is the 
process of generalizing from the sample to the 
population: it enables us to draw conclusions 
about certain features of the population when 
only a subset of it, the sample, is available for 
investigation. One aspect of inferential statis­
tics is the estimation of population parameters 
using sample data. A parameter, such as the 
mean or proportion, describes a particular 
feature of the distribution of a variable in the 
entire population (see Section 4.3.2). Usually, 
estimation is followed by a procedure called 
hypothesis testing, another aspect of inferen­
tial statistics that investigates a particular 
theory about the data. Hypothesis tests allow 
conclusions relating to the population to be 
drawn from the information in a sample. You 
can only use these tests properly, and so avoid 
the pitfalls of misinterpretation of the data, 
when you have a knowledge of their inherent 
assumptions. Some of these techniques are 
simple and require little expertise to master, 
while others are complex and are best left to 
the qualified statistician. Details of these pro­
cedures can be found in Chapters 6–14; the 
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(a)	 Coat colour of cats: in a colony of 35 cats 
there were one white, three black, seven 
ginger, seven agouti, 11 tortoiseshell and six 
of other colours.

(b)	 Percentages of motile spermatozoa in the 
ejaculates of six bulls at an artificial insemi­
nation centre collected on a single day during 
March: they were 73%, 81%, 64%, 76%, 69% 
and 84%.

(c)	 Spectrophotometer measurements of max­
imum light absorbance at a wavelength of 
280 nm of solutions of egg yolk proteins:  
they were 0.724, 0.591 and 0.520 arbitrary 
units.

(d)	 The motility of a series of frozen and thawed 
samples of spermatozoa estimated on an 
arbitrary scale of 0–10 (0 indicating a com­
pletely immotile sample).

(e)	 Plasma progesterone levels (ng/ml) meas­
ured monthly in pregnant sheep throughout 
gestation by means of radioimmunoassay.

(f)	 Kittens classified 1 week post-natally as 
either flat-chested (abnormal) or normal.

(g)	 The optical density of negative micrographs 
of fluorescent cells calculated from measure­
ments obtained with a densitometer: the 
results for groups A, B and C were 0.814, 
0.986 and 1.103 units, respectively.

(h)	 Litter sizes of rabbits during an investigation 
of behavioural disturbances about the time 
of implantation.

(i)	 Body condition scores of goats.
(j)	 Numbers of deaths due to particular diseases 

in a year studied in an epidemiological 
investigation.

(k)	 Radioactivity determined by scintillation 
counts per minute in a β-counter.

(l)	 The gestation length (days) in cattle carrying 
twins and in those carrying singletons.

(b)	 To ensure that the full range of possibilities 
is included.

(c)	 To obtain ‘normal’ animals.
(d)	 To obtain a representative group.
(e)	 To avoid selector preferences.

1.3  A nominal scale of measurement is used for 
data that:
(a)	 Comprise categories which cannot be 

ordered.
(b)	 Are not qualitative.
(c)	 Take many possible discrete quantitative 

values.
(d)	 Are evaluated as percentages.
(e)	 Are ranked.

1.4  Decide whether the following errors are 
likely to be systematic or random (S or R):
(a)	 The water bath that holds samples for an 

enzyme assay fails during incubation.
(b)	 A clinician reading a clinical thermometer  

has a digit preference for the numbers 0 and 5.
(c)	 The calibration on a colorimeter was not 

checked before use.
(d)	 Scales for measuring the weight of animal 

feed packs are activated sometimes before 
the sack is put on and sometimes after, 
depending on the operator.

(e)	 A chemical balance weighing to 100 mg is 
used to weigh quantities of 2550 mg.

1.5  Decide whether the following are either 
real or hypothetical populations (R or H):
(a)	 Milking cows in a trial for the effectiveness 

of a novel mastitis treatment.
(b)	 Horses in livery stables in the southeast of 

England.
(c)	 Fleas on dogs in urban Liverpool.
(d)	 Fleas on dogs treated with an oral monthly 

ectoparasite treatment.
(e)	 Blood glucose levels in diabetic dogs.

1.6  Identify the appropriate type of variable 
(nominal, ordinal, discrete or continuous: N, O, D 
or C) for the following data:
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2.1  Learning objectives

By the end of this chapter, you should be able to:

•	 Explain, with diagrams, the concepts of fre-
quency distributions.

•	 Interpret diagrams of the frequency distribu-
tions of both categorical and numerical data.

•	 Identify frequency distributions that are 
skewed to the right and skewed to the left.

•	 Describe and conduct strategies to compare 
frequency distributions that have different 
numbers of observations.

•	 List the essential attributes of good tables and 
good diagrams.

•	 Interpret a pie chart, bar chart, dot diagram 
and histogram and state their appropriate uses.

•	 Interpret a stem-and-leaf diagram and a box-
and-whisker plot, and state their appropriate 
uses.

•	 Interpret a scatter diagram and explain its 
usage.

•	 List different measures of location and iden-
tify their strengths and limitations.

•	 List different measures of dispersion and iden-
tify their strengths and limitations.

•	 Summarize any given data set appropriately in 
tabular and/or diagrammatic form to demon-
strate its features.

2.2  Summarizing data

We collect data with the intention of gleaning 
information which, usually, we then convey to 

2 Descriptive statistics

interested parties. This presents little problem 
when the data set comprises relatively few obser-
vations made on a small group of animals. 
However, as the quantity of information grows, 
it becomes increasingly difficult to obtain an 
overall ‘picture’ of what is happening.

The first stage in the process of obtaining this 
picture is to organize the data to establish how 
often different values occur (see frequency dis-
tributions in Section 2.3). Then it is helpful to 
further condense the information, reducing it to 
a manageable size, and so obtain a snapshot view 
as an aid to understanding and interpretation. 
There are various stratagems that we adopt; most 
notably, we can use:

•	 Tables to exhibit features of the data (see 
Section 2.4).

•	 Diagrams to illustrate patterns (see Section 
2.5).

•	 Numerical measures to summarize the data 
(see Section 2.6).

2.3  Empirical frequency 
distributions

2.3.1  What is a frequency 
distribution?

A frequency distribution shows the frequencies 
of occurrence of the observations in a data set. 
Often the distribution of the observed data is 
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called an empirical frequency distribution, in 
contrast to the theoretical probability distribu-
tion (see Section 3.3) determined from a math-
ematical model.

It is vital that you clearly understand the dis-
tinction between categorical and numerical  
variables (see Section 1.6) before you make any 
attempt to form a frequency distribution since 
the variable type will dictate the most appropri-
ate form of display.

•	 When a variable is categorical or qualitative, 
then the observed frequency distribution of 
that variable comprises the frequency of occur-
rence of the observations in every class or cat-
egory of the variable (see Section 2.5.1). We 
can display this information in a table in which 
each class is represented, or in a diagram such 
as a bar chart or a pie diagram.

For example, if the variable represents  
different methods of treatment to prevent 
hypomagnesaemia in dairy cows, the numbers 
of farms observed using each method would 
comprise the frequency distribution. The  
data can be illustrated in a pie chart (see  
Figure 2.3).

•	 When the variable of interest is numerical or 
quantitative (either discrete or continuous), 
then the information is most easily assimilated 
by creating between five and 15 non-overlap-
ping, preferably equal, intervals or classes that 
encompass the range of values of the variable. 
It is essential that the class intervals are unam-
biguously defined such that an observation 
falls into one class only. These classes are  
adjacent when the data are discrete, and  
contiguous when the data are continuous. We 
determine the number of observations belong-
ing to each class (the class frequency). The 
complete set of class frequencies is a frequency 
distribution. We can present it in the form of a 
table or a diagram (see Section 2.5.2) such as 
a bar chart (discrete variable) or a histogram 
(continuous variable).

For example, columns 1 and 2 of Table 2.1 
show the frequency distribution of the thresh-
old response of sheep to a mechanical stimulus 
applied to the forelimb; Figure 2.5 is a histo-
gram of the data. These data reflect sensitivity 

to pain sensation in the extremities of sheep at 
pasture, and were derived as the control data 
in a study of the relationship of pain threshold 
and the incidence of foot rot; a higher thresh-
old was associated with a greater incidence of 
disease (Ley et al., 1995).

2.3.2  Relative frequency 
distributions

Although creating a frequency distribution is a 
useful way of describing a set of observations, 
it is difficult to compare two or more frequency 
distributions if the total number of observations 
in each distribution is different. A way of over-
coming this difficulty is to calculate the propor-
tion or percentage of observations in each class 
or category. These are called relative frequencies 
and each is obtained by dividing the frequency 
for that category by the total number of obser-
vations (column 3 of Table 2.1). The sum of the 
relative frequencies of all the categories is unity 
(or 100%) apart from rounding errors.

Table 2.1  Frequency distribution of mechanical threshold 
of 470 sheep.

Class limits 
of mechanical 
threshold 
(newtons) Frequency

Relative 
frequency 

(%)

Cumulative 
relative 

frequency 
(%)

1.0–1.9 9 1.9 1.9
2.0–2.9 44 9.4 11.3
3.0–3.9 88 18.7 30.0
4.0–4.9 137 29.1 59.1
5.0–5.9 69 14.7 73.8
6.0–6.9 37 7.9 81.7
7.0–7.9 21 4.5 86.2
8.0–8.9 17 3.6 89.8
9.0–9.9 19 4.0 93.8

10.0–10.9 14 3.0 96.8
11.0–11.9 4 0.9 97.7
12.0–12.9 6 1.3 98.9
13.0–13.9 2 0.4 99.4
14.0–14.9 3 0.6 100.0
Total 470 100.0
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2.3.3  Cumulative relative 
frequency distributions

Sometimes it is helpful to evaluate the number 
(the cumulative frequency) or percentage (cumu-
lative relative frequency) of individuals that are 
contained in a category and in all lower catego-
ries. Generally, we find that cumulative relative 
frequency distributions are more useful than 
cumulative frequency distributions. For example, 
we may be interested in using the data of Table 
2.1 to determine the percentage of sheep whose 
mechanical threshold is less than 7.01 newtons. 
We form a cumulative relative frequency distri-
bution by adding the relative frequencies of indi-
viduals contained in each category and all lower 
categories, and repeating this process for each 
category. The cumulative relative frequencies are 
tabulated in column 4 of Table 2.1 and the distri-
bution is drawn in the cumulative relative fre-
quency polygon of Figure 2.1.

We can evaluate the percentiles (often called 
centiles) of the frequency distribution from this 
cumulative frequency distribution. Percentiles 
are the values of the variable that divide the total 
frequency into 100 equal parts. They are used to 
divide the frequency distribution into useful 
groups when the observations are arranged in 

order of magnitude. In particular, the 50th per-
centile (called the median – see Section 2.6.1(b)) 
is the value of the variable that divides the dis-
tribution into two halves; 50% of the individuals 
have observations less than the median, and 50% 
of the individuals have observations greater than 
the median. Often the 25th and the 75th percen-
tiles are quoted (these are called the lower (first) 
quartile and upper (third) quartile, respectively); 
25% of the observations lie below the lower 
quartile and 25% of the observations lie above 
the upper quartile, the distance between these 
quartiles being the interquartile range. The 5th 
and 95th percentiles enclose the central 90% of 
the observations. We show how to evaluate these 
percentiles from the cumulative frequency distri-
bution polygon in Figure 2.1.

2.4  Tables

A table is an orderly arrangement, usually of 
numbers or words in rows and columns, which 
exhibits a set of facts in a distinct and compre-
hensive way. The layout of the table will be dic-
tated by the data, and therefore will vary for 
different types of data. It is useful, however, to 
remember the most important principles that 

Figure 2.1  Cumulative relative frequency 
polygon of the mechanical threshold of sheep 
(data from Ley et al., 1995, with permission 
from the authors and BMJ Publishing Group 
Ltd).
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Box 2.1  Rules for well-constructed tables

•	 Include a concise, informative and unambiguously 
defined title.

•	 Give a brief heading for each row and column.
•	 Include the units of measurement.
•	 Give the number of items on which any summary 

measure (e.g. a percentage) is based.
•	 When providing a summary statistic (e.g. the mean) 

always include a measure of precision (e.g. a confi-
dence interval – see Section 4.5).

•	 Give figures only to the degree of accuracy that is 
appropriate (as a guideline, one significant figure more 
than the raw data).

•	 Do not give too much information in a table.
•	 Remember that it is easier to scan information down 

columns rather than across rows.

Box 2.2  Rules for well-constructed diagrams

•	 Keep it simple and avoid unnecessary ‘frills’ (e.g. 
making a simple pie chart, histogram or bar chart 
three-dimensional).

•	 Include a concise, informative and unambiguously 
defined title.

•	 Label all axes, segments and bars, if necessary using a 
legend or key showing the meaning of the different 
symbols used.

•	 Present the units, the numbers on which summary 
measures are based, and measures of variability where 
appropriate.

•	 Avoid exaggerating the scale on an axis, perhaps by 
omitting the zero point, so as to distort the results.

•	 Include a break in the scale only if there is no other 
satisfactory way of demonstrating the extremes.

•	 Show coincident points in a scatter diagram.
•	 Ensure that the method of display conveys all the 

relevant information (e.g. pairing).

govern well-constructed tables; we outline them 
in Box 2.1.

2.5  Diagrams

A diagram is a graphic representation of data 
and may take several forms. It is often easier to 
discern important patterns from a diagram rather 
than a table, even though the latter may give 
more precise numerical information. Diagrams 
are most useful when we want to convey infor-
mation quickly, and they should serve as an 
adjunct to more formal statistical analysis. You 
will find the guidelines in Box 2.2 helpful when 
you construct a diagram.

2.5.1  Categorical (qualitative) data

When data are categorical or qualitative, then 
each observation belongs to one of a number of 
distinct categories or classes. We can determine 
the number or percentage of individuals falling 
into each class or category and display this infor-
mation in a bar chart or a pie chart.

(a)  Bar chart

A bar chart is a diagram in which every category 
of the variable is represented; the length of each 
bar, which should be of constant width, depicts 

the number or percentage of individuals belong-
ing to that category. Figure 2.2 is an example of 
a bar chart. The length of the bar is proportional 
to the frequency or relative frequency in the rel-
evant category, so it is essential that the scale 
showing the frequency or relative frequency 
should start at zero for each bar.

You may find in other people’s work that the 
frequency in a category is indicated by a pictorial 
representation of a relevant object. Typically, this 
object in a veterinary study will be the animal 
under investigation. Such a diagram is called a 
pictogram. There is an inherent danger of misin-
terpretation when making crude comparisons by 
eye of the frequencies in different categories. Is 
it height or area or volume of the object which 
represents the frequencies? To a certain extent, 
this problem can be overcome by using equally 
sized images, so that the frequency in a category 
is indicated by the appropriate number of repeti-
tions of the image. The effect is similar to a bar 
chart, with each ‘bar’ containing varying numbers 
of images. However, because of the potential for 
confusion, we do not recommend that you use 
pictograms to display frequencies.

(b)  Pie chart

A pie chart is a circle divided into segments with 
each segment portraying a different category  
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Figure 2.2  Bar chart showing the number of 
herds in which specific methods of control of 
hypomagnesaemia were used by dairy farmers 
in 278 dairy herds (data from McCoy et al., 
1996, with permission from BMJ Publishing 
Group Ltd).
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of the qualitative variable (Figure 2.3). The total 
area of the circle represents the total frequency, 
and the area or angle of a given sector is propor-
tional to the percentage of individuals falling 
into that category. A pie chart should include a 
statement of the percentage or actual number of 
individuals in each segment. Generally, we prefer 
the bar chart to the pie chart as the former is 
easier to construct and is more useful for com-
parative purposes, partly because it is easier to 
compare lengths by eye rather than angles.

2.5.2  Numerical (quantitative) data

When the data are numerical or quantitative, we 
may show every data value, for example in a dot 

diagram, or we may display only a summary of 
the data, for example in a histogram.

(a)  Dot diagram

If the data set is of a manageable size, the best 
way of displaying it is to show every value in a 
dot diagram/plot. When we investigate a single 
numerical variable, we can mark each observa-
tion as a dot on a line calibrated in the units of 
measurement of that variable, plotted horizon-
tally or vertically.

•	 If the data are in a single group, the diagram 
will look like Figure 2.9.

•	 When we are comparing the observations in 
two or more groups, we can draw a dot diagram 

Figure 2.3  Pie chart showing the percentage 
of herds in which specific methods of control of 
hypomagnesaemia were used by dairy farmers 
in 278 dairy herds (redrawn from McCoy et al., 
1996, with permission from BMJ Publishing 
Group Ltd).
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Figure 2.4  (a) Dot diagram showing 
the calculus index on teeth in three 
groups of dogs on different diets (based 
on summary data from Stookey et al., 
1995). (b) Dot diagram showing the 
change in serum glucose concentration 
in each of 11 diabetic dogs on high- and 
low-fibre diets (based on summary data 
from Nelson et al., 1998).

with the horizontal axis designating the groups, 
and the vertical axis representing the scale of 
measurement of the variable. Then, in a single 
diagram, we can show the values for each 
group in a vertical dot plot, facilitating the 
comparison of groups as well as providing a 
visual display of the distribution of the varia-
ble in each group (Figure 2.4a).

•	 When an individual reading in one group 
bears a direct relationship to that in another 
group (e.g. from two litter mates, or before 
and after within an individual) we can join  
the related dots in a pair by a straight line 
(Figure 2.4b). The directions of the slope of 
the lines may indicate a difference between 
the groups.

(b)  Histogram

The frequency distribution of a quantitative vari-
able (see Section 2.3.1) can be displayed as a 

Figure 2.5  Histogram of the mechanical 
threshold of 470 sheep (data from Ley et al., 
1995, with permission from the authors and 
BMJ Publishing Group Ltd).
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histogram. This is a two-dimensional diagram in 
which usually the horizontal axis represents the 
unit of measurement of the variable of interest, 
with each class interval being clearly delineated. 
We construct rectangles above each class interval 
so that the area of the rectangle is proportional 
to the frequency for that class. If the intervals are 
of equal width, then the height of the rectangle 
is proportional to the frequency.

The histogram gives a good picture of the fre-
quency distribution of the variable (Figure 2.5). 
The distribution is symmetrical if its shape to the 
right of a central value is a mirror image of that 
to the left of the central value. The tails of the 
frequency distribution represent the frequencies 
at the extremes of the distribution. The frequency 
distribution is skewed to the right (positively 
skewed) if the right-hand tail is extended, and 
skewed to the left (negatively skewed) if the 
left-hand tail is extended. The distribution of the 
data in Figure 2.5 is skewed to the right; it is  
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not uncommon to find biological data which are 
skewed to the right.

You should note that although the histogram 
is similar to the bar chart, the rectangles in a 
histogram are contiguous because the numerical 
variable is continuous, whereas there are spaces 
between the bars in a bar chart.

(c)  Stem-and-leaf diagram

We often see a mutation of the histogram, called 
a stem-and-leaf diagram, in computer outputs. 
Each vertical rectangle of the histogram is 
replaced by a row of numbers that represent the 
relevant observations. The stem is the core value 
of the observation (e.g. the unit value before the 
decimal place) and the leaves are represented by 
a sequence of ordered single digits, one for each 
observation, that follow the core value (e.g. the 
first decimal place). Plotting the data in this way 
provides an easily assimilated description of the 
distribution of the data whilst, at the same time, 

showing the raw data. Figure 2.6 is a stem-and-
leaf diagram for the mechanical threshold data 
for sheep.

(d)  Box-and-whisker plot

Another diagram that we often see in computer 
outputs, the box-and-whisker plot (or box plot), 
provides a summary of the distribution of a data 
set. The scale of measurement of the variable is 
usually drawn vertically. The diagram comprises 
a box with horizontal limits defining the upper 
and lower quartiles (see Section 2.3.3) and rep-
resenting the interquartile range (see Section 
2.6.2(b)), enclosing the central 50% of the obser-
vations, with the median (see Section 2.6.1(b)) 
marked by a horizontal line within the box. The 
whiskers are vertical lines extending from the 
box as low as the 2.5th percentile and as high as 
the 97.5th percentile (sometimes the percentiles 
are replaced by the minimum and maximum 
values of the set of observations). Figure 2.7 is a 

Figure 2.6  Stem-and-leaf diagram of the 
mechanical threshold of sheep (data from Ley 
et al., 1995, with permission from the authors 
and BMJ Publishing Group Ltd).



	 Descriptive statistics	 19

box-and-whisker plot of the mechanical thresh-
old data for sheep. The box-and-whisker plot is 
particularly useful when a number of data sets 
are to be compared in a single diagram (see 
Figure 7.2).

(e)  Scatter diagram

The scatter diagram is an effective way of pre-
senting data when we are interested in examin-
ing the relationship between two variables which 
may be numerical or ordinal. The diagram is a 
two-dimensional plot in which each axis repre-
sents the scale of measurement of one of the  
two variables. Using this rectangular co-ordinate 
system, we relate the value for an individual on 
the horizontal scale (the abscissa) to the corre-

sponding value for that individual on the vertical 
scale (the ordinate) by marking the relevant 
point with an appropriate symbol (Figure 2.8). 
Coincident points should be identifiable. We can 
discern possible relationships between the vari-
ables by observing the scatter of points, and then 
we may join the points to produce a line graph, 
or draw a line that best represents the relation-
ship (see Chapter 10). If two or more treatment 
groups are represented, they can be distinguished 
by colour or dot symbols, such as a cross or circle.

2.6  Numerical measures

Using a visual display as a means of describing a 
set of data helps us get a ‘feel’ for the data, but 

Figure 2.8  Scatter diagram showing the 
relationship between two measures of bone 
formation: bone alkaline phosphatase activity 
(wBAP) and Type I collagen concentration 
(PICP) (redrawn from Jackson et al., 1996, 
with permission from Elsevier Ltd).

Figure 2.7  Box-and-whisker plot of the 
mechanical threshold of sheep. Note that 
extreme values are indicated in the diagram 
(data from Ley et al., 1995, with permission 
from the authors and BMJ Publishing 
Group Ltd).
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our impressions are subjective. It is usually essen-
tial that we supplement the visual display with 
the appropriate numerical measures that sum-
marize the data. If we are able to determine some 
form of average that measures the central ten-
dency of the data set, and if we know how widely 
scattered the observations are in either direction 
from that average, then we will have a reasonable 
‘picture’ of the data. These two characteristics of 
a set of observations measured on a numerical 
variable are known as measures of location and 
measures of dispersion.

Note that it is customary to distinguish between 
measures in the population (called parameters) 
and their sample estimates (called statistics) by 
using Greek letters for the former and Roman 
letters for the latter (see the Glossary of notation 
in Appendix C).

2.6.1  Measures of location 
(averages)

The term average refers to any one of several 
measures of the central tendency of a data set.

(a)  Arithmetic mean

The most commonly used measure of central 
tendency is the arithmetic mean (usually abbre-
viated to the mean). It is obtained by adding 
together the observations in a data set and divid-
ing by the number of observations in the set.

If the continuous variable of interest is denoted 
by x and there are n observations in the sample, 
then the sample mean (pronounced x bar) is

x
x

n
= ∑

•	 The mean has the disadvantage that its value 
is influenced by outliers (see Section 5.9.3). An 
outlier is an observation whose value is highly 
inconsistent with the main body of the data. 
An outlier with an excessively large value will 
tend to increase the mean unduly, whilst a par-
ticularly small value will decrease it.

•	 The mean is an appropriate measure of central 
tendency if the distribution of the data is sym-
metrical. The mean will be ‘pulled’ to the right 
(increased in value) if the distribution is 
skewed to the right, and ‘pulled’ to the left 
(decreased in value) if the distribution is 
skewed to the left.

(b)  Median

Another frequently used measure of central ten-
dency is the median. The median is the central 
value in the set of n observations which have 
been arranged in rank order, i.e. the observations 
are arranged in an increasing (or decreasing) 
order of magnitude. The median is the middle 
value of the ordered set with as many observa-
tions above it as below it (Box 2.3). The median 
is the 50th percentile (see Section 2.3.3).

Box 2.3  Calculating the median

•	 If n is odd, then the median is found by starting with 
the smallest observation in the ordered set and then 
counting until the (n + 1)/2th observation is reached. 
This observation is the median.

•	 If n is even, then the median lies midway between the 
central two observations.

Example
The weights (grams) of 19 male Hartley guinea 
pigs were:

314, 991, 789, 556, 412, 499, 350, 863, 455, 297, 598, 
510, 388, 642, 474, 333, 421, 685, 536

If we arrange the weights in rank order, they 
become:

297, 314, 333, 350, 388, 412, 421, 455, 474, 499, 510, 
536, 556, 598, 642, 685, 789, 863, 991

The median, shown in bold, is the (19 +  1)/2 = 
10th weight in the ordered set; this is 499 g.

Example
The following are plasma potassium values 
(mmol/l) of 14 dogs:

4.37, 4.87, 4.35, 3.92, 4.68, 4.54, 5.24, 4.57, 4.59, 
4.66, 4.40, 4.73, 4.83, 4.21

x = =
63 96

14
4 57

.
. mmol/l
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•	 The arithmetic mean and the median are  
close or equal in value if the distribution is 
symmetrical.

•	 The advantage of the median is that it is not 
affected by outliers or if the distribution of the 
data is skewed. Thus the median will be less 
than the mean if the data are skewed to the 
right, and greater than the mean if the data are 
skewed to the left.

•	 A disadvantage of the median is that it  
does not incorporate all the observations in  
its calculations, and it is difficult to handle 
mathematically.

(c)  Geometric mean

If we take the logarithm (generally to base 10 or 
to base e) of each value of a data set which is 
skewed to the right, we usually find that the dis-
tribution of the log-transformed data becomes 
more symmetrical. In this case, the arithmetic 
mean of the log-transformed values is a useful 
measure of location. However, it has the disad-
vantage that it is measured on a log scale. We 
therefore convert it back to the original scale by 
taking its antilogarithm; this is the geometric 

mean. The distribution of biological data, if not 
symmetrical, is frequently skewed to the right; 
we could then calculate the geometric mean to 
represent an average value.

For example, Figure 2.9 shows the distribution 
of the guinea pig weights given in the example in 
Section 2.6.1(b) illustrated in a dot plot, first as 
the untransformed data (Figure 2.9a) and then 
as the log-transformed data (Figure 2.9b). You 
can see that the transformation improves sym-
metry, and the geometric mean is smaller than 
the arithmetic mean and closer to the median. It 
is important to realize that we apply the trans-
formation to each value of the raw data and not 
to the class limits of grouped data, even when the 
data are presented as a frequency distribution. 
Figure 2.10b shows the effect of this log transfor-
mation on the distribution of the mechanical 
threshold data summarized in Table 2.1 and  
displayed in Figure 2.10a. The mean of the log 
mechanical threshold data is 0.6778 log newtons; 
the antilog of this mean, the geometric mean, is 
4.76 newtons. Note that the arithmetic mean is 
5.25 newtons and the median is 4.65 newtons. 
You can see that the distribution is more sym-
metrical, and the geometric mean represents the 
central tendency of the transformed data much 

Figure 2.9  Dot plots for (a) the weights, and (b) the log10 
weights of 19 guinea pigs.

Median = 499
Geometric mean = 501

(a)

Mean = 532

Mean of log weight = 2.70
(antilog of 2.70 = 501)

(b)
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better than the arithmetic mean of the untrans-
formed data.

•	 The geometric mean is always less than the 
arithmetic mean if the data are skewed to the 
right.

•	 The geometric mean is usually approximately 
equal to the median if the data are skewed to 
the right. We often prefer to use the geometric 
mean rather than the median for right-skewed 
data because the properties of the distribution 
of the mean (from which the geometric mean 
is calculated using the log data) are more 
useful than those of the median.

(d)  Mode

A well-known but infrequently used measure of 
central tendency is the mode. It is the most com-
monly occurring observation in a set of observa-
tions. The mode often has a different value from 
both the arithmetic mean and the median. The 
modal group or modal class is the group or 
class into which most observations fall in a 
histogram.

In the mechanical threshold data of Table 2.1 
and Figure 2.5, the modal group represents 
values from 4.0 to 4.9 newtons. In another 
context, we might use the mode to indicate the 

Figure 2.10  Histograms of the mechanical 
threshold of sheep showing (a) the raw data, and 
(b) the log10-transformed data (data from Ley et 
al., 1995, with permission from the authors and 
BMJ Publishing Group Ltd).

(b) Histogram of log10 data

(a) Histogram of raw data

0.00
0.10 0.30 0.50 0.70 0.90

0.00 0.40 0.60 0.80 1.00
1.10

1.20

140

120

100

80

60

40

20

0

140

120

100

80

60

40

20

0

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mechanical threshold (newtons)

Log mechanical threshold (log newtons)



	 Descriptive statistics	 23

most common litter size in a breed of dogs, e.g. 
the most common litter size of bearded collie 
dogs is seven.

For the following reasons, statisticians tend not 
to favour the mode as a tool for summarizing 
data:

•	 The mode is determined by disregarding most 
of the observations.

•	 The mode depends on the accuracy with which 
the data are measured.

•	 Some distributions do not have a mode, whilst 
other distributions may have more than one 
mode. A distribution that has a single mode  
or modal group is called unimodal; a distribu-
tion that has two humps (i.e. modes or modal 
groups) separated by a trough is called bimodal 
even if the frequency of occurrence of the 
observations in the two modes or modal classes 
is not equal.

2.6.2  Measures of dispersion 
(spread)

There are a number of measures of the spread of 
the data, each of which has different attributes.

(a)  Range

The range is defined as the difference between the 
largest and smallest observations. In the mechani-
cal threshold data from Table 2.1, the range is  
13.9 newtons, being the difference between the 
maximum value of 14.9 newtons and the minimum 
value of 1.0 newton.

•	 The range is an easily determined measure of 
dispersion of the observations of a numerical 
variable.

•	 It gives undue weight to extreme values and 
will, therefore, overestimate the dispersion of 
most of the observations if outliers are present.

•	 The range tends to increase in value as the 
number of observations in the sample increases.

(b)  Interquartile range

The interquartile range is the range of values 
that encloses the central 50% of the observations 

if the observations are arranged in order of  
magnitude. It is defined as the difference between 
the first and third quartiles (see Section 2.3.3).  
In the mechanical threshold data, the interquar-
tile range is from 3.68 to 6.10 newtons (see  
Figure 2.1).

•	 The interquartile range is influenced neither 
by the presence of outliers nor by the sample 
size.

•	 It suffers from the disadvantage, in common 
with the range, of ignoring most of the obser-
vations as it is calculated from just two of 
them.

(c)  Variance

The variance is determined by calculating the 
deviation of each observation from the mean. 
This deviation will be large if the observation is 
far from the mean, and it will be small if the 
observation is close to the mean. Some sort of 
average of these deviations therefore provides a 
useful measure of spread. However, some of the 
deviations are positive and some are negative, 
depending on whether the observation is greater 
or less than the mean, and their arithmetic  
mean is zero. The effect of the sign of the devia-
tion can be annulled by squaring every devia-
tion, since the square of both positive and 
negative numbers is always positive. The arith-
metic mean of these squared deviations is called 
the variance.

In fact, when we select a sample of n observa-
tions from our population, we divide the sum of 
the squared deviations in the sample by n  –  1 
instead of n. It can be shown that this produces 
a better estimate (i.e. unbiased, see Sections 4.4.3 
and 4.4.4) of the population variance. Thus, the 
sample variance, s2, which estimates the popula-
tion variance, σ2, is given by

s
x x

n
2

2

1
=

−( )
−

∑

We rarely calculate the variance from first 
principles in this age of hand-held calculators 
and computers, and so we make no attempt here 
to show the mechanics of the calculation.
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•	 The variance uses every available observation.
•	 Although the variance is a sensible measure  

of spread, it is not intuitively appealing as its 
dimensionality is different from that of the 
original measurements.

(d)  Standard deviation

The standard deviation (often abbreviated to 
SD) is equal to the square root of the variance. 
The standard deviation may be regarded as a 
kind of average of the deviations of the observa-
tions from the arithmetic mean. It is often 
denoted by s in the sample, estimating σ in the 
population, and is given by

s
x x

n
= =

−( )
−

∑
Variance

2

1

We can calculate the standard deviation on  
a calculator rather than by substituting the  
actual observations into the above formula. 
(Note: most calculators have two SD function 
keys, one for the population SD and one for its 
estimate from the sample. These may be marked 
as σ (for the population) and s (for the sample). 
On some calculators, you may find them marked 
as σn (for the population) and sn–1 or σn–1 (for the 
sample). The use of σn–1 is confusing because it is 
contrary to the generally accepted convention of 
nomenclature.)

•	 The SD uses all the observations in the data 
set.

•	 The SD is a measure of spread whose dimen-
sionality is the same as that of the original 
observations, i.e. it is measured in the same 
units as the observations.

•	 The SD is of greatest use in relation to a sym-
metrically distributed data set that follows the 
Gaussian or Normal distribution (see Section 
3.5.3). In this case, it can be shown that the 
interval defined by the (mean ± 2 SD) encom-
passes the central 95% (approximately) of the 
observations in the population. In the example 
above, the interval is 4.57 ± 2(0.319), i.e. from 
3.93 to 5.21 mmol/l.

•	 For data that are Normally distributed, four 
times the standard deviation gives us an indi-
cation of the range of the majority of the values 
in the population. In the plasma potassium 
example, this is 4 × 0.319 = 1.28 mmol/l.

Sometimes the standard deviation is expressed 
as a percentage of the mean; we call this measure 
the coefficient of variation (CV). It is a dimen-
sionless quantity that can be used for comparing 
relative amounts of variation. However, these 
comparisons are entirely subjective because its 
theoretical properties are complex, so we do not 
recommend its use.

2.7  Reference interval

Sometimes we are interested in describing the 
range of values of a variable that defines the 
healthy population; we call this the reference 
interval or the reference range. Because of the 
problem caused by outliers, we calculate the ref-
erence range as the interval that encompasses, 

Example
The plasma potassium data of 14 dogs, for which 
the mean was calculated as 4.57 mmol/l (see 
Section 2.6.1(a)), gives a sample variance of

s2 21 32297
13

0 10177= =
.

. ( )mmol/l

If you were reporting the variance, you would 
probably correct it to one decimal place more 
than the original data. This variance would there-
fore be reported as 0.102 (mmol/l)2.

Example
In the plasma potassium data of 14 dogs used as 
the example for the calculations of the mean and 
the variance

s = =. .0 10177 0 319 mmol/l
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say, the central 90%, 95% or 99% of the observa-
tions obtained from a large representative sample 
of the population. We usually calculate the values 
encompassing 95% of the observations; the ref-
erence range is then defined by the mean ± 1.96 
SD (the 1.96 is often approximated by 2) pro-
vided the data have an approximately Normal 
distribution (see Section 3.5.3). If the data are 
not Normally distributed, we can still calculate 
the reference range as the interval defined by  
the 2.5th and 97.5th percentiles of the empirical 
distribution of the observations. More informa-
tion about the calculation of the reference inter-
val may be found in, for example, Geffré et al. 
(2011).

We can use the reference interval to determine 
whether an individual animal may be classified 
as belonging to the population of healthy animals. 
If the animal under consideration has a value for 
this variable which lies outside the specified 
range for the healthy population, we may con-
clude that the animal is unlikely to belong to the 
normal population and is a diseased animal. For 
example, plasma creatinine values above the ref-
erence interval of 40–180  mmol/l were used to 
diagnose renal failure in cats in a study by Barber 
and Elliott (1998).

Note that the reference interval or range is 
sometimes called the normal range. The latter 
term is best avoided because of the confusion 
between ‘normal’ implying healthy and ‘Normal’ 
in the statistical sense describing a particular 
theoretical distribution. In this book we distin-
guish the two by small and capital letters but they 
may still be misconstrued.

Exercises

The statements in questions 2.1–2.4 are either 
TRUE or FALSE.

2.1  An appropriate diagram to show the fre-
quency distribution of a continuous variable is:
(a)	 A histogram.
(b)	 A pie chart.
(c)	 A stem-and-leaf plot.
(d)	 A bar chart.
(e)	 A box-and-whisker plot.

2.2  An appropriate measure of central ten-
dency for continuous data that are skewed to the 
right is:
(a)	 The arithmetic mean.
(b)	 The geometric mean.
(c)	 The antilog of the arithmetic mean of the 

log-transformed data.
(d)	 The median.
(e)	 The 50th percentile.

2.3  The standard deviation:
(a)	 Is a measure of dispersion.
(b)	 Is the difference between the 5th and 95th 

percentiles.
(c)	 Is greater than the range of the 

observations.
(d)	 Measures the average deviation of the obser-

vations from the mean.
(e)	 Is the square of the variance.

2.4  The reference range (containing 95% of the 
observations) for a particular variable:
(a)	 Cannot be calculated if the data are skewed.
(b)	 May be used to determine whether or not an 

animal is likely to be diseased if its value for 
the variable is known.

(c)	 Can be evaluated from a small sample of 
data.

(d)	 Is equal to the mean  ±  SD if the data are 
Normally distributed.

(e)	 Is equal to the difference between the largest 
and smallest observations in the data set.

2.5  The following data show the resting pulmo-
nary ventilation in 25 adult sheep (l/min):

8.3 8.0 9.9 6.1 5.5
10.3 6.5 7.6 7.6 7.6
6.9 10.3 7.8 7.3 8.9

10.1 7.6 9.1 8.3 4.8
10.2 6.5 9.1 7.0 11.9

Draw histograms of the data with:
(a)	 Class interval 1.0  l/min, lowest class 4.25– 

5.24 l/min.
(b)	 Class interval 0.2  l/min, lowest class 4.80– 

4.99 l/min.
(c)	 Class interval 5.0  l/min, lowest class 4.50– 

9.49 l/min.
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Figure 2.11  Illustrations taken from the literature: (a) Parker et al. (1988), reproduced from the Veterinary Record with per-
mission from BMJ Publishing Group Ltd; (b) Ley et al. (1995), reproduced with permission from the authors and BMJ Publish-
ing Group Ltd; (c) Tamuli and Watson (1994), reproduced from the Veterinary Record with permission from BMJ Publishing 
Group Ltd; and (d) Merrell (1998), redrawn with permission from the author.
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All the histograms should appear on the same 
sheet of graph paper and should not be superim-
posed. Use the same scales for all of them. Which 
is the most appropriate histogram for demon-
strating the distribution of the data? Explain 
your answer.

2.6  The diagrams in Figure 2.11 have errors 
in their presentation. Identify the incorrect fea-
tures and suggest what is required to rectify the 
errors.

2.7  The following data, 44.4, 67.6, 76.2, 64.7, 
80.0, 64.2, 75.0, 34.2, 29.2, represent the infection 
of goats with the viral condition peste des petits 
ruminants, expressed as the percentage morbid-
ity in Indian villages (Kulkarni et al., 1996, repro-
duced from the Veterinary Record with permission 
from BMJ Publishing Group Ltd). Calculate the 
median.

2.8  Calculate the mean and the median of the 
following data set. What evidence is there for 
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concluding that the data are or are not symmetri-
cally distributed?

Body weights of 16 weanling female mice in 
grams:

54.1 49.8 24.0 46.0 44.1 34.0 52.6 54.4
56.1 52.0 51.9 54.0 58.0 39.0 32.7 58.5

2.9  Use a calculator with statistical functions to 
calculate the range, the variance and the stand-
ard deviation of the sample data which follows 
(Gunning & Walters, 1994, reproduced from the 
Veterinary Record with permission from BMJ 
Publishing Group Ltd).

Vitamin E concentration (mmol/l) in 12 heifers 
showing clinical signs of an unusual myopathy:

4.2 3.3 7.0 6.9 5.1 3.4 2.5 8.6 3.5
2.9 4.9 5.4

2.10  Explain the meaning of the following 
terms, indicating how each is determined:
(a)	 Percentile.
(b)	 Median.
(c)	 Interquartile range.
(d)	 Reference range.
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3.1  Learning objectives

By the end of this chapter, you should be able to:

•	 Calculate the mathematical probability of the 
occurrence of particular outcomes in simple 
events, such as dice-throwing and coin- 
tossing.

•	 Elaborate the simple rules of probability – the 
addition rule and the multiplication rule for 
independent and dependent events – and illus-
trate each with a simple example.

•	 Explain what is meant by a probability density 
function.

•	 List the properties of the Normal distribution.
•	 Describe the Standardized Normal Deviate.
•	 Explain how you might verify approximate 

Normality in a data set.
•	 List situations when a Lognormal distribution 

might apply.
•	 Define conditions under which measure

ments follow the Binomial distribution, and 
give an example.

•	 State when the Binomial distribution is 
approximated by the Normal distribution.

•	 Define conditions under which measure
ments follow the Poisson distribution, and give 
an example.

•	 State when the Poisson distribution is approxi-
mated by the Normal distribution.

3 Probability and probability 
distributions

3.2  Probability

3.2.1  Relevance of probability  
to statistics

So far, we have discussed the processes involved 
in summarizing and displaying the results 
obtained from a group of animals. The approaches, 
collectively known as descriptive statistics, are an 
important first step to any analysis. However, 
usually we want to generalize the results from a 
representative sample to the larger population 
from which they came; that is, we want to make 
inferences about the population using the sample 
data.

For example, suppose the mean and standard 
deviation of serum iron concentration in a 
random sample of 59 Simmental cows are 
27.64 μmol/l and 6.36 μmol/l, respectively. It is 
unlikely that the results obtained in this sample 
are identical to those that would be observed in 
the population of Simmental cows. However, we 
want to use this information to infer something 
about this population. There is invariably some 
doubt associated with the inferences drawn 
about the population; this doubt is quantified by 
a probability which is fundamental to statistical 
inference as it provides the link between the 
sample and the population. We discuss the con-
cepts of inferential statistics in Chapter 4 when 
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trial should not affect whether or not the  
event occurs in any other trial. As an example, 
if we are interested in estimating the probabil-
ity of a litter size greater than three in a colony 
of guinea pigs, we would have to count the 
number of such litters over a lengthy period, 
say a year, and divide it by the total number of 
litters. This is the frequency definition of prob-
ability because it relies on counting the fre-
quency of occurrence of the event in a large 
number of repetitions of similar trials. The 
probability defined in this way is thus the rela-
tive frequency of the event in repeated trials 
under similar conditions. See also Section 
14.3.3 for the distinction between the frequen-
tist understanding of probability and signifi-
cance testing propounded by Ronald Fisher, 
Jerzy Neyman and Egon Pearson and the 
more abstract interpretation of probability put 
forward by Bayesians.

It is interesting to note that the various defini-
tions of probability are not entirely distinct.  
The proportion of times that an event would be 
observed if an experiment were to be repeated a 
large number of times approaches the a priori 
probability. So, if a coin were tossed five times, 
we would not be very surprised to observe four 
heads; however if the coin were tossed 1000 
times, we would be more likely to observe 
approximately 500 heads. Thus, the values for  
the probability defined using both the a priori 
approach and the frequency approach coincide 
when the experiment is repeated many times. 
Similarly, the subjective view of probability 
cannot be divorced from the frequency view, as 
the former is usually based on experience, which 
in turn relies on previous occurrences of similar 
events. For example, the likely incidence of  
liver fluke infestation can be forecast on the basis 
of the previous year’s rainfall, and is founded  
on a large database of rainfall/fluke incidence 
relationships.

3.2.3  Properties of a probability

It is clear that, since a probability can be defined 
as a relative frequency or a proportion, its 

the notion of sampling and sampling distribu-
tions is introduced, and develop the theory in 
subsequent chapters. Here we introduce the con-
cepts of probability.

3.2.2  Definitions of probability

There are several approaches to defining a 
probability:

•	 We can take the subjective or personal view of 
probability, which is to regard it as a measure 
of the strength of belief an individual has  
that a particular event will occur. For example, 
‘That cow has a 60% chance of calving tonight’. 
This subjective or personal view of probability 
is often called Bayesian probability (see 
Section 14.3.4) when it represents the extent 
to which it is supported by the available evi-
dence. Whilst this approach to defining a prob-
ability has the advantage that it is possible to 
assign a probability to any event, this is more 
than offset by the fact that different people  
are likely to assign different probabilities to 
the same event, often influenced by irrelevant 
considerations.

•	 A second approach to defining a probability 
relies on having an understanding of the theo-
retical model defining the set of all possible 
outcomes of a trial; we evaluate the probability 
solely on the basis of this model, without 
recourse to performing the experiment at all. 
It is often called an a priori probability. So, for 
example, we know that there are two equally 
likely outcomes when an unbiased coin is 
tossed: either a head or a tail. This is the model 
from which we can deduce that the probability 
of a defined event, obtaining a head, say, is 
1/2 = 0.5.

•	 The third approach to defining a probability, 
and the one commonly used in statistical infer-
ence, is to regard a probability as the propor-
tion of times a particular outcome (the event) 
will occur in a very large number of ‘trials’ or 
‘experiments’ performed under similar condi-
tions. The result of any one trial should be 
independent of the result of any other trial,  
so whether or not the event occurs in any one 
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occurrence of one event does not affect the 
occurrence or non-occurrence of the other 
event, then the probability of both events 
occurring is the product of the individual prob-
abilities. Thus,

Pr Pr Pr( ) ( ) ( )A or B A B= ×

For example, if we have two cartons of dog 
biscuits, as in the addition rule example, the 
probability of picking a diamond shape from 
both cartons is 1/5 × 1/5, equal to 1/25 or 0.04.

When two events are not independent, we 
have to adopt a different rule, which relies on 
an understanding of conditional probability. 
The probability of an event B occurring when 
we know that A has already occurred is called 
the conditional probability of B, and is written 
as Pr(B given A) or Pr(B|A). Thus the event 
B is dependent on A. If we have two such 
dependent events, the probability of both 
events occurring is equal to the probability of 
one of them occurring times the conditional 
probability of the other occurring. So,

Pr Pr Pr( ) ( ) ( )A or B A B given A= ×

For example, if we have a carton of dog  
biscuits as in the addition rule example, the  
probability of picking a second diamond shape 
after we have already picked one diamond 
shape (and given it to Max to eat!) is equal to 
the probability of picking the first diamond 
shape (10/50  =  1/5) times the probability of 
picking the second diamond shape out of the 
remaining 49 biscuits (9/49), i.e. it is 0.037.

3.3  Probability distributions

3.3.1  Introduction

We introduced empirical frequency distributions 
in Section 2.3; these allow us to assimilate a 
large amount of observed data and condense 
them into a form, typically a table or a diagram, 
from which we can interpret their salient fea-
tures. Another type of distribution is a probabil-
ity distribution; this is a theoretical model that 
we use to calculate the probability of an event 

numerical value must be equal to or lie between 
0 and 1.

•	 A probability of 0 means that the event cannot 
occur.

•	 A probability of 1 (unity) means that the event 
must occur.

We often convert probabilities into percent-
ages (with a range 0–100%) or express them as 
ratios (e.g. a one-in-three chance of an event 
occurring).

Sometimes we focus our interest not on a par-
ticular event occurring but on that event not 
occurring, i.e. on the complementary event. It 
follows from the properties of a probability that 
the probability of the event not occurring is 1 
minus the probability of the event occurring. So, 
if the probability of a kitten contracting feline 
viral rhinotracheitis after vaccination at 9 and 13 
weeks of age is 0.04 (in a particular location and 
time), then the probability of being adequately 
protected is 0.96.

3.2.4  Rules of probability

Two simple rules governing probabilities are the 
addition and multiplication rules. For simplicity, 
we define them for only two events, A and B, but 
they can be extended to multiple events.

•	 Addition rule. When two events are mutually 
exclusive, implying that the two events cannot 
occur at the same time, then the probability of 
either of the two events occurring is the sum of 
the probability of each event. Thus,

Pr Pr Pr( ) ( ) ( )A or B A B= +

For example, assuming that we have a carton 
of 50 dog biscuits, with 10 of each of five dif-
ferent shapes, the probability of picking either 
a diamond shape or a round shape from the 
carton is the sum of the probability of a 
diamond (10/50 = 1/5) and the probability of a 
round (10/50 = 1/5) which is 2/5 or 0.4.

•	 Multiplication rule. When two events are 
independent, so that the occurrence or non-
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occurring. The probability distribution shows 
how the set of all possible mutually exclusive 
events is distributed, and can be presented as an 
equation, a chart or a table. We may regard a 
probability distribution as the theoretical equiv-
alent of an empirical relative frequency distribu-
tion, with its own mean and variance.

A variable which can take different values 
with given probabilities is called a random vari-
able. A probability distribution comprises all the 
values that the random variable can take, with 
their associated probabilities. There are numer-
ous probability distributions which may be dis-
tinguished by whether the random variable is 
discrete, taking only a finite set of possible values, 
or continuous, taking an infinite set of possible 
values in a range of values (see Section 1.6). A 
discrete random variable with only two possible 
values is called a binary variable, e.g. pregnant or 
not pregnant, diseased or healthy.

3.3.2  Avoiding the theory!

We discuss some of the more common distribu-
tions in this chapter although, for simplicity, we 
omit the mathematical equations that define the 
distributions. You do not need to know the equa-
tions for the procedures we describe in this text, 
since the required probabilities are tabulated.

We are aware that much of the theory associ-
ated with probability distributions presents dif-
ficulties to the novice statistician. Moreover, it  
is possible to perform analyses on a variable 
without this knowledge. We have therefore 
chosen not to present more details of these dis-
tributions than we believe are absolutely neces-
sary for you to proceed. Advanced statistics texts 
and many elementary texts cover this in more 
detail.

3.4  Discrete probability 
distributions

3.4.1  Definition

Box 3.1 defines a discrete probability distribu-
tion. An example of a discrete random variable 

Box 3.1  Definition of a discrete probability distribution

A discrete probability distribution attaches a probability 
to every possible mutually exclusive event defined by a 
discrete random variable; the sum of these probabilities 
is 1 (unity).

is seen in simple Mendelian inheritance. Con-
sider the situation where we have a pair of alleles 
represented by T, the dominant allele, and t, the 
recessive allele. In Manx cats the dominant 
mutant, T, is associated with the tailless condi-
tion but the homozygous combination, TT, is 
lethal and these embryos do not develop. The 
heterozygous condition, Tt or tT, results in the 
tailless Manx cat, and the homozygous tt condi-
tion is the normal cat with a tail. When two Manx 
cats (heterozygous) are mated, there are four 
equally likely genotypic outcomes: TT, Tt, tT and 
tt (Figure 3.1a).

Figure 3.1b is a chart of the discrete probabil-
ity distribution of the dominant allele, T. The 
probability distribution for this random variable 
is the complete statement of the three possible 
phenotypic outcomes with their associated prob-
abilities. In the chart, the horizontal axis describes 
the set of the three possible outcomes defining 
the random variable, and the vertical axis meas-
ures the probability of each outcome. Each prob-
ability is quantified by the length of a bar; the 
sum of the three probabilities attached to the 
possible outcomes is unity (i.e. 0.25  +  0.50  + 
0.25 = 1). As can be seen in Figure 3.1b, in this 
case there are only three viable genotypes (tt, Tt, 
tT), giving rise to a ratio of phenotypically Manx 
cats to normal cats of 2 : 1. It is easy to see that 
the diagrammatic representation of a probability 
distribution bears a strong resemblance to the 
empirical bar chart in which the vertical axis rep-
resents relative frequency, as in Figure 2.2.

There are many different discrete probability 
distributions. The two distributions which are 
particularly relevant to biological science are  
the Binomial and Poisson distributions. As we 
explain in Section 3.6.1, these two discrete distri-
butions are often approximated by a continuous 
distribution.
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Figure 3.1  Genetic characteristics of 
cats whose parents are each of Manx 
genotype Tt. (a) The four possible geno-
typic outcomes. (b) The probability distri-
bution of the number of T genes, the 
random variable that determines the phe-
notype of the cat.
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3.4.2  Binomial distribution

The Binomial distribution is relevant in the situ-
ation in which we are investigating a binary 
response. There are only two possible outcomes 
to what we shall term a ‘trial’: either the animal 
is pregnant or it is not; either the animal shows 
clinical signs of infectious disease or it does  
not. It is common in statistical theory to use the 
terminology ‘success’ in a trial to represent the 
situation when the individual possesses the char-

acteristic (e.g. disease) or the event occurs (e.g. 
pregnancy). Likewise, ‘failure’ is used to repre-
sent the complementary event, i.e. the situation 
when the individual does not possess the charac-
teristic (e.g. is disease-free) or the event does not 
occur (e.g. not pregnant). We define the Binomial 
distribution in Box 3.2.

So for example, suppose we take blood  
samples from six cattle randomly selected from 
the population. Each animal in the population  
is either seropositive for Leptospira (success) 
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Poisson distribution. We define the Poisson dis-
tribution in Box 3.3.

For example, using the Poisson distribution, 
we can attach probabilities to a particular count 
– the number (say, 5550) of scintillation events 
caused by a radioactive sample in a scintillation 
counter per unit time, or the number (say, 35) 
of blood cells per unit volume of a diluted 
sample, or the number (say, 60) of parasitic eggs 
per unit volume or weight of faecal sample,  
or the number (say, 2) of poisonous plants per 
quadrat across a field. Usually, for convenience, 
we employ the Normal approximation to the 
Poisson distribution for analysing these data (see 
Section 3.6.1).

3.5  Continuous probability 
distributions

3.5.1  Relationship between 
discrete and continuous probability 
distributions

In order to understand the relationship between 
discrete and continuous probability distributions:

•	 Refer to Figure 3.2a, an example of a very 
simple discrete probability distribution. All 
possible events are represented on the hori-
zontal axis. The vertical length of each line 
represents the probability of the event. Since 
all events are represented, and the total prob-
ability must equal unity, the sum of the lengths 
of all the lines also equals 1.

•	 Refer to Figure 3.2b, an illustration of a dis-
crete probability distribution in which there 
are a large, but still finite, number of possible 
discontinuous values of the random variable. 
Again, the sum of the lengths of all the lines 
equals unity.

or not (failure), i.e. we have a binary response  
variable. We know that the prevalence (see Box 
5.1) of Leptospira in the cattle population is 
approximately 30% (this is π). We can use this 
information and our knowledge of the Binomial 
distribution to attach a probability to each of the 
possible outcomes – the probability that none is 
positive for Leptospira, or alternatively, that 1, 2, 
3, .  .  . , up to 6 are positive. These probabilities 
are, respectively, 0.1176, 0.3025, 0.3241, 0.1852, 
0.0595, 0.0102 and 0.0007, which, when added, 
sum to 1 (apart from rounding errors).

(a)  Importance of the Binomial 
distribution

The Binomial distribution is particularly impor-
tant in statistics because of its role in analysing 
proportions. A proportion is derived from a 
binary response variable, e.g. the proportion of 
animals with disease if each animal either has or 
does not have the disease. We can use our knowl-
edge of the Binomial distribution (usually its 
Normal approximation, see Section 3.6.1) to 
make inferences about proportions (see Sections 
4.7 and 9.3.1). As an example, Little et al. (1980) 
used the differences in the proportions of 
leptospiral-positive antisera in groups of abort-
ing and normal animals to investigate the role of 
leptospiral infection in abortion in cows. It was 
shown that the aborting cows had a significantly 
higher proportion of Leptospira-positive anti-
body levels than the normal animals.

3.4.3  Poisson distribution

Another discrete probability distribution which 
occurs in veterinary and animal science is the 

Box 3.2  The Binomial distribution

The random variable in the Binomial distribution repre-
sents the number of successes in a series of n independ-
ent trials in which each trial can result in either a success 
(with probability, π) or a failure (with probability, 1 – π). 
In theory, there are n + 1 possible outcomes in this situ-
ation as it is possible to observe either 0 successes or 1 
or 2 or 3 or .  .  . up to n successes in the n trials. The 
Binomial distribution attaches a probability to each 
outcome. The mean and variance of the distribution are 
nπ and nπ(1 – π), respectively.

Box 3.3  The Poisson distribution

The random variable of a Poisson distribution represents 
the count of the number of events occurring randomly 
and independently in time or space at a constant rate, μ, 
on average. The mean and variance of the distribution 
are equal to μ.
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Figure 3.2  Example showing the prob-
ability distributions of categorical and 
numerical random variables: (a) x = coat 
colour of Shorthorn cattle, (b) x  = 
raccoon litter size, and (c) x = height of 
donkeys (cm).130 x
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•	 Now refer to Figure 3.2c. This figure represents 
the probability distribution of a continuous 
random variable. In contrast to a discrete prob-
ability distribution, here the variable can take 
an infinite number of values so it is impossible 
to draw separate lines. The shaded area now 
represents the total probability of unity. The 
curve that defines the area is called a probabil-
ity density function which is described by an 
equation. Box 3.4 summarizes the properties 
of a continuous probability distribution.

3.5.2  Calculating probabilities from 
the probability density function

If the variable of interest is continuous, then the 
probability that its value lies in a particular inter-
val is given by the relevant area under the curve 
of the probability density function (Figure 3.3). 
We can determine the area under the curve  
for a range of values of the random variable  
by a mathematical process (called integration) 
applied to the equation. Rather than having  
to do this, there are special tables that relate 
areas under the curve to probabilities for the 
well-known continuous distributions, such as  
the Normal, Student’s t-, Chi-squared and F-
distributions, each defined by its own equation.

3.5.3  Normal (or Gaussian) 
distribution

(a)  Empirical distributions and 
Normality

The Normal or Gaussian distribution, named 
after C. F. Gauss, an 18th century German math-

Box 3.4  Properties of a continuous probability 
distribution

•	 A continuous probability distribution is defined by a 
probability density function.

•	 The total area under the probability density function 
is 1 (unity).

•	 The probability that the continuous random variable 
lies between certain limits is equal to the area under 
the probability density function between these limits.

ematician, is the most important of the continu-
ous distributions because of its role in sampling 
theory, which we consider in Chapter 4. The term 
‘Normal’ is not meant to imply that the probabil-
ity distribution of the random variable is typical, 
even though it is a good approximation to the 
distribution of many naturally occurring varia-
bles, or that it represents a ‘non-diseased’ group 
of individuals. To distinguish the Normal distri-
bution from any other interpretation of normal, 
we use an upper case N in the former instance 
throughout this book.

The Normal distribution is a theoretical distri-
bution. We often find that observations made on 
a variable in a group of individuals have an 
empirical frequency distribution which is similar 
to a Normal distribution. We then make the 
assumption that the distribution of that variable 
in the population is Normal. If this is a reason-
able assumption, we can use the properties of the 
Normal distribution to evaluate required prob-
abilities. For example, the 6-furlong finish times 
for Thoroughbreds on Louisiana racetracks have 
an empirical distribution which is approximately 
Normal (Martin et al., 1996). We show, in Section 
3.5.3(c), how we can use the 6-furlong finish time 
to calculate the probability that a racehorse has 
a finish time faster than 72 seconds.

(b)  Description

As well as possessing the property, in common 
with other continuous distributions, that the area 
under the curve defined by its probability density 
function is unity, the Normal distribution has 
several useful properties. These are listed in Box 
3.5 and demonstrated in Figure 3.4.

(c)  Areas under the curve and the 
Standard Normal distribution

In order to calculate the probability that a value 
of the variable, x, is greater than x1 (see Figure 
3.3c), you can use Appendix Table A.1. We will 
take you through a four-step process:

1.	 Recognize that the probability that x has a 
value greater than x1 is equal to the area under 
the Normal distribution curve to the right of x1.
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Figure 3.3  Relationship between the area under 
the probability density function, y  =  f(x), for the 
random variable, x, and probability. The total area 
under f(x) is 1; the shaded area in (a) represents 
Prob {x0 < x < x1}, in (b) Prob {x < x0}, and in (c) 
Prob {x > x1}.
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•	 The Standard Normal distribution is sym-
metrical around its mean of 0. Thus the tail 
area to the right of a value z1 is the same as 
the tail area to the left of –z1; equivalently, 
the probability that z >  z1 is equal to the 
probability that z < –z1. Table A.1 provides 
the sum of these two tail area probabilities 
for various values of z. The values of z are 
sometimes called critical values or percent-
age points, as each defines a percentage of 
the total area under the probability density 
function.

•	 To obtain the area to the right of z1 from 
Table A.1, we have to divide the probability 
obtained from the table by 2. This is because 
the probabilities in the table relate to both 
tails of the Standard Normal distribution, 
whereas here we are interested only in the 
right tail.

•	 You should be aware that the Standard 
Normal distribution is not always tabulated 
in the same way as in Table A.1. For example, 
you might find that only the right tail or  
the left tail area is tabulated. However, you 
can always determine the probability that is 
required for your problem by subtraction 
and/or multiplying or dividing by 2, as long 
as you remember that the Standard Normal 
distribution is symmetrical and that the 
total area under the curve is 1.

Suppose we want to apply this theory to a 
practical example. We know that the six-furlong 
finish time for Thoroughbreds on Louisiana race-
tracks is approximately Normally distributed in 
the population with a mean of 75.2 seconds (s) 
and a standard deviation of 2.2 s (Martin et al., 
1996). We want to determine the probability of a 
racehorse having a finish time of less than, say, 
72.0 s. The value of z corresponding to x1 = 72.0 
is z1 = (72.0 – 75.2)/(2.2) = –1.45 (which is –1.4545 
corrected to two decimal places). Since we are 
only interested in the probability in the lower tail 
of the distribution, and the Standard Normal dis-
tribution is symmetrical about zero so that the 
area to the left of a SND of –1.45 is equal to that 
to the right of a SND of +1.45, the required prob-
ability is half the tabulated two-tailed probability 
corresponding to a SND of 1.45. Thus, from Table 

2.	 Define the mean and the standard deviation 
of your Normal distribution. In general terms, 
we call these μ and σ, respectively.

3.	 Convert this Normal distribution into a Stand-
ard Normal distribution (see Figure 3.5b) 
which has a mean of 0 and a standard devia-
tion of 1 (unity). This is the distribution of a 
new variable, z, which is called a Standardized 
Normal Deviate (SND). In general terms

z
x

=
− µ
σ

And, in this particular example, the value of 
the SND which corresponds to x1 is

z
x

1
1=

− µ
σ

4.	 Use Table A.1 to determine the specified area. 
Instructions for the procedure are given with 
the table, which has an accompanying illustra-
tive diagram. It is important to realize that:

Box 3.5  Properties of the Normal distribution

•	 The Normal distribution is completely described by 
two parameters: the mean and the standard deviation. 
These are usually denoted by the Greek letters μ and 
σ, respectively. The mathematical formula for the 
probability density function is omitted for simplicity.

•	 It is unimodal.
•	 It is symmetrical about its mean. This implies that the 

curve to the right of the mean is a mirror image of the 
curve to the left of the mean. It is often described as 
‘bell-shaped’.

•	 Its mean, median and mode are all equal.
•	 If the standard deviation remains unchanged, increas-

ing the value of the mean shifts the curve horizontally 
to the right. Conversely, decreasing the value of  
the mean shifts the curve horizontally to the left 
(Figure 3.4a).

•	 A decrease in the standard deviation of the curve 
makes the curve thinner, taller and more peaked. Con-
versely, an increase in the standard deviation makes 
the curve fatter, shorter and flatter (Figure 3.4b).

•	 The limits (μ  – σ) and (μ + σ) contain 68.3% of the 
distribution (Figure 3.5a).

•	 The limits (μ – 1.96σ) and (μ + 1.96σ) contain 95% of 
the distribution (see Figure 3.5a). This fact is often 
used in the calculation of a reference range (see 
Section 2.7).

•	 The limits (μ – 2.58σ) and (μ + 2.58σ) contain 99% of 

the distribution (Figure 3.5a).
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Figure 3.4  The effect on the Normal distribution of changing the parameters μ and σ: (a) with different means, μ1 < μ2 < μ3, 
and the same standard deviation, σ, and (b) with different standard deviations, σ1 < σ2 < σ3, and the same mean, μ.

A.1 we find that the probability is 0.5 × 0.1471 = 
0.0736; we would expect about 7% of the race-
horses to have finish times quicker than 72.0 s.

(d)  Determining the Standardized 
Normal Deviate from a defined 
probability

It may be that we are interested not in evaluating 
a probability (area under the curve) from a par-
ticular value of the SND, z, but in the reverse 
procedure, i.e. in determining the value of z from 
a specified probability. Naturally, it is possible  
to do this from Table A.1 but, for simplicity 
and convenience, we give the z-values for some 
common probabilities in Appendix Table A.2. We 
show z-values both for the situation in which the 

probability of interest corresponds to the sum of 
the right- and left-hand tail areas (a two-tailed 
probability), and for the situation in which all the 
probability of interest corresponds only to the 
right-hand tail area (a one-tailed probability). 
Two-tailed probabilities are more often relevant 
than one-tailed probabilities; we discuss this in 
Section 6.3 in relation to one- and two-sided tests 
of hypotheses. Note that we may also require a 
z-value in order to calculate a confidence inter-
val (see Sections 4.5.2 and 4.7).

Suppose we want to know the two values of z 
that encompass the central 95% of the distribu-
tion; this leaves 2.5% of the distribution in each 
tail, i.e. 5% of the entire distribution is in the two 
tails. Thus, we enter Table A.2 and note that the 
value of z which corresponds to a two-tailed 
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Figure 3.5  Areas under (a) the Normal 
curve; the random variable, x, has mean =  μ 
and standard deviation  =  σ; and (b) the 
Standard Normal curve; the random variable, 
z  =  (x  –  μ)/σ, has mean  =  0 and standard 
deviation = 1.

probability of 0.05 is 1.96. You can now see how 
the value given in the penultimate bullet point of 
Box 3.5 is derived.

(e)  Establishing Normality

The assumption of Normality is important if we 
wish to use the properties of the Normal distribu-

tion to calculate relevant probabilities. We stress, 
however, that although the assumption of Nor-
mality is inherent in many statistical procedures, 
the procedures are often valid providing the data 
are approximately Normally distributed.

•	 The easiest approach to establishing approxi-
mate Normality is to produce a histogram of 
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skewed to the right, we can generally Normalize 
the data by taking the logarithm (usually to base 
10 or to base e) of each observation (see Sections 
2.6.1(c) and 13.2.1). The distribution of the result-
ing transformed variable will often be approxi-
mately Normal (Figure 3.6). The original variable 
is then said to have a Lognormal distribution, 
approximating the theoretical distribution of the 
same name.

The advantage of transforming data in this 
way so as to produce a transformed variable 
which is Normally distributed is that the proper-
ties of the Normal distribution are relevant to the 
transformed variable. In particular:

•	 We can use the probabilities (areas) of the 
Standard Normal curve to evaluate particular 
population limits. So, 95% of the distribution 
of the logarithmic values lie in the interval 
defined by their mean ± 1.96 times their stand-
ard deviation. For example, for the sheep 
mechanical threshold data in Figure 2.10, 95% 
of the log-transformed threshold values would 
be expected to fall between 0.6778  ±  1.96  × 
0.1927, i.e. between 0.3001 and 1.0555 log new
tons. Hence, by finding the antilogs of these 
values, we would expect 95% of the threshold 
values in the population to lie between 1.20 
and 11.36 newtons.

•	 Furthermore, it is interesting to note that the 
antilog of the arithmetic mean of the logarith-
mic values is a sensible summary measure of 
the location of the raw data; it is called the 
geometric mean (see Section 2.6.1(c)).

3.5.4  Other continuous  
probability distributions

There are numerous continuous probability dis-
tributions apart from the Normal distribution. 
Three particularly well known and useful distri-
butions are the t-, Chi-squared (χ2) and F-
distributions. You may find the discussions of 
these distributions too theoretical and laborious 
for comfort. You could skip them at this stage 
and refer to them only when (or if!) the need 
arises.

the empirical frequency distribution and deter-
mine, by eye, whether the distribution appears 
unimodal, bell-shaped and symmetrical. Alter-
natively, a box-and-whisker plot will indicate 
whether or not the distribution is symmetrical 
and approximately Normal. This subjective 
approach is often adequate but it does not 
work well when the number of observations is 
small, say, less than 20.

•	 We can use more formal ways of establishing 
whether data approximate a Normal distribu-
tion. One such method is to produce a graph 
called a Normal plot in which the horizontal 
axis represents the ordered numerical values 
of the variable, and the vertical axis represents 
the corresponding Standardized Normal Devi-
ates. If the data are Normally distributed,  
then the plot points will conform to a straight 
line; if the data are not Normally distributed, 
then the points will deviate from the straight 
line so that a curve is produced. Often, we find 
it easier to judge whether the data follow a 
straight line than whether the histogram of the 
raw data is symmetrical. Hence, although this 
technique is also subjective, the Normal plot is 
commonly produced, usually on a computer, in 
an attempt to verify the assumption of Nor-
mality. We show an example in Figure 3.6 in 
which the distribution of the sheep mechanical 
threshold data is not Normal (Figure 3.6a) but 
that of the log-transformed data is more nearly 
Normal (Figure 3.6b).

•	 Occasionally, an objective test for Normality is 
required. The Shapiro–Wilk W test is available 
in many computer packages, as is the Lilliefors 
modification of the Kolmogorov–Smirnov test, 
both of which are extremely tedious to perform 
by hand. We can also derive measures of  
skewness (describing symmetry) and kurtosis 
(describing peakedness) for the observed data 
set and determine how these measures deviate 
from what would be expected if the data were 
Normally distributed.

(f)  Lognormal distribution

Many biological variables, such as, for example, 
parasite infestation data, display a distribution 
with a long tail to the right. When data are 
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Figure 3.6  Normal plots of the data shown 
in Figure 2.10. (a) Normal plot of mechanical 
threshold. (b) Normal plot of log mechanical 
threshold.

(a)  Student’s t-distribution 

‘Student’, a pseudonym for W. S. Gosset, described 
the t-distribution in 1908 although it was perfected by R. A. 
Fisher in 1926. This distribution has revolutionized the statis-
tical analysis of small samples. We give the percentage points 
of the t-distribution in Appendix Table A.3, and summarize 
its properties in Box 3.6.

As we explain in Chapter 7, we use the t-distribution when 
we wish to test a hypothesis about a mean or a difference 
between two means.

(b)  Chi-squared distribution
We give the percentage points of the Chi-squared (χ2) distri-
bution in Appendix Table A.4, and summarize its properties 
in Box 3.7. We use the Chi-squared distribution when we 
analyse categorical data (see Chapter 9).

Box 3.6  Properties of the t-distribution

•	 The t-distribution is symmetrical about the mean and 
is bell-shaped.

•	 It is completely characterized by what are called the 
degrees of freedom (df) so that knowledge of the 
degrees of freedom allows the probabilities of the t-
distribution to be computed. We consider the degrees 
of freedom more fully in Section 6.3.6. For the moment, 
it is sufficient to note that they have a close affinity to 
sample size.

•	 The t-distribution is indistinguishable from the Stand-
ard Normal distribution when the degrees of free
dom are large; as the degrees of freedom decrease, the 
t-distribution becomes more and more spread out 
compared with the Standard Normal distribution.
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increase. In fact, each distribution approaches 
Normality for large enough sample sizes when a 
smooth curve is drawn joining the discrete prob-
ability values.

(a)  Binomial distribution

Consider a Binomial situation in which we 
observe a proportion, p, of successes in n trials. 
It is reasonable to use the Normal approxima
tion of the Binomial distribution if both np and 
n(1 – p) are greater than 5. The mean and vari-
ance of this Normal distribution are estimated by 
np and np(1 – p), respectively. This approxima-
tion is particularly useful in statistical inference, 
for testing hypotheses about and calculating con-
fidence intervals for proportions (see Chapter 9).

Example
Suppose that on a typical day, 18 cats are pre-
sented to a veterinary clinic, and six are seen  
to have fleas. The observed proportion (an  
estimate of the true proportion) of infested cats 
is 6/18  =  0.33. Hence, np  =  18  ×  0.33  =  6, 
and n(1  –  p)  =  18  ×  0.67  =  12, and a Normal 
approximation is appropriate. The mean and 
variance of this Normal distribution are esti-
mated by np  =  18  ×  0.33  =  6 and np(1  –  p)  = 
18 × 0.33 × 0.67 = 3.98, respectively. Thus, if we 
want to evaluate the probability that 10 or  
more cats will present with fleas, we determine 
z1 10 6 3 98 2 01= − =( ) . . , and refer this value to 
Table A.1. Dividing the tabulated probability by 
2 because we are only interested in the upper tail 
of the distribution, we find that the required 
probability is approximately 0.02 (this is 0.0222 
corrected to two decimal places). In fact, we 
should have applied the continuity correction 
(see Section 3.6.1(c)).

(b)  Poisson distribution 	

The Normal approximation of a Poisson distribu-
tion is acceptable if the average rate of occurrence 
of the event of interest, μ, is not too small (it should be 
greater than, say, 5). You will then find that the sample mean 
and variance are approximately equal to μ. This follows from 
the property of the Poisson distribution that the variance 
equals the mean. For example, we could analyse worm 
burden data using the Normal approximation to the Poisson 

(c)  F-distribution

We give the percentage points of the F-distribution in 
Appendix Table A.5, and summarize its properties in Box 3.8. 
We may use the F-distribution to compare two variances if 
each is calculated from Normally distributed data (see 
Section 8.3). The main use of the F-distribution, however, 
is in a technique called the analysis of variance, which we 
discuss in Section 8.5.	 

3.6  Relationships between 
distributions

3.6.1  Normal approximations  
of the Binomial and Poisson 
distributions

The Binomial and Poisson distributions are 
skewed when sample sizes are small, although 
they become more symmetrical as sample sizes 

Box 3.8  Properties of the F-distribution and use of 
Table A.5

•	 The F-distribution is the distribution of a ratio (see 
Section 3.6.2).

•	 It is characterized by two separate degrees of freedom: 
those attached to the numerator and those attached to 
the denominator of the ratio that defines it.

•	 Although the ratio could be either greater or less than 
1, the tabulated probabilities of the F-distribution 
relate to a ratio that is always greater than or equal to 
1, i.e. the numerator is greater than or equal to the 
denominator. Thus the tabulated values refer only to 
the upper tail of the distribution. Extra care has to be 
taken in evaluating the appropriate probabilities from 
Table A.5 (see Sections 8.3.1 and 8.3.3).

Box 3.7  Properties of the Chi-squared distribution

•	 The Chi-squared distribution can only take positive 
values and is highly skewed (see diagram attached to 
Table A.4).

•	 The degrees of freedom characterize this distribution, 
so that knowledge of them allows us to determine the 
relevant probabilities under the curve.

•	 As the degrees of freedom increase, the distribution 
becomes more and more symmetrical and eventually 
approaches Normality.
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k independent variables, each of which has a Standard 
Normal distribution.

•	 If the degrees of freedom are 1, then the Chi-squared  
distribution is the square of the Standard Normal 
distribution.

•	 The distribution of a mean of a Normally distributed vari-
able divided by its estimated standard error follows a 
t-distribution.

•	 The variance estimated from a sample of observations of 
a Normally distributed variable follows a Chi-squared dis-
tribution multiplied by σ2, where σ2 is the true variance of 
the variable in the population.

•	 The F-distribution is the distribution of the ratio of two 
independent variables, each with a Chi-squared distribu-
tion and each divided by its degrees of freedom.

•	 The ratio of two variances estimated from independent 
samples of observations of a Normally distributed variable 
follows the F-distribution.

•	 The F-distribution is related to both the t- and Chi-squared 
distributions. When the degrees of freedom of the numera-
tor of the F-ratio are 1, the tabulated values of the F-
distribution correspond to those of the t-distribution on the 
same number of degrees of freedom as those in the denom-
inator of the F-ratio. When the degrees of freedom of the 
denominator are extremely large, tending to infinity, then 
the tabulated values of the F-distribution are the same as 
those of the Chi-squared distribution when the latter are 
divided by the degrees of freedom of the numerator of the 
F-ratio.	 

Exercises

The statements in questions 3.1–3.3 are either 
TRUE or FALSE.

3.1  The random variable, x, is Normally distrib-
uted. This implies that:
(a)	 Its distribution is skewed to the right.
(b)	 The mean and the median of its distribution 

are equal.
(c)	 The limits defined by the mean ± SD contain 

approximately 95% of the distribution.
(d)	 The distribution has a mean of 0 and a stand-

ard deviation of 1.
(e)	 All the animals on which this variable is 

measured are healthy.

3.2  The random variable, z, has a Standard 
Normal distribution. This implies that:
(a)	 z is a discrete random variable.
(b)	 The mean and standard deviation of its dis-

tribution are equal.
(c)	 The total area under its probability density 

function is 1.

distribution, providing that the average faecal egg counts per 
gram of wet weight faeces does not fall below 5.	 

(c)  Continuity correction

These two Normal approximations are useful 
because we can use tables of the Standard Normal 
distribution to evaluate probabilities for random 
variables that follow the Binomial or Poisson dis-
tributions. However, note the following:

•	 The Poisson and Binomial distributions both 
relate to discrete random variables.

•	 The Normal distribution relates to continuous 
random variables.

Therefore, if we use tables of the Normal dis-
tribution to provide approximations of the Bino-
mial and Poisson distributions, we should apply 
a continuity correction to adjust for this discrep-
ancy. We subtract 0.5 from the absolute value (i.e. 
ignoring the sign) of the difference between x 
and μ in the numerator of the Standardized 
Normal Deviate, so our adjusted value is

′ =
− −

z
x µ

σ
0 5.

So, strictly, in the flea-infested cats example 
described in Section 3.6.1(a), we should have 
applied the continuity correction to the determi-
nation of the probability that 10 or more cats will 
present with fleas, i.e. z1 10 6 0 5 3 98 1 75= − −{ } =. . .

z1 10 6 0 5 3 98 1 75= − −{ } =. . . . Referring to Table A.1, we find that the 
required probability is (0.0801)/2 = 0.04. We can 
see that, for small numbers, the continuity cor-
rection makes a substantial difference.

3.6.2  Mathematical 
interrelationships 	

You may find these theoretical concepts difficult, immaterial 
or boring, in which case you should skip this section! Other-
wise, you may find it interesting to note the following:

•	 The t-, Chi-squared (χ2) and F-distributions each represent 
a specific function, expressed mathematically, of a Nor-
mally distributed variable.

•	 The Chi-squared distribution with k degrees of freedom 
is defined as the distribution of the sum of the squares of 
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would a log transformation achieve approximate 
Normality?
(a)	 The following data (based on the summary 

data in Coyne et al., 1996) are oxytetracycline 
measurements from muscle samples from 
Atlantic salmon (Salmo salar). The antibiotic 
was added to the water over a 10-day period 
for therapeutic purposes; measurements 
were taken of muscle concentrations (μg/g of 
muscle tissue) at the 8th day to check effec-
tive levels after dosing.

1.3 1.6 1.5 0.5 1.8
1.9 2.5 1.4 0.0 2.1
2.1 0.4 0.3 0.7 0.8
1.2 0.1 1.2 0.8 1.9
0.6 1.7 2.5 2.5 2.4

(b)	 The following are alkaline phosphatase 
levels in the serum of 12 normal adult dogs 
(IU/l).

5.4 7.3 20.3 17.5 35.9 16.8
28.6 54.3 10.0 14.0 11.7 24.3

3.6  The cell counts of erythrocytes in horse 
blood per small square of the counting chamber 
are determined. What theoretical distribution 
would these counts be expected to follow most 
closely? How can you check whether the counts 
follow this distribution?

3.7  The mean packed cell volume (PCV) of 
healthy cats approximates a Normal distribution 
with mean of 0.37 l/l and a standard deviation of 
0.066 l/l.
(a)	 What percentage of cats have values above 

0.40 l/l?
(b)	 What percentage of cats have values below 

0.30 l/l?
(c)	 What percentage of cats have values between 

0.30 and 0.40 l/l?
(d)	 What is the range containing the central 90% 

of PCV values?

3.8  (a)	 What is the area of the Standard Normal 
curve:
(i)	 Above 2.00?
(ii)	 Below –1.00?

(d)	 If z =  (x  – μ)/σ, where x is a Normally dis-
tributed random variable, then z has a mean 
equal to μ and a standard deviation equal 
to σ.

(e)	 Approximately 68% of the distribution lies 
between the limits z = –1 and z = +1.

3.3  Indicate whether the following statements 
are true or false:
(a)	 A random variable that follows the Binomial 

distribution can take more than two values.
(b)	 The Binomial distribution is the most widely 

used theoretical distribution in biological 
statistics.

(c)	 If sample data approximate a Normal distri-
bution, then the data have been selected 
from a healthy population.

(d)	 The mean and variance of the Standard 
Normal distribution depend on the data set.

(e)	 The Lognormal distribution is obtained after 
we take logs of data that follow the Normal 
distribution.

3.4  A family is trying to decide whether to pur-
chase a puppy bitch or a dog. Dad wants to have 
a bitch. Because they cannot agree on the pros 
and cons, Dad suggests that they roll dice to 
make the decision:
(a)	 He suggests that his youngest daughter has 

a go at rolling the two dice once; if she suc-
ceeds in getting a ‘double’ (i.e. two sixes, two 
fives, . . . , or two ones), then they will opt for 
a bitch, but if not they will have a dog. As she 
is about to roll, he does his calculations in his 
head of the probabilities involved and he has 
second thoughts.

(b)	 Instead, he proposes that his daughter rolls 
just one die, but three times. If she fails to get 
a ‘six’ in the three tries, then they will pur-
chase a bitch. He believes that now he has 
the odds with him. Is he right?

Calculate the probability of getting a bitch in 
(a) and (b). Show how these dice rollings illus-
trate both the addition and the multiplication 
rules of probability. What type of probability 
approach is this (subjective, model, frequency)?

3.5  Do you think the data sets in (a) and (b) 
which follow are Normally distributed? If you 
conclude that either is not approximately Normal, 
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(b)  What is the percentage point (i.e. z-
value) of the Standard Normal curves 
for which there is:
(i)	 5% of the total area in the upper 

tail?
(ii)	 2.5% of the total area in the lower 

tail?

3.9  A Friesian cow is inseminated on a particu-
lar day and sustains the pregnancy to term. The 
gestation period has an assumed Normal distri-
bution with a mean of 278 days. What is the 
probability of the cow calving later than 278 
days from insemination? If two Friesian cows 
are inseminated on the same day (and both 
sustain their pregnancies to term), what is the 
probability of both of them calving before 278 
days later?

3.10  Mollie is very excited as her guinea pigs 
have just produced four pups (two male and two 

female) and she is giving her friends, Stephen 
and Stephanie, one each as a present. She thinks 
it would be fun to give Stephen a male pup and 
Stephanie a female pup; she does not want to 
demonstrate bias in her selection so she decides 
she will choose them randomly from the litter. 
Each pup is of approximately the same weight 
and is equally active. She closes her eyes and 
reaches for a pup to give to Stephen. She finds 
that it is male. So far so good! She closes her eyes 
again and reaches for a second pup out of those 
remaining. What is the probability that the 
second guinea pig that she chooses, and which 
she will give to Stephanie, is female? What, then, 
is the probability that she can achieve her aim of 
giving a male pup to Stephen and a female pup 
to Stephanie after random selection?
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4.1  Learning objectives

By the end of this chapter, you should be able to:

•	 Explain the need to distinguish between a 
sample and the population.

•	 Explain the concept of a sampling distribution.
•	 Give the formula for the standard error of the 

mean.
•	 Calculate the standard error of the mean.
•	 Distinguish between the standard deviation 

and the standard error of the mean.
•	 Give applications of the standard deviation 

and the standard error of the mean.
•	 Explain why a confidence interval is useful.
•	 Calculate a confidence interval for the mean 

when the population standard deviation is 
unknown.

•	 Interpret the confidence interval for the mean.
•	 Explain how the standard error of the propor­

tion is calculated and interpret it.
•	 Calculate a confidence interval for the 

proportion.

4.2  Distinction between the 
sample and the population

It is a rare situation, indeed, when we are able to 
study a whole population of individuals. There 
may be constraints imposed by time and eco­
nomic or practical considerations that preclude 
examination of the whole population. It would 

4 Sampling and sampling 
distributions

be most unusual, for example, to be able to inves­
tigate all the Thoroughbred mares in Great 
Britain. In this situation, we would be most likely 
to take what we would hope to be a representa­
tive sample of animals from the Thoroughbred 
population (we discuss, in Section 13.6, the prin­
ciples of sampling and the methods by which we 
can select our sample). We then have to general­
ize the results from our sample to the population 
from which it was taken.

The price that we pay for sampling is that we 
cannot make statements of absolute certainty 
about the population. Instead, we are able only 
to surmise about what we expect in the popula­
tion, and there will always be some doubt associ­
ated with the conclusions that we draw about the 
population. We express this doubt as a probabil­
ity (see Section 3.2). The larger the sample and 
the more representative it is of the population, 
the smaller our uncertainty and the more likely 
it is that our conclusions are correct.

4.3  Statistical inference

4.3.1  Introduction

This process of generalizing to the population 
from the sample is called statistical inference. 
Statistical inference enables us to draw conclu­
sions about certain features of a population when 
only a subgroup of that population, the sample, 
is available for investigation. It is very important 
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sum of all the observations in the population 
divided by the number of observations in the 
population. However, one noteworthy exception 
is that the population variance and its sample 
estimate are not calculated using exactly the 
same formula (see Section 2.6.2(c)).

4.3.3  Notation for population 
parameters and sample statistics

As it is important to maintain a distinction 
between the population parameters and the 
sample statistics that estimate them, it is helpful 
to use different notation for each. It is customary 
to use Greek letters for the population param­
eters and Roman letters for the sample statistics 
(see Glossary of notation in Appendix C).

4.3.4  Sampling error

It is unlikely that the value of the sample statistic 
is exactly equal to the value of the population 
parameter that it is estimating. We have to rec­
ognize that there is always likely to be error in 
the estimate because we have sampled the popu­
lation and are not looking at it in its entirety. We 
call this sampling error. We need to establish the 
precision (see Section 1.8) of the sample statistic 
as an estimate of the population parameter. For 
this purpose, we calculate the standard error of 
the estimate.

Suppose we want to know the average milk 
yield of Holstein–Friesian dairy cows. Milk yield 
is a continuous variable so we will use this 
example to develop the ideas of sampling error 
in relation to the mean (see Section 4.4).

Furthermore, we might be interested in the 
proportion of cows that had been exposed to 
leptospirosis. Either a cow has or does not have 
a positive titre for Leptospira (Little et al., 1980), 
so this is a binary variable. We will use this 
example to explore sampling error in relation to 
a proportion (see Section 4.6).

We will not discuss sampling error in relation 
to the variance as you are unlikely to need it in 
practice; you can obtain details in texts such as 
Armitage et al. (2002).

that we are aware of the distinction between the 
sample and the population from which it is taken, 
as a major component of statistical theory is sta­
tistical inference.

There are two aspects of statistical inference 
that play an important role in statistical analysis: 
these are estimation and hypothesis testing. We 
discuss estimation in this chapter. Hypothesis 
testing is concerned with deciding whether the 
results we obtain from our sample enable us to 
discredit a particular hypothesis about the popu­
lation or whether they lend support to it. We 
introduce the concepts of hypothesis testing in 
Chapter 6.

4.3.2  Estimation of population 
parameters by sample statistics

The purpose of sampling is to learn something 
about the population. Usually, we want to know 
about various features, termed parameters, which 
characterize the distribution of a variable in the 
population. We can describe the distribution if 
we know their values. The parameters that char­
acterize the better-known discrete and continu­
ous probability distributions are discussed in 
Sections 3.4 and 3.5. In particular, the parameters 
that characterize the Normal distribution are the 
arithmetic mean and the standard deviation.

It is impossible to determine the population 
mean exactly when we have selected only a 
sample of observations from that population. For 
example, we do not know the precise value for 
the mean number of races that Thoroughbred 
mares have run when we only have the results of 
a selected sample. The best we can do is estimate 
its value from the sample, i.e. we have to calcu­
late the sample statistic whose value is as close 
as possible to the true value of the parameter in 
the population. The population parameter and its 
sample statistic are usually calculated using the 
same formula, but the former uses population 
values and the latter uses sample values. For 
example, it can be shown that the sample mean 
is the best estimate of the population mean. The 
sample mean is the sum of all the observations 
in the sample divided by the number of observa­
tions in the sample; the population mean is the 
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We must stress that this is a hypothetical distri­
bution because, in practice, we usually make 
inferences about the population mean from only 
a single sample from a population. However, by 
studying the properties of this theoretical distri­
bution of the sample means, called the sampling 
distribution of the mean, we can evaluate the 
sampling error of the sample mean.

4.4.3  Properties of the sampling 
distribution of the mean

Figure 4.1 shows a diagrammatic representation 
of the distribution of the sample means. Just as 
with any other continuous distribution, we can 
look at its shape, and obtain measures of location 
and spread as summary measures of its impor­
tant features. We list the properties of the distri­
bution of the sample means below:

•	 Its distribution is Normal if the distribution of 
the parent population is Normal. Furthermore, 
the sampling distribution is approximately 
Normal even if the distribution of the parent 
population is not Normal, provided the size of 
the samples, assumed constant, is large enough, 
say greater than about 30. This is expressed 
mathematically in the central limit theorem, 
and is a very useful result which contributes to 
the importance of the Normal distribution in 
statistical inference. The resemblance of the 
sampling distribution of the mean to a Normal 
distribution improves as the size of the samples 
increases.

•	 The mean of the distribution of sample means 
is the mean of the parent population. We say 
that the sample mean is an unbiased (free from 
bias – see also Section 5.4) estimate of the 
population mean; i.e. it is unbiased because the 
mean of the sampling distribution of the sample 
statistic coincides with the parameter that the 
statistic is estimating. Furthermore, we know 
that the sample means are distributed sym­
metrically around the true mean because of 
the Normality property.

•	 The standard deviation of the distribution of 
the sample means, each from a sample of size 
n, is given by σ / n, where σ is the standard 

4.4  Sampling distribution of  
the mean

4.4.1  Sampling error in relation to 
the sample mean

Let us suppose that we are interested in making 
inferences about the population mean of a numer­
ical variable, such as milk yield.

The first step is to take a representative sample 
of observations from the population. By ‘repre­
sentative’ we mean, of course, that we have taken 
steps, such as random selection, to ensure that we 
have a sample that properly reflects the popula­
tion. (Further details of sampling methods are 
given in Section 13.6.) We calculate the mean 
milk yield of this sample of observations to 
provide an estimate of the true mean milk yield 
in the population. Because of sampling error (see 
Section 4.3.4), it is unlikely that its value is exactly 
equal to the population mean. The extent to 
which a sample mean differs from the population 
mean depends on both the following:

•	 The size of the sample (the sampling error is 
greater for a smaller sample).

•	 The variability of the observations (the sam­
pling error is greater if the observations are 
more diverse).

4.4.2  Concept of the distribution 
of the sample means

The sample mean from one sample will probably 
be slightly different from that obtained if we 
were to take another sample of the same size 
from the population. Expressed in another way, 
there is sampling variation resulting from the fact 
that the value of the sample mean varies accord­
ing to the particular sample chosen.

We can get some feel for this sampling varia­
tion by considering a hypothetical probability 
distribution, i.e. the distribution of sample means 
that we would obtain if we were to repeat the 
sampling procedure and take all possible samples, 
each of the same size, from the population and 
calculate the sample mean from every sample. 
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larger samples. For example, for a given popu­
lation with a fixed standard deviation, if we 
want to halve the standard error, we must 
quadruple the sample size. Therefore, we have 
a more precise estimate of the population 
mean if the sample size is large.

4.4.4  Estimation of the standard 
error using sample data

The SEM /= σ n, where σ is the standard devia­
tion of the observations in the population. If  
we are using our sample to estimate the popula­
tion mean, it is very unlikely that we will have 

deviation of the observations in the popula­
tion. The standard deviation of the sampling 
distribution of the mean is a measure of the 
dispersion of the sample means. It is known  
as the standard error of the mean. When there 
is no ambiguity, it may be called simply the 
standard error, and is often abbreviated to SE 
or SEM. So

SEM =
σ
n

From the formula, we can see that the standard 
error of the mean increases with increasing 
values of σ (i.e. as the variability of the parent 
population increases) and is smaller with 

Figure 4.1  The effect of sample size on the sam­
pling distribution of the mean. (a) Normal distribu­
tion of the population values (x) of fish weights, 
with mean = 272 g and SD = 96.4 g. (b) Sampling 
distribution of mean (x) with sample size = 25. (c) 
Sampling distribution of mean (x) with sample size 
= 100.

(x)

(x)¯

(x)¯
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close a sample mean is to the population mean 
it is estimating. As we show in Section 4.5, the 
SEM may be used to construct a confidence 
interval which allows us to judge the precision 
of our estimate of the population mean.

4.5  Confidence interval for a mean

4.5.1  Understanding confidence 
intervals

We have stressed that the sampling distribution 
of the mean is a hypothetical distribution. In 
practice, we do not take repeated samples from 
our population; we usually take just one sample 
and use the mean from this sample as an estimate 
of the population mean. However, we can exploit 
the properties of the sampling distribution of the 
mean to indicate how ‘good’ our estimate is.

The best way of establishing whether the esti­
mate is good is to calculate what is called the 
confidence interval for the mean. This interval, 
defined by its upper and lower limits (the confi-
dence limits), is generally interpreted as the 
range of values within which we expect the  
true population mean to lie with a certain 
probability.

•	 If the confidence interval is wide, then the 
sample mean is a poor estimate of the popula­
tion mean.

•	 If the confidence interval is narrow, then the 
sample mean is a good estimate, i.e. it is a 
precise estimate of the population mean.

If we have a 95% confidence interval for the 
mean, then we say that we are 95% certain that 
the population mean lies within this interval. 
Strictly, this interpretation is flawed because the 
population mean is a fixed number and it is the 
confidence interval that varies from one sample 
to another. The proper interpretation of the 95% 
confidence interval is that, if we were to take 
repeated samples of the same size from the pop­
ulation and calculate the 95% confidence inter­
val from each sample, we would expect 95% of 
them to contain the true population mean. 
However, because it is intuitively more appeal­

knowledge of σ. Hence we will have to replace σ 
in the formula for the SEM by its sample esti­
mate, s. Thus, the estimate from the sample is

SEM =
s

n

where s
x x

n
=

−

−
∑( )2

1

Example
The most recent standard lactations (305 days) 
of a random sample of 256 Holstein–Friesian 
cows, of mixed numbers of lactations, gave an 
estimated mean milk yield of 9414  kg with an 
estimated standard deviation of 2353  kg. The 
estimated standard error of the mean is there­
fore 2353 256 147/ kg= .

4.4.5  Distinction between the 
standard deviation and the 
standard error of the mean

We have introduced you to the SD in Section 
2.6.2(d) and the SEM in this chapter. But what 
are they for? They have very different applica­
tions; it is important that you have a clear under­
standing of the distinction between the standard 
deviation of the observations and the standard 
error of the mean. The two are frequently con­
fused, with the consequence that the wrong 
measure is used to describe the variability of 
interest; this may lead to a misinterpretation of 
the data.

•	 The standard deviation is a measure of the 
scatter of the observations (see Section 
2.6.2(d)). It gives an indication of how close 
the observations are to their mean; it may be 
thought of as a kind of average measure of the 
deviation of each observation from the mean. 
It may be used to construct a reference inter-
val (see Section 2.7) which defines the range of 
most of the observations in a population.

•	 The standard error of the mean is a measure 
of the precision of the sample mean as an esti­
mate of the population mean. It evaluates the 
sampling error by giving an indication of how 
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ing, we interpret confidence intervals in this book 
using the first and more simplistic approach. 
Typically, we calculate the 95% confidence inter­
val for a parameter but we may sometimes find 
that 90% or 99% confidence intervals are quoted. 
A 99% confidence interval will inevitably be 
wider than a 95% confidence interval because we 
need to be more confident that the parameter is 
contained in the interval.

The width of the confidence interval depends 
on:

•	 The degree of confidence required.
•	 The sample size (a larger sample provides a 

more precise estimate and therefore a nar­
rower confidence interval).

•	 The variability of the characteristic under 
investigation (a more variable set of observa­
tions provides a less precise estimate and a 
wider confidence interval).

We develop the uses of confidence intervals in 
Section 6.6. We summarize the formulae for con­
fidence intervals for frequently used parameters 
in the tables in Appendix B.

4.5.2  Calculating the confidence 
interval for the mean

The upper limit of a confidence interval for the 
mean is calculated by adding a multiple of the 
standard error to the sample mean; the lower 
limit is obtained by subtracting that multiple of 
the standard error from the sample mean. This is 
the general approach to calculating the confi­
dence interval for most parameters. The difficulty 
is in deciding which multiple of the standard 
error to use to determine an interval of a particu­
lar confidence.

(a)  Where σ is known

Provided we have knowledge of σ, the 95% confi­
dence interval for the mean is x ± ×1 96. SEM, i.e.

x
n

x
n

x
n

± = − +



1 96 1 96 1 96. . , .

σ σ σ

Here, the upper and lower limits of the confi­
dence interval within the bracket are separated 
by the comma. For the 95% confidence interval, 
the multiple is 1.96 (often approximated by 2). 
The multiple is 2.58 for a 99% confidence inter­
val; note that a multiple of 1.00 only gives approx­
imately a 68% confidence interval. The values for 
the multiples are obtained from Table A.2.

Justification
We know that the sampling distribution of the 
mean is approximately Normal, and that its mean 
is equal to the population mean, μ, and its standard deviation 
is equal to the SEM /= σ n (see Section 4.4.3). Thus, 95% of 
the sample means in the sampling distribution of the mean 
are contained in the interval, μ ±  1.96  SEM (see Box 3.5). 
An alternative way of saying this is that there is a 95%  
chance that a sample mean, x, is contained in the interval 
μ ± 1.96 SEM. If we now interchange the μ and the x, we can 
say that there is a 95% chance that μ is contained in the 
interval x ± 1 96. SEM or, strictly, that 95% of such confidence 
intervals on repeated sampling would contain μ.	 

(b)  Where σ is unknown

Usually we do not know the value of the popula­
tion standard deviation, σ, so we replace it by the 
sample estimate

s
x x

n
=

−

−
∑( )2

1

We can no longer use the Normal distribu­
tion to determine the multiple (e.g. 1.96) for the  
confidence interval; instead, we use the t-
distribution. Then the 95% confidence interval 
for the mean is

x t
s

n
x t

s

n
x t

s

n
± = − +



0 05 0 05 0 05. . .,

where the multiple, t0.05, is the percentage point 
of the t-distribution (see Table A.3) with n  –  1 
degrees of freedom; it gives a total tail area prob­
ability of 0.05.

Justification
The distribution of the sample mean divided by its 
estimated standard error follows the t-distribution, 
provided the observations come from a Normal distribution 
(see Section 3.6.2). The multiple is affected by the sample size 
and increases as the sample size decreases.	 
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the sample. We then take the proportion with 
the attribute in the sample, p = r/n, as our esti­
mate of π. The sampling distribution of the 
proportion is the distribution of sample propor­
tions that we would obtain if we were to repeat 
the sampling procedure and take all possible 
samples, each of the same size, from the popula­
tion and calculate the proportion from each 
sample. It is a hypothetical distribution because, 
in reality, we only take a single sample from the 
population.

4.6.2  Properties of the sampling 
distribution of the proportion

The distribution of sample proportions has the 
following properties:

•	 Its distribution is approximately Normal if the 
sample size is large; in fact, the distribution of 
a proportion is really a Binomial distribution 
(see Section 3.4.2) but, as we explained, this  
is approximately a Normal distribution for 
large n.

•	 The mean of the sampling distribution of the 
proportion is the population proportion, π. 
Thus the sample proportion, p, determined 
from a single sample, is an unbiased estimate 
of the population proportion.

•	 The standard deviation of the sampling 
distribution of the proportion is π π( )1− /n. It 
is called the standard error of the proportion 
and is a measure of the precision of p as 
an estimate of π. It is estimated from the 
sample by

SE( )
( )

p
p p

n
=

−1

Even though we estimate π by p, the sampling 
distribution of the proportion is still approxi­
mately Normal for large n.

Note that if we replace the estimated pro­
portion (p) by a percentage (p%), then the 
estimated standard error of the estimated per­
centage is

SE( %)
%( %)

p
p p

n
=

−100

We should be aware that the multiple of the 
standard error obtained from the t-distribution is 
a slightly larger number than that obtained from 
the Normal distribution unless n is extremely 
large. This means that if we need to estimate the 
standard deviation from the sample, we will 
obtain a wider confidence interval than if we 
have knowledge of σ. However, the two intervals 
are much the same when the sample size is large, 
because the t-distribution approaches Normality 
when the degrees of freedom are large (see 
Section 3.5.4).

Example
In Section 4.4.4 we summarized the results of the 
milk yields of a sample of 256 Holstein–Friesian 
cows; the sample mean was 9414 kg and the esti­
mated SEM was 147 kg. From Table A.3, t0.05 for 
df =  255 is approximately 1.96. The 95% confi­
dence interval for the true mean milk yield is 
given by

x t
s

n
± = − × + ×

=

0 05 9414 1 96 147 9414 1 96 147

9125 9 9702 1

. ( . , . )

( . , . ) kg

Hence we are 95% certain that the mean milk 
yield for the population of Holstein–Friesian 
cows lies between 9126 and 9702 kg.

4.6  Sampling distribution of  
the proportion

4.6.1  Concept of the distribution 
of sample proportions

The concept of the distribution of sample pro­
portions is the same as that of the distribution  
of sample means. It is a hypothetical distribu­
tion whose properties are useful if we want to 
make statistical inferences about the population 
proportion.

Suppose we are interested in the proportion 
of individuals in a population, π, who possess a 
certain attribute. For example, we may want to 
know the proportion of cattle in an area that has 
been exposed to Leptospira infection. We select 
a random sample of size n from this population 
and observe the number, r, with the attribute in 



	 Sampling and sampling distributions	 53

4.7  Confidence interval for  
a proportion

The confidence interval for the population pro­
portion, π, is calculated by adding to, and sub­
tracting from, the sample proportion, p, a multiple 
of its standard error. The multiple is obtained 
from Table A.2 because the sampling distribution 
of the proportion is approximately Normal (see 
Section 4.6). In practice, we use the estimated 
standard error.

The 95% confidence interval for the popula­
tion proportion is estimated by

p p

p
p p

n
p

p p
n

±

= − − + −





1 96

1 96
1

1 96
1

. ( )

.
( )

, .
( )

SE

The interpretation of this confidence interval  
is that we are 95% certain that the true popula­
tion proportion is contained in the interval that 
spans p by 1.96 times SE(p). (Strictly, 95% of 
such confidence intervals contain π in repeated 
sampling.)

Note that we can modify this formula if we are 
working with percentages, rather than propor­
tions, by replacing each proportion by the appro­
priate percentage and replacing the 1 inside each 
square root by 100.

4.8  Bootstrapping and  
jackknifing

Two other approaches to obtaining confidence intervals for 
parameters are bootstrapping and jackknifing. Both rely on 
simulation techniques that are extremely computer intensive 
and are, therefore, not performed by hand. We might use 
them to estimate or provide a confidence interval for a 
parameter when it is difficult or impossible to do so by assum­
ing a known probability distribution for the sampling distri­
bution of the parameter. In each case, we generally start by 
taking a simple random sample of individuals from our 
population.

•	 Bootstrapping. We create a set of simple random subsam­
ples (often 999 or more) from our original sample. Each of 
the subsamples in the set is of the same size as the original 
sample. This is feasible because the process for each sub­
sample involves sampling with replacement; this means that 
once a particular individual is selected to be in a subsam­
ple, it is ‘put back’ into the original sample so that it is 
available for reselection, and therefore may occur more 
than once in that subsample. So a subsample is created by 
taking a single unit from the original sample, noting it, and 
then replacing it; a second is taken, it is noted, and so on 
until the subsample size equals the size of the original 
sample. Each of the subsamples in the set is produced in 
this way. A single estimate of the parameter of interest (e.g. 
the population mean) is determined from each subsample. 
By considering the distribution of the estimates from all 
the subsamples, it is possible to obtain an overall estimate 
of the parameter and its associated confidence interval. In 
particular, the confidence limits for the parameter are 
usually taken as the relevant percentiles of the simulated 
distribution. So they would be the 5th and 95th percentiles 
for a 90% confidence interval. We discuss an application of 
bootstrapping in Section 13.6.4(b).

•	 Jackknifing. Here we take a simple random sample of n 
observations from our population. We then omit a single 
observation from the original sample to obtain a subsam­
ple of size (n – 1), and estimate the parameter of interest 
in this subsample. If we repeat this process, omitting every 
observation in turn, we produce n subsamples, each con­
taining one observation less than the number of observa­
tions in the original sample. We then use the distribution 
of the n estimates of the parameter from these subsamples 

Example
A sample of 115 cattle is randomly selected from 
the population in the area. Blood samples from 
the cattle are tested for the presence of antisera 
to Leptospira and, according to the titres, are 
classified as either positive or negative. In this 
sample, there are 36 cattle with positive titres. 
The estimated proportion of cattle exposed to 
Leptospira is thus 36/115 = 0.31 (corrected to two 
decimal places). The estimated standard error of 
this proportion is

SE( )
( ) . ( . )

.p
p p

n
=

−
=

−
=

1 0 313 1 0 313
115

0 043

The 95% confidence interval for the true propor­
tion exposed is given by

p p±
= − × + ×
=

1 96

0 313 1 96 0 043 0 313 1 96 0 043

0 228 0 3

. ( )

( . . . , . . . )

( . , .

SE

998)

Hence, we are 95% certain that the true propor­
tion of cattle exposed to Leptospira lies between 
0.23 and 0.40.



54	 Statistics for Veterinary and Animal Science

This means that:
(a)	 There is a 95% chance that a dog’s plasma 

potassium lies between 4.42 and 4.72 mmol/l.
(b)	 We can be 95% certain that the mean plasma 

potassium of the population of dogs lies 
between 4.42 and 4.72 mmol/l.

(c)	 95% of sample means of the dogs’ plasma 
potassium levels would lie between 4.42 and 
4.72 mmol/l in repeated sampling.

(d)	 95% of dogs have a plasma potassium that 
lies between 4.42 and 4.72 mmol/l.

(e)	 There is a 5% chance that the sample mean 
of the dogs’ plasma potassium levels lies 
outside the interval 4.42–4.72 mmol/l.

4.4  Calculate the 95% and 99% confidence 
intervals for the population means, given the fol­
lowing information:
(a)	 Analysis of 100 grass samples gave a  

mean magnesium content of 2.35 mg/kg dry 
matter with a known population variance of 
0.16 (mg/kg)2.

(b)	 Milk progesterone values in 25 cows taken 
24 days after insemination had a sample 
mean of 34.8  ng/ml and a sample SD of 
13.0 ng/ml.

4.5  A representative sample of 60 sows from 
piggeries in Suffolk showed that five animals had 
joint lameness.
(a)	 Calculate the 95% confidence interval for 

the true proportion of joint lameness in the 
population of Suffolk sows.

(b)	 Would you expect the 99% confidence inter­
val for this proportion to be wider or nar­
rower than the 95% confidence interval?

(c)	 If you had a larger sample of sows, would 
your 95% confidence interval be wider or 
narrower than the one you have calculated?

to obtain an overall estimate of the parameter of interest 
and the relevant confidence interval.	 

Exercises

The statements in questions 4.1–4.3 are either 
TRUE or FALSE.

4.1  The standard error of the mean:
(a)	 Measures the accuracy of each observation 

in the sample.
(b)	 Is a measure of spread of the observations in 

the sample.
(c)	 Is a measure of precision of the sample mean 

as an estimate of the population mean.
(d)	 Is always less than the estimated standard 

deviation of the population.
(e)	 Decreases as the size of the sample from a 

given population increases.

4.2  The 95% confidence interval for the mean:
(a)	 Contains the sample mean with 95% certainty.
(b)	 Is less likely to contain the population mean 

than the 99% confidence interval.
(c)	 Contains 95% of the observations in the 

population.
(d)	 Is approximately equal to the sample 

mean ± 2 × standard deviation.
(e)	 Can be used to give an indication of whether 

the sample mean is a precise estimate of the 
population mean.

4.3  A sample of 14 dogs shows they have 
a mean plasma potassium of 4.57  mmol/l  
(see Section 2.6.1(a)), and an estimated SD  
of 0.32 mmol/l (see Section 2.6.2(d)); the stand­
ard error of the mean is thus 0.085  mmol/l.  
The 95% confidence interval for the mean is 
4.42–4.72 mmol/l.
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5.1  Learning objectives

By the end of this chapter, you should be able to:

•	 Distinguish between observational and experi-
mental studies.

•	 Describe what is meant by a clinical trial, lon-
gitudinal study, cohort study and case–control 
study.

•	 Calculate and interpret the relative risk, 
various forms of attributable risk, the odds of 
disease and the odds ratio.

•	 Explain the need for a ‘control’ group in a 
clinical trial.

•	 Explain the importance of randomization and 
describe methods for ensuring appropriate 
random allocation of individuals or groups.

•	 Explain the importance of ‘blinding’.
•	 Describe the value of replication and blocking 

in experimental design.
•	 Explain the terms ‘confounding’, ‘interaction’ 

and ‘analysis by intention-to-treat’.
•	 Describe various approaches to handling 

confounders.
•	 Distinguish between different types of missing 

data and explain ways in which missing data 
may be handled.

•	 Distinguish between parallel group designs 
and cross-over studies.

•	 Define the term ‘outlier’ and describe methods 
to deal correctly with them.

5 Experimental design and 
clinical trials

5.2  Types of study

A study of statistics in veterinary and animal 
science overlaps with epidemiology, the study 
of disease patterns and their determinants in 
the population. In this chapter, we introduce 
you to some of the important concepts in  
epidemiology; they can be explored more fully 
in specialist texts, such as that by Thrusfield 
(2005).

Usually, there are restrictions on the availa-
bility of cases in studies of clinical conditions  
in animal populations. This may be because  
the condition is rare, or the cost of animals is 
too high, or there are time restrictions in a  
busy practice or animal industry. In order to 
make the most of the material available, it is 
important to design the study in the most pro-
ductive way. Several different approaches are 
available.

In the planning stage of your study, you  
are faced with a number of choices which are 
dictated by the problem you are investigating. 
Do you wish to intervene or are you simply 
going to observe what is there? Do you intend 
to study your animals at a single point in time 
or do you wish to follow them over time? Do 
you want to start with healthy animals and 
observe whether the disease occurs, or do you 
start with diseased animals and investigate the 
causes?
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component of an experimental study. Two exam-
ples of different types of experimental studies are 
laboratory experiments and clinical trials.

In laboratory experiments, the units of inves-
tigation may typically be cells, tissues or whole 
animals, and the interventions can be very varied. 
For example, we may be concerned with studying 
the role of growth promoters or hormones on cell 
processes (e.g. protein phosphorylation or mRNA 
expression), the effects of feed additives on 
growth rates of growing animals, or the quality 
of wound healing with different suture tech-
niques. On the other hand, clinical trials, taken in 
their widest sense, are concerned with investigat-
ing the efficacy of particular treatments or pro-
phylactic measures in resolving or preventing 
clinical conditions, and the units are generally 
individual cases. Much, but not all, of what follows 
is concerned with the design of clinical trials.

A helpful reference for the design of studies, 
both observational and experimental, is the text 
by Machin and Campbell (2005).

5.2.2  Distinction between cross-
sectional and longitudinal studies

(a)  Cross-sectional study

A cross-sectional study is one in which we take 
all our measurements on the animals included in 
the study at a given point in time. In an epidemio-
logical investigation, this means we observe both 
the values of the risk factors and the disease  
state for every animal at the same time, within 
the bounds of practicality. Cross-sectional studies 
provide only limited information because they 
do not take into account the temporal relation-
ship between the risk factors and the disease 
state. However, cross-sectional studies are useful 
when the aims of the study are essentially descrip-
tive; for example, when we are estimating the 
point prevalence of a particular disease from a 
sample survey (Box 5.1).

(b)  Longitudinal study

A longitudinal study is one in which we investi-
gate changes over time. The clinical trial is an 

5.2.1  Distinction between 
observational and experimental 
studies

(a)  Observational study

In an observational study, we merely observe the 
animals in the study and record the relevant 
measurements on those animals. We make no 
attempt to intervene, for example, by administer-
ing treatments or withholding factors that we 
feel may affect the course of the disease. Clearly, 
we cannot randomly allocate animals to treat-
ment groups in an observational study. A particu-
lar type of observational study is a survey in 
which we examine an aggregate of animals in 
order to derive values for various parameters  
in the population. This may be one of the 
following:

•	 A population survey which includes the entire 
population, e.g. a census.

•	 A sample survey in which we examine a rep-
resentative sample of animals so that we may 
draw conclusions about the whole population 
of animals, as discussed in Section 4.3.

However, many observational studies are con-
cerned with investigating associations. In particu-
lar, an epidemiological study is concerned with 
investigating the aetiology of a disease by deter-
mining whether various factors (termed risk 
factors) are associated with the occurrence and 
distribution of the disease. For example, the prev-
alence of Cushing’s syndrome in dogs is greater 
in toy breeds, a fact established by epidemiologi-
cal studies comparing breeds.

(b)  Experimental study

In an experimental study, we intervene in the 
study by, for example, deliberately applying a pre-
ventative measure, such as a treatment, or reduc-
ing the exposure of the animal to a factor, such as 
temperature. We then observe the effect of our 
intervention on the response of interest, usually 
with a view to establishing whether a change in 
response may be directly attributable to our 
action. Random allocation is an essential design 
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of these cows, born in the same calving season, 
were then followed until their 7th year of life, or 
until they developed clinical signs of the disease 
if this occurred earlier. Thus, in this example, the 
exposure groups were the cows with and without 
BSE, and the disease outcome assessed was 
whether the calves developed BSE over a 7-year 
period.

A cohort study has the advantage that we can 
use it to collect information on exposure to a 
wide range of factors, even rare ones, and on dif-
ferent outcomes. However, it is not sensible to 
embark on a cohort study when the disease 
outcome is rare and, because its time span can be 
quite long, it tends to be expensive and may 
suffer from inconsistencies.

We usually analyse data from cohort studies 
by estimating the true risk of the disease in the 
populations of animals that have been ‘exposed’ 
and ‘unexposed’ to the factor. The true risk of 
disease is the proportion of animals in a popula-
tion of susceptible animals that develop the 
disease in the time interval under consideration; 
it represents the probability that an animal will 
develop the disease in the time period. The 
disease risk will be greater if the study period is 
longer as animals will then have more time in 
which to contract the disease, and so it is essential 
that the study period is the same for all animals 
when evaluating risk. The risk of the disease in a 
particular exposure group is estimated as the pro-
portion of animals in the relevant cohort who 
develop the disease during the study period.

Relative risk
The relative risk (RR), the ratio of the disease 
risks in the exposed and unexposed groups, pro-
vides a measure of the strength of the association 
between the disease and the exposure to the 
factor. If the relative risk is unity, then exposure 
to the factor does not affect the animal’s chance 
of developing the disease. If the relative risk 
(generally, the risk in the exposed cohort, divided 
by the risk in the unexposed cohort) is substan-
tially greater than unity, then an animal has an 
increased risk of developing the disease if it  
has been exposed to the factor. For example, 
Wilesmith et al. (1997) found that 42 (14.0%) 
offspring of the 301 animals born to BSE-positive 

example of a longitudinal study; we administer  
a treatment at one point in time, and observe  
the effect of that treatment at a later time. There 
are two types of longitudinal studies, which are 
defined according to whether the changes over 
time are investigated prospectively (as in most 
cohort studies) or retrospectively (as in the case–
control study) – see Section 5.2.3.

5.2.3  Distinction between  
cohort and case–control 
observational studies

(a)  Cohort study

In a cohort study of disease aetiology, we start by 
defining groups (cohorts) of disease-free animals 
according to the exposure of the animals in the 
groups to the factor(s) of interest. Generally, we 
follow these groups forward in time to see which 
animals develop the disease under investigation. 
An example of a cohort study is one in which 
Wilesmith et al. (1997), in exploring the mode of 
transmission of bovine spongiform encephalop
athy (BSE), wanted to determine if BSE-positive 
cows were more likely to produce offspring who 
developed BSE than those dams who were BSE 
negative. Their cohort comprised two groups of 
cows: those that had developed BSE and those 
that had not shown clinical signs of BSE within 
6 years (matched for age and herd). The offspring 

Box 5.1  The distinction between prevalence and incidence

The prevalence and incidence of a disease are two terms 
which are often confused.

•	 The prevalence of a disease relates to the number of 
cases of the disease that exist at a specific instant in 
time (point prevalence) or in a defined interval of time 
(period prevalence).

•	 The incidence of a disease relates to the number of 
new cases of the disease that develop in a defined time 
period.

Both prevalence and incidence are generally expressed 
as proportions (percentages) of the population at risk 
(i.e. those individuals who could succumb to the disease) 
at the midpoint of the study period or at a specified 
instant in time, as relevant.
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tion attributable to exposure that would be 
avoided if exposure were removed from the pop-
ulation. The PAF therefore provides a measure 
of preventable disease. In the BSE example, the 
PAF is estimated as 0.048/0.091 = 0.527, i.e. 53% 
of BSE in the offspring is attributable to some of 
the dams being BSE positive.

Sometimes our focus is on evaluating the effect 
of a risk factor on individuals who have been 
exposed to the risk factor rather than evaluating 
the excess risk in the population. In this case we 
estimate the attributable risk (AR), also referred 
to as the absolute risk reduction (ARR) or the 
risk difference (RD). It is equal to the difference 
in the risks in the exposed and unexposed por-
tions of the population, i.e. it is estimated by 
Riskexp − Riskunexp. It evaluates the increase in the 
risk of disease in exposed individuals, compared 
to unexposed individuals, that results from the 
exposure. In the BSE example, the estimated 
Riskexp  =  42/301  =  0.140, so the estimated 
AR = 0.140 − 0.043 = 0.097. Hence for every 100 
BSE-positive dams, approximately 10 of the off-
spring were BSE positive as a consequence of the 
disease status of the dams. Furthermore, the 
attributable fraction (AF), also called the attrib-
utable fraction (exposed) or the proportional 
attributable risk, is the proportion of disease in 
the exposed group that would be avoided if the 
exposure were removed, and is equal to 
AR/Riskexp. The attributable fraction does not 
take the prevalence of exposure to the risk factor 
into account so is not very helpful as a public 
health measure of preventable disease. In par-
ticular, when the prevalence of the risk factor is 
low, exposure to the risk factor will have little 
effect on the number of animals with the disease, 
even if the AF is high. In the BSE example, the 
estimated AF = 0.097/0.140 = 0.693. Thus, 69% of 
cases of BSE in the offspring of BSE-positive 
dams is attributed to these dams being BSE posi-
tive. It may be of interest to note that the 
AF = (RR − 1)/RR, where RR is the relative risk.

(b)  Case–control study

In a case–control study of disease aetiology, we 
start by defining the groups of diseased and 
healthy animals; these are the cases and the con-
trols, respectively. Then we assess whether the 

dams developed BSE within the first 7 years of 
their lives, compared with 13 (4.3%) offspring of 
the 301 born to BSE-negative dams. This repre-
sents an estimated relative risk of 42/13 =  3.23 
(95% confidence interval 1.77–5.89, P <  0.001), 
i.e. those calves born to BSE-positive mothers 
had more than a threefold greater chance of 
developing BSE than those from BSE-negative 
mothers. Another way of expressing this is to  
say that the risk of offspring developing BSE 
increased by over 200% when the dam was 
infected. However, these data do not distinguish 
a possible genetic component from true maternal 
transmission. (We provide the formula for the 
confidence interval for the true relative risk in 
Table B.1, and you can find details of how to test 
the hypothesis (see Chapter 6) that this relative 
risk is unity in texts such as Armitage et al. (2002). 
For an explanation of P, see Section 6.3.3.)

Attributable risk
It may be more appropriate in studies relating to 
veterinary public health, rather than those con-
cerned with disease aetiology, to consider the dif-
ference in relevant disease risks, and evaluate 
some form of attributable risk. This can be meas-
ured in various ways: you may find that the nota-
tion and terminology for the different measures 
is not consistent in different texts.

We may calculate the population attributable 
risk (PAR) which is equal to the difference 
between the risk in the whole population (esti-
mated by Risktotal) and the risk in the unexposed 
group (estimated by Riskunexp). It describes the 
excess risk in the population attributable to the 
risk factor – see also Table B.1 (for the confi-
dence interval) and Section 16.5.3. In the BSE 
example, Risktotal is the estimated proportion of 
offspring with the disease in the whole popula-
tion of dams = (42 + 13)/602 = 0.091 and Riskunexp 
= 13/301 = 0.043. Hence the PAR is estimated as 
0.091 − 0.043 = 0.048 (i.e. approximately 5%), i.e. 
for every 100 dams in the population, five of the 
offspring had BSE attributable to the dams being 
BSE positive. Sometimes, we calculate the PAR 
as a proportion of the risk in the whole group. 
This population attributable fraction (PAF), also 
called the population proportional attributable 
risk, is estimated as PAR/Risktotal. It describes the 
proportion of the disease in the whole popula-
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is very low (say, <10%). If the disease is not rare, 
the odds ratio will be greater than the relative 
risk if the relative risk is greater than one, and it 
will be less than the relative risk otherwise.

As an illustration of a case–control study, con-
sider the study (based on Clark et al., 2004) that 
examined the relationship between the forma-
tion of vertical fissures or sandcracks in the 
hooves of adult beef cattle and the presence of 
horizontal grooves. At a local abattoir, all four 
feet were collected from 20 mature beef cows 
with no vertical fissures present on any claw (the 
controls) and 20 mature beef cows with a vertical 
fissure present on at least one claw (the cases). A 
cow was categorized as suffering from horizontal 
grooves if one or more hooves showed evidence 
of a lesion. Of 20 cows classified as having a verti-
cal fissure, 19 had at least one horizontal groove 
and one cow had no horizontal groove; 13 of the 
20 control cows had at least one horizontal groove 
and seven of the control cows had no horizontal 
groove. There were therefore a total of 32 cows 
with at least one horizontal groove and eight 
cows with no horizontal groove. Thus, the odds of 
having a vertical fissure in the cows with at least 
one horizontal groove was estimated as (19/32)/
(13/32) = 1.4615, and the odds of having a vertical 
fissure in the cows with no horizontal groove was 
estimated as (1/8)/(7/8) = 0.1429. Hence the odds 
ratio was estimated as (1.4615)/(0.1429)  =  10.2 
(95% confidence interval 1.1 to 484.7, P = 0.04), 
i.e. the odds of having a vertical fissure was esti-
mated as being 10.2 times greater in a cow with a 
horizontal groove than in a cow without a hori-
zontal groove. However, the extremely wide con-
fidence interval for the odds ratio indicates that 
although the true odds of having a vertical fissure 
could be nearly 500 times greater in a cow with a 
horizontal groove, there could be very little dif-
ference in the two odds.

5.3  Introducing clinical trials

We use the term clinical trial to describe any 
planned experiment that involves human or 
animal subjects, and is designed to assess the 
effectiveness of one or more treatments or pre-
ventive measures such as vaccines. The term has 
been expanded from human clinical medicine to 

animals in the two groups have differences in past 
exposure to various risk factors. Case–control 
studies are often termed retrospective studies 
because we have to go back in time in order to 
determine an animal’s exposure to the risk factor. 
There are two types of case–control design which 
depend on the way in which we select our controls. 
Either we choose the controls so that each (or 
more than one) control animal is matched with a 
case with respect to variables that may be likely to 
influence the development of disease, such as the 
animal’s breed, sex and/or age; this leads to what 
is termed a matched design. Sometimes, we have 
frequency or group matching when the controls 
are selected so that the potential risk factor is the 
same, on average, in the groups of cases and con-
trols. On the other hand, we may have an 
unmatched design in which the disease-free or 
control animals are selected from the population, 
but without any attempt at matching.

Although a case–control study is relatively 
quick, easy and cheap to perform, does not suffer 
from losses to follow-up and can be used when 
the disease outcome is rare, it may suffer from 
recall bias (there is a differential ability between 
carers in remembering relevant facts about cases 
and controls relating to exposure), and it is not 
suitable when exposures to the risk factor are 
rare. Furthermore, we cannot estimate the rela-
tive risk directly in a case–control study since the 
relative risk is a ratio of the risks of the disease 
in the exposed (to the factor) and unexposed 
groups of animals. In a case–control study, we 
start with animals with and without the disease 
rather than with different exposure groups, so we 
can only estimate the relative risk indirectly. We 
do this by calculating what is called the odds 
ratio (OR), which is the ratio of two odds, usually 
the odds of disease in the group exposed to the 
factor divided by the odds of disease in the group 
not exposed to the factor. The odds of disease in 
a group of animals is the ratio of the probability 
of having the disease to the probability of not 
having the disease. Analogous to the relative risk, 
we can test the hypothesis that the true odds 
ratio in the population is one (details are given 
in Armitage et al., 2002) and provide confidence 
intervals for the odds ratio (see Table B.1). Note 
that the odds ratio is a reasonable estimate of the 
relative risk only if the prevalence of the disease 
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based minimum set of items for reporting  
livestock trials with production, health and  
food safety outcomes. Following these proposed 
guidelines may help alleviate the problems 
arising from inadequate reporting of veterinary 
randomized controlled trials.

5.4  Importance of design in the 
clinical trial

We undertake a clinical trial in order to evaluate 
the benefit to be derived from introducing a new 
therapy or intervention in given circumstances. 
Our interest is in projecting the results from the 
sample of animals studied in the trial to some 
future population of similar animals suffering 
from the same condition and treated in compa-
rable circumstances. In order to ensure that this 
hypothetical future population receives what is 
truly the best treatment, it is essential that the 
trial is based on rigorous scientific principles and 
is free from bias, i.e. from an effect that deprives 
a statistical result of representativeness by sys-
tematically distorting it (see also Section 4.4.3). 
Biases can arise in a clinical trial for a variety of 
reasons. For example, there may be selection bias 
(the animals in the study are not representative 
of the population of interest), observer bias (say, 
when one observer tends to over-report a par-
ticular variable) or publication bias (the ten-
dency for journals to publish only papers with 
statistically significant results). Two particularly 
important biases are:

•	 Allocation bias, which may arise if the treat-
ment groups are not comparable when we 
allocate the experimental animals to the treat-
ment groups.

•	 Assessment bias, which may arise if we are 
influenced by preconceived ideas about the 
superiority of one treatment over another 
when we evaluate the response to treatment.

If we incorporate measures into the trial design 
that avoid biases arising, we can then contem-
plate ways in which we can optimize the quality 
of the estimate of response to treatment, most 
notably by attempting to maximize its precision.

include studies in veterinary clinical medicine 
and animal health sciences; for example, the 
testing of the efficacy of novel pharmacological 
agents to control ectoparasites in dogs and cats, 
or a formal study of a novel method of repair of 
the anterior cruciate ligament in dogs. You can 
obtain a full discussion of clinical trials in Hack-
shaw (2009), Machin et al. (2006), Matthews 
(2006) and Pocock (1983).

In the course of the development of veterinary 
treatments, there is usually a stage of experiment 
using laboratory animals to establish safety and 
efficacy of the treatment. If this is a drug devel-
opment, this stage would also include pharmaco-
logical studies. A treatment that passes these 
preliminary assessments would then be exam-
ined in a clinical trial in which the treatment is 
applied to the species of interest but with a 
narrow range of its potential variation, e.g. beagles 
or Labradors as ‘model’ dogs. Up to this point, 
all these trials would usually be carried out in the 
UK under the Animals (Scientific Procedures) 
Act 1986 (see Section 15.3.4).

We should distinguish the clinical trial from 
the clinical field trial. The former is a trial that 
takes place in well-regulated conditions; the clin-
ical field trial is a comparative study involving 
new treatments or preventive measures applied 
under natural, field or semi-field conditions. It is 
usually carried out in the UK under the Veteri-
nary Surgeons Act 1966.

•	 The clinical field trial introduces elements  
of variation attributable to the involvement  
of the owners or stockmen, and these are 
important in assessing the final efficacy of a 
treatment in a pragmatic setting. The overall 
effectiveness of a drug treatment, for example, 
involves not just the pharmacological action  
of the drug but the ability of the owner/
stockman to administer it correctly, e.g. the use 
of helminthological treatments under farm 
conditions.

•	 The clinical field trial also introduces the full 
range of genetic and environmental variation 
in a species, e.g. Chihuahuas to Great Danes 
kept under a variety of different conditions.

We would like to refer you to the REFLECT 
statement (see Section 17.3) which is an evidence-
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tion if there is no comparable information on a 
similar population of animals who are not given 
the vaccine.

Furthermore, in the absence of a comparison 
or control group, we know that every animal is 
receiving the new treatment (i.e. there is no 
blinding – see Section 5.7), and in our enthusi
asm for this treatment, we may compromise the 
results, particularly if the assessment of response 
is subjective. A clinical trial which is not com-
parative is likely to lead to over-optimistic and 
therefore biased results.

5.5.2  Positive or negative control?

A comparative clinical trial is often termed a 
controlled clinical trial. The choice of control 
group depends on the exact circumstances of the 
trial. If a standard therapy exists, then it is ethi-
cally unacceptable to conduct the trial without 
including the standard therapy as the control, 
which may then be termed a positive control. If, 
however, there is no known effective treatment, 
or if the condition is not so serious that the 
absence of treatment does not pose an ethical 
dilemma, then it is justifiable to have a control 
group, sometimes described as a negative control 
group, in which the animals receive no active 
treatment. (NB In some laboratory studies, the 
term ‘positive control’ implies a treatment giving 
a maximum response, e.g. in some immunodetec-
tion assays it is usual to include a treatment  
with cells known to respond positively to the 
antibody.)

5.5.3  Historical controls

A historical control group is one in which the 
animals have previously been exposed to the 
control treatment and their results obtained 
prior to the onset of the trial. Occasionally, we 
may be tempted to use historical controls instead 
of contemporary controls in an attempt to reduce 
the number of animals needed in the experiment 
or from a desire to administer the new treatment 
to all animals in the trial. The major disadvantage 
of using historical controls in a retrospective 

In the sections that follow, we describe the 
important features of design that contribute to a 
worthwhile trial leading to useful and valid con-
clusions concerning the effectiveness of the 
treatments or interventions. Note that a compe-
tent trial is invariably:

•	 Comparative – comprising more than one 
treatment group. We are then able to make 
judgements about the response to the new 
therapy or intervention in relation to the 
response that is obtained in the absence of 
therapy or compared with a standard therapy 
(see Section 5.5).

•	 Randomized – we assign the animals to the 
treatment groups by some chance process to 
ensure that the comparison groups are alike 
with respect to any variables that may influ-
ence response (see Section 5.6).

Incorporating both of these features into a trial 
leads to a randomized controlled trial, often 
abbreviated to RCT.

5.5  Control group

5.5.1  Why do we need a control?

In any experimental investigation, whether a 
clinical trial or a laboratory investigation, without 
some basis for comparison we cannot establish, 
with any degree of certainty, that the new treat-
ment under investigation is preferable to the 
standard treatment or even to no treatment at 
all. In a clinical trial, for example, the condition 
of the animal may improve over a defined period, 
purely as a consequence of time and the natural 
curative and healing properties of the body, and 
irrespective of the treatment the animal receives. 
Similarly, in a laboratory investigation, changes 
in the variable under investigation can occur by 
chance alone. Thus, we cannot make an inference 
that the new treatment is more beneficial than 
the standard treatment if we do not have any 
information about the response to the standard 
treatment given over the same period to a similar 
group of animals. Similarly, we may doubt the 
effectiveness of a new vaccine on a given popula-
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Thus, assigning the animals to the treatment 
groups in a systematic fashion by, for example, 
alternating the allocation, i.e. test, control, test, 
control, etc., would not comply with this defini-
tion. Systematic allocation is more likely to lead 
to bias than is a strictly random process of alloca-
tion. The investigator’s knowledge of the alloca-
tion sequence may influence the allocation of 
particular animals to certain treatments.

Randomization has the following advantages:

•	 It removes bias from the allocation procedure 
in that the prognostic factors are, in principle, 
balanced in the different treatment groups.

•	 We do not require prior knowledge of factors 
likely to influence response, as the procedure 
should result in treatment groups which are 
comparable in unknown, as well as known, 
factors (apart from the actual treatment being 
given).

•	 We do not know in advance the particular 
treatment that each animal will receive.

•	 Statistical theory is based on the concept of 
random sampling. If we construct the treat-
ment groups using random allocation, then the 
differences between treatment groups are akin 
to those between random samples. We can, 
therefore, utilize the process of statistical infer-
ence (see Sections 1.10 and 4.3) to evaluate 
treatment differences.

After the results from the clinical trial have 
been collected, we should check that randomiza-
tion has been effective in that the prognostic 
factors are balanced in the different treatment 
groups at baseline. To this end, we should scan 
the results of a table containing the summary 
statistics for each prognostic factor (e.g. means 
and standard deviations for Normally distributed 
numerical variables and proportions for categor-
ical variables) to confirm that any differences in 
these factors between the treatment groups are 
negligible. We should not compare the groups for 
each covariate by performing a hypothesis test 
(see Chapter 6) and providing a P-value. This is 
because the hypothesis test assesses whether a 
difference between the groups could be due to 
chance, and if randomization – a method based 
on chance – has been used for allocation pur-

comparison is that the test and control groups 
may not be truly comparable, both with respect 
to the type, source and condition of the animal 
and also to the experimental environment, so 
that biases may result. The consequence of 
including historical controls in a clinical trial is, 
again, a tendency to exaggerate the benefits of 
the new treatment.

5.6  Assignment of animals to the 
treatment groups

5.6.1  Need for random assignment

One important potential source of bias in the 
conduct of a controlled clinical trial is in the 
allocation of experimental animals to the treat-
ment (test and control) groups. This bias may 
arise, either consciously or subconsciously, if we 
exercise personal judgement when we allocate 
the animals to the treatment groups. If the com-
position of the test and control groups differs in 
a systematic fashion (e.g. if one group comprises 
more severely affected animals), then we may not 
be able to attribute any differences in response 
to the effect of treatment. In order to do so, the 
test and control groups should be as similar as 
possible and so are balanced in the factors that 
influence response, known as covariates or prog-
nostic factors, whether or not these are known. 
However, if they are known and we find that the 
groups are not comparable at baseline, it may be 
possible to adjust for the effects of these covari-
ates in the analysis (see Section 5.9.1).

The most appropriate method of removing 
allocation bias and achieving this balance is the 
process of random allocation or randomization 
of the animals to the test and control groups. In 
random allocation, we assign the animals to the 
treatment groups in such a way that:

•	 All animals have the same chance of receiving 
any treatment.

•	 The assigning of one animal to a particular 
treatment has no influence on the assigning of 
any other animal.

•	 We cannot know in advance the treatment that 
each animal is to receive.
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the number is odd, we allocate the next experi-
mental animal in the trial to T, say, and if the 
number is even, we allocate that animal to C. So 
the sequence 386674559670 would result in the 
allocation TCCCTCTTTCTC. We may modify 
the procedure to accommodate three or more 
treatments. For example, if there are three treat-
ments, A, B and C, we allocate the animal to A 
if the digit is 1, 2 or 3; to B if the digit is 4, 5 or 
6; to C if the digit is 7, 8 or 9; and we ignore zeros. 
Then, the above sequence would result in the 
allocation ACBBCBBBCBC. As you can see, 
with only 11 animals, the group sizes in this ran-
domization are quite disparate (see Section 
5.6.2(c) for a solution to this problem).

(b)  Stratified randomization

You should be aware that simple randomization, 
relying as it does on chance, is not infallible, par-
ticularly when the sample size is relatively small. 
Sometimes, we want to ensure that the treatment 
groups are similar with respect to one or two key 
confounding variables, as it is easier to promote 
comparability at the allocation stage rather than 
attempting to make adjustments for the con-
founders (see Section 5.9.1) in the statistical 
analysis. This may be achieved by stratified 
randomization.

We divide the population into different strata 
according to the categorization of the key con-
founding variables. So, for example, for a study 
of arthritis in dogs, we may create three strata, 
one for each of large, medium and toy breeds, 
since the animal’s body mass is believed to affect 
the response to treatment. Then, within each 
stratum, we randomly (using a different randomi-
zation list) allocate the dogs to each of the treat-
ment groups so that the comparison of treatments 
is not affected by the dogs’ body mass.

(c)  Restricted randomization

Generally, we aim to have approximately equal 
numbers of animals in the various treatment 
groups. We are likely to achieve this with simple 
randomization if our sample size is large enough, 
but we may have an undesirable imbalance  
with a relatively small number of animals. We 

poses in a clinical trial, any difference between 
the baseline values must be due to chance.

As a practical tip, you may find it helpful to 
mask the allocation sequence by using sealed 
envelopes in the randomization process. These 
are numbered consecutively; each contains the 
specification of the treatment regimen (deter-
mined by random allocation) to be administered 
to the next available animal.

5.6.2  Methods of randomization

It is best if you avoid mechanical methods,  
such as tossing a coin or throwing a die, for  
allocating the experimental animals to the treat-
ment groups. Although they are probabilistically 
acceptable procedures that adhere to the defini-
tion of randomization, these techniques are cum-
bersome and cannot be verified.

A common way of employing randomization 
in the allocation process is to utilize a table of 
random numbers (see Table A.11). This com-
prises the digits 0 to 9 generated in a random 
manner such that each digit occurs the same 
number of times, and there is no discernible 
pattern in the arrangement of the digits. If we 
choose an appropriate allocation scheme, some 
of which are outlined in the subsections that 
follow, we can use the table to randomly allocate 
equal numbers of animals to the different  
treatments. Alternatively, a random number 
sequence can be generated on many calculators 
and computers.

(a)  Simple randomization

We may allocate animals to the different treat-
ment groups using simple randomization – this 
is the basic randomization procedure which  
does not involve any refinements or restrictions. 
Suppose we have two treatment groups: a test 
group (T) and a control group (C). We begin by 
choosing a random starting point, i.e. a digit, in 
the table of random numbers. Then we follow the 
row of that digit to the left or the right, or the 
column of that digit up or down the page. Every 
number in the sequence of digits obtained in this 
way is either odd or even (taking 0 as even), the 
chance of an odd or even number being equal. If 
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and whose response is independent of the 
responses of the other units. Generally, in human 
medicine, clinical trials take the individual person 
as the experimental unit although, occasionally, 
clusters of individuals, such as households, are 
used. However, we often regard the group as the 
most appropriate experimental unit in the veteri-
nary and animal sciences. This is because food, 
drugs and vaccines are often administered to a 
group of animals in a litter, pen, paddock or barn, 
or to a complete herd or to all the fish in a tank. 
In this case, we apply the randomization proce-
dure to the groups (i.e. group or cluster randomi-
zation), so that all animals or fish within each 
group receive the same treatment. We have to 
combine the results of the groups in the appro-
priate manner to evaluate treatment effects.

A second circumstance that may suggest insti-
tuting group randomization is when we cannot 
regard the individual animals within a group 
(litter, pen, paddock, etc.) as independent units. 
This is likely to arise when we are appraising a 
vaccine against a parasitic disease; herd immu-
nity and the possibility of vaccine organisms 
spreading to and protecting the controls would 
tend to camouflage the effectiveness of the 
vaccine. If the experimental unit is the animal 
rather than the group, the protection afforded 
the vaccinated animals leads to a reduced preva-
lence of disease in the group environment, result-
ing in a reduced incidence of disease in the 
control animals; this is what is meant by herd 
immunity. A similar process may also be applica-
ble when de-wormed and control animals are 
allowed to graze on the same pasture. Short but 
useful discussions of group randomization are 
given by Altman and Bland (1997) and Bland 
and Kerry (1997).

In group randomization, you must remember:

•	 To base the sample size calculations at the 
planning stage of the investigation on the 
number of groups that are randomized to 
the different treatments, and not solely on the 
number of animals within the groups. The 
overall sample size in a group or cluster rand-
omized trial will be greater than that required 
when there is individual randomization if all 
other factors that affect sample size remain 

demonstrated this in the simple randomization 
example above (see Section 5.6.2(a)) in which 
the use of a sequence of only 12 digits resulted 
in one animal being allocated to treatment A,  
six animals to B and four animals to C. We  
may overcome this inequality problem by using 
restricted or blocked randomization.

We decide (perhaps because of batch variation 
in the treatment material) that we would like to 
have a trial in which we are assured of balance 
in every block of n (e.g. n = 6, 8, 9 or 10) animals 
that enter the trial, where n is a multiple of the 
number of treatments being compared. Suppose 
we have two treatment groups, T and C, and that 
we choose n = 8. We follow the sequence of digits 
in the random number table and allocate the 
animal to T if the number is odd and to C if the 
number is even. Once we have allocated four 
animals to one treatment group (i.e. the block 
size divided by the number of treatments), then 
we must allocate the remaining animals in that 
block of eight to the other treatment group. So, 
the same sequence as before, 386674559670, 
would result in TCCCTC after the first six  
digits, i.e. four animals on C, and only two on T, 
indicating that we would have to allocate the 
remaining two animals in that block of eight 
animals to T: the allocation sequence would then 
be TCCCTCTT. This procedure, if continued, 
ensures exact balance after every group of eight 
animals, and approximate balance when all 
animals have been entered into the trial if the 
trial size is not a multiple of eight. It has the 
added advantage of guarding against imbalances 
that may result from any time trend in the  
type of animals admitted to the trial, as well as 
facilitating balance in any interim analyses (see 
Section 13.4). Sometimes, as an added safeguard, 
we can change the block size during the whole 
allocation process, e.g. sometimes it might be 
eight and at other times it might be six or four. 
Stratified randomization usually incorporates 
restricted randomization within each stratum, 
provided the overall sample size is large enough.

(d)  Group randomization

The experimental unit is the smallest unit in an 
experiment to which a treatment can be assigned, 
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ment is subjective, such as the body condition 
score in sheep or the starkness of coat in cats.

We ensure that our trial is free from assess-
ment bias by making the trial blind or masked. 
There are two levels of ‘blindness’ – double-blind 
and single-blind.

•	 Ideally, we should design the trial to be double-
blind so that neither the carer(s) of the animals 
nor the assessor of response to treatment (test 
or control) is aware of which treatment each 
animal is receiving. If the carers are ignorant 
of the treatment each animal is receiving (i.e. 
they are blind), it is possible for them to handle 
the animals impartially and removes from 
them the temptation to atone, either con-
sciously or subconsciously, for the supposed 
inferior control regimen. It is essential to keep 
the assessor blind if the response to treatment 
is subjective, thus guarding against the ten-
dency to favour or disfavour a particular  
treatment. Clinical trials should have the 
maximum attainable degree of blindness in 
order to remove potential bias in the assess-
ment process. Double-blind trials are desirable 
but not always achievable.

•	 In some circumstances, the trial may be single-
blind in that only one of these two parties, the 
carer or the assessor, is blind. If the response 
to treatment is objective, then it may be  
sufficient to have only the carer blind; if it is 
possible to distinguish the test and control 
regimens, perhaps because of experimental 
procedures, then it may not be feasible to 
make the carer blind. For example, in a single-
blind fertility trial of semen diluent treatments 
when only one treatment contains egg yolk, 
the inseminator will be aware of which treat-
ment is used; the assessment of fertility (preg-
nancy test) must then be performed blind.

In order for the carer to be blind, it is essential 
that the physical appearance of the test and 
control treatments, as well as the treatment  
regimens, should be exactly the same. This may 
be facilitated by using a dummy treatment or 
placebo, a pharmacologically inert substance 
which is identical in appearance to the test treat-
ment. It forms the baseline against which the 
effect of the test treatment is measured. The 

constant. In practical terms, you may find you 
cannot satisfy a requirement for a large number 
of groups, for example pens or herds. Sugges-
tions for overcoming the problem are given  
by Haber et al. (1991) and by Halloran and 
Struchiner (1991). Another useful reference is 
that by Kerry and Bland (1998).

•	 To base the statistical analyses of results on the 
group as the experimental unit. We discuss a 
simple approach in Section 14.5.2 where we 
explain how the analysis depends on defining 
an appropriate summary measure for each 
group. In Section 11.6 we explain how regres-
sion methods, such as the use of a random 
effects model or generalized estimating equa-
tions, can be utilized appropriately when there 
are clustered data such as these. Useful papers 
in the context of group randomized studies are 
those by Donner (1987), Donner et al. (1981) 
and Hseih (1988).

If, incorrectly, you take the animal within the 
group as the experimental unit when you use 
group randomization, you will underestimate the 
variation between animals. The lack of independ-
ence between these animals will result in less 
variation, and hence narrower confidence inter-
vals for the parameters of interest, than would be 
expected if the animals were truly independent. 
This, in turn, would be likely to lead you to con-
clude, over-optimistically and erroneously, that 
there was a statistically significant difference 
between treatments. Thus, by underestimating 
the variation between animals, you are likely  
to overestimate the magnitude of difference 
between treatments.

5.7  Avoidance of bias in the 
assessment procedure

We use the randomization process in a clinical 
trial to ensure that the trial is free from system-
atic errors of allocation. However, biases may 
arise in the assessment of response to treatment 
because of the preconceived notions of the carer 
of the animals and/or the assessors as to the ben-
efits of treatment. These biases are most likely to 
occur when the assessment of response to treat-
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In addition, we sometimes incorporate replica-
tion into the trial design so that we can increase 
the precision of our estimates, and improve the 
effectiveness of the trial to detect treatment dif-
ferences. By replication, we mean repeating the 
number of measurements (i.e. obtain duplicates, 
triplicates, etc.) of the same type on each experi-
mental unit, for example on each animal. This 
allows us to segregate the within-animal variabil-
ity from the variation that is due to biological or 
treatment differences; it enhances the compari-
sons of interest, whilst giving us the opportunity 
to evaluate repeatability (see Section 14.4). We 
must take care when analysing such data; we 
have to recognize that k repeated measurements 
on n experimental units do not provide nk inde-
pendent observations. For example, if we are 
observing the number of visits garden birds make 
to a feeding basket, we may not be sure we are 
observing different birds at each visit. If a pair of 
birds each pays 10 visits to the feeder in an hour, 
this is not the same as 20 birds each making a 
single visit in the hour. We must not treat these 
two situations in the same way for statistical 
analysis, recognizing that they imply quite differ-
ent behaviour of the bird population. One simple 
approach often used for the analysis of data that 
comprise replicate observations is to work with 
an appropriate summary measure, such as the 
mean of the replicate observations for each 
animal (see Section 14.5).

Another form of replication arises when a 
certain response is measured on several occa-
sions on each experimental unit over a period of 
time. The data from this latter design need to be 
analysed in a special way, as the time factor may 
well be of interest, and care must be taken to 
ensure that treatment comparisons are made 
within rather than between animals. We discuss 
some approaches to the analysis of these repeated 
measures or clustered designs in Section 14.5; in 
Section 11.6 we describe how special regression 
methods can be used to deal with clustered data.

5.8.3  Concept of blocks

We can incorporate careful grouping of the 
experimental units in a trial as a supplementary 

response induced by suggestion on the part of 
the animal attendants or the animal investigator 
when the animal receives a placebo is called the 
placebo effect. Placebos are most often used in 
drug trials; they may, if ethical considerations 
permit, be used in invasive procedures, e.g. injec-
tions of the solvent base (vehicle) for the drug or 
in sham operations. These are common in experi-
ments that are conducted in the UK under the 
Animals (Scientific Procedures) Act 1986.

5.8  Increasing the precision of  
the estimates

5.8.1  Introduction

Our primary concern is with designing a trial that 
is unbiased; in particular, it should be free from 
systematic errors of allocation and from biases in 
the assessment of response to treatment. Our 
secondary objective is to promote the reliability 
of our conclusions by maximizing the precision 
of the estimates of the parameters of interest. 
Extraneous variations resulting from the inher-
ent variability in the experimental units and from 
a failure to standardize the experimental tech-
nique tend to mask the effects of treatments;  
we want both to quantify and to minimize these 
variations.

5.8.2  Replication

We generally choose our trial size to be as large 
as possible. The greater the number of experi-
mental units in the trial, usually individual 
animals but sometimes groups of animals (see 
Section 5.6.2(d)), the greater the precision of the 
estimates and the greater our chance of detecting 
a treatment effect, if it exists. However, with an 
increased awareness of the need to restrict the 
numbers of animals used in experimental situa-
tions, there is a strong encouragement to use  
only the minimum number of animals consistent 
with the desired scientific objectives (see Section 
15.3.2). We provide a detailed explanation of 
how to determine the optimal sample size in a 
trial in Section 13.3.
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relationship between the individual animals in 
one group and the individual animals in the 
second group, and the sample sizes may differ. 
This is a parallel group design (see Section 
5.9.7) in which the treatment comparisons  
are made between animals. An example is a 
feeding trial that compares the average gain 
in weight over a time period in two groups of 
animals in which only one of the two groups 
is given a dietary supplement.

2.	 We can improve our comparison if we delib-
erately create related or dependent groups. If 
the observations in the two groups are paired, 
each observation in one group is paired or 
individually matched with an observation in 
the other group, and the groups are therefore 
necessarily of equal size. The treatment com-
parisons are then made within the pairs. There 
is less variation within paired individuals 
than between unpaired individuals, so the 
treatment effects can be estimated more pre-
cisely. Data sets that exhibit dependency in the 
form of pairing or individual matching should 
not be analysed as if the data were independ-
ent. If we ignore the dependency, we lose infor-
mation, and this reduces the chance of detecting 
a treatment difference if one exists.
•	 The pair may comprise the same animal 

(self-pairing) in different circumstances 
(see cross-over trials in Section 5.9.7), e.g. 
when two treatments are administered to 
an animal in random order. An example of 
self-pairing is when we compare a horse’s 
metabolism on a treadmill and on a normal 
track (e.g. Exercise 7.3).

You should beware of the common 
mistake of regarding before and after treat-
ment comparisons on the same animal as 
suitable for a simple paired analysis; for 
example, in comparing the heart rate (beats/
min) of dogs before and after dosing with  
a putative cardiac stimulant. Unless the 
design includes a group of animals for which 
measurements are made both before and 
after a control (e.g. placebo) treatment is 
administered, it is impossible to be sure if  
a difference in the before and after active 
treatment measurements can be attributed 
to the effect of treatment alone. It is  

technique to reduce the variability in the com-
parisons of interest. We deliberately separate the 
experimental units (e.g. animals) into groups, 
blocks or strata (e.g. breeds or regions of the 
country) so that the animals within a block are 
more homogeneous with respect to the outcome 
variable than the animals in the population at 
large. Thus, the random variability within each 
block is smaller than that between the blocks. We 
allocate the animals within each block to the 
various treatments randomly using a different 
randomization list for each block (this is strati-
fied randomization – see Section 5.6.2(b)). In the 
analysis, it is possible to separate the variability 
in the results due to blocks from that due to 
treatments, allowing us to obtain a more precise 
estimate of the treatment effect than if we had 
not made use of blocks.

We have a complete randomized block design 
when each block contains a complete set of treat-
ments. Other designs, called incomplete block 
designs, in which each block need not contain the 
entire treatment set, are possible but their com-
plexity is beyond the scope of this book. We refer 
you to discussion in, for example, Cochran and 
Cox (1957) or Fleiss (1986).

You should be aware that, sometimes, the use 
of groups is governed by practical considerations 
rather than being promoted as a tool for increas-
ing precision. In some situations, we may find it 
necessary to assemble groups of animals situated 
on several farms or at several kennels or catter-
ies, with the group defining the animals at a par-
ticular location. These groups of animals may be 
regarded as blocks, but here they introduce an 
additional source of variation, that attributable 
to the different locations.

5.8.4  ‘Between’ and ‘within’ 
comparisons

For simplicity, suppose that we are comparing 
just two treatments. There are two basic forms of 
design:

1.	 We can randomly assign the animals (the 
observational units) to the two treatments to 
create two independent groups. There is no 
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effects of these variables on the response. The 
variables are then called confounders and the 
process is called confounding.

As a simple example, suppose routine haema-
tology is being done by two laboratories, A and 
B. Laboratory A is nearby so the samples are 
delivered by hand and examined almost immedi-
ately, whereas Laboratory B is some distance 
away so the samples have to be sent by post with 
a delivery time of 2 days. Laboratory A uses old-
fashioned equipment and manual counting, while 
Laboratory B uses a mechanized process and 
automated counting. We divide specimens and 
send identical samples to each laboratory over a 
3-month period to compare the white blood cell 
counts, and discover that Laboratory A produces 
substantially higher counts in the samples. Is the 
result due to the more thorough and painstaking 
methods of Laboratory A or to the difference in 
time of examination in the two laboratories? We 
cannot separate the effects of the two variables 
(laboratory, time delay) on the outcome (the 
count), and the variables are said to be con-
founded. In this example, confounding poten-
tially created a false association between count 
and laboratory, since the design of the experi-
ment failed to allow for the effect of time delay. 
Confounding can also obscure a real relation-
ship; for example, if we found that the laborato-
ries were producing similar counts, this could be 
because any difference in the counts between the 
laboratories was obscured by the effect of differ-
ent delay times before haematological analysis. 
Had we planned the study more carefully we 
could have separated the time factor from the 
laboratory by organizing samples to be analysed 
at the same delay times in each laboratory. The 
key is in recognizing potential confounding co
variates and incorporating them in the original 
design.

Confounding can occur both in experimental 
and in observational studies (see Section 5.2.1 
for the distinction). It is of less concern in experi-
mental studies if we have used randomization  
in the allocation process because possible con-
founding factors should be evenly distributed in 
the groups being compared, provided the sample 
size is large enough. However, in observational 
studies, we should try to identify any possible 

more appropriate in these circumstances to 
compare the two sets of differences, those 
in the group receiving the control and those 
in the group receiving the active treatment. 
Thus, although we pair the observations at 
the outset, the statistical analysis is a two-
sample comparison of differences.

•	 Another form of pairing often occurs in 
animal experimentation when litter mates 
provide the experimental material (natural 
pairing), and the treatments are allocated in 
such a way that every animal in one group 
has a litter mate in the other group.

•	 A third form of pairing occurs when the 
pair comprises two different animals that 
have been matched with respect to any 
variables that may be thought to influence 
response (artificial pairing). An example is 
a study in dogs involving the effect of a drug 
on haematology values, where animals have 
been paired for treatment and control on 
the basis of approximate similarity in age 
and body size, because these factors were 
thought to influence response. Bland and 
Altman (1994) discuss matching in a brief 
but informative paper.

5.8.5  Use of specific animals

Note that substantial reduction in variability  
can also be obtained by using microbiologically, 
genetically or environmentally defined animals. 
Nevertheless, sufficient animals must be included 
to give satisfactory estimates. However, the results 
are only strictly relevant to the type of animal in 
the trial and may differ from what is found in 
‘normal’ animals. You must exercise care in 
drawing conclusions on this basis.

5.9  Further considerations

5.9.1  Confounding and 
interactions

Sometimes, we find that two or more variables 
are related to each other as well as to the response 
of interest, so that it is impossible to separate the 
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(typically via logistic regression analysis, see 
Section 11.4) from all the variables associated 
with x1, some of which will be the confounding 
variables that are also associated with the 
outcome variable. We can use the propensity 
score in a number of ways, for example by 
matching or stratifying on the basis of the pro-
pensity score, or in a multiple regression analy-
sis (see Section 11.3) where we include x1 as 
an explanatory variable in the model together 
with the propensity score (the latter replacing 
all the variables used to generate it) and any 
other covariates of interest. Further details 
may be found in, for example, Guo and Fraser 
(2010), Petrie and Sabin (2009) or Stürmer  
et al. (2006).

Confounding between variables should not be 
confused with there being an interaction, some-
times called effect modification, between them. 
When two variables are confounded, it is impos-
sible to separate the effect of each on the outcome 
of interest. When there is an interaction between 
two variables, then the variables do not act  
independently on the outcome of interest. For 
example, in a study of helminth infestations in 
bank voles, it was found that total helminth infes-
tation was 20% lower in females than in males 
in spring, but 5% higher in autumn (Bajer et al., 
2005). Thus, the relationship between helminth 
infestation (the outcome) and gender was 
dependent on the season, i.e. there was an inter-
action between gender and season. We explain 
interactions in the context of analysis of variance 
in Section 8.5.3, and in Section 11.3.1(d) we 
describe how to include interaction terms in a 
multivariable regression model.

5.9.2  Protocol

The protocol is a written document that details 
all aspects of the rationale, design, conduct and 
proposed analysis of the trial. Typically, it contains 
statements relating to the background and objec-
tives of the study, ethical problems, the trial design 
including methods of randomization, selection of 
animals, sample size calculations, exclusion crite-
ria, protocol deviations, the potential sources of 

confounders and adjust for them in the analysis. 
We can do this in a number of ways:

•	 We incorporate the confounders as explana-
tory variables in a regression model (see 
Section 11.3.1(c)).

•	 We match animals on the basis of the con-
founding variable(s). For example, if gender is 
the only confounding variable, we identify 
pairs of animals, so that each member of a pair 
is of the same gender, and use an appropriate 
analysis on the variable(s) of interest that 
takes the pairing into account (e.g. McNemar’s 
test (see Section 9.6) or the paired t-test (see 
Section 7.5)). If there are a number of con-
founding variables, each pair must be matched 
on all of them, and this may be impractical. 
Note that we cannot determine the effects of 
the matching variable(s) on the outcome.

•	 We create subgroups using stratification (see 
Section 5.6.2(b)) – i.e. we create strata or sub-
groups representing the different categories  
of the confounding variable and examine the 
relationship of interest in each stratum. For 
example, if we have categorical data, we can 
use the Mantel–Haenszel method (see, for 
example, Fleiss et al., 2003), to combine contin-
gency tables in different subgroups to obtain, 
if appropriate, an overall estimate of the odds 
ratio. We should be aware, however, that in any 
subgroup analysis: (i) the subgroups may be 
small so that they have low power to detect 
real effects as statistically significant (see 
Section 6.4.2); to avoid this problem, the sub-
groups should be identified at the design stage 
when estimates of optimal sample size (see 
Section 13.3) are derived for them; and (ii) 
P-values have to be adjusted if we perform 
at least one hypothesis test in each subgroup 
to avoid spuriously significant results arising 
from multiple testing (see Section 8.6.3).

•	 We use a propensity score approach in which 
a score is determined that describes the chance 
(propensity) of an animal falling into one of 
the categories of the (usually binary) explana-
tory variable (x1, say) that is of the greatest 
interest. Often this variable represents ‘treat-
ment’ if treatments have not been randomly 
assigned to animals. This score is generated 
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•	 Include them in the analysis but adopt a pro-
cedure that is appropriate for the data. For 
example, if the distribution of the variable of 
interest is skewed (see Section 2.5) because of 
the presence of outliers, then the median is a 
better measure of central tendency than the 
arithmetic mean (see Section 2.6.1), and we 
may prefer non-parametric methods of statis-
tical analysis (see Chapter 12) for statistical 
inference. Alternatively we may take an appro-
priate transformation (see Section 13.2) to 
mitigate the effect of extreme values.

•	 Perform a sensitivity analysis by analysing the 
data both with and without the outliers to 
determine the effect, if any, of removing them.

•	 Exclude them from the analysis (this is a high-
risk strategy, and, before you do so, you should 
thoroughly investigate the reason for their 
presence, see Section 5.9.3(b)). Beware that 
some computer packages will automatically 
eliminate outliers from the analysis.

Which of these approaches we choose will 
depend on the magnitude and the cause of the 
outlier(s).

(b)  Causes of outliers

•	 Sometimes, we obtain an outlier because the 
animal on which we are making the measure-
ment is atypical of the population from which 
it was drawn. We should not exclude an outlier 
unless there is a justifiable reason for doing so. 
It may be, for example, that one animal in a 
group cannot be caught without considerable 
vigorous activity; this might result in a physi-
ological variable exhibiting an extreme value 
which could be excluded.

•	 Alternatively, it may be apparent, on subse-
quent post-mortem examination, that a par-
ticular animal suffered an intercurrent disease 
that may have caused an outlier during a clini-
cal trial. Again, it is reasonable to omit the 
outlier from the analysis.

•	 We may also obtain an outlier because we have 
made a mistake, perhaps in reading an instru-
ment or in transcribing information. Then it 
might be possible to correct the mistake, and 
include the corrected value in the analysis.

bias, the variables which will be measured, the 
measurement techniques, methods of, and forms 
for, data collection, drug regimens and suppliers, 
the duration of the trial, the manpower require-
ments and responsibilities, the statistical analysis 
and costs.

The protocol is prepared at the outset of the 
trial, and serves a number of useful functions. It 
is required for submissions to funding bodies and 
for ethical committee approval; it is a useful ref-
erence document for the study investigators 
during the progress of the trial; and it is helpful 
in the final write-up of a study.

5.9.3  Outliers

(a)  Identifying the outlier(s)

An outlier is an extreme observation that is 
inconsistent with the main body of the data. We 
must always check our data at the initial stages 
of the analysis to determine whether they contain 
outliers. This is most easily achieved by plotting 
the data, for example by producing a histogram, 
a stem-and-leaf plot or a box-and-whisker plot 
(see Section 2.5.2) for a single continuous vari-
able, or a scatter diagram when we are investigat-
ing the relationship between two continuous 
variables in regression analysis (see Section 
10.2). As an alternative strategy, we may look at 
the range of our sample data to see if any obser-
vation in our sample lies outside the range of 
plausible values. Some statistical software pack-
ages contain an automatic procedure for detect-
ing outliers; for example, all values that are 
greater than 3 standard deviations away from the 
mean.

The problem with outliers is that they often 
distort the results and the conclusions drawn 
from the statistical analysis. This may happen 
even when there are only one or two outliers in 
a data set. The real difficulty is in knowing what 
to do with the outliers. There are four ways in 
which we can handle them. We can:

•	 Include them and proceed as originally 
planned, recognizing that the distribution 
assumptions of the analysis may not be met.
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make sure that you know how your software 
package deals with missing data.

Some statistical software packages handle 
missing observations by automatically excluding 
from the analysis any individual that has a 
missing observation on at least one variable. This 
is called listwise deletion: it leads to biased 
and inefficient parameter estimates if there is a 
considerable quantity of missing data. Others 
estimate (impute) the missing observations, for 
example, by replacing the missing observation by 
the average of the remaining observations in the 
relevant data or the last observation carried 
forward in a longitudinal analysis. This process is 
called simple imputation. In multiple imputation, 
the missing values for any variable are predicted 
using existing values from other variables and 
substituted for the missing values to produce an 
imputed data set. This process is performed a 
number of times (typically not more than five 
times) so that multiple imputed data sets are 
created. Standard statistical analysis is carried 
out on each imputed data set and these results 
are then combined to produce one overall 
analysis.

Whatever method is used to deal with the 
missing data, it is important to understand why 
the data are missing as this will affect the extent 
to which bias is present when estimating param-
eters. Consideration should be given to whether 
the data are:

•	 Missing completely at random (MCAR) – this 
implies that the probability that the value of a 
variable for a given individual is missing does 
not depend on any variable, so that missing 
cases are no different than non-missing cases 
and consistent results would be obtained per-
forming the analysis both with and without the 
missing data. For example, if a dog failed to 
show up for an examination because its owner 
was in a car accident, the data for that dog 
would be missing completely at random.

•	 Missing at random (MAR) – this implies that 
the probability that the value of a variable for 
an individual is missing does not depend on 
that variable, but depends on the known values 
of the other variables. For example, in moni-
toring the effects of a prescribed diet for obese 

5.9.4  Missing data

Despite our best intentions at the start of a 
study, we may find that our data set is incom-
plete when we are ready to analyse the data. 
For example, the carer may have inadvertently 
lost a reading on an animal, or an animal ear-tag 
may have been dislodged making identity uncer-
tain, or an animal died in the course of our 
investigation. It is important that you make a 
decision about what you will do with missing 
data before entering your data into the compu-
ter. Sometimes you can just leave each missing 
observation as a blank. Often, however, it is 
advisable to code the missing observations in 
some recognizable format, so as to be able to 
distinguish them from other types of observa-
tions. The choice is yours, but you must select a 
code that is unique and cannot be confused with 
a real observation. Typically, the numbers 9 (for 
a variable whose maximum value is less than 9), 
99 or 999 are chosen, although some computer 
programs are prepared to accept an asterisk (*), 
a bullet (•) or some other symbol. Note that 
you should remember to distinguish missing 
data from ‘not applicable’ results. You could use 
a specific value for the variable of interest (e.g. 
age at first litter) to indicate ‘not applicable’, 
and you could create a new variable (e.g. animal 
has or does not have a prior litter) to distinguish 
those animals that are applicable from those 
that are not. Mirowsky and Ross (2002) provide 
an explanation of how to handle the data if you 
want to ensure that all the observations in the 
data set are used for estimation when there are 
a number of variables of interest and some have 
‘not applicable’ results.

We should always investigate the reasons  
for missing data, to ensure that no biases (see 
Section 5.4) are likely to arise because of them. 
For example, if an observation goes beyond the 
scale of the measuring instrument, it cannot be 
recorded and may be coded as ‘missing’. The 
failure to record this observation is related to its 
magnitude, and a bias may well result. Occasion-
ally, missing observations that are left as blanks 
in the data file may be taken as zeros in the 
analysis; be warned that this is likely to have a 
considerable effect on the conclusions. Always 
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•	 Provided we have results, the appropriate  
way of dealing with withdrawals is to analyse 
them as if they still belonged to the treatment 
group to which the animals were originally ran-
domly assigned. At first glance, you may find 
this so-called intention-to-treat or pragmatic 
approach, aimed at eliciting the effect of treat-
ment in a clinical scenario, difficult to compre-
hend. You may wonder how you can justify 
analysing a result as if the observation were 
made on one treatment when, in fact, it arises 
from the application of another treatment.  
Be assured, however, that this is the correct 
approach.

•	 The alternative is to analyse the results accord-
ing to the treatment actually received; this 
explanatory approach is aimed at understand-
ing the processes involved. We do not recom-
mend the explanatory approach as it is more 
likely to distort the treatment comparisons 
(and lead to a biased result favouring the  
new treatment) than the pragmatic approach. 
Remember that one of the reasons for employ-
ing randomization is to aim to have treatment 
groups that are balanced in the factors that 
influence response (see Section 5.6). If we use 
the explanatory approach, then the animals 
are not analysed in the treatment groups to 
which they were randomly assigned, and we 
may disturb this balance of potentially influen-
tial factors.

You will find a full discussion in Schwartz et al. 
(1980).

5.9.6  Pilot studies

A pilot study is a small-scale preliminary inves-
tigation. We conduct pilot studies for a variety of 
reasons:

•	 To see whether there is merit in developing a 
full-scale trial.

•	 To provide us with an indication of the varia-
bility in the results. If we have some idea of the 
expected variability in the results, we can cal-
culate minimum group sizes to permit detec-
tion of real treatment effects in the full-scale 
trial (see Section 13.3).

dogs, if poorly-educated dog owners have dif-
ficulties in recording the dietary intake of their 
dogs then the data are missing at random 
because it is the trouble recording the infor-
mation and not the diet itself that is accounting 
for the missing data, i.e. the absence of the data 
depends on the level of education of the owner.

•	 Not missing at random (non-ignorable) 
(NMAR) – this implies that the missingness 
depends not only on the observed data but 
also on the unobserved (missing) data. For 
example, in assessing the effect on depres
sion of pet ownership on elderly individuals 
living by themselves, failing to return the 
mental health questionnaire because the pet is 
sick (resulting in a more depressed state for 
the owner) would constitute not missing at 
random.

Of particular importance when dealing with 
missing observations is a sensitivity analysis (see 
Section 10.4.3(d)), that is, we see how our conclu-
sions change as we work through a range of dif-
ferent approaches to dealing with the missing 
observations.

You can find a full discussion of how to handle 
missing data in, for example, Allison (2001), 
Engels and Diehr (2003) and Little and Rubin 
(2002) and at www.missingdata.org.uk (accessed 
15 October 2012). In Section 13.5.2(d), we explain 
how to use a funnel plot to assess whether there 
may be missing publications in a meta-analysis.

5.9.5  Analysis by intention-to-treat

One of the greatest problems in the analysis of 
clinical trials is knowing what to do with the 
results from animals that do not strictly adhere 
to the protocol, possibly because they prove too 
difficult to treat with the treatment that was  
originally assigned to them. Additionally, some 
animals may deviate from the original treatment 
schedule, perhaps because of side effects, and  
are switched to an alternative treatment or treat-
ment is stopped altogether. Such observations do 
not count as missing (see Section 5.9.4) if the 
results are known, but are called withdrawals 
from treatment.

http://www.missingdata.org.uk
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a rest or wash-out period is necessary before 
instigating the next treatment, since some treat-
ments may have a long lag phase before the 
effects are eliminated.

The analysis of cross-over trials is a relatively 
complex subject, and is covered in detail in Senn 
(2002).

Exercises

The statements in questions 5.1–5.3 are either 
TRUE or FALSE.

5.1  Animals are randomly allocated to the 
treatment groups in a clinical trial:
(a)	 To ensure that there is no assessment bias.
(b)	 To ensure that all animals have the same 

chance of receiving any treatment.
(c)	 So that a control group can be incorporated 

into the design.
(d)	 So that the treatment groups are comparable 

with respect to any variables that are likely 
to influence response.

(e)	 So that the trial can be single- or double- 
blind.

5.2  The wattle reaction of chicks to the injec-
tion of phytohaemagglutinin (PHA) is used as an 
indication of the immune responsiveness. Chicks 
(3–6 days old) were randomly assigned to four 
groups, a control and three different monoamine 
treatments which were suspected of interfering 
with the immune responses. Thirty minutes after 
treatment, birds were injected in the wattle with 
100 mg PHA-P and wattle thickness was meas-
ured prior to the injection and 24 hours later 
(Lukacs et al., 1987). This is an example of:
(a)	 An observational study.
(b)	 A cross-sectional study.
(c)	 A retrospective study.
(d)	 A clinical trial.
(e)	 A sample survey.

5.3  Sedative treatments were administered to 
10 ferrets in a cross-over trial, and sedative and 
cardiovascular responses evaluated (Ko et al., 
1998). Diazepam, acepromazine and xylazine 
were administered to each animal in a random 
order; a wash-out period was allowed between 

•	 To ensure that the dosing regimen we have 
chosen for a treatment is appropriate.

•	 To develop techniques and iron out any diffi-
culties we may experience.

As you will appreciate, a pilot study is well 
worth the time and resources invested in it, and 
can save much frustration later, especially if the 
proposed study breaks entirely novel ground.

5.9.7  Cross-over trials

Most clinical trials are parallel group designs; 
each individual animal receives only one treat-
ment, and treatment comparisons are made 
between rather than within animals (see also 
Section 5.8.4). Occasionally, we may conduct a 
cross-over trial. As its name suggests, we apply 
two or more treatments in succession to each 
individual animal. The aim is to compare the 
responses to treatment within the animals, rather 
than between animals, thereby enhancing the 
precision of the estimate of the difference 
between treatments and reducing the sample 
size. However, we cannot entirely eliminate indi-
vidual variation since the treatments are not con-
temporaneous, and there may be a period effect 
(when there is a systematic difference in response 
between the two periods of administration). This 
may occur, say, when the animals become more 
accustomed to dosing in the second period and 
therefore have a different physiological baseline. 
To minimize the influence of the passage of  
time and the period effect, the order in which 
each animal receives the treatments is chosen at 
random.

This sort of trial is ideally suited to the com-
parison of palliative treatments of chronic dis-
eases rather than to the comparison of cures, 
since the condition must return, and be of equal 
severity, after treatment ceases in order to inves-
tigate the other treatments. Suitable examples 
are the use of dietary restriction or insulin on the 
control of blood glucose in diabetic dogs, or the 
use of topical ointments or oral preparations on 
the control of eczema.

Because of a possible carry-over effect, it is 
important to establish the question of how long 
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(b)	 Testing the efficacy of a treatment for Oster-
tagia (lungworm) in a herd of cattle in two 
plots of worm-infested land.

(c)	 Testing the efficacy of vaccination of kittens 
against common cat viral diseases by vacci-
nating litters of kittens at random with one 
of two different commercial preparations.

(d)	 The allocation to treatment groups of indi-
vidual animals in four different farm locations 
for a study of the effects of lambing indoors 
in pens or outside in makeshift straw shel-
ters. For an optimal design, equal numbers of 
animals should be in each treatment group 
at each location.

5.7  Researchers were concerned with estimat-
ing the seroprevalence of Q fever (a zoonosis 
caused by Coxiella burnetii) in commercial dairy 
goat farms in the Netherlands and wished to 
identify risk factors for farm seropositivity before 
mandatory vaccination started. In their cross-
sectional study, 2766 ELISA (enzyme-linked 
immunosorbent assay) test results from goats in 
125 farms (each with more than 100 goats) were 
available. A farm was considered positive when 
at least one goat tested ELISA positive. Amongst 
other potential risk factors, they found that a 
herd size above 800 was a risk factor for Q fever. 
Thirty-three of the 57 farms that were positive 
for Q fever had at least 800 goats, and 24 of  
the 68 farms that were not positive for Q fever 
had at least 800 goats (based on Schimmer et al., 
2011).
(a)	 Estimate the risk of a farm being positive for 

Q fever in large and small farms (i.e. those 
comprising ≥800 and <800 goats, respec-
tively) and the overall prevalence of positive 
farms.

(b)	 Estimate and interpret the relative risk (RR) 
and absolute risk reduction (ARR) of large 
farms being positive compared with small 
farms.

(c)	 Estimate and interpret the odds ratio (OR) 
of a farm being positive if it is large rather 
than small. Comment on the similarity or 
difference between the estimated RR and 
OR.

each treatment. Xylazine produced the longest 
duration of recumbency on average and was 
judged most satisfactory as a sedative for ferrets.
(a)	 The wash-out period allowed the trial to be 

blind.
(b)	 The randomization ensured that there was 

no carry-over effect.
(c)	 This was an example of a parallel group 

design.
(d)	 The treatment comparison was made within 

animals.
(e)	 A more precise treatment comparison would 

be achieved if each ferret received only one 
treatment, so that the three treatment groups 
comprised different animals.

5.4  A study was conducted into the influence 
of spaying of bitches on their subsequent devel-
opment of urinary incontinence. Young adult 
bitches presenting for spaying were randomly 
allocated to immediate ovariohysterectomy or to 
a deferred operation 6 months later. The bitches 
were followed during the 6-month period. Was 
this:
(a)	 A cross-sectional or a longitudinal study, and 

why?
(b)	 An experimental or an observational study, 

and why?
(c)	 A cohort study or a case–control study, and 

why?
(d)	 Can you propose any other study design to 

explore this condition and its aetiology?

5.5  In a study of the benefits of surgical inter-
vention in the repair of congenital umbilical 
hernia, kittens with a visible herniation within  
48 hours of birth were randomly allocated to 
surgery or to a laissez-faire approach. At the time 
of weaning, kittens were assessed for survival 
rate and hernia resolution. Criticize the choice of 
control and suggest any improvements.

5.6  Describe an appropriate randomization 
(simple, stratified, restricted or group) for the 
following investigations:
(a)	 Three dose levels (mg/kg) of an acaricide 

applied to dogs seen at an urban veterinary 
practice.
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6.1  Learning objectives

By the end of this chapter, you should be able to:

•	 Elaborate the basic concept of hypothesis 
testing.

•	 Define the null hypothesis.
•	 Distinguish between one- and two-tailed tests 

and decide which is appropriate in any inves-
tigative trial.

•	 Define a test statistic.
•	 Explain in simple terms the meaning of the 

term ‘degrees of freedom’.
•	 Interpret the P-value.
•	 Summarize the hypothesis testing procedure.
•	 Define Type I and Type II errors in hypothesis 

testing.
•	 Define the power of a test.
•	 Distinguish between statistical significance 

and biological importance.
•	 Distinguish between the approaches to testing 

a hypothesis using a test statistic and a confi-
dence interval, identifying the strengths and 
weaknesses of both.

•	 Explain the concepts underlying equivalence 
and non-inferiority studies.

6.2  Introduction

We can categorize statistical theory into two 
general areas.

1.	 Firstly, there is descriptive statistics which uses 
the appropriate tools, typically tables, dia-

6 An introduction to 
hypothesis testing

grams and/or numerical measures, to describe 
a data set and provide a summary of its distri-
bution (see Chapter 2).

2.	 In addition, there is inferential statistics which 
is concerned with drawing conclusions about 
a population using information obtained from 
a representative sample selected from it.
(a)	 One aspect of statistical inference is the 

estimation of a population parameter by 
the appropriate sample statistic (e.g. the 
population mean by the sample mean). 
The estimation process is complete only 
when the precision of the estimate, as 
determined by its standard error (see 
Section 4.4) or indicated by the confidence 
interval, is included (see Section 4.5).

(b)	 The second aspect of inferential statistics 
is hypothesis testing. In this case, we 
examine a hypothesis, framed in terms of 
the parameters in one or more popula-
tions. We want to know if the hypothesis 
about the population(s) is refuted by the 
sample data.

Estimation is concerned with description 
whereas hypothesis testing is ultimately con-
cerned with decision.

6.3  Basic concepts of  
hypothesis testing

Hypothesis testing is a process that is concerned 
with making inferences about the population 
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being termed the treatment effect. This treat-
ment effect is specified by the relevant param
eter values in the treatment groups; let us assume, 
as an illustration, that it represents the difference 
in means. Then, instead of testing the hypothesis 
that the study hypothesis is true (i.e. that there is 
a treatment effect – a difference in means), we 
test the null hypothesis that there is no treatment 
effect in the population. Suppose, for example, 
that we are interested in investigating whether 
cattle on new spring grass are in danger of 
hypomagnesaemia (grass staggers). A lower level 
of plasma magnesium in the outdoor cattle com-
pared with those kept indoors would suggest a 
risk of grass staggers. We formulate the null 
hypothesis that the true mean values of plasma 
magnesium do not differ in the two groups. We 
examine the sample data to see whether they 
contradict this hypothesis.

Should the null hypothesis be untrue, an alter-
native hypothesis holds:

•	 Usually, the alternative hypothesis states that 
a difference exists between the parameter 
values but the direction of that difference is 
not known. It leads to a two-sided or a two-
tailed test. Unless otherwise specified, we 
assume that a test is two-tailed. In our example, 
although we might anticipate that eating new 
grass would reduce the mean plasma magne-
sium concentration, the alternative hypothesis 
is merely that the two means differ. We have 
no prior reason to anticipate that the indoor 
‘treatment’ can only be better than the grass 
‘treatment’.

•	 Very occasionally, however, we have sound 
prior knowledge that any difference between 
the treatments, if it exists, can be in one direc-
tion only. This must not be based on hopes or 
expectations about a novel treatment, but on 
an absolute certainty that the difference can 
only be in that direction, if the difference is not 
zero. This gives rise to a one-sided or a one-
tailed test in which the direction of the differ-
ence is specified in the alternative hypothesis.

We must specify both the null and the alterna-
tive hypotheses at the outset, before we collect 
the data. We stress that the alternative hypoth-

using the information obtained from a sample. 
We have to recognize that it is impossible to be 
absolutely certain that our inferences about the 
population are correct. One randomly selected 
sample from the population is unlikely to be 
exactly the same as a second randomly selected 
sample, and in neither of these is the sample 
statistic likely to be exactly equal to the popula-
tion parameter it is estimating and about which 
we are testing a hypothesis. Because we take a 
sample, there is an element of uncertainty 
involved and, therefore, we should accompany 
the conclusions we draw about the population 
with a probability (see Section 3.2.2). This gives 
an indication of the chance of getting the 
observed results if the hypothesis is true. We 
replace an absolute statement by a probabilistic 
statement, and this forms the crux of hypothesis 
testing.

Although the basic concepts of hypothesis 
testing are not too difficult to grasp, the whole 
process is shrouded in statistical jargon. It is 
helpful if you have a proper understanding of 
this jargon, particularly if you obtain your results 
from computer output, which may vary in form 
depending on the particular software package 
that you are using.

6.3.1  The null hypothesis, H0

We are concerned with investigating a particular 
theory or scientific hypothesis, called the study 
hypothesis, about the population. However, it is 
usually harder to prove a hypothesis than to dis-
prove it. For example, we might have to look at 
all the goats in Turkey or, at least, a very large 
number of them in order to prove the hypothesis 
that all goats in Turkey are Bezoar goats, whereas 
one goat of a different breed will immediately 
disprove the hypothesis. Thus, rather than trying 
to prove that the study hypothesis is true, we 
proceed in statistical hypothesis testing by 
attempting to disprove the null hypothesis, H0, 
which is the converse of the study hypothesis. 
Usually, our study hypothesis is comparative in 
nature, involving some numerical effect of inter-
est; often this comparison is of different treat-
ments, the measure that compares their responses 
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this leads to a decision whether or not to reject 
the null hypothesis.

•	 If the observed results are not consistent with 
what we would expect if the null hypothesis 
were true, we conclude that we have enough 
evidence to reject the null hypothesis. We say 
that the result of the test is statistically 
significant.

•	 If, however, the observed results are consistent 
with what we would expect if the null hypoth-
esis were true, we do not reject the null 
hypothesis. We say that the result of the test is 
non-significant.

Although semantically they may appear to be 
the same, we should note that not rejecting the 
null hypothesis is not synonymous with accepting 
the null hypothesis (see Section 6.8 on equiva-
lence studies). Either we have enough evidence 
to reject the null hypothesis or we do not have 
enough evidence to reject it; the latter case does 
not imply that there is necessarily enough evi-
dence to accept H0 or, expressed another way, 
‘absence of evidence is not evidence of absence’ 
(Altman and Bland, 1995). This can be likened to 
the situation in a law court – an analogy is drawn 
between the presumption of innocence and the 
null hypothesis. If there is enough evidence, the 
defendant will be found ‘guilty’ of the charge 
against him. If there is not enough evidence, the 
defendant will be found ‘not guilty’. This does  
not prove that he is ‘innocent’, only that there is 
insufficient evidence to establish his guilt.

The P-value allows us to determine whether we 
have enough evidence to reject the null hypothe-
sis in favour of the alternative hypothesis.

•	 If the P-value is very small, then it is unlikely 
that we could have obtained the observed 
results if the null hypothesis were true, so we 
reject H0.

•	 If the P-value is very large, then there is a high 
chance that we could have obtained the 
observed results if the null hypothesis were 
true, and we do not reject H0.

Clearly, distinguishing between large and small 
P-values is crucial to the decision-making process. 

esis must be specified before the data are col-
lected, and is, therefore, independent of the data. 
You may be tempted to use a one-sided test 
because it is more likely than a two-sided test to 
show a difference! Remember, though, that the 
prior certainty required for a one-sided test very 
rarely exists.

6.3.2  Getting a feel for the data

Having specified the null and alternative hypoth-
eses, we then collect our sample data. It is impor-
tant that we look at the data at this stage 
and check the assumptions inherent in the test. 
With the advent of computers and easy access  
to statistical computer software, it is all too easy 
to overlook the nature of the data, including a 
lack of awareness of outliers that may be distort-
ing the results, and consequently to draw inap-
propriate conclusions. A careful, albeit simple, 
initial look at the data may forestall erroneous 
judgements.

6.3.3  The test statistic and  
the P-value

From the data we calculate the value of a test 
statistic (an algebraic expression particular to the 
hypothesis we are testing), usually using a com-
puter or, occasionally, by hand. Attached to each 
value of the test statistic is a probability, called a 
P-value. It describes the chance of getting the 
observed effect (or one more extreme) if the null 
hypothesis is true. The ‘if the null hypothesis is 
true’ is crucial to the correct interpretation of the 
P-value; a common mistake is to omit this phrase, 
leading to the erroneous belief that the P-value 
represents the probability of the sample data 
arising by chance.

6.3.4  Making a decision using  
the P-value

According to the evidence obtained from our 
sample, we make a judgement about whether the 
data are inconsistent with the null hypothesis; 
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hypothesis test. It is particularly important, in the 
context of this general explanatory chapter, that 
you understand that each test statistic follows a 
known theoretical probability distribution. This 
means that its value obtained from a particular 
set of sample data can be compared with its 
known distribution to determine the P-value 
(the probability of obtaining the observed value 
of the test statistic if the null hypothesis is true). 
Typically, the known distribution of the test sta-
tistic is Normal, t, F or χ2.

If you are performing a computer analysis, you 
will find the P-value you need in the computer 
output. If necessary, you can obtain the P-value 
by referring the test statistic to the table of its 
distribution, usually using both tail areas (two-
sided test), but occasionally, a single tail area 
(one-sided test – see Section 6.3.1). You may 
have to interpolate (estimate the value between 
two tabulated values) when you use the table if 
the required value is not contained in the table. 
For example, if the degrees of freedom of the  
test statistic (see Section 6.3.6) are 35, Table A.3 
has tabulated percentage points for degrees of 
freedom of 30 and 40 only. You would estimate 
the required percentage point as being midway 
between that for 30 and that for 40 degrees of 
freedom.

6.3.6  Degrees of freedom of the 
test statistic

You will find that the term degrees of freedom 
(df) occurs frequently in statistical analysis. If we 
are using tables to relate the value of the test 
statistic to the P-value, we generally have to 
know the degrees of freedom of the relevant 
distribution of our test statistic. The degrees  
of freedom of a statistic are the number of  
independent observations contributing to that 
statistic, i.e. the number of observations available 
to evaluate that statistic minus the number of 
restrictions on those observations. The easiest 
way of calculating the degrees of freedom of any 
statistic is to take them as the difference between 
the number of observations we have in our 
sample and the number of parameters we have 
to estimate in order to evaluate that statistic.

We have to decide, before we collect the data, 
what constitutes a large or small P-value, i.e. we 
have to choose a cut-off value, termed the signifi-
cance level of the test. The choice of significance 
level is dependent on the nature of the data and 
the circumstances of the investigation.

It makes sense to choose a very low value for 
the significance level, say 0.01, if we want to err 
on the side of caution in rejecting H0. This means 
that if, from our sample, we obtain a P-value 
which is less than 0.01, we reject the null hypoth-
esis; we say the result is significant at the 1% level. 
For example, in investigating a rather costly 
novel antibiotic treatment, we would want to be 
very confident of its benefits over existing, and 
cheaper, products before introducing it into clini-
cal practice. We might, however, choose a much 
higher value, say 0.10, in initial testing of the 
efficacy of a new potential vaccine against a pres-
ently incurable infectious disease which is causing 
great economic loss. This ensures that a marginal 
benefit is not overlooked.

An arbitrary cut-off point of 0.05 is usually 
chosen for the significance level such that if 
P < 0.05 then H0 is rejected, and if P ≥ 0.05 then 
H0 is not rejected (Fisher, 1925). Further distinc-
tions are sometimes made by using asterisks to 
distinguish between very highly significant (*** 
representing P  <  0.001), highly significant (** 
representing 0.001 < P < 0.01), significant (* rep-
resenting 0.01 < P < 0.05) and non-significant (NS 
representing P > 0.05). We stress that these values 
are entirely arbitrary and should not be taken as 
definitive. You should avoid the asterisks and, 
where possible, quote the exact P-value invariably 
provided in computer output for the relevant 
hypothesis test. Then, conclusions relating to H0 
can be substantiated by the reader. Remember, 
the smaller the P-value, the greater the evidence 
against H0.

6.3.5  Deriving the P-value

Naturally, a vital link in the whole hypothesis test 
procedure is the relationship between the value 
of the test statistic and the P-value. In the chap-
ters which follow we give the relevant formula 
for each test statistic corresponding to a specific 
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1.	 Specify the null hypothesis, H0, and the alter-
native hypothesis (by default, we adopt a 
two-sided test unless a different alternative 
hypothesis is specified).

2.	 Collect the data and look at them, diagram-
matically if possible, to investigate their dis
tribution(s), check for outliers and get a feel 
for what they show. Many tests make distribu-
tional assumptions about the data: check the 
assumptions underlying the test.

3.	 On the computer, select the appropriate test, 
or, by hand, calculate the appropriate test sta-
tistic using the sample data.

4.	 Relate the calculated value of the test statistic 
to a P-value.

5.	 Consider the P-value to judge whether the 
data are inconsistent with the null hypothesis. 
Then decide whether or not to reject the null 
hypothesis.

6.	 If appropriate, calculate the confidence inter-
val for the effect of interest, phrased in terms 
of the parameter specification in the null 
hypothesis.

We assign significance to the result in the course 
of this procedure, and therefore this is sometimes 
called a significance test.

As you will see, the choice of test is not always 
simple – it depends on the nature of the data, the 
null hypothesis and the assumptions underlying 
the test. It is a logical procedure, and the flow 
charts in Appendix E will guide you through the 
process.

6.4  Type I and Type II errors

6.4.1  Making the wrong decision 
in a hypothesis test

You must recognize that the final decision 
whether or not to reject the null hypothesis may 
be incorrect. As a frame of reference, we discuss 
the common situation in which we are interested 
in comparing two population means using inde-
pendent samples selected from these popula-
tions (see Section 7.4.1). The null hypothesis is 
that the two population means are equal or, 
equivalently, that the difference between these 

So, for example, suppose we are estimating a 
population variance, σ2, of a variable, x, in a 
sample of size n by its sample statistic, s2, given by
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We have to estimate the mean in order to 
evaluate the numerator, and so the degrees of 
freedom of s2 are (n − 1).

6.3.7  Quoting a confidence 
interval

The use of a confidence interval diminishes, to 
some extent, the reliance on the P-value and the 
subsequent significance or non-significance of a 
test result. We measure the precision of a sample 
statistic as an estimate of the population param-
eter by its standard error. This is used in the calcu-
lation of the confidence interval for the parameter 
(see Section 4.5). A small sample leads to a less 
precise parameter estimate than a large sample,  
so that its standard error will be larger. Conse-
quently, the confidence interval for a parameter 
derived from a small sample will be wider than 
that derived from a large sample. When we have a 
wide confidence interval, we need to look at the 
limits carefully and consider their implications, 
whether or not the test is significant.

Thus, if we want a full statement of the result 
of a hypothesis test, we should supplement the 
P-value by an estimate of the effect of interest 
(e.g. the estimated difference in means if H0 
states that two population means are equal) with 
the relevant confidence interval. Then we, and 
others, can make an informed judgement about 
the results obtained from the hypothesis test. We 
will have an understanding of what is happening, 
rather than simply deciding whether or not to 
reject the null hypothesis.

6.3.8  Summary of the hypothesis 
test procedure

We can assimilate this whole hypothesis test pro-
cedure by generalizing it to a six-step procedure:
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the test. The null hypothesis will be rejected if 
this probability is less than the significance 
level, often denoted by α (alpha) and com-
monly taken as 0.05. Thus the significance level 
is the maximum chance of making a Type I 
error. If the P-value is equal to or greater than 
α, then we do not reject the null hypothesis 
and we are not making a Type I error. There-
fore, by choosing the significance level of the 
test to be α at the design stage of the study, we 
are limiting the probability of a Type I error to 
be less than α.

•	 The probability of making a Type II error is 
usually designated by β (beta). It is the prob-
ability of not rejecting the null hypothesis 
when the null hypothesis is false. We should 
decide on a value of β that we regard as accept-
able at the design stage of the experiment. β is 
affected by a number of factors, one of which 
is the sample size; the greater the sample size, 
the smaller β becomes (keeping the other 
factors that affect it constant).

In fact, instead of thinking about β, we usually 
consider its complement, 1 − β (often multiplied 
by 100 and expressed as a percentage). This is 
called the power of the test. It is the probability 
of rejecting the null hypothesis when the null 
hypothesis is false, i.e. it is the chance of detecting 
a treatment effect of a given size if it exists. We 
want the power of the test to be large or else we 
will waste our resources when we perform the 
experiment because we will probably fail to 
detect a real treatment effect as significant. By 
‘large’, we mean that we should design our 
experiment so that the power of the test is at 
least 80% (Cohen, 1988) (see Section 13.3). This 
has an implication for the size of the study in that 
larger experiments are more powerful, implying 
that they have a greater chance of correctly 
detecting a treatment effect.

6.5  Distinction between statistical 
and biological significance

We should never consider the result of a hypoth-
esis test expressed by the P-value and the deci-
sion whether or not to reject the null hypothesis 

two population means is zero. Consider the 
example introduced in Section 6.3.1; we have the 
plasma magnesium levels for two groups of 
cattle, one kept indoors and the other put out on 
spring grass for the past week. A lower level of 
plasma magnesium in the outdoor cattle would 
suggest a risk of grass staggers. Our null hypoth-
esis is that the mean values of plasma magnesium 
do not differ in the two populations from which 
we have taken our samples.

•	 We may find that the result of the test is sig-
nificant. In this case, we reject the null hypoth-
esis at the stated level of significance, and infer 
that the two population means differ. If this 
inference is incorrect, and in reality the two 
means are equal, then we have rejected the 
null hypothesis when we should not have 
rejected it (i.e. when it is true). We are making 
a Type I error (Table 6.1).

•	 Alternatively, we may find that the result of the 
test is not significant. Then, we do not reject 
the null hypothesis at the stated level of sig-
nificance, so we cannot infer that the two pop-
ulation means are different. If this is incorrect, 
and in reality the two means differ, then we 
have not rejected the null hypothesis when we 
should have rejected it (i.e. when it is false). 
We are making a Type II error (Table 6.1).

6.4.2  Probability of making  
a wrong decision

It is crucial that you understand the importance 
of these two errors and what each represents as 
they both play a role in determining the optimal 
size of an experiment (see Section 13.3) – a criti-
cal design consideration.

•	 The probability of making a Type I error is the 
probability of incorrectly rejecting the null 
hypothesis, i.e. it is the P-value obtained from 

Table 6.1  Errors in hypothesis testing.

Reject H0 Do not reject H0

H0 true Type I error Correct decision
H0 false Correct decision Type II error
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effect of interest rather than going through  
the hypothesis testing procedure outlined in 
Section 6.3.8.

If, for example, we are interested in investigat-
ing whether two population means are equal, we 
first formulate the null hypothesis (that the two 
means are equal) and the alternative hypothesis 
(generally, that they are not). We then calculate 
the appropriate (usually 95%) confidence inter-
val for the difference in the two population 
means. The 95% confidence interval for the dif-
ference in two population means is usually inter-
preted as the interval within which the true 
difference in means is contained with 95% cer-
tainty (see Section 4.5). It represents the plausi-
ble range of values for the difference in population 
means. Zero is an implausible value for the dif-
ference in means if it lies outside the 95% confi-
dence interval. So, if the confidence interval does 
not span zero, we would conclude that it is 
unlikely (the chance is at most 5%) that the dif-
ference in population means could be zero, and 
we would reject the null hypothesis that the 
means are equal at the 5% level of significance.

To summarize, there are two approaches to 
testing a null hypothesis.

1.	 We can calculate the appropriate test statis
tic and determine the associated P-value. 
This represents the probability of obtaining 
the observed value of the test statistic, or one 
that is more extreme, if the null hypothesis is 
true. We reject the null hypothesis if the P-
value is small, say < 0.05. The whole process is 
called a hypothesis test or a significance test.

2.	 We can calculate the 95% (say) confidence 
interval for the appropriate parameter expres-
sion (e.g. the difference in population means, 
μ1 − μ 2, if we are testing H0: μ 1 = μ2). We reject 
the null hypothesis at the 5% level if the value 
of the parameter expression under the null 
hypothesis lies outside the confidence limits. 
The value of the parameter expression under 
H0 is usually zero if we are investigating dif-
ferences; the value is usually unity if we are 
investigating ratios such as the odds ratio or 
relative risk (see Section 5.2.3).

The confidence interval approach to hypoth-
esis testing has the advantage that it is more 

in isolation. We must relate the result to the bio-
logical or clinical implications of the conclusion 
drawn from the test. A result that is statistically 
significant is not necessarily biologically or clini-
cally important, and vice versa. Biological/clinical 
importance is a matter of individual judgement, 
and this may be difficult to discern in borderline 
cases.

Note that the power of a test (representing 
the ability of the test to detect a real effect, e.g. 
a treatment difference) is proportional to the 
sample size (see Section 13.3). The larger the 
sample, the greater the power, so that a large 
sample has a greater chance of detecting a real 
treatment difference than a small one. Thus, we 
may find that even small treatment differences 
that are biologically unimportant are statistically 
significant in large samples, whereas we may find 
that large and biologically important differences 
in small samples are not statistically significant.

For example, in field trials of modifications of 
semen diluents for frozen semen it is not uncom-
mon to measure improvements in conception of 
only a percentage point or two. For such improve-
ments to be statistically significant, many thou-
sands of inseminations must be carried out under 
controlled conditions. Even then, statistical sig-
nificance may be borderline. Nevertheless, a con-
sistent improvement in fertility of the order of a 
percentage point represents a very substantial 
economic return and may be worth pursuing if 
the new diluent is not expensive to prepare. 
Here, then, biological importance may outweigh 
statistical significance.

In contrast, many anaesthetics used in veteri-
nary medicine are known to cause minor, but 
consistent, variations in blood pressure. If meas-
ured over a sufficiently large sample, these effects 
would clearly be statistically significant, but nor-
mally they are of little biological importance 
because the effects are slight, and have no practi-
cal implications in the healthy animal undergo-
ing elective surgery.

6.6  Confidence interval approach 
to hypothesis testing

We can use a confidence interval alone to make 
a decision to reject the null hypothesis about an 
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(2000). An accompanying computer program 
(Confidence Interval Analysis) is available for 
the calculations of confidence intervals for com-
monly used parameters.

6.8  Equivalence and non-inferiority 
studies

6.8.1  Approach

All the hypothesis tests used to compare treat-
ments that we describe in this book relate to 
superiority trials. We conduct these studies 
because we hope to demonstrate statistically the 
superiority of one treatment over another. In 
some situations, however, we may be interested 
in showing that one treatment is clinically similar 
(i.e. equivalent) to or no worse than (i.e. not infer
ior to) another. This may arise if a new treat
ment is cheaper than the standard treatment, 
produces fewer side effects and/or its form is 
more accessible. In such circumstances, the usual 
superiority trial does not address the relevant 
question: Can we regard the treatments as equiv-
alent or not inferior in terms of the response of 
interest? In a superiority trial, our null hypoth-
esis is that there is no treatment effect (e.g. that 
the mean response is the same in the two treat-
ments in the population). Generally, we do not 
reject the null hypothesis if P ≥ 0.05, and then we 
conclude that there is no evidence to show that 
there is a treatment effect. However, this is  
not the same as establishing equivalence or non-
inferiority; in the biological sciences, there are 
many examples where an incorrect inference of 
equivalence or non-inferiority is drawn. Further-
more, even if P < 0.05 so that we reject the null 
hypothesis, the fact that we have statistical signifi-
cance does not necessarily imply that we have a 
clinically important result; the treatment effect 
may still be clinically of little interest.

We usually analyse the results of equivalence 
and non-inferiority studies by defining what is 
termed an equivalence interval. This is the range 
of values for the effect of interest (e.g. the differ-
ence in treatment means) which would be con-
sidered of no clinical importance. Although the 
equivalence interval should, if possible, be deter-

informative than the corresponding significance 
test; it provides an interval estimate of the  
effect of interest as well as allowing us to make 
a decision to reject the null hypothesis. However, 
it is more restrictive than the significance test 
because we are limited to making this decision 
by considering only one level of significance, e.g. 
5% for a 95% confidence interval. The corre-
sponding significance test provides an exact P-
value, which allows us to make a decision to 
reject the null hypothesis, as well as indicating 
the strength of belief we have in the truth of the 
null hypothesis.

6.7  Collecting our thoughts on 
confidence intervals

We have now introduced you to the three differ-
ent uses of a confidence interval:

1.	 It is an indicator of the precision of the param-
eter estimate (see Section 4.5). A wide confi-
dence interval indicates poor precision.

2.	 It provides a means of distinguishing between 
biological importance and statistical signifi-
cance (see Section 6.5). The result of a hypoth-
esis test that two means are equal might be 
significant but the confidence interval for the 
difference in the two means could be very 
narrow and its limits only just greater than 
zero. Here we might have statistical signifi-
cance but the implications may not be biologi-
cally important. Alternatively, the result of the 
test might be non-significant but the confi-
dence interval could be very wide with the 
upper limit being very much greater than zero. 
Here there is the potential for a biologically 
important difference although there is no sta-
tistical significance.

3.	 It can be used to test a null hypothesis about 
the parameter of interest (see Section 6.6). For 
example, the null hypothesis that there is no 
difference between two treatment means can 
be rejected if the confidence interval for the 
difference excludes zero.

A summary of the calculations of confidence 
intervals is given in Appendix B. A full discussion 
of confidence intervals appears in Altman et al. 
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interval (our concern is that meloxicam should 
not be worse than flunixin), it is not unusual to 
use a one-sided 95% confidence interval, equiva-
lent to a two-sided 90% confidence interval, when 
testing for non-inferiority at the 5% level.

The study was conducted as a double-blind, 
randomized, controlled, multicentre, clinical field 
trial. The mean values (95% confidence interval) 
of the CIS on day 2 were 15.6 (14.73 to 16.47) for 
meloxicam and 15.1 (14.31 to 15.89) for flunixin, 
with sample sizes of 94 and 93, respectively. The 
difference in mean CIS score in the two treat-
ment groups (flunixin minus meloxicam) was 
estimated as −0.5 (suggesting that meloxicam is 
a less effective treatment) with a one-sided 95% 
confidence interval of −0.67 to 1.67. However, 
since the lower limit of this confidence interval, 
−0.67, is greater than the lower equivalence 
bound of −1.4 score points, meloxicam can be 
considered to be not inferior to flunixin for  
controlling the symptoms of mastitis–metritis–
agalactia syndrome in sows.

Exercises

The statements in questions 6.1–6.6 are either 
TRUE or FALSE.

6.1  The null hypothesis for a test to compare 
two means states that:
(a)	 The sample means are equal.
(b)	 There is no difference between the popula-

tion means.
(c)	 There is no significant difference between 

the population means.
(d)	 The probability of there being a difference 

between the means is zero.
(e)	 A difference between the means is not 

expected.

6.2  A one-tailed test:
(a)	 Refers only to the right-hand side of a 

distribution.
(b)	 Is more powerful than a two-tailed test.
(c)	 Is the more usual test.
(d)	 Requires knowledge, independent of the 

results, that the treatment effect, if it exists, 
can be in one direction only.

(e)	 Is used when group sizes are small.

mined by clinical experts, some regulatory bodies 
have specified rules for the conduct of bio-
equivalence studies which are conducted to dem-
onstrate that two formulations of a drug have 
similar bioavailability (i.e. this is when the same 
amount of drug gets into the body for each for-
mulation). For example, the US Food and Drug 
Administration (1992) introduced the 80/20 rule 
which specifies that a test must have at least 80% 
power of detecting a 20% difference between the 
parameters of interest. Then if the (usually 95%) 
confidence interval for the treatment effect 
observed in a particular study lies wholly in the 
equivalence interval, we conclude that the treat-
ment effect is of no clinical importance and  
the treatments can be regarded as equivalent.  
If the lower limit of the confidence interval for 
the treatment effect does not lie below the lower 
limit of the equivalence interval, then we con-
clude that the new treatment is not inferior to 
the other treatment.

The sample size required for an equivalence or 
non-inferiority trial is generally greater than that 
required for the comparable superiority trial and 
is calculated in a different way from that outlined 
in Section 13.3. Special tables for optimal sample 
size determination in these studies can be found 
in Machin et al. (2009). You can find further 
details of equivalence and non-inferiority studies 
in, for example, Jones et al. (1966), Julius (2003), 
Lesaffre (2008) and Matthews (2006).

6.8.2  Example

Two drugs, meloxicam and flunixin, were com-
pared in their efficiency to control the symptoms 
of mastitis–metritis–agalactia syndrome in sows 
by comparison of an overall clinical index score 
(CIS), ranging from 8 (the best – no pathological 
findings) to 29 (the worst – highest score for all 
clinical signs) on day 2 after treatment (Hirsch  
et al., 2003). Meloxicam (the novel drug) was con-
sidered to be not inferior to flunixin (the refer-
ence drug) if the one-sided 95% confidence limit 
for the difference (reference minus meloxicam) 
in mean CIS was greater than the lower equiva-
lence bound of −1.4 score points. As we are only 
interested in the lower limit of the confidence 
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(d)	 An equivalence interval is equal to the  
95% confidence interval for the effect of 
interest.

(e)	 The sample size for an equivalence study is 
generally greater than that required for the 
comparable superiority study.

6.7  A novel antispasmodic drug is being tested 
for its effectiveness in preventing smooth muscle 
contractions (a quantitative variable measured 
as tension in grams) on pieces of gut in an organ 
bath. It is tested against a control, which is the 
vehicle minus the drug. State an appropriate null 
hypothesis and the alternative hypothesis for the 
test. How would the null hypothesis and the 
alternative hypothesis change if the novel drug 
were to be tested against an existing drug?

6.8  Ponies from the sales need to be broken in. 
A trainer has his own methods for doing this 
effectively and wants to demonstrate the advan-
tage of his system. He randomly allocates 15 of 
his ponies to be trained by his new system, the 
remaining 12 ponies being trained in the tradi-
tional manner. The ponies are tested to see if 
they will accept a bit and bridle 1 month after 
starting training. Any animal that refuses the bit 
and bridle is regarded as failing the test. What is 
the null hypothesis that you would investigate if 
you wanted to decide whether to adopt the new 
system? What is the alternative hypothesis?

6.9  A turkey egg incubator needs to be kept at 
37.5°C throughout ‘setting’, i.e. for 26 days, for 
good hatchability. A new incubator is to be con-
sidered as a replacement for one of the incuba-
tors in the hatchery; a test run of 26 days with 
daily readings performed at the same time of day 
produced a mean value of 37.3°C with a standard 
deviation of 0.7°C. Assuming that the distribu-
tion of the incubator temperature is approxi-
mately Normal, calculate an approximate 95% 
confidence interval for the true mean tempera-
ture of the incubator. Should this incubator be 
used in the hatchery in future?

6.3  The P-value gives the probability of:
(a)	 Obtaining a result as, or more, extreme than 

the one observed.
(b)	 The null hypothesis arising by chance alone.
(c)	 The null hypothesis being true.
(d)	 The observed results arising if the null 

hypothesis is true.
(e)	 The discrepancy between the observed values 

and those under the null hypothesis being 
due to chance.

6.4  P < 0.01 means that:
(a)	 There is less than a 1/100 chance that the null 

hypothesis is true.
(b)	 There is a greater than 99% chance that the 

alternative hypothesis is true.
(c)	 The probability of obtaining the observed 

results if the null hypothesis is true is less 
than 1%.

(d)	 The probability that the observed result has 
arisen by chance is less than 1%.

(e)	 There is a greater than 99% chance that the 
null hypothesis is false.

6.5  A test statistic is:
(a)	 The mean.
(b)	 The difference between the means.
(c)	 Assumed to follow a theoretical 

distribution.
(d)	 Less than 0.05 if the result of the test is 

significant.
(e)	 Only useful if the sample size is large.

6.6
(a)	 The equivalence of two means can be estab-

lished at the 5% level of significance if the 
null hypothesis that two population means 
are equal is not rejected (P > 0.05).

(b)	 One preparation is not inferior to another if 
the lower limit of the 95% confidence inter-
val for the effect of interest does not lie 
below the lower limit of the equivalence 
interval.

(c)	 If one treatment is not inferior to another, 
then the two treatments must be equivalent.
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7.1  Learning objectives

By the end of this chapter, you should be able to:

•	 Distinguish between one- and two-sample 
tests.

•	 Distinguish between the experimental designs 
that lead to either paired or two-sample 
t-tests.

•	 List and verify the assumptions that underlie 
the paired and two-sample t-tests.

•	 Explain what is meant by the treatment effect 
in the context of the t-test.

•	 Relate the value of the test statistic in the t-test 
to the P-value.

•	 Draw appropriate conclusions from the t-test.
•	 Estimate the magnitude of the treatment effect 

when comparing means and calculate the rel-
evant confidence interval.

7.2  Requirements for hypothesis 
tests for comparing means

7.2.1  Nature of the data

The arithmetic mean, a summary measure of 
location for a numerical variable (see Section 
2.6.1), is the focus of the hypothesis tests in this 
chapter. Suppose, for example, we are interested 
in measuring the stress of transportation of cattle 
(Nanda et al., 1990). Cortisol is released from the 
adrenal gland in response to stressful situations; 

7 Hypothesis tests 1 – the t-test: 
comparing one or two means

it is of interest to determine whether the mean 
plasma cortisol (ng/ml) during the transport of 
dairy cows is different from that of cows at rest.

Before applying the methods described in this 
chapter and in Chapter 8, we must consider the 
nature of the data.

•	 There can be only a single variable of interest 
(e.g. plasma cortisol concentration).

•	 The variable should be measured on a numer­
ical scale (cortisol measurements are in 
ng/ml).

•	 A further common feature is the assumption 
that the variable under investigation is Nor­
mally distributed (see Section 3.5.3). This is 
not unreasonable for biological measurements 
such as plasma cortisol. Note that if the sample 
size is large, then the sample mean is approxi-
mately Normally distributed even if the vari-
able does not follow a Normal distribution 
(see Section 4.4.3), and we do not have to 
concern ourselves with the Normality of the 
data. However, as it is often difficult to distin-
guish a small sample from a large one, it is 
safer not to ignore this assumption (see also 
Section 7.2.2).

In fact, the tests we discuss in this chapter 
are robust against a violation of the assump-
tion of Normality; this implies that they are 
hardly affected if the data show a moderate 
departure from Normality (this is particularly 
the case if the sample sizes are equal in the 
two-sample comparison of means). Thus, in 
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data are approximately Normally distributed 
(and the variances (see Section 2.6.2(c)) are 
equal in the two-sample comparison).

•	 If the overall sample size is large, the distribu-
tion of the test statistic is approximately 
Normal. We may take ‘large’ to be greater than 
30 if the data are Normally distributed; alter-
natively, ‘large’ may be in excess of, say, 100 if 
the data are not Normally distributed, but the 
extent of the deviation from Normality will 
influence our definition of ‘large’.

It is difficult to clarify the distinction between 
large and small samples in the context of the  
t-test. You will find that many statistics texts 
distinguish between small and large samples  
by relating the test statistic either to the t-
distribution (for small samples, equal variances 
in a two-sample comparison) or to the Normal 
distribution (for large samples, equal or unequal 
variances). Since the t-distribution approaches 
Normality for large sample sizes, the P-value is 
virtually identical using either approach when 
the sample size is large. We therefore recom-
mend the simpler practice of:

•	 Checking the data for Normality, and trans-
forming if necessary to achieve approximate 
Normality.

•	 Assuming the test statistic follows the t-
distribution (an exception is the modified 
approach discussed in Section 7.4.5).

7.2.3  Study designs

A most important aspect of design in this chapter 
is the grouping of the data.

•	 Very occasionally, we find it necessary to inves-
tigate the parameter of interest – in this case, 
the mean – in a single group of observations. 
We may wish to determine whether the mean 
assumes a particular value in the population. 
For example, in an investigation of metabolic 
profiles (total protein, albumin, calcium, phos-
phate, lactate dehydrogenase) of cattle kept 
together in a group, we might sample repre-
sentative animals to estimate their group mean 

practice, approximate Normality is sufficient. 
We can verify this with a perfunctory plot  
of the data, perhaps using a box-and-whisker 
plot which highlights the median, the inter-
quartile range and the extreme values (see 
Section 2.5.2(d)). Seldom will you find it nec
essary to delve into the more formal tests  
of Normality (see Section 3.5.3(e)) such as  
the Shapiro–Wilk W or Kolmogorov–Smirnov 
tests, which are available in many statistical 
packages. However, if there is a marked depar-
ture from Normality, there are two courses  
of action open to us. Either we can transform 
the data in an attempt to achieve approxi
mate Normality (see Section 13.2.1), or we can 
proceed to a suitable non-parametric test, 
which makes no distributional assumptions 
(see Chapter 12).

•	 We assume that we have to use the sample 
data to estimate any population variances of 
interest.

7.2.2  Implications of sample size

In many animal investigations, it is not possible 
to assemble large numbers of subjects either on 
the grounds of cost or because of low disease 
prevalence. The question of sample size is an 
important consideration. This section is con-
cerned with the implications of sample size for 
the choice of hypothesis test. You can find details 
of how to estimate the sample size you need in 
Section 13.3.

It is important to realize:

•	 The distribution of the variable is difficult to 
establish for very small samples, each compris-
ing, perhaps, only five or six observations.  
We advocate the use of the alternative non-
parametric methods (see Chapter 12) for very 
small sample sizes. However, you should be 
aware of the danger that very small samples 
may be unrepresentative of the population 
and, in such circumstances, it may not be sen-
sible to perform hypothesis tests at all.

•	 If the overall sample size is small (say, less 
than 30), the test statistic follows a Student’s 
t-distribution (see Section 3.5.4) provided the 
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calculated using the transformed data values. 
Naturally, we need to convert the confidence 
limits obtained by using the transformed data 
back to the original scale of measurement.  
Alternatively, we can use an appropriate non-
parametric test such as the sign test (see Section 
12.3), the Kolmogorov–Smirnov test or the runs 
test. We refer you to Siegel and Castellan (1988) 
for details.

7.3.3  Approach

We present the approach in general terms and 
illustrate it using the pig example in Section 7.3.4.

1.	 Specify the null hypothesis, H0, that the true 
population mean of the variable of interest  
is equal to a defined value, μ0. Generally, the 
alternative hypothesis is that the mean is not 
equal to the specified value and this leads to 
a two-tailed test.

2.	 Collect the data and display them by a line 
plot, a simple histogram, a stem-and-leaf plot 
or a box-and-whisker plot. From the diagram, 
check the assumption that the data are approx-
imately Normally distributed.

3.	 Calculate the test statistic as the difference 
between the sample mean (x) and the speci-
fied value of the population mean under test 
(μ0), divided by the estimated standard error 
of the mean (s n/ ), where s is the estimated 
standard deviation and n is the sample size. 
We denote the test statistic by Test1 to distin-
guish it from the t-distribution which it 
approximates.

Test
x

s n
n1

0 1=
−

−
µ

with degrees of freedom.

4.	 Obtain the P-value by referring the calculated 
value of the test statistic (ignoring its sign) to 
the table of the t-distribution (see Table A.3).

5.	 Use the P-value to judge whether the data 
are inconsistent with the null hypothesis.  
Then decide whether or not to reject the 
null hypothesis. Commonly, we reject the null 
hypothesis if P < 0.05.

6.	 Quote the confidence interval for the mean 
because it allows you to judge the importance 

for each variable, which we could then compare 
with a known value from a larger population. 
Alternatively, the comparison might be made 
with a particular set of published values.

•	 More commonly, however, we are interested in 
comparing the means of two groups of obser-
vations, these groups comprising either inde­
pendent or paired observations (see Section 
5.8.4).

•	 Sometimes, we may wish to compare the 
observations in more than two groups. The 
analysis of variance (ANOVA – see Section 
8.5) or multiple (also called multivariable) 
regression techniques (see Section 11.3) may 
be used to analyse such data. The distinction 
between independent and related observa-
tions is retained in the analysis even when 
there are several groups.

7.3  One-sample t-test

7.3.1  Introduction

Occasionally, we may be interested in investigat-
ing whether the mean of a single group of obser-
vations takes a specific value. For example, the 
pigs in a particular pen on a farm are showing 
what appears to be a low daily live weight gain 
compared with the usual growth rate for this 
farm. We perform a test to assess whether the 
mean live weight gain of the pigs in this pen 
contradicts the hypothesis that they are growing 
at the expected rate for pigs on this farm.

7.3.2  Assumption

The one-sample t-test assumes that the sample 
data are from a Normally distributed population 
of values and are representative of that popula-
tion (ideally being chosen by random selection). 
As we said earlier (see Section 7.2), the test is 
hardly affected if the data deviate from Normal-
ity except in extreme cases where the data are 
visibly non-Normal. Then we may be able to Nor-
malize the data by an appropriate transforma-
tion (see Section 13.2.1), typically a logarithmic 
transformation, in which case the test statistic is 
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5.	 The null hypothesis is therefore unlikely to be 
true. We reject H0, and conclude that the data 
values are inconsistent with a daily mean gain 
in weight of 607 g.

6.	 The 95% confidence interval for the true 
mean daily live weight gain is 599.194  ± 
2.03(3.109) =  (592.88, 605.51) g, where 2.03 is 
the value in the t table (see Table A.3) with 35 
degrees of freedom, corresponding to a total 
tail area probability of 0.05.

We could test this hypothesis using only the 
confidence interval (see Section 6.6). We can 
see that the range of values, 592.9–605.5 g, 
between which we expect the true mean daily 
weight gain to lie with 95% certainty, does  
not include the value 607 g. Thus we conclude 
(P < 0.05) that the sample is not drawn from 
a population with a daily mean weight gain of 
607 g.

The test reveals that the pigs have a signifi-
cantly poorer mean daily weight gain than 
expected. The confidence interval indicates that 

of the finding (see Section 6.3.7). The 95% 
confidence interval is

x t
s

n
x t

s

n
− +0 05 0 05. .to

where t0.05 is the critical value obtained from 
the table of the t-distribution with n  −  1 
degrees of freedom; it gives a total tail area 
probability of 0.05.

7.3.4  Example

Table 7.1 shows the daily live weight gains of a 
random sample of 36 growing pigs in a rearing 
unit. The rearing unit expects a mean daily weight 
gain of 607 g for this stage of growth (weaning to 
10 weeks of age) based on current performance 
indicators. Are these values consistent with a 
mean daily gain of around 607 g?

1.	 H0 is that μ0, the true mean daily live weight 
gain, is 607 g. The alternative hypothesis is that 
it is not.

2.	 The stem-and-leaf plot in Figure 7.1 shows 
that the data are approximately Normally 
distributed.

3.	 The sample mean is 599.194 g and the esti-
mated standard deviation is 18.656 g. The test 
statistic is

Test
x m

s n
1

599 194 607
3 109

2 51

35

=
−

=
−

= −
.

.
.

with degrees of freedom..

4.	 When we ignore the sign of the test statistic, 
we can see from Table A.3 that 0.01 < P < 0.02. 
If we had used the computer, we would have 
obtained P = 0.017; so we have a less than 2% 
chance of getting a mean daily live weight gain 
as low as 599.2 g, or lower, if the null hypoth-
esis is true.

Figure 7.1  Stem-and-leaf plot of average daily live weight 
gains (g) of pigs.

Table 7.1  Average daily live weight 
gains (g) of 36 growing pigs.577  596  594  612  600  584  618  627  588  601  606  559  615  607  608  591  565  586

621  623  598  602  581  631  570  595  603  605  616  574  578  600  596  619  636  589
Mean, x = 599 194. g
Standard deviation, s = 18.656 g

Standard error, s n/ / g= =18 66 36 3 109. .
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Section 8.3). (Be warned, however, that the 
F-test is particularly sensitive to non-Normality 
of the data, whatever the sample sizes.) If the 
variances do not differ significantly (and the 
other assumptions are also valid), then we can 
proceed to the test described in Section 7.4.3. 
If, however, the variances in the two groups are 
not equal (i.e. we have heteroscedasticity) we 
may apply the modified t-test, explained in 
Section 7.4.5.

If we cannot find an appropriate transforma-
tion to satisfy the assumptions, there are alter
native non-parametric tests to the two-sample 
t-test, such as the Wilcoxon rank sum test or the 
Mann–Whitney U test (see Section 12.5).

7.4.3  Approach: equal variances

1.	 Specify the null hypothesis that the two popu-
lation means are equal. Generally, the alterna-
tive hypothesis is that these means are not 
equal (i.e. the difference between them can be 
in either direction) and this leads to a two-
tailed test.

2.	 Collect the data and display them in a 
diagram. If the sample size in each group is 
relatively small, produce a dot diagram (see 
Section 2.5.2(a)). If the sample size is large, 
then it may be easier to show the median, 
interquartile range and extreme values of the 
response variable for each group in a box-
and-whisker plot (see Section 2.5.2(d)). Either 
way, by studying the diagram, we can assess 
the approximate distribution of the observa-
tions in each group, and check the Normality 
assumption. We can also make an appraisal 
of their variability from the diagram; we 
check the assumption of equal variance by 
performing an F-test (see Section 8.3) or Lev-
ene’s test (see Section 8.4). Usually, one of 
these tests will be included in the computer 
output.

3.	 The test statistic is the difference in the 
sample means divided by its estimated stand-
ard error. The computer package will perform 
this calculation but it is useful to have its  

the true mean weight gain may even be as low as 
593 g per day. There may be a cause for concern 
in the unit; an investigation of the causes, whether 
infectious or environmental, is indicated.

7.4  Two-sample t-test

7.4.1  Introduction

The two-sample t-test (unpaired t-test) is one of 
the most frequently used and, perhaps, misused 
tests in statistics. You risk misusing the test when 
you have not properly investigated the assump-
tions on which it is based. The two-sample t-test 
is employed to compare the means in two inde­
pendent groups of observations using representa-
tive samples.

7.4.2  Assumptions

The validity of the two-sample t-test depends on 
various assumptions being satisfied. In particular:

•	 The two samples must be independent (i.e. an 
animal or individual result is unrelated to any 
other, either within or between groups). They 
must also be representative of the population(s) 
of interest (ideally being chosen by random 
selection). To avoid allocation bias in an exper-
imental study (see Section 5.6), we should  
randomly allocate each animal to one of the 
groups.

•	 Furthermore, the variable of interest should be 
approximately Normally distributed in each 
population from which the samples are taken. 
A small departure from Normality is not 
crucial and leads to only a marginal loss in 
power (see Section 6.4.2), i.e. the test is robust 
against violations of this assumption.

•	 In addition, the variability of the observations 
in each group, as measured by the two vari­
ances, should be approximately equal, in statis-
tical jargon the samples are homoscedastic. 
This assumption is important; we may verify 
this casually by eye or, more formally, by Lev-
ene’s test (see Section 8.4) or an F-test (see 
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As the sample size increases, the critical value in 
the table of the t-distribution (see Table A.3) 
which corresponds to a given probability 
approaches that in the table of the Standard 
Normal distribution (see Table A.1). In particu-
lar, the tabulated critical value, t0.05, in the 
t-distribution table for a two-tailed probability of 
0.05 is close to 1.96 (often approximated by 2) 
when the degrees of freedom are very large, say, 
greater than about 100.

7.4.4  Example

Consider the comparison of the mean body 
weights at the time of mating in one group of 
ewes which have been flushed (put on a high 
plane of nutrition for 2–3 weeks prior to mating) 
and another group which have not.

1.	 The null hypothesis is that the mean body 
weights in the populations of flushed and 
control ewes are equal; the two-sided alterna-
tive is that they are different.

2.	 Each ewe in a random sample of 54 ewes is 
randomly allocated to the flushed or control 
group. Table 7.2 shows the weights of two 
samples of 24 flushed and 30 control ewes.  
We can see from the box-and-whisker plot in 
Figure 7.2 that the observations in each sample 
are approximately Normally distributed since, 
in each case, the median is more or less cen-
trally situated in the box designated by the 
25th and 75th percentiles and between the 2.5 
and 97.5 percentile values. Furthermore, the 
range of observations in each sample appears 

derivation. The test statistic, which follows the 
t-distribution, is
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xi is the sample mean,
si is the estimated standard deviation, and
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is the pooled estimate of variance.

Note that the denominator of Test2 is calcu-
lated assuming that the true variances in the 
two groups are approximately equal but 
unknown; we estimate them from the samples 
as s1

2 and s2
2. Sometimes, we find that the two 

variances are significantly different when we 
perform an F-test or Levene’s test. Then we 
modify the test statistic (see Section 7.4.4).

4.	 Usually, we obtain the P-value from computer 
output. If you have calculated the test statistic 
by hand, you can derive the P-value by refer-
ring the calculated value (ignoring its sign) of 
the test statistic to the table of the t-distribution 
(see Table A.3).

5.	 Use the P-value to judge whether the data 
are inconsistent with the null hypothesis.  
Then decide whether or not to reject the null 
hypothesis. Commonly, although not necessar-
ily, we reject the null hypothesis if P < 0.05.

6.	 Calculate the relevant confidence interval (in 
this instance, for the difference in the two 
group means) in order to promote under-
standing (see Section 6.3.7). If the 95% confi-
dence interval for the difference in two means 
is not included in the computer output, we can 
calculate it as 

( ) ( )

( ) ( )

.

.

x x t x x

x x t s n n

1 2 0 05 1 2

1 2 0 05
2

1 21 1

− ± −

= − ± +

SE

/ /

where t0.05 is the critical value obtained from 
the table of the t-distribution with n1 + n2 − 2 
degrees of freedom, and s2 is the combined 
estimate of variance (assuming the two vari-
ances are equal) used in Test2.

Table 7.2  Body weights (kg) in a group of 24 flushed ewes 
and in a control group of 30 ewes.

Controls Flushed

62.5 63.9 69.2 70.7 67.8 69.8
66.8 65.7 62.6 71.8 66.8 68.1
69.5 67.2 61.1 64.9 67.0 66.0
64.1 65.2 61.8 68.2 67.1 69.4
65.3 63.5 69.6 69.4 67.6 69.8
65.6 65.3 71.1 64.4 66.1 67.9
66.4 65.1 67.0 66.9 62.7 66.2
66.1 64.8 67.5 69.4 64.6 64.2
68.6 67.4 68.2
62.5 66.0 63.6
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Figure 7.2  Box-and-whisker plot of body 
weight (kg) in two groups of ewes.

similar, although the median weight of the 
flushed group is slightly higher than that of the 
controls. Display 7.1 shows a typical computer 
output for the results of the two-sample t-test. 
Levene’s test (see Section 8.4), a formal 
hypothesis test for the equality of the two vari-
ances, is included and shows that the two vari-
ances are not significantly different (P = 0.62).

3.	 The test statistic for the two-sample t-test is 
2.4 (Display 7.1, equal variances assumed). It 
is derived as

Test2
1 5933
0 6

= =
Difference in means

SE difference in means( )
.
. 555

2 43 24 30 2 52= + − =. with df

where SE (difference in means)

=
+

+ −
+





23 2 52 29 2 497
24 30 2

1
24

1
30

2 2( . ) ( . )
kg

4.	 The P-value shown in Display 7.1 (denoted in 
SPSS by ‘Sig.’) is P = 0.018, indicating that the 
chance of obtaining a difference in means at 
least as large as 1.59 kg is only 1.8% if the null 
hypothesis is true. Note that if relying on hand 
calculations, we would refer 2.43 to Table A.3 
with 52 degrees of freedom, and find that 
0.01 < P < 0.02.

5.	 The null hypothesis, that there is no difference 
in the mean body weights in the two pop
ulations, is unlikely to be true. We therefore 
reject the null hypothesis in favour of the alter-

native hypothesis that there is a difference in 
the mean body weights. The mean ewe body 
weights are significantly different, with the 
estimated mean ewe body weight in the flushed 
ewes being 1.59 kg greater than that of the 
control ewes.

6.	 The 95% confidence interval for the true dif-
ference in means is from 0.28 to 2.91 kg. Note 
that these confidence limits are calculated as 
1.59 ± 2.007 (0.655) kg, where 2.007 is the value 
in the table of the t-distribution (see Table A.3) 
corresponding to a two-sided P of 0.05 with 52 
degrees of freedom. The significantly higher 
mean body weight of the flushed ewes implies 
an effect on metabolism and is expected to be 
associated with an optimal ovulation rate.

The 95% confidence interval for the true dif-
ference in means, 0.28 to 2.91 kg, excludes zero. 
Zero is the value of the parameter specification 
in the null hypothesis, i.e. H0 is that the true 
difference in means is zero. The fact that zero 
lies outside the 95% confidence limits provides 
an alternative approach to testing the hypoth-
esis (see Section 6.6), resulting in the decision 
to reject H0 at the 5% level of significance.

7.4.5  Modified t-test: unequal 
variances

If the variances in the two groups are not equal, 
then the pooled estimate of variance, s2, used 
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Display 7.1  SPSS computer output for the two-sample t-test: body weights (kg) of flushed and control ewes before mating 
(data from Table 7.2).

Group statistics

Group N Mean Std. deviation Std. error mean

Ewe body weight  Flushed
Control

24
30

67.3667
65.7733

2.2525
2.4972

0.4598
0.4559

Independent samples test

Levene’s test  
for equality  
of variances t-test for equality of means

F Sig. t df
Sig.  

(2-tailed)
Mean 

difference
Std. error 
difference

95% confidence 
interval of the  

mean difference

Lower Upper

Ewe 
body 
weight

Equal 
variances 
assumed

Equal 
variances not 
assumed

0.253 0.617 2.4

2.5

52

51.2

0.018

0.017

1.5933

1.5933

0.6551

0.6475

0.2788

0.2935

2.9079

2.8931

Note:  In SPSS, the P-value is denoted by ‘Sig.’ The first line of the t-test result (equal variances assumed) is relevant in this 
instance because the result of Levene’s test for the equality of variances indicates that the two variances are not significantly 
different (P = 0.617).

in the denominator of the test statistic, Test2, 
described in Section 7.4.3, is not appropriate. 
Some computer packages offer an alternatively 
derived test statistic in situations where the vari-
ances are not equal (see Display 7.1). If you have 
to resort to hand calculations, you should evalu-
ate a modified test statistic, Test3.

Test
x x

s
n

s
n

3
1 2

1
2

1

2
2

2

= −

+

However, this test statistic does not follow the 
t-distribution, so that evaluation of the P-value is 
not straightforward. For large sample sizes (say, 
greater than 50), Test3 follows an approximately 
Normal distribution. We can then obtain the rel-
evant P-value from the table of the Standard 

Normal distribution (see Table A.1). If the sample 
sizes are not large, we must either transform the 
data to achieve equal variance or substitute an 
appropriate non-parametric method, such as the 
Wilcoxon rank sum test (see Section 12.5), for 
the two-sample t-test.

7.5  Paired t-test

7.5.1  Introduction

We use the paired t-test when two representative 
samples from the population comprise depend­
ent or paired observations. For example, when we 
compare the preprandial serum glucose levels in 
dogs with insulin-dependent diabetes mellitus 
fed low- and high-fibre diets in a randomized 
cross-over trial (see Section 7.5.4).
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likely to be considerably less biological varia-
tion exhibited within pairs than between 
unmatched individuals, it is advantageous to 
focus the statistical analysis on the differences 
between the observations within each pair 
rather than ignoring the matching. Usually, 
the alternative hypothesis states that this 
mean difference is not zero, and this leads to 
a two-tailed test.

Thus, we can see that the hypothesis test is 
reduced to a one-sample test of differences in 
which the population mean (of differences), 
μ0, equals zero. We employ the hypothesis 
test procedure used in Section 7.3 for the  
one-sample test on the differences between 
the pairs. These differences replace the raw 
data to create a new variable of interest. Con-
sequently, the assumptions on which this test 
is based relate to the differences and not to 
the observations in each group.

2.	 Collect and display the data. Provided the 
sample size is manageable, we can display the 
data in a dot diagram (see Section 2.5.2(a)), 
similar to that described for the two-sample t-
test. In addition, we join each pair of points by 
a line. From the diagram, we are able to discern 
the average magnitude and direction of the dif-
ferences. If most of the lines slope in the same 
direction, either mostly upwards or mostly 
downwards, then we can surmise that the effect 
of interest, the mean difference, is unlikely to 
be zero. If, however, the lines are approximately 
parallel to the horizontal axis or if they exhibit 
no consistency in their direction, then it is likely 
that the mean difference is close to zero. Fur-
thermore, a simple dot plot or, if the sample 
size is large, a histogram, a stem-and-leaf plot 
or a box-and-whisker plot of the differences 
will establish the approximate Normality, or 
otherwise, of their distribution.

3.	 When we are using a computer, we have to 
choose the appropriate test. The test statistic 
is similar in form to that used in the one-
sample test. It follows the t-distribution, and is 
given by

Test
d

d

d

s n
n

d

4

1

= =

−
SE /
with degrees of freedom

( )

The different circumstances for the pairings 
(see Section 5.8.4) are:

•	 Self-pairing: each animal is used as its own 
control.

•	 Natural pairing: each pair of animals is biologi-
cally related (e.g. litter mates).

•	 Artificial (matched) pairing: each animal is 
paired with an animal matched with respect to 
one or more factors that affect response.

To avoid allocation bias (see Section 5.6) in an 
experiment when there is self-pairing, each 
animal is randomly allocated to receive one of 
the two treatments initially; it then receives  
the other treatment later. If there is natural  
or matched pairing, one member of the pair is 
randomly allocated to one of the two treatments 
and the other member receives the second 
treatment.

7.5.2  Assumption

The validity of the paired t-test is based on the 
assumption that when we take the difference 
between the observations in each pair, the set of 
differences for all pairs is approximately Nor­
mally distributed even though the original obser-
vations in the groups may not be.

If we suspect that the distribution of the dif-
ferences is markedly not Normal, and the sample 
size is adequate, we may take an appropriate 
transformation of the observations before sub-
traction to Normalize the distribution of the dif-
ferences (see Section 13.2.1). We perform the 
paired t-test on the differences of the trans-
formed data.

If we cannot find a suitable transformation to 
Normalize the data, or if the sample size is small, 
we should use a non-parametric test such as the 
Wilcoxon signed rank test (see Section 12.4).

7.5.3  Approach

1.	 Specify the null hypothesis that the mean of 
the differences between the paired observa-
tions in the population is zero. As there is 
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the dogs received the diets was determined ran-
domly, the results should not be biased.

Table 7.3 has been developed from the authors’ 
summary results and gives the mean morning 
preprandial serum glucose concentrations (mmol/l) 
for each dog in each 6-month period.

1.	 The null hypothesis states that the true mean 
difference in the preprandial serum glucose 
levels between the low-fibre and high-fibre 
diets is zero; the two-sided alternative is that 
it is not zero.

2.	 We can see from Figure 7.3 that there is a 
tendency for the lines to slope downwards, 
indicating that the dogs’ serum glucose con-
centration is lower on the high-fibre diet. For 
each dog, the difference (LF – HF) in serum 
glucose is calculated. Figure 7.4 is a dot 
diagram of these differences; the distribution 
may be regarded as approximately Normal for 
this test.

3.	 Display 7.2 shows a typical computer output 
for the paired t-test. The value of the test sta-
tistic, ignoring its sign, is Test4 = 4.37 (which is 
the mean difference, 3.808 mmol/l, divided by 
its standard error, 0.872 mmol/l) which follows 
the t-distribution with 10 degrees of freedom.

4.	 The P-value is 0.001 (called ‘Sig. (2-tailed)’ in 
Display 7.2). Hence, if the null hypothesis  
is true, we have only a 0.1% chance of observ-
ing a mean difference at least as large as 

where:

n is the number of pairs in the sample,
d is the mean of the differences in the sample,
SE(d) is the estimated standard error of the 
differences, and
sd is the estimated standard deviation of the 
differences.

4.	 Determine the P-value from the computer 
output. If you have calculated the test statistic 
by hand, you can ignore the sign of the test 
statistic and obtain the P-value from the table 
of the t-distribution (see Table A.3).

5.	 Use the P-value to judge whether the data 
are inconsistent with the null hypothesis.  
Then decide whether or not to reject the null 
hypothesis. Commonly, we reject H0 if P < 0.05.

6.	 Derive a confidence interval for the true mean 
difference. The 95% confidence interval is 
given by

d t d d t s nd± = ± ( )0 05 0 05. .( )SE /

where t0.05 is the entry in the table of the t-
distribution (see Table A.3) with n − 1 degrees 
of freedom, corresponding to a two-tailed 
probability of 0.05.

7.5.4  Example

Nelson et al. (1998) conducted a randomized 
cross-over trial (see Section 5.9.6) of two diets in 
11 insulin-dependent diabetic dogs; they meas-
ured serum glucose as the variable indicating the 
quality of diabetic control. The diets contained 
either low insoluble fibre (LF) or high insoluble 
fibre (HF). Each dog was randomly allocated to 
receive a particular diet first. The dogs were 
adapted to the diet for 2 months and then fed  
it for 6 months: evaluation was performed at 
6-week intervals. As the study ran over 16 months 
of each dog’s life, we might expect changes in  
the animal’s metabolic responses to diabetes 
during the course of the trial, irrespective of diet. 
This would reduce the value of a cross-over 
design since there might be considerable varia-
bility in the within-dog comparisons even without 
a change in diet. However, as the order in which 

Table 7.3  Preprandial serum glucose levels (mmol/l) in 
dogs with insulin-dependent diabetes mellitus fed a 
low- and high-fibre diet (based on summary data from 
Nelson et al., 1998).

Dog Low-fibre diet (LF) High-fibre diet (HF)

  1 9.44 9.28
  2 17.61 8.67
  3 8.89 6.28
  4 16.94 12.67
  5 10.39 6.67
  6 11.78 7.28
  7 15.06 15.39
  8 7.06 5.61
  9 19.56 11.94
10 8.22 5.11
11 23.17 17.33
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Figure 7.3  Preprandial serum glucose 
concentration in 11 dogs with insulin-
dependent diabetes mellitus on different 
diets (based on summary data from 
Nelson et al., 1998).
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Display 7.2  SPSS computer output for the paired t-test: preprandial serum glucose (mmol/l) in dogs with insulin-dependent 
diabetes mellitus fed a low-fibre and a high-fibre diet (data from Table 7.3).

Paired samples statistics

Mean N Std. deviation Std. error mean

Pair 1 HF 9.657273 11 4.125271 1.243816
LF 13.465455 11 5.301857 1.598570

Paired samples test

Paired differences

t df
Sig. 

(2-tailed)Mean Std. deviation Std. error mean

95% confidence  
interval of the  

difference

Lower Upper

Pair 1 LF – HF 3.808182 2.891563 0.871839 1.865603 5.750760 4.368 10 0.001

Figure 7.4  Dot diagram of the differences in 
preprandial fasting serum glucose concentra-
tions (mmol/l) in dogs fed low-fibre (LF) and 
high-fibre (HF) diets (based on summary data 
from Nelson et al., 1998).
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(b)	 Must have equally sized groups of observations.
(c)	 Can only be used if the sample size is large.
(d)	 Is appropriate for comparing independent 

groups of observations.
(e)	 Assumes that the data in each group are 

Normally distributed.

In questions 7.3–7.5, you should check that the 
assumptions underlying the tests that you choose 
are valid.

7.3  A study was made to compare the plasma 
lactate concentration in Dutch Warmblood horses 
cantering at a constant speed either on a track or 
on an inclined treadmill. The speed was chosen 
as the horse’s own comfortable speed on the 
track. Samples were taken after 5 minutes’ can-
tering on the track and treadmill, the order of 
which was randomized for the 10 horses, and  
we show the plasma lactate concentrations 
(mmol/l) (developed from data presented by 
Sloet van Oldruitenborgh-Oosterbaan and Barn-
eveld, 1995, with permission from BMJ Publish-
ing Group Ltd):

3.81 mmol/l. Note, referring 4.37 to Table A.3 
gives 0.001 < P < 0.01.

5.	 The data are not consistent with the null 
hypothesis, which we therefore reject. The 
mean of the preprandial serum glucose differ-
ences (LF – HF), estimated as 3.81 mmol/l, is 
significantly different from zero, indicating 
that the high-fibre diet significantly reduces 
fasting blood sugar.

6.	 We can see from Display 7.2 that the 95% 
confidence interval for the true mean differ-
ence has limits equal to 1.87 and 5.75 mmol/l. 
Because the sample size is relatively small, 
this confidence interval is wide. If you are  
calculating the limits by hand, they are 
3.8082 ± 2.228 × 0.872, where 2.228 is the value 
obtained from the table of the t-distribution 
(see Table A.3) corresponding to a two-sided 
P of 0.05 with 11 − 1 = 10 degrees of freedom, 
and the standard error of the mean difference 
is 0.872 mmol/l.

Note that zero, the value against which the 
mean difference is tested in the specification 
of the null hypothesis, is less than the lower 
limit, 1.87 mmol/l, of the 95% confidence 
interval. This provides an alternative approach 
to testing H0 (see Section 6.6) leading to the 
same conclusion to reject H0.

Exercises

The statements in questions 7.1 and 7.2 are either 
TRUE or FALSE.

7.1  The two-sample t-test:
(a)	 Must have equally sized groups of 

observations.
(b)	 Is used on dependent groups of 

observations.
(c)	 Tests the null hypothesis that two sample 

means are equal.
(d)	 Assumes that the variances are not signifi-

cantly different in the two groups.
(e)	 Is preferred to the paired t-test when the 

sample size is large.

7.2  The paired t-test:
(a)	 Tests the null hypothesis that the mean of the 

differences in the population is zero.

Horse 1 2 3 4 5 6 7 8 9 10

Track 2.0 7.7 4.7 4.7 2.9 2.5 5.3 4.8 3.1 3.9
Treadmill 3.5 7.2 4.6 5.7 5.5 4.4 5.6 4.6 3.5 4.9

Sperm numbers (×106):

AV 61, 19, 51, 108, 34, 44, 57, 58, 73, 74, 85, 94, 67
EE 41, 11, 76, 23, 39, 34, 45, 49, 55, 66

(a)	 What design is this?
(b)	 State the hypothesis you would test to  

investigate whether the exercise exerted by 
the horses can be considered to be of similar 
metabolic demand in both situations.

(c)	 Conduct a test of this hypothesis.
(d)	 What conclusion do you draw?

7.4  Observe the sperm numbers obtained either 
by electroejaculation (EE) or artificial vagina 
(AV) from 23 adult tom cats. The tom cats were 
randomly assigned to one of the two methods.

(a)	 What design is this?
(b)	 State the hypothesis you would test to inves-

tigate whether the sperm numbers obtained 
from the two methods are similar.
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healthy horses (four cross breeds and two Arabian 
breeds) and five healthy Arabian camels in their 
study, the mean (SEM) percentage of protein 
binding was 73.6% (8.5%) and 83.4% (3.6%) for 
the horses and camels, respectively. The differ-
ence in the mean percentage of protein binding 
in the two groups of animals was 9.8% (95% con-
fidence interval −12.7% to 32.3%). The authors 
inferred from these results that their study dem-
onstrated that the mean percentage of protein 
binding was the same in horses and camels.

Suppose (hypothetically) that other investiga-
tors later conducted a similar study on 25 horses 
and 19 camels; the results of the SPSS statistical 
analysis of these data are shown in Figure 7.5 and 
Display 7.3.
(a)	 What should Wasfi et al. have concluded 

from their results about the difference in the 
mean percentage of protein binding in horses 
and camels? Explain your answer fully.

(b)	 What kind of t-test was used on the hypo-
thetical data to compare the mean percent-
age of protein binding in horses and camels 
and what is the null hypothesis for this test?

(c)	 What are the assumptions underlying this 
test?

(d)	 Are these assumptions of the test satisfied? 
Explain your answer fully.

(e)	 What is the magnitude of the P-value for the 
null hypothesis specified in (b) and what do 
you conclude about the null hypothesis from 
this P-value?

(c)	 Conduct a test of this hypothesis.
(d)	 What conclusion do you draw?

7.5  Plasma urea and creatinine are routinely 
measured to evaluate renal function and, in 
healthy cats, the mean urea value in a given 
pathology laboratory is 7.5 mmol/l. Plasma urea 
values in a random sample of 140 healthy cats in 
January were measured to verify the assay. The 
data were approximately Normally distributed 
with a mean urea content of 9.7 mmol/l and an 
estimated standard error of 0.22 mmol/l. Is there 
any evidence to indicate that the assay perform-
ance in this laboratory changed in January?

7.6  Hiraga et al. (1997) performed cardiorespi-
ratory tests on 12 Thoroughbred yearling horses 
before and after an 8-week breaking programme. 
Paired t-tests of a number of variables, compar-
ing the effects before and after the breaking pro-
gramme, showed that cardiopulmonary function 
was significantly higher after the breaking period. 
However, the authors conclude that whether this 
was due to the exercise during breaking or to 
physical growth of the horses is unclear. Criticize 
the experimental design, and provide a design 
that can separate the possible causes.

7.7  Investigators were interested in comparing 
the pharmacokinetics (in basic terms, the study  
of what the body does to the drug) of tripelen-
namine in horses and camels following intrave-
nous administration of a dose of 0.5 mg/kg body 
weight. Wasfi et al. (2000) found that in the six 

Figure 7.5  Box-and-whisker plot of per-
centage of protein binding in horses and 
camels (hypothetical data).
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Secondary
feathers

Tail
feathers

Tail –  
secondary
feathers

Tawny owls
(n = 9)

0.556 (0.535  
to 0.577)

0.840 (0.819  
to 0.862)

0.284 (0.257  
to 0.311)

Eagle owls
(n = 8)

0.307 (0.263  
to 0.352)

0.713 (0.708  
to 0.718)

0.406 (0.360  
to 0.451)

Display 7.3  SPSS computer output for the two-sample t-test: protein binding (%) in horses and camels following 
intravenous administration of tripelannamine.

Group Statistics

Group N Mean Std. deviation Std. error mean

Protein binding (%) horse 25 68.5999 21.88507 4.37701
camel 19 82.9979 9.93146 2.27843

Independent samples test

Levene’s test for 
equality of 
variances t-test for equality of means

F Sig. t df
Sig. 

(2-tailed)
Mean 

difference
Std. error 
difference

95% confidence 
interval of the 

difference

Lower Upper

Protein 
binding 
(%)

Equal 
variances 
assumed

7.897 .007 −2.661 42 .011 −14.39806 5.40999 −25.316 −3.480

Equal 
variances 
not 
assumed

−2.918 35.31 .006 −14.39806 4.93452 −24.413 −4.384

(f)	 Is this conclusion the same as that which you 
drew from the results of Wasfi et al.? If not, 
explain why they differ.

(g)	 Interpret the confidence interval for the dif-
ference in the mean percentage of protein 
binding given in Display 7.3.

7.8  The mercury concentration in secondary 
and tail feathers of different species of birds in 
southwest Iran was measured between April and 
October 2005. The summary measures in the 
table that follows (based on Zolfaghari et al., 
2007) show, for nine tawny owls (Strix aluco) and 
eight eagle owls (Bubo bubo), the mean (95% 
confidence interval) feather mercury (Hg) in mg/
kg dry weight of: (i) the secondary feathers; (ii) 
the tail feathers; and (iii) the differences between 
the tail and secondary feathers (where each dif-
ference is obtained from a single owl of either 
species).

(a)	 Name two appropriate statistical hypothesis 
tests that can be used to assess whether, on 
average, there is more Hg in the tail feathers 
than in the secondary feathers in the popula-
tion of tawny owls from which this sample 
was selected.

(b)	 What is/are the assumption(s) underlying 
each of these tests that you mention in your 
answer to (a)?
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(c)	 Describe how you can use the relevant con-
fidence interval to assess whether there is 
significantly more feather Hg in the tail 
feathers than in the secondary feathers of (i) 
tawny owls and (ii) eagle owls. Provide a 
relevant P-value for each species of owl and 
draw appropriate conclusions.

(d)	 What conclusion do you reach, if any, about 
whether the mean of the difference between 

the tail feather Hg and secondary feather Hg 
is significantly greater in eagle owls than in 
tawny owls? Explain your reasoning.

(e)	 Name two statistical tests that are appropri-
ate to use to assess whether, on average, the 
difference in secondary feather Hg and tail 
feather Hg is greater in eagle owls than in 
tawny owls.
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8.1  Learning objectives

By the end of this chapter, you should be able to:

•	 List and verify the assumptions that underlie 
the F-test.

•	 Explain the principles underlying the F-test 
for equality of variances.

•	 Elaborate the use of Levene’s test.
•	 Explain the circumstances in which an analysis 

of variance would be appropriate.
•	 List and verify the assumptions that underlie 

the one-way analysis of variance.
•	 Interpret a computer output of a one-way 

analysis of variance, and explain the result.

8.2  Introduction

In Chapter 7 we considered hypothesis tests, 
based on the t-distribution, that are used to 
compare means. For example, in Section 7.4, we 
performed a two-sample t-test to compare the 
mean body weight of flushed and control ewes. 
For this test to be valid, we needed to be sure 
that the two groups had similar variances.

In this chapter we review some tests whose test 
statistics follow the F-distribution (see Section 
3.5.4), and which compare variances. These F-
tests can be used in a wider context, as part of 
the analysis of variance, to compare two or more 
means – a not uncommon situation in veterinary 
and animal science.

8
Hypothesis tests 2 – the F-
test: comparing two variances 
or more than two means

Suppose, for example, we have four groups of 
observations to compare. Spurious P-values are 
likely to result if the difference in means (using 
a two-sample t-test) is investigated for every 
combination of pairs of groups. Four groups 
would result in six possible t-tests, and the more 
tests that we perform the more likely it is that we 
will obtain a significant P-value on the basis of 
chance alone. If we perform 20 tests at the 5% 
level of significance, it is likely that one will be 
falsely significant and therefore lead to the erro-
neous conclusion that the means of these groups 
differ (see also Section 8.6.3). This is the Type I 
error discussed in Section 6.4.1. We can use the 
analysis of variance to address this problem.

As in the last chapter, the tests in this chapter 
apply to a single numerical variable which is 
assumed to follow a Normal distribution.

8.3  The F-test for the equality of 
two variances

8.3.1  Rationale

The two-sample t-test and the analysis of vari-
ance (see Section 8.5) make the assumption of 
homoscedasticity, i.e. of equal variances in groups 
of data. The F-test, often called the variance 
ratio test, may be used to investigate the homo-
scedasticity of two data sets. Levene’s test may 
be used to compare two or more variances (see 
Section 8.4).
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from Normally distributed populations and are 
representative of these populations (ideally having 
been chosen by random selection). It is particu-
larly sensitive to departures from Normality.

8.3.3  Approach

1.	 Specify the null hypothesis that the two popu-
lation variances, σ1

2 and σ 2
2, are equal, and 

specify the alternative hypothesis, usually that 
the variances are not equal.

2.	 Collect and examine the data by constructing 
a dot plot, a histogram or a box-and-whisker 
plot (see Section 2.5.2). Check the Normality 
assumption.

3.	 Select the appropriate test on the computer, 
or calculate by hand the test statistic. This is 
the ratio of the larger (s1

2) to the smaller (s2
2) 

estimated population variances derived from 
the samples. It follows the F-distribution and 
is given by

Test
s
s

5
1

2

2
2

=

with n1 − 1, n2 − 1 degrees of freedom

The degrees of freedom for the F-test are, by 
convention, written in the order shown above, 
with the degrees of freedom for the numera-
tor preceding those for the denominator. In 
this case, they are n1 − 1 in the numerator (the 
larger variance) and n2 − 1 in the denominator 
(the smaller variance), where n1 and n2 repre-
sent the two sample sizes.

4.	 Determine the P-value. You may find this in 
the computer output or, alternatively, turn to 
the F-table (see Table A.5b). You will see that 
both Table A.5a and Table A.5b have columns 
and rows that correspond to the degrees of 
freedom for the numerator and the denomi-
nator, respectively, of the F-ratio. The P-value 
for a two-sided F-test is obtained by consult-
ing P/2 in Table A.5b (see Section 8.3.1), 
i.e. for a P-value of 0.05, consult P = 0.025 in 
Table A.5b.

5.	 Use the P-value to judge whether the data 
are inconsistent with the null hypothesis.  
Then decide whether or not to reject the null 

Suppose that we select two independent random 
samples of data from populations 1 and 2, and that 
we calculate s1

2 and s2
2 as estimates of the popula-

tion variances, σ1
2 and σ 2

2, respectively. We con-
sider the ratio of these estimated variances and, 
by convention, we divide the larger by the smaller.

•	 If we find that the ratio is unity, or close to it, 
then we would conclude that the two popula-
tion variances are probably equal.

•	 If, however, we find that the ratio of these esti-
mated variances is much greater than one, 
then it is unlikely that the populations, from 
which we have selected our samples, have 
equal variances. We have to make a decision 
whether or not the population variances are 
likely to be different. This means that we need 
a cut-off for the variance ratio; if the variance 
ratio exceeds this cut-off value, we will con-
clude that the variances are unequal.

We determine this cut-off value formally, 
under the null hypothesis that the two population 
variances are equal, by referring the ratio to the 
table of the F-distribution (see Table A.5). The 
degrees of freedom are n1 − 1 in the numerator 
(the larger variance) and n2 − 1 in the denomina-
tor (the smaller variance), where n1 and n2 rep-
resent the two sample sizes.

Note that this is actually a two-tailed test 
because the alternative hypothesis states that the 
two variances are not equal, rather than specify-
ing which is the greater. However, the table of 
the F-distribution (see Table A.5) shows tail area 
probabilities in only the upper tail, when the F- 
ratio is greater than one. For the required signifi-
cance level in a two-tailed test, therefore, we 
must halve this tail area. So, for a two-tailed test 
at the 5% level of significance, we have to relate 
the test statistic to P = 0.025. For convenience, we 
give the upper percentage points corresponding 
to P = 0.025 and P = 0.005 (relating to two-tailed 
P-values of 0.05 and 0.01, respectively) in sepa-
rate tables, Tables A.5a and A.5b.

8.3.2  Assumptions

This hypothesis test is dependent on the assump-
tions that the independent samples are selected 
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Thus, P  >  0.05 (in fact, the exact P-value is 
P = 0.62).

5.	 There is no evidence of inequality between 
the variances, and we can proceed with the t-
test assuming homoscedasticity.

8.4  Levene’s test for the equality 
of two or more variances

When you use the computer to analyse your 
data, you may encounter an alternative test of 
homogeneity of variance, called Levene’s test. It 
may be used to compare two or more variances, 
and has the considerable advantage that it is less 
dependent on the assumption that the data come 
from Normal populations than most homogen
eity of variance tests. It is particularly useful in  
the context of the analysis of variance. A test 
statistic is calculated in Levene’s test which 
follows the F-distribution. Since it is most unlikely 
that you will use this test other than when you 
are doing a computer analysis, we omit details of 
the calculation.

Note that Display 7.1, an SPSS computer 
output for the two-sample t-test, includes Lev-
ene’s test for the equality of variance. This test 
gives P = 0.617, and it therefore is in agreement 
with the result we obtained by calculating the 
ratio of the variances (see Section 8.3.4). Note 
that, should Levene’s test be significant, the SPSS 
computer output offers a modified t-test allowing 
a comparison of means even when the two groups 
have unequal variances.

8.5  Analysis of variance (ANOVA) 
for the equality of means

8.5.1  Rationale

The analysis of variance (ANOVA) is an expres-
sion used to describe a set of techniques that 
compare the means of two, three or more groups 
by investigating relevant variances. The analysis 
is based on the variance ratio test, i.e. an F-test, 
which compares two variances by examining 
their ratio and relating it to the F-distribution 
(see Section 8.3).

hypothesis. Commonly, we reject the null 
hypothesis if P < 0.05.

Usually, we perform this test to check the 
assumption of equality of variance in other tests, 
such as the two-sample t-test. It is, therefore, 
unlikely that we will need to consider the confi-
dence interval for the ratio of the two variances. 
The confidence interval for a variance ratio is 
based on the F-distribution; you will find details 
in more advanced texts such as Armitage et al. 
(2002).

8.3.4  Example

We illustrated the two-sample t-test by compar-
ing the mean weights of 54 ewes that were ran-
domly assigned to one of two ‘treatment’ groups, 
the ewes being either flushed or not flushed 
before mating (see Section 7.4.4).

1.	 One of the assumptions underlying the t-test 
is that the true variances of these two groups 
are equal. The null hypothesis for the test 
which follows is that the variances of the 
weights in the two populations from which the 
ewes are selected are equal. The alternative 
hypothesis is that they are unequal (direction 
unspecified), leading to a two-tailed test.

2.	 Figure 7.2 indicates that both samples are 
approximately Normally distributed.

3.	 We test the hypothesis of equal variances by 
finding the ratio of the two estimated vari-
ances. Display 7.1 shows that the two esti-
mated standard deviations are 2.252 kg and 
2.497 kg for the 24 flushed and 30 control ewes, 
respectively. The estimated variances are thus 
5.072 kg2 and 6.235 kg2, so that the ratio of the 
larger to the smaller estimated variance is 
6.235/5.072 = 1.23.

4.	 We refer this quotient to the table of the 
F-distribution (see Table A.5b) with 29 (in the 
numerator) and 23 (in the denominator) 
degrees of freedom. There is no column for 
29 df or row for 23 df. However, we can see 
that our value (1.23) is less than the tabulated 
value (2.09) for infinity df in the numerator 
and 20 df in the denominator for P/2 = 0.025. 
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terms, the mathematical details are cumbersome 
and best avoided. We refer you to books such as 
Cochran and Cox (1957), Doncaster and Davey 
(1997) and Gardiner and Gettinby (1998) for  
the underlying theory. It is more relevant, in this 
day and age, that you understand the computer 
output resulting from the analysis of variance. 
This comprises an analysis of variance table 
which lists the various sources of variation, for 
example see Display 8.1. For each source of vari-
ation, you will find values for the sum of squares 
and the degrees of freedom (see Section 6.3.6); 
the sum of squares divided by the degrees of 
freedom determines the mean square, which pro-
vides an estimate of the relevant variance. Finally, 
the appropriate mean squares are compared 
using an F-test (see Section 8.3). For each factor 
(source of explained variation), the null hypoth-
esis states that the population means of the 
groups defined by the levels of that factor are 
equal.

8.5.3  Particular forms of  
ANOVA	

The considerations of ANOVA that underlie the experimen-
tal design and subsequent handling of the data can be exceed-
ingly complicated. In this section, we outline some of the 
common designs to give you an indication of the potential of 
ANOVA. You can skip this section without loss of continuity 
if you find it difficult.

The analysis of variance encompasses a broad spectrum  
of experimental designs ranging from the simple to the 
complex. In each case, the appropriate mathematical model 
is constructed, based on the structure or pattern of the exper-
imental design. This model takes the form of a regression 
equation (see Chapters 10 and 11) so that it is possible to 
analyse the data using regression techniques directly (see 
Section 11.3.1(b)) rather than relying on the ANOVA soft-
ware provided by many computer packages. Furthermore, 
the ANOVA model assumptions may be checked by studying 
the residuals, as in multiple regression analysis (see Section 
11.3.2(a)). The essential forms of some simple designs are 
illustrated in Figure 8.1.

•	 We may regard the one-way ANOVA (the simplest form 
of ANOVA) as an extension of the two-sample t-test when 
we compare the means of more than two groups (see 
Section 8.6). They give identical P-values when there are 
two groups.

For example, in order to determine whether the build-up 
of calculus on dogs’ teeth is affected by diet, Stookey et al. 

The principle underlying the analysis of vari-
ance is that the total variability in a data set  
is partitioned into its component parts. Each 
component represents a different source of vari-
ation. The variation is expressed by its variance. 
The sources of variation comprise one or more 
factors, each resulting in variability which can be 
accounted for or explained by the levels or cat-
egories of that factor (e.g. the two levels, ‘male’ 
and ‘female’, defining the factor ‘sex’, or three 
dose levels for a given drug factor), and also 
unexplained or residual variation which results 
from uncontrolled biological variation and tech-
nical error. We can assess the contribution of the 
different factors to the total variation by making 
the appropriate comparisons of these variances.

Consider the simple case in which there is only 
one factor of interest, the levels of this factor 
defining different groups to which, in the experi-
mental situation, individuals are assigned at 
random (this leads to a one-way ANOVA – see 
Section 8.6). We want to know if all the observa-
tions come from a single population. If this is the 
case, the levels of the factor do not affect the 
variation (i.e. the variation between the group 
means would be the same as that of the observa-
tions within the groups), and we would not expect 
the group means to differ. We therefore investi-
gate the null hypothesis that all the group means 
are equal in the population. If there appears  
to be significantly more variation between the 
groups than would be expected under the null 
hypothesis, we reject the null hypothesis in favour 
of the alternative hypothesis, and conclude that 
the group means are different. Thus, despite its 
name, the analysis of variance is a device for 
comparing two or more means. Note that the 
alternative hypothesis is that there is more vari-
ation between the group means than within the 
groups – i.e. it is a one-tailed test, so we look up 
the P-values directly in Table A.5a (because we 
are comparing variances using an F-test), without 
any adjustment.

8.5.2  The ANOVA table

Although the basic concepts of the analysis of 
variance can be expressed in relatively simple 



104	 Statistics for Veterinary and Animal Science

Figure 8.1  Diagrams of the most 
common forms of experimental designs 
analysed by ANOVA.

(1995) randomly allocated 26 dogs to one of three diets. 
One-way ANOVA was used to test the null hypothesis that 
the mean calculus accumulation was equal in the three diet 
groups after 4 weeks on the diet. We give full details in 
Section 8.6.4.

•	 The one-way repeated measures ANOVA may be regarded 
as an extension of the paired t-test, for example when the 
data are longitudinal and are measured on each individual 
at successive time points, or when the within-subject/
animal comparison is between three or more treatments. 
We say that we have repeated measures of a particular 
factor if each individual has measurements at every level 
of that factor. We describe a simple approach to analysing 
repeated measures data (as an alternative to ANOVA) in 
Section 14.5.2.

As an example of this ANOVA approach, Burton et al. 
(1997) compared the effects of three treatments (control, 
and two dose levels of a sedative drug, medetomidine) on 
the insulin concentrations of healthy adult Beagles in a 
trial in which each dog received all three treatments. Each 
dog was used as its own control in a randomly allocated 
sequence of treatments. The ANOVA showed that the 
mean serum insulin values in the three treatment groups 
were significantly different when measured 60 minutes 
after administration of treatment (further investigation 
indicated that both of the doses of medetomidine signifi-
cantly decreased the serum insulin when compared with 
the control).

•	 The two-way ANOVA examines the effect of two factors 
on a response variable, when each of these factors pos-

sesses two or more levels. We create a two-way table in 
which the rows and the columns represent the levels of 
each of the two factors; every cell in the table represents a 
unique combination of particular levels of the two factors. 
Each individual is randomly assigned to one of the differ-
ent levels of each factor. Providing there is no replication 
in any cell of the table, the design is often called a rand-
omized block. If there is replication in the cells, then it is 
possible to study the interaction between the factors (see 
Section 5.9.1); this is when the differences in the levels of 
one factor are not consistent for the various levels of the 
other factor.

Suppose, for example, two different feed formulations 
for optimal growth promotion of kittens are to be com-
pared, with the daily ration administered in one, two or 
three divided portions. This gives six unique treatment 
combinations; 42 animals are randomly allocated to one  
of these feeding regimens with seven animals (replications) 
in each cell of the table, and their weight gain (growth)  
is monitored over a 3-month period. The ANOVA would 
allow us to investigate whether there is any difference in 
the mean weight gain between the two different feeds,  
and between the number of daily portions. An interac
tion between the factors would imply that the difference 
observed in the mean weight gain between the feed  
formulations is not consistent for each of the three forms 
of administration of the feed (one, two or three daily 
portions).

•	 More complex experimental designs may involve hierar-
chical (nested) or cross-classifications of a number of 
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of interest, we can use the Friedman two-way 
ANOVA as a non-parametric alternative to the 
two-way ANOVA (see Section 12.6.3).

8.6.2  Approach

1.	 Specify the null hypothesis that the popula-
tion group means do not differ, i.e. the groups 
represent a single population. Generally, the 
alternative hypothesis is that at least one of 
the group means is dissimilar.

2.	 Collect the data and display them in exactly 
the same way as for the two-sample t-test (see 
Section 7.4) except that here there are more 
than two groups. Check the assumptions of 
Normality and homogeneity of variance.

3.	 Use the computer to calculate the test statis-
tic, which is found in the ANOVA table. It is 
the ratio of the between-groups to the within-
groups mean squares (F-ratio). This F-ratio 
follows the F-distribution with k  −  1, n  −  k 
degrees of freedom, where k  =  number of 
groups and n = total number of observations 
in the sample.

4.	 Look at the P-value; it is usually given in the 
ANOVA table of the computer output. If you 
want to determine it for yourself, you have to 
refer to the table of the F-distribution (see 
Table A.5a). You can read the appropriate 
degrees of freedom that you need for Table 
A.5a from the ANOVA table: use k − 1 for the 
numerator (the between-groups degrees of 
freedom); use n − k for the denominator (the 
within-groups (residual) degrees of freedom).

5.	 Use the P-value to judge whether the data 
are inconsistent with the null hypothesis.  
Then decide whether or not to reject the null 
hypothesis; usually, but not necessarily, we 
reject H0 if P  <  0.05. If we reject the null 
hypothesis, we may need to establish which 
group means differ (see Section 8.6.3).

6.	 Derive the confidence intervals for differ-
ences between group means, in essentially the 
same way as for the two-sample t-test (see 
Section 7.4.3). However, the combined esti-
mate of variance used in the calculation of the 
confidence interval is the within-group (resid-
ual) mean square in the ANOVA table.

factors (each at various levels), perhaps with repeated 
measures. These include the Latin square, split plot and the 
more general factorial designs which reflect the flexibility 
of ANOVA. Details of each design are to be found in books 
such as Cochran and Cox (1957), Doncaster and Davey 
(1997) and Gardiner and Gettinby (1998).

In Section 8.6 we use the one-way ANOVA to illustrate 
the general approach; the principles underlying more compli-
cated ANOVA are similar.	 

8.6  One-way analysis of variance

8.6.1  Assumptions

We apply the analysis of variance when the vari-
able of interest is numerical; the results are reli-
able only if the assumptions on which it is based 
are satisfied. The one-way ANOVA is concerned 
with several levels or categories of a single factor, 
where each level comprises a group of observa-
tions. For example, the levels may represent dif-
ferent treatments as in a comparison of, say, a dry 
feed formula, a formulated tinned feed and a raw 
meat diet for dogs. Alternatively, they can be dif-
ferent treatment dose levels of a drug, one of 
which is a placebo representing simply the drug 
vehicle, while the others are, say, 50%, 100% and 
200% of the presumed effective dose. In the 
experimental situation, the animals should be 
randomly allocated to one of the levels of the 
factor, i.e. to one of the groups, in order to avoid 
allocation bias (see Section 5.6).

The assumptions of the one-way ANOVA are 
that the samples representing the levels are inde-
pendent and the observations in each sample 
come from a Normally distributed population 
with variance σ2; this implies that the group vari-
ances are the same. Approximate Normality may 
be established by drawing a histogram; moderate 
departures from Normality have little effect on 
the result. Constant variance, the more important 
assumption, may be established by Levene’s test 
(see Section 8.4).

If we are concerned about the assumptions, we 
can take an appropriate transformation of the 
data (see Section 13.2) or use an alternative non-
parametric method such as the Kruskal–Wallis 
one-way ANOVA (see Section 12.6.2). As a point 
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cedes, and perhaps even obviates the need for, 
pairwise comparisons of groups. You only proceed 
to investigate differences between pairs of means 
if the P-value for that factor in the ANOVA is 
significant.

You should be aware that this problem of mul-
tiple testing also arises in other circumstances, 
not just in relation to the comparisons in this 
simple ANOVA design. Examples are when we 
have multiple outcome measurements, and when 
we subdivide our sample into subsets and inves-
tigate differences in these subgroups. Another 
particular example arises when we have repeated 
measurements on the same individual; you will 
find more information to deal with this situation 
in Sections 11.6 and 14.5.2. In all such cases, you 
should attempt to avoid spurious P-values. This 
may not be a simple process and we recommend 
that you seek the advice of a statistician.

Furthermore, remember never to compare 
P-values as a way of judging the magnitude  
of different effects. Instead, obtain quantita
tive measures of the effects of interest (e.g. the  
differences in the treatment means) and use 
these for comparative purposes. It is incorrect  
to compare the P-values as they are dependent 
on considerations such as the sample size, the 
power of the test and the variability of the 
observations.

8.6.4  Example

Dogs were fed a dry diet coated with different 
agents that were believed to affect the build-up 
of calculus on the teeth. Calculus accumulation 
was measured by an index that combined esti-
mates of both the proportion of the teeth covered 
by the deposit and the thickness of the deposit. 
Twenty-six dogs were randomly allocated to 
three treatments: control, soluble pyrophosphate 
(P2O7) and sodium hexametaphosphate (HMP). 
The calculus accumulation index was measured 
on each dog 4 weeks after it received treatment. 
The data are presented in Table 8.1; they are 
developed from the summary results presented 
by Stookey et al. (1995). Display 8.1 contains 
the ANOVA results from an SPSS computer 
analysis.

8.6.3  Multiple comparisons

If we reject the null hypothesis in the one-way 
ANOVA (see Section 8.6.2), then we need to 
establish which group means differ. This will 
involve conducting a number of tests, but the 
more tests that we perform, the more likely it is 
that we will obtain a significant P-value on the 
basis of chance alone. We have to approach this 
problem of multiple comparisons in such a way 
that we avoid spurious P-values. Formal multiple 
comparison techniques should be used, such as 
Duncan’s multiple range test, Least significant 
difference (LSD) test, Bonferroni’s correction, 
and Scheffe’s, Tukey’s or Newman–Keuls tests, 
often termed procedures. Be aware: they often 
produce slightly different results!

The Bonferroni approach is relatively simple, 
even without the aid of a computer; we concen-
trate on comparing those groups that are of par-
ticular interest, and then employ Bonferroni’s 
correction. The procedure involves modifying 
the P-value obtained from any one comparison 
by multiplying it by the number of tests or com-
parisons that are to be performed. So, if we plan 
to undertake three t-tests, we should multiply the 
P-value (p1, say) obtained from a single t-test by 
3 to produce an amended P-value of 3p1 which 
we can assess for significance in relation to our 
pre-specified significance level, typically 0.05. If 
we intend to use the two-sample t-test to make 
pairwise comparisons after performing a one-way 
ANOVA, we should modify the denominator of 
the test statistic by using the pooled estimate of 
variance from all the groups, i.e. the residual 
mean square (variance) in the ANOVA table, 
and we should use this, too, in any calculations of 
confidence intervals. This Bonferroni approach 
works reasonably well if the number of compari-
sons is less than about five, but for more com-
parisons it is too conservative.

You may be tempted to rely solely on these 
multiple comparison methods, but it is sensible 
to start your analysis with the ANOVA when 
there are three or more levels of any one factor 
and/or when more than two factors are to  
be investigated. The ANOVA may act as a  
buffer, precluding ‘fishing’ expeditions to dis-
cover treatment differences. It therefore pre-
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Figure 8.2  Box-and-whisker plot of the 
calculus index of teeth in three groups  
of dogs (based on summary data from 
Stookey et al., 1995).

1.	 The null hypothesis is that the true mean cal-
culus indices in the three treatment groups are 
equal; the alternative hypothesis is that they 
are not all equal.

2.	 We can see from Figure 8.2 that the data are 
approximately Normally distributed in each 
group; Levene’s test (Display 8.1) indicates 
that the variances of the observations in the 
three groups are not significantly different 
(P = 0.44).

3.	 The F-ratio in the ANOVA table (Display 8.1) 
produces P = 0.005.

4.	 It is therefore unlikely that all the three means 
are equal and we reject the null hypothesis.

5.	 The means and their associated confidence 
intervals are shown in the descriptives table in 
Display 8.1. Further examination by post hoc 
Bonferroni tests (see the multiple compari-
sons table in Display 8.1) indicates that the 
mean calculus index is significantly greater 

Table 8.1  Index of calculus formation on 
the teeth of dogs fed a control diet or one 
supplemented with soluble pyrophosphate 
(P2O7) or sodium hexametaphosphate (HMP) 
(based on summary data from Stookey et al., 
1995).

Dog Control Dog P2O7 Dog HMP

1 0.49 10 0.34 19 0.34
2 1.05 11 0.76 20 0.05
3 0.79 12 0.45 21 0.53
4 1.35 13 0.69 22 0.19
5 0.55 14 0.87 23 0.28
6 1.36 15 0.94 24 0.45
7 1.55 16 0.22 25 0.71
8 1.66 17 1.07 26 0.95
9 1.00 18 1.38

Sample size 9 9 8
Mean 1.09 0.75 0.44
SD 0.42 0.37 0.29
SEM 0.14 0.12 0.10
95% CI* (0.81, 1.37) (0.46, 1.03) (0.13, 0.74)

* These are the 95% confidence intervals for each mean (calculated using the 
residual mean square  =  0.1353 from the ANOVA table as the combined 
estimate of variance).
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Display 8.1  SPSS computer output for analysis of variance of calculus data on three groups of dogs (data from Table 8.1).

Descriptives

N Mean calculus
Std.  

deviation Std. error

95% confidence interval for mean

Lower bound Upper bound

Treat group None
P2O7

HMP
Total

9
9
8

26

1.0889
0.7467
0.4375
0.7700

0.4225
0.3695
0.2907
0.4435

0.1408
0.1232
0.1028
8.697E-02

0.7641
0.4626
0.1945
0.5909

1.4137
1.0307
0.6805
0.9491

Note:  E-02 means ×10−2.

Test of homogeneity of variances

Levene 
statistic df1 df2 Sig.

Calculus 0.855 2 23 0.438

ANOVA

Sum of 
squares df

Mean 
square F Sig.

Calculus Between groups
Within groups
Total

1.805
3.112
4.917

2
23
25

0.902
0.135

6.668 0.005

Multiple comparisons
Dependent variable: Calculus
Bonferroni

(I) group (J) group Mean difference (I − J) Std. error Sig.

95% confidence interval

Lower bound Upper bound

None P2O7

HMP
0.3422
0.6514*

0.173
0.179

0.182
0.004

−0.1055
0.1899

0.7899
1.1129

P2O7 None
HMP

−0.3422
0.3092

0.173
0.179

0.182
0.291

−0.7899
−0.1523

0.1055
0.7707

HMP None
P2O7

−0.6514*
−0.3092

0.179
0.179

0.004
0.291

−1.1129
−0.7707

−0.1899
0.1523

* The mean difference is significant at the 0.05 level.



	 Hypothesis tests 2 – the F-test: comparing two variances or more than two means	 109

liver fluke disease. As a preliminary to testing the 
null hypothesis that the mean liver weights of the 
cattle in the two farms are the same, check that 
the variability of the observations in the two 
groups is similar.

Group 1: 18.0, 18.5, 18.9, 18.2, 17.9, 15.9, 16.8, 18.2, 
17.3, 17.5, 17.7, 17.8, 17.1, 17.0, 16.3

Group 2: 14.3, 13.2, 17.3, 14.9, 16.4, 16.0, 18.6, 17.3, 
15.5, 16.8, 15.7, 18.0, 15.2

8.4  Look at the measurements of the mean 
fluorescence intensity of sperm cells stained with 
a fluorescent marker, 1-anilinonaphthalene- 
8-sulphonate (ANS), showing the effect of the 
presence of egg yolk in the diluent solution 
(Table 8.2). ANS fluoresces only when bound to 
the sperm membrane. Each value represents the 
mean of 10 individual spermatozoa and is esti-
mated by a densitometer from photographic film.

What evidence is there that the egg yolk affects 
the binding of the fluorophore to the sperm 
membrane? If you have the appropriate compu-
ter software, analyse the data yourself and see  
if you get the same ANOVA table as shown 
(Display 8.2). If you do not have the software, 
you can use the ANOVA table to help you 
answer this question.

8.5  The pharmacokinetic behaviour of two 
antiparasitic drugs, doramectin and moxidectin, 
were compared after a single subcutaneous admi
nistration in goats at a dosage of 0.2 mg/kg,  

(P = 0.004) in the control group of dogs (mean 
index = 1.09; 95% CI 0.76 to 1.41) than in the 
group of dogs receiving HMP (mean index = 
0.44; 95% CI 0.19 to 0.68). We estimate the 
difference between these means as 0.65; the 
95% confidence interval for the true differ-
ence in means is 0.19 to 1.11. The two other 
comparisons of means are not significant 
(P >  0.05); the relevant differences between 
these means and their associated confidence 
intervals are given in Display 8.1.

Exercises

The statements in questions 8.1 and 8.2 are either 
TRUE or FALSE.

8.1  In a one-way analysis of variance to compare 
the means of four groups of observations:
(a)	 The observations in each group should be 

Normally distributed.
(b)	 There should be the same number of obser-

vations in each group.
(c)	 The group variances should be equal.
(d)	 The groups should comprise matched indi-

viduals or the same individuals in different 
circumstances.

(e)	 The null hypothesis states that the sample 
means are all the same.

8.2  The F-test used on two groups of 
observations:
(a)	 Assumes that the means of the two groups 

are the same.
(b)	 Assumes that the data in each group are 

Normally distributed.
(c)	 Tests the null hypothesis that the two popu-

lation variances are equal.
(d)	 Can be used instead of the paired t-test to 

investigate the mean difference.
(e)	 Should always be followed by a two-sample 

t-test.

In questions 8.3 and 8.4, you should check that 
the assumptions underlying the test that you 
choose are valid.

8.3  The following data show the liver weights 
(kg) taken from randomly selected cattle in two 
farms in southwest England during outbreaks of 

Table 8.2  The effect of egg yolk in the medium on the 
fluorescence intensity of spermatozoa labelled with a 
fluorescent probe. Data are in arbitrary densitometry units 
(based on Watson, 1979).

Egg yolk content

1% 5% 25%

0.944 0.865 0.811
1.048 1.000 0.862
1.026 1.001 0.910
1.007 0.900 0.799
0.933 0.923 0.837
0.998 0.876 0.854
1.035 1.046

0.990
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Display 8.2  ANOVA table of data in Table 8.2.

Sum of squares df Mean square F Sig.

Fluoresc Between groups
Within groups
Total

7.832E-02
5.160E-02
0.130

2
18
20

3.916E-02
2.867E-03

13.659 0.000*

Note:  E-02 means ×10−2, E-03 means ×10−3.
* Implies P < 0.0005, therefore we can say P < 0.001.

Figure 8.3  Box-and-whisker plot of mean residence times 
(MRT) of drugs in two groups of goats (see Exercise 8.5).
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Display 8.3  SPPS output of summary statistics and test results for mean residence times (MRT) of drugs in two groups of 
goats (see Exercise 8.5).

Group statistics

Treatment N Mean Std. deviation Std. error mean

MRT Doramectin
Moxidectin

20
20

4.2220
11.9873

1.26674
0.91536

0.28325
0.20468

Independent samples test

Levene’s test 
for equality 
of variances t-test for equality of means

F Sig. t df
Sig. 

(2-tailed)
Mean 

difference
Std. error 
difference

95% confidence 
interval of the  

mean difference

Lower Upper

MRT Equal variances 
assumed

Equal variances 
not assumed

3.016 0.091 −22.221

−22.221

38

34.591

0.000*

0.000*

−7.76529

−7.76529

0.34947

0.34947

−8.47275

−8.47504

−7.05784

−7.05554

* Indicates P < 0.001.
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with 20 goats being randomly assigned to each  
of the two drug regimens (based on summary  
data of Escudero et al., 1999). The drug 
plasma concentration–time data were analysed  
by compartmental pharmacokinetics and non-
compartmental methods. We are interested in 
comparing the mean residence times (MRT in 
days) in the two groups of goats. Some SPSS com-
puter output, produced by a statistical analysis of 
our data, is shown in Figure 8.3 and Display 8.3.
(a)	 What aspects of the distribution of the data 

does the box-and-whisker plot show?
(b)	 What is the full name of the statistical test 

that the investigators have used to compare 
MRT in the two groups?

(c)	 What is the null hypothesis of this test?
(d)	 What are the assumptions underlying this 

test?
(e)	 Are the assumptions satisfied (explain your 

reasoning using both the diagram and the 
second table of results, as appropriate)?

(f)	 Explain where you find the P-value from the 
test comparing the average MRT in the two 
groups. What is this P-value, and what do you 
conclude as a consequence?

(g)	 What is the estimated effect of interest and 
what is its associated confidence interval?
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9.1  Learning objectives

By the end of this chapter, you should be able to:

•	 Explain how to test a hypothesis about a single 
proportion.

•	 Outline the steps involved in comparing two 
proportions.

•	 Construct a 2 × 2 contingency table of observed 
frequencies.

•	 Explain the meaning of ‘expected frequency’ 
in a contingency table.

•	 Use the Chi-squared test to analyse data in a 
2 × 2 contingency table.

•	 Analyse frequencies in an r  ×  c contingency 
table.

•	 Describe the situations in which the Chi-
squared test is not appropriate in the analysis 
of a contingency table.

•	 Describe the situation in which McNemar’s 
test is appropriate.

•	 Compare two proportions using McNemar’s 
test.

•	 Perform a Chi-squared goodness-of-fit test.

9.2  Introduction

In Chapters 7 and 8 we discussed hypothesis tests 
for the arithmetic mean, a summary measure of 
location for a numerical variable. In this chapter 
we describe some of the hypothesis tests for the 
proportion, a parameter that summarizes the 
observations of a binary variable. In addition, we 

9
Hypothesis tests 3 – 
the Chi-squared test: 
comparing proportions

explain how to analyse data when the categorical 
variable has more than two categories.

You will recall that a binary variable is a cat-
egorical (qualitative) variable with only two cat-
egories of response, often termed success and 
failure (see Sections 1.6 and 3.4.2). For example, 
Little et al. (1980) investigated the influence of 
Leptospira infection on the incidence of abortion 
in cattle. The test which they used for the pres-
ence of leptospiral antibodies gives a binary 
response, either positive (success) or negative 
(failure). They compared the proportions of cows 
that were positive for Leptospira infection in two 
groups, those which aborted and those which 
calved normally.

In Section 7.2.3 we explained that when we test 
hypotheses about means, we improve our com-
parisons and measure our treatment effects more 
precisely if we give due consideration to the 
design of the study. Do we have a single group 
of observations, or do we have two or more 
groups of observations? Do these groups com-
prise independent or paired values? We should 
also be asking these questions when we test 
hypotheses about proportions.

9.3  Testing a hypothesis about  
a single proportion

9.3.1  Approach

In Section Section 4.6 we defined the proper
ties of the sampling distribution of a proportion.  
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9.3.2  Example

Suppose we are investigating the sex ratio in wild 
rabbits. In the present season, we notice that the 
sex ratio of live births is distorted in favour of 
females. Our records show that in a random 
sample of 297 live births, 167 were female. Is this 
a chance deviation or do we have evidence of 
some factor (e.g. a genetic mutation which pre-
disposes to higher embryonic mortality in males) 
affecting the sex ratio?

1.	 The null hypothesis is that the proportions of 
female and male live births in this wild rabbit 
population are identical and equal to 0.5. The 
alternative hypothesis is that they are unequal.

2.	 The proportion of females in the random 
sample of 297 live births is 167/297 = 0.562.

3.	 The test statistic is:

Test6
0 562 0 5 1 594

0 5 1 0 5 297
2 08=

− −
−

=
. . ( )

. ( . ) ( )
.

/

/

4.	 Referring to Table A.1, we find P  =  0.0375 
(corrected to two decimal places, P = 0.04).

5.	 There is evidence to reject the null hypothesis 
at the 5% level of significance.

6.	 The 95% confidence interval for the true  
proportion of female live births is 0 562 1 96 0 562 1 0 562 297 0 51 0 62. . . ( . ) ( ) . .± − =/ to

0 562 1 96 0 562 1 0 562 297 0 51 0 62. . . ( . ) ( ) . .± − =/ to .

Although P =  0.04 leads us to reject the null 
hypothesis, the lower limit of the confidence 
interval only just exceeds 0.5, an equal propor-
tion of males and females. We should be cautious 
in putting too much emphasis on the conclusion 
that some factor is affecting the sex ratio. This is 
an example where the confidence interval leads 
us to be more circumspect about the significance 
test’s implications.

9.4  Comparing two proportions: 
independent groups

9.4.1  Introduction

Hawkins et al. (1993) investigated the effect of 
neonatal castration on the prevalence of diabetes 

We know that its distribution is approximately 
Normal if the sample size, n, is large; that the 
sample proportion, p, is an unbiased estimate of 
the population proportion, π ; and that the stand-
ard error of the proportion is estimated in the 
sample by p p n( )1− / . We use this information 
to test a hypothesis about the proportion of suc-
cesses in a single population using the following 
approach:

1.	 Specify the null hypothesis that the propor-
tion of successes in the population is equal to 
a specified value, π1. Specify the alternative 
hypothesis  −  generally, that the population 
proportion is not equal to π1.

2.	 Collect the sample data and classify each indi-
vidual as a success or a failure.

3.	 Calculate the test statistic, which approxi-
mates the Normal distribution. It is

Test
p

n

n

6

1

1 1

1
2

1
=

− −

−

π

π π( )

where p is the observed proportion of suc-
cesses and n is the number of individuals in 
the sample. The vertical lines to either side of 
the difference in proportions indicate that we 
ignore the sign of the difference. We subtract 
1/(2n), called a continuity correction, from this 
difference to make an allowance for the fact 
that we are using the continuous Normal dis-
tribution to approximate the discrete Bino-
mial distribution. The effect of the continuity 
correction is negligible when the sample size 
is large.

4.	 Determine the P-value by referring the calcu-
lated value of the test statistic, ignoring its 
sign, to the table of the Standard Normal dis-
tribution, Table A.1.

5.	 Make a decision whether or not to reject the 
null hypothesis according to the P-value. You 
may have decided that you would reject the 
null hypothesis if P < 0.05.

6.	 Calculate the confidence interval for the 
proportion of successes. The 95% confidence 
interval for π is given by p p p n± −1 96 1. ( )/  
(see Section 4.7).
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table has r rows and c columns. We show the 
general form of a 2 × 2 contingency table in Table 
9.1a (a numerical example is shown later in  
Table 9.2).

9.4.3  Comparing two proportions 
in a 2 × 2 table using the 
Chi-squared test

(a)  Rationale

If there is no association between the outcome 
and the group, then we would expect the propor-
tions of successes to be the same in the two 
groups. Thus, we can compare the two propor-
tions by investigating the association between 
the two factors that define the contingency table 
(Table 9.1a). A factor, in this context, is a variable 
with two or more mutually exclusive categories 
into which individuals can be classified. Our null 
hypothesis is that there is no association between 
the two factors (outcome, group), equivalent to 
the null hypothesis that the two population pro-
portions are equal.

In order to calculate the test statistic using this 
approach, we have to compare the frequency we 
observe in each cell of the contingency table with 
the frequency we would expect in that cell if the 
null hypothesis were true. The null hypothesis is 
that the proportions of successes in the two pop-
ulations are equal. If the null hypothesis is true, 
we would expect the overall proportion of suc-
cesses, (a + b)/n, to apply to each of groups 1 and 
2. The expected successes under the null hypoth-
esis are (a + c) × (a + b)/n in group 1 and (b + d) 
× (a + b)/n in group 2. The remaining numbers in 
each group are expected failures. Thus, we can 
build a table so that in each cell of the table there 
is an expected frequency corresponding to each 
observed frequency (see Table 9.1b).

If we find that the discrepancy between the 
observed and expected frequencies is large, we 
reject the null hypothesis. We decide whether the 
discrepancy is large by calculating the appropri-
ate test statistic which approximates the Chi-
squared distribution (see Section 3.5.4(b)); we 
refer the test statistic to Table A.4 to determine 
the P-value.

in mice. Mice were randomly allocated to receive 
either active (castration) or control (sham opera-
tion) treatment. The investigators were inter-
ested in comparing, after a given time period, the 
proportions of diabetic animals (‘successes’) in 
these two independent groups of observations.

In an analysis of this sort, we regard these 
groups as samples from two populations, and use 
the sample proportions, p1 and p2, to estimate the 
population proportions, π1 and π2. We can test the 
hypothesis that the population proportions are 
the same in one of two ways.

•	 We can use the Chi-squared test, described in 
Section 9.4.3, which is based on the Chi-
squared distribution (see Section 3.5.4).

•	 The other way of proceeding is to use the 
Normal approximation to the Binomial distri-
bution (see Section 3.6.1), and derive a test sta-
tistic that approximates a Normal distribution.

As you will probably be using the computer to 
compare the two proportions, we do not feel that 
it is necessary to give details of both approaches. 
We expand on the Chi-squared test because it 
can be extended to compare more than two pro-
portions (see Section 9.5) and other investiga-
tions of categorical data. In fact, the two tests 
produce identical P-values; the square of the 
test statistic approximating the Normal distribu-
tion is equal to the test statistic used in the Chi-
squared test.

9.4.2  The 2 × 2 contingency table 
(the fourfold table)

We can summarize the results of the example 
introduced in Section 9.4.1 by presenting the fre-
quencies in what is called a two-way frequency 
or contingency table. If each row (say) designates 
an outcome (success or failure), and each column 
(say) designates one of the two groups, then each 
of the four cells of the table contains the number 
or frequency of animals in a particular group that 
have the stated outcome. This type of contin-
gency table is often called a fourfold or two-
by-two (2 × 2) contingency table because it has 
two rows and two columns. The r × c contingency 
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Table 9.1  The 2 × 2 table of 
frequencies.

(a)  Observed frequencies.

Outcome

Group
Row  

marginal total1 2

Success a b a + b

Failure c d c + d

Overall total

Column marginal  
total

n1 = a + c n2 = b + d n = a + b + c + d

Observed proportion  
of successes

p
a

a c
1 =

+ p
b

b d
2 =

+
p

a b
a b c d

= +
+ + +

(b)  Expected frequencies in the four cells of the table.

Outcome

Group

1 2

Success ( )( )a c a b
n

+ + ( )( )b d a b
n

+ +

Failure ( )( )a c c d
n

+ + ( )( )b d c d
n

+ +

(b)  Assumptions

In the Chi-squared test of association in a con-
tingency table with two columns (e.g. defining 
groups) and two rows (e.g. defining outcomes), 
we assume that each individual is represented 
only once (i.e. the individual belongs to only one 
group and has only one outcome). In the experi-
mental situation, we have the responsibility of 
randomly allocating each individual to one of  
the two levels of the factor defining the groups 
(e.g. in the diabetic mice example, to castrated or 
sham-operated). In the observational situation, 
the attribution of an individual to a group is 
determined for us (e.g. the Leptospira example 
in Section 9.2). The data are collected in the form 
of frequencies which indicate the number of  
successes and failures in each sample. The Chi-
squared test of association in a 2  ×  2 table is 
invalid if the expected frequency in any one of 
the four cells is less than 5. If this is the case, we 
employ Fisher’s exact test which does not make 
any assumptions; it involves calculating the exact 
probability of our particular table arising if we 

consider all possible 2 ×  2 tables that have the 
same marginal totals as our observed table. These 
calculations are cumbersome and are best left to 
computer analysis.

(c)  Approach

1.	 Specify the null hypothesis that the two popu-
lation proportions are equal or, equivalently, 
that there is no association between the two 
factors of interest. Specify the alternative 
hypothesis, generally that the two proportions 
are not equal or that there is an association 
between the two factors.

2.	 Collect the data. Display the observed fre-
quencies in a 2  ×  2 contingency table (see 
Table 9.1a).

3.	 Use the appropriate command(s) to select the 
Chi-squared test on the computer. If perform-
ing the test by hand, calculate the frequencies 
that you would expect in every cell of the 
table if the null hypothesis is true. Note that 
the expected frequency for each cell is the 
product of the observed frequencies for the 
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computer output does not provide this infor-
mation, you can calculate the 95% confidence 
interval as (p1 − p2) ± 1.96 SE(p1 − p2), i.e.

( ) .
( ) ( )

p p
p p

n
p p

n
1 2

1 1

1

2 2

2

1 96
1 1

− ±
−

+
−

9.4.4  Example

The non-obese diabetic (NOD) mouse develops 
an autoimmune diabetes that can be used as a 
model for human juvenile insulin-dependent dia-
betes. In the colony of Hawkins et al. (1993), the 
incidences for male and female NOD mice were 
24% and 73%, respectively. Hawkins et al. inves-
tigated the causes of this sex difference by con-
sidering the effect of early castration on the 
incidence of diabetes in male NOD mice. (The 
following is based on their findings.) Fifty mice 
were randomly selected from 100 male mice and 
were castrated 1 day after birth; they were com-
pared with the remaining 50 sham-operated 
mice. The mice were maintained for 140 days, and 
blood samples were collected biweekly starting 
at 42 days old. Diabetes was determined by three 
consecutive blood glucose levels greater than 
200 mg/dl. It was shown that neonatal castration 
more than doubled the incidence of diabetes 
(52%) when compared with controls (24%) at 
day 112. But is this difference significant?

1.	 The null hypothesis is that the proportions  
of mice with diabetes are equal in the con
trol and castrated populations. The alternative 
hypothesis is that they are not equal.

2.	 The data are displayed in Table 9.2a.
3.	 Table 9.2b shows the expected frequency cor-

responding to each observed frequency for 
each of the four cells of the table.

Test
O E

E
7

2

2 2

0 5

26 19 0 5
19

12 19 0 5
19

24 31 0

=
− −

=
− −

+
− −

+
− −

∑ ( . )

( . ) ( . )

( .55
31

38 31 0 5
31

2 2237 2 2237 1 3629 1 3629

7 17

2 2) ( . )

. . . .

.

+
− −

= + + +
=

row marginal total and the column marginal 
total for that cell, divided by the observed 
overall total (see Table 9.1b). Then calculate 
the test statistic, which approximately follows 
the Chi-squared distribution. It is

Test
O E

E
7

20 5
=

− −∑ ( . )

,with one degree of freedom

where O and E represent the observed and 
expected frequencies of a given cell, and  
the vertical lines surrounding them indicate 
that you take the absolute value of their dif
ference, i.e. ignore its sign. The calculation 
{(|O − E| −  0.5)2/E} is computed for each cell 
of the table, and the summation is over all  
four cells of the table. The 0.5 in the numera
tor is known as Yates’ correction, a continu
ity correction included to remove bias. This  
bias arises because we are assuming the test 
statistic approximates the continuous Chi-
squared distribution although it has a discrete 
distribution.

A formula for calculating the test statistic, 
which is identical to Test7 when the contin-
gency table has only two rows and two 
columns, but quicker to evaluate, is

Test
n ad bc n

a b c d a c b d
7

20 5
′ = − −

+ + + +
( . )

( )( )( )( )

4.	 Obtain a P-value, usually from the computer 
output, but you can derive it by referring the 
calculated value of the test statistic to the 
table of the Chi-squared distribution, Table 
A.4. The test statistic has 1 degree of 
freedom − equivalent to the number of rows 
minus 1 (i.e. 2 −  1 =  1) times the number of 
columns minus 1 (i.e. 2 − 1 = 1).

5.	 Make a decision whether or not to reject the 
null hypothesis. Usually, we reject the null 
hypothesis of no association if P < 0.05. Remem-
ber, in an observational study, association does 
not imply causation, so that even if you reject 
the null hypothesis, you cannot necessarily 
infer that the effect on one factor is actually 
caused by a particular level of the other factor.

6.	 Calculate the relevant confidence interval for 
the difference in the two proportions. If the 
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Alternatively, we could have used the formula

Test7

2100 26 38 12 24 50
38 62 50 50

7 17′ = × − × −
× × ×

=( )
.

4.	 We refer the value 7.17 to Table A.4 with 1 
degree of freedom, and find that 
0.001 < P < 0.01 (in fact, a computer analysis, 
the results of which are shown in Display 9.1, 
gives P = 0.007).

5.	 The data are not consistent with the null 
hypothesis that the true proportions of mice 
with diabetes are equal in the control and cas-

Display 9.1  SPSS computer 
output for analysis of mice 
castration data from Table 9.2a.

Chi-square test

Value df
Asymp. sig. 

(2-sided)
Exact. sig. 
(2-sided)

Exact sig. 
(1-sided)

Pearson 8.319* 1 0.004
  Chi-square
Continuity 7.173 1 0.007
  correction†
Fisher’s exact 0.007 0.004
  test
No. of valid cases 100

* Zero cells (0.0%) have an expected count of less than 5. The minimum expected count 
is 19.00.
† Computed only for the 2 × 2 table.

Table 9.2  Frequencies of mice with and without diabetes.

(a)  Observed frequencies (based on summary data 
from Hawkins et al., 1993).

Castrated 
mice

Control 
mice Total

With diabetes 26 12 38
Without diabetes 24 38 62
Total 50 50 100

(b) Expected frequencies.

Castrated mice Control mice

With diabetes 50 38
100

19
× = 50 38

100
19

× =

Without diabetes 50 62
100

31
× = 50 62

100
31

× =

NB Identical expected frequencies in the rows of (b) arise 
because the group sizes in (a) are equal.

trated groups. There is evidence to indicate 
that neonatal castration is linked with the inci-
dence of diabetes in NOD mice. This suggests 
that the difference in incidence of diabetes in 
male and female mice may be associated with 
the concentration of testosterone in the blood 
circulation.

6.	 The 95% confidence interval for the true dif-
ference in the proportions of mice with diabe-
tes in the two groups is

( ) .
( ) ( )

( . . )

.
. .

p p
p p

n
p p

n
1 2

1 1

1

2 2

2

1 96
1 1

0 52 0 24

1 96
0 52 0 4

− ±
−

+
−

= −

±
× 88
50

0 24 0 76
50

0 28 1 96 0 0929

0 098 0 462

+
×

= ± ×
=

. .

. . .

. .to

Thus, although castration is associated with an 
increased incidence of diabetes, estimated as 
28%, the true effect could be as low as 10% or 
as high as 46%.

9.5  Testing associations in an r × c 
contingency table

9.5.1  Introduction

We can extend the Chi-squared test of associa-
tion in a 2  ×  2 table to the larger contingency 
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Test
O E

E
r c

8

2

1 1

=
−

− −

∑ ( )

( )( ) ,with degrees of freedom

where O and E represent the observed and 
expected frequencies of a given cell, and the 
summation is over all r × c cells of the table. 
Each expected frequency is evaluated under 
the assumption that the null hypothesis is true; 
for a given cell, it is calculated as the product 
of the marginal totals for that cell, divided  
by the overall total. You will note that the 
components of this test statistic are almost 
identical to those of Test7, the test statistic for 
the 2 × 2 table; the discrepancy is in the con-
tinuity correction (the subtraction of 0.5 in the 
numerator). The continuity correction has a 
negligible effect on the test statistic when the 
sample sizes are large, and is only necessary in 
the 2 × 2 table.

4.	 We determine the P-value, if it is not con-
tained in the computer output, by referring 
the test statistic to the table of the Chi-squared 
distribution, Table A.4.

5.	 Make a decision whether or not to reject the 
null hypothesis by considering the P-value, 
often rejecting the null hypothesis if P < 0.05. 
Note that since we do not estimate an effect, 
we cannot calculate a confidence interval for it.

9.5.4  Example

Following staff training in insemination tech-
niques in cattle, an artificial insemination centre 
compared three training methods. The cows  
were randomly assigned to a particular training 
method, each cow was inseminated once and the 
proportion of cows that became pregnant in each 
group is given in Table 9.3. Is there any evidence 
for believing that the training methods show dif-
ferent proportions of pregnant animals?

1.	 The null hypothesis is that the true propor-
tions pregnant are the same for the three 
methods. Another way of expressing this  
null hypothesis is that there is no associa
tion between the training methods and the 

table which has r rows and c columns, where 
either r or c or both are greater than 2. We are 
interested in determining whether the two vari-
ables that define the rows and columns of the 
table are related in some way. We test the null 
hypothesis of no association by calculating a Chi-
squared test statistic.

9.5.2  Assumptions

We assume that the two variables are categori
cal, and that the data contained in the cells  
of the contingency table are frequencies. The  
data should be independent in that no animal/
individual may be represented more than once 
in the table. No more than 20% of the cells of 
the table should have an expected frequency 
(calculated under the null hypothesis) whose 
value is less than 5. If necessary, we can reduce 
the contingency table in size by combining 
appropriate rows and/or columns to accommo-
date this latter assumption. Note that this require-
ment means that all cells must have expected 
frequencies that are at least 5 in a 2 × 2 table (see 
Section 9.4.3(b)). Alternatively, many statistical 
packages now have the facility to perform a  
Fisher’s exact test on frequencies contained in a 
contingency table that has more than two rows 
and/or columns; this test does not make any 
assumptions.

9.5.3  General approach

The approach to testing the null hypothesis, that 
there is no association in the population between 
the two categorical variables (i.e. factors) defin-
ing the r × c contingency table, is almost identical 
to that for the 2 × 2 table (see Section 9.4.3).

1.	 Specify the null hypothesis and the alternative 
hypothesis.

2.	 Collect the data and present them in a contin-
gency table.

3.	 Select the Chi-squared test on the computer, 
or, by hand, calculate the test statistic which 
approximates the Chi-squared distribution. It is
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Section 4.7) in each case. These quantities are 
shown in Table 9.3.

Further analysis by Chi-squared tests compar-
ing the proportions of pregnancies obtained by 
any two methods shows that Method III has a 
significantly lower proportion of cows pregnant 
than Method I (test statistic  =  8.66, P  =  0.009 
after employing Bonferroni’s correction for mul-
tiple comparisons, see Section 8.6.3) but no other 
comparison is significant (P > 0.05).

9.5.5  Particular circumstances

We have explained the general approach to ana-
lysing r ×  c contingency tables in Section 9.5.3. 
There are, however, special considerations that 
we should afford the analysis when at least one 
of the categorical variables defining the table is 
ordered in some way (e.g. body condition score 
or age categories), or when we want to combine 
contingency tables. We only outline some of the 
approaches to the analyses in the different cir-
cumstances described below. You can obtain 
details in more advanced statistical texts, such as 
Armitage et al. (2002).

•	 The 2 × c contingency table in which the vari-
able defining the columns comprises c ordered 
categories. We are interested in comparing the 
proportions of successes in c ordered groups, 
and would expect any differences in the pro-
portions, if they exist, to be related to the 
ordering. We can perform the Chi-squared test 

pregnancy state of the cows. The alternative 
hypothesis is that the proportions pregnant 
are not equal.

2.	 The data are displayed in Table 9.3.
3.	 The expected frequencies, which are required 

if the test is to be performed by hand, are 
shown in brackets in Table 9.3. The expected 
number of pregnant cows for Method I is 
(353 × 728)/(993) = 258.80, and so on for the 
other methods. The test statistic is

Test8

2 2

2

275 258 80
258 80

78 94 20
94 20

192 187 68
18
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+
−

+
−

( . )
.

( . )
.
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4.	 Referring this value to the Chi-squared distri-
bution (see Table A.4) with (3 − 1)(2 − 1) = 2 
degrees of freedom, we obtain 0.001 < P < 0.01 
(a computer analysis gives P = 0.008).

5.	 Hence we have evidence to reject the null 
hypothesis that the proportions pregnant  
are the same for the three methods. In this 
instance, because one of the variables is binary, 
we can estimate the proportion of successes 
for each of the methods, and evaluate the con-
fidence interval for the true proportion (see 

Table 9.3  Observed frequencies of 
pregnant and non-pregnant cows 
(expected frequencies in brackets).

Method I Method II Method III Total

Pregnant 275 (258.8) 192 (187.7) 261 (281.5) 728
Not pregnant   78 (94.2)   64 (68.3) 123 (102.5) 265
Total 353 256 384 993

Proportion 0.78 0.75 0.68 0.73
  pregnant
95% CI for true 0.73 to 0.82 0.69 to 0.80 0.63 to 0.73
  proportion

CI, confidence interval.
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9.6  Comparing two proportions: 
paired observations

9.6.1  Introduction

Sometimes we are interested in comparing two 
proportions when we have pairs of results on a 
binary variable. An analogy is the comparison of 
two means in related samples leading to the 
paired t-test (see Section 7.5).

Suppose our random sample comprises m 
animals, each animal being investigated in two 
ways. We observe whether the response for each 
member of a pair results in a success or a 
failure − the two possible outcomes of the binary 
variable of interest. For example, Schönmann  
et al. (1994) compared the efficiency of diagnosis 
of two methods to detect Tritrichomonas foetus 
in bulls. A sample was taken from each bull and 
classified by each of the two methods as positive 
(success) or negative (failure). The investigators 
determined the number of pairs in which both 
methods yielded a success, both methods were a 
failure, and where one was a success and the 
other a failure.

In Table 9.4a we use a general notation to 
show the frequencies of the four types of pairs 
from two samples. We exhibit the same results in 
a slightly different format in Table 9.4b. We use 
McNemar’s test to test the null hypothesis that 
the true proportions of successes using the two 
methods are equal. These are estimated by 
p1 = (e + f)/m in Method 1 and p2 = (e + g)/m in 
Method 2. Their difference, p1 − p2 =  (f − g)/m, 
focuses only on the discordant pairs, as does 
McNemar’s test statistic; the frequencies relating 
to the concordant pairs are of no relevance in the 
analysis. McNemar’s test is based on the observed 
frequencies, f and g, and their corresponding 
expected frequencies, calculated under the null 
hypothesis. These are incorporated into a test 
statistic, Σ{(O  −  E)2/E}, which approximately 
follows a Chi-squared distribution.

9.6.2  Assumptions

We assume there are two possible outcomes 
(success and failure) to the variable of interest, 

for trend to test the null hypothesis that there 
is no trend in the proportions.

•	 The r  ×  c contingency table in which one 
of the two variables defining the contingency 
table is ordered. Firstly, we assign scores to 
the categories of the ordered variable. Then we 
can evaluate a test statistic, approximating  
the Chi-squared distribution, that tests whether 
the mean scores of the ordered variable are 
the same in the different categories of the 
other variable. Alternatively, we can apply the 
non-parametric Wallis test (see Section 12.6) 
to compare the categories of the unordered 
variable.

•	 The r × c contingency table in which both of the 
variables defining the contingency table are 
ordered. We assign scores to the categories of 
each of the two variables, and then regress one 
set of variables on the other (see Chapter 10). 
Alternatively, we can calculate the non-
parametric Spearman’s rank correlation coef-
ficient (see Section 12.7) between the two 
variables.

•	 Frequencies are available for various groups 
in a number of 2 ×  2 contingency tables, each 
defined by the same two variables. These groups 
may represent different subgroups or strata of 
the population (e.g. different sexes or different 
age groups); alternatively, they may represent 
different studies, each investigating the rela-
tionship between the same two variables. We 
should like to know how best to use all the 
information to determine whether there is an 
association between the two variables. Do not 
be tempted to pool the frequencies in the cor-
responding cells of the tables, and thereby 
obtain a single 2  ×  2 table containing all the 
frequencies − you can come to quite the wrong 
conclusions. Instead, analyse the data using 
the Mantel–Haenszel method (details in, for 
example, Armitage et al., 2002) which com-
bines, in an appropriate manner, the informa-
tion from each table. This approach can also 
be extended to combine a number of r  ×  c 
tables. An alternative approach is to use  
logistic regression analysis (see Section 11.4) 
in which the association between a binary 
outcome and a number of exposure variables 
can be investigated.
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and that we observe the outcome on each 
member of a pair. The pair may comprise matched 
individuals, each assessed in one of two circum-
stances, or it may comprise the same individual 
assessed twice. McNemar’s test is inappropriate 
if the number of discordant pairs (f + g) is less 
than about 10.

9.6.3  Approach

1.	 Specify the null hypothesis that the propor-
tions of successes in the two populations are 
equal. Specify the alternative hypothesis, gen-
erally that the two proportions are unequal.

2.	 Collect the data and display them in a fre-
quency table, as shown in Table 9.4b.

3.	 Select McNemar’s test on the computer or, by 
hand, calculate the test statistic, which approx-
imately follows the Chi-squared distribution. 
It is

Test
f g

f g
9

21
=

− −
+

( )

.with one degree of freedom

Sometimes, you may find that McNemar’s test 
uses the related test statistic, Test9 , which 
approximates the Standard Normal distribu-

Table 9.4  Two layouts to show the 
frequencies of the four types of pair 
in paired samples when there are two 
possible outcomes − success and 
failure.

(a)  Observed frequencies.

Type

Outcome using method

Frequency1 2

1 Success Success e
2 Success Failure f
3 Failure Success g
4 Failure Failure h
Total m

(b)  Two-way contingency table of observed frequencies.

Method 1 Method 2

Total No. of pairsSuccess Failure

Success e f e + f
Failure g h g + h

Total no. of pairs e + g f + h m = e + f + g + h

tion. The 1 in the numerator of Test9 is a con-
tinuity correction which is subtracted from the 
absolute difference (without regard to sign) 
between f and g to adjust for approximating a 
discrete distribution by the continuous Chi-
squared distribution.

4.	 Obtain the P-value, either from computer 
output or by referring the test statistic to the 
table of the Chi-squared distribution, Table 
A.4, with 1 degree of freedom.

5.	 Make a decision whether or not to reject the 
null hypothesis by considering the P-value. 
Usually, we reject the null hypothesis if 
P < 0.05.

6. Calculate the confidence interval for the dif-
ference in the two proportions of successes, 
estimated by p1 =  (e +  f)/m in sample 1 and 
p2 =  (e + g)/m in sample 2. The approximate 
95% confidence interval for the true differ-
ence in the proportions is given by

f g
m m

f g
f g

m
−

± + −
−

1 96
1 2

.
( )

9.6.4  Example

In the example introduced earlier, Schönmann  
et al. (1994) compared two methods of culture of 
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In other words, although Claussen’s medium 
detected 74% of infected samples and the com-
mercial system detected 88%, a difference of 
14%, this difference could, with 95% certainty, 
be as low as 6% or as high as 23%. We must 
judge, in the particular circumstances, whether 
6% constitutes an important difference.

9.7  Chi-squared goodness- 
of-fit test

9.7.1  Introduction

We may be interested in establishing whether a 
set of observed data comes from a population 
that follows a particular theoretical distribution. 
The discrete or continuous distribution may be 
one of those to which we have already referred, 
such as the Binomial, Poisson or Normal (see 
Sections 3.4 and 3.5, but note that there are 
easier ways of establishing Normality, as dis-
cussed in Section 3.5.3(e)). Alternatively, it may 
reflect an expected distribution determined by 
the biological circumstances. Particular examples 
of these arise in genetics, where the assumed 
pattern of segregation of the alleles of a gene will 
lead to specific expectations of genotype (and 
perhaps phenotype) in the offspring.

The observed frequencies in each category of 
response (e.g. a genotypic class or an interval for 
a continuous variable) can then be compared 
with the number expected in that category if the 
data followed the theoretical distribution. This 
gives rise to a test statistic that approximates the 
Chi-squared distribution. Note that, in this text, 
we have not provided the equations for the Bino-
mial or Poisson distributions from which expected 
numbers can be derived; they can be found in, 
for example, Armitage et al. (2002).

9.7.2  Assumptions

In the goodness-of-fit test, we assume that the 
sample is representative of the population and 
the responses are independent and are catego-
rized into distinct classes or intervals. The 
approximation to the Chi-squared distribution is 

Tritrichomonas foetus in the washings of the 
prepuce of infected beef bulls to determine the 
best method for detection of the organism. In 
comparing the methods of culture, Claussen’s 
medium detected the organism in 61 of 83 
samples whereas a commercial system detected 
the organism in 73 of the same 83 samples.

1.	 The null hypothesis is that the true propor-
tions detected are the same using Claussen’s 
medium and the commercial system. The alter
native hypothesis is that the two proportions 
are different.

2.	 The data are displayed in Table 9.5.
3.	 The test statistic is

Test9

214 2 1
14 2

7 56=
− −

+
=

( )
.

This approximates the Chi-squared distribu-
tion with 1 degree of freedom.

4.	 Reference to Table A.4 gives 0.001 < P < 0.01 
(a computer analysis gives P = 0.006).

5.	 We have evidence to reject the null hypothe-
sis; we conclude that the commercial system 
has the ability to detect the greater proportion 
of organisms.

6.	 We estimate the proportions of organisms 
detected by Claussen’s medium and the com-
mercial system to be 61/83 = 0.735 and 73/83 = 
0.880, respectively. The approximate confi-
dence interval for the true difference in the 
proportions of organisms detected by the two 
methods, taking into account the pairings, is

14 2
83

1 96
1

83
14 2

14 2
83

0 1446 0 0892

0 055 0 234
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Table 9.5  Numbers of the organism, Tritrichomonas 
foetus, detected in bovine preputial washings using two 
different methods (reproduced from Schönmann et al., 
1994, with permission from BMJ Publishing Group Ltd).

Claussen’s 
positive

Claussen’s 
negative Total

Commercial positive 59 14 73
Commercial negative   2   8 10
Total 61 22 83
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1.	 The null hypothesis is that coat colour is 
determined by a single pair of alleles with 
co-dominance. If this is so, then the offspring 
would be expected to display coat colours in 
the ratio of 1 : 2 : 1. The alternative hypothesis 
is that coat colour is not determined by a 
single pair of alleles with co-dominance.

2.	 The data are displayed in Table 9.6.
3.	 The Chi-squared test statistic is

Test8

2 2 213
95

19
190

6
95

4 06= − + + − =( ) ( ) ( )
.

This approximates the Chi-squared distribu-
tion on (3 − 1) degrees of freedom. Note that, 
in this example, we have not had to estimate 
any parameters in order to calculate the 
expected frequencies.

4.	 Reference to Table A.4 gives P > 0.05 (com-
puter analysis gives P = 0.131).

5.	 There is insufficient evidence to reject the null 
hypothesis that coat colour is determined by 
a single pair of alleles with co-dominance.

It should be noted that, while this is a straight-
forward test of a simple segregation hypothesis, 
more complicated segregation involving multiple 
genes leads to complex hypotheses which are the 
domain of the trained geneticist (see Section 
15.6). Moreover, corrections need to be built into 
the analysis if the data are not a random selec-
tion because of potential biases. Nicholas (2010) 
covers these situations in more detail.

Exercises

The statements in questions 9.1 and 9.2 are either 
TRUE or FALSE.

poor if the expected frequency is less than 5 in 
more than 20% of the categories.

9.7.3  Approach

1.	 Specify the null hypothesis that the distribu-
tion of the variable in the population follows 
the specified theoretical distribution. The 
alternative hypothesis is that it does not.

2.	 Collect the data and display them in a fre-
quency table.

3.	 Calculate the expected frequency in each cat-
egory, and determine the test statistic, either 
by computer or by hand.

Test
O E

E
8

2

= −∑ ( )

where O and E represent the observed and 
expected frequencies in a given category, and 
the sum is over all categories. This test statistic 
approximates the Chi-squared distribution 
with degrees of freedom = (number of catego-
ries) − (number of parameters that have to be 
estimated in order to calculate the expected 
values) − 1. For example, the mean is the only 
parameter that has to be estimated in the 
Poisson distribution.

4.	 Obtain the P-value from the computer output 
or by referring the test statistic to Table A.4.

5.	 Make a decision whether or not to reject the 
null hypothesis. Usually, but not necessarily, 
we reject the null hypothesis if P < 0.05. Note 
that, since the null hypothesis does not relate 
to an effect of interest, which we would esti-
mate from the sample data, we do not calcu-
late a confidence interval.

9.7.4  Example

The offspring of a random sample of roan Short-
horn cattle were classified according to coat 
colour: red 82, roan 209 and white 89. Is this 
distribution inconsistent with the hypothesis  
that coat colour is determined by a single pair  
of alleles with co-dominance? Co-dominance 
implies that neither allele is dominant, and the 
heterozygote exhibits the effect of both alleles.

Table 9.6  Observed and expected frequencies of colour 
categories for Shorthorn cattle.

Colour

Observed 
frequency

O

Expected 
frequency

E O − E

Red   82 380/4 = 95   −13
Roan 209 380/2 = 190     19
White   89 380/4 = 95     −6
Total 380 380
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these 1375 cattle they discover there are 359 
dairy cows. Is there evidence that the proportion 
of dairy cows in their area differs from the 
national figure?

9.4  Medroxyprogesterone (MPA) used to be 
administered to bitches to suppress oestrus. 
Researchers investigated the effect of adminis-
tration of MPA to older bitches, aged 6 years  
and above, on the chance of them developing 
mammary nodules (early signs of mammary 
changes which may develop into malignant 
tumours). The results of their 4-year prospective 
cohort study indicated that 21 of the 33 bitches 
that received MPA developed mammary nodules 
on clinical examination, whereas 13 of the 39 
bitches that did not receive MPA developed 
mammary nodules (based on data from Støvring 
et al., 1997). Is there evidence for there being a 
greater risk of mammary nodules in the event of 
being administered MPA?

Display the data in a frequency table. Formu-
late the null hypothesis, and calculate the expected 
frequency in each cell of the table. Conduct a suit-
able analysis to test this null hypothesis.

9.5  Fasciola hepatica (liver fluke) infestation in 
beef cattle is present if the animal sheds F. hepat-
ica eggs. Welch et al. (1987) were interested in 
determining whether a positive reaction to an 
enzyme-linked immunosorbent assay (ELISA) 
could be used as an alternative test for liver fluke 
infestation. They investigated 143 calves from a 
number of beef cattle herds in central and south-
ern Louisiana. Of 55 calves that were ELISA 
positive, 39 were shedding eggs; of 53 calves that 
were shedding eggs, 14 were ELISA negative. 
Present these results in a contingency table, and 
use them to test the null hypothesis that the two 
procedures are equally effective in detecting 
liver fluke infestation.

9.6  One hundred and twenty young adult 
female Beagles were given 0.026–106 kBq pluto-
nium (239Pu) per kg by intravenous injection 
and compared with 63 comparable female con
trol Beagles with a view to determining whether 
239Pu deposit in bone affects the appearance of 
mammary tumours (based on Lloyd et al., 1995). 
Forty-five (71.4%; 95% CI 60.2% to 82.6%) of 

9.1  An investigator is interested in whether 
there is a breed-related basis for incidence of  
hip dysplasia in dogs. She selects samples of  
adult Greyhounds and adult German shepherd 
dogs. From pelvic X-ray examination, the number 
of animals having shallow or abnormal coxo-
femoral joints in each group is recorded. An 
appropriate test for the null hypothesis that there 
is no association between breed and the fre-
quency of hip dysplasia in the population is:
(a)	 the two-sample t-test.
(b)	 the F-test.
(c)	 the Chi-squared test for the difference in two 

proportions.
(d)	 McNemar’s test.
(e)	 the Chi-squared goodness-of-fit test.

9.2  In a study of the influence of artificial 
insemination on the occurrence of uterine infec-
tion in gilts, data were collected on the occur-
rence of bacteria in cervical swabs in two samples 
of gilts randomly allocated to either washing of 
the vulva or faecal contamination of the vulva 
before sham insemination. The results are pre-
sented in a 2 × 2 table; the proposed Chi-squared 
test for the difference in the proportions with 
uterine infection in the two groups:
(a)	 Is only valid if the observed frequency is 

greater than 5 in each cell of the table.
(b)	 Has degrees of freedom equal to 2.
(c)	 Tests the null hypothesis that there is no 

association in the population between 
uterine infection and the condition of the 
vulva.

(d)	 Tests the null hypothesis that there is a dif-
ference between the true proportions with 
uterine infection in the two groups.

(e)	 Is only valid if the data are Normally 
distributed.

9.3  The local National Farmers’ Union Com-
mittee have just received the Ministry of Agri-
culture, Forestry and Fisheries national figures 
for cattle numbers in England. They show that 
nationally the proportion of dairy cows in the 
national herd is 0.29. The committee express 
some surprise at this figure, which they believe 
does not reflect their area, and they decide to do 
their own local survey. They take a random 
sample of the cattle holdings in their area, and in 
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9.8  A pet shop owner was considering stock
ing a new cat collar that was fastened by a quick 
release catch which she considered a bit insecure. 
So she set up a small test to try to assess its secu-
rity compared with a regular collar fastened with 
a standard buckle. Thirty-five cats were randomly 
allocated to be fitted with one of the collars first 
and then after 2 months they were fitted with the 
alternative collar. After the second period of 2 
months, she registered how many of the collars 
had been lost or retained in place for each 
2-month test period. Six of the cats lost both 
types of collar, whereas eight of them retained 
both types and two cats retained the new collar 
but lost the standard collar.
(a)	 Draw up a contingency table to show the 

results.
(b)	 What percentage of cats lost the new collar 

and what percentage of cats lost the old 
collar?

(c)	 What is the name of the appropriate test to 
compare these percentages?

(d)	 What is the null hypothesis for this test?
(e)	 What is the two-sided alternative hypothesis 

for this test?
(f)	 Explain what is meant by the significance 

level of the test.
(g)	 How is the significance level related to the 

Type I error?
(h)	 The test result gave P = 0.0005. Interpret this 

P-value.
(i)	 On the basis of this result, what would the 

pet-shop owner have concluded?

the control dogs developed mammary tumours 
of any kind (benign or malignant) whereas 67 
(55.8%; 95% CI 46.9% to 64.7%) of the dogs 
given 239Pu developed mammary tumours of any 
kind. There was no significant difference between 
the percentages developing mammary tumours 
in the two groups (P = 0.06).
(a)	 Criticize the design of the experiment.
(b)	 Draw up a contingency table of the results.
(c)	 Which test should the authors have used  

to compare the percentages developing 
mammary tumours in the two groups?

(d)	 What are the assumptions underlying this 
test?

(e)	 Interpret the confidence interval for the  
percentage of control Beagles developing 
tumours.

(f)	 Using only the confidence intervals pro-
vided, is it possible to assess whether there 
is a significant difference between the per-
centages developing mammary tumours in 
the two groups? Explain your reasoning.

(g)	 The authors write ‘There were 45 controls 
(71.4%) with any tumor vs. 67 dogs (55.8%) 
given Pu (95% CI 46.9% to 82.6%).’ To what 
do the lower and upper limits of their ‘con-
fidence interval’ relate? Why is this not actu-
ally a confidence interval?

(h)	 Which single confidence interval would be  
a useful summary of the effect of 239Pu on 
mammary tumour development?

9.7  In a study to gauge the pregnancy rate in a 
large mob of sheep on an Australian sheep farm, 
a sample of 272 sheep were taken for ultrasound 
scanning. For ease of handling, they were taken 
in groups of eight and the number of pregnant 
animals recorded for each group. The results of 
the ultrasound scanning are shown in Table 9.7. 
At lambing 64% of the mob gave birth to lambs. 
The table shows the numbers of pregnant ewes 
per group of eight expected if they followed a 
Binomial distribution with π = 0.64. Ignoring the 
difference in the proportions pregnant between 
ultrasound scanning and parturition and assum-
ing that each ewe has the same chance of getting 
pregnant, use the Chi-squared analysis to assess 
whether the observed distribution conforms to 
the stated Binomial distribution.

Table 9.7  Thirty-four groups of eight sheep sampled for 
pregnancy status from a large mob of sheep in Australia.

No. of 
pregnant ewes 
per sample

Observed 
frequency of 
occurrence

Expected No. 
for a Binomial 

distribution 
(π = 0.64, n = 8)

0 0 0.010
1 1 0.136
2 3 0.850
3 4 3.019
4 7 6.708
5 9 9.537
6 7 8.480
7 2 4.308
8 1 0.955
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10.1  Learning objectives

By the end of this chapter you should be able to:

•	 Recognize a linear relationship in a scatter 
diagram.

•	 Interpret Pearson’s correlation coefficient.
•	 Explain the value of r2.
•	 Test the null hypothesis that the correlation 

coefficient is zero.
•	 Elaborate circumstances when it would  

be improper to calculate the correlation 
coefficient.

•	 Identify data sets that are suited to linear 
regression analysis.

•	 Distinguish between the outcome and explan-
atory variables in regression analysis.

•	 Check the assumptions in a linear regression 
analysis.

•	 Interpret a linear regression equation.
•	 Test the null hypothesis that the slope of the 

regression line is zero.
•	 Decide whether the regression line is a good 

fit to the data.
•	 Use the regression equation for prediction.
•	 Explain what is meant by regression to the 

mean.

10 Linear correlation  
and regression

10.2  Introducing linear correlation 
and regression

10.2.1  Types of variable

In Chapter 9 we examined the relationship 
between two categorical variables by considering 
the Chi-squared test of the null hypothesis that 
there is no association between the two variables. 
In this chapter, we describe the statistical tech-
niques that we can use to investigate the associa-
tion between two numerical variables, x and y, 
for example the chest girth and live weight of 
sheep. The two techniques that we discuss are 
linear correlation and linear regression analysis, 
each of which has a defined role.

10.2.2  Aims of linear correlation 
and regression

•	 In linear correlation we are concerned with 
determining whether there is a linear relation-
ship between two numerical variables, and 
with measuring the degree of that relationship. 
We would like to know how well a straight line 
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Conventionally, we plot the data with the 
x values on the horizontal axis and the y values 
on the vertical axis (see Figure 10.6 in which 
x = chest girth (cm) and y =  live weight (kg) of 
sheep). Every pair of observations is marked by 
a point on the diagram, and once we have plotted 
all the observations, we have a scatter of points. 
Hence the term scatter diagram is used to 
describe the visual display of the data.

Before we are to proceed with either linear 
correlation or linear regression analysis, we must 
consider the ‘curve’ that approximates the data 
points. This line does not ‘link’ all the points, but 
is a line drawn through the midst of the points, 
illustrating the general ‘drift’. If this is a straight 
line, then we can conclude that a linear relation-
ship exists between the two variables, and can 
use the appropriate statistical technique to inves-
tigate that relationship. For example, we may be 
interested in using the linear relationship to 
predict the live weight of sheep from their chest 
girth. (Sometimes it is possible to linearize a non-
linear relationship by transforming the data – see 
Section 13.2.2)

10.3  Linear correlation

10.3.1  Correlation coefficient

If we believe that there is a linear relationship 
between two numerical variables with a change 
in one variable being associated with a change in 
the other, we may be interested in determining 
the strength of that relationship. We do not actu-
ally draw the line in correlation analysis (this is 
part of regression analysis), but we can imagine 
the line that approximates the data most closely. 
Are the points in the scatter diagram close to this 
line or are they widely dispersed around it? Pro-
vided a linear relationship exists between the 
two variables, the closer the points are to the line, 
the stronger the linear association between the 
two variables.

We measure the degree of association by calcu-
lating Pearson’s product moment correlation coef­
ficient, usually just called the correlation coefficient 
or, sometimes, the linear correlation coefficient. 
It can take any value from −1 to +1.

describes the linear association between the 
two variables when one variable is plotted 
against the other (see Section 10.2.3). We 
derive a measure, called the correlation coef-
ficient, that reflects the closeness of the points 
to the straight line. In correlation analysis, we 
make no distinction between the two variables. 
We can interchange x and y, and we will still 
obtain the same value for the correlation 
coefficient.

•	 The purpose of linear regression is to describe 
the linear relationship between the two vari-
ables by determining the mathematical equa-
tion that relates the variables. We often use 
this equation to predict the value of one  
variable (called the outcome, dependent or 
response variable) from a value of the other 
variable (called the explanatory, independent 
or predictor variable). By convention, we take 
the y variable as the outcome variable, and 
the x variable as the explanatory variable. We 
assume that y is influenced by x (rather than 
the other way round). We cannot interchange x 
and y in regression analysis. As an example, 
think about the standard curve prepared for a 
protein assay; the colour development (y) is 
plotted against the predetermined concentra-
tions of protein (x), and the linear regression 
line is calculated as the line of best fit.

We give details of linear correlation and regres-
sion in the sections that follow. Note that the 
assumptions underlying the inferential proce-
dures are different in correlation and regression.

10.2.3  Scatter diagram

The first stage, though, before we attempt any 
formal analysis, is to plot the data on a rectangu-
lar co-ordinate system so we can see what, if any, 
is the relationship between the two variables. If 
we represent the two variables under investiga-
tion by x and y, then each of the n animals in 
our random sample has a value for the x variable 
and a value for the y variable. Our sample data 
therefore consist of a series of n independent 
pairs of x and y values, {(x1, y1), (x2, y2), (x3, y3), 
. . . , (xn, yn)}.
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•	 We have no linear association (i.e. the varia-
bles are uncorrelated) if the correlation coef-
ficient is zero; then there is a random scatter 
of points with no indication of a linear relation 
between the variables (Figure 10.1e). Note 
that a non-linear relationship between the 
variables can also give a correlation coefficient 
of zero (Figure 10.1f).

The closer the value of the correlation coeffi-
cient is to either of its extreme values, the stronger 
the relationship between the variables, and the 
nearer the points are to the line.

We give the rather cumbersome formula  
for calculating the correlation coefficient, even 
though you will probably use the computer to 
obtain its value. If we take a random sample of 

•	 We say that we have perfect correlation if all the 
points lie on the line; in this case, the value of the 
correlation coefficient takes one of its extreme 
values, either +1 or −1 (Figure 10.1a and b).

•	 We have positive correlation if the sign of the 
correlation coefficient is positive; then there is 
a direct relationship between the two variables 
so that as one variable increases in value, the 
other variable increases (Figure 10.1a) or there 
is a tendency for it to do so (Figure 10.1c).

•	 We have negative correlation if the sign of the 
correlation coefficient is negative; then there 
is an inverse relationship between the two 
variables so that as one variable increases in 
value, the other variable decreases (Figure 
10.1b) or there is a tendency for it to do so 
(Figure 10.1d).

Figure 10.1  Data with different correlation 
coefficients: (a) perfect positive association, 
r = +1; (b) perfect negative association, r = −1; 
(c) positive association, r = +0.86; (d) negative 
association, r = −0.85; (e) no association, r = 0; 
(f) no linear association, r = 0.
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least one of the two variables to be Normally 
distributed in the population (strictly, one vari-
able is Normally distributed with constant 
variance for any given value of the other 
variable).

•	 If we calculate the confidence interval for the 
population correlation coefficient by taking a 
random sample of pairs of independent obser-
vations {(x1, y1), (x2, y2), (x3, y3), . . . (xn, yn)} on 
two variables, x and y, then both x and y should 
be Normally distributed in the population 
(strictly, they should come from a bivariate 
Normal distribution, i.e. y is Normally distrib-
uted with constant variance for any given 
value of x, and x is Normally distributed with 
constant variance for any given value of y). If 
the data come from a bivariate Normal distri-
bution, the scatter of points will be elliptical, 
although this will be difficult to discern if the 
correlation coefficient is close to either of its 
extremes.

If the data are measured on an ordinal  
scale or if we are concerned about the distribu-
tional assumptions in other circumstances, we 
calculate Spearman’s rank correlation coeffi­
cient (see Section 12.7), a non-parametric equiv-
alent to Pearson’s product moment correlation 
coefficient.

(b)  Approach

1.	 Specify the null hypothesis that the popula-
tion correlation coefficient, ρ, is equal to zero. 
Generally, we adopt the alternative hypothe-
sis that the correlation coefficient is not equal 
to zero.

2.	 Collect the data and display them in a scatter 
diagram from which we can discern whether 
a linear relationship exists between the two 
variables. Check the assumption that at least 
one (or both if a confidence interval is to  
be calculated) of the variables is Normally 
distributed.

3.	 Calculate the sample correlation coefficient, 
preferably using a computer. You may find 
that the computer calculates a test statistic 
which has a t-distribution on n − 2 degrees of 
freedom.

n independent pairs of observations {(x1, y1), (x2, 
y2), (x3, y3), . . . (xn, yn)} on two numerical variables, 
x and y, then we estimate the correlation coeffi-
cient, ρ (the Greek letter rho), in the population 
by the sample correlation coefficient

r
x x y y

x x y y
=

− −

− −
∑

∑ ∑
( )( )

( ) ( )2 2

Note that:
•	 The correlation coefficient is independent of 

the units of measurement of the two variables, 
i.e. it is dimensionless.

•	 We can interchange x and y without affecting 
the value of the correlation coefficient.

•	 The correlation coefficient is only valid within 
the limits of the data in the sample.

•	 The absolute value of the correlation coeffi-
cient (i.e. ignoring its sign) tends to increase as 
the range of values of x and/or y increases, i.e. 
it tends to become more extreme (i.e. closer to 
+1 if positive and closer to −1 if negative).

10.3.2  Testing a hypothesis that 
the correlation coefficient is zero

The correlation coefficient provides a measure of 
the strength of the linear association between 
two variables. There is no linear association 
between the variables if the correlation coeffi-
cient is zero, and so testing the hypothesis that 
ρ = 0 is a useful exercise in correlation analysis. 
Note, however, that even if the correlation coef-
ficient is deemed significantly different from 
zero, this does not provide evidence of a causal 
relationship between the two variables; it merely 
indicates that they vary together.

(a)  Assumptions

There are certain assumptions that have to be 
satisfied if we are to test a hypothesis about the 
correlation coefficient, or determine the confi-
dence interval for it. In particular:

•	 Both of the variables, x and y, are numerical.
•	 The hypothesis test that the true population 

correlation coefficient is zero only requires at 
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zero. For example, we reject the null hypothesis 
at the 5% level of significance if r is greater than 
0.29, 0.20 and 0.16 for sample sizes of 45, 100 and 
150, respectively. Furthermore, even when the 
sample size is much smaller (20, say), the result 
of the test is significant for quite low values of r 
(P  <  0.05 if r  >  0.44). A statistically significant 
result indicates only that there is a linear rela-
tionship between the two variables. We need to 
gauge the importance of a significant result, and, 
clearly, we cannot do so by assessing the magni-
tude of the correlation coefficient.

Instead, we calculate the square of the correla­
tion coefficient, r2. It represents the proportion 
of the total variance in one variable that can  
be explained by or is attributed to its linear  
relationship with the other variable. It is usually 
multiplied by 100 and expressed as a percent
age. So, if the correlation coefficient obtained 
from a sample of size 45 is 0.30, from which  
we can deduce that the true correlation coeffi-
cient is significantly different from zero (P < 0.05), 
its square is 0.09. Hence, even though the test  
of the correlation coefficient is significant, only 
9% of the total variance of one variable is 
explained by its linear relationship with the other 
variable; the remaining 91% is unexplained by 
the relationship.

We advise you to calculate and interpret the 
value of r2 routinely whenever you estimate the 
correlation coefficient. It is a great aid to under-
standing the strength of the underlying linear 
relationship between the two variables.

(d)  Example

Jackson et al. (1996) developed a novel specific 
assay for measuring bone alkaline phosphatase 
activity, an enzyme which reflects bone metabo-
lism. They were interested to know whether this 
measure, the wheatgerm lectin precipitated bone 
alkaline phosphatase activity (wBAP), was cor-
related with an independent marker of bone  
formation, the carboxy-terminal propeptide of  
Type I collagen (PICP). Table 10.1 is based on 
the results they obtained from a random sample 
of 46 adult horses. The data are plotted in Figure 
10.2, a scatter diagram in which both of the axes 
have logarithmic scales (this is an example of 

The test statistic is

Test r
n

r
10 2

2
1

=
−

−
( )
( )

where r is the sample correlation coefficient, 
and n is the number of pairs of observations 
in the sample. It is not difficult to calculate 
Test10 by hand, but this is seldom required as 
there is a table (see Table A.6) that relates the 
values of r directly to the P-values.

4.	 Obtain the P-value, generally from the com-
puter output. You can refer r directly to Table 
A.6. Alternatively, you could refer Test10 to 
the table of the t-distribution, Table A.3, with 
n − 2 degrees of freedom.

5.	 Make a decision whether or not to reject the 
null hypothesis by considering the P-value. 
Usually, although not necessarily, we reject the 
null hypothesis if P < 0.05.

6.	 Calculate the confidence interval for the 
true correlation coefficient. Your computer 
package may do this automatically but, if not, 
we explain how to perform the calculation 
manually. Although the sampling distribution 
of r is not Normal, the distribution of a trans-
formed variable, z  =  0.5 loge{(1  +  r)/(1  −  r)}, 
follows the Normal distribution, and we use 
this information to enable us to calculate the 
confidence interval for ρ.

It can be shown that the approximate 95% 
confidence limits for z are z z n1 1 96 3= − −. /  
and z z n2 1 96 3= + −. / . We then back-
transform, by taking exponentials, to get a 
confidence interval for ρ. Thus, the approxi-
mate 95% confidence interval for ρ is
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(c)  Using the correlation coefficient as 
an aid to understanding

You should not rely solely on the magnitude of 
the correlation coefficient to judge the biological 
importance of the relationship between the two 
variables. You will see, if you look at Table A.6, 
that when the sample size is large we reject the 
null hypothesis that the population correlation 
coefficient is zero, even though the value of the 
sample correlation coefficient is quite close to 
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Figure 10.2  Scatter diagram of the relation-
ship between two measures of bone forma-
tion, bone alkaline phosphatase activity 
(wBAP) and Type I collagen concentration 
(PICP). Note that the variables are plotted 
on log scales (redrawn from Jackson et al., 
1996, with permission from Elsevier).

data transformation – see Section 13.2 – the two 
variables being log transformed to Normalize the 
data). The relationship appears approximately 
linear, and we calculate the sample correlation 
coefficient as r = 0.785. Note that r2 = 0.62, indi-
cating that a substantial proportion, 62%, of the 
variance in log PICP is explained by its linear 
relationship with log wBAP. In order to test the 
null hypothesis that the true correlation coeffi-
cient is zero we need to follow these steps:

1.	 We specify H0: there is no linear association 
between PICP and wBAP, i.e. ρ = 0; the alter-
native hypothesis is that ρ ≠ 0.

2.	 The data are displayed in Figure 10.2, which 
exhibits a positive linear relationship between 
the two variables when each is represented on 
a log scale. Separate histograms for log PICP 
and log wBAP reveal that each is approxi-
mately Normally distributed. Furthermore, 
the scatter of points suggests an ellipse, indi-
cating that the data on the log scales are 
approximately bivariate Normal.

3.	 r  =  0.785; note that we could calculate 
Test10 0 785 44 0 3838 8 41= =. ( ) ( . ) ./ .

4.	 When we refer 0.785 to Table A.6 with a 
sample size of 46, we find that 0.785 > 0.4742 
and that 0.785 > 0.4514 (the entries in the table 
for sample sizes of 45 and 50), so P <  0.001. 
Note that we also obtain P < 0.001 if we refer 
Test10 to Table A.3 with 46 − 2 = 44 degrees of 
freedom.

5.	 We have strong evidence to reject the null 
hypothesis.

6.	 z  =  0.5 loge(1.7846/0.2154)  =  1.0572. Hence 
z1 1 0572 1 96 43 0 7583= − =. . ./  and z2 1 0572 1 96 43 1 3561= + =. . ./

z2 1 0572 1 96 43 1 3561= + =. . ./ . Thus the 95% confidence 
interval for ρ is:

e
e

e
e

1 5166

1 5166

2 7122

2 7122

1
1

1
1

3 5567
5 5567

14 06

.

.

.

.

.

.
.

−
+

−
+

=

to

to
224

16 0623
0 64 0 88

.
. .= to

Table 10.1  Two measures of bone activity in 46 adult 
horses (based on summary data from Jackson et al., 1996, 
with permission from Elsevier).

wBAP 
(μg/l)

PICP 
(U/l)

wBAP 
(μg/l)

PICP 
(U/l)

wBAP 
(μg/l)

PICP 
(U/l)

20 190 30 400 52 1005
31 186 36 380 61 1100
31 190 50 405 61 1070
22 205 54 370 57 810
18 210 31 490 59 720
16 290 35 470 63 740
18 306 39 470 65 700
55 1000 36 580 62 750
28 170 36 540 61 700
32 180 40 520 70 570
33 300 36 700 71 1300
38 303 34 800 88 1050
34 320 41 800 90 1100
21 360 48 850 90 1200
41 340 50 980 110 940

34 360
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•	 The observations are not independent; for 
example, when there is more than one obser-
vation on some or all of the experimental units.

•	 In the presence of outliers (see Section 5.9.3) 
when one or two extreme observations may 
distort the value of r (Figure 10.3a).

•	 The data consist of subgroups of animals if 
these subgroups differ in their average response 
to one of the variables (Figure 10.3b).

10.4  Simple (univariable)  
linear regression

10.4.1  Equation of the  
regression line

In simple linear regression analysis, we describe 
the relationship between two numerical varia-
bles, x and y, by determining the straight line that 
approximates the data points on a scatter diagram 
most closely. We regard the x variable as one 
whose values can be measured without error or 
which are predetermined by the experimenter; 
so, for example, it may represent doses, ages, 
weights or concentrations at predetermined 
values. On the other hand, the y variable is a 
random variable which is subject to experimental 
variation, such as systolic blood pressure, haemo-
globin concentration or colour intensity. We 
assume that y is dependent on x (rather than the 
other way round) so that if we change the value 
of x, this will lead to a change in the value of y.

•	 We call y the outcome, dependent or response 
variable and we represent this on the vertical 
axis of the scatter diagram.

The correlation coefficient is significantly dif-
ferent from zero, and even the lower limit of the 
confidence interval is indicative of a fairly strong 
linear association between the two measures; it 
would seem that the novel measurement of bone 
alkaline phosphatase activity indeed reflects the 
metabolic activity of bone tissue.

10.3.3  Misuse of the  
correlation coefficient

Unfortunately, the correlation coefficient is a fre-
quently misused statistic. You must remember 
that a significant correlation coefficient does not 
provide evidence of a causal relationship between 
two variables. For example, just because the 
annual pet food consumption in the UK is cor-
related with the number of air-miles flown by UK 
residents, this does not suggest that pets are using 
food as a comfort substitute for absentee owners! 
Another example of misuse is when the correla-
tion coefficient is relied upon to assess the 
repeatability of a technique or the agreement 
between two methods (see Section 14.4.2(c)).

We have discussed the assumptions underlying 
the test of significance and the calculation of  
the confidence interval for the correlation coef-
ficient (see Section 10.3.2(a)). Clearly, you must 
ensure that these assumptions are satisfied in the 
relevant circumstances, but remember that you 
should not even calculate the correlation coeffi-
cient when:

•	 There is an underlying relationship between 
the two variables, but it is not linear (see Figure 
10.1f).

Figure 10.3  Two circumstances in which the 
correlation coefficient should not be calcu-
lated: (a) data with outliers, and (b) data from 
subgroups.
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in x, i.e. it describes by how much y changes on 
average when x increases by one unit.

α and β are the parameters that define the line. 
They are both called regression coefficients 
although, frequently, you may find that this 
description is reserved only for β.

We have to estimate the two parameters α and 
β (by a and b, respectively) from our random 
sample of n pairs of observations, {(x1, y1), (x2, y2), 
(x3, y3), .  .  .  , (xn, yn)}, in such a way that the line 
‘fits’ the points as closely as possible.

•	 Generally, we approach the problem by requir-
ing the deviations of the points from the line 
to be as small as possible. We take the devia-
tion of a point from the line as the vertical 
distance of the point from the line, i.e. in the 
direction parallel to the y axis. We look at 
deviations in this direction because we believe 
that only the y variable is subject to experi-
mental variation; we regard the x variable as 
measured without error. Each deviation, the 
difference between an observed value of y and 
its predicted or fitted value for a given value of 
x, is called a residual (Figure 10.4).

•	 Since some of the points are above the line and 
the corresponding residuals are positive, and 
others are below the line with negative residu-
als, if we were to add the residuals, the positive 
and negative values would cancel each other 
out. We overcome this difficulty by determin-
ing a and b in such a way that the sum of the 

•	 We call x the explanatory, independent or pre­
dictor variable or the regressor and we repre-
sent this on the horizontal axis. Since there is 
only one explanatory variable, the regression 
is usually referred to as simple linear regres­
sion, sometimes described as univariable. We 
discuss multivariable regression models, when 
there is more than one explanatory variable, 
as well as centring and scaling, which involve 
transformations of the explanatory variable to 
aid interpretation, in Chapter 11.

We could draw ‘by eye’ what we believe to be 
the ‘line of best fit’ but this would be a subjective 
approach and not very satisfactory. Instead, we 
use an equation to describe the straight line rela-
tionship between x and y. This equation defines 
a particular mathematical model which, in general 
terms, is a simplified representation of a real-world 
situation or process that occurs in the population. 
If we imagine that, for each value of x, there is a 
population of y values, the equation would be:

Y xpop = +α β

where:

•	 Ypop is the predicted, expected, fitted or mean 
value of y for a given value of x.

•	 α is the constant term that represents the inter-
cept of the line; it is the value of y when x is 
equal to zero.

•	 β is the slope or gradient of the line and repre-
sents the mean change in y for a unit change 

Figure 10.4  Scatter diagram showing the fitted 
regression line (solid line) and residuals (dashed 
lines).

y

x

Linear regression line
Y = a + bx
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•	 a is the estimated intercept of the line.
•	 b is the estimated slope.

We can draw the line on the scatter diagram 
by hand if we choose two or, preferably (just to 
play safe), three values of x along the range of 
values of x. By substituting these values of x in 
the equation of the line, we can calculate the 
corresponding predicted Y values. We plot these 
points on the scatter diagram and join them by a 
straight line. The line must not be extrapolated 
beyond the limits of the data.

10.4.2  Example

It is necessary from time to time to estimate the 
body weight of sheep; for example, for accurate 
drug dosing or for predicting market dates. 
Unfortunately, weighing sheep is difficult, so it is 
helpful to be able to estimate the sheep’s weight 
from some other, more easily obtained, measure. 
A study was conducted to investigate the rela-
tionship between the sheep’s live weight and  
its chest girth. Table 10.2 shows the measure-
ments of a random sample of 66 sheep studied 
whose chest girth lay between 60 and 90 cm 
(based on data from Warriss and Edwards, 1995). 
Figure 10.6a is a scatter diagram that shows the 
relationship between the live weight (kg) and 

squared deviations is as small as possible (i.e. 
is minimized). Remember, the square of both 
negative and positive numbers is always posi-
tive. Hence the terminology, the method of 
least squares, to describe the technique for 
estimating α and β.

We generally do not need to concern ourselves 
with the formulae for calculating a and b since 
we will probably use the computer or the appro-
priate function buttons on a calculator. However, 
if we have to resort to hand calculations, the 
minimization procedure produces the following 
statistics

b
x x y y

x x
a y bx=

− −

−
= −∑

∑
( )( )

( )2
and

Then we estimate the best fitting line, called 
the regression equation of y on x, from our 
sample of observations as

Y a bx= +

where (Figure 10.5):

•	 Y is the estimated predicted (fitted) or mean 
value of y for a given value of x.

y

x

1

Linear regression line
Y = a + bx

0
0

b

a

Figure 10.5  Estimated linear regression 
line showing the intercept, a, and the slope, 
b.



	 Linear correlation and regression 	 135

Figure 10.6  Scatter diagram of (a) sheep 
chest girth and live weight, and (b) the same 
data with a fitted regression line as discussed in 
Section 10.4.2. A large solid circle (•) shows 
duplicate points, a cross (×) shows triplicate 
points and an open circle ( ) shows a calcu-
lated point (reproduced from Warriss and 
Edwards, 1995 with permission from the Vet 
Record).

LW CG LW CG LW CG LW CG LW CG LW CG

30 76 20 63 28 77 29 73 18 62 19 67
24 71 28 70 25 71 30 74 28 70 27 69
20 63 22 65 27 72 21 64 27 71 31 74
25 69 28 72 28 74 28 74 30 73 23 67
25 67 25 67 25 65 48 89 28 72 22 63
19 62 20 62 20 64 17 60 22 69 35 75
35 77 35 78 35 78 46 86 48 90 44 84
37 84 43 81 32 73 43 84 31 73 31 73
39 78 36 81 33 80 44 82 39 80 45 86
43 88 41 87 36 82 43 80 33 79 35 78
38 78 36 76 35 74 39 81 34 74 39 76

Table 10.2  Live weight (LW) in kg and chest 
girth (CG) in cm of 66 sheep (reproduced 
from Warriss and Edwards, 1995 with 
permission from the Vet Record).
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regression analysis and to assess the influence 
exerted by particular points on the estimated 
parameters.

(a)  What are the assumptions?

Before you go on to make inferences about the 
parameters that define the regression equation, 
or use the equation to predict values of y from 
x, you should be aware of the assumptions that 
underlie linear regression (Figure 10.7). They are 
that:

•	 The relationship between x and y is linear.
•	 x is measured without error.
•	 For each value of x, the population values of 

y, from which we take our sample, are Nor-
mally distributed.

•	 For each value of x, the population mean of 
the distribution of values of y lies on the line, 
Ypop = α + βx.

chest girth (cm) in the 66 sheep. The estimated 
regression equation of live weight (y) on chest 
girth (x) is shown by a computer analysis (Display 
10.1) to be

Y x= − +46 04 1 04. .

The estimated slope indicates that a sheep’s 
live weight increases on average by 1.04 kg as its 
chest girth increases by 1 cm. This estimated regres-
sion line is valid only in the specified range of 
values of chest girth (i.e. 60–90 cm) and should not 
be extrapolated beyond these limits. We have drawn 
the line by substituting three values of chest girth 
(65, 75 and 85 cm) into the equation to obtain the 
three corresponding values of live weight (21.56, 
31.96 and 42.36 kg, respectively), plotting these 
points and joining them (Figure 10.6b).

10.4.3  Regression diagnostics

Regression diagnostics are the procedures that 
we use to check the underlying assumptions of a 

ANOVA

Sum of 
squares df

Mean 
square F Sig.

Regression 3972.930 1 3972.930 562.113 0.000*
Residual 452.342 64 7.068
Total 4425.272 65

Coefficients

Coefficients

t Sig.

95% confidence 
interval for B

B
Std 

error
Lower 
bound

Upper 
bound

(Constant) −46.04 3.281 −14.03 0.000* −52.60 −39.48
CHESTGTH 1.04 0.044 23.64 0.000* 0.95 1.13

Dependent variable: LIVEWT.
Note that the entries for B in the penultimate and final rows of the table repre-
sent the intercept, a, and the slope, b, in the estimated regression equation. Coef-
ficients (and CI) are corrected to two decimal places.
* Indicates P < 0.001.

Display 10.1  SPSS computer output for 
the simple linear regression analysis of the 
sheep girth data described in Table 10.2.

Predictors: (Constant), CHESTGTH.
Dependent variable: LIVEWT.
* Indicates P < 0.001.
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•	 The relationship between x and y is linear by 
plotting the residuals against the values of x. If 
the relationship between x and y is linear, the 
residuals should be randomly scattered around 
zero, and there should be no apparent trend  
in the residuals for increasing or decreasing 
values of x (Figure 10.8a). Alternatively, we 
can simply plot y against x and observe whether 
the approximating curve is a straight line.

•	 The residuals are Normally distributed by pro-
ducing either a histogram or a Normal plot 
(see Section 3.5.3(e)) of the residuals (Figure 
10.8b).

•	 The variability of the residuals is constant 
throughout the range of fitted values of y by 
plotting the residuals against the fitted values. 
If the assumption is satisfied, we should expect 
a random scatter of residuals (Figure 10.8c). If 
we can discern a funnel or cone effect, with  
the variability of the residuals appearing to 
increase (or decrease) with increasing fitted 
values, then the constant variance assumption 
is not satisfied.

(c)  What do we do if the assumptions 
are not satisfied?

The linearity and independence assumptions  
are the most crucial. Sometimes a simple trans-
formation of x or y will achieve linearity (see 
Section 13.2.2). If the linearity assumption is in 
doubt, we may decide that another form of rela-
tionship, such as a quadratic, is more appropriate 

•	 The population variance of the distribution of 
values of y is constant for each value of x.

•	 The observations are independent; this implies 
that each individual is represented once in the 
random sample.

(b)  How do we check the assumptions?

It is essential to check the underlying assump-
tions in linear regression analysis; this is an often 
overlooked process. Although we can sometimes 
get an indication of whether the assumptions are 
satisfied by plotting the data and drawing the 
best fitting line, the most efficient approach is to 
study the residuals. Remember, for each value 
of x, the residual is the difference between its 
observed and predicted values of y. We can only 
obtain the residuals once we have estimated  
the parameters of the line using the sample data. 
You may have to request the residuals from your 
computer package, although many packages 
produce them automatically.

If the assumptions underlying linear regres-
sion are satisfied, then, in addition to the require-
ments that x is a variable measured without error 
and the observations are independent, the residu-
als are Normally distributed with a mean of zero, 
and their variability is constant throughout the 
range of the fitted values of y. We can check 
assumptions by producing appropriate plots of 
the residuals. In particular, using the sheep girth 
data discussed in Section 10.4.2 for illustrative 
purposes, we can verify that:

Figure 10.7  Diagram illustrating assump-
tions underlying regression analysis.

Y1

Y2

xx1 x2

y
Normal distribution
Mean = Y2

Variance = σ2

Normal distribution
Mean = Y1

Variance = σ2

Regression line
Ypop = a + bx
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with the analysis. We should be aware, however, 
that the estimates of the standard errors and the 
P-values may be affected by a failure to satisfy 
the assumptions. Alternatively, and this is the 
only option if there are gross departures from  
the assumptions, we take an appropriate trans-
formation (see Section 13.2), either of x or of y 
or of both of them. For example, we often find 
that a logarithmic transformation of the x vari-
able is suitable. We then repeat the analysis by 
calculating another regression line of y on the 
transformed x, and check that the assumptions 
underlying this new line are satisfied.

(d)  Identifying outliers and  
influential points

An outlier is an observation that does not belong 
to the main body of the data. Such an observa-
tion may adversely affect the validity of the 
assumptions underlying a regression analysis. If 
the outlier is an influential point, then it has a 
large effect on one or more of the estimates of 
the regression parameters and/or their standard 
errors. We can establish whether or not a point 
is influential by estimating the regression param-
eters both with and without the point, and 
observing the effect, if any, on each of the esti-
mates. This is a form of sensitivity analysis in that 
we are assessing how sensitive our linear regres­
sion equation is to individual observations.

We may be able to identify an outlier if it has 
one or both of the following:

•	 A large residual, the residual being the differ-
ence between the observed and predicted 
values of the outcome variable, y, for that indi-
vidual. We can use the residual plots described 
in Section 10.4.3(b) to identify outliers.

•	 High leverage, which implies that an individu-
al’s value of x for a particular value of y is a 
long way from the mean of the x values. It is 
suggested that any point which has a leverage 
greater than 4/n, where n is the number of 
pairs of observations in the sample, is regarded 
as having high leverage (being disparate from 
the mean leverage of 2/n) and should be 
investigated.

than a straight line (see Section 11.3.1(d)). A 
simple linear regression analysis would then be 
inappropriate.

If the residuals are not Normally distributed 
and/or do not have constant variance, we have 
two choices. Provided there are only moderate 
departures from the assumptions, we can proceed 

Figure 10.8  Diagrams used to check the assumptions in a 
linear regression analysis of the sheep data discussed in 
Section 10.4.2: (a) linearity, (b) Normality, and (c) constant 
variance. A large solid circle (•) shows duplicate points and 
a cross (×) shows triplicate points.
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In addition, there are a number of statistics 
that provide an overall measure of influence for 
each point. One of the most well known of these 
is Cook’s distance which yields, for each point, 
a standardized measure of the change in the 
parameters of the regression equation if the par-
ticular point were omitted. If Cook’s distance is 
greater than one, the associated point should be 
scrutinized as it may well be influential. Compre-
hensive statistical software will provide output 
containing the residual, leverage and Cook’s dis-
tance for each point, so that we can examine 
them and investigate points that are flagged by 
these measures.

10.4.4  Residual variance and the 
ANOVA table

Corresponding to each observation is a residual, 
which is the difference between the observed 
value of y and its estimated predicted or fitted 
value, Y, where Y = a + bx. The variance of the 
residuals is estimated in a sample of size n by

s
y Y

n
res
2

2

2
=

−

−
∑( )

( )

and is usually called the residual mean square or 
the residual variance. The residual variance is 
incorporated into the formulae used for testing 
hypotheses about the parameters of the line and 
for calculating confidence intervals.

Instead of determining the residual variance 
using the formula given by sres

2 , we can use the 
residual mean square in the computer-generated 
analysis of variance (ANOVA) table (see Section 
8.5.2).

Justification

In the ANOVA table for linear regression analysis, 
the total variation of y is partitioned into two com-
ponents: the variation that is explained by the linear relation-
ship of y on x, and the residual variation that is unexplained 
by the relationship. To understand this dichotomy, consider 
what happens if there is a perfect positive relationship 
between x and y; then every point lies on the line, and all the 
variation in y is explained by the relationship. This is an ideal 
circumstance; more usually, y tends to increase as x increases. 

Thus, only some of the variation in y occurs because of 
the relationship between y and x, and this is the variation 
explained by the relationship. The remainder of the variation 
in y, that which is left over or residual, is unexplained by 
the relationship. Since the mean squares in an ANOVA  
table represent variances, the residual variance is the mean 
square of the source of variation that is unexplained by the 
regression.

The source of variation in the ANOVA table that is 
explained by the regression is sometimes called that which is 
due to regression, explained by regression or simply regres-
sion; the source of variation that is unexplained by the regres-
sion is sometimes called that which is unexplained or residual. 
We show the ANOVA results for the sheep girth data in the 
ANOVA table in Display 10.1. From this table, we can see 
that the residual variance is estimated as 7.068 kg2.� 

10.4.5  Assessing goodness-of-fit

The usual way of establishing whether the line is 
a good fit is to determine the proportion of the 
total variation in y which is explained by the 
linear relationship of y on x; it is often denoted 
by R2 and is sometimes called the coefficient 
of determination. This proportion is the sum of 
squares explained by the regression divided by 
the total sum of squares, both sums of squares 
being obtained from the ANOVA table. In simple 
linear regression, it is the square of the correlation 
coefficient, r2 (see Section 10.3.2(c)).

In the ANOVA table in Display 10.1, the  
proportion of the variation explained by the 
regression is (3972.930)/(4425.272) = 0.898. Thus, 
approximately 90% of variation in the sheep’s 
live weight is explained by its linear relationship 
with chest girth; this indicates that the line is a 
good fit in the specified range. Note that the esti-
mated correlation coefficient between the sheep’s 
live weight and chest girth is the square root of 
this quantity, i.e. r = =0 898 0 95. . .

10.4.6  Investigating the slope

(a)  Approach

Once we have determined the equation of the 
best fitting line, we usually proceed to investigate 
the parameters that define the line. Invariably, 
our primary interest lies with the slope of the 
line. The slope shows by how much y changes on 
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5.	 Make a decision whether or not to reject the 
null hypothesis; usually, but not necessarily, 
reject H0 if P < 0.05. Note that when there is 
no linear relationship between the two varia-
bles, both the slope, β, and the correlation 
coefficient, ρ, are equal to zero.

6.	 Derive the confidence interval for the true 
slope, β. If the computer output does not 
contain this information, you can calculate the 
95% confidence interval as

b t b± 0 05. ( )SE

where t0.05 is the critical value or percentage 
point (giving a tail area probability of 0.025  
in each tail) obtained from the table of the 
t-distribution with n −  2 degrees of freedom, 

and SE res( ) ( )b s x x= −∑ 2 .

(b)  Example

In the sheep girth example of Section 10.4.2:

1.	 The null hypothesis is that the true slope, β, of 
the linear regression of live weight on chest 
girth is zero. The alternative hypothesis is that 
it is not zero.

2.	 The data are displayed in Figure 10.6b in 
which the best fitting line, Y = −46.04 + 1.04x, 
is drawn. The assumptions underlying the 
regression analysis have been investigated in 
Section 10.4.3 by studying the residuals dis-
played in Figure 10.8, and are valid.

3.	 A typical computer output which shows both 
the estimated regression coefficients and the 
test statistic (equal to (1.043)/(0.044) = 23.70) 
is shown in the Coefficients table in Display 
10.1. Note that we could also use the F-ratio 
in the ANOVA table in Display 10.1, which 
has a value of 562.11, to test the null hypoth-
esis. Apart from rounding errors, t2 = F.

4.	 The P-value (i.e. Sig. = 0.000) from the com-
puter output in both the ANOVA table and 
the Coefficients table in Display 10.1 indicates 
that P <  0.001. We could obtain this P-value 
by referring the value of 23.64 to Table A.3 of 
the t-distribution with 64 degrees of freedom 
(df), or the value of 562.11 to Table A.5a of 

average as we increase x by one unit. If there is 
no linear relationship between x and y, then as 
we increase x by one unit, the value of y is equally 
likely to increase or decrease, i.e. its average is 
zero. Thus, we can test the null hypothesis that 
the true slope, β, is zero if we want to decide 
whether or not a linear relationship exists. The 
approach is:

1.	 Specify the null hypothesis that the true 
slope, β, is zero. Specify the alternative hypoth-
esis, generally, that the slope is not equal to 
zero.

2.	 Collect the data and display them in a scatter 
diagram. Determine the best fitting line, 
Y = a + bx, where Y is the estimated fitted value 
corresponding to a given value of x, and the 
statistics, a and b, estimate the parameters, α 
and β, respectively. Check the assumptions 
underlying linear regression by studying the 
residuals (see Section 10.4.3).

3.	 Select the appropriate test on the computer 
or calculate the test statistic by hand. This 
test statistic follows the t-distribution and is 
given by 

Test
b

b
11 =

SE( )
 with n − 2 degrees of freedom 

where SE res( )
( )

b
s

x x
=

−∑ 2
, and sres is the 

standard deviation of the residuals.
The alternative approach is to refer to the 

ANOVA table in regression analysis (see 
Section 10.4.3) which is used to test the same 
null hypothesis, namely that β is zero. Then 
the test statistic is the F-ratio which is the 
‘due to regression’ mean square divided  
by the residual mean square; it follows the 
F-distribution with 1 degree of freedom in the 
numerator and n −  2 degrees of freedom in 
the denominator. Note that the two tests 
produce the same P-value since the square of 
Test11 is equal to the statistic derived from the 
ANOVA table.

4.	 Determine the P-value. Usually the computer 
will do this for you. Alternatively, you can 
refer your test statistic to the table of the 
t-distribution (see Table A.3) or F-distribution 
(see Table A.5), as appropriate.



	 Linear correlation and regression 	 141

girth of 73.2 cm would be expected on average to 
weigh 30.09 kg (i.e. if x1 = 73.2, Y1 = −46.04 + 1.04 
× 73.2 = 30.09).

We have to recognize, however, that because 
we only have a sample of observations, there is 
sampling error associated with this estimated 
mean predicted value. It is possible to quantify 
the error and therefore calculate a confidence 
interval for the mean predicted value. The for-
mulae are not easy and we refer you to Armitage 
et al. (2002) for details.

Sometimes we wish to determine a region, 
over the range of values of x, within which we 
expect the true regression line to lie with a certain 
probability (say, 0.95). This confidence band, 
region or interval for the line is obtained, usually 
on the computer, by determining the 95% confi-
dence intervals for the mean predicted values of 
y for various values of x. Each confidence inter-
val has an upper limit above the regression line, 
and a lower limit below the regression line. The 
required band is obtained by connecting all the 
upper limits and, similarly, all the lower limits 
(Figure 10.9). The confidence band is generally 
narrower in the middle of the range of values of 
x than at the extremes, reflecting the fact that we 
have less confidence in the prediction of the 
mean of the y-values as we move towards the 
extremes.

It may be that you see a wider band illustrated 
(Figure 10.9). This relates to the scatter of the 
data points and is the region that contains 

the F-distribution with 1 df in the numerator 
and 64 df in the denominator.

5.	 The data do not appear to be consistent with 
the null hypothesis (P  <  0.001), which we 
therefore reject. We have evidence which indi-
cates that the true slope of the line is not equal 
to zero.

6.	 The 95% confidence interval for the true 
slope, shown in Display 10.1, is from 0.95 to 
1.13 kg/cm. We can calculate it as

1 04 2 00 0 044. . .± ×

where the value 2.00 is the approximate per-
centage point from the t-distribution (see 
Table A.3) with 66 − 2 = 64 df. This confidence 
interval excludes zero, as expected, since the 
slope is significantly different from zero.

10.4.7  Predicting y from a given x

We often use the regression line, once we have 
established that there is a linear relationship 
between x and y (i.e. that the slope is significantly 
different from zero), to predict the mean value 
of y that we expect for individuals or animals 
who have a specified value of x, say x1. To obtain 
the predicted value is straightforward; we substi-
tute the value of x in the equation, Y = a + bx, so 
that our estimated mean predicted value is 
Y1 = a + bx1. In the sheep girth example of Section 
10.4.2, we predict that sheep which have a chest 

Figure 10.9  Ninety-five per cent confi-
dence limits for the regression line (the 
inner limits on either side of the regres-
sion line) and the individual points (the 
outer limits). A large solid circle (•) shows 
duplicate points and a cross (×) shows 
triplicate points. (Data from Table 10.2.)
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Exercises

The statements in questions 10.1 and 10.2 are 
either TRUE or FALSE.

10.1  Pearson’s correlation coefficient:
(a)  Must always be positive.
(b)  Cannot be calculated if at least one of the 

two variables is not Normally distributed.
(c)  Measures how well a straight line describes 

the relationship between two variables.
(d)  Is zero if there is no relationship between the 

two variables.
(e)  Measures the average change in one variable 

for a unit increase in the other.

10.2  A simple linear regression equation:
(a)  Measures the degree of the relationship 

between two variables.
(b)  Predicts the dependent variable from the 

independent variable.
(c)  Describes the straight line relationship 

between two variables.
(d)  Assumes that both of the variables are Nor-

mally distributed.
(e)  Makes no distinction between the two 

variables.

10.3  Lake et al. (unpublished data) obtained 
blood samples on a random sample of 124 
donkeys in the Ngamiland area of Botswana, 
some of which were suffering from dourine, a 
venereal disease of Equidae caused by Trypano-
soma equiperda. The researchers were interested 
to know whether the enzyme-linked immunoad-
sorbent assay (ELISA) and complement fixation 
test (CFT) results on these donkeys were associ-
ated, and whether it would be possible to describe 
a linear relationship between them. High values 
of both CFT and ELISA are indicative of dourine. 
The output for the regression analysis that they 
performed is shown in Figure 10.10 and Display 
10.2. Use this output to answer, with full explana-
tions, the following questions.
(a)  Do you think, by examining the scatter  

plot (Figure 10.10a), that it is reasonable to 
assume a linear relationship between CFT 
and ELISA?

approximately 95% of the individual population 
values (for a 95% confidence band).

10.5  Regression to the mean

The concept of regression to the mean derives 
from Sir Francis Galton’s studies of inheritance 
in 1889. He observed that, in many instances, 
although one might expect that sons would 
inherit the characteristics of their fathers, the 
measurements on sons tend to be closer to those 
of the general population of men than to those 
of their fathers. This phenomenon can be  
demonstrated by considering the relationship 
between a man’s height and his son’s height. 
Although, as we would expect, tall fathers tend 
to have tall sons, when we look at the heights of 
the sons of tall fathers, they are, on average, less 
than those of their fathers. There is a regression, 
or going back, of the sons’ heights towards the 
average heights of all men. The regression coef-
ficient, when we regress the son’s height on the 
father’s height, is substantially less than one. It is 
important to recognize that the regression to the 
mean height does not relate to a particular son, 
but rather to the whole group of sons.

Another instance in which regression to the 
mean can be demonstrated is when a variable is 
measured on two occasions on every animal in a 
group. For example, suppose we want to investi-
gate the effects of a beta-blocking agent on tachy-
cardia (elevated heart rate) in cats. We select for 
our trial a group of cats whose resting heart rates 
are all above the upper limit of normal, i.e. above 
180 beats/min. Were we to record their heart rates 
a second time, before treatment, we should most 
likely find that their average heart rate was lower 
than before, perhaps even within the reference 
range; this is due to regression to the mean. However, 
if, unaware of this phenomenon, we had treated 
the animals and then measured their heart rates, 
we could falsely attribute the decrease in heart 
rate to the action of the drug. Regression to the 
mean is therefore especially relevant in screening 
procedures. A way of dealing with regression to 
the mean in such circumstances is to ensure that 
sufficient measurements are taken on each animal 
to obtain a true reflection of its condition.



Figure 10.10  Diagrams for checking the 
assumptions of linear regression analysis 
of data relating to a complement fixa-
tion test and an ELISA test for dourine 
infection (data described in Exercise 10.3 
from Lake et al., unpublished).

Model summary*

Model R R square
Adjusted 
R square

Std. error 
of the 

estimate

1 0.737† 0.543 0.539 0.974267

ANOVA*

Model
Sum of 
squares df

Mean 
square F Sig.

1  Regression
Residual
Total

137.467
115.802
253.269

1
122
123

137.467
0.949

144.824 0.000†,‡

Coefficients*

Model

Coefficients

t Sig.

95% confidence 
interval for B

B
Std 

error
Lower 
bound

Upper 
bound

1  (Constant)
CFT

1.207
1.982E-02

0.096
0.002

12.513
12.034

0.000‡

0.000‡
1.016
0.017

1.398
0.023

* Dependent variable: ELISA.
‡ Indicates P < 0.001.
E-02 means ×10−2.

Display 10.2  SPSS computer output 
of data described in Exercise 10.3 and 
Figure 10.10a.

* Dependent variable: ELISA.
† Predictors: (Constant), CFT.

* Dependent variable: ELISA.
† Predictors: (Constant), CFT.
‡ Indicates P < 0.001.



144	 Statistics for Veterinary and Animal Science

(c)  The regression line was fitted to the data and 
estimated as

Y x= +2 064 0 069. .

where Y is the estimated predicted rugal fold 
thickness and x is body weight. What addi-
tional information does the slope of the line 
give you?

(d)  What fraction of the total variability of rugal 
fold thickness (y) is explained by the dog’s 
body weight (x)?

(e)  What do you conclude from your answer to 
(d)?

10.5  The number of cases of lameness in cattle 
in relation to fortnightly rainfall (mm) was 
recorded on a farm in England in 1977 (quoted 
in Thrusfield, 2005, and used with permission). It 
was of interest to determine whether there was 
a linear relationship between the two variables. 
The SPSS computer output of a linear regression 
analysis of the data is shown in Display 10.3.
(a)  What is the correlation coefficient between 

the number of lameness episodes and the 
amount of rainfall in a fortnight?

(b)  In the regression analysis, which is the outcome 
variable and which is the explanatory varia-
ble? Why were they chosen in this way?

(b)  What is the estimated correlation coefficient 
between CFT and ELISA?

(c)  What is the estimated linear regression line?
(d)  Is the regression line a good fit?
(e)  Are the assumptions underlying the regres-

sion analysis satisfied (Figure 10.10b–d)?
(f)  What can you conclude from the results of 

the ANOVA table?
(g)  Interpret the slope of the linear regression line.
(h)  Is the slope of the regression line signifi-

cantly different from zero?

10.4  Several disease states in dogs lead to 
alterations of the thickness of the gastric rugal 
folds. However, there may be a relationship 
between rugal fold thickness and body size, and 
this must be investigated before rugal fold thick-
ness can be used as a determinant of disease. 
Jakovljevic and Gibbs (1993) studied 29 dogs 
without known gastric lesions. The measure-
ments (in mm) of the dogs’ mucosal folds were 
determined radiographically and then related to 
their body weights (kg). The correlation coeffi-
cient between rugal fold thickness and body 
weight was 0.71 (P < 0.001).
(a)  Explain what the correlation coefficient is 

measuring.
(b)  What does the P-value tell you?

(a) Predictors: (Constant), rainfall.

Model summary

Model R R square
Adjusted 
R square

Std. error 
of the 

estimate

1 0.158(a) 0.025 −0.016 14.04089

Coefficientsa

Model

Coefficients

t Sig.

95% confidence 
interval for B

B
Std 

error
Lower 
bound

Upper 
bound

1  (Constant)
Rainfall

31.235
0.081

4.878
0.103

6.403
0.782

0.000‡

0.442
21.167
−0.133

41.303
0.294

a Dependent variable: lameness.
‡ Indicates P < 0.001.

Display 10.3  SPSS output for data 
described in Exercise 10.5.
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(f)  What assumption(s) is(are) made in perform-
ing the hypothesis test for the Pearson cor-
relation coefficient?

(g)  What effect on the correlation coefficient 
would you expect to observe if the range of 
values of the heart rate was greater than 
125–225 beats/min?

10.7  The following summarizes the results of a 
study (based on Chiappe et al., 1999) to assess 
the potential values of free serum osteocalcin  
or bone Gla protein (BGP) to reflect changes of 
bone turnover in Thoroughbred horses. Levels  
of osteocalcin were analysed in serum samples of 
54 clinically normal animals aged between 8 and 
36 months. Serum BGP was measured by an in-
house-developed double antibody radioimmuno
assay using bovine antigen. Differences between 
males and females were found to be significant 
in horses aged between 24 and 36 months, with 
higher values in females of 18.75  ±  5.00 ng/ml 
against 14.43 ± 10.47 ng/ml in the males. Correla-
tion coefficients between age and serum BGP 
were r  =  −0.598 (P  <  0.001) for males and 
r = −0.807 (P < 0.001) for females. A significant 
negative relationship could be established between 
these two parameters in males during the growth 
period. The regression equation between serum 
BGP (ng/ml) and age (months) for males was 
age = 65.14 − 1.68 BGP.
(a)  Criticize the following statement with respect 

to its statistical content: ‘Differences between 
males and females were found to be signifi-
cant in horses aged between 24 and 36 
months, with higher values in females of 
18.75 ± 5.00 ng/ml against 14.43 ± 10.47 ng/ml 
in the males’. You should be able to list at 
least three mistakes or omissions.

(b)  Criticize the regression equation quoted in 
the last sentence before (a).

(c)  Explain what −1.68 is in the regression equa-
tion, and interpret its meaning.

(d)  According to the estimated regression, a horse 
that has BGP  =  0 ng/ml will be aged 65.14 
months. This does not make any sense because 
a horse will never have BGP  =  0 ng/ml – 
comment.

(c)  What is the estimated linear regression 
equation?

(d)  Interpret both the estimated slope of this 
line and its associated confidence interval.

(e)  What is the null hypothesis that relates to the 
slope? What are the test statistic and the P-
value for the test of this null hypothesis? 
What do you conclude from this result?

(f)  Does the regression line fit the data well? 
Explain your answer.

10.6  Approximately 80% of the avian biomass 
(the total living biological material of a biologi-
cal community or group in a given area) in the 
Antarctic region is composed of Macaroni  
penguins (Eudyptes chrysolophus), which are 
thought to be significant consumers of the marine 
food resources required by several species 
including the Antarctic fur seal (Arctocephalus 
gazella). Investigators were interested in knowing 
whether there was a linear relationship between 
the heart rate (beats/min) of a Macaroni penguin 
and its metabolic rate (i.e. the mass-specific rate 
of oxygen consumption in ml/min/kg). If there 
was, they hoped to provide estimates of energy 
expenditure that could give the investigators an 
indication of food consumption. They analysed 
the data from each of 24 penguins which were 
exercised on a variable speed treadmill. The esti-
mated correlation coefficient (based on Green  
et al., 2001) for one of the penguins whose heart 
rate lay in the range 125–225 beats/min was 0.904 
(P < 0.001).
(a)  What are the units of measurement of the 

correlation coefficient?
(b)  In general, what happens to the penguin’s 

rate of oxygen consumption as its heart rate 
increases?

(c)  What is the null hypothesis that relates to the 
P-value that has been provided?

(d)  Interpret the 95% confidence interval for 
the correlation coefficient which is estimated 
as being from 0.703 to 0.971. (For practice, 
you could calculate this 95% confidence inter-
val using the formula in Section 10.3.2(b).)

(e)  How much of the variation in oxygen con-
sumption can be attributed to its linear rela-
tionship with heart rate?
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11.1  Learning objectives

By the end of this chapter you should be able to:

•	 Explain the difference between a univariable 
and a multivariable regression model.

•	 Explain the reasons for performing a multiple 
linear regression analysis.

•	 Describe how to choose which explanatory 
variables to include in a multiple regression 
model and how to code these variables if they 
are categorical.

•	 Explain how to centre and scale an explana-
tory variable and what is achieved by doing so.

•	 Explain when and how to include an interac-
tion term in a multiple regression analysis.

•	 Conduct a valid multiple linear regression analy-
sis, given the appropriate computer software.

•	 Test the assumptions underlying a multiple 
linear regression analysis.

•	 Explain the principles of maximum likelihood 
estimation.

•	 Identify a generalized linear model.
•	 Explain the circumstances in which a multivari-

able logistic regression analysis is indicated.
•	 Interpret the output from a logistic regression 

analysis.
•	 Explain the circumstances in which a Poisson 

regression analysis is indicated.
•	 Interpret the output from a Poisson regression 

analysis.
•	 Distinguish between various regression methods 

for analysing clustered data.

11 Further regression 
analyses

11.2  Introduction

In the last chapter we introduced you to the con-
cepts involved in univariable (i.e. simple) linear 
regression where a numerical outcome variable 
is linearly related to a numerical explanatory 
variable. The regression equation describing the 
relationship defines a particular mathematical 
model which, as we explained in Chapter 10, is a 
simplified representation of a real-world situa-
tion or process that occurs in the population. This 
simple univariable model can be extended in a 
number of ways. For example, we may include 
more than one explanatory variable, either 
numerical or categorical, in the model. Strictly, it 
is then a multivariable regression model although 
it is more commonly referred to as a multiple 
regression model. Furthermore, we may have an 
outcome variable that is not numerical.

Such models often conform to the unified 
framework of a generalized linear model (GLM). 
In this chapter, we introduce you to the concepts 
underlying this type of model and to maximum 
likelihood estimation, which is the process gener-
ally used to estimate the parameters of the GLM. 
This is a growing area of statistics created not 
necessarily by more complex study designs, but 
by the ready availability of computer software 
which makes tackling such analyses within the 
scope of many more people. What follows is an 
introduction to the common models, and an indi-
cation of how they can be analysed. There are 
many issues that need to be considered in these 
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tation is afforded the other partial regression 
coefficients. The partial regression coefficients 
are obtained by the method of least squares,  
i.e. minimizing the sum of the squared residuals 
(a residual being the difference between an 
observed and a fitted value of y), as in univari
able regression. The regression coefficients are 
estimated in the sample by b1, b2, b3, .  .  . , bk, 
respectively, and α is estimated by a. The esti-
mated regression line is thus

Y a b x b x b x b xk k= + + + + +1 1 2 2 3 3 …

where Y is the estimated mean value of y.
We do not feel that it is necessary to give the 

formulae for estimating the coefficients or their 
standard errors since, invariably, you will use the 
computer to perform a multiple regression ana
lysis. We outline the procedures involved, noting 
the similarity to simple linear regression and 
laying emphasis on the underlying concepts.  
You can obtain details of the analysis, and of the  
modifications to multiple regression, in more 
advanced texts such as Allen (1997), Draper and 
Smith (1998) and Kleinbaum et al. (2008).

(b)  Uses

The main reasons for performing a multiple 
regression analysis are:

•	 To determine which explanatory variables are 
important predictors of the outcome variable, 
and the extent to which they influence the 
outcome variable.

•	 To be able to study the relationship between 
the outcome variable and each of the explana-
tory variables whilst controlling for the effect 
of the other explanatory variables in the 
equation.

•	 To predict the value of the outcome variable 
from the explanatory variables, using the optimal 
equation which relates y to the x values.

As we pointed out in Section 8.5.3, we can 
use multiple regression methodology instead of  
analysis of variance (ANOVA) techniques to 
compare means in different groups. If there are 
various categorical factors of interest, each of 

analyses, and you should therefore consider 
seeking expert statistical advice if you are to 
embark on them yourself.

11.3  Multiple (multivariable) linear 
regression

11.3.1  Multiple linear  
regression equation

(a)  Explanation

Section 10.4 was concerned with the linear rela-
tionship of a dependent variable, y, and a single 
independent variable, x. Very often we are inter-
ested in investigating the simultaneous effect of 
a number of factors on a response variable when 
we believe these factors may be interrelated. For 
example, Pearson and Ouassat (1996) found that, 
by using several variables rather than just one 
variable, they could get an improved estimate  
of the body weight of donkeys (see Section 
11.3.5). We can extend the simple (univariable) 
linear regression equation, and form a multiple 
linear regression equation (since there is more 
than one explanatory variable in the equation, 
this is a type of multivariable regression analysis) 
to accommodate this situation. If there are k 
independent, predictor or explanatory variables, 
sometimes called covariates, x1, x2, x3, . . . xk, which 
we believe may have an effect on a numerical 
dependent or response variable, y, the true regres-
sion model may be expressed as

Y x x x xk kpop = + + + + +α β β β β1 1 2 2 3 3 …

where xi is the ith predictor variable (i = 1, 2, 3, 
.  .  . , k) measured on each individual; Ypop is the 
predicted, fitted, expected or mean value of y in 
the population for the set of covariates; α is a 
constant term representing the mean value of y 
when all the explanatory variables are zero; and 
β1, β2, β3, .  .  .  , βk are the partial regression coef-
ficients, often simply called regression coefficients, 
corresponding to the k explanatory variables.

Then β1 represents the mean change in y for a 
unit change in x1, when the other explanatory vari-
ables, x2, x3, .  .  .  , xk, are held constant, i.e. after 
controlling for these variables. A similar interpre-
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or more of our explanatory variables is categori-
cal. We tackle the problem by assigning codes to 
the variable so we are able to distinguish its dif-
ferent categories. In particular, we need to assign 
two codes to the variable if we have a binary 
explanatory variable. For example, we could 
assign the codes 0 and 1 to the variable repre-
senting ‘sex’, so that a male takes the value ‘0’ 
and a female takes the value ‘1’.

In the situation when a nominal categorical 
explanatory variable has more than two catego-
ries, we proceed by creating what are called 
dummy or indicator variables, but the approach 
is not straightforward. Within regression analysis, 
some computer software has the capability to 
respond to instructions and create dummy vari-
ables. However, if you need to create the dummies 
yourself, you proceed in the following way. Con-
sider the variable ‘treatment’ which is a nominal 
variable comprising three treatments, A, B and 
C, where C is a control treatment. In order  
to incorporate ‘treatment’ into the regression 
model, you have to create two dummies, i.e. the 
number of dummies is one less than the number 
of categories for that variable. You choose one 
of the categories to be the reference category  
(let us say it is the control treatment, C) and  
the other categories will be compared with this  
reference category. For a given individual in the 
sample, the binary dummy variable that com-
pares A with C is assigned the value 1 if the 
individual receives A and 0 otherwise; similarly, 
the binary dummy variable that compares B with 
C is assigned the value 1 if the individual receives 
B and 0 otherwise. By default, the individuals 
receiving C can be identified since they have the 
value 0 for both of the two binary variables. Then 
the regression coefficient for the dummy variable 
that compares A with C represents the difference 
in the mean values of y between A and C, after 
adjusting for the other explanatory variables in 
the model. The use of dummy variables is illus-
trated in the example described in Section 11.5.3.

If the categorical explanatory variable has 
more than two categories and is measured on an 
ordinal scale, we can create a series of dummy 
variables for it, treating the variable as if it were 
a nominal variable. However, if we want to take 
the ordering of the categories of the ordinal vari-

them is incorporated into the regression model 
as an explanatory variable, using the appropriate 
coding. For example, in the simple situation 
where we have ‘treatment’ as the only factor  
of interest, instead of performing a one-way 
ANOVA (see Section 8.6) to compare the mean 
response on two different treatments, A and B, 
we take ‘treatment’ as the explanatory variable 
in a regression model. We assign a code to ‘treat-
ment’, so that its value for animals on treatment 
A, say, is 0 and its value for animals on treatment 
B is 1. The ‘treatment’ regression coefficient is 
interpreted as the difference in the mean responses 
between treatments A and B. If it is significantly 
different from zero, the mean response on A is 
significantly different from that on B. If it is posi-
tive, the mean response on B is greater than that 
on A (because of the way in which the treatment 
variable is coded); if it is negative, then the 
reverse is true. This concept can be extended so 
that a number of categorical factors are included 
in a multiple regression model.

Sometimes we use multiple linear regression 
as a form of analysis of covariance (ANCOVA), 
an extension of ANOVA, when we wish to evalu-
ate the effect of different treatments, say, on a 
response variable if we believe it is necessary to 
take into account the effect of one or more 
explanatory variables (covariates) on response. 
In addition to adjusting for the effect of covari-
ates which may not be balanced in the treatment 
groups, ANCOVA increases the precision (and, 
thereby, the power) of comparisons between 
groups by accounting for variation in important 
variables that affect outcome. In ANCOVA, we 
assume there is no group × covariate interaction 
(see Section 11.3.1(d)), so the slope of the regres-
sion line for a covariate is the same for each 
treatment. If our focus is in comparing two treat-
ments, A and B, we interpret the ‘treatment’ coef-
ficient in the multiple regression model as the 
difference between the mean responses on A and 
B, after adjusting for the covariates in the model.

(c)  Categorical explanatory variables

It is straightforward to include numerical explan-
atory variables into our model, but we can also 
perform a multiple regression analysis when one 
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of subtracting a mean (or some other value) from 
each observed value of an explanatory variable 
is called centring. If chosen carefully, it ensures 
that the interpretation of the constant term is 
both meaningful and relevant to the specific 
research question of interest and, in addition, 
may go some way to alleviate the problems of 
multicollinearity (see Section 11.3.2(b)). Note 
that centring an explanatory variable does not 
affect the magnitude of the estimated regression 
coefficient or its standard error, the significance 
of the regression coefficient or the fit of the 
regression model. It only affects the estimated 
intercept of the model.

Scaling an explanatory variable implies divid-
ing or multiplying the value of that variable by a 
suitable constant to provide a more meaningful 
interpretation of the regression coefficient. This 
might be useful if, for example, the height of the 
Shetland ponies were measured in hands (as  
in the UK) rather than in centimetres (as in 
Europe). The coefficient for height in the multi-
ple regression coefficient would represent the 
mean change in weight (kg) for a 1 hand change 
in height (after adjusting for gender): this would 
not be relevant in Europe. If, however, we were 
to scale height by multiplying it by 10.2, the unit 
of measurement for the rescaled variable would 
be centimetres and the interpretation of the 
regression coefficient for height would be more 
meaningful in Europe. Sometimes, we use scaling 
to place numerical explanatory variables on a 
common scale, achieved by dividing each vari
able by its standard deviation. If we were to do 
this for the height of the Shetland ponies,  
then its coefficient would represent the average 
change in weight for a 1 standard deviation 
increase in height, after adjusting for gender. 
Note that scaling an explanatory variable does 
not affect the estimated intercept, the signifi-
cance of the regression coefficient or the fit of 
the regression model but it does affect the esti-
mated regression coefficient and its standard error.

Interactions
You should note that it is possible to include 
interaction (also called effect modification) 
terms in the multiple regression equation. An 
interaction (see Section 5.9.1) occurs between 

able into account, we can assign values to the 
categories to represent their relative positions  
on an appropriate scale (typically we assume a 
linear scale and assign the successive digits, 1, 2, 
3, . . . , to the categories) and then treat the vari-
able as a numerical variable.

(d)  Modifications

Centring and scaling
In some situations, we can improve the interpre-
tation of the coefficients in a multiple regression 
equation by centring or scaling one or more of 
the explanatory variables. Both of these proce-
dures can be adopted in simple linear regression 
(see Chapter 10) as well as in multiple linear 
regression analysis.

We explained in Section 11.3.1(a) that the 
coefficient for an explanatory variable, x1, in 
a multiple regression equation represents the 
mean change in y for a unit change in x1 after 
adjusting for the other explanatory variables (x2, 
x3, .  .  .  , xk). We also explained that the constant 
term is the mean value of y when all the explana-
tory variables are zero, but this is often a value 
which one or more of the explanatory variables 
cannot take. Suppose, for example, we are using 
a multiple regression equation to predict a Shet-
land pony’s body weight (y) in kg from its gender 
(x1, coded as 0 for males and 1 for females) and 
height from the withers (x2) in cm. The regression 
coefficient for gender then represents the mean 
change in body weight for a unit change in gender 
(i.e. for females compared to males), for a given, 
but unspecified, value of height. In addition, the 
intercept is the mean value of weight for male 
(gender  =  0) Shetland ponies of height zero. 
Clearly, this is nonsensical since the height of a 
Shetland pony cannot be zero. In fact, let us 
suppose that in our sample, the range of heights 
is from 75 to 97 cm, with a mean height of 86 cm. 
If we subtract the mean height of the sample 
from the height of each Shetland pony, the mean 
height of the transformed variable is zero. If we 
repeat the multiple regression analysis but use 
our modified value for height, the intercept rep-
resents the mean weight of male Shetland ponies 
at the mean height of the sample, and this is a 
much more meaningful interpretation. This process 
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cal, the interpretation of an interaction term in a 
regression analysis is more complex, and it may 
be advisable in these circumstances to produce 
an interaction term by creating a binary variable 
from one of the numerical variables.

Polynomial regression
Sometimes, you may find that you have a non-
linear (i.e. curved) relationship between y and x, 
e.g. quadratic or cubic, in which case a polyno-
mial regression may be appropriate. Polynomial 
regression for the single explanatory variable, x, 
can be thought of as a special form of multiple 
regression, and can be analysed as such. Each 
explanatory variable in the multiple regression 
equation is replaced by successively higher 
powers of x. For example, the estimated cubic 
equation is of the form

Y a b x b x b x= + + +1 2
2

3
3

11.3.2  Appropriateness of  
the model

(a)  Assumptions underlying  
multiple regression

The assumptions underlying multiple linear 
regression are similar to those in simple linear 
regression (see Section 10.4.3).

•	 A linear relationship is stipulated between  
the response variable (which is a numerical 
random variable) and each of the explanatory 
variables (which may or may not be numerical 
and are measured without error).

•	 The residuals are independent – each individ-
ual is represented once in the sample.

•	 The residuals are Normally distributed with 
zero mean and constant variance.

We should produce appropriate plots of the 
residuals to verify the assumptions. These are 
similar to those illustrated in Figure 10.8. In 
particular:

•	 Separate plots of the residuals against each of 
the explanatory variables will verify the linearity 
assumption, providing no trend is apparent.

two explanatory variables when the effect on the 
response variable of one of the explanatory vari-
ables is not the same for different values of the 
other explanatory variable.

Consider again the situation where we are 
using a multiple regression equation to predict a 
Shetland pony’s body weight (y) in kg from its 
gender (x1) and height (x2) in cm. It may be that 
the slope of the line describing the relationship 
between body weight and height is different for 
males and females, i.e. there is an interaction 
between gender and height. We include an inter-
action term in the model by creating a new vari-
able which is the product of the two explanatory 
variables, (x1x2), and examine its coefficient in 
the same way as we would that of any explana-
tory variable. In this example, gender is a binary 
variable and height is a numerical variable. The 
coefficient of the interaction term then repre-
sents the difference in the slopes for males and 
females of the relationship between body weight 
and height. If the coefficient for the interaction 
term is not statistically significant, the main 
effects (e.g. gender and height) are then believed 
sufficient for the model. If the coefficient for the 
interaction term is statistically significant, the 
main effects should not be evaluated in the 
model containing the interaction, but each should 
be investigated for the different categories of the 
other main effect in the interaction term, e.g. the 
effect of height should be investigated separately 
for males and females.

We could, instead, categorize height into a 
binary variable – short (say, < 86 cm) and tall (say, 
≥ 86 cm) – and then the interaction would imply 
that the difference in the mean body weight for 
short and tall Shetland ponies is not the same for 
males and females, with the relevant interaction 
coefficient representing the difference between 
males and females of this difference in mean 
body weight for short and tall animals.

If one of the two categorical variables of inter-
est is nominal, with more than two categories, 
and the other variable is binary, we have to create 
as many interaction terms as there are dummy 
variables for the nominal variable in the regres-
sion model: each interaction term is the product 
of one dummy variable and the binary variable. 
If, on the other hand, both variables are numeri-
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extremely large, leading to test statistics which 
are very small so that their associated coeffi-
cients in the model are not statistically signifi-
cant. However, even if the individual regression 
coefficients are non-significant in the multiple 
regression equation, they may have a statistically 
significant joint effect on the response of interest. 
You will find details of how to deal with collin
earity in more advanced texts, for example  
Chatterjee and Hadi (2006). Note, however,  
that dropping relevant variables from the model 
or using automatic selection procedures (see 
Section 11.3.4) and/or centring (see Section 
11.3.1(d)) may alleviate the problem.

11.3.3  Understanding the 
computer output in a multiple 
regression analysis

We can use the output from a multiple regres
sion analysis to provide useful information that 
relates to the goodness-of-fit and to the coeffi-
cients of the model as a way of determining 
which, if any, of the covariates are important pre-
dictors of outcome. In particular:

1.	 We can assess how well the model fits the data 
by appraising the proportion of the total vari-
ability that is explained by the relationship of 
y on the x values. This proportion is denoted 
by R2; its square root is called the multiple 
correlation coefficient. We cannot use R2 to 
compare the fit of different models as its value 
will be greater for models that include a larger 
number of explanatory variables. To over-
come this difficulty, an adjusted R2 is often 
calculated which affords a direct comparison 
of values to assess goodness-of-fit in models 
that contain different numbers of explanatory 
variables.

2.	 The computer output for a multiple regression 
analysis contains an analysis of variance table 
which separates the total variation of y into its 
two sources: that which is explained and that 
which is unexplained by the regression. The 
F-test in the table enables us to test the null 
hypothesis that all the partial regression coef-
ficients are zero. If the result of the test is 

•	 A histogram or Normal plot of the residuals 
can verify the Normality assumption.

•	 A plot of the residuals against the fitted values 
of y will verify the constant variance assump-
tion, providing there is no funnel effect.

As in simple regression, we can identify out-
liers and influential points in multiple regression 
by appraising residual plots and examining, for 
each individual, the values of the residual, lever-
age and Cook’s distance (see Section 10.4.3). 
Note, however, that if there are k explanatory 
variables in the regression equation and n indi-
viduals in the study, a leverage of 2(k +  1)/n is 
regarded as high (this is equivalent to a leverage 
of 4/n if there is only one explanatory variable).

(b)  Relationships between  
explanatory variables

We expect some of the explanatory variables in 
a multiple regression to be related to one another. 
If this were not so, the multivariable analysis 
would be redundant; we could equally well 
perform a simple univariable linear regression 
analysis between the response variable and each 
explanatory variable, and we would obtain the 
same regression coefficients as in the multiple 
regression incorporating all the variables. We can 
determine which numerical explanatory varia-
bles are associated by calculating the correlation 
coefficient between every pair of explanatory 
variables. You should be aware that extremely 
highly correlated variables often result in col-
linearity (also called multicollinearity) in the 
multiple regression analysis. Collinearity may be 
identified in a number of ways, for example, by 
observing if numerical variables have correlation 
coefficients that are close to the limits of ±1, 
whether the coefficients from univariable regres-
sion analyses are substantially different after 
fitting a multivariable model, or if the variance 
inflation factor (VIFi) is greater than 10 (Klein-
baum et al., 2008), where VIFi = 1/(1 − Ri

2) and 
Ri

2 is equal to the proportion of variance 
explained by the regression of the variable xi on 
the remaining explanatory variables in a regres-
sion model. If collinearity exists between varia-
bles, the standard errors of their coefficients are 
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analysis as a covariate only if the means are 
found to be significantly different.

•	 If the covariate is numerical, you could perform 
a univariable linear regression analysis in 
which the dependent variable is regressed on 
that covariate. You would include that covari-
ate in the multiple regression analysis only  
if the slope (or, equivalently, the correlation 
coefficient) was significantly different from 
zero (probably at the 10% level).

It is also possible to use automatic selection 
procedures to reduce the number of covariates 
in the model; these procedures produce a multi-
ple regression equation with the ‘best’ combina-
tion of covariates. (Note: automatic selection 
procedures can also be used in other multivari-
able regression models, such as logistic and 
Poisson regression – see Sections 11.4 and 11.5, 
respectively.) Such techniques are particularly 
useful when you are interested in using the model 
for predictive purposes, and/or when some of  
the explanatory variables are very highly corre-
lated. There is no single definition of ‘best’ but, 
usually, those variables are selected which opti-
mize the amount of explained variation in y, so 
that it will not be significantly greater for a dif-
ferent selection.

•	 In forward step-up selection, we start with the 
single explanatory variable that contributes 
the most to the explained variation in y, and 
include more variables in the equation, pro-
gressively, until the addition of an extra variable 
does not significantly improve the situation.

•	 In backward step-down selection, we start with 
all the variables, and take them away sequen-
tially, starting with the variable that contrib-
utes the least, until the deletion of a variable 
significantly reduces the amount of explained 
variation in y.

•	 Stepwise selection is essentially step-up selec-
tion, but it permits the elimination of variables 
at each step according to defined statistical 
criteria specified by the computer package.

•	 In all subsets selection, we investigate all the 
possible combinations of variables and choose 
that one which is optimal in some sense, 
perhaps with the greatest adjusted R2.

significant, we conclude that at least one of the 
explanatory variables is associated with the 
response variable.

3.	 Then we can determine which of the explana-
tory variables has a partial regression coeffi-
cient that is significantly different from zero 
by performing a t-test on each coefficient. 
Each test statistic is the estimated regression 
coefficient divided by its standard error, and 
has a t-distribution on n −  k −  1 degrees of 
freedom, where k is the number of explana-
tory variables in the model. Computer output 
lists each estimated regression coefficient, 
usually with its standard error or a confidence 
interval, together with the test statistic and  
its P-value.

11.3.4  Choosing the explanatory 
variables to include in the model

Just because a computer program is available to 
perform a multiple regression analysis, this does 
not give you carte blanche to include, indiscrimi-
nately, a disproportionately large number of 
explanatory variables in the model. As a rule of 
thumb, remember that the sample size should not 
be less than 10 times the number of explanatory 
variables. So, if you have 100 observations, you 
should include no more than 10 explanatory vari-
ables in the model. In any case, you should start 
by considering only those explanatory variables 
that you know are likely, from clinical or biologi-
cal reasoning, to have some relationship with the 
response variable.

The next stage, if there are still very many 
potential variables to include in the model, is to 
eliminate those covariates that are clearly not 
associated with the outcome variable.

•	 If the covariate is binary, you could perform a 
two-sample t-test comparing the mean out-
comes in the two groups defined by the two 
categories of the binary variable, probably 
using a less stringent significance level (e.g. 
taking P <  0.10 rather than the conventional 
P < 0.05 to determine significance). You then 
include that variable in the multiple regression 
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umbilicus (cm), length from the olecranon to  
the tuber ischii (cm), height at the withers (cm), 
and the donkey’s age (years) and sex (male = 0, 
female = 1)) to help them predict its body weight 
(kg). The variables were measured in a random 
sample of 400 adult donkeys. Many of these  
variables were interrelated but collinearity was 
absent since there was no extremely high corre-
lation coefficient between any two explanatory 
variables. We performed a multiple linear regres-
sion analysis on a subset of these data (excluding 
pregnant females) using body weight as the 
outcome variable, and all other variables as the 
explanatory variables. The results from a compu-
ter analysis are shown in Display 11.1.

We can regard the model as a good fit since 
the adjusted R2 is 0.857, i.e. 86% of the variation in 
body weight is explained by its linear relationship 
with the explanatory variables. Apart from inde-
pendence of the observations (which is not in 
doubt), the assumptions underlying the regression 
model can be assessed by studying the residuals. 
The plots of the residuals against the three pre-
dictor variables (heart girth, umbilical girth and 
length) in Figure 11.1 show that the linearity 
assumption is satisfactory for these three variables. 
The plots for the other independent variables are 
omitted for brevity, but they all accommodate 
the linearity assumption. We can see from Figure 
11.1 that the residuals are approximately Nor-
mally distributed, and, from the plot of the resid-
uals against the predicted values, that they have 
constant variance and are centred around a mean 
of approximately zero.

The F-test in the ANOVA implies P <  0.001, 
indicating that at least one of the six partial 
regression coefficients is significantly different 
from zero.

In fact, as shown in the table of coefficients (in 
Display 11.1), four variables (heart girth, length, 
umbilical girth and sex) have partial regression 
coefficients which are significantly different from 
zero. We interpret these coefficients as follows:  
a donkey’s body weight increases on average  
by 1.770 kg as its heart girth increases by 1 cm, 
adjusting for the other variables in the equation. 
Similarly, the body weight of a female donkey is 
2.293 kg less, on average, than that of a male, after 
adjusting for the other variables, etc.

Unfortunately, you may find that the optimal 
combination of variables differs when using the 
various automatic selection procedures or that a 
slight change in the data produces a different  
set of variables defining the optimal model! In 
addition, you might find that the estimated  
coefficients of the s (say) variables in the final 
automatic selection model do not correspond to 
those that would be obtained when using these s 
variables directly to determine a multiple regres-
sion equation. This is because, unless missing 
data are imputed (see Section 5.9.4), the auto-
matic procedures exclude any individuals that do 
not have complete information on all the varia-
bles, and this sample size may be smaller than 
that of the model which is obtained by including 
only those individuals who have no missing 
observations on these s variables. You should 
also be aware that some coefficients may be spu-
riously significant because of the multiple testing 
process that compares one model with another 
within a particular automatic procedure, an inte-
gral part of the automatic selection process (see 
Section 8.6.3). You might consider using a more 
stringent significance level (say, 0.01 instead of 
the conventional 0.05) to overcome this problem. 
At the end of the day, however, it is your respon-
sibility to judge, in the context of your investiga-
tion, the appropriate combination of covariates 
to best explain your phenomenon and, if possi-
ble, you should attempt to validate the model on 
a different data set.

11.3.5  Example

In Section 10.4.2, we discussed an example of 
simple linear regression using a single explana-
tory variable, girth measurement, to estimate 
body weight in sheep. Another example of the 
problem of estimating body weight, this time 
using a multivariable regression approach in 
Moroccan working donkeys, is the subject of a 
study by Pearson and Ouassat (1996). Here they 
were concerned to avoid overloading the draft 
donkeys, and needed to be able to estimate body 
weight since weighing machines were a rarity! 
They chose a number of variables (the donkey’s 
girth at the level of the heart (cm), girth at the 
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which can be used to predict a Moroccan donkey’s 
body weight.

11.4  Multiple logistic regression:  
a binary response variable

11.4.1  Rationale

We can use a modification of the multiple regres-
sion equation to analyse data when we have a 
binary outcome of interest. For example, we may 

As there is no evidence that the height and  
age of the donkey are useful predictors of body 
weight, the multiple regression analysis was 
repeated using only the four variables that had 
significant coefficients. The assumptions underly-
ing this model were checked and found to be 
satisfactory. This second regression analysis 
(adjusted R2  =  0.856) gives the following esti-
mated multiple regression equation:

Bodywt Heartgir Length

Sex Umbg

= − + +
− +

216 4 1 840 0 999

2 917 0 396

. . .

. . iirth

* Dependent variable: BODYWT.
‡ Indicates P < 0.001.

Display 11.1  SPSS computer output from the multiple linear regression analysis of the donkey data (six explanatory variables) 
discussed in Section 11.3.5.

* Dependent variable: BODYWT.
† Predictors: (Const), UMBGIRTH, SEX, AGE, LENGTH, HEIGHT, HEARTGIR.
‡ Indicates P < 0.001.

ANOVA*

Model
Sum of 
Squares df

Mean 
Square F Sig.

1  Regression 203987.4 6 33997.899 386.305 0.000†‡

Residual 33354.959 379 88.008
Total 237342.4 385

* Predictors: (Const), UMBGIRTH, SEX, AGE, LENGTH, HEIGHT, HEARTGIR.

Coefficients*

Model

Coefficients

t Sig.

95% confidence  
interval for B

B Std error Lower bound Upper bound

1  (Constant) −216.3 7.667 −28.217 0.000‡ −231.403 −201.254
AGE 0.262 0.184 1.422 0.156 −0.100 0.623
HEARTGIR 1.770 0.115 15.390 0.000‡ 1.544 1.996
HEIGHT 0.157 0.110 1.433 0.153 −0.058 0.373
LENGTH 0.893 0.117 7.605 0.000‡ 0.662 1.123
SEX −2.293 1.015 −2.260 0.024 −4.289 −0.298
UMBGIRTH 0.380 0.067 5.668 0.000‡ 0.248 0.512

Model summary

Model R R square
Adjusted 
R square

Std error of 
the estimate

1 0.927* 0.859 0.857 9.3812
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Figure 11.1  Diagrams for checking the 
assumptions underlying the multiple regres-
sion analysis of the Moroccan donkey data. 
In the histogram the x-axis labels relate to 
the midpoints of the intervals (from a 
subset of data from Pearson and Ouassat, 
1996, with permission from the authors).
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wish to relate a number of explanatory variables 
to an outcome such as the presence or absence 
of an abnormality. We can create a dummy vari-
able for the outcome by coding ‘presence’ as one, 
say, and ‘absence’ as zero. However, we cannot 
use this as the dependent variable in a multiple 
regression equation because we would be unable 
to interpret any predicted values of it that are not 
exactly equal to zero or one. In order to over-
come this problem, we use, as the dependent 
variable in our estimated regression equation, 
the probability, p, that an individual experiences 
a particular outcome (the larger of the coded 
outcomes, the value ‘1’ in the abnormality 
example). Then, in order to linearize the relation-
ship between the predicted value of the depend-
ent variable and the covariates, we transform this 
dependent variable by taking the logistic or logit 

transformation (see Section 13.2.2) of p, where 
logit(p) is equal to the logarithm to base e of the 
odds of the outcome, i.e. it is loge [p/(1 − p)]. This 
leads to a multiple or multivariable linear logistic 
regression equation, often simply called a logistic 
regression equation.

11.4.2  Interpreting the coefficients

Each explanatory variable has a coefficient in  
the logistic equation that can be tested (the null 
hypothesis is that the true coefficient is zero)  
to determine whether that variable contributes 
significantly to an animal’s chance of an abnor-
mality, after adjusting for the possible confound-
ing effects of the other variables. Because of  
the logistic transformation, the coefficients are  
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squared distribution. A significant result implies that there  
is a considerable difference between the two models being 
compared and, consequently, that the model under consid-
eration is a poor fit.

We can also use the likelihood ratio statistic to assess  
the significance of one or a group of coefficients. This is 
achieved by comparing two models, the smaller of which  
(i.e. that with fewer covariates) is nested within the larger 
model that has all the covariates of the smaller model plus 
the additional covariate(s) which is (are) being investigated. 
The null hypothesis is that all the additional coefficients  
are zero, a significant result implying that at least one of  
them is significantly different from zero. If, as a special case, 
the smaller model has no covariates (i.e. it has only a constant 
term) and the larger model comprises all the covariates of 
interest, the null hypothesis is that all these covariates have 
zero coefficients (e.g. Table 11.2). This latter test is often 
called the model Chi-square or the Chi-square for covariates. 
The alternative way of assessing the significance of a single 
coefficient in a multivariable regression model in which the 
coefficients are estimated by maximum likelihood is to use 
the Wald test. The test statistic of the Wald test, equal to the 
ratio of the estimated coefficient to its standard error, 
approximately follows the Normal distribution (its square 
approximates the Chi-squared distribution).	 

11.4.4  Example

Hoeben et al. (1997) assessed 1000 Caesarian sec-
tions in standing cows performed under field 
conditions by veterinarians from the University 
of Ghent with a view to determining the factors 
that induce complications. This was in order to 
take some precautions to minimize the negative 
consequences, such as death of the cow or calf, 
placental retention, infection of the wound, etc. 
The most important complications are recum-
bency of the animal during the operation, diffi-
culties with exteriorization of the pregnant uterine 
horn, and increased contractility of the uterus.

Initially, a simple univariable analysis was per-
formed to evaluate the effects of each of a number 
of variables on the occurrence of each of the 
three main complications. For each binary variable, 
the relative risk was estimated as the proportion 
of animals developing the complication if the 
factor was present divided by that if it was absent, 
and its significance from unity determined. Sig-
nificant variables (P < 0.05) included experience 
of the surgeon, type of cow (dairy or beef), parity, 
use of the sedative xylazine (yes/no), quantity of 

interpreted in a different way from those in the 
multiple regression equation. The exponential 
of each logistic coefficient is the odds ratio (see 
Section 5.2.3) of a particular outcome for a unit 
increase in the explanatory variable, keeping  
the values of the other variables constant.  
For example, if we have an explanatory variable, 
x1, indicating which treatment an animal has 
received (x1 = 0 for treatment A, and x1 = 1 for 
treatment B), the exponential of its coefficient  
in the logistic regression equation, eb1, is the esti-
mated odds of the presence of the abnormality 
on treatment B compared with that on treatment 
A, after adjusting for the other variables in the 
equation. An odds ratio of unity indicates that 
the odds of the abnormality is the same for both 
treatments. The other coefficients in the logistic 
equation may be interpreted in a similar fashion. 
The odds ratio is often taken as an estimate of 
the relative risk, which is somewhat easier to 
interpret. However, the two are only similar if 
the outcome of interest is rare. You can obtain 
details of logistic regression analysis in a number 
of texts such as those by Hilbe (2009), Klein-
baum and Klein (2010) or Menard (2001).

11.4.3  Maximum likelihood 
estimation

We cannot use the method of least squares (see Section 
10.4.1), as we do in simple and multiple linear regression 
analysis, to estimate the coefficients in the multiple logistic 
regression equation. Instead, the computer estimates these 
logistic coefficients by an iterative method called maximum 
likelihood. By way of explaining what this means, the likeli-
hood of a model with particular values for the coefficients of 
the covariates is the probability of obtaining the observed 
results for that model. If we use a method of estimating the 
model coefficients which is based on maximum likelihood, we 
choose from all possible models with the same covariates  
that model which has the greatest chance of obtaining the 
observed results.

The goodness-of-fit of a model estimated by maximum 
likelihood is not assessed by considering the adjusted R2 (see 
Section 11.3.3), as in simple and multiple linear regression. 
Instead, we use the likelihood ratio statistic (LRS), also called 
the deviance or −2 log likelihood. This compares the likeli-
hood of two models – the model under consideration and the 
saturated model (i.e. the model that explains the data per-
fectly, having as many variables as individuals in the data set). 
The ratio of the two likelihoods approximately follows a Chi-
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sedative (ml), attempt to extract the calf (yes/
no), use of epidural anaesthesia (yes/no), con-
tractility of the uterus (relaxed/contracted), etc. 
For each of the three main complications, a  
multiple logistic regression analysis was then 
performed using only those variables that were 
shown to be significant in the univariable analysis.

In Table 11.1 we show the variables that had 
significant coefficients in the logistic regression 
analysis connected with recumbency of the 
animals during Caesarian section, after adjusting 
for the other prognostic variables. This table con-
tains, for each variable, an estimate of the β coef-
ficient in the logistic regression equation, with its 
standard error and P-value which results from 
the Wald test of the null hypothesis that the coef-
ficient is zero. The estimated odds ratio of 1.95 
for sedation implies that the odds of recumbency 
during the operation was 1.95 times greater if  
the animal was sedated than if it was not, after 
adjusting for the other variables. The confidence 
interval relating to sedation tells us that we can 
be 95% certain that the true odds ratio lies 
between 1.33 and 2.87. Note that this interval 
excludes unity; this is to be expected since we 
know that the coefficient is significant (P = 0.001).

From Table 11.1 we can see that there was 
approximately a twofold increase in the odds  
of recumbency of the animal during Caesarian 
section if the cow was sedated, or if the obstetri-
cian met with difficulties when attempting to 
exteriorize the pregnant uterine horn. The odds 
of recumbency was approximately halved if the 

animal was a beef cow rather than a dairy cow, 
or if the cow was multiparous.

Similar analyses showed that attempting to 
extract the calf was the only factor that signifi-
cantly increased uterine contractility. The experi-
ence of the surgeon, the parity, the increased 
uterine contractility, the position of the calf, and 
the presence of adhesions were associated with 
difficult exteriorization of the pregnant horn.

11.4.5  Checking the logistic 
regression model

•	 We usually check for outliers and influential 
points (see Section 10.4.3(d)) in logistic regres-
sion by drawing appropriate diagrams and 
looking for points that appear to be apart from 
the main body of the data. For example, we may 
plot the standardized residuals (the residuals 
divided by their standard errors) against each 
of the explanatory variables. If one or more 
points are disparate, we can perform a sensitiv-
ity analysis: the point(s) will be influential if 
the estimates of the regression coefficients are 
substantially different when the analysis is per-
formed with and without the points.

•	 If we find that the deviance (see Section 11.4.3) 
divided by the degrees of freedom (df = n − k − 1 
where n = number of individuals and k = number 
of explanatory variables) is substantially greater 
than one, we have extra-Binomial variation. 

Table 11.1  Results of the logistic regression analysis for the recumbency of cows during Caesarian section (from Hoeben 
et al., 1997, with permission from Taylor & Francis Ltd).

Variable, xi Numerical value of xi bi SE(bi) P-value
Estimated 
odds ratio

95% CI for 
odds ratio

Type of animal Dairy = 0, Beef = 1 −0.6599 0.2087 0.002 0.52 0.34–0.78
Parity Heifer = 0, Mult. cow = 1 −0.6708 0.2106 0.002 0.51 0.24–0.77
Sedation No = 0, Yes = 1 0.6683 0.1972 0.001 1.95 1.33–2.87
Exteriorization of 
uterus

Easy = 0, Difficult = 1 0.7049 0.2153 0.001 2.02 1.33–3.09

CI, confidence interval; SE, standard error.
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This occurs when the independence assump-
tion is violated, perhaps because we have clus-
tered data (see Section 11.6) or because an 
important explanatory variable has not been 
included in the model or because of the pres-
ence of one or more outliers. Then the stand-
ard errors of the regression coefficients will be 
underestimated, leading to increased Type I 
error rates (see Section 6.4).

•	 If we find that an estimated regression coeffi-
cient has an unexpectedly large standard error, 
we should investigate the possibility of col-
linearity (see Section 11.3.2(b)) when two or 
more of the explanatory variables are very 
highly correlated. An alternative explanation 
might be because a categorical explanatory 
variable has no individuals in one or more of 
its categories, i.e. a zero cell count. This problem 
can be overcome by combining one or more 
categories of this variable.

11.4.6  Applications of  
logistic regression

(a)  Linear logistic regression analysis

We use multivariable linear logistic regression analysis when 
we have a binary outcome (e.g. success/failure) and wish to 
relate one or more covariates to it as a way of explaining the 
relationship between the variables, determining the covari-
ates that are important predictors of outcome and/or predict-
ing the outcome of interest. The logistic regression analysis 
provides an estimate of the odds ratio for each covariate, 
after controlling for the other covariates in the model. Odds 
ratios have a number of advantages over relative risks (see, 
for example, Kirkwood and Sterne, 2003) and, consequently, 
logistic regression analysis is usually the method of choice 
when analysing binary outcomes.

It is the only appropriate form of regression analysis for 
an unmatched case–control study (see Section 5.2.3(b)) when 
relative risks cannot be estimated directly. In such a study, 
the cases (often coded as one) and the controls (often coded 
as zero) define the binary outcome. The exponential of the 
estimated coefficient relating to a particular covariate in the 
model then represents the estimated odds of being a case (i.e. 
having disease) compared with that of being a control (i.e. 
being disease-free) as the covariate increases by one unit, 
after adjusting for the other covariates in the model. Linear 
logistic regression analysis can also be used if we want to 
investigate the factors that influence the incidence of disease 
in a longitudinal study, provided all the individuals in the 
study have the same length of follow-up. If the follow-up 
period is not the same for every individual, then the data 

should be analysed using survival analysis (see Section 14.6) 
or Poisson regression analysis (see Section 11.5). We can also 
use logistic regression analysis when we have a binary 
outcome in a cross-sectional study (see Section 5.2.2).

(b)  Conditional logistic regression analysis

There is a special form of logistic regression analysis, called 
conditional logistic regression analysis, which affords the 
analysis of a binary variable when the individuals are matched, 
as in a matched case–control study (see Section 5.2.3(b)). 
Conditional logistic regression analysis takes the matching 
into account and controls for confounding variables (although 
a factor which is used to match the cases and controls cannot 
be included as a covariate in the model). Any analysis that 
ignores the matching of individuals is inefficient and not to 
be recommended. Further details may be obtained from, for 
example, Kleinbaum and Klein (2010).

(c)  Multinomial and ordinal logistic 
regression analysis

Logistic regression analysis can be extended to deal with the 
situation in which the categorical outcome variable is not 
binary but has more than two categories (i.e. it is polycoto-
mous). In particular, we use multinomial logistic regression 
analysis when the categorical outcome variable is measured 
on a nominal scale (see Section 1.6), i.e. the distinct categories 
that define the variable are unordered (for example, Agresti 
(2010) used this approach to analyse data from a study of 
alligator length on primary food preference, in which the 
preferences were fish, invertebrates and other).

We use ordinal logistic regression analysis when the cate-
gorical outcome variable is measured on an ordinal scale (see 
Section 1.6), i.e. the categories of the variable have some 
intrinsic order but the intervals between the categories are 
not clearly defined or consistent (e.g. the disease stages I, II 
and III). Details on multinomial and ordinal logistic regres-
sion may be obtained from texts such as Agresti (2010) or 
Kleinbaum and Klein (2010).

As an illustration, Overton et al. (2003) used ordinal logis-
tic regression analysis in a randomized, placebo-controlled, 
masked clinical trial to examine the prophylactic effect of 
4 mg of estradiol cyprionate (ECP) administered within 
24–36 hours of calving on the three grades of severity of post-
parturient metritis in primiparous dairy cows at high risk of 
metritis. Metritis was diagnosed by rectal palpation and the 
presence of a flaccid, fluid-filled uterus with vulval discharge 
and foetid odour and was categorized as absent, mild or 
severe. Explanatory variables in the regression analysis were 
treatment (ECP or placebo) and the calendar quarter of the 
year that the cow calved in, as well as some additional covari-
ates which were found not to be significant. This analysis 
produced an estimated odds ratio of one for treatment (90% 
CI 0.5 to 1.8), after adjusting for the effect of year quarter of 
calving and some other covariates. This implies that the odds 
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11.4.3). Since the response variable in Poisson regression is a 
rate, the exponential of an estimated coefficient in the Poisson 
model represents an estimated relative rate (often called an 
incidence rate ratio, IRR). If the associated covariate is 
binary (e.g. it is coded as 1 if the factor is present, and 0 
otherwise), the incidence rate ratio is the rate of the event 
(say, disease) in those with the factor compared with the rate 
in those without the factor, after adjusting for all other co
variates in the model. If the covariate is numerical, then the 
incidence rate ratio represents the ratio of the two rates for 
a unit increase in the covariate. If the incidence rate ratio is 
equal to one, then these rates are equal. A test of significance 
of the null hypothesis that the incidence rate ratio is equal to 
one is equivalent to a test of the null hypothesis that the  
associated coefficient in the model is equal to zero. The Wald 
test (see Section 11.4.3) is usually used to test the significance 
of each coefficient, as in logistic regression. You can generally 
find the results of such tests of the coefficients in the compu-
ter output of a Poisson regression analysis. We can assess the 
adequacy of the model using −2 log likelihood (or deviance), 
as for logistic regression (see Section 11.4.3). Extra-Poisson 
variation (analogous to extra-Binomial variation, see Section 
11.4.5) occurs when the residual variance is greater than 
would be expected from a Poisson model: it results in under-
estimation of the standard errors leading to spuriously sig-
nificant coefficients as well as confidence intervals that are 
too narrow. A value of the deviance divided by the degrees 
of freedom that is substantially greater than one is indicative 
of extra-Poisson variation.

11.5.2  Generalized linear models

The logistic transformation of the proportion (equivalent to 
the logarithmic transformation of the odds) used in logistic 
regression and the logarithmic transformation of the rate or 
count used in Poisson regression are examples of different 
link functions. A link function links the covariates of a regres-
sion model to a dependent variable (e.g. a proportion or rate) 
that has a known underlying probability distribution in such 
a way that the relationship between the predicted or mean 
value of the dependent variable and the set of covariates is 
linear. Note that no transformation is involved in multiple 
linear regression; the link function is then called the identity 
link. These models are particular forms of a generalized 
linear model (GLM); all generalized linear models conform 
to this unified framework. In particular, the probability dis-
tribution of the dependent variable associated with the 
outcome of interest is Normal in multiple regression where 
the outcome is continuous; it is Binomial in logistic regression 
where the outcome is binary; it is Poisson in Poisson regres-
sion where the outcome is a count.

The method of maximum likelihood (see Section 11.4.3) is 
usually used to estimate the parameters of a generalized 
linear model (although in multiple linear regression analysis, 
with the identity link, the method of least squares is generally 
adopted). We can use the likelihood ratio test to evaluate the 
significance from zero of one or a group of coefficients in a 

of a treated cow being in the same category of metritis 
(absent, mild or severe) or higher was equal to that of a 
control cow. The authors concluded that prophylactic admin-
istration of ECP did not reduce the severity of metritis.

Because these polycotomous regression methods are not 
straightforward, we often prefer to adopt a simple approach 
to the analysis of these data. If we dichotomize the nominal 
or ordinal variable (i.e. we create two categories from it by 
combining categories appropriately or by choosing a sensible 
cut-off point, if relevant), we can perform a logistic regression 
analysis on the data since the outcome is now binary. We have 
to decide how the data are to be dichotomized at the outset, 
before we have collected the data, as we may obtain biased 
results if we choose the point for dichotomy by looking at  
the data.

11.5  Poisson regression

11.5.1  Rationale

When we are interested in assessing the impact of certain 
factors on the occurrence of an event (such as disease or 
death) in a longitudinal study in which the individuals are 
studied for varying lengths of time, it is inappropriate to use 
logistic regression analysis. This is because we must take into 
account not only whether or not the event occurs in an indi-
vidual but also the length of time that each individual is 
exposed to the risk of the event (the risk period). Two ways 
of achieving this are by using the Cox proportional hazards 
regression (see Section 14.6.2) or Poisson regression analysis.

The Poisson distribution (see Section 3.4.3) is the probabil-
ity distribution of the number of events in a fixed time inter-
val when these events occur randomly and independently in 
time (or space) at a constant rate. Poisson regression analysis 
is concerned with investigating the effect of various factors 
on the rate of occurrence of an event when this rate is con-
stant over the time period of interest. If the time of follow-up 
is measured in years, the rate of an event is generally 
expressed as a rate per individual per year and is equal to the 
number of events occurring divided by the total number of 
years of follow-up for all individuals. If the individual is an 
animal, the latter is commonly called the animal-years of 
follow-up. A rate differs from a risk in that a rate takes the 
length of time that an individual is studied into account 
whereas a risk does not.

In the Poisson regression equation, we relate the predicted 
value of the rate of occurrence of the event to a linear func-
tion of the explanatory variables. However, to overcome 
mathematical difficulties, we use the logarithmic transforma-
tion (to base e) of the rate in the equation. This is analogous 
to logistic regression analysis, where we relate the predicted 
value of the probability or odds of the event to a linear func-
tion of the explanatory variables, and take the logit transfor-
mation of p to overcome mathematical difficulties. The 
coefficients of the Poisson regression model are usually esti-
mated using the method of maximum likelihood (see Section 
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Table 11.2  Summary of Poisson regression analysis results showing significant covariates in the model (from Newton et al., 
2004, with permission from Wiley Blackwell).

Variable Category Coefficient SE IRR

95% CI  
for IRR LRS*  

or Wald 
P-valueLower Upper

Intercept −2.57 0.28
No. of horses on premises 1–5 Referent <0.0001*

6–10   0.08 0.37 1.08 0.52 2.22 0.838
11–15   1.06 0.32 2.90 1.55 5.42 0.001
16–20   2.46 0.35 11.7 5.91 23.1 <0.001
21–40   1.27 0.30 3.56 1.98 6.40 <0.001
40+   1.97 0.31 7.18 3.92 13.2 <0.001

Presence of horses age <2 years No Referent <0.0001*
Yes   0.53 0.24 1.70 1.06 2.71 0.027

Soil type Clay Referent <0.0001*
Sand   0.36 0.20 1.43 0.98 2.10 0.067
Chalk −1.48 0.61 0.23 0.07 0.76 0.016
Loam   0.74 0.21 2.11 1.40 3.16 <0.001
Other −0.98 0.44 0.36 0.16 0.90 0.027

Method of faeces removal Not removed Referent <0.0001*
By hand −1.71 0.49 0.18 0.07 0.48 0.001
Mechanically 1.02 0.47 2.76 1.10 6.94 0.031

Pasture cut? Not cut Referent <0.0001*
Cut −2.15 0.32 0.12 0.06 0.22 <0.001

Other domestic animals on pasture? None Referent <0.0001*
Ruminants −2.22 0.41 0.11 0.05 0.24 0.001
Birds/fowls −0.09 0.30 0.91 0.50 1.65 0.780
Other −2.37 1.03 0.09 0.01 0.70 0.021

CI, confidence interval; IRR, incidence rate ratio; LRS, likelihood ratio statistic; SE, standard error.

generalized linear model by comparing the deviances of two 
models, with the smaller model containing all the covariates 
of the full model apart from the covariate(s) under test. As 
an alternative procedure, we can use the Wald test to test the 
significance of just a single coefficient. We describe both of 
these tests in Section 11.4.3.

11.5.3  Example of Poisson 
regression

Equine grass sickness (EGS, equine dysautonomia) is a debil-
itating and often fatal neurodegenerative disease of horses 
which almost exclusively affects grazing horses. Newton et al. 
(2004) performed an epidemiological study with a view to 
identifying the risk factors associated with the recurrence of 
EGS on previously affected premises, and thereby possibly 
gaining insights into the pathogenesis of the disease. They 
collected data on disease history and risk factors from 305 

premises, 100 of which were recurrent, by postal question-
naire from cases with EGS in the 6 years starting at the 
beginning of January 1997. The outcome of interest was the 
number of recurrent EGS incidents per 100 horses per 
premises per year, the overall median rate being estimated 
as 2.1 incidents/100 horses/premises/year. The authors per-
formed a Poisson regression analysis because the nature of 
the data was events (i.e. recurrent EGS incidents) over time 
(risk period). In order to reduce the number of variables in 
the regression model they started by performing a series of 
univariable analyses, using each of the potential risk factors, 
one by one, as the single explanatory variable in a Poisson 
model (see Section 11.5.1). Those variables that were associ-
ated significantly (P < 0.275) with recurrence of disease in the 
univariable analyses were then incorporated into a stepwise 
multivariable Poisson regression analysis, together with inter-
action terms. Table 11.2 summarizes the results of the final 
multivariable model, which incorporated a set of dummy 
variables (see Section 11.3.1(c)) to replace each categorical 
covariate with more than two categories. The reference cat-
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egory for each of these sets of binary dummy variables is 
called the ‘referent’. The P-value that tests the significance of 
a specific category when compared with the reference cate-
gory was determined by the Wald test (see Section 11.4.3): 
the likelihood ratio statistic (see Section 11.4.3) was used to 
test the significance of the whole set of dummies for a par-
ticular covariate.

There was a significantly increased rate of recurrence of 
EGS with higher number of horses, presence of younger 
animals, study farms and livery/riding establishments, loam 
and sand soils, rearing of domestic birds and mechanical 
droppings removal. For example, the rate of recurrence was 
estimated to be 1.70 times greater in those premises that had 
horses aged <2 years than those that did not; it was estimated 
to increase by 176% if faeces were removed mechanically 
compared with when they were not removed (in each case, 
adjusting for the other variables in the model). The rate of 
recurrence decreased significantly with chalk soil, co-grazing 
ruminants, grass cutting on pastures and removal of drop-
pings by hand. For example, if ruminants were on the pasture, 
the rate of recurrence was estimated to decrease by 89% (i.e. 
the IRR =  0.11) compared with when there were no other 
domestic animals on the pasture, after adjusting for the other 
variables in the model. In addition, several significant interac-
tions were identified.

11.6  Regression methods  
for clustered data

11.6.1  What are clustered data?

When our observations can be grouped in such a way that 
the observations within a group or cluster are not independ-
ent, we have clustered data, sometimes called repeated meas-
ures data. The data are arranged hierarchically in that 
individual observations (called level 1 units) are nested or 
hierarchical within a cluster (level 2 unit); for example, litters 
from a sow, cattle in a farm, herds in a region, legs in a cat or 
a longitudinal data set in which observations are recorded at 
successive times (the level 1 units) for each animal (the level 
2 unit) (Figure 11.2). The statistical analysis of these data 

must take into account the fact that the observations within 
a cluster are correlated and, therefore, are not independent 
of each other (e.g. different litters from one sow are more 
likely to exhibit similar characteristics than litters that come 
from different sows). The standard errors of the estimates of 
interest are usually too small if we ignore the dependencies 
in the data, and consequently we may obtain confidence 
intervals that are too narrow and spuriously significant 
results when testing hypotheses relating to these estimates.

There are various valid strategies that we can adopt for the 
analysis of clustered data. In Section 14.5, we describe a 
simple non-regression approach to the analysis and discuss 
some inappropriate analyses. We can also use a procedure, 
such as one of the following, which relies on the specification 
of a regression model (for simplicity, we assume in this section 
that the outcome is numerical):

1.	 Regard the cluster (rather than the level 1 unit) as the unit 
of investigation and replace the set of responses within 
each cluster by an appropriate summary measure (e.g. in 
the sow example it may be the mean litter size). We then 
use this summary measure as the outcome or dependent 
variable in a univariable or multivariable regression analy-
sis. The covariate(s) in this regression model must relate 
to the clusters, so, in the litters from a sow example, a 
covariate might be sow weight. Alternatively, if the trial is 
a cluster randomized trial in which we randomly allocate 
clusters of individuals to different treatments, the covari-
ate may be a binary variable representing treatment group. 
Although this method of aggregating the data by using a 
summary measure has the advantage of simplicity, it does 
not make use of all the information provided in the sample 
and does not allow covariates relating to the level 1 units 
to be incorporated into the model.

2.	 Take clustering into account by calculating robust stand-
ard errors of the parameter estimates. These standard 
errors are ‘robust’ to violations of the assumptions relating 
to the probability model, such as lack of independence. 
Robust standard errors are calculated using the observed 
distribution of the response variable instead of relying on 
the specification of a full probability model for it, in con-
trast to the likelihood approach to estimation. This is a 
relatively simple approach that allows level 1 unit covariates 

Figure 11.2  Diagrammatic illustration of a two-level hierarchical structure.
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to be included in the model but suffers the disadvantage 
that the estimates of the coefficients in the model are not 
adjusted for clustering.

3.	 Use a random effects regression model (often called a 
multilevel model, usually abbreviated to MLM) which 
includes the two sources of random variation in the data: 
(i) the variation between the level 1 units within each 
cluster; and (ii) the variation between cluster means, rep-
resenting what is termed the random effect (hence the 
name for the model). These sources of variation give rise 
to two sets of residuals, each of which is generally assumed 
to follow a Normal distribution if the outcome variable is 
numerical.

There are different forms of random effects models, one 
of the simplest being the random intercepts model with a 
single covariate. This assumes that, for a given cluster, 
there is a linear relationship between the numerical 
outcome variable, y, and the covariate, x, when x and y are 
measured on each level 1 unit in that cluster. Furthermore, 
if the regression line of y on x is determined for every 
cluster, then all these regression lines have the same slope 
but different intercepts which vary randomly about the 
intercept of the mean regression line (Figure 11.3).

This model can be extended by, for example, including 
more than one covariate, allowing both the intercepts  
and slopes to vary randomly (leading to a random slopes 
model), introducing additional levels into the hierarchical 
structure (e.g. a four-level structure with piglets in litters 
in sows in farms), or using it with Poisson regression if the 
outcome is a count.

4.	 Use the generalized estimating equation (GEE) approach 
(also called population-averaged or marginal approaches) 
to estimation which does not assume a particular probabil-
ity distribution for the between-cluster residuals (as 

assumed in a random effects model). Without the distribu-
tional assumptions, it is impossible to calculate the likeli-
hood of the observations, and so we cannot use the 
maximum likelihood method to estimate the parameters. 
In order to use the quasi-likelihood method of GEE, we 
essentially use the mean value per group as the outcome, 
and have to specify a ‘working’ correlation matrix (provid-
ing what we believe is a realistic description of the correla-
tion of the outcomes within the clusters) instead of relying 
on the probability model to identify the correlation matrix. 
The GEE approach produces estimates of the parameters 
and their standard errors that are adjusted for clustering, 
and allows both level 1 and cluster level covariates to be 
included in the model. However, as clustering is of no 
intrinsic interest in a GEE analysis, we cannot obtain an 
estimate of the variation between clusters and thereby 
assess the importance of clustering in our data.

You can find further details of regression methods for  
clustered data in, for example, Burton et al. (1998), Diggle 
et al. (2002), Dohoo et al. (2010), Graubard and Korn 
(1994), Rabe-Hesketh and Skrondal (2012), Raudenbush  
and Bryk (2002) and Snijders and Bosker (2012). However, 
we recommend, if you find you have recourse to one of these 
approaches, that you seek help from a professional statisti-
cian to guide you.

11.6.2  Example

Milk leakage in dairy cows, a symptom of impaired teat 
sphincter function, is related to an increased risk of mastitis 
in heifers and cows, and causes hygiene problems. Klaas et al. 
(2005) conducted a longitudinal observational study to assess 
whether variables such as teat shape (short and thin, short 
and thick, normal, conical or thick), condition of teat orifice 
(protrusion, white ring, rough callosity or normal) and peak 
milk flow rate (defined as the maximum milk flow within 
eight measurements (over 22.4 s) and expressed in kg/min) 
were risk factors for milk leakage. Milk leakage was recorded 
for each mammary quarter as a binary variable (milk 
leakage = 1, no milk leakage = 0). Data were collected from 
1600 primiparous and multiparous cows that were main-
tained in loose housing in 15 German dairy farms.

Although the data set conforms to a three-level hierarchi-
cal structure of quarters within cows within herds, we adopted 
the procedure justified by Klaas et al. and reduced it to a 
two-level hierarchical structure of cows within herds by ran-
domly selecting one mammary quarter from each cow. We 
then used Stata to analyse the results from a sample of 579 
primiparous cows from these farms using a variety of differ-
ent approaches to logistic regression analysis, all using milk 
leakage as the binary response variable. In every analysis, the 
most important risk factor in first lactation cows was DevPMF, 
the cow’s deviation from the mean peak milk flow within the 
same stage of lactation and within the same parity across 
herds. However, cows having canal protrusions were also at 
significantly greater risk of milk leakage than those having 

Figure 11.3  Random intercepts model. The bold line repre-
sents the mean regression line (Y = α + βx) for all the clusters. 
Each of the lighter lines, one for each cluster, has a slope = β 
but they have different intercepts which vary randomly 
around the mean intercept = α.
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normal teat orifices and all other orifice characteristics. No 
other factors significantly influenced milk leakage.

Table 11.3 shows extracts of Stata output relating only to 
the explanatory variable, DevPMF, from different approaches 
to logistic regression analysis. In each case, DevPMF was a 
significant risk factor for milk leakage, with the odds of the 
cow having milk leakage nearly doubling as the deviation 
from the mean peak flow increased by 1 kg/min, after adjust-
ing for the other factors in the model. However, the estimates 
of the odds ratios and their standard errors for DevPMF 
varied according to the type of analysis performed. As 
expected, the smallest P-value was obtained from the ordi-
nary logistic regression analysis which ignored clustering. The 
estimated odds ratio from this analysis was the same as that 
from the logistic regression analysis which used robust stand-
ard errors, but ignoring clustering resulted in a standard error 
that was underestimated. The logistic regression analyses that 
used either a random effects approach or generalized esti-
mating equations affected the magnitude of both the odds 
ratios and their standard errors when compared with the 
analysis that ignored clustering. The random effects analysis 
indicated that the variation in milk leakage due to the differ-
ences between herds, after adjusting for the other risk factors, 
accounted for 8.6% of the total variation. This was not statis-
tically significant (P =  0.09), so it is not surprising that the 
logistic analysis that ignored clustering produced essentially 
similar results to the analyses that took clustering into 
account. Furthermore, the small and non-significant herd 
effect indicates that the impact of management or other herd-
level factors on the occurrence of milk leakage is virtually 
negligible for practical purposes.� 

Exercises

The statements in questions 11.1–11.5 are either 
TRUE or FALSE. Questions 11.3c–e, 11.4 and 
11.5 relate to advanced sections in smaller type.

11.1  Multiple regression analysis:
(a)  Requires all the independent variables to be 

Normally distributed.

(b)  Requires the residuals to be Normally 
distributed.

(c)  Can be used to determine whether the mean 
responses of animals on two treatments are 
significantly different.

(d)  Can be performed with any number of inde-
pendent variables.

(e)  Is preferable to logistic regression analysis if 
the dependent variable has a binary response.

11.2  A partial regression coefficient in a multi-
ple regression equation:
(a)  Always lies between −1 and 1.
(b)  Measures the degree of the relationship 

between its associated independent variable 
and the dependent variable, adjusting for the 
other independent variables.

(c)  Measures the average change in the depend-
ent variable for a unit increase in the associ-
ated independent variable, adjusting for the 
other independent variables.

(d)  Describes the proportion of the variation  
in the dependent variable explained by its 
relationship with the associated independent 
variable.

(e)  Is independent of the units of measurement.

11.3
(a)  Logistic regression is an appropriate form of 

regression analysis when we have a binary 
explanatory variable and a numerical depend-
ent variable.

(b)  The coefficient attached to a particular explan-
atory variable in a logistic regression analysis 
is interpreted as an estimated odds ratio.

(c)  The coefficients in a logistic regression model 
are estimated usually by maximum likelihood.

Table 11.3  Summary of Stata results for the explanatory variable, deviation from peak milk flow (DevPMF), from different 
types of logistic regression analysis in which the binary response variable is milk leakage (Yes = 1, No = 0).

Logistic Estimated OR Std error z P > |z| 95% conf. interval for OR

NC 1.760195 0.3203571 3.11 0.002 1.232086 2.514665
RoSE 1.760195 0.3563095 2.79 0.005 1.183737 2.617377
RaEf 1.690621 0.3166406 2.80 0.005 1.171178 2.44045
GEE 1.683941 0.3361768 2.61 0.009 1.138664 2.490337

Types of logistic regression analysis: NC, no account of clustering; RoSE, robust standard errors; RaEf, random effects; GEE, 
generalized estimating equations, robust standard errors, exchangeable correlation structure.
OR, odds ratio; P > |z|, P-value; z, Wald test statistic.
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(d)  The Wald test can be used to test the null 
hypothesis that a particular logistic coeffi-
cient is zero or, equivalently, that the rele-
vant odds ratio is one.

(e)  Conditional logistic regression analysis is 
used when the outcome variable has more 
than two categories.

11.4
(a)  Poisson regression is only suitable for the 

analysis of fish data.
(b)  Poisson regression is suitable for investigat-

ing the effect of various factors on the rate 
of occurrence of an event.

(c)  Poisson regression is suitable when the indi-
viduals in the study are followed for varying 
lengths of time.

(d)  The exponential of the coefficients of a 
Poisson regression model represents the 
ratio of the odds of the event as the relevant 
explanatory variable increases by 1 unit.

(e)  The method of least squares is used to esti-
mate the coefficients in a Poisson regression 
model.

11.5
(a)  When we use regression methods to analyse 

clustered data, the standard errors of the 
estimates of the effects of interest are usually 
too small if the dependencies in the data are 
ignored.

(b)  When we have clustered data, the level 1 unit 
represents the cluster that contains a number 
of level 2 units.

(c)  The use of generalized estimating equations 
in the estimation of the coefficients of a  
multilevel regression model requires that  
the between-cluster residuals are Normally 
distributed.

(d)  The two sources of variation in a random 
effects regression model for clustered data 
are the variation between the cluster means 
and the variation between the units within a 
cluster.

(e)  The random intercepts model with a single 
explanatory variable for clustered data 
assumes that the regression lines for each 
cluster have different slopes and different 

intercepts that vary randomly about the mean 
slope and mean intercept, respectively.

11.6  Consider the following abstract describing 
the results of a study on the effects of cat owner-
ship in children (from Fasce et al., 2005, repro-
duced with permission from Elsevier):

BACKGROUND: Studies on the role of cat ownership in the 
development of allergy have led to conflicting results, prob-
ably owing to heterogeneity of the populations evaluated.

OBJECTIVE: To evaluate the possible effect of cat owner-
ship on the frequency of sensitization and asthma or rhinitis 
in children living in Liguria, Italy, who attended a pediatric 
clinic for respiratory symptoms.

METHODS: We enrolled 269 consecutive school-aged 
children in 12 months. Sensitization to aeroallergens by skin 
prick testing and the presence of respiratory symptoms (i.e. 
asthma and rhinitis) were evaluated. To analyze the role of 
different independent variables in association with respira-
tory symptoms and sensitization, a multiple logistic regres-
sion analysis was performed.

RESULTS: Of 269 children, 81 were exposed to cats at 
home in the first 2 years of life (‘early’ cat owners), 65 after 
the first 2 years of life (‘late’ cat owners), and 123 never 
(‘never’ cat owners). Early cat ownership was significantly 
associated with a lower risk of cat sensitization compared 
with never cat ownership (adjusted odds ratio [OR], 0.32; 
95% confidence interval [CI], 0.14–0.74; P = 0.01). Early cat 
ownership was also associated with a significantly lower risk 
of allergic rhinitis than late cat ownership (OR, 0.43; 95% CI, 
0.22–0.85) or never cat ownership (OR, 0.51; 95% CI, 0.28–
0.92). No differences in the frequency of asthma were found 
among the three groups (P = 0.74).

CONCLUSIONS: Cat ownership in early childhood can 
play an important role in preventing sensitization to cats and 
in lowering the frequency of allergic rhinitis, at least in chil-
dren with the characteristics of the population studied.

(a)  Why did the authors not have a single vari-
able in each logistic regression to represent 
the level of cat ownership (none, early and 
late)? What did they use instead?

(b)  Interpret the adjusted odds ratios of 0.32  
and 0.51.

(c)  Why do the authors refer to the odds ratios 
as adjusted odds ratios?

(d)  The authors do not provide P-values for the 
odds ratios of 0.43 and 0.51. Provide the rel-
evant P-values and explain how you obtained 
them.

(e)  What hypothesis test would the authors  
have performed to compare the frequency of 
asthma in the three groups?
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12.1  Learning objectives

By the end of this chapter you should be able to:

•	 List the different approaches to adopt if the 
assumptions of the parametric test are not 
satisfied.

•	 Describe the differences between parametric 
and non-parametric tests.

•	 Recognize when it is advisable to apply a non-
parametric test to a data set.

•	 Identify a data set to which the sign test is 
suited and conduct the test.

•	 Identify a data set to which the Wilcoxon 
signed rank test is suited and conduct the test.

•	 Identify a data set to which the Wilcoxon  
rank sum (Mann–Whitney U) test is suited and 
conduct the test.

•	 Identify data sets to which the Kruskal–Wallis 
and Friedman ANOVAs are suited and inter-
pret the results of such analyses.

•	 Calculate the Spearman’s rank correlation 
coefficient and test the hypothesis that its true 
value is zero.

12 Non-parametric 
statistical methods

12.2  Parametric and non-
parametric tests

12.2.1  Difference between 
parametric and non-parametric 
tests

The hypothesis tests that we discussed in earlier 
chapters for means and for regression and cor-
relation coefficients are parametric tests in that 
each makes certain assumptions about the under-
lying form of the distribution of the observations. 
For example, in the two-sample t-test (see Section 
7.4) we assume the data are Normally distrib-
uted. Animal research often results in data sets 
that are less than perfect either in terms of 
numbers of observations, or the distribution of 
the data. Hence the assumptions of the tests may 
not be satisfied. The alternative type of test is a 
non-parametric test, which does not make any 
distributional assumptions about the data. For 
this reason, they are often called distribution-
free tests. The analyses in non-parametric tests 
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(ANOVA – see Section 8.6.1), and statisti-
cal analyses often assume that the residu-
als (see Section 10.4.3) have constant 
variance in different circumstances.

(c)	 Perform an alternative non-parametric test, 
which does not make distributional assump-
tions. The non-parametric analyses that we 
discuss in this chapter are shown, against 
their equivalent parametric procedures, in 
Box 12.1. You should be aware that a non-
parametric test may not produce an identical 
P-value to its parametric equivalent, and the 
exact formulation of the null hypothesis may 
not be the same. The most usual approach  
is to use the parametric test, provided its 
underlying assumptions are satisfied.

12.2.3  Advantages and 
disadvantages of using  
non-parametric tests

A non-parametric test can be used in the situa-
tion when the parametric equivalent is not appro-
priate for one or more of the following reasons:

•	 The sample size is very small, comprising 
perhaps only five or six observations, and it is, 
therefore, difficult to establish that the data 
have a particular distributional form.

•	 The distributional assumptions underlying the 
parametric test of interest are not satisfied.

•	 The data are measured on ordinal or nominal 
scales.

are usually based on the ranks of the data, i.e. 
on the successive numbers assigned to the obser-
vations when they are arranged in increasing  
(or decreasing) order, rather than on the raw 
data. An extensive discussion of non-parametric 
methods may be found in, for example, Siegel 
and Castellan (1988) or Sprent and Smeeton 
(2007).

12.2.2  What if assumptions of the 
parametric test are not satisfied?

If the assumptions of the parametric test are not 
satisfied, then we have a number of choices. We 
can:

(a)	 Ignore the fact that the assumptions are not 
satisfied and proceed with the analysis. This 
approach may lead to an incorrect analysis 
in which the results of the test are distorted 
by its failure to adhere to the underlying 
assumptions. In particular, the P-value may 
not be the one that we believe we have  
evaluated. Some tests are robust against vio-
lations of certain assumptions (e.g. the Nor-
mality assumptions in the two-sample and 
paired t-tests – see Sections 7.4.2 and 7.5.2) 
so that the P-value is hardly affected if the 
assumptions are not satisfied (e.g. if the data 
depart from Normality).

(b)	 Take a particular transformation of every 
data value, and perform the analysis on the 
transformed observations. So, if the variable 
of interest is x, then we take a transformation 
of x to create a new variable, tx, which is some 
function of x, for example, its logarithm, 
reciprocal or square root (see Section 13.2). 
There are a number of reasons for trans-
forming data, the most common being:
•	 To achieve a Normal distribution of tx 

when the distribution of x is skewed.
•	 To linearize a relationship; it is much 

easier to analyse data and investigate a 
relationship when that relationship can be 
described by a straight line.

•	 To stabilize variance; equal variance is 
assumed in the two-sample t-test (see 
Section 7.4.2) and in analysis of variance 

Box 12.1  Parametric analyses and some non-parametric 
equivalents.

Parametric analysis Non-parametric analysis

One-sample t-test Sign test
Paired t-test Sign test, Wilcoxon signed 

rank test
Two-sample t-test Wilcoxon rank sum test, 

Mann–Whitney U test
One-way ANOVA Kruskal–Wallis one-way 

ANOVA
Two-way ANOVA Friedman two-way ANOVA
Pearson correlation 

coefficient
Spearman rank correlation 

coefficient
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wanted to test the null hypothesis that the mean 
value of a numerical variable equals a specific 
value (see Section 7.3). Similarly, we can use the 
sign test to investigate whether the population 
from which our sample is taken has a specified 
median; we determine whether significantly 
more of the values are greater (or less) than this 
median.

We can also use the sign test when we want to 
establish whether the measurements of a single 
variable, measured on an ordinal (so they can be 
ranked) or numerical scale, are similar in two 
groups of paired observations. The pairing may 
be achieved by matching the animals in a pair 
with respect to any variables that may be likely 
to influence the response, or each pair may rep-
resent the same animal on different occasions 
(see Section 5.8.4).

For example, in investigating a test diet which 
it is believed may promote rapid growth in rats, 
each of a pair of age/sex-matched litter mates 
could be assigned to either the test diet or a 
control diet. The difference in weights (control 
versus test) between the litter mates after a pre-
scribed time, say 60 days, could be used to deter-
mine whether the test diet is effective. In 
particular, we can use the signs of the differences 
for this purpose.

12.3.2  Rationale

•	 One-sample test.  If the median of a sample 
of observations is approximately equal to the 
value for the population median specified 
under the null hypothesis, then we would 
expect to find an equal number of observa-
tions both above and below this specified 
value. Expressed another way, we would expect 
half the observations in our sample to be 
greater than the specified value. This means 
that we test the hypothesis, framed in terms  
of the population, that half the observations 
are greater than the specified median. We  
are investigating a binary response (above or 
below a given value); we can therefore use the 
Binomial distribution (see Section 3.4.2), and 
the Normal approximation to it (see Section 
3.6.1), to test this hypothesis.

However, if all the assumptions of the para-
metric test are satisfied, then the non-parametric 
test is less efficient because of the loss of infor-
mation incurred by replacing the observations by 
their ranks. We can measure this loss of efficiency 
formally by evaluating the power-efficiency of 
the test: this is the extent (measured as a percent-
age) to which the sample size of the non-
parametric test needs to be increased to make it 
as powerful as the parametric test for a fixed 
significance level. The power of a test, you will 
remember (see Section 6.4.2), is the chance of 
detecting as significant a real treatment differ-
ence, and this is proportional to the sample size. 
So, for example, if the power-efficiency of a test 
is 90%, this implies that the ratio of the sample 
size of the non-parametric test to that of the 
parametric test needs to be 10 : 9 if the two tests 
are to be equally powerful, provided all the 
assumptions underlying the parametric test  
are met. The power-efficiency of all the non-
parametric tests discussed in this chapter is about 
95%, with the exceptions of the sign test (falling 
eventually to 63% for very large sample sizes), 
the test for Spearman’s rank correlation coeffi-
cient (91%) and the Friedman two-way analysis 
of variance (64–87%, depending on the number 
of groups). Details may be obtained from Siegel 
and Castellan (1988).

You should also be aware that non-parametric 
tests tend to be geared towards significance tests 
rather than to estimation. Although significance 
tests form an important part of statistical analy-
sis, estimation of the effects of interest provide 
the necessary understanding of the biological 
processes involved. As the parametric counter-
parts of non-parametric tests usually incorporate 
parameter estimates in their calculation, para-
metric tests are preferred in many situations.

12.3  Sign test

12.3.1  Introduction

If we are concerned about the assumption of 
Normality, the sign test can be used as an alter-
native to the one-sample t-test or the paired 
t-test. We would use the one-sample t-test if we 
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smaller.) Suppose there are n non-zero differ-
ences; all tied pairs are excluded from the 
analysis.
If n ≤ 20, proceed to Step 4.
If n > 20, calculate the test statistic. It approxi-
mately follows the Standard Normal distribu-
tion and is given by

Test
p n

n
12

2

0 5 1 2

0 5
=

− −. ( )

.

/

/

where p =  k/n is the observed proportion of 
positive (or negative) pairs out of n untied 
pairs; and 1/(2n) is a continuity correction that 
makes an allowance for using the continuous 
Normal distribution as an approximation to 
the discrete Binomial distribution.

4.	 Determine the P-value from the computer 
output, or:
If n ≤ 20 and k ≤ 9, refer k and n to Table A.8.
Otherwise, refer Test12 to the table of the 
Standard Normal distribution (see Table A.1).

5.	 Use the P-value to judge whether the data 
are inconsistent with the null hypothesis.  
Then decide whether or not to reject the null 
hypothesis. Usually, we reject H0 if P < 0.05.

12.3.5  Example

It was claimed at a regional veterinary meeting 
that the mean time for a consultation was 12 
minutes. A young graduate challenged this state-
ment on the grounds that with such a skewed 
population (a few cases take considerably more 
than 12 minutes), the median would be a better 
estimate to quote. Further discussion led to  
a general agreement that the median consulta
tion time was also around 12 minutes. The young 
graduate, being sceptical, decided to test his own 
practice and conducted a time-and-motion study 
during morning surgery for 1 week. A total of 43 
cases were seen; the results are summarized in 
Table 12.1.

In order to determine whether the results  
are inconsistent with a median value of 12, we 
perform the sign test.

1.	 The null hypothesis is that the true median 
duration of a consultation is 12 minutes, or, 

•	 Paired test.  We start by evaluating the differ-
ence, in a defined direction, in the responses 
for each pair. If, overall, the responses in the 
two groups are similar, we would expect there 
to be the same number of positive and nega-
tive differences in the pairs. This means that 
we would expect about half of the differences 
to be positive if the null hypothesis – that there 
is no difference in the responses in the two 
groups – were true. Expressed another way, we 
test the null hypothesis that the true propor-
tion of positive differences in the population, 
π, is 0.5. Because we have reduced the two-
sample situation to a one-sample situation in 
which we are investigating a binary response 
variable (the difference, which can be either 
positive or negative), again we can use the 
Normal approximation to the Binomial distri-
bution (see Section 3.6.1).

12.3.3  Assumptions

We assume that the variable under investigation 
is measured on an ordinal or numerical scale, and 
that for the paired analysis the observations in 
the two groups are matched (see Section 5.8.4 for 
types of pair).

12.3.4  Approach

We explain the approach in relation to the paired 
situation, but the same principles apply to the 
single-sample situation.

1.	 Specify the null hypothesis, H0, that the true 
proportion of positive differences is 0.5. The 
alternative hypothesis is that this proportion 
is not equal to 0.5.

2.	 Collect the data and, if relevant, display them 
in the same way as for the paired t-test (see 
Section 7.5.3).

3.	 For a computer analysis, choose the sign test 
and proceed to Step 4. Otherwise, count the 
numbers of positive and negative differences 
(ignore zero differences) and note the smaller 
number, k. (In a one-sample test we would 
count the numbers of observations above and 
below the specified median and note the 
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the same population. Generally, the alterna-
tive hypothesis is that they do not.

2.	 Collect the data and display them in the same 
way as for the paired t-test (see Section 7.5.3).

3.	 Either select the Wilcoxon signed rank test on 
the computer and proceed to Step 4, or:
(a)	 Find the difference between each pair of 

observations, and indicate whether that 
difference is positive or negative.

(b)	 Ignoring the signs of the differences, rank 
them in order of magnitude. This means 
that we have to assign successive numbers 
(the ranks), starting at unity, to the differ-
ences. The smallest difference (once we 
have ignored its sign) is given the rank 1, 
the next smallest difference gets the rank 
2, etc. We ignore zero differences, and 
reduce the sample size accordingly, from 
n′ to n, say. If two or more absolute differ-
ences (i.e. when we ignore their sign) have 
the same value, then these tied differences 
get the mean of the ranks they would have 
received had they not been tied.

(c)	 Affix to each rank the sign of its corre-
sponding difference.

(d)	 Find the sum of the ranks that have a posi-
tive sign, T+, or the sum of the ranks that 
have a negative sign, T−, usually, which-
ever is the smaller. Let us assume here 
that T+ < T−.
If n ≤ 25, proceed to Step 4.
If n > 25, calculate the test statistic

Test
T n n

n n n
13

1 4

1 2 1 24
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+ +

+ ( )

( )( )

/

/

which approximately follows the Stand-
ard Normal distribution. If there are a 
large number of ties, then a correction 
factor should be applied to the denomina-
tor. Details may be obtained from Siegel 
and Castellan (1988).

4.	 Determine the P-value. You may find this in 
your computer output. Alternatively:
If n ≤ 25, refer T+ to Table A.9.
If n > 25, refer Test13 to the table of the Stand-
ard Normal distribution (see Table A.1).

5.	 Use the information to determine whether the 
data are inconsistent with the null hypothesis. 

equivalently, that the true proportion of con-
sultations of duration greater than 12 minutes 
is 0.5. The alternative hypothesis is that this 
proportion is not equal to 0.5.

2.	 There is no useful way in which to display 
these data diagrammatically.

3.	 There were 15 consultations with duration 
greater than 12 minutes and 22 consultations 
with duration less than 12 minutes out of 37 
consultations whose duration was not exactly 
12 minutes.

4.	 Thus k = 15 (the smaller number) and n = 37. 
This gives Test12

215 37 0 5 1 74 0 5 37 0 986= − − ={ . } . ./ / / /  
Test12

215 37 0 5 1 74 0 5 37 0 986= − − ={ . } . ./ / / / which, when referred to Table A.1, 
gives P = 0.32.

5.	 Hence the data are not inconsistent with the 
null hypothesis that the true median duration 
is 12 minutes, and there is no evidence to 
reject it.

12.4  Wilcoxon signed rank test

We can also use the Wilcoxon signed rank test as 
a non-parametric alternative to the paired t-test.

12.4.1  Assumptions

We assume that the variable under investigation 
is measured on an ordinal or numerical scale, and 
that the observations in the two groups are 
paired (see Section 5.8.4 for types of pairs).

12.4.2  Approach

1.	 Specify the null hypothesis, H0, that the 
samples come from populations with identical 
distributions and the same median, or from 

Table 12.1  Duration of consultation times.

Duration of consultation No. of cases

Less than 12 min 22
12 min 6
More than 12 min 15

Total 43
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diet, the second rat then receiving the other diet. 
At 60 days of age, the rats were weighed; these 
weights are shown in Table 12.2.

In order to investigate whether the test diet is 
effective, we go through the hypothesis testing 
procedure:

1.	 We are testing the null hypothesis that the 
rats’ weight is unaffected by the novel diet, 
against the two-sided alternative that it is 
affected by the diet.

2.	 It is difficult to discern any obvious benefit of 
the diet from Figure 12.1, which displays the 
data. The differences in the weights are skewed 
to the right (you should sketch them to check 
this), indicating that a non-parametric test is 
advocated.

3.	 Proceeding by hand, we rank the absolute dif-
ferences (ignoring the two zero differences), 
as shown in Table 12.2. There are only four 
negative differences, whilst there are 12 posi-
tive differences. We therefore find the sum of 
the ranks of the negative differences = 11 + 13 
+ 3.5 + 3.5 = 31.

4.	 Referring this sum to Table A.9, we find that 
0.05 < P < 0.10. In fact, the exact P-value from 
a computer analysis is P = 0.06.

Then decide whether or not to reject the 
null hypothesis. Usually, we reject H0 if 
P < 0.05.

6.	 Your computer output may provide a con
fidence interval for the difference in the 
medians. We refer you to Altman et al. (2000) 
for details of the calculation. Usually it is suf-
ficient to provide the difference in the sample 
medians, together with the interquartile range 
(see Section 2.6.2) or the range of values that 
encloses 95% (or 90%) of the observations,  
to give an indication of the magnitude of  
the effect of interest. Alternatively, you could 
show the median of the differences in the sam
ple, together with an appropriate range of the 
differences.

12.4.3  Example

A novel diet for laboratory rats was tested to see 
if it had any potential to promote rapid growth. 
Several different strains were included in this 
preliminary trial, and weanling litter mate rats, of 
the same sex, were used as the test unit. Eighteen 
pairs of litter mates were used; each rat in a pair 
was randomly allocated to the test or control 

Table 12.2  Weights of litter mate 
rats on two different diets.

Litter 
mate pair

Weight on 
test diet (g)

Weight on 
control diet 

(g)

Difference 
(control –  
test) (g)

Rank of 
difference

1 243 265 +22 15
2 161 165 +4 5.5
3 318 361 +43 16
4 270 270 0 –
5 214 235 +21 14
6 97 83 −14 11
7 189 170 −19 13
8 151 158 +7 9.5
9 143 143 0 –

10 117 121 +4 5.5
11 177 174 −3 3.5
12 204 211 +7 9.5
13 190 192 +2 1.5
14 134 131 −3 3.5
15 154 160 +6 8
16 273 291 +18 12
17 126 131 +5 7
18 188 190 +2 1.5
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two-sample t-test if we are concerned that the 
underlying assumptions of the t-test (Normality 
and constant variance – see Section 7.4.2) are not 
satisfied. The two tests produce the same P-value. 
We shall explain the mechanics of the Wilcoxon 
rank sum test because its calculations are mar-
ginally simpler.

12.5.2  Assumptions

We assume that the variable under investigation 
is measured on an ordinal or numerical scale. The 
observations in the two independent samples are 
representative of the populations of interest.

12.5.3  Approach

1.	 Specify the null hypothesis, H0, that the two 
samples could have been obtained from popu-
lations that have similar distributions with the 
same median, or from the same population. 
Generally, the alternative hypothesis is that 
they have not been obtained from such 
populations.

2.	 Collect the data and display them in the same 
way as for the two-sample t-test (see Section 
7.4.3).

3.	 Using the computer, select the Wilcoxon rank 
sum test and proceed to Step 4, or follow the 
sequence below:
(a)	 Suppose there are n1 observations in the 

first sample and n2 observations in the 

5.	 There is insufficient evidence to reject the null 
hypothesis. We have reason to doubt the claim 
that the novel diet is effective in promoting an 
increase in growth.

6.	 The median rat weight (with 25th and 75th 
percentiles) after 60 days is 183 g (141, 221 g) 
on the novel diet and 175 g (140, 243 g) on the 
control diet. The median of the differences in 
weight is 4.0 g (−0.75, 9.75 g).

12.4.4  Choosing between the  
sign test and the Wilcoxon signed 
rank test

The sign test is less powerful than the Wilcoxon 
signed rank test because it uses only the informa-
tion about the direction of the differences; it 
ignores their magnitude.

Performing the sign test on the rats’ weight 
example of Section 12.4.3, we refer 4 (the number 
of negative differences, which is smaller than 12, 
the number of positive differences) to Table A.8. 
We find that P = 0.076, again having insufficient 
evidence to reject the null hypothesis.

12.5  Wilcoxon rank sum test

12.5.1  Introduction

We can use the Wilcoxon rank sum test or the 
Mann–Whitney U test as an alternative to the 

Figure 12.1  Dot diagram showing the weights of 
litter mate rats on two different diets.
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time taken for establishment of the habit (seven 
consecutive days without defecating indoors) 
was recorded in days. The results are shown  
in Table 12.3a. Are the two regimens equally 
effective?

1.	 The null hypothesis is that the two samples 
could have been selected from populations 
with the same median training time or from 
the same population. The alternative hypoth-
esis is that they are from populations with 
different median training times.

2.	 The data are plotted in Figure 12.2; the sample 
sizes are small, and it would seem that the neg
ative reinforcement training times are skewed 
to the right. Therefore, a non-parametric test 
is advocated.

3.	 The training times of the two samples are 
ranked together, as shown in Table 12.3b. 
There are eight observations in the sample 
with positive reinforcement and nine in the 

second sample, and n1  <  n2. Rank the 
observations in the two samples together 
(i.e. assign successive numbers from 1 to 
n1 + n2 to the observations after they have 
been arranged in increasing order of mag-
nitude). If two or more observations have 
the same value, then these tied values get 
the mean of the ranks they would have 
received had they not been tied.

(b)	 Find the sum of the ranks of one sample 
(usually the smaller sample), T1.
If n1 ≤ 10 and n2 ≤ 15, proceed to Step 4.
Otherwise, calculate the test statistic

Test
T n n n

n n n n
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1 2 1 2

1 2
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which approximately follows the Stand-
ard Normal distribution. If there are a 
large number of ties, the denominator 
should be modified (Armitage et al., 2002). 
Most computer packages adjust for tied 
ranks.

4.	 Determine the P-value from the computer 
output, or:
If n1 ≤ 10 and n2 ≤ 15, refer T1 to Table A.10.
If n > 10, refer Test14 to the table of the Stand-
ard Normal distribution (see Table A.1).

5.	 Use the P-value to determine whether the 
data are inconsistent with the null hypothesis. 
Then decide whether or not to reject the null 
hypothesis. Usually, we reject H0 if P < 0.05.

6.	 Your computer output may provide a confi-
dence interval for the true difference in the 
medians. The relevant formulae are given in 
Altman et al. (2000). Alternatively, you can 
provide an estimate of the median, together 
with the range (e.g. the interquartile range or 
that enclosing the central 95% of the observa-
tions) in each sample.

12.5.4  Example

Seventeen puppies were toilet-trained from 
weaning at 6 weeks of age by either positive 
reinforcement (praise and encouragement when 
defecating outdoors) or negative reinforcement 
(chastisement when defecating indoors). The 

Table 12.3  Time taken (days) to establish toilet training in 
two groups of dogs.

(a) Results as they were obtained (time in days)

Positive reinforcement: 43, 41, 48, 44, 51, 48, 47, 35
Negative reinforcement: 42, 47, 57, 53, 74, 59, 65, 54, 46

(b) Results arranged in order (time in days)

Positive 
reinforcement

Negative 
reinforcement Rank

35 1
41 2

42 3
43 4
44 5

46 6
47 7.5

47 7.5
48 9.5
48 9.5
51 11

53 12
54 13
57 14
59 15
65 16
74 17
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sample with negative reinforcement. Hence 
we take T1 to be the sum of the ranks of the 
sample with positive reinforcement = 1 + 2 + 
4 + 5 + 7.5 + 9.5 + 9.5 + 11 = 49.5.

4.	 We refer 49.5 to Table A.10 with n1 =  8 and 
n2 =  9, and find that P <  0.05 since 49.5 lies 
outside the limits of 51–93, but P > 0.01 since 
the relevant tabulated limits are 45–99 (in fact, 
a computer analysis shows that P = 0.03).

5.	 The data are not consistent with the null 
hypothesis that the samples could have been 
selected from populations with the same 
median training time, and we have evidence 
to reject it. Hence we can conclude that there 
is evidence indicating that positive reinforce-
ment is better than negative reinforcement.

6.	 The median training time (with the interquar-
tile range) for the sample with positive rein-
forcement was 45.5 days (41.5, 48.0 days), and 
for that with negative reinforcement was 54.0 
days (46.5, 62.0 days).

12.6  Non-parametric analyses  
of variance

12.6.1  Introduction

In this section we indicate the approach used in 
two particular forms of non-parametric ANOVA 
– the Kruskal–Wallis and the Friedman ANOVA. 
It is unlikely that you will ever have to perform 

Figure 12.2  Dot diagram showing the time 
taken for puppies to become toilet-trained with 
positive or negative reinforcement.

these analyses by hand, so we omit the details of 
the calculations. You will find them in Siegel and 
Castellan (1988). In both analyses, we assume the 
data are measured on an ordinal or a numerical 
scale.

12.6.2  Kruskal–Wallis  
one-way ANOVA	

(a)  Procedure

In Section 8.6 we discussed the one-way ANOVA in some 
detail. You will recall that this may be regarded as an exten-
sion to the two-sample t-test if the means of more than two 
independent groups of observations are to be compared. 
However, if either or both of the assumptions underlying the 
parametric ANOVA (namely, Normality and constant vari-
ance – see Section 8.6.1) are not satisfied, perhaps because 
the data are measured on an ordinal scale, then we may 
prefer to analyse the data using the equivalent non-paramet-
ric Kruskal–Wallis one-way ANOVA. It tests the null hypoth-
esis that the k ≥  3 independent samples are selected from 
identical populations with the same median or from the same 
population.

The appropriate test statistic is determined by replacing 
the observations in the samples by their ranks. This means 
that all the observations in the k samples are combined and 
are arranged in order of magnitude. The smallest observation 
receives the rank 1, the next smallest rank 2, etc. The test 
statistic is based on the sum of the ranks in each sample. It 
approximately follows the Chi-squared distribution with 
k − 1 degrees of freedom.

If the result of the Kruskal–Wallis test is significant, we 
reject the null hypothesis that all the samples are selected 
from identical populations with the same median. We infer 



174	 Statistics for Veterinary and Animal Science

brackets) for the compensated, uraemic and end-stage CRF 
groups are 25.1 pg/ml (12.6, 40.0 pg/ml), 86.7 pg/ml (35.1, 
176.2 pg/ml) and 301.2 pg/ml (148.7, 447.8 pg/ml), respectively. 
The null hypothesis is that the samples come from identical 
populations with the same median. The result of the Kruskal–
Wallis test is that P < 0.001, indicating that at least two of the 
medians differ. Wilcoxon rank sum tests, incorporating the 
Bonferroni correction (i.e. multiplying each P-value by 3 
because there are three two-sample tests) between each pair 
of groups shows that the median PTH is significantly greater 
in the end-stage CRF group than in the other two groups 
(P < 0.001) and that the median PTH is significantly greater 
in the uraemic CRF group than in the compensated group 
(P < 0.003).

12.6.3  Friedman two-way  
ANOVA	

(a)  Procedure

In Section 8.5.3 we gave an indication of the manner in which 
relatively complicated forms of designed experiments can be 
analysed by ANOVA. In particular, we mentioned the one-way 
repeated measures ANOVA (often confusingly called a rand-
omized block or, sometimes, a two-way ANOVA) which may 
be regarded as an extension to the paired t-test when more 
than two groups of dependent observations are to be com-
pared. The non-parametric equivalent, called the Friedman 
two-way ANOVA, may be performed when the underlying 
assumptions (Normality, constant variance) of the parametric 
ANOVA are not satisfied. It tests the null hypothesis that the 
k ≥  3 matched or dependent samples are selected from the 
same population or from populations with the same median.

that at least one of the samples comes from a population that 
is different from the others. We can then use the Wilcoxon 
rank sum test (see Section 12.5) to determine which pairs of 
groups differ. However, because of the potential for testing 
many combinations of groups (if we have k groups, we could 
make k(k − 1)/2 comparisons), we are likely to find spurious 
significant results unless we adjust for multiple comparisons 
(see Section 8.6.3).

(b)  Example

Barber and Elliott (1998) investigated the aetiopathogenesis 
of renal secondary hyperparathyroidism (RHPTH) in a pro-
spective study of 80 cats with chronic renal failure (CRF) 
using routine plasma biochemistry and assays of parathyroid 
hormone (PTH). The presence of RHPTH can only be diag-
nosed by the demonstration of elevated plasma PTH concen-
trations. A knowledge of the prevalence and aetiopathogenesis 
of RHPTH in naturally occurring feline CRF is imperative 
before the institution of correct treatment modalities to 
reduce RHPTH.

Cats presenting as first opinion cases over a 3-year period 
and diagnosed with CRF were categorized subjectively into 
three groups (compensated, uraemic and end-stage), accord-
ing to the severity of clinical signs. Plasma concentrations 
were determined from blood samples by immunoradiometric 
assay. Their distributions in the three CRF groups are shown 
in Figure 12.3. Note that here we have the common situation 
in which we perform a hypothesis test, in this case comparing 
the results of cats in three groups, which is not based on 
random allocation.

Because these distributions are skewed to the right, a 
Kruskal–Wallis one-way ANOVA is used to compare the 
medians. The sample medians (25th and 75th percentiles in 

Figure 12.3  Dot diagram showing the distributions of plasma parathyroid hormone (PTH) concentration (pg/ml) in cats in 
three stages of chronic renal failure (from Barber and Elliott, 1998, redrawn with permission from Wiley-Blackwell).
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The observed data are arranged in a two-way table, with 
the columns, say, representing the k samples (e.g. treatments) 
and each of the r rows representing a different individual (if 
each individual has an observation in each of the k samples) 
or matched individuals. The test statistic is determined by 
ranking the observations separately in each of the r rows. 
Thus, the observations in each row are replaced by the ranks 
1, 2, .  .  .  , k according to their positions in the ordered set 
within that row. The test statistic is based on the sum of the 
ranks in each sample (column), and approximately follows a 
Chi-squared distribution with k − 1 degrees of freedom.

A significant test result implies that the k samples are not 
selected from populations with the same median. We can 
establish where the differences lie by performing the Wil-
coxon signed rank test on pairs of samples, remembering, of 
course, to adjust for multiple comparisons (see Section 8.6.3).

(b)  Example

Ketoprofen, a non-steroidal anti-inflammatory drug, was 
administered to horses rectally in three different bases to 
measure its bioavailability (%) by this route. One gram of 
drug was distributed in a fatty suppository suspension (A), 
as a polyethylene glycol solution (B) and as an aqueous sus-
pension (C). Each of the six horses in the study received 
ketoprofen in the three different bases, with the order in 
which they received the ‘treatments’ being randomized. 
There was a wash-out period of 1 week between the admin-
istrations of the treatments. We show the results (derived 
from summary data presented by Corveleyn et al., 1996) in 
Table 12.4. We can see that the variances in the treatment 
groups are quite different. Furthermore, it is difficult to estab-
lish Normality of the data since there are only six values in 
each treatment group. Hence we advocate a non-parametric 
analysis. The Friedman two-way ANOVA is appropriate 

because the samples are dependent, with each horse receiv-
ing all three treatments.

The null hypothesis is that the three repeated measures 
come from the same population or populations with the same 
medians. This null hypothesis implies that the bioavailabili-
ties are the same in the three different treatment groups. The 
alternative hypothesis is that the three repeated measures do 
not come from populations with the same medians. A Fried-
man computer analysis gives P = 0.31. Thus, there is insuffi-
cient evidence to allow us to reject the null hypothesis; it 
appears that the formulation base makes little difference to 
the bioavailability. We show the summary measures, includ-
ing the medians, for each base formulation in Table 12.4.	 

12.7  Spearman’s rank  
correlation coefficient

12.7.1  Introduction

The Pearson product moment correlation coef-
ficient provides a measure of the strength of  
the linear association between two variables (see 
Section 10.3). Often we are interested in testing 
the null hypothesis that the true correlation coef-
ficient in the population is zero, in which case 
there is no linear association between the two 
variables. In order to test this hypothesis, we 
assume that at least one of the two variables is 
Normally distributed. If we wish to calculate a 
confidence interval for the correlation coeffi-
cient, we assume that both of the variables  
are Normally distributed (see Section 10.3.2(a)). 
If we are concerned about these assumptions,  
we can calculate the Spearman rank correla
tion coefficient as a non-parametric equivalent 
to the Pearson correlation coefficient. You may 
also come across Kendall’s τ (Greek letter tau) 
which is another non-parametric correlation 
coefficient.

12.7.2  Calculation

To calculate the Spearman rank correlation 
coefficient:

•	 We start by replacing the observations on each 
of the two variables, x and y, by their ranks. 
If our sample consists of a series of n pairs of 
x and y values, {(x1, y1), (x2, y2), (x3, y3), .  .  . 

Table 12.4  Bioavailability (%) of ketoprofen administered 
in three bases, A, B and C (based on summary data from 
Corveleyn et al., 1996, with permission from Wiley 
Blackwell).

Bases

Horses A B C

1 22.5 28.2 37.5
2 11.5 43.8 25.1
3 16.7 36.8 28.9
4 32.1 48.6 33.3
5 36.7 2.1 40.0
6 27.5 12.9 22.9

Median (%) 25.0 32.5 31.1
Mean (%) 24.5 28.7 31.3
Variance (%2) 89.89 329.41 46.58
SD (%) 9.48 18.15 6.82
Range (%) 11.5–36.7 2.1–48.6 22.9–40.0
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correlation coefficient in the population, ρs, 
is zero), we follow the procedure for testing  
the Pearson correlation coefficient (see Section 
10.3.2(b)). If we have 15 or fewer pairs of obser-
vations, we should assess significance using Table 
A.7. When the number of pairs is greater than 15, 
we can use, as an approximation, Table A.6 or 
Test10 (replacing r by rs ), to assess significance, as 
for the Pearson correlation coefficient.

We calculate the confidence interval for ρs in 
the same way as for the Pearson correlation coef-
ficient, replacing r by rs (see Section 10.3.2(b)).

12.7.5  Example

At a recent dog show, two judges were asked to 
inspect the entrants, and give them a score out of 
10 (including half marks) for conformation to the 
ideal breed type: the higher the score, the better 
the entrant. In this particular class, there were 12 
entrants. Unfortunately, judge B misunderstood 
the instructions, and ranked the dogs in order 
(rank 1 being the best in the class) instead of 
assigning a score. The results are shown in Table 
12.5a. We want to know if the two judges are 
assessing the dogs similarly, even though the 
scales of measurement are different. One way of 
evaluating this is by providing a measure of asso-
ciation between the two types of assessment, i.e. 
by calculating a correlation coefficient.

The Spearman rank correlation coefficient is 
preferred to the Pearson correlation coefficient 
since one of the two assessments was recorded 
on a ranking scale. We rank the scores for judge 
A and determine the differences between the 
two sets of ranks, as shown in Table 12.5b. Then 
the Spearman rank correlation is the Pearson 
correlation coefficient between the judges’  
ranks. This is estimated as 0.864. The alternative 
approach is to estimate it as

r
d

n n
s = −

−
= −

−
=∑

1
6

1
6 38 5

1728 12
0 865

2

3

( . )
.

The small discrepancy between the two esti
mates is a consequence of there being three dogs 
tied at the same rank in the scores assigned by 
judge A.

(xn, yn)}, we replace the (x1, x2, x3, .  .  .  , xn) by 
the ranks from 1 to n according to the values 
of x in the ordered set (the smallest x gets rank 
1, the largest x gets rank n), and we replace the 
(y1, y2, y3, .  .  .  , yn) by the ranks from 1 to n 
according to the values of y in the ordered set. 
Tied values get the mean of the ranks they 
would have received had they not been tied.

•	 The sample value of the Spearman rank cor-
relation coefficient, rs, is then equivalent to 
the Pearson product moment correlation coef-
ficient calculated using the ranks instead of  
the observations themselves. This is the easiest 
approach to calculating the Spearman rank 
correlation coefficient if not using computer 
software.

•	 Alternatively, we can calculate the Spearman 
rank correlation coefficient using the formula

r
d

n n
s = −

−
∑

1
6 2

3

where each d is the difference between the 
ranks for a pair. This formula should be modi-
fied if there are tied values in a data set, 
although the effect is slight if there are few ties. 
Siegel and Castellan (1988) give details.

12.7.3  Interpretation

The Spearman rank correlation coefficient pro-
vides a measure of the association (not necessar-
ily linear) between two variables, but does not 
imply causality. Similarly to the Pearson product 
moment correlation coefficient, its limits are −1 
and +1. If it takes the value +1, then the individu-
als have the same ranks for both variables; if it 
takes the value −1, then the rank order of one 
variable is the reverse of that of the other vari-
able. If the Spearman rank correlation coefficient 
is zero, the two variables are not associated.

12.7.4  Hypothesis testing and 
calculation of confidence intervals

In order to test the null hypothesis that the two 
variables, x and y, are not associated (i.e. the true 
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We can then assess the significance of the  
true correlation coefficient in the population by 
adopting the following procedure:

1.	 The null hypothesis is that the true Spearman 
correlation coefficient is zero. The alternative 
hypothesis is that it is not.

2.	 The data have been collected and are dis-
played in a scatter diagram, see Figure 12.4.

3.	 We refer rs = 0.865 to Table A.7 with a sample 
size of 12.

4.	 Since 0.865 is greater than the tabulated value 
of 0.8182, P < 0.002.

5.	 We have evidence to reject the null hypothe-
sis. This indicates that there is a significant 
association between the two judges’ assess-
ments of the dogs.

6.	 The 95% confidence interval for the true cor-
relation coefficient is

e
e

e
e
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Table 12.5  Two judges’ assessments of 12 dogs.

(a) Scores given by judge A and ranks given by judge B.

Dog 1 2 3 4 5 6 7 8 9 10 11 12

Judge A 7.0 5.5 8.5 8.0 7.0 3.0 7.5 9.0 7.5 9.5 6.0 7.5
Judge B 6 11 4 2 5 12 7 3 8 1 10 9

(b) Ranks accorded to the scores of judge A with the ranks of judge B (in each case rank 1 is the best dog).

Dog 1 2 3 4 5 6 7 8 9 10 11 12

Judge A 8.5 11 3 4 8.5 12 6 2 6 1 10 6
Judge B 6 11 4 2 5 12 7 3 8 1 10 9
Diff. d 2.5 0 −1 2 3.5 0 −1 −1 −2 0 0 −3

Figure 12.4  Scatter diagram of two 
judges’ assessments of 12 dogs.
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five rabbits in each group. The rabbits’ insulin 
levels (IU/dl) were measured before and after 6 
weeks of treatment, and the difference in the 
before and after concentration found for each 
rabbit. Which of the following tests is appropri-
ate for comparing the treatment and control 
groups?
(a)	 The sign test.
(b)	 The Wilcoxon signed rank test.
(c)	 The Wilcoxon rank sum test.
(d)	 The paired t-test.
(e)	 The two-sample t-test.

12.4  Two methods were used to test the degree 
of fluorescence of spermatozoa treated with a 
fluorophore. The subjective method was an 
ordinal score (0  =  no fluorescence, 1  =  slight, 
2 = clear, 3 = strong fluorescence) and the value 
for each sample was the mean score for 60 cells. 
The fluorimeter measurements were on a scale 
reflecting light intensity emitted by cells in sus-
pension when irradiated by ultraviolet light and 
detected by a photo-multiplier cell. The results 
are shown in Table 12.6.
(a)	 Examine the relationship between the two 

scores by plotting the data.
(b)	 Explain why it is more appropriate to calcu-

late Spearman’s rank correlation coefficient 
rather than Pearson’s correlation coefficient 
as a measure of association.

(c)	 Estimate Spearman’s rank correlation coef-
ficient, and test the null hypothesis that its 

where z = 0.5 loge{(1 + rs)/(1 − rs)} = 1.3129,

z z n1 1 96 3 0 6596= − − =. ( ) . ,/ and

z z n2 1 96 3 1 9662= + − =. ( ) . ./

Hence the confidence interval is from

2 7404
4 4704

50 0293
52 0293

.

.
.
.

to

i.e. from 0.58 to 0.96. This is a very wide con-
fidence interval, as we would expect from a 
small sample, the lower limit of 0.58 suggest-
ing that we may have some concerns about 
just how similar the two judges are in their 
assessments of the dogs.

Exercises

The statements in questions 12.1 and 12.2 are 
either TRUE or FALSE.

12.1  Non-parametric tests are preferred to par-
ametric tests when:
(a)	 The data are measured on an ordinal scale.
(b)	 The sample size is large.
(c)	 A more powerful test is required.
(d)	 It is difficult to establish the distribution of 

the data.
(e)	 The emphasis is on estimation rather than 

significance testing.

12.2  The Spearman rank correlation 
coefficient:
(a)	 Takes values from −1 to +1.
(b)	 Measures the degree of association between 

two variables.
(c)	 Measures the degree of linear association 

between two variables.
(d)	 Requires that at least one of the variables be 

measured on a ranking scale.
(e)	 Is preferable to the Pearson correlation coef-

ficient if the sample size is small.

12.3  In a preliminary investigation into the 
consequences of a treatment that altered growth 
hormone secretion, plasma insulin concentra-
tions were measured in rabbits randomly assigned 
to the treatment or control group. There were 

Table 12.6  Scores of fluorescence intensity of spermatozoa 
labelled with a fluorescent probe. The scores are made on 
an arbitrary scale by eye and by means of a fluorimeter.

Sample Subjective score Fluorimeter score

1 2.000 0.944
2 2.833 1.048
3 2.667 1.040
4 2.667 1.007
5 1.667 0.845
6 2.500 1.000
7 2.333 1.001
8 2.833 0.990
9 1.008 0.746

10 1.500 0.811
11 1.657 0.862
12 2.000 0.883
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value in the population is zero. What do you 
conclude?

12.5  A dog breeder wanted to establish whether 
large litter size is inherited. He randomly selected 
a bitch pup from each of nine large litters (litter 
size ≥ 5) and from 10 small litters (litter size ≤ 4). 
When each of these bitches reached adulthood, 
he counted the size of their second litters. The 
second litter sizes are shown below:

Bitches from large litters had litter sizes: 3, 7, 5, 
6, 4, 6, 5, 7, 5

Bitches from small litters had litter sizes: 2, 3, 6, 
4, 3, 4, 3, 5, 4, 5

Is there evidence to indicate that litter size is 
inherited?

12.6  Obesity is a problem in dogs kept as pets 
in the Western world. A novel weight control diet 
has been developed to address this problem. To 
test the diet, a veterinary surgeon investigates 18 
successive obese dogs who present at her surgery, 
and she measures the dogs’ weights (kg) at the 
time of presentation and after 8 weeks on the 
weight control diet. The data are shown in Table 
12.7. Use an appropriate hypothesis testing pro-
cedure to determine whether the novel diet is 
effective at promoting weight loss. Comment on 
the limitation of this design and the implication 
this has for your conclusion.

12.7  This exercise follows on from Exercise 
12.6, which you should attempt first. In assessing 

Table 12.7  Dogs’ weights before and after a weight 
control diet.

Dog

Weight 
before 
(kg)

Weight 
after 
(kg) Dog

Weight 
before 
(kg)

Weight 
after 
(kg)

1 26.5 24.3 10 12.1 11.7
2 16.5 16.1 11 17.4 17.7
3 36.1 31.8 12 21.1 20.4
4 28.0 27.0 13 19.2 19.0
5 23.5 21.4 14 13.1 13.4
6 8.3 9.7 15 16.0 15.4
7 17.7 18.9 16 29.1 27.3
8 15.8 15.1 17 13.1 12.6
9 14.3 14.3 18 19.0 18.8

the effect of a special novel diet on weight in 
obese dogs, a veterinary surgeon randomly allo-
cates 36 obese dogs who present at her surgery 
to two ‘treatment’ groups; either they are pre-
scribed the special diet or they receive their 
standard diet administered by the owners in 
restricted quantities according to body weight 
and size. She records the dogs’ weights at the 
time of presentation and 8 weeks after being put 
on the diet regimens. The results for the novel 
diet group are shown in Table 12.7. The results 
for the control group on the standard diet are 
shown in Table 12.8. What conclusions can you 
draw about the effectiveness of the novel diet in 
promoting weight loss?

12.8  In a study of gluten-sensitivity in Irish 
setter dogs, O. Garden (personal communica-
tion) has examined the activity of the enzyme, 
aminopeptidase N, in cultured explants of the 
small intestine of affected dogs. We show in Table 
12.9 some results of an experiment in which 
matched explants from six dogs were studied in 
medium alone (negative control), under stimula-
tion by a gluten digest (3 mg/ml) and in the posi-
tive control, phytohaemagglutinin (PHA). The 
entries in the table are the percentages of total 
enzyme activity present in the medium after 
culture (a measure of cell damage).
(a)	 How would you analyse the data set, using  

a non-parametric approach, to determine 
whether the percentage enzyme activity 
released is affected by the treatments? State 

Table 12.8  Dogs’ weights before and after receiving the 
standard diet for 8 weeks.

Dog

Weight 
before 
(kg)

Weight 
after 
(kg) Dog

Weight 
before 
(kg)

Weight 
after 
(kg)

19 26.0 22.9 28 20.3 19.7
20 21.9 21.3 29 8.7 9.9
21 19.7 16.8 30 18.8 17.2
22 7.5 8.5 31 14.7 14.0
23 15.6 12.7 32 12.7 12.9
24 25.5 27.3 33 16.0 16.9
25 11.4 14.4 34 13.5 11.8
26 16.1 17.0 35 15.4 14.7
27 20.4 21.0 36 13.5 13.3
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occluded in six rabbits selected randomly from a 
sample of 11 rabbits to produce anterior segment 
ischaemia. The aqueous VEGF levels were meas-
ured in these rabbits and in the remaining five 
control rabbits on days 1 and 14 after entry into 
the study. The results were compared using 
appropriate Wilcoxon tests. The aqueous VEGF 
level was higher on average in rabbits with ante-
rior segment ischaemia than in controls on both 
days (day 1, P = 0.03; day 14, P = 0.04), while the 
levels at day 14 were lower on average than those 
at day 1 (P =  0.06) in the rabbits with anterior 
segment ischaemia.
(a)	 Why was it sensible to perform non-

parametric tests in this study?
(b)	 What other reasons could there be for per-

forming non-parametric tests?
(c)	 Two different types of Wilcoxon test were 

performed in this study. What were they; 
when was each used?

(d)	 What are the null hypotheses for the test 
with a P-value of 0.03, and for the test with 
a P-value of 0.06?

(e)	 On the basis of the three P-values provided, 
what do you conclude about the comparisons?

(f)	 Which summary measures should be reported 
if you want to assess the importance of the 
findings of each of the three tests?

your null hypothesis clearly, and explain why 
you believe a non-parametric approach is 
suitable.

(b)	 If you have access to a computer, analyse the 
data. You should find that the appropriate 
non-parametric analysis, using all the data, 
gives P = 0.006. What are your conclusions?

12.9  A study was undertaken to investigate the 
relationship between aqueous vascular endothe-
lial growth factor (VEGF) level and anterior 
segment ischaemia in rabbits (Tanaka et al., 
1998). Both long posterior ciliary arteries were 

Table 12.9  Percentage of total aminopeptidase released 
into the culture medium by duodenal explants stimulated 
by gluten and phytohaemagglutinin (PHA) (data adapted 
from O. Garden).

Dog Medium Gluten (3 mg/ml) PHA

Bonnie 11.8 8.4 13.0
Bertie 10.8 8.9 9.1
Billie 17.3 10.3 13.5
Bonker 21.9 9.4 17.5
Barton 12.0 8.1 8.4
Barker 17.0 3.5 8.1

Median (%) 14.50 8.65 11.05
Range (%) 10.8–21.9 3.5–10.3 8.1–17.5



Statistics for Veterinary and Animal Science, Third Edition. Aviva Petrie and Paul Watson.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

13.1  Learning objectives

By the end of this chapter you should be able to:

•	 Explain the purposes of data transformation.
•	 Choose an appropriate transformation where 

necessary, and demonstrate its effect.
•	 Explain why sample size is an important design 

consideration.
•	 List the factors that influence sample size 

determination.
•	 Use Altman’s nomogram to determine optimal 

sample sizes for numerical and binary data.
•	 Explain the terms sequential analysis and 

interim analysis.
•	 Explain the principles underlying a meta- 

analysis.
•	 Describe the conditions to be fulfilled for 

random sampling.
•	 Elaborate the different ways of selecting a 

sample.

13.2  Transformations

By now you will be aware that not all data sets 
fulfil the inherent distributional assumptions of 
the required statistical procedure. Rather than 
turn immediately to a non-parametric analysis 
(see Chapter 12), we often consider transforming 
the data in order to be able to apply the statisti-
cal procedure. A transformation is a mathemati-

13 Further aspects of design 
and analysis

cal manipulation applied to each data point. The 
aim of the transformation is to produce a data 
set that satisfies the requirements of the pro-
posed analysis.

The most common reasons for transforming 
data are to attempt to Normalize data, to linear-
ize a relationship and/or to stabilize variance.  
So, if the variable of interest is x, then we take 
a transformation of each individual x-value to 
create a new variable, tx, which is some function 
of x, e.g. its logarithm, reciprocal or square root. 
We give some examples of common transforma-
tions in the following sections.

13.2.1  Normalizing data

Many hypothesis tests and estimation proce-
dures assume a Normal distribution of the vari-
able of interest. There are various transformations 
that we can take in order to achieve a more nearly 
Normal distribution of tx when the distribution of 
x is skewed. Two of the more common are:

1.	 Log transformation (Figure 13.1a and b).
tx =  log x is a transformation that makes the 
distribution of x more nearly Normal if it is 
skewed to the right, in which case x is said to 
have a Lognormal distribution (see Section 
3.5.3(f)). The logarithm is usually taken either 
to base 10 (as is common in many branches  
of medical science) or to base e (the Napierian 
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2.	 Square transformation (Figure 13.2c and 
d).  tx = x2 often linearizes a relationship with 
a consistently decreasing slope.

3.	 Logit transformation (Figure 13.2e and 
f).  Proportions (or percentages) often have a 
tendency to be grouped towards the lower or 
upper ends of the scale. If p is a proportion 
that has a sigmoid relationship with another 
variable, x, the logit or logistic transformation, 
tp =  ln{p/(1 − p) }, produces a linear relation-
ship between tp and x.

4.	 Arcsine transformation.  Another transfor-
mation of a proportion, p, which linearizes a 
sigmoid relationship is the angular, inverse 
sine or arcsine transformation, t pp = −sin 1 . 
This transformation can be used for percent-
ages provided they are converted to propor-
tions by dividing by 100.

13.2.3  Stabilizing the variance

Equal variance is assumed in the two-sample t-
test (see Section 7.4.2) and in the analysis of 
variance (ANOVA) (see Section 8.6.1), and 

logarithm, written ln x, which is often more 
convenient in mathematics). Always remem-
ber that logarithms can be taken only of posi-
tive numbers.

2.	 Square transformation (Figure 13.1c and d). 
tx =  x2 makes a left skewed distribution of x 
closer to a Normal distribution.

13.2.2  Linearizing a relationship

It is much easier to analyse data and investigate 
a relationship between two variables when that 
relationship can be described by a straight line. 
The most common transformations that may 
help to linearize a relationship are:

1.	 Log transformation (Figure 13.2a and b).  If 
there is an exponential relationship between 
y and another variable x, say, such that the 
slope of the curve (when y is plotted against 
x) increases for increasing values of x, then a 
logarithmic transformation of y, ty  =  log y, 
often produces a linear relationship between 
ty and x.

Figure 13.1  Normalizing transformations.
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mation, tx = 1/x, may stabilize the variance. 
The reciprocal transformation is often 
applied to survival times.

•	 When the variances of different samples are 
proportional to their means, then the square 
root transformation, t xx = , is used. This 
transformation is appropriate when obser-
vations are in the form of counts that follow 
the Poisson distribution (see Section 3.4.3).

2.	 Square transformation (Figure 13.3c and d). 
tx = x2, is often used when the variability of the 
observations decreases with increasing values 
of x.

3.	 Arcsine transformation.  The angular trans-
formation of the proportion, t pp = −sin 1 , 
described under linearizing transformations, 
also has the important function of stabilizing 
variance.

statistical analyses often assume that the residu-
als (see Section 10.4.3) have constant variance in 
different circumstances. The most common trans-
formations that help to stabilize variance are:

1.	 Log, reciprocal and square root transforma-
tions (Figure 13.3a and b).  If the variability 
of x tends to increase with increasing mean 
values of x (e.g. for groups defined by z), dif-
ferent transformations may be applied:
•	 When the standard deviations of different 

samples are proportional to their means, 
then the logarithmic transformation, tx = log x, 
may stabilize the variance.

•	 When the variability is particularly marked 
for increasing values of x (e.g. if the stand-
ard deviation is proportional to the square 
of the mean), then the reciprocal transfor-

Figure 13.2  Linearizing transformations.
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Fortunately, statistical techniques exist for 
determining the optimal sample size in different 
circumstances for both experimental and obser-
vational studies. The downside, however, is that 
these calculations usually depend on our having 
some idea of the results we expect at the end of 
the study before we have conducted it! An added 
difficulty is that a statistical approach to the 
sample size problem may produce numbers  
that are not commensurate with the available 
resources, such as cost, time and the accessibility 
of animals. At the end of the day, it must be a 
combination of practical, ethical and statistical 
considerations that govern the final decision of 
the choice of sample size.

13.3.2  Methods for determining 
the optimal sample size

The standard statistical approach to determining 
the optimal sample size of an experiment relies 
on the direct relationship between its power 
and sample size. Power, you will remember (see 
Section 6.4.2), is the chance of detecting as 
statistically significant a true treatment effect of 

13.3  Sample size

13.3.1  Importance of sample size

One of the most frequently asked questions of a 
statistician, and one of the hardest to answer, is 
‘How large a sample do I need if I am to conduct 
a particular experiment?’ We usually design an 
experiment (see Section 5.4) to investigate the 
effect of a novel treatment (e.g. drug therapy or 
feeding regimen) or, perhaps, an intervention 
(e.g. a surgical procedure or a changed manage-
ment routine). Usually, we wish to gauge whether 
it is superior to existing treatments or the absence 
of treatment, and obtain some estimate of its 
effect.

Clearly, we should aim to have a sample  
size large enough to have a good chance of 
detecting any clinically important treatment dif-
ferences as statistically significant, and yet not so 
large as to be wasteful of animals thereby creat-
ing ethical difficulties (see Section 15.3) and 
squandering resources. An inadequate sample 
size can lead to biologically or clinically mean-
ingful treatment differences that are overlooked, 
and parameter estimates that lack precision.

Figure 13.3  Variance stabilizing transformations.
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13.3.3  Nomogram

We can use Altman’s nomogram to determine 
the optimal sample size for the comparison of 
two independent groups of animals (numerical 
or categorical data) or of paired observations 
(numerical data) (see Altman 1980, 1991). The 
calculations are for equally sized groups, but can 
be modified for unequal sample sizes and they 
can also be adjusted to allow for losses to 
follow-up (see Section 13.3.4).

The nomogram in Figure 13.4 shows the rela-
tion between the total study size (N), the power, 
the level of significance (two-tailed) and what is 
termed the ‘standardized difference’. The formula 
for the standardized difference is specific to the 
particular comparison; essentially, it is the differ-
ence of interest divided by its standard deviation 
(details in the following subsections). By drawing 
a straight line that joins a specified power and 
standardized difference, for a given level of sig-
nificance, we can evaluate the required sample 
size. We can then easily appraise how variations 
in the power or the components of the standard-
ized difference affect the sample size, or vice versa.

(a)  Comparison of two independent 
groups – numerical data

Suppose we wish to determine the sample size of 
our proposed study if we are interested in com-
paring the means of a numerical variable using 
two independent groups. This is achieved by the 
two-sample t-test (see Section 7.4) provided the 
variable is Normally distributed and each group 
has the same variance. In order to use the nomo-
gram, we have to specify:

1.	 The power of the test (usually this should be 
at least 80%).

2.	 The two-sided significance level (usually 0.05 
but sometimes 0.01 or some other value).

3.	 The biologically or clinically relevant differ-
ence (δ); this treatment effect (see Section 
6.3.1) is the difference in the means that we 
believe is important and which we would not 
want to overlook. It constitutes the smallest 
difference in means that represents a clinically 

a given magnitude. The greater the sample size, 
the greater the power.

We can use statistical formulae, tables or a 
diagram (Altman’s nomogram) to determine the 
numbers of animals we require in an experiment 
of a particular design if we are to have a pre-
scribed power (typically at least 80%) of detect-
ing a real treatment effect. All these procedures 
are based on the same theory and therefore 
require the same input (specification of the 
power, significance level, the effect of interest in 
the populations being compared, and the vari
ability of the observations), details of which we 
provide in Section 13.3.3. It is a matter of per-
sonal preference as to which approach you use. 
One option is Altman’s nomogram because of 
the ease with which we can determine the sample 
size of a study under slightly varying conditions 
(e.g. with different power specifications, at a dif-
ferent level of significance, etc.). Also, it is simple 
to reverse the procedure and determine the 
power of a study of a given sample size. However, 
for small samples (< 100), it tends to overesti-
mate the power.

Alternatively, you may have access to the 
appropriate computer software (e.g. nQuery 
Advisor 7.0 from Statistical Solutions Ltd or 
IBM SPSS Samplepower 3.0 or the freely avail-
able PS: Power and Sample Size Calculation  
software available at http://biostat.mc.vanderbilt. 
edu/wiki/Main/PowerSampleSize (accessed 16 
October 2012)) which deals with both simple  
and complex designs including regression and 
survival analysis, and ANOVA. Computer pro-
grams speed up the process of sample size esti-
mation, thus allowing us to produce, without any 
effort, power curves that show how the power 
varies as, for example, the sample size changes. 
However, bear in mind the fact that these com-
puter programs require the same input as the 
other procedures, and it is acquiring this informa-
tion which creates the real difficulties in sample 
size estimation.

You can find more on sample size estimation 
in Machin et al. (2009), which includes relevant 
software, and a full discussion in Cohen (1988). 
Altman (1980) introduces the nomogram, more 
details of which can be obtained in Altman 
(1991).

http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize
http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize
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Figure 13.4  Nomogram for sample size determination (from Altman, 1980, reproduced with permission from BMJ Publishing 
Group Ltd).

meaningful effect and is not necessarily the 
difference that is expected.

4.	 The standard deviation of the observations in 
each group (σ); here we are assuming constant 
variance, as in the two-sample t-test. This is 
where the real problem lies – we require an 
estimate of the standard deviation before we 
have collected the data. We can obtain this 

estimate either from a previous study that we 
may have performed which is similar to that 
which is proposed, from published papers  
or after we have conducted a pilot study (see 
Sections 5.9.6 and 13.3.5).

Then the standardized difference  =  δ/σ, and 
N = the total number of observations.
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(c)  Comparison of two independent 
groups – categorical data
Suppose we wish to determine the sample size of 
our proposed study if we are interested in com-
paring proportions in two independent groups  
of individuals; for example, those possessing a 
certain attribute, such as a disease, or having a 
particular outcome, such as death. This can be 
achieved by the Chi-squared test (see Section 
9.4). In order to use the nomogram, we have to 
specify:

1.	 The power of the test (usually this should be 
at least 80%).

2.	 The two-sided significance level (usually  
0.05 but sometimes 0.01 or some other  
value).

3.	 The clinically important difference in the two 
proportions, p1 − p2. So, if we know the propor-
tion, p1, that we expect in one group, we take 
the proportion, p2, in the other group to be 
that which makes p1 − p2 represent a clinically 
relevant difference.

(b)  Comparison of two paired groups – 
numerical data
Suppose we wish to determine the sample size of 
our proposed study if we are interested in com-
paring the measurements of a numerical variable 
in two paired groups of observations. This is 
achieved by the paired t-test (see Section 7.5) 
provided the differences of the pairs are approxi-
mately Normally distributed. In order to use the 
nomogram, we have to specify:

1.	 The power of the test (usually this should be 
at least 80%).

2.	 The two-sided significance level (usually 0.05 
but sometimes 0.01 or some other value).

3.	 The biologically or clinically relevant differ-
ence (δ).

4.	 The standard deviation of the differences (σd); 
this is likely to be very difficult to estimate and 
will probably have to be obtained from a pilot 
study.

Then the standardized difference = 2δ/σd.

Example
Published information suggests that the mean 
standard lactation (305 days) for Holstein  
cows in the UK is about 8000 kg and the stand-
ard deviation of milk yield is about 1425 kg. 
Suppose we want to compare the mean milk 
yields of Holstein cows in Devon with those in 
Cheshire. We want to know how many animals 
to sample from each of the two counties if  
we require an 85% chance of detecting a differ-
ence in mean milk yield of 250 kg (this is the 
minimum difference we would consider of 
importance to our investigation) at the 5% level 
of significance.

Thus, δ =  250 kg, σ =  1425 kg, and the stand
ardized difference is 250/1425  =  0.175. If we 
mark 0.18 on the standardized difference axis, 
and 0.85 on the power axis of the nomogram,  
a line that joins these two points cuts the 0.05 
significance level axis at N  =  1000. Hence, 
each of the two random samples should com-
prise 500 cows.

Example
We want to measure the growth of weaner pigs 
under different growing conditions. We intend to 
choose matched pairs of weaners from pig litters 
and assign each weaner pig randomly to one of 
the two ‘condition’ groups; the second weaner 
pig in the pair will then be assigned to the other 
group. We want to know how many weaner pigs 
to select in order to have an 80% chance of 
detecting a mean difference in body weight of 
25 g per day (such a difference or a greater one 
would be considered biologically important) at 
the 5% level of significance. We believe, from a 
pilot study, that the standard deviation of the 
differences is about 45 g per day.

The standardized difference  =  2  ×  25/45 
= 1.11. If we mark 1.11 on the standardized dif-
ference axis of the nomogram, and 0.80 on the 
power axis, a line that joins these two points cuts 
the 0.05 significance level axis at approximately 
N  =  24. Hence, we require about 24 pairs of 
weaners.
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we will have to increase our sample size esti-
mate to allow for these losses to follow-up. 
This is likely to occur in a longitudinal obser-
vational study when animals are studied for  
a long time or, perhaps, in a clinical trial of  
a novel treatment. If we expect r% of our 
animals to be losses to follow-up, we modify 
the unadjusted estimated optimal sample  
size, obtained using the methods described  
in Section 13.3.3, by multiplying it by 
100  ÷  (100  −  r). Consider, for example, the 
cross-over study in Section 7.5.4 that used the 
paired t-test to compare the effect on serum 
glucose of two diets in insulin-dependent dia-
betic dogs. These dogs each received one diet 
for 8 months before being switched to the 
other diet for a further 8 months. Suppose the 
investigators had expected a 5% attrition rate 
and had estimated that they needed 10 dogs 
using the approach described in Section 
13.3.3(b). Then the adjusted sample size would 
be 1000 ÷ (95) = 10.5: rounding this up results 
in a requirement for 11 dogs.

•	 We showed in Section 13.3.3 how we can use 
the nomogram to estimate the optimal sample 
size if we were intending to use a two-sample 
t-test to compare two means and a Chi-
squared test to compare two proportions. In 
both instances we assumed that the require-
ment was for equal numbers in the two  
comparison groups. Sometimes, however, we 
may want groups of different sizes, perhaps 
because the availability of the novel treat-
ment in a clinical trial is restricted or because 
the disease is rare in a case–control study (see 
Section 5.2.3(b)). Suppose we wish to have k 
times as many animals in one group as in the 
other. Then the adjusted overall sample size is 
equal to N(1 + k)2/(4k), where N is the unad-
justed overall sample size obtained using the 
methods described in Section 13.3.3. As an 
example, consider the study to compare the 
prevalence of Toxocara canis infestation in 
puppies and adults dogs (see Section 13.3.3(c)). 
On the premise that a Chi-squared test would 
be used to compare the two proportions with 
T. canis infestation, we estimated the overall 
optimal sample size to be 210, comprising 105 
puppies and 105 adult dogs. If the investiga-
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Example
Toxocara canis is a dog parasite that can cause 
blindness in children. We want to know whether 
the prevalence of T. canis infestation is different 
in puppies compared with adult dogs (based on 
Ramirez-Barrios et al., 2004). We expect the 
prevalence in puppies to be about 20% and 
would be interested in detecting a difference of 
15%, i.e. if we found that the prevalence in the 
adult dog was below 5%, we should regard this 
difference in prevalence to be biologically impor-
tant for control measures. We need to know how 
many adults and puppies to sample if we are to 
have a 90% chance of detecting this 15% differ-
ence at the 5% level of significance.
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Connecting 0.45 on the standardized differ-
ence axis of the nomogram to a power of 0.90, 
we find that we will require about 210 animals in 
total if we are to achieve significance at the 5% 
level. Hence our study should comprise about 
105 puppies and 105 adult dogs.

13.3.4  Adjustments

•	 If we believe that there may be withdrawals  
or dropouts during the course of the study,  
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tors had wanted twice as many puppies as 
adult dogs, they would need to recruit 
210(1 + 2)2/8 = 237 (rounded up from 236.25) 
dogs in total. This would imply that they 
should have 237/3  =  79 adult dogs and 158 
puppies in their study. The overall optimal 
sample size is greater in this example with 
unequal sample sizes than with equal sample 
sizes, and this is generally the case, provided 
all the factors relevant to the estimation of 
sample size remain unaltered.

13.3.5  Internal pilot study

We indicated in Section 13.3.3(a) that, when 
determining sample size, we might have to rely 
on a pilot study to provide a value for the 
expected standard deviation of the observations 
in each group. A pilot study is generally regarded 
as a preliminary investigation that is distinct 
from the main study. However, when animals are 
in short supply, perhaps because they are rare 
or costly, or when the measurements on them 
are laborious and/or expensive, we can use an 
internal pilot study which incorporates the 
results from the pilot study into the main study. 
In this process, explored by Birkett and Day 
(1994), we estimate the overall sample size using 
the information currently available and then 
conduct a pilot study whose size is pre-specified 
and often determined by practical considera-
tions. We use the measurements obtained from 
this pilot study to provide appropriate estimates 
of interest (e.g. of the standard deviation) which 
we then employ to re-evaluate the optimal 
sample size. The results from the animals used 
in this internal pilot study are treated as belong-
ing to the main body of the data rather than 
distinct from it. To ensure that the conclusions 
from the study are valid:

•	 All details of this process must be documented 
in the protocol.

•	 The calculations of the optimal sample size at 
the second stage of this procedure must be 
based on the effect of interest (e.g. the smallest 
difference in means that constitutes a mean-

ingful clinical effect) that was specified at the 
design stage of the trial and used in the initial 
sample size calculations; it is not the effect of 
interest observed in the pilot study.

•	 The final sample size can never be less than 
that determined from the initial calculations: 
the latter can only be increased if a revision is 
advocated.

13.4  Sequential and  
interim analysis

The designs that we have considered so far have been fixed 
sample size plans; we make a decision about the approximate 
sample size in advance of performing the experiment. In 
certain circumstances, we can avoid choosing our sample size 
at the start of the investigation, and design the trial in such a 
way that the data are analysed as they are collected. We call 
this kind of trial, in which we have continuous monitoring  
of the treatment differences, a sequential trial. Generally, 
sequential analysis is performed on pairs of observations, one 
member of each pair being allocated at random to one of the 
two treatments; the other member of the pair receives the 
other treatment. We analyse the results from the pairs as they 
accumulate; we stop the trial when the evidence for one treat-
ment is overwhelming or when we believe that it is unlikely 
that any difference will emerge. The stopping rules (deter-
mining when to ‘stop’) are defined by specifications of the 
null and the alternative hypotheses and of the significance 
level and power of the test. You may obtain full details in 
Armitage (1975).

Sequential trials tend, on average, to require smaller 
sample sizes than the equivalent fixed sample size plans. 
However, they are only amenable to the study of conditions 
in which the response to treatment can be evaluated soon after 
its administration. They are limited to trials in which there is 
only one response variable of predominant importance.

Sometimes we wish to design our trial as a fixed sample 
size study, but would like to have the option of terminating 
the trial before the end by performing a predetermined 
number of interim analyses. We must decide in advance when 
any intermediate analyses are to be carried out, and not be 
tempted to interrupt the investigation at whim. Then, if we 
find treatment differences that are convincingly large, we can 
stop the trial early, thereby ensuring:

•	 In the clinical setting, that the maximum number of 
animals receive the better treatment.

•	 In the experimental setting, that only a minimum number 
of animals are subjected to any adverse conditions.

Such a trial is also called a group sequential design (the data 
are analysed after the results of groups of animals become 
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are gaining favour in veterinary and animal 
science, they are not without their critics. Several 
problems can arise; for example:

•	 It may be difficult to decide exactly which 
studies should be included (e.g. must they be 
randomized? Should poor quality trials be 
excluded?).

•	 The conclusions may be affected by publica-
tion bias (the tendency for journals to give 
substantially more space to papers in which 
the treatment effects are statistically signifi-
cant) so that many trials with non-significant 
results are excluded from the meta-analysis.

•	 The data summarized may not be homoge
neous (e.g. because of methodological or  
clinical differences: this is called clinical het-
erogeneity) and the studies may differ in their 
quality.

However, if handled correctly (see Stroup et al., 
2000), a meta-analysis will improve the reliability 
and accuracy of recommendations.

You can obtain further discussion of meta-
analysis in, for example, Borenstein et al. (2009), 
Egger et al. (2001), Freemantle et al. (1999), 
Sutton et al. (2000) and Whitehead (2002). In 
addition, the Cochrane Collaboration, an inter-
national non-profit and independent organiza-
tion, produces and disseminates systematic 
reviews of healthcare interventions and pro-
motes the search for evidence in the form of 
clinical trials and other studies of interventions. 
Although the systematic reviews currently in its 
library relate only to human investigations, its 
website (www.cochrane.org, accessed 20 October 
2012) provides useful information relating to 
workshops, discussion lists and aspects of train-
ing. Review Manager (RevMan Version 5.1. 
Copenhagen: The Nordic Cochrane Centre, The 
Cochrane Collaboration, 2011) is the Cochrane 
Collaboration’s freely downloadable software 
which can be used to help reviewers be systematic 
and explicit when performing a meta-analysis.

In promoting good practice, we refer you to 
the PRISMA statement (see Section 17.7), aimed 
at helping authors report systematic reviews and 
meta-analyses to assess the benefits and harms 
of a healthcare intervention.

available, rather than after each pair as in the continuous 
sequential design) and is based on the idea of repeated sig-
nificance tests. The significance test at each of the interim 
analyses uses the same form of test statistic as at the final 
stage, and not the stopping rules of sequential analysis. Mul-
tiple significance tests have the effect of increasing the chance 
of finding a significant difference when the treatments really 
are the same (see Section 8.6.3). In effect, we will increase 
the significance level at the final stage after repeated signifi-
cance tests unless we make appropriate adjustments. For 
example, if we have five repeated tests, each at the 5% level, 
the overall significance level becomes 14%, i.e. in effect we 
reject H0 if P < 0.14. In order to keep this overall significance 
level at, say, 0.05, we must choose a more stringent nominal 
significance level for each of the repeated tests (an appropri-
ate value less than 0.05). In particular, for our example of five 
repeated tests, the nominal level is 0.016. You can obtain 
further discussion of the method and the required nominal 
significance levels for varying numbers of interim analyses in 
Pocock (1983).� 

13.5  Meta-analysis

13.5.1  Introduction

We may find that the results of a study are not 
statistically significant because its sample size is 
small and, hence, its power is low, even though 
there is a clinically important treatment differ-
ence. One way of improving the power of an 
investigation and increasing the precision of the 
estimates of treatment effects, without undertak-
ing a much larger study, is to combine the results 
from similar trials in an appropriate manner. This 
is achieved by performing what is termed a meta-
analysis or overview which provides a statistical 
summary of the numerical outcomes of the sepa-
rate studies. A meta-analysis is a quantitative 
example of a systematic review that examines 
the literature in a rigorous and clearly defined 
manner; this contrasts with a traditional review 
which is often not very systematic and mixes 
together opinions and evidence.

A meta-analysis plays an important role in 
evidence-based veterinary medicine (see Sec-
tions 16.3–16.6) as it often provides the most 
comprehensive material, already well assimilated 
and critically appraised, from which to draw con-
clusions concerning the optimal treatment for  
a given condition. Although meta-analyses are 
becoming increasingly popular in medicine, and 

http://www.cochrane.org
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it is independent of the scale of measurement 
of the observations and of the choice of effect 
of interest (e.g. relative risk, odds ratio or dif-
ference in means) and is not directly affected 
by the number of studies in the analysis. It can 
therefore be compared in meta-analyses with 
different types of outcome data and with dif-
ferent numbers of studies.

•	 We perform a hypothesis test of homogeneity 
(i.e. the null hypothesis is that there no differ-
ence in the true effects of interest in the k 
studies) by calculating Cochran’s Q test statis-
tic which approximately follows a Chi-squared 
distribution. A significant result implies heter-
ogeneity. A non-significant result does not indi-
cate that the estimates are similar, only that 
there is no evidence to show that they are dif-
ferent, i.e. a non-significant result does not 
necessarily imply homogeneity. It may be that 
there are only a small number of studies in the 
meta-analysis, in which case the power (see 
Section 6.4.2) of the test will be low.

If we are confident that there is no statistical 
heterogeneity, we generally use a fixed effects 
approach to estimation. We then assume that the 
separate studies are the only ones of interest and 
that the underlying effects from the different 
studies are all equal to each other and, in turn, 
to the overall effect. When there is evidence of 
statistical heterogeneity, it is customary to use a 
random effects approach to estimating the 
overall effect (although we should carefully 
investigate the reasons for this statistical hetero-
geneity before proceeding, and decide whether 
or not it is sensible to derive an overall estimate). 
In the random effects approach, we regard the 
separate studies as a random sample of studies 
from a population of studies. Thus we expect the 
estimated effects from the different studies to 
exhibit variability and to have a mean equal to 
the true mean effect in the population. However, 
if we are concerned about the heterogeneity and 
believe that a single overall measure of effect 
would be inappropriate, instead of performing  
a random effects analysis, we could stratify the 
studies into homogenous subgroups (i.e. where 
there is no evidence of heterogeneity within  
each subgroup) and perform a separate, usually 

13.5.2  The process

(a)  Effect of interest in a single study

A quantitative summary of a study is usually 
provided by the effect of interest. For example, 
in a clinical trial comparing a novel treatment 
with a control treatment, as judged by a numeri-
cal response (e.g. weight gain), the effect of inter-
est is commonly the difference in the mean 
responses. Alternatively, if we have a binary 
response (e.g. presence or absence of disease) or 
are investigating the results of a case–control 
study, the effect of interest is generally the odds 
ratio, equal to the odds of disease in the treated 
group (or those with the factor) divided by the 
odds of disease in the control group (or those 
without the factor) – see Section 5.2.3(b). The 
treatment has no effect if the means are equal or 
the odds ratio is one (or, equivalently, if the loga-
rithm of the odds ratio is zero).

(b)  Combining the effects of interest 
from different studies

The aim of a meta-analysis is to combine the 
estimates of the effect of interest from k (say) 
single studies under review to obtain one overall 
estimate of the effect of interest. However, it is 
really only sensible to obtain an overall estimate 
if the estimates from the separate studies are 
similar (i.e. they are statistically homogeneous 
rather than heterogeneous). There are two com-
monly used approaches to investigating statisti-
cal homogeneity, and both are usually employed 
in a meta-analysis.

•	 We calculate the I2 statistic, which can be 
viewed as a measure of inconsistency of the 
findings across the studies and represents the 
proportion of the total variation that is due to 
heterogeneity. It takes values from 0% when 
there is no observed heterogeneity to 100%, 
with larger values showing increasing hetero-
geneity. Higgins et al. (2003) suggest that values 
of the order of 25%, 50% and 75% might be 
considered as low, moderate and high, respec-
tively. The I2 statistic has the advantages that 
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confidence interval for the overall effect of inter-
est for the random effects model is wider if there 
is statistical heterogeneity.

(c)  Testing the overall effect of interest

Once we have obtained an estimate for the 
overall effect of interest, we generally want to 
use it to assess whether there is a ‘treatment’ 
effect. (Is one treatment better than the other? 
Is the presence of a factor associated with 
disease?) The null hypothesis in a fixed effects 
analysis is that the true effect of interest is zero 
in every study (e.g. the true treatment means are 
equal so that their difference is zero, or the true 
odds ratio is one so that its logarithm is zero). 
The null hypothesis in a random effects model is 
that the true mean effect is zero. We can calculate 
a test statistic that approximately follows the Chi-
squared distribution to test this hypothesis. A 
significant result suggests that there is evidence 
of a treatment effect. We have not provided for-
mulae in this book either for the homogeneity 
test or for this test of the effect of interest as you 
will invariably perform a meta-analysis using 
computer software, and will not need the details. 
You can obtain the formulae in many texts such 
as those suggested in Section 13.5.1.

(d)  Displaying the results

We generally display the results from the sepa-
rate studies in a diagram called a forest plot 
(Figure 13.5). This is usually drawn with the hori-
zontal axis indicating the different values for the 
effect of interest. A vertical line is drawn through 
the value that represents ‘no effect’ (e.g. it is zero 
for a difference in means or for a log odds ratio). 
The studies are identified at the side of the plot, 
and for every study the estimated effect of inter-
est with its associated confidence interval is 
marked appropriately; the overall estimate with 
its confidence interval is also included, usually at 
the bottom of the plot. Sometimes, the area of 
the symbol for an estimated effect reflects the 
size of that study; the larger the area, the bigger 
the study. From the forest plot, we can get a 
visual impression of the extent to which the esti-
mates differ, and decide, subjectively, whether or 

fixed effects, meta-analysis in each stratum. We 
must take care when interpreting P-values in 
these subgroup analyses: lack of significance may 
be due to low power (see Section 6.4.2) whilst, at 
the other extreme, spuriously significant results 
may be a consequence of multiple testing (see 
Section 8.6.3).

Whether we assume a random or a fixed effects 
approach to estimating the overall effect of inter-
est has algebraic repercussions. The estimate is 
usually determined as a weighted mean of the k 
separate estimates. Thus, if the ith study effect of 
interest is estimated by Ei where i = 1, 2, . . . , k, 
and each study has a weight, wi, then the weighted 
mean is given by:
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and the variance of this weighted mean is 

estimated by Var E ww i( ) = ∑1  so that its 

standard error is Var( )Ew .
The weight, wi, for the ith study (i = 1, 2, .  .  . , 

k) typically reflects the precision of the estimate, 
and is generally taken as the inverse of the asso-
ciated estimated variance. In this way, studies 
with greater precision are given more weight. 
Since larger studies provide augmented informa-
tion and therefore have more precise estimates, 
we occasionally take the study sample sizes as 
the weights for the different studies instead of 
the inverse of the variances.

However, the weight, wi, is affected by the 
extent to which there is statistical heterogeneity. 
In the fixed effects approach (with no evidence 
of statistical heterogeneity), we consider the var-
iance of the estimated effect for the ith study to 
be the only variance that is relevant to that study, 
and so this variance is the only component of wi. 
In contrast, in the random effects approach (with 
statistical heterogeneity), we include in the wi 
both the variance of the estimated effect for  
that study as well as some measure of the vari-
ability of the estimates between studies. The 
weight for the ith study in a random effects ana
lysis is therefore less and the standard error of 
the overall estimate greater than that of the com-
parable fixed effects analysis. Consequently, the 
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standard error is used, the scale on the vertical 
axis is reversed, going from high values at the 
bottom to low values at the top. In the absence of 
publication bias, the studies in the funnel plot  
are distributed symmetrically about the average 
effect of interest, exhibiting an inverted funnel 
(hence the nomenclature) demonstrating increas-
ing spread of studies as the sample size decreases, 
with few studies at the top where the sample  
size is large and widely dispersed studies at the 
bottom. If publication bias is present, there is 
likely to be symmetry at the top but asymmetry 
at the bottom of the funnel, with an absence of 
studies in the area where the small studies with 
non-significant results or negative findings would 
have been. This would be on the left-hand side of 
the plot if the effect of interest was, for example, 
the difference in two means, with zero represent-
ing no effect of treatment and positive values to 
the right representing a treatment effect.

13.5.3  Example

Although a number of studies have used 
gonadotrophin-releasing hormone (GnRH) 
between 11 and 14 days after first insemination 
to improve pregnancy rates in cows, the results 
have not been consistent. We show the results  
of a meta-analysis on nine studies from six  

not there is statistical heterogeneity by looking 
at the overlap, or absence of it, of the confidence 
intervals. Furthermore, we have evidence that  
an effect, either from a single study or from all 
studies combined, is statistically significant if  
its confidence interval does not cross the ‘no 
effect’ line.

Another plot that is commonly used in meta-
analysis is a funnel plot, which may allow us to 
assess whether publication bias is present. Publi-
cation bias occurs when there is selective publica-
tion of studies on the basis of the magnitude  
and direction of their findings. It occurs in the 
meta-analysis when there is a tendency to favour 
studies with statistically significant results as 
those manuscripts are more likely to be submit-
ted to journals and published. In such circum-
stances the missing studies are systematically 
different from those that are included (see 
Section 5.9.4). Usually, for a given sample size, 
they will have smaller effects of interest (e.g. dif-
ference in means) or, vice versa, for a given effect 
of interest, they will be smaller studies. Tradition-
ally the funnel plot is a scatter diagram in which 
the effect of interest is plotted on the horizontal 
axis and some measure of the sample size is 
plotted on the vertical axis. The latter may be the 
actual sample size or may be, for example, the 
standard error of the effect of interest, as smaller 
studies tend to have larger standard errors. If the 

Drew & Peters (1994) 210/321 1.65 [1.20, 2.27]
Lajili et al. (1991) 2.46 [1.23, 4.92]
Lajili et al. (1991) 0.96 [0.32, 2.87]
Muir et al. (1998) 1.47 [0.45, 4.86]
Retmeret al. (1992) 200/400 1.34 [0.95, 1.88]
Retmer et al. (1992) 0.89 [0.42, 1.87]
Saratsis et al. (1998) 2.24 [1.05, 4.78]
Stevenson et al. (1993) 0.87 [0.38, 1.96]
Stevenson et al. (1993) 250/503  136/291 1.13 [0.84, 1.50]

Total (95% CI) 1588 1065 1.36 [1.16, 1.59]
Total events: 877 (Treatment), 518 (Control)
Test for heterogeneity: Chi2 = 10.38, df = 8 (P= 0.24), 
Test for overall effect: Z = 3.77 (P = 0.0002)
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Figure 13.5  Forest plot of the estimated odds ratio (OR) of pregnancy in cows treated with gonadotrophin-releasing hormone 
(GnRH) and control cows, with 95% confidence intervals (CI) (derived from Review Manager (RevMan) [Computer program]. 
Version 5.1. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2011).
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about the structure of the population, and employ 
techniques which, for a given outlay of resources, 
improve the precision of the estimates of the 
parameters of interest. Alternatively, we can 
design the sample to attain a desired degree of 
precision for a minimum outlay of resources.

We only outline some of the basic ideas of 
sampling. You can obtain more detailed accounts 
in, for example, Dohoo et al. (2010), Kalton 
(1983) or Levy and Lemeshow (2011).

13.6.2  Technical terms in sampling

An element is a single object or individual on 
which a measurement can be taken. The popula-
tion from which we take our sample comprises 
an aggregate of sampling units. These are non-
overlapping collections of elements, i.e. every 
element in the population belongs to only one 
unit. If each sampling unit contains only one 
element, then the sampling unit and the element 
are identical. The frame is a list of sampling units.

13.6.3  More common  
sampling designs

You may find Figure 13.6 helpful in conceptual-
izing the following descriptions of the more 
common sampling designs.

(a)	 Simple random sampling is the basic sam-
pling design. The sampling units are chosen 
in such a way that:
•	 The selection of one unit has no influence 

on the chance of any other being selected, 
i.e. they are independent.

•	 Each possible sample of n units from the 
population of N units has an equal chance 
of being selected. This implies that every 
member of the population has an equal 
chance of being included in the sample.
As an example, consider a trout farm in 

which scientists want to sample the trout 
from a pond for heavy metal contamination. 
A random sample is taken of sufficient size 
to be representative of the population. For 

published papers of relevant randomized con-
trolled trials of GnRH in order to quantify a 
consolidated estimate of the odds ratio (OR) of 
pregnancy in the treated versus the control cows 
(based on data from Peters et al., 2000). Figure 
13.5 is a forest plot that shows the results of the 
meta-analysis of these data; the size of the box 
for each study is proportional to the number of 
cows in that study. The test for heterogeneity is 
not significant (P = 0.24) and I2 = 23% (low het-
erogeneity) and so it is reasonable to use the 
estimated odds ratio of 1.36 (95% CI 1.16 to 
1.59), derived from a fixed effect analysis, as a 
combined estimate of the effect of interest. Thus, 
it can be seen that there is a significant improve-
ment in the pregnancy rate of cows on treatment 
with GnRH (P  =  0.0002); the odds of a cow 
becoming pregnant is increased by 36% if the 
cow is treated.

13.6  Methods of sampling

13.6.1  Introduction

When we are interested in certain features of a 
population, it is usually impractical to appraise 
the complete population because of the con-
straints of time, finance or labour. Instead, we 
conduct a sample survey in which we study only 
a portion of the population. A sample survey  
is a particular type of observational study (see 
Section 5.2.1); it is usually concerned with esti-
mating the parameters in the population from 
which it is selected. These should be unbiased 
(free from bias) and precise. If an estimate is free 
from bias, then the mean of its sampling distribu-
tion is equal to the value of the parameter in the 
population (see Section 4.4.3). The precision of 
an estimate is measured by its standard error, a 
more precise estimate having a smaller standard 
error.

We can attempt to eliminate selection bias if 
we use a mechanism based on chance to select a 
random sample of individuals (see Section 1.9.2), 
each individual having the same probability of 
selection. Random sampling is sometimes called 
probability sampling. Then we build on the initial 
premise of random selection, using information 
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Stratified sampling usually results in more 
precise estimates for a given cost than simple 
random sampling. For maximum precision, 
we construct the strata so that the strata 
means are as different as possible, and the 
units within each stratum are as alike as pos-
sible. Stratified sampling is the method most 
commonly employed in wildlife population 
surveys.

(c)	 In cluster sampling, we divide the population 
into clusters of units. We select a simple 
random sample of clusters from the popula-
tion of clusters, and observe all the units in 
the selected clusters. As an example, suppose 
a veterinary practitioner wants to investigate 
the incidence of calving problems in his prac-
tice area. He could define the cattle farms  
on his books as the clusters, and note all the 
incidents of dystokia over the period of the 
study in a random selection of these farms.

Cluster sampling is cheaper and more 
practical than simple or stratified random 

example, for a stock of 8000 fish we might 
take a random sample of 2%, i.e. 160 fish.

(b)	 In stratified sampling, we divide the popula-
tion into various subpopulations called 
strata. We select a simple random sample  
of units from each stratum, and compute 
parameter estimates from each stratum. We 
combine these estimates appropriately, using 
a weighted technique, to provide the required 
estimates of the parameters of interest. For 
example, in a wildlife population study in  
a particular location, the strata may be 
hedgerow, open field and woodland. These 
different habitats are likely to influence param-
eters such as population density, plumage 
and development rate. The sites would be 
identified and a simple random sample of 
animals taken from each. The estimates of 
each parameter of interest would be obtained 
from the three habitats and then combined 
to obtain an overall population estimate for 
this location.

Figure 13.6  Diagrammatic illustration of 
different sampling techniques.

(a) Random sampling (b) Stratified sampling
(some units of all strata)

(c) Cluster sampling
(all units of selected clusters)

(d) Systematic sampling
(each unit in same relative
position)

k 2k 3k   …   N
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sampling if the clusters represent a geo-
graphically compact set of units. We may 
have to resort to cluster sampling if a frame 
that lists all population units is unavailable. 
However, the parameter estimates obtained 
from a cluster sample tend to be less precise 
than those of a simple random sample of the 
same number of units. We can maximize the 
precision of the estimates by choosing the 
clusters so that cluster means are as alike as 
possible, and the units within each cluster are 
as diverse as possible. Furthermore, we will 
obtain more precise estimates from a large 
number of small clusters than a small number 
of large clusters.

Although cluster sampling bears a super-
ficial resemblance to stratified sampling in 
that a cluster, like a stratum, is a grouping of 
the units in the population, the two tech-
niques are quite different. In stratified sam-
pling, every stratum is represented in the 
final sample, and we select units at random 
from each sample; in cluster sampling, we 
select a random sample of clusters from a 
population of clusters in the same way as we 
select individual units from a population of 
units in simple random sampling. In cluster 
sampling we observe every unit in the selected 
clusters.

(d)	 We can extend cluster sampling by intro
ducing one or more stages to the basic tech-
nique to obtain a multi-stage sample. For 
example, in two-stage sampling, we start by 
dividing the population into clusters. At the 
first stage, we select a random sample of clus-
ters from the population of clusters. At the 
second stage, we select a random sample  
of units from the selected clusters rather 
than enumerating every unit in the selected 
clusters.

(e)	 In systematic sampling, we randomly select 
one unit from the first k units in the frame, 
and then every kth unit thereafter. In the 
strict sense, a systematic sample is not a true 
random sample because only the first unit is 
selected at random. Once the first unit has 
been selected, the remaining units are pre
determined in that every one occupies the 
same relative position in each group of k 

units. A systematic sample is appealing 
because it is relatively easy to assemble the 
units in the sample and it ensures that they 
are evenly distributed over the listed popula-
tion. Hence systematic sampling is often 
more precise than simple random sampling. 
However, we cannot evaluate the precision 
of the estimates in a systematic sample, and 
we may obtain biased estimates if the popu-
lation consists of a periodic trend and k coin-
cides with the period or a multiple of it.

Multi-stage and systematic sampling have less 
use in veterinary and animal science than in human 
investigations. Systematic sampling depends on 
being able to list all the individuals. Unlike 
humans with their voting registers, National 
Insurance or Social Security numbers, animals 
are usually more dispersed and less regimented. 
However, the tagging of individuals accompany-
ing the need to trace all food animals for veteri-
nary disease control measures is now providing 
opportunities for systematic sampling.

You may be interested to note the relationship 
of systematic sampling to both stratified and 
cluster sampling. The systematic sample is almost 
equivalent to a stratified sample if we regard each 
stratum as a group of k consecutive units in the frame. Our 
sample comprises a single unit from each ‘stratum’, although 
only the first unit is selected at random. The systematic 
sample is equivalent to a cluster sample if we define the ith 
cluster (i = 1, 2, 3, .  .  . , k) as that containing the ith unit in 
every group of k consecutive units in the frame. Then there 
exist k possible clusters to choose from, and in a systematic 
sample we are selecting a simple random sample of one 
cluster from this population of k clusters.� 

13.6.4  Sampling from 
wildlife populations

It is important to be able to estimate the size of many wildlife 
populations for the study of growth, evolution and mainte-
nance. There are a number of ways in which the estimate can 
be obtained.

(a)  Capture–tag–recapture

The capture–tag–recapture method can be split into two types 
of sampling procedure: direct sampling and inverse sampling.



	 Further aspects of design and analysis	 197

size of the population, then it is difficult to gauge the most 
appropriate t, which, if too great, could make n very large; in 
these circumstances, direct sampling is the preferred choice. 
Details of choosing sample sizes for direct and inverse sam-
pling may be obtained from Mendenhall et al. (1971).

An explanation and further discussion of the methods of 
estimating wildlife population sizes is given by Greenwood 
and Robinson (2006). They explain how to estimate total 
population size by simultaneously tagging and recapturing 
animals by using traps of two different sorts in a closed popu-
lation. The estimate is obtained by assessing, at the endpoint 
of the study, the relative numbers of animals caught in one 
type of trap from which they cannot escape, and from the 
other type in which the animals are tagged before they are 
allowed to escape.

Unfortunately, the methods, which rely on tagging and 
recapturing the animals, assume that all animals in the popu-
lation have the same probability of recapture. This is often 
not the case, so that the population estimates may be inac-
curate, and their calculated standard errors wildly off the 
mark. Sometimes, more reliable information can be obtained 
by estimating birth and survival rates having followed the 
fortunes of a group of marked animals.

Several other references provide useful help in exploring 
this subject further, avoiding some of the pitfalls awaiting the 
novice: Buckland et al. (1993), Peres (1999), Southwood 
(1966), Thompson et al. (1998) and Witmer (2005).

(b)  Bootstrapping

Another approach to estimating population numbers, if the 
relevant sampling distribution is unknown, is based on a 
simulation process called bootstrapping (see Section 4.8). 
Suppose it is of interest to estimate the population numbers 
of a particular species in a given area. The underlying sam-
pling process that precedes the bootstrapping estimation 
procedure is often cluster sampling, the clusters being equiva-
lent sized areas derived from an appropriate map. (More 
details of territory mapping techniques are given in Bibby  
et al., 1992.) The entire population in a random selection of 
areas is then counted within a short period, often by recruit-
ing volunteer labour.

For example, in a national survey of corn buntings (Donald 
and Evans, 1995), tetrads (2 × 2 km) were selected at random 
from areas that had previously been recorded as having the 
birds. Populations were calculated separately for 11 different 
regions representing Scotland, England and Wales to reduce 
geographical bias, and a national estimate of corn buntings 
obtained. Having obtained a random sample (in this case, of 
mapped areas), a bootstrapping technique can be used to 
refine the estimation process. A set of simple random sub-
samples (often 999 subsamples, as recommended by Manly, 
2007), each of the same size as the original sample, is created 
from it by sampling with replacement (see Section 4.8). A 
single estimate of the population size is determined from each 
subsample and, using the relevant percentiles of the sampling 
distribution of these estimates, it is possible to obtain a con-
fidence interval for the population size of corn buntings.

1.	 Direct sampling:
(a)	 We take a random sample of size t from the wildlife 

population, tag each animal sampled, and return 
these animals to the population.

(b)	 At some later date, we take a second random sample, 
this time of a predetermined size, n, from the popula-
tion, and observe the number tagged, s.

For example, suppose we want to estimate the pigeon 
population in Trafalgar Square. We take a random sample 
of t = 500 pigeons and ring (tag) them before release. A 
week later, we take another sample of n =  200 pigeons 
and note that s = 29 are ringed.

2.	 Inverse sampling:
(a)	 We take a random sample of size t from the wildlife 

population, tag each animal sampled, and return 
these animals to the population.

(b)	 At some later date, we select animals from the popu-
lation, using random sampling, and observe whether 
or not the animals captured are tagged. We continue 
sampling until we observe exactly s (a predeter-
mined number) tagged animals. Let us suppose that 
we need to select n animals in this second sample to 
obtain s tagged animals.

As an illustration, suppose we start by taking a random 
sample of t = 500 pigeons and ring them before release. 
We decide that we are going to capture s  =  25 ringed 
pigeons 1 week later. At that time we find that we have 
captured n = 173 pigeons of which s = 25 are ringed.

For both direct and inverse sampling

Estimated population size = t
s n/

where the denominator represents the proportion of tagged 
animals in the second sample, estimating the proportion of 
tagged animals in the population.

In our example, we estimate the pigeon population in 
Trafalgar Square to be

Direct sampling pigeons,
/ /
t

s n
= ≈500

29 200
3448

Inverse sampling pigeons,
/ /
t

s n
= ≈500

25 173
3460

However, the variance of the estimate is different in each 
case. The estimated variances of the estimated population 
size for direct and inverse sampling are, respectively,

t n n s
s

t n n s
s s

2

3

2

2 1
−( ) −( )

+( )
and

In our pigeon example, the standard errors of our esti-
mates (i.e. the square roots of the variances) are approxi-
mately 592 and 628 for the direct and inverse methods, 
respectively. If the size of the second sample, n, is small com-
pared with the overall population size, then inverse sampling 
provides a more precise estimate of the population size than 
direct sampling. However, if we know very little about the 
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(b)  The nominal significance level in a group 
sequential design is always less than the 
overall significance level.

(c)  Random allocation of animals to treatment 
groups is ensured by random sampling.

(d)  A stratified sample is more precise than a 
simple random sample of the same size if it 
is designed so that the units within a stratum 
are as alike as possible, and the strata means 
are as different as possible.

(e)  A cluster sample is more precise than a 
simple random sample of the same size if it 
is designed so that the units within a cluster 
are as alike as possible, and the cluster means 
are as different as possible.

13.4  A meta-analysis:
(a)  Is a statistical analysis of transformed data.
(b)  Is a particular type of systematic review.
(c)  Uses a random effects approach to estimat-

ing an overall effect of interest if the sepa-
rate estimates from the different studies are 
heterogeneous.

(d)  Has results that are clinically heterogeneous 
if each of the separate studies are focusing 
on different clinical endpoints of interest.

(e)  Can use a forest plot to determine if the data 
in each study are Normally distributed.

13.5  The Indian water buffalo, like domestic 
cattle, suffers from gut parasite infestations, some 
of which cause severe anaemia. We want, there-
fore, to be able to detect a change in haemo-
globin (Hb) content in buffalo blood. We know 
that the Hb content of buffalo blood has a mean 
value of 11.1 g/dl with a standard deviation (SD) 
of 0.96 g/dl (Jain et al., 1982). In an investigation 
comparing the effects of infestation with those in 
a control group, we want an 80% chance of 
detecting a mean change of, say, 1 g/dl. Will this 
be a one- or two-tailed test? How many animals 
would be needed to detect a change of this mag-
nitude, assuming equal numbers in the two 
groups:
(a)  At a significance level of 0.05 with a power 

of 80%?
(b)  At a significance level of 0.05 with a power 

of 90%?
(c)  At a significance level of 0.01 with a power 

of 80%?

(c)  Distance sampling

A variant sampling procedure is that of distance sampling 
from a transect line. A transect line is drawn and the number 
and frequency of species recorded by an observer along the 
transect. The method is based on the proposition that the 
detection of randomly distributed subjects declines with dis-
tance from the transect line; an increasing number of subjects 
will be undetected with increasing distance from the line. 
Distance sampling methods model the decline in detectabil-
ity with distance for a given species, and arrive at an estimate 
of population based on the data. More details can be found 
in the volume by Bibby et al. (1992).

Childs et al. (1998) used both a capture–tag method and a 
distance sampling technique to make estimates of rural dog 
populations in the Philippines. They concluded that distance 
sampling was a simple and satisfactory method for estimating 
dog population density.� 

Exercises

The statements in questions 13.1–13.4 are either 
TRUE or FALSE.

13.1  The logarithmic transformation:
(a)  Normalizes data that are skewed to the left.
(b)  Linearizes an exponential relationship.
(c)  Stabilizes variance when the variability of 

the data increases as the magnitude of the 
observations increases.

(d)  Is particularly useful for transforming 
proportions.

(e)  Is applied when the sample size is small.

13.2  You will need more animals to find a signifi-
cant difference between two treatments in a clini-
cal trial if (all other factors remaining constant):
(a)  You increase the power of the test.
(b)  You decrease the significance level from 0.05 

to 0.01.
(c)  You have been informed that the clinically 

important treatment difference is greater 
than you believed it to be.

(d)  The response of interest is numerical, and 
you have underestimated the standard devi-
ation of the observations in each group.

(e)  The standardized difference is increased.

13.3 
(a)  Sequential analysis is particularly appro

priate when the response to treatment is 
prolonged.
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high percentage (i.e. >90%) of protected animals 
(>1 : 80 HI titre). If we find that vaccination in 
the seropositive group produces less than 50% 
protection, this will be considered a serious limi-
tation. How many puppies will be required if  
we want a power of 90% of detecting this differ-
ence in percentages protected at the 5% level of 
significance?

13.8  Investigators were interested in compar-
ing two systems of management of pigs to reach 
slaughter weight. The mean number of days for 
the pigs to reach slaughter weight using the old 
system of management was 165 days and the 
investigators were hoping that the new system  
of management would require fewer days on 
average for the pigs to reach slaughter weight. 
The following statement was made about the 
choice of optimal sample size for a randomized 
controlled trial to compare the two systems. 
‘Using a two-tailed two-sample t-test, approxi-
mately 32 pigs are required for each system in 
order to have a power of 80% to detect, at the 
5% level of significance, a difference in means of 
5 days for the bacon pigs to reach slaughter 
weight, if the standard deviation of the observa-
tions is likely to be about 7 days in each group.’
(a)  Explain what is meant by a significance level 

of 5%.
(b)  Explain what is meant by a power of 80%.
(c)  How do the significance level and the power 

of the test relate to the Type I and Type II 
errors?

(d)  If all other factors remained unchanged, 
would the required sample size increase  
or decrease if the significance level was 
increased to 10%?

(e)  If all other factors remained unchanged, 
would the required sample size increase or 
decrease if the power of the test were 
increased to 90%?

(f)  If all other factors remained unchanged, 
would the required sample size increase or 
decrease if the difference in means to be 
detected was increased to 7 days?

(d)  If the standard deviation was 1.3 g/dl, at a 
significance level of 0.05 with a power of 
80%?

(e)  At a significance level of 0.05 with a power 
of 80% if, instead of equal numbers, we want 
twice as many controls as water buffalos with 
the infestation?

13.6  We want to compare two different exercise 
regimens for horses on a treadmill as judged  
by the plasma lactate concentration at the end  
of the exercise period. We will conduct a ran
domized cross-over trial (each horse undergoes 
both exercise regimens in a randomized order) 
on a group of randomly selected animals with 
two different cantering speeds for a period of  
7 minutes. A difference in plasma lactate of 
1 mmol/l is considered an important difference. 
From a previous pilot trial, we know that the SD 
of the differences in plasma lactate concentra-
tion under the two regimens is likely to be around 
1.7 mmol/l. Use Altman’s nomogram to answer 
the following:
(a)  How many horses will we need to test in 

order to have a probability of 0.85 of detect-
ing, at a 1% significance level, a difference  
in mean plasma lactate concentrations of 
1.0 mmol/l between these exercise regimens?

(b)  We actually have 20 horses available. What 
is the power of the test if the significance 
level remains at 1%?

(c)  Now what is the effect on power of changing 
the significance level to 5%?

13.7  A study is to be conducted on the effec-
tiveness of attenuated canine parvovirus vaccine 
(A-CPV) to protect 6-week-old puppies. It is 
anticipated that maternally derived passive immu-
nity would interfere with the establishment of an 
adequate immunity (titres greater than 1 : 80 in a 
haemagglutination-inhibition (HI) test) 1–2 
weeks after vaccination. Puppies will be divided 
into seronegative (<1 : 10 HI titre) and seroposi-
tive (>1 : 20 HI titre) groups before vaccination. 
We anticipate that, in the seronegative group, a 
successful vaccination programme will produce a 
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14.1  Learning objectives

By the end of this chapter you should be able to:

•	 Define the terms ‘sensitivity’, ‘specificity’ and 
‘predictive value’ as used in diagnostic tests.

•	 Evaluate the performance of a diagnostic or 
screening test.

•	 Interpret a receiver operating characteristic 
(ROC) curve and explain how it can be useful 
in evaluating a diagnostic test.

•	 Explain what is meant by a Bayesian analy­
sis and how it differs from the frequentist 
approach.

•	 Distinguish between uninformative and infor­
mative priors and explain the terms ‘posterior 
probability’ and ‘likelihood’ in the context of 
Bayesian analysis.

•	 Apply Bayesian reasoning in evaluating a 
diagnostic test.

•	 Investigate both repeatability and method 
agreement in paired numerical data. Explain 
why the Pearson correlation coefficient is an 
inappropriate measure of agreement and why 
the paired t-test does not give full information 
about agreement for pairs of numerical data.

•	 Investigate agreement in categorical data 
using Cohen’s kappa.

•	 Explain what is meant by a time series, and 
state the issues that are relevant for analysis.

•	 Identify the appropriate analyses for repeated 
measures data.

14 Additional techniques

•	 Recognize when a survival analysis should be 
performed.

•	 Interpret the results of Kaplan–Meier and Cox 
proportional hazards survival analyses.

•	 Explain the terms ‘competing risks’ and ‘frailty’ 
in the context of survival analysis.

•	 Explain the difference between univariate, 
univariable, multivariable and multivariate 
analysis.

•	 Outline different multivariate methods.

14.2  Diagnostic tests

14.2.1  Introduction

We can often use the result of a test to diagnose 
or exclude a disease in a sick animal or as a 
screening device in a population of apparently 
healthy animals. The screening test procedure is 
usually the first step in a process that involves 
further investigation on each animal which has 
an initially positive test result. However, screen­
ing for disease is only worthwhile if the disease 
is serious, and if diagnosing it and treating the 
animal at the pre-symptomatic stage positively 
affects its long-term outcome. For simplicity, we 
shall explain the statistical theory underlying 
these tests in terms of diagnosis.

Each animal either has the disease (is positive) 
or is disease-free (is negative). If the diagnostic 
test is based on a numerical variable, then we 
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as positive. It gives an indication of the ability 
of the test to correctly identify those animals 
with the disease.

•	 Specificity = d/(b + d) is the proportion of true 
(gold standard) negatives identified by the test 
as negative. It gives an indication of the ability 
of the test to correctly identify those animals 
without the disease.

Because we are using sample data to provide 
estimates of the relevant measures, we should 
accompany the estimates of the prevalence and 
the sensitivity and specificity by their standard 
errors and/or associated confidence intervals. 
Each measure is a proportion (although it is 
often multiplied by 100 and expressed as a  
percentage), and we explained how to calculate 
the standard error of, and a confidence interval 
for, a proportion in Sections 4.6.2 and 4.7, 
respectively.

Generally, the sensitivity and specificity of the 
test are not affected by the prevalence of the 
disease. They are used to assess the performance 
of the diagnostic test and provide measures of its 
accuracy in relation to the ‘gold standard’ diag­
nosis. However, verification bias may arise if the 
gold standard is not a true reflection of the real 
disease state of the animal, in which case the 
sensitivity and specificity may be related to prev­
alence. We explain how to estimate the sensitiv­
ity and specificity of a test when there is no true 
gold standard in Section 14.2.5. Verification bias 
may also arise if the selection of animals to 
receive the gold standard test is influenced by  
the result of the diagnostic test under investiga­
tion. For example, the animal may not receive an 

may decide that the animal is likely to have the 
disease if the numerical measurement for that 
animal exceeds or is below a certain range of 
values. Typically, this range will be the limits of a 
reference range (see Section 2.7). For example, 
we may use plasma thyroxin (T4) measurements 
in the diagnosis of hypothyroidism in dogs. A dog 
could be diagnosed as having an underactive 
thyroid gland if its plasma thyroxin measurement 
is less than 15 nmol/l, the lower limit of the refer­
ence range. Alternatively, our diagnostic test  
may be based on a categorical response, such as 
the presence or absence of some symptom or 
sign. In either situation, we must be able to evalu­
ate the performance of this diagnostic test. We 
want to know:

•	 How effective the test is at identifying animals 
with the disease (sensitivity).

•	 How effective the test is at identifying animals 
without the disease (specificity).

•	 How likely it is that the test will give a correct 
diagnosis, whether the animal is diseased or 
disease-free (predictive value).

The sensitivity and specificity are characteris­
tics of the test that provide measures of its  
accuracy whereas the predictive value gives an 
indication of the usefulness of the test.

14.2.2  Characteristics of the test: 
sensitivity and specificity

The true or ‘gold standard’ diagnosis may be 
made using information from a variety of sources 
such as clinical examination, laboratory or post-
mortem results or an expert’s opinion. Table 14.1 
shows the observed frequencies obtained from 
the gold standard test (true results) and the diag­
nostic test when each is applied to n animals. 
From this table, we can see that the prevalence 
of the disease in the sample is (a + c)/n, the pro­
portion of animals in the study with the disease. 
We use the following measures to assess the 
effectiveness of the test.

•	 Sensitivity = a/(a + c) is the proportion of true 
(gold standard) positives identified by the test 

Table 14.1  Table of observed frequencies.

Test 
result

True diagnosis

Total
Positive

(diseased)
Negative
(healthy)

Positive a b a + b

Negative c d c + d

Total a + c b + d n = a + b + c + d



202	 Statistics for Veterinary and Animal Science

whose value, therefore, lies close to the top left-
hand corner of the ROC curve.

In addition, we can use the area under the 
ROC curve (AUROC) to describe the overall 
ability of the diagnostic test to distinguish 
between animals with and without the disease. 
This area, sometimes designated by the term ‘c 
statistic’, represents the probability that a ran­
domly chosen diseased animal has a higher pre­
dicted probability of having the disease than a 
randomly chosen disease-free animal. Expressed 
another way, if the AUROC is equal to 0.7, say, 
this means that, on 70% of occasions, a randomly 
chosen diseased animal will have a higher pre­
dicted probability of having the disease than a 
disease-free animal. A test that is perfect at dis­
criminating between animals with and without 
the disease has an AUROC  =  1, and a test 
that performs no better than chance has an 
AUROC  =  0.5. The AUROC is particularly 
useful when we wish to compare the diagnostic 
accuracy of two or more diagnostic tests that are 
used for the same condition. The test with the 
greater AUROC is better at distinguishing 
between the two disease outcomes.

Further details may be found in Greiner et al. 
(2000), Jekel et al. (1996), Zweig and Campbell 
(1993) and similar texts.

invasive gold standard test if the diagnostic test 
result is negative.

Ideally, we should like a test that has both a 
high sensitivity and a high specificity but these 
two measures are dependent, so that as one 
increases, the other tends to decrease. The rela­
tive importance of the sensitivity and specificity 
of a test depends on the particular disease that is 
being tested and the implications of the animal 
either having or not having the disease.

•	 If we are concerned with identifying animals 
with the disease so that we can treat them, then 
we should use a test that has a high sensitivity, 
e.g. the glucose tolerance test in dogs to diag­
nose diabetes mellitus.

•	 If our concern is with excluding diseased 
animals and identifying those that are disease-
free, then we require a test with a high specifi­
city, e.g. tuberculin testing in cattle.

If our test is based on a numerical variable, we 
can alter the sensitivity and the specificity of a 
diagnostic test by raising or lowering the cut-off 
value for the variable, where this cut-off deter­
mines whether the test result is positive or nega­
tive. So, for example, in our hypothyroid example 
in dogs where a low T4 level is taken as indicative 
of the existence of a pathological state, e.g. an 
underactive gland, we can increase the sensitivity 
and decrease the specificity if we raise the critical 
cut-off to a value above 15 nmol/l, the lower limit 
of ‘normal’.

14.2.3  Using the ROC to assess a 
diagnostic test and to determine 
the optimal cut-off

Sometimes a receiver operating characteristic 
(ROC) curve is plotted as a means of determin­
ing the best cut-off for a diagnostic test based on 
a numerical variable, and for comparing two or 
more tests for a given condition. The ROC curve 
plots the sensitivity (the true positive rate, TPR) 
against 1 minus the specificity (the false positive 
rate, FPR) for different cut-off values (Figure 
14.1). A ‘good’ test is one that has a high true 
positive rate and a low false positive rate and 

Figure 14.1  Receiver operating characteristic (ROC) curve 
determined using different cut-off values of phosphate to 
diagnose renal secondary hyperparathyroidism (RHPTH)  
in cats (the enlarged circle indicates a phosphate value of 
1.86 mmol/l). See Section 14.2.11.
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of this standard test are known, then it is possible 
to estimate the sensitivity (Sennew) and specificity 
(Spnew) of the new test by employing the follow­
ing formulae (using the notation of Table 14.1):

Sensitivitynew
s

s

a b Sp b
nSp b d

=
+( ) −

− +( )

Specificitynew
s

s

c d Sen c
nSen a c

=
+( ) −

− +( )

Standard error formulae for these estimates 
may be found in Gart and Buck (1996). Further 
details of this and other approaches to estimating 
the sensitivity and the specificity of a new test 
using a standard or reference test instead of a 
gold standard test may be found in, for example, 
Enoe et al. (2000).

14.2.6  Using logistic regression  
to estimate the sensitivity  
and specificity

When we wish to estimate the sensitivity and 
specificity of a test if we believe that these meas­
ures will be affected by various characteristics of 
the population (e.g. males and females, different 
age categories, disease stages), it is tempting to 
approach the problem by performing subgroup 
analysis, i.e. by estimating the measures using the 
formulae in Section 14.2.2 for each subgroup or 
category of the factors of interest. However, it is 
usually impractical to use this technique because 
of the problem of small sample sizes after strati­
fication. A preferred approach is to undertake a 
logistic regression analysis (see Section 11.4) in 
which the outcome variable relates to the dichot­
omous result of the diagnostic test (taking the 
value 1 or 0 if the disease is present or absent, 
respectively). One of the covariates is the disease 
status as determined by the gold standard; it 
takes the value 1 if the disease is present and 0 
if it is absent. The other covariates are those 
factors that might affect the sensitivity and spe­
cificity of the test, for example, the gender of the 
animal or its age. In this way, we are able to esti­
mate the sensitivity and specificity of the diag­
nostic test for a particular set of covariate values.

14.2.4  Using logistic regression to 
determine the optimal cut-off

Logistic regression analysis (see Section 11.4) is 
a modification of multiple regression (see Section 
11.3), utilized when we have a binary outcome of 
interest, e.g. disease or no disease. We may use it 
instead of the ROC curve to determine the 
optimal cut-off for a diagnostic test based on a 
numerical variable. In this situation, the outcome 
variable is the dichotomous result of the gold 
standard test (coded as 1 for a diseased animal 
and 0 for a disease-free animal) and the explana­
tory variables or covariates, in addition to the 
numerical measurement from the diagnostic test, 
are those variables that are thought to influence 
the disease outcome. Comprehensive statistical 
software (such as SPSS and Stata) uses the logis­
tic regression model to estimate the sensitivities 
and specificities of the diagnostic test for various 
cut-offs. We can plot a ROC curve from these 
values and choose the optimal cut-off as the most 
extreme point in the top left-hand corner of the 
curve. Another approach is to simply choose a 
cut-off that provides what we regard as the 
optimal combination of sensitivity and specificity 
for the particular scenario of interest. Alterna­
tively, we can plot the predicted probability of 
the disease (this may be obtained from the logis­
tic regression analysis) against the associated 
cut-off and choose the cut-off that corresponds 
to the probability of interest (typically 0.50).

14.2.5  Estimating the sensitivity 
and specificity with no  
gold standard

We may be in a situation where we have a sample 
of animals that can be used to assess a new diag­
nostic test for a particular condition, but there is 
no gold standard test available to enable us to 
estimate the sensitivity and specificity of the new 
diagnostic test. However, we may be able to 
compare the results of the new test with some 
other standard test which, although good, does 
not detect the disease status of the animals per­
fectly. If the sensitivity (Sens) and specificity (Sps) 
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As with the sensitivity and specificity, we 
should accompany the estimates of the PPV and 
NPV by their standard errors and/or associated 
confidence intervals. However, unlike the sensi­
tivity and specificity, the PPV and NPV are 
affected by the prevalence of the disease. As the 
prevalence of the disease is raised, we have more 
animals with the disease in the population, and 
we have greater confidence that a positive test 
result is correct; the positive predictive value of 
the test is increased and the negative predictive 
value is decreased. The reverse is true as the 
prevalence of the disease is lowered. We should 
therefore not compare predictive values of tests 
that have been evaluated in populations in which 
the prevalence of the disease is different.

14.2.8  Estimating the PPV and  
NPV with no gold standard:  
the likelihood ratio

The positive predictive value (PPV) of a test 
evaluates the chance that an animal has the 
disease if its test result is positive. In the statisti­
cal technique described in Section 14.2.2 and 
illustrated in Table 14.1, the estimation of the 
PPV relies on information being available on a 
sample of animals, all of which have been catego­
rized as disease positive or negative both by the 
test and by the gold standard. Unfortunately, we 
cannot produce this information when attempt­
ing to diagnose the condition of an individual 
animal when only a single test result and no gold 
standard result is available for that animal. An 
alternative way of deciding how likely it is that  
a particular animal has the disease if it tests  
positive is to give consideration to the relevant 
likelihood ratio, a concept we introduced in 
Section 11.4.3. We can use the likelihood ratio to 
assess how good a diagnostic test is and to 
compare the usefulness of different tests for a 
given condition.

The likelihood ratio of a positive test result 
(LR+) describes how much more likely the animal 
is to have a positive test result if it has the disease 
than if it is disease-free (i.e. it is the ratio of the 
likelihoods of having and not having the disease). 

If the logistic regression equation is estimated 
by

logit /e( ) log ( ( ))

, ,

p p p

a b x b x b x b x

a b x
k k

i i

= −
= + + + +
= +

1

1 1 2 2 3 3 …
Σ

where x1 is the binary result from the gold stand­
ard test and p is the estimated value of the prob­
ability that an animal with a particular set of 
covariate values of x2, x3, .  .  . , xk is presumed to 
have the disease by the diagnostic test, then we 
estimate sensitivity and specificity as

Sensitivity / a

where

= + − −
=
1 1

11

( exp( ))Σb x

x
i i

Specificity / a
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= − + − −
=
1 1 1

01
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Full details, including the formulae for confi­
dence intervals, may be obtained from Coughlin 
et al. (1992). See also Sections 14.2.4 and 14.2.9 
for further use of logistic regression for diagnos­
tic tests.

14.2.7  Usefulness of the test: 
positive and negative  
predictive values

We use the sensitivity and specificity to assess the 
accuracy of the test and determine the optimal 
test for a given condition. However, these two 
measures do not help us decide how likely it is 
that a particular animal has the condition if it 
tests positive or does not have the condition if it 
tests negative. The positive and negative predic­
tive values (PPV and NPV, respectively) are 
useful in this regard. Using the notation of Table 
14.1, these are estimated as:

•	 Positive predictive value (PPV) = a/(a + b), the 
proportion of animals with a positive test 
result that really are positive.

•	 Negative predictive value (NPV) =  d/(c +  d), 
the proportion of animals with a negative test 
result that really are negative.
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that an animal tests positive for the disease of 
interest. How likely is it that the animal actually 
has the disease? In the absence of any additional 
information, we usually take the prevalence of 
the disease in the relevant geographical area as 
the pre-test probability. With knowledge of the 
sensitivity and specificity of the diagnostic test, 
we can evaluate the likelihood ratio of a positive 
test result using the formula provided. We then 
connect the pre-test probability (expressed as a 
percentage) on the left-hand axis of the nomo­
gram to the likelihood ratio and extend the line 
to the point at which it cuts the right-hand axis, 
and this gives us the post-test probability that the 
animal has the disease. With this knowledge, the 
clinician can decide on the appropriate therapeu­
tic action for the animal in his/her care. We illus­
trate the use of Fagan’s nomogram in the example 
in Section 14.2.11.

So, for example, if the LR+  =  5, a positive test 
result is five times more likely to occur in an 
animal that has the disease than in one that does 
not have it. If the LR+ =  1, then a positive test 
result is equally likely in diseased and disease-
free animals, and the test is useless. A high likeli­
hood ratio (e.g. LR+ > 10) indicates that the test 
can be used to rule in the disease, whilst a low 
likelihood ratio (e.g. LR+ < 0.1) can rule out the 
disease. (Note that it is also possible to calculate 
the likelihood ratio of a negative test result (LR−) 
which describes how much more likely the animal 
is to have a negative test result if it has the disease 
than if it is disease-free.)

We may use the following formulae to calcu­
late the likelihood ratios of positive and negative 
test results. In each case, we assume that sensitiv­
ity and specificity are expressed as probabilities 
taking values from 0 to 1 (if they are expressed 
in percentage terms, we should replace the ‘1’ in 
the denominator and numerator, as appropriate, 
by 100).

LR
Sensitivity

Specificity
+ =

−1

LR
Sensitivity

Specificity
− =

−1

Commonly, we use the likelihood ratio, which 
provides information about the performance of 
the diagnostic test, together with any prior infor­
mation that the clinician has regarding the pos­
sibility that the animal is diseased (the pre-test 
probability) to estimate the chance that the 
animal has the disease (the post-test probability) 
if it tests positive. This process of using the 
current evidence (e.g. the test result) to revise 
and update the researcher’s initial estimate of 
the probability of the event of interest (e.g. the 
presence of disease) is described as Bayesian 
(see Section 14.3 for more details). Using con­
ventional Bayesian terminology, the pre-test and 
post-test probabilities are the prior and posterior 
probabilities, respectively.

Although it is possible to evaluate the post-
test probability from the pre-test probability 
using formulae, we recommend using Fagan’s 
nomogram (Figure 14.2) for simplicity. Suppose 

Figure 14.2  Fagan’s nomogram (from Fagan, 1975, repro­
duced with permission from the Massachusetts Medical 
Society).
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•	 We perform the tests sequentially, most use­
fully when we are interested in arriving at a 
diagnosis without necessarily performing both 
tests (or all the tests if there are multiple tests) 
on every animal. This may be recommended if 
one test is a cheaper, quicker, more practical 
and/or less invasive test than the other. Then 
we use the cheaper or less invasive test, which 
should have high sensitivity but low specificity, 
on all the animals, and we use the second, more 
expensive or more invasive test, which should 
have equally high sensitivity but also high spe­
cificity, only on those animals that tested posi­
tive to the first test. We regard an animal as 
testing positive for the disease if both tests 
have positive results.

•	 A similar interpretation is elicited from the 
results for series testing. In this situation, we 
administer both tests to all animals and we 
regard an animal as testing positive for the 
disease only if we obtain a positive test result 
from both tests. An example of series testing is 
described by Muma et al. (2007). The investiga­
tors conducted a cross-sectional study to inves­
tigate the risk factors of Brucella seropositivity 
in cattle herds reared in livestock–wildlife 
interface areas of the Blue Lagoon and Lochin­
var National Parks in Zambia between August 
2003 and September 2004. Sera were collected 
from cattle aged ≥2 years from 124 herds. Data 
on husbandry practices, grazing strategies and 
herd structure were also collected. Sera were 
screened for anti-Brucella antibodies using the 
Rose Bengal test (RBT) as a presumptive test 
and a competitive enzyme-linked immuno­
sorbent assay (c-ELISA) as a confirmatory 
test. A herd was classified as Brucella seroposi­
tive if at least one animal tested positive on 
both RBT and c-ELISA in series testing.

•	 A third approach is to use parallel testing 
when we administer both tests to all animals 
but then regard an animal as having a positive 
outcome if at least one test has a positive result.

If, on the other hand, we wish to provide good 
probabilistic evidence that an animal is free of 
the disease, we will be interested in increas­
ing the negative predictive value which can be 
accommodated by increasing the sensitivity of 

14.2.9  Using logistic regression to 
estimate the PPV and NPV

We explained in Section 14.2.6 how we can use 
a logistic regression model to estimate the sensi­
tivity and specificity of a diagnostic test, after 
adjusting for factors likely to influence these 
measures. In that logistic regression analysis, we 
took the diagnostic test result (coded as 1 if the 
disease is present and 0 otherwise) as the outcome 
variable and the gold standard result as one of 
the covariates, the other covariates being those 
factors that were likely to affect the outcome. If, 
alternatively, we wish to use a logistic regression 
model to estimate the PPV and NPV of a diag­
nostic test, we use a similar approach but take 
the gold standard result (coded as 1 if the disease 
is present and 0 otherwise) as our outcome vari­
able and the diagnostic test result as an explana­
tory variable, together with any other covariates 
of interest. We then use the formulae in Section 
14.2.6 for the estimated sensitivity and specificity 
to estimate the PPV and NPV, respectively 
(Coughlin et al., 1992).

14.2.10  Using two (or more) 
diagnostic tests

One of the main uses of a diagnostic test is to 
provide good probabilistic evidence that a par­
ticular animal has (or does not have) the disease 
of interest. That is, we are particularly interested 
in the positive predictive value of the test: we 
want to know how likely it is that the animal 
actually has the disease if it has a positive diag­
nostic test result. Clearly, a high PPV is a reflec­
tion of a useful test. For a given population, if  
we increase the specificity of the test, this will 
increase the PPV in a given population because 
b in Table 14.1 will decrease. We may achieve this, 
for example, by choosing a higher cut-off value 
to designate disease, if higher values of the vari­
able of interest are more indicative of disease.

An alternative approach to strengthening the 
evidence that an animal has the disease is to test 
each animal using two (or more) diagnostic tests 
and combine the findings in one of two ways.
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age-matched control group as the cut-off point 
for determining whether or not the cat suffered 
from RHPTH (a cat was thus defined as having 
RHPTH if its PTH >25.5 pg/ml). Similarly, they 
used the upper limit of the reference range of 
phosphate (i.e. phosphate >1.86 mmol/l) as the 
cut-off for the diagnostic test. Table 14.2 shows 
the results they obtained in 76 cats with CRF. (It 
could be argued that the use of the upper limit 
of the reference range of PTH is not the true 
gold standard for the diagnosis of RHPTH in 
these cats. If so, the estimated values of the sen­
sitivity and specificity displayed in Table 14.2 
might have been affected by verification bias. 
Had the sensitivity and specificity of the test 
based on a PTH >  25.5 pg/ml been available, it 
would have been preferable to use the formulae 
in Section 14.2.6 to estimate the sensitivity and 
specificity of the diagnostic test based on a phos­
phate value of greater than 1.86 mmol/l.)

If the sensitivity and specificity are expressed 
as percentages, the ROC curve created by plot­
ting the sensitivity against 100 minus the spe­
cificity for each of a number of different cut-off 
points of the raw phosphate values to identify 
cats with RHPTH is shown in Figure 14.1. The 
area under the curve (AUROC) = 0.86 (95% CI 
0.77 to 0.95) which suggests that phosphate is 
reasonably good at identifying cats with RHPTH. 

the test and thereby reducing c in Table 14.1. We 
might achieve this, for example, by choosing a 
lower cut-off point to designate disease, if higher 
values of the variable of interest are more indica­
tive of disease.

14.2.11  Example

Barber and Elliott (1998) investigated the aetio­
pathogenesis of renal secondary hyperparathy­
roidism (RHPTH) in cats with chronic renal 
failure (CRF). We used this example in Section 
12.6.2 to illustrate the Kruskal–Wallis test, which 
compared the distributions of plasma parathy­
roid hormone (PTH) concentrations in the cats 
in three stages of CRF. We showed that, on 
average, the PTH concentrations were signifi­
cantly higher in those groups of cats with a 
greater degree of renal dysfunction.

Assay of PTH is, at the moment, expensive and 
not widely available. Barber and Elliott there­
fore investigated the use of more routine bio­
chemical measurements to act as markers for the 
presence of RHPTH. In particular, they found 
that use of plasma phosphate concentrations was 
the most efficient diagnostic test for RHPTH in 
feline CRF. As the ‘gold standard’, they used the 
upper limit of the reference range of PTH in an 

Table 14.2  Results (observed frequencies) of the diagnostic test for renal secondary hyperparathyroidism (RHPTH) in cats 
with chronic renal failure (data from Barber and Elliott, 1998, with permission from Wiley-Blackwell).

Diagnostic test

‘True diagnosis’

Total
RHPTH

(PTH >25.5 pg/ml)
No RHPTH

(PTH ≤25.5 pg/ml)

RHPTH (phosphate >1.86 mmol/l) 43 1 44
No RHPTH (phosphate ≤1.86 mmol/l) 20 12 32
Total 63 13 76

Sensitivity = =43 63 0 68.  (95% CI 0.57 to 0.80) or 68%.
Speci cityfi = =12 13 0 92.  (95% CI approximately* 0.78 to 1.00) or 92%.
PPV = =43 44 0 98.  (95% CI approximately* 0.93 to 1.00) or 98%.
NPV = =12 32 0 38.  (95% CI 0.21 to 0.54) or 38%.
Observed prevalence = =63 76 0 83.  (95% CI 0.74 to 0.91) or 83%.
* Note that these confidence intervals are only approximate because the Normal approximation to the Binomial distribution 
does not hold well with such small numbers. A better estimate can be made following a method given by Wilson (1927).
NPV, negative predictive value; PPV, positive predictive value; PTH, parathyroid hormone.
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14.3  Bayesian analysis

14.3.1  The process

The Bayesian approach to statistical inference 
involves the use of external evidence (e.g. subjec­
tive judgement based on signs and symptoms, 
prevalence of the condition, trials of similar 
interventions, pilot studies) to supplement the 
information obtained from the sample (i.e. the 
data derived from the current study) to draw a 
conclusion about the hypothesis of interest, the 
latter often being framed in terms of one or more 
population parameters.

The Bayesian approach is based on a theo­
rem devised in 1763 by Thomas Bayes, a non- 
conformist minister from Tunbridge Wells.  
Before we conduct a study such as a clinical trial 
comparing the effects of two treatments, we may 
be able to quantify our belief in probabilistic 
terms in the hypothesis of interest (e.g. the null 
hypothesis, H0, that the two treatment means are 
equal). This is called the prior probability and we 
shall denote it by Pr(H0). The evidence we obtain 
from the results of the current study is expressed 
as a likelihood which describes how likely it is 
that we would obtain the observed results if  
the hypothesis were true (see Section 11.4.3). 
The likelihood is a conditional probability (see 
Section 3.2.4) and may be written as Pr(data∣H0). 
In a dynamic process, Bayes’ theorem uses the 
likelihood, which quantifies the new information, 
to update the prior probability into a posterior 
probability, the belief that we now have about 
the hypothesis after conducting the study, i.e. it is 
the conditional probability Pr(H0∣data).

More specifically, Bayes’ theorem states that 
the posterior probability is proportional to the 
product of the prior probability and the likeli­
hood, that is

Pr H Pr H Pr H( ) ( ) ( )0 0 0|data data|∝ ×

In fact,
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( ) ( )
( )

0
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=
×

where the denominator is a normalizing factor 
that makes the total probability equal to one 
when all possible hypotheses are considered.

The circle on the ROC curve, which lies towards 
the top left-hand corner of the graph, suggests an 
optimal cut-off of phosphate. It is of interest to 
note that this cut-off corresponds to the cut-off 
chosen by the investigators as the upper limit of 
the reference range of phosphate, i.e. phosphate 
1.86 mmol/l. It gives a sensitivity of 68% and a 
specificity of 92%.

Although the diagnostic test based on plasma 
phosphate >1.86 mmol/l is well able to identify 
those CRF cats without RHPTH (specifi­
city = 92%, 95% CI 77.8% to 100%), its ability 
to detect RHPTH in CRF cats who have this 
complication is low (sensitivity =  68%, 95% CI 
56.8% to 79.7%). However, the PPV value of the 
test is very high (98%, 95% CI 93.3% to 100%), 
indicating that if a CRF cat has a positive test 
result, it almost certainly does have RHPTH. 
Note that the prevalence of RHPTH is high 
(83%, 95% CI 74.4% to 91.4%) in this group of 
CRF cats, so we would expect the PPV to be high 
as well.

In addition, the likelihood ratio of a positive 
test result is equal to (sensitivity)/(100 − specifi­
city) = (68)/(100 − 92) = 8.5. This means that a cat 
is 8.5 times more likely to test positive if it is 
diseased than if it is disease-free, and is an indica­
tion that the test is helpful in diagnosing cats with 
RHPTH if the test result is positive. Further­
more, if we use the prevalence of 83% as the 
pre-test probability, and connect this value on 
Fagan’s nomogram to a likelihood of 8.5, we 
obtain a post-test probability of about 97% when 
we extend the line to the right-hand axis. As 
expected, this corresponds well to the PPV of 
98%.

Although this diagnostic test has poor sensitiv­
ity, plasma phosphate concentrations proved to 
have superior efficiency compared with other 
variables that were investigated. It could cer­
tainly be used as a filter for instituting dietary 
phosphate restriction in CRF cats. Monthly mon­
itoring of phosphate would then be used to 
establish whether phosphate concentration can 
be stabilized within or above the normal range. 
The cats in the latter group, those with persist­
ently high phosphate concentrations, are likely to 
have RHPTH which could then be confirmed by 
analysis of hormone levels.
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There is considerable scepticism (especially 
amongst non-Bayesians) on the subjectivity 
associated with the choice of prior and its conse­
quence on the interpretation of the findings. One 
solution is to use an uninformative prior which 
is regarded as less subjective than a prior based 
on clinical judgment. Alternatively, a sensitivity 
analysis may be performed to assess how robust 
the conclusions are to changes in the prior distri­
bution. Using this approach, the interpretation of 
the results from the posteriors derived from a 
number of different priors obtained from varying 
sources are compared. If the conclusions are con­
sistent (e.g. the novel treatment is always found 
to be significantly superior to the existing treat­
ment), then the choice of prior is not influential 
and should not be regarded as problematic.

A more difficult situation arises when there is 
limited information extraneous to the sample 
data so that it is hard or impossible to specify an 
appropriate prior. In these circumstances it may 
be possible to perform an empirical Bayesian 
analysis, with observed data being used to esti­
mate the prior, instead of a full Bayesian analysis. 
Further details may be obtained from Louis 
(1991).

14.3.3  Comparing the Bayesian 
and frequentist philosophies

The approach to statistical hypothesis testing we 
have presented elsewhere in this book is based 
on the classical or frequentist theory originally 
espoused in the late 1920s and early 1930s by  
two statisticians called Jerzy Neyman and Egon 
Pearson.

•	 In contrast to the Bayesian philosophy, the 
only relevant information used for statistical 
inference in the frequentist approach is that 
obtained from the evidence provided by the 
sample data from the current investigation, i.e. 
the frequentist approach uses only the sample 
data to make inferences about the true but 
unknown value of the parameter of interest 
(e.g. the difference in means). This contrasts 
with the Bayesian approach which uses the 

14.3.2  Choice of prior

Clearly, the choice of prior probability plays a 
crucial role in a Bayesian analysis. There are dif­
ferent types of prior that encompass the spec­
trum of information they contain:

•	 An uninformative prior does not influence the 
posterior probability as it provides no relevant 
information. For example, this would occur if 
all possible values for the parameter under test 
(e.g. the difference in two means) are believed 
to be equally likely before the sample data are 
collected. Sometimes an uninformative prior  
is virtually indistinguishable from a vague or 
diffuse prior when the sample data swamp the 
prior information so that the posterior and 
likelihood are virtually equal.

•	 At the other extreme is an informative prior 
that provides such strong information (for 
example, if it suggests that there is only one 
possible value for the parameter under test) 
that the likelihood does not influence the pos­
terior and the posterior is identical to the 
prior. More usually, the informative prior will 
be substantial, providing considerable empiri­
cal or theoretical relevant information about 
the unknown parameter with the consequence 
that the posterior departs substantially from 
the likelihood.

In addition, there are different ways in which 
the prior can be chosen:

•	 A reference prior represents minimal prior 
information and is usually used as a base­
line against which the other priors can be 
compared.

•	 A clinical prior expresses the opinions of well-
informed specialists or is derived from reputa­
ble published material.

•	 A sceptical prior is pessimistic in nature, 
reflecting the worst possible outcome (e.g. that 
the difference between two means is zero, indi­
cating that there is no treatment effect).

•	 An enthusiastic prior, in contrast, is optimis­
tic in nature, reflecting the best plausible 
outcome.
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14.3.4  Applications

Bayesian analysis has substantially increased in 
popularity since the advent of powerful comput­
ers and specialist software, as the process of esti­
mating the posterior distributions usually relies 
on simulation methods that are extremely com­
puter intensive. Free software, WinBUGS (hosted 
by the MRC Biostatistics Unit, Cambridge, UK) 
is described by Lunn et al. (2000) and is available 
at www.mrc-bsu.cam.ac.uk/bugs/ (accessed 23 
October 2012). We may apply the Bayesian 
approach to many areas of veterinary and animal 
science, such as diagnosis, prognosis, clinical 
trials, survival analysis, meta-analysis and diag­
nostic and screening tests.

The example in Section 14.2.11 illustrates a 
Bayesian approach to diagnostic testing. A rela­
tively simple diagnostic test for assessing whether 
a cat suffering from renal failure had renal sec­
ondary hyperparathyroidism (RHPTH) was to 
determine whether its plasma phosphate concen­
tration was greater than 1.86 mmol/l. The sensi­
tivity and specificity of the test were found to be 
68% and 92%, respectively. Here the prevalence 
of RHPTH (83%) in cats with chronic renal 
failure was taken as the prior probability of 
having RHPTH (this was called the pre-test 
probability). The likelihood of a positive test 
result describes how likely it is that a cat tests 
positive if it has RHPTH compared with when it 
does not have RHPTH. This likelihood can be 
calculated as the sensitivity of the diagnostic test 
divided by (100 −  specificity) and was equal to 
8.5. Instead of laboriously working through the 
formula for Bayes’ theorem (as shown at the end 
of this subsection), Fagan’s nomogram was used 
to determine the posterior or post-test probabil­
ity of a cat having RHPTH. By connecting the 
pre-test probability of 83% to the likelihood of 
8.5, and extending the line, we found that the 
post-test or posterior probability of RHPTH was 
about 97%. That is, the initial belief that a cat 
which tested positive for RHPTH actually had 
RHPTH was updated by the test result from 
83% to about 97%.

As a point of possible interest, we show how 
to evaluate the posterior probability of a cat 
having RHPTH from first principles. We can 

sample data to update the prior information to 
make inferences about the parameter.

•	 Furthermore, whereas the Bayesian interpreta­
tion of a probability is subjective, reflecting a 
personal degree of belief in an outcome, the 
frequentist probability (see Section 3.2.2) asso­
ciated with the classical approach to inference 
is (or should be!) interpreted as the percentage 
or proportion of times that the event of interest 
would occur if the experiment were repeated 
many times, independently and under essen­
tially the same circumstances. Thus, strictly, the 
95% confidence interval for a mean is the inter­
val that would contain the population mean  
on 95% of occasions if the experiment were to 
be repeated many times. The 95% confidence 
interval for the true value of a parameter used 
in the frequentist approach is replaced by the 
95% credible interval in the Bayesian approach: 
this interval has a 95% chance of containing the 
true parameter (i.e. this is the interpretation 
commonly, but falsely, attributed to the fre­
quentist 95% confidence interval).

•	 Bayesian theory assumes that the parameter 
of interest (e.g. that defining the hypothesis 
under test) is a random variable with a prob­
ability distribution, so that it is possible to 
evaluate the probability that the parameter  
has a particular value. Initially, this probabi­
lity is the prior probability, but, using the 
sample data, it is modified to become the pos­
terior probability. Consequently, the Bayesian 
approach allows us to calculate the probability 
that a particular hypothesis is true, as opposed 
to the frequentist approach in which we regard 
the parameter as having a fixed value (i.e. that 
defined in the null hypothesis), and which 
evaluates the less useful P-value, the probabil­
ity of obtaining the observed (or more extreme) 
sample results if the null hypothesis is true.

•	 The results of a Bayesian and a frequentist 
analysis are very similar if the prior is unin­
formative because the influence of the prior is 
minimal or non-existent compared with that of 
the data. However, if the prior is informative, 
the two approaches can give very different 
results and it is this discrepancy that fuels the 
controversy between the proponents of the 
two methodologies.

http://www.mrc-bsu.cam.ac.uk/bugs/
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•	 Repeatability evaluates the extent to which a 
given observer obtains the same results when 
s/he takes successive measurements on an item 
(e.g. animal) in identical circumstances (i.e. 
using the same measuring instrument and pro­
cedure under the same conditions in the same 
location within a short period of time).

•	 A related problem is when we wish to investi­
gate reproducibility, sometimes called method 
agreement. Do two ‘methods’ of measurement 
(using the same scale) agree with one another? 
These ‘methods’ may be, for example, different 
observers using the same technique or a single 
observer using different techniques.

Repeatability and reproducibility are both 
aspects of the reliability of measurements. For 
simplicity, in Sections 14.4.2 and 14.4.3, we 
assume that we have pairs of measurements and 
we wish to assess the agreement between the 
members of a pair. To this end, we need to con­
sider both the systematic and random effects that 
can arise. A systematic effect implies that there is 
a tendency for the differences in the paired 
results to go in one direction (e.g. to be positive 
if the variable of interest is numerical). A random 
effect implies that sometimes the differences go 
in one direction and sometimes they go in the 
opposite direction, but they tend to balance out 
on average. By using all the available evidence 
from our analysis, including possible measures 
and/or indices to quantify the magnitude of the 
agreement, we can decide whether the agree­
ment is acceptable in the context of the study. We 
explain the approach comparing two methods to 
assess reproducibility for numerical (see Section 
14.4.2) and categorical (see Section 14.4.3) data. 
The approach is essentially similar if we wish to 
compare two successive measurements in a set 
of such pairs to assess repeatability. Remember, 
however, that it is necessary to establish that a 
method is repeatable before comparing two 
methods for reproducibility.

For further reading on the methods of assess­
ing agreement, we suggest a review by Watson 
and Petrie (2010) and the book by Lin et al. (2012) 
which blends the theory with applications and 
provides many examples. In addition, Bland and 
Altman (2007) describe methods of agreement 

express Bayes’ theorem in terms of odds (see 
Section 5.2.3(b)) in the following way:

Posterior odds of RHPTH prior odds LR= × +

where, if the probability takes a value from 0 to 1:

Prior odds = prior probability/(1 – prior probability)
LR+ = likelihood ratio of a positive test result

We then convert the posterior odds into the pos­
terior probability using the following formula

Posterior probability

posterior odds/ posterior odds= +( )1

Hence in the cat example:

Prior odds / /= − = =0 83 1 0 83 0 83 0 17 4 88. ( . ) . . .

Posterior odds LR= × = × =+4 88 4 88 8 5 41 48. . . .

and

Posterior probability /= =41 48 42 48 0 976. . . .

This result is virtually identical to that obtained 
from Fagan’s nomogram (and differs only 
because of rounding errors and the inaccuracies 
relating to lack of precision of the nomogram).

You can obtain further details about Bayesian 
analysis from texts such as Bernardo and Smith 
(2000), Gelman et al. (2013) or Spiegelhalter 
et al. (2004) or from the paper by Bland and 
Altman (1998).

14.4  Measuring agreement

14.4.1  Introduction

Often we find ourselves wanting to question the 
reliability of our observations. To do this we need 
to measure the degree of closeness of results 
between observers or different methods or 
repeated observations, and this presents us with 
questions of how this is best assessed statistically. 
Typically, we are interested in assessing the simi­
larity or agreement between two, three or more 
observations obtained on a numerical or categor­
ical variable.
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which most (typically, 95%) of the differences 
are expected to lie. These are called the limits of 
agreement. Provided the differences approxi­
mately follow a Normal distribution, we estimate 
the limits to be d sdiff± 2 , where d is the sample 
mean of the differences, and sdiff is the estimated 
standard deviation of the differences. Based on 
clinical judgement of the particular problem at 
hand, we can decide whether the limits of agree­
ment are acceptable and, therefore, whether we 
are prepared to conclude that the methods have 
good agreement.

Clearly, we require these limits of agreement 
to be the same for all the measurements in a 
given data set, whatever the magnitude of the 
measurement. This implies that the variability of 
the differences should be similar for large and 
small values of the measurement. In order to 
check whether this is so, and that there is no 
systematic effect, we use the Bland and Altman 
approach and plot the difference between the 
two measurements in a pair against their mean 
(see Figure 14.3). If there is no evidence of a 
systematic effect, we should see the points scat­
tered evenly above and below the line corre­
sponding to a zero difference. If the variability of 
the differences is constant, there should be no 
funnel or cone effect as the mean of the two 
measurements increases. If the variability of the 
differences is not constant, we should take a 
transformation of the data (see Section 13.2) and 
repeat the process. Note that it is easier to spot 
outliers (see Section 5.9.3) in this plot than in the 
plot of one measurement in a pair against the 
other. If we find an outlier, we should check it to 
determine if there is any obvious reason for its 
presence.

We can utilize the standard deviation of the 
differences, sdiff, as a measure of agreement. This 
may be useful if we wish to compare the repeat­
abilities of different methods when the scale  
of measurement is the same for all the methods: 
the smaller the measure of agreement, the  
greater is the repeatability. Commonly, we mul­
tiply the standard deviation of the differences by 
2 (an approximation to 1.96) to obtain the British 
Standards Institution reproducibility or repeat-
ability coefficient (British Standards Institution, 
1975) which gives an indication of the maximum 

for analysing clustered numerical data, i.e. when 
there are multiple observations per individual.

14.4.2  Repeatability and 
reproducibility of numerical 
measurements

In this section, we assume that we are assessing 
reproducibility by comparing two methods of 
measuring a numerical variable. Bland and 
Altman (1986) give a detailed discussion of the 
problem; they explain how the approach can be 
modified when more than two measurements are 
to be compared, e.g. when three or more methods 
are to be compared or when each observer takes 
more than two repeated measurements on the 
same item.

(a)  Correct analysis of repeatability  
and reproducibility

(i)  Checking for a systematic effect
We calculate the difference between each pair of 
measurements. If the mean of these differences 
(d) is not significantly different from zero (this 
can be investigated by the paired t-test – see 
Section 7.5), then there is evidence that the 
methods agree on average. All we can say in this 
situation is that the differences are evenly scat­
tered above and below zero. The differences 
could be large (indicating that there is substan­
tial disagreement between the two methods) or 
they could be small (indicating good method 
agreement). A non-significant result, therefore, 
does not imply good method agreement. It 
implies only that there is no systematic differ­
ence between the observations in a pair (if one 
method is assumed to be the gold standard pro­
viding the ‘true’ measurement, the absence of a 
systematic effect implies that there is no bias – 
see Section 4.4.3).

(ii)  Bland and Altman approach and 
measures of agreement
In order to assess how well the measurements  
in a pair agree, we determine the limits within 
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the total variability in the observations that is 
due to the differences between (as opposed to 
within) the pairs.

If there is no evidence of a systematic differ­
ence between the observations in a pair, the  
estimated ICC is most easily computed in the 
following way. Suppose we have n pairs of meas­
urements on a single variable which are to be 
compared. Let us call the first and second 
members of the ith pair, xi and Xi, respectively, 
where i = 1, 2, . . . , n. We create a set of 2n pairs 
by adding to the original set of n pairs another 
set of n pairs. This second set is obtained by 
switching the members of a pair in the first set, 
so what was xi becomes Xi and vice versa for i = 1, 
2, .  .  . , n. The coefficient of reliability is then 
estimated by the Pearson correlation coefficient 
between the 2n pairs of measurements. This 
approach is illustrated in the example in Section 
14.4.2(b) which examines the reproducibility of 
two different laboratory methods (a spectropho­
tometer and a haemocytometer) for evaluating 
sperm counts of sheep.

If a systematic difference between the meas­
urements in a pair is to be taken into account, 
the difference between and the sum of the obser­
vations in each of the n pairs is determined, and 
then the ICC is estimated as

s s s s
nd s

n
sum diff sum diff

diff2 2 2 2
2 22

− + +
−( )

where,

s2
sum is the estimated variance of the n sums;

s2
diff is the estimated variance of the n differences; 
and d is the sample mean of the differences.

Another index that we can use to assess agree­
ment is Lin’s concordance correlation coefficient 
(Lin, 1989, 2000) which is very similar to the ICC. 
If we were to plot one measurement in a pair 
against the other, we might be tempted to calcu­
late the Pearson correlation coefficient to assess 
the agreement between the pairs of observations. 
The problem with this approach, however, is  
that it only gives an indication of precision (i.e. 
the random variation describing the tightness  
of the points about the best-fitting straight line)  
but it ignores accuracy (i.e. the systematic effect 

difference likely to occur between two measure­
ments in a pair. We expect approximately  
95% of the absolute differences (i.e. ignoring 
their sign) to be less than this repeatability/
reproducibility coefficient. Expressed another 
way, the coefficient is the value below which the 
difference between paired results may be 
expected to lie with 95% certainty. You may find 
that, instead of the standard deviation of the dif­
ferences, sdiff, being used in the reproducibility/
repeatability coefficient, the quantity ∑d n2 /  is 
employed instead. This is derived from

s d d ndiff = −( ){ } −( )∑ 2
1

when d = 0 and (n − 1) is replaced by n. Note that 
if there is no systematic effect, we would expect 
the mean of the differences to be zero, and if the 
sample size is reasonably large, n − 1 is virtually 
the same as n.

Just to confuse the issue, Dahlberg’s formula 
(Dahlberg, 1926), sdiff

2 2, is sometimes called 
the standard error of measurement. It is used in 
studies of repeatability to provide an estimate of 
the standard deviation of the individual measure-
ments, sw, rather than that of the differences. If 
there are many, rather than just two, repeated 
measurements on a given individual, the stand­
ard error of measurement is equal to the square 
root of the residual or within-group variance in 
the one-way analysis of variance (see Section 
8.6) in which, here, the different individuals rep­
resent the groups. It may be of interest to note 
that the British Standards Institution repeatabil­
ity coefficient can also be calculated as 2.83 times 
the standard error of measurement (i.e. the coef­
ficient is 2 2 2 832s s sdiff w w= =2 2 . ).

(iii)  Indices of agreement
An index of repeatability or reproducibility that 
is sometimes used is called the coefficient of reli-
ability. It takes a value ranging from zero (when 
there is no agreement between the observations 
in a pair) to one (when there is perfect agree­
ment). Often the coefficient is multiplied by 100 
and expressed as a percentage. It is numerically 
equal to a form of the intraclass correlation coef-
ficient (ICC) and represents the proportion of 
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for values of Lin’s concordance correlation  
coefficient when the variable of interest is 
continuous:

•	 ‘Poor’ if rc < 0.90.
•	 ‘Moderate’ if 0.90 ≤ rc ≤ 0.95.
•	 ‘Substantial’ if 0.95 < rc ≤ 0.99.
•	 ‘Almost perfect’ if rc > 0.99.

(b)  Example of measuring agreement 
for a numerical variable

We have two ways of evaluating sperm counts 
in the laboratory: we can count them directly 
using a haemocytometer (a time-consuming pro­
cedure but regarded as the gold standard) or we 
can count them indirectly using the calibration 
curve of optical density using a spectrophotom­
eter. From time to time, however, we have to 
check that the instrument is giving the correct 
count. Table 14.3 shows the pairs of counts of 
sperm concentration in 22 samples of ram ejacu­
lates using the two methods. When we calculate 
the difference in counts between each member 
of a pair and produce a dot plot of them, we find 
that these differences are approximately Nor­
mally distributed. A paired t-test produces a test 
statistic of 0.42 (df =  21) which gives P =  0.68, 
indicating that there is no evidence of a system­
atic difference between the two methods of 
measurement. Figure 14.3 is a Bland and Altman 
diagram showing the difference in the paired 
counts plotted against their mean. From Figure 
14.3 we can see that the points are evenly scat­
tered above and below the line corresponding 

describing the closeness of the points to the line 
of perfect agreement, the 45° line through the 
origin). Lin’s concordance correlation coefficient 
is a comprehensive index that can be used to 
assess agreement because both accuracy and pre­
cision are incorporated into it.

If we have n pairs of measurements, xi and Xi 
(i = 1, 2, 3, .  .  . , n), Lin’s coefficient can be esti­
mated as

r
rs s s

s s x X
c

x X x

x X

=
+ + −( )

2
2 2 2

where

r is the estimated Pearson correlation coefficient 
between the n pairs of results; and

x and X  are the sample means of x and X, 
respectively.

s
x x
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As with the ICC, perfect agreement is achieved 
when Lin’s concordance correlation coefficient 
equals one, and there is no agreement when it 
is zero. McBride (2005) proposed the following 
categories to assess the strength of agreement 

Table 14.3  Sperm counts 
(×109/ml) of 22 sheep 
ejaculates using two 
methods of counting.

Spectrophotometer Haemocytometer Spectrophotometer Haemocytometer

0.82 1.01 1.73 1.52
2.34 2.46 3.11 3.37
2.34 2.20 3.76 3.60
4.13 4.29 1.12 1.09
4.03 3.82 3.28 3.41
4.70 4.59 3.25 3.16
4.78 4.66 1.28 1.41
5.00 4.75 3.82 3.77
5.04 4.97 3.48 3.49
5.17 5.24 1.43 1.23
5.27 5.35 3.14 3.33
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Figure 14.3  Difference between the 
counts of sperm concentration using a 
spectrophotometer and a haemocytom­
eter (S − H) plotted against their mean 
(S + H)/2 in an investigation of method 
agreement.

to no difference. Furthermore, the scatter of the 
points is random with no funnel effect, indicating 
that the size of the discrepancy between the two 
methods of counting is not related to the  
magnitude of the count. Thus it is reasonable  
to calculate the limits of agreement for the  
two methods. These are approximately equal to 
d sdiff± 2 , where the mean of the differences, 
d = 0 0136 109. ( )/ml , and the standard deviation 
of the differences, sdiff =  0.1543 (109/ml). Hence 
the limits are approximately equal to 0.0136  ± 
0.3104 =  (−0.295, 0.322) 109/ml. These limits are 
shown as dashed lines in Figure 14.3: we expect 
95% of differences to lie within these limits. 
Expressed another way, we expect 95% of the 
absolute differences to be less than the repro­
ducibility coefficient, 2sdiff = 0.31 (i.e. 0.3086 cor­
rected to two decimal places) 109/ml. For these 
methods, this is satisfactory agreement; we con­
clude that we can use the spectrophotometer 
with reasonable confidence.

In addition, since there is no evidence of a 
systematic effect, we can estimate the ICC by 
creating a sample of 44 pairs of observations by 
adding to the original sample of 22 pairs, a set of 
22 pairs of observations in which the values in 
each pair from the original sample are inter­
changed. For example, for the first three pairs of 
readings in the original set, we have the values 
(0.82, 1.01), (2.34, 2.46) and (2.34, 2.20) 109/ml so 

that, in the second set, these readings become 
(1.01, 0.82), (2.46, 2.34) and (2.20, 2.34) 109/ml. 
We find that the estimated Pearson correlation 
coefficient calculated using all 44 pairs of obser­
vations created in this way (i.e. the coefficient of 
reliability) is 0.994, i.e. from this intraclass cor­
relation coefficient we believe that 99.4% of the 
variability in the observations is due to the dif­
ferences between the pairs and only 0.6% is due 
to the differences within a pair. This suggests 
extremely high reliability.

Another approach is to estimate Lin’s  
concordance correlation coefficient using the 
formula provided in Section 14.4.2(a). The  
estimated correlation coefficient between the 22 
pairs of counts is 0.994. The sample means  
of the sperm counts from the spectrophotom­
eter and the haemocytometer are 3 3191 SD /ml. .=( )2 001 109 

3 3191 SD /ml. .=( )2 001 109 and 3 3 55 SD /ml. .0 1 956 109=( ) , 
respectively. Thus, using the suffix ‘s’ for spectro­
photometer and ‘h’ for haemocytometer and 
noting that 21/22  =  0.9545, we find that ss

2  = 
0.9545 × 2.001 = 1.910 (109/ml)2 and sh

2 = 0.9545 × 
1.956 =  1.867 (109/ml)2 so that ss =  1.382 109/ml 
and sh = 1.366 109/ml. Hence the estimated value 
of Lin’s concordance correlation coefficient is 
0.994. This is identical to the ICC and, according 
to the categorization of the values specified in 
Section 14.4.2(a), it represents almost perfect 
agreement between the two methods.
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(a)  Checking for a systematic effect

For simplicity, we assume that there is a binary 
response of interest (e.g. present or absent) and 
that each of the two observers assesses these 
responses on the same n units (e.g. animals). 
To determine if there is a systematic difference 
between the results obtained from the observers, 
we can use McNemar’s test (see Section 9.6), a 
modification of the ordinary Chi-squared test 
that takes the paired nature of the responses into 
account. A statistically significant result indicates 
that there is evidence of a systematic effect with 
the proportion of ‘present’ responses, say, being 
significantly greater in one observer than in the 
other. Note that when there are more than two 
categories of response, we can use an extension 
of McNemar’s test such as Cochran’s Q test or 
the McNemar–Bowker test of symmetry to assess 
whether there is a systematic effect. Tests such as 
these are available in many computer software 
packages but they are rather cumbersome to 
perform by hand (details of Cochran’s test may 
be found in Siegel and Castellan (1988) and 
details of the McNemar–Bowker test may be 
found in Krampe and Kuhnt (2007)).

(b)  Cohen’s kappa coefficient

The most usual measure of agreement is Cohen’s 
kappa coefficient, written κ. It assesses overall 
observer agreement by relating the actual agree­
ment obtained with that which would have been 
attained had the categorization been made at 
random, i.e. it compares the actual agreement 
with chance agreement, and may be interpreted 
as the chance corrected proportional agreement.

Unfortunately, there are a number of difficul­
ties associated with using kappa.

•	 There are no objective criteria for judging 
kappa. Its maximum value of one represents 
perfect agreement. A value of zero indicates 
that the agreement is the same as chance 
agreement. A negative value, which rarely 
occurs, indicates that the agreement between 
the observers is less than chance agreement. 
Landis and Koch (1977) provide a reasonable 

(c)  Erroneous analysis of repeatability 
and method agreement

Unfortunately, you will find that a common way 
of investigating repeatability and reproducibility 
for numerical data is by performing a paired t-
test (see Section 7.5) on the pairs of measure­
ments and by calculating the Pearson correlation 
coefficient (see Section 10.3.1) to provide a 
measure of the agreement. This is not the way to 
proceed for the reasons that we have explained 
in Section 14.4.2(a) and summarize in the follow­
ing bullet points.

•	 The paired t-test tests the null hypothesis that 
the mean of the differences is zero. If the dif­
ferences are large (indicating that there is poor 
agreement between the two methods) but 
evenly scattered around zero, we will obtain a 
non-significant result. We can conclude only 
that there is no evidence of a systematic differ-
ence (see Section 4.4.3), not that the methods 
have good agreement.

•	 The Pearson correlation coefficient gives an 
indication of how close the observations in the 
scatter diagram (plotting the measurements of 
one method against the other) are to a straight 
line. To assess agreement we also need to know 
how close the points are to the line of perfect 
agreement, i.e. the 45° line through the origin.

14.4.3  Kappa measure of 
agreement for a categorical 
variable

We may be interested in assessing repeatability 
or reproducibility when the variable of interest 
is categorical. For example, we may wish to assess 
the reproducibility of two observers after each 
observer has classified each of a number of 
animals into one of several categories, say when 
judging at dog and cat shows or at agricultural 
shows. As in Section 14.4.2, we limit our explana­
tion to assessing reproducibility when we have 
pairs of results (in this section, the responses are 
obtained from two observers): the statistical 
techniques can also be applied to the evaluation 
of repeatability.



	 Additional techniques	 217

total. The observed frequencies along the diago­
nal are added and their sum is divided by the 
total observed frequency to obtain a proportion 
(po) which represents the ‘observed agreement’. 
‘Chance agreement’ (pc) is the sum of the 
expected frequencies along the diagonal, divided 
by the total observed frequency. Then

κ =
−
−

Observed agreement Chance agreement
Maximum agreement Channce agreement

where maximum agreement  =  1. The approxi­
mate 95% confidence interval for kappa is given 
by [κ ± 1.96 × SE(k)] where, approximately,

SE κ( ) =
−( )

−( )
p p

n p
o o

c

1

1 2

(Note: the correct formula for SE(κ) is complex; 
details may be obtained from Fleiss et al., 2003.)

This unweighted kappa coefficient considers 
only perfect agreement of the observers, as dem­
onstrated by the frequencies along the diagonal 
of the contingency table. It has the disadvantage 
that it takes no account of the extent to which the 
observers disagree. This is relevant if the catego­
ries are ordered so that observers differing by 
one category show less disagreement than if  
they differ by two categories, etc. Then, the 
greater the discrepancy, the greater the distance 
of the cell from the diagonal in the contingency 
table. In these circumstances, we should calculate 

approach to interpreting kappa; very approxi­
mately, they regard the agreement as:
–	 ‘Poor’ if κ ≤ 0.20.
–	 ‘Fair’ if 0.21 ≤ κ ≤ 0.40.
–	 ‘Moderate’ if 0.41 ≤ κ ≤ 0.60.
–	 ‘Substantial’ if 0.61 ≤ κ ≤ 0.80.
–	 ‘Good’ if κ exceeds 0.80.

•	 The value of kappa depends on the proportion 
of individuals in each category. Thus different 
kappa values should not be compared in 
studies in which these proportions differ.

•	 Kappa depends on the number of categories 
that are used in its calculation, with its value 
being greater if there are fewer categories.

In order to calculate kappa, we arrange the 
data in a square two-way contingency table of 
frequencies (see Section 9.4.2 and Table 14.4). 
The rows represent the categories of response  
of one observer, and the columns represent  
the same categories of response of the second 
observer. Perfect agreement is obtained when 
both of the observers believe an animal belongs 
to the same category; the frequency with which 
this occurs is shown in the diagonal cells of the 
table. For each of the observed frequencies along 
this diagonal, we calculate the corresponding fre­
quency we would expect if there were chance 
agreement. The calculations are similar to those 
for the Chi-squared statistic (see Section 9.5.3), 
i.e. each expected frequency is the product of the 
relevant marginal totals divided by the overall 

Table 14.4  Table of observed 
frequencies of body condition scores 
accorded to 160 pigs by a pigman and 
a trainee (expected frequencies are in 
brackets).

Experienced pigman

Tr
ai

ne
e

Score 1 2 3 4 5 Total

1 4 (0.400) 3 1 0 0 8

2 4 7 (1.463) 5 2 0 18

3 0 2 15 (7.813) 7 1 25

4 0 1 16 36 (29.656) 12 65

5 0 0 13 28 3 (4.400) 44

Total 8 13 50 73 16 160
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So the approximate 95% confidence interval for 
kappa is given by 0.183 ± 1.96 × 0.0534, i.e. from 
0.078 to 0.288. (Note, using the correct formula, 
the estimated SE(κ) = 0.051 and the 95% confi­
dence interval is from 0.082 to 0.284.)

We can see that with a kappa of only 0.18 (or 
possibly as low as 0.078), the agreement between 
the assessors is poor, although the upper limit of 
the confidence interval suggests that it could be 
classified as fair. In fact, when the extent to which 
the scorers disagree is taken into account, the 
weighted kappa, using linear weights, is esti­
mated as 0.384, which may also be considered 
fair. However we classify the measure, though, it 
is clear that the trainee requires more experience 
and help!

14.5  Measurements at successive 
points in time

14.5.1  Time series	

A time series is a sequence of observations made 
at many successive time points. Generally these observations 
are recorded on groups of animals or other phenomena of 
interest at each of the time points. Typical examples in agri­
culture are the average number of eggs per hen in a poultry 
farm in successive months, or the national herd or flock popu­
lation in successive years. Sometimes, however, a time series 
is generated by recording observations on a single animal 
over many successive time points, e.g. the milk yield of a dairy 
cow throughout lactation. The order in which the observa­
tions are made is of particular relevance in a time series. 
Usually the successive observations are dependent, so that the 
expected value of an observation at one time point cannot 
be regarded in isolation because it is likely to be related to 
the magnitude of the observation at the previous time point. 
This is known as an autoregressive series.

The aim of a statistical analysis of a time series is to 
describe it by constructing the appropriate mathematical 
model that explains both the systematic and the random, or 
unsystematic, variation. The systematic variation may com­
prise a trend or long-term movement, oscillations about the 
trend and/or a seasonal effect. From this model we may gain 
some insight into the causal mechanisms that generated the 
time series, and may be able to predict future observations.

Although it may seem appropriate to analyse a time series 
by regressing the variable of interest against time (see Section 
10.4), this approach is rarely feasible. It is very unusual to find 
that a simple linear model is an adequate description of the 
time series. Furthermore, the fact that successive observa­
tions are dependent implies that these observations have 
deviations about any long-term trend which are associated. 

a weighted kappa coefficient; this is determined 
by assigning weights to the frequencies repre­
senting disagreements according to the magni­
tude of the disagreement. In fact, the weighted 
kappa is very similar to the intraclass correlation 
coefficient or, equivalently, the index of reliabil­
ity (see Section 14.4.2(a)).

You can obtain full details of the calculations 
of the weighted kappa, together with formulae 
for its standard error from which confidence 
intervals can be derived, in Cohen (1960) and 
Cohen (1968).

(c)  Example of the kappa measure  
of agreement

Scoring of body condition is routinely used in pig 
management. Generally, the score is on a subjec­
tive scale ranging from 1 to 5 (1 is very poor 
condition, 5 implies a pig with excellent fat and 
muscle). To be consistent, the scoring system 
must be learned. Table 14.4 gives body condition 
scores of 160 pigs by two independent scorers. 
The first scorer is an experienced pigman, and 
the second is a trainee.

The McNemar–Bowker test gives a Chi-
squared value of 23.0 with 7 degrees of freedom 
and P = 0.002, suggesting that there is a system­
atic difference in the scoring between the trainee 
and the experienced pigman: the trainee tends to 
give higher body condition scores than the expe­
rienced pigman.

Observed agreement = + + + +

=

4 7 15 36 3
160

0 406.

Chance agreement

=
+ + + +

=

0 400 1 463 7 813 29 656 4 400
160

0 273

. . . . .

.

Hence,
. .

.
.κ =

−
−

=
0 406 0 273

1 0 273
0 183

and, using the approximate formula,

SE κ( ) =
−

−
=

0 406 1 0 406
160 1 0 273

0 0534
2

. ( . )
( . )

.
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or generalized estimating equations (GEE) or 
by aggregating the data in a sensible manner 
(e.g. by calculating the mean value of the 
outcome variable for each animal so that its 
multiple responses are reduced to a single 
measurement which is then used as the value 
of the dependent variable in the regression). 
We discussed these regression methods in 
Section 11.6.

•	 Use a (non-regression) approach based on 
summary measures. The analysis is simpler to 
perform and the results easier to interpret  
than the alternative elaborate analyses, such as 
repeated measures ANOVA or multilevel mod­
elling, which often rely on relatively complex 
software. The summary measures approach 
therefore has much to recommend it (Everitt, 
1995).

The summary measures approach reduces the 
serial responses for each animal to a single sta­
tistic which describes some important aspect of 
that animal’s response curve. For example, the 
summary measure might be:

•	 The maximum (or minimum) value.
•	 The time to maximum (or minimum) response.
•	 The time to reach a particular value.
•	 The difference between the initial and the final 

responses.
•	 The slope of the line.
•	 The area under the curve.
•	 The overall mean.

The summary measure should have some clear 
clinical or biological relevance and it should  
be chosen before the data are collected. The 
summary measure for each animal is then used 
in the analysis as if it is the raw data.

So, for example, suppose we wish to compare 
serial measurements over time in two groups of 
animals, with each group receiving a different 
treatment. We may decide that we are interested 
in determining whether the average time to 
reach the peak response is the same using both 
treatments. We find the time to reach the peak 
response in each animal, and perform a signifi­
cance test (e.g. a two-sample t-test (see Section 
7.4) or a Wilcoxon rank sum test (see Section 

This so-called serial correlation violates the independence 
assumption underlying regression analysis. Therefore, special 
techniques have been devised to analyse time series. The 
details of this analysis are beyond the scope of this book, and 
we refer you to Chatfield (2003) or Diggle (1990) for further 
information.	 

14.5.2  Analysis of repeated 
measurements

(a)  Correct analysis

Suppose we are interested in analysing the results 
of a within-animal study in which measurements 
of a numerical variable are taken on each of a 
number of animals at more than one time. 
Another type of within-animal study occurs 
when data are collected at one time point but  
we obtain more than one observation on each 
animal, for example on different body parts such 
as the two forelegs of a cow, both ears of a rabbit 
or teeth in the mouth of a horse. Such within-
animal studies embody what is called clustered 
data, with the results within each cluster (e.g. 
animal) being correlated, a feature which must 
not be ignored in the analysis. For simplicity, we 
shall provide explanations in this section in terms 
of measurements taken serially in time, although 
our explanations can be applied equally to any 
form of clustered data. Typically, we may wish to 
compare such data in two or more groups of 
animals. Although we could regard the serial 
measurements on any one animal as a time series, 
we do not use time series analysis (see Section 
14.5.1) to evaluate the results because the series 
are generally too short, and because of the dif­
ficulty of combining the series from different 
animals.

There are a number of ways of analysing the 
data. We can choose from one of the following:

•	 Perform a repeated measures analysis of vari-
ance (see Section 8.5.3) using the appropriate 
computer software, provided the design is 
completely balanced.

•	 Perform a suitable regression analysis by using, 
for example, a random effects model (also 
called a multilevel, hierarchical, mixed, cluster-
specific or cross-sectional time series model) 
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The most usual approach to the graphical 
display of the data is to draw the average curve 
for each group, often with error bars for each 
mean. As we point out in Section 14.5.2(a), this 
is generally inappropriate because the average 
curve may have quite a different shape from that 
of the individual curves, and individual variation 
will be obscured. One possibility is to represent 
all the individual curves in the background (e.g. 
in pastel colours) together with the average 
curve in bold.

(c)  Example

In a study of the effect of thawing rate on the 
motility and survival of cryopreserved dog 
semen, the motility of the spermatozoa from 
individual dogs was recorded over a 4-hour 
period. The semen from six of the dogs (chosen 
randomly from the 12) was thawed at 39°C, and 
the remaining semen samples were thawed at 
70°C. The mean curves in Figure 14.4a show the 
general trend but obscure the very real differ­
ences between dogs, which are shown in Figure 
14.4b and c. To address the problem of repeated 
measures data, the times for spermatozoa to 
reach a motility of 75% and 25% of the original 
values were measured from the plotted curves 
for each dog, and these summary measures were 
used for the statistical analysis to investigate dif­
ferences in the two groups.

The times to reach a motility of 75% were 80.2, 
53.5, 75.7, 57.8, 56.2 and 55.8 minutes (median = 
57.0 min) for the sperm of the six dog semen 
straws thawed at 39°C, and 107.2, 63.0, 92.7, 97.0, 
76.3 and 80.5 minutes (median = 86.6 min) for the 
sperm of the six dog semen straws thawed at 
70°C. A Wilcoxon rank sum test (see Section 
12.5) comparing the two distributions from which 
these samples were selected gives P = 0.02, which 
is statistically significant, indicating that there is 
a tendency for the time to reach a motility of 
75% to be greater in the sperm thawed at 70°C 
than in the sperm thawed at 39°C.

Furthermore, the times to reach a motility of 
25% were 167.5, 124.3, 158.2, 170.2, 112.5 and 
140.3 minutes (median = 149.3 min) for the sperm 
of the six dogs thawed at 39°C, and 190.6, 160.0, 
182.0, 195.0, 148.5 and 186.0 minutes (median = 

12.5)) on the times to peak response in the two 
groups to determine whether there is a treatment 
effect.

The statistical analysis is incomplete without a 
graphical representation of the data. However, it 
is often difficult to know how to provide this in 
an informative way. Avoid the temptation to 
draw the average curve for a group (i.e. by joining 
the mean responses for a group at successive 
time points) as it may not describe a typical curve 
for an animal. You should start by producing a 
separate graph of the responses against time for 
each animal. Then, perhaps, you could arrange 
them in some order or in a panel or grid with 
separate panels for each group. If the sample size 
is large, you could classify the curves in a mean­
ingful way, and plot representative examples. Be 
sure that your examples are truly representative 
and not simply the best! It may also be helpful 
to plot the chosen summary measures, such as 
histograms for each measure or a scatter plot of 
any two summary measures (e.g. the maximum 
value for each animal against the time that the 
maximum occurred).

(b)  Incorrect analysis

Repeated measures data are frequently analysed 
inappropriately. The most usual approach when 
two groups are being compared is to apply sepa­
rate two-sample tests (e.g. the two-sample t-test 
or the Wilcoxon rank sum test) at each time 
point. The main criticism of this approach is that:

•	 No account is taken of the fact that measure­
ments at different time points are from the 
same animal, i.e. the within-animal changes are 
ignored.

•	 Successive observations on an animal are 
likely to be correlated, so that the results of 
significance tests at adjacent time points are 
not independent, which leads to difficulties in 
interpretation.

•	 A group may comprise a different set of 
animals at various time points if the missing 
observations do not come from the same 
animals at these time points.

•	 Spuriously significant results may arise because 
of multiple testing (see Section 13.4).
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are concerned with the time (the survival time) 
it takes for some critical event (the failure), such 
as death, to occur in an individual after a particu­
lar starting point, such as the initiation of treat­
ment. The most common situation is when the 
failure can occur at most once in any individual 
(although in Section 14.6.2(b) we briefly describe 
frailty models that allow for the situation where 
the failure can occur more than once in an  
individual). Examples of the ‘individual’ are an 
animal, a machine component in industrial reli­
ability or a tooth filling; examples of the ‘failure’ 
are death, remission or recurrence. For purposes 
of discussion, we shall assume that the individual 
is an animal in a clinical trial, that the animal is 
being treated for a particular condition, and that 
the failure is death as a result of the condition. 
We may be interested in:

184.0 min) for the sperm of the six dogs thawed 
at 70°C. A Wilcoxon rank sum test comparing the 
two distributions from which these samples were 
selected gives P = 0.04, which is statistically sig­
nificant, indicating that there is a tendency for 
the time to reach a motility of 25% to be greater 
in the sperm thawed at 70°C than in the sperm 
thawed at 39°C. Thus, it was concluded that rapid 
thawing at 70°C was preferable for recovering 
viable spermatozoa.

14.6  Survival analysis

14.6.1  Introduction

Another form of statistical analysis that focuses 
on time is known as survival analysis. Here we 

Figure 14.4  Repeated measures data showing the effect of thawing rate on the motility of dog semen. (a) Mean curves for 
thawing at 70°C and 39°C (mean ± SD at hourly intervals). (b) Individual curves for thawing at 70°C. (c) Individual curves for 
thawing at 39°C (data from England, 1992, with permission from the author).
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(a)  Common techniques

•	 When the survival times and censored times 
are grouped into intervals, we can analyse sur­
vival data using the Berkson–Gage approach 
which bases the calculations on the methods 
involved in actuarial life tables. We can esti­
mate the chance that an individual will survive 
a particular length of time from a relevant 
starting point (e.g. diagnosis of condition  
or surgical operation). The Berkson–Gage 
method suffers from a number of disadvan­
tages: (i) the choice of interval is arbitrary; (ii) 
it involves a loss of information if exact sur­
vival times are known; and (iii) it generally 
assumes that individuals lost to follow-up are 
censored at the midpoint of the interval and 
makes adjustments to the calculations to 
account for this.

•	 If the survival and censored times are known 
exactly, it is better to use the Kaplan–Meier 
approach to survival analysis. The calculations 
are similar to those of the life table, but the 
time ‘interval’ is chosen to correspond to the 
smallest unit used to record the time at which 
an event occurred (e.g. if survival time is 
recorded in days, each time interval is a day). 
However, unlike the Berkson–Gage approach, 
it assumes that losses to follow-up at a given 
time survive longer than deaths at that time, 
and so these censored data are included in the 
calculations without the need for adjustments. 
The Kaplan–Meier analysis provides estimates 
of the probabilities of surviving from the start­
ing point to particular time points, e.g. the 
probability of surviving 20 days. A Kaplan–
Meier survival curve is obtained (see Figure 
14.5) when we plot the survival probability 
against the time from the starting point. Con­
ventionally, the survival curve is drawn in steps 
(this is because the curve should be horizontal 
when there is no event (e.g. death)), and the 
median survival time, corresponding to a sur­
vival probability of 0.5, may be read from it. 
This median survival time provides a reason­
able summary of survival; the mean survival 
time should not be calculated when there are 
censored data and/or animals are followed for 
different lengths of time.

•	 Estimating the probability that an animal from 
a particular group survives for a given time 
period, say 6 months (the 6-month survival 
rate).

•	 Estimating the median survival time for a 
given group of animals.

•	 Comparing the survival experience in two groups 
of animals receiving different treatments.

•	 Assessing the impact of one or more factors 
on survival, whilst controlling for the effect of 
other factors.

The analysis of survival times warrants special 
techniques because of censored data; these arise 
when some of the animals never experience the 
failure during the course of the study. Either they 
are alive at the end of the study period, or they 
are lost to follow-up (such animals are called 
withdrawals) or they die during the study period 
from some cause unrelated to the condition of 
interest. It is important to note that it is assumed 
in the analysis that we have uninformative or 
non-informative censoring: this implies that the 
probability that an animal is censored is not 
related to the probability that the animal will 
experience the failure. If we have informative 
censoring (say, when animals are removed from 
the study because their condition is deteriorat­
ing or, conversely, because their condition has 
improved substantially) then any bias that is 
introduced because of it has to be adjusted for in 
the analysis. Furthermore, the animals may be 
observed for varying lengths of time because 
they have been recruited into the study at differ­
ent times and there is a single time point at which 
the study period ends, when administrative cen-
soring occurs.

The mathematical theory underlying survival 
analysis is relatively complex. We omit details of 
the calculations and refer you to, for example, 
Collet (2003), Kleinbaum and Klein (2005), 
Machin and Cheung (2006) or Smith (2002).

14.6.2  Approaches

There are various approaches to the analysis of 
survival data, some of which are illustrated in the 
example in Section 14.6.3.
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rate into the model an interaction between the 
covariate and loge(time) and ensure that it is 
not statistically significant. If there is concern 
about the proportional hazards assumption, a 
separate Cox regression analysis may be per­
formed for each of a number of successive 
time intervals within which the proportional 
hazards assumption is satisfied or, if appropri­
ate, for different strata of the population.

The proportional hazards regression model 
links the logarithm of the hazard at a particular 
time to a linear function of the k explanatory 
variables (i.e. of the form β1x1 + β2x2 + β3x3 + 
.  .  .  +  βkxk) and an arbitrary baseline hazard 
(the latter is the hazard when all the explana­
tory variables take their baseline values; it is 
of no inherent interest). It is a semiparametric 
model in that no distribution is assumed for 
the survival times although, as explained in the 
previous paragraph, it does make an assump­
tion about the hazard ratio. The coefficients, β1, 
β2, .  .  . , βk, are estimated using a form of 
maximum likelihood estimation (see Section 
11.4.3). The exponential of a particular coeffi­
cient (for example, exp(β1)) represents a rela­
tive hazard, the ratio of the two hazards when 
the value of x1 is increased by 1 unit, after 
adjusting for the other explanatory variables 
in the model. If this exponential is equal to 
one, there is no increased or decreased risk of 
reaching the endpoint (typically, death) when 
the explanatory variable increases by 1 unit. 
Comprehensive computer output of a Cox 
regression analysis will contain estimates of 
the coefficients, the associated confidence 
intervals and Wald or likelihood ratio signifi­
cance tests, with P-values (each resulting from 
the test of the null hypothesis that the relevant 
coefficient is equal to zero or, equivalently, 
that its exponential is equal to one). We show 
some typical computer output in Display 14.1 
relating to the example in Section 14.6.3.

The Cox model assumes that the covariates 
are measured at a single time point for each 
individual at the beginning of the study. A 
time-dependent covariate is a variable that 
changes over time during the course of the 
study, and such covariates may also be included 
in a Cox analysis. However, caution should be 

We often compare survival curves in two (or 
more) groups by using the non-parametric 
logrank test which utilizes all the information 
in each curve but does not make assumptions 
about the shape of the curve. It tests the null 
hypothesis that the survival experience is the 
same in the two groups. The test statistic, fol­
lowing a Chi-squared distribution, compares 
the observed number of deaths at each time  
at which there is a death with the numbers 
expected if the null hypothesis were true. 
Using the logrank test is preferable to the 
much more restricted comparison of survival 
rates at a specific time (say, 6 months).

•	 If we wish to investigate the effect on survival 
of several variables at the same time, as a way 
of assessing which factors affect survival and, 
perhaps, estimating the probability of survival 
to a particular time in different circumstances, 
we can use the Cox proportional hazards 
regression model. This is more appropriate 
than performing a multiple logistic regression 
analysis (see Section 11.4) because the Cox 
regression analysis, unlike logistic regression 
analysis, makes allowances for censored data 
and the fact that animals are generally fol­
lowed for different lengths of time, as well as 
utilizing the time that an animal spends in the 
study even if it does not experience the failure.

The dependent variable in a Cox regression 
analysis is called the hazard, the probability of 
dying/failing at a particular time, conditional 
on the animal surviving up to that time. It can 
be thought of as an instantaneous death rate. 
There is no requirement in a Cox regression 
analysis for the death rate to be constant over 
the time period of interest, as in a Poisson 
regression (see Section 11.5), but there is an 
assumption of proportional hazards. This 
means that the ratio of the hazards in two 
groups that are to be compared (e.g. the ratio 
of the hazards in the treatment and control 
groups) remains constant over time. If this 
assumption is satisfied, the survival curves for 
the two groups will move apart progressively 
over time or, alternatively, the lines will be 
roughly parallel in a log–log plot (i.e. when  
we plot loge(–loge(survival probability)) versus 
loge(time)). Another approach is to incorpo­
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in clustered data where failure times are not 
independent. The frailty is the unknown ten­
dency for an individual to fail, and in frailty 
models, the common value of the frailty is 
shared by the individuals in a cluster. In the 
proportional hazards model, the frailty factor, 
representing the frailty in a cluster, is random 
with a specified distribution for which there 
are a number of choices. Full details of the 
analysis may be obtained, for example, in 
Duchateau and Janssen (2010).

•	 Let us suppose that death from a specific cause 
(e.g. lamb mortality from birth to weaning due 
to dam-related problems such as dystocia and 
starvation (Southey et al., 2004)) is the failure 
or event of interest in a particular study. It may 
be that the lambs die from some other disease 
(e.g. pneumonia) in which case they cannot 
experience the event of interest. These events 
are termed competing risks in that the one 
event precludes the occurrence of the event of 
interest. In the Southey study the investigators 
examined the mortality records from birth to 
weaning of 8301 lambs from a composite  
population at the US Meat Animal Research 
Center. The data were analysed using a com­
peting risks model in which specific causes of 
mortality were grouped into dam-related (e.g. 
dystocia and starvation), pneumonia, disease 
excluding pneumonia, and other categories, so 
different hazards of mortality could be assigned 
to different causes. Although the authors 
found that the influence of type of birth and 
age of dam on mortality were generally con­
sistent across the categories (indicating that 
the effect of these factors on mortality was not 

adopted as they have a great potential for bias 
and they do not lead to prediction for the indi­
vidual survival experience as does the usual 
Cox model with fixed covariate values (Fisher 
and Lin, 1999).

•	 Sometimes, we assume a particular distribu-
tional form for the survival function (i.e. the 
survival curve obtained when we plot the sur­
vival probability against time), such as the 
exponential, gamma or Weibull distributions, 
and use our data to estimate the parameters 
that define the model. Using this parametric 
approach, we can compare survival curves in 
two or more groups, each assuming the same 
distributional form, by comparing their esti­
mated parameters.

(b)  Additional techniques and issues

•	 It may be that survival analysis is required 
when there is some natural or artificial cluster­
ing of individuals and the observations within 
a cluster are not independent (for example,  
the characteristics of mice in a litter, or when 
failure is remission and an animal can go into 
remission more than once so that there are 
recurrent failures for each animal). We discuss 
the problems of clustered data in Section 11.6 
where we briefly describe some of the special 
methods that are required to accommodate 
the dependencies in the data. One of these 
methods is the use of a random effects regres­
sion model in which the random effect repre­
sents the variability between the clusters. The 
frailty model is a random effects proportional 
hazards model, used when analysing survival 

Display 14.1  Stata output of Cox survival analysis of uraemic cats’ data with diet (standard = 1; low phosphorus, low 
protein = 2) and creatinine (mild = 1; moderate = 2) as covariates.

No. of subjects 	 = 	 50 Number of obs. 	= 	 50
No. of failures 	 = 	 42
Time at risk 	 = 	 27597

LR chi2(2) 	 = 	15.97
Log likelihood 	 = −128.33447 Prob > chi2 	 = 	0.0003

_t ׀ Haz. ratio Std. err. z P > ׀z׀ [95% conf. interval]

Diet ׀ 0.3345698 0.1138069 −3.22 0.001 0.1717684 0.6516741
Creatine ׀ 2.711757 0.8927078 3.03 0.002 1.422447 5.169702
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Elliott et al. (2000). They studied 50 cats from the 
day of diagnosis, at which time the cats were 
divided into two diet groups created by animal 
and/or owner compliance. Twenty-nine cats 
accepted a restricted phosphorus and protein 
diet and 21 cats continued to receive their stand­
ard diet. Figure 14.5 shows the Kaplan–Meier 
survival curves that depict the survival experi­
ence of these two groups of uraemic cats in the 
days following diagnosis. The tick marks indicate 
the censored data: these cats were still alive at 
the last follow-up at the times indicated. Also 
shown are the numbers at risk in each group at 
intervals of 250 days.

The median survival time from diagnosis for 
the control group on the standard diet was 367 
days (95% CI 194 to 541 days), and for the test 
group receiving the low phosphorus and low 
protein diet it was 677 days (95% CI 503 to 851 
days). In each case, the median is the value on 

dependent on the cause of mortality), the 
effect of sex varied with the cause of mortality. 
Thus, ignoring the cause of the event could 
hide important genetic differences.

Death from a cause other than that related 
to the event of interest is one common form  
of competing risk but there are other types of 
events, such as undergoing some treatment, 
that are also competing risks in that they 
modify the probability of the occurrence of the 
event of interest. Special methods are used to 
analyse survival data with competing risks. 
Further details of the approaches may be 
found in, for example, Putter et al. (2007).

14.6.3  Example

The outcome achieved by dietary control of 
uraemia in domestic cats was investigated by 

Figure 14.5  Kaplan–Meier curves showing the survival probability, expressed as a percentage, of cats following diagnosis with 
uraemia, stratified by diet. The tick marks indicate cats lost to follow-up at the time indicated (based on data in Elliott et al., 
2000, with permission from Wiley-Blackwell).
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14.7  Multivariate analysis

We have already introduced you to multiple 
regression (see Section 11.3), multiple logistic 
regression (see Section 11.4), Poisson regression 
(see Section 11.5) and regression methods for 
clustered data such as multilevel modelling (see 
Section 11.6) where, in each case, we look at the 
effect of a number of explanatory variables on a 
single response variable. A similar model build­
ing approach, log-linear analysis, can be used to 
investigate associations in multiway contingency 
tables derived from a number of categorical vari­
ables (i.e. each individual is categorized with 
respect to several categorical variables). In all 
these regression-type analyses, there is only a 
single dependent or response variable and so, 
strictly, these methods are termed univariate; 
generally, these models incorporate more than 
one explanatory variable, in which case they are 
multivariable models.

The procedures gathered under the general 
heading ‘multivariate analysis’ are traditionally 
directed at situations in which there are several 
response variables, and we wish to examine the 
variation in these variables simultaneously. Mul­
tivariate techniques are increasingly used, espe­
cially now that computer techniques can take the 
drudgery out of the calculations. As with all sta­
tistical procedures, you should aim to understand 
what the computer is doing, and how, before 
embarking on multivariate analyses.

Some of the more common multivariate analy­
ses are:

•	 Discriminant analysis – given the existence of 
different groupings of the population, it uses 
the information from a sample of individuals, 
in which each individual is known to belong to 
a particular group, to devise a rule for allocat­
ing further individuals to the appropriate 
groups.

•	 Cluster analysis – determines whether there is 
a natural subdivision of the individuals into 
groups or clusters on the basis of the observa­
tions on several variables.

•	 Factor analysis – defines a model (with distri­
butional and other assumptions) in which the 

the horizontal axis that corresponds to a 50% 
survival on the vertical axis. These two groups 
were compared with a logrank test, giving a 
Chi-squared test statistic of 7.65 on 1 degree of 
freedom and a highly significant result (P = 0.006); 
thus the survival experience of the cats on the 
restricted diet was significantly better than those 
on the standard diet.

A Cox proportional hazards survival analysis 
was performed to investigate whether the  
effect of diet on survival could be explained by 
differences in the cats’ initial blood creatinine 
concentrations at the time of diagnosis (after 
clinical stabilizing by fluid therapy, if necessary). 
The mild creatinine group was defined as  
having creatinine concentrations between 177 
and 250 μmol/l and the moderately severe group 
had creatinine concentrations >250 μmol/l. Stata 
computer output relating to a Cox regression 
analysis that used both diet and creatinine as 
binary covariates is shown in Display 14.1. The 
model Chi-square (see Section 11.4.3) of 15.97 
on 2 degrees of freedom with P < 0.001 indicates 
that at least one of the two coefficients in the 
model is significantly different from zero. The 
estimated hazard ratio is provided for each co­
variate, together with a Wald test statistic  
(indicated by ‘z’) and a P-value (indicated by 
P  >  ∣z∣) which results from the test of the 
hypothesis that the relevant coefficient in the 
model is zero (or equivalently that its hazard 
ratio is one).

We can conclude that each of the covariates 
has a hazard ratio that is significantly different 
from one, after adjusting for the other covariate. 
Thus both diet and creatinine level are independ­
ently and significantly associated with survival. A 
cat is estimated to be nearly three times more 
likely (but, with 95% confidence, it could be five 
times more likely) to die if it has a moderate 
rather than a mild creatinine level, and its risk of 
dying is reduced by an estimated 67% (but it 
could be as much as 83%) if it is put on the low 
phosphorus/low protein diet at diagnosis, in each 
case after adjusting for the effect of the other 
covariate. Thus we can see that this analysis gives 
some very helpful guidelines for prognosis and 
treatment of this condition.
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14.1  The sensitivity of a screening test for a 
particular disease is 0.99. This means that:
(a)	 The proportion of animals correctly identi­

fied by the test as having the disease is 0.99.
(b)	 The proportion of animals with the disease, 

out of those which tested positive, is 0.99.
(c)	 The specificity of the test is 0.01.
(d)	 The test is particularly useful for identifying 

animals with a disease that is treatable.
(e)	 The prevalence of the disease in the popula­

tion must be high.

14.2  The most appropriate way to investigate 
the agreement between two observers when each 
has measured a numerical response on each of 
20 animals is to:
(a)	 Calculate Cohen’s kappa.
(b)	 Perform a paired t-test.
(c)	 Calculate the correlation coefficient, and test 

its significance from zero.
(d)	 Calculate two times the standard deviation 

of the differences, and use this as a measure 
of agreement.

(e)	 Estimate the standard deviation of the indi­
vidual measurements, sw, and use this as a 
measure of agreement.

14.3  Suppose 16 animals are randomly allo­
cated to one of two treatments, and there are 
eight animals in each treatment group. We take 
a single measurement of a numerical variable at 
six successive time points on each animal. An 
appropriate analysis that investigates the treat­
ment effect may be:
(a)	 A time series analysis.
(b)	 A repeated measures ANOVA.
(c)	 A two-sample t-test, comparing the observa­

tions in the two groups, at each time point.
(d)	 A two-sample t-test, comparing the changes 

from baseline in the two groups, at each time 
point.

(e)	 A two-sample t-test, comparing the differ­
ences between the initial and final responses 
in the two groups.

14.4  A Cox regression analysis:
(a)	 Is used to analyse survival data when indi­

viduals in the study are followed for varying 
lengths of time.

k original variables are replaced by another set 
of j < k variables (called factors), each of which 
is a linear combination of the original varia­
bles together with a residual. In order to 
present the most economical model, j is chosen 
to be as small as possible.

•	 Principal component analysis – replaces the k 
original variables by another set of k variables 
(the principal components), each of which is  
a linear combination of the original variables. 
The first few principal components often 
account for most of the variability of the origi­
nal data, so that the remaining principal com­
ponents can be discarded and thereby reduce 
the dimensionality of the data.

•	 Multidimensional scaling – concerned with 
expressing the main content of the data in 
fewer dimensions with as little distortion as 
possible. It is based on the distances between 
the points, and is closely related to principal 
component analysis.

•	 Canonical correlation – concerned with inves­
tigating the interdependence between two sets 
of variables, (y1, y2, y3, . . . , yp) and (x1, x2, x3, . . . , 
xm).

•	 Multivariate analysis of variance (MANOVA) 
– an extension of the univariate ANOVA for 
multiple dependent variables. So, for example, 
in the one-way MANOVA, we test the null 
hypothesis that the vector of population means 
is the same for all the independent groups.

We suggest, if you require to utilize these mul­
tivariate analytical methods, you refer to books 
such as those by Dugard et al. (2010), Everitt 
and Dunn (2001) or Krzanowski (2000) before 
embarking on the analysis. The methods are 
sometimes difficult to understand, and need 
careful assessment to avoid misuse. It may also 
be advisable to seek advice from a professional 
statistician to ensure you are applying the 
methods appropriately.

Exercises

The statements in questions 14.1–14.6 are either 
TRUE or FALSE.
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(a)	 Is a plot of the sensitivity against the 
specificity.

(b)	 Is a plot of the sensitivity against one minus 
the specificity, when each is expressed as a 
proportion.

(c)	 Is a plot of the true positive rate against the 
true negative rate.

(d)	 With an AUROC of 0.5 indicates that the 
diagnostic test is better than chance at  
discriminating between subjects with and 
without the disease of interest.

(e)	 With an AUROC of 0.6 indicates that, on 
60% of occasions, a randomly chosen dis­
eased animal will have a higher predicted 
probability by the diagnostic test of having 
the disease than a disease-free animal.

14.7  Quantitative determination of the 
corticosteroid-induced isoenzyme of alkaline 
phosphatase (CAP) was evaluated as a diagnos­
tic test for hyperadrenocorticism (HAC) in dogs 
(Solter et al., 1993). A cut-off value of 90 U/l was 
selected for use for this assay as a diagnostic test 
for HAC, with values of CAP greater than this 
cut-off value being indicative of HAC. This 
cut-off value was used in Harrogate on 46 dogs 
with a combination of historical and clinical signs 
of HAC and on 92 date-matched healthy control 
dogs (i.e. there were two controls for every HAC 
dog). The results are shown in Table 14.5.
(a)	 Determine the sensitivity and specificity of 

the test.
(b)	 Do you think that this cut-off is 

reasonable?
(c)	 What is the effect on sensitivity and specifi­

city of raising the cut-off of CAP to >500 U/l 
(when, in this sample of dogs, 37 HAC dogs 
and four healthy dogs had CAP >500 U/l)?

(d)	 When the CAP cut-off value of 90 U/l was 
used on all canine serum samples submitted 

(b)	 Can only be used when there are censored 
data.

(c)	 Assumes that the relative hazard for a par­
ticular variable is constant at all times.

(d)	 Uses the logrank test to compare two sur­
vival curves.

(e)	 Relies on the assumption that the explana­
tory variables in the model are Normally 
distributed.

14.5  Using a single-detector computed tomogra­
phy (CT) examination, sixteen 6-month-old male 
minipigs were scanned under general anaesthesia 
and two radiologists assessed the Hounsfield unit 
(HU) value of subcutaneous abdominal fat in each 
minipig by drawing the region of interest manually 
at the T13 level. The HU is the numerical informa­
tion relating to density contained in each voxel 
(volume unit) of a three-dimensional CT image. 
The HU values from one radiologist were plotted 
against those from the second radiologist in a 
scatter diagram. The Pearson correlation coeffi­
cient was estimated as 0.95 and Lin’s concordance 
correlation coefficient was estimated as 0.70 
(based on Chang et al., 2011).
(a)	 The Pearson correlation coefficient of 0.95 

indicates that there was almost perfect agree­
ment between the HU values obtained by 
the two radiologists.

(b)	 It would have been preferable to calculate 
the kappa measure of agreement instead of 
either the Pearson correlation coefficient or 
Lin’s concordance correlation coefficient.

(c)	 Lin’s concordance correlation coefficient 
was substantially less than the Pearson cor­
relation coefficient. This would suggest that 
there was a systematic difference between 
the two radiologists’ measurements, with one 
tending to give a higher HU value than the 
other for each minipig.

(d)	 Lin’s concordance correlation coefficient 
was substantially less than the Pearson cor­
relation coefficient. This would suggest that 
there was poor precision.

(e)	 The difference between the two correlation 
coefficients could only arise if there was both 
poor precision and poor accuracy.

14.6  A receiver operating characteristic (ROC) 
curve for a diagnostic test:

Table 14.5  Observed frequencies in two groups of dogs 
(based on results of Solter et al., 1993).

HAC dogs Healthy dogs Total

CAP >90 U/l 43 12 45
CAP ≤90 U/l 3 80 83

Total 46 92 138
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to the laboratory over a 3-month period,  
the positive predictive value of the test was 
21.4% and the negative predictive value was 
100%. What do you infer from these results 
in terms of the usefulness of the CAP test as 
a screening test rather than a diagnostic test?

(e)	 Why do these predictive values not agree 
with what you would obtain if you were to 
calculate them using the information from 
Table 14.5?

14.8  Studies conducted in 98 mithuns (Bos 
frontalis) maintained at the National Research 
Centre, Nagaland, India, using the ‘gold  
standard’ enzyme-linked-immunosorbent assay, 
revealed that the seroprevalence of brucellosis in 
these cattle of Indian origin was 34% (Rajkhowa 
et al., 2005). The sensitivity and specificity of the 
standard tube agglutination test were found to 
be approximately 61% and 99.9%, respectively. 
Using Fagan’s nomogram, evaluate the chance 
that a mithun that tests positive for brucellosis 
using the standard tube agglutination test actu­
ally has brucellosis.

14.9  A sheep farmer has a problem with foot 
rot. He decides to score the degree of foot rot in 
each sheep in his flock and then to treat them; 
later he scores them again to see if there has 
been any improvement. He scores them as 
follows: 1  =  no lameness, perfect feet; 2  =  no 
lameness, but at least one misshapen claw requir­
ing trimming; 3 = mild lameness involving infec­
tion and damage to one foot only; 4  =  severe 
lameness, foot rot and injury in more than one 
foot. Table 14.6 shows the frequency of occur­
rence of the scores before and after treatment. 
Conduct a suitable analysis and present the 
result. Is it reasonable to presume that the treat­

Table 14.6  Observed frequencies of scores of foot 
condition in sheep.

Score 
after 
treatment

Score before treatment

Total1 2 3 4

1 34 78 27 4 143
2 1 16 36 13 66
3 0 6 14 49 69
4 0 0 2 3 5

Total 35 100 79 69 283

Table 14.7  Measurement of plasma glucose concentrations 
(mmol/l).

First reading Second reading

Sample 1 3.665 3.751
Sample 2 4.297 4.297
Sample 3 3.639 3.545
Sample 4 3.146 3.171
Sample 5 3.331 3.342
Sample 6 3.060 3.026
Sample 7 3.089 3.129
Sample 8 3.299 3.193
Sample 9 2.983 2.992
Sample 10 2.761 2.813
Sample 11 2.975 2.881

ment has helped to alleviate the problem of  
foot rot?

14.10  When conducting any sort of assay meas­
urement, it is common to put duplicate samples 
through the assay. In an assay of plasma glucose 
concentration (mmol/l) in sheep blood, the dupli­
cate results, shown in Table 14.7, were used to 
assess the repeatability of the method. Conduct 
an appropriate analysis to assess the extent to 
which the results are repeatable.
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15.1  Learning objectives

By the end of this chapter, you should be able to:

•	 Explain what ethical issues surround the use 
of animals in research.

•	 List the five ‘freedoms’ for animals in our care.
•	 Outline the three Russell and Burch approaches 

for limiting harm to animals in research.
•	 Describe the stages involved in preparing an 

application for animal research.
•	 Propound the contribution of spatial statistics 

to veterinary investigations.
•	 Outline the potential hazards in the use of 

spatial statistics.
•	 Outline the importance of veterinary surveil-

lance in animal health monitoring and 
planning.

•	 Explain what is involved in veterinary 
surveillance.

•	 Elaborate the generally accepted understand-
ing of molecular genetics.

•	 Briefly explain the basis of quantitative 
genetics.

•	 Outline the benefits of quantitative genetics.

15.2  Introduction

This chapter contains several apparently dispa-
rate topics in veterinary and animal science that 
are either relevant to the conduct of animal 

15 Some specialized issues 
and procedures

research, or have specialized data collection and 
display, or demand a range of newer statistical 
approaches. We have attempted to introduce  
the scientific basis for the statistical procedures 
without going into the details of the methods 
used since often these are beyond the scope of 
this book. In each case we give references so that 
you can, if desired, pursue these methods further.

15.3  Ethical and legal issues

15.3.1  Ethics and animal ‘rights’

Ethics is essentially a branch of philosophy that 
investigates the moral value of human conduct 
and the rules and principles that ought to govern 
it. Often the terms morality and ethics are  
used indiscriminately but ‘morality is concerned 
with what is right and what is wrong conduct 
whereas ethics is really concerned with why 
certain conduct is considered to be right or 
wrong’ (Dolan, 1999).

Many argue that animals have rights but an 
alternative, and more ethically sustainable, posi-
tion is that humans have duties and responsibili-
ties towards animals in considering their use for 
man’s benefit. Indeed, one of the more influential 
philosophers of our time, Peter Singer, has argued 
that animals do not need to be accorded rights; 
instead, he maintained that, to the extent that  
an animal can suffer pain, it should be given 
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the expected benefit to be accrued from the 
research and the likely suffering of the animal, 
i.e. we must give consideration to what might be 
termed the cost–benefit equation. We do this by 
ensuring that the principles of the three Rs (see 
Section 15.3.2) are upheld, all research on animals 
is carefully regulated (see Section 15.3.3) and 
that ethical dilemmas are given due considera-
tion by indepth discussions by those on ethics 
committees (see Section 15.3.4). You can find a 
detailed discussion of the ethics of animal experi-
mentation in Dolan (1999) and an overall guide 
to the legal obligations in the care of laboratory 
animals in Dolan (2000).

15.3.2  The three Rs

Wherever we contemplate experimental 
approaches using animals, issues of animal 
welfare and ethics are present. Even the seem-
ingly innocuous question of a control group may 
present an ethical dilemma. For example, can we 
justify failing to treat a random selection of dis-
eased animals in order to compare the effect of 
a treatment protocol? The answer we give will 
depend on the severity of the condition, the 
effectiveness of existing treatments and the 
degree of suffering involved. Perhaps, as we 
suggest in Section 5.5, it may be appropriate to 
compare a novel treatment with the best existing 
treatment, thereby offering the most effective 
available treatment to the control group. However, 
with a novel treatment it is possible that this 
treatment group itself is at risk, and we have 
every duty to ensure that the risk is minimal and 
assessed as far as it is in our power to do so.

In experimental situations, we have a moral 
duty (and in much of Europe and the USA, a 
legal duty) to apply the principles of the ‘three 
Rs’ (Box 15.1), originally proposed by Russell 
and Burch (1959). Specifically, we must demon-
strate that we have considered:

•	 Reduction (minimizing the numbers of animals 
used, consistent with achieving the desired sci-
entific objectives). Clearly, a real understand-
ing of statistical methodology is at the heart of 
Reduction. The minimum number of animals 

equivalent consideration to that of humans 
(Singer, 2005), although this is not a widely 
accepted view. Nonetheless, in discharging our 
responsibilities regarding animals, we should be 
clear about what this implies, both in legal and 
moral terms. The UK Farm Animal Welfare 
Council in 1979 defined explicitly, for animals in 
our care, the fundamental duty of protection we 
owed to animals used for human food produc-
tion, summarized as the five freedoms:

•	 Freedom from thirst and hunger.
•	 Freedom from discomfort.
•	 Freedom from pain, injury and disease.
•	 Freedom from fear and distress.
•	 Freedom of normal behaviour by providing 

proper facilities and company.

These freedoms are now considered to be widely 
applicable to our diverse use of animals and provide 
a framework for the creation of an acceptable 
animal welfare system (see also Section 15.3.4).

When we think about the ethics of animal 
experimentation, our concern generally lies with 
the animals and their suffering. However, we 
should remember that animals, both domesti-
cated and in the wild, have also benefited from 
human activity. Some of these benefits are:

•	 Shelter from the elements and protection from 
predators.

•	 Regular supply of food, usually of better 
quality than that which would be obtained in 
the wild.

•	 Superior strains produced by selective breed-
ing providing resistance to disease or adverse 
climatic conditions.

•	 Improved health due to veterinary medicine.
•	 Preservation of species by laws of protection.

Clearly, the whole area of the ethics of animal 
investigation is fraught with controversy. There 
will always be those who completely oppose the 
use of animals in research whatever the potential 
benefits, and, on the other hand, those who 
believe these animals are essential for establish-
ing important innovative procedures that benefit 
human or animal health and recreation. At the 
end of the day, we must strike a balance between 
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the 18th century, wrote a number of articles on 
the plight of animals subjected to cruelty in the 
pursuit of medical knowledge, a concern which 
was emerging in English society at that time. In 
the late 18th century there was an official scru-
tiny of the treatment of animals, culminating  
in the licensing of slaughterhouses. Early in the 
19th century, Martin’s Act gave protection to 
some animals from cruelty and the RSPCA 
(Royal Society for the Prevention of Cruelty to 
Animals), a leading animal welfare charity, was 
formed in the UK. As the 19th century pro-
gressed, concern was voiced by many, including 
Disraeli, about the use of animals for research. 
Leading figures of the time, such as Darwin, 
Huxley and Jenner, signed a petition requesting 
legislative control of animal experimentation. 
Finally in 1876, the Cruelty to Animals Act was 
passed, limiting painful experiments on animals 
to take place only for specific purposes and under 
certain conditions, at the same time enforcing a 
licensing and inspection system for vivisection.

There have been many attempts to add more 
stringent controls in the UK since then but it was 
not until 1911 that the Protection of Animals Act 
was passed, and it was only in 1986 that the 
Animals (Scientific Procedures) Act (amended 
in 2012), regulating the use of laboratory animals 
in the UK, came into being. More recently, the 
Animal Welfare Act of 2006 outlawed the causing 
of ‘unnecessary suffering’ to animals, although 
specific exemptions apply to experiments licensed 
under the 1986 Act. This slow development of 
controls on animal use has also been witnessed 
in other countries and continents. For example, 
minimal restrictions on animal experimentation 
prevailed in the United States until 1966 when 
the first federal Laboratory Animal Welfare Act 
(now known as the Animal Welfare Act or AWA) 
was passed by Congress; this has been modified 
by various measures in 1970, 1976 and then again 
in 1985.

(b)  Current allowable practices

In the UK, any invasive act of veterinary surgery, 
such as obtaining a blood sample or a tissue 
biopsy, is prohibited except when carried out  
for diagnostic purposes, and is limited to being 

must be decided upon using stringent statisti-
cal procedures that involve power considera-
tions (see Sections 6.4.2 and 13.3) and the use 
of efficient experimental designs as well as 
appropriate statistical analyses. This avoids 
both wasted trials owing to inadequate group 
sizes and using unnecessarily large numbers of 
animals.

•	 Refinement (aiming to minimize pain, suffering 
or lasting harm to each individual animal). 
Here we make use of sedation and anaesthe-
sia, as appropriate, together with expert pain 
management by the use of analgesics; this may 
necessitate the presence of veterinarians in the 
research team.

•	 Replacement (could we use ‘lower’ organisms, 
tissue culture, etc., instead of conscious living 
vertebrates?). In this area, much has been 
achieved with the development of tissue culture 
techniques, although it should be recognized 
that this experimental setting can only reveal 
the response of isolated cells or tissues and  
not the integrated responses of the whole 
organism.

15.3.3  Legislation controlling 
animal investigation

(a)  Historical note

Many have criticized the use of animals in exper-
iments over the ages. Leonardo da Vinci (1452–
1519), an alleged vegetarian, predicted that 
experimentation on animals would one day be 
judged as a crime. Dr Johnson, in the middle of 

•	 Reduction: minimizing the numbers of animals used, 
consistent with achieving the desired scientific 
objectives.

•	 Refinement: aiming to minimize pain, suffering or 
lasting harm to each individual animal.

•	 Replacement: involving, where appropriate, the use of 
lower organisms, tissue culture, or other cell culture 
techniques instead of conscious living vertebrates.

Box 15.1  The three Rs: a strategy for minimizing the use 
of animals in research (Russell and Burch, 1959).
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field, social workers, clergy, academic ethicists 
and statisticians, as well as lay members of the 
public. The committee will meet at regular inter-
vals and provide a serious appraisal of the cost–
benefit equation, paying particular attention to 
the three Rs (see Section 15.3.2), and benefiting 
from the various views expressed in open discus-
sion by its members. It serves to protect the rights 
of the animals whilst promoting the advance-
ment of knowledge in a carefully controlled 
environment.

Under the Animals (Scientific Procedures) 
Act 1986, the experiments must be justified by 
the welfare benefit to the animal population at 
large or by the advantage to human medicine 
before they can be approved. Furthermore, 
welfare concerns must be addressed by reducing 
the numbers of animals used and by minimizing 
the discomfort to be applied (see Section 15.3.2). 
Furthermore, a veterinary surgeon is appointed 
to oversee the care of the experimental animals 
and must, if necessary on grounds of animal 
welfare, remove animals from the study.

15.4  Spatial statistics and 
geospatial information systems

15.4.1  What is spatial statistics?

We define spatial statistics as modifications, 
extensions and additions to statistical techniques 
that focus on the importance of locations or 
spatial arrangement. If data are spatially distrib-
uted, we give explicit consideration to the poten-
tial importance of their positional arrangement 
in the analysis. A geographical or geospatial 
information system (GIS) is a data handling 
system that merges statistical analysis, database 
technology and cartography. Its output includes 
the mapping of the data in a variety of meaning-
ful ways to allow its geographical or locational 
context to be emphasized. It therefore enables  
us to capture, manage, manipulate, analyse and 
store location-referenced data.

The combination of spatial statistics and GIS 
allows us to handle the analysis of data involving 
two- or three-dimensional space, often linked 
with chronological data to consider time trends, 

performed under veterinary supervision, pre-
venting exploitation of animals. Obtaining 
samples from healthy animals by a veterinary 
surgeon without causing any significant discom-
fort, pain, suffering, distress or lasting harm in 
order to support a diagnosis, or to provide infor-
mation relating to animal husbandry or clinical 
management, is permissible, providing it is done 
with the informed consent of the owner. The 
main exceptions to this are under the Animals 
(Scientific Procedures) Act 1986, when particular 
biological scientists are licensed by the Home 
Office to perform specific procedures after com-
pleting adequate training. Even modifying the 
diet of an animal for experimental purposes is 
controlled under this Act and may not be carried 
out without a licence.

In fact, it is rather easier to obtain human vol-
unteers for research than to assemble animals for 
a study. This is partly because the principle of 
informed consent is easier to apply, although the 
situation for animals is not dissimilar to the situ-
ation involving children too young to give their 
own informed consent, where the parent or 
guardian must give consent for a procedure to be 
performed.

15.3.4  Principles of animal welfare 
and ethics committees

In order to keep animal welfare in the forefront, 
we must devise protocols that minimize the 
inconvenience and discomfort to animals and 
provide safety for humans.

In medical establishments it is widely recog-
nized that approval from an ethics committee is 
required to institute investigative studies carried 
out on human subjects. Similarly, studies of 
animals in the UK are subject to ethics commit-
tee approval. An ethics committee for animal 
investigations provides a forum for discussion 
about the concerns of animal welfare in relation 
to the proposed investigation on animals. Its par-
ticular format will vary according to the nature 
of the investigation and the institution at which 
the investigation will take place. An ethics com-
mittee often includes individuals from the admin-
istrative team of the institution, academics in the 
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or large-scale patterns. In Plate 15.1 we see evi-
dence of the incidence of bovine tuberculosis 
increasing from a relatively restricted occurrence 
mainly in the southwest of England to a much 
more extensive coverage in the UK, even as far 
as Scotland, in a short 5-year period. The pattern 
suggests infection is by contact since it is seen in 
a non-random distribution developing mainly 
from the sites infected in 1997, but it may also 
imply the existence of persistent local reservoirs 
of infection.

As we hinted in Section 15.4.1, there are many 
situations where geographical aspects of data  
can add a further dimension to the data set and 
may provide us with clues to underlying patterns 
within the data. Such maps, apart from present-
ing useful information in a readily accessible 
format, can also provide indications as to the 
type of analysis that will be most instructive. It is 
particularly relevant in veterinary epidemiology 
where the spatiotemporal spread of contagious 
disease may help us identify particular causative 
conditions. Using the software available, it is 
relatively easy to create a map showing the loca-
tions of events recorded and then, using the 
power of GIS, to overlay this with, for example, 
topological features or vegetation cover or 
human population densities or road maps. This 
helps us to identify patterns of relationships 
between the data collected and other data fea-
tures that may not otherwise be obvious.

15.4.3  Examples of spatial 
statistics in veterinary and  
animal science

We list in the bullet points that follow some  
of the applications of spatial statistics and GIS 
for veterinary and animal science, illustrating  
the sort of studies that benefit from these 
techniques.

•	 Bessell et al. (2010) used data collected in the 
2001 foot-and-mouth disease (FMD) outbreak 
in Great Britain to study risk factors at farm 
level, and identified conditions that were asso-
ciated with a high risk of transmitting FMD to 
other premises. This kind of work enabled the 

and to present them in a readily comprehensible 
form. Thus it has applications in a wide variety 
of fields, not least any animal studies interested 
in locational information such as the geographi-
cal spread of disease, which is of fundamental 
interest in epidemiology. To deal with this, there 
are spatial versions of descriptive statistics, pattern 
analysis, regression analysis to assess relation-
ships, and surface modelling for prediction.

Spatial autocorrelation occurs when there is a 
relationship between the values of a single vari-
able that is due to the geographical areas in 
which these values occur; this implies that there 
is a dependency between the values of the vari-
able in one location and in neighbouring areas. 
In other words, values from sites located closer 
together may have a greater similarity to one 
another than were they to be more widely sepa-
rated. This dependency creates problems for sta-
tistical methods that make assumptions about 
the independence of residuals (a residual is the 
difference between an observed and a predicted 
value – see Section 10.4.3(b)), so particular sta-
tistical techniques should be employed. For 
example, a regression analysis that ignores spatial 
dependency may have biased parameter esti-
mates and inappropriately low P-values, whereas 
a regression model that takes into account the 
possibility of spatial autocorrelation will not 
exhibit these flaws. Spatial autocorrelation analy-
sis tests whether autocorrelation is present and, 
if it is, measures the degree of dependency and 
the nature of it among the observations in a  
geographic space. Such associations point to the 
influence of geography or location on the data 
which might otherwise appear random in nature 
when viewed by traditional statistics that ignore 
the spatial aspects.

15.4.2  Displaying the data

In the first steps in spatial analysis, we often need 
to display the data and then inspect them for any 
clues as to their meaning, for any errors and for 
possible models to test. With geographical data, 
for example, we might construct a map of the 
incidence of a disease and look for evidence of a 
non-random distribution, for example, clustering 
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where the animals in question are kept. In 
some cases, the latter may be some distance 
away from the registered address and may 
lead to inappropriate conclusions.

•	 Sampling.  At the outset we need to consider 
data sampling. Given that an assumption of 
spatial statistics is that data may be influenced 
by location, we need to plan how many data 
are necessary to represent the evidence faith-
fully. Adjacent areas may be affected by local 
conditions which make them differ, so sam-
pling must be frequent enough to represent 
such a local variation. We may need to employ 
sampling methods such as stratified or cluster 
sampling (see Chapter 13).

•	 Clustering.  Data points may not be randomly 
distributed but clustered in small areas. If the 
sampling is not frequent enough nor ranges 
widely enough, this clustering may be missed 
and generalized conclusions may be inappro-
priately drawn from a small area displaying 
clustering. Unless we also take into account the 
distribution of the population density, we might 
be misled by concentrations of cases merely 
associated with clusters of the population.

•	 Cartograms.  A way of emphasizing a particu-
lar non-random distribution is to show the 
incidence data in areas redrawn geometrically 
proportional in size to the item under consid-
eration. Such maps or cartograms are said to 
have a demographic (isodemographic) base in 
contrast to those constructed according to the 
two-dimensional shape of the region, which 
have a geographic base. An example is shown 
in Plate 15.2. While such maps often have a 
dramatic impact, they have potential dangers 
similar to those that we saw with pictograms 
(see Section 2.5.1): in this instance we have 
difficulty in determining how to interpret the 
distortion of a particular area to assess its asso-
ciated incidence data.

•	 Length or distance.  This is a potential source 
of error depending on the units of measure-
ment employed. Should we be interested in 
borders of an area (farm borders, town or county 
boundaries, etc.), the scale of the measurement 
unit used to determine the boundary can seri-
ously distort the distance or area of interest. 
This is due, essentially, to the approximations 

Department for Environment, Food and Rural 
Affairs (Defra) in the UK to plan more tar-
geted policies to combat the disease spread. 
Given that disease outbreaks are single discrete 
events often spatially and temporally distrib-
uted, spatial regression models using a Poisson 
distribution (see Section 3.4.3) are commonly 
employed to analyse disease outbreaks.

•	 Spatial autocorrelation was seen concerning 
Danish mink farms infected with plasmacyto-
sis (Themudo et al., 2011); the authors demon-
strated the clustering of the disease persistently 
over a 10-year period in a particular region of 
Northern Jutland.

•	 Spatial statistics is used in studies of wild 
animal migration patterns, allowing us, for 
example, to identify repeating patterns year by 
year and their associations with climatic condi-
tions (Clegg et al., 2003; Holdo et al., 2009). 
This is useful for wildlife land management, 
for monitoring sea fish stocks and for under-
standing how wildlife influences domestic 
animal disease control.

•	 Myers et al. (2008) used a topological overlay 
to study conditions leading to road deaths of 
elk and deer in Washington State, USA. The 
authors were able to show that deaths occurred 
in relation to traffic speed and density, but also 
were influenced by roadside ground cover and 
time of year (the latter relating to mating 
months and migration patterns).

15.4.4  What are the hazards of 
using these methods?

Spatial statistics is a fast-developing subject with 
a number of traps for the unwary. Some of the 
problems we may encounter are involved with 
the assumptions inherent in the statistical proce-
dures being applied, while others are associated 
with inadvertent misunderstandings about the 
data. Potential sources of error are explained in 
the following bullet points.

•	 Location.  Data are accorded specific point 
locations. In the case of animal data, this may 
be the registered address of the farm or the 
owner and not the actual location or the area 
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15.4.5  Some useful references

This subject of spatial analysis is growing rapidly 
and there are a number of sources of information 
to further enhance knowledge. Freely available 
as a pdf on the internet at the time of publication 
of this book is a primer in spatial statistics by 
Câmera et al. (2008). A helpful introduction to 
the analysis of spatial data is to be found in a 
chapter by Pfeiffer (2009). Other suitable books 
include a veterinary primer by Pfeiffer et al. 
(2008) and a more advanced text by Ripley 
(2004). In addition, the veterinary literature now 
contains several good published reviews, such as 
those of Carpenter (2001) and Rinaldi et al. 
(2006).

15.4.6  Example

In a study by Chhetri et al. (2010), information 
about foot-and-mouth disease (FMD) outbreaks 
reported by Village Development Committees 
(VDCs) in 75 districts of Nepal was collected in 
order to quantify associations between hypoth-
esized epidemiological factors and the spatial 
distribution of FMD. This study depended on  
the use of a spatial scan statistic to identify the 
spatial clustering of reports and a Bayesian 
mixed effects Poisson regression model to quan-
tify the association between the number of 
reports and 25 potential risk factors. Plate 15.4a 
illustrates the three regional terrains, and Plate 
15.4b shows the observed-to-expected ratios  
(Oi/Ei) of reported outbreaks as well as the 
numbers of VDCs per district. Two significant 
clusters of districts with a risk of VDC-reported 
cases of FMD higher than the background risk 
of the country were identified using the spatial 
scan statistic. One primary cluster located in the 
Kathmandu and Nuwakot districts (bold circle) 
had a relative risk (RR) of 7.6 of VDCs reporting 
FMD compared with the overall country back-
ground, and one secondary cluster located in the 
Mahottari and Saralahi districts (faint circle) had 
a RR = 2.7 (Plate 15.4b). Elevated risk was asso-
ciated with large numbers of people, buffalo and 
animal health technicians.

involved. For example, Mandelbrot (1967) 
showed that the measurement of the coastline 
of Great Britain could be seriously influenced 
by the units of distance used (Plate 15.3). In 
other circumstances, such as the distance 
between objects, it may be important to decide 
whether the straight line distance, ‘as the crow 
flies’, or, for example, the connecting road dis-
tance is the relevant data. Such details may 
have a profound effect on the conclusions to 
be drawn.

•	 Modifiable areal unit problem (MAUP).  This 
gives rise to a potential source of error that can 
affect spatial studies which utilize aggregate 
data sources (Unwin, 1996). In practice it 
means that when data collected in relation to 
specific geographical point locations are amal-
gamated into areas for comparison, the choice 
of area boundaries can result in potentially 
misleading conclusions. The areas are not 
uniform in size and characteristics may be 
modified at whim. This is of particular impor-
tance to veterinary surveillance (see Section 
15.5) since data are reported in relation to 
local areas delineated by, for example, a vet-
erinary diagnostic laboratory, county or other 
area unit. Disease incidence in the UK is often 
reported in relation to county boundaries; the 
boundaries are arbitrary in relation to disease 
transmission and may be misleading in terms 
of the actual spread of the disease.

•	 Ecological fallacy.  This occurs when we 
believe mistakenly that an association we 
observe between variables at the group or 
aggregate level (e.g. in a region) reflects the 
corresponding association at an individual 
level (e.g. individual animals in the region) in 
the same population. Such errors occur in part 
from spatial aggregation and the topic is 
closely related to the MAUP. Thus, when a 
piece of information in respect of a location is 
recorded (e.g. environmental temperature), 
the assumption is often made that all points in 
that locality share the same characteristics 
although this may be far from the truth. Tree 
cover, the proximity of buildings and other 
local features may all affect temperature or 
wind speeds or rainfall; care must be exercised 
in drawing conclusions.
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Veterinary surveillance, on the other hand, has 
a rather wider perspective in that we are con-
cerned not only with the disease status of our 
food-producing animals, but also with wild and 
companion animal health since that may indicate 
transmissible infections or environmental tox
icity that may affect humans (Box 15.2). We 
therefore obtain our information from a wide 
range of sources in order to encompass the 
potential hazards:

•	 Bacterial and viral diseases, prion diseases, 
poisonings and other welfare issues affecting 
agriculturally important species.

•	 Changes in animal husbandry practices that 
may affect disease incidence.

•	 Changes of animal movement controls that 
might allow new conditions to come to light, 
such as the introduction of an exotic disease 
or the emergence of a novel disease. (These 
controls are temporary UK government restric-
tions in place to limit animal movements, 
usually instituted in the light of a reported 
outbreak of a notifiable disease.)

•	 Pet disease – our pets live generally in close 
association with us, and their health can be an 
indicator of potential problems with contami-
nation of the human food supply.

•	 Wildlife disease, which can be a sign of an 
infectious disease transmissible to agricultural 

15.5  Veterinary surveillance

15.5.1  What is veterinary 
surveillance?

According to the World Health Organization’s 
International Health Regulations (WHO, 2005), 
‘ “surveillance” means the systematic ongoing 
collection, collation and analysis of data for 
public health purposes and the timely dissemina-
tion of public health information for assessment 
and public health response as necessary’ [our 
italics]. This definition, of course, relates to the 
monitoring and control of human public health, 
and specifically involves information about 
disease outbreaks. The use of the term ‘ongoing’ 
in the definition enables us to distinguish surveil-
lance from a survey, and by the inclusion of ‘sys-
tematic’ we imply that the data have a format 
that is predetermined by the collecting authority 
in response to the potential uses of the data set.

Veterinary surveillance (or animal disease sur-
veillance) is thus the process of collecting infor-
mation on animal diseases and infections in 
order to provide early indication of changing 
patterns of animal health which may affect  
productivity or pose a threat to human health. 
The main aim of veterinary surveillance is to 
inform decision-making for rapid and appropri-
ate responses should disease patterns change.

15.5.2  Why is veterinary 
surveillance conducted?

A US government public health organization, 
the Centers for Disease Control and Prevention 
(www.CDC.gov, accessed 17 October 2012), has 
outlined the following purposes for disease surveil-
lance, with particular reference to human diseases:

•	 To collect data to better understand the extent 
of health risk behaviours, preventive care 
practices and the burden of chronic diseases.

•	 To monitor the progress of prevention efforts.
•	 To help public health professionals and  

policy-makers make more timely and effective 
decisions.

•	 To continuously collect data on agricultural, but also 
companion and wild, animal disease for the purpose 
of monitoring risks to animal enterprises and human 
health.

•	 To monitor animals and animal products in the human 
food supply chain that might pose a threat to the 
disease status of humans or animals.

•	 To monitor drug residues in animal products entering 
the human food chain.

•	 To collect reports of drug resistance to assess the 
threats to drug effectiveness.

•	 To inform governments and other agencies charged 
with responding to disease threats in order that appro-
priate, measured and targeted responses can be initi-
ated in a timely manner.

•	 To analyse information to determine changes in risk 
that require targeted responses.

Box 15.2  The purposes of veterinary surveillance

http://www.CDC.gov
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animal scientists, aided by volunteer groups such 
as bird watchers and ramblers who may notice 
problems in wildlife or grazing farm animals.

15.5.3  How is veterinary 
surveillance conducted?

We commonly find veterinary epidemiologists at 
the centre of surveillance programmes, since 
their discipline is frequently based on disease 
surveillance on populations of animals. Obvi-
ously the collection of such a body of informa-
tion would be of little use without the application 
of statistical methods to control and reduce the 
data to provide useful and accessible informa-
tion. It is for this reason that we have included a 
section on surveillance in this book.

We gather surveillance data from reports ema-
nating from veterinary diagnostic laboratories, 
post-mortems and clinical cases, and directly 
from veterinary surgeons and farmers. While the 
data are systematically collected, there is always 
a potential for bias. The value of the data is only 
as good as the quality of data provided; we must 
ensure that relevant data are collected, and that 
they are accurate and as complete as possible.

Much of the data collection, analysis and  
dissemination of the data are the responsibility 
of national government departments, such as,  
in England and Wales, the Department for Envi-
ronment, Food and Rural Affairs (Defra); details 
can be explored on their website (http://
archive.defra.gov.uk/foodfarm/farmanimal/
diseases/vetsurveillance/, accessed 17 October 
2012). In Scotland, the details are available from 
the Scottish government under the topic of vet-
erinary surveillance at (www.scotland.gov.uk/
Topics/farmingrural/Agriculture/animal-welfare/
Diseases/, accessed 17 October 2012). Similar 
information pertaining to the USA is available 
through US Department of Agriculture (www. 
aphis.usda.gov/vs/nahss/, accessed 17 October 
2012). In sophisticated data banks such as these, 
performance indicators are used to monitor the 
quality of the data. Performance indicators are 
specifically designed key measures of quality, 
sensitivity and quantity of a surveillance system: 
they evaluate whether the achievements of a 

species, or evidence of toxic substances endan-
gering farm animals and/or humans.

•	 Drug resistance, for example antibiotic resist-
ance in bacteria.

•	 Drug residues in animal products – these are 
monitored to protect the human population 
against inadvertent exposure to drugs.

•	 The importation of meat products and live 
animals, which are monitored to identify 
potential sources of exotic diseases. For 
example, smuggling of ‘bushmeat’ (the meat of 
wild animals), often from West and Central 
Africa, is a growing concern to European gov-
ernments because of the risk of inadvertent 
importation of African wild animal viruses 
which are known to have the potential to 
‘jump’ species by mutation. A by-product of 
this monitoring is a contribution to the protec-
tion of endangered species.

Some surveillance is focused on a particular 
disease, e.g. bovine tuberculosis surveillance, and 
some surveillance is generic, e.g. general moni-
toring of patterns of disease outbreaks.

Veterinary disease surveillance has become an 
integral part of the strategies of the developed 
world to understand and control the spread of 
disease in animals and its transmission both 
within and beyond national borders. With the 
migration of people from one region to another 
caused by the promise of a better standard of 
living, as well as the mass movement of refugees 
under persecution, together with modern busi-
ness and vacation travel, the risks of disease  
dissemination are vastly increased. For these 
reasons, data collection and monitoring of disease 
incidence together with its geographical loca-
tions, facilitated by the developments of compu-
ter recording of large bodies of information, have 
become a necessity. Veterinary disease surveil-
lance covers all major animal diseases including 
zoonoses (any infectious diseases that can be 
transmitted naturally from animals, both wild 
and domestic, to humans) and hence public 
health issues; it impacts national and interna-
tional trade in live animals and their products.  
It is generally conducted by governmental or 
national organizations, but requires input from 
animal owners, veterinarians and laboratory and 

http://archive.defra.gov.uk/foodfarm/farmanimal/diseases/vetsurveillance/
http://archive.defra.gov.uk/foodfarm/farmanimal/diseases/vetsurveillance/
http://archive.defra.gov.uk/foodfarm/farmanimal/diseases/vetsurveillance/
http://www.scotland.gov.uk/Topics/farmingrural/Agriculture/animal-welfare/Diseases/
http://www.scotland.gov.uk/Topics/farmingrural/Agriculture/animal-welfare/Diseases/
http://www.scotland.gov.uk/Topics/farmingrural/Agriculture/animal-welfare/Diseases/
http://www.aphis.usda.gov/vs/nahss/
http://www.aphis.usda.gov/vs/nahss/
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15.5.5  Uses of veterinary 
surveillance in the UK

The value of surveillance is dependent on a 
number of factors including the timing and valid-
ity of its output and the costs involved. It is  
generally considered to be essential to health 
management in agricultural animals. The follow-
ing points provide some examples of the uses of 
veterinary surveillance in the UK.

•	 Good surveillance is imperative for the early 
detection of outbreaks of foot-and-mouth 
disease and for control measures to be imple-
mented in a timely manner (e.g. Bessell et al., 
2010). Because outbreaks are infrequent (at 
the time of publication, the last major out-
break in the UK was in 2001, some 34 years 
after the previous one), practice is only refined 
slowly; nevertheless, models have now been 
developed to predict airborne dissemination 
based on Meteorological Office data about 
local weather patterns (Gloster et al., 2005, 
2010). This allows the targeting of inspections 
of premises around an early case to detect 
spreading of the condition. Other measures 
developed from surveillance data from earlier 
outbreaks include the extent of restricted 
movement zones and localized slaughter zones.

•	 The appearance of a new disease revealed by 
veterinary surveillance was bovine spongiform 
encephalopathy (BSE) (Wilesmith et al., 1992). 
This disease is linked to variant Creutzfeldt–
Jakob disease in humans, and caused a consid-
erable scare when it was first described in the 
1980s. Its progress throughout the UK was 
monitored and the management co-ordinated 
using surveillance information.

•	 The ongoing management of tuberculosis in 
cattle in the UK depends on accurate record-
ing and standard procedures in the event of a 
positive skin test. The success of these proce-
dures to limit the dissemination in the cattle 
population is monitored on an ongoing basis.

•	 The emergence of porcine respiratory and 
reproductive syndrome (PRRS) was first rec-
ognized through surveillance in North America 
in 1987 and in Europe in 1990. PRRS was  
considered by the Food and Agriculture 

national disease surveillance programme are fulfill-
ing the purposes for which they were established.

15.5.4  How are veterinary 
surveillance data analysed?

We use mostly simple procedures to analyse sur-
veillance information and this can be readily 
achieved, providing the facilities are in place to 
cope with a large amount of data. Usually, the 
routine analysis of veterinary surveillance data 
relies on presenting prevalence or incidence 
rates using graphs, histograms and maps. Of par-
ticular value is the illustration of these rates by 
the individual animal (or herd, farm or breed) 
and area or time, or both. Surveillance analysis 
has recourse to spatial statistics (see Section 
15.4).

As an example, Plate 15.5 shows an indication 
of bovine tuberculosis-positive herds in the UK 
by county between July 2009 and June 2010 (the 
data are proportions of herds that had their offi-
cial disease-free status withdrawn in the period). 
It demonstrates the use of GIS to display 
recorded data graphically and indicates the high 
prevalence, particularly in the southwest of 
England. There are, of course, many further vari-
ations on the use of descriptive statistics in this 
context. Although simple graphical illustrations 
are appealing and useful, more sophisticated sta-
tistical methods are also being used, such as time 
series analyses to model epidemics (Montgomery 
et al., 2008) and small area analysis of clustering 
(Alexander and Boyle, 1996; Olsen et al., 1996).

One of the important outcomes from surveil-
lance data analyses is a risk estimate. Particular 
disease risk estimates can be used to identify 
hazards to surrounding flocks and herds or the 
human population, or may be used to rank pri-
orities for resource allocation to control disease 
spread. For example, Yousey-Hindes et al. (2011) 
compared the risk to humans of a bite from foxes 
infected with raccoon variant rabies and rabid 
raccoons in New York State, and showed that 
rabid foxes were more likely than rabid raccoons 
to bite and that rabid grey foxes were more dan-
gerous than rabid red foxes in this regard.
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ered, analysed and disseminated in Scotland. 
Final Report, November 2011 (www.scotland.gov.
uk/Resource/Doc/362344/0122619.pdf, accessed 
17 October 2012).

15.6  Molecular and  
quantitative genetics

15.6.1  Molecular genetics

In Mendelian terms a gene is a unit of inherit-
ance, whereas in molecular terms it is a region of 
DNA (deoxyribonucleic acid) which is tran-
scribed into mRNA (messenger ribonucleic acid) 
and this is then used to synthesize protein. Molec-
ular genetics is concerned with studying the 
structure and functions of DNA at a molecular 
level. It employs the methods both of genetics 
and molecular biology to answer questions about 
the make-up of genes and the mechanism of gene 
replication, giving rise to an understanding of 
genetic mutations that can cause certain diseases, 
as well as discovering why traits (genetically deter-
mined phenotypes or characteristics of an organ-
ism) are passed on from one generation to another.

Modern molecular biology has generated a 
considerable armoury of research techniques to 
explore the genetic composition of an entire 
animal. The genome (the complete DNA of an 
organism) of each of several domestic animals 
has recently been established and other species 
are being added. New terms have been coined to 
encompass each of the functional stages of the 
cellular processes originating in the genome – 
genomics (the branch of molecular biology con-
cerned with the structure, function, evolution 
and mapping of genomes), transcriptomics (an 
examination of the expression level of mRNA 
molecules in one or a population of cells), pro-
teomics (the study of the proteome, the complete 
set of proteins expressed by an organism, tissue 
or cell) and metabolomics (the scientific study 
of chemical processes involving metabolites, 
small molecules produced or taking part in 
metabolism in a tissue or cell). Together with 
these developments is the ability to explore the 
activity of multiple genes simultaneously using 
array technology, which generates enormous 

Organization in 2007 as the most economically 
important viral disease of intensive pig farms 
in Europe and North America. Similarly, 
another globally emergent epizootic disease of 
pigs, porcine post-weaning multisystemic 
wasting syndrome (PMWS) was first detected 
in UK in 1999.

•	 A cattle and sheep midge-borne disease, blue-
tongue, has been found by surveillance to be 
spreading northwards in Europe since around 
the turn of the 21st century: it reached the UK 
in 2007.

•	 Veterinary surveillance is being used, at the 
time of writing, to monitor ‘bleeding calf syn-
drome’, also known as bovine neonatal pancy-
topenia (BNP), a newly emergent disease in 
calves. A link has recently been found between 
BNP and a now withdrawn vaccine, but this is 
not the only or main cause, which currently 
remains unknown.

15.5.6  Further reading in 
veterinary surveillance

There are few comprehensive books on veteri-
nary surveillance at the time of writing but 
Brookmeyer and Stroup (2003), concerning sur-
veillance with regard to human public health, 
explain many of the principles and methods that 
are also relevant to the veterinary field. The text-
book by Sainsbury (1998) describes the factors 
having most implications for the health of animals 
kept for production purposes and covers much 
of the background to veterinary surveillance. For 
further reading, you might consult Dufour and 
Hendrikx (2009) or Salman (2003). In addition, 
good basic information, as well as data, can be 
found in the government websites listed in 
Section 15.5.3. The current practice of veterinary 
surveillance has been under review in Great 
Britain, and reports on the present state of cover-
age and desirable steps forward are available:  
see Animal Health and Veterinary Laboratories 
Agency (Defra), The Surveillance Advisory Group 
Final Report April 2012 (http://vla.defra.gov.uk/
science/docs/sci_sag_final_report.pdf, accessed 17 
October 2012) and Review of Veterinary Surveil-
lance: How information on animal disease is gath-

http://www.scotland.gov.uk/Resource/Doc/362344/0122619.pdf
http://www.scotland.gov.uk/Resource/Doc/362344/0122619.pdf
http://vla.defra.gov.uk/science/docs/sci_sag_final_report.pdf
http://vla.defra.gov.uk/science/docs/sci_sag_final_report.pdf
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(such as disease presence or absence) are all 
amenable to quantitative genetic analysis using 
maximum likelihood methods or Bayesian 
approaches (Xu et al., 1998; Yi and Xu, 2000).

There is now an active branch of medicine 
concerned both with identifying diseases that 
appear to have a polygenic inheritance compo-
nent, and with attempting to estimate the risks 
of those diseases in populations. Unlike the origi-
nal genetic experiments of Gregor Mendel where 
the phenotype of certain characteristics of pea 
plants was either of one kind or another with no 
intermediate appearance, the traits studied by 
quantitative genetics are not controlled by a 
single gene with only two alleles, but are control-
led by multiple genes. While each gene behaves 
according to Mendel’s Laws, the sum of their 
actions, together with environmental influences, 
result in a full range of intermediate phenotypic 
appearances that behave as continuous variables 
with a Normal distribution in the population. The 
straightforward mathematical calculations based 
on discontinuous distributions of limited differ-
ent types derived from Mendel’s Laws no longer 
serve for the complexity of multiple gene inter-
actions: instead, they are replaced by compli-
cated statistical probability estimations.

Many common human diseases, such as Type 
II diabetes, fall into this category of having phe-
notypic appearances behaving as continuous 
variables. In veterinary medicine and in agricul-
ture, as well as an interest in the genetics of 
disease susceptibility, we also explore the poten-
tial of these techniques to estimate the heritabil-
ity of desirable traits such as growth rate, milk 
production and drought resistance, and carcass 
traits, like subcutaneous fat and lean meat per-
centage in pigs. Litter size or clutch size, which 
are characterized by discrete values, can also be 
considered since the influence of multiple genes 
can affect the likelihood of increased sizes. The 
probability of twinning in sheep and the suscep-
tibility of developing a given disease are similarly 
amenable to quantitative genetics analysis. It is 
expected that new applications will be found in 
the future as more is understood of the inherit-
ance of complex traits under the influence of 
multigene interactions both with one another 
and the environment.

data banks stored digitally for further explora-
tion. With vast computing power so readily  
available, a new science, bioinformatics (the 
application of computer science and information 
technology to ‘omic’ information in the field of 
biology, agriculture and medicine), often referred 
to as computational biology, has grown up 
around these data banks to manage the explora-
tion and harvesting of the information. These 
techniques, which are advancing steadily over 
time, are all employed in basic veterinary and 
animal science. In general, the statistical 
approaches build on the concepts introduced in 
this book – probability theory, distinguishing 
important changes from background variation, 
significance testing, regression analysis, Bayesian 
analyses, clustering procedures, maximum likeli-
hood estimation, etc. For example, empirical 
DNA sequence analysis is often incomplete and 
contains errors; iterative procedures are used to 
find a match to the sequence in published data 
banks and to estimate the probability of the 
accuracy of the match. Algorithms to deal with 
iterative methodology and computer ‘learning’ 
from evidence within the data sets are frequently 
generated to answer new questions being asked.

For those who want to explore the statistics 
behind molecular genetics applications, we rec-
ommend Balding et al. (2007) and Laird and 
Lange (2011).

15.6.2  Quantitative genetics

It is generally accepted that both genetic and 
environmental factors give rise to continuous 
distributions of phenotypic characteristics, affect-
ing the incidence of diseases or patterns of 
growth and carcass conformation. Quantitative 
genetics encompasses the scientific study and 
analysis of such phenomena, and refers to the 
study of genetic variation of complex traits (char-
acteristics of an individual influenced by a mul-
titude of genes and their interactions with the 
environment). Most often, quantitative genetic 
analysis is performed on traits showing a con-
tinuous range of values, such as live weight. 
However, traits displaying a discrete number of 
values (such as litter size) and even binary traits 
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(e)  To design the experiment/trial to obtain the 
most information responsibly.

15.2  The benefit of spatial statistics in veteri-
nary medicine and animal research is:
(a)  To provide the only way to include data col-

lected in different locations.
(b)  To offer good spatial maps for output.
(c)  To allow for the analysis of data pertaining 

to events in time.
(d)  To aid our understanding of animal research 

in space and time.
(e)  To explore the spatial aspects of data.

15.3  Veterinary surveillance is used:
(a)  To check whether all animals coming into the 

country are free of disease.
(b)  To monitor the spread of animal diseases 

important to the economy or public health.
(c)  To audit the quality of veterinary practices.
(d)  To control animal movements.
(e)  To inspect slaughter houses before licensing.

15.4  Quantitative genetics:
(a)  Is used to study traits that are determined by 

multiple genes and their interactions with 
the environment.

(b)  Is concerned with studying the structure and 
function of genes at a molecular level.

(c)  Builds on concepts of Mendelian genetics.
(d)  Uses exclusively non-parametric analysis 

methods.
(e)  Is the identification of the entire genome in 

a new species.

15.5  The distribution of Q fever (a zoonotic 
disease caused by Coxiella burnetii) was studied 
in the goat population throughout the Nether-
lands (Schimmer et al., 2011). In the diagram 
(Plate 15.6), we show their observations regard-
ing both serology and bulk milk testing of goats 
in the study.
(a)  What conclusions can you draw about infec-

tion with Q fever from the distribution of the 
goat farms?

(b)  What additional information is contained in 
the distribution of goat density?

(c)  What hypotheses might you be able to test 
with this spatial information?

While the details of the techniques used in 
quantitative genetic analysis are beyond the brief 
of an introductory statistical text, we should 
appreciate that it is a quantitative issue, and we 
use statistical analysis to look for markers that 
follow the phenotype characteristic in which we 
are interested. The methodology derives largely 
from concepts introduced in this book, such as 
the Normal distribution (see Section 3.5.3), cor-
relation and simple regression (see Chapter 10) 
and more complex linear models (see Chapter 
11) as well as the analysis of variance (see Sec-
tions 8.5 and 8.6), but takes them to a more 
advanced level.

Further information can be found in the texts 
by Falconer and McKay (1995) and Nicholas 
(2010). Quantitative genetics applications in vet-
erinary science and animal breeding are explored 
in the book by Simm (2002). Saxton (2004) is a 
primer with good information on how to use SAS 
as a statistics package in this field. Sorensen  
and Gianola (2002) is a more advanced text 
designed for the biologist with some mathemati-
cal background, introducing more sophisticated 
methodology for the analysis of quantitative 
genetics data, but with sufficient detail for non-
mathematicians to follow the derivation of the 
equations employed.

Exercises

The statements in questions 15.1–15.4 are either 
TRUE or FALSE.

15.1  An investigator using live animals has a 
duty:
(a)  To focus on benefits of the new knowledge 

promised and not be diverted into considera-
tion of possible harms to the animals.

(b)  To leave all welfare aspects to the ethics 
committee.

(c)  To minimize possible pain and suffering 
while still designing a meaningful experiment/
trial.

(d)  To focus exclusively on the welfare of the 
animals in the experiment.
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16.1  Learning objectives

By the end of this chapter, you should be able to:

•	 Explain the concept of evidence-based veteri-
nary medicine.

•	 Describe the hierarchy of reliability of evi-
dence and give reasons for the relative posi-
tions of types of evidence.

•	 List the stages involved in practising evidence-
based veterinary medicine.

•	 Identify the aspects of a study design that 
avoid bias.

•	 From a report of a clinical trial, critically 
appraise the value of the evidence.

•	 Explain what is meant by the absolute risk 
reduction (ARR) and the relative risk reduc-
tion (RRR).

•	 Explain what is meant by the number needed 
to treat (NNT) and how to calculate the con-
fidence interval for the NNT.

•	 Interpret the usefulness of the evidence in the 
clinical/professional setting.

16.2  Introduction

In our reflections in recent years on the applica-
tion of statistics in the veterinary field, we have 
become aware that so-called evidence-based vet-

16 Evidence-based 
veterinary medicine

erinary medicine (EBVM) is now a buzz-word 
throughout the veterinary profession. By this is 
meant the integration of the results of scientifi-
cally conducted studies into day-to-day clinical 
practice with the aim of improving clinical 
outcome. At first sight, this seems to be a state-
ment of what veterinary practice has been all 
along. However, the real difference is that scien-
tific ‘literature’ is now available to everyone who 
has access to the internet wherever s/he may  
be. Furthermore, a blueprint for the practice of 
EBVM, incorporating sound statistical principles 
in critical appraisal, has been formulated to make 
its processes more accessible to veterinary  
professionals. Like human medicine, veterinary 
science is developing an emphasis on the latest 
experimental evidence to guide clinical judge-
ments. Moreover, for both performance and  
production in animals, there is also a growing 
awareness of the relevance of scientifically con-
ducted studies to direct progress. We have gath-
ered the consideration of these themes into this 
chapter to set the foregoing information in  
an effective context. We direct our thoughts  
particularly to the professional practitioner in all 
branches of animal or veterinary science. The 
following sections will give you a feel of what is 
encompassed by EBVM; for further exploration 
of these concepts we direct you to Cockcroft  
and Holmes (2003), Marr (2003) and Straus et al. 
(2011).
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smaller, studies. We consider this in more detail 
in Section 16.5.2.

In veterinary practice, the outcome may have a 
wider definition than in human medicine, as we 
generally take into account economic issues as well 
as animal welfare; for example, our concern may 
be improved economic use of animal treatments 
and therefore better production efficiency. Cost–
benefit analysis is clearly implicated at the level 
of the individual case in EBVM, more so than  
in human medicine. It involves addressing the  
client’s values and providing reliable evidence on 
which informed decisions can be taken jointly.

16.4  Why has evidence-based 
veterinary medicine developed?

Following human medicine, veterinary medicine 
has now espoused the emphasis on scientific pub-
lications, in their widest sense, to guide clinical 
practice. Driven by the advent of the ready avail-
ability of electronic media for disseminating  
scientific observations, no longer can we, as prac-
titioners, fall back on ‘clinical opinion’ as the sole 
guide to our practice. Today, more than ever 
before, we need to demonstrate that our deci-
sions are based on current knowledge of the con-
dition. This is not to say that ‘clinical judgement’ 
now has no place in clinical practice. Far from it: 
clinical judgement must use the best information 
to guide good practice. Decisions are to be based 
on the evidence, not made by the evidence.

This requires the development of a number of 
new skills for the veterinary and animal scientist 
in the 21st century. We cannot expect to carry in 
our heads all the knowledge needed for our prac-
tice; instead, we need to learn how to marshal the 
evidence available to us to guide our decision-
making. Foremost amongst these skills is the 
ability to phrase the right questions to direct the 
search, and next, to search the databases, extract 
the relevant information efficiently, and then 
evaluate it appropriately. We, as practitioners, 
must recognize that in veterinary medicine, as in 
human medicine, the evidence-based approach is 
here to stay: it is increasingly becoming part of 
expectations in veterinary schools and in the pro-
fession at large.

Useful websites include:

•	 www.cebm.net (accessed 24 October 2012).
•	 http://ktclearinghouse.ca/cebm (accessed 24 

October 2012).
•	 www.vetmed.wsu.edu/courses-jmgay/EpiLinks. 

htm (accessed 24 October 2012).

16.3  What is evidence-based 
veterinary medicine?

We provide a formal definition of EBVM in Box 
16.1: it is derived from the widely quoted defini-
tion for evidence-based medicine devised by 
Sackett (1996). EBVM implies the basing of 
clinical judgement not simply on clinical experi-
ence but also on the available relevant and valid 
scientific studies of the condition, its diagnosis 
and/or its treatment. In practice, this means the 
integration of individual clinical expertise, tem-
pered by local knowledge and circumstances, 
with the best available external clinical evidence 
which is assessed in a methodological fashion 
using well-defined strategies. It involves a con-
scious choice to use this approach towards 
achieving best practice, it is conscientious in that 
it implies a scrupulous application, and it is 
explicit in that the practitioner is able to justify 
judiciously any clinical decisions made that rely 
on this external evidence.

Evidence comes with variable reliability so we 
are faced with the task of selecting and critically 
evaluating the best evidence. In human medicine, 
properly designed trials of sufficient size are 
readily organized, given the structure of health 
services around the world, and thus there is a 
large and growing body of good evidence on 
which to draw. In veterinary medicine, however, 
the most reliable types of evidence, systematic 
reviews or randomized controlled trials, are still 
quite rare so we must resort to less reliable, often 

The conscientious, explicit and judicious use of the best 
scientific evidence to inform clinical judgements with a 
view to improving clinical outcome at the level of the 
individual unit, i.e. animal or group of animals.

Box 16.1  Evidence-based veterinary medicine: a definition

http://www.cebm.net
http://ktclearinghouse.ca/cebm
http://www.vetmed.wsu.edu/courses-jmgay/EpiLinks.htm
http://www.vetmed.wsu.edu/courses-jmgay/EpiLinks.htm
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Moreover, this activity is not limited to clinical 
veterinary practice, but also embraces animal 
science in its broader sense. The use of training 
regimens, feed supplements and nutritional addi-
tives, the relative values of husbandry practices, 
and the use of physiotherapy to aid recovery in 
equine subjects will all be influenced by this 
approach. Indeed, professional advisors, in what-
ever capacity, will be required to demonstrate 
that they are using the best available knowledge, 
not least in response to legal challenges when the 
legal profession will have at their disposal the 
same body of literature and information.

16.5  What is involved in practising 
evidence-based veterinary 
medicine?

Evidence-based veterinary medicine applies to 
several aspects of diagnosis, therapy, prognosis 
and prevention in clinical practice (Box 16.2). 
For example, a query may arise as to what is 

•	 Diagnosis: this may involve the choice and interpreta-
tion of an appropriate diagnostic test, with an assess-
ment of its reliability. Consideration of the possible 
causes of a disease, its likelihood and an evaluation of 
signs and symptoms will lead to a differential diagnosis 
about which clinical judgement, informed by the evi-
dence, is exercised.

•	 Treatment: evidence relating to the efficacy of compet-
ing therapeutic regimens has to be evaluated with a 
view to offering the animal the therapy which will be 
of the greatest benefit, weighed against the potential 
harm inflicted and the costs involved. In contrast to 
human medicine, euthanasia will sometimes remain a 
potential course of action.

•	 Prognosis: consideration must be given to the likeli-
hoods of the possible outcomes of the disease, the 
timing of these outcomes, and their effect on the 
animal, and its owner, in the presence and absence of 
treatment.

•	 Prevention: prophylactic measures, such as vaccina-
tion, may be taken after appraising the known risk 
factors associated with the disease, estimating the risk 
of the disease, and the efficacy, cost and side effects of 
the procedure.

Box 16.2  Clinical activities which are central to evidence-
based veterinary medicine

1.	 Phrase the question(s).
2.	 Search available resources for all relevant informa-

tion (i.e. the evidence).
3.	 Critically appraise the retrieved information for its 

validity and clinical applicability.
4.	 Make a clinical judgement by integrating the appraisal 

with clinical expertise and take action accordingly.
5.	 Review the process and evaluate its performance.

Box 16.3  Evidence-based veterinary medicine: the process

known of the relative importance of certain clini-
cal signs in differential diagnosis, or what reli-
ance can be placed on a particular diagnostic test. 
In the therapeutic area, which particular thera-
peutic approach has the best chance of success 
and the least chance of an adverse outcome? In 
prognosis, what is the likelihood of a successful 
outcome and at what cost, especially when, unlike 
in human medicine, the client has the option of 
euthanasia?

Broadly, the process can be broken down into 
five stages (Box 16.3) which are elaborated in 
Sections 16.5.1–16.5.5.

16.5.1  Phrasing the question

The first task is to ask the appropriate focused 
questions. In order to get clear answers and to 
avoid wasting time in searching, we must phrase 
appropriate questions that can be answered  
precisely, given the availability of the evidence. 
For example, what diagnostic tools are available 
and what is known about their reliability? In 
prognosis, what is the probability of a favourable 
outcome? Once questions have been phrased, 
specific answers can be sought from a variety  
of resources. Some guidelines for formulating 
appropriate questions are given on the Centre 
for Evidence-Based Medicine’s web page (http://
www.cebm.net/index.aspx?o=1036, accessed 24 
October 2012). Here the use of the PICO struc-
ture is advocated, specifically:

•	 P: Patient or problem – what type of patients 
(animals) or problem do we have in mind? 
How would we describe a group of patients 
similar to ours?

http://www.cebm.net/index.aspx?o=1036
http://www.cebm.net/index.aspx?o=1036
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studies to draw dependable conclusions. Next in 
the hierarchy we have experimental studies, gen-
erally clinical trials, which are randomized (to 
avoid assessment bias; see Section 5.6), control-
led (so that there is an objective assessment of 
the treatment effect; see Section 5.5) and of suf-
ficient size to give statistically sound results (see 
Section 13.3). Ideally these should be blinded 
trials (see Section 5.7) to control for subjective 
elements at the point of delivery or assessment 
and thus avoid bias. Smaller randomized control-
led trials are less dependable because of lower 
statistical power yielding wide confidence inter-
vals and greater doubt about the treatment 
effect. In clinical investigations, an experimental 
study which is relatively simple and easy but may 
be of limited value is one using historical controls 
(see Section 5.5.3); a novel treatment is applied 
to all new cases and the outcome compared with 
that of cases treated earlier by the more tradi-
tional approach. It lacks a contemporary control 
and is therefore less reliable and subject to bias.

There is still a considerable lack of dependable 
experimental studies of many aspects of veteri-
nary clinical practice, but observational studies 
(see Section 5.2), provided they are properly 
structured to contain suitable controls, make a 
valuable contribution to the information base 
and form the next level of hierarchy. In terms of 
the strength of evidence, these are followed by 
case reports and then the views of an expert 
sought by referral; those with expertise in a par-
ticular field might be expected to have a superior 
knowledge of the specific subject and the pub-
lished literature relating to it. With perhaps less 
reliability, we might consider the opinions of 
trusted colleagues; this allows for there to be a 
collective view derived from multiple experi-
ences and reading. Lastly, there is the individual’s 
own clinical expertise based on memories and 
impressions of past experience. While the latter 
used to be the sole basis of clinical judgement, no 
longer is it as useful because of the rate at which 
advances are being made in the veterinary field.

Today, personal access to the worldwide litera-
ture is available over the internet to the vast 
majority, accessed via search engines and data-
bases, and generally downloadable free of charge 
or for a small fee. Devising the correct search 

•	 I: Intervention – what main treatment/
intervention are we considering?

•	 C: Comparison – if necessary, what is the main 
alternative to compare with the intervention?

•	 O: Outcome – what can we hope to accomplish 
or what could this exposure really affect?

Once we have formed the question using the 
PICO structure, we can think about what type of 
question it is we are asking, and therefore what 
type of research (e.g. systematic review or rand-
omized controlled trial) would provide the best 
answer. As an example, consider the following 
PICO questions that might be asked of a study 
to investigate the efficacy of a single oral dose of 
oxfendazole against Fasciola hepatica in natu-
rally infected sheep (Gomez-Puerta et al., 2012):

•	 Patient or problem: naturally infected sheep.
•	 Intervention: single oral dose of oxfendazole.
•	 Comparison: no treatment.
•	 Outcome: the number of eggs per gram of 

stools after 10 days.

Clearly a randomized controlled trial would be 
advocated in these circumstances. In fact, the 
authors found that in groups of 20 sheep, none of 
the treated group had Fasciola eggs in the faeces 
10 days after treatment, while all the untreated 
(control) group had similar numbers of eggs as 
before. They concluded that a single dose of 
30 mg/kg oxfendazole was highly effective.

16.5.2  Obtaining the information

Evidence comes with various degrees of reliabil-
ity; in particular, in assessing the value of the 
evidence, we should remember to be extremely 
cautious about relying on the results contained 
in publications that have not been peer-reviewed. 
To select information on a scientific basis, we 
need to have in mind a hierarchy of value from 
the most helpful and reliable, to the least (see 
Table 16.1 for a summary).

The evidence of the greatest reliability is 
obtained from systematic reviews and meta-
analyses (see Section 13.5) which rely on the 
combined evidence from available and valid 
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Table 16.1  Hierarchy of evidence.

Hierarchy  
of evidence

General 
description Methodology Description

Strongest Overview Systematic 
review and 
meta-analysis

Systematic review: a literature review focused on a 
single question that tries to identify, appraise, 
select and synthesize all high-quality research 
evidence relevant to that question

Meta-analysis: a systematic review that uses 
quantitative methods to synthesize and summarize 
the results (see Section 13.5)

Experimental 
study

Randomized 
controlled trial

Animals are randomly allocated into one or more 
experimental groups or a control group and 
followed over time for the variables/outcomes of 
interest (see Sections 5.3–5.9)

Observational 
study

Cohort study Groups (cohorts) of animals are selected on the 
basis of their exposure to a particular factor and 
followed prospectively to see if they incur a 
specific outcome (e.g. disease) (see Section 5.2.3(a)) 

Case–control 
study

Animals that have the outcome of interest (cases) 
and those that do not have the same outcome 
(controls) are identified, and a retrospective 
analysis performed to see if there are differences 
between the groups in their exposure(s) of 
interest (see Section 5.2.3(b))

Cross-sectional 
survey

A defined population is observed at a single point in 
time or time interval. Exposure and outcome are 
determined simultaneously

Observation Case series and 
case report

A report based on a single animal; sometimes 
collected together into a short series but there are 
no controls

Opinion Expert opinion A view or consensus of views from one or more 
persons with a high degree of skill in or 
knowledge of the relevant subject

Weakest Anecdotal Based on casual observations or indications rather 
than rigorous or scientific analysis

terms and structuring the search is now a well-
developed art; helpful restriction tools exist in 
some of the search websites to focus our search 
– for example in PubMed (www.ncbi.nlm.nih.gov/
pubmed, accessed 24 October 2012), which  
provides free access to MEDLINE, a database  
of indexed citations and abstracts to medical, 
nursing, dental, veterinary, healthcare and pre-
clinical sciences journal articles.

16.5.3  Evaluating the information: 
the role of statistics

Having located the body of knowledge on our 
subject, we must set about evaluating the 
retrieved information. It is in this part that an 
understanding of statistics, its terms and its pro-
cedures, is essential. We need to have a sound 
grasp of the principles of design and analysis, 

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
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prognostic studies, the median survival times, 
survival curves and/or the probabilities of sur-
vival to a particular time may be of interest (see 
Section 14.6). In all situations, confidence inter-
vals, where appropriate, should be provided.

•	 We must decide whether the results are impor-
tant clinically. We can often achieve this by 
studying the confidence intervals of the out-
comes of interest. For example, in a compara-
tive study, we might ask: ‘if the observed effect 
is equal to either the upper limit or the lower 
limit of the confidence interval, would the 
result be considered clinically important?’ 
Another approach is to determine the number 
of animals needed to treat (NNT) with the novel 
treatment to prevent one adverse outcome: 
this is equal to the inverse of the absolute risk 
reduction (ARR; the difference in the risks of 
the adverse outcome between the control and 
treated groups – see Section 5.2.3). Sometimes 
it is also helpful to determine the relative risk 
reduction (RRR; the percentage reduction in 
risk of the adverse outcome in the treated 
group compared with the control group, i.e. it 
is the ARR divided by the risk in the control 
group). Bear in mind, though, that we can only 
put a relative risk (RR), RRR or ARR in 
context if we know the underlying risk in each 
group – a large relative risk may be clinically 
unimportant if the actual risk of the disease 
outcome is low. Appendix Table B.1 provides 
formulae for the confidence intervals for the 
ARR, RR and NNT, and an example that 
derives values for these indices is given at the 
end of this subsection. The post-test probabil-
ity of disease is particularly useful when assess-
ing the clinical usefulness of a diagnostic test. 
This is calculated from the pre-test probability 
(often simply an estimated prevalence of the 
disease in the population under investigation) 
and the likelihood ratio, and is closely allied to 
the positive and negative predictive values of 
the test (see Section 14.2).

Example of ARR, RRR and NNT

Bacterial overgrowth and translocation from the 
gut lumen to extraintestinal sites is a cause of 
concern after massive gut resection in human 

as applied in both experimental and observa-
tional studies, in order to be able to critically 
appraise the methods used and assess whether 
the information provided is valid and applicable 
to our problem. This book provides the back-
ground that is required to pursue this aspect of 
EBVM.

The information in the following bullet points 
provides a brief summary of the steps involved 
in appraising the information.

•	 We need to know that the study has been 
designed in such a way so as to avoid bias (see 
Section 5.4). In an experimental situation 
investigating a new therapy, this means that 
the study should incorporate a control, rand-
omization and blinding (see Sections 5.6 and 
5.7). For the evaluation of a diagnostic test, 
there should be an independent, blind com-
parison with a reference (‘gold’) standard of 
diagnosis (see Section 14.2).

•	 In order to further assess validity, we should 
check that the appropriate statistical proce-
dures have been applied in the correct manner, 
and determine whether the subjects were suf-
ficient in number and of a wide enough range 
to render the results of the study useful and 
generalizable to the population of interest. For 
a prognostic problem, we should ensure that 
the follow-up time for all animals was suffi-
ciently long and complete.

•	 We have to extract the most useful results, in 
particular, those that relate to the primary 
aim(s) of the study. In clinical trials and epi
demiological studies, these results should be 
expressed as estimated effects of interest (e.g. 
difference in means, difference in risks, odds 
ratio, relative risk, hazard ratio) with associ-
ated estimates of precision or, preferably, con-
fidence intervals. If a confidence interval is 
wide, this will indicate poor precision and an 
unreliable estimate. For a diagnostic test (see 
Section 14.2), we need the sensitivity and spe-
cificity of the test (describing the performance 
of the test) and the likelihood ratios which can 
be calculated from them, as well as the positive 
and negative predictive values of the test (indi-
cating the chances that the animal does or does 
not have the disease, given the test result). In 
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tion. Here the clinicians, with their particular 
experience of the background, can integrate the 
scientific understanding derived from the EBVM 
process, the local setting (e.g. prevalence of the 
disease condition locally) and the client’s own 
values in order to arrive at a suitable course of 
action.

16.5.5  Reviewing the process

Lastly, there is a further stage – that of reflection 
on the process and its outcome to refine the 
skills. Have I conducted the EBVM process 
effectively and has it influenced my decision-
making process for the better? In what areas do 
I need to improve? Have I learnt from the 
experience?

16.6  Integrating evidence-based 
veterinary medicine into  
clinical practice

It has been suggested that the introduction of the 
evidence base is causing as big a change in clini-
cal practice as the Enlightenment. Whether that 
is an overstatement or not, it is sufficient to make 
the point that big changes in the practice of clini-
cal medicine are afoot. The veterinary profession 
is being swept along by this change, and cannot 
stand against it. In the veterinary schools, EBVM 
is being taught as the best mode of practice, and 
more and more publications are providing the 
evidence base on which it is built.

16.7  Example

Box 16.4 contains an abstract adapted from a 
paper reporting the results of a randomized con-
trolled trial to evaluate the clinical efficacy of 
pimobendan compared with ramipril in dogs 
with mild to moderate heart failure (HF) (Smith 
et al., 2005). We use it in the process of demon-
strating an EBVM approach (with particular 
emphasis on assessing the statistical information 
highlighted in Section 16.5.3) to establishing the 

cancer patients. In order to assess whether the 
administration of Bifidobacterium lactis (BL), a 
probiotic bacterium, reduces the incidence of 
bacterial translocation in adult Wistar rats fed 
orally after 80% gut resection, Eizaguirre et al. 
(2002) found that the incidence of bacterial 
translocation in the RES group (those rats having 
80% resection only) was 87% (34 of 39) whereas 
it was only 50% (nine of 18) in the RES-PRO 
rats (those with the same resection and daily 
administration of 7.8 × 108 colony-forming units 
BL). In these data, the relative risk (see Section 
5.2.3(a)) of bacterial translocation is 0.57 (95% 
CI 0.36 to 0.92) so that the risk of bacterial trans-
location is reduced by 100% – 57% = 43% if a 
rat is treated with the probiotic; i.e. this is the 
relative risk reduction (RRR). The difference in 
the two incidences of bacterial translocation is 
the absolute risk reduction (ARR), equal to 37% 
(95% CI 11.8% to 62.5%; see point 6 of Section 
9.4.3(c)). The results indicate that treatment with 
the probiotic significantly improves the incidence 
of bacterial translocation (P =  0.006 from Fish-
er’s exact test). The number needed to treat 
(NNT) is the reciprocal of the ARR when the 
latter is expressed as a probability, i.e. NNT is  
1/(0.37)  =  2.7. When this is rounded up, the 
NNT = 3. This implies that only three rats need 
to be treated with the probiotic after gut resec-
tion instead of just having resection in order for 
one of them to be free of bacterial translocation. 
The 95% confidence interval for the NNT is 
obtained by finding the reciprocal of the limits of 
the 95% confidence interval for the ARR, i.e.  
it is 1/(0.625) = 1.6 to 8.5 = 1/(0.118). The study 
demonstrates the distinct advantage of the pro-
biotic regimen following gut resection in control-
ling the bacterial translocation.

16.5.4  Applying the results and 
making a clinical judgement

In order to use the critically appraised external 
evidence in clinical practice, we should ensure 
that the results are applicable to the animal(s) in 
our care. Then we need to come to a clinical 
judgement, bringing to bear local and/or indi-
vidual knowledge of the particular case in ques-
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adverse HF outcome in each group is esti-
mated and evaluated for significance: the RR 
is put into context since the estimated risk, as 
well as actual numbers with adverse effects,  
in each group is also provided. The NNT is 
determined. The statistical methods are appro-
priate although, since the pimobendan group 
had more advanced disease, it would be better 
to adjust for this in the analysis using a multi-
variable logistic regression approach (see 
Section 11.4).

•	 Effect of interest: this is the estimated relative 
risk, RR = 0.38 so the RRR = 1 – 0.38 = 0.62, 
i.e., the risk of an adverse HF outcome was 
reduced by 62% if the dog received pimobendan 
(P = 0.08).

•	 Clinical importance: the estimated 95% 
confidence interval for the RR is from 0.14 to 
1.03. This is a wide confidence interval indicat-
ing poor precision and suggesting that the 
results may not be clinically important. The 
upper limit of the 95% confidence interval  
is 1.03, just exceeding 1 which is reflected  
by P  =  0.08, a non-significant result. The 
NNT = 1/(0.476 – 0.182) = 3.4 implies that four 
dogs should be treated with pimobendan to 
prevent one of them suffering an adverse HF 
outcome. In view of these findings, and the fact 
that dogs treated with pimobendan may have 
had more advanced disease, it is correct to 
indicate that these results should be inter-
preted cautiously.

Exercises

The statements in questions 16.1 and 16.2 are 
either TRUE or FALSE.

16.1 
(a)	 EBVM uses only published literature as 

evidence.
(b)	 EBVM is intended to protect veterinary pro-

fessionals against litigation following errors 
of judgement.

(c)	 Randomized controlled experimental studies 
provide more reliable evidence than obser-
vational studies.

(d)	 EBVM is what has been practised all along.

value of the novel treatment, pimobendan. In 
particular:

•	 Bias: the study was randomized to avoid allo-
cation bias and blinded to avoid assessment 
bias.

•	 Validity: the authors checked that the two 
groups were comparable at baseline with 
respect to factors likely to influence response. 
Important factors were comparable apart from 
an indication that pimobendan dogs had more 
advanced disease. The relative risk (RR) of an 

Box 16.4  Abstract showing the important aspects of the 
design, conduct and reporting of a clinical trial

•	 Objectives: to evaluate the clinical efficacy of 
pimobendan by comparing it with ramipril over a 
6-month period in dogs with mild to moderate heart 
failure (HF) caused by myxomatous mitral valve 
disease (MMVD).

•	 Methods: this was a prospective, randomized, single-
blind, parallel-group trial. Client-owned dogs (n = 43) 
with mild to moderate HF caused by MMVD were 
randomly assigned to one of two groups for 6 months 
of treatment: 22 dogs received 0.3 mg/kg pimobendan 
every 12 hours orally and 21 dogs received 0.125 mg/
kg ramipril every 24 hours orally. The main outcome 
measure studied was adverse HF outcome, defined as 
failure to complete the trial as a direct consequence  
of HF.

•	 Results: treatment with pimobendan was well toler-
ated compared to treatment with ramipril. The  
characteristics of the two groups were similar at base-
line in terms of the dogs’ echocardiogram features, 
echocardiographic measurements, laboratory data and 
most clinical features but there was some evidence 
that pimobendan dogs may have had more advanced 
disease as the two groups exhibited substantial differ-
ences in mobility and demeanor scores at baseline. 
Four (18.2%) of the pimobendan dogs suffered an 
adverse HF outcome compared to 10 (47.6%) of the 
ramipril dogs (RR  =  0.38; 95% CI 0.14 to 1.03; 
P = 0.08). The NNT was 4 (95% CI 1.8 to 37.3).

•	 Clinical significance: because dogs treated with rami-
pril may have had more advanced disease at baseline, 
these results should be interpreted cautiously but a 
low RR of 0.38 and NNT of 4 suggests that pimo
bendan warrants further investigation.

Adapted from Smith et al., 2005, with permission from 
Wiley-Blackwell.
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(d)	 Appraising the retrieved information for its 
validity and clinical judgement.

(e)	 Reviewing the process and evaluating its 
performance.

16.6  Read the following abstract with a view to 
evaluating the statistical information.

(e)	 EBVM enables veterinary practitioners to 
draw on the best and most reliable evidence 
to guide their decision-making.

16.2  The number needed to treat (NNT) is:
(a)	 The number of animals treated with the 

novel treatment in an experimental study.
(b)	 The total number of animals on the novel 

and control treatment in an experimental 
study.

(c)	 The number of animals needed to be treated 
with the novel treatment compared with the 
control treatment to prevent one adverse 
outcome occurring.

(d)	 Equal to the inverse of the absolute risk 
reduction.

(e)	 Equal to the ratio of the risks of the outcome 
of interest in the treated and control groups.

16.3  Choose the most appropriate answer. If I 
am a veterinary practitioner, EBVM is intended 
to:
(a)	 Make sure I read the veterinary literature 

every week.
(b)	 Make me more aware of the literature avail-

able to improve my professional practice.
(c)	 Enable me to justify my clinical decisions 

based on the best possible information 
available.

(d)	 Enable me to apply the global clinical expe-
rience relevant to my case to my clinical 
decision-making.

(e)	 Share the responsibility for decision-making.

16.4  Which one of the following is not a com-
ponent of a PICO question?
(a)	 P-value to determine significance of the 

finding.
(b)	 Intervention under consideration.
(c)	 Comparative intervention, if relevant.
(d)	 Outcome(s) of interest.

16.5  Which one of the following statements is 
not one of the steps of EBVM?
(a)	 Producing a clinically focused question.
(b)	 Searching available resources for the rele-

vant information.
(c)	 Designing a clinical trial to answer a clinical 

question.

This investigator-blinded randomized controlled trial 
was designed to determine whether tacrolimus ointment 
(Protopic, Fujisawa Healthcare) decreased the severity 
of localized lesions of canine atopic dermatitis (AD). 
Twenty dogs with AD were enrolled if they exhibited 
lesions on both front metacarpi. Each foot was rand-
omized to be treated with 0.1% tacrolimus or placebo 
(Vaseline) ointment twice daily for 6 weeks. Before, and 
every 2 weeks during the study, erythema, lichenification, 
oozing and excoriations each were graded on a 10-point 
scale (maximal total score: 40). The primary outcome 
measures were the percentage reduction from baseline 
of lesional scores and the number of subjects whose 
scores had decreased by 50% or greater at study end. 
Intention-to-treat analyses were used. At study onset, 
lesional scores were not significantly different between 
sites treated with tacrolimus or placebo. After 6 weeks, 
the percentage reduction from baseline scores was 
higher for tacrolimus-treated sites (median: 63%; 95% 
confidence interval: 39–67) than for placebo-treated feet 
(median: 3%; confidence interval: -2–13) (Wilcoxon test; 
P  =  0.0003). When tacrolimus was applied, lesions 
decreased by 50% or greater in 15/20 dogs (75%); these 
dogs were those that completed the study. In contrast, 
this benchmark was not reached for any placebo-treated 
feet (Fisher’s test; P  <  0.0001). Adverse drug events 
consisted of minor irritation in some lesional areas 
treated with tacrolimus. Results of this trial suggest  
that the application of 0.1% tacrolimus ointment is 
useful for reducing the severity of localized skin lesions 
of canine AD.

From Bensignor and Olivry, 2005, reproduced with permis-
sion from Wiley-Blackwell.

(a)	 What attempts were made to eliminate bias?
(b)	 What statistical tests were employed and 

were they suitable?
(c)	 What do the P-values indicate?
(d)	 What is the main effect of interest?
(e)	 What can be understood from the confidence 

intervals of the responses?
(f)	 Do you agree with the conclusion?
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17.1  Learning objectives

By the end of this chapter, you should be able to:

•	 Expound the importance of reporting guide-
lines in veterinary research.

•	 Explain the function of the EQUATOR 
network.

•	 Describe the function of the CONSORT 
guidelines.

•	 Describe the aims of the REFLECT guidelines.
•	 Explain the benefit of the REFLECT 

guidelines.
•	 Describe the purpose of the ARRIVE 

guidelines.
•	 Explain in what circumstances you use the 

STARD, STROBE and PRISMA guidelines.

17.2  Introduction to reporting 
guidelines (EQUATOR network)

17.2.1  Introduction

The Declaration of Helsinki was developed in 
June, 1964, at the 18th World Medical Association 
(WMA) General Assembly, Helsinki, Finland. It 
was written as a statement of ethical principles 
for medical research involving human subjects 
but is relevant, then and now, to animal research. 

17 Reporting guidelines

The ethical principles of the Declaration of Hel-
sinki included the following statement:

Authors, editors and publishers all have ethical obligations 
with regard to the publication of the results of research. 
Authors have a duty to make publicly available the results of 
their research on human subjects and are accountable for the 
completeness and accuracy of their reports. They should 
adhere to accepted guidelines for ethical reporting. Negative 
and inconclusive as well as positive results should be pub-
lished or otherwise made publicly available. Sources of 
funding, institutional affiliations and conflicts of interest 
should be declared in the publication. Reports of research 
not in accordance with the principles of this Declaration 
should not be accepted for publication.

This serves at a starting point for scientists to 
ensure that they report their work in an accurate 
and open manner in such a way that it is, as far 
as possible, reproducible and verifiable.

If research is not reported in full or if the 
reporting is inadequate, it is difficult or impossi-
ble to assess the strengths and weaknesses of the 
research and thereby draw proper conclusions 
about the validity of the findings. To avoid this 
pitfall, it is essential that researchers have stand-
ardized and comprehensive guidelines of report-
ing to follow. The guidelines are not necessarily 
absolutely prescriptive but they can guide authors 
preparing manuscripts for publication, and those 
involved in peer review for quality assurance, to 
ensure completeness and transparency. They are 
also helpful for study planners and are a valuable 
aid to promoting good practice.
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the REFLECT statement, a modification of  
the CONSORT statement for randomized con-
trolled trials (RCTs) on human subjects, was 
drawn up in 2008 to provide reporting guide-
lines for livestock trials with production, health 
and food-safety outcomes. In addition, the ARRIVE 
guidelines are aimed specifically at research 
using laboratory animals. There is also some 
reporting guidance (as distinct from formalized 
guidelines) for animal studies on certain topics, 
such as systematic reviews, animal stroke mod-
elling and prognostic studies in veterinary 
oncology. References with full details may be 
obtained at www.equator-network.org/resource- 
centre/library-of-health-research-reporting/reporting- 
guidelines-in-other-research-fields/ (accessed 24 
October 2012).

Although at the time of writing, REFLECT 
and ARRIVE are the only formalized guidelines 
aimed specifically at animal research, we also 
present in this chapter the guidelines written for 
research on human subjects, as these guidelines 
are easily adapted for analogous research on 
animals. In particular, we present the following 
guidelines:

•	 REFLECT (a modification of CONSORT, for 
reporting of RCTs on humans, applicable to 
the reporting of livestock trials with produc-
tion, health and food-safety outcomes).

•	 ARRIVE (research using laboratory animals).
•	 STARD (diagnostic accuracy studies).
•	 STROBE (observational studies in 

epidemiology).
•	 PRISMA (systematic reviews and meta-

analysis) which replaced QUOROM.

The guidelines usually include the following:

•	 A checklist: this follows the format of an aca-
demic paper, namely, a title, abstract, introduc-
tion, methods, results, discussion and, finally, 
other information relating to funding and con-
flicts of interest. Each of these topics comprises 
a section in the checklist and these sections are 
divided into a number of subsections (items) 
indicating what should be included and how to 
report the information relevant to them.

If you are less familiar with writing scientific 
English, you may find the European Association 
of Science Editors (EASE) 2012 guidelines 
(EASE Guidelines for Authors and Translators 
of Scientific Articles to be published in English, 
available from www.ease.org.uk/publications/
author-guidelines, accessed 24 October 2012) 
helpful in ensuring that your scientific communi-
cation is efficient. They provide simple advice 
that promotes the writing of complete, clear and 
concise scientific papers. For example, the guide-
lines include expressions that can be simplified 
or deleted, distinguishes between British and 
American spelling, and gives guidance on gram-
matical form and how to make acknowledge-
ments and cite references.

17.2.2  EQUATOR Network

The EQUATOR Network (Enhancing the 
QUAlity and Transparency Of health Research, 
www.equator-network.org, accessed 24 October 
2012) is an international initiative that seeks  
to improve the reliability and value of medical 
research literature by promoting transparent  
and accurate reporting of research studies. The 
EQUATOR Network convened initially in Oxford, 
UK, in 2006. Its 27 participants from 10 countries, 
including journal editors, peer reviewers, research-
ers and funders, met with a view to providing 
standardized reporting guidelines that would 
facilitate a clear, comprehensive and transparent 
description of the procedures involved and the 
results obtained from a research study. It should 
be noted that these guidelines were not written 
as tools for assessing the methodological quality 
of a study. For the latter, we refer you to Whiting 
et al. (2003), a paper devoted to quality assessment 
in reported research.

A number of reporting guidelines (e.g. for ran-
domized controlled trials, observational studies, 
diagnostic tests and systematic reviews and meta-
analysis) fall under the auspices of the EQUATOR 
Network and many medical journals have 
embraced their recommendations. The veteri-
nary journals are somewhat slower to adopt the 
same or similar guidelines but progress is being 
made in this field (More, 2010). To this end,  

http://www.equator-network.org/resource-centre/library-of-health-research-reporting/reporting-guidelines-in-other-research-fields/
http://www.equator-network.org/resource-centre/library-of-health-research-reporting/reporting-guidelines-in-other-research-fields/
http://www.equator-network.org/resource-centre/library-of-health-research-reporting/reporting-guidelines-in-other-research-fields/
http://www.ease.org.uk/publications/author-guidelines
http://www.ease.org.uk/publications/author-guidelines
http://www.equator-network.org
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17.3  REFLECT statement (livestock 
and food safety RCTs)

17.3.1  CONSORT and its history

The first of the reporting guidelines, CONSORT 
(CONsolidated Standards Of Reporting Trials) 
was produced in 1998, after a merger in 1996 of 
proposals put forward by two independent groups 
of experts who met in Canada and the USA in 
1993. It has since been updated (www.consort-
statement.org (accessed 24 October 2012) and, 
for example, Schulz et al., 2010). The CONSORT 
statement encompasses various initiatives to 
alleviate the problems arising from inadequate 
reporting of RCTs on humans. Its intention is to 
enable readers to understand the design, conduct, 
analysis and interpretation of the RCT and to 
assess its validity. Its checklist comprises what 
are believed to be the essential 25 items for 
assessing the reliability and relevance of the find-
ings. Its flowchart (Figure 17.1) shows the passage 

•	 A flow diagram: this provides information 
about the flow of participants (or samples) 
through the study, with an indication of the 
numbers and information about when, why 
and how many participants were excluded or 
lost to follow-up during the course of the 
investigation.

•	 An Explanation and Elaboration document: 
this enhances the use, understanding and  
dissemination of the checklist by providing  
the meaning and rationale for each checklist 
item.

These guidelines are constantly evolving since 
they are subject to periodic updating as new evi-
dence emerges. We present, in the sections which 
follow, the versions of the statements and flow 
charts that were current when this book went to 
print. We also provide website addresses so that 
it is possible to obtain the most up-to-date ver-
sions when required.

Figure 17.1  CONSORT flow diagram (the REFLECT guidelines for reporting randomized controlled trials in livestock and 
food safety are a modification of the CONSORT guidelines for reporting randomized controlled trials in humans; the CONSORT 
flow diagram may be used as a surrogate for REFLECT) (from Schultz et al., 2010, reproduced with permission, under the 
terms of the Creative Commons Attribution License).

Assessed for eligibility (n =  )

E
nr

ol
lm

en
t

A
llo

ca
tio

n

Randomized (n =  )

Lost to follow-up (give reasons) (n =  )
Discontinued intervention (give reasons) (n =  )

Lost to follow-up (give reasons) (n =  )
Discontinued intervention (give reasons) (n =  )

Analyzed (n =  )
•    Excluded from analysis (give reasons)(n =  )

Analyzed (n =  )
•    Excluded from analysis (give reasons)(n =  )

F
ol

lo
w

-U
p

A
na

ly
si

s

Excluded (n =  )
•     Not meeting inclusion criteria (n =  ) 
•     Declined to participate (n =  ) 
•     Other reasons (n =  ) 

Allocated to intervention (n =  )
•     Received allocated intervention (n =  ) 
•     Did not receive allocated intervention (give
      reasons) (n =  ) 

Allocated to intervention (n =  )
•     Received allocated intervention (n =  ) 
•     Did not receive allocated intervention (give
      reasons) (n =  ) 

http://www.consort-statement.org
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of participants through the four stages of a paral-
lel group RCT, namely, enrolment, intervention 
allocation, follow-up and analysis. The diagram 
explicitly indicates the number of participants 
included in the primary data analysis in each 
intervention group. Inclusion of these numbers 
allows the reader to judge whether or not the 
authors have performed an intention-to-treat 
analysis (see Section 5.9.5).

17.3.2  REFLECT statement

In 2008, the CONSORT statement was adapted 
for animal research to produce the REFLECT 
Statement (Reporting guidElines For rand-
omized controLled trials for livEstoCk and food 
safeTy: www.reflect-statement.org/ (accessed 24 
October 2012) and O’Connor et al., 2010), an 
evidence-based minimum set of items for report-
ing livestock trials with production, health and 
food-safety outcomes. It focuses on field trials and 
challenge studies with either therapeutic or pre-
ventive interventions. The REFLECT statement 
consists of a 22-item checklist (Table 17.1: bold 
print indicates modifications of the CONSORT 
statement on which is it based). Figure 17.1 shows 
the flow diagram for the CONSORT guidelines, 
which can be used with the REFLECT statement.

17.4  ARRIVE guidelines (research 
using laboratory animals)

17.4.1  Background

The National Centre for the Replacement, Refine-
ment and Reduction of Animals in Research 
(NC3Rs: www.nc3rs.org.uk, accessed 24 October 
2012), established by the UK Government, is  
an independent scientific organization, and the 
largest funder of 3Rs research in the UK. In 2009, 
the NC3Rs carried out a systematic and detailed 
survey to assess the quality of reporting, experi-
mental design and statistical analysis of published 
research using laboratory animals (Kilkenny et al., 
2009). The results demonstrated that many pub-
lications reporting publicly funded animal research 

from the UK and USA lacked key information 
on how the study was designed, conducted and 
analysed, which could have limited their value in 
informing future scientific studies and policy. In 
particular, they showed that the hypothesis or 
objective of the study, the number of animals used, 
and characteristics of the animals (i.e. species/
strain, sex, and age/weight) were all included in 
only 59% of 271 randomly chosen articles. Fur-
thermore, bias in animal selection and outcome 
assessment may well have been present in most 
of the papers as 87% of them did not report 
using randomization and 86% did not report 
blinding. The statistical methods used were only 
fully and properly described in 70% of the pub-
lications and 4% of the articles did not report the 
number of animals used anywhere in the methods 
or the results sections.

17.4.2  ARRIVE guidelines

In view of the findings summarized in Section 
17.4.1, the NC3Rs produced the ARRIVE 
guidelines (Animal Research: Reporting of In 
Vivo Experiments: www.nc3rs.org.uk/ARRIVE 
(accessed 24 October 2012) and Kilkenny et al., 
2010) with the intention of improving the reporting 
of research using laboratory animals. Developed 
in consultation with the scientific community, 
including scientists, statisticians, journal editors and 
research funders, the guidelines consist of a 20- 
point checklist (Table 17.2), based on CONSORT, 
of the essential information that should be 
included in publications reporting animal research. 
ARRIVE has been endorsed by a number of 
leading scientific journals, along with the major 
funders of animal research in the UK.

17.5  STROBE statement 
(observational studies)

Observational research comprises several study 
designs and many topic areas. The STROBE 
statement (STrengthening and Reporting of OBser
vational studies in Epidemiology: www.strobe-
statement.org (accessed 24 October 2012) and, 

http://www.reflect-statement.org/
http://www.nc3rs.org.uk
http://www.nc3rs.org.uk/ARRIVE
http://www.strobe-statement.org
http://www.strobe-statement.org
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for example, von Elm et al., 2008) provides guide-
lines for reporting cohort, case–control and 
cross-sectional studies, the three main analytical 
designs that are used in observational research. 
Checklists are available for the three study 
designs separately and for all three together 
(Table 17.3). The STROBE checklist is best used 
in conjunction with the Explanation and Elabo-
ration article (freely available at, for example, 
www.plosmedicine.org (accessed 24 October 
2012) where there are links to relevant papers, 
for example, Vandenbroucke et al., 2007). The 
recommendations offered by STROBE are  
not intended to be prescriptions for designing or 
conducting studies, but they provide useful  
guidance in these areas. Its relevance to veteri-
nary studies was reviewed by Boden and Parkin 
(2008).

17.6  STARD statement  
(diagnostic accuracy)

Diagnostic accuracy describes the extent to 
which a diagnostic test is able to differentiate 
between patients who do and do not have the 
disease outcome of interest (see Section 14.2). The 
STARD (STAndards for the Reporting of Diag-
nostic accuracy studies: www.stard-statement.org, 
accessed 24 October 2012) guidelines were 
created in 2003 (Bossuyt et al., 2003) with a view 
to improving the accuracy and completeness of 
reporting of studies of diagnostic accuracy. Using 
the guidelines should facilitate the assessment of 
both the internal (potential for bias) and external 
validity (generalizability) of the diagnostic study.

The STARD statement (Table 17.4) consists of 
a checklist of 25 items, similar to those of the 
CONSORT statement. The flow diagram (Figure 
17.2) provides information about the method  

of recruitment of patients or samples, the order of 
test execution and the number of patients under-
going the diagnostic test under evaluation and 
the reference test to which it is compared.

17.7  PRISMA statement (systematic 
reviews and meta-analysis)

A systematic review uses systematic and explicit 
methods to identify, select and critically appraise 
research relevant to a clearly formulated ques-
tion. Statistical methods (meta-analysis) may or 
may not be used to integrate and summarize the 
results of the included studies (see Section 13.5).

The aim of the PRISMA statement (Preferred 
Reporting Items for Systematic reviews and Meta 
Analysis: www.prisma-statement.org, accessed 24 
October 2012) is to help authors report system-
atic reviews and meta-analyses to assess the  
benefits and harms of a healthcare intervention. 
It focuses on RCTs but can also be used as a  
basis for reporting other types of systematic 
reviews. It provides an updated and expanded 
version of the QUOROM statement (QUality 
Of Reports Of Meta-analyses of randomised 
controlled trials) (Moher et al., 1999) which it 
now supersedes.

The PRISMA statement consists of a 27-item 
checklist (Table 17.5) which has adopted the defi-
nitions of systematic review and meta-analysis 
used by the Cochrane Collaboration (see Section 
13.5.1 and www.cochrane.org, accessed 24 
October 2012). The statement and the flow 
diagram (Figure 17.3) are intended to be accom-
panied by the PRISMA Explanation and Elabo-
ration document (Liberati et al., 2009), freely 
available in, for example, the British Medical 
Journal (2009, vol. 339: b2700, doi: 10.1136/bmj.
b2700).

http://www.plosmedicine.org
http://www.stard-statement.org
http://www.prisma-statement.org
http://www.cochrane.org
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Table 17.1  The REFLECT statement. For an Explanation and Elaboration of the REFLECT statement see also Sargeant 
et al. (2010) (from O’Connor et al., 2010, reproduced with permission of the authors, under the Creative Commons 
Attribution License).

Checklist for REFLECT statement: Reporting guidelines for randomized controlled trials in livestock 
and food safety. Bold text are modifications from the CONSORT statement description (Altman DG 
et al. Ann Intern Med 2001; 134(8):663–694).

Paper section and 
topic Item Descriptor of REFLECT statement item

Reported  
on Page #

TITLE AND 
ABSTRACT

1 How study units were allocated to interventions (e.g., ‘random allocation,’ 
‘randomized,’ or ‘randomly assigned’). Clearly state whether the outcome was 
the result of natural exposure or was the result of a deliberate agent 
challenge.

INTRODUCTION
Background 2 Scientific background and explanation of rationale.

METHODS
Participants 3 Eligibility criteria for owner/managers and study units at each level of the 

organizational structure, and the settings and locations where the data 
were collected.

Interventions 4 Precise details of the interventions intended for each group, the level at 
which the intervention was allocated, and how and when interventions 
were actually administered.

4b Precise details of the agent and the challenge model, if a challenge study 
design was used.

Objectives 5 Specific objectives and hypotheses. Clearly state primary and secondary 
objectives (if applicable).

Outcomes 6 Clearly defined primary and secondary outcome measures and the levels 
at which they were measured, and, when applicable, any methods used to 
enhance the quality of measurements (e.g., multiple observations, training 
of assessors).

Sample size 7 How sample size was determined and, when applicable, explanation of 
any interim analyses and stopping rules. Sample-size considerations 
should include sample-size determinations at each level of the 
organizational structure and the assumptions used to account for any 
non-independence among groups or individuals within a group.

Randomization-
Sequence 
generation

8 Method used to generate the random allocation sequence at the relevant 
level of the organizational structure, including details of any restrictions 
(e.g., blocking, stratification).

Randomization-
Allocation 
concealment

9 Method used to implement the random allocation sequence at the 
relevant level of the organizational structure, (e.g., numbered containers 
or central telephone), clarifying whether the sequence was concealed until 
interventions were assigned.

Continued



Checklist for REFLECT statement: Reporting guidelines for randomized controlled trials in livestock 
and food safety. Bold text are modifications from the CONSORT statement description (Altman DG 
et al. Ann Intern Med 2001; 134(8):663–694).

Paper section and 
topic Item Descriptor of REFLECT statement item

Reported  
on Page #

Randomization-
Implementation

10 Who generated the allocation sequence, who enrolled study units, and 
who assigned study units to their groups at the relevant level of the 
organizational structure.

Blinding (masking) 11 Whether or not participants those administering the interventions, 
caregivers and those assessing the outcomes were blinded to group 
assignment. If done, how the success of blinding was evaluated. Provide 
justification for not using blinding if it was not used.

Statistical methods 12 Statistical methods used to compare groups for all outcome(s); Clearly 
state the level of statistical analysis and methods used to account for the 
organizational structure, where applicable; methods for additional 
analyses, such as subgroup analyses and adjusted analyses.

RESULTS
Study flow 13 Flow of study units through each stage for each level of the organization 

structure of the study (a diagram is strongly recommended). Specifically, 
for each group, report the numbers of study units randomly assigned, 
receiving intended treatment, completing the study protocol, and analyzed 
for the primary outcome. Describe protocol deviations from study as 
planned, together with reasons.

Recruitment 14 Dates defining the periods of recruitment and follow-up.

Baseline data 15 Baseline demographic and clinical characteristics of each group, explicitly 
providing information for each relevant level of the organizational 
structure. Data should be reported in such a way that secondary analysis, 
such as risk assessment, is possible.

Numbers analyzed 16 Number of study units (denominator) in each group included in each 
analysis and whether the analysis was by ‘intention-to-treat.’ State the 
results in absolute numbers when feasible (e.g., 10/20, not 50%).

Outcomes and 
estimation

17 For each primary and secondary outcome, a summary of results for each 
group, accounting for each relevant level of the organizational structure, 
and the estimated effect size and its precision (e.g., 95% confidence interval).

Ancillary analyses 18 Address multiplicity by reporting any other analyses performed, including 
subgroup analyses and adjusted analyses, indicating those pre-specified 
and those exploratory.

Adverse events 19 All important adverse events or side effects in each intervention group.

DISCUSSION
Interpretation 20 Interpretation of the results, taking into account study hypotheses, sources 

of potential bias or imprecision, and the dangers associated with 
multiplicity of analyses and outcomes. Where relevant, a discussion of 
herd immunity should be included. If applicable, a discussion of the 
relevance of the disease challenge should be included.

Generalizability 21 Generalizability (external validity) of the trial findings.

Overall evidence 22 General interpretation of the results in the context of current evidence.

Table 17.1  Continued
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Table 17.2  The ARRIVE guidelines – a checklist of items that should be included in reporting of research using laboratory 
animals (from Kilkenny et al., 2010, reproduced with permission under the terms of the Creative Commons Attribution License).

Item Recommendation

TITLE 1 Provide as accurate and concise a description of the content of the article as possible

ABSTRACT 2 Provide an accurate summary of the background, research objectives (including details  
of the species or strain of animal used), key methods, principal findings and conclusions of  
the study

INTRODUCTION

Background 3 a.	 Include sufficient scientific background (including relevant references to previous 
work) to understand the motivation and context for the study, and explain the 
experimental approach and rationale

b.	 Explain how and why the animal species and model being used can address the 
scientific objectives and, where appropriate, the study’s relevance to human biology

Objectives 4 Clearly describe the primary and any secondary objectives of the study, or specific 
hypotheses being tested

METHODS

Ethical statement 5 Indicate the nature of the ethical review permissions, relevant licences (e.g. Animal 
[Scientific Procedures] Act 1986), and national or institutional guidelines for the care and 
use of animals, that cover the research

Study design 6 For each experiment, give brief details of the study design, including:
a.	 The number of experimental and control groups
b.	 Any steps taken to minimize the effects of subjective bias when allocating animals  

to treatment (e.g. randomization procedure) and when assessing results (e.g. if done, 
describe who was blinded and when)

c.	 The experimental unit (e.g. a single animal, group, or cage of animals). A time-line diagram 
or flow chart can be useful to illustrate how complex study designs were carried out

Experimental 
procedures

7 For each experiment and each experimental group, including controls, provide precise 
details of all procedures carried out. For example:
a.	 How (e.g. drug formulation and dose, site and route of administration, anaesthesia  

and analgesia used [including monitoring], surgical procedure, method of euthanasia). 
Provide details of any specialist equipment used, including supplier(s)

b.	 When (e.g. time of day)
c.	 Where (e.g. home cage, laboratory, water maze)
d.	 Why (e.g. rationale for choice of specific anaesthetic, route of administration, drug  

dose used)

Experimental 
animals

8 a.	 Provide details of the animals used, including species, strain, sex, developmental stage 
(e.g. mean or median age plus age range) and weight (e.g. mean or median weight plus 
weight range)

b.	 Provide further relevant information such as the source of animals, international strain 
nomenclature, genetic modification status (e.g. knock-out or transgenic), genotype, 
health/immune status, drug- or test-naïve, previous procedures, etc.

Housing and 
husbandry

9 Provide details of:
a.	 Housing (e.g. type of facility, e.g. specific pathogen-free (SPF); type of cage or housing; 

bedding material; number of cage companions; tank shape and material, etc. for fish)
b.	 Husbandry conditions (e.g. breeding programme, light/dark cycle, temperature, quality 

of water, etc. for fish, type of food, access to food and water, environmental enrichment)
c.	 Welfare-related assessments and interventions that were carried out before, during  

or after the experiment

Continued
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Item Recommendation

Sample size 10 a.	 Specify the total number of animals used in each experiment and the number of 
animals in each experimental group

b.	 Explain how the number of animals was decided. Provide details of any sample size 
calculation used

c.	 Indicate the number of independent replications of each experiment, if relevant

Allocating 
animals to 
experimental 
groups

11 a.	 Give full details of how animals were allocated to experimental groups, including 
randomization or matching if done

b.	 Describe the order in which the animals in the different experimental groups were 
treated and assessed

Experimental 
outcomes

12 Clearly define the primary and secondary experimental outcomes assessed (e.g. cell death, 
molecular markers, behavioural changes)

Statistical 
methods

13 a.	 Provide details of the statistical methods used for each analysis
b.	 Specify the unit of analysis for each dataset (e.g. single animal, group of animals,  

single neuron)
c.	 Describe any methods used to assess whether the data met the assumptions of the 

statistical approach

RESULTS

Baseline data 14 For each experimental group, report relevant characteristics and health status of animals 
(e.g. weight, microbiological status, and drug- or test-naïve) before treatment or testing 
(this information can often be tabulated)

Numbers 
analysed

15 a.	 Report the number of animals in each group included in each analysis. Report absolute 
numbers (e.g. 10/20, not 50%)

b.	 If any animals or data were not included in the analysis, explain why

Outcomes and 
estimation

16 Report the results for each analysis carried out, with a measure of precision (e.g. standard 
error or confidence interval)

Adverse events 17 a.	 Give details of all important adverse events in each experimental group
b.	 Describe any modifications to the experimental protocols made to reduce adverse events

DISCUSSION

Interpretation/
scientific 
implications

18 a.	 Interpret the results, taking into account the study objectives and hypotheses,  
current theory and other relevant studies in the literature

b.	 Comment on the study limitations including any potential sources of bias, any 
limitations of the animal model and the imprecision associated with the results

c.	 Describe any implications of your experimental methods or findings for the 
replacement, refinement or reduction (the 3Rs) of the use of animals in research

Generalisability/
translation

19 Comment on whether, and how, the findings of this study are likely to translate to  
other species or systems, including any relevance to human biology

Funding 20 List all funding sources (including grant number) and the role of the funder(s) in the 
study

Table 17.2  Continued



Table 17.3  The STROBE statement – checklist of items that should be included in reporting of observational studies (from 
von Elm et al., 2008, reproduced with permission, under the terms of the Creative Commons Attribution License).

Item 
no. Recommendation

TITLE AND 
ABSTRACT

1 (a) Indicate the study’s design with a commonly used term in the title or the abstract

(b) Provide in the abstract an informative and balanced summary of what was done and 
what was found

INTRODUCTION

Background/
rationale

2 Explain the scientific background and rationale for the investigation being reported

Objectives 3 State specific objectives, including any pre-specified hypotheses

METHODS

Study design 4 Present key elements of study design early in the paper

Setting 5 Describe the setting, locations and relevant dates, including periods of recruitment, 
exposure, follow-up and data collection

Participants 6 (a) Cohort study – Give the eligibility criteria, and the sources and methods of selection of 
participants. Describe methods of follow-up
Case–control study – Give the eligibility criteria, and the sources and methods of case 
ascertainment and control selection. Give the rationale for the choice of cases and controls
Cross-sectional study – Give the eligibility criteria, and the sources and methods of selection 
of participants

(b) Cohort study – For matched studies, give matching criteria and number of exposed and 
unexposed
Case–control study – For matched studies, give matching criteria and the number of controls 
per case

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders and effect 
modifiers. Give diagnostic criteria, if applicable

Data sources/ 
measurement

8* For each variable of interest, give sources of data and details of methods of assessment 
(measurement). Describe comparability of assessment methods if there is more than one 
group

Bias 9 Describe any efforts to address potential sources of bias

Study size 10 Explain how the study size was arrived at

Quantitative 
variables

11 Explain how quantitative variables were handled in the analyses. If applicable, describe 
which groupings were chosen and why

Statistical 
methods

12 (a) Describe all statistical methods, including those used to control for confounding

(b) Describe any methods used to examine subgroups and interactions

(c) Explain how missing data were addressed

(d) Cohort study – If applicable, explain how loss to follow-up was addressed
Case–control study – If applicable, explain how matching of cases and controls was 
addressed
Cross-sectional study – If applicable, describe analytical methods taking account of sampling 
strategy

(e) Describe any sensitivity analyses

Continued
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Table 17.3  Continued

Item 
no. Recommendation

RESULTS

Participants 13* (a) Report numbers of individuals at each stage of study, e.g. numbers potentially eligible, 
examined for eligibility, confirmed eligible, included in the study, completing follow-up, and 
analysed

(b) Give reasons for non-participation at each stage

(c) Consider use of a flow diagram

Descriptive data 14* (a) Give characteristics of study participants (e.g. demographic, clinical, social) and 
information on exposures and potential confounders

(b) Indicate number of participants with missing data for each variable of interest

(c) Cohort study – Summarize follow-up time (e.g. average and total amount)

Outcome data 15* Cohort study – Report numbers of outcome events or summary measures over time

Case–control study – Report numbers in each exposure category, or summary measures of 
exposure

Cross-sectional study – Report numbers of outcome events or summary measures

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their 
precision (e.g. 95% confidence interval). Make clear which confounders were adjusted for 
and why they were included

(b) Report category boundaries when continuous variables were categorized

(c) If relevant, consider translating estimates of relative risk into absolute risk for a 
meaningful time period

Other analyses 17 Report other analyses done, e.g. analyses of subgroups and interactions, and sensitivity 
analyses

DISCUSSION

Key results 18 Summarize key results with reference to study objectives

Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. 
Discuss both direction and magnitude of any potential bias

Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, 
multiplicity of analyses, results from similar studies and other relevant evidence

Generalizability 21 Discuss the generalizability (external validity) of the study results

OTHER INFORMATION

Funding 22 Give the source of funding and the role of the funders for the present study and, if 
applicable, for the original study on which the present article is based

* Give information separately for cases and controls in case–control studies and, if applicable, for exposed and unexposed 
groups in cohort and cross-sectional studies.
Note:  An Explanation and Elaboration article discusses each checklist item and gives methodological background and pub-
lished examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available 
on the websites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and 
Epidemiology at http://www.epidem.com/ (all accessed 24 October 2012)).

http://www.plosmedicine.org/
http://www.annals.org/
http://www.epidem.com/
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Table 17.4  The STARD checklist for reporting of studies of diagnostic accuracy (version January 2003) (from Bossuyt 
et al., 2003a, reproduced with permission from BMJ Publishing Group Ltd). (See also http://www.stard-statement.org/, 
accessed 24 October 2012.)

Section and Topic Item On page

TITLE/ABSTRACT/
KEYWORDS

1 Identify the article as a study of diagnostic accuracy (recommend MeSH 
heading ‘sensitivity and specificity’)

INTRODUCTION 2 State the research questions or study aims, such as estimating diagnostic 
accuracy or comparing accuracy between tests or across participant 
groups

METHODS

Participants 3 Describe the study population: The inclusion and exclusion criteria, 
setting and locations where data were collected

4 Describe participant recruitment: Was recruitment based on presenting 
symptoms, results from previous tests, or the fact that the participants 
had received the index tests or the reference standard?

5 Describe participant sampling: Was the study population a consecutive 
series of participants defined by the selection criteria in items 3 and 4? 
If not, specify how participants were further selected

6 Describe data collection: Was data collection planned before the index 
test and reference standard were performed (prospective study) or after 
(retrospective study)?

Test methods 7 Describe the reference standard and its rationale

8 Describe technical specifications of material and methods involved 
including how and when measurements were taken, and/or cite 
references for index tests and reference standard

9 Describe definition of and rationale for the units, cut-offs and/or 
categories of the results of the index tests and the reference standard

10 Describe the number, training and expertise of the persons executing 
and reading the index tests and the reference standard

11 Describe whether or not the readers of the index tests and reference 
standard were blind (masked) to the results of the other test and 
describe any other clinical information available to the readers

Statistical methods 12 Describe methods for calculating or comparing measures of diagnostic 
accuracy, and the statistical methods used to quantify uncertainty (e.g. 
95% confidence intervals)

13 Describe methods for calculating test reproducibility, if done

Continued

http://www.stard-statement.org/
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Section and Topic Item On page

RESULTS

Participants 14 Report when study was performed, including beginning and end dates 
of recruitment

15 Report clinical and demographic characteristics of the study population 
(at least information on age, gender, spectrum of presenting symptoms)

16 Report the number of participants satisfying the criteria for inclusion 
who did or did not undergo the index tests and/or the reference 
standard; describe why participants failed to undergo either test (a flow 
diagram is strongly recommended)

Test results 17 Report time interval between the index tests and the reference standard, 
and any treatment administered in between

18 Report distribution of severity of disease (define criteria) in those with 
the target condition; other diagnoses in participants without the target 
condition

19 Report a cross-tabulation of the results of the index tests (including 
indeterminate and missing results) by the results of the reference 
standard; for continuous results, the distribution of the test results by the 
results of the reference standard

20 Report any adverse events from performing the index tests or the 
reference standard

Estimates 21 Report estimates of diagnostic accuracy and measures of statistical 
uncertainty (e.g. 95% confidence intervals)

22 Report how indeterminate results, missing data and outliers of the index 
tests were handled

23 Report estimates of variability of diagnostic accuracy between 
subgroups of participants, readers or centres, if done

24 Report estimates of test reproducibility, if done

DISCUSSION 25 Discuss the clinical applicability of the study findings

Note: an Explanation and Elaboration article may be found at Bossuyt et al. (2003b) Clin Chem 49: 7–18.

Table 17.4  Continued
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Figure 17.2  STARD flow diagram for reporting tests of diagnostic accuracy (from Bossuyt et al., 2003a, reproduced with 
permission from BMJ Publishing Group Ltd).
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Table 17.5  The PRISMA checklist for reporting of systematic reviews and meta-analyses (from Moher et al., 2009, 
reproduced with permission, under the terms of the Creative Commons Attribution License).

Section/topic # Checklist item
Reported on 

page #

TITLE

Title 1 Identify the report as a systematic review, meta-analysis, or both

ABSTRACT

Structured 
summary

2 Provide a structured summary including, as applicable: background; objectives; 
data sources; study eligibility criteria, participants, and interventions; study 
appraisal and synthesis methods; results; limitations; conclusions and 
implications of key findings; systematic review registration number

INTRODUCTION

Rationale 3 Describe the rationale for the review in the context of what is already known

Objectives 4 Provide an explicit statement of questions being addressed with reference to 
participants, interventions, comparisons, outcomes, and study design (PICOS)

METHODS

Protocol and 
registration

5 Indicate if a review protocol exists, if and where it can be accessed (e.g. web 
address), and, if available, provide registration information including registration 
number

Eligibility 
criteria

6 Specify study characteristics (e.g. PICOS, length of follow-up) and report 
characteristics (e.g. years considered, language, publication status) used as 
criteria for eligibility, giving rationale

Information 
sources

7 Describe all information sources (e.g. databases with dates of coverage, contact 
with study authors to identify additional studies) in the search and date last 
searched

Search 8 Present full electronic search strategy for at least one database, including any 
limits used, such that it could be repeated

Study 
selection

9 State the process for selecting studies (i.e. screening, eligibility, included in 
systematic review, and, if applicable, included in the meta-analysis)

Data 
collection 
process

10 Describe method of data extraction from reports (e.g. piloted forms, 
independently, in duplicate) and any processes for obtaining and confirming 
data from investigators

Data items 11 List and define all variables for which data were sought (e.g. PICOS, funding 
sources) and any assumptions and simplifications made

Risk of bias 
in individual 
studies

12 Describe methods used for assessing risk of bias of individual studies (including 
specification of whether this was done at the study or outcome level), and how 
this information is to be used in any data synthesis

Summary 
measures

13 State the principal summary measures (e.g. risk ratio, difference in means)
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Section/topic # Checklist item
Reported on 

page #

Synthesis of 
results

14 Describe the methods of handling data and combining results of studies, if done, 
including measures of consistency (e.g. I2) for each meta-analysis

Risk of bias 
across studies

15 Specify any assessment of risk of bias that may affect the cumulative evidence 
(e.g. publication bias, selective reporting within studies)

Additional 
analyses

16 Describe methods of additional analyses (e.g. sensitivity or subgroup analyses, 
meta-regression), if done, indicating which were pre-specified

RESULTS

Study 
selection

17 Give numbers of studies screened, assessed for eligibility, and included in the 
review, with reasons for exclusions at each stage, ideally with a flow diagram

Study 
characteristics

18 For each study, present characteristics for which data were extracted (e.g. study 
size, PICOS, follow-up period) and provide the citations

Risk of bias 
within studies

19 Present data on risk of bias of each study and, if available, any outcome level 
assessment (see Item 12)

Results of 
individual 
studies

20 For all outcomes considered (benefits or harms), present, for each study: (a) 
simple summary data for each intervention group, (b) effect estimates and 
confidence intervals, ideally with a forest plot

Synthesis of 
results

21 Present the main results of the review. If meta-analyses are done, include for 
each, confidence intervals and measures of consistency

Risk of bias 
across studies

22 Present results of any assessment of risk of bias across studies (see Item 15)

Additional 
analysis

23 Give results of additional analyses, if done (e.g. sensitivity or subgroup analyses, 
meta-regression; see Item 16)

DISCUSSION

Summary of 
evidence

24 Summarize the main findings including the strength of evidence for each main 
outcome; consider their relevance to key groups (e.g. healthcare providers, users, 
and policy-makers)

Limitations 25 Discuss limitations at study and outcome level (e.g. risk of bias), and at review 
level (e.g. incomplete retrieval of identified research, reporting bias)

Conclusions 26 Provide a general interpretation of the results in the context of other evidence, 
and implications for future research

FUNDING

Funding 27 Describe sources of funding for the systematic review and other support (e.g. 
supply of data); role of funders for the systematic review

Table 17.5  Continued
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Figure 17.3  PRISMA flow diagram for reporting systematic reviews and meta-analyses (from Moher et al., 2009, reproduced 
with permission, under the terms of the Creative Commons Attribution License).
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18.1  Learning objectives

By the end of this chapter you should be able  
to critically appraise a paper describing a rand-
omized controlled trial or observational study. 
This means that when you have read the paper, 
to evaluate it you should be able to:

•	 Decide whether the title adequately describes 
the design and purpose of the study.

•	 Assess whether the rationale is explained.
•	 Evaluate whether the primary aim has been 

stated in relation to the outcome of interest 
and whether secondary objectives have been 
identified.

•	 Determine if the numbers of animals used are 
clearly specified.

•	 Decide whether all the methods are clearly 
described.

•	 Establish if the design is fully described and 
whether any steps have been taken to avoid 
bias.

•	 Determine if an appropriate power analysis 
has been performed to justify the numbers.

•	 Decide whether correct statistical methods 
have been used to analyse the data.

•	 Judge whether the descriptive data are com-
prehensive.

•	 Decide whether there is full information on 
the outcomes and effects of interest, including 
measures of precision.

•	 Assess whether all harms have been 
documented.

18 Critical appraisal of 
reported studies

•	 Establish whether the conclusions drawn are 
correct and important.

•	 Decide whether all the limitations have been 
considered.

•	 Judge whether the generalizability of the find-
ings is appropriate.

18.2  Introduction

It is our concern that the quality of reporting of 
animal research is generally poor and lags behind 
that of medical research (Kilkenny et al., 2009). 
As we reach the conclusion of this book we want 
to leave you with a methodology to appraise the 
studies you read about. Its purpose is not simply 
to find holes in other people’s work, but to enable 
you to evaluate a study constructively and  
critically. In so doing, you will be able to choose 
those studies that are of most use in informing 
your understanding of the subject, and you  
will sharpen your own critical faculties to  
design, conduct and report your own studies. Our 
approach is to provide a template for critical 
appraisal of published research involving animals 
(see Section 18.3). We have devised this template 
by drawing on those principles propounded by 
the CONSORT, STROBE and REFLECT state-
ments and the ARRIVE guidelines (all discussed 
in Chapter 17) and have based it on the tem-
plates provided by Petrie and Sabin (2013). As 
illustrations of its applicability, we invite you to 
use our template to critically appraise the two 
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•	 If a cohort study, is the method of follow-up 
described?

•	 If a matched study, is full information pro-
vided on the matching criteria?

(ii)	 Was the study conducted using an appropri-
ately wide range of animals?

(b)  General methodology
(i)	 Are all methods clearly presented with suf-

ficient information to carry them out, or a 
reference given to the original method in the 
literature?

(ii)	 Are details provided on the comparability of 
assessment methods if there is more than 
one group?

(c)  Study design
Is the study design adequately described? Is 
there a description of the study setting and loca-
tion and are relevant dates provided? Were the 
authors aware of any potential biases and what 
steps were taken to avoid them? For example, if 
a clinical trial, were the following considered?

(i)	 Randomization.  Are full details of the 
randomization process provided, e.g. the 
type of randomization, the method used to 
generate the random allocation sequence 
and the unit of randomization (e.g. animal, 
farm)? Is the implementation of the rand-
omization described (e.g. who enrolled the 
subjects and who assigned the participants 
to the treatments)?

(ii)	 Blinding.  To what extent was the study 
blinded? If relevant, is a description pro-
vided of the similarity of the interventions?

(iii)	 Was the allocation sequence concealed from 
those assigning subjects to treatments and 
those responsible for care of the animals?

(iv)	 With the exception that they received differ-
ent treatments, were the groups treated in a 
similar fashion?

(d)  Variables
(i)	 Is consideration given to all important 

outcomes?
(ii)	 Are the primary and secondary outcomes 

precisely defined?

publications provided in Sections 18.4 and 18.6. 
Our own appraisals of these two papers are to be 
found in Sections 18.5 and 18.7, respectively.

18.3  A template for critical 
appraisal of published research 
involving animals

(1)  Title and abstract

(a)	 Is the type of study or study design men-
tioned in the title? For example, randomized 
controlled trial (RCT), cross-sectional or 
longitudinal study, prospective or retrospec-
tive survey, cohort or case–control study.

(b)	 Does the abstract summarize the study 
approach: its primary objective, its design, 
methods, results, conclusions and any limita-
tions?

(2)  Introduction

(a)	 Has the rationale for the study been set out 
logically and clearly? Is it based on the rel-
evant existing scientific background? Has all 
the necessary information from previous 
studies and other pertinent evidence been 
included?

(b)	 Is the primary aim of the study indicated,  
has the outcome of interest been identified 
and, if appropriate, has a relevant hypothesis 
based on the outcome of interest been 
explicitly stated? Are any secondary objec-
tives identified? If a cohort study, were there 
any modifications to the original study pro-
tocol following the publication of new evi-
dence after the cohort study was initiated?

(3)  Materials and methods

(a)  Animals
(i)	 Is the number and choice of animals clearly 

stated?
•	 If a clinical trial, how have the animals 

been selected? Are inclusion and exclu-
sion criteria provided?

•	 If a case–control study, is the rationale for 
the choice of cases and controls explained?
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additional analyses undertaken specified a 
priori or were they post hoc analyses?

(vi)	 Is there a description of how missing data 
have been dealt with in the analysis?

(vii)	 Is there a description of how losses to 
follow-up (cohort and clinical trial), match-
ing (case–control) or sampling strategy 
(cross-sectional) have been dealt with?

(viii)	 If it was necessary to perform a sensitivity 
analysis to assess how robust or sensitive 
the results of the study were to the methods 
employed or assumptions made, is it fully 
described?

(ix)	 Have the P-value to determine statistical 
significance and the statistical software, 
with version number, used to analyse the 
data been reported?

(4)  Results

(a)  Animal numbers and dates
(i)	 If a RCT, is there a full explanation for each 

treatment group, of the numbers of partici-
pants who were randomly assigned, received 
the intended treatment, and were analysed 
for the primary outcome? Is this informa-
tion presented in prose, or preferably, in a 
participant flow chart or table?

(ii)	 If an observational study, is there a report 
of the number of subjects included at each 
stage of the study (e.g. the numbers poten-
tially eligible, examined for eligibility, 
included in the study, completed follow-up, 
included in the analysis), preferably in a par-
ticipant flow chart.

(iii)	 If relevant, are numbers of and reasons  
for losses to follow-up and exclusions 
documented?

(iv)	 Are dates provided that define the periods 
of recruitment and follow-up?

(b)  Baseline data
(i)	 Is there a table that shows the baseline 

demographic and clinical characteristics  
for each group if there is more than one 
group?

(ii)	 If there is more than one group, are the 
groups comparable?

(iii)	 Were any changes made to outcomes after 
the start of the study?

(iv)	 Is there a clear description of treatments  
(in a clinical trial), exposures (observational 
study), predictors, potential confounders 
and effect modifiers?

(e)  Sample size
(i)	 Is there a power statement to justify the 

overall sample size, and does it state the 
form of the statistical analysis on which it is 
based? Is the reader made aware of all the 
relevant factors that influence sample size 
for this power calculation?

(ii)	 If relevant, is there a reference to any pilot 
studies that informed the power analysis?

(iii)	 If relevant, is there a full explanation of any 
interim analysis, including any steps taken 
to reduce the Type I error rate?

(iv)	 If subgroup analyses have been described, 
are the subgroup sample sizes based on 
power calculations, and were any further 
steps taken to reduce the Type I error rate? 
Alternatively, is it acknowledged that these 
subgroups may lack sufficient power to 
detect an effect as statistically significant?

(f)  Statistical methods
(i)	 Is the unit of investigation (e.g. single 

animal, cage of animals, farm) clearly 
identified?

(ii)	 Are the statistical methods employed for 
all data analyses identified?

(iii)	 Are the statistical methods appropriate, 
for example:
•	 Have the correct considerations of the 

nature of the data been made?
•	 Have underlying assumptions been 

verified?
•	 Have data dependencies (e.g. pairing) 

been taken into account in the analysis?
•	 If transformations have been taken of 

the data, have they been justified?
(iv)	 Is there a description of how numerical 

variables were handled in the analysis, 
including any choice of groupings?

(v)	 Is there a description of additional analy-
ses, such as subgroup analyses? Were any 
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(median) of a numerical outcome 
variable.

•	 If a cohort study, are the numbers of 
outcome events or summary measures 
over time provided?

•	 If a case–control study, are the numbers 
in each exposure category or summary 
measures of exposure provided?

•	 If a cross-sectional study, are the numbers 
of outcome events or summary measures 
provided?

(ii)	 Magnitude of the effect of interest:
•	 Is there an indication of the magnitude of 

the effect of interest? For example, a ratio 
such as the relative rate/risk/odds or a dif-
ference such as the absolute difference in 
risk if the outcome variable is binary; or 
a difference in means (medians) if the 
main outcome variable is numerical.

•	 If adjusting for confounding, are unad-
justed estimates and confounder-adjusted 
estimates provided? If confounder-
adjusted estimates are provided, is there 
a clear indication of which confounders 
were adjusted for in the analysis and why 
they were selected?

(iii)	 Precision of the effect of interest.  Is there 
an indication of the precision of the effect 
of interest (e.g. a 95% confidence interval or 
standard error)?

(f)  Additional analyses
Are the results of any additional (e.g. subgroup 
or sensitivity) analyses given, and are post hoc 
analyses distinguished from those that were 
pre-specified?

(g)  Harms
If a clinical trial, are all important harms in each 
group documented?

(5)  Discussion

(a)  Deciding whether the results  
are important
(i)	 Are the key findings summarized with refer-

ence to the study objectives?
(ii)	 Do the results make biological sense?

(c)  Descriptive data
(i)	 Are the characteristics (e.g. at baseline in a 

cohort study or RCT) of study participants 
provided for each group (if there is more 
than one group)? In particular, are the sex, 
age, developmental stage and weight distri-
butions of the animals summarized? Are the 
strains (rodents), lines, breeds and species 
(animals) reported? If relevant, is informa-
tion provided on the source of the animals, 
genetic modification status, etc.?

(ii)	 If relevant, is information provided on 
housing (e.g. type of facility, number of  
cage or pen companions, fish-tank shape 
and material) and husbandry conditions 
(e.g. breeding programme, temperature, 
quality of water and air, type of food, etc.)?

(iii)	 Can the reader be satisfied that if groups are 
to be compared (e.g. case–control study, 
RCT), they are comparable?

(iv)	 Is there an indication of the number of par-
ticipants with missing data for each variable 
of interest?

(v)	 If a cohort study or an analysis of survival 
data, is the follow-up time summarized (e.g. 
average and total amount)?

(d)  Numbers analysed
(i)	 If an RCT, is there a specification of whether 

an ‘intention-to-treat’ (ITT) analysis was 
performed? Is a justification given for the 
choice of analysis (ITT or other) and is this 
appropriate?

(ii)	 If there were protocol deviations, was a sen-
sitivity analysis performed (e.g. as per proto-
col analysis or an analysis with imputed data 
for missing observations)?

(e)  Outcomes of interest
(i)	 Main outcome of interest.  Is there full 

information on outcomes? For example:
•	 If a clinical trial, is there an appropriate 

summary measure of the main outcome 
variable (i.e. that which relates to the 
primary aim of the study) for each group? 
For example, the rate/risk/odds of  
occurrence of the outcome (e.g. death) for 
a binary outcome variable, giving abso-
lute numbers when feasible; or the mean 
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representative of the wider population) together 
with any acknowledgement of their possible 
restriction in application?

(d)  Interpretation
Taking the benefits and harms into considera-
tion, as well as the limitations of the study, any 
multiple testing and subgroup analyses, and the 
results from other similar studies if relevant, is 
the authors’ interpretation of the trial findings 
consistent with the results?

(6)  Other information

Are sources of funding documented and is there 
a conflict of interest statement for each of the 
investigators?

18.4  Paper 1

Bille, C., Auvigne, V., Libermann, S., Bomassi, E., 
Durieux, P. & Rattez, E. (2012) Risk of anaes-
thetic mortality in dogs and cats: an observa-
tional cohort study of 3546 cases. Veterinary 
Anaesthesia and Analgesia 39, 59–68. (Repro-
duced with permission from the publisher, 
Wiley-Blackwell.)

(iii)	 If a confidence interval for the effect of 
interest (e.g. the difference in means) has 
been provided:
•	 Would you regard the observed effect 

clinically important if the true value of 
the effect was equal to either the upper 
or lower limit of the confidence interval 
(irrespective of whether or not the result 
of the relevant hypothesis test is statisti-
cally significant)?

•	 If your answers do not differ markedly, do 
you conclude that the results are unam-
biguous and important?

(iv)	 If a clinical trial, is there an evaluation of the 
number of subjects needed to treat (NNT) 
with the experimental treatment rather than 
the control treatment in order to prevent 
one of them developing the ‘bad’ outcome?

(v)	 If feasible, have any estimates of relative 
‘risk’ (e.g. relative risk odds ratio) been 
translated into absolute ‘risks’ for a mean-
ingful time period?

(vi)	 If relevant, has a discussion of herd immu-
nity been included?

(b)  Limitations
Is there a discussion of all the study limita
tions, including any potential sources of bias and 
imprecision?

(c)  Generalizability
Is there a discussion of the generalizability of the 
results (i.e. the extent to which the subjects are 
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Abstract

Objective To evaluate the anaesthetic death risk for

dogs and cats in a French private practice.

Study design Observational cohort study.

Animal population All small animals anesthetized

at the Centre Hospitalier Vétérinaire des Cordeliers

between April 15th, 2008 and April 15th, 2010.

Methods General anaesthesia was defined as a

drug-induced unconsciousness characterised by

a controlled and reversible depression of the central

nervous system and analgesia, sufficient to allow

endotracheal intubation. Patient outcome (alive or

dead) was assessed at the end of anaesthesia defined

as the meeting point of the return of consciousness,

rectal temperature >36 �C and ability to maintain

sternal recumbency. Death occurring during anaes-

thesia was recorded. Relationship between anaes-

thetic death and ASA status, species, age, nature of

the procedure, anaesthetic protocol and occurrence

of epidural administration of a combination of

morphine and bupivacaine were analysed.

Results During the study period 3546 animals

underwent general anaesthesia. The overall death

rate in the present study was 1.35% (48 in 3546,

95% CI 0.96–1.75). The death rate of healthy

animals (ASA 1 and 2) was 0.12% (3 in 2602 95%

CI 0.02–0.34). For sick animals (ASA status 3 and

over), the overall death rate was 4.77% (45 in 944

95% CI 3.36–6.18). The death rates in the ASA 3, 4

and 5 categories were 2.90%, 7.58% and 17.33%,

respectively. The main factor associated with

increased odds of anaesthetic death in ASA catego-

ries 3 and over was poor health status (ASA

physical status classification). The nature of the

procedure the patient underwent and epidural

administration of a combination of morphine and

bupivacaine were not correlated with the

occurrence of death during anaesthesia. Neither

species nor age effects were detected.

Conclusion and clinical relevance Specific factors

were associated with increased odds of anaesthetic

death, especially poor health status. Efforts must be

directed towards thorough preoperative patient

evaluation and improvement of clinical conditions

if possible. Identification of risk factors before

anaesthesia should lead to increased surveillance

by trained staff. This could result in better outcomes.

Keywords anaesthetic, cat, death, dog, mortality,

risk, small animal.

Introduction

In the last 30 years, the risk of anaesthetic death

has been studied in dogs and cats by teams in dif-

ferent countries (Clarke & Hall 1990; Dodman &

Lamb 1992; Dyson et al. 1998; Hosgood & Scholl

1998, 2002; Gaynor et al. 1999; Joubert 2000;

Nicholson & Watson 2001; Williams et al. 2002;

59
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Redondo et al. 2007; Brodbelt et al. 2006, 2008a,b;

Alef et al. 2008).

The most recent study of anaesthetic deaths

(Brodbelt et al. 2008a) included 98,036 dogs and

79,178 cats and defined anaesthetic or sedation-

related death as a perioperative death (including

euthanasia) occurring after pre-medication and

within 48 hours of termination of the procedure,

except when death or euthanasia was due solely to

inoperable surgical or pre-existing medical condi-

tions. Considering animals of all American Society

of Anesthesiologists (ASA) grades, cumulative inci-

dences of anaesthetic and sedation-related death

were reported to be 0.17% in dogs and 0.24% in

cats. This is higher than the 0.01–0.02% reported

in human anaesthesia (Biboulet et al. 2001;

Newland et al. 2002).

There is no consensus on the definition of

anaesthetic mortality (Arbous et al. 2001). Discrep-

ancies between different reports may result from the

studied population. Some authors have included

animals that underwent general anaesthesia while

others included patients undergoing either general

anaesthesia or sedation. Variations may be seen

regarding the cause of death, some authors includ-

ing death of any origin whilst others only consid-

ering death that cannot be explained by pre-existing

medical conditions or surgical complications.

Variations also occur over the study period. Some-

times, this is not clearly defined. Others define the

study period as the time of anaesthesia or the time of

surgery or set an end point between a few hours

(Williams et al. 2002) to 48 hours after termination

of the procedure (Brodbelt et al. 2006, 2008a,b).

In small animal practice, the risk of death during

anaesthesia has shown to be related to different

factors. It was increased in cats compared to dogs

(Brodbelt et al. 2008a), in some particular breeds

(Clarke & Hall 1990; Brodbelt et al. 2008a), in

patients older than 12 years (Hosgood & Scholl

1998; Brodbelt et al. 2006, 2008b), in patients

weighing <5 kg (Brodbelt et al. 2008b), in patients

with poor health status (Clarke & Hall 1990; Dyson

et al. 1998; Hosgood & Scholl 1998, 2002; Brodbelt

et al. 2006, 2008a,b), if anaesthesia took place in a

referral centre (Gaynor et al. 1999; Brodbelt et al.

2006, 2008a), if a procedure was urgent (Brodbelt

et al. 2008b), if a surgical procedure was considered

as major (Brodbelt et al. 2008b), if specific agents

were used (Dyson et al. 1998) and if an inhalant

agent alone was used for induction (Brodbelt et al.

2008b).

All dogs and cats anaesthetized

Not eligibile
•Animals sedated

Recruited
Dogs and cats anaesthetized

•Animals anaesthetized in order to be 
euthanased (not evaluated)

Lost to follow up/forgotten
n evaluated = 35

Excluded from data analysis
Animals euthanased (n < 10) Data available for analysis

Step 1 (ASA effect)
Dogs and cats anaesthetized

Total n = 3546

Excluded from data analysis
•ASA status 1 and 2 

n = 2602

Data available for analysis
Step 2 (multivariate analysis)

Dogs and cats anaesthetized of ASA status 3/4/5
Total n = 944

•ASA 3 n = 724
•ASA 4 n = 145
•ASA 5 n = 75

Figure 1 Flow diagram of the recruitment and follow-up of the anaesthetic cases.

Risk of anaesthetic mortality in dogs and cats C Bille et al.

� 2011 The Authors. Veterinary Anaesthesia and Analgesia
60 � 2011 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists, 39, 59–68



276	 Statistics for Veterinary and Animal Science

The aim of this study was to evaluate the

anaesthetic death risk for dogs and cats in a French

private practice. The authors hypothesised that cats

would be at greater risk than dogs and that the

anaesthetic death risk would be related to the

patient’s health status and age but not the nature of

the drug used for induction of anaesthesia. To the

author’s knowledge, this is the first cohort study of

small animal anaesthetic deaths undertaken in a

single private practice in France.

Methods

We used an observational cohort study design. The

observational character of the data collection

implies that any decision made by an attending

veterinarian on the anaesthetic procedure was not

influenced in any way by the study design.

Patients’ recruitment

This cohort study recruited all dogs and cats that

underwent general anaesthesia at the Centre Hos-

pitalier Vétérinaire des Cordeliers between April

15th 2008 and April 15th 2010 (Fig. 1). General

anaesthesia was defined as a drug-induced uncon-

sciousness characterised by a controlled and

reversible depression of the central nervous system

(CNS) and analgesia, sufficient to allow endotra-

cheal intubation (Thurmon & Short 2007). Patients

that were sedated or anaesthetized in order to be

euthanased were not included. Sedation was defined

as chemical restraint insufficient to allow endotra-

cheal intubation.

The study period commenced when general

anaesthesia was induced by administration of an

injectable agent, whatever the route (intravenous

(IV) or intramuscular (IM)), or with isoflurane and

ended with the end of anaesthesia. This end was set

at the last point at which anaesthetized patients

could be systematically checked in a comparable

manner. It was therefore defined as themeeting point

of the return of consciousness, rectal temperature

>36 �C and ability to maintain sternal recumbency.

Animals that were euthanased during anaesthe-

sia because of medical reasons were excluded from

the study.

Data collection

For all patients that were included, identification

data, species and age were recorded. Prior to

anaesthetic induction, on the basis of history and

clinical examination, the attending anaesthetist

assessed the patient’s ASA status and whether it

would need laboratory tests or not. He then decided

which of the anaesthetic protocols (see below)

would be used. Any potential bias from such a

decision was addressed by introducing the ASA

status as a covariate in the final model

Epidural administration of a combination of

morphine and bupivacaine by means of an injection

or by placement of an epidural catheter was

recorded.

The type of procedure the patient underwent was

defined as: examination (chemical restraint was

needed to perform a non-invasive procedure),

orthopaedic or soft tissue surgery. Death occurring

during anaesthesia was recorded.

Anaesthetic regimens

Premedication, induction and maintenance agents

were recorded. For the data analysis, all premedi-

cation regimens were gathered in a ‘premedication’

category. As a consequence, the nature of the sub-

stance used and the route of administration were

not taken into account. Any patient that did not

receive premedication was included in a ‘No’ ‘pre-

medication’ category.

Induction regimens were grouped into four cat-

egories: ‘Ketamine’, ‘Thiopental’, ‘Propofol’ and

‘Other induction’. ‘Other induction’ included the

use of fentanyl, isoflurane, etomidate, or their

association with ketamine or thiopental (Table 1).

Dogs given medetomidine or dexmedetomidine such

Table 1 Detail of induction regimens

Induction regimen n

Medetomidine 12

Medetomidine + thiopental 3

Etomidate 1

Fentanyl 34

Isoflurane 64

Medetomidine + ketamine 34

Ketamine 204

Thiopental 302

Propofol 290

Total 944

n: number of dogs or cats, ASA grade 3–5, which received each

regimen.

Risk of anaesthetic mortality in dogs and cats C Bille et al.

� 2011 The Authors. Veterinary Anaesthesia and Analgesia
� 2011 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists, 39, 59–68 61
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that endotracheal intubation was carried out

(n = 12) were also included in this group.

Two groups of maintenance regimes were

defined: patients that received isoflurane and

patients that did not. Patients that did not receive

isoflurane were anaesthetized by means of total IV

anaesthesia or IM injection of the induction agent

with no further maintenance agent.

The overall anaesthetic regimen was then defined

by the combination of the premedication, the

induction and the maintenance regimens. Four

groups were defined (Table 2):

• Use of premedication, induction of anaesthesia

with ketamine, maintenance with isoflurane.

• Use of premedication, induction of anaesthesia

with thiopental, maintenance with isoflurane.

• Use of premedication, induction of anaesthesia

with propofol, maintenance with isoflurane.

• Use of any other anaesthetic regimen. This

represented 66 different regimens.

For statistical means, animals were grouped

according to their age. Groups were defined

arbitrarily to obtain four categories of equal impor-

tance as shown in Table 2.

Data analysis

The data analysis was conducted following a

two-step approach. As a first step, bivariate analysis

was performed to analyse the relationship between

ASA score and mortality (Mann–Whitney/

Wilcoxon Two-Sample Test, EpiInfo 3.5.1; Centers

for Disease Control and Prevention, GA, USA). 95%

Confidence Intervals were calculated using the

normal approximation when n(1 ) p) > 4 and the

binomial exact method in other cases (Epidat 3.1;

Table 2 Characteristics of the ASA 3, 4 and 5 study participants (n = 944)

Total anaesthetized Number of deaths % 95% CI

Overall 944 45 4.77 3.36–6.18

ASA category

ASA 3 724 21 2.90 1.61–4.19

ASA 4 145 11 7.59 2.93–12.24

ASA 5 75 13 17.33 8.10–26.57

Dog 683 33 4.83 3.15–6.51

Cat 261 12 4.60 1.87–7.33

Type of procedure

Examination 272 9 3.31 1.00–5.62

Orthopaedic 151 7 4.64 0.95–8.32

Soft tissue 521 29 5.60 3.50–7.63

Induction agent

Thiopental 302 20 6.62 3.66–9.59

Ketamine 204 9 4.41 1.35–7.47

Propofol 290 15 5.17 2.45–7.90

Other 148 1 0.68 0.02–3.70

Anaesthetic protocol

Premedication + thiopental + isoflurane 271 19 7.01 3.79–10.23

Premedication + ketamine + isoflurane 166 9 5.42 1.67–9.17

Premedication + propofol + isoflurane 223 13 5.83 2.53–9.13

Other 284 4 1.41 0.39–3.57

Epidural

No 872 38 4.36 2.95–5.77

Yes 72 7 9.72 2.19–17.26

Age

<3 years old 263 14 5.32 2.42–8.23

>3 and £7 years old 246 13 5.29 2.29–8.28

>7 and £10 years old 207 8 3.86 1.00–6.73

>10 years old 228 10 4.37 1.51–7.26

Pre-anaesthetic blood tests

Yes 325 15 4.61 2.18–7.05

No 619 30 4.85 3.07–6.62

Risk of anaesthetic mortality in dogs and cats C Bille et al.

� 2011 The Authors. Veterinary Anaesthesia and Analgesia
62 � 2011 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists, 39, 59–68
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Epidat : PanAmerican Health Organization, WA

D.C., USA).

As a second step, because of the null to very low

mortality in animals of ASA score 1 or 2 (see

Results), only animals of ASA score of 3 or more

were included. In other words, because the

occurrence of the outcome is rare in the subpopu-

lation of ASA score 1 or 2, the analysis of the

relationship between death and other variables is of

no benefit. In this second step, univariate and

bivariate analyses were carried out, followed by a

multivariate analysis of the data. The statistical unit

was the animal and death the outcome variable.

Logistic regression models were created using the

GLM procedure of R software 2.9.0 (R Foundation

for Statistical Computing, Austria). ‘ASA category’,

‘Species’, ‘Type of procedure’, ‘Anaesthetic proto-

col’, ‘Epidural’ and ‘Age’ were set as explanatory

variables. The probability of wrongly rejecting the

null hypothesis was set to 5%. A backward proce-

dure was used. Variables were kept in the model if

p <0.15. Two-way interactions were tested and kept

in the model if p <0.05. For assessing the fit of the

models receiver-operating characteristic (ROC)

curves were constructed and the areas under curves

(AUCs) were calculated.

Results

During the study period, 3546 animals underwent

general anaesthesia. Animals lost to follow-up were

estimated to be 35. The number of patients

euthanased for medical reasons during general

anaesthesia was evaluated at <10 (Fig. 1).

The first-step (univariate) analysis revealed that

48 animals out of 3546 (1.35%, 95% CI 0.96–1.75)

died. No animal died in the ASA 1 category. The

death rate increased with each grade of ASA status

(Table 3). The second-step (multivariate) analysis

was performed on the ASA 3, 4 and 5 categories.

Nine hundred and forty-four patients of ASA status

3, 4 and 5 were included (Fig. 1). The character-

istics of these 944 patients are shown in Table 2.

Forty-five (4.77%, 95% CI 3.36–6.18) died during

anaesthesia (Table 2).

When considering the multivariate model

(Table 4), increasing ASA status was associated

with increased odds of anaesthetic death. Also,

when compared to the group ‘other anaesthetic

protocol’, the group ‘premedication + thiopen-

tal + isoflurane’ was associated with increased odds

of anaesthetic death. Increasing ASA category from

3 to 4 was associated with a 3.7-fold increase in the

odds of death (p = 0.001, 95% confidence interval

(CI) [1.7–8.1]). Increasing ASA category from 3 to

5 was associated with a 13.4-fold increase in the

odds of death (p < 0.001, 95% CI [5.8–30.4]).

Compared to the group ‘premedication + thiopen-

tal + isoflurane’, the group ‘Other anaesthetic pro-

tocol’ was associated with a 10-fold decrease in the

odds of death (p < 0.001, 95% CI [0.0–0.3]).

Compared to the group ‘premedication + thiopen-

tal + isoflurane’, the group ‘premedication + prop-

ofol + isoflurane’ showed a tendency for a decrease

in the odds of death (p = 0.08, 95% CI [0.2–1.1]).

Compared to the group ‘premedication + thiopen-

tal + isoflurane’, the group ‘premedication + keta-

mine + isoflurane’ showed a tendency for decrease

Table 3 Relation between peri-operative death, species and ASA status

ASA

Total number

of animals

Peri-operative death

n

deaths % 95% CI

Dogs Cats

Total number

of dogs

n

deaths

Total number

of cats

n

deaths

1 714 0 0.0 0.00–0.52 197 0 517 0

2 1888 3 0.12 0.003–0.46 1372 1 516 2

3 724 21 2.90 1.61–4.19 521 17 203 4

4 145 11 7.59 2.93–12.24 101 5 44 6

5 75 13 17.33 8.10–26.57 61 11 14 2

Total 3546 48 1.35 0.96–1.75 2252 34 1294 14

n: number of deaths.
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in the odds of death (p = 0.10, 95% CI [0.2–1.1]).

Although not statistically significant, there was a

tendency for cats to be more at risk of dying during

anaesthesia than dogs (p = 0.11, 95% CI [0.9–

3.9]). There was a tendency for animals receiving

an epidural combination of morphine and bupiva-

caine to be more at risk of anaesthetic death

(p = 0.09, 95% CI [0.9–5.3]). After adjusting for

other variables, the odds of death associated with

the type of procedure were not significantly differ-

ent. No age (data not shown) effect was detected.

None of the interaction terms were significant and

were therefore dropped out of the model. The AUC

of the model was 0.74 indicating acceptable

discrimination properties (Hosmer & Lemeshow

2000).

Discussion

The overall death rate in the present study was

1.35%. Results suggest that ASA status was signif-

icantly associated with increasing the odds of

anaesthetic death in dogs and cats. When consid-

ering patients of ASA status 3 and over, the use of

an anaesthetic protocol that included premedica-

tion, induction with thiopental and maintenance

with isoflurane, was associated with increased odds

of anaesthetic death when compared to the group

‘other anaesthetic regimen’. Results also suggest

that, although not significant, there is a tendency

for cats and animals receiving an epidural injection

to be more at risk of anaesthetic death. Age was not

found to be associated with an increase in the odds

of death.

Many of the previously published studies have

reported anaesthetic death rates of between 0.17%

and 0.43% (Clarke & Hall 1990; Dodman & Lamb

1992; Dyson et al. 1998; Gaynor et al. 1999;

Joubert 2000; Williams et al. 2002; Brodbelt et al.

2006, 2008a; Alef et al. 2008), which are lower

than those reported here. However, there are two

surveys (Hosgood & Scholl 1998, 2002) which have

reported death rates similar to those seen in this

current study.

As discussed earlier, it is difficult to compare

different studies on anaesthetic death as case

definitions and methods differ. It must also be

remembered that in the earlier surveys, anaesthetic

agents differed, and the computing power to calcu-

late odds ratios was not always available.

This study was designed to provide a high rank of

evidence when considering anaesthetic death risk

factors. A cohort observational study was thought

to be adequate (Holmes 2007). Major difficulties

encountered when building this type of cohort

observational study were thought to be: 1) includ-

ing a representative group of the exposed popula-

tion; and 2) limiting the loss related to poor follow-

up. Therefore it was decided that all anaesthetized

patients should be included.

Some animals were lost to follow up when data

were not recorded by the administrator. Reasons

included the administrator being unaware that

anaesthesia had taken place, usually for a minor,

short and uneventful procedure. Occasionally the

administrator postponed filling out the data sheet

and had forgotten a procedure that took place at the

end of the day. It was estimated that one animal

was lost to poor follow-up every 3 weeks; a total of

35 patients.

The end of the study period was defined as the

meeting point of the return of consciousness, rectal

temperature >36 �C and ability to maintain sternal

recumbency. An end point of 48 hours after the

procedure as set in veterinary (Brodbelt et al. 2006,

2008a,b) and human literature (Newland et al.

2002) or at the discharge of the patient (Wolters

et al. 1996) would probably have increased the

death rate, as animals that died in the immediate

Table 4 Logistic regression modelling of the odds of

anaesthetic death of animals undergoing anaesthesia

OR 95% CI p-value

ASA category*

3 – –

4 3.7 1.7–8.1 0.001

5 13.4 5.8–30.4 <0.001

Species

Dog – –

Cat 1.9 0.9–3.9 0.11

Anaesthetic protocol�

Premed + thiopental + isoflurane – –

Other anaesthetic regimen 0.1 0.0–0.3 <0.001

Premed + ketamine + isoflurane 0.5 0.2–1.1 0.10

Premed + propofol + isoflurane 0.5 0.2–1.1 0.08

Epidural

No – –

Yes 2.2 0.9–5.3 0.09

Premed: premedication. *The OR represents a change from

ASA 3 to ASA 4 or ASA 3 to ASA 5. �The OR represents a

change from premedication + thiopental + isoflurane to either

other anaesthetic regimen, premedication + ketamine + isoflu-

rane or premedication + propofol + isoflurane.
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postoperative period would then have been taken

into account. In the current study, from practice,

this type of end point would have led to a selection

bias by excluding many animals undergoing minor

procedures that were not seen 48 hours after the

procedure took place.

The major reason for euthanasia during anaes-

thesia was the diagnosis of an inoperable tumour.

As these animals were to be excluded from the

study, no data were prospectively recorded, and

therefore, the number of euthanased patients was

estimated retrospectively. The authors acknowledge

it would have been preferable to record the number

of such patients.

The study’s objective was to evaluate anaesthetic

death of any cause, so no attempt was made to

classify the cause of death. Thus deaths from

medical or surgical complications were included.

This is different from other studies (Brodbelt et al.

2006, 2008a,b), where authors defined anaesthetic

or sedation-related death as death that could not be

explained totally by pre-existing medical or surgical

complications.

A potential selection bias comes from the fact that

the Centre Hospitalier Vétérinaire des Cordeliers is a

referral centre. A difference in anaesthetic mortality

has been observed when comparing practice-based

studies (Clarke & Hall 1990; Dodman & Lamb 1992;

Dyson et al. 1998; Joubert 2000; Williams et al.

2002), referral-studies (Hosgood & Scholl 1998,

2002; Gaynor et al. 1999; Brodbelt et al. 2006) or

both (Brodbelt et al. 2008a,b). Referral practices

usually anaesthetize a greater proportion of patients

classified in the ASA 3, 4 and 5 categories. In our

case, these categories represent 26.6% of the

anaesthetized population. This is more than the

5–10% described in the practice-based studies

(Clarke & Hall 1990; Dyson et al. 1998), and could

explain the higher percentage of deaths in our study.

In this study, sick patients, as assessed by ASA

score, had higher risk of anaesthetic death than did

healthy animals. The ASA status is correlated to

anaesthesia-related death in humans (Vancanti

et al. 1970; Wolters et al. 1996; Jones & Cossart

1999; Biboulet et al. 2001; Newland et al. 2002)

and in domestic animals (Clarke & Hall 1990;

Dodman & Lamb 1992; Dyson et al. 1998; Hosgood

& Scholl 1998, 2002; Brodbelt et al. 2006,

2008a,b). The death rate increases with each grade

of ASA status (Table 3). This suggests that there is a

causal relationship between these variables. The

published absolute mortality rates of the ASA

classes has shown variations in veterinary studies,

with 0.05–0.10% for ASA 1 and 2 categories and

1–2% for ASA 3, 4 and 5 categories (Dyson et al.

1998; Hosgood & Scholl 1998, 2002; Brodbelt et al.

2006, 2008a,b). Our data show a mortality rate of

0.12% for ASA 1 and 2 categories and 4.76% for

ASA 3, 4 and 5 categories. These variations can be

explained in part by differences in assessment of the

patient’s ASA physical status. In our case, we tried

to limit this variability by having one attending

veterinarian (CB) review and, if necessary, reassess

the ASA status, on the basis of the patient charts.

The anaesthetic protocol was established by the

veterinarian in charge, in light of his experience.

Anaesthetist’s experience is a subjective concept

and is hard to analyse. It refers to numerous factors

as patient condition, species, breed, body weight,

nature of the illness, nature of the procedure,

personal habits and preferences, personal perception

and interpretation of an illness, owners’ wishes,

time of the day, work load, experience of co-workers

(nurse and/or surgeon), and economic aspects.

Many of these factors could not be tested as

variables in the logistic regression models and this

could have led to a selection bias.

The ‘premedication + thiopental + isoflurane’ group

was statistically correlated to anaesthetic deaths

when compared to the group ‘other anaesthetic

regimen’. Although not statistically significant, there

was a tendency for animals in the group ‘premedica-

tion + thiopental + isoflurane’ to be more at risk of

anaesthetic death when compared to those in groups

‘premedication + propofol + isoflurane’ and ‘preme-

dication + ketamine + isoflurane’. This was unex-

pected. There is no clear explanation for this finding.

The Centre Hosptalier Vétérinaire des Cordeliers

tends to use an anaesthetic protocol that includes

premedication, an injectable induction agent and

maintenance using inhalation anaesthesia with iso-

flurane in very critical patients, which could lead to a

selection bias, as these protocols might therefore

include a relatively larger number of anaesthetic

deaths. This potential bias was addressed by intro-

ducing the ASA status as a covariate in the final

model.

The authors have analysed the raw interactions

between anaesthetic protocol and variables that

were shown to increased the odds of anaesthetic

death or to have tendency to increase the odds of

anaesthetic death in the logistic regression model

(e.g. ASA status, epidural and species). However,

anaesthetic protocols were not randomly assigned.
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Therefore, when considering raw associations, most

variables are significantly associated. Moreover,

ASA status and anaesthetic protocol, epidural

injection and anaesthetic protocol, species and

anaesthetic protocol were significantly correlated

(data not shown). Because of these numerous

correlations it was decided that raw interactions

would not be interpreted and that only the logistic

regression model would be satisfactory.

No satisfactory explanation was identified to

explain why the ‘premedication + thiopental +

isoflurane’ group was overrepresented in anaes-

thetic deaths. Using an ‘other protocol’ when

compared to ‘premedication + thiopental + isoflu-

rane’ was associated with a 10-fold decrease in the

odds of anaesthetic death. This finding was ex-

pected. It is probable that, despite ASA classification,

anaesthetist’s experience leads to a subjective eval-

uation of the risk. This can lead to the establishment

of ‘another protocol’. This leads to a selection bias.

The ‘other protocol’ category may then appear safer

when in reality it is not and contains animals that

where subjectively judged to be less at risk for

anaesthetic death. As other protocol included many

variations, numbers within any subcategory were

too small for analysis.

The roles of premedication, induction and mainte-

nance drugs in anaesthetic death have been studied

(Clarke&Hall1990;Dysonet al.1998;Brodbelt et al.

2006, 2007, 2008a,b). The use of either aceproma-

zine, atropine or medetomidine in premedication has

been found to decrease the odds of anaesthetic death

(Clarke&Hall1990;Dysonet al.1998;Brodbelt et al.

2006, 2008a). The use of xylazine in the anaesthetic

protocol in dogs has been shown to be associatedwith

an increase in the odds of anaesthetic death (Dyson

et al. 1998). No correlation has been found

previously between the use of either ketamine,

thiopental of propofol and anaesthetic death (Dyson

et al. 1998; Brodbelt et al. 2006, 2008a).

Dog owners might be more likely to seek medical

attention than cat owners. A selection bias could

therefore enhance the association between dogs and

anaesthesia-related death, compared to cats. Also,

cats’ health status is, in general, less easily assessable

than dogs’, possibly resulting in poorer preoperative

assessment of the feline patients. Finally, a type-II

error could explain the tendency for cats to be more

prone to anaesthetic deathwhen compared to dogs. It

could be induced by the small number of subjects

(944) enrolled in our study. Therefore, the tendency

for cats to bemore prone to anaesthesia-related death

could have been significant if a greater number of

patients had been included. In other studies there are

conflicting results. Some authors concluded that cats

were more prone to anaesthetic death when com-

pared to dogs (Clarke & Hall 1990; Hosgood & Scholl

1998, 2002; Brodbelt et al. 2008a). Other teams

found no correlation (Dyson et al.1998; Gaynor

et al. 1999) or found dogs to bemore at risk (Dodman

& Lamb 1992), especially when considering the ASA

1 and 2 categories (Dyson et al.1998).

To the authors’ knowledge, this is the first time

that epidural injection of a combination of

morphine and bupivacaine has been tested as a

risk factor for anaesthetic death. In our study,

animals that received an epidural injection showed

a statistically not-significant tendency to be more at

risk of anaesthetic death. This tendency was

unexpected.

The epidural solution of morphine and bupiva-

caine was prepared as described by Valverde

(2008). In this study epidural anaesthesia was

performed only by one single veterinarian (CB), thus

introducing a potential selection bias. Epidural

injections were not equally distributed because they

depend on which anaesthetist was on duty and a

heavy workload could have led to the absence of

epidural injections in patients that would have

otherwise received one.

Animals were grouped arbitrarily according to

their age in order to obtain four categories as shown

in Table 2. It is unlikely that these categories are

representative of the metabolic state of the patients.

The <3 years old category contained neonates,

paediatrics and young adult patients. However,

number of subjects enrolled was too low to allow a

more detailed classification and an age effect on

anaesthetic mortality could have gone undetected.

One team has shown that animals over 12 years old

were 7.1 times more at risk of an anaesthetic death

when compared to animals of 0.5–8 years old

(Brodbelt et al. 2008a). Another study concluded

that, in dogs, age was associated with anaesthetic

death (Hosgood & Scholl 1998).

Our study did not permit identifying the nature of

the procedure as a potential risk factor for anaes-

thetic death. We chose to classify the nature of the

procedure on the basis of its technical description

(e.g. examination, soft tissue, orthopaedics), in

accordance to earlier publications (Dyson et al.

1998; Hosgood & Scholl 1998, 2002). Other

authors have chosen to classify interventions into

major or minor procedures (Brodbelt et al. 2007,
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2008a). However, there is currently no universally

agreed definition of what constitutes a major or a

minor procedure. However, it has only been by this

classification that procedure has been shown to be

to be a risk factor for anaesthetic death in cats and

dogs (Brodbelt et al. 2007, 2008a). This is in

accordance with the human literature (Wolters

et al. 1996; Newland et al. 2002). Studies that

have found a significant effect of the nature of the

procedure are mainly in large-scale studies includ-

ing 72,959, 79,178 and 98,036 anaesthetized

patients respectively (Newland et al. 2002; Brodbelt

et al. 2007, 2008a). In our study, the small number

of animals means that a type-II error may have

prevented a significant correlation between proce-

dures and death from being shown.

How applicable are our estimates to other veter-

inary practices? This is an important question

because the Centre Hospitalier Vétérinaire des

Cordeliers has a different caseload from most prac-

titioners and many of the anaesthetized patients are

presented because of the severity of their condition

and the necessity for a complex surgical procedure.

Patients of clinical status of ASA 3, 4 and 5

represented 26.6% of our anaesthetized population

whereas practice-based studies have shown that

5–10% of the patients were in these categories.

Also, anaesthesia might not be routinely monitored

the same way in every practice. This includes the

presence of trained staff and/or the use of monitor-

ing devices (electrocardiogram, pulse oximetry,

non-invasive or invasive blood pressure monitoring

and capnography).

In conclusion, the risk of anaesthetic death

appears to be comparable with risk reported inter-

nationally. Patients of ASA status 3 and over appear

to be considerably more at risk than patients of ASA

status 1 and 2. These animals should be thoroughly

prepared for anaesthesia and closely monitored by

well-trained staff.
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general anaesthesia at the Centre Hospitalier 
Vétérinaire des Cordeliers between April 15th 
2008 and April 15th 2010.’ The authors do not 
state where the hospital is in the text but all 
but one of the authors are listed as working 
in this hospital in Meaux, France. The end of 
follow-up is defined (p. 61, Patients’ recruit-
ment) as ‘the meeting point of the return of 
consciousness, rectal temperature >36°C and 
ability to maintain sternal recumbency.’

(ii)	 The study was conducted using an appropri-
ately wide range of animals (Tables 2 and 3). 
Only dogs and cats were of interest, and all 
dogs and cats that underwent anaesthesia in 
the relevant period were included. Although 
the authors collected information on species, 
they do not report the results in the paper. 
Exclusions are documented on page 61 
(Patients’ recruitment); those patients sedated 
or anaesthetized in order to be euthanased  
or that were euthanased during anaesthesia 
because of medical reasons were excluded.

(b)  General methodology
All methods are clearly presented in the Data 
collection section (p. 61) and in the Anaesthetic 
regimens section (pp. 61–2).

(c)  Study design
The study is clearly stated as an observational 
cohort study (p. 61, Methods). The authors 
explain (p. 61, Patients’ recruitment) that all the 
animals underwent general anaesthesia at the 
Centre Hospitalier Vétérinaire des Cordeliers, 
between 15 April 2008 and 15 April 2010. The 
authors were aware that a bias might arise from 
the decision to use a particular anaesthetic pro-
tocol, and this was addressed by introducing the 
American Society of Anesthesiologists (ASA) 
status as a covariate in the multivariable model 
(p. 61, Data collection). Potential selection biases 
are documented in the Discussion section (p. 65, 
LHS and p. 66, LHS). Randomization and blind-
ing were not relevant in this observational study.

(d)  Variables
(i)	 The only outcome of interest was whether 

or not there was an anaesthetic death (spe-
cifically stated on p. 63, LHS).

18.5  Critical appraisal of paper 1

(1)  Title and abstract

(a)	 The title states that the study is an observa-
tional cohort study.

(b)	 The abstract, which is structured, defines its 
primary objective as evaluating the anaes-
thetic death risk for dogs and cats in a French 
private practice. The design is described, as 
are the methods, results and conclusions. No 
limitations are listed in the abstract.

(2)  Introduction

(a)	 The rationale for the study has been set out 
logically and clearly on pages 59–60. Neces-
sary information from previous studies has 
been included.

(b)	 The primary aim of the study is indicated on 
page 61 (LHS). The outcome of interest is 
identified as the anaesthetic death risk for 
dogs and cats. The authors explicitly hypoth-
esize that ‘cats would be at greater risk than 
dogs’ and (as a secondary objective although 
not stated as such) ‘that the anaesthetic death 
risk would be related to the patient’s health 
status and age but not the nature of the drug 
used for induction of anaesthesia.’ Note that 
what the authors are hypothesizing is not, in 
either case, the null hypothesis that they are 
testing, but rather their views on the poten-
tial outcome. There was no publication of 
new evidence after the cohort study was ini-
tiated, and so it was not necessary to modify 
the original study protocol.

(3)  Materials and methods

(a)  Animals
(i)	 The number of animals anaesthetized is 

stated in the Results section (p. 63, LHS) as 
3546; 944 of these animals were analysed in 
the second phase of the statistical analysis 
(Figure 1 and p. 61, RHS). The authors 
provide a flow chart (Figure 1) that shows 
the recruitment and follow-up of the anaes-
thetic cases. The choice of animals is clearly 
stated in the Patients’ recruitment section (p. 
61) as ‘all dogs and cats that underwent 
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(v)	 There were no additional analyses other 
than the subgroup analysis explained in 
Part 3e.

(vi)	 There are no missing data other than the 
losses to follow-up (see Part 3f(vii)).

(vii)	 There were 35 animals that were lost to 
follow-up/forgotten (p. 63, Results, LHS 
and Figure 1). They were excluded from 
the analysis (Figure 1) and there was no 
attempt to estimate the missing data.

(viii)	 It was not necessary to perform a sensitiv-
ity analysis (no assumptions were violated 
and a very small proportion of animals 
were lost to follow-up).

(ix)	 Information about software and signifi-
cance level is given on pages 62–3 (Data 
analysis). Mann–Whitney/Wilcoxon tests 
were analysed by EpiInfo 3.5.1 (Centers 
for Disease Control and Prevention, GA, 
USA). Confidence intervals were calcu-
lated using Epidat 3.1 (Epidat: PanAmeri-
can Health Organization, WA, DC USA). 
Logistic regression models were created 
using R software 2.9.0 (R Foundation for 
Statistical Computing, Austria). The signifi-
cance level was set to 5% (but it was 15% 
for variables kept in the backward step-
wise logistic regression model).

(4)  Results

(a)  Animal numbers and dates
(i)	 There is a clear report of the number of 

subjects included at each stage of the study 
in the flow chart (Figure 1).

(ii)	 The numbers of and reasons for exclusions 
and the numbers of losses to follow-up are 
documented (p. 63, Results, LHS; p. 64, RHS 
paragraph 5; and Figure 1).

(iii)	 The authors explain that recruitment was 
between 15 April 2008 and 15 April 2010 (p. 
61, Patients’ recruitment).

(b)  Baseline data
See Point 4c(i).

(c)  Descriptive data
(i)	 The characteristics at baseline of study  

participants are not provided for the whole 

(ii)	 There were no secondary outcomes.
(iii)	 No changes to outcomes were made after 

the start of the study.
(iv)	 There is a clear description of explanatory 

variables: ASA status, species, type of pro-
cedure, anaesthetic protocol, epidural and 
age (p. 63, LHS).

(e)  Sample size
There is no power statement to justify the overall 
sample size. Subgroup analysis was performed on 
the 944 animals that belonged to ASA categories 
3, 4 and 5. The subgroup was defined because the 
authors found that there were no deaths in ASA 
category 1 and only three deaths in ASA cate-
gory 2: the sample size of the subgroup was not 
based on power calculations but was, neverthe-
less, substantial at 944.

(f)  Statistical methods
(i)	 The unit of investigation is clearly identi-

fied as the animal (p. 63, LHS).
(ii)	 All the statistical methods employed for  

all data analyses are clearly identified (pp. 
62–3, Data analysis). To summarize: as a 
first step, the non-parametric Mann–
Whitney test was performed to analyse the 
relationship between ASA score and mor-
tality. Confidence intervals are provided 
for the percentage of deaths in each ASA 
category. As a second step, univariate and 
bivariate analyses, followed by multivari-
ate (strictly ‘multivariable’) logistic regres-
sion, were performed on animals with an 
ASA score of 3 or more. ROC (receiver 
operating characteristic) curves were con-
structed to assess the fit of the models.

(iii)	 The statistical methods in the paper are 
appropriate. The authors explain that they 
grouped age into ‘four categories of equal 
importance’ (p. 62, RHS and Table 2). 
‘Importance’ is not explained: the authors 
probably mean groups of approximately 
equal size, as suggested by the group sizes 
in Table 2.

(iv)	 The only numerical variable was age in 
years. This was grouped arbitrarily (p. 62, 
RHS) into four categories, as shown in 
Table 2.
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944 animals in ASA categories 3–5. Signifi-
cant risk factors were: (i) ASA categories 4 
and 5 compared to ASA category 3 (esti-
mated OR  =  3.7 and 13.4, respectively); 
and (ii) ‘other anaesthetic regimen’ (i.e. a 
group comprising 66 different regimens that 
excluded the three regimens defined by the 
bullet points on p. 62, LHS) compared to 
premed + thiopental + isoflurane (estimated 
OR = 0.1), which was not what the authors 
expected at the start of the study. Although 
the authors hypothesized that cats would  
be at greater risk than dogs, this was not a 
significant effect in the logistic regression 
(OR = 1.9, P = 0.11). The authors have pro-
vided only covariate adjusted estimates in 
Table 4, obtained from the logistic regres-
sion analysis. It is assumed that they included 
these covariates after each was found to be 
significant in the univariable analyses that 
preceded the logistic regression analysis  
(p. 63, LHS), although this is not explicitly 
stated. Four times in the Results section, the 
authors report ‘a tendency’ for a decrease/
increase in the odds/risk of dying for one 
group compared with another. This approach 
to reporting results that are not statistically 
significant is potentially misleading.

(iii)	 Precision of the effect of interest.  The 95% 
confidence intervals for the risk of death for 
the whole group (0.96 to 1.75: p. 63, RHS), 
and according to ASA status, are provided 
in Table 3. Ninety-five per cent confidence 
intervals for the odds ratios of various risk 
factors for the subset of 944 animals are 
provided in the text and Table 4 (p. 63, RHS 
and p. 64, LHS).

(f)  Additional analyses
Most of the results relate to the subgroup of 944 
patients that were in ASA categories 3–5. The 
authors decided to do these post hoc analyses 
because only three deaths occurred in ASA cat-
egories 1 and 2.

(g)  Harms
This is not relevant in an observational cohort 
study.

group of animals. However, some of this 
information is given in Tables 1 and 2 for the 
944 animals who were in ASA categories 3, 4 
and 5. Sex, species, developmental stage and 
weight distributions of the animals are not 
summarized. Numbers of dogs and cats in 
each ASA status group are shown in Table 3.

(ii)	 Housing of the animals is not relevant.
(iii)	 Covariate adjusted odds ratios are provided 

for group comparisons in Table 4.
(iv)	 There is no indication of the number of par-

ticipants, if any, with missing data for each 
variable of interest.

(v)	 The follow-up time is defined as the meeting 
point of the return of consciousness, rectal 
temperature >36°C and ability to maintain 
sternal recumbency; it is not necessary to 
summarize this (e.g. as mean).

(d)  Numbers analysed
The number of animals anaesthetized and ana-
lysed in the first phase is stated in the Results 
section (p. 63, LHS) as 3546; 944 of these animals 
were analysed in the second phase of the statisti-
cal analysis (Figure 1 and p. 63, RHS).

(e)  Outcomes of interest
(i)	 Main outcome of interest.  The outcome of 

interest was death. Information is provided 
on deaths in each ASA category for the 
whole sample of 3546 animals, and separately 
for these dogs and cats, in Table 3. Some addi-
tional information on deaths according to 
potential risk factors is provided in Table 2 
for the subset of 944 animals that were in 
ASA categories 3, 4 and 5.

(ii)	 Magnitude of the effect of interest.  The 
estimated risk of death for the whole group 
of 3546 animals, as well as in each ASA cat-
egory, is provided in Table 3. The analysis 
revealed that 48 animals out of 3546 (1.35%) 
died. The estimated risk of death in ASA 
categories 1–5 were 0.0%, 0.12%, 2.90%, 
7.59% and 17.33%, respectively. (Note: the 
proportion of perioperative deaths in ASA 
category 3 is actually 0.16% and not 0.12% 
as in the table.) The estimated odds ratio is 
provided in Table 4 for each of a number of 
potential risk factors for the subgroup of 



	 Critical appraisal of reported studies	 287

(v)	 Although the odds ratios are provided for 
the subset of 944 patients with ASA status 
3, 4 and 5, the actual risk of anaesthetic 
death is also provided for each ASA cate-
gory for the whole group of 3546 animals.

(vi)	 Herd immunity is not relevant in this study.

(b)  Limitations
The authors discuss study limitations, including 
potential sources of bias, in the Discussion on 
pages 65 and 66. In particular, they say that ‘A 
potential selection bias comes from the fact that 
the Centre Hospitalier Vétérinaire des Cordeliers 
is a referral centre’ and ‘Referral practices usually 
anaesthetize a greater proportion of patients clas-
sified in the ASA 3, 4 and 5 categories’ (p. 65, 
LHS). They also say that ‘The anaesthetic proto-
col was established by the veterinarian in charge, 
in light of his experience. Anaesthetist’s experience 
is a subjective concept and is hard to analyse. It 
refers to numerous factors  .  .  .  .  Many of these 
factors could not be tested as variables in the logis-
tic regression models and this could have led to a 
selection bias’ (p. 65, RHS). In addition, in rela-
tion to the significant odds of anaesthetic death 
in those animals receiving ‘premedication + thio-
pental + isoflurane’ compared with those in the 
‘other protocol’ group, ‘It is probable that, despite 
ASA classification, anaesthetist’s experience leads 
to a subjective evaluation of the risk. This can lead 
to the establishment of “another protocol”. This 
leads to a selection bias’ (p. 66, LHS). The authors 
state that ‘Dog owners might be more likely to 
seek medical attention than cat owners. A selection 
bias could therefore enhance the association 
between dogs and anaesthesia-related death, com-
pared to cats. Also, cats’ health status is, in general, 
less easily assessable than dogs’, possibly resulting 
in poorer preoperative assessment of the feline 
patients.’ The authors believe that, because there 
was a ‘small number of subjects (944) . . . the ten-
dency for cats to be more prone to anaesthesia-
related death could have been significant if a 
greater number of patients had been included’ (p. 
66, last paragraph LHS and first paragraph RHS). 
Finally, the authors believe that the arbitrary  
age grouping was unlikely to be representative 
of the metabolic state of patients. ‘However, 

(5)  Discussion

(a)  Deciding whether the results  
are important
(i)	 The key findings summarized with reference 

to the study objectives are stated in the final 
paragraph of the paper (p. 67), ‘the risk of 
anaesthetic death appears to be comparable 
with risk reported internationally. Patients of 
ASA status 3 and over appear to be consider-
ably more at risk than patients of ASA status 
1 and 2.’ The authors also state that ‘When 
considering patients of ASA status 3 and 
over, the use of an anaesthetic protocol that 
included premedication, induction with thio-
pental and maintenance with isoflurane, was 
associated with increased odds of anaesthetic 
death when compared to the group “other 
anaesthetic regimen”’ (p. 64, Discussion, par-
agraph 1).

(ii)	 The results make biological sense, although 
we agree with the authors that the finding 
regarding the relatively better outcome 
from the ‘other’ group of anaesthetic regi-
mens was unexpected.

(iii)	 The 95% confidence interval for the risk of 
death for animals in ASA category 1 is  
0.0% to 0.52% rising to 8.10% to 26.57% 
for those in ASA category 5 (Table 3). The 
lower limit of the confidence interval for 
those in ASA category 5 is substantially 
greater than the upper limit of that for those 
in ASA category 1, suggesting that this is an 
important and unambiguous result. Further-
more, the upper limit of the confidence 
interval for those in ASA category 5 is high 
at 26.57%, further emphasizing the impor-
tance of the result and the implication for 
those animals in the highest ASA category. 
In addition, the 95% confidence interval for 
the odds ratio of death in ASA category 5 
compared with category 3 in the subset of 
944 animals is 5.8 to 30.4. Both of these 
limits are substantially greater than 1 and 
emphasize the importance of ASA status in 
evaluating the risk of anaesthetic death for 
dogs and cats.

(iv)	 The number needed to treat is not relevant 
in this observational study.
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number of subjects enrolled was too low to allow 
a more detailed classification and an age effect on 
anaesthetic mortality could have gone undetected’ 
(p. 66, RHS paragraph 4).

(c)  Generalizability
The authors discuss the generalizability of their 
findings to other veterinary practices on page 67 
(LHS). They note that the ‘Centre Hospitalier 
Vétérinaire des Cordeliers has a different caseload 
from most practitioners and many of the anaes-
thetized patients are presented because of the 
severity of their condition and the necessity for a 
complex surgical procedure. Patients of clinical 
status of ASA 3, 4 and 5 represented 26.6% of our 
anaesthetized population whereas practice-based 
studies have shown that 5–10% of the patients 
were in these categories. Also, anaesthesia might 
not be routinely monitored the same way in every 
practice.’

(d)  Interpretation
Taking the limitations of the study, and subgroup 
analyses, and the results from other similar 

studies, we believe the authors’ interpretation of 
the study findings is consistent with the results.

(6)  Other information

No sources of funding are documented nor is 
there a conflict of interest statement for each of 
the investigators.

18.6  Paper 2

Lori, J.C., Stein, T.J. & Thamm, D.H. (2010)  
Doxorubicin and cyclophosphamide for the 
treatment of canine lymphoma: a randomized, 
placebo-controlled study. Veterinary and Com-
parative Oncology 8 (3) 188–95. (Reproduced 
with permission from the publisher, Wiley- 
Blackwell.)



	 Critical appraisal of reported studies	 289

Original Article DOI: 10.1111/j.1476-5829.2010.00215.x

Doxorubicin and cyclophosphamide
for the treatment of canine lymphoma:
a randomized, placebo-controlled study∗
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Abstract
Median survival times (STs) for doxorubicin-treated canine lymphoma range from 5.7 to 9 months.

Because dogs treated with multi-agent protocols have longer STs, we sought to evaluate whether

adding cyclophosphamide would improve outcome in canine lymphoma patients while maintaining

an acceptable level of toxicity. Thirty-two dogs with stage III–V multicentric lymphoma were treated

with doxorubicin every 3 weeks for five total cycles and prednisone at a tapering dose for the first

4 weeks. Dogs were randomized to receive either cyclophosphamide or placebo concurrently.

Seventeen dogs received doxorubicin and placebo, while 15 dogs received doxorubicin and

cyclophosphamide. Response, toxicity, progression-free interval (PFI) and ST were evaluated. The

combination of doxorubicin and cyclophosphamide was well tolerated, causing no increase in

adverse events over doxorubicin alone. Despite a numeric improvement in outcome in

cyclophosphamide treated dogs, the addition of cyclophosphamide did not result in statistically

improved response rate, PFI or ST.

Keywords
adriamycin, cancer,
chemotherapy, cytoxan,
dog

Introduction

Lymphoma is the most common haematopoi-

etic neoplasm in dogs. Standard of care treat-

ment involves multi-agent chemotherapy protocols

that incorporate doxorubicin. Most combination

protocols are so-called CHOP-based, which use

cyclophosphamide, doxorubicin, vincristine and

prednisone, with 80–90% complete response (CR)

rates and median survival times (STs) of approxi-

mately 12 months reported1,2; however, the use of

multi-agent protocols is not always possible because

of cost or time constraints on the part of owners.

Doxorubicin is an anthracycline derived from the

Streptomyces yeast. It has multiple mechanisms of

∗This data was presented in part at the meeting of the
Veterinary Cancer Society on October 17, 2009 in Austin,
Texas.

action. These include intercalation of DNA, which

leads to inhibition of protein synthesis and free

radical formation, and inhibition of topoisomerase

enzymes. Major toxicities associated with doxoru-

bicin are bone marrow suppression, gastrointestinal

upset, including nausea, vomiting and diarrhoea,

and myocardial toxicity, which is cumulative and

dose limiting.3 – 6 Single-agent therapy with doxoru-

bicin results in STs greater than those of prednisone

alone for the treatment of canine lymphoma.

Reported remission durations range from 4.3 to

6.8 months, STs from 5.7 to 9 months, and reported

response rates of 59–85%.7 – 11

Cyclophosphamide is an alkylating agent that can

be given orally in dogs, with relatively little toxic-

ity, including bone marrow suppression and sterile

haemorrhagic cystitis.3,12 – 15 Although doxorubicin

has been evaluated as a single agent for lymphoma

Correspondence address:
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Animal Cancer Center
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College of Veterinary
Medicine
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e-mail:
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in dogs, cyclophosphamide has not. The ability

to administer cyclophosphamide and prednisone

orally allows for these drugs to be given concurrently

with doxorubicin with minimal time or effort on

the part of the owner, and with little added expense.

Previously, cyclophosphamide was evaluated in

combination with doxorubicin as a maintenance

protocol following induction with vincristine and

L-asparaginase for 28 dogs with stage III–V lym-

phoma. In this study, the median remission dura-

tion was 173 days (5.7 months), which appeared

similar to those in single-agent doxorubicin

protocols.16 Data regarding first-line use of doxoru-

bicin/cyclophosphamide combination chemother-

apy have not been reported to our knowledge.

The purpose of this prospective study was to

evaluate whether the addition of oral cyclophos-

phamide to five doses of doxorubicin and oral

prednisone would increase median progression-

free interval (PFI), response rate, ST or toxicity in

dogs with treatment-naïve multicentric lymphoma.

Materials and methods

Patient population

Thirty-two dogs with multicentric lymphoma that

were presented to the Animal Cancer Center at

Colorado State University or the University of

Wisconsin-Madison School of Veterinary Medicine

between September of 2007 and October of 2008

were included in the study. The study design

was prospective in nature. Dogs were eligible for

the study if they were stage II–V, substage a or b

and the owners elected to treat with single-agent

doxorubicin. Breed, sex and age at diagnosis

were recorded for each dog. All dogs were naïve

to chemotherapy including corticosteroids. The

staging system of the World Health Organization

for canine lymphoma was used to determine stage

and substage. A complete blood count (CBC),

serum chemistry and urinalysis were required

for entry into the study. Thoracic radiographs,

abdominal ultrasound and bone marrow aspirate

were documented when performed for staging.

Immunophenotype, as assessed by Polymerase

Chain Reaction for antigen receptor rearrangement,

immunohistochemistry, immunocytochemistry or

flow cytometry, was recorded when available.

Treatment

If owners chose single-agent doxorubicin as treat-

ment, and elected to enroll in the study, dogs were

randomized to receive either cyclophosphamide or

placebo. The randomization scheme was gener-

ated by using the web site Randomization.com

(http://www.randomization.com). Patients were

treated with doxorubicin (30 mg m−2) IV every

3 weeks for a total of five cycles and prednisone

at a tapering dose for the first 4 weeks (Table 1).

Based on randomization to treatment or placebo

group, patients received either cyclophosphamide

(target dose 50 mg m−2 daily for three days) or

placebo concurrently, starting on the same day as

the doxorubicin dosing.

Response and toxicity

CR (complete resolution of disease), partial

response (at least 30% or greater reduction in sums

of the longest diameters of measurable peripheral

nodes), PFI, ST and number of grade 3/4 adverse

events were compared between groups. Response

was determined using the Response Evaluation Cri-

teria in Solid Tumors (RECIST) criteria.17 Stable

disease was defined as neither a 30% decrease or

20% increase in the sums of the longest diameters

of measurable peripheral lymph nodes, while pro-

gressive disease (PD) was defined as a greater than

Table 1. Chemotherapy protocol dogs were scheduled to receive

Weeks

Drug and dosage 1 2 3 4 5 6 7 8 9 10 11 12 13

Doxorubicin (30 mg m−2) X X X X X

Cyclophosphamide (50 mg m−2 daily × 3 days) or
Placebo

X X X X X

Prednisone (mg kg−1 day−1) 2 1.5 1 0.5

 2010 Blackwell Publishing Ltd, Veterinary and Comparative Oncology, 8, 3, 188–195
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20% increase in the sums of the longest diameters.

The PFI was defined as the time from first treatment

to the date of PD. The ST was calculated as the time

from the date of the first treatment to the date of

death. Toxicity was graded 1–4, and based on the

Veterinary Co-operative Oncology Group common

terminology criteria for adverse events.18 Using this

grading scheme, Grade 1 neutropenia was defined

as 1500 cells µL−1 to the lower limit of normal,

which was 2000 cells µL−1 for both institutions.

Haematological toxicity was evaluated 7 days after

the first treatment, and subsequently at the time

of each treatment, if dosage adjustments were not

made.

Upon completion of the five treatments, it was

recommended that animals be seen once monthly

for rechecks involving a physical examination.

Blood work was performed at the discretion of the

clinician. If lymph node enlargement was palpated,

cytology was used to confirm relapse. Information

regarding rescue therapy pursued following relapse

was collected, and outcome information collected

following relapse via recheck examinations and

telephone conversations with owners and referring

veterinarians.

Statistical analysis

Power analysis was performed prospectively and

prior to enrollment of patients. With a planned

total of 32 dogs to enroll, this study was powered

to detect a 3.1-fold increase in PFI or ST with 80%

power and a P value of 0.05. CR versus partial

or no response and the presence of grade 3/4

adverse events were compared between groups for

significance using a two-tailed Fisher’s exact test.

This test was also used to evaluate for differences

between groups for substage, hypercalcaemia and

T-cell immunophenotype, all of which have been

associated with prognosis in previous studies. Stage

was not evaluated as a result of inconsistencies

in staging tests performed between patients. A

Student’s two-tailed unpaired t-test was used

to compare age between groups. The PFI and

ST curves were generated by the Kaplan–Meier

product limit method. A log rank (Mantel–Cox)

test was used to compare the curves. In all analyses,

a P value of <0.05 was considered statistically

significant. Statistical analyses were performed

using Prism 5 software (GraphPad, San Diego,

CA, USA).

Results

Patients

Thirty-two dogs with lymphoma were included in

the study. Patient characteristics by treatment group

are listed in Table 2. All patients received full blood

work as part of staging, while some patients received

thoracic radiographs, abdominal ultrasound and/or

bone marrow aspirates. There were no significant

differences between the two groups with regard to

age, weight, sex, substage, immunophenotype or

the presence of hypercalcaemia.

Treatment and toxicity

The overall number of doses of doxorubicin

and cyclophosphamide given ranged from 1 to 5

(median 5) for both groups. In the doxorubicin and

placebo group, the mean starting dose of doxoru-

bicin was 28.1 mg m−2 (range 19.7–30.3 mg m−2).

In the doxorubicin and cyclophosphamide group,

the mean starting dose of doxorubicin was 27.7 mg

m−2 (range 18.1–30.3 mg m−2), while the mean

starting dose of cyclophosphamide was 159 mg m−2

Table 2. Patient characteristics by treatment group

Doxorubicin +
cyclophos-
phamide
(n = 15)

Doxorubicin +
placebo (n = 17) P value

Age (years) 0.83

Mean 8.25 ± 2.57 8.47 ± 3.07

Median 8 9

Range 5–13 2–14

Body weight
(mean in kg)

31.7 ± 4.1 33.3 ± 3.2 0.76

Sex 1.0

Male 10 (66.7%) 12 (64.7%)

Female 5 (33.3%) 5 (35.2%)

Substage 0.32

a 12 (80.0%) 16 (94.1%)

b 3 (20.0%) 1 (5.9%)

Immuno-
phenotype

0.49

B 6 (40.0%) 5 (29.4%)

T 2 (13.3%)

Null 2 (11.8%)

Hypercalcaemia 2 (13.3%) 1 (5.9%) 0.58

 2010 Blackwell Publishing Ltd, Veterinary and Comparative Oncology, 8, 3, 188–195
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Figure 2. Kaplan Meier curve of survival time comparing
cyclophosphamide and placebo groups.

Figure 3. Kaplan Meier curve of survival time of dogs
receiving rescue therapy comparing cyclophosphamide and
placebo groups.

received cyclophosphamide and prednisone, and

two dogs received multiple rescue protocols consist-

ing of GS-9219, CCNU, L-asparaginase, vincristine

or mitoxantrone. The difference in the percentage

of dogs receiving rescue therapy at relapse between

groups approached significance (P = 0.06). When

only the dogs of each group that received rescue

chemotherapy were compared for survival (Fig. 3),

the median ST of cyclophosphamide dogs was

423 days, while that of placebo dogs was 318 days

(P = 0.11). When the dogs receiving rescue therapy

were separated from the eligible dogs who did not

receive rescue, regardless of whether they received

placebo or cyclophosphamide, dogs that received

rescue therapy had a median ST of 352 days, which

was significantly longer than those that did not

receive rescue therapy (295 days; P = 0.01).

Discussion

This study compared outcome in dogs treated

for multicentric lymphoma with doxorubicin,

cyclophosphamide and prednisone to outcome in

dogs treated with doxorubicin, placebo and pred-

nisone. Results of the present study suggest that

the combination of doxorubicin and cyclophos-

phamide for treatment of canine lymphoma was

well tolerated, causing no significant increase in

adverse events over doxorubicin alone. However,

the addition of cyclophosphamide in this study did

not result in significantly improved response, PFI

or ST.

Although there was no statistical difference in

the PFI or ST between the two groups, there was

a longer median PFI and ST for the dogs treated

with doxorubicin and cyclophosphamide. The most

noticeable difference was in the ST between the two

groups, with a ST of 423 days for the cyclophos-

phamide group versus 295 days for the placebo

group. Given the differences in rescue therapy

elected, we speculated that this difference could be

explained in part by the difference in rescue proto-

cols between groups. The cyclophosphamide group

had a larger number of patients receiving rescue

therapy than the placebo group, which statistically

approached significance. When only patients that

received rescue therapy were compared for survival

between the two groups, the curves were similar to

the initial survival curves (423 days versus 318 days

for cyclophosphamide and placebo groups, respec-

tively), with an equivalent P value, suggesting a

minimal contribution of rescue therapy to patient

outcome.

With a total of 32 dogs, this study was powered

to detect a 3.1-fold increase in PFI or ST with 80%

power and a P value of 0.05. In order to detect

the 1.45-fold improvement in outcome observed in

this study with 80% power, a total of 255 patients

would have been required. Because of the min-

imal added expense, ease of administration, and

lack of additional toxicity, it may be reasonable to

add cyclophosphamide to doxorubicin and pred-

nisone in this population. Given the limited power

in this study, it may be dangerous to interpret that

cyclophosphamide is not useful in addition to dox-

orubicin because of type II error, failing to accept

the null hypothesis when it is in fact true.21

It has been previously shown that lymphoma

dogs treated with single-agent doxorubicin are

more responsive to rescue protocols than are dogs

treated with COP.8 It seems that the addition of

 2010 Blackwell Publishing Ltd, Veterinary and Comparative Oncology, 8, 3, 188–195
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cyclophosphamide does not negatively affect the

ST of dogs receiving rescue therapy, given that

the ST of cyclophosphamide treated dogs remained

greater when patients not receiving rescue ther-

apy were removed from the survival curve. Thus,

the addition of cyclophosphamide remains more

convenient and less expensive than CHOP-based

protocols, and likely does not influence the response

to rescue therapy negatively.

The two populations of dogs in this study were

comparable in terms of age, sex, weight and poten-

tial prognostic factors. The randomization scheme

avoided potential biases between groups. One lim-

itation was that most of the dogs were not staged

with a bone marrow aspirate and many were not

immunophenotyped, owing to a lack of financial

support for these aspects of the trial. This makes it

difficult to compare the groups for these two impor-

tant prognostic factors, and although statistical dif-

ferences did not exist between the groups, this could

have contributed to the differences in PFI and ST.

Ultimately, most dogs that achieve remission are

likely to experience a relapse of disease, possibly

representing the emergence of resistant tumour

clones. It is somewhat intuitive that dogs receiving

rescue therapy after relapsing following induction

would have a longer ST than those receiving pred-

nisone alone or no rescue therapy, although this has

never been evaluated systematically in dogs with

lymphoma. This study demonstrates that patients

receiving some form of chemotherapy following

relapse had a statistically longer ST than those

that received palliative therapy (prednisone) or

no treatment. This seems logical and again could

have contributed to the longer numerical ST in the

cyclophosphamide group, although the difference

among the groups in those patients that received

rescue therapy was not statistically significant.

Prednisone was administered in addition to the

doxorubicin in this study, as the authors felt that

it may improve quality of life during the induc-

tion period and could also increase response and

survival. The results for the placebo group, with

a median ST of 295 days (9.8 months) is simi-

lar to those reported historically for doxorubicin

alone (median ST 5.7–9 months).7 – 11 Similarly,

there appears to be no difference in percentage of

patients responding to treatment with the addition

of prednisone, although comparison with histori-

cal controls does not allow meaningful statistical

evaluation.

Doxorubicin-associated cardiomyopathy did not

seem to be a significant occurrence in this study.

There were two patients in this study that died

because of suspected cardiac disease, one eutha-

nized because of heart failure and one that died of

suspected heart failure. Neither of these patients’

disease was confirmed to be a result of therapy with

doxorubicin. Neither patient had a prescreening

echocardiogram and one patient was a Doberman

Pinscher, a breed known to be predisposed to

dilated cardiomyopathy. Both of these patients were

in the cyclophosphamide group, but there was no

statistical difference in the incidence of cardiac dis-

ease between the two groups, although this study

was not powered to detect such a small difference. It

has been shown in people that cyclophosphamide

given concurrently with doxorubicin may lower

the cumulative dose necessary for the develop-

ment of cardiac toxicity.22 A cumulative dose of

180 mg m−2 was the maximum dose given in the

cyclophosphamide group in one dog, the remainder

receiving 150 mg m−2. The addition of concurrent

cyclophosphamide, although dosed over 3 days fol-

lowing the doxorubicin, did not seem to increase

the development of cardiomyopathy.

In summary, we found no significant differences

in the response rate, PFI, ST or prevalence of toxi-

city in dogs treated with doxorubicin, placebo and

prednisone versus doxorubicin, cyclophosphamide

and prednisone. This suggests that although well

tolerated and given with little added expense, there

was no statistical improvement in outcome with the

addition of cyclophosphamide in the present pop-

ulation. The authors strongly feel that this question

may be better answered in a larger population of

dogs with lymphoma.
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ST or toxicity in dogs with treatment-naïve 
multicentric lymphoma’ (p. 189, LHS, para-
graph 2). No single primary outcome of 
interest is identified. Instead, there appear to 
be four outcomes of equal importance (PFI, 
response rate, ST and toxicity).

(3)  Materials and methods

(a)  Animals
(i)	 There were 32 dogs with multicentric lym-

phoma in the study, all presenting at two 
institutions in the USA between September 
2007 and October 2008 (p. 189, Patient popu-
lation, paragraph 1). Inclusion criteria are 
documented: dogs were eligible ‘if they were 
stage II–V, substage a or b and the owners 
elected to treat with single-agent doxorubicin 
. . . dogs were naïve to chemotherapy includ-
ing corticosteroids.’ In addition, ‘A complete 
blood count (CBC), serum chemistry and 
urinalysis were required for entry into the 
study’ (p. 189, RHS, paragraph 1).

(ii)	 No indication is given of the breeds of the 
dogs included in the study. Hence we cannot 
assess if the study was conducted using an 
appropriately wide range of animals.

(b)  General methodology
(i)	 The methods are clearly presented: all dogs 

had baseline information collected on breed, 
sex and age at diagnosis, stage using the 
World Health Organization (WHO) system 
for canine lymphoma, CBC (complete blood 
count), serum chemistry and urinalysis. Some 
dogs received thoracic radiographs, abdomi-
nal ultrasound and/or bone marrow aspi-
rates for staging (p. 189, Patient population). 
Other information was recorded when avail-
able. The treatment regimen is detailed in 
Table 1 and described under ‘Treatment’ on 
page 189. Explanations are provided for the 
definitions of outcomes under ‘Response 
and toxicity’ on pages 189–90. The condi-
tions for determining PFI and ST are clearly 
outlined (p. 190, LHS). Toxicity of the drugs 
was assessed rigorously based on defined cri-
teria (p. 190, LHS), and dosage reduction of 
doxorubicin only (p. 191, LHS, paragraph 1) 
was made in the light of severe toxicity.  

18.7  Critical appraisal of paper 2

(1)  Title and abstract

(a)	 The title states that the study is a randomized, 
placebo-controlled trial and this is also men-
tioned in the abstract, albeit obliquely. The 
drugs used in the treated group are indicated 
in both the title and abstract.

(b)	 The abstract summarizes the primary objec-
tive as determining whether adding cyclo-
phosphamide rather than a placebo to a 
regimen of doxorubicin every 3 weeks for 
five cycles and prednisone at a tapering dose 
for 4 weeks would improve the (unspecified) 
outcome in canine lymphoma dogs. The 
authors conclude in the abstract that there 
was a clinical but not statistical improvement 
with the addition of cyclophosphamide, and 
that the combination of drugs was well toler-
ated. The numbers of dogs in each treatment 
group are stated (17 in the placebo group 
and 15 in the cyclophosphamide group) but 
no effects of interest are provided and no 
limitations are mentioned in the abstract.

(2)  Introduction

(a)	 The rationale is set out logically and clearly 
in the Introduction and references are pro-
vided for the details included (pp. 188–9). 
The authors provide information about tox-
icity associated with doxorubicin, as well as 
remission durations and survival times (STs) 
(p. 188, RHS). They explain that cyclophos-
phamide has relatively little toxicity (p. 188, 
RHS) and that the ability to administer 
cyclophosphamide and prednisone orally 
allows for these drugs to be given concur-
rently with doxorubicin with minimal time or 
effort on the part of the owner, and with little 
added expense (p. 189, LHS). However, first-
line use of doxorubicin/cyclophosphamide 
combination chemotherapy has not been 
reported as far as the authors are aware.

(b)	 The purpose of the study was ‘to evaluate 
whether the addition of oral cyclophospha-
mide to five doses of doxorubicin and  
oral prednisone would increase median 
progression-free interval (PFI), response rate, 



298	 Statistics for Veterinary and Animal Science

(iv)	 With the exception that they received differ-
ent treatments, there is no indication that 
the groups were treated differently.

(d)  Variables
(i)	 Consideration is given to all important  

outcomes, namely complete resolution of 
disease (CR), partial response (at least 30% 
or greater reduction in sums of the longest 
diameters of measurable peripheral nodes), 
progression-free interval (PFI), survival 
time (ST) and number of grade 3/4 adverse 
events.

(ii)	 There is no clear distinction between the 
primary and secondary outcomes. All out-
comes listed in Part 3d(i) are treated with 
equal importance. These outcomes are pre-
cisely defined (pp. 189–90, Response and 
toxicity).

(iii)	 No changes were made to outcomes after 
the start of the study.

(iv)	 There is a clear description of treatments. 
All dogs were treated with intravenous dox-
orubicin (30  mg/m2) every 3 weeks for a 
total of five cycles and prednisone at a 
tapering dose for the first 4 weeks. Dogs 
received either cyclophosphamide (target 
dose 50 mg/m2 daily for 3 days) or placebo 
concurrently, starting on the same day as  
the doxorubicin dosing (p. 189, Treatment). 
Table 1 also defines the chemotherapy pro-
tocol over the time period of interest, with 
the dogs receiving five treatments of cyclo-
phosphamide or placebo in this time. Dose 
reductions were made only in doxorubicin 
in dogs experiencing severe toxicity. No 
information is given about potential con-
founders and effect modifiers.

(e)  Sample size
(i)	 There is a power statement to justify the 

overall sample size (p. 190, Statistical analy-
sis): ‘this study was powered to detect a 3.1-
fold increase in PFI or ST with 80% power 
and a P value of 0.05’, although the authors 
do not state the form of the statistical analy-
sis on which it is based. Furthermore, the 
PFI and ST data were compared between 
treatment groups using survival analysis, 

Physical examination at monthly intervals 
was continued during follow-up when lymph 
nodes were assessed quantitatively to assess 
whether the disease was stable or progres-
sive (p. 189, Response and toxicity, RHS). ‘If 
lymph node enlargement was palpated cytol-
ogy was used to confirm relapse’ (p. 190, 
LHS, second paragraph). On relapse, rescue 
therapy was considered and details are given 
of various rescue protocols used (p. 191, 
RHS, last paragraph). Outcome information 
was ‘collected following relapse via recheck 
examinations and telephone conversations 
with owners and referring veterinarians’ (p. 
190, LHS, paragraph 2).

(ii)	 It would appear that the assessment methods 
were applied to all dogs, irrespective of 
group (pp. 189–90, Response and toxicity).

(c)  Study design
The authors describe the design as prospective 
(p. 189, Patient population) and indicate that it 
was a randomized, placebo-controlled trial (p. 
189, Treatment). They provide information about 
the setting and dates, explaining that dogs were 
presented to the Animal Cancer Center at  
Colorado State University or the University of 
Wisconsin-Madison School of Veterinary Medi-
cine between September 2007 and October 2008 
(p. 189, Patient population).
(i)	 The authors explain that dogs were rand-

omized to the treatment groups and that  
the randomization scheme was generated by 
using the website http://www.randomization. 
com. No indication is given of the type of 
randomization, nor who enrolled the sub-
jects and who assigned the participants to 
the treatments.

(ii)	 No information is provided about blinding 
apart from the statement in the Results 
section on page 191 (LHS, paragraph 1), 
which states that ‘it was unknown whether 
patients were receiving cyclophosphamide or 
placebo.’

(iii)	 No information is provided as to whether 
the allocation sequence was concealed from 
those assigning subjects to treatments and 
those responsible for care of the animals.

http://www.randomization.com
http://www.randomization.com
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group with no follow-up CBC 1 week after 
the first treatment (p. 191, LHS), which is 
not an outcome of primary interest.

(vii)	 Two dogs in the cyclophosphamide group 
died or were euthanized because of pre-
sumed cardiac disease and two dogs died 
of unknown causes in the placebo group 
after the first treatment. No attempts were 
made to deal with these losses.

(viii)	 No sensitivity analyses were performed.
(ix)	 The authors specify a significance level of 

0.05 and report that the data were analysed 
using Prism 5 software (p. 190, Statistical 
analysis).

(4)  Results

(a)  Animal numbers and dates
(i)	 The authors show clearly that 17 dogs were 

randomized to the placebo group and 15 
dogs were randomized to the cyclophospha-
mide group (Table 2).

(ii)	 Information relating to an observational 
study is not relevant as the study is not 
observational.

(iii)	 The numbers of and reasons for losses to 
follow-up are documented (see Part 3f(vii)).

(iv)	 Dates are provided that define the periods 
of recruitment (see Part 3a(i)) but not of the 
follow-up period (see Part 4c(v)).

(b)  Baseline data
(i)	 Table 2 shows the baseline data for each 

group.
(ii)	 The groups were comparable (see Part 4c(iii)).

(c)  Descriptive data
(i)	 The baseline variables, including age, weight 

and substage, of each treatment group are 
summarized in Table 2.

(ii)	 Information on housing and husbandry con-
ditions is not relevant to this study.

(iii)	 The groups are shown to be comparable 
with respect to the variables presented in 
Table 2: this is confirmed on page 190 under 
Patients. The authors performed hypothesis 
tests to confirm comparability and provide 
P-values. In fact, when using randomization 
for treatment allocation, hypothesis tests 

and there is no suggestion that this was used 
for the sample size determination nor any 
indication of what was the parameter of 
interest (e.g. the median survival time or the 
hazard ratio).

(ii)	 There is no reference to any pilot studies 
that informed the power analysis.

(iii)	 There were no interim analyses.
(iv)	 The authors performed subgroup analyses 

on the dogs receiving rescue therapy but no 
sample size calculations were performed in 
relation to this subgroup.

(f)  Statistical methods
(i)	 It is clear throughout the study that the 

dog is the unit of investigation.
(ii)	 The authors explain (p. 190, Statistical 

analysis) that categorical data were com-
pared between the groups using Fisher’s 
exact test. An unpaired t-test was used to 
compare age. Kaplan–Meier curves were 
generated for PFI and ST, and a log-rank 
test used to compare them in the two treat-
ment groups. Tests were two-tailed and a 
significance level of 0.05 used throughout.

(iii)	 The statistical methods described are 
appropriate, although there is no mention 
of checking the assumptions of Normality 
and homoscedasticity for the t-test, and 
the authors have not taken into account 
the potential clustering resulting from the 
dogs presenting to two institutions.

(iv)	 The numerical variables were not grouped 
and no transformations were taken of 
them.

(v)	 The authors performed subgroup analyses 
on those dogs receiving rescue therapy. 
These analyses were not specified a priori 
but are presented in the Results section (p. 
192, LHS). The authors compared the sur-
vival experience between the two treat-
ment groups considering only the dogs that 
received rescue therapy. They also disre-
garded treatment, and compared the sur-
vival experience in those receiving rescue 
therapy and those not receiving rescue 
therapy if eligible for it.

(vi)	 There do not appear to be any missing data 
other than three dogs in each treatment 
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that P  >  0.99. It should be noted, further-
more, that if they performed the log-rank 
test as part of the survival analysis for ST 
and PFI, as stated in the Statistical analysis 
section on page 190, the P-value for each 
treatment comparison compares the overall 
survival (or progression-free interval) expe-
rienced and not the median values.

Two additional outcomes are reported: 
the toxicity data (Table 3, which would be 
improved by including total number of dogs 
in each group), dose reductions and deaths 
(p. 191, LHS) and the ST of those dogs 
receiving rescue therapy following relapse 
(p. 191, RHS, last paragraph). As summa-
rized in Table 3 and reported in the text, 
there were six animals in the cyclophospha-
mide group that had grade 3 or 4 haemato-
logical toxicity, no animals with grade 3/4 
gastrointestinal toxicity (p. 191, LHS, para-
graph 1) and there were three patients in the 
placebo group that had grade 3 or 4 haema-
tological toxicity, and two with grade 3/4 
gastrointestinal toxicity (p. 191, LHS, para-
graph 2). There was no significant difference 
in the number of patients with grade 3/4 
toxicities between groups (P = 0.71) or the 
number of dose reductions between groups 
(P = 1.0) (p. 191, LHS, paragraph 2).

Some confusion exists in the terminology 
used to indicate the condition of eligibility 
for rescue therapy; it would have been 
helpful to use the term ‘relapse’ in connec-
tion with the definitions of progressive 
disease (PD) and termination of PFI (p. 190, 
LHS, paragraph 1). The results of rescue 
therapy are discussed in Part 4f.

(ii)	 Magnitude of the effect of interest.  The 
authors do not provide any effects of inter-
est (e.g. the difference in proportions or 
hazard ratios).

(iii)	 Precision of the effect of interest.  The 
precision of the effects of interest is not 
provided.

(f)  Additional analyses
Post hoc comparisons were made between the 
two treatment groups of the proportions receiv-

should not be employed. A hypothesis test 
is used to see if the difference between the 
two treatment groups is due to chance. Since 
the groups in this study have been created 
by randomization (i.e. a method based on 
chance), any difference between the base-
line values cannot be due to treatment and 
must be due to chance.

(iv)	 There were no exclusions. The only losses  
to follow-up were those dogs that died (see 
Part 3f(vii)).

(v)	 The follow-up time for the survival analysis 
is shown in Figures 2 and 3 to be up to about 
550 days or approximately 1.5 years. The 
total follow-up time is not provided in the 
text, although the authors state that 564 
days was the maximum survival time for 
dogs in the cyclophosphamide group (p. 191, 
Outcome).

(d)  Numbers analysed
(i)	 Since there were no protocol violations, 

intention-to-treat (ITT) analysis is not 
relevant.

(ii)	 A sensitivity analysis was not performed.

(e)  Outcomes of interest
(i)	 Main outcome of interest.  The authors pro

vide summary measures for all the impor-
tant outcomes. In particular, they indicate 
(p. 191, Outcome) that there were 11/15 
(73.3%) complete remissions in the cyclo-
phosphamide group and 13/17 (76.4%) in 
the placebo group. The median PFI was 246 
days (range 7–337 days) in the cyclophos-
phamide group and 169 days (range 6–428 
days) in the placebo group. The median ST 
was 423 days (range 7–564 days) in the 
cyclophosphamide group and 295 days 
(range 6–545 days) in the placebo group. 
The authors provide P-values to afford a 
comparison of the summary measures in the 
treatment groups. The authors report that 
P = 0.65 for the comparison of the propor-
tions of CRs in the cyclophosphamide and 
placebo groups (p. 191, RHS, paragraph 2); 
however, Fisher’s exact test actually shows 
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(5)  Discussion

(a)  Deciding whether the results  
are important
(i)	 The key findings are summarized with refer-

ence to the study objectives (p. 193, last 
paragraph of Discussion). The authors state 
that they ‘found no significant differences 
in the response rate, PFI, ST or prevalence  
of toxicity in dogs treated with doxorubicin, 
placebo and prednisone versus doxorubicin, 
cyclophosphamide and prednisone. This sug-
gests that although well tolerated and given  
with little added expense, there was no statis-
tical improvement in outcome with the addi-
tion of cyclophosphamide in the present 
population.’

The authors write (p. 192, RHS, paragraph 
3) that ‘it may be dangerous to interpret that 
cyclophosphamide is not useful in addition 
to doxorubicin because of type II error, 
failing to accept the null hypothesis when it 
is in fact true.’ The latter part of this state-
ment is incorrect – a Type II error occurs 
when we do not reject the null hypothesis 
when it is false. However, by referring to a 
Type II error (equal to one minus the power 
of the study), there is a suggestion that the 
lack of significance is due to low power. This 
is supported by the authors’ final recom-
mendation to investigate the treatment 
effect in a larger population of dogs with 
lymphoma.

(ii)	 Treatment with cyclophosphamide in addi-
tion to doxorubicin and prednisolone is a 
rational step to explore to prolong survival 
and quality of life. In this small prospective 
study (32 dogs) the authors anticipated a 
3.1-fold improvement and achieved only a 
1.45-fold response, which in this study was 
not statistically significant, which may, as 
indicated in Part 5a(i), be due to low power.

(iii)	 No confidence intervals for the effect of 
interest are provided so we cannot decide 
on that basis whether the results are clini-
cally important or unambiguous.

(iv)	 There is no evaluation of the number of 
subjects needed to treat (NNT) with the 
cyclophosphamide rather than the placebo 

ing rescue therapy. The authors state (p. 191, 
Outcome) that 10 out of the 10 dogs eligible to 
receive rescue therapy in the cyclophosphamide 
group received rescue therapy, and five of the 
eight dogs eligible to receive rescue therapy in 
the placebo group received rescue therapy. They 
also provide a P-value for the comparison of the 
proportions receiving rescue therapy at relapse 
on page 192 (P = 0.06), although it is not certain 
that these proportions correspond to 10/10 and 
5/8 as a Fisher’s exact test on these figures gives 
P =  0.07 when they are compared. In addition, 
the authors performed a post hoc subgroup anal-
ysis (p. 192, LHS, paragraph 1). They considered 
only the dogs that received rescue therapy, and 
compared the two treatment groups using sur-
vival analysis (Figure 3), noting that the median 
ST of cyclophosphamide dogs was 423 days, 
while that of placebo dogs was 318 days (P = 0.11). 
We believe this was an ill-advised analysis since 
there were only 10 dogs in the cyclophosphamide 
group and five dogs in the placebo group on 
which to base this survival analysis.

Finally, the authors performed another post 
hoc comparison (p. 192, LHS) by separating 
the dogs receiving rescue therapy from the eligi-
ble dogs who did not receive rescue therapy, 
regardless of whether they received placebo or 
cyclophosphamide. The 15 (five in the cyclophos-
phamide group and 10 in the placebo group) 
dogs that received rescue therapy had a median 
ST of 352 days, which was significantly longer 
than that of the three (none in the cyclophospha-
mide group and three in the placebo group) dogs 
that did not receive rescue therapy but were eli-
gible for it (295 days; P = 0.01). Again, numbers 
are small here and such an analysis is, in our view, 
ill-advised.

(g)  Harms
The toxicities experienced by the dogs in the two 
treatment groups are documented on page 191 
(LHS) and in Table 3. Although two dogs died of 
presumed cardiac disease in the cyclophospha-
mide group (p. 191, LHS, paragraph 2) and no 
dogs died of cardiac disease in the placebo group, 
there was no evidence of a difference in cardiac 
disease between the groups (P  =  0.21). There 
were no other reported toxicities.
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in order to prevent one dog developing the 
‘bad’ outcome.

(v)	 It is not relevant to translate relative risks 
into absolute risks.

(vi)	 Herd immunity is not relevant in this study.

(b)  Limitations
The authors list a number of limitations. They 
speculate that the differences in rescue therapy 
elected could explain the differences in ST 
between the two groups (p. 192, RHS, paragraph 
2). They also note that the power of the study was 
limited, and suggest that with a greater sample 
size and consequently a greater power, the effect 
of cyclophosphamide might be more marked  
(p. 192, RHS, paragraph 3). Finally, the authors 
explain that a limitation of the study was that 
‘most of the dogs were not staged with a bone 
marrow aspirate and many were not immunophe-
notyped, owing to a lack of financial support for 
these aspects of the trial. This makes it difficult to 
compare the groups for these two important prog-
nostic factors, and although statistical differences 
did not exist between the groups, this could have 
contributed to the differences in PFI and ST’ (p. 
193, LHS, paragraph 2).

(c)  Generalizability
There is no discussion about the generalizability 
of the results.

(d)  Interpretation
The authors conclude that ‘although well toler-
ated and given with little added expense, there was 
no statistical improvement in outcome with the 
addition of cyclophosphamide in the present pop-

ulation’ (p. 193, last paragraph of Discussion). 
This statement is consistent with their results and 
highlights that they can only make inferences 
about the population from which their dogs were 
taken. They recognize that their study may be 
underpowered as they go on to suggest that the 
question would be better answered with a larger 
population of dogs with lymphoma.

(6)  Other information

The authors state (p. 193, Acknowledgements) 
that the study was funded in part by grant 
1UL1RR025011 from the Clinical and Transla-
tional Science Award (CTSA) program of the 
National Center for Research Resources 
(NCRR) National Institutes of Health (NIH) to 
T. J. Stein (pp. 193–4). There is no conflict of 
interest statement.

18.8  General conclusion

So we have now come to the end of this book. 
We hope we have guided you through the basic 
steps of statistics and its applications, and you 
have sufficient confidence to tackle your own 
study design, data collection and analysis. We 
trust you will continue to build your confidence 
in your own abilities. It may be worth remarking 
that it has been said that you can torture the data 
to confess to anything, but a good statistics train-
ing controls your choices and limits your excesses. 
As you go on learning, you should not be too 
proud to consult someone who has more experi-
ence than you of statistical procedures. We  
wish you every success in all your statistical 
adventures!
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Chapter 1

1.1  (a) F: there are several sources of variation 
between animals, the most important being 
genetic variation. Biological variation describes 
it; it does not cause it. (b) T. (c) F: statistics deals 
with the problems of biological variation, but 
offers other benefits as well. (d) F: since we 
can rarely sample whole populations, there will 
always be an element of uncertainty in the con-
clusions we draw about biological data. Statistics 
deals with the biological variation in such a way 
as to quantitate that uncertainty. (e) F: no, this is 
known as technical error or fatigue!

1.2  (a) F: to achieve this, a sample would not 
have to be random. (b) F: a sample cannot claim 
to represent the full range of the population. (c) 
F: a sample does not claim to be made up 
of only ‘normal’ animals. (d) T: yes, a random 
sample aims to be representative. (e) T: a random 
sample excludes biases imposed by the process 
of selection.

1.3  (a) T. (b) F: a nominal variable is a particu-
lar type of categorical variable. (c) F: a nominal 
scale relates to a categorical variable which is  
not directly measurable. (d) F: percentages are 
numerical. (e) F: ranked data are measured on 
an ordinal scale.

1.4  (a) S: enzyme activity is temperature 
dependent; if the temperature falls, the enzyme 

Solutions to exercises

activity will be reduced. All samples will be simi-
larly affected. (b) S: the readings will be raised 
or lowered to the nearest 0.5 degree mark, which 
is not random. (c) S: a zero offset will be present 
affecting every reading equally. (d) S: the scales 
will have been calibrated by activation after the 
load is placed. Should the scales be activated 
before the load is placed, this will probably 
induce a systematic error due to hysteresis. (e) R: 
this is a random error caused by attempts to read 
beyond the sensitivity of the instrument.

1.5  (a) H: there is no existing population of 
treated cows. (b) R: the population includes all 
horses at livery. (c) R: all fleas on all dogs in 
Liverpool make up this population. (d) H: there 
is no existing population of treated dogs. (e) R: 
the population includes all blood glucose read-
ings from diabetic dogs.

1.6  (a) N: nominal since the classes are descrip-
tive. (b) C: the percentage scale is continuous 
between 0 and 100, delimited only by the accu-
racy of the values. (c) C: light absorbance is 
measured on a continuous but arbitrary scale. (d) 
O: this arbitrary scale has only integer values, and 
a particular interval on the scale does not neces-
sarily represent the same change in performance 
as we move up the scale. So, for example, the 
difference between 2 and 4 does not necessarily 
indicate the same change in performance as that 
between 5 and 7. (e) C: progesterone values are 
continuous, limited only by the sensitivity of the 
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assay. (f) N: two classes defined by appearance. 
(g) C: optical density is another light intensity 
assay – a continuous scale. (h) D: litter size is an 
integer scale 1  –  n. (i) O: body condition is a 
sliding scale with various classes given numerical 
values but without any expectation that the 
intervals between classes are identical. (j) D: this 
is another integer scale since we are concerned 
only with counts in a year. (k) C: this is a continu-
ous scale because the total number of counts 
divided by the total time in minutes results in a 
value that is not an integer. (l) D: although time 
is a continuous scale, since it is divided into days 
(integers), it should be considered to be D.

Chapter 2

2.1  (a) T. (b) F: the pie chart is useful for cate-
gorical data. (c) T. (d) F: the bar chart is useful 
for categorical or discrete data. (e) T.

2.2  (a) F: the mean will be unduly influenced by 
the extreme values and will overestimate the 
central tendency. (b) T. (c) T: this is the geomet-
ric mean. (d) T. (e) T: this is the median.

2.3  (a) T. (b) F. (c) F: for symmetrically distrib-
uted data, the range is approximately equal to 
four times the standard deviation. (d) T. (e) F: 
the standard deviation is the square root of the 
variance.

2.4  (a) F: the reference range can be determined 
as the difference between the 2.5th and 97.5th 
percentiles if the data are skewed. (b) T. (c) F: 
the reference range is meant to be representative 
of the population of healthy animals. A small 
sample is inadequate. (d) F: it is determined as 
mean ± 1.96SD, often approximated by mean ± 
2SD. (e) F: the difference between the largest 
and smallest observations is the range, which 
may be unduly influenced by outliers.

2.5  (a) Class intervals of 1.0  l/min give eight 
classes and the data are shown to display a uni-
modal distribution. (b) With a class interval of 
0.2  l/min, there are 36 classes and only 25 data 
values, too many class intervals to be useful. (c) 

With a class interval of 5.0  l/min, nearly all  
the observations are in one class and only two 
classes are represented. We get no sense of the 
distribution of the data. Clearly (a) is the most 
appropriate.

2.6  (a) Both axes have inadequate labelling; the 
tick marks have no scales. (b) This is a histogram, 
but it is drawn as a bar chart. The vertical bars 
should be attributed to represent the continuous 
variable on the axis. (c) Again, the x-axis is inad-
equately labelled; we are left to guess what are 
the units for the scale; they must be included. (d) 
The slices of the pie chart give details neither of 
the numbers involved, nor of the percentages 
represented by the slices. These figures should be 
added.

2.7  Arranged in ascending order, the rates (%) 
are: 29.2, 34.2, 44.4, 64.2, 64.7, 67.6, 75.0, 76.2 and 
80.0. There are nine observations, so the median 
is the (9 + 1)/2 = 5th observation in the ordered 
set, i.e. the median is 64.7%.

2.8  Mean = 761.2/16 = 47.58 g, median = 51.95 g 
(the arithmetic mean of 51.9 and 52.0). The mean 
and the median do not coincide, indicating that 
the data are skewed. The mean is less than the 
median, indicating that the data are skewed to 
the left.

2.9  Range = 2.5 to 8.6 = 6.1 μmol/l; variance = 
3.57 (μmol/l)2; standard deviation = 1.89 μmol/l.

2.10  (a) When the data are arranged in order of 
magnitude, the percentiles are those values of 
the variable which divide the data set into 100 
equal parts. The 1st percentile has 1% of the 
ordered observations below it and 99% above it. 
The 5th percentile has 5% of the ordered obser-
vations below it and 95% above it, etc. (b) The 
median is the value of an observation in a data 
set which has as many observations above it as 
below it when the observations are arranged in 
increasing order of magnitude. It is equal to the 
50th percentile. If the number of observations, n, 
in the data set is odd, it is the (n + 1)/2th observa-
tion in the ordered set. If n is even, it is usually 
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taken as the arithmetic mean of the middle two 
observations. (c) The interquartile range is the 
difference between the 1st and 3rd quartiles, i.e. 
the 25th and 75th percentiles. It contains the 
central 50% of the ordered observations, with 
25% of them lower than the lower limit of the 
range, and 25% of them above the upper limit of 
the range. (d) The reference range is the range 
of values of a variable such that values of the 
variable are expected to lie on or between them 
if the individual is healthy with respect to that 
variable. It is generally defined as the range con-
taining the central 95% of the observations for 
that variable in a population of healthy individu-
als. If the variable is Normally distributed, it is 
calculated as the mean ± 1.96SD. If the distribu-
tion is skewed, it is often taken as the range of 
values from the 2.5th to the 97.5th percentiles. It 
is also sometimes called the normal range or ref-
erence interval.

Chapter 3

3.1  (a) F: the Normal distribution is symmetri-
cal. (b) T. (c) F: the limits that contain 95% of 
the distribution are mean ± 1.96SD. (d) F: this is 
a particular Normal distribution, i.e. the Stand-
ard Normal distribution. (e) F: the term ‘Normal’ 
in statistics describes the Gaussian distribution 
and not the ‘normal’ or healthy population.

3.2  (a) F: z is a continuous random variable 
because the Standard Normal distribution is a 
continuous distribution. (b) F: the mean equals 0 
and the standard deviation equals 1. (c) T. (d) F: 
it is x which has a mean of μ and a standard 
deviation of σ if z has a Standard Normal distri-
bution. (e) T.

3.3  (a) T. (b) F: it is the Normal distribution. (c) 
F: a Normal distribution is a theoretical probabil-
ity distribution and should not be confused with 
‘normal’ or healthy individuals. In this case, the 
variable simply follows a Normal distribution. 
(d) F: the Standard Normal distribution always 
has a mean of 0 and an SD of 1. (e) F: if data 
have a distribution which is skewed to the right, 
then a log transformation is likely to Normalize 

it. The data are then said to follow the Lognor-
mal distribution.

3.4  (a) The probability of a six when she rolls 
one die  =  1/6; the probability of a six in the 
second die = 1/6. The probability of a double six, 
using the multiplication rule, is (1/6)  ×  (1/6)  = 
0.028. Similarly, the probability of a double of 
any other number is also 0.028. Hence, using the 
addition rule, the probability of either a double 
six, or a double five, .  .  . , or a double one is 
6 × 0.028 = 0.17. There is, therefore, a very small 
chance that they will purchase a bitch using this 
approach, and he is right to have second thoughts. 
(b) The chance of a six in one roll of a single die 
is 1/6. The chance of not getting a six in one roll 
is 5/6. Using the multiplication rule, the chance 
of not getting a six in the three rolls of a single 
die is (5/6)3 = 0.58. Hence, there is now a much 
better chance that they will get a bitch. These 
calculations are based on the model approach to 
probability.

3.5  (a) The data are approximately Normally 
distributed. (b) The data are skewed to the right, 
but the log data are approximately Normally 
distributed.

3.6  The Poisson distribution; the mean and vari-
ance of the counts should be equal.

3.7  (a) The Standardized Normal Deviate 
(SND) = (0.40 − 0.37)/0.066 = 0.45. Reference to 
Table A.1 gives a two-tailed probability of 0.6527. 
Hence the required percentage is half this, i.e. 
32.7%. (b) SND =  (0.30 −  0.37)/0.066 = −1.061. 
The two-tailed area in Table A.1 is 0.2891. Hence 
the required percentage is 14.5%. (c) The  
percentage of values below 0.40  l/l is 100  − 
32.7  =  67.3%, the percentage of values below 
0.30  l/l is 14.5%; hence the required percent-
age = 67.3 − 14.5 = 52.8%. (d) The lower limit is 
the value below which 5% of the observations 
fall; it is derived from the equality −1.64  = 
(x1  −  0.37)/0.066, which gives x1  =  0.26  l/l. 
The upper limit is the value above which 5%  
of the observations fall; it is derived from the 
equality 1.64  =  (x2  −  0.37)/0.066, which gives 
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x2 = 0.48 l/l. The required range is therefore 0.26 
to 0.48 l/l.

3.8  (a) (i) From Table A.1, 0.0455 × 1/2 = 0.0228. 
(ii) From Table A.1, 0.3173 × 1/2 = 0.1587. (b) (i) 
From Table A.2, 1.64. (ii) From Table A.2, −1.96.

3.9  With an assumed Normal (symmetrical) dis-
tribution, we would expect 50% of cows to calve 
by the mean of 278 days, therefore the probabil-
ity of not calving by 278 days is 0.5. For two  
cows each to calve before 278 days (independent 
events), the probability is given by 0.5 × 0.5 = 0.25 
or 25%.

3.10  The conditional probability of Mollie 
choosing a female pup for Stephanie, having 
already chosen a male pup for Stephen (where 
the probability of a male pup on the first selec-
tion is 2/4 = 0.5), is the probability of choosing a 
female pup out of the remaining three pups, two 
of whom are female, i.e. it is 2/3 =  0.66. Hence 
the probability of Mollie achieving her aim is  
the product of these two probabilities, i.e. it is 
0.5 × 0.66 = 0.33.

Chapter 4

4.1  (a) F: the SEM relates to the precision of the 
sample mean, and not the individual observa-
tions. (b) F: it is the standard deviation which 
measures the spread of the observations. (c) T. 
(d) T. (e) T.

4.2  (a) F: it contains the population mean with 
95% certainty. (b) T. (c) F: it is the reference 
range that contains, usually, 95% of the observa-
tions in the population. (d) F: you should add and 
subtract 2 standard errors to the sample mean. 
(e) T.

4.3  (a) F: it is the population mean plasma 
potassium that lies between these values. (b) T. 
(c) T. (d) F: the confidence interval is for the 
population mean and does not relate to individ-
ual values. (e) F: there is a 5% chance that the 
population mean lies outside the interval.

4.4
(a) 95 2 35 1 96 0 16 100 2 272

2 428

% . . ( . ) .

.

CI /

to mg/kg

= ± × =  

99 2 35 2 58 0 16 100 2 247

2 453

% . . ( . ) .

.

CI /

to mg/kg

= ± × =

(b) 95 34 8 2 064 13 0 25 29 434

40 166

% . . . .

.

CI /

to ng/ml

= ± × =  

99 34 8 2 797 13 0 25 27 528

42 072

% . . . .

.

CI /

to ng/ml

= ± × =

4.5  (a) The estimated proportion of joint lame-
ness is 5/60 =  0.0833 (i.e. 8.33%) therefore the 
95 0 0833 1 96 0 0833 1 0 0833 60 0 013 0 153% . . ( . )( . ) . .CI / to= ± × − =

95 0 0833 1 96 0 0833 1 0 0833 60 0 013 0 153% . . ( . )( . ) . .CI / to= ± × − = . (b) Wider. (c) Narrower.

Chapter 5

5.1  (a) F: randomization is used so that biases 
associated with the allocation of animals to the 
different treatments are avoided. (b) T. (c) F: a 
control group can be incorporated into the design 
whether or not randomization is used. (d) T. (e) 
F: blinding is another issue, unrelated to random 
allocation.

5.2  (a) F: treatment is given to each chicken 
so that this is an experimental study. (b) F: the 
chickens are assessed both before and after they 
have received treatment, so the trial is longitudi-
nal. (c) F: the chickens are followed forward in 
time, so the study is prospective. (d) T. (e) F: a 
sample survey is a particular type of observa-
tional study and this is an experimental study.

5.3  (a) F: the wash-out period eliminates the 
carry-over effect. (b) F: the randomization 
ensures that there is no allocation bias. A wash-
out period should eliminate the carry-over effect. 
(c) F: a parallel group design is one in which each 
animal receives only one treatment and the 
treatment comparison is made between animals. 
(d) T. (e) F: a between-animal comparison pro-
vides less precise treatment effects than a within-
animal comparison.
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5.4  (a) Longitudinal study – it follows the 
bitches forward in time. (b) Experimental – there 
was an intervention in one of the groups. (c) 
Neither – cohort and case–control studies are 
only observational studies. (d) A case–control 
study in which incontinent bitches and matched 
controls are traced back in time to see whether 
they had been spayed.

5.5  The laissez-faire approach does not subject 
the cats to any stress comparable with the surgi-
cal intervention. Any differences, therefore, are 
not due solely to the surgical repair but to the 
stresses of anaesthesia, etc. The proper controls 
should be subjected to a sham operation although 
this would be ethically unacceptable with clinical 
cases.

5.6  (a) Dose levels in dogs should be investi-
gated with stratified randomization allowing for 
the differences in body weight. Common strata 
are large, medium and toy dogs. It might be 
advisable to use restricted randomization within 
each of the strata, particularly if the number of 
dogs available for study is not great. (b) Grouped 
randomization (because it is a treatment for a 
worm infestation) with groups of, say, four to 
eight animals penned in small subplots of the  
two plots. In addition it would be sensible to  
have restricted randomization of the groups to 
treatment or control to ensure balance. (c)  
Each litter is a group. The litters are allocated  
at random to one of the two preparations. (d) 
Despite the word ‘group’ in the description, this 
is not a group investigation. Animals are allo-
cated using restricted randomization to each of 
the treatments at each location (which can be 
regarded as a stratum); this should result in the 
required balance.

5.7  (a) Estimated risk of a large farm being 
positive =  33/57 =  0.579 (i.e. 57.9%). Estimated 
risk of a small farm being positive = 20/68 = 0.294 
(i.e. 29.4%). Estimated prevalence of positive 
farms = 53/125 = 0.424 (i.e. 42.4%). (b) Estimated 
RR = 0.579/0.294 = 1.97. It is estimated that the 
risk of a farm being positive is nearly two times 
greater if the farm was large rather than small. 

Estimated ARR  =  0.579  −  0.294  =  0.285. It is 
estimated that for every 100 farms, approxi-
mately 29 of them were positive because they 
were large rather than small. (c) Estimated odds 
ratio = (33/24)/(20/48) = 3.3. The odds of a farm 
being positive is estimated to be over three times 
greater if the farm was large rather than small. 
The estimated RR = 1.97, which is smaller than 
the OR. The OR and RR are similar only if the 
prevalence of positive farms is low. In this case 
the prevalence is estimated to be 42.4%, which 
is not low.

Chapter 6

6.1  (a) F: the null hypothesis concerns the pop-
ulation means. (b) T. (c) F: it is only the result of 
the test which is or is not significant, not the null 
hypothesis. (d) F: the null hypothesis is a state-
ment of fact that may or may not be true. (e) F: 
the null hypothesis is not expressed in terms of 
what is expected.

6.2  (a) F: it could also refer to the left-hand 
side, but not both sides. (b) F: the tails of the test 
influence the P-value which is the probability of 
rejecting the null hypothesis when it is true, 
whereas the power is the probability of rejecting 
the null hypothesis when it is false. (c) F: most 
tests are two-tailed because it is very unusual to 
be sure that any treatment difference can be in 
only one direction. (d) T. (e) F: the decision to 
use a one-tailed test does not relate to the sample 
size but rather to the biological certainty that, if 
a treatment difference exists, it can only be in one 
direction.

6.3  (a) F: the P-value is the probability of 
obtaining a result as or more extreme than the 
one observed if the null hypothesis is true. (b) F: 
the null hypothesis is a stated theory about the 
population parameter(s) that is either true or 
false. (c) F: the P-value relates what is observed 
in the sample to what is hypothesized about the 
population; the null hypothesis is either true or 
false, and no probability is attached to it in the 
hypothesis test. (d) T. (e) T.
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6.4  (a) F: the null hypothesis is a statement 
about the population parameter(s) that is either 
true or false; there is no probability attached to 
it in the hypothesis test. (b) F: the alternative 
hypothesis is also a statement about the popula-
tion parameter(s) that is true or false. (c) T. (d) 
F: the P-value must relate what is observed in the 
sample to what is hypothesized in the population. 
(e) F: see (a).

6.5  (a) F: the test statistic is a mathematical 
expression in which the sample values are substi-
tuted to determine a P-value. This is used to 
decide whether there is evidence to reject the 
null hypothesis about a population parameter 
(such as the mean). (b) F: see (a). (c) T. (d) F: it 
is the P-value that has to be lower than a stated 
value (typically 0.05) in order for the result of the 
test to be significant. (e) F: significance tests can 
be performed using small and large samples. The 
test is more powerful if the sample size is large.

6.6  (a) F: if the null hypothesis is not rejected, 
all we can say is that there is no evidence to show 
that the two means are different. This is not the 
same as establishing equivalence. (b) T. (c) F: if 
the two treatments are equivalent, the relevant 
confidence interval for the effect of interest  
must lie wholly within the equivalence interval, 
whereas if one treatment is not inferior, only the 
lower limit of the confidence interval has to lie 
above the lower limit of the equivalence interval. 
(d) F: the equivalence interval is an interval 
relating to the effect of interest which is consid-
ered by experts to be of no clinical importance. 
(e) T.

6.7  The null hypothesis is that the mean muscle 
tension in the populations is the same when using 
the novel drug and when using the control. The 
alternative hypothesis is that the two population 
means are different. This is a two-sided alterna-
tive; there is no biological reason for presuming 
that any difference, should it exist, can be in only 
one direction. The null hypothesis is essentially 
the same when using an existing drug – it is that 
the mean muscle tension in the populations is the 
same on the novel drug as on the existing treat-

ment. Again, the alternative hypothesis is that 
the two population means are different (direc-
tion unspecified).

6.8  The null hypothesis is that the proportions 
of ponies who fail the test are the same in the 
population of ponies who are trained by the new 
system and in the population of ponies who are 
trained in the traditional manner. The alternative 
hypothesis is that these two proportions are not 
equal (direction unspecified).

6.9  The 95% confidence interval for the true 
mean temperature is 37 3 2 06 0 7 26 37 0 37 6. . ( . ) . .± = °/ to C

37 3 2 06 0 7 26 37 0 37 6. . ( . ) . .± = °/ to C . Since 37.5°C, the optimum mean 
temperature for hatching, lies within this confi-
dence interval, this incubator can be used in the 
hatchery.

Chapter 7

7.1  (a) F: the sample sizes do not have to be 
equal but, if they are, the assumption of Normal-
ity is less important. (b) F: it is used on independ-
ent groups of observations. Performing a 
two-sample t-test on paired or dependent data 
will lead to a loss of power. (c) F: the null hypoth-
esis assumes that the two population means are 
equal. (d) T. (e) F: the paired t-test should be 
used on dependent data rather than the two-
sample t-test, irrespective of sample size.

7.2  (a) T. (b) T. (c) F: the paired t-test should 
be used on paired or related data, irrespective of 
sample size. However, if the sample size is very 
small, a non-parametric alternative may be pre-
ferred. (d) F: the two-sample t-test should be 
used for comparing the means of independent 
groups of observations. (e) F: the paired t-
test makes the assumption that the differences 
between the pairs are Normally distributed.

7.3  (a) Paired comparison. (b) H0: the popula-
tion mean difference in plasma lactate concen-
tration when the horse is cantering and when it 
is on a treadmill is zero. (c) The differences are 
approximately Normally distributed. Paired t-
test test statistic  =  2.51, df  =  9, P  =  0.033. (d) 
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Reject the null hypothesis that the mean differ-
ence in the population is zero. We cannot con-
sider the exercise exerted by the horses to be of 
similar metabolic demand in both situations. The 
95% confidence interval for the mean difference 
is 0.077 to 1.503 mmol/l.

7.4  (a) Two independent groups. (b) H0: the 
population mean sperm numbers are the same 
using the two methods. (c) The observations in 
each sample are approximately Normally distrib-
uted. The mean (SEM) sperm numbers (×106) 
using the AV and EE methods are 63.46 (6.72) 
and 43.90 (6.07), respectively: the two variances 
(587.63 and 368.76) are not significantly different 
(Levene’s test gives P = 0.471). The two-sample 
t-test statistic = 2.09, df = 21, P = 0.049. (d) The 
95% confidence interval for the difference in 
means is 0.12 to 39.00 × 106. The result of the test 
is just significant at the 5% level indicating that 
the AV method is likely to be able to obtain more 
sperm, and the difference in means could be as 
great as 39 × 106 sperm.

7.5  This is a one-sample t-test of the null 
hypothesis that there is no difference between 
the mean urea value from this laboratory in 
January and 7.5  mmol/l. The test statistic is 
(9.7 −  7.5)/0.22 =  10.00 on 139 degrees of free
dom. Hence P < 0.001, and there is evidence to 
reject the null hypothesis. It would seem that the 
laboratory overestimated plasma urea in cats in 
January.

7.6  The design is inappropriate because there 
is no control group, i.e. horses who do not go 
through the breaking programme, but are fol-
lowed for the same length of time in otherwise 
identical circumstances. In the given design, the 
increase in cardiopulmonary function could be  
a consequence of time alone, unrelated to the 
effect of the breaking programme. An appropri-
ate design should include a control group; then 
the change in cardiopulmonary function after 8 
weeks should be evaluated for each horse, and 
the changes in the two groups compared using a 
two-sample test, such as the two-sample t-test.

7.7  (a) The 95% confidence interval for the dif-
ference in the mean percentage of protein 

binding in the two species is −12.7% to 32.3%, 
with an estimated difference in means of 9.8%. 
Since this CI spans zero, there is no evidence to 
reject the null hypothesis that the two population 
means are equal. Wasfi et al. inferred that the two 
means are the same. However, lack of evidence 
to find a significant difference does not imply 
that the means are the same. (b) The statistical 
test used by the second set of investigators was 
the two-sample t-test. The null hypothesis is that 
the mean percentage of protein binding in the 
population of horses and camels is equal. (c) The 
two assumptions of the two-sample t-test are that 
the distribution of the percentages in each group 
is approximately Normal and that the two groups 
have the same variances. In addition, it is assumed 
that the observations in each group are inde-
pendent. (d) The Normality assumption is a rea-
sonable assumption as the box plot shows that 
the median is approximately in the middle of  
the box, which is approximately in the middle  
of the whiskers in each group. Levene’s F-test in 
the output has P = 0.007, so the null hypothesis 
that the two variances are the same should be 
rejected, i.e. this implies that the constant vari-
ance assumption is not satisfied. Instead, a P-
value using a modified t-test, shown in the bottom 
line of the table in the output, should be used. (e) 
P = 0.006 so there is evidence to reject the null 
hypothesis that the two means are equal in the 
population, i.e. the mean percentage of protein 
binding is significantly greater in camels than in 
horses. (f) Wasfi et al. had a non-significant result 
and so there was no evidence to reject the null 
hypothesis, but this is not the same as concluding 
that the means are equal. The different results 
are probably due to the fact that the power of 
the Wasfi et al. study would have been very low 
to detect the difference as significant, since the 
sample size was very small in their study (only 
six horses and five camels). (g) The 95% CI is 
broadly interpreted to mean that we can say with 
95% confidence that the true difference in means 
lies within these values (where the mean per-
centage of protein binding in camels is subtracted 
from that of horses).

7.8  (a) The two tests are the paired t-test and 
Wilcoxon signed rank test. (b) The assumption 
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underlying the paired t-test is that the differences 
(between secondary and tail) are Normally dis-
tributed. There are no distributional assumptions 
underlying the Wilcoxon signed rank test, which 
is a non-parametric test. (c) Using the confidence 
interval for the mean difference in feather Hg in 
tail and secondary feathers for each type of eagle, 
there is significantly more mean feather Hg in 
the tail than in the secondary feathers of (i) tawny 
and (ii) eagle owls. This can be established 
because the confidence interval in each case 
excludes zero. Because both are 95% confidence 
intervals, we can say that P < 0.05 in each case. 
We can therefore conclude that there is evidence 
to reject the null hypothesis that the true mean 
difference is zero. (d) The mean of the difference 
between the tail and secondary feather Hg is 
significantly greater in eagle owls than in tawny 
owls, P <  0.05. This can be established because 
the upper limit of the mean of the difference 
between tail and secondary feather Hg in tawny 
owls is lower than the lower limit of the mean of 
the difference between tail and secondary feather 
Hg in eagle owls, i.e. there is no overlap between 
the 95% confidence intervals for the two mean 
differences. (e) Two tests are the two-sample t-
test and the Mann–Whitney test (almost identical 
to the Wilcoxon rank sum test).

Chapter 8

8.1  (a) T. (b) F. (c) T. (d) F: the data should be 
analysed as a repeated measures ANOVA if the 
data are matched. (e) F: the null hypothesis states 
that the population means are all the same.

8.2  (a) F: the test makes no assumptions about 
the means, only that the data are Normally dis-
tributed. (b) T. (c) T. (d) F: the F-test compares 
variances and not means. (e) F: the F-test com-
pares variances. Equal variances is an assump-
tion of the two-sample t-test, so the F-test may 
precede the t-test to validate this assumption, but 
will be followed by the t-test only if the intention 
is to compare two means.

8.3  The data are approximately Normally dis-
tributed in each sample. The estimated variances 

of Group 1 and Group 2 are 0.671 and 2.313 kg2, 
respectively. The sample sizes are 15 and 13, 
respectively. The ratio of these two variances, the 
larger over the smaller, is 3.345; this follows the 
F-distribution with 12 df in the numerator, and 
14 df in the denominator. The percentage points 
in Table A.5b, which correspond to two-sided 
P-values of 0.05 and 0.01 (i.e. we look at P = 0.025 
and P  =  0.005 in the table), are 3.05 and 4.43, 
respectively. Since 3.345 lies between these two 
values, 0.01 < P < 0.05; we reject the null hypoth-
esis that the two variances are equal, and would 
have to perform a modified t-test or a non-para-
metric test to compare the average liver weights 
in the two groups.

8.4  The null hypothesis is that there is no dif-
ference between the true mean intensities in the 
three diluent solutions. The data are approxi-
mately Normally distributed in each group. Lev-
ene’s test (performed on the computer, but you 
could do a series of F-tests by hand, adjusting 
the P-values using Bonferroni’s correction) 
shows that the three variances are not signifi-
cantly different (test statistic  =  3.27, P  =  0.06). 
A one-way ANOVA (see Display 8.2) gives an 
F-ratio of 13.66, df = 2, 18, P = 0.0002 (Sig. = 0.000 
in the output, indicating that P < 0.001). Hence 
there is a significant difference between at least 
two of the means, suggesting that egg yolk dilu-
tion affects the binding of the fluorophore to the 
sperm membrane. The sample means (SEM) of 
the 1%, 5% and 25% egg yolk solutions are 
0.999 (0.017), 0.950 (0.078) and 0.846 (0.040), 
respectively. Post hoc Bonferroni’s tests show 
that the 25% egg yolk solution has a mean inten-
sity that is significantly less than that of either 
of the other two solutions (P  <  0.05), but that 
no other two means are significantly different 
from each other (P > 0.05). The mean square of 
the within-groups source of variation is 0.0029, 
and this is used as the combined estimate of vari-
ance in the calculation of confidence intervals 
(i.e. this is the s2 in the formula for the confi-
dence interval given in Section 7.4.3). The 95% 
confidence intervals for the difference in means 
between the 25% and each of the 1% and 5% 
egg yolk solutions are (0.087, 0.219) and (0.085, 
0.125), respectively.
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8.5  (a) The diagram is a box-and-whisker plot, 
sometimes just called a box plot. For a given treat-
ment group, the heavy line in the middle of the 
box is the median, the box shows the upper and 
lower quartiles of the distribution (i.e. it contains 
the central 50% of the ordered observations) and 
the whiskers contain the central 95% of the 
ordered observations. Sometimes outliers are 
shown at the extremes. (b) The test is the two-
sample t-test (devised by Student). (c) The null 
hypothesis is that the mean MRT values are the 
same in the moxidectin and doramectin groups in 
the population. (d) The assumptions are that the 
data are approximately Normally distributed in 
each group and that the variances of the observa-
tions are the same (i.e. same spread). (e) Yes, it 
would appear that the assumptions are reasona-
ble. From the box plot, we can see that MRT is 
approximately Normally (symmetrically) distrib-
uted in each group as the median is approximately 
in the middle of the box, which is more or less in 
the middle of the whiskers. Also, the spread of the 
observations appears similar in the two groups. In 
addition, Levene’s test examines the null hypoth-
esis that the variances of the two groups are equal. 
P  =  0.091 from this test so there is insufficient 
evidence to reject the null hypothesis. Hence we 
may take the variances to be equal in the t-test. 
(f) The table of results gives P = 0.000 (using the 
first line of results since we can assume equal 
variances). This indicates that P < 0.001 and there 
is strong evidence to reject H0. This suggests that 
the mean MRT is significantly greater in the moxi-
dectin group of goats than in the doramectin 
group. (g) The estimated effect of interest is the 
difference in mean MRT between the two groups. 
This is estimated as 7.77 days with a 95% confi-
dence interval of 7.06 to 8.47 days.

Chapter 9
9.1  (a) F: the t-test is for comparing two means 
from numerical data. (b) F: the F-test is for com-
paring variances. (c) T. (d) F: McNemar’s test is 
for paired categorical responses, and these data 
are not paired. (e) F: the null hypothesis is not 
about a theoretical distribution.

9.2  (a) F: it is the expected frequencies that 
have to be greater than 5. (b) F: the degrees of 

freedom are (2 − 1)(2 − 1) = 1. (c) T. (d) F: the 
null hypothesis is that there is no difference 
between these proportions. (e) F: the data are 
binary categorical, and cannot be Normally 
distributed.

9.3  This is a test of a single proportion; the 
null hypothesis is that the proportion of dairy 
cattle in the local area does not differ from  
the national proportion. The estimated propor-
tion of dairy cows in the local area = 359/1375 = 

0.261. Thus Test6
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Referring this value to Table A.1, we find that 
P = 0.0193. Hence we reject the null hypothesis 
(P = 0.02) – it seems that the committee was right 
and this area has a lower percentage of dairy 
cows in the cattle population.

9.4  This is a test of two proportions; we can use 
the Chi-squared test to test the null hypothesis 
that the true proportions of bitches that have 
mammary nodules are equal in those bitches that 
had MPA and in those without MPA. The table 
shows the observed frequencies; the expected 
frequencies are in brackets:

MPA +ve MPA −ve Total

With nodules 21 (15.6) 13 (18.4) 34
Without nodules 12 (17.4) 26 (20.6) 38
Total 33 39 72

Hence Test7 = 5.4 (with the continuity correc-
tion), and P = 0.020. There is evidence to reject 
the null hypothesis. From this prospective cohort 
study, we would conclude that MPA administra-
tion does appear to increase the risk of subse-
quent mammary nodules. Note that the estimated 
proportions which had nodules are 21/33 = 0.636 
and 13/39 = 0.333 in the groups with and without 
MPA, respectively. The estimated difference in 
the two proportions is 0.303. The 95% CI for the 
difference in the true proportions is (0.636 − 0.333) 
± 1.96 × 0.113 = (0.082, 0.524).

9.5  We show the observed frequencies of sheep 
with and without liver fluke infestation and with 
a positive or negative response to a diagnostic 
ELISA test in the following contingency table:
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ELISA +ve ELISA −ve Total

Egg shedding +ve 39 14  53
Egg shedding −ve 16 74  90
Total 55 74 143

We use McNemar’s test: Test9 = (|16 − 14| − 1)2 ÷ 
(16 +  14) =  1/30 =  0.03. This has a Chi-squared 
distribution on 1 degree of freedom. Referring to 
Table A.4, we find that P > 0.05. Hence we do not 
have evidence to reject the null hypothesis. The 
two sample proportions with positive results are 
53/143 = 0.37 by the egg-shedding approach, and 
55/143 = 0.38 by the ELISA test. The 95% confi-
dence interval for the difference in the true pro-
portions is 

( . . ) .
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9.6  (a) There was no randomization of dogs to 
treatment groups. (b) The observed frequencies 
are displayed in the table:

Pu Control Total

Tumour 67 45 112
No tumour 53 18 71
Total 120 63 183

(c) Chi-squared test with continuity correction. 
(d) The expected values in the four cells of the 
table are each greater than 5. (e) We are 95% 
certain that the true/population percentage of 
adult beagles without any intervention develop-
ing mammary tumours lies between 60.2%  
and 82.6%. (f) The confidence intervals provided 
give the range of values within which we expect 
the true percentage developing mammary 
tumours to lie in each treatment group. If there 
is no overlap between the two 95% confidence 
intervals, then there is a significant difference 
(P < 0.05) between the two percentages. However, 
if there is overlap, then the percentages may or 
may not be significantly different. In this study, 
there was overlap between the two confidence 
intervals, so we cannot say whether or not there 

is a significant difference between the percent-
ages using this approach. (g) The authors seem 
to have taken the lower limit of the confidence 
interval for the percentage of mammary tumours 
in the plutonium group of dogs and the upper 
limit of the confidence interval for the control 
dogs. (h) A useful confidence interval is that 
which relates to the difference in the percentages 
developing mammary tumours of any kind in the 
two groups. (The estimated difference in these 
percentages is 71.4% −  55.8% =  15.6%.) If the 
95% confidence interval excludes zero, then this 
is an indication that the two percentages are sig-
nificantly different with P < 0.05.

9.7  In order to calculate the Chi-squared good-
ness-of-fit statistic, we must combine some of the 
categories since there are expected frequencies 
which are less than 5. Combining the frequencies 
for 0–3 pregnant ewes, and for 7 and 8 pregnant 
ewes, we find that Test8 = 3.9553 + 0.0127 + 0.0302 
+ 0.2582 + 0.9732 = 5.23 with 3 df. Referring to 
Table A.4 we obtain 0.10  <  P  <  0.25 (in fact, 
a computer analysis gives P =  0.16). Hence we 
can assume that the observed distribution of  
the number of pregnant ewes conforms with the 
Binomial distribution with π = 0.64.

9.8  (a) Frequency table for the data in Exercise 
9.8:

Standard collar

New collar

TotalLost Retained

Lost 6 2 8
Retained 19 8 27
Total 25 10 35

(b) Percentage lost new collar =  100 ×  25/35 = 
71.4%, percentage lost standard collar =  100 × 
8/35 =  22.9%. (c) McNemar’s test. (d) The per-
centage of cats losing either type of cat collar is 
the same in both populations. (e) The percentage 
of cats losing the different types of collar is not 
the same in both populations. (f) The significance 
level of the test is the cut-off for the P-value 
which determines significance, i.e. if the P-value 
is less than the significance level, then the null 
hypothesis is rejected in favour of the alternative 
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hypothesis. The usual significance level is 0.05. 
(g) The Type I error of a test is the error that is 
made when the null hypothesis is rejected when 
it is true. The probability of making a Type I error 
is the chance of making this mistake by incor-
rectly rejecting the null hypothesis. The signifi-
cance level of the test is the maximum chance of 
making a Type I error. (h) There is a 0.05% 
chance of getting the observed sample values/
frequencies, or values more extreme, if the null 
hypothesis is true. (i) The pet-shop owner would 
have rejected the null hypothesis and concluded 
that the percentage of cats losing the new type 
of collar is significantly greater than that losing 
the standard collar.

Chapter 10

10.1  (a) F: it lies between −1 and +1. (b) F: the 
assumption of Normality of at least one of the 
variables is important only for hypothesis testing; 
both variables should be Normally distributed if 
the confidence interval is to be calculated. (c) T. 
(d) F: it is zero if there is no linear relationship 
between the two variables; there could be a non-
linear relationship. (e) F: this is the interpretation 
of the regression coefficient, β.

10.2  (a) F: this is the function of the correlation 
coefficient. (b) T. (c) T. (d) F: it assumes that the 
residuals are Normally distributed, and that y is 
Normally distributed for each value of x. (e) F: 
the x variable is assumed capable of measure-
ment without error and is used to predict the y 
variable. There is no distinction between the two 
variables in correlation analysis.

10.3  (a) There appears to be an approximately 
linear relationship between CFT and ELISA 
(see Figure 10.10a), with ELISA values increas-
ing as the CFT values increase. (b) The Model 
summary table (see Display 10.2) shows that  
the estimated correlation coefficient is 0.737. (c) 
From the Coefficients table, we find that the esti-
mated regression line is ELISA = 1.21 + 0.020CFT. 
(d) From the Model summary table, R2 =  0.54; 
this is derived from (137.467)/(253.269) obtained 
from the ANOVA table. Thus, 54% of the varia-

tion in ELISA values is explained by its linear 
relationship with CFT; 46% is unexplained. Since 
only just over half the variation is explained, we 
might conclude that the model does not fit very 
well. (e) From the box-plot (Figure 10.10b) we 
see that, although there is a suggestion that the 
residuals are slightly skewed to the right, they 
may be regarded as being approximately Nor-
mally distributed. The residuals in the scatter 
diagram (Figure 10.10d) appear to be randomly 
scattered around a mean of about zero, indicat-
ing that a linear relationship between CFT and 
ELISA is reasonable. The residuals in the scatter 
diagram (Figure 10.10c) have constant variability 
for increasing predicted values of ELISA. There 
is only one pair of readings of ELISA and CFT 
for each donkey. Hence, we can conclude that all 
the assumptions underlying the linear regression 
are satisfied. (f) The ANOVA table is testing the 
null hypothesis that the true slope of the line is 
zero. The P-value of 0.000 given in the output 
(indicating P  <  0.001) shows that there is evi-
dence to reject this null hypothesis in favour of 
the alternative hypothesis that the true slope is 
not zero. (g) The slope of the line (from the Coef-
ficients table) is 0.0198 (i.e. 1.98E-02) with an 
estimated standard error of 0.002 and 95% 
CI = (0.017, 0.023). Thus, as we increase CFT by 
1 unit, we increase the ELISA by 0.0198 units on 
average (although, we believe with 95% confi-
dence, that this average increase could be as low 
as 0.017 or as great as 0.023). (h) The t-test in the 
Coefficients table (test statistic = 12.03) and the 
F-test in the ANOVA table (test statistic = 144.82) 
both indicate P < 0.001 (i.e. Sig. = 0.000). Hence 
there is strong evidence to reject the null hypoth-
esis that the true slope is equal to zero.

10.4  (a) The correlation coefficient measures 
the linear association between rugal fold thick-
ness and body weight. A coefficient of zero  
indicates there is no linear association. A coeffi-
cient of one indicates that there is perfect  
positive association. This coefficient is positive 
and, judged subjectively, quite large, suggesting 
that there is a strong positive linear associa
tion between the two variables. (b) The P-value 
results from the hypothesis test that the true cor-
relation coefficient is zero. Since P < 0.001 is very 
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small, there is strong evidence to reject the null 
hypothesis. (c) The slope of the line represents 
the average change in y per unit change in x; 
thus we estimate that as the dog’s body weight 
increases by 1 kg, its rugal thickness increases, on 
average, by 0.069  mm. (d) The fraction is the 
square of the correlation coefficient  =  0.71  × 
0.71  =  0.50; thus 50% of the variance in y is 
explained by the regression, and 50% is unex-
plained. (e) The regression line is a questionable 
fit as it explains only half the variance in y, in 
spite of the correlation coefficient being highly 
significant.

10.5  (a) r  =  0.158 obtained from the Model 
summary table (it is R in this table in Display 
10.3). (b) The outcome or dependent variable is 
the number of cases of lameness and the explan-
atory or independent variable is the amount of 
rainfall. They were chosen in this way for the 
regression analysis as it would be of interest to 
predict the number of cases of lameness from the 
amount of rainfall and not the other way round. 
(c) Y = 31.235 + 0.081x where Y is the predicted 
value of the number of cases of lameness and x 
is the amount of rainfall. This equation is obtained 
from the first column of the Coefficients table. 
(d) The estimated slope of the line is 0.081 cases 
per millimetre of rainfall. This means that we 
estimated the number of cases of lameness to 
increase on average by 0.081 for each millimetre 
increase in the amount of rainfall in a fortnight 
(or equivalently, the number of cases of lameness 
will increase on average by eight for each 100 mm 
increase in the amount of rainfall). The 95% con-
fidence interval for the slope is from −0.133 to 
0.294 cases per millimetre rainfall. This means 
that these figures contain the true slope with 
95% certainty. (e) H0: the true slope in the popu-
lation of the regression line of cases of lameness 
on amount of rainfall is zero. The t-test statistic 
for this hypothesis is 0.782 and P = 0.442. Since 
the P-value is greater than the significance level 
of 0.05, there is no evidence to reject the null 
hypothesis that the true slope is zero. Hence 
there is no evidence that there is a linear rela-
tionship between rainfall and lameness. (f) The 
square of the correlation coefficient is 0.025. This 
can be interpreted to mean that only 2.5% of the 

variation in cases of lameness is explained by its 
linear relationship with amount of rainfall. The 
remaining 97.5% is unexplained by the relation-
ship. Hence the line is a very poor fit.

10.6  (a) The correlation coefficient is dimen-
sionless, and has no units of measurement. (b) 
The estimated correlation coefficient is positive 
and so, in general, the penguin’s rate of oxygen 
consumption increases as its heart rate increases. 
(c) The null hypothesis is that the Pearson cor-
relation coefficient is zero in the population of 
Macaroni penguins. (d) The 95% confidence 
interval for the correlation coefficient can be 
interpreted broadly as indicating that the inter-
val from 0.703 to 0.971 contains the true correla-
tion coefficient with 95% certainty. More strictly, 
on repeated sampling the true correlation  
coefficient would be contained in this interval  
on 95% of occasions. (e) 82% of the variation  
in oxygen consumption can be attributed to its 
linear relationship with heart rate. This value is 
obtained by squaring 0.904 and multiplying by 
100. (f) The assumptions made in testing the null 
hypothesis about the Pearson correlation coef-
ficient are that both of the variables are numeri-
cal, and that at least one of them is Normally 
distributed. Both of them should be Normally 
distributed if the confidence interval for the cor-
relation coefficient is to be determined. (g) The 
value of the correlation coefficient would be 
expected to increase if the range of values of the 
heart beat was greater than 125–225 beats/min.

10.7  (a) There are various deficiencies. In par-
ticular, at what level is significance achieved? 
What are the values given: are they means? What 
is the figure after the ±: is it the SD? What dif-
ferences were found significant: are they the dif-
ference in means? How many male horses were 
there? (b) A regression analysis has been per-
formed in which the dependent variable is month 
of age and the explanatory variable is BGP. This 
implies that it would be of interest to predict the 
month of age from the BGP, whereas the oppo-
site is true. The outcome and explanatory vari
ables should be interchanged. (c) −1.68 is the 
estimated regression coefficient, which is an  
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estimate of the gradient or slope of the line. It 
represents the average change in the age of  
the horse in months for a unit change in BGP. (d) 
Apart from the fact that the regression equation 
should be used to predict the BGP from the age 
of the horse, and not vice versa, an estimated 
equation should never be used beyond the range 
of values in the sample. No horse in the sample 
would have had a zero value for BGP, and so the 
equation should not be used in this instance.

Chapter 11

11.1  (a) F: the residuals should be Normally 
distributed. (b) T. (c) T: this is a particular appli-
cation of multiple regression, the analysis of cov-
ariance, when the means can be compared whilst 
adjusting for other variables. (d) F: the sample 
size should be about 10 times greater than the 
number of independent variables. (e) F: the 
reverse is true.

11.2  (a) F: the correlation coefficient lies 
between these limits. (b) F: again, confusion with 
the correlation coefficient. (c) T. (d) F: this is R2. 
(e) F: it is the correlation coefficient which is 
independent of the units of measurement.

11.3  (a) F: we use logistic regression analysis 
when the dependent variable is binary. The 
explanatory variables may be binary or numeri-
cal. (b) F: the exponential of a logistic regres
sion coefficient is interpreted as an estimated  
odds ratio. (c) T. (d) T. (e) F: we use conditional 
logistic regression analysis when we have 
matched data and a binary outcome variable.

11.4  (a) F: Poisson regression analysis can be 
used on data that relate to any species or circum-
stance, provided the event of interest follows  
a Poisson distribution. (b) T. (c) T. (d) F: the 
exponential of the coefficients of a Poisson 
regression model represents the ratio of the rates 
of the event as the relevant explanatory variable 
increases by 1 unit. (e) F: maximum likelihood is 
used to estimate the coefficients in a Poisson 
regression model.

11.5  (a) T. (b) F: the level 2 unit represents 
the cluster which contains a number of level 1 
units. (c) F: the use of generalized estimating 
equations does not require any distributional 
assumptions about the between-cluster residu-
als. (d) T. (e) F: the random intercepts model 
with a single explanatory variable for clustered 
data assumes that the regression lines for each 
cluster have the same slope and different inter-
cepts which vary randomly about the mean 
intercept.

11.6  (a) Clearly, the authors felt that a single 
variable with three levels (none, early and late) 
is strictly a nominal variable. It would be inap-
propriate to include a nominal explanatory  
variable, unless it is binary, in a multivariable 
regression analysis as its coefficient cannot be 
interpreted in a meaningful way. Instead, the 
authors used two dummy variables. For example, 
they chose never cat ownership as the reference 
category for investigating the risk of cat sensiti-
zation and created two dummies, one for the 
early and one for the late cat ownership catego-
ries, each comparing their associated category 
with never cat ownership. (b) The adjusted OR 
of 0.32 implies that the odds of sensitization in 
an early cat owner was 0.32 of that in a never cat 
owner, after adjusting for the other variables in 
the logistic model, i.e. the odds were reduced by 
68% if the child was an early cat owner. The 
adjusted OR of 0.51 implies that the odds of an 
early cat ownership child having allergic rhinitis 
were 0.51 of that in a never cat owner (for these 
comparisons, early cat ownership was taken as 
the reference category), after adjusting for the 
other variables in the logistic model; i.e. the odds 
were reduced by 49% if the child was an early 
cat owner compared to a never cat owner. (c) 
The odds ratio is an adjusted odds ratio because 
its derivation takes into account the effect of the 
other variables in the logistic regression model. 
It is looking at the independent effect of that 
particular variable on the outcome of interest. 
(d) The P-value for each OR is P < 0.05. We can 
assume this because the 95% confidence inter-
vals for both of the odds ratios exclude one. (e) 
A Chi-squared test.
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Chapter 12

12.1  (a) T. (b) F: the reverse is true. (c) F: non-
parametric tests tend to be less powerful than 
their parametric counterparts if all the assump-
tions underlying the parametric test are satisfied. 
(d) T. (e) F: the tests do not generally incorpo-
rate parameter estimates in their calculation.

12.2  (a) T. (b) T. (c) F. (d) F: the data on each 
variable are converted to ranks but they  
do not have to be initially measured on a ranking 
scale. (e) T: then it is difficult to establish the 
distribution of the data.

12.3  The correct way to analyse these data is 
to consider the set of differences in each group. 
These differences are not related, so that any test 
which relies on paired data is inappropriate. (a) 
F. (b) F. (c) T. (d) F. (e) F: the sample size is 
probably too small to perform a two-sample t-
test because it is difficult, if not impossible, to 
establish whether the data are Normally distrib-
uted in each group and whether there is constant 
variance.

12.4  (a) There is a strong positive relationship 
between the scores which appears to be approxi-
mately linear. (b) The subjective method assigns 
arbitrary scores to measure the degree of fluo-
rescence, i.e. they are on an ordinal scale and, 
therefore, Pearson’s correlation coefficient is 
inappropriate. (c) rs = 0.90, P < 0.002, from Table 
A.7 since 0.90 > 0.8182, the tabulated percentage 
point for significance at the 0.2% level with a 
sample size of 12. Hence we reject the null 
hypothesis that the true correlation coefficient is 
zero, and conclude that there is a significant rela-
tionship between the two scoring systems. Note 
that the 95% confidence limits for the correla-
tion coefficient are 0.67 to 0.97, which is quite 
wide (to be expected since the sample size is 
small). Although a significant association exists, 
the lower confidence limit indicates that ρs may 
be as low as 0.67.

12.5  A Wilcoxon rank sum test computer analy-
sis gives P = 0.035 (although when corrected for 
ties, P =  0.030). If performing the test by hand, 

we rank the two groups together and find the 
sum of the ranks of the bitches from the large 
litters = 3.5 + 7.5 + 12 + 12 + 12 + 16 + 16 + 18 + 
19  =  116. (Note, the sum of the ranks of the 
bitches from the small litters = 1 + 3.5 + 3.5 + 3.5 
+ 7.5 + 7.5 + 7.5 + 12 + 12 + 16 = 74.) Referring 
to Table A.10 with sample sizes of 9 and 10, we 
find that 116 exceeds the tabulated 5% signifi-
cance level limits of 65–115 (or alternatively, with 
sample sizes of 10 and 9, 74 is less than the tabu-
lated limits of 75–125). However, 116 lies within 
the 1% significance level limits of 58–122. Hence 
we reject the null hypothesis that the median 
litter sizes are the same in the populations, 
0.01  <  P  <  0.05 (computer analysis gives P  = 
0.035). There is evidence to indicate that litter 
size is inherited. The median litter sizes for the 
bitches from the large litters is 5 (range 3–7), and 
from the small litters is 4 (range 2–5).

12.6  We find the differences in weight (before 
– after). The differences are (kg): +2.2, +0.4, +4.3, 
+1.0, +2.1, −1.4, −1.2, +0.7, 0.0, +0.4, −0.3, +0.7, 
+0.2, −0.3, +0.6, +1.8, +0.5, +0.2. These differences 
are skewed to the right, so that a non-parametric 
test, the Wilcoxon signed rank test, is advocated. 
The null hypothesis is that the samples come 
from populations with identical distributions and 
the same median, or from the same population, 
which would indicate that the dogs’ weight is 
unaffected by the diet. The alternative hypothe-
sis is that they do not come from populations 
with identical distributions or the same median. 
The ranks of the differences are 16, 5.5, 17, 11, 15, 
13, 12, 9.5 (we ignore the zero difference), 5.5, 3.5, 
9.5, 1.5, 3.5, 8, 14, 7 and 1.5, respectively. There 
are only four negative differences, and there are 
13 positive differences. The sum of the ranks of 
the negative differences = 12 + 13 + 3.5 + 3.5 = 32. 
We refer this sum to Table A.9, and find that 
P < 0.05 (since 32 lies outside 34–119) but >0.02 
(since 32 lies within 28–125). Hence we reject the 
null hypothesis 0.02 < P < 0.05. In fact, a compu-
ter analysis gives P  =  0.04. The median weight 
loss (with 25th and 75th percentiles) is 0.45 
(−0.08, 1.20) kg. On the basis of this analysis, we 
would conclude that the novel diet is effective in 
promoting weight loss. However, this is a poorly 
designed trial since there is no control group of 
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dogs that do not receive the novel diet. Hence, 
we cannot be sure that the observed loss in 
weight can be attributed to the novel diet: 
perhaps the dogs would have lost weight without 
it. Question 12.7 shows the results in a control 
group of dogs without the diet.

12.7  We find the differences between the dogs’ 
weights before and after (B  – A) the standard 
diet. They are +3.1, +0.6, +2.9, −1.0, +2.9, −1.8, 
−3.0, −0.9, −0.6, +0.6, −1.2, +1.6, +0.7, −0.2, −0.9, 
+1.7, +0.7 and +0.2 kg, respectively. They are not 
Normally distributed. The differences in weights 
for the dogs on the novel diet (Exercise 12.6) are: 
+2.2, +0.4, +4.3, +1.0, +2.1, −1.4, −1.2, +0.7, 0.0, 
+0.4, −0.3, +0.7, +0.2, −0.3, +0.6, +1.8, +0.5 and 
+0.2  kg. These differences are skewed to the 
right. The null hypothesis is that the distributions 
of the differences in weight loss between the 
dogs in the population on the novel diet and 
those on the standard diet are the same. This is 
a two-sample test of the differences; we can use 
the Wilcoxon rank sum test to test the null 
hypothesis. We rank the two groups together and 
find the sum of the ranks of one of the two 
groups, say the novel diet group. The sum of 
these ranks is 3 + 4.5 + 10 + 11 + 13 + 15 + 15 + 
17 + 18 + 19 + 21 + 24.5 + 24.5 + 27 + 30 + 31 + 
32 + 36 = 351.5. We cannot refer this sum to Table 
A.10 because the sample sizes are too great. 
Instead, we find 
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which we refer to Table A.1 which gives P = 0.56. 
Hence we have insufficient evidence to reject the 
null hypothesis. Note, a computer analysis also 
gives P = 0.56. Thus there is no evidence to indi-
cate that the novel diet promotes weight loss in 
obese dogs. The median weight loss (25th, 75th 
percentiles) in the novel diet group of dogs is 
0.45 kg (−0.08, 1.2 kg), and in the standard diet 
group it is 0.40 kg (−0.93, 1.63 kg).

12.8  (a) The Friedman two-way ANOVA is 
the appropriate analysis because the data are 
dependent – there is a response for each dog for 
each of the three conditions. The null hypothesis 
is that the percentage aminopeptidase responses 

in the three different conditions come from the 
same population or from populations with the 
same median. Because the data are not homo-
scedastic (i.e. the variances are not constant), and 
recognizing that both the numerator and the 
denominator of the variable of interest (the per-
centages) are random variables (leading to some 
theoretical difficulties), we suggest analysing the 
data using a non-parametric approach. (b) The 
result of the Friedman ANOVA is significant 
(P = 0.006) so that we have evidence to reject the 
null hypothesis. We can infer that the aminopepti-
dase responses do not come from populations 
with the same median. We are particularly inter-
ested to know whether the response in the pres-
ence of gluten is different from that of either  
the negative or positive controls. Wilcoxon signed 
rank tests comparing the results of the gluten 
responses with the negative and the positive con-
trols give P = 0.027 for each comparison (if we 
employ the Bonferroni correction – see Section 
8.6.3 – in each case (i.e. multiply the P-value by 
2), we would only obtain borderline significance). 
It would seem that the aminopeptidase response 
in the presence of gluten is suppressed, a surpris-
ing result and one which certainly deserves to be 
explored further.

12.9  (a) It was sensible to perform non-para-
metric tests in this study because the sample sizes 
in the two groups were very small (five and six) 
so that it is impossible to establish the distribu-
tion of the data in each group. (b) Apart from 
small sample sizes, other reasons for using a non-
parametric test would be if the assumptions (e.g. 
Normality, constant variance) of the proposed 
parametric test are not satisfied, or if the data are 
measured on a categorical scale rather than a 
numerical scale. (c) The Wilcoxon rank sum test 
is an appropriate non-parametric test to use 
when it is of interest to compare the observations 
in two independent groups, as was the case  
when the aqueous VEGF level was compared in  
the ischaemic and control groups. The Wilcoxon 
signed rank test is an appropriate non-paramet-
ric test to use when it is of interest to compare 
related, i.e. paired, observations within a group, 
as was the case when the VEGF level was com-
pared in the same rabbit on different days, and 
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then averaged over all the rabbits. (d) The null 
hypothesis relating to P = 0.03 is that the VEGF 
levels on day 1 from the ischaemic and control 
groups of rabbits were obtained from popula-
tions which have similar distributions and the 
same median, and the null hypothesis relating to 
P = 0.06 is that the VEGF levels of rabbits with 
anterior segment ischaemia on day 1 and day 14 
come from populations with identical distribu-
tions and the same median, or from the same 
population. (e) P  =  0.03 and P  =  0.04 for the 
comparison of VEGF levels in the two groups on 
days 1 and 14, respectively, imply that the VEGF 
level is significantly greater in the ischaemic 
group than in the controls on both of these days. 
P  =  0.06 implies that there is no significant 
decrease in VEGF level in the group of ischae-
mic rabbits at day 14 compared with day 1. (f) 
The appropriate summary measures for the rank 
sum test would be the median in each group with 
a range, CI or percentiles together with the dif-
ference in medians with a CI. For the signed rank 
test the median at each day could be reported 
(with CI, range or percentiles) but, more impor-
tantly, the median difference between day 1 and 
day 14 should be reported with a CI, range or 
percentiles.

Chapter 13

13.1  (a) F: it Normalizes data that are skewed 
to the right. (b) T. (c) T: in particular when the 
standard deviation is proportional to the mean. 
(d) F: it is not used for proportions. The logistic 
transformation is appropriate. (e) F: non-para-
metric tests are often applied when the sample 
size is small.

13.2  (a) T: if you increase the power, you have 
a greater chance of detecting a real difference. 
(b) T. (c) F: it is easier to detect, as significant, a 
large treatment difference than a small one, so 
that you will need fewer animals if the treatment 
effect is greater. (d) T: if you have underesti-
mated the standard deviation, then the treatment 
effect relative to the standard deviation will be 
smaller, and therefore harder to detect. Also, if 
there is more variability in the data, it will be 

harder to detect a treatment difference unless 
you increase the sample size. (e) F: if the 
standardized difference is increased, this means 
that the treatment effect relative to the standard 
deviation is greater. As it is easier to detect  
a large difference, you can decrease the sample 
size.

13.3  (a) F: a long time-lag precludes an early 
decision and wastes information from further 
subjects. (b) T. (c) F: selection and allocation are 
two different processes, and one does not imply 
the other. (d) T. (e) F: a cluster sample is less 
precise than a simple random sample. The great-
est precision is achieved if it is designed so that 
the units within a cluster are as different as pos-
sible, and the cluster means are as alike as 
possible.

13.4  (a) F: a meta-analysis is a quantitative sys-
tematic review that combines the results of rel-
evant studies to produce and investigate an 
estimate of the overall effect of interest. (b) T. 
(c) T. (d) T. (e) F: the forest plot is used to display 
the different estimates of the effect of interest 
together with the overall estimate of the effect 
and relevant confidence intervals.

13.5  This is a two-tailed test. Even though we 
are interested in the decline in Hb content,  
we cannot exclude the possibility that the Hb 
content of the blood might rise in the course of 
the investigation. (a) The standardized differ-
ence = 1/(0.96) = 1.04; hence we need about 30 
animals (15 per group). (b) About 40 animals 
would be required to raise the power to 90%, i.e. 
20 per group. (c) About 44 animals would be 
required, i.e. 22 per group. (d) The standardized 
difference is now 1/(1.3) = 0.77; hence about 55 
animals would be required, i.e. 28 per group. (e) 
Instead of 20 animals in each group, we require 
40(1  +  2)2/(4  ×  2)  =  45 animals in total, i.e. 
45/3 = 15 with the infestation and 30 controls.

13.6  (a) The standardized difference  = 
2  × (1.0)/(1.7)  =  1.18, so we require about 36 
horses for this trial. (b) Only 55%, i.e. too low to 
be of any real use. (c) For a sample size of 20, the 
power of the test increases to just over 75%.
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13.7  The standardized difference is ( ) ( ) .90 50 70 100 70 0 87− ÷ − =
( ) ( ) .90 50 70 100 70 0 87− ÷ − = . This trial will require about 

55 animals in total, with 28 in each group.

13.8  (a) The significance level is the cut-off for 
the P-value which leads to rejection of the null 
hypothesis. Typically the significance level is 0.05. 
Then, if the P-value from the test is less than 0.05, 
the null hypothesis is rejected. If the P-value is 
equal to or greater than 0.05, there is no evidence 
to reject the null hypothesis. (b) The power of the 
test is the probability (often expressed as a per-
centage) of rejecting the null hypothesis when it 
is false. It is the probability of correctly detecting 
an effect of a given magnitude as significant.  
Thus in the study quoted, a power of 80% means 
there is an 80% chance of finding a significant 
difference of at least 5 days in the mean days to 
slaughter weight if there really is a difference. (c) 
The significance level is the cut-off for the prob-
ability of a Type I error. The power of the test is 
1 minus the probability of a Type II error. (d) 
Decrease – it is easier to find a difference if the 
significance level is increased. (e) Increase – it is 
harder to be more sure of detecting a difference. 
(f) Decrease – it is easier to detect a larger 
difference.

Chapter 14

14.1  (a) T. (b) F: this is the positive predictive 
value. (c) F: although the sensitivity and the 
specificity of a test are related, so that as one is 
increased, the other decreases, one is not the 
complement of the other. (d) T. (e) F: the sensi-
tivity and specificity of a test are not affected by 
the prevalence of the disease.

14.2  (a) F: this is for a categorical variable. (b) 
F: this only determines whether a systematic dif-
ference or bias is present. (c) F: the correlation 
coefficient does not assess how close the points 
are to the line of equality. (d) T: this measure 
gives an indication of the maximum likely differ-
ence between two measurements. We can use this 
measure to determine the limits of agreement. 
(e) F: we are interested in the differences if we 
are investigating agreement, so sw should not be 

used as the actual measure of agreement. Note 
that it is possible to calculate the appropriate 
measure of agreement from this quantity.

14.3  (a) F: there are too few points in the series. 
(b) T. (c) F: the information on the changes that 
a given animal undergoes is lost. Multiple com-
parisons may lead to spurious P-values. (d) F: 
multiple comparisons may lead to spurious 
P-values. The results of successive tests are not 
independent. (e) T: the use of summary measures 
is a correct approach. The difference between  
the initial and final response in an animal may be 
the correct summary measure in a particular 
circumstance.

14.4  (a) T. (b) F: a Cox regression analysis may 
be used when there are censored data but it can 
also be used when there are no censored data. 
(c) T. (d) F: two survival curves are compared in 
a Cox regression by assessing the significance of 
the relative hazard associated with the variable 
whose categories distinguish the two survival 
curves. The logrank test is commonly used when 
a Kaplan–Meier survival analysis is performed 
when there is only one explanatory variable of 
interest, that which distinguishes the two curves. 
(e) F: this is not an assumption underlying a Cox 
regression analysis.

14.5  (a) F: a Pearson correlation coefficient of 
0.95 indicates that the points in the scatter 
diagram were close to or on the line of best fit. 
For there to be almost perfect agreement, the 
points should be close to or on the 45° line 
through the origin. (b) F: the kappa measure of 
agreement can only be evaluated for categorical 
data. HU values are, as indicated, numerical. (c) 
T: if the Pearson correlation coefficient is close 
to one, the only reason for Lin’s concordance 
correlation coefficient to be low is because there 
is a systematic effect, i.e. poor accuracy. (d) F: 
poor precision would imply that the points in the 
scatter diagram were not close to the line of best 
fit. Since the Pearson correlation coefficient was 
close to one, this would not have been true. (e) 
F: the difference between these correlation coef-
ficients could arise if there was poor accuracy. 
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Since the Pearson correlation coefficient was 
close to one, there was good precision.

14.6  (a) F: a ROC curve is a plot of the sensitiv-
ity against 1 minus the specificity when each is 
expressed as a proportion. (b) T. (c) F: it is a plot 
of the true-positive rate against the false-positive 
rate. (d) F: if the AUROC is 0.5 then the diag-
nostic test is no better than chance at discrimi-
nating between those with and without the 
disease. (e) T.

14.7  (a) For a cut-off value of >90 U/l, sensitiv-
ity =  100 × (43/46) =  93.5%, specificity =  100 × 
(80/92) = 87.0%. (b) This cut-off value produces 
a test with both a high sensitivity and a high 
specificity, and is a worthwhile diagnostic test. (c) 
With a cut-off value of >500  U/l, sensitiv-
ity =  100 × (37/46) =  80.4%, specificity =  100 × 
(88/92)  =  95.7%. Hence, when the cut-off 
value is raised, the sensitivity is compromised so 
that the test has a lesser ability to detect HAC, 
although the specificity of the test is substantially 
the same. (d) The PPV is very low, indicating that 
it is unlikely that a dog with a positive test result 
actually has HAC. Thus, the test is unreliable for 
establishing whether the dog has HAC. However, 
because the NPV = 100%, then we would expect 
all dogs with CAP ≤90 U/l not to have HAC. It 
would seem that the CAP test should not be used 
as a screening tool but is a useful diagnostic 
device for dogs in which HAC is indicated. (e) 
Using the data in the table, we find that 
PPV = 100 × (43/45) = 95.6% and NPV = 100 × 
(80/83)  =  96.4%. The PPV is very different 
from what was obtained from the serum samples 
submitted to the laboratory in the 3-month 
period because the prevalence of HAC is very 
different in the two data sets. In the original 
investigations, the results of which are shown in 
the table, the observed prevalence is 100  × 
(46/138) =  33.3%. In the wider population, the 
prevalence is very much lower, so that the PPV 
is also lower.

14.8  The likelihood ratio of a positive test result 
(LR+) is equal to the sensitivity divided by 
(100 – specificity) when the sensitivity and spe-

cificity are each expressed in percentage terms. 
Hence LR+ = 61/(100 − 99.9) = 610. Using Fagan’s 
nomogram, we connect the pre-test probability 
(i.e. the prevalence) of 34% to the likelihood 
ratio of 610 and extend the line so formed to the 
post-test probability axis. This suggests that the 
chance that a mithun has brucellosis if it tests 
positive using the standard tube agglutination 
test is greater than 99%.

14.9  The frequencies that we would expect if 
there were chance agreement along the diagonal 
(starting from the top) are 17.69 (i.e. this is 35 × 
143/283), 23.32, 19.26 and 1.22. Observed agree-
ment along the diagonal  =  (34  + 16  + 14  + 
3)/283  =  67/283  =  0.267; chance agreement  = 
(17.69 + 23.32 + 19.26 + 1.22)/283 = 61.49/283 = 
0.217; so kappa =  (0.267 −  0.217)/(1 −  0.217) = 
0.025. This represents poor agreement. Poor 
agreement implies that the scores before and 
after treatment are dissimilar. We can see from 
the table of results that the scores tend to improve 
after treatment, suggesting that treatment has 
improved the condition of foot rot in this flock.

14.10   We find the differences between the 
duplicate readings (these are, corrected to two 
decimal places, −0.09, 0.00, 0.09, −0.02, −0.01, 0.03, 
−0.04, 0.11, −0.01, −0.05 and 0.09 mmol/l, respec-
tively). We also find the means of the duplicate 
readings (these are, corrected to two decimal 
places, 3.71, 4.30, 3.59, 3.16, 3.34, 3.04, 3.11, 3.25, 
2.99, 2.79 and 2.93  mmol/l, respectively). When 
we plot the difference against the mean, we 
obtain a random scatter of points approximately 
evenly scattered around the zero difference  
line. In fact, the mean of these differences is 
0.010 mmol/l and the estimated standard devia-
tion of the differences is 0.064 mmol/l. A paired 
t-test investigating the differences between the 
readings gives a test statistic of 0.49 and P = 0.63, 
indicating that there is no systematic difference. 
The limits of agreement are approximately 
0.010 ± 2 × 0.064 = −0.118 mmol/l to 0.138 mmol/l. 
We expect 95% of the differences to lie between 
these limits; the maximum likely difference 
between two readings (equal to the British 
Standards repeatability coefficient) is approxi-
mately 2  × 0.064  =  0.128  mmol/l. In addition, 
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using the formula provided in Section 14.4.2(a), 
we estimate Lin’s concordance correlation coef-
ficient to be 0.99. Since there is no evidence of a 
systematic effect, we also estimate the intraclass 
correlation coefficient to be 0.99 by determining 
the Pearson correlation coefficient between  
22 pairs of readings (i.e. the 11 pairs in Table  
14.7 and the 11 pairs obtained by switching the 
members of each pair in the table). Thus, we can 
see that this assay is highly repeatable, with both 
good precision and accuracy.

Chapter 15

15.1  (a) F: the investigator cannot ignore the 
consequences of his/her actions. (b) F: ethics 
committees are of course primarily concerned 
with these matters but that does not absolve the 
investigator from responsibility in this area. (c) 
T. (d) F: research involving animals cannot focus 
exclusively on the welfare of the experimental 
animals since this would rule out most proce-
dures. (e) T.

15.2  (a) F: data from different locations can be 
included in other statistical approaches. (b) F: it 
is the GIS that provides the mapping facility. (c) 
F: although time can be included this is not the 
purpose of spatial statistics. (d) T. (e) T.

15.3  (a) F: veterinary surveillance may record 
events, but it is not its purpose to provide a clini-
cal veterinary examination. (b) T. (c) F: this 
is the responsibility of professional veterinary 
organizations. (d) F: veterinary surveillance may 
record animal movements but does not control 
them. (e) F: veterinary surveillance is not involved 
in licensing slaughter houses.

15.4  (a) T. (b) F: this is the preserve of molecu-
lar genetics. (c) T. (d) F: quantitative genetics 
employs both parametric and non-parametric 
methods. (e) F: this is the preserve of molecular 
genetics.

15.5  (a) The goat population is not uniformly 
distributed, with a concentration of goats within 
the southern provinces. The preponderance of 

positive herds are located within the 2009 vac-
cination area. (b) The majority of areas with 
higher goat density are located within the 2009 
vaccination area. (c) (i) The goat density is 
evenly distributed throughout the 12 regions of 
the Netherlands. (ii) The occurrence of Q fever 
is unrelated to the herd distribution. (iii) The 
numbers of serology-only positive-testing herds 
are no different from the numbers of both  
serology- and bulk milk-positive herds. (iv) The 
occurrence of Q fever is unrelated to the goat 
density.

Chapter 16

16.1  (a) F: although EBVM draws heavily on 
the peer-reviewed published scientific literature, 
it also considers any other communicated infor-
mation on its merits. Of concern is reliability and 
this depends partly on study design and veracity. 
(b) F: while EBVM may help to justify clinical 
decisions, its prime intention is to improve prac-
tice. (c) T. (d) F: EBVM brings a systematic and 
scientific formality to the process of using the 
evidence available in contrast to the older prac-
tice of ‘clinical judgement’ alone. (e) T.

16.2  (a) F: the NNT is the number of animals 
we need to treat with the novel treatment instead 
of the control treatment to prevent one adverse 
outcome. (b) F. (c) T. (d) T. (e) F: the ratio of the 
risks is the relative risk.

16.3  (a) F: it is hoped that you will keep up to 
date with your field, but EBVM requires you  
to be far more focused about seeking answers to 
specific clinical problems, working from the ques-
tion to the answer, rather than hoping that you 
will come across a relevant article in your general 
reading. (b) F: this is a secondary result of EBVM. 
It is not its primary intention. (c) T. (d) T: what 
you gather in evidence from afar is then inte-
grated with your local knowledge and experience 
to arrive at the most appropriate clinical deci-
sion, so EBVM does not eliminate your experi-
ence. (e) F: you are responsible for your own 
clinical decisions – EBVM provides the evidence 
to guide your decision-making.
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16.4  Only (a) is not a component of PICO. 
The ‘P’ stands for patient or problem and not 
P-value.

16.5  (a), (b), (d) and (e) are each one of the 
steps of EBVM but (d) is not.

16.6  (a) There was investigator blinding (but no 
mention of whether the owner of the dog was 
blind to the treatments), a placebo control, ran-
domization of limbs to treatments and an inten-
tion-to-treat analysis. (b) The authors do not say 
which kind of Wilcoxon test they used. Since the 
limbs in a dog were randomized to the treat-
ments and thus each animal acted as its own 
control, a paired analysis would be appropriate, 
in which case the Wilcoxon signed rank test 
would be appropriate. As the authors found that 
baseline scores were not significantly different, 
the authors could have performed this Wilcoxon 
test on the actual scores rather than on the per-
centage change from baseline. Since they have 
used the percentage reduction from baseline for 
each limb for the analysis, and have provided the 
median percentage reduction from baseline in 
each group (rather than the median of the set of 
differences in the percentage reduction for each 
dog), there is a suggestion that they performed a 
two-sample Wilcoxon rank sum test; this would 
be inappropriate as the within-dog differences 
are ignored. Furthermore, the authors say that 
they performed a Fisher’s (exact) test to compare 

the percentage of lesions that decreased by 50% 
or greater. Fisher’s exact test is a two-sample test 
that ignores the paired nature of the data. McNe-
mar’s test is a test that compares proportions in 
paired samples, and this would be more appro-
priate for this study. (c) Both P-values indicate 
that the results were highly significant, with the 
percentage reduction from baseline scores being 
higher for tacrolimus-treated sites (P =  0.0003) 
and a greater percentage of tacrolimus-treated 
feet having lesions that decreased by at least 
50% (P < 0.0001). (d) The main effects of interest 
are not provided. They would be: (i) the differ-
ence in the percentage reduction from baseline 
of lesional scores in the treatment and placebo 
groups; and (ii) the difference in the percentage 
with scores decreased by 50% or more at the 
study end in the two groups. (e) Although the CI 
is wide, the tacrolimus-treated sites showed a 
major reduction in clinical scores over the 6-week 
period, with the lower limit indicating a minimum 
median reduction of 39%. Vaseline showed what 
appears to be no effect of clinical importance, 
with the upper limit of the confidence interval 
being 13%, well below the lower limit of the 
confidence interval for tacrolimus. The way  
the CIs are expressed is potentially confusing 
because of difficulty in distinguishing the minus 
sign from the dash. (f) Yes, there is evidence that 
tacrolimus was more effective than placebo in 
reducing the severity of localized skin lesions  
in dogs.
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Table A.1  The Standard Normal distribution (two-tailed P-values from 
values of z, the SND)

The tabulated value is the P-value in the two tails 
of the Standard Normal distribution correspond­
ing to a specified value (critical value or percent­
age point) of the Standardized Normal Deviate

z
x

=
− µ
σ

where x is a Normally distributed variable with 
mean = μ and standard deviation = σ (see Section 
3.5.3(c)).

P/2 P/2

z–z 0

Example: if z  =  1.96, then the two-tailed 
P-value = 0.05 (P = 0.025 in each tail).



z P

2.08 0.0375
2.09 0.0366
2.10 0.0357

2.11 0.0349
2.12 0.0340
2.13 0.0332
2.14 0.0324
2.15 0.0316

2.16 0.0308
2.17 0.0300
2.18 0.0293
2.19 0.0285
2.20 0.0278

2.21 0.0271
2.22 0.0264
2.23 0.0257
2.24 0.0251
2.25 0.0244

2.26 0.0238
2.27 0.0232
2.28 0.0226
2.29 0.0220
2.30 0.0214

2.31 0.0209
2.32 0.0203
2.33 0.0198
2.34 0.0193
2.35 0.0188

2.36 0.0183
2.37 0.0178
2.38 0.0173
2.39 0.0168
2.40 0.0164

2.41 0.0160
2.42 0.0155
2.43 0.0151
2.44 0.0147
2.45 0.0143

2.46 0.0139
2.47 0.0135
2.48 0.0131
2.49 0.0128
2.50 0.0124

2.51 0.0121
2.52 0.0117
2.53 0.0114
2.54 0.0111
2.55 0.0108

2.56 0.0105
2.57 0.0102
2.58 0.0099

z P

1.56 0.1188
1.57 0.1164
1.58 0.1141
1.59 0.1118
1.60 0.1096

1.61 0.1074
1.62 0.1052
1.63 0.1031
1.64 0.1010
1.65 0.0989

1.66 0.0969
1.67 0.0949
1.68 0.0930
1.69 0.0910
1.70 0.0891

1.71 0.0873
1.72 0.0854
1.73 0.0836
1.74 0.0819
1.75 0.0801

1.76 0.0784
1.77 0.0767
1.78 0.0751
1.79 0.0735
1.80 0.0719

1.81 0.0703
1.82 0.0688
1.83 0.0672
1.84 0.0658
1.85 0.0643

1.86 0.0629
1.87 0.0615
1.88 0.0601
1.89 0.0588
1.90 0.0574

1.91 0.0561
1.92 0.0549
1.93 0.0536
1.94 0.0524
1.95 0.0512

1.96 0.0500
1.97 0.0488
1.98 0.0477
1.99 0.0466
2.00 0.0455

2.01 0.0444
2.02 0.0434
2.03 0.0424
2.04 0.0414
2.05 0.0404

2.06 0.0394
2.07 0.0385

z P

1.04 0.2983
1.05 0.2937

1.06 0.2891
1.07 0.2846
1.08 0.2801
1.09 0.2757
1.10 0.2713

1.11 0.2670
1.12 0.2627
1.13 0.2585
1.14 0.2543
1.15 0.2501

1.16 0.2460
1.17 0.2420
1.18 0.2380
1.19 0.2340
1.20 0.2301

1.21 0.2263
1.22 0.2225
1.23 0.2187
1.24 0.2150
1.25 0.2113

1.26 0.2077
1.27 0.2041
1.28 0.2005
1.29 0.1971
1.30 0.1936

1.31 0.1902
1.32 0.1868
1.33 0.1835
1.34 0.1802
1.35 0.1770

1.36 0.1738
1.37 0.1707
1.38 0.1676
1.39 0.1645
1.40 0.1615

1.41 0.1585
1.42 0.1556
1.43 0.1527
1.44 0.1499
1.45 0.1471

1.46 0.1443
1.47 0.1416
1.48 0.1389
1.49 0.1362
1.50 0.1336

1.51 0.1310
1.52 0.1285
1.53 0.1260
1.54 0.1236
1.55 0.1211

z P

0.53 0.5961
0.54 0.5892
0.55 0.5823

0.56 0.5755
0.57 0.5687
0.58 0.5619
0.59 0.5552
0.60 0.5485

0.61 0.5419
0.62 0.5353
0.63 0.5287
0.64 0.5222
0.65 0.5157

0.66 0.5093
0.67 0.5029
0.68 0.4965
0.69 0.4902
0.70 0.4839

0.71 0.4777
0.72 0.4715
0.73 0.4654
0.74 0.4593
0.75 0.4533

0.76 0.4473
0.77 0.4413
0.78 0.4354
0.79 0.4295
0.80 0.4237

0.81 0.4179
0.82 0.4122
0.83 0.4065
0.84 0.4009
0.85 0.3953

0.86 0.3898
0.87 0.3843
0.88 0.3789
0.89 0.3735
0.90 0.3681

0.91 0.3628
0.92 0.3576
0.93 0.3524
0.94 0.3472
0.95 0.3421

0.96 0.3371
0.97 0.3320
0.98 0.3271
0.99 0.3222
1.00 0.3173

1.01 0.3125
1.02 0.3077
1.03 0.3030

Table A.1  The Standard Normal distribution (two-tailed P-values from values of z, the SND).

z P

0.00 1.0000

0.01 0.9920
0.02 0.9840
0.03 0.9761
0.04 0.9681
0.05 0.9601

0.06 0.9522
0.07 0.9442
0.08 0.9362
0.09 0.9283
0.10 0.9203

0.11 0.9124
0.12 0.9045
0.13 0.8966
0.14 0.8887
0.15 0.8808

0.16 0.8729
0.17 0.8650
0.18 0.8572
0.19 0.8493
0.20 0.8415

0.21 0.8337
0.22 0.8259
0.23 0.8181
0.24 0.8103
0.25 0.8026

0.26 0.7949
0.27 0.7872
0.28 0.7795
0.29 0.7718
0.30 0.7642

0.31 0.7566
0.32 0.7490
0.33 0.7414
0.34 0.7339
0.35 0.7263

0.36 0.7188
0.37 0.7114
0.38 0.7039
0.39 0.6965
0.40 0.6892

0.41 0.6818
0.42 0.6745
0.43 0.6672
0.44 0.6599
0.45 0.6527

0.46 0.6455
0.47 0.6384
0.48 0.6312
0.49 0.6241
0.50 0.6171

0.51 0.6101
0.52 0.6031

z P

2.59 0.0096
2.60 0.0093

2.61 0.0091
2.62 0.0088
2.63 0.0085
2.64 0.0083

2.65 0.0080

2.66 0.0078
2.67 0.0076
2.68 0.0074
2.69 0.0071
2.70 0.0069

2.71 0.0067
2.72 0.0065
2.73 0.0063
2.74 0.0061
2.75 0.0060

2.76 0.0058
2.77 0.0056
2.78 0.0054
2.79 0.0053
2.80 0.0051

2.81 0.0050
2.82 0.0048
2.83 0.0047
2.84 0.0045
2.85 0.0044

2.86 0.0042
2.87 0.0041
2.88 0.0040
2.89 0.0039
2.90 0.0037

2.91 0.0036
2.92 0.0035
2.93 0.0034
2.94 0.0033
2.95 0.0032

2.96 0.0031
2.97 0.0030
2.98 0.0029
2.99 0.0028
3.00 0.0027

3.10 0.00194
3.20 0.00137
3.30 0.00097
3.40 0.00067
3.50 0.00047

3.60 0.00032
3.70 0.00022
3.80 0.00014
3.90 0.00010
4.00 0.00006
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Table A.2  The Standard Normal distribution (values of z, the SND, 
from P-values)

Table A.2  Tail area probabilites and corresponding values 
of the SND, z.

Two-tailed probability SND, z One-tailed probability

1.00 0.00 0.50
0.90 0.13 0.45
0.50 0.67 0.25
0.25 1.15 0.125
0.20 1.28 0.10
0.15 1.44 0.075
0.10 1.64 0.05
0.05 1.96 0.025
0.02 2.33 0.01
0.01 2.58 0.005
0.005 2.81 0.0025
0.001 3.29 0.0005

The one-tailed P-value is that in which the total 
probability is contained in the tail area to the 
right of the Standardized Normal Deviate

z
x

=
− µ
σ

where x is a Normally distributed variable with 
mean = μ and standard deviation = σ. The two-
tailed P-value is that in which half of the total 
probability is contained in the tail area to the 
right of z, the SND, and the other half is con­
tained in the tail area to the left of −z (see Section 
3.5.3(d)).

P/2 P/2

z–z 0
Two-tailed P

P

z0
One-tailed P

Table A.3  The t-distribution

This table contains the critical value (percentage 
point), tp, of the t-distribution which corresponds 
to a particular two-tailed P-value for specified 
degrees of freedom. If the test statistic follows 
the t-distribution with known degrees of freedom, 
then the P-value for the two-tailed hypothesis 
test is calculated by determining where the abso­
lute value (i.e. ignoring its sign) of the observed 
test statistic lies in relation to the critical values 
in the table. If its value is greater than the tabu­
lated critical value, then the P-value for the test 
is less than the relevant tabulated P-value. If its 
value lies between two adjacent critical values, 
then the P-value for the test lies between the 
corresponding tabulated P-values.

Example: if the observed test statistic = 2.72 on 
15 degrees of freedom, then since 2.72 >  2.602, 
P  <  0.02. Furthermore, since 2.72 lies between 
2.602 and 2.947, 0.01 < P < 0.02.

P/2 P/2

–tp tp0



	 Appendix A	 327
Ta

bl
e 

A
.3

 
P

er
ce

nt
ag

e 
po

in
ts

 o
f 

th
e 

t-
di

st
ri

bu
ti

on
.

df

Tw
o-

ta
ile

d 
P

-v
al

ue
s

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
05

0.
02

0.
01

0.
00

1

 
1

0.
15

8
0.

32
5

0.
51

0
0.

72
7

1.
00

0
1.

37
6

1.
96

3
3.

07
8

6.
31

4
12

.7
06

31
.8

21
63

.6
57

63
6.

61
9

 
2

0.
14

2
0.

28
9

0.
44

5
0.

61
7

0.
81

6
1.

06
1

1.
38

6
1.

88
6

2.
92

0
4.

30
3

6.
96

5
9.

92
5

31
.5

98
 

3
0.

13
7

0.
27

7
0.

42
4

0.
58

4
0.

76
5

0.
97

8
1.

25
0

1.
63

8
2.

35
3

3.
18

2
4.

54
1

5.
84

1
12

.9
24

 
4

0.
13

4
0.

27
1

0.
41

4
0.

56
9

0.
74

1
0.

94
1

1.
19

0
1.

53
3

2.
13

2
2.

77
6

3.
74

7
4.

60
4

8.
61

0
 

5
0.

13
2

0.
26

7
0.

40
8

0.
55

9
0.

72
7

0.
92

0
1.

15
6

1.
47

6
2.

01
5

2.
57

1
3.

36
5

4.
03

2
6.

86
9

 
6

0.
13

1
0.

26
5

0.
40

4
0.

55
3

0.
71

8
0.

90
6

1.
13

4
1.

44
0

1.
94

3
2.

44
7

3.
14

3
3.

70
7

5.
95

9
 

7
0.

13
0

0.
26

3
0.

40
2

0.
54

9
0.

71
1

0.
89

6
1.

11
9

1.
41

5
1.

89
5

2.
36

5
2.

99
8

3.
49

9
5.

40
8

 
8

0.
13

0
0.

26
2

0.
39

9
0.

54
6

0.
70

6
0.

88
9

1.
10

8
1.

39
7

1.
86

2.
30

6
2.

89
6

3.
35

5
5.

04
1

 
9

0.
12

9
0.

26
1

0.
39

8
0.

54
3

0.
70

3
0.

88
3

1.
10

0
1.

38
3

1.
83

3
2.

26
2

2.
82

1
3.

25
0

4.
78

1
 1

0
0.

12
9

0.
26

0
0.

39
7

0.
54

2
0.

70
0

0.
87

9
1.

09
3

1.
37

2
1.

81
2

2.
22

8
2.

76
4

3.
16

9
4.

58
7

 1
1

0.
12

9
0.

26
0

0.
39

6
0.

54
0

0.
69

7
0.

87
6

1.
08

8
1.

36
3

1.
79

6
2.

20
1

2.
71

8
3.

10
6

4.
43

7
 1

2
0.

12
8

0.
25

9
0.

39
5

0.
53

9
0.

69
5

0.
87

3
1.

08
3

1.
35

6
1.

78
2

2.
17

9
2.

68
1

3.
05

5
4.

31
8

 1
3

0.
12

8
0.

25
9

0.
39

4
0.

53
8

0.
69

4
0.

87
0

1.
07

9
1.

35
0

1.
77

1
2.

16
0

2.
65

0
3.

01
2

4.
22

1
 1

4
0.

12
8

0.
25

8
0.

39
3

0.
53

7
0.

69
2

0.
86

8
1.

07
6

1.
34

5
1.

76
1

2.
14

5
2.

62
4

2.
97

7
4.

14
0

 1
5

0.
12

8
0.

25
8

0.
39

3
0.

53
6

0.
69

1
0.

86
6

1.
07

4
1.

34
1

1.
75

3
2.

13
1

2.
60

2
2.

94
7

4.
07

3

 1
6

0.
12

8
0.

25
8

0.
39

2
0.

53
5

0.
69

0
0.

86
5

1.
07

1
1.

33
7

1.
74

6
2.

12
0

2.
58

3
2.

92
1

4.
01

5
 1

7
0.

12
8

0.
25

7
0.

39
2

0.
53

4
0.

68
9

0.
86

3
1.

06
9

1.
33

3
1.

74
1

2.
11

0
2.

56
7

2.
89

8
3.

96
5

 1
8

0.
12

7
0.

25
7

0.
39

2
0.

53
4

0.
68

8
0.

86
2

1.
06

7
1.

33
0

1.
73

4
2.

10
1

2.
55

2
2.

87
8

3.
92

2
 1

9
0.

12
7

0.
25

7
0.

39
1

0.
53

3
0.

68
8

0.
86

1
1.

06
6

1.
32

8
1.

72
9

2.
09

3
2.

53
9

2.
86

1
3.

88
3

 2
0

0.
12

7
0.

25
7

0.
39

1
0.

53
3

0.
68

7
0.

86
0

1.
06

4
1.

32
5

1.
72

5
2.

08
6

2.
52

8
2.

84
5

3.
85

0

 2
1

0.
12

7
0.

25
7

0.
39

1
0.

53
2

0.
68

6
0.

85
9

1.
06

3
1.

32
3

1.
72

1
2.

08
0

2.
51

8
2.

83
1

3.
81

9
 2

2
0.

12
7

0.
25

6
0.

39
0

0.
53

2
0.

68
6

0.
85

8
1.

06
1

1.
32

1
1.

71
7

2.
07

4
2.

50
8

2.
81

9
3.

79
2

 2
3

0.
12

7
0.

25
6

0.
39

0
0.

53
2

0.
68

5
0.

85
8

1.
06

0
1.

31
9

1.
71

4
2.

06
9

2.
50

0
2.

80
7

3.
76

7
 2

4
0.

12
7

0.
25

6
0.

39
0

0.
53

1
0.

68
5

0.
85

7
1.

05
9

1.
31

8
1.

71
1

2.
06

4
2.

49
2

2.
79

7
3.

74
5

 2
5

0.
12

7
0.

25
6

0.
39

0
0.

53
1

0.
68

4
0.

85
6

1.
05

8
1.

31
6

1.
70

8
2.

06
0

2.
48

5
2.

78
7

3.
72

5

 2
6

0.
12

7
0.

25
6

0.
39

0
0.

53
1

0.
68

4
0.

85
6

1.
05

8
1.

31
5

1.
70

6
2.

05
6

2.
47

9
2.

77
9

3.
70

7
 2

7
0.

12
7

0.
25

6
0.

38
9

0.
53

1
0.

68
4

0.
85

5
1.

05
7

1.
31

4
1.

70
3

2.
05

2
2.

47
3

2.
77

1
3.

69
0

 2
8

0.
12

7
0.

25
6

0.
38

9
0.

53
0

0.
68

3
0.

85
5

1.
05

6
1.

31
3

1.
70

1
2.

04
8

2.
46

7
2.

76
3

3.
67

4
 2

9
0.

12
7

0.
25

6
0.

38
9

0.
53

0
0.

68
3

0.
85

4
1.

05
5

1.
31

1
1.

69
9

2.
04

5
2.

46
2

2.
75

6
3.

65
9

 3
0

0.
12

7
0.

25
6

0.
38

9
0.

53
0

0.
68

3
0.

85
4

1.
05

5
1.

31
0

1.
69

7
2.

04
2

2.
45

7
2.

75
0

3.
64

6

 4
0

0.
12

6
0.

25
5

0.
38

8
0.

52
9

0.
68

1
0.

85
1

1.
05

0
1.

30
3

1.
68

4
2.

02
1

2.
42

3
2.

70
4

3.
55

1

 5
0

0.
12

6
0.

25
5

0.
38

8
0.

52
8

0.
67

9
0.

84
9

1.
04

7
1.

29
9

1.
67

6
2.

00
9

2.
40

3
2.

67
8

3.
49

7

10
0

0.
12

6
0.

25
4

0.
38

6
0.

52
6

0.
67

7
0.

84
5

1.
04

2
1.

29
1

1.
66

1
1.

98
4

2.
36

4
2.

62
6

3.
39

1

20
0

0.
12

6
0.

25
4

0.
38

6
0.

52
5

0.
67

6
0.

84
3

1.
03

9
1.

28
6

1.
65

3
1.

97
2

2.
34

5
2.

60
1

3.
34

0

∞
0.

12
6

0.
25

3
0.

38
5

0.
52

4
0.

67
4

0.
84

2
1.

03
6

1.
28

2
1.

64
5

1.
96

0
2.

32
6

2.
57

6
3.

29
1



328	 Appendix A

Table A.4 The Chi-squared (χ2) distribution

Table A.4  The Chi-squared (χ2) distribution.

df

One-tailed P-value

0.500 0.250 0.100 0.050 0.025 0.010 0.001

  1 0.45 1.32 2.71 3.84 5.02 6.63 10.83
  2 1.39 2.77 4.61 5.99 7.38 9.21 13.82
  3 2.37 4.11 6.25 7.81 9.35 11.34 16.27
  4 3.36 5.39 7.78 9.49 11.14 13.28 18.47

  5 4.35 6.63 9.24 11.07 12.83 15.09 20.52
  6 5.35 7.84 10.64 12.59 14.45 16.81 22.46
  7 6.35 9.04 12.02 14.07 16.01 18.48 24.32
  8 7.34 10.22 13.36 15.51 17.53 20.09 26.12
  9 8.34 11.39 14.68 16.92 19.02 21.67 27.88

  10 9.34 12.55 15.99 18.31 20.48 23.21 29.59
  11 10.34 13.70 17.28 19.68 21.92 24.72 31.26
  12 11.34 14.85 18.55 21.03 23.34 26.22 32.91
  13 12.34 15.98 19.81 22.36 24.74 27.69 34.53
  14 13.34 17.12 21.06 23.68 26.12 29.14 36.12

  15 14.34 18.25 22.31 25.00 27.49 30.58 37.70
  16 15.34 19.37 23.54 26.30 28.85 32.00 39.25
  17 16.34 20.49 24.77 27.59 30.19 33.41 40.79
  18 17.34 21.60 25.99 28.87 31.53 34.81 42.31
  19 18.34 22.72 27.20 30.14 32.85 36.19 43.82

  20 19.34 23.83 28.41 31.41 34.17 37.57 45.32
  21 20.34 24.93 29.62 32.67 35.48 38.93 46.80
  22 21.34 26.04 30.81 33.92 36.78 40.29 48.27
  23 22.34 27.14 32.01 35.17 38.08 41.64 49.73
  24 23.34 28.24 33.20 36.42 39.36 42.98 51.18

  25 24.34 29.34 34.38 37.65 40.65 44.31 32.62
  26 25.34 30.43 35.56 38.89 41.92 45.64 54.05
  27 26.34 31.53 36.74 40.11 43.19 46.96 55.48
  28 27.34 32.62 37.92 41.34 44.46 48.28 56.89
  29 28.34 33.71 39.09 42.56 45.72 49.59 58.30

  30 29.34 34.80 40.26 43.77 46.98 50.89 59.70

  40 39.34 45.62 51.80 55.76 59.34 63.69 73.40

  50 49.33 56.33 63.17 67.50 71.42 76.15 86.66

  60 59.33 66.98 74.40 79.08 83.30 88.38 99.61

  70 69.33 77.58 85.53 90.53 95.02 100.42 112.32

  80 79.33 88.13 96.58 101.88 106.63 112.33 124.84

  90 89.33 98.64 107.56 113.14 118.14 124.12 137.21

100 99.33 109.14 118.50 124.34 129.56 135.81 149.45

This table contains the critical value (percentage 
point), χ2

p, of the χ2-distribution which corre­
sponds to a particular P-value for specified 
degrees of freedom. Note that the P-value relates 
to the upper tail of the χ2-distribution. If the test 
statistic follows the χ2-distribution with known 
degrees of freedom, then the P-value for the 
hypothesis test is calculated by determining 
where the observed test statistic lies in relation 
to the critical values in the table. If the observed 
test statistic is greater than the critical value, then 
the P-value for the test is less than the tabulated 
P-value. If the observed test statistic lies between 
two adjacent critical values, then the P-value for 
the test lies between the corresponding tabulated 
P-values.

Example: if the observed test statistic = 20.3 on 
10 degrees of freedom, then since 20.3 > 18.307, 
P  <  0.05. Furthermore, since 20.3 lies between 
18.307 and 20.48, 0.025 < P < 0.05.

P

χ2
p
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Table A.5  The F-distribution

Tables A.5a and A.5b contain the critical values 
(percentage points) of the F-distribution, Fp, 
which correspond to a specified P-value for v1 
degrees of freedom in the numerator and v2 
degrees of freedom in the denominator of  
the test statistic. If the test statistic follows the 
F-distribution with known degrees of freedom, 
then we can calculate the P-value by determining 
where the observed test statistic lies in relation 
to the critical values in the table. Note that the 
tabulated P-value relates to the upper tail of the 
F-distribution.

For a one-sided hypothesis test (as in the 
ANOVA; see Section 8.5), if the observed test 
statistic is greater than the critical value, then the 
P-value for the one-sided test is less than the 
tabulated P-value. If the observed test statistic 
lies between two adjacent critical values, then the 
P-value lies between the corresponding tabu­
lated P-values. We are more likely to use Table 
A.5a if the test is one-sided.

Example: for a one-sided test, if the observed test 
statistic = 4.41 on 5 (numerator) and 6 (denomi­
nator) degrees of freedom, then since 4.41 > 4.39, 
P  <  0.05. Furthermore, since 4.41 lies between 
4.39 and 8.75, 0.01 < P < 0.05.

P

FP

One-tailed P

Occasionally, we have a two-sided hypothesis 
test (e.g. when comparing two variances from 
independent groups: see Section 8.3). To deter­
mine significance at a given level, we have to 
compare our observed test statistic with the criti­
cal value in the table that corresponds to the 
tabulated P/2. Thus, a two-sided P-value of 0.05 
corresponds to the tabulated P =  0.025; a two-
sided P-value of 0.01 corresponds to the tabu­
lated P  =  0.005. We are more likely in this 
situation to use Table A.5b.

Example: for a two-sided test, if the observed test 
statistic = 6.0 on 2 (numerator) and 9 (denomina­
tor) degrees of freedom, then since 6.0 lies 
between 5.71 (the critical value for P  =  0.025) 
and 10.11 (the critical value for P  =  0.005), 
0.01 < P < 0.05.
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Table A.5a  Percentage points of the F-distribution (P = 0.05 and P = 0.01).

df 
denominator, 
v2

df numerator, v1

P 1 2 3 4 5 6 7 8 12 24 ∞

  1 0.05 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 243.9 249.1 254.3

0.01 4052 5000 5403 5625 5764 5859 5928 5981 6106 6235 6366
  2 0.05 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.41 19.45 19.50

0.01 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.42 99.46 99.50

  3 0.05 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.74 8.64 8.53
0.01 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.05 26.60 26.13

  4 0.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5.91 5.77 5.63
0.01 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.37 13.93 3.46

  5 0.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.68 4.53 4.36
0.01 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 9.89 9.47 9.02

  6 0.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.00 3.84 3.67
0.01 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.72 7.31 6.88

  7 0.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.57 3.41 3.23
0.01 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.47 6.07 5.65

  8 0.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.28 3.12 2.93
0.01 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.67 5.28 4.86

  9 0.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.07 2.90 2.71
0.01 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.11 4.73 4.31

  10 0.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 2.91 2.74 2.54
0.01 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.71 4.33 3.91

  12 0.05 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.69 2.51 2.30
0.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.16 3.78 3.36

  14 0.05 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.53 2.35 2.13
0.01 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 3.80 3.43 3.00

  16 0.05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.42 2.24 2.01
0.01 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.55 3.18 2.75

  18 0.05 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.34 2.15 1.92
0.01 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.37 3.00 2.57

  20 0.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.28 2.08 1.84
0.01 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.23 2.86 2.42

  30 0.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.09 1.89 1.62
0.01 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 2.84 2.47 2.01

  40 0.05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.00 1.79 1.51
0.01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.66 2.29 1.80

  60 0.05 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 1.92 1.70 1.39
0.01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.50 2.12 1.60

120 0.05 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.83 1.61 1.25
0.01 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.34 1.95 1.38

∞ 0.05 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.75 1.52 1.00
0.01 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.18 1.79 1.00
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Table A.5b  Percentage points of the F-distribution (P = 0.025 and P = 0.005).

df 
denominator, 
v2

df numerator, v1

P 1 2 3 4 5 6 7 8 12 24 ∞

  1 0.025 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 976.7 997.2 1018

0.005 16211 20000 21615 22500 23056 23437 23715 23925 24426 24940 25465
  2 0.025 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.41 39.46 39.50

0.005 198.5 199.0 199.2 199.2 199.3 199.3 199.4 199.4 199.4 199.5 199.5

  3 0.025 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.34 14.12 13.90
0.005 55.55 49.80 47.47 46.19 45.39 44.84 44.43 44.13 43.39 42.62 41.83

  4 0.025 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.75 8.51 8.26
0.005 31.33 26.28 24.26 23.15 22.46 21.97 21.62 21.35 20.70 20.03 19.32

  5 0.025 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.52 6.28 6.02
0.005 22.78 18.31 16.53 15.56 14.94 14.51 14.20 13.96 13.38 12.78 12.14

  6 0.025 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.37 5.12 4.85
0.005 18.63 14.54 12.92 12.03 11.46 11.07 10.79 10.57 10.03 9.47 8.88

  7 0.025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.67 4.42 4.14
0.005 16.24 12.40 10.88 10.05 9.52 9.16 8.89 8.68 8.18 7.65 7.08

  8 0.025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.20 3.95 3.67
0.005 14.69 11.04 9.60 8.81 8.30 7.95 7.69 7.50 7.01 6.50 5.95

  9 0.025 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 3.87 3.61 3.33
0.005 13.61 10.11 8.72 7.96 7.47 7.13 6.88 6.69 6.23 5.73 5.19

  10 0.025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.62 3.37 3.08
0.005 12.83 9.43 8.08 7.34 6.87 6.54 6.30 6.12 5.66 5.17 4.64

  12 0.025 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.28 3.02 2.72
0.005 11.75 8.51 7.23 6.52 6.07 5.76 5.52 5.35 4.91 4.43 3.90

  14 0.025 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.05 2.79 2.49
0.005 11.06 7.92 6.68 6.00 5.56 5.26 5.03 4.86 4.43 3.96 3.44

  16 0.025 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 2.89 2.63 2.32
0.005 10.58 7.51 6.30 5.64 5.21 4.91 4.69 4.52 4.10 3.64 3.11

  18 0.025 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.77 2.50 2.19
0.005 10.22 7.21 6.03 5.37 4.96 4.66 4.44 4.28 3.86 3.40 2.87

  20 0.025 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.68 2.41 2.09
0.005 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.68 3.22 2.69

  30 0.025 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.41 2.14 1.79
0.005 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.18 2.73 2.18

  40 0.025 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.29 2.01 1.64
0.005 8.83 6.07 4.98 4.37 3.99 3.71 3.51 3.35 2.95 2.50 1.93

  60 0.025 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.17 1.88 1.48
0.005 8.49 5.79 4.73 4.14 3.76 3.49 3.29 3.13 2.74 2.29 1.69

120 0.025 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.05 1.76 1.31
0.005 8.18 5.54 4.50 3.92 3.55 3.28 3.09 2.93 2.54 2.09 1.43

∞ 0.025 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 1.94 1.64 1.00
0.005 7.88 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.36 1.90 1.00
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Table A.6  Pearson’s correlation coefficient (r)

This table contains critical values of the sample 
correlation coefficient, r; it is used to test the null 
hypothesis that the true correlation coefficient 
(ρ) is equal to zero. For a given sample size 
(number of pairs), if the absolute value (i.e. 
ignoring its sign) of the sample correlation coef­
ficient, r, is greater than the critical value, then 
the two-tailed P-value of the test is less than the 
tabulated P-value. If the sample correlation coef­
ficient lies between two adjacent critical values, 
then the P-value for the test lies between the 
corresponding tabulated P-values. See Section 
10.3.2(b) if the sample size is greater than 150.

Note: this table can also be used to test the 
significance of Spearman’s rank correlation coef­
ficient (see Section 12.7.4), provided the sample 
size is greater than 10 pairs. If the sample size is 
10 or less, refer to Table A.7.

Example: if the sample size is 14 and r =  0.70, 
then since 0.70 > 0.6614, P < 0.01. Furthermore, 
since 0.70 lies between 0.6614 and 0.7800, 0.001  
< P < 0.01.

Table A.6  Critical values of Pearson’s correlation coefficient (r).

Sample size

Two-tailed P-value

Sample size

Two-tailed P-value

0.05 0.01 0.001 0.05 0.01 0.001

  3 0.9969 0.9999 1.0000 23 0.4132 0.5256 0.6402
  4 0.9500 0.9900 0.9990 24 0.4044 0.5151 0.6287
  5 0.8783 0.9587 0.9911 25 0.3961 0.5052 0.6177
  6 0.8114 0.9172 0.9741 26 0.3882 0.4958 0.6073
  7 0.7545 0.8745 0.9509 27 0.3809 0.4869 0.5974
  8 0.7067 0.8343 0.9249 28 0.3739 0.4785 0.5880
  9 0.6664 0.7977 0.8983 29 0.3673 0.4705 0.5790
10 0.6319 0.7646 0.8721 30 0.3610 0.4629 0.5703
11 0.6021 0.7348 0.8471 35 0.3338 0.4296 0.5322
12 0.5760 0.7079 0.8233 40 0.3120 0.4026 0.5007
13 0.5529 0.6835 0.8010 45 0.2940 0.3801 0.4742
14 0.5324 0.6614 0.7800 50 0.2787 0.3610 0.4514
15 0.5139 0.6411 0.7604 55 0.2656 0.3445 0.4317
16 0.4973 0.6226 0.7419 60 0.2542 0.3301 0.4143
17 0.4821 0.6055 0.7247 70 0.2352 0.3060 0.3850
18 0.4683 0.5897 0.7084 80 0.2199 0.2864 0.3611
19 0.4555 0.5751 0.6932 90 0.2072 0.2702 0.3412
20 0.4438 0.5614 0.6788 100 0.2172 0.2830 0.3569
21 0.4329 0.5487 0.6652 150 0.1603 0.2097 0.2660
22 0.4227 0.5368 0.6524
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Table A.7  Critical values of Spearman’s rank correlation 
coefficient.

Sample size

Two-tailed P-value

0.1 0.05 0.02 0.01 0.002

  4 0.8000 – – – –
  5 0.8000 0.9000 0.9000 – –
  6 0.7714 0.8286 0.8857 0.9429 –
  7 0.6786 0.7450 0.8571 0.8929 0.9643
  8 0.6190 0.7143 0.8095 0.8571 0.9286
  9 0.5833 0.6833 0.7667 0.8167 0.9000
10 0.5515 0.6364 0.7333 0.7818 0.8667
11 0.5273 0.6091 0.7000 0.7455 0.8364
12 0.4965 0.5804 0.6713 0.7273 0.8182
13 0.4780 0.5549 0.6429 0.6978 0.7912
14 0.4593 0.5341 0.6220 0.6747 0.7670
15 0.4429 0.5179 0.6000 0.6536 0.7464

Table A.7  Spearman’s rank correlation coefficient (rs)

This table contains critical values for Spearman’s 
rank correlation coefficient, rs, for small samples; 
it is used to test the null hypothesis that the true 
correlation coefficient (ρs) is equal to zero. If 
the sample size (number of pairs) is greater than 
15, you can refer to Table A.6, which provides a  
good approximation. For a given sample size,  
if the absolute value (i.e. ignoring its sign) of the 
sample rank correlation coefficient, rs, is greater 
than the critical value, then the two-tailed P-value 
of the test is less than the tabulated P-value. 
If the sample rank correlation coefficient lies 
between two adjacent critical values, then the 
two-tailed P-value for the test lies between the 
corresponding tabulated P-values.

Example: if the sample size is 6 and rs  =  0.85, 
since 0.85 > 0.8286, P < 0.05. Furthermore, since 
0.8286 < 0.85 < 0.8857, 0.02 < P < 0.05.
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Table A.8  Two-tailed P-values for the sign test.

n

k

0 1 2 3 4 5 6 7 8 9

  4 1.00 0.624 1.00 – – – – – – –
  5 0.062 0.376 1.00 – – – – – – –
  6 0.032 0.218 0.688 1.00 – – – – – –
  7 0.016 0.124 0.454 1.00 – – – – – –
  8 0.008 0.070 0.290 0.726 1.00 – – – – –
  9 0.004 0.040 0.180 0.508 1.00 – – – – –
10 0.002 0.022 0.110 0.344 0.754 1.00 – – – –
11 0.001 0.012 0.066 0.226 0.548 1.00 – – – –
12 – 0.006 0.038 0.146 0.388 0.774 1.00 – – –
13 – 0.004 0.022 0.092 0.266 0.582 1.00 – – –
14 – 0.002 0.012 0.058 0.180 0.424 0.790 1.00 – –
15 – – 0.008 0.036 0.118 0.302 0.608 1.00 – –
16 – – 0.004 0.022 0.076 0.210 0.554 0.804 1.00 –
17 – – 0.002 0.012 0.050 0.144 0.332 0.630 1.00 –
18 – – 0.002 0.004 0.030 0.096 0.238 0.480 0.814 1.00
19 – – – 0.004 0.020 0.064 0.168 0.360 0.648 1.00
20 – – – 0.002 0.012 0.042 0.116 0.264 0.504 0.824

Table A.8  The sign test

This table contains two-tailed P-values for the 
sign test of the null hypothesis that the propor­
tion of positive (or negative, whichever is the 
smaller) differences is equal to one half (see 
Section 12.3). k is the number of positive differ­

ences; n is the number of non-zero differences. 
Note that probabilities less than 0.001 are omitted.

Example: if k = 3 and n = 10, P = 0.344.
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Table A.9  The Wilcoxon signed rank test

This table contains the critical values for a two-
tailed Wilcoxon signed rank test of n non-zero 
differences (see Section 12.4). It uses the sum of 
the positive ranks, T+, or the negative ranks, T−, 
of the differences. Then if T+ (or T−) is equal to 
or lies outside the tabulated critical values, the 
P-value for the two-sided test is less than the 
tabulated P-value.

Example: if the number of non-zero differences 
is 10, and T+ = 4, then since 4 is less than the lower 
limit of the interval 5–50, P  <  0.02. However, 
since 4 lies in the interval 3–52, P > 0.01. Hence 
0.01 < P < 0.02.

Table A.9  Critical values for the 
Wilcoxon signed rank test.

n

Two-tailed P-value

0.1 0.05 0.02 0.01 0.001

  4 – – – – –
  5 0–15 – – – –
  6 2–19 0–21 – – –
  7 3–25 2–26 0–28 – –
  8 5–31 3–33 1–35 0–36 –
  9 8–37 5–40 3–42 1–44 –
10 10–45 8–47 5–50 3–52 –
11 13–53 10–56 7–59 5–61 0–66
12 17–61 13–65 9–69 7–71 1–77
13 21–70 17–74 12–79 9–82 2–89
14 25–80 21–84 15–90 12–93 4–101
15 30–90 25–95 19–101 15–105 6–114
16 35–101 29–107 23–113 19–117 9–127
17 41–112 34–119 28–125 23–130 11–142
18 47–124 40–131 32–139 27–144 14–157
19 53–137 46–144 37–153 32–158 18–172
20 60–150 52–158 43–167 37–173 21–189
21 67–164 58–173 49–182 42–189 26–205
22 75–178 66–187 55–198 48–205 30–223
23 83–193 73–203 62–214 54–222 35–241
24 91–209 81–219 69–231 61–239 40–260
25 100–225 89–236 76–249 68–257 45–280
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Table A.10a  Critical values for the Wilcoxon rank sum test. Two-tailed P = 0.05.

n1 4 5 6 7 8 9 10 11 12 13 14 15

n2

  4 10–26 16–34 23–43 31–53 40–64 49–77 60–90 72–104 85–119 99–135 114–152 130–170
  5 11–29 17–38 24–48 33–58 42–70 52–83 63–97 75–112 89–127 103–144 118–162 134–181

  6 12–32 18–42 26–52 34–64 44–76 55–89 66–104 79–119 92–136 107–153 122–172 139–191
  7 13–35 20–45 27–57 36–69 46–82 57–96 69–111 82–127 96–144 111–162 127–181 144–201
  8 14–38 21–49 29–61 38–74 49–87 60–102 72–118 85–135 100–152 115–171 131–191 149–211
  9 14–42 22–53 31–65 40–79 51–93 62–109 75–125 89–142 104–160 119–180 136–200 154–221
10 15–45 23–57 32–70 42–84 53–99 65–115 78–132 92–150 107–169 124–188 141–209 159–231

11 16–48 24–61 34–74 44–89 55–105 68–121 81–139 96–157 111–177 128–197 145–219 164–241
12 17–51 26–64 35–79 46–94 58–110 71–127 84–146 99–165 115–185 132–206 150–228 169–251
13 18–54 27–68 37–83 48–99 60–116 73–134 88–152 103–172 119–193 136–215 155–237 174–261
14 19–57 28–72 38–88 50–104 62–122 76–140 91–159 106–180 123–201 141–223 160–246 179–271
15 20–60 29–76 40–92 52–109 65–127 79–146 94–166 110–187 127–209 145–232 164–256 184–281

16 21–63 30–80 42–96 54–114 67–133 82–152 97–173 113–195 131–217 150–240 169–265 190–290
17 21–67 32–83 43–101 56–119 70–138 84–159 100–180 117–202 135–225 154–249 174–274 195–300
18 22–70 33–87 45–105 58–124 72–144 87–165 103–187 121–209 139–233 159–257 179–283 200–310
19 23–73 34–91 46–110 60–129 74–150 90–171 107–193 124–217 143–241 163–266 184–292 205–320
20 24–76 35–95 48–114 62–134 77–155 93–177 110–200 128–224 147–249 167–275 188–302 211–329

Table A.10  The Wilcoxon rank sum test

This table contains the critical values for a two-
tailed Wilcoxon rank sum test comparing two 
samples of size n1 and n2, with n1 < n2 (see Section 
12.5). Suppose T1 is the sum of the ranks of the 
smaller sample. If T1 ≤ the lower critical value in 
the table, or if T1 ≥ the upper critical value, then 
the two-tailed P-value of the test is less than the 
relevant tabulated P-value.

Example: if n1 = 10, n2 = 14 and T1 = 83, then since 
83 lies outside the limits 91–159 in Table A.10a, 
then P  <  0.05; since 83 lies within the limits 
81–169 in Table A.10b, then P  >  0.01. Hence 
0.01 < P < 0.05.
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Table A.10b  Critical values for the Wilcoxon rank sum test. Two-tailed P = 0.01.

n1 4 5 6 7 8 9 10 11 12 13 14 15

n2

  4 – – 21–45 28–56 37–67 46–80 57–93 68–108 81–123 94–140 109–157 125–175
  5 – 15–40 22–50 29–62 38–74 48–87 59–101 71–116 84–132 98–149 112–168 128–187

  6 10–34 16–44 23–55 31–67 40–80 50–94 61–109 73–125 87–141 101–159 116–178 132–198
  7 10–38 16–49 24–60 32–73 42–86 52–101 64–116 76–133 90–150 104–169 120–188 136–209
  8 11–41 17–53 25–65 34–78 43–93 54–108 66–124 79–141 93–159 108–178 123–199 140–220
  9 11–45 18–57 26–70 35–84 45–99 56–115 68–132 82–149 96–168 111–188 127–209 144–231
10 12–48 19–61 27–75 37–89 47–105 58–122 71–139 84–158 99–177 115–197 131–219 149–241

11 12–52 20–65 28–80 38–95 49–111 61–128 73–147 87–166 102–186 118–207 135–229 153–252
12 13–55 21–69 30–84 40–100 51–117 63–135 76–154 90–174 105–195 122–216 139–239 157–263
13 13–59 22–73 31–89 41–106 53–123 65–142 79–161 93–182 109–203 125–226 143–249 162–273
14 14–62 22–78 32–94 43–111 54–130 67–149 81–169 96–190 112–212 129–235 147–259 166–284
15 15–65 23–82 33–99 44–117 56–136 69–156 84–176 99–198 115–221 133–244 151–269 171–294

16 15–69 24–86 34–104 46–122 58–142 72–162 86–184 102–206 119–229 136–254 155–279 175–305
17 16–72 25–90 36–108 47–128 60–148 74–169 89–191 105–214 122–238 140–263 160–288 180–315
18 16–76 26–94 37–113 49–133 62–154 76–176 92–198 108–222 125–247 144–272 164–298 184–326
19 17–79 27–98 38–118 50–139 64–160 78–183 94–206 111–230 129–255 148–281 168–308 189–336
20 18–82 28–102 39–123 52–144 66–166 81–189 97–213 114–238 132–264 152–290 172–318 193–347
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Table A.11  Table of random numbers (derived using Microsoft Excel Version 5.0).

77267 67258 38499 94709 46989 44360 46788 62666 67551 79212
72309 70484 25843 72251 82013 70561 14058 38073 53571 91594
54395 89438 92622 45780 29108 53340 85537 50232 28477 93512
98270 62867 44084 98370 59635 25367 30528 58516 78666 83753
66032 31218 29309 26890 34700 43168 09914 47240 51526 51115

57277 70054 60345 84988 24257 19358 39083 63075 67491 55733
85981 87059 50122 80180 98114 64749 75696 59666 43806 52538
75254 50278 61364 84524 18067 94064 42011 21085 79258 44419
71820 17948 38074 48411 63605 34244 96320 36384 80985 79176
55759 77728 41765 61731 27045 81464 44584 11390 85593 69342

92725 91260 25468 94632 44972 96413 93134 29630 70497 71787
18169 44658 95643 71214 61018 90640 59106 76377 90625 15455
55710 88227 84684 33948 29576 57306 96961 90832 52720 38631
49556 24412 93967 63006 69252 52089 29551 62555 54033 39961
87891 87778 61646 24558 16210 81147 16734 24214 45062 64957

18699 87766 21808 40788 77612 97617 34199 86693 51631 17475
96353 24916 71714 97492 42680 14894 87091 51667 10183 28272
58932 54779 81765 17127 76773 52970 52430 56064 62116 48515
60376 97508 91787 84684 39870 12608 11299 30277 87317 61131
71521 34632 82603 56428 71537 10548 10765 51679 45875 12404

17760 37556 52225 68445 18626 67414 62242 51329 80427 11747
36901 23375 21348 32148 47612 60511 24558 91901 50626 65405
17488 34113 69144 24953 13842 90301 38518 59852 96747 96478
16435 63514 78929 62326 89294 48853 35503 43729 89186 36601
79145 37322 17054 61899 74394 58695 77454 81735 98688 91397

96388 61117 31714 58107 85666 47675 33123 08943 75625 06598
38147 23339 32981 80989 96940 44860 39707 84883 26243 59861
95893 06491 95520 91538 35285 17192 80784 32664 49226 25919
53544 31391 23798 36857 16786 19639 93659 66776 34108 74268
03513 34015 78337 46158 92198 99481 70804 73939 39152 44116

92737 89927 81721 33548 78029 62464 53482 54191 95898 66099
10688 61502 73817 63841 87058 23377 24045 99470 17509 26636
51658 59565 61280 48120 38438 57832 25639 84632 38523 89459
53916 57066 46906 18657 79932 93039 62470 22405 78427 92145
40912 63211 63856 61644 18635 02946 30842 24031 36992 37917

75159 14888 59932 74222 39075 33201 33747 53800 79883 26609
25224 72513 58746 52366 73436 74699 80799 56699 16557 58671
82703 53196 34797 28093 97105 56797 39992 67944 00310 49311
51627 41127 86363 48078 27726 37269 21629 21785 25822 95264
02574 68647 82762 80442 70966 95743 56140 58213 78202 60038

Table A.11 The table of random numbers
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Appendix B

Tables of confidence intervals
Table B.1  95%* confidence intervals from a single sample: summary of results (see relevant sections for assumptions and 
explanation of notation).

Parameter 95% confidence interval Section

Mean (μ) 4.5

where degrees of freedom = n − 1

Proportion (π) (Sensitivity, 
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4.7, 14.2.2, 14.2.7
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Regression coefficient (β) b ± t0.05SE(b) 10.4.6
where degrees of freedom = n − 2

Relative risk (RR)
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
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1 96
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where RR = p1/p2 and p1 = r1/n1 and p2 = r2/n2
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exp log .
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1 96
1 1− ± − + − 5.2.3, 9.4.3(c), 16.5.3

where p1 = r1/n1 and p2 = r2/n2 are the two risks
Call these limits ARRL and ARRU

Number needed to treat (NNT) 100/ARRU to 100/ARRL 16.5.3

Kappa measure of agreement (κ) 14.4.3

* Replace 1.96 by appropriate percentage point of the Standard Normal distribution (see Table A.2) if a different CI is required, 
e.g. replace 1.96 by 2.58 for a 99% CI. Similarly, replace t0.05 by t0.01 for a 99% confidence interval.
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Table B.2  95%* confidence intervals from two samples: summary of results (see relevant sections for assumptions and 
explanation of notation).

Parameter 95% confidence interval Section

Difference in means (μ1 – μ2):
(a)  Independent samples (equal variances) ( ) ( ).x x t x x1 2 0 05 1 2− ± −SE 7.4.3

where degrees of freedom = n1 + n2 − 2

SE( )x x s
n n

1 2
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1 2
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n s n s
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1 2

1 1
2

= − + −
+ −

( ) ( )

(b)  Paired samples 7.5.3

where degrees of freedom = n − 1
and sd is the SD of the differences

Difference in proportions (π1 – π2):

(a)  Independent samples 9.4.3(c)

(b)  Paired samples 9.6.3

where e, f, g and h are defined in Table 9.4

and p
e f

m
1 = +

 and p
e g

m
2 = +

so p p
f g

m
1 2− = −

* The above are 95% CIs. For a different CI, replace the 1.96 in the formula by the appropriate percentage point in the table 
of the Standard Normal distribution (see Table A.2), e.g. for a 90% CI, replace 1.96 by 1.64. Similarly, replace t0.05 by t0.10 for a 
90% CI.
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Appendix C

Glossary of notation

We have used algebraic and mathematical notation throughout this book. The following glossary may 
help you understand some of that notation.

Mathematical symbols and transformations
∞ Infinity.

± This means that, in turn, we add and subtract the quantity following the sign to the quantity preceding it, to 
obtain two separate quantities. Hence, x ± y gives (x + y) and (x − y).

≥ The value preceding the sign is greater than or equal to the value after it.
≤ The value preceding the sign is less than or equal to the value after it.
log x This is the logarithm (log) of the number x. Sometimes we put brackets around the x if it aids clarification. See 

Section 13.2 for the uses of the logarithmic transformation. Logarithms can take different bases, the most usual 
ones being 10 and e (see below). In general terms, if logy(x) = z, then x = yz, where the base of the logarithm is 
the number y. As long as we are consistent in using a particular base of a logarithm, and specify which base we 
are using, we can use the logarithm to any base. Remember that the log of zero is infinity, and that we can only 
take logs of positive numbers. We can obtain the values of logarithms from special tables or more usually from 
hand calculators. If we have two numbers a and b, say, then
(i) the log of their product is equal to the sum of the logs,

log(ab) = log(a) + log(b)

(ii) the log of their quotient is equal to the difference in their logs,

log(a/b) = log(a) − log(b).

logex This is the Napierian or natural logarithm of x to base e, often written as ln x, where e is the constant 2.71828. 
The logarithm to base e of a quantity x is the value z such that x = ez. These logs are used most often in statistics 
and are generally used in computer packages.

log10x This is the common logarithm to base 10 of x. If log10(x) = z, then x = 10z. So, for example, log10(10) = 1 and 
log10(100)  =  2. Logs to base 10 were used to simplify multiplication and division, relying on addition and 
subtraction instead, but are rarely used for this purpose now because of the advent of calculators and computers.

ex This is the exponential function, sometimes written exp(x). If x =  loge(y), then y = ex is the antilogarithm of x. 
Thus, if we have taken a logarithmic transformation of a variable, we can transform back to the original scale 
by taking the antilog, using the exponential function of a calculator. Note that if we have taken logs to base 10 
as a transformation, we can transform back to the original scale by using the antilog function 10x.

logit(p) The logistic (logit) transformation of a proportion, p, such that logit(p) = loge{p/(1 − p)}.
|x| The vertical lines to the left and right of the x indicate that we should ignore the sign of x, i.e. we should consider 

its ‘absolute value’. So, for example, |−15.5| = |15.5| = 15.5.

xi

i

n

=
∑

1

Commonly abbreviated to Σx. The Greek letter ‘sigma’, Σ, indicates that we are summing the values of the variable, 
x, for all the n individuals in the sample, i.e. from i = 1 to i = n. The abbreviation (Σx) which omits the values of 
i both above and below the summation sign, and as the subscript of x, is used when no confusion can result. Clearly, 

x x x x xi

i

n

n

=
∑ = + + + +

1

1 2 3 …

( )x xi

i

n

−
=
∑ 2

1

Commonly abbreviated to Σ( )x x− 2. It is called the sum of squared deviations, the corrected sum of squares or 
simply the sum of squares. We take the sample mean, x , from each value of x in the sample, and then square 
this difference; repeating this procedure for all n values of x in the sample, we obtain a set of n squared differences 
which we then add up.
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Common notation
xi If x denotes the value of a variable, such as age or systolic blood pressure, then the subscript, i, indicates that we are 

referring to the value of that variable for the ith individual in the sample or the population. If there are n individuals 
in the sample, then the sample values for that variable are (x1, x2, x3, . . . , xn).

x The sample mean of the variable, x. It is pronounced ‘x bar’, and is equal to the sum of all the values of x in the 
sample divided by the number of observations, n, in the sample (see Section 2.6.1). Hence

x
x x x x

n n
xn

i

i

n

= + + + + =
=
∑1 2 3

1

1…
, often written as 

1
n

x∑
b Often used to refer to an estimated regression coefficient.
F A particular continuous probability distribution.
H0 The null hypothesis (H nought).
p The proportion of ‘successes’ in a sample, i.e. the proportion of individuals in the sample possessing some characteristic.
P The P-value; the probability of obtaining the observed results (or more extreme results) if the null hypothesis is true.
r The sample estimate of Pearson’s product moment correlation coefficient, expressed as

r
x x y y

x x y y
=

− −

− −

∑
∑ ∑

( )( )

( ) ( )2 2

r2 The square of the correlation coefficient, the proportion of the variance of one variable explained by its linear 
relationship with another variable. It is sometimes called the coefficient of determination.

R The multiple correlation coefficient equal to the square root of the coefficient of determination.
R2 The coefficient of determination. It is the proportion of the variance of the response variable, y, explained by its 

relationship with the explanatory variables in a multiple regression analysis.
rs The sample estimate of Spearman’s rank correlation coefficient. It is equal to the Pearson product moment correlation 

coefficient between the ranks of the observations in the sample.
s The estimated population standard deviation obtained from a sample of n observations, thus

s

x x

n

i

i

n

=
−

−
=
∑( )2

1

1

Its square, s2, is the estimated population variance.
t A particular continuous probability distribution.
t0.05 This is the percentage point or critical value of the t-distribution (see Table A.3) that gives a total tail area probability 

of 0.05, i.e. 2.5% of the total area under the curve is contained in the tail to the left of −t0.05, and 2.5% is contained 
in the tail to the right of t0.05.

Testi The test statistic used to test a particular null hypothesis (i = 1, 2, . . . , 14).
α The Greek letter ‘alpha’. It may refer to the constant term in a regression equation; alternatively, it sometimes refers 

to the significance level of a hypothesis test (the cut-off value for the P-value leading to rejection of the null 
hypothesis).

β The Greek letter ‘beta’. It usually refers to the true value of a regression coefficient representing the gradient of the 
line in simple linear regression.

χ2 The Greek letter ‘chi’ which is squared; a particular continuous probability distribution.
δ The Greek letter ‘delta’. Sometimes used to refer to a difference of interest in the population.
κ The Greek letter ‘kappa’. A measure of agreement for categorical variables.
μ The lower case Greek letter ‘mu’. It represents the population mean. If there are N observations on the variable, x, 

in the population, then

µ =
=
∑1

1
N

xi

i

N

π The Greek letter ‘pi’. The proportion of individuals in the population possessing some characteristic.
ρ The Greek letter ‘rho’. The population value of the Pearson’s product moment correlation coefficient.
ρs The Greek letter ‘rho’ with subscript ‘s’. The population value of Spearman’s rank correlation coefficient.
σ The Greek letter ‘sigma’. The population standard deviation. If there are N observations on the variable, x, in the 

population, then

σ
µ

=
−

=
∑( )x

N

i

i

N
2

1

Its square, σ2, is the population variance.
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Abbreviations
AF Attributable fraction.
ANCOVA Analysis of covariance.
ANOVA Analysis of variance.
AR Attributable risk.
ARR Absolute risk reduction; the difference in two risks.
ARRIVE Guidelines, consisting of a 20-point checklist based on CONSORT, of the essential information that should 

be included in publications reporting animal research.
AUROC Area under the receiver operating characteristic curve.
CI Confidence interval; it contains the parameter of interest with a prescribed probability.
CONSORT A statement which provides, in the form of a checklist and flowchart, guidance to authors on how they should 

report a randomized controlled trial.
CV Coefficient of variation: the standard deviation expressed as a percentage of the mean.
df The degrees of freedom of a statistic, i.e. the number of independent observations contributing to the value 

of the statistic.
DNA Deoxyribonucleic acid.
EBM Evidence-based medicine.
EBVM Evidence-based veterinary medicine.
EQUATOR International network that seeks to improve the reliability and value of medical research literature by 

promoting transparent and accurate reporting of research studies.
GEE Generalized estimating equation.
GIS Geographical or geospatial information system.
GLM Generalized linear model.
ICC Intraclass correlation coefficient; if individual units are contained within a cluster, it expresses the variation 

between clusters as a proportion of the total variation.
IRR Incidence rate ratio; the ratio of two incidence rates, often the incidence rate of disease in the treated group 

divided by that in the control group.
IU International unit.
LR Likelihood ratio; the ratio of two likelihoods. For example, in the context of a diagnostic test, it may be the 

ratio of the likelihoods of a positive test result in animals with and without the disease.
LRS Likelihood ratio statistic which uses the ratio of two likelihoods to compare two regression models.
LSD Least significant difference: a multiple comparison tests of means.
MANOVA Multivariate analysis of variance.
MAR Missing at random.
MAUP Modifiable area unit problem.
MCAR Missing completely at random.
MLE Maximum likelihood estimation; a process which obtains estimates of the parameters in a model by maximizing 

the likelihood.
MLM Multilevel model.
mRNA Messenger ribonucleic acid.
NMAR Not missing at random.
NNT Number needed to treat with a novel treatment instead of a control treatment to prevent one adverse 

outcome.
NPV Negative predictive value of a diagnostic or screening test – the proportion of those testing negative who 

really are disease-free.
OR Odds ratio; the ratio of two odds, usually the odds of the disease in those exposed to the factor, divided by 

the odds of disease in those not exposed to the factor.
PAF Population attributable fraction.
PAR Population attributable risk.
PPV Positive predictive value of a diagnostic or screening test – the proportion of those testing positive who 

actually have the disease.
PRISMA A statement to guide the reporting of systematic reviews and meta-analyses to assess the benefits and harms 

of a healthcare intervention.
RCT Randomized controlled trial.
RD Risk difference.
REFLECT A statement providing an evidence-based minimum set of items for reporting livestock trials with production, 

health and food-safety outcomes.
RNA Ribonucleic acid.
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ROC Receiver operating characteristic curve.
RR Relative risk; the ratio of two risks, usually the risk of disease in those with the factor divided by the risk in 

those without the factor.
RRR Relative risk reduction equal to 1 – RR.
SD Standard deviation of a set of observations.
SE(b) Standard error of a statistic, b.
SEM Standard error of the sample mean. Sometimes abbreviated to SE.
SND Standardized Normal Deviate given by

z
x= − µ

σ
where the variable, x, is Normally distributed with mean = µ and SD = σ. The SND has a Normal distribution 
with mean = 0 and SD = 1.

STARD Guidelines for reporting diagnostic accuracy studies.
STROBE Guidelines for reporting cohort, case–control and cross-sectional studies.
VIF Variance inflation factor: a measure which can provide evidence of collinearity between variables.
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Appendix D

Glossary of terms

a priori probability  a way of evaluating the 
probability of an outcome solely on the basis 
of a theoretical model. Hence it may be called 
the model definition of probability.

absolute risk reduction (ARR)  the difference 
in two risks. See also attributable risk.

accuracy  refers to how well the observed value 
of a quantity agrees with the true value.

addition rule  the probability of either of two 
mutually exclusive events occurring is the sum 
of the probability of each event.

adjusted R2  a corrected value of R2 (see coef-
ficient of determination) which allows multi-
ple regression models with differing numbers 
of explanatory variables to be compared when 
assessing goodness-of-fit.

administrative censoring  occurs in survival 
analysis when animals may be observed for 
varying lengths of time because they have 
been recruited into the study at different times 
and there is a single time point at which the 
study period ends.

all subsets selection  the process of determining 
an optimal regression model which examines 
all the possible models for the various com
binations of the explanatory variables of 
interest.

alternative hypothesis  the proposition (state-
ment) which disagrees with the hypothesis 
under test (the null hypothesis).

Altman’s nomogram  a graphic representation 
showing the relationship between sample size, 
power and standardized difference; it can be 
used to determine any one with knowledge of 
the other two. The standardized difference is a 
reflection of the variability of the observations 
and the minimum magnitude of the effect of 
interest considered important.

analysis of covariance (ANCOVA)  an exten-
sion to the analysis of variance which takes 
account of the values of one or more subsidi-
ary variables (the covariates).

analysis of variance (ANOVA)  a powerful col-
lection of parametric statistical procedures for 
the analysis of data, essentially comparing the 
means of various groups of data. It relies on 
separating the total variation of a variable into 
its component parts which are associated with 
defined sources of variation.

ANCOVA  see analysis of covariance.
angular transformation  see arcsine transforma-

tion.
ANOVA  see analysis of variance.
arcsine transformation  a transformation for a 

proportion, p, to sin−1 p. It linearizes a sigmoid 
curve and stabilizes variance. Also called  
the angular transformation or inverse sine 
transformation.

area under the ROC curve (AUROC)  describes 
the overall ability of a diagnostic test to  
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distinguish between animals with and without 
disease. This area represents the probability 
that a randomly chosen diseased animal has  
a higher predicted probability of having the 
disease than a randomly chosen disease-free 
animal. Also called c statistic.

arithmetic mean  usually abbreviated to the 
mean; a measure of location. It is the sum of 
the observations divided by the number of 
observations in the set.

ARRIVE guidelines  a framework produced 
with the intention of improving the reporting 
of research using laboratory animals.

artificial pairing  two different animals which 
have been matched with respect to any varia-
bles that may be thought to influence response.

attributable fraction (AF)  the attributable risk 
expressed as a proportion of those exposed.

attributable risk (AR)  the risk of a particular 
outcome in those exposed to a factor of inter-
est minus the risk in those unexposed. Also 
called the absolute risk reduction (ARR) or 
the risk difference (RD).

AUROC  see area under the ROC curve.
autoregressive series  a time series in which the 

value of an observation is dependent on the 
preceding observation(s).

average  a measure of location of a set of obser-
vations which describes central tendency, e.g. 
mean, median, mode.

backward step-down selection  the process of 
selecting an optimal regression model in which, 
starting with all the explanatory variables in 
the model, we remove them sequentially 
(beginning with the variable which contributes 
the least) until the deletion of a variable sig-
nificantly increases the residual variance.

bar chart  a diagram in which every category of 
a variable is represented by the length of a bar 
depicting the number or percentage of indi-
viduals belonging to that category.

Bayes’ theorem  underlies Bayesian inference 
which uses the current evidence from a study 
to update the prior probability of a particular 
outcome (e.g. disease) to produce the poster
ior probability of the outcome.

Berkson–Gage analysis  an approach used 
in survival analysis when survival times are 

grouped into intervals; it bases the calculations 
on the methods involved in actuarial life tables.

Berkson–Gage survival curve  a survival curve 
based on actuarial life tables; its calculations 
require knowledge of the time intervals within 
which the critical events (e.g. death) occur.

bias  systematic distortion of the data.
bimodal  a distribution which has two modes or 

modal groups.
binary variable  a discrete random variable with 

only two possible values. Also called a dichoto-
mous variable.

Binomial distribution  a discrete probability 
distribution of a variable representing the 
number of successes in trials in which there  
are only two outcomes – success (with a fixed 
probability) and failure.

bio-equivalence study  used to show that two 
formulations of a drug have similar bioavail-
ability (when the same amount of drug gets 
into the body for each formulation).

bioinformatics  the application of computer 
science and information technology to the 
field of biology and medicine. Also called com-
putational biology.

biological (clinical) importance  the considered 
judgement of what is relevant in the particular 
circumstances of the investigation; it should be 
contrasted with statistical significance.

biological variation  an inherent variability in 
biological material such that measurements 
taken from different individuals or from one 
time to another will rarely be identical.

biometry  a broad numerical approach to 
biology including study design, data collection, 
analysis, display and the drawing of appropri-
ate conclusions. See also statistics.

Bland and Altman plot  a scatter diagram used 
to assess the agreement between two sets  
of numerical results measured on the same 
scale and on the same individuals. The differ-
ence between each pair is plotted against their 
mean.

blind  either the carer of the animals in a clinical 
trial or the investigator, or both, have no 
knowledge of the specific treatments the 
animals receive. Also called masked.

block  a group of individuals in an experimental 
design which are observed in particular cir-
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cumstances (e.g. after individuals are allocated 
a treatment). Blocks are usually created to 
isolate sources of variability, so that the indi-
viduals within a block exhibit less variability 
than in the general population.

blocked randomization  a method of randomly 
allocating individuals to treatments with the 
aim of achieving approximately equal numbers 
of individuals in each treatment group. Also 
called restricted randomization.

Bonferroni’s correction  a method of reducing 
the risk of a Type I error when using multiple 
comparisons; it involves multiplying the P-
value obtained from any one test by the 
number of multiple comparisons.

bootstrapping  a computer-intensive iterative 
method of estimating parameters of interest 
based on resampling. A sample of size n is 
taken, with replacement, from the original 
sample of size n. This process is repeated mul-
tiple times and the distribution of the esti-
mates of the parameter of interest obtained 
from the multiple samples is used to provide 
an overall estimate of the parameter, together 
with its associated confidence interval.

box-and-whisker plot  a diagram that shows the 
distribution of numerical or ordinal data.  
It usually comprises a box whose horizontal 
limits are defined by the upper and lower quar-
tiles enclosing the central 50% of the observa-
tions, with the median marked by a horizontal 
line within the box. The whiskers are vertical 
lines extending from the box as low as the 
2.5th percentile and as high as the 97.5th per-
centile. Also known as a box plot.

British Standards Institution repeatability coef-
ficient  a measure of the repeatability of a 
method; it gives an indication of the maximum 
difference likely to occur between two meas-
urements.

c statistic  see area under the ROC curve.
capture–tag–recapture method  a method of 

estimating the size of a wildlife population.
cartogram  a diagrammatic presentation, com-

monly of geographically-bound statistical data, 
on a map base or distorted map base.

case–control study  a form of observational 
study. At the start of the investigation, we iden-

tify animals as being either diseased (cases) or 
healthy (controls). Then we assess whether the 
animals in the two groups have differences in 
past exposure to various risk factors.

categorical (qualitative) variable  each individ-
ual belongs to one of two or more mutually 
exclusive categories of the variable.

censored data  animals in survival analysis who 
are alive (or the event of interest has not 
occurred, if the event is not death) at the end 
of the study or who are lost to follow-up.

central tendency  indicates a position which 
represents the middle of a group of observa-
tions.

centring  the process of subtracting a mean or 
some other value from each observed value of 
an explanatory variable to ensure a meaning-
ful interpretation of the intercept and regres-
sion coefficient(s) in a regression model.

Chi-squared (χ2) distribution  a continuous 
probability distribution which is often used in 
hypothesis testing of proportions.

Chi-squared (χ2) test  a non-parametric test, 
based on the Chi-squared distribution, which 
is often used to compare proportions.

Chi-squared (χ2) test for trend  a specific Chi-
squared test used to determine whether there 
is a trend in proportions classified by an ordinal 
variable.

clinical field trial  a comparative study involv
ing new treatments or preventive measures 
applied under natural, field or semi-field 
conditions.

clinical heterogeneity  exists when studies in a 
meta-analysis are not comparable because of 
differences in the populations, definition of 
variables, etc.

clinical prior  in a Bayesian analysis, it expresses 
the opinions of well-informed specialists or is 
derived from reputable published material.

clinical trial  a form of experimental study 
in controlled conditions which is designed to 
assess the effectiveness of one or more treat-
ments or preventive measures when these are 
applied to humans or animals.

cluster randomization  see group randomiza-
tion.

cluster sampling  a form of random sampling 
in which subdivisions or clusters of the  
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population are identified; a simple random 
sample of clusters is selected and all the units 
within the selected clusters studied.

clustered design  see repeated measures design.
Cochrane Collaboration  an international net

work of experts and consumers who continu-
ally update systematic reviews and make them 
available.

Cochran’s Q test  an extension of McNemar’s 
test for related samples that provides a method 
for testing for differences between three or 
more matched sets of data when the variable 
of interest has two categories (e.g. success/
failure). Also used in meta-analysis as a test for 
homogeneity.

coefficient of determination (R2)  the propor-
tion of the total variance of the dependent 
variable, y, in a regression model which is 
explained by the regression.

coefficient of variation (CV)  the standard devi-
ation expressed as a percentage of the mean.

Cohen’s kappa coefficient (κ)  a measure of the 
agreement, corrected for chance agreement, 
between pairs of results measured on the same 
categorical scale.

cohort study  a form of observational study. We 
start by defining groups (cohorts) of animals 
by the exposure of the animals in the groups 
to the factors of interest; we usually follow 
these animals forward in time and observe the 
outcome (e.g. disease).

collinearity (multicollinearity)  when two or 
more of the explanatory variables in a multiple 
regression model exhibit a linear relationship 
and are very highly correlated.

competing risks  occur in survival analysis when, 
in a particular individual, one event precludes 
the occurrence of the event of interest that 
defines a failure.

complete randomized block design  each block 
in the experimental design contains a com-
plete set of treatments.

computational biology  see bioinformatics.
conditional logistic regression  a form of logis

tic regression analysis used when the study 
involves matched individuals.

conditional probability  the conditional proba-
bility of an event B occurring is the probability 

of B occurring, given that the event A has 
already occurred.

confidence band, region or interval for the 
line  the region around a linear regression 
line within which we believe the true line lies 
with a prescribed degree of certainty.

confidence interval  the range of values which 
contains a population parameter (e.g. the 
mean) with a given probability. Strictly, 95%  
of the 95% confidence intervals obtained  
by repeatedly taking samples of the same  
size from the population would contain the 
parameter.

confidence limits  the upper and lower values of 
the confidence interval.

confounder  an explanatory variable which is 
related both to the response of interest and to 
another (or more than one) explanatory vari-
able so that it is impossible to separate the 
effects of the two explanatory variables on the 
response.

CONSORT statement  provides, in the form of 
a checklist and flowchart, guidance to authors 
on how they should report a randomized clini-
cal trial on human subjects.

contemporary control  animals are assigned to 
control or test treatment at similar times within 
the study period.

contingency table  a table of frequencies which 
shows how individuals are classified into the 
different categories of two or more factors.

continuity correction  a correction applied to a 
test statistic to facilitate the approximation of 
a discrete distribution (of the test statistic)  
to a continuous distribution (such as the Chi-
squared distribution).

continuous scale  all values are theoretically 
possible (perhaps limited by an upper and/or 
lower boundary), e.g. height, weight.

continuous variable  one which can take an infi-
nite set of possible values in a range.

control group  a group of individuals (i) in 
an experimental study who receive either the 
standard treatment or no active treatment, or 
(ii) in an observational study who are not sub-
jected to the risk factor under investigation. It 
is used as a basis for comparison with the 
group of individuals (i) receiving the active 
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treatment(s) or (ii) who are exposed to the risk 
factor.

controlled clinical trial  a clinical trial that 
includes a control group.

Cook’s distance  an overall measure of influ-
ence, used in regression analysis, which incor-
porates both leverage and residual values.

correlation  changes in one variable tend to be 
accompanied by changes in the other variable, 
either in the same (or opposite) directions.

correlation coefficient  Pearson’s correlation 
coefficient measures the degree of linear asso-
ciation between two variables. See also Spear-
man’s rank correlation coefficient.

covariate  one of a number of factors that may 
influence the response. Also called an explana-
tory or independent variable or prognostic 
factor.

Cox proportional hazards regression model  an 
advanced regression approach to survival anal-
ysis, used when we desire to investigate the 
effect of several variables on survival and also 
to take censored data into account. The ratio 
of the hazards is assumed constant over time.

critical value  the value of a test statistic, deter-
mined from a theoretical probability distribu-
tion, which corresponds to a given tail area 
probability (say, 0.05). Also called a percent-
age point.

cross-over trial  two or more treatments are 
applied in random order to each individual 
animal. The aim is to examine the effects of the 
treatments within the animals, rather than 
between animals, thereby enhancing the preci-
sion of the estimate of the difference between 
treatments.

cross-sectional study  one in which we take all 
our measurements on the individuals included 
in the study concurrently.

cross-sectional time series  see random effects 
model.

cumulative relative frequency distribution 
shows the accumulated proportions of indi-
viduals which are contained in a category 
(class) and in all lower categories.

cumulative relative frequency polygon  a 
diagram showing a cumulative relative fre-
quency distribution. It is formed by joining 

cumulative relative frequencies which corre-
spond to the class midpoints.

Declaration of Helsinki  a statement of ethical 
principles for medical research involving 
human subjects, developed in 1964 in Helsinki, 
Finland.

degrees of freedom (df)  the number of inde-
pendent observations contributing to the value 
of a statistic, i.e. the number of observations 
available to evaluate that statistic minus the 
number of restrictions on those observations.

dependent variable  the variable in a regression 
model which can be predicted by the explana-
tory (independent) variable(s). Also called the 
response or outcome variable.

descriptive statistics  that branch of statistics 
concerned with describing and characterizing 
the data distribution and summarizing and dis-
playing the findings.

design  the plan of the study or experiment 
which should take into account any factors 
which may affect the response of interest.

diagnostic service  analyses animal samples for 
the benefit of health monitoring and diagnosis 
of disease.

diagnostic test  a procedure that is able to dis-
tinguish between diseased and healthy animals.

diagram  a means of displaying data pictorially.
diffuse prior  see vague prior.
digit preference  when there is an element of 

judgement involved in making readings from 
instruments, certain digits between 0 and 9 are 
more commonly chosen than others; it varies 
from individual to individual.

discrete (discontinuous) scale  data can take 
only integer values, typically counts, e.g. litter 
size, clutch size, parity.

discrete variable  taking only a finite set of pos-
sible values.

distance sampling  a method of estimating 
parameters of interest using a sampling proce-
dure which obtains estimates by recording  
the number and frequency of species from a 
transect line. The method is based on the prop-
osition that the detection of randomly distrib-
uted subjects declines with distance from the 
transect line.



350	 Appendix D

distribution  see empirical frequency distribu-
tion; probability distribution.

distribution-free tests  see non-parametric tests.
DNA (deoxyribonucleic acid)  a nucleic acid 

that carries the genetic information in a cell.
dot diagram/plot  used to show the distribution 

of a data set. Each observation is marked as a 
dot on a line calibrated in the units of meas-
urement of the variable.

double-blind  neither the carer(s) of the animals 
in a clinical trial nor the assessor of response 
to treatment (test or control) is aware of which 
treatment each animal is receiving.

dummy  see placebo.
dummy variable  the variable which has codes 

(typically 0 and 1) to represent the outcomes 
of a binary nominal or ordinal variable. By 
choosing one category of a nominal categori-
cal variable with k categories to be the refer-
ence category in a regression analysis, a series 
of (k − 1) dummy variables can be created, 
each allowing one of the categories to be com-
pared with the reference category. Also called 
an indicator variable.

Duncan’s multiple range test  a multiple com-
parison test of means that adjusts the P-values 
to avoid spuriously significant results arising 
from multiple testing.

effect  a measure of the comparison of interest. 
See also treatment effect.

effect modification  see interaction.
element  a single object or individual or unit of 

investigation.
empirical Bayes  a modified Bayesian analysis 

in which the observed data are used to esti-
mate the prior.

empirical frequency distribution  shows the fre-
quency of occurrence of the observations in a 
data set.

enthusiastic prior  optimistic in nature, reflect-
ing the best plausible outcome in a Bayesian 
analysis before the sample data are available.

epidemiological study  concerned with investi-
gating the aetiology of a disease by determin-
ing whether various factors (termed risk 
factors) are associated with the occurrence 
and distribution of the disease in the popula-
tion.

EQUATOR Network  an international initia-
tive that seeks to improve the reliability and 
value of medical research literature by pro-
moting transparent and accurate reporting of 
research studies.

equivalence interval  the range of values for the 
effect of interest in a clinical trial which is 
considered of no clinical importance.

equivalence study  used to show that the clinical 
effectiveness of one treatment is similar to that 
of the existing treatment.

estimation  the process of generating an approx-
imation of a population parameter using sample 
data.

evidence-based veterinary medicine (EBVM) 
the conscientious, explicit and judicious use of 
the current best evidence in making decisions 
about the care of individual animals.

experimental study  we intervene in the study; 
we then observe the effect of our intervention 
on the response of interest, usually with a view 
to establishing whether a change in response 
may be directly attributable to our action.

experimental unit  the basic subject for experi-
mentation; it is usually the individual animal, 
but may, for example, be a group of animals. 
The entire assembly of the experimental units 
is the population from which a sample may be 
taken.

explanatory variable  see independent variable.
extra-Binomial variation  occurs when the 

residual variation is greater than would be 
expected from Binomial sampling variation 
when fitting a logistic model.

extra-Poisson variation  occurs when the resid-
ual variation is greater than would be expected 
from a Poisson model.

F-distribution  a continuous probability distri-
bution; it is used to compare variances.

F-test  see variance ratio test.
factor  a variable with one or more categories 

(levels) into which individuals can be classi-
fied.

Fagan’s nomogram  a diagram which is used in 
the context of diagnostic tests to convert the 
pre-test probability into the post-test probabil-
ity via the likelihood.
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Fisher’s exact test  a test for which the exact 
P-value is calculated in a hypothesis test 
of data presented in a contingency table;  
this approach is preferable to using the Chi-
squared approximation to the Chi-squared 
test statistic when the expected frequencies in 
the table are very small.

fixed effect  the levels or categories of the factor 
of interest comprise the entire population (e.g. 
treatments in a clinical trial).

fixed sample size plans  study designs in which 
the sample size is predetermined before the 
data are collected.

forest plot  a diagram used in a meta-analysis 
which shows the estimated effect in each study 
as well as their average and associated confi-
dence intervals.

forward step-up selection  the process of select-
ing an optimal regression model; we start with 
the explanatory variable which contributes the 
most to the explained variation in y, and include 
more variables in the equation, progressively, 
until the addition of an extra variable does not 
significantly improve the situation.

fourfold table  a contingency table with two 
rows (representing the two categories of a 
binary variable) and two columns (represent-
ing the two categories of a second binary vari-
able). Also called a two-by-two table.

frailty model  a random effects proportional 
hazards model, used when analysing survival 
in clustered data where failure times are not 
independent.

frame  a complete list of sampling units.
frequency  the number of times a particular 

value (or range of values) of a variable occurs.
frequency definition of probability  relies on 

counting the frequency of occurrence of  
the event in a large number of repetitions of 
similar trials.

frequency distribution  see empirical frequency 
distribution; probability distribution.

frequency matching  the groups of cases and 
controls are chosen so they have the same 
average value of a potential risk factor. Also 
called group matching.

frequentist inference  uses only the current evi-
dence provided by the sample data to draw 
conclusions about the population, in contrast 

to Bayesian inference which uses prior beliefs 
as well. It relies on the frequency approach to 
probability (this defines the probability of an 
event as the proportion of times the event 
occurs if the experiment is repeated many 
times). Also called classical inference.

frequentist theory  associated with the fre-
quency definition of probability, i.e. the pro-
portion of times that the event of interest 
would occur if the experiment were repeated 
many times.

Friedman two-way ANOVA  a non-parametric 
equivalent to the two-way ANOVA.

funnel plot  a scatter diagram used in meta-
analysis in which the sample size of a study, or 
some measure related to it, is plotted against 
the effect of interest to produce a funnel of 
points. An absence of points where the sample 
size is small and where there is no positive 
effect may indicate the presence of publica
tion bias.

Gaussian distribution  see Normal distribution.
gene  a unit of inheritance in Mendelian terms 

and, in molecular terms, a region of DNA 
which is transcribed into mRNA, and this is 
then used to synthesize protein.

generalized estimating equation (GEE)  used 
to estimate parameters and their standard 
errors in a regression model which represents 
a two-level hierarchical structure; it does not 
assume a particular probability distribution 
for the random effects. Also called marginal or 
population-averaged models.

generalized linear model (GLM)  a general 
form for a regression model in which the mean 
value of the response variable which has a 
known probability distribution is related, via a 
link function, to a linear combination of the 
explanatory variables.

genome  the complete set of genes in an organ-
ism, tissue or cell.

genomics  the branch of molecular biology con-
cerned with the structure, function, evolution 
and mapping of genomes.

geographical or geospatial information system 
(GIS)  a data-handling system that merges 
statistical analysis, database technology and 
cartography.
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geometric mean  a measure of location. It is the 
antilog of the arithmetic mean of the log-trans-
formed values of a variable.

geospacial analysis  an approach to applying 
statistical analysis and other informational 
techniques to geographically based data.

goodness-of-fit  examines the agreement 
between an observed set of values and another 
set of values which are derived under some 
particular theory or hypothesis.

group  a collection of animals or experimental 
units.

group matching  see frequency matching.
group randomization  the randomization pro

cess is applied to the whole group of units 
rather than to the individual units within a 
group. Also called cluster randomization.

group sequential design  involves interim analy-
ses of the data.

hazard  used in survival analysis to describe the 
instantaneous probability of experiencing the 
event of interest (e.g. death) at a particular 
time.

hazard ratio  the ratio of two hazards.
herd immunity  if the experimental unit is the 

animal rather than the group, the protection 
afforded the vaccinated animals leads to a 
reduced prevalence of disease in the group 
environment, resulting in a reduced incidence 
of disease in the control animals.

heterogeneity  an effect of interest (typically a 
variance) is not equal in all of a number of 
groups.

heteroscedasticity  the variances (or some other 
measure of variability) are not equal in differ-
ent groups.

hierarchical model  see random effects model.
histogram  a two-dimensional diagram illustrat-

ing a frequency distribution of a continuous 
variable. Usually, the horizontal axis repre-
sents the units of measurement of the variable; 
rectangles above each class interval indicate 
the frequency for that class by their area.

historical control  animals are not assigned to 
control or test treatment(s) contemporane-
ously; information from historical controls is 
obtained from past records.

homogeneity  an effect of interest (typically a 
variance) is equal in all relevant groups.

homoscedasticity  the variances (or some other 
measure of variability) are equal in different 
groups.

human error  variability in the measurements 
due to human mistakes.

hypothesis testing  the process of formulating 
and testing a proposition about the population 
using the sample data.

hypothetical (or infinite) population  the popu-
lation does not exist but can be conceptualized 
(e.g. the population of animals who might 
receive a novel treatment).

hysteresis  the phenomenon whereby a series 
of values recorded as they are increasing in 
magnitude are different from those when they 
are decreasing in magnitude; seen in some 
instruments.

I2  a statistic providing a measure of heteroge-
neity in a meta-analysis. It takes a value from 
0% (no heterogeneity) to 100%.

identity link  the link function used in simple 
and multiple regression; the mean value of the 
response variable in this form of generalized 
linear model is not transformed when it is 
related to a linear function of the covariates.

imputation  a procedure that replaces each 
missing observation in a data set by an esti-
mated value.

incidence (of a condition)  the number (per-
centage) of new cases of the condition (e.g. 
disease) that develop in a defined time period.

incidence rate ratio (IRR)  the ratio of two inci-
dence rates. Also called a relative rate.

incomplete block designs  each block in an 
experiment does not contain the entire set of 
treatments.

independent  two events are independent if the 
probability of one occurring is not affected by 
the occurrence of the other event.

independent variable  the variable in a regres-
sion analysis which is used to predict the value 
of the dependent or response variable. It is 
also called the regressor, the explanatory or 
predictor variable or, if there is more than one, 
the covariate.
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indicator variable  see dummy variable.
inferential statistics  that branch of statistics 

concerned with drawing conclusions about a 
population using sample information.

inferiority study  used to show that the clinical 
effectiveness of one treatment is no worse 
than that of the existing treatment.

influential point  an observation which alters 
the values of one or more parameter estimates 
if omitted from a regression analysis.

informative censoring  occurs in survival analy-
sis when the probability that an animal is cen-
sored is related to the probability that the 
animal will experience the failure.

informative prior  in a Bayesian analysis pro-
vides strong information so that the likelihood 
has little influence on the posterior.

instability or drift  a form of instrumental error 
in which the calibration varies.

instrumental error  inaccuracies introduced by 
the mechanical or electronic devices used to 
make the measurements.

intention-to-treat  the process of statistical 
analysis of data from an experiment in which 
animals which deviate from the protocol (e.g. 
by stopping treatment) are analysed as if they 
are still in the treatment groups to which they 
were originally assigned.

interaction  exists between two variables if the 
variables do not act independently on the 
response of interest. In the context of analysis 
of variance, there is an interaction between two 
variables when the difference in the response 
between any two levels of one variable is not 
constant for the different levels of the other 
variable. Also called effect modification.

interim analysis  a decision is made, before 
the fixed sample size investigation starts, to 
perform an analysis of the data at a predeter-
mined time before the end of the investigation. 
Hence the term ‘repeated significance test’.

internal pilot study  incorporates its results into 
the main study.

interquartile range  the range of values which 
encloses the central 50% of the observations 
if the observations are arranged in rank order.

intraclass correlation coefficient (ICC)  the 
ratio of the between-cluster variance to the 

total variance; it describes the proportion of 
the total variance in a set of clustered meas-
urements which is attributed to the difference 
between clusters.

inverse sine  see arcsine transformation.
isodemographic map  a diagram of an area that 

has a demographic base distorting its geo-
graphic base.

jackknifing  a computer-intensive process of 
estimating parameters and their associated 
confidence intervals. Each of the n individuals 
in the study is removed in turn and the 
parameter(s) of interest estimated from the 
sample comprising the remaining n – 1 indi-
viduals. The distribution of these n estimates is 
used to provide an overall estimate and confi-
dence interval for the parameter.

Kaplan–Meier survival curve  a survival curve 
based on known survival times and which 
incorporates censored data.

kappa coefficient  see Cohen’s kappa 
coefficient.

Kendall’s tau  a non-parametric correlation 
coefficient.

Kolmogorov–Smirnov test   a goodness-of-fit 
test to test whether data come from a particu-
lar distribution (e.g. the Normal) or whether 
two groups of data come from the same 
distribution.

Kruskal–Wallis one-way ANOVA  a non-para-
metric equivalent to the one-way ANOVA, 
used to compare independent groups of 
observations.

kurtosis  a term used to describe the peaked-
ness of a unimodal frequency curve.

laboratory experiment  a particular form of 
experimental study in the laboratory in which 
the experimental intervention is highly regu-
lated and controlled.

learning objectives  task-oriented terms indi-
cating what you should be able to ‘do’ when 
you have mastered the concepts to test your 
growing understanding; if you are able to 
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perform the tasks specified in the learning 
objectives, you have understood the concepts.

least significant difference (LSD) test  a multi-
ple comparisons test of means that adjusts the 
P-values to avoid spuriously significant results 
arising from multiple testing.

level  a particular category of a qualitative vari-
able or factor, e.g. dose levels of a drug, differ-
ent treatments.

level 1 unit  the individual at the lowest level of 
a multilevel structure; a group of level 1 units 
(e.g. piglets) is nested within a level 2 unit (e.g. 
sow).

level 2 unit  the individual at the second lowest 
level of a multilevel structure; in a two-level 
structure, each two-level unit (e.g. sow) gives 
rise to a number of level 1 units (the piglets).

level of significance  see significance level.
Levene’s test  a parametric test used to investi-

gate the equality of variance in two or more 
groups.

leverage  the extent to which an individual’s 
value(s) of the explanatory variable(s) in a 
regression analysis differs from the mean value 
of the explanatory variable(s).

likelihood  the probability of getting the 
observed results, given the model.

likelihood ratio statistic (LRS)  uses the ratio of two 
likelihoods to compare two regression models.

limits of agreement  in the Bland and Altman 
diagram it is the range of values between 
which most (usually 95%) of the differences 
between pairs of observations lie.

linear  a straight line.
linear correlation coefficient  a measure of the 

linear association between two variables.
linear regression analysis  a formal process of 

estimating the coefficients of the linear regres-
sion equation and making inferences from it.

linear regression equation  describes the linear 
relationship between two variables when one 
variable is dependent on the other.

link function  a particular transformation (e.g. 
the logistic transformation in logistic regres-
sion or the log transformation in Poisson 
regression) of the mean value of the response 
variable in a generalized linear model; it  
is modelled as a linear combination of the 
explanatory variables.

Lin’s concordance correlation coefficient  a 
measure of agreement between pairs of meas-
urements evaluated on the same numerical 
scale. It encompasses both precision (the close-
ness of points to the line of best fit when one 
member of the pair is plotted against the 
other) and accuracy (the closeness of the best 
fitting line to the 45° line through the origin). 
Its value is 1 when there is perfect agreement 
and 0 when there is no agreement.

listwise deletion  all individuals with any missing 
data are omitted from the analysis.

logistic (logit) transformation  the transforma-
tion, loge{p/(1 – p)}, of the proportion, p, used 
to linearize a sigmoid curve.

logistic regression  see multiple linear logistic 
regression.

Lognormal distribution  a continuous probabil-
ity distribution. If data which are skewed to 
the right are log transformed, and the resulting 
distribution is Normal, the data are said to 
approximate a Lognormal distribution.

logrank test  a non-parametric test that com-
pares survival curves.

longitudinal study  one in which we investigate 
changes in the same individuals over time.

lower quartile  the 25th percentile. Also called 
the first quartile.

Mann–Whitney U test  a non-parametric test 
used to compare two groups of independent 
observations. It produces the same P-value as 
the Wilcoxon rank sum test.

Mantel–Haenszel method  the correct approach 
to combining the results contained in contin-
gency tables which relate to different strata of 
the population.

marginal model  see generalized estimating 
equation.

mask  see blind.
matching  the process of making groups of 

interest comparable with respect to relevant 
characteristics.

maximum likelihood estimation (MLE)  a 
process which obtains estimates of the param-
eters in a model by maximizing the likelihood.

McNemar–Bowker test  an extension of McNe-
mar’s test for related samples that provides a 
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method for comparing two paired data sets 
(e.g. when an animal is assessed by each of two 
observers) when the ordinal variable of inter-
est has more than two categories.

McNemar’s test  a test, based on the Chi-
squared test, which compares two proportions 
in paired data.

mean  see arithmetic mean.
mean square  the sum of squares divided by the 

degrees of freedom; an estimate of variance.
measure of agreement  describes how well pairs 

of observations conform to one another; it may 
be calculated as twice the SD of the differ-
ences between pairs of observations measured 
on a numerical scale.

measure of dispersion  provides an indication of 
the degree of scatter shown by observations; it 
is usually a measure of how widely scattered 
the observations are in either direction from 
their average.

measure of location  some form of average 
which measures the central tendency of the 
data set.

median  a measure of location. It is the central 
value in the set of observations which have 
been arranged in rank order.

median survival time  the time which corre-
sponds to a survival probability of 0.5 in sur-
vival analysis.

meta-analysis (overview)  a systematic approach 
to combining the quantitative information 
from several independent studies of a given 
condition in order to produce, if appropriate, 
an overall estimate of the effect of interest.

metabolites  the intermediates and products of 
metabolism.

metabolomics  the scientific study of all the 
metabolites, small molecules generated in the 
process of metabolism in cells, tissues and 
organs.

method agreement  also called reproducibility 
– concerned with gauging the similarity of dif-
ferent methods of measurement, e.g. different 
observers using the same technique, or a single 
observer using different techniques.

method of least squares  a mathematical tech-
nique for finding the best-fitting line through 
a series of points. It relies on minimizing the 
sum of the squared residuals.

missing at random (MAR)  the probability 
that the value of a variable for an individual is 
missing does not depend on that variable, but 
depends on the known values of the other 
variables.

missing completely at random (MVAR)  the 
probability that the value of a variable for a 
given individual is missing does not depend on 
any variable.

mixed model  see random effects model.
modal group or modal class  the group or class 

of a frequency distribution which contains 
more observations than any other class.

mode  the most commonly occurring observa-
tion in a set of observations.

model  an algebraic description of the relation-
ship between two or more variables.

model definition of probability  see a priori 
probability.

model sensitivity  indicates the extent to which 
parameter estimates in a regression model  
are affected by the data from one or more 
individuals.

modifiable area unit problem (MAUP)  arises 
when data collected in relation to specific  
geographical point locations are amalgamated 
into areas for comparison: the choice of area 
boundaries can precipitate potentially mis-
leading conclusions.

molecular genetics  the study of the structure 
and functions of DNA at a molecular level.

mRNA (messenger ribonucleic acid)  RNA 
molecules formed by transcription of DNA 
which carry the instruction for the synthesis of 
protein in a cell.

multicollinearity  see collinearity.
multilevel model (MLM)  see random effects 

model.
multinomial logistic regression  a modification 

of logistic regression analysis used when the 
outcome variable is nominal with more than 
two categories. Also called polycotomous 
logistic regression.

multiple comparisons  the process of perform-
ing many hypothesis tests in a data set; it 
results in increasing the risk of a Type I error 
unless adjustments are made.

multiple correlation coefficient (R)  the square 
root of the coefficient of determination. R 
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measures the association between the observed 
values of the dependent variable and the 
values of it obtained from the equation.

multiple imputation  a process of imputation 
which relies on creating a number of imputed 
data sets which are each analysed, and then the 
results combined to obtain overall estimates of 
parameters and their standard errors.

multiple linear logistic regression  a particular 
form of a generalized linear model used when 
the outcome of interest is binary, indicating 
whether or not an individual possesses a  
characteristic. The logistic regression equation 
describes the linear relationship between the 
explanatory variables and the logit transfor-
mation of the proportion of individuals with 
the characteristic. Often simply called logistic 
regression.

multiple linear regression equation  a multivari-
able model, often called multiple regression, 
which provides a mathematical expression to 
describe the linear relationship between two 
or more explanatory variables and a depend-
ent variable.

multiplication rule  the probability of two inde-
pendent events occurring is the product of the 
probability of each event.

multi-stage sampling  a simple random sample 
of clusters is selected from a population of 
clusters. In two-stage sampling, a simple 
random sample of units is selected for obser-
vation from the selected clusters. This process 
can be extended to encompass more stages.

multivariable regression model  a mathematical 
model which comprises one dependent varia-
ble and two or more explanatory variables. 
Often called a multiple regression model.

multivariate analysis  a general term tradition-
ally used to describe a number of techniques 
which examine several response or dependent 
variables simultaneously, when every individ-
ual takes a value for each of the variables.

natural pairing  litter mates, or some other bio-
logical association, provide the experimental 
material.

negative control  the animal receives no active 
treatment. A negative control group is a group 
of such animals.

negative predictive value (NPV)  the propor-
tion of animals with a negative test result (i.e. 
shown by the test not to have the disease) 
which are disease-free.

Newman–Keuls test  a multiple comparisons 
test of means that adjusts the P-values to avoid 
spuriously significant results arising from mul-
tiple testing.

nominal scale  the distinct categories which 
define the variable are unordered and each 
can be assigned a name, e.g. coat colour.

non-inferiority study  used to show that the 
clinical effectiveness of one treatment is not 
substantially worse than that of the existing 
treatment.

non-informative censoring  see uninformative 
censoring.

non-parametric tests  often called distribu
tion-free tests – methods which make no 
assumptions about the underlying data 
distributions.

Normal or Gaussian distribution  a continuous 
probability distribution. It is a bell-shaped dis-
tribution and is approximated by many bio-
logical variables.

Normal plot  a diagram scaled in such a way 
that Normally distributed data are exhibited  
as a straight line. Deviations from the straight 
line suggest that the data are not Normally 
distributed.

normal range  see reference range or reference 
interval.

not missing at random (NMAR)  the missing-
ness of data depends not only on the observed 
data but also on the unobserved (missing) 
data.

null hypothesis (H0)  the term given to the 
proposition (about the population) that is 
under test in a hypothesis testing procedure. In 
general, it is expressed in terms of no effect, 
e.g. no difference in population means.

number needed to treat (NNT)  the number 
of animals the clinician needs to treat with a 
novel treatment instead of a control treatment 
in order to prevent the occurrence of one 
adverse outcome. A simple way to express the 
benefit of a novel treatment.

numerical measure  a characteristic which takes 
a quantitative value.
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numerical (quantitative) variable  numerical 
values on a well-defined scale.

observational study  we merely observe the 
animals in the study and record the relevant 
measurements on those animals; we make  
no attempt to intervene, for example, by 
administering treatments or withholding 
factors which we feel may affect the course of 
the condition.

odds of exposure  the ratio of the probability of 
being exposed to the probability of being 
unexposed.

odds ratio (OR)  the ratio of two odds, usually 
the odds of disease in the group exposed to a 
factor divided by the odds of disease in the 
unexposed group; an estimate of the relative 
risk when the disease is rare.

one-sample t-test  a parametric test based on 
the t-distribution used to test H0 that the true 
mean takes a particular value.

one-sided test  a hypothesis test in which the 
P-value is determined by referring the test sta-
tistic to only a single tail of a theoretical prob-
ability distribution. The a priori decision to 
make a test one-sided relies on the specifica-
tion of the alternative hypothesis which must 
indicate the direction of the effect of interest 
based on the impossibility of the effect occur-
ring in the other direction.

one-tailed probability  the P-value resulting 
from a one-sided test such that all the proba-
bility of interest is contained in only a single 
tail area of the theoretical distribution.

one-tailed test  see one-sided test.
one-way ANOVA  an extension of the two-

sample t-test used when we wish to compare 
the means of more than two independent 
groups of observations.

one-way repeated measures ANOVA  may be 
regarded as an extension of the paired t-test 
when means are to be compared in three or 
more groups of related observations.

ordered variable  a categorical variable which 
has some basis of order or ranking in the 
various categories, e.g. body condition scores, 
age categories.

ordinal logistic regression  a modification of 
logistic regression analysis used when the 

outcome variable is ordinal with more than 
two categories.

ordinal scale  the categories which constitute 
the variable have some intrinsic order but  
the intervals between the various categories 
cannot be interpreted in a consistent manner.

outcome variable  see dependent variable.
outlier  an observation whose value is highly 

inconsistent with the main body of the data.
overview  see meta-analysis.

P-value  in a hypothesis test this is the probabil-
ity of obtaining the observed results (or  
more extreme results) if the null hypothesis is 
true.

paired observations  each observation in one 
group is paired or individually matched with 
an observation in the other group.

paired t-test  a parametric test, whose test sta-
tistic follows Student’s t-distribution, which 
compares the means in two populations using 
matched pairs of observations.

parallel group design  each individual animal 
receives only one treatment, and treatment 
comparisons are made between groups of 
animals rather than within animals.

parallel testing  when using two (or more) diag-
nostic tests, both tests are administered to all 
animals and an animal is regarded as testing 
positive if at least one test has a positive result.

parameter  a characteristic in the population, 
such as the mean or SD, which describes a 
particular feature of a distribution.

parametric test  this investigates a hypothesis 
about the parameter(s) of a distribution and 
makes assumptions about the underlying form 
of the distribution of the observations, e.g. that 
it is Normal.

partial regression coefficient  the coefficient in 
the multiple regression equation which corre-
sponds to a particular explanatory variable. It 
is generally different from the regression coef-
ficient which would be obtained by regressing 
the dependent variable on that explanatory 
variable alone, omitting the other explanatory 
variables from the equation altogether. It is 
sometimes called the regression coefficient.

Pearson’s product moment correlation coeffi-
cient  see correlation coefficient.
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percentage point  the upper percentage point 
(percentile) is the value of the variable which 
has p% of the distribution of the variable to 
the right of it. The lower percentage point has 
p% to the left of it. For a two-tailed test, we 
consider the percentage of the distribution in 
both tails, i.e. to the right and left of the rele-
vant percentage points.

percentiles  the values of the variable which 
divide the total frequency into 100 equal parts.

performance indicator  in a surveillance context 
this is a specifically designed key measure of 
quality, sensitivity and quantity of a surveil-
lance system, used to evaluate whether the 
achievements of a disease surveillance pro-
gramme are fulfilling the purposes for which 
they were established.

pharmaceutical and agrichemical indus-
tries  industrial and commercial companies 
whose products may raise issues concerned 
with risks to human health derived from 
farming, e.g. drug residues in carcasses at 
slaughter, pesticides and fertilizer residues in 
plants.

pictogram  a diagram, often used to display the 
frequency distribution of a categorical data set, 
in which the frequency in a category is indi-
cated by some measure (e.g. the height, number 
of repeated images) of a pictorial representa-
tion of a relevant object.

pie chart  a diagram used to display the fre-
quency distribution of a categorical data set. It 
is a circle divided into segments with each 
segment portraying a different category of the 
qualitative variable. The area of a segment is 
proportional to the percentage of individuals 
in that category.

pilot study  a small-scale preliminary 
investigation.

placebo  a pharmacologically inert substance 
identical in appearance to the test treatment, 
which dissociates the pharmacological effect 
of treatment from any suggestive element  
(the placebo effect) imposed by the receipt of 
treatment.

placebo effect  the response induced by sugges-
tion on the part of the animal attendants  
or investigators when the animal receives a 
placebo (dummy) treatment.

Poisson distribution  a discrete probability dis-
tribution of the count of the number of events 
occurring randomly in time or space at a con-
stant rate on average.

Poisson regression analysis  a particular form of 
a generalized linear model (with a log link 
function) used when the outcome of interest is 
a rate which is assumed to be constant over the 
period of interest; the individuals in the study 
may have different follow-up times.

polycotomous logistic regression  see multino-
mial logistic regression.

polynomial  a non-linear or curvilinear rela-
tionship described by a regression equation in 
which the degree of the polynomial is deter-
mined by the power of the explanatory 
variable(s), e.g. for the explanatory variable, x, 
the quadratic equation includes the term x2, 
the cubic equation includes the term x3, etc.

population  the complete finite (real) or infi
nite (hypothetical) collection of observational 
units.

population attributable fraction (PAF)  the dif-
ference between the risk of a particular 
outcome in the whole population and the risk 
in the group unexposed to some factor of 
interest (i.e. the PAR) expressed as a propor-
tion of the risk in the whole population.

population attributable risk (PAR)  the differ-
ence between the risk of a particular outcome 
in the whole population and the risk in the 
group unexposed to some factor of interest.

population-averaged model  see generalized 
estimating equation.

population survey  an observational study of 
the entire population, e.g. a census.

positive control  in clinical trials, a standard 
therapy against which a novel therapy is com-
pared. In laboratory studies, it is a treatment 
inducing the maximum response.

positive predictive value (PPV)  the proportion 
of animals with a positive test result (i.e. shown 
by the test to have the disease) which have the 
disease.

posterior probability  an individual’s belief 
relating to a particular outcome (e.g. that an 
animal has a certain disease); it is quantified 
after performing an experiment or conducting 
a trial by using the current evidence from that 
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study to update the prior probability. The term 
is integral to Bayesian inference.

post-test probability  the posterior probability 
of an event (e.g. a disease outcome) obtained 
by using the current best evidence (the diag-
nostic test result) to update the pre-test or 
prior probability.

power-efficiency  a way of comparing the power 
of a parametric test and that of its non-para-
metric equivalent. It is the extent to which the 
sample size of the non-parametric test needs 
to be increased to make it as powerful as its 
parametric equivalent.

power (of a test)  the probability that a test will 
reject the null hypothesis when the null 
hypothesis is false; it is the chance of detecting 
as statistically significant an effect of a given 
magnitude.

precision  refers to how well repeated observa-
tions agree with one another.

predictive value  see negative predictive value; 
positive predictive value.

predictor variable  see independent variable.
pre-test probability  in the context of a disease 

outcome, it is the prior probability of the disease 
(e.g. its prevalence in the population) which is 
updated using the current best evidence (e.g. a 
diagnostic test result) to obtain the post-test or 
posterior probability of the disease.

prevalence (of a condition)  the number (per-
centage) of cases of the condition (e.g. disease) 
that exist at a specific instant in time (point 
prevalence) or in a defined interval of time 
(period prevalence).

prior probability  an individual’s belief relating 
to a particular outcome (e.g. that an animal  
has a certain disease); its value is assumed 
before performing an experiment or conduct-
ing a trial. The term is integral to Bayesian 
inference.

PRISMA guidelines  a framework to help 
authors report systematic reviews and meta-
analyses to assess the benefits and harms of a 
healthcare intervention.

probability  the chance of a particular event 
occurring.

probability density function  the curve, defined 
by a mathematical formula, which describes 
the relative frequency distribution of the pop-

ulation. The total area under the curve is unity, 
and the proportion of observations between 
any two limits is the area under the curve 
between these limits.

probability distribution  a theoretical distribu-
tion which we specify mathematically, and use 
to calculate the theoretical probability of an 
event occurring.

probability sampling  any method of selection 
of a sample that is based on the theory of prob-
ability, for example, random sampling.

prognostic factor  see covariate.
propensity score  a score (usually generated by 

logistic regression) that describes the chance 
of an animal falling into one of the categories 
of the (usually binary) explanatory variable 
that is of the greatest interest (e.g. ‘treatment’ 
in a non-randomized study). Used as a basis 
for matching, stratification or as a covariate in 
a regression model to overcome problem of 
confounding.

proportion  the ratio of the number of events of 
interest to the total number of events.

proportional hazards  the ratio of the hazards is 
constant over time.

proportional hazards regression model  see Cox 
proportional hazards regression model.

proportional or scale error  a technical error in 
which the magnitude of the inaccuracy in 
measurement increases (or decreases) with 
the magnitude of the value.

prospective longitudinal study  the study is con-
ducted forwards in time from a defined start-
ing point.

proteome  the complete set of proteins 
expressed by an organism, tissue or cell.

proteomics  the scientific study of the entire 
protein complement of a cell, tissue or organism.

publication bias  the tendency for authors to 
submit only papers with positive findings to 
journals and for journals to accept only signifi-
cant results for publication, thereby giving 
undue weight to positive treatment effects in 
meta-analyses.

published scientific literature  information 
available to the student and professional from 
the work of others and published in scientific 
journals, textbooks and magazines and elec-
tronically (e.g. on the internet).
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qualitative variable  an individual belongs to 
any one of two or more distinct categories  
of the variable. Also called a categorical 
variable.

quality control  ensuring that processes and 
procedures are carried out in a consistently 
satisfactory manner so that the results are 
trustworthy.

quantitative genetics  the study of genetic vari-
ation of complex traits using probabilistic (sta-
tistical) models.

quantitative variable  see numerical (quantita-
tive) variable.

random allocation  assigning of animals to 
groups (e.g. treatments) in a randomized 
manner (i.e. the process is based on chance). 
Also referred to as randomization.

random effect  the levels of the factor of inter-
est represent individual members of a sample 
from the population of interest (e.g. individual 
pigs sampled from a population of Gloucester 
Old Spot pigs).

random effects model  a regression model for a 
hierarchical data structure in which the random 
effect for a two-level model is the source of 
error attributable to the level 2 units. Also 
called a multilevel model, cross-sectional time 
series model, hierarchical model or a mixed 
model.

random error  the recorded values are evenly 
distributed above and below the true value; it 
is due to unexplained sources.

random intercepts model  a particular form of 
random effects model in which, for a two-level 
structure (i.e. level 1 units within clusters), the 
linear regression equations for the clusters 
have the same slope but intercepts that vary 
randomly about the mean intercept.

random sample  a selection made from the pop-
ulation such that every individual in the sample 
has an equal chance of selection, and the selec-
tion of one individual has no influence on the 
selection of subsequent individuals.

random selection  the process, using a method 
based on chance, whereby individuals are 
chosen to be included in a random sample.

random variable  a variable which can take 
various values with given probabilities. All the 

values that the random variable can take,  
with their associated probabilities, comprise 
the probability distribution of the random 
variable.

randomization  this is the same as random allo-
cation. In addition, a set of objects is said to be 
randomized if they are arranged in random 
order.

randomized block  a particular ANOVA design 
in which each of the treatments in the investi-
gation is randomly allocated to the units within 
a ‘block’, the complete design comprising a 
number of such blocks.

randomized controlled trial (RCT)  a clinical 
trial which incorporates at least one control 
group, and which uses randomization to allo-
cate the animals to the different treatment and 
control groups.

range  the difference between the largest and 
smallest observations in a data set.

rank order  a systematized arrangement of 
the data values in ascending or descending 
order.

ranks  the successive numbers, starting at 1, 
assigned to the values of the observations in a 
data set which have been arranged in ascend-
ing (or descending) order. Thus, the rank of the 
smallest observation is 1, of the next smallest 
is 2, etc.

rate  number of new events per unit of investi-
gation per unit time.

raw data  see readings.
readings  primary measurements taken from 

individual animals or biological samples; also 
called values or raw data.

real (or finite) population  the individuals in the 
population that actually exist (cf. hypothetical 
population).

receiver operator characteristic (ROC) curve  a 
plot of the sensitivity against 1 minus the spe-
cificity for different cut-off values of the vari-
able that is to be used to discriminate between 
two disease outcomes (present/absent). The 
ROC curve may be used to assess the discrimi-
natory ability of a test, define the optimal 
cut-off (often corresponding to the point in the 
curve closest to the top left-hand corner of the 
diagram) or compare two or more diagnostic 
tests.
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reference interval  see reference range or refer-
ence interval.

reference prior  in a Bayesian analysis it repre-
sents minimal prior information and is usually 
used as a baseline against which other priors 
can be compared.

reference range or reference interval  the range 
of values of a variable that defines the healthy 
population, usually calculated as the interval 
which encompasses the central 95% of the 
observations from this population; if the data 
are Normally distributed, it is defined by the 
mean ± 1.96 SD. Sometimes called the normal 
range.

REFLECT statement  an evidence-based 
minimum set of items for reporting livestock 
trials with production, health and food-safety 
outcomes. It focuses on field trials and chal-
lenge studies with either therapeutic or pre-
ventive interventions.

regression coefficient  the coefficient which cor-
responds to a particular explanatory variable 
in a regression equation. Sometimes, the con-
stant term (the intercept) in simple linear 
regression is also referred to as a regression 
coefficient, as is a partial regression coefficient 
in a multivariable regression equation.

regression diagnostics  the processes used to 
check the assumptions underlying a regression 
model and to determine outliers and influen-
tial cases.

regression model  an algebraic description of 
the relationship between a response variable 
and one or more explanatory variables.

regression of y on x  the equation (usually a 
linear model) which describes the relationship 
between a dependent variable, y, and an 
explanatory variable, x.

regression to the mean  a phenomenon whereby 
animals which may have been selected for 
study because they had extreme measure-
ments on the variable of interest, are likely to 
have measurements which are closer to the 
average if the measurement is repeated on a 
second occasion.

regressor variable  see independent variable.
relative frequency distribution  shows the pro-

portion or percentage of observations in each 
class or category of the distribution.

relative rate  see incidence rate ratio.
relative risk (RR)  the ratio of two risks, usually 

the ratio of the risk of disease in the ‘exposed’ 
group to the risk of disease in the ‘unexposed’ 
group. It provides a measure of the strength of 
the association between the disease and the 
exposure to the factor. If the relative risk is 
unity, then exposure to the factor does not 
affect the animal’s chance of developing the 
disease; if it is greater than unity it indicates 
the increased risk associated with ‘exposure’.

relative risk reduction (RRR)  the difference in 
the risks of the event of interest between the 
treated and control groups (i.e. the ARR), 
expressed as a proportion of the risk in the 
control group.

reliability  reflects the amount of error, both 
random and systematic, inherent in any meas-
urement. It encompasses repeatability, repro-
ducibility, validity and stability.

repeatability  the extent to which replicate 
measurements in identical circumstances of a 
particular technique or instrument or observer 
are the same.

repeated measures design  an experimental 
design where each animal is investigated at 
every level of a factor, so the effects of interest 
are examined on a within-animal basis; e.g. 
when each animal receives all treatments or is 
investigated at a number of time points. Also 
called clustered design. See also one-way 
repeated measures ANOVA.

repeated significance tests  hypothesis tests per-
formed at intermediate stages of a trial. See 
also interim analysis.

replication  we take more than one measure-
ment on the variable of interest on each 
individual.

reproducibility  see method agreement.
residual  in general, the residual is the differ-

ence between two quantities; in regression, it 
is the difference between the observed value 
of the response variable and its value pre-
dicted by the model.

residual mean square  see residual variance.
residual variance  that part of the total variance 

of a variable which remains after the effects of 
certain factors have been removed; it meas-
ures the variability which cannot be explained 



362	 Appendix D

by the model. The residual variance is the 
residual mean square in an ANOVA.

response variable  see dependent variable.
restricted randomization  see blocked 

randomization.
retrospective longitudinal study  the study is 

conducted by looking backwards in time from 
a defined starting point.

risk difference (RD)  see attributable risk.
risk of disease  number of new cases expressed 

as a proportion of those initially at risk.
RNA (ribonucleic acid)  a nucleotide used in 

key metabolic processes for all steps of protein 
synthesis in all living cells.

robust procedure  a hypothesis test is robust 
if the probabilities of the Type I and Type II 
errors are hardly affected when the assump-
tions underlying the test are not fulfilled.

robust standard error  estimation of standard 
error based on the variability in the data set 
rather than on that assumed by the regression 
model and is therefore robust to violations of 
the assumptions of the regression model.

rounding error  inaccuracy introduced due to 
rounding off the number string to a lesser 
number of decimal places or significant figures.

runs test  a non-parametric test used to investi-
gate randomness of a binary variable in a 
single group.

sample  a subgroup drawn from the population.
sample size  the number of individuals included 

in an investigation when a subgroup of the 
population is studied.

sample survey  an observational study which 
uses sample data to provide information about 
the population from which the sample was 
taken.

sampling distribution of the mean  the distribu-
tion of the sample means; it is a hypothetical 
distribution obtained by taking all possible 
repeated samples (without replacement) of a 
given size from a population, and calculating 
the sample mean in each sample. These sample 
means can be plotted to show the distribution 
in diagrammatic form.

sampling distribution of the proportion  the dis-
tribution of the sample proportions; it is a hypo-

thetical distribution obtained by taking all 
possible repeated samples (without replace-
ment) of a given size from a population, and 
calculating the sample proportion in each 
sample.

sampling error  the difference between the 
sample statistic and the population parameter 
that it is estimating, present because we have 
taken only a sample of observations from the 
population, and are not looking at it in its 
entirety.

sampling units  the population is divided into 
non-overlapping parts called units (e.g. indi-
vidual animals, different herds); the sampling 
process involves selecting a subgroup of these 
units from the population. The units may then 
be called sampling units.

sampling variation  describes the fact that the 
values of a statistic (e.g. the sample mean 
which estimates the population mean) will not 
be identical in different samples of a given size 
drawn from the same population. The variance 
and the SD of the sampling distribution of the 
statistic describe this sampling variation (the 
SD of the sampling distribution is called  
the standard error of the statistic).

saturated model  a model that has at least as 
many variables as individuals in the sample.

scaling  the process of dividing or multiplying 
the value of an explanatory variable by a suit-
able constant to provide a more meaningful 
interpretation of the parameter in a regression 
model.

scatter diagram  a two-dimensional plot in 
which each axis represents the scale of meas-
urement of one of two variables; each point 
corresponds to the relevant co-ordinate values 
on the two scales.

sceptical prior  reflects the pessimistic or worst 
possible outcome in a Bayesian analysis before 
the sample data are available.

Scheffe’s test  a multiple comparisons test of 
means that adjusts the P-values to avoid spuri-
ously significant results arising from multiple 
testing.

screening  a process of identifying asympto-
matic animals which are at risk of a particular 
disease.
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self-pairing  the animal acts as its own control 
in a clinical trial, and so receives both treat-
ments, preferably in random order.

sensitivity  the effectiveness of a diagnostic or 
screening test to identify animals with the 
disease. It is the proportion of true positives 
identified by the test as positive.

sensitivity analysis  performed to assess how 
robust or sensitive the results of a statistical 
analysis are to the methods and assumptions 
of that analysis and/or to the data values 
included in the analysis.

sequential testing  when using two (or more) 
diagnostic tests, one test is administered to all 
animals but only animals positive from the first 
test receive the second test.

sequential trial  the sample size is not fixed in 
advance but depends on the results as they 
become available. A formal approach to the 
analysis has to be devised; it takes into account 
considerations such as the significance level 
and precision, and depends on stopping rules 
which allow the trial to terminate in favour of 
a particular treatment if certain conditions are 
met.

serial correlation  a measurement of serial 
dependence in a sequence of observations, 
such as a time series. Its presence implies that 
the deviations about any long-term trends are 
associated.

series testing  when using two (or more) diag-
nostic tests, both tests are administered to all 
animals and the animal is regarded as testing 
positive only if it has positive results from both 
tests.

Shapiro–Wilk W test  investigates whether a 
data set follows a specific probability distribu-
tion, typically the Normal distribution.

sign test  a non-parametric test used to investi-
gate data in a single group, or from related 
pairs of subjects.

significance level  a cut-off for the P-value such 
that the null hypothesis will be rejected if the 
P-value from a hypothesis test falls below this 
cut-off value; the cut-off is decided upon 
before the test is conducted and is often chosen 
as 0.05. Then if P < 0.05, we say that the test is 
significant at the 5% level. The significance 

level is the maximum chance of making a Type 
I error.

simple linear regression  a regression equation 
with only one explanatory variable. Also  
called univariable linear regression.

simple random sampling  a method of sampling 
in which every unit in the population has an 
equal chance of being selected.

simple randomization  we randomly allocate 
animals to the different treatment groups 
without using any refinements or restrictions.

single-blind  only one of these two parties – the 
carer or the assessor – is blind to the treatment 
that an animal receives in a clinical trial. Also 
called single-masked.

single-masked  see single-blind.
skewed to the left (negatively skewed)  the fre-

quency distribution is not symmetrical but has 
an extended left-hand tail.

skewed to the right (positively skewed)  the fre-
quency distribution is not symmetrical but has 
an extended right-hand tail.

skewness  a term used to describe the asymme-
try of a frequency distribution.

spatial autocorrelation  occurs when there is a 
relationship between the values of a single 
variable that is due to the geographical areas in 
which these values occur; this implies that there 
is a dependency between the values of the vari-
able in one location and in neighbouring areas.

spatial statistics  modifications, extensions and 
additions to statistical techniques that focus  
on the importance of locations or spatial 
arrangement.

Spearman’s rank correlation coefficient  a non-
parametric equivalent to Pearson’s product 
moment correlation coefficient; it measures 
the association (not necessarily linear) between 
two variables which may be ordinal.

specificity  the effectiveness of a diagnostic or 
screening test to identify non-diseased animals. 
It is the proportion of true negatives identified 
by the test as negative.

square of the correlation coefficient (r2)  the 
proportion of the variance of one variable 
explained by its linear relationship with 
another variable. It is sometimes called the 
coefficient of determination.
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stability  concerns the long-term repeatability 
of measurements.

standard deviation (SD)  a measure of spread 
which may be regarded, approximately, as an 
average of the deviations of the observations 
from the arithmetic mean. It is equal to the 
square root of the variance.

standard deviation of the proportion  the stand-
ard deviation of the sampling distribution of a 
proportion; usually called the standard error 
of the proportion. It is a measure of the preci-
sion of p as an estimate of π.

standard error of measurement  an estimate of 
the variability of the individual measurements 
in a repeatability study. It is equal to the square 
root of half the variance of the differences 
between the observations within pairs of 
measurements.

standard error of the estimate  a measure of the 
precision of the sample statistic as an estimate 
of the population parameter. It is equal to the 
standard deviation of the sampling distribu-
tion of the statistic.

standard error of the mean (SEM)  the stand-
ard deviation of the sampling distribution of 
the mean; it is a measure of the dispersion of 
the sample means and of the precision of the 
sample mean as an estimate of the population 
mean.

Standard Normal distribution  a Normal distri-
bution with a mean of zero and a standard 
deviation of 1 (unity).

standardized difference  used in the calcula-
tions of sample size required for a hypothesis 
test; it is based on the meaningful treatment 
effect (one which we should not like to over-
look) divided by the relevant standard 
deviation.

Standardized Normal Deviate (SND), z  a vari-
able which follows the Normal distribution 
with a mean of zero and a standard deviation 
of unity.

STARD guidelines  a framework created with a 
view to improving the accuracy and complete-
ness of reporting of studies of diagnostic 
accuracy.

statistic  a sample estimate of a population 
parameter. Sometimes called a sample statis-
tic, although since a statistic always relates  

to the sample, strictly, the word ‘sample’ is 
redundant.

statistical heterogeneity  exists when there is a 
statistically significant difference between the 
effects of interest in a meta-analysis.

statistical inference  the process of generalizing 
to the population from the sample; it enables 
us to draw conclusions about certain features 
of a population when only a subgroup of that 
population – the sample – is available for 
investigation.

statistical significance  the result of a hypothesis 
test is statistically significant if the decision is 
made to reject the null hypothesis; statistical 
significance should be contrasted with biologi-
cal importance.

statistics  defined narrowly, this is the skills of 
data manipulation and analysis, but generally 
in biological science it is taken to mean a wider 
numerical approach to the science. See also 
biometry.

stem-and-leaf diagram  a diagram, generally 
computer generated, which shows the distribu-
tion of a data set; the stem is the core value of 
the observations (e.g. the unit value before the 
decimal place) and each leaf is a sequence of 
ordered single digits, one for each observation, 
which follow the core value (e.g. the first 
decimal place).

stepwise selection  the process of determining 
an optimal regression equation; it is essen
tially a step-up procedure which starts with 
one variable and adds more variables succes-
sively, but it allows the variables in the equa-
tion to be dropped according to defined 
statistical criteria specified by the computer 
package.

stratified randomization  we divide the popula-
tion into different strata according to the cat-
egorization of the key potentially confounding 
variables; then, within each stratum, we ran-
domly allocate animals to each of the treat-
ment groups.

stratified sampling  the population is divided 
into strata and a simple random sample of 
units is selected from each stratum.

stratum  one of a number of groups, each com-
prising different individuals that collectively 
make up the population (or sample).
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STROBE statement  provides guidelines for 
reporting cohort, case–control, and cross-sec-
tional studies

Student’s t-distribution  see t-distribution.
subjective probability  personal view of proba-

bility which is to regard it as a measure of the 
strength of belief an individual has that a par-
ticular event will occur.

substantial prior  in a Bayesian analysis, it 
provides considerable empirical or theoretical  
relevant information about the unknown 
parameter with the consequence that the  
posterior departs substantially from the 
likelihood.

sum of squares  the sum of the squared devia-
tions of each observation from the mean; it is 
used in the calculations of mean squares in the 
analysis of variance.

summary measure  a quantity which reduces a 
set of measurements to a single value which 
represents an important feature of that data 
set; for example, the maximum response in a 
series of measurements over time for an indi-
vidual. Use of a summary measure considera-
bly simplifies the analysis of repeated measures 
data by reducing a series of values for each 
individual to a single quantity.

superiority trial  used to determine whether 
two or more treatments are statistically signifi-
cantly different.

survey  we examine an aggregate of animals or 
other such units in an observational study in 
order to derive values for estimates of various 
parameters in the population.

survival analysis  the analysis of the time to a 
critical event, e.g. death, in a group of animals 
in which there may be censored data.

symmetrical distribution  the shape of the dis-
tribution to the right of a central value is a 
mirror image of that to the left of the central 
value.

systematic error  one in which the recorded 
value is systematically above (or below) its 
true value.

systematic review  a qualitative, clearly defined 
examination of published and unpublished 
results which collates the information to 
answer questions, often about the effective-
ness of a treatment.

systematic sampling  a method of selecting a 
sample of elements from the population. A 
random start point in the frame is chosen (the 
kth element) and then a selection is made of 
every kth element thereafter; apart from the 
choice of the initial element, this is not random 
sampling.

t-distribution  discovered by ‘Student’, a pseu-
donym for W. S. Gosset, it is a continuous  
probability distribution; the distribution is 
symmetrical about the mean, and is character-
ized by the degrees of freedom. As the degrees 
of freedom increase, it becomes more like the 
Normal distribution.

t-test  these are significance tests based on Stu-
dent’s t-distribution. See one-sample t-test; 
paired t-test; unpaired t-test.

table  an orderly arrangement, usually of 
numbers or words in rows and columns, which 
exhibits a set of facts in a distinct and compre-
hensive way.

tails  tails of a frequency distribution represent 
the frequencies at the extremes of the distribu-
tion.

technical variations or errors  variability in the 
measurements due to a variety of instrumental 
causes and to human error.

test statistic  a quantity which follows a theoreti-
cal probability distribution and which forms 
the basis for performing a hypothesis test. By 
referring the value of the test statistic com-
puted from the sample data to the appropriate 
probability distribution, we can determine the 
P-value and decide whether we have enough 
evidence to reject the null hypothesis.

theoretical probability distribution   a mathe-
matical formula from which the probability of 
each value of a discrete random variable can 
be determined, and which, if the random vari-
able is continuous, defines the curve such that 
the probability that the variable falls in an 
interval is determined by the area under the 
curve within this interval.

time series  a long series of measurements made 
at many successive points in time. Usually, the 
successive observations are dependent so that 
the magnitude of one value influences the 
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magnitude of the next, i.e. we have an auto
regressive series.

time-dependent variable  changes over time 
during the course of the study.

trait  genetically determined phenotype or 
characteristic of an organism.

transcriptomics  the scientific study of the 
expression profile of mRNA in a cell, tissue or 
organism.

transformation  a mathematical manipulation 
(e.g. taking the log) of each value in the entire 
data set in an attempt to produce a new data 
set which conforms to the particular require-
ments of the analysis, e.g. Normality, a linear 
relationship or constant variance.

treatment effect  a parameter specification of 
the treatment comparison of interest, e.g. the 
difference in means between the treatment 
and control groups.

Tukey’s test  a multiple comparisons test of 
means that adjusts the P-values to avoid spuri-
ously significant results arising from multiple 
testing.

two-by-two table  see fourfold table.
two-sample t-test  see unpaired t-test.
two-sided test  a hypothesis test in which the 

P-value is determined by relating the test sta-
tistic to both tails of a theoretical distribution. 
The a priori decision to make a test two-sided 
relies on the specification of the alternative 
hypothesis which does not indicate the direc-
tion of the treatment effect.

two-tailed probability  the P-value resulting 
from a two-sided test in which all the probabil-
ity of interest is contained in both tails (i.e. the 
sum of the right- and left-hand tail areas) of 
the probability distribution.

two-tailed test  see two-sided test.
two-way ANOVA  an analysis of data which 

examines the effect of two factors on a response 
variable, when each of these factors possesses 
two or more levels.

Type I error  we reject the null hypothesis when 
it should not be rejected, i.e. when it is true. 
The maximum probability of making a Type I 
error is the significance level of the test.

Type II error  we fail to reject the null hypoth-
esis when it should be rejected, i.e. when it is 
false.

unbiased  free from bias or systematic error.
unbiased estimate (of the population parame-

ter)  the mean of the sampling distribution of 
the sample statistic coincides with the popula-
tion parameter which the statistic is 
estimating.

unimodal  a distribution which has a single 
mode or modal group.

uninformative censoring  occurs in survival 
analysis when the probability that an animal is 
censored is not related to the probability that 
the animal will experience the failure. Also 
called non-informative censoring.

uninformative prior  in a Bayesian analysis does 
not influence the posterior probability as it 
provides no relevant information.

univariable regression model  a mathematical 
model which comprises one outcome or depend-
ent variable and one explanatory variable. Also 
called simple regression.

univariate analysis  the analysis of data which 
comprises a single dependent or response 
variable.

unpaired t-test  a parametric test, whose test 
statistic follows Student’s t-distribution, used 
to compare the means in two independent 
populations. It is also called the two-sample 
t-test.

upper quartile  the 75th percentile. Also called 
the third quartile.

vague prior  in a Bayesian analysis, the sample 
data swamps the prior information so that the 
posterior and likelihood are virtually equal. 
Also called a diffuse prior.

validity  concerned with determining whether 
the measurement is actually measuring what it 
purports to be measuring.

values  see readings.
variable  a characteristic which can take values 

which vary from individual to individual or 
group to group, e.g. height, weight, sex (male 
or female).

variance  a measure of dispersion. It is the 
square of the standard deviation.

variance inflation factor (VIF)  a measure which 
can provide evidence of collinearity between 
variables. If Ri

2 is equal to the proportion of 
variance explained by the regression of the vari-
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able xi on the remaining explanatory variables 
in a regression model, the VIF /i iR= −1 1 2( ). A 
value greater than 10 may suggest collinearity.

variance ratio test (F-test)  a parametric test, 
based on the F-distribution, used to compare 
two variances.

verification bias  arises in the evaluation of 
diagnostic tests when the gold standard test is 
not a true reflection of the disease state of the 
animal.

veterinary surveillance  the process of collect-
ing, collating and analysing information on 
animal diseases and infections in order to 
provide early indication of changing patterns 
of animal health which may affect productivity 
or pose a threat to human health.

Wald test statistic  used to test the significance 
from zero of a regression coefficient whose 
estimate is obtained by maximum likelihood; 
it follows the Normal distribution.

weighted kappa coefficient  a modification 
of Cohen’s kappa coefficient that takes into 
account the extent to which paired ordinal 
measurements agree.

weighted mean  the arithmetic mean of a set 
of observations where a particular weight is 
attached to each observation so that the  
observation assumes the required degree of 
importance.

Wilcoxon rank sum test  a non-parametric test 
used to compare the distributions of data in 
two independent populations. It produces the 

same P-value as the Mann–Whitney U test, 
and may be used as the non-parametric alter-
native to the two-sample t-test.

Wilcoxon signed rank test  a non-parametric 
test used to compare the distributions of data 
in two populations of matched pairs of obser-
vations. It may be used as the non-parametric 
alternative to the paired t-test.

withdrawal  withdrawals from a study are 
animals which are lost to follow-up during  
the course of the study, perhaps because their 
owners move out of the area, so that informa-
tion is not available for these animals from the 
time that they withdrew: their data are not 
accessible and cannot be analysed. Withdraw-
als from treatment (animals with protocol vio-
lations, such as stopping treatment because of 
side effects) which are not lost to follow-up 
should have their responses included in the 
statistical analysis.

Yates’ correction  an adjustment applied to the 
Chi-squared test statistic when it is used to test 
a hypothesis in a 2  ×  2 contingency table. It 
makes the discrete distribution of the test sta-
tistic a better approximation to the continuous 
Chi-squared distribution.

zero error  a technical error whereby the instru-
ment fails to register a true zero reading.

zoonosis  any infectious disease that can be 
transmitted naturally between animals, both 
wild and domestic, and humans.
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Appendix E

Flowcharts for selection of 
appropriate tests

Figure E.1  Statistical analyses (section numbers in brackets).

Statistical 
analyses

Hypothesis  tests Correlation & regression 
Analysis of

longitudinal data
Additional  techniques

Binary variable
(comparing proportions)

See Flowchart E.2

Numerical or 
ordinal variable

See Flowchart E.3

Correlation
Pearson’s (10.3)

Spearman’s (12.7)

Cohort & case–control 
studies (5.2.3)

Logistic regression (11.4)
Poisson regression (11.5)

Time series (14.5.1)
Repeated measures (14.5.2)

Survival analysis (14.6)

Diagnostic & screening tests
Sensitivity & specificity,

PPV & NPV (14.2) 

Measuring agreement
Bland–Altman method

for numerical data (14.4.2)
Kappa statistic

for categorical data (14.4.3)

Other methods
Meta analysis (13.5)

Bayesian analysis (14.3)
Sampling techniques (13.6)
Multivariate analysis (14.7)

EBVM (Chapter 16)

Spatial statistics (15.4)
Veterinary surveillance (15.5)
Molecular and quantitative 

genetics (15.6)

          Regression

Simple linear regression (10.4)
Multiple linear regression (11.3)
Logistic regression (11.4)
Poisson regression (11.5) 
Regression methods for 
clustered data (11.6)
Cox regression (14.6.2)
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confidence intervals for 339
accuracy 7, 8
addition rule 30
adjusted R2 151
administrative censoring 222
aggregation, data 219
agreement

indices of 213–14
limits of 212
measures of 212–13, 216–18
measuring 211–18
method see method agreement

agrochemical industry 3
all subsets selection 152
allocation

bias 60, 62
in clinical trials 62–5
random see random allocation
systematic 62

α (regression coefficient) 133–4
α (Type I error) 80
alternative hypothesis 76–7, 79
Altman’s nomogram 185, 186
analysis by intention-to-treat 72
analysis of covariance (ANCOVA) 148
analysis of variance (ANOVA) 87, 102–9

forms of 103–5
Friedman two-way 105, 166, 174–5
Kruskal–Wallis 105, 120, 166, 173–4
multivariate (MANOVA) 227
non-parametric 105, 166, 173–5
one-way 103–4, 105–9

assumptions 105
example 106–9
multiple comparisons 106
non-parametric alternative 166, 173–4
procedure 105

repeated measures 104

Index

table 103, 139
multiple linear regression 151–2
simple linear regression 136, 139, 140

two-way 104
non-parametric alternative 166, 174–5

variance stabilizing transformations 182–3, 184
angular (arcsine) transformation 182, 183
animal disease surveillance see veterinary surveillance
animal research see research, animal
animal rights 230–1
animal welfare 231, 233
Animal Welfare Act, 2006 232
Animals (Scientific Procedures) Act, 1986 66, 232, 233
ANOVA see analysis of variance
appropriate test, selecting 79, 368–70
arcsine transformation 182, 183
area under the curve

probability density function 35, 36
Standard Normal distribution 35–8, 39

area under the ROC curve (AUROC) 202
arithmetic mean 20, 85
ARR see absolute risk reduction
ARRIVE guidelines 253, 255, 259–60
artificial pairing 68, 93
assessment bias 60, 65–6
attributable fraction (AF) 58
attributable risk (AR) 58
AUROC (area under the ROC curve) 202
autocorrelation, spatial 234
automatic selection procedures 152–3
autoregressive series 218
averages 20–3

backward step-down selection 152
bar chart 15, 16
Bayes’ theorem 208
Bayesian analysis 205, 208–11

applications 210–11
choice of prior probability 209
empirical 209
vs frequentist approach 209–10

Bayesian probability 29, 210

Page numbers in italics indicate figures; those in bold tables or boxes. A full list of abbreviations may be found on 
pages 343–344.
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Berkson–Gage method 222
β (regression coefficient) 133–4
β (Type II error) 80
bias 60, 248, 250

avoidance of 65–6
in sampling methods 194
unbiased estimate 48, 194
see also publication bias; other specific types of bias

bimodal distribution 23
binary variables 5, 31, 112

Binomial distribution 32–3
choosing appropriate tests 369
explanatory 148, 150, 152
response (outcome) 154–8

Binomial distribution 32–3
Normal approximation of 42

bio-equivalence studies 83
bioinformatics 241
biological importance see clinical/biological importance
biological variation 5, 6
biometry 3
Bland and Altman plot 212, 215
bleeding calf syndrome 240
blinding 65–6, 270
block designs 67
blocked randomization 64
blocks 66–7
bluetongue 240
Bonferroni’s correction 106
bootstrapping 53, 197
bovine neonatal pancytopenia (BNP) 240
bovine spongiform encephalopathy (BSE) 239
box-and-whisker plot (or box plot) 18–19
British Standards Institution reproducibility/repeatability 

coefficient 212–13

c statistic 202
canonical correlation 227
capture–tag–recapture method 196–7
carry-over effects 73
cartograms 235, Plate 15.2
case–control studies 58–9, 247

logistic regression 158
case reports 246, 247
case series 247
categorical variables 5

diagnostic test 201
diagrams 15–16
frequency distribution 13
hypothesis tests 112
logistic regression 158–9
measures of agreement 216–18
multiple regression analysis 148–9
ordered 119–20
sample size determination 187–8
scales 5

causal relationships 129, 132
censored data 222
centiles 14
central limit theorem 48
central tendency, measures of 20–3
centring 149
chance agreement 217, 218
Chi-squared (χ2) distribution 41, 42, 43

table 328

Chi-squared (χ2) test 112–25
2 × 2 contingency table 114–17
for covariates 156
goodness-of-fit test 122–3
r × c contingency table 117–19
sample size estimation 187–8
for trend in proportions 119–20
for two proportions

independent groups 113–17
paired observations 120–2

classical theory 209–10
clinical/biological importance

assessing 130, 248, 250
vs statistical significance 80–1

clinical field trials 60
clinical heterogeneity 190
clinical judgement 244, 249
clinical prior 209
clinical trials 56, 59–73, 246

assignment to treatment groups 62–5
avoiding bias 65–6
blinding 65–6
confounding and interactions 68–9
consent 233
control groups 61–2
controlled 61
cross-over design 73
equivalence or non-inferiority 82–3
ethical aspects 231–2
importance of design 60–1
increasing precision 66–8
intention-to-treat analysis 72
interim analysis 189–90
missing data 71–2
outliers 70
parallel group design 67, 73
pilot studies 72–3
placebo 65–6
protocol 69–70
reporting 252–66
sequential 189

cluster analysis 226
cluster randomization 64, 161
cluster sampling 195–6
cluster-specific model see random effects model
clustered data 161

methods of analysis 219–21
regression methods 161–3

clustered designs 66
clustering, spatial statistics 235
Cochrane Collaboration 190
Cochran’s Q test 191, 216
coefficient(s)

correlation see correlation coefficient
of determination (R2) 139
kappa 216–18
logistic regression 155–6
partial regression 147
regression 133–4
of reliability 213
repeatability/reproducibility 212–13
of variation (CV) 24

Cohen’s kappa coefficient 216–18
cohort studies 57–8, 247
collinearity 151, 158
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companion animals, disease surveillance  
237

comparative studies 61
comparisons

between and within 67–8
of means 100

more than two independent groups 102–9
more than two related groups 104
single sample 85–9
two independent groups 89–92
two paired samples 92–6

multiple 106
non-parametric

more than two independent groups 173–4
more than two related groups 174–5
two independent groups 171–3
two paired samples 167–71

of proportions 113–22
two independent groups 113–17
two paired samples 120–2

sample size estimation 185–8
of survival curves 223
of variances 100–2

competing risks 224–5
complete randomized block design 67
computational biology 241
computer statistics packages 2
conditional logistic regression analysis 158
conditional probability 30
confidence band, for the line 141–2
confidence intervals 79, 81–2

for absolute risk reduction 339
applications 82
critical appraisal 273
for difference in two means 90, 94, 340
for difference in two medians 170, 172
for difference in two proportions

independent groups 116, 340
paired data 121, 340

evidence-based veterinary medicine 248
for kappa coefficient 339
for a mean 50–2, 87–8, 340
for negative predictive value 339
non-inferiority study 83
for number needed to treat 249, 339
for odds ratio 339
for Pearson correlation coefficient 130, 339
for positive predictive value 339
for a proportion 53, 113, 339
for regression coefficient 140, 339
for regression line 141–2
for relative risk 339
for sensitivity 339
for Spearman rank correlation coefficient 176
for specificity 339
tables 339–40
for Wilcoxon rank sum test 172
for Wilcoxon signed rank test 170

confidence limits 50
confidence region, for the line 141–2
confounders 68
confounding 68–9
consent, informed 233
CONSORT statement 254–5
contemporary controls 61

contingency tables 114
2 × 2 114–17
combining 119, 120
ordered categories 119–20
r × c 114, 117–20
in special circumstances 119–20

continuity correction 43, 113
continuous probability distributions 33–42
continuous random variable 31, 35
continuous scale 5
controlled clinical trials 61
controls/control groups

case–control studies 59
clinical trials 61–2
contemporary 61
ethical aspects 231
historical 61–2
need for 61
negative 61
positive 61

Cook’s distance 139, 151
correlation

linear 126–32
negative 128
perfect 128
positive 128
serial 219

correlation coefficient 127–32
assumptions 129
confidence intervals for 130, 339
hypothesis testing 129–32
intraclass (ICC) 213
Kendall’s τ 175
linear 127
Lin’s concordance 213–14
misuse 132
multiple (R2) 151
non-parametric 166
Pearson see Pearson product moment correlation 

coefficient
Spearman rank see Spearman rank correlation coefficient
square of (r2) 130
tables 332–3

covariance, analysis of (ANCOVA) 148
covariates 62, 147

time-dependent 223–4
Cox proportional hazards regression model 223–4, 226
credible interval 210
critical appraisal 269–302
critical values 37
cross-over trials 73
cross-sectional studies 56, 247
cross-sectional time series model see random effects 

model
Cruelty to Animals Act, 1876 232
cumulative relative frequency distribution 14
cumulative relative frequency polygon 14
cut-off values, diagnostic test 202–3

Dahlberg’s formula 213
data

aggregation 219
censored 222
clustered see clustered data
collection 77, 79
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grouping of 86–7
looking at 77, 79
missing 71–2
raw 5
summarizing 12
transformations see transformations

Declaration of Helsinki 252
degrees of freedom (df) 78–9

analysis of variance 103
F-distribution 101
t-distribution 41

Department of Food and Rural Affairs (Defra)  
238

dependent observations see paired observations
dependent variables see response variables
descriptive statistics 10, 12–27, 28, 75
design see study design
deviance see likelihood ratio
deviation (from the mean) 23
diagnosis 245
diagnostic services 3
diagnostic tests 200–8

assessing effectiveness 201–2, 203–4
Bayesian analysis 210–11
determining optimal cut-offs 202–3
estimating usefulness 204–6
evidence-based approach 245, 248
example 207–8
parallel testing 206
sequential testing 206
series testing 206
STARD statement 256, 263–4, 265
two or more 206–7

diagrams 12, 15–19
cartograms 235, Plate 15.2
categorical (qualitative) data 15–16
meta-analysis results 192–3
numerical (quantitative) data 16–19
rules for constructing 15
scatter 19, 127
see also nomograms

dichotomous variables see binary variables
diffuse prior 209
digit preference 6–7
discontinuous scale 5
discrete probability distributions 31, 31–3, 34
discrete random variable 31
discrete scale 5
discriminant analysis 226
disease

odds of 59
risk of 57, 239

dispersion, measures of 23–4
distance, spatial statistics 235–6, Plate 15.3
distance sampling 198
distribution-free tests see non-parametric methods
distributions see frequency distributions; probability 

distributions
dot diagram/plot 16–17
double-blind trials 65
drift 7, 8
dummy treatment 65–6
dummy variables 148–9, 155
Duncan’s multiple range test 106

EBVM see evidence-based veterinary medicine
ecological fallacy 236
effect (of interest) 76

critical appraisal 272, 286, 300
evidence-based veterinary medicine 248, 250
meta-analysis 191–3

effect modification see interactions
80/20 rule, Food and Drug Administration (FDA)  

83
element 194
empirical Bayesian analysis 209
empirical frequency distribution 13, 30
enthusiastic prior 209
envelopes, in randomization process 63
epidemiological study 56
epidemiology 3, 55
EQUATOR Network 253–4
equivalence interval 82–3
equivalence studies 82–3
errors

biological 6
of measurement (technical) 6–7, 8
sampling 47
standard see standard error
Type I and II 79–80

estimation 10, 47, 75
ethical issues 230–2, 233, 252
ethics committees 233
European Association of Science Editors (EASE) 

guidelines 253
evidence

evaluating 247–9
hierarchy of 246, 247
obtaining 246–7

evidence-based veterinary medicine (EBVM) 3, 4,  
243–51

definition 244
example 249–50
integration into clinical practice 249
process 245–9
rationale 244–5

experimental design 55–74
ANOVA 104–5
assignment to treatment groups 62–5
avoiding assessment bias 65–6
confounding and interactions 68–9
control groups 61–2
increasing precision 66–8
missing data 71–2
outliers 70
sample size 184–9
sampling methods 194–8
sequential and interim analysis 189–90
types 55–9
see also study design

experimental studies 56, 246, 247
confounding 68–9
control groups 61–2
see also clinical trials

experimental unit 64
experimentation, animal see research, animal
expert opinion 246, 247
explanatory (predictor) variables 133

categorical 148–9
centring and scaling 149

data (cont.)
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interactions between 149–50
more than one 133, 146, 147
multiple regression analysis 147–9
relationships between 151
selection, multiple regression 152–3
see also x variable

explanatory vs pragmatic approach 72
extra-Binomial variation 157–8
extra-Poisson variation 159

F-distribution 42, 43
tables 329, 330–1

F-test 100–11
in analysis of variance 102, 103, 105, 140
to check assumptions in t-test 89
equality of two variances 100–2
multiple linear regression 151–2
simple linear regression 140

factor analysis 226–7
factorial design 105
factors

in 2 × 2 table 114
in analysis of variance 103
in multiple regression 147–8

Fagan’s nomogram 205, 210
failure, in survival analysis 221
false positive rate (FPR) 202
Farm Animal Welfare Council, five freedoms 231
finite population 9
Fisher’s exact test 115, 118
five freedoms 231
fixed effects analysis 191, 192
fixed sample size plans 189
flow charts for test selection 368–70
follow-up, losses to 188
Food and Drug Administration (FDA), 80/20 rule  

83
food safety and quality 4, 238
foot-and-mouth disease (FMD) 234–5, 236, 239,  

Plate 15.4
forest plot 192–3
forward step-up selection 152
fourfold table see two-by-two contingency table
frailty model 224
frame, sampling 194
frequency 29

definition of probability 29
expected 114, 115–16, 118, 123
relative 13, 29

frequency distributions 12–14
bimodal 23
cumulative relative 14
empirical 13, 30
histogram 17–18
relative 13
skewed 17–18
symmetrical 17
tails 17
unimodal 23

frequency matching 59
frequency tables, two-way see contingency tables
frequentist inference 210
frequentist theory 209–10
Friedman two-way ANOVA 105, 166, 174–5
funnel plot 193

Galton, Sir Francis 142
Gaussian distribution see Normal distribution
gene 240
generalizability, of results 273, 288, 302
generalized estimating equation (GEE) 162, 219
generalized linear models (GLM) 146, 159–60
genetically defined animals 68
genetics

molecular 240–1
quantitative 241–2

genome 240
genomics 240
geometric mean 21–2, 40
geospatial (or geographical) information systems (GIS) 

233–6, 239
gold standard test 201–2, 203
goodness-of-fit

Chi-squared test 122–3
linear regression line 139
logistic regression analysis 156

graphical representation 220
group, as experimental unit 64, 65
group matching 59
group randomization 64
group sequential design 189–90
groups

comparing means 86–7
of different sizes, sample size estimation  

188–9
equal variances 89–91
of experimental units 66–7
independent see independent groups
paired see paired observations
unequal variances 91–2

guidelines, reporting 252–66

hazard 223
hazard ratio 223, 226
herd immunity 64
heterogeneity in meta-analysis

clinical 190
statistical 191–2

heteroscedasticity 89
hierarchical model see random effects model
histogram 17–18
historical controls 61–2
homogeneity

statistical 191–2
test 191

homoscedasticity 89, 100
human error 6–7
hypothesis testing 10, 47, 75–84

basic concepts 75–9
Bayesian and frequentist approaches 209–10
comparing more than two means 100, 102–9
comparing one or two means 85–99

single sample 87–9
two independent groups 89–91
two paired groups 92–6

comparing proportions 112–25
more than two groups 117–20
single group 112–13
trend in 119–20
two independent groups 113–17
two paired groups 120–2
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comparing survival curves 223
comparing two or more variances 102
comparing two variances 100–2
confidence interval approach 81–2
correlation coefficient 129–32
equivalence and non-inferiority studies 82–3
flow charts for test selection 79, 368–70
goodness-of-fit 122–3
homogeneity 191
multiple comparisons 106
non-parametric 165–80

correlation coefficient 176
median 168, 169–70
more than two independent groups 173–4
more than two related groups 174–5
two independent groups 171–2
two paired groups 168, 169–70

repeated tests 190
sample size and test choice 86
statistical vs biological significance 80–1
summary of procedure 79
Type I and Type II errors 79–80

hypothetical population 9
hysteresis 7, 8

I2 statistic 191
identity link 159
importation, meat products and live animals 238
imputation, missing data 71
incidence 57
incidence rate ratio (IRR) 159
incomplete block designs 67
independent groups 67

comparing two means 89–92
comparing two proportions 113–17
sample size estimation 185–6, 187–8

independent variables see explanatory variables
indicator variables 148–9
inferential statistics 10, 28–9, 46–7, 75

Bayesian approach 208, 210
frequentist (classical) approach 29, 209–10
see also hypothesis testing

infinite population 9
influential points 138–9, 151, 158
informative censoring 222
informative prior 209
instability 7, 8
instrumental error 6, 7, 8
intention-to-treat analysis 72
interactions (effect modification) 69

multiple regression analysis 149–50
two-way ANOVA 104

intercept 133, 134
interim analysis 189–90
internal pilot study 189
interpolation 78
interquartile range 14, 23
intraclass correlation coefficient (ICC) 213
inverse sampling, capture–tag–recapture method 197
inverse sine (arcsine) transformation 182, 183
investigation, animal see research, animal
isodemographic map 235

jackknifing 53–4
Johnson, Dr Samuel 232

Kaplan–Meier analysis 222
Kaplan–Meier survival curve 222, 225
kappa coefficient

Cohen’s 216–18
confidence intervals for 339
weighted 218

Kendall’s τ 175
Kolmogorov–Smirnov test 40, 87
Kruskal–Wallis one-way ANOVA 105, 120, 166, 

173–4
kurtosis, measures of 40

laboratory experiments 56, 61–2
Latin square design 105
learning objectives 2
least significant difference (LSD) test 106
least squares, method of 134, 147
legislation, animal research 232–3
length, spatial statistics 235–6
Leonardo da Vinci 232
level 1 units 161–2
level 2 units 161
levels (of a factor) 103
Levene’s test 100, 102
leverage 138
likelihood 156, 208
likelihood ratio 156, 159–60, 204, 248

of a negative test result (LR−) 205
of a positive test result (LR+) 204–5

likelihood ratio statistic 156
limits of agreement 212
linear correlation 126–32
linear logistic regression analysis 158
linear regression 126, 132–42

aims 127
multiple (multivariable) see multiple linear regression
simple (univariable) see simple linear regression
see also regression line

linearizing transformations 182
link functions 159
Lin’s concordance correlation coefficient 213–14
listwise deletion 71
location

measures of 20–3
spatial statistics 235

log likelihood, -2 see likelihood ratio
log-linear analysis 226
log transformation 181–2, 183, 184

geometric mean 21–2
Poisson regression 159

logistic regression analysis 120, 154–9
applications 158–9
checking the model 157–8
conditional 158
example of 156–7
interpreting the coefficients 155–6
linear 158
maximum likelihood estimation 156
multinomial 158
optimal cut-offs for a test 203
ordinal 158–9
predictive value estimation 206
sensitivity and specificity estimation 203–4

logistic (logit) transformation 155, 182
Lognormal distribution 40, 41, 181–2
logrank test 223, 226

hypothesis testing (cont.)
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longitudinal studies 56–7
losses to follow-up 188
lower quartile 14

Mann–Whitney U test 166, 171
MANOVA 227
Mantel–Haenszel method 69, 120
marginal approach 162
masked trials 65–6
matched design 59, 69
matched pairing 68, 93
mathematical symbols and transformations 341
maximum likelihood estimation 156, 159–60
McNemar–Bowker test of symmetry 216
McNemar’s test 120–2, 216
mean(s)

arithmetic 20, 85
comparing more than two 100, 102–9

independent groups 102–9
related groups 104

comparing one or two 85–99, 340
single group 85–9
two independent groups 89–92
two paired groups 92–6

confidence interval for a 50–2, 87–8, 339
of distribution of sample means 48
of distribution of sample proportions 52
geometric 21–2, 40
regression to 142
sampling distribution of 48–50
standard error of 49–50
weighted 192

mean square 103
measurements

quality of, terminology 7–9
standard error of 213
at successive points in time 218–21
variations in 5–7

measures
of agreement 212–13, 216–18
of dispersion (spread) 23–4
of location (averages) 20–3
repeated see repeated measures
see also summary measures

median 14, 20–1
confidence interval for difference in two 170, 172
test for a single 167
tests comparing more than two 173–5
tests comparing two 167–71

median survival time 222, 225–6, 248
MEDLINE 247
Mendel’s Laws 241
meta-analysis 190–4, 246, 247

reporting guidelines 256, 267–8
metabolomics 240
method agreement (reproducibility) 7–9, 211–18

categorical variables 216–18
erroneous analysis 216
numerical variables 212–16

method of least squares 134, 147
microbiologically defined animals 68
migration, wild animals 235
missing at random (MAR) 71–2
missing completely at random (MCAR) 71
missing data 71–2
mixed model see random effects model

MLM see multilevel model
modal group (or class) 22–3
mode 22–3
model, mathematical 29
model Chi-square 156
modifiable areal unit problem (MAUP) 236
molecular genetics 240–1
multi-stage sample 196
multi-stage sampling 196
multicollinearity 151
multidimensional scaling 227
multilevel model (MLM) 162, 219
multinomial logistic regression analysis 158
multiple comparisons 106
multiple correlation coefficient (R2) 151
multiple imputation 71
multiple linear logistic regression see logistic regression
multiple (multivariable) linear regression 87, 146–54, 

158–9
appropriateness of model 150–1
assumptions 150–1
categorical explanatory variables 148–9
centring and scaling 149
choosing explanatory variables 152–3
equation 147–50
example 153–4
interactions 149–50
understanding computer output 151–2
uses 147–8

multiplication rule 30
multivariable linear logistic regression analysis see logistic 

regression
multivariable methods 226
multivariate analysis 226–7
multivariate analysis of variance (MANOVA) 227

National Centre for the Replacement, Refinement and 
Reduction of Animals in Research (NC3Rs) 255

natural pairing 68, 93
negative controls 61
negative correlation 128
negative predictive value (NPV) 204–6, 248
Nepal, foot-and-mouth disease 236, Plate 15.4
Newman–Keuls test 106
Neyman, Jerzy 209–10
NNT see number needed to treat
nominal scale 5, 158
nominal significance level 190
nomograms

Altman’s 185, 186
Fagan’s 205, 210
sample size estimation 185–8

non-ignorable missing data 72
non-inferiority studies 82–3
non-informative censoring 222
non-linearity 7, 8
non-parametric methods 165–80

advantages and disadvantages 166–7
ANOVA 105, 166, 173–5
correlation coefficient 175–8
more than two independent groups 173–4
more than two related groups 174–5
parametric equivalents 166
single sample 167
small sample sizes 86, 166
survival analysis 223
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two independent samples 171–2
two paired samples 168, 169–70
vs parametric methods 165–6

non-significance 77
Normal distribution 35–40

ANOVA assumption 105
areas under the curve and 35–8, 39
Binomial distribution approximation to 42
bivariate 129
establishing Normality 39–40
F-test assumption 101
linear correlation 129
linear regression 136, 137, 138
log-transformed data 40, 41
mathematical interrelationships 43
Poisson distribution approximation to 42–3
properties 37, 38
sample means 48, 49
sampling distribution of the proportion 52
Standard Normal distribution 37–8, 39
t-test assumption 85–6, 87, 89, 93
tables 324–6
transformations 181–2

Normal plot 40
normal range 25
not missing at random (NMAR) 72
notation, glossary of 341–4
NPV see negative predictive value
null hypothesis (H0) 76–7, 79

making a wrong decision 79–80, 80
not rejecting 77
rejecting 77

number needed to treat (NNT) 248–9, 273
confidence intervals for 249, 339

numerical measures 12, 19–24
numerical variables 5

choosing appropriate tests 370
diagnostic test 200–1, 202
diagrams 16–19
frequency distribution 13, 13
linear correlation and regression 126–7
measures of agreement 212–16
measures of dispersion 23–4
measures of location 20–3
sample size determination 185–7
scales 5
t-test 85

observational studies 56, 246, 247
confounding 68–9
critical appraisal 269–88
STROBE statement 255–6

observer bias 60
odds

of disease 59
posterior 211
prior 211

odds ratio (OR) 59, 156
confidence intervals for 339

one-sample sign test 167
one-sample t-test 87–9

non-parametric alternative 166, 167–9
one-tailed probability 38
one-tailed (or one-sided) test 76, 78

one-way ANOVA see analysis of variance (ANOVA), 
one-way

one-way repeated measures ANOVA 104
OR see odds ratio
ordered (ordinal) variables

choosing appropriate tests 370
logistic regression analysis 158–9
multiple linear regression 148–9
r × c contingency tables 119–20

ordinal logistic regression analysis 158–9
ordinal scale 5
ordinate 19
outcome (of interest) see effect (of interest)
outcome variables see response variables
outliers 20, 70

correlation coefficient and 132
logistic regression 157
regression diagnostics 138–9, 151

overall significance level 190
overview see meta-analysis

P-values 77, 79
avoiding spurious 100, 106
deriving 78
interpolation 78
making a decision using 77–8

paired observations 67–8
comparing two means 92–6
comparing two proportions 120–2
McNemar’s test 120, 121
non-parametric tests 168, 169–70
sample size estimation 187

paired t-test 92–6
assumption 93
misuse of 216
non-parametric alternatives 166, 167–71
one-way repeated measures ANOVA, extension of 104
procedure 93–6
sample size estimation 187

parallel group design 67, 73
parallel (diagnostic) testing 206
parameters (population) 20, 47

estimation from sample statistics 47
notation 47

parametric tests 165–6
non-parametric equivalents 166
when assumptions not satisfied 166

partial regression coefficients 147
Pearson, Egon 209–10
Pearson product moment correlation coefficient 127–32, 

175
confidence intervals for 130, 339
formula for calculating 129
hypothesis testing 129–32
measuring agreement 213, 214, 216
misuse 132
non-parametric alternative 166, 175–8
table 332
see also correlation coefficient

percentage, standard error of 52
percentage points 37
percentiles 14
performance indicators 238–9
pets, disease surveillance 237
pharmaceutical industry 3

non-parametric methods (cont.)
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PICO structure 245–6
pictogram 15
pie chart 15–16
pilot studies 72–3

internal 189
placebo 65–6
placebo effect 66
plasmacytosis, in mink 235
Poisson distribution 33

Normal approximation 42–3
Poisson regression 159–61
polycotomous logistic regression 158–9
polynomial regression 150
pooled estimate of variance 90, 91–2, 106
population 9, 46, 194

distinction from sample 46
parameters see parameters
restricted 5–6
types 9

population attributable fraction (PAF) 58
population attributable risk (PAR) 58
population-averaged approach 162
population size, estimation 196–8
population surveys 56
porcine respiratory and reproductive syndrome (PRRS) 

239–40
positive controls 61
positive correlation 128
positive predictive value (PPV) 204–6, 248
post hoc procedures 107, 286, 301
post-test probability 205, 248
posterior odds 211
posterior probability 205, 208, 210–11
power (of a test) 80

biological importance and 81
sample size determination 184–5

power-efficiency 167
PPV see positive predictive value
pragmatic vs explanatory approach 72
pre-test probability 205
precision 7, 8, 194

maximizing 66–8
predictive values 201, 204–6
predictor variables see explanatory variables
prevalence 57, 201

predictive values and 204
prevention 245
principal component analysis 227
prior odds 211
prior probability 205, 208, 210–11

choice of 209
PRISMA statement 190, 253, 256, 267–8
probability 28–30, 76, 77

a priori 29
conditional 30
definitions 29
frequency definition of 29
frequentist view 29, 210
one-tailed 38
post-test 205, 248
posterior 205, 208, 210–11
pre-test 205
prior see prior probability
properties 29–30
relevance of 28–9

rules 30
subjective view 29, 210
two-tailed 38–9
Type I and Type II errors 80

probability density function 34, 35, 36
probability distributions 30–43

continuous 33–42
see also Normal distribution

discrete 31–3, 34
relationships between 42–3
test statistics 78
theoretical 13, 30–1, 78

probability sampling see random sampling
prognosis, evidence-based approach 245, 248
prognostic factors see covariates
propensity score 69
proportion(s)

Binomial distribution 33
choosing appropriate tests 369
comparing more than two 117–20
comparing two

confidence intervals 116, 121, 340
independent groups 113–17
paired observations 120–2

confidence interval for 53, 113, 339
hypothesis tests 112–25
sampling distribution of 52
single, hypothesis testing 112–13
standard error of 52
test for trend in 119–20

proportional (scale) error 7, 8
proportional hazards 223
prospective studies 57
Protection of Animals Act, 1911 232
proteomics 240
protocol, study 69–70
publication bias 60, 190, 193
published scientific literature 3

critical appraisal 269–302
PubMed 247

Q test, Cochran’s 191, 216
qualitative variables see categorical variables
quality control 7
quantitative genetics 241–2
quantitative variables see numerical variables
quartiles 14
quasi-likelihood method 162
question, phrasing appropriate 245–6
QUORUM statement 256

r × c contingency table 114, 117–20
r2 130
R2 139, 151

adjusted 151
random allocation (randomization) 9–10, 62–5

critical appraisal 270
methods 63–5
need for 62–3

random effects 191–2, 211
random effects model 162, 219
random error 6, 7, 8
random intercepts model 162
random numbers 63

table 338
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random sampling 9–10, 194–6
cluster 195–6
simple 194–5
stratified 195

random selection 9
random slopes model 162
random variable 31
randomization see random allocation
randomized block design 104
randomized controlled trials (RCT) 61, 246, 247

critical appraisal 269–73, 288–302
range 23

interquartile 14, 23
reference 24–5, 50, 201

rank correlation coefficient
Kendall’s tau 175
Spearman see Spearman rank correlation coefficient

rank order 20
ranks 166, 169

sum of the 169, 172
rate 159
raw data 5
RCT see randomized controlled trials
readings 4–5
real (finite) population 9
recall bias 59
receiver operating characteristic (ROC) curve 202, 203
reciprocal transformation 183
reduction (in use of animals), principle of 231–2
reference interval (or range) 24–5, 50, 201
reference prior 209
refinement, principle of 232
REFLECT statement 60, 253, 254–5, 257–8
regression 146–64

assumptions 136–8
clustered data 161–3
diagnostics 136–9
linear see linear regression
logistic see logistic regression analysis
to the mean 142
multivariable (multiple) 87, 146, 147–59
Poisson 159–61
polynomial 150
prediction 141–2
repeated measurements 219
univariable (simple) 132–42, 146
variation explained by 139

regression coefficients 133–4
confidence intervals for 140, 339
logistic regression 155–6
partial 147

regression equation
multiple linear 147
simple linear (y on x) 132–4

regression line
assessing goodness-of-fit 139
confidence band, region or interval 141–2
equation 132–4
slope see slope
see also linear regression

regression models 69, 133, 146–7, 161
regressors see explanatory variables
relative frequencies 13, 29
relative frequency distributions 13
relative rate see incidence rate ratio

relative risk (RR) 57–8, 248
confidence interval for 339

relative risk reduction (RRR) 248–9
reliability

coefficient of 213
of measurements 7–9, 211

repeatability 7, 211–18
categorical variables 216–18
coefficient 212–13
erroneous analysis 216
numerical variables 212–16

repeated measures 66, 219–21
analysis of variance 104
example 220–1
incorrect analysis 220
methods of analysis 219–20
see also clustered data

repeated significance tests 190
replacement, sampling with 53
replacement of animals, principle of 232
replication 66
reporting guidelines 252–66
reproducibility see method agreement
reproducibility coefficient 212–13
research, animal

critical appraisal of reported 269–302
ethical issues 230–2, 233, 252
legislation controlling 232–3
reporting guidelines 252–6
three Rs 231–2

residual variance (residual mean square) 136, 139
residual variation 103, 139
residuals 133–4

regression diagnostics 137, 138, 150–1
spatial autocorrelation 234

response (outcome) variables 132, 147
binary 154–8
multivariate analysis 226–7
nominal 158
ordinal 158–9
see also y variable

restricted randomization 63–4
retrospective studies 57, 59
Review Manager 190
rights, animal 230–1
risk difference (RD) 58
risk factors 56
risk of disease 57, 239
risks, competing 224–5
road deaths, elk and deer 235
robust procedures 85–6, 166
robust standard errors 161–2
ROC (receiver operating characteristic) curve 202, 203
rounding errors 6
RR see relative risk
RSPCA (Royal Society for the Prevention of Cruelty to 

Animals) 232
runs test 87

sample 9, 46, 194
estimation of population parameters from 47
means, distribution of 48
notation 47
random see random sampling
representative 9, 48
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sample size 184–9
adjustments 188–9
biological importance and 81
Chi-squared test 187–8
choice of hypothesis test and 86
critical appraisal and 271, 285, 298–9
determination 184–5
equivalence or non-inferiority studies 83
fixed plans vs sequential 189
group randomized trial 64–5
importance of 184
internal pilot study 189
maximizing 66
meta-analysis 193
nomogram 185–8
non-parametric tests 86, 166
power of test and 184–5
sampling distribution of mean and 49
sequential trials 189
t-tests 86, 89, 90

sample surveys 56, 194
sampling 46, 194–8

cluster 195–6
distance 198
methods 194–8
multi-stage 196
random (probability) 9–10, 194–6
with replacement 53
spatial statistics 235
stratified 195
systematic 196
technical terms 194
wildlife populations 196–8

sampling distribution
of the mean 48–50
of the proportion 52

sampling error 47, 141
in relation to a proportion 52
in relation to the mean 48

sampling units 194
sampling variation 48
saturated model 156
scale (of measurement) 5
scale error 7, 8
scaling 149
scatter diagram 19, 127
sceptical prior 209
Scheffe’s test 106
screening 200
SD see standard deviation
SE see standard error
sealed envelopes 63
searching, for evidence 246–7
selection bias 60, 194
self-pairing 67, 93
semiparametric model 223
sensitivity (of a test) 201–2, 248

logistic regression to estimate 203–4
with no gold standard 203

sensitivity analysis 72, 138, 209
sequential analysis 189
sequential (diagnostic) testing 206
sequential trials 189
serial correlation 219
series (diagnostic) testing 206

Shapiro–Wilk W test 40
sign test 166, 167–9

one sample 167
paired data 168
table 334
vs Wilcoxon signed rank test 171

significance, statistical 77, 80–1
significance level 78

nominal 190
overall 190

significance test 79
repeated 190
vs confidence interval approach 81–2

simple imputation 71
simple linear regression 132–42, 146

ANOVA table 136, 139, 140
assumptions 136–7
diagnostics 136–9
equation 132–4
example 134–6
predicting y from a given x 141–2
see also regression; regression line

simple random sampling 194–5
simple randomization 63
Singer, Peter 230–1
single-blind trials 65
skewed distribution 17–18
skewness, measures of 40
slope (regression line) 133, 134

confidence interval for 140
investigating 139–41
standard error of 140

spatial autocorrelation 234
spatial statistics 233–6

applications 234–5, 239
data display 234
example 239
potential hazards 235–6

Spearman rank correlation coefficient 120, 129, 166, 
175–8

table 333
specificity (of a test) 201–2, 248

logistic regression to estimate 203–4
with no gold standard 203

split plot design 105
spread, measures of 23–4
SPSS statistical software 2
square of the correlation coefficient (r2) 130
square root transformation 183
square transformation 182, 183, 184
squares

method of least 134, 147
sum of 103

stability (of a measurement) 9
standard deviation (SD) 24

in measures of agreement 212–13
of the proportion 52
in reference range 25, 50
in sample size determination 185, 186, 187
sampling distribution of the mean 48–9
vs standard error of the mean (SEM) 50

standard error (SE)
of the estimate 47
of the mean (SEM) 49–50
of measurement 213
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meta-analysis 192, 193
of the percentage 52
of the proportion 52
robust, clustered data 161–2
of the slope 140
vs standard deviation 50

Standard Normal distribution 37–8, 39
tables 324–6

standardized difference 185
Standardized Normal Deviate (SND) 37, 38–9
STARD statement 253, 256, 263–4, 265
Stata statistical software 2
statistic

notation for 47
sample 47
test see test statistic

statistical heterogeneity 191–2
statistical inference 10, 46–7
see also inferential statistic
statistical significance 77

vs biological importance 80–1
statistics

descriptive 10, 12–27, 28, 75
explanation of 2–3
inferential see inferential statistics
relevance of 3–4
role of 247–9
sample estimates 20
types of procedures 10

stem-and-leaf diagram 18
step-down selection, backward 152
step-up selection, forward 152
stepwise selection 152
stopping rules 189
strata 67, 69, 195
stratified randomization 63
stratified sampling 195
STROBE statement 253, 255–6, 261–3
Student’s t-distribution see t-distribution
studies

critical appraisal of reported 269–302
pilot see pilot studies
protocols 69–70

study design
case–control 58–9, 247
cohort 57–8, 247
controls in 61–2
critical appraisal 270, 284, 298
cross-sectional 56, 247
grouping of data 86–7
importance in clinical trials 60–1
longitudinal 56–7
matched 59, 69
observational 56, 246, 247
principles see experimental design
types 55–9
unmatched 59

subgroups 69
correlation coefficient 132
meta-analysis 191–2

subjective view of probability 29, 210
substantial prior 209
sum of squares 103
sum of the ranks 169, 172

summarizing data 12
summary measures 19–24

approach, repeated measurements 219–20
clustered data 161
of dispersion (spread) 23–4
of location (averages) 20–3

superiority trials 82
surveillance, defined 237

see also veterinary surveillance
surveys 56
survival analysis 221–6
survival curve

Kaplan–Meier 222, 225
particular distributional form 224

survival time 221
median 222, 225–6, 248

symbols, mathematical 341
symmetrical distribution 17
systematic allocation 62
systematic effects, on reliability 211, 212, 216
systematic error 6
systematic offset (zero) error 7, 8
systematic reviews 190, 246, 247

reporting guidelines 256, 267–8
systematic sampling 196

t-distribution 41, 43
sample size and 86
table 326, 327

t-test 85–99
data requirements 85–6
modified 91–2
multiple linear regression 152
non-parametric alternatives 166, 167–73
one sample 87–9
paired see paired t-test
sample size implications 86
study designs 86–7
two sample (unpaired) see two-sample t-test

tables 12, 14–15
contingency see contingency tables
rules for constructing 15

tails, frequency distribution 17
technical errors (or variations) 6–7
terms, glossary of 345–67
test statistic 77, 79

degrees of freedom 78–9
deriving P-value 78
see also specific tests

theoretical probability distribution 13, 30–1, 78
three Rs, principles of 231–2, 255
time-dependent covariates 223–4
time series 218–19
trait 240
transcriptomics 240
transformations 166, 181–3, 341

linearizing 182
Normalizing 181–2
t-test 86, 87, 93
variance stabilizing 182–3, 184

treatment
assessment of response to 65
evidence-based approach 245, 248
groups, assignment to 62–5
withdrawals from 72, 222

standard error (SE) (cont.)
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treatment effect 76
see also effect (of interest)

trend
in proportions 119–20
in time series 218–19

trials, clinical see clinical trials
true positive rate (TPR) 202
tuberculosis, bovine 234, 239, Plate 15.1, Plate 15.5
Tukey’s test 106
two-by-two (2 × 2) contingency table 114

comparing two proportions 114–17
two-sample non-parametric tests 167, 168–72
two-sample (unpaired) t-test 89–92

assumptions 89
equal variances 89–91
non-parametric alternatives 166, 171–3
one-way ANOVA 103–4
potential for misuse 100
sample size estimation 185–6
unequal variances 91–2

two-tailed probability 38–9
two-tailed (or two-sided) test 76, 78
two-way ANOVA 104

non-parametric alternative 166, 174–5
Type I error 79–80
Type II error 79–80

unbiased estimate 48, 194
uncorrelated variables 128
unexplained variation 103, 139
unimodal distribution 23
uninformative censoring 222
uninformative prior 209
units

experimental 64
sampling 194

univariable (simple) linear regression 132–42, 146
univariate analysis 226
unmatched design 59
unpaired t-test see two-sample t-test
upper quartile 14

vague prior 209
validity

of diagnostic tests 201–2, 203–4
evidence-based approach 248, 250
of measurements 9

values 5
variables 4–5

binary see binary variables
categorical (qualitative) see categorical variables
confounding 68–9
critical appraisal 270–1, 284–5, 298
discrete (discontinuous) 5
dummy 148–9, 155
explanatory (independent, predictor) see explanatory 

variables
in linear correlation and regression 126
numerical (quantitative) see numerical variables
random 31

response (dependent, outcome) see response 
variables

types 5
variance(s) 23–4

analysis of see analysis of variance
comparing two 100–2
pooled estimate of 90, 91–2, 106
residual 136, 139
stabilizing transformations 182–3, 184
two groups with equal 89–91
two groups with unequal 91–2

variance inflation factor (VIFi) 151
variance ratio test see F-test
variation(s)

biological 5, 6
coefficient of 24
in measurements 5–7
sampling 48
technical 6
unexplained (residual) 103, 139

vehicle (solvent) 66
verification bias 201–2
veterinary surveillance 237–40

data analysis 239, Plate 15.5
methods 238–9
purposes 237–8
uses in UK 239–40

Wald test 156, 159
wash-out period 73
weighted kappa coefficient 218
weighted mean 192
welfare, animal 231, 233
Wilcoxon rank sum test 166, 171–3

tables 336, 337
Wilcoxon signed rank test 166, 169–71

table 335
wildlife

disease surveillance 237–8
migration patterns 235
population sampling 196–8

withdrawals, treatment 72, 222
within-animal studies 219

x variable
correlation analysis 127, 128, 129
predicting y from 141–2
regression analysis 127, 132, 133–4, 147
see also explanatory variables

y variable
correlation analysis 127, 128, 129
prediction from x 141–2
regression analysis 127, 132–4, 147
see also response variables

Yates’ correction 116

z-values 37, 38–9
zero error 7, 8
zoonoses 238
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Plate 15.1  The change in bovine tubercu-
losis incidence in Great Britain between 
1997 and 2002 (from http://www.scotland.
gov.uk/Publications/2004/02/18855/32759, 
accessed 17 October 2012). Each map 
shows confirmed breakdown incidents 
commencing during a 12-month period. (A 
breakdown is defined as a herd with at least 
one animal with a positive TB skin test 
reaction.) The area enclosed by the circle is 
proportional to the number of skin test 
reactors in each breakdown. (Crown copy-
right. Contains public sector information 
licensed under the Open Government 
Licence v1.0.)

Plate 15.2  Cartogram of territory size showing the proportion of worldwide meat production per country (from http://www.
worldmapper.org, accessed 17 October 2012, with permission. © SASI Group (University of Sheffield) and Mark Newman 
(University of Michigan)).

http://www.scotland.gov.uk/Publications/2004/02/18855/32759
http://www.scotland.gov.uk/Publications/2004/02/18855/32759
http://www.worldmapper.org
http://www.worldmapper.org


Plate 15.3  Meas-
urement of the 
coastline of 
mainland Great 
Britain depending 
on three different 
unit distances 
shown in the bars 
below each 
illustration (from 
Mandelbrot, 1967, 
reprinted with 
permission from 
American 
Association for 
the Advancement 
of Science).

Plate 15.4  (a) The three ecogeographic regions 
of Nepal. (b) The total number of Village  
Development Committees (VDCs), and district-
specific ratio of observed-to-expected foot-and-
mouth-positive VDCs (Oi/Ei) for Nepal in 2004. 
The dark circle represents a primary spatial 
cluster (RR = 7.6) and the thin circle represents 
a secondary spatial cluster (RR  =  2.7) of foot-
and-mouth-positive VDCs identified using the 
spatial scan statistic (published under the Crea-
tive Commons Attribution License and repro-
duced with permission of the authors and the 
publisher, Springer).

CHINA

CHINA

(a)

(b)

N

N

Terai

Hill

Mountain

INDIA

INDIA

0 80 160 320
Kilometers

0 80 160 320
Kilometers

Oi/Ei
0–0.6
0.7–2
3–4
5–9

12–36
37–57
58–82
83–110

Number of VDCs

Primary cluster (Nuwakot, Kathmandu)
Secondary cluster (Mahottari, Saralahi)



Plate 15.5  The proportions of herds (expressed as percentages) with official tuberculosis-free status withdrawn (OTFW) 
incidents by county between July 2009 and June 2010 (from http://archive.defra.gov.uk/foodfarm/farmanimal/diseases/atoz/tb/
documents/btb-surv-report.pdf, accessed 17 October 2012. Crown copyright. Contains public sector information licensed under 
the Open Government Licence v1.0).

http://archive.defra.gov.uk/foodfarm/farmanimal/diseases/atoz/tb/documents/btb-surv-report.pdf
http://archive.defra.gov.uk/foodfarm/farmanimal/diseases/atoz/tb/documents/btb-surv-report.pdf


Plate 15.6  Map of the Netherlands showing the 12 provinces, the mandatory vaccination area (2009) and the geographic 
locations of 123 participating dairy goat farms (median 782 goats, range 120–4146) and 211 non-participating farms (median 
689 goats, range 105–4733), the serological and bulk milk PCR (polymerase chain reaction) status of participating farms and 
bulk milk PCR status only of non-participating farms (from Schimmer et al., 2011, reproduced with permission of the authors 
and Biomed Central).
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