Stjepan Bogdan AlC

Frank L. Lewis
Ldenko Kovacic
José Mireles Jr.

SadUeApY

[0J3U0) [eLIISNpUU|

Manufacturing
Systems Control
Design

A Matrix-based Approach

[———— ———

@ Springer

Advances in Industrial Control

Other titles published in this Series:

Digital Controller Implementation
and Fragility

Robert S.H. Istepanian and

James F. Whidborne (Eds.)

Optimisation of Industrial Processes
at Supervisory Level

Doris Sdez, Aldo Cipriano and
Andrzej W. Ordys

Robust Control of Diesel Ship Propulsion
Nikolaos Xiros

Hydraulic Servo-systems
Mohieddine Jelali and Andreas Kroll

Strategies for Feedback Linearisation
Freddy Garces, Victor M. Becerra,
Chandrasekhar Kambhampati and
Kevin Warwick

Robust Autonomous Guidance
Alberto Isidori, Lorenzo Marconi and
Andrea Serrani

Dynamic Modelling of Gas Turbines
Gennady G. Kulikov and Haydn A.
Thompson (Eds.)

Control of Fuel Cell Power Systems
Jay T. Pukrushpan, Anna G. Stefanopoulou
and Huei Peng

Fuzzy Logic, Identification and Predictive
Control

Jairo Espinosa, Joos Vandewalle and
Vincent Wertz

Optimal Real-time Control of Sewer
Networks

Magdalene Marinaki and Markos
Papageorgiou

Process Modelling for Control
Benoit Codrons

Computational Intelligence in Time Series
Forecasting
Ajoy K. Palit and Dobrivoje Popovic

Modelling and Control of mini-Flying
Machines

Pedro Castillo, Rogelio Lozano and
Alejandro Dzul

Rudder and Fin Ship Roll Stabilization
Tristan Perez

Hard Disk Drive Servo Systems (2nd
Edition)

Ben M. Chen, Tong H. Lee, Kemao Peng
and Venkatakrishnan Venkataramanan

Measurement, Control, and
Communication Using IEEE 1588
John Eidson

Piezoelectric Transducers for Vibration
Control and Damping

S.0. Reza Moheimani and Andrew J.
Fleming

Windup in Control
Peter Hippe

Nonlinear Ha/Ho, Constrained Feedback
Control

Murad Abu-Khalaf, Jie Huang and
Frank L. Lewis

Practical Grey-box Process Identification
Torsten Bohlin
Publication due May 2006

Modern Supervisory and Optimal Control
Sandor A. Markon, Hajime Kita, Hiroshi
Kise and Thomas Bartz-Beielstein
Publication due July 2006

Wind Turbine Control Systems

Fernando D. Bianchi, Herndn De Battista
and Ricardo J. Mantz

Publication due August 2006

Soft Sensors for Monitoring and Control of
Industrial Processes

Luigi Fortuna, Salvatore Graziani,
Alessandro Rizzo and Maria Gabriella
Xibilia

Publication due August 2006

Practical PID Control

Antonio Visioli

Publication due November 2006

Magnetic Control of Tokamak Plasmas
Marco Ariola and Alfredo Pironti
Publication due May 2007

Stjepan Bogdan, Frank L. Lewis, Zdenko Kovacic
and José Mireles Jr.

Manufacturing Systems
Control Design

A Matrix-based Approach

With 152 Figures

@ Springer

Stjepan Bogdan, PhD

Laboratory for Robotics and Intelligent
Control Systems

Department of Control and
Computer Engineering

Faculty of Electrical Engineering
and Computing

University of Zagreb

Zagreb

Croatia

Frank L. Lewis, PhD

Zdenko Kovaci¢, PhD

Laboratory for Robotics and Intelligent
Control Systems

Department of Control and
Computer Engineering

Faculty of Electrical Engineering
and Computing

University of Zagreb

Zagreb

Croatia

José Mireles Jr., PhD

Automation and Robotics Research Instituto de Ingenieria y Tecnologia

Institute Universidad Auténoma de Ciudad Judrez
University of Texas (Arlington) Cd. Judrez
Fort Worth, Texas Chihuahua
USA México

British Library Cataloguing in Publication Data

Manufacturing systems control design : a matrix-based
approach. - (Advances in industrial control)
1.Industrial engineering - Automatic control 2.Process
control 3.Matrices
I.Bogdan, Stjepan
629.8

ISBN-13: 9781852339821

ISBN-10: 1852339829

Library of Congress Control Number: 2006924637

Advances in Industrial Control series ISSN 1430-9491
ISBN-10: 1-85233-982-9 e-ISBN 1-84628-334-5
ISBN-13: 978-1-85233-982-1

Printed on acid-free paper

© Springer-Verlag London Limited 2006

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive, Natick,
MA 01760-2098, USA. http://www.mathworks.com

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed in Germany
987654321

Springer Science+Business Media
springer.com

Advances in Industrial Control

Series Editors

Professor Michael J. Grimble, Professor of Industrial Systems and Director
Professor Michael A. Johnson, Professor (Emeritus) of Control Systems
and Deputy Director

Industrial Control Centre

Department of Electronic and Electrical Engineering
University of Strathclyde

Graham Hills Building

50 George Street

Glasgow G1 1QE

United Kingdom

Series Advisory Board

Professor E.F. Camacho

Escuela Superior de Ingenieros
Universidad de Sevilla

Camino de los Descobrimientos s/n
41092 Sevilla

Spain

Professor S. Engell

Lehrstuhl fiir Anlagensteuerungstechnik
Fachbereich Chemietechnik

Universitdt Dortmund

44221 Dortmund

Germany

Professor G. Goodwin

Department of Electrical and Computer Engineering
The University of Newcastle

Callaghan

NSW 2308

Australia

Professor T.]. Harris

Department of Chemical Engineering
Queen’s University

Kingston, Ontario

K7L 3N6

Canada

Professor T.H. Lee

Department of Electrical Engineering
National University of Singapore

4 Engineering Drive 3

Singapore 117576

Professor Emeritus O.P. Malik

Department of Electrical and Computer Engineering
University of Calgary

2500, University Drive, NW

Calgary

Alberta

T2N 1N4

Canada

Professor K.-F. Man

Electronic Engineering Department
City University of Hong Kong

Tat Chee Avenue

Kowloon

Hong Kong

Professor G. Olsson

Department of Industrial Electrical Engineering and Automation
Lund Institute of Technology

Box 118

§-221 00 Lund

Sweden

Professor A. Ray

Pennsylvania State University
Department of Mechanical Engineering
0329 Reber Building

University Park

PA 16802

USA

Professor D.E. Seborg

Chemical Engineering

3335 Engineering II

University of California Santa Barbara
Santa Barbara

CA 93106

USA

Doctor K.K. Tan

Department of Electrical Engineering
National University of Singapore

4 Engineering Drive 3

Singapore 117576

Doctor I. Yamamoto

Technical Headquarters

Nagasaki Research & Development Center
Mitsubishi Heavy Industries Ltd

5-717-1, Fukahori-Machi

Nagasaki 851-0392

Japan

To Jasenka
S.B.

To Chris, my son
FL.L.

To Dubravka
Z.K.

To Josue, Joel, Alena, and Aaron, my loved kids
JM.

Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has
an impact on all areas of the control discipline. New theory, new controllers,
actuators, sensors, new industrial processes, computer methods, new applications,
new philosophies..., new challenges. Much of this development work resides in
industrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended
exposition of such new work in all aspects of industrial control for wider and rapid
dissemination.

In some areas of manufacturing, the elements of a flexible manufacturing
system form the key components of the process line. These key components are
four-fold: a set of programmable robots and machines, an automated materials-
handling system that allows parts to be freely routed and re-routed, a buffer storage
system where parts and partly-assembled components can wait until required for
further processing and assembly and finally, a supervisory control system. The
technology employed to coordinate and control all these components as a working
system is usually based on programmable logic controllers. The use of this
automation hardware and software in manufacturing is designed to yield significant
cost reductions and to enhance quality. Economic gains are achieved through the
ability of these systems to work continuously (24/7, all year round) and flexibly so
that rapid on-line supervisory reprogramming can be performed for the
modification and improvement of product parts or the assembly of different
products. Unlike human operators, robots and machines do not suffer from
biological fatigue so that enhanced product quality can be attained through better
repetitive accuracies and consistent mechanical performance.

To achieve the economic and quality goals of flexible manufacturing requires
the use of some sophisticated supervisory control algorithms to direct the process
scheduling and despatching tasks and to handle any on-line dynamic conflicts that
might emerge. In general, these decisions for sequencing operations are
constrained by limited resources and shared resources. The other very distinctive
characteristic of these supervisory control problems is that the system under
supervision is a discrete-event system. In this case, the state-space for the system

X Series Editors’ Foreword

attains discrete values and the transition from one state to another is caused by an
event taking place. This adds to the difficulty in analysing the properties of these
systems because the system description is often linguistic unlike the continuous-
time equation-based descriptions with which most control engineers are familiar;
however, many of these scheduling problems are central issues in manufacturing
studies per se and as such have already been extensively investigated. For example,
many of the methods of operational research were originally driven by the
supervisory control problems of manufacturing processes. From this simple
background perspective, Professor Stjepan Bogdan and his colleagues present a
nicely self-contained treatment of the supervisory control problems of flexible
manufacturing systems using recently developed approaches and tools. This new
entry to the Advances in Industrial Control series has four components. Firstly, the
introductory chapters 1 and 2 create the framework for understanding flexible-
manufacturing-system concepts and discrete-event system descriptions.
Particularly interesting is the discussion of system types — continuous-time, hybrid
and discrete — given in Chapter 2 which uses in-depth examples to help the control
engineer appreciate the similarities and differences between the three types.

A substantial part of the book, Chapters 3 to 5, pursues matrix models for
manufacturing systems; however, it should be noted that because the underlying
systems are discrete-event systems, these are matrices defined over an and or

(A, V) algebra. In these chapters, it is fascinating to learn how rule-based systems

can be given matrix representation and how there are links to other tools like
directed graphs for the analysis of the control of these systems.

Quite often in this text the discussion of manufacturing system properties uses
the tools of Petri nets. Petri nets have evolved and developed considerably since
their original introduction in the early 1960s. In Chapter 6, the authors present a
full introduction to their use in the studies of manufacturing system problems, for
example, links between Petri nets and the matrix methods of earlier chapters are
established. The authors also usefully describe and demonstrate their own
graphical Petri-net-simulation software tool that is available for download for use
by the interested reader.

To complete the monograph, Chapter 7 reports on other mainstream simulation
tools for virtual factory modelling. The potentially disastrous economic effects of a
poorly defined factory layout or an inefficient manufacturing control strategy has
ensured the development of a substantial set of factory simulation tools often with
advanced graphics for visualisation of operational dynamics and with various
analysis tools to assess and compute performance metrics. The thorough survey
presented by Professor Bogdan and his colleagues provides a very fitting
concluding chapter for this stimulating monograph on flexible manufacturing
systems.

M.J. Grimble and M.A. Johnson
Industrial Control Centre
Glasgow, Scotland, U.K.

Foreword

In the late 1980s, the strong needs for modeling, analysis, control, and simulation
of complex systems especially computer-integrated manufacturing systems
demanded the academic researchers and industrial engineers to seek and
investigate better methodologies and tools. Such tools must be able to deal with
such system characteristics as asynchronous events, sequences, concurrency,
synchronization, mutual exclusion, deadlocks, and choices. While state machines
or automata were popular in many applications, they were soon proved to be
inadequate since the state explosion problems would be met at the very beginning
of system design. Any design flaws or incompleteness may invalidate the entire
system design and frequently require rather cumbersome recovery. On the other
hand, Petri nets, invented by C. A. Petri in his 1962’s doctoral dissertation, are well
equipped with the required capabilities to handle the above-mentioned
characteristics. They thus gained their popularity among the researchers of discrete
event systems and industrial applications in manufacturing automation.

The research group at Rensselaer Polytechnic Institute (RPI) was established
and led by Professors Frank DiCesare and Alan Desrochers. It was supported by
many leading industrial companies such as IBM, GM, Johnson and Johnson, Sun
Microsystems, and Digital Equipment Corporation via an eight-year long
Computer Integrated Manufacturing Research Program of the Center for
Manufacturing Productivity and Technology Transfer at RPI. They obtained many
significant research and application results. Notably, as the first Ph.D. graduate of
this group in this area, Dr. Robert Al-Jaar proposed to use generalized stochastic
Petri nets for modeling and analysis of production lines. Their work led to their
1994 book Applications of Petri Nets in Manufacturing Systems: Modeling,
Control, and Performance Analysis by IEEE Press. As the second Ph.D. graduate
of the group, | developed the concepts of parallel and sequential mutual exclusion
structures, top-down, bottom-up and hybrid synthesis methods, Petri net-based
discrete event controller design and implementation procedures for flexible
manufacturing systems (FMS). The results were summarized into the first
monograph of its kind, Petri Net Synthesis for Discrete Event Control of
Manufacturing Systems, co-authored with Frank DiCesare, Kluwer Academic
Publisher in 1993. Dr. Fei-Yue Wang, presently Professor of the University of

xii Foreword

Arizona and the Institute of Automation, Chinese Academy of Sciences, pioneered
in applying Petri nets to designing intelligent machines and building intelligent
control foundation together with his advisor, Dr. George Saridis. He also
developed a Petri net method for communication protocol design and performance
analysis for manufacturing message specification. From the same group, Dr.
Inseon Koh, presently Professor of Hong-lk University, Korea, perfected a bottom-
up method to synthesize Petri nets with desired properties. Dr. Jagdish S. Joshi
conducted performance analysis of network and database transactions in a CIM
system. Dr. MuDer Jeng, presently Professor of National Taiwan Ocean
University, invented a new class of Petri nets suitable for modeling automated
manufacturing systems. Dr. Doo Yong Lee, presently Professor of Korea
Advanced Institute of Technology, pioneered in using various heuristics to guide
optimal or sub-optimal schedule search in timed Petri net models of flexible
manufacturing systems. Dr. Alessandro Giua, presently a professor of University
of Cagliari, Italy, developed a supervisory control theory in the framework of Petri
nets. Dr. Tiehua Cao and Professor Arthur C. Sanderson combined fuzzy logic
theory and Petri nets and developed fuzzy Petri nets for intelligent task planning in
a robotic system. The research led to the publication of Intelligent Task Planning
Using Fuzzy Petri Nets in the Series in Intelligent Control and Intelligent
Automation of World Scientific Publisher in 1996. Dr. Hauke Jungnitz developed
approximation methods for stochastic timed Petri nets. Dr. James F. Watson
formulated a method for performance analysis of discrete event systems with non-
exponential random time distributions and state space estimation of a given Petri
net model.

The above-mentioned work addressed various issues from model synthesis,
performance analysis, simulation, deadlock avoidance, and supervisory control
design and made significant contributions to the field of Petri nets and their
applications to manufacturing automation. Yet one significant problem remains
unsolved: given manufacturing system specifications expressed in Bill of
Materials, Assembly Tree, Task Sequencing matrix, and Resource Requirement
Matrix, how can one automatically generate a Petri net model and related design
for analysis, control, and simulation of a flexible manufacturing system (FMS).
This book written by a group of outstanding researchers under the leadership of Dr.
Frank Lewis indeed presents an elegant solution to the above long-lasting problem.
Their proposed matrix-based approach represents one of the most significant
innovations to the area of Petri nets and related discrete-event modeling
approaches for manufacturing system control design. The authors are able to

Foreword xiii

identify a unique mapping between the Petri net elements and system
specifications and reveal the underlying relations for a number of design and
analysis tools used in industrial engineering. More importantly, the research group
is able to link what they do to the generation of control code required by
Programmable Logic Controllers (PLC). PLC have been the industrial horse in
almost every sector of automated manufacturing and packaging industry for three
decades.

This present book contributes to the area of manufacturing automation in a
number of ways. First, it comprehensively presents a matrix-based modeling and
controller design framework. It uses an intelligent material handling workcell to
illustrate clearly various steps in matrix-based controller design. Second, the book
addresses how to utilize matrices for analyzing structural properties of
manufacturing systems. It reveals the underlying relationship among graph
descriptions, max-plus algebra, and the proposed matrix models. Third, the book
investigates a very important yet difficult class of manufacturing systems, namely,
multiple re-entrant flowlines. It answers how deadlocks can be avoided in such
systems. PLC-controlled flexible manufacturing systems are used to illustrate
various deadlock avoidance strategies. Fourth, the book presents Petri nets and
their complementary character with the matrix models. A computer-aided design
tool called Petri.NET is developed and presented, allowing researchers and
engineers to model and simulate FMS using either Petri nets or matrix models.
Finally, the book presents the basics of virtual factory modeling and simulation and
a humber of CAD tools used in industry. Its contribution includes a web tool called
FlexMan that can be used to design and simulate of FMS based on virtual factory
models and matrix-based methodologies. Such examples as palletization workcell,
FESTO FMS, robotic brick-handling system, Volvo body-manufacturing line, and
assembly station are used to demonstrate these tools.

In conclusion, the authors have well presented their innovative manufacturing
control design methods based on matrices, Petri nets and other related discrete-
event modeling tools. The book clearly advances the state-of-the-art in the area of
flexible manufacturing automation and its impact to the area will last long, not only
methodologically but also practically.

MengChu Zhou, Ph. D. and Professor
New Jersey Institute of Technology
Newark, NJ
http://web.njit.edu/~zhou

Preface

Being aware that our planet is inhabited with more than six billion human beings
having their needs for food, cloths, shelter, medical care, education, transportation,
entertainment and many more, efficacious manufacturing of various goods
becomes extremely important for the global society.

Even in these days, manufacturing is performed by individuals, and such
products, in low volumes, may have a lot of success on the market. Let us just
mention exclusive cars, jewellery or some pieces of finest art. High volume
production would not be possible without carefully planned production technology,
highly automated production processes and engagement of specially designed
automation equipment.

The success of one product on the market depends on many factors, how the
product looks like, what kind of usefulness it has, how many versions of product
exist etc. Investigations of the car market have found long time ago that customers
make their decisions based on overall assessment of car manufacturer (e.g.,
reliability of the vehicle, quality of the service, experience in manufacturing), but
they are also judging the individual qualities of the vehicle they want to buy. In this
context, sometimes only colour becomes the reason why the customer will pick
that car instead of another. What we say about cars holds for any other product.

Many products have very similar constituent parts or the same parts arranged in
the slightly different way. The production strategy which has a goal to
accommodate to different customers' demands leads naturally to a flexible
manufacturing concept. For example, contemporary car industry cannot be
imagined without robots, machine tools, belt conveyers, part feeders and other
elements. The strength of all single components lies in their integration into a
flexible manufacturing system (FMS).

FMS control triggers many parallel worlds - continuous and discrete control
loops, as well as many discrete events occurring synchronously or stochastically.
In order to be able to control the FMS, sensors, actuators, and controllers, viewing
from the lowest to the highest control level, constitute a network. This means that
dealing with FMS control actually means dealing with the distributed network-
based control. Usually, programmable logic controllers or PC-based solutions are
used for implementation of such controllers. Therefore, it is very important that

xvi Preface

methods and algorithms concerned with analysis and synthesis of FMS control
have a form and features which would make them suitable for implementation in a
dedicated hardware.

Flexible manufacturing systems are "live" systems composed of a group of
allocated resources and tasks being assigned. They can assume different structures
and undergo different control strategies depending on the consequences of issued
commands (e.g. a new robot has been added to the system) or the states of
particular FMS components (e.g. one of the robots is out of order). Under such
conditions, sequencing of tasks, parallelism of missions, collision of concurrent
decisions, and negligence of planned actions are problems an FMS control designer
must confront with.

The authors of this book have been actively involved in the FMS control area
more than a decade trying to find such FMS control design methods which would
guarantee the stability and the functionality of the control system at one hand, and
which would be simple enough, easily implemental and effective in practical
engineering applications on the other.

The purpose of this book is to describe the use of matrical approach to the FMS
control design. First we introduce the reader with different techniques of FMS
control design and then we elaborate the advantages of matrix-based FMS control
design, mentioning just one, an ability to convert the matrix-based controller into
an effective PLC executable code.

The topics are divided into seven chapters. Chapter 1 is a descriptive
introduction into a world of FMS classification, modeling, simulation and design
of their controllers. The Chapter 2 gives a brief review of discrete event systems
with an emphasis on the time-driven and event-driven systems. Chapter 3 describes
the theory and methodology of creating a matrix model and a matrix controller.
The reader will also find the example of matrix controller design for an intelligent
material handling workcell. Chapter 4 is concerned with an analysis of matrix
methods for manufacturing systems. The description of graphs, principles of string
composition, and max-plus algebra is given as well as their relations to the matrix
model. Manufacturing system structural properties given in the matrix form are the
subject of Chapter 5. The focus has been set on the properties of so called multiple
re-entrant flowlines (MRF) that are important for the control synthesis, such as
circular waits, siphons and traps, and critical subsystems. The discussion is
extended also to the free choice multiple re-entrant flowlines (FMRF), whose
control properties are even more demanding. Deadlock avoidance strategies are
presented and illustrated on the example of a PLC-controlled FMS. Chapter 6 deals
with Petri nets that are a widely used tool for MS modeling and control design. The
relations between Petri nets and the matrix form are given in order to show their
complementary character. A program tool Petri. NET developed at the Laboratory
for Robotics and Intelligent Control Systems that utilizes both Petri nets and matrix
forms for modeling and simulation of FMS is described. Chapter 7 describes basic
principles of virtual factory modeling and simulation as a powerful means of FMS
performance visualization. Several commercial program packages for virtual
modeling are shortly presented. In addition, a web tool FlexMan developed by the
authors and implemented to serve for off-line design and simulation of flexible

Preface xvii

manufacturing systems using a matrix model and a virtual model of the FMS is
described.

Many individuals have contributed to this book. Special credits go to our
colleagues Ayla Gurel and Octavian Pastravanu. We are also indebted to the
students who contributed by implementing aforementioned program tools and by
performing some of the simulation and practical experiments while working on
their diploma and masters theses. This list includes, in particular, Bruno Birgmajer,
Goran Genter, KreSimir Petrinec, Tomislav Reichenbach, and Nenad Smoli¢-
Rocak.

Zagreb, 10.03.2006.
Stjepan Bogdan
Frank L. Lewis
Zdenko Kovacié¢
Jose Mireles

Contents

1

INErOAUCTION.ooiiiiiiiiiiiiic et e 1
1.1 BacK@IoUnd.......cc.oeoviiiiiiieiieiieieeeesieee ettt et 2
1.1.1 Flexible Manufacturing Systems and Their Controllers................. 2
1.1.2 Summary of Approaches to Manufacturing System Control.......... 2
1.2 Flexible Manufacturing SYStEMScccevierireieniieriieieeieniesieeieenenenenens 3
1.2.1 Types of Manufacturing SYStemSccceeeververieerienciesrereenieeeeens 3
1.2.2 FMS Design TOOIS....cccuieiiiiieiiesiieieeieee et 5
1.3 Dispatching Rules and Blocking Phenomenaccoecveievienienennenen. 8
1.4 Models of Discrete Event Manufacturing Systems...........cccceeeveveerernennen. 9
1.4.1 Rule-based EXpert SYStemScccceeruieiierienieneeenieneeneeeeee e 9
142 Petrl NELS ..ottt 10
143 Graphs .o 14
1.5 A Matrix-based Discrete Event Controllerccooceveviniieiinenenenne 15
1.5.1 Matrix-based Discrete Event Controller Equations...................... 15
1.6 Simulation of FMS Control SyStemsccceveeriieiereenierieeieeeesreenens 16
REfETENCES. ...c.eviiieiieieeer e 17
Discrete Event SyStems...........ccccooiiiiiiiiiiiinieeniienieecieeeee e 21
2.1 Time-driven SYSTEMSccvervieiieieeieniieieieere e seeseesaeesseeseenseesaensnens 22
2.2 Event-driven SYSEIMSccecieriieieeieniieieeieeteseeeseeeseeenee e seesaeaseeeeeens 34
2.2.1 AULOMATON c.ueeeiiiiiiiieiieeeteeeee et 36
2.2.2 Languages and Supervisory Control of DES...........cccccooeinnne. 45
RETEIONCES. . ..eeneieii e 48
Matrix Model and Control of Manufacturing Systems..............c.ccccccoee. 51
3.1 SYStEM MALIICES...cuviiiieiieiiieiieie e eee et et ereereereesreebeesbesssesaeesaeeseesseees 53
3.2 System EqQUatiONS........ccceevvieeiiiieiieniieie ettt sie e eve e sene s 58
3.2.1 Logical State-vector EQUationcccoeeveveevienieeieiieneereeieeen, 59
3.2.2 Job-start EQUAtiOn........ccccverieerieiieriere et 60
3.2.3 Resource-release and Product-output Equationsc..ccce........ 61
3.2.4 Recursive Matrix Model.........c.cooveviriiiiiiienininenenenceeeeee 62
3.3 Modeling System DynamicCsccouereerueeiierierienieieeie e 67

XX

Contents
3.4 MatrixX Controller.......cocoieiiiiiiiiieieeieeeeee e e e 77
3.5 A Case Study: Implemetation of the Matrix Controller..............c.ce....... 86
3.5.1 Intelligent Material Handling (IMH) Workcell Description......... 86
3.5.2 IMH Workcell Dispatching Strategyccoceeveevereeneeneeneennen. 89
3.5.3 Implementation of the Matrix Controller on the IMH Workeell .. 91
3.5.4 The Matrix Controller in LabVIEW Graphical Environment....... 93
3.0 EXCEISISES .uveeuieuieniiieiesieeteei ettt ettt st 95
REfETENCES. ...ttt 95
Matrix Methods for Manufacturing Systems Analysis..............c.ccccoceeenne. 97
4.1 Basic Definitions of Graphs..........cccecveeieicienienieniieie e 98
4.1.1 Matrix Representation of the Graphc..ccceeceeveeviencncncnennn. 103
4.2 String COMPOSITION ...o.ueeeieiieieeeieeiieitete et eee sttt see e seeeee e ees 110
4.3 Max-plus AlZebra.......ccccoviiiiiiieiee e 120
4.3.1 DEDS Model in Max-plus Algebra..........c.ccooceereeniininieneaninnns 124
4.3.2 Periodic Behavior of DEDS in Max-pluscccceevenieicninnncns 127
4.3.3 Buffers in Max-plus Algebra........ccccooeriiiiiiniiniiieeees 130
4.3.4 Deriving Max-plus System Equation from Matrix Model.......... 140
44 EXEICISES .uvevitiiieiieiieiete sttt ettt ettt ettt sb e sttt et e s et et sbe et ebeeneenee 143
RETEIEICES. ...ttt 144
Manufacturing System Structural Properties in Matrix Form 147
5.1 Multiple Re-entrant Flowlines — MRFc..cccccceiinininnniniiiee, 148
5.1.1 Circular Waits in MRF SyStemsccccceeverieneeneieriee e 150
5.1.2 Resource Loops in MRF Systems..........ccccceeveererieieenienieee 156
5.1.3 Siphons and Traps in MRF Systems.........cccccceveerverercenieneenne. 158
5.1.4 Critical Subsystems in MRF Systems...........cccccoeeeioiriniieiennnnne 164
5.1.5 Key Resources and Irregular Systems in MRF........................... 169
5.2 Free Choice Multiple Re-entrant Flowlines — FMRFccccceeenee. 170
5.2.1 Structural Properties of FMRFccccccooiiviiciiiiieieeie e 173
5.3 Matrix Controller Design in MRF Systemscccccvevvevieviiecieneennenns 178
5.3.1 Deadlock Avoidance in MRF Systems..........ccccceevveevirienreennenne. 178
5.3.2 Deadlock Avoidance in Irregular Systemsccccoeeveevererennnnne. 181
5.3.3 Deadlock Avoidance in FMRF Systems........c.ccccoevveviirienieennnne. 184
5.4 A Case Study: Deadlock Avoidance in PLC-controlled FMS................ 199
RETCICNCES.e et 208
Petri NEtS ..o 211
6.1 Basic DEfINItiONnScc.eerueeierieiiieiieie ettt 212
6.2 Manufacturing Systems Modeling..........ccoceeoeereiieneneniene e 226
6.2.1 Petri-net Controller...........oocovieieieieiieiee e 231
6.3 Relation Between Petri Nets and Matrix Form.........ccceoenieiinenenen. 238
6.4 Petri Nets Simulation and Implementationccoeceeevevreecreeceennennen. 242
6.5 Validation of Implemented Petri Netscccoovevvieiieienienieiecieeeeenn 247

RETETENCES. ... 257

Contents xxi

7 Virtual Factory Modeling and Simulation.................c...cccccoiinniinnnnn. 259
7.1 3D Modeling of Manufacturing Systems...........ccceveereeniereeneeneneennens 261
7.2 Modeling FESTO FMS in VRML (X3D) Formatccccccceeverenenne. 262

7.2.1 Basic VRML Featuresccccoecuirienienieiienienieseeeee e 263

7.2.2 FESTO FMS VRML Model......ccccoceririiiiiniinencicneeceeene 265

7.3 Modeling in LISA.oooiiiieieeieeeestete ettt 267
7.4 GRASP2000 (BYG Systems Ltd, UK)cccocerinininininiiineneeeeeeee 270
7.5 Robot Studio (ABB, SWeden).........ccceeeiieiiieiiieiie e 271
7.6 Tecnomatix eM-Plant (UGS, USA).....ccccccerierieiieieeieeieeeie e 273
7.7 CIMStation Robotics (AC&E, UK)ccoveviiiiiiiecieieeee e 275
7.8 COSIMIR (FESTO, Germany)ccccceeeerueereeeneeeeeeeeneenieeeeseesneesneas 275
7.9 FlexMan (LARICS, University of Zagreb, Croatia)ccccovevuereennen. 276
7.9.1 FlexMan StruCtUICc.ccovviiiiierieeciieecieeeieeeiee e e e e eve e 277

7.9.2 DaAtabaSse ...ccuveiueiiiieiiieiieie e e 279

7.9.3 Virtual FMS Modelingccccoeieiriieiiieeescseee e 279

7.9.4 Functional Modeling of FMScocooiiiiiiiiiieeeee 279

7.9.5 Generating Trajectories in FlexXMan..........cccoccevveevieeiereenieennnne. 280
7.9.6 Simulation and Visualization of FMS operation 282
7.9.7 Internet-based Multiuser FMS Control with FlexMan 283
7.9.8 A Selection of an FMS Control Method............ccooveviivienirennnnne. 284

710 EXETCISE vttt sttt sttt sttt ettt st aes 290
REfEIENCES. ...ccuviiiiieeiie ettt sane e 292
DX ..ttt ettt et 295

1

Introduction

In this book a modern systems theory point of view is offered for the design of
supervisory controllers for flexible manufacturing systems (FMS). The supervisory
controller is installed on a PLC or on a computer, and sensors situated in the FMS
are used to provide information to the controller about the status of the FMS,
including job performance information and resource-availability information.
Then, the controller performs calculations to determine which jobs should be
performed next to achieve the specified performance requirements, such as
meeting the product due dates, avoiding blocking phenomena, maximizing
machine usage, minimizing time of transit of the product through the FMS, etc.
Finally, commands are sent back to the FMS to select which jobs should be
performed next and which resources should be used. Such a manufacturing
controller is called a discrete event (DE) controller since it depends on the events
that occur in the FMS.

The DE controller design techniques in this book are based on a matrix-based
formulation for discrete event systems that streamlines modeling, analysis,
simulation, and controller implementation for FMS. The matrices used in the DE
controller formulation come from standard industrial engineering data structure
techniques including the bill of materials, assembly tree, and resource requirements
matrix; they are straightforward to write down for large-scale interconnected
manufacturing systems using notions of block matrices.

In this chapter we give a preview of the philosophy behind supervisory control
design. We outline some well-known tools in manufacturing industrial
engineering, including the bill of materials, assembly tree, and job-sequencing
matrix. We outline Petri nets and rule-based systems for DE controller design. We
introduce a DE controller that has a very special and convenient form based on
matrices and has close connections with all these background tools. Finally, we
summarize methods for computer simulation of supervisory FMS controllers, and
then techniques for their actual implementation on installed FMS.

Although this book focuses on manufacturing systems, this DE controller
formulation is also applicable for other DE systems including autonomous guided
vehicles (AGV), communication networks, wireless sensor networks, and
computer operating systems.

2 Manufacturing Systems Control Design

1.1 Background

Some background is given here on FMS and their control techniques. This lays the
foundation for the controller-design philosophy presented in this book.

1.1.1 Flexible Manufacturing Systems and Their Controllers

New developments in FMS, telecommunications systems, wireless networks,
multiagent Dbattlefield scenarios, computer operating systems, intelligent
highway/vehicle systems, and elsewhere place severe demands on the design of
decision-making supervisory control systems. The Internet and wireless
communication mechanisms hold out the possibility of large-scale distributed
systems spanning physically remote sites. The large-scale interconnected nature of
such discrete event systems requires controllers/supervisors with increased
capabilities for scheduling with optimality and capacity constraints, shared-
resource dispatching, conflict resolution and deadlock avoidance, routing, failure
handling, and other decisions. Many such DE systems are known to suffer from
problems of computational complexity [1], where adding increased computer
power will not significantly improve system performance, though performance can
be improved through judicious choice of flow and command protocols, as well as
improvements in system structure. Therefore, there are heightened demands for
advanced supervisory controllers that include efficient organizational schemes,
task protocols, and communications network protocols that impose increased
structure on the system without detriment to strategic system objectives.

The concept of FMS emerged with the Ingersoll-Rand factory in Roanoke in
the 1960s. An FMS consists of (1) programmable machines and robots, (2) an
automated material handling system, and (3) a supervisory control system [2]. With
the advent of FMS, the importance of the supervisory controller increases. The
controller must be capable of quickly reprogramming the FMS to handle different
parts and produce different products, and of dynamically handling contention and
conflict decisions.

1.1.2 Summary of Approaches to Manufacturing System Control

Standard manufacturing engineering tools for heuristic analysis of decision-making
supervisory controllers for flow shops and job shops include the bill of materials
(BOM), Steward’s task-sequencing matrix, the assembly tree, and the resource
requirements matrix [3-5]. A body of work exists for shared-resource conflict
resolution in industrial engineering, namely, the work on dispatching and
scheduling (e.g. [6]). Standard dispatching rules show how to operate
manufacturing cells in the presence of limited resources such as pallets, transport
robots, machines. Results on kanban, CONWIP [7], and other pull techniques show
how to avoid blocking phenomena by limiting the numbers of jobs in certain
subsystems. Deadlock avoidance methods appear in [8-10], where the circular wait
relations and circular blockings of an FMS are studied. A thorough treatment is
given in [11].

Introduction 3

Operations Research approaches to manufacturing modeling, analysis and
control include mathematical optimization [4, 38], queuing network analysis [12,
13], and discrete event simulation [14, 15]. Mathematical programming models
have been extensively studied and are suitable for open-loop planning and
scheduling, though rarely for closed-loop controller design. Techniques include
linear programming (LP), integer programming (IP), and quadratic programming
(QP). Many algorithms exist to solve problems including simplex, and dual
simplex. Algorithms that afford complexity reduction include Karmarkar (LP),
branch and bound (IP), cut algorithms (IP), Hungarian algorithm (IP), and
Fibonacci Search (QP). Dynamic programming [16] has been used to solve various
controller design problems. Mathematical programming algorithms have been
developed with emphasis on a hierarchical approach to modeling and control [17,
18].

Graphs and Petri nets (PN) [19, 20] afford a popular approach for analysis of
FMS and computer operating systems [21]. PN are important as they provide
insight into task sequencing and resource assignment, with analytical results on
reachability, liveness, conservativeness, and other important system properties. If
the PN is a (decision-free) event graph, it can equivalently be written as a linear
system over the max/plus or dioid algebra [22], which affords even more analysis
tools. Several researchers (e.g. [23, 24]) extended PN by using colored PN,
stochastic PN, hierarchical PN, efc. “Top-down” and “bottom-up” design
algorithms were proposed [25] along with improved techniques for the shared-
resource allocation problem. Formal techniques for the design of PN supervisors or
controllers are developed in [26, 27].

In perturbation analysis (PA) of discrete event systems [28] a dynamic system
point of view is employed to study DE system behavior and analyze its
performance. Many DE systems suffer from problems of computational complexity
[1]. Therefore, the objective of PA is to obtain performance sensitivities with
respect to system parameters by analyzing a single sample path of a discrete event
system. Other work such as [29, 30-32] brings a system theory flavor into
manufacturing dispatching, with the desired performance and bounded buffers
being guaranteed via mathematical proofs including Lagrangian relaxation and
Lyapunov stability techniques. Some work on fuzzy logic dispatching is available
[33]. Supervisory control theory techniques for analyzing DE systems involve
language-based approaches [27, 32], which offer effective analysis and design
results for DE systems. Other work [34] has by now studied properties of hybrid
and DE systems including stability, reachability, and so on.

1.2 Flexible Manufacturing Systems

1.2.1 Types of Manufacturing Systems

To meet competition in a global marketplace and provide flexible manufacturing in
today’s high-mix low-volume manufacturing environment, manufacturing systems
have moved away from old-style fixed-hardware sequential processing lines with

4 Manufacturing Systems Control Design

dedicated workstations. The trend for years has been towards flexible manu-
facturing. An FMS has four major components [35]:

e a set of machines, robots, fixtures, or work stations,
an automated material handling system that allows flexible part routing,
distributed buffer storage sites where the parts may be temporarily placed
during processing,

e a computer-based supervisory controller for monitoring the status of jobs
and directing part routing and machine-job selections.

In order to allow fast setup of the FMS for new parts and product types, an
advanced decision-making controller should be used. Proper design of the
controller can allow one to program the FMS as easily as one does a personal
computer. Such controllers are described in this book. The controllers are called
discrete event controllers (DEC) since they make decisions based on the current
events occurring in the FMS.

The controller should be distinguished from the physical portion of the FMS.
The physical portion of an FMS is the manufacturing facility, comprised of its
resources: the set of machines or work stations (including also robots, fixtures,
tools, etc.), the automated material handling system, and the distributed buffers.
Each resource type has a distinct function, though resource pools of more than one
machine of a type may perform the same function (e.g. drill, press fit, paint, ezc.).
The resources serve the parts, and parts of the same class or type are grouped
together, flowing through the facility on distinct part paths. The job sequence for
each part type is the sequence of jobs required to produce a finished product.

There are several standard structures of manufacturing systems, including the
re-entrant flowline, the assembly line, and the job shop. In the general job shop the
sequencing of jobs is not fixed, or the assignment of resources to the jobs is not
fixed. Parts of the same type may visit different machines in different orders to
produce the same final product. The effect is that part routing decisions must be
made during processing. This significantly complicates decision making and
control in a manufacturing system and leads to problems with complexity issues.

In the flowline greater organization is imposed, and the sequence of jobs for
each part type is fixed and the assignment of resource pools to the jobs is fixed.
This results in a streamlined protocol that is easier to manage to provide
guaranteed performance in the FMS. The result is that parts of each type visit the
resources in the same sequence, though different part types may have different
sequences. A flowline is said to be re-entrant if any part type revisits the same
resource pool more than once in its job sequence [32, 30]. This occurs if the same
resource is assigned to different jobs in the part’s sequence. For instance, the same
drilling operation may need to be performed twice at different stages in the part’s
processing.

An FMS at The University of Texas at Arlington (UTA) Automation &
Robotics Research Institute (ARRI) is shown in Figure 1.1. This facility has three
robots, an IBM, a PUMA, and an Adept. These robots have been connected
through serial ports to allow central coordinated control from a single PC using a
LabVIEW® user interface developed at UTA. A matrix-based discrete event con-

Introduction 5

Figure 1.1. An FMS at UTA’s Automation & Robotics Research Institute, showing three
robots and three conveyor belts

troller such as those discussed in this book has been implemented, allowing for
very fast and easy reprogramming of the FMS for new part types and products.

Figure 1.2 shows the re-entrant flowline structure of this FMS. Part type A is
processed by the Puma robot twice, part type B is processed by the Adept twice,
and both part types visit the IBM twice. Moreover, all three robots are used to
process both part types. Thus, the three robots are all shared resources, which are
visited several times by different parts. The flowline is re-entrant since parts of
each type revisit the same resource more than once.

Since in the re-entrant flowline certain resources may be shared, either by parts
of the same type at different stages of their processing, or across parts of different
types, one is faced with a decision at each shared resource involving which part to
process next. For instance, robot 2 has three queues where the parts enter - part A
for the first time, part A for the second time, and part B for the first time. Parts may
arrive at all these points simultaneously. Deciding which part to select next for
processing at each shared resource is known as the dispatching problem [6]. The
dispatching decision is a crucial one that can cause severe problems in a
manufacturing system if not properly made.

1.2.2 FMS Design Tools

There are numerous tools available in industrial engineering usage for the design
and analysis of manufacturing systems. We shall discuss here the bill of materials
(BOM), the assembly tree, the task-sequencing matrix, and the resource-
requirements matrix. In this book, these tools are combined into an overall design
and analysis technique that results in rigorous algorithms, computer simulation
techniques, and supervisory controllers with guaranteed performance. These tools
are unified through a matrix-based DEC formulation presented in this book.

6 Manufacturing Systems Control Design

PART B OUT T T PART A OUT

A(l)R2l

A(DRI

PART A L»D IBM [

PARTB —f] | ROBOT!I L —— | puma |
B(1)R1 B(1)R2

ROBOT 2
AQ)R1
BQ2)RI
T T L?—\ AQ)R2
Machine 1

ﬁ ADEPT |<B(1)R3

ROBOT
Machine 2 OBOT 3

B(2)R3T ‘? A(DR3

Figure 1.2. Re-entrant flowline structure of the FMS

Figure 1.3. An assembly tree

The bill of materials (BOM) is a document containing the assembly -
subassembly relationships for a specified product line [36]. It may be considered as
a lookup table or a matrix in which the (ij) entry is equal to the number of
subassemblies/parts of type j needed to produce one subassembly/part of type i.
Thus, row i contains the materials required to form the ith subassembly. The BOM
is known for a given product line or part path. BOM information is an integral part
of the specifications for all manufactured products.

The information in the BOM may be depicted in graphical form for easy
visualization in the assembly tree [37], which shows the task decomposition of jobs
needed to manufacture a product. A sample assembly tree is given in Figure 1.3.
This tree shows that part a enters the workcell, where it is drilled. Then, part a and
part ¢ are assembled, moved, drilled again, and finally put out as the finished
product, part out (PO).

The sequence of events in an assembly tree can be captured in matrix form by
defining the job or task-sequencing matrix, which for this example is

Introduction 7

a b ¢ d e f

al0 0 0 0 0 0]
b1 0 0 0 0 0
clo 0 0 0 0 0
F,=d|0 1 1 0 0 0
e|0 0 0 1 0 0
10 0 0 0 1 o0
POLO 0 0 0 0 1]

Each row i indicates which jobs are required as immediate precursors for job i.
For instance, row 4 shows that jobs b and ¢ are needed to perform the assembly job
d. This matrix is effectively the BOM, and it was studied by Steward and others [5,
39, 40]. In this matrix, the columns and rows correspond to jobs, and an (i,j) entry
of 1 indicates that job j is an immediate prerequisite for job i. The task-sequencing
matrix is very useful for representing the partial orderings needed for sequencing
manufacturing jobs. In fact, note that the causal sequencing of jobs d, e, f'is seen in
the diagonal 1s, showing that each job is an immediate prerequisite for the next
job. It has been shown that a lower triangular job-sequencing matrix corresponds to
a causal ordering of jobs, and that information on the hierarchical subsystem
structure of a process can be extracted by raising this matrix to various powers.

The resource-requirements matrix (RRM) shows which resources are needed to
perform which tasks or jobs, as reflected graphically, for instance, in the
subassembly tree, which is an assembly tree annotated to indicate the resources
assigned to the jobs [37]. The subassembly tree for this example is shown in Figure
1.4, where information has been added to show which resources are assigned to
perform which jobs. Note that first the task sequence is prescribed, and then after
that the resources are added. The task-sequencing information may come from the
BOM or from computer science planning programs. On the other hand, the
resource information might be assigned by a factory floor manager.

Figure 1.4. A subassembly tree

8 Manufacturing Systems Control Design

This subassembly tree shows that part a enters the FSM and is stored in buffer
B1 then drilled in machine M1. Part ¢ enters and is sent to fixture F1, where robot
R1 assembles part a to it and puts the resulting subassembly in buffer B2. The
subassembly is drilled again by machine M1, and finally sent out as the finished
product PO. The resource requirements matrix for this example is given by

Rl F1 Bl B2 Ml

al0 0 1 0 0
0O 0 0 0 1
clo 1 0 0 0
F=d|l 0 0 0 0
el0 0 0 1 0
flo o 0 o 1
POlO 0 0 0 0|

In the resource-requirements matrix, the columns correspond to resources
(tools, fixtures, machines, robots) and rows correspond to jobs; an (i,j) entry of 1
indicates that resource j is needed for job i. Row 4, for instance, shows that robot
R1 is needed to perform job d. In this example, note that the last column contains
two 1s. This indicates that resource M1 is needed for two jobs, and hence it is a
shared resource. Kusiak [3] has shown that RRM provides the basis for decision
making while assigning or dispatching shared resources.

1.3 Dispatching Rules and Blocking Phenomena

If there is a shared resource, it is important to assign the correct jobs next to
accomplish the performance requirements that are prescribed for the workcell.
Performance requirements might include meeting product-due dates, keeping
machine per cent utilization high, guaranteeing that all parts are processed through
the FSM within a maximum allowed time, efc. The issues involve problems of
assignment of shared resources when the same resources are simultaneously
requested by more than one job. Similar issues occur in computer systems,
communication systems, highway/vehicle systems, and elsewhere.

In Figure 1.2, for instance, robot 2 has three queues where the parts enter - part
A for the first time A(1), part A for the second time A(2), and part B for the first
time B(1). The dispatching strategy, executed by the supervisor, assigns which jobs
to process next. There are many dispatching rules such as first-in-first-out (FIFO),
where the parts arriving first are processed first, and earliest due date, where the
part with the earliest due date is served first. In first-buffer-first-serve (FBFS)
dispatching, the resource serves first the buffer corresponding to the first passage
of a given part through the resource. For instance, robot 2 in Figure 1.2 would
serve A(1), part type 1 entering for the first time, before serving A(2), the part type

Introduction 9

1 entering for the second time. Correspondingly, another dispatching rule is last-
buffer-first-serve (LBFS), wherein A(2) is given preference over A(1).

Failure to dispatch shared resources properly can result in blocking phenomena
including deadlock, where all the resources in the FMS are busy, each waiting for
the others to release a part before it can proceed. In this case, all activity in the
FMS seizes up and no jobs can proceed. It has been shown that LBFS dispatching
avoids deadlock in re-entrant flowlines with only one part type, while with FBFS
deadlock may occur. In fact, LBFS is a pull technique thatattempts to clear jobs out
of a FMS, while FBFS is a push technique that tries to load jobs into the workecell.

Deadlock research in computer systems has focused on four main areas [41].
Deadlock prevention is involved with removing any possibility of system
deadlocks; the result is often overconservative policies resulting in poor utilization
of resources. Deadlock detection focuses on detecting imminent or current
deadlocks, and is required for deadlock recovery and avoidance strategies.
Deadlock recovery methods are used to clear deadlocks once they occur, often by
placing jobs in buffers, by manually removing some parts from machines, or by
completely flushing one or more of the deadlocked processes, resulting in lost
work. In deadlock avoidance the possibility of system deadlock is not totally
removed, but whenever deadlock is imminent, it is sidestepped by a real-time
decision-making procedure. Later in this book we shall be interested in online
intelligent deadlock avoidance.

1.4 Models of Discrete Event Manufacturing Systems

There are several mathematical models for discrete event manufacturing systems.
In manufacturing system control, one should discriminate between the workcell
with its resources, and the supervisory controller that sequences the jobs and
dispatches those resources. We shall now discuss the methods that are close to the
matrix-based controller we will introduce in this book, and that also relate closely
to the FMS design tools just discussed. These include rule-based expert systems
and Petri nets.

1.4.1 Rule-based Expert Systems

One may describe the task-sequencing conditions and the resource assignments
using a rule-based system. The task-sequencing rules may be derived from the bill
of materials or assembly tree, and the resource assignment rules from the shop-
floor supervisor, exactly as detailed above. The term expert system refers to the
fact that the rules in the rule base are derived from advice and consultation with
experts in the domain of interest. The product specialist specifies the task
sequencing, while the factory manager specifies the resource assignments.

By examining the assembly tree in Figure 1.3, the partial assembly tree in
Figure 1.4, and their associated task-sequencing matrix F, and resource assignment
matrix F,, one may directly write down the following rules for implementation of
the assembly tree on an FSM. Each rule corresponds to one row in F, and F..

10 Manufacturing Systems Control Design

IF (buffer Bl is available) THEN (input part a)

IF (part a is input) AND (machine M1 is available) THEN (drill part a)

IF (fixture F1 is available) THEN (input part c)

IF (job b and job c have just been done) AND (robot R1 is available) THEN
(assemble to form d)

IF (d has just been formed) AND (buffer B2 is available) THEN (move d to
B2)

IF (part e is available in buffer B2) AND (machine M1 is available) THEN
(drill the part)

IF (part has been drilled by M1) THEN (send final product PO out)

Note that this rule base implements the controller that generates products based
on the given assembly tree. In each rule, the phrases to the left of the “THEN” are
termed the rule antecedent (prerequisites), and those following the “THEN” are
termed the consequent. The antecedent has two parts, one coming from the task-
sequencing matrix F, and one from the resource-assignment matrix F,.

Rule-based systems are very useful for programming programmable logic
controllers (PLC) to implement the controllers for FSM, as we shall see. However,
it is difficult to see the structure of a rule-based system, which means it is difficult
to ensure that the rules are not conflicting and that they yield a causal job
sequencing. It is difficult to use expert systems for computer simulation of FMS
since they are difficult to interface with any description of the jobs and resources in
the workcell. If some jobs change or some resources change, it is not easy to
modify the corresponding rules in a large rule-based system. Finally, it is almost
impossible to perform mathematical analysis of FMS performance or blocking
phenomena in terms of rule-based systems.

1.4.2 Petri Nets

Event-driven systems are growing in popularity and complexity, and can be used to
describe systems in manufacturing, vehicle-traffic systems, communication
systems, computers, and wireless-sensor networks. This is motivating the use of
well-organized design methodologies to avoid failures and to optimize perfor-
mance. These systems usually have characteristics such as concurrence, conflicts,
priorities, mutual exclusions, shared resources, and many others. These properties
are difficult to handle, however, the analysis and design of these systems can be
carried out using Petri nets (PN) [19, 20]. There are many varieties of Petri nets
from binary PN, which are simple to analyze, to colored nets, which allow the
modeling of more complex systems but have fewer analytic results.

Petri nets and their relations with matrix-based modeling and analysis are
described in detail in Chapter 6. Here we give just a brief introduction to the topic
without formal definitions of terms. A Petri net (PN) is simply a bipartite (e.g.,
having two sorts of nodes) digraph (e.g. directed graph, which has arrows as arcs)
described by (P, T, I, O), where P is a set of places and T is a set of transitions
(later in the book we show the very important property that in fact each PN
transition corresponds to a rule). These are both nodes in the graph. There are two
types of arcs, namely 7 and O, where [is a set of (input) arcs from places to transi-

Introduction 11

final
E-m. products PO
R1A (o4

RU?2 M1P

BS [ITTT g

M1A
& MIA BA

_

Figure 1.5. Flexible manufacturing system example

tions, and O is a set of (output) arcs from transitions to places. In our application,
the PN places represent manufacturing resources and jobs, and the transitions
represent decisions or rules for resource assignment/release and starting jobs.

An example of FMS is given in Figure 1.5. This shows one flowline for one
part type, the required job sequence, and the required resources for each job.
Robot R1 is a shared resource since it is responsible for performing two part moves
- RUI and RU2. Pallets have been added to carry the parts through the workcell;
each pallet carries one part. Endings in 4 denote resource “available”, and endings
in P or S denote jobs in progress with those resources (buffer storage (S) or job in
process (P)). The associated PN is given in Figure 1.6. In this figure, circles
represent places, which correspond to jobs or resources, while vertical bars
represent transitions, which fire under certain conditions.

The places along the part path denote jobs, while the places off the part path
denote resources available. Along the part path, places and transitions alternate.

To denote the numbers of resources available and the numbers of jobs in
process, one uses fokens, which are represented with black circle inside PN places,
as shown in Figure 1.6. This PN shows that initially one has available 4 pallets
(e.g. 4 parts can be in the workcell simultaneously), 2 machines M1, one robot R1,
and so on.

Petri net dynamics is represented by the so-called token game. When a
transition fires, a particular number of tokens is removed from each input place,

Figure 1.6. Petri net for the FMS example

12 Manufacturing Systems Control Design

and added to each output place. By keeping track of tokens one is able to simulate
and analyze the behavior of the system described by the PN. The job sequencing,
the resources needed to perform the jobs, the resource availability and utilization,
jobs currently in progress and many other properties can be easily studied by
following the tokens routes. Two already-mentioned phenomena, conflict and
deadlock, which are particularly important in FMS supervisor design and most of
the book is dedicated to their analysis, also can be allocated by tracking PN tokens.

Using the FMS example, we can illustrate the meaning of conflict and
deadlock. In Figure 1.7 we see a setup of the current situation in the FMS. There
are two jobs waiting for the pick & place robot resource R1, namely the token in
MIP shows that there is a job waiting for robot R1 to clear it from machine M1 in
move RUI1, while the token in M2P shows that there is a job waiting for R1 to
remove it in move RU2. Unfortunately, there is only one robot in the resource
pool R1A, and it must select only one of these two jobs to perform, hence, R1A is
in a conflict.

Suppose R1 is dispatched to perform move RUI1. Then, transition x, fires and
the situation now moves to that shown in Figure 1.8. This is quite a bad situation.
Clearly, there is no way that any transition can now fire in this figure. The problem
is that each of the resources is waiting for another resource to become available.
However, this will never happen. Therefore, all activity along the part path ceases
and can never resume. Some thought can reveal that if the shared-resource robot
R1 had elected to perform the downstream move RU2 instead of RUI, that would
not have resulted in deadlock. This example illustrates the notions in Section 1.3,
namely, dispatching using first-buffer-first-serve (FBFS) results in deadlock, but
last-buffer-first-serve (LBFS) avoids deadlock. Pull policies generally are safer
than push policies.

This short depiction demonstrated that PNs are a powerful graphical tool for
discrete event systems modeling. However, in order to be able to provide thorough
analysis one needs an appropriate mathematical framework. Since the PN is a
graph with two types of nodes, the arcs in the PN are described by two matrices,
the PN input incidence matrix 1 and the output incidence matrix O.

M1A BA M2A

Figure 1.7. Predeadlock situation in the FMS example

Introduction 13

Figure 1.8. Deadlock situation in the FMS example

The PN input incidence matrix I has element (i,j) equal to 1 if place j is an
input to transition i. The PN output incidence matrix O has element (i,j) equal to 1
if place j is an output from transition i. The input incidence matrix for the assembly
PN in Figure 1.9 is given by

a b ¢ d e f PA RIAF14 BlA B24 MI14
Af00000 010 0 1 0 0]
21 0000000 0 0 0 1
3000000000 1 00 0
1=x4/0 1 10 00 0|1 0 0 0 0
500010000 0 01 0
%[00 001000 0 00 1
x7[000 0001 0[]0 0 00 0 |

It is highly interesting to note that the first block of this matrix is simply F,, the
task-sequencing matrix, and the second block simply F,, the resource-requirements
matrix, from Section 1.2.2 (pallets PA have been added). This will be a central
theme later in the book. Likewise, the output incidence matrix O can be written for
this PN very easily.

Figure 1.9. PN for the subassembly tree example

14 Manufacturing Systems Control Design

In terms of the PN incidence matrices, one can describe the update of the
tokens when transitions fire. In fact, if m(#) is a vector whose components
correspond with the number of tokens in PN places at a prescribed time #,, then the
updated token placement is described by the vector m at the next time #, as

m(z,) =m(z) + W't

where W = O — I, and 7T is a vector comprised of integers that correspond to the
number of firings of transitions in PN in the time interval #, — #,. We shall return to
this equation and its relation with matrix-based formalism in Chapter 6.

Unfortunately, this equation is not a complete description of a PN since it does
not take into account the order of firing of the transitions, nor whether a given
transition can actually fire at any point in time. That is, there is no way known in
PN theory to compute the transition firing vector <.

1.4.3 Graphs

As we see in the previous section, graphs are quite important in manufacturing
system analysis and control; not only in PN theory but also, as we shall present
through the chapters that follow, in other modeling and design tools. They indeed
provide some rigorous techniques for the analysis of discrete event control
systems. A graph is a set of nodes and the arcs connecting them. A directed graph,
or digraph, associates directions with the arcs so that they effectively become
arrows.

For example, a special graph can be constructed from a Petri Net by
considering only the resource places. Refer to Figure 1.6, and start at any resource.
Proceed backwards along the arcs until you come to another resource, then
backwards from that resource to the next resource, and so on until you have
traversed all the arcs. Draw arrows through the resources traversed. The result is
the digraph shown in Figure 1.10.

This graph is known as the wait relation graph [8]. Note from the PN that
resource R1 cannot become available until BA is available and performs job BP.
That is, R1 waits for the buffer BA to become available before it can become

available.

Figure 1.10. Wait relation graph

Introduction 15

In the wait relation graph depicted, there is a looming potential problem.
Namely, there is a circular wait relation (R1A, BA, M2A), wherein each resource
waits for another. Unless extreme care is taken in dispatching the jobs within this
circular wait, one will arrive at deadlock, exactly as has occurred in Figure 1.8,
where all the resources in the circular wait are busy and waiting for each other.
Methods for avoiding deadlock, as well as dispatching to achieve performance
specifications in FMS, thus hinge on understanding the structure of FMS, namely
the circular wait relations and other important structural elements.

1.5 A Matrix-based Discrete Event Controller

A rule-based discrete event supervisory controller that is based on matrices is now
briefly described. This matrix-based DE controller plays a central theme in this
book, and it allows fast programming of FMS for assembly/job sequencing,
resource dispatching, and blocking and performance analysis, and facilitates
dispatching and routing design. The controller provides a framework for rigorous
analysis of the structure and performance capabilities of an FMS. Furthermore, the
controller also allows a very convenient method for computer simulation and
implementation on actual FMS.

1.5.1 Matrix-based Discrete Event Controller Equations

The DE controller is based on a matrix formulation where each matrix has a well-
defined function for job sequencing, resource assignment, and resource release.
The matrix-based model of a discrete event system is described by the set of
equations. Since each equation is thoroughly described in separate sections later in
the book, they are introduced herein with no further explanations:

Logical state-vector equation

X = F av VF ar,vF ruvF au

Job-start equation

v, =S ax
Resource-release equation

r, =S.ax
Product-output equation

y= SyAX

In these equations, F, is exactly the job sequencing matrix, and F, the resource-
requirements matrix discussed above. Each of the other matrices also has a specific
function and meaning, which is explained in the chapter that follows.

The four equations given above are the central part of the matrix-based
controller. They are not computed using standard matrix operations of

16 Manufacturing Systems Control Design

multiplication and addition. In fact, all the matrices and vectors are logical
variables that have entries of either “0” or “1”, exactly as for the job sequencing
and resource assignment matrices. Therefore, all matrix operations are defined to
be in so-called and/or algebra (see section 3.2), denoted A and V, where standard
addition is replaced with logical or and standard multiplication with logical and.
The overbar denotes logical negation.

Input u represents raw parts entering the cell and y completed tasks, or
products, leaving the cell. The controller, implemented on a PLC or a computer,
dynamically observes, in real time, the workcell status by looking at the status
outputs of the DE system or workcell using installed sensors, represented by a job
vector v, and a resource vector r.. Hence, the matrix-based supervisor has a
dynamic feedback control structure. On top of it, higher-level dispatching and/or
routing decisions are needed to determine vector uy that selects which jobs to
initiate. This dispatching input is selected in higher-level control loops using
priority assignment techniques (e.g. [6]) in accordance with prescribed
performance objectives such as minimum resource idle time, task priority
orderings, task due dates, minimum time of task accomplishment, and so on as
prescribed by the user. Then, the controller sends commands to the FMS workcell,
namely, vector v; for jobs to be started, and vector r, for resources to be released.

Since the matrix DE controller is a rule base, it can be directly used to program
a programmable logic controller. This means that PLC can easily be programmed
to control actual industrial processes directly and simply from the matrix DE
controller. Two case studies related to the implementation of the matrix controller
in FMS are presented in the book with references to other applications of matrix-
based approaches.

The matrix-based DE controller unifies tools from different aspects of
manufacturing, computer science, and discrete event systems. It uses the BOM,
task-sequencing matrix, and resource-requirements matrix. Moreover, it can be
shown that the complete task plan (F,, S,, F,, S;) generates a Petri net. In fact, as
one might surmise from the discussion at the end of Section 1.4.2, F, and F,
generate the PN input incidence matrix, while S, and S, generate the PN output
incidence matrix. As we shall show, this means that for any speciation of the
matrices in equations one can draw a PN.

1.6 Simulation of FMS Control Systems

A comprehensive approach for analysis of computational complexity in FMS (and
elsewhere) is the theory of NP- (nonpolynomial)-completeness [1]. Mathematical
programming approaches to scheduling were mainly based on combinatorial
optimization methods until the development of the theory of NP-completeness in
the 1970s. Many traditional scheduling and sequencing problems have been found
to be in the NP class, however there is no formal theory describing how to impose
structured flow and command protocols on an FMS to simplify the complexity.
Since analytical results are often difficult to obtain for DE systems, particularly
for transient analysis, the performance of FMS, including scheduling and
dispatching rules and other algorithms, has often been studied using simulation [14,

Introduction 17

15]. There are available many packages for simulation of manufacturing systems
(WITNESS, SIMFACTORY, Gert [42], etc.), Petri nets (Design/CPN, Grafcet [43],
TORA, etc.), and general DE systems (SIMAN, Simscript, Simula, Smalltalk-80,
GPSS, Extend). In these packages various programming methods are used; object-
oriented techniques, knowledge-based approaches, Lotus 1-2-3, Prolog and many
others. Various efficient simulation techniques may be based on perturbation
analysis or system theory approaches. Many of these tools use brute force
approaches that do not take advantage of the protocol structures of manufacturing
flowlines, assembly lines, and job-shop systems. The large number of techniques
available show the complications arising from simulation of DE systems.

The use of virtual models has become a standard characteristic of modern
program tools for virtual modeling and simulation of FMS (e.g. Grasp 2000, eM-
Plant [44], RobotStudio, Cimstation Robotics, Cosimir, efc.). Virtual models
provide a very convenient and inexpensive way for the complete factory design,
allowing a clear visualization of all potential problems in an FMS caused by a
factory layout, job sequencing or resource requirements.

Besides physical modeling that relies on the virtual models of all constituent
FMS objects, an important task is functional testing that connects a physical setup
with the organization of the simulated FMS. Functional testing comprises several
tasks including a definition of a job sequence, setting of FMS parameters, local (at
the robot workcell or robot station level), and global (at the whole FMS level)
conflict and deadlock analysis, synthesis of control logic, investigation of different
job-scheduling strategies, simulation and visualization of dynamic phenomena that
occur during FMS operation. Although most of the above-mentioned program tools
contain some types of DE simulation tools and DE controller design techniques,
and automatically generate downloadable programs for particular FMS elements
(e.g. robots) and accompanying programmable logic controllers, they do not allow
for ease of computer simulation and do not support direct generation of code
needed for FMS controller implementation on actual industrial systems.

A matrix-based approach to the FMS controller design can be easily integrated
in the virtual-reality environment, and the result of simulation with a selected
dispatching policy can be effectively visualized and analyzed by observing an
animated performance of the FMS. In the book, we describe FlexMan [45], an
Internet-based virtual-factory simulator with an integrated matrix-based FMS
controller and automatic FMS controller code generator for an industrial PLC
(Siemens PLC S 216).

References

[1] Garey MR, Johnson DS. Computers and Intractability: a Guide to the Theory of NP-
completeness, W.H. Freeman, 1979.

[2] Groover MP. Automation, Production Systems, and Computer-Integrated
Manufacturing, 2" edn, Prentice Hall, 2001.
[3] Kusiak A. Intelligent scheduling of automated machining systems, in Intelligent

Design and Manufacturing, ed. A. Kusiak. New York: John Wiley & Sons, 1992.
[4] Baker KK. Introduction to Sequencing and Scheduling. New York: John Wiley &
Sons, 1974.

18

(22]

(23]

Manufacturing Systems Control Design

Steward DV. The design structure system: a method for managing the design of
complex systems, IEEE Trans. Eng. Manag. 1981;71-74.

Panwalker SS, Iskander W. A survey of scheduling rules, Operations Research
1977;26;1:45-61.

Spearman ML, Woodruff DL, Hopp WJ. CONWIP: a pull alternative to kanban,
Int. J. Prod. Res. 1990;28;5:879-894.

Wysk RA, Yang NS, Joshi S. Detection of deadlocks in flexible manufacturing
systems, IEEE Trans. Rob. Automat. 1991;7:853—859.

Ezpeleta J, Colom JM, Martinez J. A Petri net based deadlock prevention policy for
flexible manufacturing systems, IEEE Trans. Rob. Automat. 1995;11;2:173—184.
Lewis FL, Gurel A, Bogdan S, Doganalp A, Pastravanu O. Analysis of deadlock and
circular waits using a matrix model for flexible manufacturing systems, Automatica
1998;34;9:1083-1100.

Zhou M. Deadlock Resolution in Computer—Integrated Systems. New York: Marcel
Dekker/CRC Press, 2004.

Gross D, Harris CM. Fundamentals of Queuing Theory. New York: John Wiley &
Sons, 1985.

Jackson JR. Networks of waiting lines, Operations Research 1957;5:518-521.

Banks J, Carson JS. Discrete Event System Simulation, Prentice Hall, 1984.

Law AM, and Kelton WD. Simulation Modeling and Analysis. New York: McGraw
Hill, 1991.

Lewis FL, Syrmos VL. Optimal Control, 2" edn. NewYork: John Wiley and Sons,
1995.

Bitran GR, Haas EA, Hax AC. Hierarchical production planning: a two stage
system, Operations Research 1982;30;2:232-251.

Silver EA, Peterson R. Decision Systems for Inventory Management and Production
Planning. New York: John Wiley & Sons, 1985.

Desrochers AA. Modeling and Control of Automated Manufacturing Systems, IEEE
Comp. Soc. Press, 1990.

Murata T. Petri nets: properties, analysis and applications, Proc. IEEE
1989;77;4:541-580.

Balbo G, Bruell SC, Ghanta S. Combining queueing network and generalized Petri
net models for the analysis of some software blocking phenomena, IEEE Trans.
Soft. Eng. 1986;12;4:561-576.

Cohen G, Dubois D, Quadrat JP, Viot M. A linear-system-theoretic view of discrete-
event processes and its use for performance evaluation in manufacturing, IEEE
Trans. Aut. Contr. 1985;AC-30;3:210-220.

Kasturia E, DiCesare F, Desrochers A. Real time control of multilevel
manufacturing systems using colored Petri nets, Proc. IEEE Conf. Rob. Automat.
1988:1114-1119.

Murata T, Komoda N, Matsumoto K, Haruna K. A Petri net-based controller for
flexible and maintanable sequence control and its applications in factory automation,
IEEE Trans. Ind. Electr. 1986;1E-33;1:1-8.

Zhou MC, DiCesare F. Petri Net Synthesis for Discrete Event Control of
Manufacturing Systems. Boston: Kluwer, 1993.

Krogh BH, Holloway LE. Synthesis of feedback control logic for discrete
manufacturing systems, Automatica 1991;27;4:641-651.

Ramadge PJ, Wonham WM. The control of discrete event systems, Proc. IEEE
1989;77:81-98.

Ho YC, Cao XR. Perturbation analysis and optimization of queueing networks, J.
Optim. Th. and Appl. 1983;40;4:559-582.

[34]

Introduction 19

Burgess KL, Passino KM. Stability analysis of load balancing systems, Proc. Amer.
Contr. Conf. 1993:2415-2419.

Lu SH, Kumar PR. Distributed scheduling based on due dates and buffer priorities,
IEEE Trans. Aut. Contr. 1991;36;12:1406-1416.

Luh PB, Hoitomt DJ. Scheduling of manufacturing systems using the Lagrangian
relaxation technique, IEEE Trans. Aut. Contr. 1993;38;7:

Kumar PR, Meyn SP. Stability of queueing networks and scheduling policies, Proc.
IEEE Conf. Dec. and Contr. 1993:2730-2735.

Angsana A, Passino KM. Distributed fuzzy control of flexible manufacturing
systems, IEEE Trans. Contr. Syst. Tech. 1994;2;4:423-435.

Antsaklis P, Kohn W, Nerode A, Sastry S. Hybrid Systems II, Springer-Verlag,
1995.

Buzacott JA, Yao DD. Flexible manufacturing systems: a review of analytical
models, Management Sci. 1986;32;7:890-905.

Elsayed EA, Boucher TO. Analysis and Control of Production Systems, 2™ edn,
Prentice Hall, 1994.

Wolter J, Chakrabarty S, Tsao J. Methods of knowledge representation for assembly
planning, Proc. NSF Design and Manuf. Sys. Conf. 1992:463-468.

Graves SC. A review of production scheduling, Operations Research 1981;29:646—
675.

Warfield JN. Binary matrices in system modeling, IEEE Trans. Sys., Man, Cyb.
1973;SMC-3:441-449.

Eppinger SD, Whitney DE, Smith RP. Organizing the tasks in complex design
projects, Proc. ASME Int. Conf. Design Theory and Methodology 1990:39—46.
Deitel HM. An Introduction to Operating Systems, Addison-Wesley, 1984.

Cash CR, Wilhelm WE. Simulation modeling approach for analyzing robotic
assembly cells, Proc. 18™ Conference on Winter Simulation 1986:594—596.

David R, Alla H. Petri Nets and Grafcet: Tools for Modeling Discrete Event
Systems. New York: Prentice Hall, 1992.

Heinicke M. U. and Hickman A., Eliminate bottlenecks with integrated analysis
tools in eM-Plant, Proc. 2000 Winter Simulation Conference, pp. 229-231, 2000.
Bogdan S., Kovaci¢ Z., Smoli¢-Roc¢ak N. and Birgmajer B. A Matrix Approach to
an FMS Control Design — From Virtual Modeling to a Practical Implementation,
IEEE Rob. Aut. Mag., Vol. 11, No. 4, pp. 92-109, December 2004.

2

Discrete Event Systems

From the moment when a human being became aware of its existence, until the
present, one question has dominated through a long history of ups and downs: how
to predict the future? This question attained many forms; how to predict winds on
high seas? How to predict the floods of Nile? How to find the probability that an
electron would appear at a particular place in an atom? How to predict the way the
Universe ends? Step by step we have found some methods and piece by piece the
future revealed its secrets. In the foundations of all of these techniques, whose
purpose was to foresee future events, appeared a model. Based on the experience
gained from observations, people build models and then, by setting these models
into various conditions, they are able to predict future events. When these
particular conditions, already tested on the model, occur in real life, we can know
more or less accurately, what will be the outcome.

Establishing an appropriate model for some general problem might be very
demanding. To help ourselves, we separate particular entities from the
surroundings. These isolated entities should have the property that they operate
together in a way not possible by any one of them individually, i.e. they should
form a system. Where the boundary line between the system and the surroundings
is set depends on the problem we want to analyze. The boundary of the system
defines inputs and outputs of the system — its connections to the environment and
to the other systems. If an airplane’s attitude is a subject of our study, then we treat
the whole plane as a system and investigate the influence that airplane parameters
(mass, wing span), variables (speed, elevation) and environment properties (air
pressure, wind) have on the attitude. Although an airplane is a very complex
system, built of many subsystems, we can intentionally ignore the influence of
some observable facts (jet engine r.p.m.) in order to make the model feasible. On
the other hand, if we focus our intention on the jet engine, which is a subsystem of
the plane, then the boundary line is set in such a way that the plane becomes the
environment and the jet engine becomes the system under investigation.

Once the boundary line is drawn and the system is determined, its behavior can
be described with a model. The above definition of the system, as a set of entities
that form a whole and act together, is the broadest one and as such it requires
various types of models. It is clear that a political system cannot be described with

22 Manufacturing Systems Control Design

the same type of model as an airplane. Whilst the latter belongs to the class of
technical systems and can be modeled by mathematical equations, a model of the
former is represented by a set of words, sentences and paragraphs. In the text that
follows we are concerned with technical systems, i.e. systems that encompass
physical devices built by a human.

In the control-engineering literature technical systems are usually divided into
two major groups: time-driven systems and event-driven systems. In this chapter we
describe the basic concepts of these two groups. First, we give a brief description
of the basic properties of time-driven systems. The well-known facts associated
with these systems are given in order to be able to compare their activities with the
behavior of the second group, event-driven systems, which are the major topic of
the chapter. A reader acquainted with the time-driven systems may proceed
directly to Section 2.2.

The notions of an event, a system state, a clock and others are presented and
described herein. A brief presentation of automata, as the modeling tool that is
most frequently used in the analysis of the event-driven system, is given.

2.1 Time-driven Systems

In a mathematical description (a mathematical model) of a dynamic system,
quantities that change with time are associated with variables, while quantities that
describe system properties and generally remain constant are called parameters
(systems with constant parameters are called time invariant; if parameters are
changing with time we talk about a time-variant system). The role of time in
system modeling is interesting and important. Due to its unique property — no
matter where the boundary between the system and the environment is drawn and
no matter how the variables of the system model are chosen, the time remains
independent (we do not consider systems that include theory of relativity
phenomenon) — each system variable can be represented as a function of time, i.e.
time is the argument of all functions that describe the system. In this way any
change in time causes a change of the system variables. We say that the system is
time driven and write a system model as

y(©) = G[u()] .1)

where u(f) is a system input vector, y(f) is a system output vector and G is an
operator that describes how the system transforms (maps) the input vector into the
output vector. It is common in the literature that relation (2.1) (the same holds for
other forms of mathematical descriptions) is referred to as “a system” although it
actually represents more or less accurately a “model of the system” (in very few
situations the complete model of the system is known).

When that operator G changes with time, a system model is written as

Discrete Event Systems 23

y(0) =Glu).1] 2.2)

For a system described with the model (2.1), input u(?), applied at the moment #
= t9, would have the same effect on the system as if it were applied at any other
moment ¢ = £y + 7. This is not the case for a system described with Equation (2.2);
as operator G changes with time, the output of that system depends not only on the
form of the input vector u(z) but also on the moment in which the input is applied
to the system.

Further classification of time-driven systems is closely related to the principle
of proportionality, i.e. an increase of the system input value by factor b will
increase the system output value by factor b. Systems with this property are called
linear systems. We say that operator G is linear if and only if

G[b-u(®)|=b-Gu@)] 2.3)

Although most technical systems do not behave in accordance with the
principal of proportionality (they are nonlinear), linear models are usually used for
their description since the mathematical tools for the analysis and design of linear
models are much easier to understand and implement than these methods used in
the nonlinear systems theory [1-3]. Furthermore, in most cases the linear models
describe the real systems to the extent that is considered satisfactory from the
practical point of view.

So far we were concerned with the so-called input-output representation of the
system. This representation can be expanded by the notion of system state. The
output of a dynamic system depends not only on the current input value but also on
the past values of the input, i.e. dynamic systems have a “memory”. The memory is
in the form of conservation of energy and/or information. This means that some
kind of internal properties that are not explicitly seen from the model (2.1) are
present in the system. Thus, in order to obtain the model that would demonstrate
the internal phenomenon of the system, the modeling process should take into
account not only the system input and output vectors and their relationships, but
the system states should be incorporated into the model also. In the systems theory
this kind of model is usually represented in the form of set of differential equations

[4]:

(1) = [x(),u().1] , x(1) =%,

2.4
y(0) = g[x(0),u(0),1] (2.4)

where Xx(f) is the state vector containing system states and f and g are functions.
Equations (2.4) are called state equations and they uniquely describe the system
state at any time instant ¢ > f,.

As an example, let us consider the system shown in Figure 2.1. The system
represents a DC motor drive with mechanical load. Differential equations that des-

24 Manufacturing Systems Control Design

O

Figure 2.1. A DC motor drive with mechanical load

cribe the electrical and mechanical dynamics of the system have a well-known
form:

R-i(H)+L d;(:) +e(t)=v(t), e(t) =K w(t)
799D Ly iy = T (=T (1), Ty () =K -i(0)

dr

where K is a motor constant, 7 is a load torque and 7y, is a motor torque. Which
physical variable will be defined as an input and which one as an output depends
on the purpose of the model. When one is investigating the influence of voltage
v(f) on the motor torque 7%y(?), then the voltage should be considered as the system
input and motor torque as the output. On the other hand, if one is concerned with
the influence that the voltage has on the rotor position ¢(¢) then this physical
variable should be treated as the system output.
For the latter case the state equations obtain the following form:

dfi(tf) _ %[—R-i(t)—K (ty+v(t) |
400 L ki) -bowr.0)] 2.5)
do(r) _
a - o0
() = p(1)

where the system input u(f) = v(z).

The solutions of state Equations (2.4) are functions that describe evaluation in
time of each system state. These functions are called the state trajectories. State
trajectories for Equations (2.5) together with input u(#) are shown in Figure 2.2. We
can see that the system state ¢ changed after the input (in the form of a short pulse)
has been applied. Initial value ¢(#)) = ¢ changed to @(t—e<) = ¢, while in the
same time the system states i and @ returned to their initial values after the
transition period has finished.

Discrete Event Systems 25

Figure 2.2. Trajectories of the state Equations (2.5)

A very interesting presentation of the state trajectories can be attained if time as
a variable is eliminated from functions that correspond with the state trajectories. A
new function ¢(x)=0, obtained in this way, represents movement of the state vector
x in the state space. The state space of a system is the set of all possible values that
the system state vector may attain. For systems with up to 3 states, state-vector
trajectories can be presented graphically as in Figure 2.3. Points on the state-vector
trajectory correspond to the points on trajectories of system states. As time changes
from ¢, to ¢, the system states are changing, thus causing the state vector to travel
through the state space from point x(#;) to point x(#,), which is shown in Figures
2.2 and 2.3.

The state-vector trajectories are very important in system analysis and design.
Many interesting system properties, such as stability, can be examined directly
from the state-vector trajectories. This is particularly important in the case of
nonlinear systems, since, as already mentioned, mathematical tools for this type of
systems are complicated and demanding.

As we said earlier, the main purpose of the model is its ability to more or less
accurately predict the future states of the system once the current state and the
system inputs are known. If we define the system states that have to be reached
from the current state and when we are able to manage the system inputs, then we
can define these inputs in a way that they guide the state vector directly to the
desired state. We say that the system is controlled. The question is how to
determine the system inputs? Usually there exist at least two control objectives; a)
the system should be conducted to the desired state and b) this state should be

26 Manufacturing Systems Control Design

reached in a particular way, i.e. the state vector should follow a predefined
trajectory.

Based on the objectives and the system model we can determine an input vector
u(?) that would fulfill both requirements:

u(®) =hu, ()] (2.6)

where u,(f) is a reference input and h is a control function that maps the desired
system behavior, described by the reference input u.(¢), to the system input u(z).
One concept is especially important when the definition of the control function is
concerned. This is the concept of controllability. In order to determine a control
law and apply it to the system, the structure of the system input vector should be
known in advance. As a first step in the controller design one must identify system
states that can be influenced by the input vector components. Such states are called
controllable states and outside signals can be supplied into the system only through
these states.

A problem with the control law (2.6) lies in the fact that the control function
does not take into account possible changes that may happen in the system during
implementation of the control law. In our example with a DC motor drive, a
change in the load torque, 7, would modify the second state equation in Equations
(2.5), thus causing different state-vector trajectory and, as a consequence, the
desired system state will not be reached. A solution to that problem is one of the
fundamental principles in nature; the principle of feedback. In biological systems,
as well as in social systems, most actions are based on feedback; if we get a fever
our body starts to sweat in order to enhance heat exchange with the surroundings,
an insecure political situation lowers prices on the stock markets, and so on. In
many cases the feedback is an inherent property of the system (our body), while on
the other hand it can be artificially added in order to enable the system to cope with
various disturbances that influence its behavior.

(2]

A

Figure 2.3. The state-vector trajectory (i, ¢)=0 of the state Equations (2.5)

Discrete Event Systems 27

In technical systems, the information regarding the current state of the system
(feedback) is usually acquired by measurement of the system output (or the system
states) and then fed back into the system by the control law,

u(t) = hlu, (1), x(1)] .7)

The primary constraint that is related to determination of Equation (2.7) is
associated with the notion of observability. Specifically, some parts of the system
(system states) might be inaccessible for measurement. Such unobservable states
cannot be used as feedback for the controller (2.7).

Let us demonstrate the feedback principal on our DC motor drive example. A
feedback, which will compensate the influence of load torque, is introduced by
measuring the position ¢(7). In that case the system input, v(t), may be calculated as

v(0) =K, [0~ ()] 28)

where K|, is the proportionality factor (or gain) and ¢(¢) is the reference position.
The proportional control law (2.8) is the simplest form of control function 4.
Inclusion of Equation (2.8) in the first equation of Equations (2.5) gives

di(r) _ 1

D2 [—R~i(t)—K-a)(t)+K(p‘[¢r (t)—(ﬂ(f)ﬂ

It can be seen that, as long as there is a difference between the reference and
current positions, the motor current i(f) will change. As a result, the state vector
moves around the state space until the final (reference) state is reached. Although
the applied control law leads the system to the desired state despite the changes in
load torque, it can not accomplish the second control objective — the way in which
the system gets into the desired state (the state-vector trajectory) is changed
(certainly, a more complex control law could handle both objectives, but that
analysis is beyond the scope of this book).

Now we introduce the other form of time-driven systems. As a start we can
consider our everyday experience — parking a car (Figure 2.4).

Figure 2.4. A parallel parking example

28 Manufacturing Systems Control Design

It is well known that parallel parking is a challenging task (not only for new
drivers). Two actions have to be taken simultaneously and very carefully - steering
the wheel and balancing the clutch and the break. These actions are generally based
on the feedback that is in the form of two variables - a distance from the front car,
d;, and a distance from the rear car, d,. Since we have only one distance
measurement sensor (eyes) that has to deal with two variables, we have to
concentrate our attention into two directions. This can be done only if we are
toggling our view from one feedback variable (front car distance) to the other (the
rear car distance) during the parking. Instead of getting the whole information
regarding distances dr and d, (Figure 2.5), only a sequence of partial data, taken in
discrete-time intervals as shown in Figure 2.6, is processed during the parking (it
should be noted that as we are getting closer to the front and rear cars we have to
acquire data more often). This partial information, collection of samples of
continuous variables, is sufficient for more or less successful completion of the
car-parking maneuver.

The question is how to fit sampled variables into the system model (2.4)? First,
to make things easier from the mathematical point of view, instead of
stochastically samples would be taken in equal time intervals, ¢, f, 4, ..., 4, ...,
with Ty= t;, — ;. As a second modification, the sampled value taken in # would be
“frozen” during the sample interval # + T4. Given these modifications, continuous
variables shown in Figure 2.5, attain the form presented in Figure 2.7.

ot

»
>

t

Figure 2.5. The continuous-time variables representing distances from the front and rear
cars

A

at

~
~
N
~N

’df- —_— - /\/\/_—___\

el TR L L T T T T TN T TN T T NN S S 1 A -

Figure 2.6. Samples taken by the driver

Discrete Event Systems 29

Now, we can rewrite the continuous-time model (2.4) in the discrete-time form:

x(t,) = @[() u(t).1, | x(t) =x,

2.9)
¥(t) =T x(t)u(t).1, |

Ast,=kTy, k=0,1,2, ..., sometimes Equation (2.9) is written as [5]:

x(k+1) = @ [x(k), u(k), k] , x(0) = x,

y(k) = T[x(k),u(k), k]

The evaluation of system states and system output in a discrete-time model is
obtained recursively by the difference equations (2.9) [6]. Since the value of
variable k increases as time evolves, the system-state changes are synchronized
with time, hence the discrete-time systems are time driven. When @ and I are
linear functions, the discrete-time model becomes the system of nonhomogeneous
linear equations.

Although in the parking example the nature of the system (one sensor that
should monitor two feedback states) was the reason for the sampling of continuous
variables, usually the implementation of the control law is why the system has to
be represented in the discrete-time form. Nowadays, advances in computer
technology provide low-cost solutions for very sophisticated and computationally
demanding control algorithms. As the execution of the control laws in the form of
a computer program is performed in discrete-time intervals, discrete-time models
are needed for appropriate design and investigation of control algorithms. In every
sampling interval continuous system variables are sampled and converted by
analog-to-digital (A/D) conversion into the numerical values in order to be
processed by the computer. Upon execution of the control law, results, in
numerical form, are returned into the system by digital-to-analog (D/A)
conversion. During the execution cycle (which takes some time), the computer is

a}

»
y

}1[‘2}3‘“_””‘HHHHHHHHH f

Figure 2.7. Discrete-time form of continuous-time variables

30 Manufacturing Systems Control Design

“not aware” of the system development; only at particular moments in time are the
system conditions sampled and conveyed into the computer.

Even though this issue is not a subject of the book, it should be mentioned that
data exchange between the system and the digital computer requires not only
sampling in time but also sampling of state space, as the numerical resolution of
the computer is finite. Actually, this requirement is related to the limited resolution
of A/D and D/A converters (usually 10 to 16 bits). For example, the continuous
system variable that takes values from the set of real numbers, when processed by
a 12-bit A/D converter, is mapped into 4096 integers. Usually, the range of the
converters is considered sufficient so that discretization of the state space is
ignored in the process of discrete-time modeling.

So far we were concerned with the models of systems that change their states in
synchronization with time. As an introduction to the concept of an event and an
event-driven state we start with an example of the system that belongs to the class
of so-called hybrid systems - a broad class of technical systems that integrate both
time-driven and event-driven states [7]. Hence, some of the hybrid system states
change in synchronization with time, while the change of others is caused by
events that occur asynchronously (here we do not elaborate what an event is; it is a
primitive concept intuitively understandable). Although very complex and difficult
to analyze, during the last decade hybrid systems have become an important topic
for researchers and engineers, which is expected, since most of the industrial
control and automation solutions fit into this class of systems. However, the hybrid
system design is still done mostly by a heuristic approach as current theory is
complicated and requires time-consuming methods [8, 9].

The concept of an event-driven state becomes apparent if we bear in mind that
in many cases (especially in practical control implementations) the status of an
actuator or a sensor is described with only two categories, i.e. valve opened-valve
closed, motor is running-motor is idle, sensor is active-sensor is idle, efc. If the
status of a motor is considered as a state, then the event “switch on the motor”
changes the system state. Furthermore, in order to make a control algorithm
synthesis simple, continuous states of hybrid systems are partitioned in regions that
are treated separately during the system design. Then, the goal of the hybrid system
controller synthesis is to find an algorithm intended to fulfill the desired
requirements for a particular region. The switching between regions and controllers
and the binary nature of actuators and sensors make some of the system states
event driven.

Example 2.1.1 (event-driven states in hybrid system)

The system under consideration is the longitudinal tunnel ventilation. Vehicles
passing through a tunnel produce various types of poisonous gases as well as soot,
especially in the case of heavy vehicles with diesel engines. High standards for air
quality and the need for good visibility require an advanced ventilation system for
management and control of pollution. Two objectives, opposite in nature, have to
be fulfilled simultaneously by the ventilation system: a) the system should keep
visibility (opacity) at a required level and make certain that pollutants (mainly

Discrete Event Systems 31

carbon monoxide - CO) remain within admissible margins and b) energy (costs)
used for objective a) should be minimal.

Here we are not concerned with the design of control algorithms that use
continuous system states and meet both objectives concurrently (that might be a
very complex and demanding issue). Our aim is to design a controller based on
event-driven system states. The controller should utilize the carbon monoxide
concentration as a feedback signal and the number of vehicles per hour per
kilometer as a feedforward signal (variations of this type of controller are used in
many practical implementations of the tunnel ventilation). As a first step in
achieving our goal both continuous time signals are divided into three regions —
low (L), moderate (M) and high (H) (three regions are chosen for simplicity —
typical tunnel ventilation controllers use more than 7). Transitions over predefined
threshold values between two neighboring regions are considered as events. These
events will be the driving force of the system model. We assume that low traffic
produces a low level of CO, a moderate number of vehicles a moderate level of
CO, and a high number of vehicles a high level of CO.

In the tunnel ventilation systems jet fans are usually used as actuators. It is
presumed that actuators can be described as active (1) and idle (0). The system is
designed in the way that active jet fans reduce carbon monoxide concentration so
that it moves down into the neighboring region. The actuator’s state is changed by
two actions, switching on (ON) and switching off (OFF). These actions, treated as
events, can be triggered by an operator or by the controller.

At this point it is important to note that some events, such as jet-fan breakdown
or sensor failure for example, are uncontrollable. Since this type of event cannot be
influenced by the supervisor, modeling and design of the systems regularly starts
by neglecting potential effects that uncontrollable events might have on the system
performance. Then, as the second step in the system synthesis, the states forced by
uncontrollable events are analyzed and additional features (fault tolerance) are
incorporated into the supervisor. In our example, we disregard jet-fan failure and
concentrate only on events that are necessary for the description of the event-
driven state concept.

Having defined the system in that way, we can express the set of events as

E={V,.,V4..CO,.,CO

dec? inc? dec ’ON’OFF}
where Vi, and V. are events related to transitions of thresholds defined for the
number of vehicles and CO;,, and COy. are events related to transitions of
thresholds defined for the carbon monoxide.

Given that the supervisor has two discrete inputs, a number of vehicles, N, and
a carbon monoxide concentration, CO, and one output, actuators status, A, the
system state x can be represented with triples (V,, CO, 4). For given values, there
exist 18 discrete states (for example, state (M, L, 1) stands for “moderate number
of vehicles”, “low CO concentration” and “actuators running”). It is evident that
due to the system nature some states are unreachable. Such a state, for example, is
(L, H, 1), i.e. low number of vehicles cannot produce a high level of CO with jet
fans running (actually, such situation can happen in the case of fire in the tunnel,

32 Manufacturing Systems Control Design

but our model does not consider this catastrophic incident). In a vector form the
system state is represented with the system state vector x = [N, CO A]".

The occurrence of an event from E changes the system state, thus causing a
movement of the system state vector in the system state space X, as shown in
Figure 2.8. Upon event OFF, the system that resided in x' = [M L 1]" goes to the
new state x> = [M L 0]". Since jet fans have been turned off, the concentration of
CO increases, i.e. COj,. occurs, and the system state vector becomes X = MM
0]". Then, a new event V. forces the system into x*=[H M 0]". As the number of
vehicles increases the level of carbon monoxide starts to rise, thus causing
occurrence of event COy,., which forces the system into state X’ = [HH O]T. High
concentration of CO can be reduced by switching on the jet fans (event “ON”), that
leads the system into state x° = [H H 1]". When the jet fans start to dilute CO,
COye. takes place and the system state vector attains its final value x = [HM l]T.
Continuous system variables with corresponding events, are shown in Figure 2.9.

For a given event-driven model of the system one is able to determine the
event-driven controller. Depending on the control goal and the system
characteristics the discrete state space can be partitioned into several regions. For
example, one of the regions has already been mentioned, i.e. a region of
unreachable states. From the control point of view particularly interesting is a
forbidden region, i.e. the region that localizes the states that must be avoided. Once
defined, these states are a basis for the system-controller design. For example, if in
the tunnel ventilation system all states with a high level of CO are not allowed
(states of the form x = [- H -]7), then the supervisory control actions might be
defined as follows: switch on jet fans each time system arrives at states x=[H - 0]"
and switch off jet fans when the system leaves states x = [H - 1]". Continuous
system variables of a so-controlled system, together with corresponding events, are
shown in Figure 2.10.

x®=[H H 1]
CO
A ON
Codec
Hr - = g x*=[HHO] .
o XM AT
Md— — — — _ _ X=MMOI" Vi | xisim o |
A x'=[ML1]" |
COue = | |
L+ =ML’ | |
10— — — — — — =~ — — =
I _ -
-~ -~
0 | = = >
L M H N,

Figure 2.8. Movement of the system state vector in discrete state space

Discrete Event Systems 33

Avehicles

H Vine l /f
/
M

\

Acarbon monoxide

—
M COinc
e~
L
7 >
jet fans
A’ OFF OoN

0 >

t

Figure 2.9. Continuous system variables with corresponding events

Avehicles

H l\/.}_\lvaec
Mh——

\

Acarbon monoxide

M___/N

\

jet fans
A ON OFF

0 >

t

Figure 2.10. Continuous variables of the controlled system (with corresponding events)

It can be seen that event V;, drives the system into state x=[H M O]T. As a
reaction, the supervisor triggers the event ON and the system reaches state x = [H
M 11". Without control the system will settle into x=[H H 0] (see Figure 2.9). As
the number of vehicles decreases, event V4. causes a change of the system state to
x = [M M 1]". Hence, the supervisor generates the event OFF forcing the system
into state x=[M M 0]".

.

34 Manufacturing Systems Control Design

2.2 Event-driven Systems

In the previous example event-driven states were created from time-driven states,
and then used for the supervisor design. A simple control objective was
accomplished by triggering events that kept the system out of the undesired states.
Now we move further and introduce the systems that encompass only event-driven
phenomena, i.e. event-driven states are an inherent property of the systems.

Let us now consider a game in which two persons are placed at the table. There
is a panel between them so that they are not able to see each other, although, there
is an open space below the panel. Person A has in his/her hands a set of 10 cards,
each card marked with different letter: a, b, ¢, d, f, g, h, m, n, p. Person B has a
pen, a paper and a watch. The watch has an alarm that is set to be active every 10
seconds. The game is as follows. Person B has closed eyes and on the alarm signal
he/she should open eyes and write down the letter displayed on the card placed on
the table. If there is no card on the table, a letter x should be written on the paper.
Once the letter is marked, person B closes his/her eyes and waits for the next
alarm. Person A has headphones and can not hear the alarm. He/she randomly, in
various time instants, picks the card, writes down the displayed letter and leaves
the card on the table below the panel for a few moments for it to be visible to the
other person. Then the card is put aside. A possible outcome of the game is shown
in Table 2.1. The table contains the letters written by the players.

Table 2.1. A possible outcome of the card game

PlayerA [a |h|d|f|[n|b|c|g|m|p

Player B X X f X | c X X

From Table 2.1 it can be seen that person B “caught” only 2 cards out of 10 that
have been placed on the table by person A; 80% of the information has been lost.
After the third alarm person B saw a card on the table for the first time. From
his/her perspective person A still had 9 cards in hand while actually only 6 cards
remained. Obviously, actions performed by person A can not be accurately
measured by the technique used by person B. One can argue that much better
results could be achieved if the alarm was set to 1 second, but this is not the point,
that is, the observation method has been synchronized by the watch alarms, while
the process of placing the cards on the table was random and asynchronous. From
the person A’s point of view the system state (cards remaining in hand) changed 10
times, while from person B’s perspective the system state changed only 2 times.
Clearly, this system can not be described with a model in which the system state
evolves in synchronization with time, since the evolution of the system state is
caused by asynchronous events (placement the cards on the table).

The second aspect that has to be taken into account, when one considers
modeling the systems like the one described above, is the system state space. In our
example the set of cards remaining in hand was regarded as the system state. Since
the status of a particular card may take only two values, “in hand” or “put aside”, it
is apparent that the system state can attain only discrete values, thus the state space

Discrete Event Systems 35

is discrete, in contrast to time-driven systems where the state space is continuous
(compare Figures 2.3 and 2.8).

Asynchronous events that cause the change of system state vector in discrete
state space characterize event-driven systems, also called discrete event systems
(DES) [10, 11].

Let us define a set E as the set that comprises all events e; that can occur in the
system. In the card game example we have

Ez{aab:cadafagah:manap}

i.e. event b corresponds with placing the card marked with the letter b on the table,
event ¢ corresponds with placing the card marked with the letter ¢ on the table, and
o on.

In our example, each time an event takes place the system state changes (it
should be noted that in some discrete event systems there exist events that do not
change the system state). In most systems a simultaneous occurrence of two (or
more) events is not allowed (this can be enforced by the system design or it can be
its inherent property), thus events arise in some order or sequence. From Table 2.1
we see that the sequence of events in the game was s = (a, h, d, f, n, b, ¢, g, m, p)
(in Example 2.1.1, Figure 2.9, the sequence was (OFF, COjy, Vine, COjne, ON,
COg)). If we associate vector x with the system state in the way that each
component of the vector corresponds to the card in hand, 1 if the card is in hand, 0
if the card is put aside, then, at the beginning of the game, we shall have

where the first component of the vector stands for the card marked with the letter a,
the second component for the card marked with b, and so on.

Given the system state vector x, and the system initial condition x,, we can
express the state of the system after a sequence of events s;= (b, d, f, p) as

[
=1 o100 11111
[

101001111 0]

It should be noted that sequence s; holds only partial information regarding the
system state change; we know the ordering of events that forced the system from x,
to x*, but we are not able to tell the time instances in which the events actually took
place. Adding the time in the sequence gives s; =((b,t,), (d.ta), (£.tr), (p, t,)), Where
t, represents the time instance of the occurrence of event b, ¢4 represents the time
instance of the occurrence of event d, and so forth. Having the timed sequence

36 Manufacturing Systems Control Design

defined in this way we can calculate how much time the system spends in a
particular state. This kind of information is essential in investigation of system
properties that are related to utilization and throughput of the system, due time of
events, system transient time, efc. An untimed sequence describes only the logical
(we might say IF-THEN) behavior of the system.

2.2.1 Automaton

So far we have introduced the basic concept of event-driven systems in an informal
way. The tunnel ventilation and the card game examples encompassed a set of
events that forced changes of the system states, thus forming a set of sequences.
The problem with informal representation is that it is usually difficult to determine
all possible sequences that could be generated by the system without some kind the
of the system model. One of the most popular modeling tools for DES
representation is automaton [12—14]. In the following text we give a concise
description of the basic notations in automata theory.

Definition 2.2.1 (automaton): An automaton, denoted by 4, is defined as a five-
tuple

A={E, X, f,x,,X_}

where E is the set of events, X is the set of states, f : X X E — X is the transition
function, x, is the initial state and X, is the set of marked states.

In many cases (particularly when one deals with practical implementation of
DES) sets £ and X have a finite number of elements. The transition function f
describes mapping between these two sets in the following way: if there exists an
event e that generates transition from state x to state y, then f{x,e) = y. If upon the
occurrence of event e the system state x does not change we write f{x,e) = x. When
fix,a) =y and f(y,b) = z we have

JW,b) = f(f(x,a),b) = f(x,ab) = z (2.10)

i.e. the definition of the transition function is generally extended to the set of
sequences, denoted E*. An additional property of the transition function should
also be mentioned. Given that the set of events that cause transitions from state x is
usually a subset of £, T'(x) < E, it is apparent that the automaton transient function

fexists only on the part of its domain (usually in the literature I'(x) is it called the
active event function and it is a part of the automaton definition). Hence, f(x,e)
should not be defined for each event e at each state x.

The set of marked states, Xj,, is a subset of X. In general, by using marked
states one is able to point out that some states have a special meaning. For
example, a marked state could be connected with the notion of an ending or a final

Discrete Event Systems 37

state; the state in which the system resides most of the time (from that point of
view a marked state can be related to the steady state in time-driven systems).

It should be noted that Definition 2.2.1 covers only the so-called deterministic
automata, i.e. automata in which the occurrence of one particular event (or a
sequence of events) forces the system into a strictly defined state. On the contrary,
in nondeterministic automata one event may cause transitions from one state to
several states, i.e. the value of the transient function is expressed as a subset of X,
fix,e)={y, z, w}.

Having Definition 2.2.1 we can determine an automaton that models the status
of jet fans in the tunnel ventilation system from Example 2.1.1, as

Ap ={EF’XF’fF’xF0’XFm}
where

E, ={ON,OFF}, X, ={0,1}, X, ={1}
£.(0,0N)=1, £.(0,0FF) =0, f.(1,0FF) =0, f.(1,ON) =1, x,, =0

Observation of automaton Ar exemplifies Definition 2.2.1. Foremost, we see
that the transient function f; is defined on the whole domain since each event from
Er is related with each state from Xg. Secondly, the state x = 1 is marked. Its
particular importance lies in the fact that it asserts the situation when the jet fans
exploit energy, thus, the energy-usage calculation is active as long as the system
stays in this state.

For simple automata, as the one describing jet fans, with just a few states and
several events, a written form of presentation is suitable. On the other hand, for
complex discrete event systems the more convenient way of automaton
representation is in graphical form or in the form of a so-called state tramsition
diagram, shown in Figure 2.11.

OFF ON

ON »
0 J¢ OFF '(@

Figure 2.11. State transition diagram of automaton Ag

In mathematical formalism, structures such as a state transition diagram in
Figure 2.11, are known as directed graphs. The basics of graph theory are covered
in later chapters of the book so at this point we shall skip definitions and properties
of graphs. For our purpose it is sufficient to note that in the state transition diagram
labeled circles represent states and labeled arcs represent events. The initial state is
shown as a circle marked with an arrow while a marked state is represented by a

38 Manufacturing Systems Control Design

double circle. In the literature the state transition diagram is usually referred to as
an automaton. We will use the same principle in this book.

The following example demonstrates robotized workcell modeling by using an
automaton.

Example 2.2.1 (state transition diagram of a robotized workcell)
We examine the robotized workcell shown in Figure 2.12. Our goal is to design an
automaton that models this cell. The machines and the robot are considered failure

free, i.e. our model does not include breakdowns, malfunctions and other
uncontrollable incidents. We assume that both parts have a stochastic arrival time.

machine A

machine B

Figure 2.12. Workcell from Example 2.2.1

The cell consists of two machines and one robot. Two types of parts, a and b,
are processed in the following way. Both parts are brought into the cell by input
conveyers. Entering the cell, part a is picked up by the robot and transported to the
machine A. When processing is finished the robot removes the part from the
machine and leaves it on the output conveyer. Upon arrival, part b is processed in
the machine B and then taken by the robot to its output conveyer.

From the workcell description we are able to determine the states and events
that are important from the modeling point of view. While the status of machine A
(the same is valid for machine B) can be “idle” - I or “work in progress” — W, the
situation with the robot is different since it executes three tasks. Hence, its status
can be described as “available” — A, “moving part a in machine A” — M,
“removing part a from machine A” — 1 and “removing part b from machine B” — 2.
For the given specifications the automaton state can be described with three
characters, where the first character is related to the robot status, the second
character stands for machine A status and the third character for machine B status.
Following this notation, the overall cell status “placing part a in machine A” while
“machine A is idle” and “machine B is working” is written as a state MIW.

Discrete Event Systems 39

Events of interest are those associated with the transitions of the above-defined
automaton states. Their notations and descriptions are given in Table 2.2.

Table 2.2. Events in workcell from Example 2.2.1

Event Description
o arrival of part a
B arrival of part b in machine B (processing started)
m processing of part a in machine A started
f replacement of part b from machine B started

r replacement of part b from machine B completed

replacement of part a from machine A completed

c replacement of part a from machine A started

Having defined states and events we can start with the determination of the
automaton. In a complex DES, automatons for each component of the system are
built first and then their integration gives a model of the entire system. Here we are
using an informal approach — two part paths are modeled separately and then put
together. First we model only part a path. It is assumed that at the beginning the
machines are idle and the robot is available, thus the initial state is AIl. Now we
should check how events, defined in Table 2.2, influence the given initial state.
Upon arrival of part a, event a triggers the transition from state All into state MII,
that is, robot carries the part into machine A while the machines remain idle. Other
events, except S, are not related with the initial state (how event S is related with
state Al will be discussed later), i.e. processing of part ¢ in machine A cannot start
(event m) since the part is not placed in the machine, replacement of part a from
machine A cannot start (event c) as the part has not been processed yet, and finally,
the robot cannot complete replacement (event r) since this task has not started
(event f'is not considered since it is attached to the part b path). Clearly, the only
accessible state from All, on the part a path, is MII.

Following the same reasoning we can build an automaton state by state. When
the part is placed into the machine A, event m generates the transition to the next
state, AWI, i.e. the robot becomes available, and machine A is processing the part
while machine B is still idle. The operational sequence is finished when part
processing in machine A is completed (event ¢, state 11I) and the robot removed
the part from the cell that corresponds to event r that releases the robot and returns
the automaton in its initial state AIl. The model of part a path is shown in Figure
2.13.

40 Manufacturing Systems Control Design

Figure 2.13. An automaton of part a path in the workcell from Example 2.2.1

It should be noted that the occurrence of a does not influence states MII and 111
since in both cases the robot is already occupied (the way event a affects state AWI
will be discussed at the end of the example).

The automaton that models part b path is depicted in Figure 2.14. The initial
state of this automaton is the same as for the automaton describing part a path.
Arrival of part b triggers processing in machine B, event f forces the system in
AIW. Then, the part is removed from the machine (event £, state 21I) and the robot
is released (event r), which leads the system into the initial state. When that new
part b arrives while the previous part is still being carried by the robot, state 211
changes into 2IW. Then, the robot is released and the system returns to state AIW.
As for the automaton shown in Figure 2.13, some events have no influence on
particular states.

Figure 2.14. An automaton of part b path in the workcell from Example 2.2.1

It is evident that the automata in Figures 2.13 and 2.14 do not provide a full
description of the workcell. First, some states that are particularly important are
missing, and second, events that connect two automata should be added in order to
obtain the correct model. By using the same reasoning that has been used for
already-determined automata, we can construct the third automaton shown in
Figure 2.15.

Discrete Event Systems 41

Figure 2.15. Partial automaton of the workcell from Example 2.2.1

Finally, a complete model of the workcell, depicted in Figure 2.16, is obtained
by “merging” three automata. Since these automata were determined by an
informal approach here we purposely omit formal notions of parallel composition
and the product of two automata, and use the term merge instead. However, in
order to verify the final result, the automata of the robot and machines are
presented later on, together with a definition of parallel composition. For
convenience, a complete model, depicted in Figure 2.16, does not encompass arcs
corresponding to events that have no affect on the automaton states.

A survey of the automaton model reveals some interesting properties of the
workcell. It can be seen that there exists a state (MWW) with no events that lead
the system out of it. This state corresponds to a situation when both machines are
processing parts while the robot carries part a. In order to place the part in machine
A, the robot should remove the part that has been processed, but this task cannot be
done since the robot already holds a part. At the same time machine B is not able to
receive new parts since replacement of the part that has been processed requires the
robot, which is occupied with an another task. Hence, once the workcell gets in
MWW it remains in that state indefinitely; no further events are possible. This
means that the automaton blocks without termination of the planned task. This
situation is known as a deadlock [15] (it should be noted that there exists another
form of blocking, called a /ivelock). Deadlock prevention, which is the key concern
in the discrete event systems supervisory design, will be discussed and analyzed
throughout the book.

42 Manufacturing Systems Control Design

Figure 2.16. Complete automaton of the workcell from Example 2.2.1

In our case, the deadlock situation is in close relation with states AWI and
AWW. That is, when the system comes into one of these two states the event a has
to be forbidden otherwise the system will be blocked. In the next section we will
discuss how we can keep the system described by an automaton out of illegal
states.

Before we conclude the example it is worth saying a few words about marked
states in the automaton in Figure 2.16. The main task of the workcell is a cyclic
repetition of parts processing, hence, no state can be treated as final. However, four
states, 2II, 2WI, 2IW, 2WW, 1IW and 1II have been marked. These states are
chosen because each time the system gets into one of them, part a or part b
eventually leaves the system (recall that robot statuses “1” and “2” stand for tasks
related to removal of parts from the machines).

*

As mentioned in the previous example, a formal description of a joint behavior
of a set of automata can be obtained by two operations, a product and a parallel

composition. The latter, defined hereafter, is more interesting for our purpose.

Definition 2.2.2 (parallel composition of automata): Given automata 4; and A,,
their parallel composition is defined as

A |l Ay = Ac (X, X Xy, E; UE,, (%)), €), X1 X095 Xy X X0) s @.11)

where Ac is the so-called accessible operation, i.e. an operation that deletes all
states that are not accessible from the initial state.

Discrete Event Systems 43

A set of states attained by the parallel composition contains all combinations
made by states in 4, and 4, (the same holds for marked states). This points to the
main drawback of automata — each state is represented explicitly. By combining
components of real-world systems the number of states can easily explode.

A new set of events, obtained by the parallel composition, is calculated as a
union of events in 4; and 4,. A transient function of the joint automaton is defined
as follows:

(fl(xl,e)fz(xz,e)) ifeeT' (x)NT,(x,)
f((xx,),e) = (fl(xl,e)xz) ifeeI' (x)\E,
(x,.f.(x,,€)) ifee T,(x,)\E,

In other words, an event e that belongs to both automata can be executed only
when the joint automaton arrives in the state that is formed by states that initiate
event e in the original automata. Other events can be executed with no restriction.

Automata representations of the robotized workcell components from Example
2.2.1 are shown in Figure 2.17. As may be seen, in accordance with the discussion
from the beginning of the example, each machine has two states, I and W, while
the automaton representing the robot has four states, A, M, 1 and 2. A set of events
in the automata corresponds to those defined in Table 2.2. We demonstrate a
parallel composition of automata representing machine A, denoted A,, and the
robot, denoted Ag.

According to the definition a new automaton will have 8 states (4x2): Al, MI,
11, 21, AW, MW, 1W and 2W. A set of common events is determined as E5 N Eg =
{c, m}. The new states and corresponding events are shown in Figure 2.18.

-0 @.
- oo
o0 G -

b)

Figure 2.17. Automata representation of the workcell components from Example 2.2.1; (a)
machine A, (b) machine B, and (¢) robot

44 Manufacturing Systems Control Design

Figure 2.18. States and transitions attained by the parallel composition of the automata (a)
and (c) in Figure 2.17

Let us take a closer look at Figure 2.18. A new state Al is formed from the
robot state “available” — A and machine state “idle” — I. Both states represent
initial states in the original automata, thus, state Al represents the initial state of the
joint automaton. From Figure 2.17 we see that ['(A) = {c, f, a} and I'(1) = {m}.
Since common events ¢ and m do not belong to both I'(T) and I'(A), their execution
is forbidden. The remaining events, f and a, are allowed; the occurrence of f
enforces a new state 21, while event a leads the system into state M1, as shown in
the figure. State 11 is composed of states 1 and I, with I'(1) = {r} and I['(I) = {m}.
As for the previous state, event m is not allowed, while event r causes a transition
to state AL State 1I is marked because states 1 and I are marked. The next state,
M1, illustrates the situation when both automata involved in parallel composition,
perform a common event. As (M) = {m} and I'(I) = {m}, the condition for
execution is satisfied and state MI changes to AW. Further analysis gives the
remaining transitions as shown in Figure 2.18. State MW cannot trigger any event
since '(M) = {m} and ['(W) = {c}.

Given new states and corresponding transitions we are able to form an
automaton obtained by the parallel composition, represented in Figure 2.19.
Similarity with the automaton that models part a path (Figure 2.13) is evident.

The parallel composition of the automaton describing machine B (Figure 2.17
(b)) and the automaton that models joint behavior of the robot and machine A will
give a complete model of the workcell. We leave this step to the reader.

Discrete Event Systems 45

Figure 2.19. Automaton as result of the parallel composition of the automata (a) and (c) in
Figure 2.17

2.2.2 Languages and Supervisory Control of DES

When we introduced the notion of feedback control in time-driven systems we
mentioned that usually there exist at least two control objectives; a) the system
should be conducted to the desired state and b) this state should be reached in a
particular way, i.e. the state vector should follow a predefined trajectory. These
two objectives are applicable to event-driven systems too. Generally, the goal of
supervisory control of DES is to force the system i) to avoid undesirable states and
i1) to maintain selected specifications (control policy).

The prospective design of such a supervisor requires two issues to be resolved.
First, we have to identify illegal states. This might be difficult, especially if the
system is large and has hundreds of states. In the workcell example deadlock states
were caused by a structural property of the system and they were recognized when
the automaton model of the system was built. On the other hand, in the tunnel
ventilation example the forbidden states were imposed by the designer. One way or
the other, undesirable states need a formal description in order to be incorporated
in the supervisor design and avoided by the controlled system. The second issue,
associated with the supervisor design, is specification of system activities once the
problem of forbidden states is solved. The question is how to arrange the system
states in order to execute the specified tasks? In the workcell example the robot
provided services for two machines by handling parts processed by the machines.
One possible scenario for the robot is to remove three parts from machine B, then
put one part in machine A and then again remove three parts from machine B
before it returns to machine A and takes out the part. This job sequence is repeated.
Integration of such (cyclic) behavior into the supervisor design needs to be done
formally in order to enable analysis of the controlled system.

Let us now recall the ventilation system example. In this example the “control
rules” were associated with the system states: switch on the jet fans each time the
system arrives at states x = [H - 0]" and switch off the jet fans when the system
leaves states x = [H - 1]". Also, in the robotized workcell example we pointed out

46 Manufacturing Systems Control Design

that deadlock was linked with two states, AWI and AWW. The automata theory
approaches the supervisory control design from a different perspective. Instead of
defining actions (events) that have to be taken when the system gets in a particular
state, in the automata theory sequences of events are analyzed. Then, the
supervisor’s responsibility is to limit the system behavior to those sequences that
are admissible or specified by a given control policy. To achieve this, the
supervisor 1) must “know” the current state of the system, and ii) should be able to
prevent the occurrence of specific events. The first requirement is associated with
system observability [16, 17] while the second one is related to the system
controllability. Although fulfilment of both requests is rarely achieved,
observability is easier to handle. Indeed, there are numerous DES observer design
techniques that provide the supervisor with information regarding events that
cannot be measured directly [18]. The situation with controllability is different.
Due to the presence of breakdowns, malfunctions and other irregular incidents,
some events are uncontrollable and their occurrence cannot be disabled by the
supervisor [19] (it should be noted that there are events that are not related to
failures but still cannot be controlled). Usually, a theoretical analysis of systems
with uncontrollable events is concerned with determination of the probability that
an uncontrollable event will take place. In practice, the best we can do is to employ
redundancy in the parts of the system with the highest probability of having a
failure.

At this point we return to the notion of the events sequence. As we mentioned
earlier in the chapter, events occur asynchronously, one after the other, changing
the system state and forming the sequences. In order to be able to trace all
sequences that are generated by the system, we introduced the DES modeling tool
called an automaton. An automaton, comprised of system events and system states,
describes in which way the occurrence of a particular event changes the system
state. Starting from the initial state, an automaton 4 creates a set of untimed

sequences s,,5,,...C E ", written in the form of strings. This set of strings, called

the language of automaton 4, is denoted L(4) and defined as
L(A) = {s cE : f(x,,s) exists} (2.12)

It can be seen that L(A) < E . The concept of languages, generated by an

automaton, has a central place in DES supervisory control design and analysis. In
the remainder of the section this concept is presented briefly only to provide the
reader with a concise insight into the potential that languages offer in DES theory.
For further readings one may wish to consult [20-22]

Let us denote the automaton depicted in Figure 2.16 as Ay. Then

L(Ay) ={a, B,am,of, Bf, Pa,oame,ama, amfB, affm, Bff,...}

It is apparent that strings, belonging to the language generated by automaton
Aw, correspond to directed paths in the state transition diagram of 4w (paths are

Discrete Event Systems 47

fundamental structural properties of graphs and will be discussed in more details
later in the book).

The other language, which is closely related to the notion of deadlock, is
associated with marked states. When that last event in a sequence s corresponds to

an event that leads the system to the marked state, f(x,,s)e X, we talk about a

marked language of automaton 4, denoted L,(4) and defined as
Ly(A)={se E": f(x,.5) X, } (2.13)
From Figure 2.16 we have

L _(Ay)={Bf,amc,amcf,amBf,oampe, fome, fanf ...}

For a given string s = abc, a is called a prefix of s, b is called a substring of s
and c is called a suffix of s. String s = ¢ is called an empty string. A language L(A)

is said to be prefix-closed if L(A) = L(A), where
Z(A):{se E' :3ce E', sce L(A)}, (2.14)

i.e. L(A)contains all prefixes of strings in L(A).

A blocking (deadlock) is related to the prefix-closer. Specifically, an automaton
contains a blocking condition if

L_(A) c L(4). (2.15)

According to the usual interpretation, marked states appoint the final stage of
the process modeled by the automaton. If blocking occurs, the automaton is not
able to get into the marked state; hence, any generated string that ends in a
deadlock state cannot be a prefix of a string that ends in the marked state.

To verify relation (2.15) we choose a few strings that belong to L(4y,) and

lead automaton Ay in deadlock; s; = amoaf, s, = ampPo., s3 = famoa. From Figure
2.16 we can see that none of these strings is a prefix of strings that end in marked

states of Ay, therefore, E(Aw) c L(4y,) .

In the automata theory supervisory control is implemented in the form of a
function, usually denoted S, which dynamically enables or disables events in a
controlled automaton 4. Thus, S(s) is a set of all events that are allowed by S after
the automaton A has generated string 5. As an example, we examine strings s; = om
and s, = fom generated by Ay. If supervisor S is to prevent a deadlock, then S(s;) =
{c, B} and S(sy) = {c, f}. Further, let us study two more strings, also generated by
Aw, s3 = amcrom and s, = famcram. In order to prevent deadlock we must have

48 Manufacturing Systems Control Design

S(s3) = {c, B} and S(s4) = {c, f}. Note that for a given control policy function S
could have the same value for different strings, S(s;) = S(s3) and S(s;) = S(s4).

Before we return to the question posted at the end of Example 2.2.1, that was,
how to design a supervisor that prevents a deadlock, we should see in which way
the design specifications, which are usually given in a heuristic manner, can be
formally specified. The problem is how to represent statements such as “prevent
deadlock”, “apply last-buffer-first-serve dispatching policy”, “task a has a higher
priority than task 4”, and so on, and relate them to the supervisor S.

It is apparent from the earlier discussion that a language generated by an
automaton could have a large or even infinite number of strings, hence, making a
list of all sequences (strings) that satisfy (or not) required specifications will be not
only impractical but in many cases impossible. Since the domain of the control
function S is language L(4), it is natural to realize the control function in the form
of an automaton, let us denote it as 4g. Once defined, automaton Ag should execute
events in parallel with an uncontrolled automaton that is allowed to trigger only
events announced by As. The issue here is that the determination of supervisor
automaton Ag is usually a demanding task that requires practice. For that reason, Ag
is not designed directly from the design specification. As a solution, the automata
theory offers a choice of standard methods for modeling specifications in the form
of an automaton, hereafter denoted Ap. Upon determination of Ap the supervisory
automaton is computed as a parallel composition or product of Ap and the
automaton that describes the system.

In some cases As can be obtained directly from the model of the system;
inadmissible states and all events related to them should be simply removed. For
example, in the workcell automaton Ay (Figure 2.16) illegal states MWW and
MWTI that embrace events a and S, can be erased, thus creating supervisor 4s. In
this way, each time the system arrives in state AWI or AWW the occurrence of
event a will be restricted by As.

Discrete event systems are often required to perform some tasks alternately.
This specification can be presented in the form of a two-state automaton Ap having
transitions that correspond with events that trigger the requested tasks. In our
workcell example we can build such an automaton with events o and c, thus
preventing a deadlock. The arrival of a new part a will be ignored as long as the
previous part is not removed from the workcell (this dispatching policy is known
as last-buffer-first-served). Even though part a arrives in the system stochastically
and this process cannot be controlled, from the technical point of view that should
not be a problem. As the supervisor is implemented in the form of a computer or
PLC program, it is not difficult to ignore a signal from the sensor that triggers
event a as long as part a is being processed by machine A.

References

[1] Isidori A. Nonlinear Control Systems. London: Springer, 1995.
[2] Slotine JJE, Li W. Applied Nonlinear Control. Englewood Cliffs: Prentice Hall, 1990.
[3] Vidyasagar M. Nonlinear Systems Aalysis, SIAM, 2003.

Discrete Event Systems 49

Bay JS. Fundamentals of Linear State Space Systems. New York: WCB/McGraw-Hill,
1998.

Kuo BC. Digital Control Systems. New York: Holt, Rinehart, Winston, 1980.

Astrom KJ, Wittenmark B. Computer Controlled Systems. Englewood Cliffs: Prentice
Hall, 1990.

Henzinger T, Sastry S. Hybrid systems: Computation and Control. Berlin: Springer-
Verlag, 1998.

Special Issue on Hybrid Systems, Automatica 1999;35;3

Special Issue on Hybrid Systems, IEEE Trans. Aut. Contr. 1998;43;4

Tornambe A. Discrete-Event Systems Theory. Singapore: World Scientific, 1995.
Kumar R, Garg VK. Modeling and Control of Logical Discrete Event Systems.
Boston: Kluwer Academic Publishers, 1995.

Carroll J, Long D. Theory of Finite Automata. Englewood Cliffs: Prentice Hall, 1989.
Hopcroft JE, Ullman JD. Introduction to Automata Theory, Languages and
Computation. Reading: Addison-Wesley, 1979.

Wonham WM. Supervisory Control of Discrete Event Systems, Lecture notes, 2005.
Che E, Lafortune S. Dealing with blocking in supervisory control of discrete event
systems, IEEE Trans. Aut. Contr. 1991;36;6:724-735.

Lin F, Wonham WM. On observability of discrete event systems, Information sciences
1988;44:173-198.

Cieslak R, Desclaux C, Fawaz A, Varaiya P. Supervisory control of discrete event
processes with partial observations, IEEE Trans. Aut. Contr. 1988;33;3:249-260.
Wong KC, Wonham WM. On the computation of observers in discrete event systems,
Discrete Event Dynamic Systems 2004;14;1:55-107.

Wonham WM, Ramadge PJ. On the supremal controllable sublanguage of a given
language, SIAM J. of Contr. and Optim. 1987;25;3:637-659.

Ito M. Algebraic Theory of Automata & Languages. Singapore: World Scientific,
2004.

Kelly D. Automata and Formal Languages: An Introduction. Englewood Cliffs:
Prentice Hall, 1998.

Kozen DC. Automata and Computability. New York: Springer, 1999.

3

Matrix Model and Control of Manufacturing Systems

The widest definition of a manufacturing system (MS) incorporates all the people,
facilities and services needed to produce a product or a range of products. From
this point of view, the MS design problem is extended beyond the traditional
boundaries of machine tool and process selection, together with plant layout and
job design. Tasks related to organizational issues and the design of information and
control systems represent an increase in the variety of skills required of the MS
design experts. The comprehensive nature of the approach (skills required and the
amount of work involved) calls for a group of people drawn from related technical
and operational functions in the business, which, together with design engineers,
provides the set up of a project team.

The manufacturing systems design may be separated into four major steps —
analysis, conceptual design, detail design and finally, implementation. Usually, the
first step, analysis, deals with issues related to business, i.e. market-data collection,
analysis of products and processes, analysis of manufacturing strategies, etc. The
conceptual design is concerned with decisions related to the manufacturing
architecture, i.e. flowlines, flexible lines, job shops or combinations of these. The
architecture mainly depends on the product volume and the product variety. To be
competitive in the global market and provide flexible manufacturing in today’s
high-mix-low-volume manufacturing environment, manufacturing systems have
moved away from the old style fixed hardware sequential assembly lines with
dedicated workstations. The trend has been toward flexible manufacturing systems
(FMS). The flexibility of an FMS can be achieved in several ways:

e machine flexibility — ease of making changes required to produce a
given set of part types,

e process flexibility — ability to produce a given set of part types in
different ways,

e product flexibility — ability to change over to produce new products
economically and quickly,

e routing flexibility — ability to handle breakdowns and continue
producing a given set of part types,

e volume flexibility — ability to operate profitably at different production
volumes,

52 Manufacturing Systems Control Design

e cxpansion flexibility — ability to expand the system easily and in a
modular fashion,

e operation flexibility — ability to interchange ordering of several
operations for each part type,

e production flexibility — universe of part types that the manufacturing
system can produce.

Once the basic structure of the system is defined, detailed design provides
answers to queries regarding the system performance under the initial design. In
this stage, for example, calculations indicating where the performance bottlenecks
are likely to lie in the system lead to a redesign that will eventually improve the
system performance. Then, dynamic simulations of the system under various
conditions give information regarding the system robustness, uncertainties,
adaptability and sensitivity, to end with the system model. Given the model and the
manufacturing policy, the last stage in the detailed design, the control system
determination, can be carried out.

The control in MSs spreads over all levels of abstraction. The top-level
controllers are concerned with decision making on the global market, hence, they
have long prediction horizons and large sampling intervals (weekly, monthly,
quarterly, efc.). Their outputs are usually used as set points for lower-level control
loops that manage production lines (workcells) on a shop floor. Design and
analysis of these intermediary control loops is the main scope of the book. At the
bottom of the MS control structure we have controllers that work in real time and
handle machines and tools. These bottom level controllers accept working points
from the intermediate level.

Sometimes it is difficult to make a distinction between the three mentioned
levels. Furthermore, in some applications there are more than three levels of
control [18, 19], especially in the case of decentralized structures [20-23]. Anyway,
interaction between various control levels, in a feedback form, is required in order
to provide a proper study of the entire system. For example, some events from the
bottom level, such as machine malfunctions or completions of tasks, should be
supplied to the upper levels to provide an appropriate response of the overall
control system.

The agility provided by the capacity of an FMS to be quickly reconfigured to
produce new products relies mainly on the extent to which it is possible to
efficiently and rapidly reprogram the FMS control system. One of the major
components of an FMS control system is a computer-based supervisory controller
for monitoring the status of jobs and directing part routing and machine job
selection. This supervisor can be seen as an intermediate level of control.

There are many approaches to modeling, simulation and control design for
manufacturing systems, including the already-presented automata, Petri nets which
will be described in more detail in later chapters, alphabet-based approaches,
perturbation methods, control theoretic techniques, expert systems design, and so
on. In this chapter we present a matrix-based model of FMS that is a part of a
detail design of manufacturing systems [1]. This matrix framework is very
convenient for computer simulation [2], as well as for a supervisory controller
design [3]. It is straightforward to write down the matrix description for a specific

Matrix Model and Control of Manufacturing Systems 53

manufacturing system since the matrices are given by the bill of material (BOM)
[4], Steward’s sequencing matrix [5], the resource-requirements matrix, assembly
trees, and existing dispatching algorithms. In addition, the matrix-based
formulation can be easily modified if there are changes in product requirements or
resources available, making the control of the workcell more flexible and re-
configurable. We make the following three assumptions that define the sort of
discrete-part manufacturing systems:

No pre-emption — once assigned, a resource cannot be removed from a job until
it is completed,

Mutual exclusion — a single resource can be used for only one job at a time,

Hold while waiting — a process holds the resources already allocated to it until
it has all the resources required to perform a job.

In addition to these assumptions, we assume that there are no machine failures.

This chapter is organized in the following way: first we introduce the system
matrices that fully describe an MS; then we use these matrices to determine the
system equations that are calculated in and/or algebra. The system equations form
recursive matrix model used for simulation and system analysis. In order to be able
to investigate dynamic phenomena in an MS, we introduce time into the matrix
model. At the end of the chapter, a supervisory controller based on the matrix
model is described and a case study is presented.

3.1 System Matrices

Before defining system matrices we introduce basic terms that will be used
throughout the chapter and later in the book. Let IT be the set of distinct types of
parts produced (or customers served) by an MS. Then each part type keIl is
characterized by a predetermined sequence of job operations

Jb = {Jlk IRk ,...,J’L‘k } with each operation employing at least one resource. (Note

that some of these job operations may be similar, e.g. Jik and Jj" with i #j may
both be drilling operations.) We uniquely associate with each job sequence J Fthe

and finished product-out, JE Tt s assumed,

operations of raw part-in, J} out *

m?°

without loss of generality, that each part is fixed on a pallet throughout its

processing sequence. Let R, ={r0k }k . represent the set of pallets, where rok
(S

denotes the pool of multiple pallets devoted to part-type k. Note that the
multiplicity of pallets in pool rok gives an upper bound for the number of parts of
type k that can be processed concurrently.

n
i=1’

where r,€ R can represent a pool of multiple resources each capable of performing

Denote the other system resources in addition to the pallets with R ={r }

the same type of job operation. In this notation, R* c Rrepresents the set of
resources utilized by job sequenceJk. Note thatR= U RFandJ= U J*
keIl keIl

54 Manufacturing Systems Control Design

represent all resources and jobs in a particular FMS. Since the system could be re-
entrant, a given resourcer € RF may be utilized for more than one operation
J,-k e JX (sequential sharing). Also, certain resources may be used in the
processing of more than one part-type so that for some {/, k}e II, / # k

R' "R* # & (parallel sharing). Resources that are utilized by more than one
operation in either of these two ways are called shared resources, while the
remaining are called nonshared resources. Thus, one can partition the set of system
resources asR =R, UR,, with R, and R, indicating the sets of shared and

ns 2

nonshared resources, respectively, where |RS| =ngand |Rns| =My, Hs+ nps = n. For

ns ?

J()|=1(> 1) if re Ry

any re R we define the resource job set J(r). Obviously,
(reRy).

Definition 3.1.1 (resource loop): For each re R, a set L(r) defined as
L(r)y=rvJ(r) 3.1
is called a resource loop.

Given a set of jobs and a set of resources that compose a manufacturing system,
we can present the system activities in the form of IF-THEN rules. Each rule
corresponds to a component of the logical state vector, denoted x. A job is said to
be activated (started) when all the preconditions (IF part) for its execution are
satisfied. When a multitude of jobs requesting the same shared resource are
simultaneously activated, a conflict is said to have occurred and a decision is
needed as to which job the resource should be allocated to. This type of priority
assignment in resource allocation constitutes the problem of dispatching, which we
shall revisit and analyze in Chapter 6.

Now, the formal definitions of system matrices follow.

Definition 3.1.2 (job-sequencing matrix): The job-sequencing matrix, F,, is a
matrix that relates the job set and the logical state vector: F,(ij) = 1 if job j
contributes to construction of the ith component of the logical state vector.
Otherwise F,(i,j) = 0.

Definition 3.1.3 (resource-requirements matrix): The resource-requirements
matrix, F,, is a matrix that relates the resource set and the logical state vector:
F.(ij) = 1 if resource j contributes to construction of the ith component of the
logical state vector. Otherwise F,(i,j) = 0.

These matrices are easy to write down, F, is the job-sequencing matrix of
Steward (1962) — it is determined from the BOM or assembly tree [6]. Element F,
(i,j) is equal to 1 if job j is required as an immediate precursor to job i (equivalent
in the BOM, if subassembly j is required to produce subassembly 7). F; is the
resource-requirements matrix of Kusiak (1992), which is assigned by the shop

Matrix Model and Control of Manufacturing Systems 55

floor engineer. It has an element F; (i,/) equal to 1 if resource j is required for job i.
Steward’s sequencing matrix F, and the resource-requirements matrix F, have
long been used as heuristic design aids by industrial engineers, with some
possibility for limited analysis (as described e.g. by Warfield (1973) in the case of
F, and Kusiak (1992) in the case of F,). The matrix model elevates these design
tools to formal computation elements.

In order to demonstrate development of the matrix model, let us consider the
assembly tree depicted in Figure 3.1, which shows the required sequence of actions
(jobs) to produce a product. Though the example is a relatively simple one, the
technique extends directly to more complicated systems.

parts out

parts in

Figure 3.1. Product information for example of the system matrices determination
The job-sequencing matrix can be written directly from Figure 3.1:

_MAP RP1 BP MBP RP2

00000
1000 0
01000

F, =
00100
000T10
000 0 1]

Resource-requirements information may be given in the form of table or
included directly in the product information, as shown in Figure 3.1. From this
information one can write down the resource-requirements matrix:

56 Manufacturing Systems Control Design

MA MB B R_
1 0 0 O0|wmar
0 0 0 1|ret
0 01 Ose

F. =
0 1 0 O|wmsr
0 0 O 1]|re
10 0 0 0

Since the first operation of the job sequence does not have any prerequisites
among the tasks, all components of the first row of F, are equal to 0. The same
analogy is applicable to the last row of F,, that is, the last row corresponds to the
parts leaving the system, hence all its components are 0 as no resource is involved
in this operation. We shall return to the issue of system inputs and outputs when we
define the corresponding matrices.

One of the possible layouts of the workcell that performs a job sequence
described by matrices F, and F,, is shown in Figure 3.2.

In the matrix model, matrices F, and F; belong to the IF part of the rules
describing the system. As we mentioned earlier, when all the preconditions for
execution of a particular job are satisfied, the job will be started. These consequent
parts of the rules are structured by the matrices defined below.

Definition 3.1.4 (job-start matrix): The job-start matrix, S,, is a matrix that relates
the logical state vector and the job set: S,(i,j) = 1 if the jth component of the logical
state vector is a prerequisite to start job i. Otherwise S,(i,j) = 0.

Definition 3.1.5 (resource-release matrix): The resource-release matrix, S,, is a
matrix that relates the logical state vector and the resource set: S,(i,j) = 1 if the jth
component of the logical state vector is a prerequisite to start the release of
resource i. Otherwise S;(i,j) = 0.

machine B

=l

parts out
[LITTT]—

machine A

Figure 3.2. The workcell layout for the assembly tree in Figure 3.1

Matrix Model and Control of Manufacturing Systems 57

The job-start matrix S, and the resource-release matrix S, are new matrices that
must be introduced to obtain a complete matrix description of manufacturing
systems. In the flowline, matrix S, has diagonal s, while in the job shop, it has
multiple ones in the same column corresponding to job-routing decisions.

For the job sequence, depicted in Figure 3.1, matrices S, and S; have the
following form:

1 00 0 O Ojfmar

01 0 0 0 0fma
01 0 0 O O]re

0 0 0 01 O|wms

S,=/0 01 0 0 Ofm , S, =

0 0 01 0 0B
00 01 0 Ofwmsr

001 0 0 Ifr
0 0 0 0 1 Ofre

As in the case of matrices F, and F,, columns of S, and S, corresponding with
inputs and outputs, have all components equal to 0. It is interesting to note that F,
and S, depend only on job-sequencing information, while all the resource
information is contained in F; and S,. Furthermore, it is important to keep in mind
that the column of matrix F, corresponding to the robot R, which is a shared
resource, has more than one “1”. Also, the row of matrix S;, corresponding to the
shared resource, has multiple “1s”. We shall return to this issue later when
discussing a supervisor design. When an operation requires more than one
resource, the corresponding row of F, has “1” for each resource that participates in
the operation.

Raw parts entering and finished products leaving the manufacturing system are
described with the following matrices.

Definition 3.1.6 (input matrix): The input matrix, F,, is a matrix that relates the
inputs of the system (raw parts entering the system) and the logical state vector:
Fu(ij) = 1 if an input j contributes to construction of the ith component of the
logical state vector. Otherwise F,(i,j) = 0.

Definition 3.1.7 (output matrix): The output matrix, Sy, is a matrix that relates the
logical state vector and the outputs of the system (finished products leaving the
system): S,(i,f/) = 1 if the jth component of the logical state vector is a prerequisite
for output i. Otherwise S(i,j/) = 0.

Since the job sequence, shown in Figure 3.1, is a single part processing, input
and output matrices have a vector-like form:

58 Manufacturing Systems Control Design

, S,=[0 0 0 0 0 1]

c
S O O o o -

So far we introduced the system matrices that assemble a set of rules describing
the behavior of a manufacturing system. In the next section we present equations
that utilize these matrices and provide a mechanism for calculation of the logical
state vector in a recursive manner.

3.2 System Equations

As we already pointed out, the matrix model represents a set of rules, so that it is
formally a rule base. The previously defined job set J and resource set R are
associated with the system matrices and incorporated into the matrix model in the
form of vectors. We define a job vector v : J — R and a resource vectorr : R — R
that represent the set of jobs and the set of resources corresponding to their nonzero
elements. The set of jobs (resources) represented by v (r) is called the support of v
(r), denoted sup(v) (sup(r)); i.e. given v=[v; v, ... vq]T, vector element v; >0 if and
only if job vie sup(v). In the same manner, givenr = [r, 7, ... rp]T, vector element
r; >0 if and only if resource 7€ sup(r). Usually, index i is replaced with job
(resource) notation, hence, rya stands for the component of resource vector 7 that
corresponds to resource MA.

For example, the workcell shown in Figure 3.2 has a job set J = {MAP, RP1,
BP, RP2, MBP} and the resource set R = {MA, MB, B, R}. Then, the vector
representation of jobs performed by the robot is vg = [0 1 0 1 0]" and
sup(vp)={RP1, RP2}. A vector that represents shared resources is ry =[0 0 0 1]
with sup(r;)={R}. The definitions of job and resource vectors imply that the job
and resource sets should be ordered.

We proceed further with the determination of system equations by defining a
vector negation. Given a natural number vectora= [a, a, ... a,]', its negation

— - — — 1T . —
a=[a a,..a,| issuchthat ;=0 ifa;>0,and 1otherwise. A vector negation is

required since state equations and system matrices are Boolean, while job and
resource vectors have positive integer components. Consequently, all matrix
operations are defined to be in and/or algebra, denoted A and vV, where
multiplication is replaced by AND, and addition is replaced by OR. Hence, for
given matrices and vectors

011 11 T
A:L) . 0},B:{ },a:[va vy Vo] »b=[3 O]T

1 0

Matrix Model and Control of Manufacturing Systems 59

we have
o1 1| ToAT)vAAT)VAAT)] [F VT,
¢c=Anra= Al | = B | S A
01 0| |_ OAV)VAAW)V(OAY,) Vo
v,

=~I

10
B2
B v, VO

where A and v are standard symbols for logical AND and OR, respectively. It
should be noted that the final step in vector ¢ calculation is obtained by
DeMorgan’s rule.

Having defined all the necessary components, the system equations that outline
the matrix model are formalized in the following section.

_ . — 10 11 _
d = AxavBab = 0 Al Y

ol e
<
1
—_ =
O
| |
>
| ——
— O
| |
Il
1
I
=<
o~
| S
<
1
[
| |

3.2.1 Logical State-vector Equation

The job vector v has two interpretations. As a status output of the workcell, vector
v denotes a job-completed vector; in this role it is denoted as v.. Hence, sup(v.)
comprises all operations of the given system that are completed. On the other hand,
as an input to the workcell, vector v represents a job-start vector, denoted as v,
thus, sup(v;) includes all operations of the given system that should be started. The
same holds for the resource vector r, i.e. sup(r.) contains all resources that are idle
(r. is called an idle-resource vector) and sup(r;) is a set of all resources that should
be released (r; is called a resource-release vector). Then, for given vectors v, and
r., and for specified system matrices, the logical state vector x is calculated
according to the following equation:

X = F, av VF Ar vF au (3.2)

Input vector u represents raw parts entering the cell, i.e. sup(u) is a set of inputs
that have parts ready to be processed. A computed entry of x~=1 in x indicates that
all conditions required for the rule i have been met. As we shall see later, in a
closed-loop system controlled by a supervisor, the components of v, and r, are
calculated from the signals measured by sensors and used as a feedback.

60 Manufacturing Systems Control Design

It is important to order the jobs correctly in order to obtain lower triangular
matrices F, and S,, for then the sequencing of the jobs is causal. A causal ordering
is also important as the particular system structure helps to overcome NP-hard
complexity problems. When the logical state-vector equation is constructed using
the causal ordering of jobs, the system matrix F, consists of diagonal blocks, one
per part path, having a subdiagonal of 1s. If there is an assembly there will be some
Is in F, below the diagonal blocks, where 1 in element (i,/) means that job j is the
last job in a partial part path and joins rule i in another part path.

Matrices F; and S, are related as follows: if the ith rule is not the last rule in a
partial part path, and there is an entry “1” in position (i,/) of F,, meaning resource j
participates in rule i, then there is an entry “1” in position (i+1,7) of S,’, meaning
that the resource is released by the next rule. If the ith rule is the last rule on a
partial part path, and there is an entry “1” in position (i) of F,, then there is an
entry “1” in position (k) of S,', meaning that the resource is released by the
assembly rule k.

The logical-state vector components should be numbered corresponding to the
jobs in rules consequent parts. From the example shown in Figure 3.1, one can read
a rule corresponding to the component x;:

IF part is ready AND machine A is ready THEN rule I is TRUE
In a symbolic form we write
IF Ple sup(u) AND MA € sup(r.) THEN x,=1

or shorter x; = u A MA.
A complete logical state-vector equation for the considered system has the form

00000 1 0 00 1
1 0000 0 0 01 0
01000 001 0 __|0| _
X= AV, V A V| |Au
00100 01 00 0
00010 0 0 0 1 0
100 0 0 1} |10 0 0 0] 10|

3.2.2 Job-start Equation

The logical state-vector equation may be seen as a transformation of status of jobs
and resources into the system state vector. As such, it represents only the
prerequisite parts of the rules. The consequent parts of the rules that describe
actions taken when a particular component of the state vector attains a logical “1”
are described with other three equations. The first one is a job-start equation that
relates the state vector x and the job-start vector vg:

Matrix Model and Control of Manufacturing Systems 61

v, =S ax (3.3)
When the system is controlled the components of v, stand for requests issued
by the supervisor to the system. When all the prerequisites for starting a particular
job are satisfied, the corresponding component of the job-start vector is set to “1”.
For the workcell shown in Figure 3.2 the consequent part of rule 1 is
IF rule 1 is TRUE THEN start job in machine A
In a symbolic form we have
IF x,=1 THEN MAP € sup(v)
3.2.3 Resource-release and Product-output Equations
A resource-release equation relates the logical state vector x and the resource-

release vector r,. A resource is released from the task it has been allocated for
when the task is completed:

r, =S ax (3.4)
From Figure 3.1 one can read that
IF rule 2 is TRUE THEN release machine A
or

IF x,=1 THEN MA € sup(r;)

For a shared resource there exist at least two rules that release it. In the case of
the robot in our example, these rules are

IF rule 3 is TRUE THEN release robot R
IF rule 6 is TRUE THEN release robot R

A product-output equation
y =S ax (3.5)

describes how the processed products depart from the system. Once the last job on
the part path is finished, the corresponding rule is satisfied and the part leaves the
system.

62 Manufacturing Systems Control Design

3.2.4 Recursive Matrix Model

Generally, the complete task plan could be given by the system matrices F,, S,, F,,
S,, defined above, which are specified by higher-level planners, or, as we show,
may be written down in manufacturing systems given the BOM or the assembly
tree plus resource-availability information. Additionally, these matrices can easily
be extracted from plans generated by typical planning software, including
hierarchical planners. Since each matrix has a well-defined function for job
sequencing, resource assignment, and resource release, they are straightforward to
construct as well as easy to modify in the event of goal changes, resource changes,
or failures; that is, they accommodate task planning as well as task replanning. The
matrix-design technique extends directly to complicated interconnected systems
using notions of block matrix (e.g. subsystem) design.

In this section we discuss the usage of matrix formulation for computer
simulation of manufacturing systems (and other DES). The formal notation of
logical rules contains matrices that express the structure of a manufacturing
system. As such, these matrices are extremely useful in system analysis and
supervisor design. Additionally, when included into system equations (3.2) — (3.5)
they provide an apparatus for simulation analysis of the system.

Denoting the discrete event iteration number with k£, we can calculate the
logical state vector each time an event takes place, i.e. a job is completed, resource
becomes idle or part enters the system:

X(k) = F, v, (k — 1)VE.aF, (k —1)vF ati(k — 1) (3.6)

The equations describing the consequent parts of rules can be rewritten in the
same way:

v (k) =S ax(k)
r, (k) =S, ax(k) 3.7
y(k) = SyAX(k)

In order to be able to link recursive equations (3.6) and (3.7) we have to relate a
job-completed vector v, with a job-start vector v, and an idle-resource vector r,
with a resource-release vector r,. According to its definition, the components of
vector v, correspond to completed operations, hence, each time a job is completed,
the number of parts held by this particular job is increased. At the same time, if a
job contributes to a rule(s) that is fulfilled, an already processed part(s) leaves the
job and proceeds through the system. In other words

v (k) = v (k=1)+v (k)-F, x(k) (3.8)

Matrix Model and Control of Manufacturing Systems 63

The term FvT x(k)in Equation (3.8) corresponds to parts that have been

processed and advance to the next operation. Inclusion of Equation (3.7) in

Equation (3.8) gives

v (k)= v (k=1)+S x(k) - F'x(k) = v, (k- 1) +[sv —FVT]x(k)

where multiplications and additions are carried out in the standard way.

(3.9)

By following the same reasoning one can find the number of idle resources and

the number of finished products in step & as

v (k) =1, (k—1)+8 x(k) - F x(k) =, (k -1)+ [sr —F'] x(k)

y(k) = y(k=1)+S x(k)
Let us now introduce the system vector m(k) as

u(k)
v (k)
r. (k)
y(k)

m(k) =

Then, Equations (3.6) — (3.10) can be written in the following form

X(k)=Fam(k—1) , m(0)=m,

m(k) = m(k —1)+ [S—FT]x(k)

with
S, F,
S, F!
S = , F' = VT
S, F
T
Sy Fy

(3.10)

(3.11)

(3.12)

where S, =[0], F, = [0] are null-matrices required for keeping matrix dimensions

consistent. If S, #[0], then the arrival of parts depends on the system status, i.e.

factor S x(k) # 0 will increase the corresponding component of u(k), which is in

64 Manufacturing Systems Control Design

disagreement with the definition of input vector u that should be independent and
should represent raw parts entering the cell. When F, # [0], the part that was

considered to have left the system returns to be processed by one of the system
operations, which is not allowed. Usually, matrix S is called the activity-start
matrix, and matrix F is called the activity-completion matrix.

The first equation in Equation (3.12) encompasses logical AND/OR operations,
while the second one is calculated by using the standard multiplication and
addition, hence Equation (3.12) represents a hybrid matrix model of an MS. Even
though the hybrid matrix model (3.12) is recursive, it does not capture the system
dynamics. The term Sx(k), representing the start of activities, contributes to the

vector m components in the same iteration step &, which means that the durations
of all tasks in the system are assumed to be equal to 0, i.e. activities are completed
at the same time as they are started. By tracking sup[m(k)] we can reconstruct an
untimed sequence that describes only logical activities of the system.

The matrix model is very convenient for computer simulation. In the following
example we use MATLAB® to simulate the system shown in Figure 3.2 (any other
simulation tool could be used as well).

Example 3.2.1 (DES simulation by using the matrix model)
In this example we present results obtained by the simulation of the system shown

in Figure 3.2, by using the hybrid matrix model. For convenience, the previously
determined system matrices are shown again

MAP RP1 BP MBP RPZ _MA MB B R_ _IN_ _UI
00000 1000 1 0
10000 0001 0 0
01000 001 0 0 0
F, = F. = F,=| | F=
00100 0100 0 0
000710 00 0 1 0 0
0000 1] 0 0 0 0] 0] 0]
100000 0100 0 0
010000 S,=[0 0 0 0 0 1]
0000710
S,=[0 01 0 0 0| S,=
0007100
000100 S,=[0 0 0 0 0 0]
001001
000010

Let us define the system input vector u as

Matrix Model and Control of Manufacturing Systems 65

{l for k=0
u(k) =
0 for k>0

that is, only one part enters the system at the initial step. If we assume that all
resources are idle at the beginning of the simulation, then the initial value of vector
mis m(0)=my=[10000011210]". The first component of m stands for the
system input — it is equal to 1 as defined for £ = 0. The component that attains the
value 2 corresponds to the buffer that has two empty slots at start. Other entries of
“1” stand for idle resources. Inclusion of my in Equation (3.12) for k = 1, gives the
logical state vector x(1) =10 0 0 0 0], i.e. only the first rule, which requires idle
machine MA and a part at the input, is satisfied. For given x(1) we calculate m(1)
=[0100001210]". The set sup[m(1)] = {MAP, MB, B, R} indicates that task
MAP, executed by MA, is finished, while other resources remain idle. Iteratively,
fork=2, we getx(2)=[010000]"andm(2)=[0010010210]", that is, the
robot carries the part to the buffer (job RP1) and machine MA is released.

Simulation results are graphically presented in Figure 3.3. The value of vector
m can be directly read from graphs. Propagation of the part through the system is
clearly seen (left side of Figure 3.3). The task sequence is executed as defined in
the assembly tree shown in Figure 3.1. Resource utilization demonstrates that robot
R is used twice, exactly as specified in the resource requirements. Since only one
part was processed by the system, we can see that only one slot in buffer B has
been used. From the graphical representation of the system output (OUT) we
conclude that the part leaves the system after 6 iterations.

1 1
2
2 S
0 0
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
1 1
x
2 S
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
1 2
% = f L
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
1 1
g »
o
0 o L .

dd

NI

1no

Figure 3.3. Graphical representation of results from Example 3.2.1

66 Manufacturing Systems Control Design

Let us now analyze the same system with a different input vector,
wk)=1 for k>0

Defining u(k) in this way we imply that a new part is available for processing in
each iteration.

The results obtained by simulation are graphically presented in Figure 3.4. As
in the previous case we can see that parts are processed according to the predefined
sequence. However, an interesting situation occurs for £ = 5. At that instant both
machines hold parts ready to be transferred further down the line, i.e. MAP =1 and
MBP = 1. Since both tasks require robot R, which is idle for £k = 5, two rules
having the robot as a prerequisite are satisfied. This situation is described in the
chapter beginning as a conflict. The consequence of a conflict is seen on the graph
representing robot R. The value 1 for £ =5 becomes — 1 for k£ = 6 clearly indicating
that two operations simultaneously requested the same resource (since there exists
only one resource and two operations, value — 1 indicates the lack of resource).
From this result it is obvious, as we have already mentioned, that the decision-
making supervisor is required in order to provide acceptable system performance.

We conclude this example with the MATLAB® code that has been used for DES
simulation based on the matrix model.

1 1
2
= -
0 0
0o 1 2 3 4 5 6 7 8 9 10 0o 1 2 3 4 5 6 7 8 9 10
1 1
-] 2
- w
0o L— o PRI B

dg
-
k|
[N}
T

dan
A

dd

Figure 3.4. Graphical representation of results from Example 3.2.1 for u(k)=1 for £>0

Matrix Model and Control of Manufacturing Systems 67
clear all; % Initial Conditions function Y = not(X)
% system matrices % m(k=0)=[uvry]=[T
% initial value [nx, mx] = size{X};
% job sequencing matrix m=[];
Fv=1[]; fori=1:nx
% resource requiremenis matrix % results output format; forj = 1:mx
Fr=[1] % 3 character component name if (X(i,j) < 1)
% job start matrix output(1,) =[""; Yijp=1;
Sv=[]; output(2,:) = sprintf(' %2d ', m); else
% resource release matrix Yi,j)=0;
Sr=[]; % Running the simulation end
% input matrix for i = 3:100; end
Fu=[J; end
% null matrix % calculation of logical state vector
Fy=1[] x = multoa(not(F), not(not(m))); function R = multoa(X,Y)
% null matrix
Su=[]; % calculation of vector m [nx, mx] = size(X);
% output matrix m=m+ (M *x); [ny, my] = size(Y);
Sy=[1
output(i,:) = sprintf(' %2d ', m); fori=1:nx

F =[Fu Fv Fr Fy]; forj=1:my
S =[Su' Sv' Sr' SyT; end R{i,j) = ((X(0,1)) [(Y{1,0));

for k = 2:mx
% system matrix R(i,j) = R{i,j) & ((X{i,k)) | (Y{k,j));
M=8'-F; end

end
end
Figure 3.5. MATLAB" code for DES simulation by using the matrix model
¢

3.3 Modeling System Dynamics

It has been shown in the previous example that the model (3.12) describes only
logical (static) properties of an MS. Although the prerequisites that are required for
an event to start are given by Equation (3.12), we are not able to tell at which
particular moment these prerequisites are met, i.e. we do not know when the event
actually starts. In real applications on actual manufacturing processes, we will be
sensing the completion of prerequisite jobs by either using sensors (e.g., proximity,
tactile, etc.) or via notification from the machines or resources. On the other hand,
for the purpose of computer simulation, we must find a way to keep track of the
time lapsed in the processing of jobs. To keep track of job time durations, we
incorporated the system dynamics into the matrix model in the form of a /ifetime
[7, 16]. That is, a real number d, called a lifetime, is associated with each task in an
MS. Under the assumption that there are no machine failures, every task that starts
will actually finish in a finite time, hence:

vci (l) = vsi (l - dvi)

r,(0)=r,(t-d,) (3.13)

68 Manufacturing Systems Control Design

where d,; and d,; are lifetimes of operation v; and resource release r;, respectively.
Although we consider the lifetime to be deterministic and known, matrix modeling
of the system dynamics allows simulation of MS with stochastic lifetimes as well.

The final goal of an MS modeling and analysis is to prepare the ground for
design of an appropriate dispatching supervisor. The nature of this supervisor is
determined by its computer-based implementation, usually in the form of a PLC.
Since the execution of an algorithm on a PLC is cyclic, the moment at which the
supervisor detects completion of an operation does not necessarily coincide with
the actual moment in which an operation is finished. Therefore, from the
supervisor point of view, the operation lifetime is not d; but d; + & (Figure 3.6). We
can rewrite Equation (3.13) as

Vzi (kTs) = Vsi (kTs - dvi - gvi) = Vsi ((k - nw‘)Tq)
s (3.14)
rci (kTs) = ;lrvi (kTi - dri - gri) = I/.'ci ((k - nri)Ts)

where n,T, 2 d; > (n; —1)T, , T is the supervisor sampling (cycle) interval, and »; is
an integer representation of the lifetime expressed in number of sampling intervals.
It is apparent that the sampling interval should be small enough to provide an
accurate dynamic model.

Introduction of a shift (delay) operator q in Equation (3.14) gives

v (@) =q"""v;(q)
) n (3.15)
r(q)=q "r;(q)

where y(q) = ¢ "x(g) corresponds with y(k) = x(k-n), i.e. y is delayed n sampling
intervals after x. For convenience purpose in the remainder of the book we omit

superscript s from vsl. (¢) and r:l. (q) -

By recalling Equation (3.7), Equations (3.15) can be written in the vector form
as

v.(q) =T, (¢9)x(q)

(3.16)
r. (q) =T.(q)x(q)

where T, and T, are operations and resources release delay matrices with elements
representing operations lifetimes. Delay matrices are obtained by replacing each
entry “1” in S, and S, with a shift operand representation of the corresponding
lifetime.

Due to the existence of shared resources, transformation of the second equation
in Equations (3.15) requires additional explanation. Namely, each nonshared
resource in r has its corresponding operation in v that is responsible for its release.
At the same time, a shared resource that is represented by one component in vector
r, has several operations in v it could be released from. As release lifetimes

Matrix Model and Control of Manufacturing Systems 69

associated with these operations generally differ, the row in T, that corresponds to
a shared resource could have two or more different entries.

Conversion of Equations (3.16) into recursive form, suitable for simulation, can
be done in the same way as in the case of the static recursive model (3.12).

V(@) =4V () +T,(9)x(q)-F, x(q) (3.17)

r.(¢)=q 'r, (¢)+T.(9)x(¢9) - F. x(¢) (3.13)

Finally, the dynamic matrix model of an MS is obtained by including the shift
operator ¢ in the logical state-vector equation:
_ 11—
X(¢)=Fag m(q) , m(0)=m,

. (3.19)
m(q)=q 'm(g)+| T(¢)-F"]x(q)

where
Sll
T, (¢)
T(q) =
T.(9)
S
y
A g 4 3
1 1 1 1 »
T T T T Ll
t
AVa &
1 1 1 1 »
T T T T >
t
A Vi P nTs R
l l l »
T T T [l
»i Ts » f

Figure 3.6. Extension of the operation lifetime for the system dynamics modeling

70 Manufacturing Systems Control Design

By comparing Equation (3.12) with Equation (3.19) one can notice that the
main difference between the two models is in matrix S that is replaced with delay
matrix T(q). The other difference is in vector m that comprises the status of jobs
and resources. Even though vectors in Equations (3.12) and (3.19) have the same
form, m(q) represents the state of the system as “seen” by the supervisor. For
practical implementations the difference between the actual status of jobs and
resources and status expressed in m(g) can be ignored in the case of a very small
sampling interval.

Before we give an example of system dynamics modeling based on Equation
(3.19), there are two issues that have to be further discussed. The simulation of a
dynamic model is done such that each element T(g)(i,j) of the delay matrix that is
not equal to 0 is associated with a clock, denoted C(i,f), containing the time passed
after the job has been started. All clocks are initially set to zero. When the rule for
starting a particular task is satisfied, the corresponding clock is activated. Then, in
each sampling interval all active clocks are checked. If some clock is found to be
equal to or greater than the corresponding task lifetime, defined as an entry of the
delay matrix, the particular task is considered completed. In that case the entry of
vector m matching this task is incremented. Such realization of model (3.19) is
valid as long as there are no resources that can process more than one part at a
time. If there exists such a resource, then the simulation algorithm must be
modified in a straightforward manner, by expanding the number of clocks for each
additional part processed simultaneously by the resource. For example, if T(g)(i,)
= ¢ stands for some task that lasts 5 sampling intervals and can process 3 parts in
the same time, then it is associated with a so-called multipart clock, that is, C(i,j,1),
C(ij,2) and C(ij,3). The first part entering the task activates C(i,j,1), the second
one C(i,2) and the third part C(i,j,3). Having its own clock, each part can be
tracked separately.

The second issue that needs additional clarification when one considers
realization of the dynamic matrix model is related to so-called “hidden” parts. Let
us assume that rule x;, which has job v; in its prerequisite part and job v; in its
consequent part, is satisfied in the sampling interval k. Further, let processing of
the part in v; follow immediately after processing in v;. Then, according to Equation
(3.19), term F'x(k) removes the part from v;, i.e. corresponding component of
vector m is decreased. Processing of the part in v; starts in the same sampling
interval k, but due to the operation lifetime, the part will be completed #,; sampling
intervals later, i.e. the component of vector m that corresponds with operation v;
will be increased with delay. Therefore, one is not able to tell where the part is if
only vector m(k) is tracked. For example, it may happen that several parts already
entered the system but sup[m(k)] = {J} since all parts are being processed at that
particular sampling interval. However, the results of system performance analysis
in the sense of system throughput, resources utilization, etc., are not influenced by
the existence of hidden parts. On the other hand, the outcome of the supervisor
design that is based on vector m(k) as a feedback could be inadequate and could
finally generate unacceptable system behavior. This is to be detailed in the next
section.

Matrix Model and Control of Manufacturing Systems 71

Example 3.3.1 (DES simulation by using the dynamic matrix model)

Let us consider the system shown in Figure 3.2. The lifetimes of workcell
operations are given in Table 3.1. Release of buffer BA, which lasts 2.75 seconds,
is the shortest task in the workcell, thus, we choose the simulation sampling
interval to be T, =1 [s]. Extended lifetimes for this sampling interval are specified
in the third column of Table 3.1. We see that machine B is the slowest one. For a
given job-start matrix S, and resource-release matrix S; (see Example 3.2.1) we can
determine delay matrices T, and T;:

-76
q 0 0 0 0 0 B
o 0¢g”% 0o 0 0 0
0 g¢g 0 0 0 0 10
4 0 0 0 0 ¢ 0
T,=| 0 0 g¢g 0 0 o T.= 3
s 0 0 0 ¢ 0 0
0 0 0 g¢g 0 0 i s
" 0 0 g¢ 0 0 ¢
| 0 0 0 0 q 0]
Table 3.1. Lifetimes of the workcell tasks
Operation Lifetime d; [s] Extended lifetime #;
MAP (drill) 76 76
RP1 (move 1) 10 10
BP (buffer) 35 4
MBP (grind) 113 113
RP2 (move 2) 7.5 8
release of MA 15 15
release of B 2.75 3
release of MB 10 10
release of R (after RP1) 5.75 6
release of R (after RP2) 4.25 5

There are ten different tasks in the system, and two of them can hold two parts
simultaneously, buffer operation BP and buffer release B. Accordingly, the
simulation requires eight standard and two multipart clocks. As in the case of the
static simulation, we assume that only one part enters the system at the initial step
and all rTesources are idle at the beginning, consequently, m(0) =my=[100000 1
1210].

The results obtained by simulation are shown in Figure 3.7. Upon entering the
system, the part has been processed in machine A. After 76 sampling intervals
(graph MAP) the part is removed from the machine into the buffer, which can be

72 Manufacturing Systems Control Design

clearly seen on graph R — the robot is idle while the part is processed in machine A,
then it moves the part (10 sampling intervals) and finally it is released (6 sampling
intervals). The part advances through the system and after 211 samples (see graph
RP2 that represents the last operation of the system) it leaves the workcell.

In order to get a complete insight into the system dynamic properties we have
to simulate a situation with several parts being processed simultaneously. This
situation is closer to the real conditions in which the system is fed by parts with
predetermined frequency (or stochastically). Given that manufacturing systems are
generally designed to work periodically, this kind of simulation provides results
that can be used for calculations of production cycles, resources utilizations,
bottleneck machines, efc. For the moment we shall skip formal definitions of these
terms as they are elaborated in more detail in the max-plus algebra section.

Graphical representation of results obtained when a new part is available each
time robot R is idle, is given in Figure 3.8.

£
>
T
0 L
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
1
Y
2
0 L
0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
1
@
T
0 L
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
1
4
o
T
0 L
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
1
Y
T
N
0 L
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
1
£
>
0 L L L L L L L L 1 1 1 1 1 1 1 1 1 L L 1 L L 1
0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
1
4
o
0 1 1 1 1 1 1 1 1 A L L L L L L L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
2 L
@ F
0 1
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
1
Y
0 1 1 1 1 1 1 1 L L 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

Figure 3.7. Graphical

part processed)

representation of results obtained by the dynamic

simulation (one

Matrix Model and Control of Manufacturing Systems 73

Several observations regarding system performance can be made from the
attained results. We see that the first part leaves the system after 211 samples, as in
the previous simulation when only one part has been passed through the workecell.
After that, the time period between departures of two consecutive parts from the
system is equal to 123 sampling intervals, which corresponds to the sum of the
processing and release lifetimes of machine B (see Table 3.1). Hence, the
simulation confirmed, as we expected, that this machine is the system bottleneck
since it is the slowest one according to Table 3.1.

The second remark regarding the system behavior is related to the conflict that
appeared during the simulation of the static model in Example 3.2.1. From the
graph in Figure 3.8 it can be seen that R attains values of 0 and 1, but never —1.
This clearly shows that simultaneous requests for the robot R never appeared, i.e.
there was no conflict. Such a difference between results obtained by simulations of
static and dynamic models is common. Even though the structural properties of the
system and the static model confirm the existence of conflict, when the system
dynamics is included in the matrix model simultaneous requests for shared
resource may not occur due to the particular lifetime arrangement.

We conclude this discussion with a note on another interesting phenomenon
that is revealed from the results of the dynamic model simulation. From the
graphical representation of the first operation in the system, MAP, it is evident that
10 parts have entered the workcell. On the other hand, only 5 parts have arrived at
the output. The other 5 parts got trapped in the system; all resources are occupied
and none of them can be released since they are all waiting for each other. This
condition is known as circular blocking and it is equivalent to the already-
mentioned deadlock. Analysis of the graphs in Figure 3.8 can clearly show how the
system came into deadlock. In sampling interval £ = 806 machine A just finished
processing of the 9th part. At the same time sample buffer B is full (BP =2 for £k =
806), machine B is processing the 6th part and robot R is idle. The prerequisites of
rule x, MAP is completed and robot R is idle, are met, thus, the task in the
consequent part, RP1, is started. Since buffer is full, the robot cannot complete
RP1. A part that is supposed to leave the buffer and make room for a new one is
blocked by the part in machine B that waits to be cleared by robot R that is already
holding a part. Resources wait for each other, the system is deadlocked and parts
cannot proceed through the line. A similar situation happened with the workcell
shown in Figure 2.12.

At the end of the example, let us reorder the job sequence in the workcell by
exchanging positions of machines A and B, i.e. instead of drill, the first operation
in the sequence is grind. The dynamic matrix model is changed correspondingly
and the simulation results are shown in Figure 3.9. It can be noticed that deadlock
is avoided and the system has cyclic activities. Parts are leaving the workcell with
a period of 123 sampling intervals. The operational time of a particular resource
can be easily determined from the graphs corresponding to its idleness and activity.
For example, graph B clearly shows that the buffer is underutilized as it never
accommodates more than 1 part, i.e. the system could work correctly with a 1-slot
buffer. As expected, the slowest machine is operational 100% of the time (graphs
MBP and MB), while the activity periods of the other two resources are
approximately 24 % for robot (graphs RP1, RP2 and R) and 74 % for machine A

74

Manufacturing Systems Control Design

1
=
>
o
0 L L L L L L L L L L L L L L N L 1
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
1
s}
2
0 L L L L L L L L L L L L L L L 1 1 1
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
2
s | LIl 0
i | [1 T 1]
0 L L L 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
1
=
@
o
0 L L L L L L L L L L L L L 1 1 1
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
1
3
g
N
0 L L L L L L L L L L L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
1
=
>
0 L L L L L L L L L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
1
=
@
0 1 L L L L L L L L L L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
2 LI LI
W - I|
0 1 1 1 1 1 1 1 1 IJ 1 LJ|_| L |" L L L L L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
1
)
0 1 1 1 1 1 1 1 1 1 1 A L L L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
5
Q -
< -
= -
0 L L L L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Figure 3.8.
processed)

Results obtained by simulation based on dynamic matrix model (several parts

(graphs MAP and MA). Comparing these results with the lifetimes in Table 3.1

one can observe that operational times attained from graphs are equal to
(Zd,+2d,;)/(system cycle)x100%, where d,; are resource operations lifetimes and

d,; resource releases lifetimes.

Matrix Model and Control of Manufacturing Systems 75

1
=
@
o
0 L L L L L L L L L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
1
s}
2
0 L L L L L L L L L L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
1
@
o
0 L L L L L L L L L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
1
=
>
o
0 L L L L L L L L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
1
3
q
[hS]
0 L L L L L L L L N L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
1
=
@
0 L L L L L L L L L L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
1
=
>
0 1 1 L L L 1 L L L 1 L L L L 1 L L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
2
. °r ° 1 [1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
1
)
0 1 1 1 1 1 1 1 1 1 n 1 1
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
T r
o] C
[-
= E
0 C L L L L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Figure 3.9. Results obtained by simulation based on dynamic matrix model (reordered job
sequence)

We conclude this example with the MATLAB® code that has been used for DES
simulation based on the dynamic matrix model.

76 Manufacturing Systems Control Design

Figure 3.10. MATLAB® code for DES simulation by using the dynamic matrix model

Matrix Model and Control of Manufacturing Systems 77

3.4. Matrix Controller

In the preceding example a simple case demonstrated how modification of the job
sequence could entirely change the system behavior. In many cases reordering of
jobs is not allowed since product shape and quality depend on production sequence
that is firmly defined and should be strictly followed. The problem is that when
described as a BOM, or in some other engineering form, the job sequence does not
disclose potential difficulties that might develop when the structure of an MS,
which executes this particular sequence, is determined. In the previous section we
showed how two of these potential difficulties, conflict and deadlock, can be
exposed by using static and dynamic simulations of an MS. Based on the matrix
model, these simulations provided a complete insight into the system performance.

The other advantage of the matrix model is its convenience when it comes to
the integration of the supervisory controller into the already-defined system model.
In this section we describe a matrix controller as a part of a closed-loop
manufacturing control system, whose foundation is set on already-defined system
matrices and system equations. At the beginning, let us recall the main objective of
the supervisory control of DES. As we stated in Chapter 2, the controller should
force the system to a) avoid undesirable states and b) maintain selected
specifications (control policy). In many cases, a) and b) are achieved
simultaneously, that is, implementation of a particular control policy at the same
time prevents the system from getting into adverse states. For example, such a
control policy is “last-buffer-first-served” that is known to avoid deadlock in most
cases. On the other hand, “first-buffer-first-served” dispatching usually ends in
system deadlock. As a result, its realization requires additional consideration to
provide an algorithm that concurrently prevents deadlock.

SUPERVISOR SUPERVISOR {matrix controller)
_ 11— u
Start Completed Vs X(q) = FAq m(q) <
tasks tasks <« <_Vc
T, -
MANUFACTURING « % (q) =S,ax(q)]
Pars CELL | Parts r(¢)=S2x(¢9) |&
a) b)

Figure 3.11. A closed-loop manufacturing control system (a), and internal structure of the
supervisor (b)

A supervisor based on the matrix model basically checks the conditions
required for performing the next jobs in the MS by utilizing the logical state-vector
equation (3.2). This equation is in some ways similar to the differential equation
(2.4) in linear system theory. Based on these conditions, stored in the logical state
vector X, the job-start equation (3.3) computes which jobs are activated and may be
started, and the resource-release equation (3.4) computes which resources should
be released (due to completed jobs). These equations are analogous to the output
equation in (2.4). Then, as already mentioned, the controller sends commands to
the MS, namely, vector v, whose “1” entries denote which jobs are to be started,
and vector r,, whose “1” entries denote which resources are to be released.

78 Manufacturing Systems Control Design

Completed tasks, which outline feedback vector m, are given by the system
sensors. Structured in this way, a supervisor and a corresponding manufacturing
cell represent a closed loop discrete event control system shown in Figure 3.11a.

However, this controller still does not implement any dispatching policy. It
only executes rules that describe the required job sequence, as shown in Figure
3.11b. For systems that do not encompass shared resources this structure suffices.
Nevertheless, in the case of systems with shared resources simultaneous requests
for two or more concurrent tasks could be issued. To resolve this situation a
supervisor has to select which jobs to initiate, ie. it has to make a decision
regarding the priority. This is needed since the resource-requirements matrix F, has
several Is in the same column. In this situation, as has been shown in Example
3.2.1, the component of vector m corresponding to a shared resource attains a
value of —1, which is not allowed. In order to solve a potential conflict and turn the
controlled system to a “decision-free” structure (cf. Cofer and Garg 1992), it is
therefore necessary to add an extra dispatching control input. The high entry
selects which of the jobs will be preferred.

The casiest way to prevent conflicts and uniquely define the system activities is
to employ this new input into the logical state-vector equation. Given that all
prerequisites of a particular rule are met, additional conditions in the form of a
vector, denoted ugy, can attain the value 0 and block the rule. In this way the
supervisor is able to forbid execution of any controllable task in the system. Vector
uy is called a dispatching vector (or conflict-resolution vector) and is generally
determined as a function of feedback signals comprised in vector m,

uy(q) =h(m(q)) ,uy(0)=uy (3.20)

where / is a control function. Depending on the way one selects the control
function to generate uy, different dispatching strategies can be selected. These
strategies fall mainly into two categories: Buffer and Part/Machine [8, 9].
Examples of the buffer category are: first-buffer-first-serve, last-buffer-first-serve,
shortest nonfull queue, shortest remaining capacity, and shortest queue next.
Examples of the part/machine category are: shortest imminent operation time,
largest imminent operation time, shortest remaining processing time, largest
remaining processing time, machine with least work and least slack time, efc.
Although determination of an appropriate /# is important, the objective of this
section is not an elaboration on how the control function depends on a particular
dispatching policy or how to prove the existence of a control function for a
particular strategy. For our purpose it is sufficient to say that in some cases the
control function attains a simple form of matrix multiplication, while in the case of
large manufacturing systems with demanding policies it could be very complex or
its implementation might even be questionable.

As far as the resolution of shared-resource conflict in an MS is concerned
Equation (3.20) can provide suitable results. On the other hand, if the dispatching
policy requires information regarding the exact arrangement of processed parts in
the system, control based only on vector m may cause improper system
performance due to the existence of hidden parts (as previously explained). An

Matrix Model and Control of Manufacturing Systems 79

elegant way to overcome this problem is to introduce an additional vector, m*(g)
that is calculated by the supervisor according to the following relation

m'(g)=¢"'m* (@) +[S-F' [x(¢), m’(©)=m} (3.21)

One can notice that Equation (3.21) has the same structure as the second
equation in Equation (3.12), which describes the evaluation of the system vector in
the static matrix model. For this reason, vector m® can be seen as prediction of
feedback vector m. Components of m® are increased by the term Sx(g) immediately
upon fulfillment of corresponding rules, while data obtained from the system,
contained in m, are delayed due to operations lifetimes. Having both vectors
available, the supervisor design is not restricted only to signals gathered from
sensors, thus,

uy(q) = h(m(g), m*(g)) (3.22)

Once defined, the dispatching vector is integrated in the logical state-vector
equation by a dispatching matrix (or conflict-resolution matrix) Fy in the following
way:

X(q) = Fag 'm(q)vF, st (q) (3.23)

Equations (3.21) — (3.23) outline a new internal structure of the supervisor,
depicted in Figure 3.12.

SUPERVISOR (matrix controller)

dispatching vector- control strategy

(10 = h(mig). " (0))

logical state vector- dispatching rules

@(q) = FAq‘lﬁ(q)deAﬁd@

internal system vector- prediction
-1 T
@S(q)=q m*(q)+| S—F]x@

job start vector - tasks assignment

EET

Vs
vs(q) =S ax(q)
resource release vector - tasks assignment
fs

Figure 3.12. An internal structure of the supervisor based on the matrix controller

80 Manufacturing Systems Control Design

In each sampling interval recursive equations are executed as shown in Figure
3.12, from the top to the bottom. First, the matrix controller calculates a
dispatching vector based on current data from the system and internal system
vector m’. Then, the logical state vector is determined, a new value of m’ is
evaluated and task assignments are issued.

A newly introduced component of the supervisor, dispatching matrix, needs
further explanation. As for the system matrices, Fy has logical elements 0 and 1. Its
structure and components depend on the applied dispatching policy. Given that the
system comprises shared resources, the primary concern in the supervisory design
is conflict resolution. Hence, the first step in determination of Fy is allocation of
conflicting rules, which are related to columns of the resource-allocation matrix F,
containing more than one entry “1” (as we already stated, resources corresponding
to those columns are shared resources). As a first thought we could say that for
each “1” on these columns, a new column is constructed in Fy having only one
entry “1” in the corresponding position for each “1” in F,. Established in this way,
F4 would provide that each shared resource column in F; is associated with as
many components of the dispatching vector as it has entries of “1”. In Example
3.2.1 the last column of F; that corresponds to shared resource R, has two 1s. As a
result, matrix Fq would have two columns, the first column with “1” in the 2nd
position and the second column with “1” in the 5th position, while all other
elements should be equal to 0:

S O O O = O
S = O O O O

Consequently, vector uq = [ug; up]". Since conflicting rules are concurrent, only
one component of uy of those associated with conflicting rules that belong to the
same resource is allowed to have its value equal to 1 in the case of conflict.

Let us define a conflicting-rules vector x4, such that sup(xq)={x;, x;, X, ...},
where x;, x;, x; are conflicting rules. Binary vector x4 can be determined from F; as

4 =Far, (3.24)

alld

where F.is a reduced resource-requirements matrix, ie. all rows corresponding
with rules that have an output operation in the consequent part are erased from the
matrix. In order to get x4 from X gone has to enter O for each component of the

conflicting rules vector that matches a row removed from the resource-
requirements matrix. Recalling F, from Example 3.2.1, Equation (3.24) gives

Matrix Model and Control of Manufacturing Systems 81

MAMBBR o
100 0 1 0
000 1| 1] |, 1
oo ol [T s 0
Ar, = Al |=[1[=X X, =
rrs010011 4> %7
000 1|10 |
0
bbbt~ 0]

Calculation of sup(x4)={x,, xs} confirms the already-determined conflicting rules
that correspond with shared resource R.

For a given x4, one can determine the (i,j)th component of the dispatching
matrix by using the following relation:

1 g =1 and '=i k
filijy=y 1O = s (3.25)

0 otherwise

There is an observation regarding determination of the dispatching matrix as
described above. If two (or more) shared resources contribute to one rule, then two
(or more) columns in F, would have “1” at the row that corresponds to this
particular rule. In that case, according to our discussion, two (or more) components
of the dispatching vector should be associated with this rule. Therefore, matrix Fy
is supposed to obtain the form as shown below (it is assumed that the system has
two shared resources R1 and R2),

1 R2

S ®

0 0.0 0 0
170 1 1 071 0
010 _ 1 Joooo
k.= 1ﬁ’:Fd:\oo
00 1 00 01
000 000 0]

However, Equation (3.24) gives x4 =[0 1 0 1 1 0]" and then by applying Equation
(3.25), one obtains

82 Manufacturing Systems Control Design

000

1 00

000
Fd:

010

0 01

0 0 0]

i.e., a conflicting rule that involves two shared resources is linked to only one
component of the dispatching vector. Determination of that component involves
coordination of conflict-resolution strategies of all resources that participate in the
considered rule.

Example 3.4.1 (DES simulation with conflict resolution — closed-loop dynamic
matrix model)

In Example 3.3.1 simulation of the dynamic model of the workcell depicted in
Figure 3.2 showed that an uncontrolled system gets in deadlock. Herein we are
concerned with determination of the control function that would prevent conflict
and avoid deadlock. As our intention is to illustrate a closed loop-manufacturing
system with a simple dispatching strategy, no formal methods will be used in the
example.

Conflicting rules vector x4 and dispatching matrix Fy are already determined
and have the form

Xd:

S = O O = O
s
Il

S = O O O O

S O O O = O

Components of the dispatching vector ug = [ug ug]" will be calculated in two
steps. First, we analyze situations that could cause conflict. As previously
elaborated, this condition is met when the robot is idle and both machines have
parts to be removed, which can be clearly seen from the matrix model. We define
the control function in the form of a rule:

IF sup(ve) N{MAP, MBP}={ MAP, MBP }
THEN ug=1[0 17"
ELSE ug=[11]"

Since the operation MBP is the last operation in the sequence, this strategy prefers
pulling the parts from the system.

Matrix Model and Control of Manufacturing Systems 83

The second step in the design is related to evaluation of circumstances that
could lead to the deadlock. As we already discussed, in an uncontrolled system a
deadlock occurred because parts have been pushed into the workcell by the robot.
From the graphs shown in Figure 3.8 it can be seen that once the buffer is full and
machine MB is processing the part, additional entry of parts should be blocked.
This can be employed by extending the above control rule:

IF sup(vo)n{MAP, MBP}={MAP, MBP} OR B € sup(m.)
THEN ug=1[0 17"
ELSEug=[11]"

The results obtained by simulation of the workcell controlled by the supervisor
are graphically shown in Figure 3.13. System is stable with no conflict. It is
evident from the graphs that control signal uy, is equal to O as long as the buffer is
full, which blocks operation RP1 and prevents incoming of new parts into the
workeell.

¢

As we mentioned earlier, in many cases the control function may be realized by
simple matrix operations. This is especially suitable when MS is represented by the
matrix model. The simplest form of the dispatching policy is defined as

u, =S, ax (3.26)

where Sq4 is a dispatching vector release matrix. In Equation (3.26) vector uq is
directly related to the logical state vector x. Execution of a particular rule and entry
“1* in the corresponding element of Sy will increase the value of the associated
component of vector ugy. In general, the structure of Sy depends on matrix Fy, the
job ordering and dispatching strategy.

One convenient method to determine the dispatching vector release matrix is
the reordering of rows of matrix Fy'. Usage of Fy is intuitively understandable
since the dispatching matrix defines the way conflict-resolution vector uy is
connected to the system, therefore, its transpose implies that rules that are already
known as conflicting and that encompass the dispatching vector in their
prerequisite parts, also have vector uy components in their consequent parts.
Hence, no additional calculation of rules that release the dispatching vector is
required. However, the process of reordering of rows must be made with care,
otherwise the method could end up in system deadlock.

The main idea behind row rearrangement is related to the job sequencing
performed by the shared resource. Let us consider the robotized workcell shown in
Figure 2.13. This system, having the robot as a shared resource, can be described
with seven IF-THEN rules. Three of them related to operations performed by the
robot are involved in the conflict. Given that x4 = [1 0 1 0 0 1 0]", the
corresponding transposes of dispatching matrix and dispatching vector are defined
as

84 Manufacturing Systems Control Design

1000000 gy
F/=(0 01 000 0| ,uy=|uy,
0000010 Ugs

If we denote operations executed by the robot as RP1 (placing part @ in
machine A), RP2 (removing part a from machine A) and RP3 (removing part b
from machine B), then, for example, a possible repeatable sequence could be s, =
(RP1, RP3, RP2). From F4 and ug, defined above, we see that rule x; is controlled
by ug;, rule x3 is controlled by uy, and rule x4 is controlled by ug4;. Let execution of
operation RP1 be related to fulfillment of x;, RP2 to x; and RP3 to x¢. Then, in
order to realize sequence s;, matrix Sy and the initial value of the dispatching
vector should be

0000010 1
Sq=[1 0 0 0 0 0 0| ,uy=|0
0010000 0

For a given matrix S4 and according to Equation (3.26), execution of rule x;
releases ug,, rule x; releases uy;, while execution of x4 releases ug,. Implemented in
this way, the control strategy prevents conflict and accomplishes the required
sequence.

Rearrangement of rows can be easily done by matrix operation:

S, = ®sF, (3.27)

where ® is a transformation matrix defined in the following way: when dispatching
vector component ug; is released by the rule that is controlled by the component ug;,
then ®(i,j) = 1, otherwise it is 0. In our case

Uq) Ugp Ug3

0 0 1uy,
0 Ouy,

o= 1
0 1 0|uy,

Due to its simplicity, the dispatching strategy (3.26), with matrix Sy determined
according to Equation (3.27), is very restrictive. In general, it allows only one part
to enter the part path, which leads to poor resources utilization and low system
throughput. This situation can be demonstrated if we return to the system shown in
Figure 2.12. Assuming that processing and setup times of machine A are much
shorter than those of machine B, the dispatching strategy determined above will
force the robot and machine A to remain inactive, although they might have
enough time to process several parts while waiting for machine B.

Matrix Model and Control of Manufacturing Systems 85

1
=
>
o
0 L L L L L L L L 1 1l L L
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500
1
s
2
0 L L L L L L L L L L L L L L L L L
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500
2
s | i o 0ol
o
O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500
1
=
5]
o
O L L L L L L L L L L L L L L L L
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500
1
s
3
N
O L L L L L L L L L L L L L L L L L
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500
1
=
>
O L L L L L L L L L L L L L L L L
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500
1
=
@
O 1 1 1 1 L L L L L L L L L L L L L L

0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500

S ISR | 1 O O

0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500

=
O 1 1111 1 1 il 1111 1 Ul 111 1 111 14l 1 u 1 111 1AL
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500
1M e
Q E
C E
— E
O E 1 1 T T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500
1 o
c
=
0 L L L L Ll L L L L L L N L n L
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500
9
c
Q
Y]
O 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500

Figure 3.13. Graphical representation of results for the closed-loop system (Example 3.4.1)

86 Manufacturing Systems Control Design

The other remark that should be made is the set up of the dispatching vector
initial value. Incorrect assignment of ugy can block components of the logical state
vector so that the system cannot start with activities. In our example, this condition
happens when ug = [0 1 0]". In this case the first rule that corresponds to
placement of a part in machine A and the sixth rule that executes replacement of a
part from machine B are blocked. Therefore, no other activities can start after the
processing of a part in machine B is finished.

3.5. A Case Study: Implemetation of the Matrix Controller

This section presents the implementation of the matrix controller for supervision of
an intelligent material handling (IMH) cell [17]. Then, we show that the actual
implementation and the simulated system give commensurate results. The IMH
cell belongs to the class of so-called multipart re-entrant flowline (MRF) systems,
which are described in Chapter 5. The objective of this section is to show the
versatility of the system developed with this matrix formulation. The supervisor
based on the matrix framework permits implementation of different methodologies
for conflict resolution, as well as optimization of the resource assignment and part
throughput. The given technical information includes the matrix controller
development in LabVIEW®.

3.5.1 Intelligent Material Handling (IMH) Workcell Description

The IMH cell is composed of three robots, three conveyors, ten sensors and two
simulated machines. Different configuration of re-entrant flowline problems can be
accomplished with this structure. The image and the part flowline for a specific
layout of the IMH cell are depicted in Figures 1.1 and 3.14.

For this specific layout the robot defined as R1 (a CRS robot) can perform four
different tasks, | J(R1)| =4. Two tasks (R1ul and R1u2) are related to picking up
part-types A and B from the input-parts area, which are to be placed on the
conveyor denoted B1. The other two tasks (R1u3 and R1u4) are associated with
picking up final products A and B from conveyor B3 and placing them in the
output-parts area. A PUMA robot, R2, performs three different tasks, | J(R2)| =3:
pick up parts A from conveyor B1 to place them in machine M1 (R2ul), pick up
parts B from conveyor B1 to place them on conveyor B2 (R2u2), and pick up parts
A from M1 to be placed on conveyor B2 (R2u3). The Adept robot, R3, also
performs three different tasks, |J(R3)| =3: pick up parts A from conveyor B2, to
place them on conveyor B3 (R3ul), pick up parts B from conveyor B2 to place
them in machine M2 (R3u2), and pick up parts B from M2 to be placed on
conveyor B3 (R3u3).

For the considered layout, three robots manipulate two different parts, while
two of them manipulate re-entrant flow of parts. Machines M1 and M2 are
simulated by activating valve-air cylinders controlled from a PC.

Due to the existence of shared resources this configuration of the IMH cell
presents a dispatching problem. Both phenomena, conflict and deadlock, may

Matrix Model and Control of Manufacturing Systems 87

occur in the case of an inappropriate dispatching strategy. Since up to now
deadlock prevention and avoidance have not been discussed, we concentrate on
determination of the control policy that provides a conflict resolution. It is shown,
without additional elaboration and formal proof that the obtained strategy is
deadlock free (we return to this issue in Chapter 6).

The matrix model can be directly written down from Figure 3.14, which shows
both job sequencing and resource assignment. From Figure 3.14 one can find that
the system is described with 20 rules. The job sets that correspond with job
sequences for two part paths and the set of resources are defined as follows:

- part A path
J'={R1ul,B1AS,R2ul,M1P,R2u3,B2AS,R3ul,B3AS,R1u3}
- part B path
J={R1u2,B1BS,R2u2,B2BS,R3u2,M2P,R3u3,B3BS,R1u4}
- set of resources

R={B1AA,BIBA,M1A,B2BA,B2AA,M2A,B3AA,B3BA,R1A,R2A,R3A}
with a set of shared resources R={R1A, R2A, R3A}.

The description of jobs performed by nonshared resources is given in Table 3.2.

Table 3.2. Description of jobs in IMH cell

Notation Description
B1AS transporting part A on conveyor Bl
MI1P processing part A in machine M1
B2AS transporting part A on conveyor B2
B3AS transporting part A on conveyor B3
B1BS transporting part B on conveyor Bl
B2BS transporting part B on conveyor Bl
M2P processing part B in machine M2
B3BS transporting part B on conveyor B1

88

Manufacturing Systems Control Design

CRS
Conveyor m m| Conveyor
EKQ B R1A X f
O X20 D/
}»% ox:(;)t In__—+
Xg B X2
X18 X1
B3 I:L B X17 2|):‘ B1
ANB f A/B
machine | machine PUMA
ADEPT O il
X7 B4xie X4$A X13
R3 M2 M1 R2
X15 Xe X5
= < o0 A
X14 \‘
<« =B
Conveyor B2

Figure 3.14. A layout with the parts paths of the IMH-cell used in a case study

The nomenclature used in the IMH is as follows: “RXuY” means job “Y” is
executed by robot “X”, “BxyS” means that product type “y” is transported by
conveyor “x”, “MxP” stands for machine “x” is busy, “BxyA” means that
conveyor “x” is available for product type “y”, “MxA” denotes machine “x” is
available, “RxA” stands for robot “x” is idle. Note that instead of having three
different resources for conveyors B1, B2 and B3, six different resources are used.
This is because of the two different materials paths on each conveyor. For
example, conveyor Bl has paths B1A and B1B, which are denoted as BIAA and
B1BA when they are available, and denoted as BIAS and B1BS when they are
carrying material.

Given the system layout and the system description, one can determine the
system matrices, herein shown “graphicaly” with black and white rectangles,

indicating “1”” and “0”, respectively.

Matrix Model and Control of Manufacturing Systems 89

DooODOo0O0OO0O0OOO0OO0O0O00 mO0oO0O0ooOmOO0 md
E0000000000O00OO0O0O0 ooooooooooo oo
OoE00000O00O0O0O0O0OO0O0O0 OoomOoOooooomo oo
ooEO0O00O0O0O0OOO0OOO0OO0 ooooooooooo oo
ooomO0O0O0O0OOO0OOO0OO0 ooooooooomo oo
oooOomO0O0O00O0O0O0O0O0O0O0OO0 oooomOoO0OO0O0 oo
ooooOomO0O00O0O0O0O0OO0O0OO0 oooooooooom oo
OoooOoOOmOO0O0OOO0OOO0OO0 Ooooooomoooo oo
ooooOooOEO0O0OOO0OO0OO0OO0 oooooooOomOoO0 oo
oooOoO0O0OEO00O00O0O0O0O0O0 ooooooooooo oo
F,= |obooooooooooooooooo F,= |omoooooomool F = |om
ooooOooOOOEOOO0OO0O0OO0 ooooooooooo oo
ooooOooOoOO0OEOO0OO0O0O0O0 oooooooOoomO oo
ooooOoOoO0OO0O0OEO0O0O00O0O0 ooomO0O00O0O000 oo
ooooDOo0O0OO0O0OOmOO0O0O00 ooooOosOoOOO0m oo
oooO0O00O0O0O0OOOmOO0O0O0 ooooooooooo oo
ooooDOo0oOOO0OOOO0OOEOO0O0 oooooooooom oo
Oo0O0O0000O0O0O0OOO0OOmOO0 ooooooomO0O0 oo
Ooo0O0O00O0O00O0O0OO0OOOEO oooooooOmOO0 oo
ooooOooOO0O0OOO0OOOOm ooooooooooo oo
od
_ _ oo
E00000O0O0OO0O0O0O0O0O0O0O0O00O0 oo
omO00000O0O0O0O0O0O0OOOOOO00 oo
ooEO00O0O0O0O0O0OO0OOOOOO0O0O0 oo
ooomO00000O0O0O0O0O0OOOOO0 oo
OoOoOoOEO0O0O0O00O0O0O0O0O0OOO0O0O0 oo
ooooomOO0OO0OO0OOOOOOOO0 gg
OoOoOoo0OomO0O0O0O0O0O0OOOOO0O0O0
ooDOOUOmOOOOOOOOOOOO ODOom0O00O0O0O0O0O0O0OO0OO0O0OO0O00 T mO
ooDOOUOOmOOOOOOOOOOO DOoo0O00O00OO0O0OONOO0O0OO0O00 Sy: oo
§,~|ooooooooooscoooooooo ooooosoooo oo o oo
DOooDO0DDO0DOOOEmOOO0OO0O0O0 oooooooooo om o oo
DOoDOD0DODOOOOmOOOOO0O0O0 goooooosooooooooo o oo
DODOoOo0O0O0O0OOOOOmOO0OO0O0O0 S,=|8oaoooooooooooa o oo
Oooooo0O000O0OO0O0O0OOmMOOO0O00 oooooooosOO0O0O0O0O o oo
oooDoO0OD0O0O0OO0OOOmOOO0O0 ooooooooooooooo o oo
EELL=L=k=R=R=R=1=1=1=1=1=2=1=K I-1=1=] OEO0000O00OEOEOO0OO0O0OOOE oo
[aR=R=R=B=R=R=R=R=1=R=R=R=R=1=R=R:=1 B=1=] ooOomOE00O0OO0O0O0OEOOOOOO oo
|0DooooooooooooooocoomOo| 0oooDOoO0OEO000O0O0OO0OOEO®O0 |o=]

3.5.2 IMH Workeell Dispatching Strategy

The last three columns of F, correspond to the shared resources R1A, R2A and
R3A. From the number of 1s in those columns we see that R1A is involved in four
conflicting rules, while each of the remaining robots, R2A and R3A, contribute in
three, which finally gives ten conflicting rules. According to the definition, Fy is
constructed by creating a new column for each “1” appearing in F, for the shared
resources, hence, the dispatching matrix will have 10 columns. By using Equations
(3.24) and (3.25) we obtain:

mOooooooooon
ooooooooon
oooomooooon
oooooooooon
oooooosooo
oooooooooon
ooooooomon
oooooooooon
oomooooooon
oooooooooo
Fd= osEO0OoO0OooOooo0

oooooooooon
ooooomoooon
ooooooooon
oooooooomo
oooooooooon
ooooooooom
oooooooooon
ooomoOOOOoo0
oooooooooon

Xg=

Tbmomosososososososoe’

It should be noted that columns of F4 have been rearranged in order to group
components of the dispatching vector that belong to the same shared resource.
Specifically, R1 is controlled with u;, ug,, 143 and ugq, R2 with ugs, uge and ug7, and
R3 with Ugg, Udo and Uq10-

90 Manufacturing Systems Control Design

The conflict resolution used in the IMH cell for the layout shown in Figure 3.14
is an augmented version of the last-buffer-first-serve dispatching strategy, we call
it ALBFS, modified for multipath systems. Herein we demonstrate an additional
way of realization of the control function % by using a so-called temporary system
vector, m'. At the beginning of each sampling interval all components of the
dispatching vector attain the value “1”. Then, the logical state vector x is calculated
according to Equation (3.23) and the obtained value is included in

m'(g)=q 'm(g)+[S-F" |x(q)

i.e. temporary system vector is attained by allowing execution of all conflicting
rules (uq=1, for i=1,10) for current data from sensors comprised in the system
vector m. When some of the shared resources (robots in our system) are requested
by more than one operation, the corresponding component of m' would have a
negative value, thus pointing out the occurrence of conflict. If that happens, the
ALBFS dispatching strategy blocks some of the conflicting rules and the logical
state vector is recalculated, this time with no conflict. This new vector is used by
the supervisor for determination of task assignments (calculation of vectors v, and
rs). The procedure repeats in each sampling interval.

ALBFS policy, implemented upon calculation of vector m', is given as the set
of rules (recall that component of vector y corresponding with job (resource) Z is
denoted y,):

IF m'ria <O (resource R1A requested more than once) THEN

IF m'r1u4>0 (job R1U4 requested R1A) THEN

ugriur = 0 AND ugriu2 = 0 AND 2griu3 = 0 AND wgpius = 1
ELSE IF mtR1U3>O THEN

ugriur = 0 AND ugriu2 = 0 AND ugriuz = 1 AND wggius =0
ELSE IF m'g;y;>0 THEN

ugriur = 1 AND ugriuz = 0 AND ugriu3 = 0 AND wgrius =0
ELSE

ugriul = 0 AND ugriy2 = 1 AND ugrius = 0 AND sgrius = 0

IF mtsz <0 THEN
IF mtR2U3>0 THEN
ugrou1 = 0 AND sgroyz = 0 AND ugroys = 1
ELSE IF mtR2U1>0 THEN
ugrou1 = 1 AND ugrour = 0 AND ugroyz = 0
ELSE
uarou1 = 0 AND ugrour = 1 AND sgroyz = 0

IF m'g3a <0 THEN
IF m'r3u>0 THEN
ugrsul = 0 AND ugr3p2 = 0 AND wgrsys = 1
ELSE IF m'r3u>0 THEN
ugrzu1 = 0 AND wugr3uz = 1 AND ugrsyz = 0

Matrix Model and Control of Manufacturing Systems 91

ELSE
ugrzu1 = 1 AND ugr3ur = 0 AND ugrsyz = 0

As we already mentioned, deadlock avoidance is an inherent property of
pulling strategies such as ALBFS. Therefore, in the determination of the rules
stated above only conflict was considered. If we analyze the rules then we can see
that between the two final jobs needed to manufacture products A and B, R1U3
and R1U4, the supervisor is designed to prefer products B.

3.5.3 Implementation of the Matrix Controller on the IMH Workcell

The matrix controller is implemented on a PC in a LabVIEW®™ graphical
programming environment. In LabVIEW®, one can sequence and control different
processes at the same time. The processes we are interested in are operations
implemented in manufacturing process, like execution of a robots’ trajectories,
machining jobs and transferring parts using conveyors. The matrix controller runs
on the PC that has three serial ports for communication with three robots. It also
has a digital acquisition card that receives digital signals from capacitive proximity
sensors. The same card is used for sending digital signals to activate machine jobs.
In Figure 3.15 one can find three levels of intelligent control depicted in [10,
11]. The first level is organization, which is the highest level of intelligence and in
our case it is presented as the matrix-based controller structure. The main purpose
of our implementation is to present the advantages and great potential of the
organization level realized in the form of the matrix-based controller shown in
Figure 3.12. The second level is the coordination level. This level contains a set of
independent modules that are composed by robot programming sentences
encrypted in VAL-like commands [12, 13]. These program modules define the jobs
to be done by the robots (i.e. the sequence of VAL commands needed to command
robots to perform pick and place tasks). Then, once the task or job is selected by
the organization level, the coordination level sequences the steps needed for each
of these jobs. In our case, the IMH cell’s coordination level sends commands
sequentially to the appropriate robot to accomplish the desired task (Figure 3.16).

ORGANIZATION
LEVEL

COORDINATION
LEVEL

IMPLEMENTATION
LEVEL

Figure 3.15. Three levels of intelligent control

92 Manufacturing Systems Control Design

MATRIX CONTROLLER (organization level)

task Vs I's
assignments

A

U Vver
Coordination Level Controller cfey

R1A R2A R3A Workcell data
integration
l R2U2 l R3U2 l L

R1U2 R2U1 R3U1 1
R1U1

A A

DAQ- card
2 . .| Analog & digital 1/0
RS232 RS232 RS232
1 I I MACHINES
ROBOTS (implementation level) SENSORS (implementation level)

(implementation level)

Figure 3.16. Coordination level of the IMH workcell

The last level of the system is the implementation level (Figure 3.17), which is
accomplished by the robot drivers and controllers. When the robot controller
receives a VAL command via the serial port, it performs low-level control
calculations and strategies such as interpolation, proportional derivative (PD)
control, proportional integrate derivative (PID) control, fuzzy logic control, neural-
network control or any other low-level control strategy to manipulate the robotic
arms.

Coordination Level Controller

DAQ - card
Implementation level controllers (PD & PID)
CRS Puma 560 ADEPT One
7 =

SENSORS
MACHINES

Figure 3.17. Implementation level of the IMH workcell

Matrix Model and Control of Manufacturing Systems 93

3.5.4 The Matrix Controller in LabVIEW Graphical Environment

The purpose of this section is to explain the development of the matrix controller
by using LabVIEW® [14, 15]. The key equations of the matrix formulation,
described in previous sections, are graphically represented in LabVIEW® (Figure

3.18).

temporary

Figure 3.18. The matrix controller in LabVIEW" graphical environment

94 Manufacturing Systems Control Design

The entire diagram is used as a single LabVIEW® block (or function)
representing the WHILE “Main loop” that is executed in each sampling interval.
Inputs in the block are system matrices (shown on the top) and sensors signals.
LabVIEW® block “Fix Uds” is positioned inside the Main loop. This block sets all
the components of conflict-resolution vector to 1 at the beginning of the cycle, as
we described in the previous paragraph. If conflict is detected on any of the robots,
the “Conflict Resolution” block deactivates rules according to ALBFS strategy.
Inside the main loop, an internal loop is used to calculate the logical state vector x
by applying Equation (3.23). Function MULTOA(X,Y), already implemented for
MATLAB® simulation, is used for that purpose.

The performance of the IMH workcell is shown in Figure 3.19. The results
have been obtained in real time directly from the matrix controller implemented in
LabVIEW".

[] []
[T [] []
Rt []
[[T] (1]
I
we| [[] [[]

[1

R2u3

R3u1t

[1 [1 [] [1[]
P I I [1 11

Figure 3.19. Results of implementation of the real IMH workcell using ALBFS conflict
resolution

Each graph (line) represents one robotic job. As in the case of graphs obtained
by simulation, there are only two states, high and low, meaning that a job is being
executed or not, respectively. It can be noticed that only one robotic job goes high
at any time, hence, the implemented conflict-resolution policy achieved the
requested objective. Five type-A and five type-B parts entered the workcell. As we
can see from graphs R1ul and R1u2, robot R1A loads parts according to the A-B-
A-B... sequence. When the third part-type A enters the system, robot RI1A
executes task R1u4, i.e. both parts are waiting to be removed from the system and
part B is preferred due to the conflict-resolution strategy.

Matrix Model and Control of Manufacturing Systems 95

3.6. Excersises

1. For the system described in Example 4.3.1 do the following:

a) determine the matrix model,

b) simulate the matrix model by using MATLAB" code given in Figure 3.5,

c) determine the dispatching matrix Fy, the dispatching vector release matrix
Sq4 and dispatching vector uy that will execute the task sequence a) loading
M, — unloading M, — loading Mj,

d) simulate the matrix model with obtained supervisor by using MATLAB®
code given in Figure 3.5 (extend vectors and matrices used in the code in
order to include Fg4, Sy and uy),

e) determine the dynamic matrix model of the system,

f) simulate the dynamic matrix model by using MATLAB® code given in
Figure 3.10.

References

(10]
(1]
[12]

[13]

Pastravanu OC, Giirel A, Lewis FL, Huang HH. Rule-Based Controller Design
Algorithm For Discrete Event Manufacturing Systems, Proceedings of the American
Control Conference 1994;1:299-305.

Tacconi DA, Lewis FL. A New Matrix Model for Discrete Event Systems:
Application to Simulation, IEEE Contr. Sys. Mag. 1997;17;5:62-71.

Lewis FL, Huang HH. Control System Design for Flexible Manufacturing Systems,
in Flexible Manufacturing Systems: Recent Developments, Elsevier, 1994.

Noori H, Radford R. Production and Operations Management. New York: McGraw-
Hill, 1995.

Steward DV. Systems Analysis and Management: Structure, Strategy, and Design.
New York: Petrocelli Books, 1981.

Elsayed EA, Boucher TO. Analysis and Control of Production Systems (2nd Ed.).
Englewood Cliffs: Prentice-Hall, 1994.

Smolic-Rocak N, Bogdan S, Kovacic Z, Reichenbach T, Birgmajer B. Dynamic
modeling and Simulation of FMS by using VRML, CD Proceedings of 15" IFAC
World Congress 2002.

Panwalker SS, Iskander W. A survey of scheduling rules, Operations Research
1977;26;1:45-61.

Lewis FL, Huang HH, Jagannathan S. A Systems Approach to Discrete Event
Controller Design for Manufacturing Systems Control, Proceedings of the American
Control Conference 1993;2:1525-1531.

Saridis G.N. Architectures of Intelligent Controls, in Intelligent Control Systems.
New York: IEEE Press, 1995.

Antsaklis PJ, Passino KM. An Introduction to Intelligent and Autonomous Control
Systems. Norwell: Kluwer, 1992.

Shimano B. VAL: A Versatile Robot Programming and Control System,
Proceedings of the IEEE Computer Society’s Third International Computer Software
& Applications Conference 1979;3:878-883.

Larson TM. Robotic Control Language, Advances in Instrumentation
1983;38;1:665-675.

96

[14]

[15]

Manufacturing Systems Control Design

Mireles J, Lewis FL. Intelligent Material Handling: Development and
Implementation of a Matrix-Based Discrete Event Controller, IEEE Trans. Ind.
Electr. 2001;48;6.

Mireles J, Lewis FL, Gurel A. Deadlock Avoidance for Manufacturing Multipart
Reentrant Flow Lines Using a Matrix-Based Discrete Event Controller, Int. J.
Production Research 2002;40;13:3139-3166.

Bogdan S, Lewis FL, Gurel A, Kovacic Z. Timed matrix-based model of flexible
manufacturing systems, Proceedings of the IEEE International Symposium on
Industrial Electronics 1999;3:1373-1378.

Mireles J, Lewis FL, Gurel A, Bogdan S. Deadlock Avoidance Algorithms and
Implementation , a Matrix Based Approach, in Deadlock Resolution in Computer-
Integrated Systems, Marcel Dekker, 2005.

Bauer A, Bowden R, Browne J, Duggan J, Lyons G. Shop Floor Control Systems -
From Design to Implementation. London: Chapman & Hall, 1991.

Gullander P. On Reference Architectures forDevelopment of Flexible Cell Control
Systems, PhD thesis, Gotenborg University, 1999.

Leitdo P, Quintas A. A Manufacturing Cell Controller Architecture, Proceedings of
Flexible Automation and Intelligent Manufacturing Conference 1997:483-493.
Maturana F, Norrie DH. Multi-Agent Mediator Architecture for Distributed
Manufacturing, J. Intell. Manufact. 1996;7:257-270.

Heikkild T, Kollingbaum M, Valckenaers P, Bluemink GJ. manAge: An agent
architecture for manufacturing control, Proceedings of the 2nd International
Workshop on Intelligent Manufacturing Systems 1999:127-136.

Tonshoff HK, Seilonen I, Teunis G, Leitdo P. A Mediator-based approach for
decentralised production planning, scheduling and monitoring, Proceedings of CIRP
International Seminar on Intelligent Computation in Manufacturing Engineering
2000: 89-95.

4

Matrix Methods for Manufacturing Systems Analysis

Since its first practical implementation in the 18th century [1], when Euler proved
that it is impossible to visit all the bridges in Kéingsberg and then to return to a
starting point by passing each bridge only once, graph theory has been successfully
applied for solving various problems. From computer networks, today’s world
information highways - to transportation systems, whose rapid growth requires
increased safety and reliability, methods developed by graph theory offer a
convenient way to analyze data associated with planning, organization and other
related phenomena. Graph theory can easily answer questions such as: what is the
communication lines bandwidth required for successful transmission of a particular
amount of information between two places on the network, how many trains are
needed in order to make a particular timetable feasible, which is the optimal way
between two cities where required energy is concerned.

When we talk about manufacturing systems, the first thing that comes to mind
is a set of machines processing raw materials in order to make a product. Located
on the factory floor according to a specified layout, machines can be understood as
points that exchange both materials (parts) and information following a certain
plan. One of the most suitable ways to represent this scheme of material or
information flow is by using graphs.

In this chapter we describe the basic concepts of graphs. First, we introduce
basic graph definitions followed by matrix representations of the graphs. At the
end of the section an illustrative example of a manufacturing system modeled by a
graph is given. The second section of the chapter is concerned with string
composition. String composition is a method for analysis of graph properties based
on a particular string-manipulation algorithm. In that section we present string
operators and their properties, concluding with an example of the shortest-path
determination in an AGV system. The last part of the chapter is devoted to max-
plus algebra, which is an extremely useful tool for analysis of a special class of
manufacturing systems. We give only the basics of max-plus since deeper insight
into its theory would require much more space and time. Furthermore, max-plus
theory covers only a particular group of discrete event systems while the DES class
we are interested in has a wider application. We show how the max-plus equation
is derived from the matrix description of the system. Since the theory is still being

98 Manufacturing Systems Control Design

developed we hope that a way to extend it to a broader class of manufacturing
systems will soon appear. However, it is important to understand the max-plus
concept in order to comprehend problems related to the inclusion of operational
times in the system analysis. We close the max-plus section with an example. At
the end of the chapter problems for exercise are given.

4.1 Basic Definitions of Graphs
First we need to define a graph [2].

Definition 4.1.1 (graph): A graph is a structure formed by a set of nodes V and a
set of arcs E. Arcs in E represent pairs of nodes in V, G = (V, E).

In the mathematical literature nodes are called vertices, while arcs are called
edges. These two names are the origins of symbols V" and E. In a graph, nodes
represent places or locations while arcs represent connections between these
places. The word place should be taken conditionally when manufacturing systems
are considered as there are two ways of representing it. Specifically, in graph
representation of the system, a node may represent the occurrence of some event,
while arcs may be used to show relations between events — which event(s) are
prerequisite(s) for the occurrence of a particular event. On the other hand, a node
may represent the system state while in that case arcs represent events that lead to
this particular state.

As shown in Figure 4.1, the node is graphically represented by a circle and the
symbol for an arc is a line drawn between two nodes. In the graph shown in the
figure a set of nodes is V' = {a, b, c, d} while a set of arcs is E = {(a,b), (b,c), (b,d),
(c,0), (c,d)}. It should be noted that set E can also be defined as E = {(b,a), (¢,b),
(c.), (d,b), (dyc)}.

Arc (c,c), which is different from all the other arcs shown in Figure 4.1 begins
and ends in the same node. This type of arc is called a loop (or a self-loop).

arcs

b loop

nodes

Figure 4.1. A graph

Matrix Methods for Manufacturing Systems Analysis 99

We say that two nodes, n; and n,, are adjacent if there is an arc between them.
In that case we call the arc incident to both nodes n; and »,. The degree of node »,
is equal to the number of arcs incident to it. A graph is called regular of degree r if
all nodes in the graph have the same degree equal to 7.

A graph is called a multigraph if it contains more than one arc between two
nodes or if there are self-loops.

Let us now consider the nodes of the graph shown in Figure 4.1 as street
intersections and arcs as streets between these intersections. The question is: can
we drive a car from node a to node d? From Figure 4.1 we know only that a is
connected with d but we are not able to tell if we can actually get from a to d since
streets connecting these two intersections may be one-way streets. To answer to
this question we have to add one more property to arcs: direction. We showed that
set E for the graph in Figure 4.1 can be defined in two different ways, which means
that in an undirected graph set E is a not ordered set of pairs of nodes. Now, we
can go on and define a directed graph.

Definition 4.1.2 (directed graph): A directed graph G = (V, E) is a graph with
ordered set E, i.e. pairs of nodes in a directed graph are ordered.

A directed graph is shown in Figure 4.2. The first node, n;, in the ordered pair
(n1,m,) is called the origin and node n, is called the destination. In the graphical
representation the direction from #»; to n, is shown as an arrow.

We describe the graph in Figure 4.2 as V' = {q, b, ¢, d}, E= {(a,b), (b,a), (b,c),
(c,0), (¢,d), (db)}. Continuing our analogy of Figure 4.2, the street connecting a
and b may be driven on in both directions while the street that links intersections b
and c is a one-way street, i.e. it can be passed only from b to c.

d

Figure 4.2. A directed graph

Now, having defined directions in the graph, we may answer the question:
traveling from a to d is possible by passing through intersections b and c.

The answer to the first question raises another: how far is a from d or how
much time do we need to pass along the established route if we drive with a
predetermined speed? The answer requires the inclusion of a weight property to the
notion of arc, ie. a numerical value is associated with each arc in a graph
specifying length, time or cost of the arc (weights can be associated with nodes as
well). Graphs with weighted arcs (nodes) are called weighted graphs (Figure 4.3).

100 Manufacturing Systems Control Design

Figure 4.3. A weighted directed graph

The weights shown in Figure 4.3 may represent the average time needed to
travel along the corresponding arc. According to the figure, going from ¢ to d
requires 8 time units, while a trip from ¢ to ¢ would require 6 time units. It should
be noted that weights of arcs connecting the same nodes are not necessarily equal.
In our example, arcs (a,b) and (b,a) have different weights. The difference in times
required for passing these arcs could be caused by a different number of street
lanes for example. The direction from a to b may have more lanes thus providing
conditions for faster traffic, which makes the traveling time shorter than for the trip
from b to a.

Our question, related to the distance between a and d, may now be answered.
From Figure 4.3 we find that traveling from a to d would take 16 time units.

The ordering of the set E, i.e. the introduction of directions in a graph, as well
as setting weights to arcs (nodes) has many consequences. As we throughout this
book deal with directed graphs, in the text that follows we define terms and
structures that are needed for the investigation of basic directed graph-properties.

Definition 4.1.3 (upstream, downstream node): In a directed graph, G = (¥, E), a
node n, is called the upstream node to node nj, if there exists an arc (n;,7,) € E. In
that case, node n, is called the downstream node to node n,.

An upstream node is sometimes called a predecessor and a downstream node is
called a successor. When there is more than one node upstream of node n, we
define a set called a preset of n that contains all such nodes. Downstream nodes of
node 7 belong to the set referred to as the postset of n. The importance of preset
and postset concepts will be shown later in the chapter related to Petri nets.

In the graph from Figure 4.3 the preset of node b is {a, d} while the postset of b
is {a, c}.

Definition 4.1.4 (path): Having a directed graph G = (V, E), a path is a sequence of
nodes (ny, ny, n3, ..., n;) such that »; is upstream of n;,; fori =1, 2, ... j-1.

We may also speak of a path as a sequence of arcs that connects a sequence of
nodes belonging to the path.

Matrix Methods for Manufacturing Systems Analysis 101

Definition 4.1.5 (path weight): Having a directed weighted graph, G = (V, E), and
a path, ¢ = (ny, ny, mn3, ..., n;), we define the weight of path ¢ as a sum of the
weights of arcs of which it is composed

J
Oy = 2w
i=1

There is, however, a difference between path weight and path length.
Sometimes these two terms are confused in the literature, especially when it comes
to transportation systems. In graphs that represent these systems, weights
associated with arcs usually stand for distances between nodes showing kilometers
or miles. Summing weights of arcs along a path gives the path weight that actually
represents length. Because of this, path weight can be misinterpreted as path
length. The reason why these two expressions have to be distinguished will be
given later. Now, let us define the concept of path length.

Definition 4.1.6 (path length): Having a directed weighted graph G = (¥, E), and a
path ¢ = (ny, ny, n3, ..., n;), we define the length of path o as the number of arcs of
which the path is composed. We denote path length as o,.

We can recognize several paths from the graph in Figure 4.3; o,=(a, b, ¢),
oy=(a, b, ¢, d), o5=(b, ¢, d, b). The lengths and weights of these paths are as
follows: O = 2, Oy = 3, O30 = 3, Olw = 8, Oyw = 16, O3y — 17.

Path o3 has an interesting property; the initial and the final node of this path are
the same. This kind of path is called a circle (cycle). As will be seen later in the
book, circles are very important structures in the analysis of discrete event dynamic
systems. At this point, without further explanation, we define the notion of a
maximum cycle mean. First, the mean weight of a path is characterized.

Definition 4.1.7 (mean weight of a path): The mean weight of a path ¢ in a
directed weighted graph G = (V, E), is defined as

(o2
— _ w
O'W = —

Oy

When this path o is a cycle, the mean weight of the path is called the cycle
mean.

Definition 4.1.8 (maximum cycle mean and critical circuit): The maximum cycle
mean of directed weighted graph G = (V, E), is defined as

A= mcax(aw)

102 Manufacturing Systems Control Design

where ¢ ranges over the set of circuits of G. The circuit that corresponds with 4 is
called a critical circuit.

The concept of reachability is closely related with a notion of a path.

Definition 4.1.9 (reachability): Having a directed graph, G = (¥, E), and nodes
n, € V, we say that node n,is reachable from node #; if there exists a path such that
o = (n;, My, R, ..., 1y, i.e. n; is the initial node and 7/ is the final node of the path.

In our example, node b is reachable from node ¢ and node c is reachable from
node b. Actually, each node in the graph shown in Figure 4.3 is reachable from any
other node. This type of graph is called a strongly connected graph.

In order to be able to manipulate with graphs, to analyze their properties and to
make conclusions regarding the systems modeled by graphs, we need to introduce
some kind of graph representation. Pure graphical interpretation of a graph is easy
to handle and can provide valuable information when the number of nodes is small.
As the number of nodes increases, the graphical interpretation becomes impossible
to comprehend.

A graph representation is a very important issue especially when it comes to
computer memory and computational times. In the following text we show several
possible graph representations suitable for programming, with a special emphasis
on matrices that can be related to graphs in one way or another. Later, we use these
matrices to find graph properties that are of special interest for manufacturing
systems analysis and design.

Generally, when we want to prepare a graph representation structured in a way
suitable for computer programming, we may choose one of two basic concepts:
arc-structured or node-structured data [3]. Each of them has its own benefits and
drawbacks.

In node-structured data we use an array of length N, where N is the number of
nodes. An entry i, corresponding with node #;, is a set (a list) of nodes that are
destination nodes of arcs starting in node i, together with weights of arcs. Table 4.1
shows the node-structured data representation of the graph shown in Figure 4.3.

Table 4.1. Node-structured data representation of the graph

Entry i (node) Destination Weight
1 (a) b 5
2 (b) a 7
c 3
3(c) c 6
d 8
4(d) b 4

This structure offers several benefits — finding nodes adjacent to a particular
node is simple and fast and so is adding a node (or an arc) to the structure. A

Matrix Methods for Manufacturing Systems Analysis 103

problem arises if a node (or an arc) has to be deleted from the structure.
Furthermore, testing whether two nodes are adjacent may be time consuming.

The other approach to graph representation is arc-structured data. In this
approach we keep a list of arcs by maintaining the origin and destination nodes of
the corresponding arc together with arc weight. Table 4.2 shows the arc-structured
data representation of the graph shown in Figure 4.3.

Table 4.2. Arc-structured data representation of the graph

Entry i Origin Destination Weight
(arc)
1 a b 5
2 b a 7
3 b c 3
4 c c 6
5 c d 8
6 d b 4

Arc-structured data is space efficient. As in the previous case, including a new
node or an arc in the structure is easy. The only drawbacks are the time-consuming
search for arcs incident to a particular node and determining which two nodes are
adjacent.

The structures representing graphs can be more complicated than the one we
described, depending on the data that have to be included in the graph description.
Getting a structure suitable for graph analysis is not always straightforward. In an
example concerning AGV path planning, which is presented in Section 4.2, the
structures that describe the graph contain details such as circular and straight path
segment points, the vehicle orientation with respect to segment direction and even
the vehicle actions upon arrival in a particular node. By combining the given facts
and by extracting information from these structures, bottom-up design finally ends
with data suitable for computer graph analysis so we can, for example, predict
node reachability or plan the shortest path.

4.1.1 Matrix Representation of the Graph

Even though arc-structured and node-structured representations of the graph meet
computer programming requirements such as space efficiency due to memory
constraints and fast computation of iterative algorithms, they lack the rigorous
mathematical characterization that makes them inappropriate for theoretical
analysis of graphs. The most convenient way to investigate the composition of
graphs or to treat a graph as a structure that presents the dynamical behavior of a
system, is by using the matrix representation of the graph [4]. By representing a
graph as a matrix we can define mathematical operators that can be used for
studying various properties of systems modeled by graphs.

104 Manufacturing Systems Control Design

One of the matrices that describe the structure of a graph is the adjacency
matrix. This matrix shows relations between nodes.

Definition 4.1.10 (adjacency matrix): Having a directed graph, G = (V,E), an
adjacency matrix G is defined as a matrix with the number of rows and columns
equal to the number of nodes in G, with element g; equal tol if node #; is upstream
of node #; and to 0 otherwise.

According to the definition, an entry (i, j) corresponds with an arc from node »;
to node n;. Although this notation may seem strange at first, it is very convenient
for manipulations with matrices and vectors. By maintaining this form we can
write matrix equations in the standard way.

For undirected graphs matrix G is symmetrical, as by definition element g;= g;;
= 1 when nodes »; and »; are adjacent and g; = g; = 0 otherwise. This difference
between adjacent matrices of undirected (Figure 4.1) and directed (Figure 4.2)
graphs is shown below; G4 represents an undirected graph and Gq represents a
directed graph. The fact that the diagonal element is equal to 1 is evidence for a
loop in a graph.

a b ¢ d a b ¢ d

a [0 100 a [o100

G . b [ro1 G b |1oo
ud =, o 1 1 1 d”¢c o110
d {0110 d {0010

The adjacency matrix of a directed graph can be used to identify more than
connections between nearby nodes: it can also show links between nodes that are
far from each other. Let us assume that g;=1, i.e. there is an arc from j to i, and
gi=1, i.e. there is an arc from k to j. Then, it is obvious that there is a path from &k
to 7 containing two arcs. Now, let us assume that all other entries of the ith row and
kth column in the adjacency matrix are equal to 0. Then, the multiplication of the
row and the column will give gy=g; gu=1. When we have more entries of 1, for
example, g;,~1 and g,,=1, then multiplication will give gy= g;7gjx + Gim'gm=2, i.e.
the result shows that there are two paths from k to i, each containing two arcs. We
see that by multiplying adjacency matrix G one can tell whether two nodes are
connected and, when they are, how many possible paths lie between them. Powers
of adjacency matrix are calculated by standard matrix multiplication:

G' =G G 4.1)

i.e. an entry of G' is found as:

Matrix Methods for Manufacturing Systems Analysis 105

-1 ..
gi;‘ :% girk "8 > i, j,k=12,..n 4.2)

where » is the number of nodes of the corresponding graph. If g;” = m > 0 then
there are m different ways to get from node #; to »; by passing r arcs.
If we calculate G* for the graph shown in Figure 4.2 we obtain

o o —~ o
o = o =
—_ — o o
o o —~ o
o o —~ o
o = o =
—_ — o o
o o ~ o
o - o =
_ = = O
=)
o o o

The result demonstrates that, for example, there is one path from ¢ to b (gy3> =
1) that passes over two (7 = 2) arcs (see Figure 4.2), while there is no way to get
from d to b by passing two arcs. Diagonal elements g;;%, g»,> and gs5° equal to 1
show second-order (» = 2) circles. Further multiplication will give paths passing 3,
4, ..., etc. arcs. For example, computation of G* gives g»3* = 2: there are two paths
from c to b that pass over 4 arcs — pathl={c,d,b,a,b}, path2={c,c,c,d,b}.

Although results obtained from adjacency matrix multiplication show not only
the existence of the route from one node to the other but also how many routes
there are in the graph and how many arcs have to be taken for a particular route,
these results do not tell us #ow we can “travel” between nodes or what would be
the cost of the “trip”. Later in this section we show how the adjacency matrix must
be broadened in order to comprise more detailed graph representation. In Section
4.2 we also present a procedure for the determination of paths between nodes in a
graph.

Now, let us define a matrix that associates nodes with arcs. This matrix is
called the incidence matrix.

Definition 4.1.11 (incidence matrix): Having a directed graph, G = (V, E), an
incidence matrix W is defined as a matrix with the number of rows equal to the
number of nodes and the number of columns equal to the number of arcs, with
elements defined as follows: if there exists an arc (n;n)), i # j, represented in W
with column /, then w; = 1, w; = —1 and the other elements of column / are equal
to 0. For an arc (n,n;) represented in W with column /7, w; = 0.

According to the definition, an incidence matrix has elements —1, 1, and 0.
Entry of —1 (1) indicates that the corresponding node is the destination (origin) of
an arc represented by the consequent column. Since both the destination and origin
of a self-loop is the same node, in a column representing a self-loop arc all entries
are 0. The incidence matrix W, of the graph shown in Figure 4.2 is given below.

106 Manufacturing Systems Control Design

al1 -1 0 0 0 0
bl — _
W, = 11 1 0 0 -1
clo 0 -1 0 1 0
dlo 0 0 0 -1 1

Note that we can infer the existence of loops in a graph from the incidence
matrix (there are columns with all elements equal to 0), but it is not apparent which
node contains a loop. Although column 4 has all entries equal to 0, we are not able
to tell which node is involved in the loop. If we draw a graph represented by the
incidence matrix W,, the loop may close around any of the four nodes (Figure 4.4).

d

Figure 4.4. Directed graphs with the same incidence matrices and different loops

Even though both matrices, adjacent and incident, represent a graph structure
that can be exploited for a survey of a variety of graph properties, they need to be
further extended in order to provide adequate information essential in analysis of
system dynamics (in the case of manufacturing systems) or of some other features
(determination of distances in the case of transportation systems). In an unweighted
multigraph, for example, each entry of the adjacency matrix may represent the
number of arcs between nodes. On the other hand, as the adjacency matrix of the
weighted directed graph has entry 1 for each arc in the graph, we can get a more
detailed picture of the graph if we just replace these 1s with weights of
corresponding arcs. Concurrently, each 0 from the adjacency matrix has to be
replaced by an element, denoted ¢, that would stand for a nonexisting arc. In this
new matrix, symbol e is used for zero-weight arcs.

Definition 4.1.12 (weighted adjacency matrix): Having a weighted directed graph,
G = (V, E), a weighted adjacency matrix A is defined as a matrix with the number
of rows and columns equal to the number of nodes in G, with elements defined as
follows: if there exists an arc (#;n,) then a;; is equal to its weight, otherwise a;; = ¢.
For a zero-weight arc (n;n) entry a; = e.

The elements ¢ and e will be discussed in more detail in the section dedicated to
max-plus algebra.
For the graph shown in Figure 4.3 the weighted adjacency matrix A is given as:

Matrix Methods for Manufacturing Systems Analysis 107

a b ¢ d

QU O = Q
M M L M
M W M
M M A M

© N M M

So far we have used analogies from transportation systems to explain basic graph
concepts. In the following example we show how graphs can be used for modeling
manufacturing systems, which is our main interest. We conclude this section with
this example.

Example 4.1.1 (a graph representation of a manufacturing line)

Let us consider a manufacturing line with two machines, M; and M,, shown in
Figure 4.5. Our objective is to model this system by a graph. For that purpose, we
have to first identify the operations in the system and their order. Next, we need to
specify which observation would be represented by nodes — as we stated earlier, we
may use nodes to represent events or system states. In this example, nodes
represent events.

The figure illustrates that parts visit both machines: after being processed in
machine M, they proceed to machine M, and then leave the system. Therefore, two
operations may be identified; operation MP; on machine M; and operation MP, on
machine M,. Each machine can process only one part at a time.

Events that can be characterized as interesting for system analysis are:

e ¢, =part is present at the beginning of the line,
e ¢, = start of operation MP;,
e ¢; =-end of operation MP,
e ¢, = start of operation MP,,
e ¢s=-end of operation MP,,
e ¢¢ = part leaves the system.
parts out
—l-
LT
M
ety] —— "
—l
M r S — | u
— /

Figure 4.5. A manufacturing line containing two machines

108 Manufacturing Systems Control Design

The type of analysis performed and the system properties will determine which
events to model or which physical phenomena will be taken as system states. In
our example we could have also selected other events (e = tool in machine M,
breaks), but these events are not interesting for our study or we may consider that
the probability of occurrence of these events is zero (machine tool is believed to be
unbreakable).

Since nodes represent events in the example, a graph model of this system
would have 6 nodes. Now, let us see how events influence one another (which
corresponds with the determination of arcs). It is clear that operation MP; cannot
start (event ep) if there is no part at the beginning of the line (event ey).
Furthermore, if machine M, is already executing operation MP,, event e; cannot
take place since the machine cannot process two parts at a time. These two facts
define arcs (e}, e;) and (e;, e;). The existence of arc (e,, e3) is obvious — operation
MP, cannot end if it had not been started. Similarly, we can define arcs (e3, ey), (es,
e4) and (e4, es5). The final step in the line is the departure of the part, which is
represented by arc (es,). Thus, having defined relations between nodes, we can
go on to write down the adjacency matrix of the system and draw its graph.

_ el @2 6364 @5 66_

10 0 0 0 0O
11 01 0 00
e
G="1 010000 - adjacency matrix
€10 01 01 0
es10 0 01 0O
10 0 0 01 O
&1 e, e3 ey €5 s

Figure 4.6. Graph representation of the system shown in Figure 4.5

As we know, an adjacency matrix and a directed graph give only limited
information about system properties. From the graph in Figure 4.6 we can
understand that, for example, event e; has an impact on events e, and e,, i.e. the
occurrence of e; triggers events e, and e,, but we cannot say when, after e; takes
place, event e, or event e, will happen.

We have shown earlier that an adjacency matrix and the corresponding graph
can be extended by the introduction of arc weights. Let us broaden our discussion
by assigning an operational time to each task within the system. Operation MP, is a
task, the machine setup after the processing of the part is also a task and so is
traveling of the part from M, to M,. Tasks “consume” the time between events, and
can therefore be associated with arcs. For events and arcs defined in our example,
we can identify the following tasks (operational times are given in parentheses):

Matrix Methods for Manufacturing Systems Analysis 109

(e1, e2) — part enters the machine M, (#),

(ey, e3) — operation MPy, (typ1),

(e3, €2) — setup of machine My, (fy)),

(es, e4) — part travels from machine M; to machine My, (¢7),
(e4, es) — operation MP», (tvp2),

(es, e4) — setup of machine M,, (),

(es, es) — part departs the system, (#y).

The weighted adjacency matrix obtains the following form:

K & e (N es €
e | & £ £ £
€ tU tMl & &€

A= e | € typ £ £ £
e, | € £ tr £ ty, €
e | & € lyp, € £
€6 | € £ ty € |

Figure 4.7 shows the weighted graph representation of the system shown in
Figure 4.5.

Figure 4.7. Weighted graph representation of the system shown in Figure 4.5

From matrix A, or the graph, among other things, we find that event e; occurs
fyp1 time units after event e,. Also, we know that the part leaves the system (event
eg) tvpz T+ ty time units after machine M, starts its processing (event e4). Therefore,
having defined the weighted adjacency matrix that incorporates operational times,
we can study the dynamic properties of the system: machine cycles, machine
utilization, system throughput, etc. In Chapter 3 we showed how these data can be
revealed from the system model by using matrix operations.

How the system is modeled will depend on the designer's priorities — the
designer will highlight events relevant to his/her requirements. Therefore, in the
text that follows we show a different model of the same system.

Let us assume that information relevant to model building are events related to
the start of operations, parts incoming and parts leaving the system. Thus we
identify events ey, e,, e4 and es. The occurrence of e activates e, after 7y time units
(assuming M, is ready). Since e; and es are not considered, the operational times of
tasks connecting these events with other events have to be somehow incorporated

110 Manufacturing Systems Control Design

in the model. From the graph shown in Figure 4.7 we see that machine M, starts
processing the next part fyp;+ fy; time units after the previous part entered the
machine. The same holds for machine M, (operational times #yp,t fy2). Moreover,
the part processed in M; enters M, after fyp;+ #r time units.

The graph model of the system is shown in Figure 4.8. Operational times are: #,
= tvwpittmi, = twpa Tz, B = twpittr and = fypytty. The new weighted adjacency
matrix has the form:

el 62 64 66

el € € € ¢

R RO
el € t 3 t , €
| € t, €
4 b
i B I
&1 & €4 €5

Figure 4.8. Alternative weighted graph of the system shown in Figure 4.5

There are obvious differences between the two models. The second model is
reduced and has two loops (diagonal elements #, and #, in the new matrix A). While
in the first model we know exactly when the processing of parts in both machines
is finished, in the second model these events cannot be tracked directly (actually,
we intentionally removed them from consideration).

¢

4.2 String Composition

In the previous section we showed how an adjacency matrix can be used to
ascertain whether there exists a path between two particular nodes. It was
mentioned that information regarding the existence of a path between nodes does
not give any additional data that would answer how one can travel from one node
to the other. In order to solve the problem of path finding in a graph, some other
form of matrix should be used for graph description.

In this section we describe in detail the string-composition algorithm
introduced in [5]. We also extend the notation proposed in [6], where
implementation of the string composition to manufacturing systems analysis and
design was explored. At the end of the section we give an example of string

Matrix Methods for Manufacturing Systems Analysis 111

composition implemented to the problem related to path planning in an AGV
system.

String composition is only one of many methods concerned with the shortest
path problem. The most popular and well known method is Dijkstra’s algorithm [7,
11]. It finds the shortest path from a single origin to all destinations by examining
the length of each outgoing arc of a selected node. Every node in a graph is visited
only once. As a result, the algorithm gives the distances but actual paths are not
known directly. Only the predecessor of the corresponding node is given. Another
popular method is the Bellman—Ford (B-F) algorithm. In this algorithm, nodes can
be visited more than once and all arcs are checked in each iteration. A more
efficient variation of the B-F algorithm, called shortest label first (SLF), is
proposed by Bertsekas in [8]. The results of these algorithms are the same as for
Dijkstra’s: distances and predecessors.

A very popular algorithm that gives all-nodes shortest paths is the Floyd—
Warshall algorithm proposed in [9, 10]. The input to the algorithm is an nxn
weighted adjacency matrix A, with weights associated with distances. The final
result is a matrix whose (i) element represents the shortest distance between
nodes i and j. To get the actual path from i to j, the algorithm should be changed in
order to track calculations in each iteration. The Floyd—Warshall algorithm is
similar to the shortest-path computation in the use of max-plus algebra, which we
shall describe in the following section.

Two definitions, required for the rest of the section, follow.

Definition 4.2.1 (word): A word is a sequence of alphabetical and/or numerical
characters. A single character is a word.

Definition 4.2.2 (string): A string is a sequence of words having the symbol “-”
between two consecutive words.

A few examples of words and strings are:
-words: w; abcd; e4T68u; resourcel2,
- strings: abcd-e4T68u; resourcel2-w-r4568-w-abed

We introduce the following string operations; multiplication (series
composition) denoted with the multiplication symbol “*”, and addition (parallel
composition) denoted with the standard addition symbol “+”.

A string S ending with word 4 is denoted as S¢A, where Sy is a substring of S,
i.e. Sgis a sequence of words in S followed by word 4.

A string S beginning with word 4 is denoted as 4—Ss, where Sy is a substring of
S, i.e. S5 is a sequence of words in S that follows word A4.

Let S)= S5;—A4 and S,= A-Ss; be two strings. Then, multiplications of S; with S,
from the right and the left are defined as follows:

S¢S, =851 —A®A=S85,=85 ~ 4= S5, (4.3)

112 Manufacturing Systems Control Design

Sy08 =A4-Sg, ¢85 -4=0 44

where “0” stands for an empty string.

From Equations (4.3) and (4.4) we see that the multiplication of two strings
forms a nonempty string if the string that is multiplied from the right ends with the
word that is the beginning of the right multiplicand. The result of the multiplication
is a string that is composed of two substrings connected with a common word.
When the left multiplicand does not end with the word that is the first one of the
right multiplicand, the result is an empty string. As the results of left and right
multiplications are different, string multiplication is not commutative.

Having strings S, S», and S3, the following holds:

S48, =8, +8], (§+8,)+8; =8 +(5,+53)

(S;+5,)8S; =(S;#53)+(S,953)
S30(S,+S,)=(S;98)+(S;95,)

5,00=0

S, +0=S5,

String addition is commutative and associative with an empty string as a zero
element. Now we extend the given operations to a particular type of matrix called a
string matrix. Each string matrix is associated with a graph and may be obtained
from its adjacency matrix.

Definition 4.2.3 (string matrix): A string matrix S, associated with graph G = (V,
E) and its adjacency matrix G, is an nxn matrix with string entry s; obtained as
follows: for each g; that has entry 1, s;=4-4;, where 4, is a word-identifying node
n; and 4; is a word-identifying node n,. If g; = 0, s;= 0, i.e. if there are no arcs
between nodes, the entry is an empty string.

It is clear that a string matrix can also be determined directly from the graph.
For the directed graph shown in Figure 4.2, the adjacency matrix has this form:

Matrix Methods for Manufacturing Systems Analysis 113

o o — o g
o - o - >
—_ - o o 0
©c o~ o X

According to Definition 4.2.3, a string matrix S associated with adjacency
matrix Gy is given below:

From matrix S we may read that there is, for example, a connection between
nodes b and c (string element 53, = c—b).

Even though the string matrix determined as described in Definition 4.2.3 may
seem a little confusing (the connection between nodes i and j is represented as
string j—i), for manufacturing systems analysis this form of the matrix is very
convenient. We shall see later that string composition is mainly used for
determination of circular waits among resources. The form described in Definition
4.2.3 gives us wait relations directly, thus providing the conditions for a
straightforward determination of circular waits. If one imagines that arcs represent
part flow in an MS and that nodes represent resources, then in order to proceed
from node i to node j, a part should be first processed in i, which means that j waits
for i to finish its task. In other words, the connection between i and j is represented
with the string j—i.

A more intuitive form of the string matrix may be obtained if the adjacency
matrix is first transposed and then Definition 4.2.3 is used. The other way is to
determine the string matrix directly from the graph. If there is an arc from node i to
node j then the entry that corresponds with the row representing node i and the
column representing node j is equal to i—j. This method can be used if one deals
with problems related to path determination (the shortest, the fastest, the cheapest,
etc.).

Transposition of G4 from our example gives:

ab

(=N

(9}
o o~ o
S = = o 0
o —~ o o X

114 Manufacturing Systems Control Design

The string matrix for G4 has the form:

From the string matrix S we may find that there is a connection between nodes
b and c¢ (string element s,; = b—c), only this time we may read this information
directly, in a more natural way.

Determined one way or the other, the string matrix gives information regarding
connections between nodes. We only have to make sure to follow the conventions,
chosen at the beginning throughout the entire procedure of string composition.

A problem may arise if there is more than one arc between two nodes
(multigraph). This situation is common in AGV systems as layout designers
usually plan alternative routes that should be used when the main route is occupied
by another vehicle or if taking the main route is forbidden for some reason. Figure
4.9a shows a graph that has two arcs between nodes ¢ and d. By adding a virtual
node e, as shown in Figure 4.9b, the alternative route is split into two arcs; c—e and
e—d. Even though the inclusion of virtual nodes increases the dimension of the
string matrix, this way of solving the alterative-route problem is quite simple and
straightforward.

We have shown in the previous section how the multiplication of the adjacency
matrix gives the number of paths between two nodes. We also found how many
nodes should be visited to get from node to node, but we were not able to tell how
to travel from one node to another. We will now use string composition to find a
solution to this problem.

b

a) b)

Figure 4.9. Splitting of alternative route by virtual-node inclusion

Let us extend string composition to matrices. Powers of string matrix S are
calculated as follows:

Sr — Srfl oS (45)

i.e. an entry of S is found as:

Matrix Methods for Manufacturing Systems Analysis 115

r—1 ..
:Z S Sy s k=12, (4.6)
%

where n is the number of nodes in the corresponding graph. In Equation (4.6)
standard multiplication should be replaced with series string composition, while
standard addition should be replaced with parallel string composition.

For the graph shown in Figure 4.2 we have:

0 a-b O 0 0 a-b O 0
2 b—a 0 b-c 0 b—a 0 b-c O
S =SeS= .
0 0 c—c c—d 0 0 c¢c-c c¢c-d
0 d-b 0 0 0 d-b 0 0
a—-b-a 0 a—-b-c 0
3 0 b—a-b b-c—c b-c-d
B 0 c—d-b c—c—-c c—c—-d
d-b—-a 0 d-b-c 0

We see that there are three diagonal elements that are not null string: diagonal
strings a—b—a, b—a—b and c—c—c. This result shows that there are two second-order
circles in the graph. Also, all existing second-order paths (containing two arcs, i.e.
all paths with g, = 2) are represented with corresponding strings. Third-order paths
(0= 3) can be found as:

S* =57 es
0 a-b—a->b a-b—-c—-c a—-b—-c—-d
3 b-a-b-a b-c—-d-b b—-a-b—-c+b—-c—c—c b—-c-c-d
“le=d-b-a c¢c—c—d-b c—d—b-c+c—c—c—c c—c—c—d
0 d-b—a-b d-b—c—-c d-b—c—-d

The string $23° = b—a—b—c + b—c—c—c demonstrates that there are two third-order
paths between nodes b and ¢, while $33° = c—d-b—c + c—c—c—c shows that there are
two third order circles that start and end with node c.

How far one may go with string matrix composition depends on the specific
problem. After » multiplications of the string matrix all paths in the graph will be
revealed. Graphs with a large number of nodes require many multiplications, thus,
finding all paths can be a time-consuming task that may need huge computational
power. There are many ways to solve this problem, depending on the final
objective of string composition.

For example, the given results show that the circle exposed by composition
repeats in several string matrix elements (h—c—d-b, c—d-b—c and d—b—c—d in S’

116 Manufacturing Systems Control Design

represent the same circle). As our aim is only to find circles in the graph, equation
(4.5) can be redefined. Duplicate values use computation time needlessly and do
not give any new information. As proposed in [6], the matrix composition can be
changed in the following way:

ro_ =1 L. .
s--—% Sik S s Lj=1,2,.,n, k=2i+1 4.7

thus eliminating duplicated circles and restricting the required calculations. A
closer look at Equation (4.7) makes it clear that by forcing & to be greater than i we
do not check if already passed nodes belong to currently calculated circles. If a
node that corresponds with the current row (7) belongs to some circle that includes
a passed node (< i), then this circle is already determined and there is no need to
check previously passed nodes — only nodes above the current row (> i) should be
checked.

We can even further exploit the fact that the string composition objective is the
determination of circles. If a graph has » nodes then the nth composition should
give the circle that includes all nodes in the graph (if one exists), ie. when
performing the nth composition we have to calculate only the first diagonal term.
As the (n—1)th composition exposes circle(s) that comprise(s) #n—1 nodes, only the
first two diagonal terms should be calculated. We may proceed in the same
manner. Finally, we conclude that only (#n—r+1) diagonal terms must be calculated
and checked for possible circles. By keeping the original string matrix S
unchanged we need to determine (n—r) rows and (n—r+1) diagonal terms of S" (the
rth composition) in order to calculate the » ordered circles in the corresponding
graph.

When matrix composition is used for some other purpose, a string matrix can
be structured so that the calculation of string composition will not require large
computational capacity. In practice, problems of path determination usually have
some restrictions that can help in rearrangement of the corresponding string matrix.
For example, in many situations nodes are divided into three groups: origins,
destinations and bypasses. Only traveling from origin to destination and vice versa
is allowed. Nodes that lie on the paths between origins and destinations belong to a
bypass group. Having groups of nodes we may structure a string matrix so that the
first £ rows represent origins, followed by / rows that correspond to bypasses, and
the final m rows that should stand for destinations. Assumptions regarding allowed
travel routes reduce the number of required calculations since we can skip
compositions of a row and a column that stand for an origin (destination) as trips
from origin to origin (destination to destination) are forbidden. Moreover, prior to
the rth composition, all diagonal elements of S™' can be set to 0 since they
represent circles. In the following example we show how the given system
restrictions define the string matrix structure and restrict string composition.

Matrix Methods for Manufacturing Systems Analysis 117

Example 4.2.1 (an AGV shortest-path determination by using the string
composition)

An AGV system layout is shown in Figure 4.10. Since formation of the string
matrix is based on data that are structured in a particular way, prior to
determination of the system string matrix we have to describe these structures.

The layout is composed of segments and nodes. A segment is an object defined
by its properties. It can be circular or straight: circular segments are defined by
three and straight segments by two Cartesian points (in world, i.e. shop floor,
coordinates). We differentiate two types of segments based on traveling direction:
unidirectional and bidirectional. Each segment has a weight factor that can be
associated with some physical property (maximum allowed speed, segment length,
etc.). Segments form paths.

A node is an object defined as the point on a segment. Each node has a set of
parameters related to a vehicle — actions that should be performed by the vehicle
and positions of forks (approach speed, fork orientation, fork pick-up elevation,
departure speed, etc.). Nodes are grouped as origins, destinations and bypasses.

a

O = op

Figure 4.10. An AGV system layout composed of nodes and segments
The layout has 7 nodes and 15 segments:
e set of nodes
N=N,UN,UNy={a} U{b, ¢, d e} U{f g}
e set of segments

C=CUC. = {Cb C3, Cs, C7, C10, 013} u {02, C4, Ce, C8, C9, C11, C12, C14, 6’15}

118 Manufacturing Systems Control Design

where N,, N, and Ny are sets of origin, bypass and destination nodes, respectively,
while C; and C, are sets of straight and circular segments, respectively. All
segments, except ¢4, ¢s and ¢y, are bidirectional. We denoted segments as ¢; since
the letter s is used for string-matrix elements.

As may be seen from Figure 4.10 that some paths are formed of only one
segment, while others comprise two and more segments:

(a, b) — {c;} - bidirectional,

(b, ¢) — {cy, c3} - bidirectional,
(b, /) > {ca, ca, ¢} - unidirectional,
(¢, d) — {cg)} - bidirectional,

(c, €) — {c11, c12} - bidirectional,

(¢, g) = {cio} - unidirectional,

(d, /) = {c7, cs, o} - bidirectional,
(e,) — {c13, c1s, €15} - bidirectional.

Based on the layout data we can form the system string matrix:

0 c¢-b 0 c—d c-e 0 c—g
S=| 0 0 d-c 0 0 d-f 0
0 0 e—c 0 0 0 e—g
0 0 0 f—-d 0 0 0
0 0 0 0 g-e 0O 0 |
Calculation of S” gives:
i 0 0 a-b-c 0 0 a-b-f 0 l
b-—c—-d+
0 0 0 b—c—e 0 b-—c—-g
b-f—-d
c—b-f+
SZ: c—b-a 0 0 0 c—g-—e c—-e—g
c—d-f
0 d—c-b 0 0 d—c—-e 0 d—c-f
0 e—c—b 0 e—c—d 0 0 e—-c—g
0 0 f-d-c 0 0 0 0
L 0 0 g—-e—c 0 0 0 0 |

Note that all diagonal elements are set to 0 as circular paths are not of interest
when it comes to shortest-path determination. From S* we may see that there are
two second-order paths from b to d and from c to f. Further string compositions

Matrix Methods for Manufacturing Systems Analysis 119

give paths of 3rd, 4th, efc. order. The calculation of these paths we leave to the
reader for exercise.

Our goal is to find the shortest paths from all origins to all destinations and vice
versa. In our example these paths are between node a and nodes f'and g. In other
words, we have to check string elements s¢, 61, 517, and s;; after each composition.
The results are:

S162 = a—b—f
16 = a—b—c—d—f
si7 = a—b—c—g

517t = a—b—c—e—g
517 = a—b—f—d—c—g
517" = a—b—f—d—c—e—
s¢1" = f-d—c—b—a
sn't=g—e—c—ba.

There are two alternative paths from a to f'and four possible paths from a to g.
As there are segments that are not bidirectional, there is only one path from fto a
and from g to a. If we suppose that segment weight o,,(c;) stands for length, which
can be determined easily from input data structure (points that define segments),
then it is easy to find the shortest path among the given alternatives:

o y(a, 1) =min{o, (s55). 0, (515}

Oy(a, g) = min{oy, (517, 0y (51, Oy (577, Oy (515}

where

G (505) = Oy (¢)) + Oy () + Ty () + T, (c5)

G (515) = Oy (€)) + Ty (Cy) + Gy (¢5) + Oy (o) + Ty () + T (c5)
+0,(cy)

G (5i) = G (¢)) + Gy (€y) + T (€3) + 0y (¢1)

G (51) = G () + Oy (Cy) + Ty (€3) + Oy (¢4 + T (€1)
oy, (c3) + oy, (c,)t0oy,(cs)

O'W(S157) =0y, (c)+0y(c,)+0,,(c,)+0y,(cs)

+0,,(cy) +0,,(cg) +0y,(c;)+0,,(cs) + 0y,,(c)

120 Manufacturing Systems Control Design

O (55) = G (¢)) + Oy (Cy) + Ty () + Ty (€5) + Oy ()
+O'W(cs)+O'W(c7)+0'W(c6)+0'W(cH)+O'W(clz)

+0,,(c;3) +0,,(c)+ 0y,(c5)

Using the described procedure, one may find not only the shortest path between
nodes but also the optimal one (the shortest path is optimal if distance is
considered). If segment weight is associated with some criterion, then the
determined path will be optimal for that particular criterion.

The result of origin—destination path finding is a set of all possible routes in a
system that an AGV can pass through. This provides an option for the calculation
of shortest paths between all the nodes in the system. It is very important to have
this possibility since there are situations when a vehicle moves out of a segment it
is currently passing. That may happen if there is a loss of communication between
the vehicle and the supervisor or if some problems with navigation occur (loss of
visual contact between laser source and mirrors). In addition, if a vehicle is
manually controlled it can be switched to autonomous mode at any position on the
shop floor. In this case, a navigation system provides information regarding current
vehicle position and then the vehicle autonomously moves towards the closest
segment. Once the vehicle is on the segment, the supervisor, having all possible
routes, sends the vehicle information regarding the path it should take to get to the
desired node.

The other reason why all system paths should be at the supervisor’s disposition
is AGV dispatching. When a vehicle approaches the bypass node it sends a request
to the supervisor for the next segment allocation. When the requested segment is
occupied, the supervisor allocates an alternative segment (if there is one) to the
vehicle. Without knowing all the possible routes beforehand the supervisor would
not be able to dispatch the vehicles according to a desired strategy.

¢

4.3 Max-plus Algebra

In general, there are two main approaches to analysis and modeling of discrete
event dynamic systems (DEDS). When the designer is investigating only the
ordering of events that may occur in DEDS, his/her main concern will be the
system logical behavior. On the other hand, if the system is studied in order to
examine time instants at which a particular event took place, then the temporal
behavior of DEDS should be analyzed and modeled.

The algebra, called max-plus, is one of the mathematical frameworks suitable
for the latter case. Although max-plus theory is very convenient when
synchronization phenomenon in DEDS is considered, it is not able to handle
“nonlinear” problems such as concurrency (in recent years there have been some
results that extend the theory to nonlinear cases [15, 16] and systems with so-called
switching functions [12]). The limitation directed by concurrency constricts the use

Matrix Methods for Manufacturing Systems Analysis 121

of max-plus algebra to a special class of DEDS. This class of systems is called
event graphs.

In this section we give only the basic definitions and properties of max-plus
algebra. For those who want to learn more about the topic, very good resources are
[13, 14, 17]. At the end of the section an illustrative example for the manufacturing
system modeled as a marked graph (the order of operations is known beforehand)
is given.

The maximization and addition in max-plus theory are defined over the
extended set of real numbers.

Definition 4.3.1 (extended set of real numbers): A set N . 18 a set of real numbers

that includes element &, R e = Ru {8 }, where the numerical value of & = —o0.

Definition 4.3.2 (maximization in max-plus): Maximization over R . » represented

by @, is defined as
x @ y = max(x, y) (4.8)

Definition 4.3.3 (addition in max-plus): Addition over R . » represented by &, is

defined as
X®y=x+y 4.9)

Having defined the basic operations in max-plus, we can identify neutral
elements of the algebra. Element ¢ is the neutral element with respect to
maximization,

X® € =€®x =max(x,€) = max(g,x) = x
while e is the neutral element with respect to addition,
x®@e=e®x=x

The numerical value of e equals 0. It should be noted that ¢ is an absorbing element

of ®,
x®e=€Q®x=¢

The operations @ and ® can be extended to matrices. This is very important
since there is a unique relation between a graph and its weighted adjacency matrix.
Implementation of max-plus algebra to matrices allows detailed analysis of graphs,
thus providing thorough insight into systems modeled with graphs.

If we calculate C =A@ B, then

122 Manufacturing Systems Control Design

Cij = a5 ® bij = max(ay- s bij) (4.10)

It is clear that maximization is defined only for matrices of the same size as it is
performed element-by-element.

Entries of matrix C, obtained by max-plus matrix addition, C = A® B, are
calculated as

¢ = (']?aik ®blg' = m,?X(aik +ka.) (4.11)

Matrix addition in max-plus theory is defined only if the number of columns of
A is equal to the number of rows of B. It should be noted that when A and B are
square matrices of the same order, then A® B # B ® A. The identity matrix E in
max-plus algebra has diagonal elements equal to e and other entries equal to .

Maximization and addition of matrices in max-plus represents a parallel and a
series composition, respectively. Matrix compositions can be comprehended if one
imagines a set of nodes that symbolize cities [18]. As cities are connected by roads
and rails, two graphs may be used to separately describe two possible ways of
traveling (Figure 4.11). Let A and B be weighted adjacency matrices of these two
graphs; a; and b; representing road and rail distances between cities j and i. The
parallel composition (maximization) of A and B gives matrix C with element c;
equal either to a; or b; depending on which distance, road or rail, is longer. In
other words, matrix C has entries that match one of the two alternative routes
between cities j and i. Even though the original graphs offered the possibility of
traveling from j to i either by road or by rail, in the graph attained by their parallel
composition only one route remains feasible. According to Figure 4.11, node b can
be approached from node a by road C2 or by rail T1. Since C2P T1 =5 6=6=
T1, on the graph shown in Figure 4.12, only rail T1 is left.

On the other hand, the series composition of A and B tells us whether it is
possible to travel from j to i using both means of transport, starting with train and
then switching to a car. If this trip is feasible, then c; receives a value that is equal
to the maximum distance of all possible routes obtained by adding road distance a;;,
to rail distance by, where k is an intermediate node (the node where the passenger
changes a train for a car). From Figure 4.12 we see that this kind of trip is possible
if one wants to get from node d to node b. First rail TS should be taken followed by
road C2. The distance traveled is C2 + T5=5+3=8.

In the previous section the shortest-path problem was solved by using string
composition. Max-plus also offers a solution to that problem by changing the
maximum operation with the minimum operation. In this case ¢ should attain the
value of +oo, while all other properties of max-plus, defined above, still hold.
Within this new framework we can find the shortest distances that consist of r arcs
from the following expression:

Matrix Methods for Manufacturing Systems Analysis 123

AT=A""®A (4.12)

where A is an nxn weighted adjacency matrix and r < n. Entries in A" are
calculated as

-1 . -1
al = Q?ajk ® ayy =min(ay " +ag;) (4.13)

Just as in the case of string composition, diagonal elements of A" correspond to
circles, i.e. a’;; stands for the shortest path, containing r arcs, from node i to itself.

As the shortest path between two nodes may contain more than one arc, in
order to get the correct result we have to compare matrix A with all matrices A"
calculated forr=2,3, ..., n—1:

agﬁn = min(aij,aé,...,agfl)) (4.14)
Applying Equation (4.10) to Equation (4.14) it follows that
AT = ABATD..OA"! (4.15)

roads d

parallel composition series composition

Figure 4.12. Parallel and series compositions of graphs shown in Figure 4.11

Equations (4.12)—(4.15) are applicable to the max operation also by substituting
min with max and +oo with —oo.

124 Manufacturing Systems Control Design

4.3.1 DEDS Model in Max-plus Algebra

Let us now return to our main objective that is the determination of dynamical
properties of discrete event systems. In order to focus on the subject and to show
why max-plus is suitable for DEDS analysis, let us consider the discrete event
system analyzed in Example 4.1.1. Remember, Figure 4.13 shows the graph
representation of the manufacturing system we examined. Note that notations have
been changed in order to be consistent with max-plus nomenclature — a time instant
at which event i occurs for the kth time is denoted as x;(k). To simplify the problem
we will concentrate on event x; — the start of processing of the part in machine M.
We have to find time instants at which event x; occurs.

From the graph we see that the processing of the part cannot start if the part has
not entered the system and machine M, has not finished the processing of the
previous part. Additionally, x, is shifted #; time units after event # and #, time units
after the occasion of x;. If we assume that # and x; occur simultaneously at time
instant 7 then the next occasion of x; will take place after both tasks that start with
events v and x; are finished, i.e. x; will occur at time instant max(¢+zy, t+1;).

4 b
] B 4
O g g 20)
X X2 3 4

u

Figure 4.13. Graph representation of the system in Example 4.1.1

The manufacturing system example reveals that two operations, maximization
and addition, play an essential role in the investigation of dynamic properties of
discrete event systems. This makes max-plus algebra the first choice for the study
of the dynamics of event graphs.

From our discussion we can define the equation for the time instant in which
machine M, starts the processing of the kth part;

x) (k) = max (x, (k = 1)+ 1, u(k) +1;)

Following the same reasoning, the processing of the kth part in machine M, can
start #; time units after the kth part leaves machine M, and #, time units following
the completion of the processing of the (41)th part in machine Mj:

Xy (k) = max (x; (k) + 15, x, (k=) +1,)

=max (x; (k= D)+, +t5,u(k) + 1y + 13, %, (k=1)+1,)

For the output we can write

Matrix Methods for Manufacturing Systems Analysis 125

y(k) = x; (k) +14
By using Equation (4.8) and (4.9) these expressions become:

x (k) =x(k-1)®t @u(k)® 1t
Xy (k) =x(k=1)®(t; +1;) D x5 (k1) ® 1, @ u(k) ® (t; +13)
y(k)=x,(k)®1,

where ® has priority over @ . The upper equations can be affirmed in max-plus
matrix formulation:

x(k):{ i g}@x(k—l)@{ u }@u(k)
fh+t o+

I Uuth
vy =[e 1,]®x(k)

The obtained model completely describes the system dynamics. It has a well-
known linear state space form:

x(k) = A®x(k-1) @ Bu(k), x(0) = x,,

(4.16)
y(k)=C®x(k)
Note that matrix A in Equation (4.16) is not necessarily an adjacency matrix of the
graph that represents the system described by this equation.

Once a discrete event dynamic system is modeled by Equation (4.16), a whole
range of various phenomena may be investigated [19]. For example, in the case of
manufacturing systems, it is now possible to determine the slowest (bottleneck)
part of the system. Furthermore, by studying the influence of operational times, the
designer is able to decide in which part of the system an extra resource should be
integrated in order to maximize the system throughput and/or improve resources
utilization. Additionally, the propagation of disturbances through the system can be
explored, in order to answer how much time the system needs to return to the
steady state.

Questions concerning the cyclic activity of the system are especially
interesting. As we mentioned, cyclic behavior of a discrete event system is treated
as a stable state, whereas in time-driven systems this manifestation is considered as
marginally stable. In fact, many discrete event systems, particularly manufacturing
systems, are designed to start working periodically after a short transient time. In
the text that follows we are concerned with the properties of the model (4.16) that
lead to periodic activities.

Let us again think of the manufacturing system shown in Figure 4.5 and
represented by the graph in Figure 4.13. Suppose that the first processing part is
deposited into the system at a time instant 0, ie. (1) = 0. From the max-plus

126 Manufacturing Systems Control Design

model of the system we calculate that x;(1) =y, xo(1) =ty + s and y(1) =ty + t; +
t4. The part has propagated through the system and left it at time instant #y + #3 + 4.
Now suppose that parts arrive into the system each Tj, time units starting at 7 = 0,
i.e. u(k) =(k-1)-T},. Immediately a question arises: how often do the parts leave the
system or, in other words how fast do the parts spread through the system? We
have just calculated that the first part needed 7y + #; + #4 time units to get from the
input to the output. But what about the second, the third and the following parts?
We understand from the model that machine M; needs # time units after it begins
the processing of the first part to become ready for processing the second one. If 7},
< t, then the second part should wait some time to be processed by the machine. As
parts are arriving with period T}, after some time the machine will get swamped
with parts. At this point we may conclude that # should be less than T, in order to
allow continuous part flow through the system, but further discussion shows that
this is not necessarily true. Even if the condition for regular work of the first
machine is satisfied, the same overflow effect will happen with machine M, if T}, <
t,. Since Ty, > t, parts arrive at machine M, with period T,. Following the same
reasoning as for M; we realize that ¢, should be less than T;,.

This simple example highlights the importance of system analysis when it
comes to DES design. How can the max-plus model be used to determine system
properties that would reveal conditions that should be satisfied in order to make the
system react according to the desired criteria? Let us suppose that each time one
part leaves the system, described with Equation (4.16), another part enters the
system. Asa consequence we have

u(k) = y(k - 1)

Including this into Equaiton (4.16) and having in mind that the model holds for any
k, we can write

x(h)=A®x(k—1)®B®y(k—1)
y(k—-1)=C®x(k-1)

Further, we can include y(k—1) in the equation for x(k), thus obtaining
X(k)=A®x(k—-1)®B®C®x(k-1)
The manipulation gives

x(k)=A®x(k-1), x(0)=x, @17
y(k) =C®x(k)
where
A=A®B®C
What we get as the result of assumption that u(k)=y(k—1) is an autonomous
system (4.17). In fact, system (4.17) is a closed-loop form of Equation (4.16) with

Matrix Methods for Manufacturing Systems Analysis 127

unity feedback [23]. This feedback can be visualized if one imagines a pallet that
moves through the system together with a part. As soon as the part leaves the
system the pallet is released and immediately fed to the input. This representation
can be further exploited if we delay the trip of the pallet, which in max-plus
corresponds to

u(k)=C®y(k-1) (4.18)

It is apparent that matrix A can be determined as
A=A®B®G®C

Releasing the pallet when the part departs from the system is a very restrictive
strategy in the sense of resources utilization. The number of parts that can be
simultaneously processed within the system is equal to the number of available
pallets. If there is only one pallet at disposition then the entire system will work
with only one part. The opposite is the case when tens of pallets are prepared while
the system can handle only a few parts at a time, which means that many pallets
will remain unused.

An alternative strategy is to release the pallet when some event in the system is
started. This strategy does not wait for the part to come to the output in order to
allow the next part to be fed into the system. In max-plus form this can be
described as

u(k)=K®x(k-1) (4.19)

The problem of finding the number of pallets that provide the desired
performance of the system is similar to the problem of parts arrival rate
determination. One way or the other we have to ascertain some inherent property
of the system that would give us an indication of how to feed the parts into the
system, i.e. how often the parts leave the system.

4.3.2 Periodic Behavior of DEDS in Max-plus

We consider an autonomous system of the form

x(k)=A®x(k-1), x(0)=x,

¥(k) = COx(k) (4.20)

Usually, the symbol & is omitted, i.e. Equation (4.20) is written as

x(k)=Ax(k-1), x(0)=x,
y(k) = Cx(k)

Periodic activities of the system presume that the difference between two
consecutive occasions of event x; is constant. If we denote this constant difference
with symbol A, then

128 Manufacturing Systems Control Design

x;(k+1)—x;(k)=x
x;(k+2)—x;(k+1)=2

xj(k+tr)—x;(k+(r—=1)=2A

From this set of equations it is easy to show that

x; (k +1) = M+ x, (k)
x;(k +2) = 20+ x, (k)
x;(k+3) = 30+ x; (k)

Since all events in the system have cyclic behavior, a general form of the
equations above is

xi(k+ry=ri+x;(k), i=12,..,n, k>k, (4.21)

where k is the number of the part that is processed when the system starts periodic
activity (after the transient state has finished). Equation (4.21) demonstrates that
the inherent property of the system is determined by parameter A, i.e. the time
period between departures of two consecutive parts from the system (production
cycle) is equal to A. We may set arrival rate(s) of parts to be as small as possible
but the system cannot process the parts faster than what is determined by the
production cycle.

At this point, two issues have to be addressed: a) how to calculate A and b) is A
unique or are there several values that satisfy Equation(4.21)? In other words is it
possible for a system to have events whose cycle periods differ? When one
considers the former question it appears that it is natural to have more than one
cycle period in the system. We saw that two machines, which have been used
throughout this chapter as an example, have different cycles (#; and #,). This
demonstrates that the manufacturing system designer is the one who actually
enforces the operational cycles to the system resources in order to get the final
product. As we shall see later, depending on the system structure and desired
performance, in some systems this cycle is unique for all resources, while in others
there can be more than one.

From (4.21) it seems that A can be calculated very easily,

- x;(k+7r)—x;(k) i

r

=1,2,..,n, k>k, (4.22)

Matrix Methods for Manufacturing Systems Analysis 129

The problem with this equation is that in order to get A, values of x/(1), x(2),
x/3), ... have to be determined. The second difficulty is that since k& is not known
in advance we have to execute the max-plus model until cyclic activity is reached,
which might be a tedious job. Furthermore, some of the events can start to cycle at
k = ky while others remain in a transition phase (when the system has more than
one 4), which means that one should proceed until all events demonstrate
periodicity. All these facts show that, although 4 can be calculated from Equation
(4.21) we should try to find another method.

By definition, the cycle A represents the difference between two consecutive
occasions of an event in the system that has periodic activities. Hence, its value is
related to time. If we recall the procedure for obtaining an autonomous system
Equation (4.17), we remember the assumption that each time a part leaves the
system a pallet is relocated to the system input. As a consequence, the pallet
holding the part travels along some circular path and periodically visits resources,
every time with a new part to be processed. The circular path ¢ has the
corresponding weight o,, and length o,. In our case, weight represents the time
needed for the pallet to pass the path. If we assume that there are enough pallets,
and that the system capacity cannot be influenced by their number, it can be shown
that the average time between two successive processings on the resource that

belongs to the circular path is equal to the mean weight of the path, &,,, as

defined in Definition 4.1.7. Since the pallets may travel along several paths on their
way from the input to the output, if we want to find the production cycle, we have
to find the “slowest” path (the path that has the largest mean weight). This value is
exactly equal to the maximum cycle mean as defined in Definition 4.1.8.

The previous discussion has shown how to determine the production cycle 1
from the adjacency matrix of the graph that represents the system. The weights of
circular paths of length o, = r can be found as diagonal elements of matrix A',
calculated according to Equation (4.12). In order to find the maximum cycle mean
of the system, all diagonal entries of matrices A, A% A’ ..., A" need to be
compared, which yields

=@ [Mj (4.23)

i=1 1

where division is performed in the standard way and

n

trace(A) = ‘@1 a; (4.24)
j=

Relation (4.23) gives the correct value for 4 only when the weighted adjacency
matrix A corresponds to a strongly connected graph. The obtained value represents
the unique production cycle of the system. However, one should use Equation
(4.23) with caution since this equation assumes that each arc on the circular path
can hold a part that is not necessarily a truth as we show in Example 4.3.1.

The strong connectivity of the graph may be tested in several ways. By using
powers of adjacency matrix G, obtained by Equation (4.2), we can repeat the
multiplication n—1 times and then check if

130 Manufacturing Systems Control Design

gj+g;+g gl #0,Vij (4.25)

When Equation (4.25) is true, the corresponding graph is strongly connected. The
max-plus version of the previous relation has the form

(A BA’OA’ @ _OA"), #¢£,Vij (4.26)

where powers of A are calculated according to Equation (4.12). If string
composition is used for the test, then it should be

Sy S5 Sy Aoty =0, Vi, j (4.27)

for the corresponding graph to be strongly connected. In Equation (4.27) 0 is a null
string and powers of s; are obtained from Equation (4.6), while additions are
carried out as series string compositions.

By knowing the production cycle A we can find not only the system throughput,
which is defined as 1/A, but also the utilization of each resource in the system. If
we define the resource cycle, denoted Ty, as a time required for a part to be
processed by the resource (resource operation) plus the time required for the
resource to prepare for work on the part (resource setup(s)), then resource
utilization is calculated as

n = (4.28)

A discrete event dynamic system characterized with a graph that is not strongly
connected may have more than one cycle mean. This fact is evidence that the
system is composed of subsystems that can achieve cyclic activities with different
periods. Working out these periods might be difficult, depending on the system
structure. However, Equation (4.22) can be a good start. Those who are interested
in this subject may wish to consult [20-22].

4.3.3. Buffers in Max-plus Algebra

Although it appears that the determination of the model (4.16) is straightforward
once the manufacturing system is designed and its tasks are defined, there are
several issues in max-plus DEDS modeling that have to be elaborated further. Let
us mention a few of them. For instance, what would happen with the model if there
exist bounded buffers between the machines, or how do the initial conditions of
machines (idle or work-in-process) influence the model? Moreover, as the
elements of matrices in Equation (4.16) can vary with time (in a deterministic or
stochastic manner), the question is how does max-plus algebra handle systems that
are not time invariant and/or deterministic? It is beyond the scope of this text to

Matrix Methods for Manufacturing Systems Analysis 131

elaborate on these topics. Here we just briefly explain a case when a finite-capacity
buffer is positioned between two machines. The problem of initial conditions will
be addressed in the example that follows at the end of the chapter.

The model derived in the previous example shows that event x; does not
depend on event x; (a1, = ¢ in matrix A): the processing of parts in M; continues no
matter what the status of machine M, is. It is obvious that when the processing
time of M, is longer than the processing time of M; added to the time needed for
the part to get from M, to M,, the second machine in line will be flooded with
parts. Hence, the obtained model is valid only if there is a buffer with infinite depth
between machines. In order to cover a realistic situation we have to incorporate
finite-capacity buffers in the max-plus model of the system.

Let us place a buffer with a finite capacity N between two machines, M; and
M;.;, connected in series (M; is the predecessor of M, ;). After being processed in
M; a part enters the buffer. When M,,, is idle it takes the part from the buffer.
Machine M; cannot proceed with the processing of parts once the buffer is full.
Now, let us assume that the processing time of M., is greater than the processing
time of M, In this situation the buffer becomes occupied sooner or later. If the
buffer is full (containing N parts), machine M; can start processing one more part
and then it needs to wait until M, ; becomes ready to free one place in the buffer.
We can write:

x; (k) = max (x;(k =) +1;, x,,, (k— (N +1))) (4.29)

where #; is the processing time of M,

Usually, equations that describe the dynamic behavior of systems by using
max-plus operations cannot be directly transferred to the form of Equation (4.16).
A more general max-plus form should be used:

X(k)= Ay ®x(k) DA, ®x(k—-1)D...

@A, ®x(k-p)@BOu(k), x(0)=x, (4.30)

y(k) = C®x(k).

As Equation (4.30) is implicit in x(k), in order to get form (4.16), the following
substitution should be made:

x%)=A0®[A0®xwﬂlu@AP®x%—pﬂ)B®u@ﬂ
DA OX(k-1)®..0A, ®x(k—p)®BQu(k)
5 (4.31)
=A; ®x(k)®[A) DE]

®PM®XM—D®W®AP®ﬂk—m®B®uWH

132 Manufacturing Systems Control Design

where E is a max-plus identity matrix and A,” is obtained according to Equation
(4.12). The elimination of x(k) from the right requires » substitutions to be carried
out. Finally, we get

x(k)= A @x(h) @[A ©A] ©.. @A OE|®
(4.32)
[A, ®@x(k-)®..®A,, ®x(k—m) ®B®u(k)|

As Ay = [¢], the first component of Equation (4.32) can be removed, which
yields

x(k)= A, ® [A, ®x(k—-)®..® A, ®x(k—m) ®Bu(k)] (4.33)
where
Ar=[Aj@A] @ 0A OF] (4.34)

In Equation (4.33), which is obtained by substitutions, state space vector x(k)
should be redefined to integrate components x(k2), x(k=3), ..., x(k—m).
Thereafter, Equation (4.33) takes the form of Equation (4.16) and max-plus
analysis, described in the previous subsection, can be applied.

In conclusion, we need to stress that we have here presented only a small part
of max-plus theory concerned with DEDS. Our intention was to provide the reader
with a basic knowledge of the subject and to touch upon the potentials of max-plus
in DEDS system analysis and design. Because a max-plus linear model has many
similarities with the state space linear model of time-driven systems, it is possible
to reproduce procedures and methods used in linear system analysis by replacing
standard operations with maximization and addition (of course, symbols need to be
replaced carefully as their replacement is not straightforward). In this way, the
properties of time-driven systems, such as observability, controllability, transfer
function, impulse response, efc., can be transposed to event-driven systems.

Example 4.3.1 (DEDS modeling and analysis by max-plus algebra)

Our goal in this example is to determine a max-plus model of the manufacturing
system shown in Figure 4.14. The system has three machines and one AGV. Two
types of parts are processed, A and B. Part A is transported by the AGV from an
input position to machine M;. When the processing in M, is finished the part
moves to the second machine, M,, to be removed from the system by the AGV and
put on the part A output place. Part B is fed directly to the machine M. Once the
processing in Mj; is finished the AGV takes part B and transports it to the part B
output place. The operations that can be identified based on the system description
are listed in Tables 4.3 and 4.4, accompanied by operational times and machine
setup times.

Matrix Methods for Manufacturing Systems Analysis 133

part A out

patAin ||
— |
I

| IR

part B out

Figure 4.14. Layout of the manufacturing system studied in Example 4.3.1

Table 4.3. Operational times and setup times of machines

Machine M, M, M;
8 13 15

operational time

setup time 2 3 3

Table 4.4. Operational times and set-up times of the AGV

Operation Transport A to Transport A from Transport B from
M, M, M;
operational time 5 6 3
setup time 4 6 5

Events of interest (i.e. events that should be modeled), shown in Table 4.5,
correspond with the beginnings and endings of operations identified in the system.
From the system description and Table 4.4 we see that the AGV is a shared
resource since it has to perform three different tasks: loading M; and unloading M,
and M3. As a consequence, two (or even three) events may simultaneously request
the AGV. Clearly, the manufacturing system can involve concurrent events and it
does not fall in the class of systems that can be described as event graphs, thus it
cannot be modeled with max-plus algebra.

Even though the sequence of operations should be strictly defined in order to
make the system suitable for max-plus description, in particular circumstances a
manufacturing system that employs shared resources does not require beforehand
sequencing. This may occur when operational times in the system are structured so
that simultaneous requests for a shared resource cannot take place (see Example

134 Manufacturing Systems Control Design

3.3.1). This means that because of the natural properties (operational times) of the
system, the system works according to a sequence that is its inherent property.
However, it is very difficult to establish whether a system has this property,
especially if one is dealing with systems that contain many shared resources and
part paths. Up to date, time-consuming simulation is the only way to resolve this
dilemma.

Table 4.5. Events identified in the system shown in Figure 4.14

Event Description
X AGYV starts to move part A in machine M,
X transportation of part A to M; is finished; release of AGV and start of
processing of the part in M1
X3 processing in M; is finished; release of M, and start of part A processing
in M,
X4 AGYV starts with M, unload; M, is released
Xs transportation of part A to the output place is finished; AGV is released
X6 start of part B processing in M;
X7 AGYV starts with M3 unload; Mj is released
Xg transportation of part B to the output place is finished; AGV is released

Although the system in the example is simple, we would not investigate if
machine operational times provide sequence(s) without concurrency. We define the
sequence of operations since further assumptions regarding parts entering the line
would lead to a simultancous request for shared resource. As the AGV is
responsible for three tasks, two sequences are possible: a) loading M, — unloading
M, — unloading M3, and b) loading M; — unloading M; — unloading M,. System
layout and operational times suggest it would be reasonable to give priority to
sequence b) (we shall leave the investigation of the system with sequence a) to the
reader).

Further, we assume that parts A and B are available at any time. This means
that immediately after the AGV takes part A from its input place, another part is
ready. Also, part B is available for machine M; as soon as the processing of the
previous part is finished and the machine is ready. As far as system outputs are
concerned we assume that as soon as the transportation of a part to its output place
is finished, the part leaves the system. These assumptions, related to inputs and
outputs, are necessary if we want to model the system according to Equation (4.20)
(an autonomous system).

Once we have defined the system and obtained all the necessary data we can
create a weighted graph representation of the system, as shown in Figure 4.15.

Matrix Methods for Manufacturing Systems Analysis 135

Figure 4.15. A weighted graph of the system studied in Example 4.3.1

The corresponding weighted adjacency matrix has the following form:

M M M M M M L M
M A~ M M M o0 M M

™

M M M M

M M M O M W M M

M M M M M M M &

M M M M M M

N G

W M W M M M M M

M M MH M L < M O

Although the property of strong connections of the graph in Figure 4.15 may be
checked by hand, formal verification can be done by using Equation (4.26). Here

we give only the final result:

54
47
51
58
48
48
47
48

(A@A2®A3@...®A7)=

49
54
56
59
59
45
58
45

57
50
54
61
57
45
52
45

50
49
51
54
54
42
45
42

44
49
51
48
54
36
51
36

53
46
48
59
47
54
69
54

38
43
47
46
50
57
54
57

49

42
46
53
49
35
44
35

e, Vi, j

136 Manufacturing Systems Control Design

Since all entries of the obtained matrix differ from ¢, the weighted graph

representing the system is strongly connected, i.e. the system has a unique

production cycle.
A set of max-plus equations that describe the system dynamics has the

following form (see graph in Figure 4.15; we presume that the system starts its
activity with all the machines ready and with the AGV set for loading M,):

x (k) = 6x5(k—1)

X, (k) = 5x(k) ® 2x5 (k1)
x5 (k) =8x, (k) ®3x,(k-1)
x4 (k) =13x5 (k) ® Sxg (k)
x5 (k) = 6x4(k)

xg (k) =3x;(k—1)

x7 (k) = 4x, (k) ®15x4 (k)
xg (k) = 3x4 (k)

(4.35)

As we can see, the system description is implicit in x(k), so we should use
substitution (4.31) in order to get form (4.20). Matrices A, and A can be easily
determined from the system equations:

By using Equation (4.34) we can find A," that gives matrix A,

M M M M M M w»h M

M A~ M M M 00 M M

)

M ™ M M

M M M AN ™M M M M

E € € ¢
E € € €
E € € ¢
E € € 5
A=
E € € €
E € € ¢
e 15 ¢ ¢
£ € 3 g

M M M M M M M M

M M M M M M M M

M M M M M M N M

M M M M M W M M

M M M M M M M

M M M M M M M M

M M LW M M M M M

M M M M M M M M

Matrix Methods for Manufacturing Systems Analysis 137

& € 6 ¢ £
e € 2 ¢ 11 ¢ £
e ¢ 10 3 19 ¢ £
A=AZ®A1= e € 23 16 32 € 26 ¢
€ € 29 22 38 &£ 32 ¢
E € € € € € 3 ¢
& € 15 ¢ 18 ¢
1€ € 9 € 18 £ 21 ¢

The insertion of given initial conditions, x(0) = [¢ ¢ ¢ ¢ e ¢ e ¢], into Equation
(4.20) results in the following evaluation of system states (for easier reading,
values of vector x(k) are represented in matrix form):

[x(1) x(2) x(3) x(4)
6 44 82 120
11 49 87 125
19 57 95 133
x=|32 70 108 146
38 76 114 152
3 21 56 94

18 53 91 129
21 56 94 132

From the result we find that, for example, the first four time instants in which event
X5 occurs are 38, 76, 114 and 152.

Once the system states are evaluated, the production cycle A can be determined
according to Equation (4.22). As we have already stated, the problem is that value
ky, for which the system enters periodic behavior, is unknown, thus we start with
the first two values of vector x. The difference between x(2) and x(1) gives Ay =
[38 38 38 38 38 18 35 35]". It may be seen that the components of A,; vary, which
clearly indicates that the system is still in transition. Further calculations provide
A =x(3) — x(2) = [38 38 38 38 38 35 38 38]" and 443 = x(4) — x(3) =[38 38 38 38
38 38 38 38]". All components of A3 are the same and we conclude that the system
starts with cyclic activities at k = ky = 3 with a unique production cycle 4 = 38 and
throughput 1/4 = 0.0263. The reader can check the correctness of the obtained
production cycle by using Equation (4.23).

We proceed with the next step in system analysis - the calculation of resources
utilization. From Tables 4.3 and 4.4 we find that Ty = 10, Ty = 16, Ty3= 18 and
TAGV = 29, thus

138 Manufacturing Systems Control Design

My = T 10563, Mo = 1% 421
A 38 38

Mz = 8 o474, NaGy = 2 0763
38 38

The most exploited resource in the system is the AGV (76.3%), which was
expected since it is a shared resource. Still, none of the resources is utilized 100%.
Obviously, we must ask: what can be done in order to improve the use of resources
and increase the system throughput?

If we look at the system graph representation (Figure 4.15), we will find that
path o4 = (x;, x3, X3, X4 X5 x;) has the weight of g5, =38. When the part moves
along this path on the pallet and if there is only one pallet, then the pallet needs 38
time intervals to return to the initial position. That is exactly the value of the
production cycle. Now, if we set two pallets on the path, then 38/2 = 19, i.e. the
mean production cycle is reduced by factor 2. So, by inserting 5 pallets since there
are 5 arcs on path g, (see Definition 4.1.7), we get 38/5 = 7.6 as the mean
production cycle. On the other hand, pallets are physical entities and if our only
means of system representation is a graph, it would not be clear whether each arc
corresponds to an empty place that can hold a pallet. Moreover, there is another
path (besides others) oagy = (x5, X2, X7, X5 X4 X5, X;) that has weight oagyw = 29.
What influence does the number of pallets have on that path? This brings us back
to the question related to the number of pallets, raised in Section 4.3.1. It is
obvious that it is impossible to resolve the problem without taking into account the
physical limitations of the system hidden in graph representation.

Path o4 does have 5 arcs but these 5 arcs represent only 3 physical places where
the pallets might be positioned: machine M;, machine M, and the AGV. Further, if
we put three pallets for part A into the system, two scenarios are possible: a) two
pallets are in the machines and the third is on the vehicle on its way to part A
output place, and b) two pallets are in the machines and the third is on the vehicle
on the way to machine M;. For scenario a), once the vehicle leaves the part at the
output place, it returns to the beginning of the line (according to a predefined
sequence) and gets the next part A to be loaded into machine M;, which leads to
scenario b). Analysis of scenario b) reveals that it will end in blocking since
machine M, already has the pallet so there is no room for the pallet that is
transported by the vehicle. Therefore, we can conclude that path o4 can have at
most two pallets.

It is clear that path oagy actually represents the route traveled by the vehicle,
i.e. one can think of the vehicle as a “pallet”. Since there is only one vehicle in the
system, the path has only one physical entity where parts can be placed.

Keeping in mind the above discussion, let us write down a max-plus model of
the system that encompasses the assumptions that i) one part A is already in
machine M, waiting to be processed and ii) one part is on the vehicle, ready to be
transported to machine M;. The equation that describes the dynamics of event x,
(start of processing of the part in M) takes this form:

Matrix Methods for Manufacturing Systems Analysis 139

X, (k) = 53, (k = 1) ® 2x, (k 1)

The consequence of the supposition that the vehicle holds a part, can be clearly
seen by comparing this equation with Equation (4.35) (where we assumed that the
vehicle was empty). The equation states that machine M, starts processing the first
part, x,(1), even though the part actually did not enter the system, x,(0), which is
possible since the part was on the vehicle. The same holds for event x4, i.e.
machine M, finishes processing the first part, x4(1), although the part did not enter
the machine, x3(0). This is feasible since according to assumption i) the part was in
the machine.

A set of max-plus equations becomes:

x, (k) = 6x5(k)

Xy (k) =5x;(k—1) ®2x5(k—1)
x5 (k) =8x, (k) ® 3x, (k)

x4 (k) =13x5(k —1) ® Sxg (k)
x5 (k) = 6x4(k)

xg (k) =3x; (k)

X7 (k) =4x, (k) ®15x4(k —1)

xg (k) = 3x5 (k)

(4.36)

A closer look at the graph in Figure 4.15 and Equations (4.35) and (4.36) can
affirm a general rule for the holding of parts in the system for max-plus model
determination. Namely, if event #, is the predecessor of event 7, and if the task that
starts with 7; and ends with 7,, represented by the arc with weight a, is holding a
part, then their dynamics is described as n,(k) = a ® n,(k-1).

The calculation of matrix A from Equation (4.36) obtains:

(29 & 26 € € 35 ¢ ¢

5 € 2 € ¢ € € ¢

20 € 17 € € 26 ¢ ¢

Ac 17 € 14 € € 23 ¢ ¢
23 € 20 € € 29 ¢ ¢

12 € 9 € € 18 ¢ ¢

9 € 6 € ¢ 15 ¢ ¢

112 € 9 ¢ ¢ 18 &£ &

It may be seen that, even though both matrices describe the same system, matrix A,
which we have just acquired, differs completely from the matrix A that

140 Manufacturing Systems Control Design

corresponds with the system equations (4.35). It may be concluded that the initial
conditions, together with the system structure, dictate the form of the system
matrix (note that the weighted adjacency matrix remains the same in both cases — it
is determined by the system structure).

Let us now see if these changes in matrix A influence system behavior.
Evaluation of the system states with initial conditions x(0) =[e e e e ¢ e ¢ £]", gives:

x(1) x(2) x(3) x(4)
35 64 93 122
5 40 69 98
26 55 84 113
x=|23 52 81 110
29 58 87 116
18 47 76 105
15 44 73 102
18 47 76 105

The calculation of the production cycle yields A, = x(2) — x(1) = [29 35 29 29 29
29 29 291" and A3, = x(3) — x(2) = [29 29 29 29 29 29 29 29]". The system starts
with periodic activities for &y = 2 with the production cycle 4 = 29. This result,
when compared to the result obtained from the set of equations (4.35), shows that
the transition period of the system has been reduced while the throughput has
increased. Although we had set two pallets in path o4, the new production cycle
was not reduced by a factor of 2 since the other path, o4y, became dominant (a
new maximum cycle mean).
Utilizations of resources are given below:

n Tt 10 ys n 18 o550
MEZ 2 o9 T M2

n LY n =2 0
M3 29 . > AGV 29 :

Because the production cycle was reduced, utilization of each resource in
the system was increased while utilization of AGV attained 100%. By obtaining
this result we have reached the physical limitations of the system. Further
improvements can be made by including one or more additional vehicle(s).

¢

4.3.4 Deriving Max-plus System Equation from Matrix Model

In this section we draw the connection between the dynamic matrix model of an
MS, presented in Section 3.3, and the max-plus system equation. Since the max-

Matrix Methods for Manufacturing Systems Analysis 141

plus representation is feasible only for decision-free discrete event systems (event
graphs), we consider the dynamic matrix model with no shared resources. For
systems with shared resources, a control strategy that provides conflict-free
dispatching should be determined prior to transformation of the matrix model to
max-plus. As a result, max-plus formulation is a description of the closed-loop
system including both the workcell and the controller.

Let us now recall the logical state equation (3.2)

X = F av VF Ar vF au

In development of the dynamic matrix model we assumed that parts input and
parts output are timeless operations. In order to obtain the max-plus model for the
general system, here we define delay matrices T, and T, that can be attained in the
same way as matrices T, and Ty, i.e. each entry “1” in F,, and S, should be replaced
with the shift operand representation of the corresponding lifetime. Using these
new matrices and by including Equation (3.16) in the logical state equation we
obtain

X(q) = F AT, (9)X(q)VF.AaT, (9)X(q)VT, (¢)u(q)
¥(q) =T, (9)x(q)

We proceed with the following redefinitions of mathematical operations:
logical A should be replaced with standard multiplication, standard multiplication
with ® , and logical vV with @ . Then we get

x(9)=F T (9)®x(q) ®F.T.(9) ®x(9) ® T, (9)®u(q)
¥(q) =T, (q) ®x(q)

A final form of max-plus is obtained by multiplication of matrices F, with
corresponding matrices Ty, and then by substituting ¢™ with #, and replacing all
occurrences of 0 by ¢,

x(k)=D, ®x(k)®D, ® x(k)® D, ®u(k)

(4.37)
y(k) =D, ®x(k)

where x(k) gives the time of the kth execution of rules corresponding to the
components of the logical state vector, y(k) gives the time of the kth output of
finished products.

The max-plus model (4.37) is valid only for systems with no shared resources.
As we mentioned, when that system encompasses conflicting rules the dispatching

vector should be included into the model. Given that u, =S ax adding conflict

resolution vector in Equation (4.37) gives

142 Manufacturing Systems Control Design

x(k)=D, ®x(k)®D, ® x(k) ® D, ® u(k) ® D, ® x(k)

(4.38)
y(k) =D, ®x(k)

where Dy is obtained from FyTy4(g) in the same way as matrices D, and D,. A
conflict-resolution delay matrix Ty(g) is determined from the dispatching vector
release matrix S, as for the delay matrices T, and T..

It should be noticed that the attained model is implicit in x(k), i.e. it does not
account for the available resources or the parts held by operations. As we pointed
out earlier, the number of slots in buffers (machines) or number of resources in the
resource pool should be incorporated into the model. For Equation (4.38) this can
be done in the following way: if resource r, released by the rule x;, participates in
the rule x;, and if it is able to process N parts simultaneously, then x;(k) = d; ® x;(k—
N). The same is true for an operation: if operation v, released by the rule x;,
participates in the rule x;, and if it holds N parts, then x,(k) = d, ® x,(k-N).

Example 4.3.2 (Deriving max-plus system equation from the matrix model)

We consider the system shown in Figure 3.2 that is studied in Examples 3.2.1,
3.3.1 and 3.4.1. For a given system matrices and delay matrices we find that

£ E € € € e 15 € ¢ £
76 E € € € E € 6 ¢ 5
e 10 ¢ € € ¢ e € € 3 E
DV = 5 Dr =
£ 4 e € € e € € € 10 ¢
£ e 113 ¢ ¢ E € 6 ¢ 5
| € e ¢ 8 ¢] € € € ¢ £

Let us assume that the dispatching vector release matrix Sy is determined from
F4 according to Equation (3.26), as shown below:

0 0 0
1 1 0
0 0 0 00 0O0T1FPO
0 0 0 01 000O0O0
1 0 1
0] 0 0]

When there are no delays between components of the conflict-resolution vector,
matrix D4 becomes

Matrix Methods for Manufacturing Systems Analysis 143

o
(=N
Il
M M M M M &

M ® M M M M

M M M M M M
M M M M M M
M M M M o M
M M M M M M

If we assume that the input and output operations are timeless, then according to
the rules, the system input and the system output are calculated by using

D,=[e ¢ ¢ ¢ &]

D, =[e ¢ € € €]

Given that all resources are idle at the beginning, #(0)=e and ug = [e &', the
initial condition is defined as x(0) = [¢ € € € € &]", while the system is described
with the following set of max-plus equations:

x (k) =15x,(k—1) @ u(k)

X, (k) =76x(k) ® 6x3(k—1) ® x5 (k —1) ® Sxc (k —1)
x3(k) =10x, (k) @ 3x,(k—1)

X, (k) = 4x;(k) ®10x5(k—1)

x5(k) = x, (k) ® 6x;(k—1) ©113x, (k) ® 5x4(k —1)
xg(k) = 8x5 (k)

4.4 Exercises

Find the incidence matrices for the graphs shown in Figure 4.12.

Find the critical circuits in the graphs shown in Figure 4.12 by using

Definitions 4.1.7 and 4.1.8.

3. Determine the circuits in the graph shown in Figure 4.15 by using string
composition. What is the length of the critical circuit?

4. For the given values of c¢s determine a path (which is not a circuit) with

the maximum weight in the graph shown in Figure 4.10 by using max-

plus algebra.

N —

Cl | C | C3 | C4 | C5 | Co | C7 | Cg [Co[Cio|C11[Cr2|C13]|Ca]Cis

1041465136228 |2]2]4]2]2

144

Manufacturing Systems Control Design

5. Determine a max-plus model of the system represented by the graph

shown in Figure 4.7. Consider event e; as an input # and event e as an
output y. Find the maximum allowed arrival rate of parts for given
operational and setup times.

fy Imp1 M1 It Imp2 M2 y
2 12 3 4 17 4 3
References

Biggs NL, Lloyd KE, Wilson RJ. Graph Theory 1736—1936. Clarendon: Oxford
University Press, 1976.

Diestel R. Graph theory. Heidelberg New York: Springer, 2000.

Gibbons A. Algorithmic Graph Theory. Cambrifge: Cambridge University Press,
1985.

Godsil CD, Royle G. Algebraic Graph Theory. New York: Springer—Verlag, 2001.
Boffey TB. Graph Theory in Operational Research. London: MacMillan, 1982.

Wysk RA, Yang NS, Joshi S. Detection of Deadlocks in Flexible Manufacturing Cells,
IEEE Trans. Rob. Autom. 1991;Vol. 7;No. 6:853—859.

Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms, 2nd edn.
Cambridge: MIT Press, 2001.

Bertsekas DP. An Auction Algorithm for Shortest Paths, SIAM J. on Optimization
1991;Vol. 1: 425-447.

Floyd RW. Algorithm 97: Shortest path, Comm. ACM 1962;Vol. 5;No. 6:345.
Warshall S. A theorem on boolean matrices, Journal of the ACM 1962;Vol. 9;No.
1:11-12.

Dijkstra E. Note on Two Problems in Connection with Graphs, Numerische
Mathematik 1959;Vol. 1:269-271.

Wang L. Performance evaluation of switched discrete event systems, IMA preprints
2002:1835.

Baccelli F, Cohen G, Olsder GJ, Quadrat JP. Synchronization and Linearity: An
Algebra for Discrete Event Systems. New York: Wiley, 1992.

De Schutter B. Max-Algebraic System Theory for Discrete Event Systems, PhD
thesis, Faculty of Applied Sciences, K.U. Leuven, Leuven, Belgium, ISBN 90-5682-
016-8, 1996.

Gaubert S, Gunawardena J. A Non-linear Hierarchy for Discrete Event Dynamical
Systems, IEE Proc. of the 4" WODES, Cagliary, Italy, 1998.

Gunawardena J. From max-plus algebra to nonexpansive mappings: a nonlinear theory
for discrete event systems, Theoretical Computer Science 2003;293:141-167.

Cohen G, Gaubert S, Quadrat JP. Max-plus Algebra and Systems Theory: Where we
are and where to go now, Annual Reviews in Control 1999;23:207-219.

de Vries R, De Schutter B, De Moor B. On Max-algebraic Models for Transportation
Networks, IEE Proc. of the 4® WODES, Cagliary, Italy, 1998, 457-462.

Gaubert S. Performance Evaluation of (max,+) Automata, IEEE Trans. Aut. Cont.
1995;40;12; 2014-2025.

Terrasson JC, Cohen G, Gaubert S, Mc Gettrick M, Quadrat JP. Numerical
computation of spectral elements in max-plus algebra, Proceedings of the IFAC
Conference on System Structure and Control (SSC’98), Nantes, France, 1998.

(21]

(22]

(23]

Matrix Methods for Manufacturing Systems Analysis 145

Olsder GJ, Roos C, Van Egmond RJ. An efficient algorithm for critical circuits and
finite eigenvectors in the max-plus algebra, Linear Algebra Appl.
1999;295;1-3:231-240.

Dasdan A; Gupta RK. Faster maximum and minimum mean cycle algorithms for
system performance analysis, IEEE Trans. CAD of Integr. Circ. Sys.
1998;17;10:889—-899.

Cottenceau B, Hardouin L, Boimond JL, Ferrier JL. Model reference control for timed
event graphs in dioids, Automatica 2001;37:1451—1458.

5

Manufacturing System Structural Properties in Matrix
Form

One fundamental question that needs to be addressed in connection with any FMS
dispatching policy is whether or not it is stable. Studies of stability for FMS often
focus on stability in the sense of bounded buffers lengths [1]. In [2], the FBFS
policy has been shown to be stable for single-part flowlines with no buffer limits.
However, in practice, the buffer lengths are finite, and such stability results are
inapplicable, since it is not obvious how to keep the buffer lengths below some
fixed finite value. For finite-buffer multiple re-entrant flowline (MRF) systems [1],
which constitute a large class of FMSs, the issue is stability, not in the sense of
bounded buffer lengths, but in the sense of absence of deadlock. As we pointed out
in previous chapters, a flowline for a given part-class is said to be deadlocked if it
holds a part that cannot complete its processing sequence. Many popular
dispatching rules can result in deadlock if care is not taken, as has been
demonstrated in the examples in Chapter 3. In a finite-buffer system, any
dispatching policy for uninterrupted part flow has to essentially take into account
the structure of the interaction between jobs and resources. Several results based
on such a structural approach may be discovered in [3]-[8]. In all of these but [5],
Petri-net formalism is used for system modeling.

In this chapter we develop equations to compute structural properties that are
essential in stability analysis of the aforementioned MRF class of systems. These
equations are based on the matrix model introduced in Chapter 3. First we give the
properties that characterize MRF systems, followed by relations that determine
circular waits among resources (mentioned in string composition Section 4.2).
Then we show the correlation between circular waits and certain corresponding
structures referred to as critical siphons, critical traps, and critical subsystems.
This allows one to obtain computational equations so that NP-hard complexity
issues can be avoided. In a separate section we consider and extend matrix
formalism to the free-choice multiple re-entrant flowline (FMRF) systems, i.e.
systems with nondeterministic job routing,

In terms of given constructions, at the end of the chapter we present a
minimally restrictive one-step look-ahead resource dispatching policy that
guarantees the absence of deadlock for MRFs. Deadlock has generally not been a

148 Manufacturing Systems Control Design

significant problem in traditional manual shop-floor environments because the
production operators are often able to recognize deadlock and take corrective
measures, such as removing parts from the system or swapping the locations of two
or more parts simultaneously. However, as the trend moves toward automation,
these seemingly trivial resource-assignment problems have become increasingly
important in ensuring a smooth operation of the manufacturing facilities.

We consider the case where the system is regular, that is, it cannot contain key
resources [9] [10] existing in second-level deadlock structures [11]. A
mathematical test is given to verify that the MRF system is regular. If this is not
the case, we can still use matrix formulation, but with a different dispatching
policy designed for systems containing second-level deadlock structures.

The chapter is closed with a case study where all the methods and the
algorithms presented herein are implemented and realized on the laboratory
system.

5.1 Multiple Re-entrant Flowlines — MRF

Notations used in the rest of the chapter are given before formal definition of
multiple re-entrant flowlines considered herein. We widen the notions of preset and
postset, defined in Definition 4.1.3, to resources in R and jobs in J as follows: for a
given logical state vector component x; we define a preset of x;, denoted ex;, as a set
of resources and jobs that participate in the prerequisite part of rule x;; a postset of
x;, denoted x;e, is a set of resources and jobs that participate in the consequent part

of rule x;. One can obtain the preset of x; as ex; =sup(rj)usup(vi), where
rj and vi are binary vector equivalents of resources and jobs that contribute in the
prerequisite part of rule x;. Likewise, xi0=sup(drx)Usup(dvx). The above

definitions of pre and postsets are extended to the set of rules 2 ={x,, x,,..., x},
where 0.2 = ex;Uex,U...Uex;, and e = x 0Ux 0. .. Ux;e.

A preset of resource r;, denoted er;, is defined as a set of all rules that release r;,
while a postset 7® is defined as a set of all rules in which r; contributes as a

prerequisite. Hence, er, = sup(xZ) and re= sup(dx,[). Equivalently,

OJ,-k =sup(xjk) and J,-k0=sup(dx). Given a set ¥ that consists of both

JE
resources and jobs, we have o¥ = sup(xg,) and e = sup(dxy,) .
For the system studied in Example 3.2.1 one can find that ex, = {R, MAP} with

r!=[0 0 0 1]"and v¢ =[1 0 0 0 0]', while x,;» = {MA, RP1} with
¢, =[1 0 0 0] and Yv,=[0 100 0]" . If resource R is considered,

X2

then eR = {x3, X, Re = {x, x5}, x4=[0 0 1 0 0 1],

Manufacturing Systems Structural Properties in Matrix Form 149

I%,=[0 1 0 0 1 0]'.For ¥= {BP, MB} onc has ® ¥ = {x3, x5} and ¥ =
{xa}.

The concept of pre and postsets is essential in the analysis of system structural
properties and the design of stable dispatching strategies. A formal definition of the
MREF class of multiple re-entrant flowlines follows (recall that P = R U J is a set of
all resource and jobs in the system).

Definition 5.1.1 (multiple re-entrant flowlines — class MRF): MREF is the class of
multipart re-entrant flowline systems with the following properties [10]:

i) Vpe P, op N pe # {J}

i) VXin, Xin® N R = {D} and Vx,y, ®xou N R = {J}
iii) Ve |R(J =1 and R(J!) = R(JE))

iv) VJled | Jfe=1

V) Y, e x;nJ|<1

vi) IreRr, | Jr)|>1

In other words, in MRF it is not allowed for an operation or resource to
participate in the prerequisite and consequent part of the same rule (i). A rule,
denoted x;,, that has an input operation in the IF part cannot have resource release
in the THEN part, and a rule, denoted x,,, that has output operation in the THEN
part cannot have resource in the IF part (ii). Statement (iii) in Definition 5.1.1
points out that each operation in the system requires one and only one resource
with no two consecutive jobs using the same resource. Furthermore, there are no
choice jobs (iv) and no assembly jobs (v). Item (vi) asserts that there are shared
resources in the system. Obviously in MRF systems, for any re R, J(r) = ree N J =
eernJandR(J)=eeJ "R=J ee N R.

Subsequent sections of this chapter are dedicated to the analysis of structural
properties of MRF systems. Before we proceed, let us repeat the assumptions
already stated in Chapter 3:

No pre-emption — once assigned, a resource cannot be removed from a job until
it is completed.

Mutual exclusion — a single resource can be used for only one job at a time.

Hold while waiting — a process holds the resources already allocated to it until
it has all the resources required to perform a job.

No machine failures.

150 Manufacturing Systems Control Design

5.1.1 Circular Waits in MRF Systems

For a class of MRF systems, having in mind the above definition and assumptions,
deadlock can occur only if there is a circular wait relation (CW) among the
resources [12]. Circular wait relations are ubiquitous in re-entrant flowlines and in
themselves do not present a problem. However, if a CW develops into circular
blocking, then one has a deadlock. CWs are key structures in MRF and
determination of deadlock avoidance strategies starts with their allocation within
the system. In this section we present a digraph matrix procedure to identify all
CWs present in an MRF. The following are the formal definitions.

Definition 5.1.1 (wait relation): Given a set of resources R, for any two resources
r, 1; €R, r; is said to wait for 7;, denoted r,—r;, if the availability of r; is an
immediate requirement to release r;, or equivalently, if there exists at least one rule
X € or; M1,

The wait relation is similar to the notion of upstream and downstream nodes
defined in Definition 4.1.3.

Definition 5.1.2 (circular wait): Circular wait among resources is a set of resources
Ty Vs - Ty, With wait relations among them such that r,— r,—...—>r,, and r,— 7.

Evidently, a circular wait corresponds to the cyclic path in the graph theory. For
MRF systems circular waits are associated with shared resources, which is
affirmed in the following lemma.

Lemma 5.1.1 (circular wait contains shared resource): In the MRF system a
circular wait C contains at least one shared resource.

Proof:

Let C={r;, 1y ..., vy}, with v, = ry, a circular wait in MRF. Assume there is no
shared resource. Then [J(r)/=1, V'i. Let the timing sequence of jobs performed by
resources in C be sc =((J(r).t;), (J(ro).ts),..., (J(ry).t,). Then job J(r;) occurs prior
fo job J(r,) which is impossible as J(r;)= J(r,) because r, is a nonshared resource.

.

It should be noted that Lemma 5.1.1 is unidirectional, i.e. having a shared
resource in MRF does not imply the existence of circular wait.

Definition 5.1.3 (simple circular wait): Simple circular wait (sSCW), is such that,
for some appropriate relabeling, one has r; = r,—...— r,, with r;# r; for i#j.

The above definition states that only one occurrence of a particular resource is
allowed in simple circular wait. The importance of sCW will become clear when
we introduce key resources and irregular systems.

Manufacturing Systems Structural Properties in Matrix Form 151

According to definition, the release of resource involved in a wait relation is
stipulated with the availability of other resources. Since releases and requirements
of resources are described with system matrices, as a first step in the determination
of simple CWs we use these matrices to identify wait relations among resources,
which are given as

Gy =(S,aF,)" 5.1)

Operations in Equation (5.1) are carried out in and/or algebra. As both S; and F,
are binary matrices, the wait relation matrix Gw actually corresponds to the
adjacency matrix of a graph that is composed of nodes representing resources
connected with arcs that represent wait relations. We call this graph the wait
relation graph. An element of Gy, is given by gy, = Ysik A fyj - As defined, matrix

S; has element s; = 1 if and only if rule x;, € er,. Matrix F, has element f;;=1 if and
only if rule x; € re. Thus g, =1if and only if there exists a rule x, € eriN r;e,
ji

which is equivalent to r,—r;, i.e. an entry “1” in position g,, corresponds with an
Jt

arc from resource 7; to resource 7;.
For the system studied in Example 3.2.1 the wait relation matrix is calculated as

T
1000 MAMBB R
01000 0]]0 001 00 0 0]ma
GW:(SAF)T:0000100010:00101\43
o 0001 00/[0100 000 1|8
00100 1/0001 110 0]r
0 0 0 0]

From this result we can read four wait relations: MA — R, MB — R, B - MB,
and R — B. A corresponding wait relation graph is shown in Figure 5.1.

B MB

MA

Figure 5.1. A wait relation graph of the system in Example 3.2.1

152 Manufacturing Systems Control Design

Having determined the wait relation matrix, the procedure we follow in
identification of sCW is the string composition, defined and analyzed in Section
4.2. First, a wait relation matrix G is transformed into string matrix S. Then, for
each power of S diagonal elements are identified, representing simple CWs. The
question is how far we should go with powers of S? We showed in Section 4.2. that
when the graph has » nodes, the nth composition gives a cycle that includes all
nodes (if one exists). Hence, the string composition should be completed when the
power of S is equal to the number of resources in the system. However, that might
give an incorrect result, since the system could have a so-called cyclic CW (CCW),
i.e. a CW that is composed of two or more CWs.

This situation is demonstrated in Figure 5.2. A wait relation graph consists of 4
resources, thus one should calculate S, §° and S* in order to get CWs. A string
composition reveals two CWs: MA — R and MB — R— B. Nevertheless, there
exists a third CW composed of these two: MB — R— MA — R — B that remains
hidden.

MB

Figure 5.2. A wait relation graph with cyclic circular wait

Cyclic CWs are important because common shared resources among CWs might
compose particular structures that must be considered in deadlock-free dispatching
strategy design. Thus, the entire set of the system CWs should include the simple
CWs plus cyclic CWs composed of unions of nondisjoint simple CWs.

Let us assume that the set of resources C; = {r,, 1, ... m}, C; C R, is a CW.
Then, a binary vector ¢; corresponding to circular wait C; is defined as sup(c;) = C;.
In addition, the binary vector ¢ that corresponds to shared resources in C; is
determined as sup(cy;) = C; N R;. For the wait relation graph depicted in Figure 5.1
one has C = {MB, B, R}, ¢=1[01 1 1]", and ¢, = [0 0 0 1]". Given an MS, its
circular wait matrix C is composed of columns that represent circular waits
vectors, that is, an entry of “1” on the (i) position means that resource i is
included in CW j. Equivalently, matrix C; is composed of binary vectors c;.

In Figure 5.3, we show the MATLAB® code that calculates all CWs from the sets
of simple CWs; it uses a Gurel algorithm from [13]. An input into the algorithm is
matrix C obtained by string composition, containing simple CWs. As an output
from the algorithm, we attain the new matrix C containing all CWs in the system,
and matrix { that provides the set of composed CWs from unions of simple CWs

Manufacturing Systems Structural Properties in Matrix Form 153

comprised in columns of the input matrix C. An entry “1” on {; means that a
simple CW i is included in the composed CW ;.

Example 5.1.1 (circular waits in MRF)

We consider the manufacturing system depicted in Figure 5.4. Two part types, A
and B, are processed in the workcell that consists of four machines and an
automated guided vehicle. Part A visits resources in the following order: AGV,
M4, M1, AGV, while part B path is: AGV, M2, AGV, M3, M2. Clearly, AGV and
M2 are shared resources. The resource set and job set are defined as R = {M1, M2,
M3, M4, R} and J = {AP1, M4P, M1P, AP2, AP3, M2P1, AP4, M3P, M2P2!.

function [C,Fi]=Gurel({C);
%cyclic CW determination
%input: sSCW matrix C
%output: complete matrix C

k=1;
L=size(C,2);
NS=0:L-1;
NT=1:L;
Fi=eye(L);
LT=L;

z=1;

while z
z=0;
LTEMP=LT;
for i=1:L-k
NUM=0;
for j=i+1:L-k+1

for I=NS(j)+1:NT(j)
if any((C(:,))&C(: j))) &~all({C(:,)&C(:,j))==C(:,i))
Cp=C(,DICE,)
a=Fi(.,))|Fi(: j);
C(:,LT+1)=Cp;
Fi=[Fi a];
LT=LT+1;
NUM=NUM+1;
end
end
end
NT(i)=LT;
NS(i)=LT-NUM;
end
if LT>LTEMP
k=k+1;
z=1;
break
end
end

Figure 5.3. MATLAB® code for calculation of circular waits

154 Manufacturing Systems Control Design

part A out

part B out *

Figure 5.4. A manufacturing system from Example 5.1.1

The workcell can be described with 11 rules (since our purpose is to
demonstrate circular waits calculation, herein we do not elaborate on the evaluation
of the matrix model). From the system layout and parts paths we determine
matrices S; and F;, which have the following form

00001

00010

1 0000

0001 0O0O0O0OO0OO0 0]m 0 0 0 011
000O0O0OO0OOTL1 OO0 TI1|m 00 0O0O0
S,;={0 00000 O0OO0OOT1 Oflm ,EE=[{0 00 01
001 0O0O0OO0OO0OO0O0 Ofwms 01 00O
01 0010101 0 0acv 0 0 0 01
00100

01 000

00 0O0O

Manufacturing Systems Structural Properties in Matrix Form 155

According to Equation (5.1), a wait relation matrix is given as

0 0 01 O0fm
001 0 1|m
Gy=|/0 0 0 0 1|mMm3
0 0 0 0 1|mMm4
1 1 0 0 0jacv

with the corresponding wait relation graph shown in Figure 5.5.

M4 M1

M3

AGY

M2

Figure 5.5. A wait relation graph of the workcell shown in Figure 5.4

Three simple CWs can be recognized from the graph: M2 — AGV, M4 — M1

— AGV, M3 - M2 — AGV. As a result of string composition we get the circular
wait matrix

O»—A»—OL,?

@)

1l
- o O = O.
==

1

Execution of the algorithm given in Figure 5.3 reveals all CWs in the system

o

€ € €& € G
01 011
€ € € €4 €
10111 100 1 0]
C=/0 01 01|,g={0101 1|
01 011 00 1 0 1]
I 1 111

156 Manufacturing Systems Control Design

From the newly obtained matrix C one can find that the system has five CWs,
three simple and two cyclic. According to matrix {, C,={MI1, M2, M4, AGV} is
composed of C; and C,, while Cs={M1, M2, M3, M4, AGV} is composed of C,
and C;. Projections of circular waits onto the set of shared resources are ¢, = ¢ =
cu=¢s=[01001]", and e, =[0000 1]".

5.1.2 Resource Loops in MRF Systems

In our previous discussions it has been pointed out that inappropriate assignment of
jobs could lead an MS into irregular states. A first step toward solution of the
dispatching problem is determination of circular waits. In this section we analyze
these structures in more detail and relate them with job set J.

If we consider nonshared resource r,, then it can be in one of two states, “idle”
or “operational”. The supervisor’s task is to set the resource in one of these two
states, i.e. from the controller point of view resource 7y is a binary loop. The same
is true for shared resource r, with one difference only; r¢ can be in one of three or
more states, as it has more than one job to perform. Again, the supervisor selects
one of several shared resource states that swap inside the loop. Therefore, resource
loop L(r), defined in Definition 3.1.1, is an important MS structure, especially
when it belongs to the resource involved in CW.

In order to find a binary vector p, which is the projection of the resource loop
onto resource and job sets, let us recall the recursive matrix model described in
Section 3.2.4, particularly Equations (3.9) and (3.10). Fulfillment of a rules change

state of job vector according to [Sv - FVT] -x(k) , whereas the state of the resource

vector is changed by term [Sr - FrT } -x(k) . Since MRF systems are composed of

resource loops, any variation in job vector should be balanced by a corresponding
change in resource vector [13], that is

[s0-F, |-v+[sT-F]r=[W, W] : “W-p=0 (5.2)

or equivalently
W, v=-W,r (5.3)

In order to construct a special left inverse of W,, required for solving this
equation for v, we should modify the system matrices in the following way: delete
rows of F, and F; and delete columns of S, and S; that correspond to the rules with
output operations in the consequent part. Let us denote these new matrices as

A A

F ,F év and ér. Then

v>Tr?

Manufacturing Systems Structural Properties in Matrix Form 157

v=- W W r (5.4)

where WV = éz —I:“V and Wr = érT —f?r .
Deleting rows of F, and S, makes matrix WV square. This is allowed, as the

deleted rows of W, are linear combinations of the remaining rows. One can see
from the structure of W, that its inverse exists: according to our discussion on the

special structure of the system matrices (causal ordering of jobs), WV is a block

diagonal matrix, with each diagonal block corresponding to one part path and
having a lower triangular form. Binary vectors p;, representing resource loops, can
be obtained from Equation (5.4) forr =e;, i = 1, 2, ..., n, where e; is the the ith
column of nxn identity matrix I, and » is the number of resources. Finally, a
resource-loops matrix P, with columns formed of resource-loop vectors p;, is
calculated as

P= (5.5)

I

~8!-F,)" (8] -F,)}

To confirm the described procedure we consider the system shown in Figure
3.2. Its modified system matrices and corresponding WV and Wr are given below

'z
%
=
5
@
o
=z
jes)

P RP2

00000 100 0 10 0 00
10000 0001 |t o000
F,=/0 1 00 0f,F=/00 10 Wy=0 -l 00
00100 0100 0 -1 10
000 1 0 000 1 - 0 U
00t prees [ro0
. . (0000 1| -
00100 -

By applying Equations (5.4) and (5.5) we can calculate the resource-loops
matrix

158 Manufacturing Systems Control Design

1 0 0 0] MAP RP1 BP MBP RP2 MA MB B R T

p|{1 00 0 0 1 0 0 O
0 0 0 1

/0 0 0 1 0 0 1 0 O

v=(0 0 1 Ojlr=P=

/0 01 0 0 0 0 1 O
01 0 O

p,/O 1 0 0 1 0 0 0 1
10 0 0 1]

According to Figure 3.2 and the system description, the system jobs J = {MAP,
RP1, BP, RP2, MBP} and resources R = {MA, MB, B, R} outline four resource
loops; LIMA)={MA, MAP}, L(MB)={MB, MBP}, L(B)={B, BP} and L(R)={R,
RP1, RP2}, which is confirmed by the obtained matrix P.

5.1.3 Siphons and Traps in MRF Systems

Circular wait is a structural property of the system. As such it is the result of a
system layout design. On the other hand circular blocking is a phenomenon caused
by unsuitable assignment of tasks performed by resources involved in circular wait.
Now we introduce MS structures that connect circular wait and circular blocking.

Definition 5.1.4 (a siphon): A siphon is a set S P such that
oS Se

The notion of siphon is well known in the Petri-net theory, in particular its
relation with a deadlock analysis. We shall use a siphon for the same purpose, but
in the context of matrix-based MS supervisory design. Having in mind that P = R
uw J the above definition of a siphon emphasizes that a set of resources and/or jobs
is a siphon if the set of rules in which they participate in the subsequent part is a
subset of rules in which they appear in the prerequisite part.

Generally, a siphon is defined as oS < Se. This definition permits a resource
loop to be a part of a siphon. In the analysis of deadlock we are concerned with a
siphon in which S is a strict subset of Se as defined in Definition 5.1.4. From now
on this type of siphon is called a critical siphon.

A trap characterizes the MS structural property that is in some way the inverse
of a siphon.

Definition 5.1.5 (a trap): A trap is a set Q c P such that

0s c 00

In other words, a set of resources and/or jobs is a trap if the set of rules in
which they participate in the prerequisite part is a subset of rules in which they
appear in the consequent part. Definition 5.1.5 stands for a so-called critical trap
(as in the case of a siphon, a trap is generally defined as Qe c Q).

Manufacturing Systems Structural Properties in Matrix Form 159

The importance of a critical siphon in MS analysis becomes clear when we
closely look at its definition through the matrix-based formalism. First, we define a
siphon vector s as sup(s) = S, where S is assumed to be a critical siphon. Then, let

us suppose that for given s one has mg (k) = sT-m(k) =0, that is, all components of

system vector m, that correspond to resources and/or jobs belonging to critical
siphon S, attain the value 0 at some instant & (it should be noted that in structural
analysis the system vector represents an autonomous system, i.e. m = [v, r.]"). In
that case rules that have those components in the prerequisite part (Se) cannot be
executed. On the other hand, since S is a critical siphon, rules that release resources
and start jobs in S (eS), according to definition, are a subset of those that have not
been activated. Therefore, once all components of system vector m that correspond
to resources and/or jobs belonging to critical siphon S, attain the value 0 (we say
that S is empty) they will remain 0 indefinitely. This is an essential property of a
critical siphon. Namely, an empty critical siphon remains empty for ever.

The question is in what way the fact that part of the system resources is not
available for an indefinite period could influence other resources and jobs in the
system? A deadlock situation, demonstrated in Example 3.3.1, together with the
above discussion on the critical siphon, suggest that a circular wait is somehow
related to the critical siphon. Their connection is additionally confirmed with the
graphs shown in Figure 3.8 where the components of the system vector
corresponding to resources involved in circular wait attained the value 0 once
circular blocking occurred. To maintain the correlation between a CW and a
critical siphon straightforwardly we shall extend some already-used notations.
These refinements are needed later for the definition and development of MS
structures in matrix form.

The number of idle resources in CW, C; in sample k, is calculated as

me (k) =c,-T ‘¥, (k) , ie. by multiplication of a circular wait vector and an idle
resource vector. The value of m, (k), called the content of CW, is changing in

accordance with r.(k), which is driven by Equation (3.12), i.e. by the set of rules.
We identify two sets of rules related with each CW C.

Definition 5.1.6 (CW adding rules): For a given CW C a set of CW adding rules is
defined as X =eC\Ce.

Definition 5.1.7 (CW clearing rules): For a given CW C a set of CW clearing rules
is defined as X =Ce\e(C.

The rules that belong to X increase, while rules in X decrease m (k)

each time they are executed. According to the notation introduced at the beginning
of Section 5.1, the preset and postset of CW C can be written in vector form as

160 Manufacturing Systems Control Design

oC = sup(ng) = sup(cTASr)
(5.6)
Ce= sup(dxCT) = sup(cTAFrT)

By using Equation (5.6) one is able to determine a vector representation of CW
adding and CW clearing rules,

X5 = sup(x;) = sup(xg —xg A dxc)
B B d d d 5.7
X =sup(x;) =sup(“x. — “Xo AXE)

where operation aab represents an element-by-element logical AND operation
between vectors a and b. Note that for two binary vectors a and b with support sets

Aand Bonehas A\ B= anb=aa(l-b)=a—aab . When there is more than

one CW in the system, one has matrices X{- and X formed by vectors x-and xg
as their rows.

Having defined circular wait adding and clearing rules, we continue our
investigation of the correlation between a CW and a critical siphon. Let us first
check if CW in MREF is a critical siphon. We have to show that ¢C c Ce. It is
known that for every r; € C, there exists ;€ C, i # j, such that 7, rie = . So, if r;
€ CNR,,, then | or; | =1, and there exists some 7; € C, i # j, such that er; € {rje}. If,
on the other hand »; € CNR; (in Lemma 5.1.1 we proved that each CW in MRF
contains a shared resource), then | oy |>1. Hence, there exists some rule(s) xi € or;
such that x, & {r;e} for any r;€C, i #j. In other words, there are rules that release
resources in C and do not have any resource from C in prerequisite part. Therefore,
oC Ce, j.e. circular wait is not a critical siphon. The other way to this conclusion
follows directly from Equation (5.6). Due to the specific structure of matrices S,
and F,, imposed by the MRF system definition, some components of vector
x¢ — 9x. are positive, which means that C ¢ Ce.

Evidently, some additional elements are needed in order to create a critical
siphon around CW. That is, Z U C = S, where Z is a set of the system components
in the subsequent part of rules Ce that at the same time belong to the prerequisite
part of rules that release resources in C and do not have any resource from C in the
prerequisite part. Again, the specific characteristics of MRF systems help in
identification of set Z elements. First, we show that set Z does not comprise any
resource. Let rule x; € or; be such that x; ¢ {r;e} for any r; € C. If we assume that
there exists resource 7, € Z such that er; N e # J, then according to the CW
definition this resource should belong to C that contradicts the assumption that 7, €
Z. Therefore, set Z contains only system jobs.

Secondly, let us determine which jobs should be included in a set Z to form
siphon S. For each rule x; € er; such that x ¢ {r;} for any ;€ C we have to find a
job J; such that x; € J®. A set of jobs that satisfies this requirement is defined
below.

Manufacturing Systems Structural Properties in Matrix Form 161

Definition 5.1.8 (siphon job set): For a given CW C a siphon job set is defined as
Js(O)=J(C)neX.

It is worth noting that all the jobs in Js(C) are performed by the shared
resources contained in C. In a matrix form a siphon job set is found as a support of
a siphon job vector vs¢, obtained by the following relation

Jg(C) = sup(vge.") = sup(xy.' aF,) (5.8)

A siphon job vector can be determined directly from the system matrices by
including Equations (5.6) and (5.7) in Equation (5.8)

Voo = FVTASrTAcS A FVTAFr AC (5.9)

Let us take a closer look at the structure of v,.. Matrix element S,(i,k) = 1 if and
only if rule x;c or;. Fy(k,j) = 1 if and only if x,& v;e. Therefore, FVT ASrT(i, H=1if
and only if there exists some rule xe er,Mv;e. Postmultiplication by ¢, selects only

. T T
the shared resources in C. Hence, F, aS ac, corresponds to the set

J(C)= U J(r),ie. the set of all jobs performed by the shared resources in C.
reCNR

Matrix element FVT AF, (i, j)= 1 if and only if there exists some rule xeremv;e.
Post-multiplication by ¢ selects only resources in C. Therefore FVT AF, Ac computes

jobs that participate in the prerequisite part of rules that also have resources in C as

prerequisites. The element-by-element matrix “and” operation between FVT ASEACS

and negated FVT AF, ac then selects jobs of shared resources in C that participate in

the prerequisite part of rules that have no resources in C as prerequisites, namely

set J(O).
Therefore, a critical siphon of CW C is defined as

S.=CUJg(C) (5.10)

Sc {Vzc} (5.11)

As a result, we see that each CW in the MRF system is associated with its
critical siphon through the siphon job set. It is important to note from Equation

or in vector form

162 Manufacturing Systems Control Design

(5.11) that occupation of all resources in CW C, i.e. mc(k) = 0, does not necessarily
mean that the critical siphon is empty since it might happen that VSCT v (k)#0.

On the contrary, an increase of the work-in-progress, which is the main purpose of
most dispatching strategies, requires to keep mc(k) close to 0 most of the time. A
problem arises when jobs performed by the resources in CW are dispatched so that
VSCT -V, (k) =0when mc(k) becomes 0. In that case the critical siphon becomes

empty. Therefore, execution of the afore-mentioned CW adding and CW clearing
rules should be further studied since it changes mg_(k) not only by changing m(k)

but also by assigning jobs in J(C). In keeping track of the mg,_ (k) it is useful to

regard each CW C as a distribution center, with mc(k) defined as its kanban
content, and jobs in J(C) as receivers of services provided by the distribution
center.

To provide a deeper insight into the structure of jobs associated with CW, in
forthcoming definitions a job set J(C) is additionally partitioned into subsets. Each
definition is followed by the corresponding relation in a vector form.

Definition 5.1.9 (trap job set): For a given CW C a ftrap job set is defined as
Jo(CO)=J(O)Nn X e.

Jo(C)=sup(voe') = sup(xg' a8)

(5.12)
Voo = FVTAFr AC, A FVTASrTAc
Hence, a critical trap of CW C is given as
Oc =CuJH(O) (5.13)

or in vector form

ac {VQC} (5.14)
Cc

Opposite to the siphon, the main property of a trap is that once any of the
components of system vector m that correspond to resources and/or jobs belonging
to critical trap Q attain a value >0, a trap content will remain >0 indefinitely. In
other words, the trap content cannot be cleared.

Generally in MRF systems a job could belong to both a siphon job set and a
trap job set. Their differentiation is made in the next three definitions.

Definition 5.1.10 (siphon-trap job set): For a given CW C a siphon-trap job set is
defined as Jg (C) = J5(C)NJo(C).

Manufacturing Systems Structural Properties in Matrix Form 163

JSQ(C) = Sup(Vch) = SMP(VSC A VQc) (5.15)

Definition 5.1.11 (strictly siphon job set): For a given CW C a strictly siphon job
set is defined as Js (C) = J5(C) \ 5o (C) .

Jos(C) = sup(Vygc) = S”P[Vsc —(Vge A VSQC)} (5.16)

Definition 5.1.12 (strictly trap job set): For a given CW C a strictly trap job set is
defined as Jyo (C) = Jo (C)\ J5o (C) .

J()Q (€)= SMP(VOQC) = SUPI:VQC - (VQC A VSQ(;):| (5.17)

A particularly important job set, as far as a siphon is concerned, is one that
comprises all jobs whose assignment does not change mg, (k).

Definition 5.1.13 (necutral job set): For a given CW C a neutral job set is defined
as J\ (C) = J(O)\[/45 (C) U o (O)]

JN(C) =sup(vyo) = S”P[Vc - [Vc A(Vooe T Vosc)ﬂ (5.18)

Definition 5.1.14 (strictly neutral job set): For a given CW C a strictly neutral job
set is defined as Jo (C) = I (C) \ J5o (C).

Jon (€) = sup(Voe) = sup [VNC —(Vne A VSQC):I (5.19)

Having partitioned jobs performed by resources in CW, one is able to
determine in which way execution of CW adding and CW clearing rules change
their content. However, as we showed, CW is not a siphon, hence, rules that
increase or decrease the CW content do not necessarily increase or decrease the
content of the associated siphon. Therefore, the other set of rules, we call them
precedent rules and posterior rules, are those that need to be controlled in order to
maintain the siphon content on the desired level.

164 Manufacturing Systems Control Design

Definition 5.1.15 (precedent rules): For a given CW C and associated siphon Sc a
set of precedent rules is defined as Xg =S e\eS..

Definition 5.1.16 (posterior rules): For a given CW C and associated siphon Sc a
set of posterior rules is defined as X5 =S \Sc o

Execution of any rule that belongs to X;C increases, while execution of xe Xg_

decreases the siphon content. Rules that do not change mg (k) are fed into a so-

called set of neutral rules X 2C . In the next section we make an observation that is

significant in devising deadlock-free job-dispatching policies.
5.1.4 Critical Subsystems in MRF Systems

Manipulation with the sets defined previously gives the following relation
J(C) = o (C) U (C) L J 5 (C) U J o (C) (5.20)

It should be noted that sets on the right-hand side of Equation (5.20) are disjoint.
By using Definition 5.1.11 the above equation attains the following form

J(C)=Jg(C)L J,(C) (5.21)

where J,(C) =J(C)u Jog (€) is a so-called critical subsystem, represented in

vector form as
Jo(C) = sup(vyc) = sup I:VONC + VOQC):I (5.22)

As a critical subsystem and a siphon job set are disjoint sets, Equation (5.21)
actually means that the CW content, once distributed, is held by jobs in either J5(C)
or Jy(C). Since

by including Equations (5.10) and (5.21) in Equation (5.23) one obtains

Sc o (€)= W L(r) (5.24)

Manufacturing Systems Structural Properties in Matrix Form 165

As we show later, the above equation is essential in the siphon content
calculation. Also, it allows us to determine the critical subsystem directly from the
critical siphon,

VOC e
=PacA s, . 5.25
{0 } NS¢ (5.25)

n

Operation Pac computes resource loops covering the critical siphon Sc. The
element-by-element “and” of this with negated critical siphon vector s¢ translates
as subtracting out from set sup(Pac) elements of the critical siphon S, yielding
the set Jo(C). Vector 0, is a null vector with the number of elements equal to the
number of resources.

In order to implement efficient real-time control of an MS, we need to arrange
the attained vectors in matrices. This can be done easily by positioning vectors in
columns of the corresponding matrix. For example, such a critical siphon matrix S¢
is obtained as S¢ = [S¢; Sc2 ... Sew], Where s, i=1,w, are vectors corresponding to
critical siphons in the system.

Also, it should be noted that the structural properties do not depend on the input
and output matrices F, and S,. Furthermore, due to the specific construction of
MREF systems, all MS structures defined so far in this chapter can be determined in
a different way, by using different relations.

Example 5.1.2 (critical siphons and critical subsystems in MRF)
As an example of critical siphons and critical subsystems calculation we use the

system shown in Figure 5.4. Matrices F; and S, are already given in Example 5.1.1,
here we provide F, and S,

0000O0OO0O 0O
1 0000O0O0GO0OO (1 0 000000 O0O0 O]
01 0000O0TO0O 01 0000O0GO0OO0O0O
001 00O0O0TO0O 001 00O0O0GOO0O0O
0001000O0TO0O 000100O0UO0O0O0O0
F,=/0 0000000 0[,S,=/0000O0T1U0U0000
000O0T100O0TO0O 0000O0OTI1UOO0O0O
0000O0OT1U0UO0TO 0000O0OOO0OTI1O0UO0O
0000O0GOTIO0O 0000O0OO0OOTL1O0O0
0000O0OOO0OT1O0 0000 O0O0O0OO0T1 0
0000 O0O0O0 O 1]

166 Manufacturing Systems Control Design

Let us recall circular waits vectors ¢ and ¢, calculated in Example 5.1.1,

[€1 €2 €3 Cgy Cys

00

0
1
0
0
1

p— e
@
Il

-_ o o = O

s
1
1
0
1
1

@}

Il
_— o O = O 4
—_—_ o o =2
’—‘O’—‘HO&

0
1
0
0
1

- o O O
—_— O O

At the beginning we determine the siphon job vectors from Equation (5.9). For
C, we have

FlaSlac,=[1 0 0 1 111 0 1]

FlaFac, =[1 1 01 00 1 0 1]
which yields
T
Veer =[1 0 0 1.0 0 1 0 1]

i.e. a critical siphon is Sc;1={AP1, AP2, AP4, M2P2, M2, R}.
For other CWs in the system the siphon job vector can be calculated as well,

T
Ve =[0 0 0 1 1 0 1 0 0]

=[

ves=[1 0 0 1.0 0 0 0 1]
=[
=[

T
Ve, =[0 0 0 1 0 0 1 0 1]

Vees=[0 0 0 1 0 0 0 0 1]

As aresult, the critical siphon matrix Sc is given below

oS O o O O
S O o O O
—_ = = = e
oS o o = O
oS O o o O
S = O ==
S O o O O
—_ = = O =
—_— = O = O
[e
-0 = O O
_——= O = O
—_ = = = e

Manufacturing Systems Structural Properties in Matrix Form 167

Physical interpretation of matrix Sc can be done if one recalls a set of resources
and a set of jobs defined in Example 5.1.1; R = {M1, M2, M3, M4, R} and J =
{AP1, M4P, M1P, AP2, AP3, M2P1, AP4, M3P, M2P2}. Let us check what

happens if the content of Scs, which is SES -m(k) , becomes zero. This would mean

that all resources, machines and AGV, perform some operations. Since AP2 is the
siphon element, AGV is occupied with either AP1 or AP3. Also, M2P2 is the
siphon element, therefore, M2 performs M2P1. If we assume that AGV is occupied
with AP1 (carrying part A in M4), then resources are in circular blocking since all
machines are occupied and cannot be released because AGV tries to push a new
part into an already full system. The assumption that AGV is occupied with AP3
(carrying part B in M2), results in the same conclusion. Other critical siphons can
be checked in a similar way.

Next, we calculate critical subsystems by using Equation (5.25) (the
determination of other job sets we leave to the reader for exercise). First, resource-
loop matrix P has to be determined from Equation (5.5),

w

Il
— o O O O
S = O O O
(= e =
- o O O O
—_ o O o O
S O O = O
— o O O O
S O = O O
S O O = O
S O O o =
S O O = O
S O = O O
S = O O O
—_ o O o O

For C; one has

A\ —
|:00Clj|=PAcl/\SCl i oot11 1101010 01

n

Alor 10110101011 0]

=0 0o 0o o1 1000000 0 0
which gives
Voer =[0 0 0 0 1 1 0 0 o]

Hence, a critical subsystem of CW C; is Jy(C))={AP3, M2P1}. Now, if we
make a union of this result with S¢;, then

Se U Jy(C)) ={AP1, AP2, AP4, M2P2, M2, R, AP3, M2P1}

which confirms the result specified in relation (5.24) since,

168 Manufacturing Systems Control Design

U L(r)= L(M2) U L(R) = {™M2p1, M2P2, M2} U{AP1, AP2, AP3, AP4, R}
re

For other CWs, critical subsystems have the following form,

Ve =[1 1 1.0 0 0 0 0 0]
Vos=[0 0 0 0 1 1 1 1 o]
Vew=[1 1 1.0 110 0 o]

Ves=[1 1 1.0 1 11 1 0]

Given Equation (5.24), the precedent and posterior rules can be redefined as

X5, =Sce\eSc =eJy(C)\Jy(C)e

. (5.26)
X5, =S \Sce=J,(C)e\e), (C)

Clearly, an increase of a siphon content decreases the Jo(C) content, and vice versa,
a decrease of a siphon content increases the Jyo(C) content. The precedent and
posterior rules are calculated from the system matrices as

- - T T T T T
XSC = sup(xsc) =sup(VocAS, — VocAS, AV, -AF,)

T T T T T T (5.27)
X;C = sup(xgc) =sup(vcAF, —v cAS AV AF,)

Now, let us formalize our discussion by definition of circular blocking in MRF
systems.

Definition 5.1.17 (circular blocking): A CW C is said to be in circular blocking if
a) mc(k) = 0, and b) for each r € C if there exists J(r) such that v, (k) # 0 (the
component of the job-completed vector corresponding to J(r) is not 0) then J(r)e €
Ce.

The next theorem summarizes the results of analysis related to a circular
blocking and its relation with an empty siphon. It is one of the main results
presented herein.

Theorem 5.1.1 (circular blocking and empty siphon): Given a system of class
MREF, a circular wait C is in a circular blocking if and only if the critical siphon Sc
is empty.

Manufacturing Systems Structural Properties in Matrix Form 169

Proof:

Necessity:

Let C={r;, r5 ..., 14}, With v; = ry, be a circular wait in circular blocking, i.e.
mc(k) = 0, and for each r € C, VI(r) if vy (k) 20 then J(r)e € Ce. Now suppose
that critical siphon S¢ is not empty. Then there exists J(r) € Js(C) such that v,;(k)
0. By construction of Sc, Js(C)e & Ce, i.e. J(r)e & Ce and therefore C is not in
circular blocking, which is a contradiction.

Sufficiency:

Let S¢ be empty. Since Sc is a siphon, it will remain empty and therefore mc(k)
= 0 for any k. Obviously for any J(r) with v, (k) # 0, it holds that J(r) & Js(C).
Therefore J(r) € Jo(C) and hence C is in a circular blocking.

.

This result shows the way out of the quandary noted in MS analysis, where it
was realized that an empty content of CW was not necessarily a circular blocking:
as we already pointed out, in addition to checking that the CW content is empty, it
is necessary to check that the content of certain special jobs is also empty.

5.1.5 Key Resources and Irregular Systems in MRF

There is a specific structural condition in MRF systems that requires extreme care
in deadlock-avoidance dispatching. This condition is related to the so-called
second-level deadlock [11]. A basis for the existence of SLD is the presence of
critical resources, also known as bottlenecks [10] and key resources [9]. It should
be noted that bottleneck resources are referred to as the structural bottleneck
resources, not the well-known timed bottleneck resources.

Since later in this chapter we introduce a dispatching policy based on the one-
step-ahead prediction, it is important to note that in irregular systems a situation
may arise, which, though not a circular blocking in an immediate sense is
unavoidably going to end up as one within the next few sampling intervals. Even in
this situation the results presented so far hold, though a one-step-ahead deadlock-
avoidance policy cannot be implemented. Therefore, before a particular
dispatching policy is applied, one has to check if a given MRF system is irregular.
Key resources can be identified by analyzing interconnections of CWs and their
siphons, which is demonstrated in the text that follows where we use the system
matrices.

To confirm the existence of key resources in the system, we must determine the
presence of cyclic circular wait (CCW) loops. These structures specify a particular
sharing among circular waits, and are a requisite for the existence of key resources.
Specific structures are defined next in terms of precedent and posterior rules. In
order to identify whether the system has CCW loops, let C; and C; be two circular
waits with

X;C,_ ﬁX;C/_ #QDand X ﬁX;O_ 39, (5.28)

170 Manufacturing Systems Control Design

If this is the case, then there exists CCW={C;, C;}. The matrix test to find CCW
among all CWs in the system is

C.y = (X;CTAX;C)T A (X;CTAXEC) (5.29)

where X§ and Xj are matrices formed of vectors x§ and xj _, respectively.
C c C C

When Ccw = [0] the system is regular, otherwise an element Ccw(i,j)=1
indicates that C; and C; form a CCW. Obviously, Ccyw is a symmetric matrix. The
rules that interconnect such CCWs are needed to determine key resources. We can

use matrix Ccw and the precedent and posterior matrices X _ and X;C to identify

such rules,

)/\ X;C
(5.30)

+

)/\XSC

We call them cyclic precedent and cyclic posterior rules, respectively. The set
of key resources is determined as follows: let {C;, C;} be a CCW such that C; n C;

= {rcew}. If Xg_ N X Crecy ®and X ngq_ CToey @, then {C,, C} is

said to be a critical CCW and if rccw is a single resource (not a resource pool), then
it is called a key resource (structural bottleneck resource [10]). We can proceed to
identify the critical resources using the following straightforward matrix formula

Reew = (FrTAchw) A (FrTAXECW) (5.31)

where matrix Rccew provides, for each CW, the corresponding vector of key
resources shared with other CWs in one or more CCW. If this matrix is zero, there
are no key resources in the system.

5.2 Free Choice Multiple Re-entrant Flowlines - FMRF

In this section we extend multiple re-entrant flowlines structural analysis on the
systems with jobs that do not have predetermined resources assigned. That is,
several resources might be capable and available to perform a specific job (or
operation from the set of operations needed to build a product). We call these
systems free-choice multiple re-entrant flowlines (FMRF). As in MRF systems,
dispatching policies should provide conflict- and deadlock-free activities of the
system. However, systems without predeterministic routing paths are much more
challenging than MRF systems and little work has been done, specifically in the

Manufacturing Systems Structural Properties in Matrix Form 171

study of blocking phenomena. With the exception of [14] — [16] few other
deadlock-avoidance approaches for FMRF systems had been suggested.

In addition to the assumptions made at the beginning of Chapter 3, a general
class of FMRF systems has the following nonrestrictive capabilities:

e Some jobs have the option of being machined in a resource from a set of
resources (routing of jobs), and each resource might be used to machine
different jobs (i.e. shared resources),

e Job/part routings are NOT deterministic (statement iv) in Definition 5.1.1).

For each job that can be performed by more than one resource, there exists a
material handling buffer (routing resources) that routes parts. Its role in the FMRF
systems is very important, and it is explained in the next example.

A system that satisfies the FMRF assumptions is shown in Figure 5.6. The
system consists of 5 machining centers that are capable of performing tasks
required to make a final product, and 12 conveyers where semiproducts are placed
and then carried from machines to material handling buffers or vice versa. A job
sequence is defined as J = {J, J,, J3}. Assignments of resources are given in Table
5.1.

Table 5.1. Resources assignmets in the system shown in Figure 5.6

M, M, M; M,y M;
1 . . .
Jy 14 *
J3 . .

As we can see, machine M is assigned to job J;, while machine Mj; is capable
of performing two jobs J; and J;, hence, this machine is a shared resource. What
differentiates this workcell from the systems discussed so far is the fact that a
particular job can be carried out by more than one resource. For example, three
resources, M;, M3 and M, are able to perform job J;. Therefore, there are many
part routes that complete the required job sequence. We mention just a few of
them; M;— M,— M3, M;— M,— Ms, M3— M,— Ms, My— M;— M, and so on.
It is apparent that the description of all possible routes in the form of IF-THEN
rules would cause rules explosion. For example, the beginning of part processing
can be described with three rules:

IF B; holds part AND M, is ready THEN rule 1 is TRUE,
IF rule 1 is TRUE THEN start job J; in M; AND release B,

IF B, holds part AND M; is ready THEN rule 2 is TRUE,
IF rule 2 is TRUE THEN start job J; in M; AND release B,

IF B; holds part AND M, is ready THEN rule 3 is TRUE,
IF rule 3 is TRUE THEN start job J; in M, AND release B,

172 Manufacturing Systems Control Design

€]
=0
o
——
|
|

Ms ',\')b

Figure 5.6. An example of a free-choice multiple re-entrant flowline

In order to prevent rule explosion material-handling buffers are included in
FMREF systems as some kind of crossroads where decisions regarding part routes
are made. Each job that can be performed by more than one resource has a
corresponding buffer. In our example B;, B, and B; execute the following tasks; B;
receives row parts upon their entrance into the system and directs them to the first
available machine that is able to complete job J; (M, M3, My), B, holds parts upon
completion of job J; and routes them to the first vacant machine for job J, (M,, My)
to be finished, and B; receives parts to be sent in one of the machines performing
J; (M3, Ms). Processed parts then leave the system.

Nondeterministic part routing has a serious impact on IF-THEN rules.
Specifically, each job that can be completed by more than one resource can be
started by more than one rule. For example, for J, there exist two such rules,

IF B, holds part AND M, is ready THEN rule 1 is TRUE,
IF rule 1 is TRUE THEN start job J, in M, AND release B,

IF B, holds part AND M, is ready THEN rule 2 is TRUE,
IF rule 2 is TRUE THEN start job J, in M; AND release B,

What is important to note is that these two rules (as well as the three rules stated
previously) are in conflict, although a shared resource does not participate in their
prerequisite parts. A conflict is caused by free-choice, i.e. when both machines, M,

Manufacturing Systems Structural Properties in Matrix Form 173

and M,, are ready, a part that is held by B, “can choose” in which machine to be
processed. That is why Equation (3.24) cannot be used for determination of all
conflicting rules. Generally, if we denote a set of material handling buffers as B,
then conflicting rules can be obtained as BeUX;, where X; is a set of rules
determined by Equation (3.24). Given that buffer B, holds more than one part, the
above rules are not in conflict.

5.2.1 Structural Properties of FMRF

To be able to analyze properly FMRF systems, we needed to identify not only the
resources that compose each CW, but also the rules that link them. This will give
us specific information needed to locate critical siphons and critical subsystems
required for the construction of the deadlock policy for FMRF systems. For
instance, and related to connectivity between resources and rules, if we define (by
duality of Gy)

Gy = (Fa8,)" (5.32)

we will get a digraph of rules. Given Gyyx one can identify loops among rules by
using string algebra. However, by running independently the algorithm for Gy and
Gy from the resulting rules CWs and resources CWs we might not be able to
identify which set of rules CWs correspond to which set of resources CWs. This is
why we need a general digraph wait relation matrix

o [0 s
Ul N (5.33)

T

which couples rules and resources. Then, if we use this digraph matrix with a string
algebra algorithm to find CWs, we will get both results by obtaining circular waits
of resources, denoted C,, and circular waits of rules, denoted C,, by obtaining the
coupled matrix

c-| &
=l c (5.34)

Each ith column from C contains resources from the ith CW (vector ¢;;), which
accordingly corresponds to the ith CW of rules (vector ¢,; — although vector ¢,; is a
rule vector, we are not changing notation to x since CWs are denoted with the letter
¢ throughout the text). The dimensions of C are (n+m)xc, where c is the total
number of CWs, » is the number of resources, and m is the number of rules.
Execution of the algorithm given in Figure 5.3 calculates the final matrix C with
the corresponding matrix , thus revealing all the CWs in the system.

174 Manufacturing Systems Control Design

It should be noted that for an FMRF system having a simple circular wait C,,
which contains at least one resource be B, only one rule from eJ, and one rule
from Jye participates in its corresponding Cy, where J, is a buffer job.

For a given matrix C, we can find CW C,; (resources CW) adding and clearing
rules that have a slightly different form from those defined in Definitions 5.1.6. and
5.1.7,

Xi=eC\C,
. (5.35)
Xz =C.e\C,

The preset and postset of CW C; are determined by the following equations

oC, = sup(x(é T) = sup(chASr)

(5.36)
C.e= sup(dxc T) = sup(chAFrT)

Now we can write a vector representation of CW adding and clearing rules,

X; = sup(xZ) = sup(xg - xg Ac)
_ _ d d (5.37)
Xe =sup(xc)=sup(Xo— XpAC)

In MRF analysis we used only these two categories for computation of CW jobs
and other structures. For FMRF systems adding and clearing rules are additionally

partitioned in neutral rules, X} =X{:nXp, stictly adding rules,

X 2+ =X\ X, év , and strictly clearing rules X, 27 =X \X év . In vector form they
can be calculated as;

N N -
Xo = sup(x;) = sup(Xe AXe)

Xg+ = SUP(X2+) = Sup(Xz - Xg) (538)

0- 0- - N
Xo =sup(x;) =sup(Xz —X.)

As in the standard MRF, jobs performed by resources in CW play an essential
role in supervision of an FMRF system. Since the properties of all structures
related to the CW (siphons, traps, critical subsystems, efc.) were described in
previous subsections, here we skip explanations and give only final results.

A set of jobs performed by resources in CW C is defined as

J(C)= sup(VCT) = sup(xéTAsz): Sup(XéTAFV) (5.39)

Manufacturing Systems Structural Properties in Matrix Form 175

Having defined J(C) one is able to determine a siphon job set as
T T T
J(C) = sup(vge) = sup |:VC N 8 i| (5.40)

The key approach in siphon job set determination in FMRF systems is the same
as in the case of MRF. That is, one needs to calculate all the jobs satisfying the
existence of postset rules as adding rules of CW. However, the problem in FMRF
systems is that not all jobs contain unique postset rules, due to the incorporation of
the material-handling buffer set B into the system. Now, we can make two
remarks: first, all rules from Cj, corresponding to resource CW C,, are not adding
rules. Secondly, all clearing rules from CW C, have postset jobs from set J(C).
Therefore, by eliminating all preset jobs from Cy, and considering only those
intersecting set J(C), preset jobs from the adding rules set will be selected.

A trap job set in FMRF is defined as.Jo(C) :(J(C)mXCO_ 0)\(CX eneC,).

Comparing this equation with the one in Definition 5.1.9, one can notice similarity.
Specifically, the trap job set, Jo(C), in FMRF contains the same elements as in
MREF systems, excluding jobs Ji, for the case of routing resources b; are included in
C. In matrix form a trap job set is

Jo(C) = sup(ve)

\T T (5.41)
=sup[(xg) AS?,- —((xg) ASi /\CIAFV /\CIASi)}

The rest of the job sets, siphon-trap job set, strictly siphon job set, etc., are
defined equally for MRF and FMRF systems. Hence, Equations (5.15)—(5.19) can
be used for their determination. Furthermore, calculation of CCWs and the
regularity test remain the same as for MRF systems.

A matrix relation for a critical subsystem follows from Equations (5.21) and
(5.40):

Jo(C) = sup(vye) = sup(c, aF,) (5.42)

176 Manufacturing Systems Control Design

Example 5.2.1 (critical siphons and critical subsystems in FMRF)

We consider an MS system described with the following matrices:

oDooooooooooog moooooo
mO000000000O00O ooooomo
ooooooooOmOooo omooooo
oosOoOoOooOOooO oooooom
ooooooooOosOooo oomoooo
oooomOoooOooO oooooom
oooooOooooOEo0 oomoooo
ooooOosOOoOO0OooO ooooooo
oOooooOooOoOEOO0 ooomooo
F.=|oooooomoooooo| F=|ooooooo
V"|oooooooooowmoo oooomoo
oOooooOOOmOO00O ooooooo
oooooooooOOomO omooooo
oOoos0O0O00O0O0OO ooooooo
oooooooooooso ooomooo
ooooooosoo0ooo ooooooo
oooooooooooom moooooo
|osooooooooooo) |Doooooo

og mO00oooooooooo
oo ooooooooOomOO0o0
oo oomOOoOoOOOOO0O0O0
oo oooooooooOomOon
oo oooomoooooooo
oo ooooooooOoOomOon
oo ooooomOoOOOOoOoo0
=0 ooooooooooomo
oo 1_|pooooomoooooo
=0 § '=|ooooo0Oo0OOOO0mO
oo v oooooooomOO0O0
=0 ooooooooooomo
oo ooomoDooooooo
om oooooooooooom
oo ooooooomOoOO0o0o
om oooooooooooom
oo omDOoooooooooo
ooj |Doooooooooooo)

S/'=

ooooooood]
mOooooooog
ooooomooo
omoooooog
ooooos0OoOO
oomooOoooog
oooooomoO
oomooOoooO
oooooomoO
ooomOoOoOoO
oooooosOoO
oooomooog
ooooooomO
omoooooog
ooooooomO
ooomOoOoOO
oooooooom

|"oo0oooooo

Table 5.2. Resources assignments for the system in Example 5.2.1

M; | M, | M3 | My | Ms
Ji| e
S ¢ | o
J3 L I
Jy . .
Js L

Resources assignments for a job sequence J = {J|, J,, J3, Jy, Js} are given in Table
5.2. The system has 5 machines and 4 material handling buffers. A set of resources
and a set of jobs is defined as R = {M1, M2, M3, M4, M5, B1, B2, B3, B4} and J =
{M1J1, M1J5, M2J2, M2J4, M3J2, M3J3, M4J3, M4J4, M5J3, B1P, B2P, B3P,
B4P}. The circular wait matrix (5.34) is given as

My M;M; My Mg B; B, By By
oosooOOmO0O
ooomOoOOmO
EmOOOmOON
(=L § J=j=R=} } Juj
[s] _N=§ Juja) § B
[=l_N=N=1 J=} § N
[L A=0 N=1 § Ja} |

X % X Xir e

OOO0DOEE00000O0O00O0O00)
ooooOooODODOEOO0OOmOO00
Oomm 000000O0OOOEOO®O
DooEOOEEO0O0O0OEOO0OOO0
OooEO000D0OEEOOEO00O0O0
OooomOODO0OOOEEEO0O0O00
OEEEO0O0ONOO0OOOOEEO
OEOOEEOO0ONOO0OOOOEEO
OsO0OEO0BOO0OOEEOONO
OE0OEOOEOO0OOOWEEDO
OEES00EE00O0COONEEO
OEEE00000OEEOOE EEO
OE0OEEO0OEEOON
]
ON0OOEEO00ONNEO0NEEED

OsosEso0EE000EOOEEO

From the rows in matrix C", we can observe the resources and rules that compose
sixteen simple circular waits in considered FMRF system. For example, from the

Manufacturing Systems Structural Properties in Matrix Form 177

first row, we can see that CW C,; is composed of resources M3 and B2, with
corresponding rules CW C; comprising rules X¢ and x.
The cyclic circular waits are given by matrix §,

E0000000000000O00EE EEEEO0O0NO]
OE000000000000O0000OO0O0OEEEEO
OoE000000000O0O0O0OOO0OOOOOOOONe
0000000000000 O0O0OO0O0OOOOOOOO00
OO000OE00000000O0O0OMOOOOOOOOO0
O0o0D0D0OEDO00O0O0O0OO0OOOEO0O0OEOOEE
OO00000E0000O0O0O0O0OO0O0OEOO0OOEOO00
7= 00000000000 O0OO0OOOO0OOOOOOOO0O0
T |oopoDoOoODOmOOODOOOOOOOEOOOOEO0
OOo0000000mOO0OOO0OOOO0OONOOOOOO0
OO00000000O0OmOOO0OOOO0OOOOOOOOO0
OooooO00O0O0O00OE 000000 OOOmOOOO00
000000000000 eO0O0O0O0OO0OOOOOOOO0O0
OooOooO0DO0D00000O0ONOO0OO0O0OOO0OOOOO00
Ooo0oo00000000O0OO0ONOOO0OOOOOOOO00
000000000000 000OEO00O000O0O0O0O000

A total of twenty seven CWs is identified, consisting of sixteen simple CWs, and
eleven cyclic CWs. For example, the 17th column from § stands for a CCW
composed of the first and fifth CW from matrix C. It is composed of resources M3,
B2, M2, M4, and B3 (resource B2 is common to both CWs).

Next, we calculate siphon job sets and critical subsystems by using Equations
(5.40) and (5.42), respectively,

000000000000 O0D0D0O0O0D0OOO0OOOOO0O0 OONO0O0ONSEEEEEEENOOEEEEOEEOO
OO0E000SSSSEEE EEENOOEEEEOEEOE oooo0o0o000oODOO0OO0O0000OO0O0OOOOOO0
OOe000O0O0OEO0O0OO0OEEO00O0OO0OOEOOCOOEON OOoOEEES000ES0O00OEEEE0O0OEEEONRO
OO0OEEEE000OEE 000EEEEOOES o O00OE00000ON OO0 EE0000ONO0O0OOEER
O0oOoE0000EEE0000ONOD0OOOOOO®OO0 0000000000 EEEONEEEEEOO0OOON

E000000E0000eEEE0EE EO0O®N0O0O000 OE0E0000EEE0000S00O0EE QOO EEO0
V —|000D000EE00EN OOEEOO0OEOEROO0O0ONRO V —|0000E0000000EOO0O0OEOOO00OOEEEON
SC Os00E0000000EO000ONOOOOOEOEON oc 000000 S0OEEEO0OEEO0ONOEEONEO0OO0ON

000000000000 O00O0D0O0O0OOO0OOOOOO0 00000EO00000ONOEE00NO000REOO0O0O0
000000000000 O0D000O0D0OO0O0O0OOOO0O0 ooEOOOEER

000000000000 O0D0D0O0O0D0OOO0OOOOOO0 s|00m

000000000000 O0D0O0DOOO0OOO0OOOOO0O0 OosOEEEO00

000000000000 O0D0O0O0O0O0OOO0OOOOO00 OOEO000ONEEEEEEEEEOOEEEEOEEON

Matrices Vsc and Vc are composed of rows corresponding with siphon job vectors
and critical subsystem vectors. At the end of the example we give results attained
by the regularity test presented in Section 5.1.5.

00000000 EO00OO0O0OO0OO0OO0OOOOOO mOod] oomsoooood)
O000O00OEEO0000O0O0O0OO0OEOO0OOOOOO0 ooom0O00O00
OO00OEEE000000O0O0OO0OEEO0O00OEOONO omO00O0O00O0O0
O0O0E000000000O0OOO0O0O0O0OOOOOOOO0 omooooooo
OOE000000000O0OOOO0OOOOOOOO0O0 omO00O0O00O0O0
OO0E000000000O0OD0O0O0O0O0OOOOOOOO0 omooooooog
OE0000000000O0D000O0O0O0OOOOOEO0 ooomOoo000
Ooe0000000000O0O0O00O0O0OOOOOOEO0 Ooomm0O00O00
E000000000000000OEEO0O0O0O0OOmO oomoooooo
E000000000000000OEEO0O0O0O0O0OmO ooooooooog
Oooo00000000O0000O0O0O0OO0OOOO0OO0O0 ooooooooo

000000000 O0OOOoDOOOOOOOOOOOOO0OO0 ooooooooo
_|oopooooooooooooooooooooooooo _|ooooooooo
ch— OD00000000D0O00O0O0O0O0O0O0OOO0OOOO0O00 Rccw— ooooooooo

000000000000 ODOO0O0OO0OOOOOOOOO0O0 ooooooooo
000000000000 O0O000O0O0O0OOOOOO0O0O0 ooooooooo
OOE00000EEO00000O0O0O0OOOOOO®O0 OoEE0O00O00O0
OOE000D0DOEE00000000O0O00O0O0OmO0 OoEE0O00O00O0
OE0000000000O00O0O0O0O0OOOOOOOOO0 ooosooooo
000000000000 O0OO0O0OO0O0OOOOOOOO00 ooooooooo
OOoo0o00000000O000O0O0O0OOO0OOOOOO0 ooooooooo
000000000000 O000O0O0O0ODOO0OOOOO00 ooooooooo
O0OE000000000O0O0O0O0O0O0OOOOOOOO00 omO0000000
000000000000 O0OO0O0OO0O0OOOOOOOO00 ooooooooo
SE00000EE00000000OEEO000O0OONO ooEmeO0O0O000
OOE00000OEEO00O0O00O0O0O0ODOOOOO®O0 omEO0OO0O0O0O00
|l0D00000000D00000000000O0OO0OO0]| lOooooooog]

Since Ccw is not a zero matrix, we can conclude that our system is an irregular
system with key resources M,, M3, and My (see matrix Rccw).
¢

178 Manufacturing Systems Control Design

5.3 Matrix Controller Design in MRF Systems

According to Theorem 5.1.1, resources in CW get into circular blocking when the
corresponding critical siphon becomes empty. Since in MRF systems circular
blocking is equivalent to a deadlock, our main concern in deriving a deadlock free
dispatching policy is to keep all critical siphons in the system full. However, as we
mentioned in Section 5.1.3, an increase of the work-in-progress requires that
system resources are busy most of the time. Balancing between these two marginal
conditions, mg (k) >0and mc(k) = 0, is what makes a particular dispatching

policy efficient. In this section we use the results of MRF structural analysis in
order to devise a maximally permissive one-step look-ahead dispatching strategy
that avoids deadlock in regular MRF systems. We also show how circular waits in
irregular systems can be kept away from circular blocking. At the end of the
section we describe a scheduling strategy for FMRF systems that is based on
matrix formalism and so-called time windows.

5.3.1 Deadlock Avoidance in MRF Systems

At the beginning of the determination of a dynamic deadlock-free dispatching
policy, let us remember that

r

v, w1 oo

From this equation, explained in detail in Section 5.1.2, the following relation can
be attained,

pT -m(k) = m, (k) = const. (5.43)

i.e. content of resource loop is constant. Implementation of this result on Equation
(5.23) gives

T —
;pr -m(k) = const. (5.44)

where p, are resource loop vectors that correspond to resources in CW C. Since
Equation (5.44) holds for any & and if we assume that all resources in C are idle for
k=0, then

ij m(0)=c' -r,(0) = m.(0) (5.45)
reC

which finally yields,

Manufacturing Systems Structural Properties in Matrix Form 179

2P, -m(k)=mc (0) (5.46)

reC

This result is important since it states that the content of resource loops that belong
to the resources involved in CW is equal to the number of resources involved in the
circular wait, which is a design parameter and it is known in advance.

Further combination of the above equation and Equation (5.24) has an even
more significant outcome,

s¢ m(K)+ Ve v (k)= D p; -m(k) = mc.(0) (5.47)
reC

or in a different form,
mg (k) =mg(0)— VOTC v (k) (5.48)

Hence, as long as
me(0)>v, (k) (5.49)

where v o (k)= Vgc - v, (k) , acritical siphon will not be empty, i.e. mg _(k)>0.
According to Equation (5.22) the content of critical subsystem, v oc (k), is

increased by 1 each time a job that belongs to Jon(C) or Joo(C) is dispatched. On
the other hand, execution of Jie Jon(C) does not influence mg_ (k) . In summary,

the effect that jobs dispatching has on critical siphon content is such that; i)
mg (k) is decreased by 1 for Jie Jyo(C), ii) myg,_ (k) is increased by 1 for Je

Jos(O), and iii) myg,_(k) remains unchanged for Jie Jon(C).

The other point that should be noted is that for a given part path in the MRF
system with sequential shared resources, jobs that belong to trap and neutral job
sets are visited by parts before jobs from the siphon job set. As a consequence,
when trap or neutral jobs are dispatched parts are pushed into the system, while
execution of siphon jobs pulls parts out from the system (Figure 5.7).

JQ ‘4\‘ JS

part path

Figure 5.7. Job sets in MRF systems

180 Manufacturing Systems Control Design

The above-mentioned property of MRF systems is a basis for multipart
scheduling rules that replicate two well-known strategies — FBFS and LBFS.
Although both of them could lead a system into a deadlock, the next two theorems
ensure stability.

Theorem 5.3.1 (stable LBFS dispatching): Given a regular MRF system, deadlock
will not occur if and only if a dispatching policy is used such that:

1) whenever a multitude of jobs {Jik} are activated simultaneously

(conflict), they are dispatched according to the following: for every
CW C such that {Jik} NJ(C)# priority is given to jobs

JE e Jys(C)UJyy(C), and
i1) does not dispatch any Jl-k € Jyo(C) if Ve (k)=m(0)-1.

The first part of the theorem handles conflict situations in the way that jobs that
pull parts out from the system are preferred. This corresponds to the LBFS
strategy. The second part of the theorem ensures a deadlock-free behavior of the
system by disallowing execution of jobs that decrease mg_ (k) when the critical
subsystem content is on the lower limit. A practical implementation of this part of
the theorem requires slight modification due to the existence of the hidden parts
(see Section 3.4). According to the theorem, the supervisor has to track the
contents of all critical subsystems, but information obtained from sensors in
sampling interval &k (vector v¢(k)) could come too late for appropriate actions. This

is why, as described in Chapter 3, instead of v.(k), vector Vz (k) , obtained from

Equation (3.21), should be used in the determination of v o (k).

The deadlock-free dispatching policy stated next defines the generalized
kanban strategy.

Theorem 5.3.2 (stable FBFS dispatching): Given a regular MRF system, deadlock
will not occur if and only if a dispatching policy is used such that:

1) whenever a multitude of jobs {J?(} are activated simultaneously

(conflict), they are dispatched according to the following: for every
CW C such that {J}}nJ(C)#@ priority is given to jobs

JE € Jpo(C) Uy (C), and
ii) does not dispatch any Jl-k € Jyo(O) if Ve (k)=m,(0)-1.

This control strategy is maximally permissive. Moreover, by keeping the
kanban content mc(k) as low as possible (including zero), the work-in-process in
the critical subsystem is maximized, thus maximizing the per cent utilization of
resources. The difference between the standard FBFS and the one introduced in

Manufacturing Systems Structural Properties in Matrix Form 181

Theorem 5.3.2 is that exploitation of the standard policy forces parts into the
system all the time, while the stable FBFS drives parts forward as long as a
particular part of the system is full, and then starts to pull parts out from the
system.

The supervisor, which dispatches jobs according to strategies given in the
above theorems, can be realized in the form of the control vector, whose
components are incorporated in the logical state vector equation through matrix Fy,
introduced in Section 3.4 and calculated from the conflict-rules vector according to
Equation (3.25). It can be shown that ev,o. C xjandev,gs. < x4. However,

depending on the system structure, ev, - CXyis not necessarily true, thus,
oV ne should be added to the conflict-rules vector. Regarding the control vector, it

follows from the theorems that for the online deadlock-avoidance implementation
only particular parts of the system, namely jobs, are important. Hence, the control
vector (3.22) can be determined from

uy (k) = h(m(k), vz(k))

It is evident that both strategies, stable LBFS and stable FBFS, give the same
result when no conflict occurs in the system. In that case only a situation described
with the second rule, common to both theorems, could happen, which is presented
in Figure 3.12 (Example 3.4.1), where the results obtained with the dispatching that
is equivalent to the stable LBFS policy, are shown. Specifically, the critical
subsystem from this example is Jyo(C)={RP1, BP, MBP}, with mc(0) = 4. The
dispatching proposed in the example takes actions exactly according to Theorem
53.2.

Results attained with stable FBFS and stable LBFS policies are depicted in
Figures 5.8 and 5.9, respectively. As may be seen, the throughput of the system
remained unchanged but resource utilization is improved in the case of FBFS
dispatching. When LBFS is used the buffer never reaches its full capacity (2 parts).
The system is stable in both cases.

5.3.2 Deadlock Avoidance in Irregular Systems

The dispatching strategies given in Theorems 5.3.1 and 5.3.2 can be implemented
in irregular systems as well, with an additional verification that is stated in the next
theorem.

Theorem 5.3.3 (stable dispatching in irregular system): Given an irregular MRF
system, with C; and C, forming a CCW with a key resource, then a deadlock will
not occur if and only if the last idle resource in CCW is not a key resource.

Evidently, one-step look-ahead control strategies, exemplified in the previous
section, cannot cope with the condition illustrated in the theorem. There are two
reasons for this. First, the supervisor that implements dispatching according to
Theorem 5.3.3 should track the number of available resources in CCW, and

182 Manufacturing Systems Control Design

secondly, if two resources in CCW are idle then in the worst case

v (k) = mqqy (0) =2, hence, activation of any J(CCW) is allowed.
Jocew ccw ’ ’
1
2
>
-l
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
1
=2
s
=
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
2
- .
-l
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
1
2
=]
o
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
1
a
o
N
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
1
2
>
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
1
=2
w@
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
2
,, L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
1
.
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
17
[=]
c
=
o ‘

L L T T T ST S S S S S S Y SO SR N
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

Figure 5.8. Response of the system from Example 3.4.1 with stable FBFS dispatching

We illustrate the occurrence of the second-level deadlock in the following
example. Let us consider a CCW that is composed of two CWs, C; = { r,, 1, 7, ...
}and Cy = { rq, 1, o, -.. }, as shown in Figure 5.10. Further, assume that resources
in the CCwW are related by the following equations,
H®NOr =X, K ®Nery=X,, h,®eNen =x;,7.eNen =x,. Now, let us
suppose that the two remaining idle resources are r, and r, and the prerequisites
for rules xj, x, and x,,€ r.® are met. This is a situation in which not only conditions
related to the content of critical subsystems of all three CWs should be checked,
but also the condition regarding the number of idle resource should be taken into
consideration.

Manufacturing Systems Structural Properties in Matrix Form 183

1
2
>
b
0 L n L L L n L L L L L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
1
=
ki
...
0 P] N P P IR BN IR B MR - P PR IR PR i
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
1
]
b
0 A L n L A n
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
1
=
=
o
0 P L L L n L L L L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
1
E)
i
N
0 M P IR BN P P PR I NN ST T - P R I P
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
1
2
>
0 N PR P PN PR I PR P IR BN PN S M i
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
1
2
L
0 il I PR NI RN S N P P N PR i P IR B P
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
2
® L
0 S T S T S S S S S S S S S S S S S SO ST S S S
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
1
=
0 P P P I Y I P P P PN I I P - P -
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500
18
o
c
5
0

L T T T T S S T S Y S S SO Y SO B
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

Figure 5.9. Response of the system from Example 3.4.1 with stable LBFS dispatching

Three decisions could be made; i) execution of rule x; — in this case the key
resource becomes occupied but resource r, is released. Although two resources in
CCW, r, and r,, remain idle, the critical siphon Sc, is empty, thus, x; should not be

executed due to the condition v Tocs (k) < me, (0), i) execution of rule x, — in this

case the key resource becomes occupied and resource 74 is released. Now, C; has
idle resource ., and C, has available resource ry. Since both of them belong to

CCW, it has idle resources too. Therefore, conditions v o (k) <mg (0) are not

violated. Furthermore, the key resource is not the last available resource in CCW,
iii) execution of rule x,, — in this case the key resource remains the last idle
resource in CCW while preconditions for both rules, x; and x,, are still satisfied.
However, execution of any of them would make both critical siphons, Sc; and Sc,
empty. This is known as the second-level deadlock, that is, the consequences of a
decision regarding job activation (rule x,) are becoming evident two sampling
intervals later, when it is too late to correct an already-completed action.

184 Manufacturing Systems Control Design

Figure 5.10. Two CWs ina CCW

Then, an obvious solution, suggested in Theorem 5.3.3, is to deny having the
key resource as the last available resource for any critical CW (and any CW). We
should always give priority to usage of the key resource (in our demonstration that
corresponds to execution of rule x,) over all other resources available in the critical
CW (in our case execution of rule x,,), while at the same time the conditions stated
in Theorems 5.3.1 and 5.3.2 should be checked.

5.3.3 Deadlock Avoidance in FMRF Systems

The dispatching strategies based on the content of critical subsystems and the
number of available resources in CCW could be used in FMRF as well. In Section
5.2.1 it has been shown how to determine the structural properties of a free-choice
MRF system that are required for successful deadlock avoidance. However, the
existence of alternative part paths, we call them resource sequences, that execute
the same job sequence, opens space for implementation of more sophisticated
routing and dispatching strategies. The supervisory control techniques proposed so
far in the book suggested solutions that were static. That is, once proposed a
resource sequence (RS) remained unchanged until the part has left the system. A
method described in the text that follows offers a possibility for dynamic change of
the resource sequence [17], i.e. depending on the priority, the resource sequence
can be changed before the part reaches the output of the system.

Based on the string composition the proposed method finds the candidate
resource sequence by matrix composition and then time windows are used for
checking if the determined resource sequence is feasible. The viability of a
particular RS is evaluated by time-windows insertion that is followed by a time-
windows overlap (conflict) test. In the case of an overlap, the algorithm iteratively
reinserts time windows until there are no overlaps or the overlap is present on the
first resource visited by the part, which means that the candidate RS is not feasible.
The procedure is repeated for all candidate RSs. As a result, the set of executable
sequences is formed and the final task of the algorithm is to choose the optimal one
in terms of the time required for the part to get from the input to the output of the
system.

Introduction of dynamic scheduling into the FMRF systems has many
advantages: increase of system throughput, reduction of operational costs,

Manufacturing Systems Structural Properties in Matrix Form 185

consistent execution of predetermined tasks, etc. However, this requires superior
control strategies that are able to solve problems such as a conflict and a deadlock.
Usually, routing and scheduling algorithms should be executed online in a very
short time, which is challenging since the problem is NP-hard.

Various methods for dynamic routing and scheduling, especially in autonomous
guided vehicle (AGV) systems, are currently in use [18] — [22], and still
researchers are working on new methods in their quest for faster and
computationally efficient algorithms. Generally, two approaches can be recognized
in the literature: static routing and dynamic routing. While the first approach is
concerned only with the spatial dimension of the routing problem (determination of
resource sequences in the space domain), the second approach perceives routing as
a time-space problem (determination of part paths feasible in space and time). In
some cases the time-space approach could be seen as static routing. Since the goal
of routing is to find the optimal sequence, many algorithms are based on Dijkstra’s
shortest-path algorithm [23].

Since the number of processed parts changes with time, by elongation of the
time windows the proposed method assures that the shortest RS becomes feasible,
thus providing collision-free and deadlock-free paths for all processed parts.

Usually, when it comes to the mathematical analysis and control algorithm
design, a manufacturing shop-floor layout is represented by a graph. In the
approach described herein, the start and stop of a particular operation are
represented by nodes n;, while part processing is represented by a weighted arc, a;.
Since we are concerned with dynamic scheduling based on time windows, it is
natural to choose the processing time as a variable that represents the arc (resource)
weight. A nominal weight (minimal processing time) of resource r; for part p; is
denoted W, .

A graph adjacency matrix is typically defined with respect to nodes. Herein we
define an arc adjacency matrix since time windows are associated with arcs.
Having a directed graph, G = (N, A), an arc adjacency matrix G is defined as a
matrix with the number of rows and columns equal to the number of arcs in G,
with element g;; equal to 1 if arc a; is upstream of arc a;, otherwise it is 0.

In FMRF systems a required job sequence J can be executed by several
resource sequences. Such resource sequences, for example, {M;, M,, M;, M,, M;}
and {M;, M, M;, My, M} complete the required job sequence J = {J,, J,, J3, J4,
Js} in Example 5.2.1. A set of active resource sequences is defined as
M, ={z :7 eI}, where IT is a set of all possible resource sequences that
execute the required job sequence.

An RS 7 is defined in the following way: 7, = (oi,di, '6, Eo,pi) , where o, is
the first resource (an origin arc) and d; is the last resource (a destination arc) visited
by the part on the sequence 7;,'d is the shortest RS (in the sense of processing

time) between the first and the last resource, P, is the initial priority of the

sequence (a sequence with the highest priority has the lowest value of P,), and p;

is a part processed by the sequence 7. On its route from the origin to the

186 Manufacturing Systems Control Design

destination, a part visits a set of resources represented by arcs, ¢ = {r] ir e R} .

The weight of the path o is equal to the release time of the last resource of the

out

sequence, i.e. W(o) = "f, . A set of all RSs that connect origin arc and destination
. i i1
arc of sequence 7; is X, —{ 0y, 0,...0,.

Given that in the case of dynamic routing the pathié', as well as the RS
priority, can be changed during mission execution, a mission is defined in the
following way:

7, =(0,,d,,'6(t), (2, p,) (5.50)
The mission priority P,(f) is calculated according to the relation:

. Ly —1
min| ——,
B(r)= w('6)-t
—oo for W(B')=°°

PI.O} Jor W('6) # oo
(5.51)

where ¢, is due time of mission 7.

Determined in this way, the priority of the RS with the part that is far from its
destination is higher than the priority of the RS that has the part already close to its
goal. In addition, the RS whose due time is close to expiration has a higher priority
than the RS that has enough time to meet its due time. Initial RS’ priorities,
assigned by the dispatching controller, are recalculated each time the request for a
new part processing arrives or current sequences become unviable. In this way the
influence of livelock is reduced as a sequence with low initial priorities would not
wait in a queue indefinitely. Care should be taken since more than one RS might
have priority —o. In that case, the priorities of the sequences could be arranged
according to FIFO.

We assume that a part can reside only in resources (arcs). A part occupies a
particular resource for some time (we suppose that only one part at a time is
allowed to be processed by the resource). This time is called a time window,
defined as

wy =" =" w2 (5.52)

. . . . t . .
where w;; is a time window of part p; in resource r;, “#; is the release time of

in,
resource 7; from part Di, and tij 1S an entry time Ofp,- In resource ;. Time WlIldOWS,

as well as release times and entry times of resource r; , can be represented in the
form of time vectors:

Manufacturing Systems Structural Properties in Matrix Form 187

W, = Wij]’ "t = [mtij]’ ", :[mty] (5.53)

where the 1st component corresponds with the highest priority RS, the nth
component with the lowest priority RS and n = | I1, |, i.e. the dimension of all three
vectors is equal to the number of active RSs. Dimension # varies with time, since
the number of active resource sequences is changing dynamically. Also, it should
be noted that a part may visit a particular resource two or more times, hence, more
than one component of a time vector would correspond to the same sequence, i.e.
n# | IT, | . In that case index ivj corresponds to the vth time window of sequence 7;
on resource r;. The components of vector wj, that correspond to active sequences

that do not use resource j, are set to zero, while the components of vectors i"tj and

out

t, that correspond to those sequences are set to o.

From time vectors defined as in Equation (5.52) we know which RS visit which
resources but we are not able to tell, directly, in which order. For the purpose of the
time-window insertion, which is elaborated in more detail later in the text, we have
to position components of time vectors in chronological order. Vector x = [x;] can

be converted into sorted vector <x> = [xi], where(x)i =x < <x>i =X
The concept of time windows is shown in Figure 5.11. In the example,
sequences 7; and 7, have the highest and the lowest priorities, respectively. Time

vectors of a given resource a are

T
w=[w, w, w, 00 0 w]
a la Ta 3a 2a
in in in in in
t - tla t7a t3a b b b t2(1
T
out out out out out
t t t t 0o o0 t
a la Ta 3a 2a
out out out out
Resource a Ba Ly b7 Da
| | \ \ \ [-
in in in in t
t3u tla t7a t2a

Figure 5.11. The concept of time windows

It should be noted that, although 7 sequences are active, only four of them are
using resource a. Sorted time vectors for resource a are written as

0 0 o]

T
(oo} (oo} OO:I

188 Manufacturing Systems Control Design

When a new part arrives into the system at moment #,,, a supervisor assigns an
idle resource, oy, as the origin of a new resource sequence 7,,, which has initial

priority P ;. Then, the shortest path for sequence 7, is determined by calculation

of powers of vector X — the row of string matrix S that corresponds with the

origin resource o,
X =% " oS (5.54)

The string matrix S is formed as described in Chapter 4. Having vector X’ , the
weight of each sequence 0'1.” , represented by a string inX” , has to be determined

and then vector):‘.‘: is formed in the following way: if there exists a pth order

sequence that connects o, and dl,, then
w("e’) = mllnl:W(mO'lp)J (5.55)

m A

Furthermore, if W(™6”) < W(™6) then the string that stood for "6 is replaced

by the string representing "6” . When W(o”) > W(™6), sequence o/ in vector
)ii is replaced by a null string, otherwise the sequence remains the component of
the vector. Initially, when a new resource sequence 7, is requested, "¢ ={@} and

W("6) = . Since the weight of the sequence is equal to the release time of the
sequence’s destination resource, in the following text we describe in detail how the
feasibility of sequences and their release times are determined.

A. Initialization of time vectors (Step 1)

The first step in the iterative procedure for a feasibility test and a release time

determination of sequences inX” , is an initialization of time vectors. Let us choose

a candidate sequence O'ip € sup(X”). For each resource r; € 0',.'0 its time vectors

are initialized as

w,, e W, 0 0]

Ww. =|:W. AN
i 1

int _ int int int o o T
L 27

T
out out out out
t=[", ", .. "1, e |
i 1 2j 1y

Manufacturing Systems Structural Properties in Matrix Form 189

During the process of initialization, components of '""tj whose values are less than

tm, are set to o (as well as their counterparts in i"tj), since they correspond to
sequences that occupied resource r; prior to the moment a new sequence was
requested, hence they do not influence the time-windows settings. When i"tij, <t

out

and "¢, > 1 a part p; occupies resource 7; at the moment of request 7, and these

components of time vectors remain unchanged. Components of vector w;, which
belong to the sequences with lower priorities than sequence 7, are set to 0. At the

same time all components of vectors i"tj and '""tj that correspond to these

sequences are set to co. In this way the time windows of RSs with lower priorities

are excluded from consideration, which means that resource is freed for a new

t
¢ . are unknown values

mission. Components that belong to RS 7, i"tmj and "7,
that have to be determined by dynamic routing.

It is assumed that the part p,,,, which is processed by the new RS, occupies o, at
the moment of entrance. Therefore the entry time of oy, is set to be equal to the

part-arrival time #,. A release time of resource o, depends on the average

processing time w,,, . Accordingly, for the origin resource we set

in t — [in ¢ in ¢ o °°:|T
[lo,, 20, m
out out out ~ T
t = t r +w o oo
[lo, 20, m mo,,
B. Insertion of time windows (Step 2)

Having time windows of all resources that belong to the candidate sequence
initialized, starting from the second resource of the sequence, we are looking on

each resource r; € sup(0'l.p) for the first available time window that fulfils two
requirements: a) it is wide enough to accommodate part p,, for a predetermined
period, and b) its entry time i"tmj is set after the release time of the upstream

out
resource [

When

i—].

mi >

[<inlj >1 _t,n] > ij + gmj and |:<intj >1 - ("Q}mj +€mj)] > Owtmi for i—j (5‘56)

then

190 Manufacturing Systems Control Design

in __ out
tm/' - mi
out in ~ (557)
=1 +w
ny ny ny
otherwise the index of the first available time window is determined by
p= arg;n1n{< tj>4 :
(5.58)

RMQ%H—me«m7»ﬂfm%JJ>Ww+2&W,Vﬁjsf=hn—4}

where 7 is the number of time-vector components that are # oo and &, is a safety
processing time of part p,, in resource 7;. The safety time depends on the processing

time uncertainty. Its value is usually 1-5% of W, .

Once p is determined, the entry and release times of part p,, on resource 7; are
calculated as

(5.59)

out

int .=max(<outt.> +e .’outt)
oy J p-1 oy m:
t ="t +W_
mj my mj
It may happen that the time-windows distribution on resource 7; is so dense

that "¢_. cannot be determined, i.e. none of the relations in Equations (5.57) and
mj q

(5.59) give an answer as to where to insert a time window for a new mission. In
that case a new time window is set after the last time window on resource r;, i.e.

int -:<ault.> +e
ny Jln y

out

(5.60)

t ="t +w._.
ny ny ny

An example of time-windows insertion is shown in Figure 5.12. At the moment ¢,

a new sequence is requested. The first resource to process a part is resource c, i.e.

resource ¢ becomes an origin resource of sequence 7. Let one of the candidate
. . .. 2

sequences, obtained by the string composition, be o, = {c,b,a} .

First, the initial values of the sorted time vectors are determined according to
the initialization procedure (Step 1):

Manufacturing Systems Structural Properties in Matrix Form 191

Resource a
I

in
t

3a

Resou‘rce b

~Y

in
t7b

Resource ¢

~Y

in
[l

c

Figure 5.12. Time-windows insertion

out
t

We can see that the components of vectors <i" ta>and< a> that correspond to

RSs 7 and 73 are set to o since the part processed by those two sequences have
occupied resource a prior to the request for 7,. In the same way, missions 7; and
m are removed from the time vectors of resources b and c, respectively. The
components of RS 7, that occupied resource a at the moment of request, remain
unchanged.

Having initialized vectors, we can start with time-windows insertion. First we

in out

set "¢ =t and "¢t =t +w_ for the origin resource. The next resource of

mc

the sequence is resource b. According to Equation (5.56) we check if

192 Manufacturing Systems Control Design

|:< tb>l —tm:l =|: t,, —tm:|>wmb +¢,, and
in A~ _ in A~ out
[(tb>1 -(w, + gm/)] = [t,,—(w, + sm/)]> ‘.

From Figure 5.12 we can see that both conditions are satisfied which yields

in out out

="¢ and "¢t

mb me mb

sequence, resource a;

= i"tmb +w_,.We proceed to the next resource of the

[<mta>1 —tm:| = I:i"tn —tm] <0

hence, one of the conditions in Equation (5.56) is not satisfied so we have to find
the first free time window by using Equation (5.58). The number of components of

the sorted time vector <mta > that are # w0 is 2, i.e. n = 2. For £ = 1 we obtain

|:<int > —max{<0ml > ,th b}j|:
afs afy m,

in out out _

t2a —max t7a 4 tmh -

in out

t tmb] <w,, +2¢_,

2a
thus a new time window cannot be placed before i"t2a . Since wy, is the last time

window on resource a, wp, is set after it, which gives

int =<outla>2+gma=autt20+g , outt =int +1:1\/'m

ma ma ma ma a

By this action all time windows of sequence 0'12 ={c,b,a} have been inserted

with no overlaps.
C. Time-windows elongation and overlaps (Step 3)
As assumed earlier, a part can reside only in a resource, therefore, immediately

upon leaving one resource it enters the next one, i.e. the following equation should
be fulfilled for all resources of the sequence:

"ty ="y 1 (5.61)

Manufacturing Systems Structural Properties in Matrix Form 193

It may be seen from the previous example (Figure 5.12) that the inserted time

out

windows do not satisfy Equation (5.61). Although "z , = t..» this is not the case

in

for resources b and a, "t #

[

t . . .
3 ¢, - In order to check if sequence, aip , is feasible,

first we have to expand the inserted time windows to meet requirement (5.61). The
time-window elongation on resource 7; yields:

wo=w o+ =" =i (5.62)

mj mj mi mj
A time window can be widened in two ways, by changing the duration of the
processing time of a particular resource or by holding a part in a resource before

processing and/or after processing. As a consequence, a resource release time is
changed,

i, =w, + " (5.63)

thus changing the time vectors of resource 7;

T
w.=|:w. w, w,. .. w. 0 O:I
i 1j 2j 3j myj
in in in in in T
t.=| ¢, [. .. t . oo oo
i 1j 2j 3j ny
out out out out out T
t. = t . t { . oo oo
i 1j 2j 3j nyj

The time-window elongation can cause an overlap, which is equivalent to a
conflict; a situation when two (or more) parts request a resource over the same time
period. The situation when an overlap takes place after applying time-window

out

elongation is shown in Figure 5.13. Since j"tlna # 't _, a newly inserted time

mb >
window on resource b, which belongs to sequence 7, has been widened. This
action caused an overlap with the time window of mission 7, which indicates that
if the processing of part p,, on resource b is prolonged in order to be finished just at
the moment when resource a is ready to receive the part, then it will collide with

part p,.

m”l ()Iltt
Resource a 3a la
[[I
n n
[3u llu
Resou‘rce b
in
t7b
Dlllt
Resource ¢ I

Figure 5.13. Time-windows overlap

194 Manufacturing Systems Control Design

Having in mind this situation, once all time windows that belong to a particular
sequence are extended according to Equation (5.62), new time vectors should be
checked for overlaps, starting from the origin resource of the sequence. If

{<mtj>(’ : |:<intf>e‘+1 _<W’;j>é:| <0,f=Ln _1} =9 (5.64)

then there are no overlaps on resource r;.

When Equation (5.64) is not satisfied, the first resource with an overlap should
be detected and the time windows should be reinserted, starting from the resource
with an overlap all the way to the last resource of the sequence. A new time
window is inserted on the resource with an overlap by using Equation (5.59), only
this time index p is calculated according to the following relation

p= arg:n1n{< tj>(H

(5.65)
in out out ~ . .
|:< tj>/f+l —max(< tj>€ R tmi):| > Wy +28mj, i—>j,l=gq, n—l}
where ¢ corresponds with the last time window involved in the overlap, i.e.
_ in . in out > _ l
9= afg{nax{< o) L), (), J<o =1 -1] (5.66)

Since a new time window cannot be placed upstream of the time window ¢, in
Equation (5.65) only those time windows that follow after g are checked. When
time windows are reinserted on all resources they should be checked for overlaps
and the procedure repeats until a) there are no overlaps or b) overlap occurs on the

origin resource. In case a) the sequence O'ip is feasible and its weight is equal to the
destination resource-release time. In case b) the sequence O'ip is not feasible and its

weight is set to oo, hence, the sequence is removed from f‘.’i .
The described procedure gives a final form of time windows for the sequence

0'12 ={c,b,a} , as shown in Figure 5.14. It can be seen that this RS is feasible since

out

there are no overlaps and its weight is W/(O'|2)= ""t_, . As such, it proceeds to the
next iteration of string composition only when its weight is lower than the weight

of "6.

Manufacturing Systems Structural Properties in Matrix Form 195

Resource a 3a

in
t3 a

Resource b

Figure 5.14. Reinserted time windows with no overlaps

Example 5.3.1 (deadlock avoidance in FMRF — multi-AGV routing)

As an example of the dynamic deadlock avoidance we consider routing and
scheduling in a multi-AGV system shown in Figure 5.15. Implementation of the
time-windows approach for a dynamic multi-AGV routing problem is done in a
way that arcs are considered as resources that are used by the vehicles, which are
seen as parts passing through the system. The layout depicted in Figure 5.15
comprises 3 vehicles that have to execute sequences (pass particular arcs) in order
to move from one point to the other. The highest-priority sequence z; is executed
by vehicle 5 (V5) that carries pallets from an unloading station to a packing station,
vehicle 2 (V2) executes the medium-priority sequence 7, and vehicle 3 (V3) is
assigned to the lowest-priority sequence 7;.

Figure 5.15. A multi-AGV system layout

196 Manufacturing Systems Control Design

The shortest paths for all three sequences for a of single-vehicle system are shown
in Figures 5.16, 5.17. and 5.18. It can be seen that sequence z; and sequence 7;
have the same shortest path, only arcs are visited in reverse order. Figure 5.19
shows the final result of a dynamic deadlock-avoidance algorithm. It can be seen
that only the highest-priority sequence is routed through its shortest

path, '’ =35, 13,12, 11, 10, 9, 8, 7, 2, 1, 0}..

40
35 sequence 1
30
25
arc
20
15
———
5
0
0 5 10 15 20 25 30 35 40 45 50
time [s]
Figure 5.16. The shortest path for sequence x;
40
35 sequence 2
30
25
arc
20
15
10 ek
—
5
0
0 5 10 15 20 25 30 35 40 45 50
time [s]

Figure 5.17. The shortest path for sequence 7.

Manufacturing Systems Structural Properties in Matrix Form 197

40
35 - sequence 3
30
25
arc
20
15
-_
10
s -
0
0 5 10 15 20 25 30 35 40 45 50
time [s]

Figure 5.18. The shortest path for sequence 7;

40 -
35 — sequence 1
== m sequence 2
30 =.m-m- sequence 3
25
arc
20 -
.'. - .. -1
---._I "
15 g E RN
10 =
---%
5
0
0 5 10 15 20 25 30 35 40 45 50

time [s]
Figure 5.19. The final result of routing algorithm — all three sequences with no deadlocks

Other sequences are detoured to avoid head-on and deadlocks. Sequence 7, is
changed so that vehicle V2 takes arc 24 (instead of arc 9) after arc 8, and the final

result is *8° ={40, 38, 36, 8, 24, 17, 16, 15, 14, 35}. As we already mentioned
sequence 7; corresponds to reverse sequence 7;. In order to avoid vehicles head-on,
original sequence z; is changed to 6° ={0,21, 19, 18, 17, 16, 15, 14, 35}.

The presented method for dynamic deadlock avoidance is the core of the multi-
AGYV industrial environment supervisor [24]. The supervisor enables real-time
control and simulation of shop-floor layouts that may contain a number of
manufacturing cells and a number of AGVs that commutate between dynamically

198 Manufacturing Systems Control Design

determined starting and end nodes. Figure 5.20 shows simulation screenshots of
the system presented in Figure 5.15. Vehicles execute the sequences depicted in
Figure 5.19.

o.

o

| T I
T Y
[I=——=d=———]
] PP Y T
I o | e |
i e —
1 N [
1 I [T
N R —
|5 i =—==AI1]
[E=rs B I
[l o Ee |
e
s = =]
|| NPT | T A
o —
[=
|])
[=ty
|~
[N I O
[=]

~

Figure 5.20. Simulation screenshots of the system presented in Figure 5.15

The dynamic deadlock avoidance described herein may be seen as a variation
of a well-known label-setting algorithm. The difference lies in the fact that
standard label-setting algorithms proceed in the next iteration only with a dominant
(optimal) label while in our case all feasible sequences (labels) are carried to the
next step. In this way, a sequence that seemed to be the best choice in one iteration,
could be replaced by another sequence during the steps that follow, because of

Manufacturing Systems Structural Properties in Matrix Form 199

time-windows overlaps that may happen on its successors. Although this variation
increases the worst-case computational complexity, implementation of a multi-
AGYV industrial environment supervisor showed that for real shop-floor layouts the
computational time has the same order as standard label-setting algorithms (most
of the alternative sequences are eliminated at early stages of the calculation).

¢

5.4. A Case Study: Deadlock Avoidance in PLC-controlled FMS

In this section we demonstrate the MS supervisor design based on the matrix
controller and realized on the industrial PLC Simatic S7-216. The laboratory setup
is shown in Figure 5.21.

The setup contains two educational robots, Rhino XR-3 and Rhino XR-4 (XR3,
XR4), three belt conveyers (T1, T2, T3), one x-y transporter (XY), one carousel
(CR) and one gravitational buffer (GS). Two part types, 4 and B, are handled by
the system. Processed part types visit several resources on their way through the
system. A part 4 enters the system when it is put on the conveyer T1 (Figure 5.22).
When the part gets to the end of the conveyer, XR3 transfers it to the XY. Upon
the arrival at the opposite side of the transporter, the part is picked by XR4 and
placed on the conveyer T2, which carries the part to the output.

Figure 5.21. The setup of the laboratory MS (a two-robot material-handling cell)

200 Manufacturing Systems Control Design

jD%Rs'H

GS

XY

_
.
Nt
| ‘.. \ @

_|
-or—

T

Figure 5.22. A top-view layout of the laboratory FMS with designated parts paths

Likewise, a part B enters the system (Figure 5.22) when it is put on the
conveyer T3, which brings the part to its end point. Once the part is at the right
position, it is lifted by XR4 to the GS. When the part reaches the bottom of the
buffer it is removed by XR3 and placed on the CR. The CR rotates the part, which
is finally removed from the system by XR3. In our experiments, the capacity of the
buffer GS is 1, while the capacity of the carousel is 3.

We start the supervisor design with the matrix-model determination. From the
system layout and description, we may distinguish 11 operations, five on the part A
and six on the part B. These operations are carried out by eight resources. Robots
XR3 and XR4 are shared resources - XR3 has to perform three tasks; XR31 —
moving the part 4 from T1 to XY, XR32 — moving the part B from GS to CR,
XR33 — moving the part B from CR to the system output, while XR4 has two
operations; XR41 — moving the part 4 from XY to T3, XR42 — moving the part B
from T3 to GS. A set of jobs and set of resources are defined as J = {T1P, XR31,
XYP, XR41, T2P, T3P, XR42, GSP, XR32, CRP, XR33} and R = {XR3, XR4, T1,
XY, T2, T3, GS, CR}.

By identifying the relations among operations and resources, and the sequence
of operations, we can define the system matrices that describe the FMS behavior.

Manufacturing Systems Structural Properties in Matrix Form 201

ooooooOoooon oomO00000

omOoo00o00o
ooooms0OO0O0

F,=|ooooooooooo F,=|ooooomoo Fu=
ooooomooooo omoooooo
oooooomoooo oopoooomno
ooooooomooo mooooooo
oopooooomoo oopooooom
ooooooooomo mooooooo
oooooooooom oooooooog
mOoooooopooood
om0ooooopoooooo
oomOOO0O0pDOO0O0O
ooomOOOOO0OO0OO0 DOomOOOOOOOEON
oooomO0oOopooooon oooomOOoomO0o0O0
§,=(|oooooomoooooo omooooopoooon
V' |ooooooomoooon _|ooomooooooooo
OoooooooomOO00 Sr— ooooOomOoooOoOooo
ooooooopomoon ooooooomOo0oon
ooooooopooomO0 oooooo0OooomO00 S::DDDDDIDDDDDDﬂ
oooooo0opooOoO0OEO ooooooooooomg y (bopoooooooooom

First we find CWs by using Equation (5.1) and Gurel’s algorithm shown in Figure
5.3,

- —- o o o = o o
©c o~ o~ o o o
©c oo o o o o o
c oo oo o o ~
c oo o o o —~ o
o oo o o o o o
©c oo o o o~ o
c oo oo o o ~
- o 0o o o o o ~
©C = 0 O = O = =
—_—_ 0 O = O = =

There exist three CWs, two simple, C; = {XR3, CR} and C, = {XR3, XR4,
XY, GS} and one that is a union of these two, C; = {XR3, XR4, XY, GS, CR}.
The corresponding critical siphons and critical subsystems are given in a matrix
form;

010000000011 000000 1]
Se=[0 0010000107111 10010
0001 00000GO0TITI.]I 100 11
00000O0GO0O 0"
Jo=/0 1 100011000
0110001 1 0

From matrix F, we can determine the conflicting-rules vector x4 and the
dispatching matrix Fy,

202 Manufacturing Systems Control Design

x;=[0 1010001010710
01000000000 O0 O]
0000000O0O0T1O0O00O0

F,=(0 000000000010
0001000000000
0000000100000

A control vector has five components that participate in the prerequisite parts of
rules x,, x4, xg, X19 and x1,. A control function / is represented by a set of rules such
that the controlled system is free of conflicts and deadlocks. Since the critical
subsystem that corresponds to Cj; is the union of Jy(C}) and Jy(C3), only the content

of those two subsystems is checked, Ve (k) <mg(0)=4 and

Voes (k) <m,(0)=4. In the case of parallel conflicts of shared resources, a

priority is given to jobs on part path 4.

As described previously, in order to get the model that describes the system
dynamics, we have to determine the duration of each operation performed on the
parts. Measurements of the system-resources performances yield the durations of
operations and resource-release times that are expressed in Table 5.3 as the number
of sampling intervals required for the particular operation (in our case, the
sampling interval is Tq = 0.5 s).

Table 5.3. Operation times and resource-release times (# of sampling intervals)

resource T1 T2 T3 XY GS CR

operation T1P T2P T3P XYP GSP CRP

duration 70 42 32 16 2 24
release 2 2 2 22 2 2

resource XR3 XR4

operation XR31 XR32 XR33 XR41 XR42

duration 24 18 26 30 36
release 10 10 10 10 10

The next step in the system-controller design is virtual modeling and simulation
of the system with FlexMan, which is described in detail in Chapter 7. The results
of dynamic simulation are given in Figure 5.23. As one can see, conflicts are
successfully handled and the system is deadlock free.

When the required system behavior is confirmed by FlexMan, the PLC code of
the tested matrix controller can be generated and downloaded into the PLC. The
other possibility is execution of the control algorithm on a PC and communication
with the PLC through the OPC server [25]. One way or the other, the main benefit

Manufacturing Systems Structural Properties in Matrix Form 203

A
w
>
I I I I I I I I I I I I
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650
§
>
I I I I I I I I I I I I I I I
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650
bod
>
I I 1 1 1 1 L L L 1 1 1 1
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650
g —1__
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650
-
[y
>
I I I I I I I I I I I I I I I
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650
-
>
1 1 1 L L I I l 1 1 1 I I I I
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650
-
w
>
I I I I I I I I I I I I I I
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650
2
>
I I I I I I l 1 I I 1 1 1 1 1

0
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650

Figure 5.23. Utilization of resources attained by simulation of the system shown in Figure
5.21

of the matrix controller is its straightforward realization on standard industrial
programmable logic controllers (PLCs) or on specialized software, such as
FlexMan or Petri.NET, a software tool that is described in the next Chapter.
However, due to various types of physical interaction of a PLC and the
controlled system, which can result in the form of digital and/or analog signals,
serial communication links (RS232, RS485, ...) and local area networks
(PROFIBUS, MODBUS...), implementation of the controller requires not only

204 Manufacturing Systems Control Design

transformation of matrix model into the PLC code, but also data acquisition and
interpretation. Signals acquired from the PLC interface should be converted into
vectors u, y, v, and r.

The simplest case is the situation when each component of the system vector
corresponds to one physical (digital) input. This allows direct mapping of the
PLC’s memory and the system vector. On the other hand, when several physical
inputs take part in the creation of the system vector component, then a special
interface function is necessary to map those inputs with the system vector. The
same holds for the PLC’s outputs. The components of vectors v and r should be
mapped with digital outputs or the PLC’s communication modules. Again, there is
no general method for this step in the supervisor design. Relation one-to-one is the
easiest case and it permits direct connection of the job-start vector and the
resource-release vector with the physical outputs of the PLC.

In our case, information regarding the system status is acquired from the
sensors (Figure 5.24)connected to the PLC’s digital inputs shown in Table 5.4.

Table 5.4. Digital inputs of the PLC supervisor

Name Address Description
IR1 12.0 IR sensor — part at the beginning of T1
IR2 12.1 IR sensor — part at the end of T1
IR3 2.2 IR sensor — part in GS
IR4 123 IR sensor — part at the end of T2
IR5 124 IR sensor — part at the end of T3
IR6 12.5 IR sensor — part at the beginning of T3
IR7 10.2 IR sensor — part on XY
mark3 O 1 11.0 XR 3 ctrl output 1 (status of XR3)
mark3 O 2 1.1 XR 3 ctrl output 2 (status of XR3)
mark3 O 3 1.2 XR 3 ctrl output 3 (status of XR3)
mark4 O 1 10.0 XR 4 ctrl output 1 (status of XR4)
mark4 O 2 10.1 XR 4 ctrl output 2 (status of XR4)
SW_1 12.6 switch 1 — part on CR
SW_2 10.5 switch 2 — XY at XR4
SW_3 10.6 switch 3 — XY at XR3

In order to form vectors u, y, v. and r., these inputs are combined and
interpreted in an interface function. A part of this function, written in a S7-216
function block diagram, is shown in Figure 5.25 (we assume that the reader has a
basic knowledge of PLC programming, for more information see [26]). It can be
seen, for example, that v, components XR3 1 ¢, XR3 2 ¢ and XR3 3 c, which

Manufacturing Systems Structural Properties in Matrix Form 205

correspond to completion of operations (trajectories) XR31, XR32 and XR33 are
comprised of signals from three digital inputs, 11.0, 11.1 and I1.2. The other
example is component XYP_c, calculated in Network 12, which is obtained as the
logical AND of signals from switch 2 and infrared sensor 7.

SW_1
i XR3
IR6 i
IR4 R SW_3 IR2
l:
IR7
GS
SW_2 XY
IR5 B
T3 b IR
T2 XR4 ™

Figure 5.24. Sensor positions in the laboratory FMS

A similar function exists for interpretation of the matrix controller requests for
tasks, which are determined as components of vectors vy and r,. The PLC outputs
are described in Table 5.5 and part of the interpretation function is shown in Figure
5.26.

Hetwork 12

SW_2 AND WP _e
IR7

Hetwork 13

mark3_0_1-0 AND ~+R3_1_¢
mark3d_0_2-c
mark3_0_3=—

Hetwork 14

mark3_0_1¢f AND -%R3_2 ¢
mark3_0_2=—
mark3_0_3 -

Hetwork 15

mark3_0_1-0 AND -+*R3_3_¢c
mark3_0_2 =
mark3_0_3=—

Figure 5.25. A part of the digital inputs interface function realized in FBD

206 Manufacturing Systems Control Design

Table 5.5. Digital outputs of the PLC supervisor

Name Address Description
mark4 1 1 Q0.0 XR 4 ctrl input 1 — trajectory coding
mark4 1 2 Q0.1 XR 4 ctrl input 2 — trajectory coding
mark3 I 1 Q1.0 XR 3 ctrl input 1 — trajectory coding
mark3 I 2 Ql.1 XR 3 ctrl input 2 — trajectory coding
mark3 1 3 Q1.2 XR 3 ctrl input 3 — trajectory coding
Network §
WMOV_W
TIP_s AND EN ENOF=>|
16#0022 =N OUT=M_F_par
Ve
1
M_F
8
1=k
crd_def
——den |
TI_A
1
T1_an

Hetweork 10

wR3_t_s={_ o] [E]
1=l

Figure 5.26. A part of the digital outputs interface
function realized in FBD

The start of operation (robot trajectory) XR31 is executed by Network 10 that
sets (S) and resets (R) the PLC’s digital outputs connected with the robot
controller. On the other hand, Network 5, which is responsible for the start of
operation TI1P (transport of a part by conveyer T1), executes a serial
communication protocol (function cmd_def in our example) that sends a
command to the conveyer controller via RS232. It should be noted that Network 5
resets the component that corresponds to the availability of conveyer T1 (T1_A),
while Network 10 resets the component corresponding to robot XR3 (XR3_A).

Sometimes interface functions include not only logical operations but also
timers for signals delays and counters for calculation of critical subsystems
contents. These utilities can be included in the main control algorithm as well,
however, in that case each rule of the matrix controller cannot be directly

Manufacturing Systems Structural Properties in Matrix Form 207

transferred in the ladder diagram (LD) or the statement list (STL) network.
Realization of the matrix controller in STL on PLC S7-216 is given in Figures
5.27.

At each sampling interval Network 1 sets all the components of the control
vector to 1. Then in Networks 2 and 3 the controller checks if the critical
subsystems are full and resets the corresponding components of the control vector.
The following two Networks, 4 and 5, resolve conflicts so that priority is given to
the part 4 path and to the jobs according to Theorem 5.3.2. Once the control vector
is determined, PLC executes matrix-controller rules, which is done in Networks 6

/i

/ISUBROUTINE COMMENTS

/IPress F1 for help and example program
"

NETWORK 6
1
LD always_on

IIrules

NETWORK 7
1
LD always_on

IIrules

LPS LPS
NETWORK 1 /all control signals = TRUE 2 ?;AA 2 gi—f\
1 - =) -
LD always_on - T1P_s é g2
) ud1, 1 = XR4_1_s
S ud21 AR
S ud3 1 N
g Ao
! A PIB = XR4_2_s
NETWORK 2 /lcritical subsystem control é ;-F;SAS ;RD XYP ¢
1 - -
_ LRD A XR4_A
'&DW‘dfaOOv W A XR3_rel = XY r
= - & A IR7 LRD
uds, = XYP_s A XR4_1_c
- LRD A T2_A
NETWORK 3 /lcritical subsystem control A TP ¢ LD XR4 2 ¢
1 u Ao
A XR3_A
LDW= C201, +3 A udl gLD GsA
R ud4, 1 = XR3_1_s = XR4 r
)) LRD LPP B
NETWORK 4 /IXR3 conflict resolution A GSP ¢ A XR3 2 ¢
1 Ny s
A XR3_A A CR A
LD always_on A ud4 LD XR3 1 ¢
LPS = XR3_2_s A XY A
A TIP_c LPP oD
6 CIRe A XR3_A 0 XR33.c
A udl A CRP_c - XR3r
R ud4, 1 A ud5 -
LRD = XR3_3_s
A T1P_c T
A CRP.c
Q ﬂ‘;; 1 NETWORK 8 /Inumber of parts in the critical subsystem
LRD 5 5 o
2 g';g—c 0 XR4 2s
& o —10 LD XR3_2s
ud4, O XR4_1s
LPP LD rst_cnt
A T1P_c CTUD €200, +3
A CRP_c
A GSP_c NETWORK 9 /Inumber of parts in the critical subsystem
A ud1 Il
R ud4, 1 LD XR3_2_s
R uds5, 1 LD XR3_3_s
LD rst_cnt
NETWORK 5 /IXR4 conflict resolution CTUD C201, +3
"
LD XYP_c
A T3P_c
R ud3, 1

Figure 5.27. The matrix controller realized in STL

208 Manufacturing Systems Control Design

and 7. The rules can be read directly from the STL. For example, part of the code,
which is marked in Figure 5.27, corresponds to rule x5 that states that if operation
XR41 is completed (XR4 1 c) and resource T2 is available (T2_A) then operation
T2P should be started (T2P_s). Finally, the contents of critical subsystems are
determined in counters C200 and C201.

A graphical presentation of resources utilizations in a real system is shown in
Figure 5.28. The robots’ trajectories and idle periods are all shown in one graph,
while “1” on other graphs stands for a busy resource.

2 o (I"nll nllnll Al Al Al nll
g iy

0 LU UL REE Rl EE; SRR EREIE

10 50 , 100 150 200 250
% 05| [T 11 [T T]
X

0 ‘ il ‘

10 50 100 150 200 250
C 0.5t ‘ ‘ 1

0 [‘

1 50 100 150 200 250
" L ’

0 L L L

10 50 100 150 200 250
© 05f i

40 50 100 150 200 250
% 05 ‘ 1

L | |

40 50 100 150 200 250
% 05 g

0 L L L

10 50 , 100 150 200 250
[} L 4
B 05

0 ‘

0 50 100 150 200 250

t[s]
Figure 5.28. Resource utilizations in the real system
References

[1] Kumar PR, Meyn SP. Stability of queuing networks and scheduling polices, IEEE
Trans. Aut. Contr. 1995;40:251-260.

[2] Lu SH, Kumar PR. Distributed scheduling based on due dated and buffer priorities,
IEEE Trans. Aut.Contr.1991;36:1406-1416.

[3] Gray WS, Mesko JP. Observability functions for linear and nonlinear systems,
Systems Control Letters 1999;38:99—113.

(10]

[11]

[12]

[13]

(21]
(22]
(23]
[24]

[25]
[26]

Manufacturing Systems Structural Properties in Matrix Form 209

Byrnes CI, Martin CF. An integral-invariance principle for non-linear systems, IEEE
Trans. Aut. Contr. 1995;40:983-994.

Kato T. Short Introduction to Perturbation Theory for Linear Operators. Berlin:
Springer-Verlag, 1982.

Milnor J. Morse Theory. New Jersey: Princeton University Press, 1963.

Moore BC. Principal component analysis in linear systems: Controlability,
observability and model reduction, IEEE Trans. Aut. Contr. 1981; AC-26:17-32.
Scherpen JMA. Balancing for nonlinear systems, Proceedings of European Control
Conference 1993;4:1838-1843.

Xing KY, Xing KL, Li JM, and Hu BS. Deadlock Avoidance Controller for a class of
Manufacturing Systems, Proceedings of the 1996 IEEE International Conference on
Robotics and Automation 1996:220-224.

Gurel A, Bogdan S, Lewis FL. Matrix Approach to Deadlock-Free Dispatching in
Multi-Class Finite Buffer Flowlines, IEEE Trans. Aut. Cont. 2000;45;11:2086-2090.
Fanti MP, Maione B, Mascolo S, Turchiano B. Event-Based Feedback Control for
Deadlock Avoidance in Flexible Production Systems, IEEE Trans. Rob. Autom.
1997;13;3:.

Jeng MD, DiCesare F. Synthesis Using Resource Control Nets for Modeling Shared-
Resource Systems, IEEE Trans. Rob. Autom. 1995; RA-11:317-327.

Lewis FL, Gurel A, Bogdan S, Docanalp A, Pastravanu OC. Analysis of Deadlock
and Circular Waits using a Matrix Model for Flexible Manufacturing Systems,
Automatica 1998;34:9:1083-1100.

Xing KY, Hu BS, Chen HX. Deadlock Avoidance Policy for Petri-Net Modeling of
Flexible Manufacturing Systems with Shared Resources, IEEE Trans. Aut. Contr.
1996;41:2:289-295.

Lawley M. Deadlock Avoidance in Manufacturing Systems with Flexible Routing and
Mixed Capacity, IEEE International Conference on Systems, Man, and Cybernetics
1998;1:594-599.

Lawley M. Flexible Routing and Deadlock Avoidance in Automated Manufacturing
Systems, Proceedings of the 1998 IEEE International Conference on Robotics and
Automation 1998:591-596.

Smolic-Rocak N, Bogdan S, Kovacic Z, Petrinec K. Multi AGV control system,
Report on research and development assisted in 2004/2005 by SITEK S.p.a., 2005.
Broadbent AJ, Besant CB, Premi SK, Walker SP. Free ranging AGV Systems:
Promises, Problems and Pathways, Proc. of the 2nd Int’l Conf. on Automated
Materials Handling 1985;221-237.

Daniels SC, Real-time Conflict Resolution in Automated Guided Vehicle Scheduling,
Ph.D. thesis 1988, Dept. of Industrial Eng., Penn. State University, USA.

Desaulniers G, Langevin A, Riopel D. Dispatching and conflict-free routing of
automated guided vehicles: an exact approach, Int’l J. of Flex. Manuf. Sys.
2003;15:309-331.

Mohring RH, Koéhler E, Gawrilow E, Stenzel B, Conflict-free Real-time AGV
Routing, Proc. of the of 3rd Int’l C. on Applied Infrastructure Res. 2004;661-675.
Taghaboni-Dutta F, Tanchoco JMA, Comparison of Dynamic Routing Techniques for
Automated Guided Vehicle Systems, Int’1 J. Product. Res. 1995;33:2653-2669.

Qiu L, Hsu WJ, Huang SY, Wang H, Scheduling and routing algorithms for AGVs: a
survey, Int’l J. Produc. Res. 2002;40:745-760.

Petrinec K, Kovacic Z, Marozin A. Simulator of Multi-AGV Robotic Industrial
Environments, CD-ROM Proceedings of ICIT03 2003.

OPC Foundation at http://www.opcfoundation.org

Siemens AG, Simatic S7-200 Electronic manuals, 2000.

6

Petri Nets

In 1962 Carl Adam Petri from TU Darmstadt developed one of the most popular
DES modeling tools — Petri nets (PN) [1]. They provide a mathematical framework
for DES analysis, DES supervisory design and DES performance evaluation (static
and dynamic). More general than automata (any automaton can be represented as a
Petri net, while the opposite is not always true), Petri nets allow description of very
complex DES. However, in the case of large DES, PN models tend to become
immense and complicated for analysis. The main benefit of PNs is their graphical
nature that allows visualization of the modeled system. Namely, a Petri-net graph
directly embodies many structural properties of the system, which is not the case
when an automaton is used for DES modeling. As such, Petri nets are used in a
wide variety of applications, from communications to fault-tolerant systems. We
shall see later in the text that in the case of an MS modeled by PN, system
resources and part paths can both be recognized straight from a corresponding PN
graph. However, PN are very difficult to design for specific FMS of reasonable
complexity, and to modify if objectives, products, or resources change. A major
problem is that PN properties such as reachability must be verified for each given
system by using simulation. Moreover, to accommodate manufacturing design
algorithms in the PN framework, it is necessary to introduce colored PN,
hierarchical PN, generalized PN, multiple types of places, or other esoteric notions
that quickly go beyond the experience of the manufacturing engineer and
invalidate most PN analysis techniques.

We start this chapter with basic definitions and properties of PNs, followed by
a description of MS modeling by Petri nets [2], [3]. Introduction of control places
in an uncontrolled PN model of the system is presented next, together with a linear
PN controller based on p-invariants. In Section 6.3 we describe the relation
between PN- and matrix-based modeling of MSs. At the end of this section a PN
simulation tool used throughout the chapter is presented (the tool is available for
download).

212 Manufacturing Systems Control Design

6.1 Basic Definitions

A short preamble to PNs and some of their properties have already been given in
Chapter 1. In this section we give formal definitions of terms used in the remainder
of the book.

A PN is represented by a directed bipartite multigraph containing two types of
nodes, places (drawn as circles) and fransitions (drawn as bars or rectangles)
connected with directed arcs. Arcs, labeled with their weights, can join only
certain types of nodes. In some applications an arc with weight w is replaced with
w parallel arcs with weight 1 (Figure 6.1). We say that the PN is ordinary if all its
arcs have weight equal to 1. Usually, for convenience, arcs with weight 1 are not
labeled.

A particular property that differentiates a PN from an ordinary graph is a
marking m, which assigns a non-negative integer to each PN place. A marking
m(p;) = [is characterized by / black dots (fokens) inside a circle representing place
pi- We say that p; is marked with [tokens. A marking vector m = [m(p,) m(p,) ...
m(p,)]" represents a PN state, which means that a state space of PN with » places is
described with all #-dimensional marking vectors.

The other property associated with place p; is its capacity K(p;), which refers to
the number of tokens that can be held by the place. Apparently, for practical
applications K(p;) should be bounded by an upper limit. When K(p;) < e for each
place in a PN, we say that the PN has a finite capacity, as opposed to an infinite-
capacity PN in which at least one place has K(p;) = e=. The PN is said to be safe if
Vpi, K(p) = 1.

The PN graph shown in Figure 6.1 has two transitions and 5 places with
marking m(p,) = 1, m(py) = 1, m(p3) = 0, m(ps) = 2, m(ps) = 0. There are 6 arcs
connecting these places with transitions. Their weights are w(py,t)=1, w(p,,t)=1,
w(t1,p3)=3, w(ps,tr)=1, w(ps,t,)=2 and w(t,,ps)=1. Place p is called an input (output)
place of transition 7 if w(p,f)=0 (w(z, p)#0). The same holds for the input (output)
transition ¢ of place p, i.e. w(t, p)#0 (wW(p,H)#0). A place (transition) that has no
input transitions (places) is called a source, and a place (transition) without output
transitions (places) is called a sink. In the PN shown in Figure 6.1 source places are
D1, p> and p4, while the sink place is ps. We say that a place p; and transition ¢ are
involved in a self-loop if w(p;,t;)#0 and w(t,p;)#0. A PN with no self-loops is called
pure.

Figure 6.1. An example of a PN graph

Petri Nets 213

Interpretation of places and transitions depends on the application, but in
general, places represent conditions required for the occurrence of a particular
event, for example, resource availability, parts or data readiness, efc. Transitions,
on the other hand, represent the occurrence of an event, such as the start of a
task/operation, release of a resource, step in a computation algorithm, efc. In this
concept the existence of a token in a place is understood as a fulfillment of the
condition represented by the place. Since a place can hold more than 1 token, their
presence in the place can be taken as the number of processed parts, the number of
customers in a queue, the number of available resources, etc.

A mechanism that changes a PN state (marking) is described with two simple
firing rules given in the following definitions.

Definition 6.1.1 (enabled transition): We say that transition ¢ is enabled if each
input place p of ¢ is marked with at least w(p,f) tokens.

Definition 6.1.2 (firing of transition): An enabled transition 7 will fire if the event
that it represents occurs. In that case i) w(p,f) tokens are removed from each input
place p of ¢, and ii) w(¢, p) tokens are added in each output place p of 7.

Here we should make an important remark regarding the last definition. In the
text that follows we assume that as soon as a transition is enabled it fires, meaning
that all conditions for the occurrence of an event represented by a particular
transition are modeled and included in a PN graph.

Firing of transitions in PN graph is shown in Figure 6.2. Initially, (a) transition
t; is enabled since w(p,,t))=m(p;)=1 and w(p,,t;)=m(p,)=1. On the other hand,
w(ps,t)>m(p;)=0 and w(p,,t,)=m(p4)=2, hence, transition #, is not enabled. When #
fires (b) one token is removed from each input place, p; and p,, and 3 tokens are
added to output place p; as w(t,p;)=3. Now w(p,t)>m(p;)=0 and
w(pa,t1)>m(p,)=0, thus ¢, is no longer enabled, while 7, becomes enabled since
w(ps,t)<m(p;)=3 and w(pa,t,)=m(p4)=2. Firing of 7, (c) removes one token from p;
and two tokens from p,, and adds one token to ps.

Figure 6.2. Firing of transitions in a PN graph

214 Manufacturing Systems Control Design

In order to be able to analyze the evolution of tokens in PN as well as PN
structural properties, we have to define a mathematical framework behind the PN
graph. A formal definition of a PN is given next.

Definition 6.1.3 (Petri net): A Petri net is a 6-tuple, PN = {P, T, I, O, M, my},
where,
P={p1, p2, p3, ..., pm} — a finite set of places,
T={u,t), ts, ..., t,} —a finite set of transitions,
I: PxT — {0,1} — an input incidence matrix — relates places to transitions,
O: T xP — {0,1} — an output incidence matrix — relates transitions to
places,
M:1,O— {1,2,3,... } —is a weight function,
m, — initial value of the marking vector m: P — X.

According to the definition, for the PN graph given in Figure 6.2, one has

T
P={p\, Py, D3, P4» Ps}, T=1{t;, 15, my=[1 1 0 2 0]
1 1.0 0 O 001 00O
1= ’O:
0 01 10 00 0 01

M|l 100000300
1001 2000001

Now, let us see if we can write a PN driving mechanism, described by
Definition 6.1.2, in the form of algebraic equations. As already explained, firing of
t; in the PN shown in Figure 6.2, changes the marking of places py, p, and p;, while
firing of #, changes p;, p4 and ps. For place p; we can write

my (p3) =my_ (p3) + Wty p3) -t = W(Ps, 1) 1

where £ is a firing step. When ¢ fires in step £, then #;=1, otherwise #;=0. For k=1
(firing of #,) the above equation becomes

my(p3)=my(p3)+w(ty, py) -t —w(ps,ty) 1
=0+3:1-0-0=3

which corresponds with case b) in Figure 6.2. Generally, a PN place could have
several input and output transitions, thus,

m(p;) =m_(p;)+ Z w(t;, p;) 1 = Z w(p;t;)t 6
;€T t;eT (1)

or in vector form

Petri Nets 215

m,=m, +W't (6.2)

where W is an incidence matrix with w; = w(t,p;) — w(p;,t;), and t is a transition
vector. It should be noted that W = O — I for an ordinary PN. A transition vector t
is composed of non-negative integers that correspond with the number of times a
particular transition has been fired between markings m; and m;_;.

Relation (6.2) is called a PN state equation or PN marking transition equation.
Its similarity with recursive matrix model (3.12) is apparent. We shall discuss this
issue in more detail in section 6.3. By using a PN state equation we can
mathematically formalize the firing of transitions in the PN graph shown in Figure
6.2,

— Te _
m =m,+W't, =

— Te _
m,=m +Wt =

S N WO O oo =
Lo
S =

— O N O O o N W o o

We say that the marking (state) my, is reached from my by firing sequence o =t, ,
denoted m, [0 >m,. The concept of reachability in PN is very important and we

return to this issue later on. It should be noted that the firing sequence o is only
the sequence that can be fired in the PN depicted in Figure 6.2. If we change the
initial marking of that PN as shown in Figure 6.3, then both transitions, #, and #,,
are enabled and the question is which one fires first? A PN cannot give an answer
to that question, that is, definitions of the PN and the PN graph do not specify firing
sequences, and thorough analysis of the PN requires examination of all possible
sequences.

216 Manufacturing Systems Control Design

Figure 6.3. Firing of different sequences in a PN graph

In our case, if ¢, fires prior to #, one has a sequence o} =#f, with m;=[0 0 4 2

0]" and m,=[0 0 3 0 1]". On the other hand, if #, fires first, then the sequence is
0, =t,t; withm=[1 10 0 1]" and m,=[0 0 3 0 1]". Although in both cases the

initial and final markings are the same, the movement of the marking vector in
state space depends on the firing sequence. This example shows that a supervisory
mechanism should be added in a PN model in order to obtain the required behavior
of the controlled system. Let us examine some properties of a PN before
proceeding in that direction.

Generally, PN properties are divided into two classes; those dependent on the
initial marking, called behavioral properties, and those independent of the initial
marking, known as structural properties. Since our main concern in supervisory
design is deadlock prevention, we start with the definition of /iveness property.

Definition 6.1.4 (liveness): Petri net PN with initial marking m, is /ive if there
exists a firing sequence such that any transition in the PN can be fired from any
marking reached from m,.

The notion of liveness is closely related with deadlock and circular blocking,
i.e. live PN is deadlock free. As liveness guarantees that there always exists a
sequence that fires all transitions in the PN, a system whose model is live PN
cannot get into deadlock. The PN shown in Figure 6.4 is live, while those depicted
in Figures 6.2 and 6.3 are not.

Petri Nets 217

Ps

Figure 6.4. An example of a live PN

A liveness is a strong requirement, but in most cases very difficult to test. For
this reason liveness is categorized with respect to transitions, so instead of
checking if PN is live we consider each transition independently and say that the
transition is a live or a dead one. There exist 4 classes of live transitions: L/-live —
transition can fire at least once, L2-live — transition can fire at least k times, L3-live
— transition can fire an infinite number of times, and L4-live — transition is L/-live
for every m reached from m,. A situation in which all transitions in PN are L4-live
corresponds with liveness as defined in Definition 6.1.4. It has been shown in
Chapter 5 that in MRF systems one dead transition is source of the system
deadlock. Therefore, the PN of the controlled MRF system should be L4-live, i.e.
we require PN liveness according to Definition 6.1.4.

The other property that is essential in PN analysis has already been mentioned
reachability.

Definition 6.1.5 (reachability): A marking m; is reachable from marking m; if there

exists a firing sequence 0; =1,1, ...1,, such that it leads a marking vector from m;

to m;. We write m; [0; >m ;.

A set of all markings reachable from m; is denoted by 9%m;). Reachability is
determined by a listing of all markings (states) that can be reached from a
particular, usually initial, marking. Firing of enabled transition(s) produces new
markings and each new marking generates even more markings. Evidently, this
kind of analysis could lead to enormous number of states and it is limited to a PN
with a relatively small number of places.

Reachability analysis of a PN results in a graphical structure called a
coverability tree. For bounded PN, which we consider herein, a coverability tree
becomes a reachability tree and it contains all reachable states of the
corresponding PN. A reachability tree for the PN given in Figure 6.3 is shown in
Figure 6.5.

218 Manufacturing Systems Control Design

[11120]
4 b

[00420] [11001]

lfz lﬁ

[00301] [00301]

Figure 6.5. A reachability tree of the PN from Figure 6.3

The tree is constructed starting from the initial PN marking by drawing an arc
for each transition that is enabled. As both transitions are enabled, two arcs
(branches) should be created; firing #; produces marking [0 0 4 2 0], while firing #,
leads to marking [1 1 0 0 1]. We proceed further by drawing arcs for transitions
that are enabled under newly obtained markings. The process continues until all
reachable markings are counted. If we treat markings as nodes then the obtained
reachability tree is actually an automaton representation of the considered PN and a
set of all firing sequences, L(m,), corresponds with the language generated by this
automaton. For the PN shown in Figure 6.4, an automaton equivalent to its
reachability tree is depicted in Figure 6.6. Represented in this way, the analysis
techniques used for automata can be used for bounded PNs as well. For example, a
reachability tree node with no output branches may indicate deadlock, hence, firing
of transition(s) that force undesired PN marking, corresponding to that node,
should be forbidden.

It is evident from the above brief introduction that reachability analysis offers
a solution to many questions posed for PNs. However, algebraic analysis, based on
state equation (6.2), is proven to be more convenient for PNs. Furthermore, matrix-
based modeling of manufacturing systems, presented in Chapter 3, has much in
common with the state representation of Petri nets. For these reasons here we close
our discussion on reachability analysis from the automata point of view and
proceed with a description of a reachability test based on the algebraic equation
(6.2).

[11100]
[01010]

[10001]

Figure 6.6. An automaton equivalent of PN from Figure 6.4

From Equation (6.2) we see that marking m, could be reachable from my if
there exists a transition vector t such that

Petri Nets 219

This equation is a necessary condition for reachability, that is, the existence of
solution t does not guarantee that m, is reachable from m,. What we know for sure
is that when Equation (6.3) has no solution in t then there is no firing sequence that
enforces my into my;.

An interesting result is obtained as a solution of the homogenous equation

wit=0 (6.4)

Since m,~m,;=0 transition vector t that satisfies Equation (6.4) comprises a firing
sequence that returns marking my, back to itself. Such a transition vector is called -
invariant. In close relation with t-invariant is the notion of reversibility.

Definition 6.1.6 (reversibility): A Petri net is said to be reversible if for any
marking m,; there exists a firing sequence o; such thatm; [o; >m,.

In practice, it is required for most manufacturing systems to exhibit cyclic
behavior. Petri-net models of such systems should be reversible, hence, checking
reversibility is an important issue for the systems we encounter in practice.

Another interesting PN structure, which plays a key role in the investigation of
deadlock, is the so-called p-invariant, a non-negative integer place vector p that is
a solution of

Wp=0 (6.5)

As an example of PN invariants we use the net shown in Figure 6.4. Its incidence
matrix is

The t-invariant is t = [1 1 1]%, and the p-invariants are p;=[1 00 1 0]", p,=[0 1 00
17" and ps=[0 0 1 1 1]". Of course, t=[g q g]" is also an invariant of this PN,
however, when structural properties are investigated then minimal invariants are of
primary interest. An invariant p (t) is minimal if there is no such invariant p, (t,)
that p,; < p; (¢,; < t;) for any vector component.

It is easy to show that the number of tokens in places that belong to p-invariant
is constant. Multiplying Equation (6.2) with p" from the left gives

p'm,=p'm_ +p W't (6.6)

220 Manufacturing Systems Control Design

By including Equation (6.5) in Equation (6.6), and having in mind that Equation
(6.2) holds for any &, we obtain

mek = meO = const. (6,7)

This equation is very important and actually confirms what we shall show later; in
a PN model of an MRF system p-invariants correspond with the resource loops
described in Section 5.1.2.

Let us now examine the PN shown in Figure 6.7. According to Definition 6.1.1
transitions t; and t; are enabled. However, place p3;, which has two output arcs, is
marked with only one token. Hence, firing one of these two transitions will disable
the other one. This situation is known as a conflict and it was thoroughly discussed
in previous chapters. Since we assumed that the transition fires as soon as it is
enabled, marking m(p;) becomes negative upon firing of t; and t;, which is not
allowed. Therefore, our prime concern in PN analysis is to prevent conflict.

Figure 6.7. An example of a PN with conflict

An occurrence of conflict is related to Petri-net persistency.

Definition 6.1.6 (persistency): A Petri net is persistent if for any two enabled
transitions firing of one does not disable the other.

This definition concludes the description of the basic behavioral properties of
PN. We continue with the presentation of properties that are determined by the PN
structure and do not depend on PN marking. First, let us extend the notions of
preset and postset to Petri nets:

op ={t|w(t, p) >0} —a set of input transitions of place p,
pe={t|w(p,t)> 0} — a set of output transitions of place p,
ot ={p|w(p,t) >0} —aset of input places of transition ¢,
te ={p|w(t, p) >0} — a set of output places of transition 7.

Petri Nets 221

This notation can be extended to sets so that, for example, for SCP one

haseS = U e p. A vector representation of a set of PN nodes remains the same as
peS

in previous chapters. To recall; a set of places (transitions) that correspond with
nonzero entries in vector s is called the support of s, S = sup(s). In the Petri-net
literature support is usually denoted as ||s|| . Next, we define special classes of Petri

nets, called marked graphs and state machines.

Definition 6.1.7 (a marked graph): An ordinary Petri net is called a marked graph
if VpeP,|ep|= pe|=1, i.e. each place has one input transition and one output

transition.

The Petri net shown in Figure 6.7 does not belong to that class since | p;e|=2>1,

while the one depicted in Figure 6.4 is a marked graph. It has been proved that a
marked graph is live if and only if each directed circuit in PN has at least one token
under initial marking my. This important result can be checked on the PN from
Figure 6.4. Three directed circuits exist in this PN, {py, ps}, {p2, ps} and {ps, ps,
pst, with initial marking me=[1 1 1 0 O]T. Therefore, m(p;)=1, m(p,)=1 and
m(p;)=1, i.e. exactly one token is provided for each directed circuit. From Figure
6.6 we see that firing sequence o =1 ,#;, which returns PN in its initial marking,

can be repeated an infinite number of times, thus, according to Definition 6.1.4, the
PN is live.

Definition 6.1.8 (a state machine): An ordinary Petri net is called a state machine
if Vie T,| ot |=| te |=1, i.e. each transition has one input place and one output place.

It is easy to check the liveness property of a strongly connected state machine.
Specifically, if initial marking m, of a strongly connected state machine has at least
one token then the state machine is live. This is a necessary and sufficient
condition for state machine liveness.

In the previous chapter we have studied in detail the importance that siphons
and traps have in MS analysis. The relation between an empty siphon and deadlock
was explained and analytical methods for siphon determination and deadlock
avoidance in MRF systems have been proposed. The definitions of siphon and trap
given in Section 5.1.3 can be directly applied in Petri nets. Explicitly, in a Petri net
a siphon is a set of places S such that every transition having an output place in S
has an input place in S. For a set of places in trap Q every transition having an
input place in Q has an output place in Q. Furthermore, the properties of these two
structures hold for Petri nets as well; once a siphon becomes empty, m(S)=0, it
remains empty for all successive markings. On the other hand, if a trap is marked
under some marking it remains marked under all successive markings.

There are numerous papers published in journals and presented at conferences
related to algorithms for siphon determination in PNs. Some algorithms are based
on linear inequalities, while others use logical rules or algebraic equations.

222 Manufacturing Systems Control Design

However, none of these methods can be directly applied to all classes of Petri nets.
Here we demonstrate a simple approach that checks each place in a PN and forms a
set of inequalities [4]. As an example, let us use the PN shown in Figure 6.8. We
start with the assumption that place p; is an element of siphon S. Then, according
to the siphon definition, every transition having p; as an output place should have
an input place in S. Hence, if p;€ S then pse S. For place p, one has that when p,e S
then p;eS or pse S sinceep, = pje = p,e={t,}. Checking of p;, ps and ps gives
the following rules; if p;€ S then p,e S or pse S, if p,e S then p,e S or pse S, if pse S
then p;e S and (p;€ S or pse S). This set of logical rules can be transformed into a
set of inequalities written as

-p+ps20
—Py+p+py 20
—p3+ Pyt ps 20
Pyt py+ps 20
—ps+p320
—Ps+ P+ 20

(6.8)

A solution of this system is a binary vector s = sup(S). For example, s; = [0 0 1
1 1]" satisfies a set of inequalities, thus, S;={ps;, ps, ps} is a siphon. Another
solution, s, = [1 0 1 0 1]" is also a siphon, however, this siphon contains p-
invariant and, as we mentioned in the previous chapter, it is not interesting for a
deadlock-avoidance supervisory design in MRF systems. It is interesting to note
that s3 = [1 1 1 1 1]" satisfies the above inequalities, i.e. the PN itself is a siphon
since it is comprised of two p-invariants.

The second method we present here follows the same reasoning as the approach
described above; all possible sets (combinations) of places in a PN should be
checked to see if they satisfy the siphon condition. This can be done in various
ways and herein we demonstrate a procedure based on a PN incidence matrix in an
ordinary PN [6].

Figure 6.8. An example of a siphon in a PN

Petri Nets 223

For an ordinary PN incidence matrix W = O — L. Hence, an element of W
obtains value from a set {-1, 0, 1}, with w;= 1 for p,e t;o, w;= —1 for p,c ot; and w;;
= 0 for p; {et; Ute}. If we assume that p; belong to siphon S, then for each w; =1
there must exist wy, = —1 with p,e S. However, when | r¢[>1 for some transition in
the PN, incidence matrix should be modified. From the PN shown in Figure 6.8 we
see that, although it has 4 transitions, we needed 6 logical rules to obtain
inequalities (6.7). This is due to the fact that each of transitions #, and #_has two
output places. To cope with this situation we modify the incidence matrix as

follows: each w; = —1 should be replaced with wf; =—7,, where »; = | #;»|. Then, for

an ordinary PN with m transitions and » places, set S = {p; | p,€ P} is a siphon if
and only if

< j =
;wlj <0 foralli=1,m 6.9)

For the PN depicted in Figure 6.8 the incidence matrix W and the modified
incidence matrix W" are defined as

1 0 0 0 -1 1 0 0 0 -1

-1 1 0 -1 1 . |2 1 0 =2 1
W = N W =

o -1 1 1 -1 0o -2 1 1 =2

0 0 -1 0 1 0 0 -1 0 1

As we have to check all combinations of places in PN we start with S={p,, p»}.
According to Equation (6.9)

W +w, =140>0
W+ Wy ==2+1<0
Wy +wy, =0+(=2)<0
Wy + Wy =04+0=0

Since the 1st row is greater than 0, set S={p;, p,} is not a siphon. We proceed with
S={p1, p3}, S={p1, p4}, and so on. For S={p,, p4} one has

W +w, =0+0=0
Wy + Wy =14+(=2)<0
Wy, +wyy =—2+1<0

Wy + Wy =0+0=0

224 Manufacturing Systems Control Design

thus S is a siphon. When all sets containing two places are checked, the procedure
continues with S={py, p,, p3} and other three-element sets. Applying Equation (6.9)

on S={ps, p4, ps} gives

W3+ Wy +ws =0+0+(-1)<0
Wiy +Way +Was =0+(-2)+1<0
Wiy + Wiy +Wys =14+14+(-2)=0

Wiz + Wiy +Wys =—140+1=0

i.e. S is a siphon, which confirms the result obtained from the set of logical rules
(6.8). Finally, the last set to be checked is S={p1, ps, p3, p4, ps}. Since the sum of
elements of each row in W is < 0 this set is a siphon.

The presented method can be easily converted into an algorithm. However,
direct realization is time consuming since the procedure is based on the so-called
“brute force” approach. On the other hand, for some classes of PNs, the method
can be modified in order to reduce computation complexity. We do not elaborate
on this issue in more detail since in MRF systems siphons can be determined by
implementation of the results discussed in Section 5.1.3, which we illustrate later
in this chapter.

There exist many interesting concepts in PN theory, such as complex-valued
tokens [11] or continuous Petri nets [12], which widen the usage of PNs in fields
that are beyond the scope of this book. However, two types of PNs, namely timed
[7] and colored [8] PNs, are commonly used in MS analysis and design, hence, we
conclude the basic definitions and properties of Petri nets with brief remarks on
these two groups of PNs.

Although the PN state equation (6.2) describes movement of marking vector m
in the state space, it does not cover the system dynamics. As we showed in Chapter
3, the concept of time is essential in performance evaluation of an MS. Therefore,
the time durations of the system tasks should be included in a PN model. This can
be done in two ways; we can associate time delays with PN places (p-timed PN) or
PN transitions (#-timed PN). Herein we present p-timed PNs.

In principal, we follow the ideas presented in Section 3.3. An additional
parameter, p-delay, denoted d(p)), is assigned to each place in PN. In general, d(p;)
is a real number (for a fuzzy timed PN see [9]), deterministic or stochastic, which
depends on the character of the modeled system. A p-delay is introduced in a PN in
the form of a diagonal matrix D[d;],x,, Which requires splitting of marking vector
m into two vectors, one representing all tokens that are available for further
propagation through the PN, the available marking vector m,, and the other
showing all tokens that are delayed, the pending marking vector m, [10].
Consequently, a place in a PN graph is split into two parts as shown in Figure 6.9a,
while a PN state equation obtains the following form

Petri Nets 225

_ T
m,; =m,; +W't
m,; =mg,; +D-mg ; (6.10)

t=/f(m, ;)

It should be noted that only the available marking vector m, is used for
calculation of enabled transitions. When the transition fires, the tokens are moved
into the pending vector m,, where they stay until the delay time of a particular
place expires. Then, the tokens propagate into m,;, where they may be used to fire
subsequent transitions. For marked graphs, model (6.10) can be transformed into
the max-plus form.

The dynamic PN state equation (6.10) gives the correct results only when each
place in PN has exactly one input transition. The reason is the same as the one
described in Section 3.3. That is, each input transition requires an additional delay
parameters, as shown in Figure 6.9b. In this case D is not a diagonal matrix and the
dimensions of vectors m, and m, are different. Model (6.10) becomes even more
complex when place p is not bounded and receives tokens with an input rate that is
faster than its delay time. As we already explained in the section related to the
modeling of the system dynamics, such a situation involves multiple clocks, i.e.
each token that enters a place is associated with its own clock. When the clock
expires a token is moved from m, into m,. In fact, when an MS is modeled by a
PN, pending marking vector m,, corresponds with vector m® in Equation (3.21).
Therefore, for deadlock avoidance in a p-timed PN both vectors, m, and m,, should
be considered.

mp)

m(p) NN)

m{p) mp) myip) m:AP)
a) b)

Figure 6.9. Splitting a place in a p-timed PN

Although this is not a topic of the book, it is interesting to mention the
application of timed PNs in data processing. If a token is considered as data
received from a sensor or some other device, then the time associated with a place
could be considered as temporal-information degradation. In other words, after
some time the information “value is decreased and confidence in firing of a
particular transition is reduced; if time expires, a token is removed from the place
and the transition is no longer enabled.

Colored PNs are generally used for modeling of DESs in which tokens
represent a particular property or type of processed part (customer) or an offered
service. Various properties (or types) are characterized by different colors or differ-

226 Manufacturing Systems Control Design

P
Ps
Pa

a)

Figure 6.10. Example of colored PNs

ent shapes of tokens. Figure 6.10a shows the PN model of a customer service
entry. Customers with different requests arrive into the system and each of them is
routed depending on the nature of the request. There are three types of requests,
marked with a circle, a triangle and a rectangle. Transition # is a source transition
and represents arrival of the customer. Firing of transitions #,, #; and #; depends on
the marking of place p; (input buffer); transition #, is enabled with a circle, # is
enabled with a triangle, and #, is enabled with a rectangle.

A variation of the same system is depicted in Figure 6.10b. In this PN,
transition #, is enabled with all three types of tokens, while each place accepts only
tokens of a specific type; place p, can receive only circular, p; only triangular, and
P4 only rectangular tokens. A propagation of different tokens through a PN could
be associated with arcs as well. One way or the other colored PNs offer a powerful
tool for modeling and analysis of complex and demanding systems. However, the
final PN graph and the underlying PN state equation can be very difficult to
understand.

6.2 Manufacturing Systems Modeling

In a PN model of an MS, described herein, places are associated with operations
and resources, while transitions represent starting and ending of operations and
tasks. Therefore, recalling the definitions given in Section 3.1, a set of places P =

5

P U Pl U PO, P =RuUJuU P, where R=uU R'is a set of
kell

resources, J = U J*is a set of operations, Fy = U Pok is a set of pallets, and T1
kell kell

is the set of distinct types of parts produced (or customers served) by an MS. As
we stated in Section 3.1, each part type has a predetermined sequence of operations

(except for FMRF) that starts with a raw part-in operation, JX

in € PI, represented by
a source place, and a finished product-out operation, J(]jut € PO, represented by a

sink place. We consider a source place as a token generator. That is, tokens appear
in a source place according to a specified function or stochastically. On the other

Petri Nets 227

hand, a sink place is considered as a drain, i.e. a token is removed from the sink
place immediately upon arrival. Pallets are used for carrying parts through the
system.

PN models of non-shared and shared resources are depicted in Figure 6.11. A
nonshared resource a) is represented with two places, R and J’g. A token in place R
marks the availability of a resource, while a token in place J%y denotes that the
resource executes the corresponding operation. The initial number of tokens is
equal to the number of parts that can be simultaneously processed by the resource.
A sequential shared resource b) performs more than one operation on the same part
type; each operation is represented by one place, while resource availability is
characterized with a token in place Rs. A parallel shared resource ¢) performs more
than one operation on different part types. Obviously, a shared resource that
executes some operations on the same part type and others on different part types
can be represented as a combination of models b) and c).

S ®

b)

Figure 6.11. PN models of nonshared (a), sequentially shared (b) and parallel shared (c)
resources

It is assumed that the resources shown in Figure 6.11 are released immediately
upon completion of an operation. Generally, this is not the case. A resource could
perform two or more operations, one after the other, as shown in Figure 6.12. In
this case the last operation to be performed is the one that releases the resource (in
our case resource R executes J*| and then J*y). Furthermore, it may happen that
one operation requires more than one resource. In the PN depicted in Figure 6.12
operation J*| requires resources R and R, in order to be performed.

In Chapter 5 we analyzed some properties of free-choice multiple re-entrant
flowlines. In the example that belongs to this class of systems and is shown in
Figure 5.6 some resources cannot be described with the PN models presented so
far. It can be seen that buffer B2, for example, receives parts from three machines
and distributes these parts to two machines. If one considers each input
individually, then the place representing the occupied buffer requires three input

228 Manufacturing Systems Control Design

transitions. Additionally, each output from the buffer is represented by one
transition. Thus, buffer B2 is modeled as shown in Figure 6.13. Each token in place
B2A stands for an unoccupied slot, while tokens in B2P represent parts held by the
buffer. This PN model is obtained by combination of the free-choice and merge
prototypes shown in Figure 6.14. An assembly operation, which is commonly used
in MS, could be modeled as a combination of several resource prototypes. Figure
6.15 depicts one of the possible configurations that describes the assembly of two
parts, a and b, in resource R.

Ra

Figure 6.12. A PN model of a nonshared resource with two operations in sequence and an
operation that requires two resources

Figure 6.13. A PN model of buffer B2 in the system shown in Figure 5.6

O“'\ ®

a) b)

Figure 6.14. A PN model of a free choice (a) and merge (b)

Petri Nets 229

Figure 6.15. A PN model of an assembly

When the last operation on part a, J%xi, is finished and part b is ready (operation
J°x, is completed), resource R takes both parts and creates a new part type ¢ by
execution of assembly operation J°g.

Based on the presented PN models one can conclude that, in general, physical
entities of an MS, machines, robots, conveyer belts, etc., could be identified
directly from the PN model. Still, there are examples where some parts of the
system, which in fact do not belong to the class of resources, are represented with
models shown in Figure 6.11. Such an example is the multi-AGV system depicted
in Figure 6.16. In this example, paths and crossing areas (sometimes called
blocking areas) used by vehicles are considered as resources. Figure 6.16 shows a
crossing area and its PN model that corresponds with a model of a shared resource.

vehicle is passing
path A (Jra)

crossing area

area is
unoccupied (R)

vehicle is passing
path B (Jrs)

path B

Figure 6.16. A PN model of a crossing area in a multi-AGV system

Having described resource prototypes, we can define the properties of a PN for
MRF systems:

e Vpe P',e pnpe=; there are no self-loops,

o Vke H,tlk enP'\J = and OIf NP \J =@ ; each part path has a well-
defined beginning and an end,

230 Manufacturing Systems Control Design

. VJl-k eJ, R(Jik)‘ =1and R(Jik) * R(Jilirl); each operation requires one and
only one resource and the same resource cannot execute two successive
operations,

e VpelJ ,| p 0| =1; there are no free-choice operations,
o Vi, |0t NJ | <1; there are no assembly operations,

e there exists at least one shared resource.

For MRF systems, for any reR, J(r)=reenJ=eernJ and
R(UJf)=Jf eenR=0eJf NR.

Let us now consider the assembly tree depicted in Figure 3.1. We start
construction of a PN model by assigning one place with each operation in the job
sequence, as shown in Figure 6.17a. Then, an extra place, representing an idle
nonshared resource, is joined with a place that represents an operation performed
by that particular nonshared resource (Figure 6.17b). Three places are added in the
PN model; MA, B and MB, representing drilling machine, buffer and grinding
machine, respectively. Next, shared resource(s), together with source (an input, PI)
place for parts entering the system, and sink (an output, PO) place for parts leaving
the system are added, as shown in Figure 6.17c, (the considered system has only
one shared resource, thus, one place, denoted R, is added). Finally, initial marking
is assigned to the PN model and transitions are denoted. As can be seen, it is
assumed that resources are idle. Each machine can process one part at a time, with
a buffer having two empty slots, and an input place with three parts waiting to
enter the system.

MAP RP1 BP MBP RP2

Figure 6.17. A PN model of a job sequence from Figure 3.1; (a) operations, inclusion of (b)
nonshared resources, and (c) shared resource together with input and output places

Petri Nets 231

The attained PN is pure and ordinary, with P = {PI, MAP, RP1, BP, MBP, RP2,
MA, MB, B, R, PO}, T'= {t, t,, t3, ts, t5, ts}, initial marking me=[3000001121
01", M=[O | I], W=0-1, and

1 000001 0000
01 000 O0O0O0OO0T1 0
001 0O0O0O0O0OT1 00

I=00010001000
000O0T1O0UO0O0O0T1 0
000001000 0 0]
[0 1.0 0000 00 0 0]
001 00010000
000 1 000O0UO0T10

0200001000100
00000101000
00000 0 0 0 0 1 1|

6.2.1 Petri-Net Controller

From the discussions in previous chapters it is clear that the notion of state is one
of the central points in the system theory. By using various modeling techniques
one is able to characterize the system behavior as movement of the state vector in
the state space. Then, specifications regarding system performance may be given in
the form of regions in the state space; some of these regions are preferred, while
the others are forbidden. Due to its ability to capture the structural properties of the
modeled system, the PN formalism is particularly convenient for implementation
of this approach in the DES analysis and design. By controlling firing of transitions
one can keep the system in the desired region of the state space, thus avoiding
illegal states. This can be done with insertion of control places in an uncontrolled
PN model of the system.

In this section we demonstrate how to add control places in a given PN, and
how to determine their initial marking, which depends on the structure of the
system and its initial state. Although many techniques for PN controller design
have been proposed in the literature, we limit our discussion to a relatively simple
approach based on p-invariants. Our main concern in PN controller design is the
same as in the previous chapters, that is, prevention of conflict and deadlock (the

232 Manufacturing Systems Control Design

PN controller should guarantee liveness). We assume that all transitions (or at least
those connected with control places) are controllable and observable.

First, let us study a conflict. We know that conflict in MS is related to the
shared resources. The occurrence of simultaneous requests from two (or more)
tasks that use the same resource must be handled by the supervisor, ie. the
decision should be made regarding a priority. One way to prevent conflict in the
PN model of a shared resource R, is to add a control place as an input to each
transition that belongs to set Rge, as depicted in Figure 6.18. Such a control place
does not have input transitions. In other words each place is a source that generates
tokens according to some control function, m(u,) = h(m). Evidently, each function
hi(m) should be defined so that markings of control places are mutually exclusive,
as for the matrix controller described in Section 3.4. Hence, the relation

must be fulfilled each time conflict occurs.

Rs

Figure 6.18. A conflict resolution in a PN, m(u,;) = h(m)

When control places are responsible only for conflict resolution, requirement
(6.11) can be satisfied directly by synchronization of two (or more) transitions
involved in a conflict, as shown in Figure 6.19. This solution is very restrictive
from the resource-utilization point of view since only one token is allowed to enter
the part of the PN within conflicting transitions (usage of only one control place,
uq;, will have the same effect). It should also be noted that initial marking of
control places may be a reason for a dead PN.

Once conflict is resolved we can concentrate on the deadlock avoidance.
Control of the number of tokens in a particular part of the PN is the main
mechanism in the deadlock prevention [5]. This is expected since analysis of the
relation between a deadlock and an empty siphon showed that the control strategy
should assure that at least one place belonging to the siphon is marked at any time.

Petri Nets 233

Figure 6.19. A conflict resolution in a PN by synchronization of conflicting transitions

Here we present a method that is proposed in [14]. The basic idea is to restrain
the number of tokens in subsets of PN places by using linear inequalities

L-m<b (6.12)

where L is an /x» integer matrix, / is the number of inequalities, # is the number of
places in PN, m is a marking vector of an uncontrolled PN, and b is an integer
column vector. Constraints (6.12) can be transformed into the set of linear
equations in matrix form

L-m+u,; =b (6.13)

where ug is the marking of control places added to an uncontrolled PN.
Implementation of Equation (6.13) requires determination of a) the incidence
matrix of closed-loop (controlled) PN, and b) initial marking of control places,
uy(0)= uy. First, we extend marking vector m in order to incorporate control
places, mg=[m uy]". This extension requires a change in the closed-loop PN
incidence matrix W, which becomes W =W W], where W4 is an unknown
incidence matrix that comprises information regarding connections of control
places with transitions of uncontrolled PN. Then, from Equation (6.5) it follows

We - P=[W Wy]-P=0 (6.14)

where P is a p-invariant matrix formed of p-invariant vectors.
Matrix equation (6.13) should be satisfied at any time, hence

m
L'mk+udk=[LI]'|: k}:bzconst. (6.15)
U

By comparing this equation with Equation (6.7) we see that each row of matrix [L
I] in fact represents the p-invariant of a closed loop PN, i.e.

234 Manufacturing Systems Control Design

T
{LI }P (6.16)

Including Equation (6.16) in Equation (6.14) yields
LT
[W W]] =0 (6.17)

which provides the relation for calculation of Wy,
Wy =-W-L' (6.18)
Initial marking of control places can be directly obtained from Equation (6.13),
L-m;+u4,=b = w4y =b-L-m, (6.19)
This result shows that a supervisor will impose constraints (6.12) only for those
initial markings that give ug>0, since fulfillment of Equation (6.19) implies L-m,
<b.
Example 6.2.1 (p-invariant-based PN controller)
We demonstrate p-invariant controller design on the workcell shown in Figure
2.12. A PN model should be developed based on a description of the system given

in Example 2.2.1. First we identify the set of operations required for production of
parts a and b. The PN model of both sequences is depicted in Figure 6.20.

Pla i RP1 b MAP b RP2 4 POa
Plb I3 MBP 3 RP3 & POb

Figure 6.20. Operations sequences for the workcell shown in Figure 2.12

The next step in PN modeling is allocation of resources. The PN graph shown
in Figure 6.21 is obtained by using resources prototypes described in the previous
section. It is worth noting that the obtained PN model replicates a structure of the
system, which is not the case with automaton representation of the same workcell
(Figure 2.17). The shared resource in the system is robot R, which executes three
tasks; two on part a path and one on part b path. It is assumed that both machines
have the same capacity of one part at a time.

Petri Nets 235

Figure 6.21. A PN model of the workcell shown in Figure 2.12

The attained PN belongs to the MRF class. It is pure and ordinary, with P =
{PIa, PIb, RP1, MAP, RP2, MBP, RP3, MA, MB, R, POa, POb}, T = {t;, t,, t3, ts,
ts, ts, t7}, initial marking my=[43 000001110 01", M=[O | 1], W=0-I, and

1 00 0 000O0O0T1 00
001 000O0T1O0UO0O00
0001 00O0O0UO0T1O00
I=[0 0 0 01 000 0 0 0 0
01 00 00O0O0T1 000
000001 0O0O0T1O00
00000 0O 1 000 0 0]
[0 0 1.0 000 00 0 0 0]
0001 0O0UO0OUO0OO0OT1 00
000O0T1O0UO0OT1UO0O0O0 O
O=[0 0 00O O OO O0T1 1 0
000O0O0OT1UO0OO0OO0O0O0 O
000O0O0OGOTIOTLO0O0O0
(0000000 O0O0 1 0 1]

236 Manufacturing Systems Control Design

The system analysis, given in example 2.2.1, confirmed the existence of
operation sequences that can lead the system to deadlock, which corresponds to the
situation when both machines are processing parts while the robot carries part a.
Inspection of the PN shown in Figure 6.21 reveals the existence of critical siphon
Sc={RP2, RP3, MA, R} (one of the previously described methods for the siphon
detection could be used for this purpose). A constraint that should be enforced by
the supervisor must provide that m(S¢) > 1 at any time. Relation (6.12) attains the
form

L-m=b
where L=[000010110100]andb=[1] (note that L. = sc with sup(sc) = Sc).
One control place is required since there is only one constraint. Its initial
marking is obtained from

Matrix Wy is calculated from

W,=W-L' =
o
0
_ o] o -
-1 0 1 0 0 0 0 0 0 -1 00 -1
0 0 -1 1 0 0 0 <1 0o 1 0o|l||]o
0 0 0 -1 1 0 0 1 o -1 0 of| ||
=lo 0 0 0 -1 0 0 0 o 1 1 0|0
0 -1 0 0 0 1 0 0 -1 0o 0o|l||]o
0 0 0 0 0 -1 1 0 1 -10o|l||]o
L0 0 0 0 0 0 -1 0 0 1 0 1] (1) L0
0
0

As a result, the control place has transition #; as an output, and transition #; as
an input. The controlled PN is depicted in Figure 6.22. It can be seen that the
control place is blocking transition #, when one token is remaining in siphon Sc.
Since #; draws tokens from the siphon, this mechanism prevents the siphon from
becoming empty. Actually, control place uy limits the number of tokens in places
RP1 and MAP since these two places, together with ug, form p — invariant {RP1,

Petri Nets 237

Figure 6.22. Controlled PN model of the workcell shown in Figure 2.12

MAP, uy}. This detail is important for deadlock prevention and resources
utilizations in MRF systems.
*

Two issues, concerning siphon control and inclusion of control places in an
uncontrolled PN, have to be addressed. The first one is related to observability and
controllability of transitions. Each constraint stated in Equation (6.12) requires one
control place that receives tokens from and dispatches tokens to transitions of the
uncontrolled PN. This mechanism is feasible only when transitions that belong to
ey, are observable, and those belonging to uge are controllable. Constraints that
generate such control places are called admissible. The admissibility of constraints
can be tested by the following relations

W, -L'>0

W, 1T =0 (6.20)
where W, is an incidence matrix containing rows corresponding to uncontrollable
transitions, and W,, is an incidence matrix containing rows corresponding to
unobservable transitions.

The second problem related to inclusion of control places in an uncontrolled
PN lies in the fact that new places could generate new siphons. Therefore, the
above method for siphon control, as well as many others, is based on an iterative
procedure, i.e. realization of one constraint from Equation (6.12) could generate
new constraint(s). More details regarding an iterative algorithm and requirements
for its completion can be found in [13].

238 Manufacturing Systems Control Design

6.3 Relation Between Petri Nets and Matrix Form

In Chapter 1 it was mentioned that system matrices are closely related with Petri
nets. Actually, as we shall demonstrate in this section, there is a direct relation
between these two mathematical formalisms. This is expected since both tools are
used for DES analysis and controller design.

The logical state vector x in the matrix-based approach associates logical
conditions, in the form of availability of resources and parts, with consequences in
the form of actions taken upon fulfillment of conditions. According to Definitions
3.1.2 and 3.1.3 matrices F, and F, capture conditions, while matrices S, and S; are
responsible for actions. If we correlate components of the logical state vector with
transitions in an ordinary and pure PN, then the system matrices can be directly
associated with the arcs connecting transitions and places, as shown in Figure 6.23.

R R Pl F,
FI’ Sr O_"
PO F,
S

JaR FV SV JaR

Figure 6.23. Relations between PN arcs and the system matrices

Each entry “1” in the resource-requirements matrix F; is associated with an arc
connecting a place, representing resource availability, with the corresponding
transition; 1s in the resource-release matrix S, express the connections between PN
transitions and places that hold tokens when resources are idle. Correspondingly,
1s in matrices F, and S, represent arcs connecting transitions and places associated
with operations executed by MS resources. The input matrix F, portrays output
arcs from input places, while output matrix S, depicts input arcs to output places.
Since we assume that input places are sources and output places are sinks, matrices
F, and S, are null matrices, F, =S, = [0].

As a result, PN input and output incidence matrices can be obtained directly
from the system matrices,

1=[F, F, F, F]=F

o=[s, S S/ sj]=s' (6.21)

Even though I and O matrices define the form of a PN, they do not provide
consistent and straightforward information regarding the structure of the modeled
MS. By partitioning these matrices in accordance with Figure 6.23 and Equation

Petri Nets 239

(6.21), one is capable of distinguishing between places that represent MS tasks and
places indicating resources that perform these tasks. Moreover, the system inputs
and outputs can be clearly distinguished. Now, if we include Equation (6.21) in the
marking transition equation (6.2), then

m, =m,_ +(S—F)t (6.22)

which coincides with Equation (3.12).

It is evident that the PN model, consisting of resources prototypes described in
the previous section, can be constructed directly from the system matrices, which
we demonstrate in the example that follows.

Example 6.3.1 (determination of PN from the system matrices)

We use matrices that describe the system analyzed in the case study in Section 5.4.

ooooooooooo oomEO00000

Ooom0O0000O00
ooomO000D0O00

Fi=

nooooooog

E000000000000
omo0oOoooooooon
oos0oOoOoOooooooo
Oooos0000OO0000
oooomoO0Oooooo0o

oos0O0O0OOOOOEO®
oooOoEO0OOmO0O00O0

ooooooOEpOoOO0O00
oooOoo0O0OmOO0OO0OO00
Oooooo0O0OowOO0O00

OoE0000O0D0O00000
ooosO00O0OoOo0000
oooooOEO0O00O000

ooooo0O0O0OoOoEO0O00 oooooo0OmOO0O00O0
ooooooOooOmO0 ooooo000OoOoEO000 S: ooooomoopooooo
OooooooO0ooooOmOo ooooooooooomo y |DOoOD0O0OO0O0OpoooOo0O0m

The structural properties of the PN can be read from the system matrices. A
number of rows of F-matrices, as well as a number of columns of S-matrices,
defines a number of transitions, which in our case is 13. Matrix F, has two
columns, each of them corresponding to one input place, while the rows of matrix
S, match two output places. This information, together with the fact that F, (S,)
has no “Is” in rows (columns) in which F, (S,) has an element equal to 1, points
out that PN will have two part paths.

Let us denote part paths inputs as p;; and pp, and part paths outputs as p,; and
Po2- Furthermore, we denote places that stand for operations as pyj, pva, ---, Pvii
(there are 11 columns in F,), and places that represent resources availability as p;;,
P, .- P (8 columns in F,). Then, matrix element f,(1,1)=1 corresponds to
w(pi,t1)=1, f(2,1)=1 corresponds to w(py,t2)=1, f(1,3)=1 corresponds to
w(p,t1)=1, and so on. On the other hand, matrix element s,(1,1)=1 corresponds to
w(t;,pv1)=1, s«(1,3)=1 corresponds to w(f,p.,)=1, sy(1,6)=1 corresponds to
w(ts,po1)=1. Following the same reasoning one is able to determine all PN arcs.

240 Manufacturing Systems Control Design

The PN graph of the system described with given matrices is shown in Figure
6.24. The model has two part paths with one parallel and one combined shared
resource. Notations used in the case study are placed in parentheses.

P

Figure 6.24. PN model of the system described in the case study in Section 5.4

Petri Nets 241

It is apparent that the system analysis provided in Chapter 5 can be directly
applied to a PN, given that the attained PN belongs to the MRF class. In addition,
string composition presented in Chapter 4, can be used for calculation of circular
paths connecting PN resource places, resulting in circular waits (as we know,
critical siphons in MRF systems comprise circular waits). Alternatively, CWs can
be determined directly from a PN graph. Since each circular wait includes at least
one shared resource, one can move along PN arcs that connect resource places,
starting with a shared resource. When a tour completes in the starting place, the
executed path represents a circular wait. This can be illustrated in the PN in Figure
6.17c. The shared resource R has two output arcs, one connecting #, and the other
one connecting #5. Arriving in #, from R we can proceed along arc ,—>MA, and
then further along arc MA— #,. As there are no arcs that connect resource places
with #,, the path is completed. Evidently, the executed path is not circular. On the
other hand, moving along arc R— # we can move further to MB and then to B.
From transition #; we are returning to place R, which closes up a circular wait. Both
paths are shown in Figure 6.25 (note the similarity with the wait relation graph in
Figure 5.1).

Figure 6.25. Wait relations in PN model of the workcell shown in Figure 3.2

Determined by the string composition or directly from PN graph, circular waits
are starting points in the implementation of a PN controller, which could be based
on the analysis given in the previous chapter. All definitions and conclusions
developed therein can be applied to a PN by simple substitution of the logical state
vector x with the transition vector t. Such, for example, precedent rules become
precedent transitions, posterior rules becomes posterior transitions, and so on.
Additionally, PN marking vector m is equivalent to the state vector, purposely
denoted m, in the matrix model. Hence, most of the MS structures presented in
vector form and involved in matrix equations can be recognized in the PN. Let us
mention just two of them. The first one is a resource loop; Equations (5.2) and
(5.43) directly associate resource loops in an MRF system with p-invariants in its
PN model. The second structure is a critical subsystem; when rows of matrix L in
Equation (6.12) are built from critical subsystem vectors [voc 0,] determined by
Equation (5.25) and b=m(C), then the p-invariant controller, Equation (6.18), with
initial conditions, Equation (6.19), provides deadlock-free behavior of the system
(compare Equation (6.13) with Equation (5.48)).

242 Manufacturing Systems Control Design

6.4 Petri Nets Simulation and Implementation

There are two main groups of solution methods used in the system analysis.
Methods in the first group rely on the analytical approach, while methods in the
second group use simulation. Which method is used depends mainly on the
character of the system and the designer’s affinity. Although analytical methods
offer not only accurate results but also a deep insight in the system itself, usually
they suffer from complexity and may even become inapplicable in the case of large
systems. Very often instead of an original method its approximation is used. This is
particularly widespread in the case of analytical methods that find their
applications in industry. Engineers that work onsite with real-world problems are
enforced to apply approximations due to time restrictions posed on the system
commissioning.

With the rapid growth of the computational power and in an industry that is
cost competitive, simulation methods have become more and more popular. Their
progress can be tracked in two directions; one that is related to development of
faster methods that can adopt parallelism in the execution of mathematical
algorithms [28], and the other that deals with the presentation of the attained
results. In the previous chapters we introduced the matrix-based approach to the
DES analysis that is convenient for simulation, while the last chapter of the book is
devoted to the presentation of simulation results. In this section we give an insight
into PN simulation together with a description of the DES simulation tool
Petri.NET, which was developed in the Laboratory of Robotics and Intelligent
Systems at the Department of Control and Computer Engineering, Faculty of
Electrotechnics and Computation, University of Zagreb.

Petri nets, as a mathematical and graphical tool, are especially suitable for
simulation. Driven by a very simple mechanism, reduced to two basic rules, from
the algorithmic point of view they suggest a large diversity of solutions. This is
why an extensive number of PN simulation packages is currently offered on the
market [31]. Some of them are very sophisticated (and expensive) with features
that allow simulation and analysis of a whole corporation on the highest, corporate,
level, while others are intended to be used for small-scale systems (usually offered
free of charge).

Even though all of these tools have the same purpose their differences are
mainly in the operating system (OS), programming language, graphical user
interface (GUI), simulation capabilities and analytical capabilities.

Today, most of the tools work on a Windows platform, but only ten years ago
Unix systems were predominant together with DOS. Most of the early applications
were programmed in C and C++, but with development of Java, an interpreted,
object-oriented, portable, and multithreaded programming language, applications
became independent of OS. Some of them even evolve in a way that provides
writing of new features that can be incorporated in existing code [29]. At the same
time extensive use of XML speeds up data transfer. A further step ahead is the
appearance of open-source applications [30].

One of the benefits of PN is their graphical capability, which is extensively
used in GUI design and presentation of results. Almost all PN simulation tools are
more or less attractive and user friendly, GUI with drag-and-drop ability. Some

Petri Nets 243

kind of graphical editor is used for model definition with a token game as a result
of simulation. Generally, features such as backward simulation, step-by-step
simulation and pause, are integral parts of applications.

The main differences between PN simulation tools are their analytical
capabilities. Many of them do not provide any analysis of the PN model. Some of
them do provide analysis of the reachability tree (its construction and
representation) together with determination of liveness and boundedness.
Additionally, some of the simulation tools have statistics analysis, such as the
number of times a transition fires, the average number of tokens in a place, etc.
Investigation of structural properties, such as p and t invariants is rarely included in
applications.

In the rest of the section we describe the PN simulation tool Petri.NET. This
tool, written in .NET for a Windows platform, incorporates features that are typical
of most of PN simulators. Additionally, it comprises some specific properties
required for analysis MRF systems and implementation of MS supervisory
controller.

The main window of the Petri.NET GUI is shown in Figure 6.26. It comprises
three tabs (central part of the screen): PetriNet Editor, Description and Response,
and four dockable frames: Toolbox, Document Explorer, Properties and Rules
Editor.

Figure 6.26. The main window of Petri. NET

244 Manufacturing Systems Control Design

Toolbox is a special TreeView control containing all objects that can be
dragged to the editor: simple objects like places and transitions and more complex
resource prototypes. Document Explorer shows the objects tree of the currently
active PN model. It helps in navigation of the objects hierarchy. The properties
window is used to display and edit all properties of objects (places and transitions)
that are part of the Petri-net model. The properties of other objects (labels,
subsystem blocks,...) used in the application, can be displayed and edited as well.
The Rules Editor is used to add/edit/remove rules that are applied to the currently
active PN model. It contains a collection of rules that define the activities of the
control places included in the PN model.

A PN model is built with PetriNet Editor by a simple drag-and-drop principle.
Since Petri.NET is primarily designed for simulation and analysis of MS, the
Toolbox window contains five types of places: Input, Operation, Resource, Control
and Output. Some properties are common to all types (NamelD), while others are
specific and depend on the type of the place. An input, for example, as a source
place can receive tokens with predefined, fixed or stochastic, frequency. A
resource on the other hand, has a unique property related to release times (Figure
6.27).

Figure 6.27. Release Times Editor in Petri.NET

As we described in Section 6.2.1 there are two basic ways in which to control
how places are related with other places in the PN graph; they can receive tokens
according to some control function, or they can have input transitions. In
Petri.NET the control function has the form of rules and it is defined in Rules
Editor, depicted in Figure 6.28.

Figure 6.28. Rules Editor in Petri. NET

Petri Nets 245

A rule has the following syntax:
IF (Exprl AND Expr2 AND ... AND ExprN) THEN (Assignl AND Assign2
AND ... AND AssignN)

where:

Expr: NamelD1/constl op NamelD2/const2 op ... op NameIDN/constN
RELOP NamelDl1/constl op NamelD2/const2 op ... op
NameIDN/constN

Assign: NamelD = const

op — arithmetic operators: '+ or '-'
RELOP - relational operators: ==, |=, <, <= > >=

Upon definition of the model, Petri.NET can simulate time-invariant and p-
timed PN. Simulation can be tracked by the selection of a token game, while in the
case of p-timed PN a pie object that indicates the remaining time, appears inside a
place (Figure 6.29).

Figure 6.29. Pie objects in Petri.NET (indication of remaining time in a p-timed PN)

Once simulation is finished, by using the Response tab the user selects a type of
presentation of simulation results. Two types of presentations are available,
Spreadsheet and Oscilogram. When the PN model belongs to the MRF class,
Petri.NET provides basic system analysis; determination of circular waits,
transitions in conflict, the system matrices and the wait relation matrix, and
calculation of resources utilizations. All these options are available in Description
tab.

We conclude this section with a description of another Petri. NET feature, an
automatic PLC code generator (Figure 6.30), which makes this application
different from most PN simulation tools.

The PLC code generator executes two functions; first the PN model is
transformed in generic PLC code, and then a parser is used to create a file that is
readable by the target PLC. Currently, the code generator supports the Siemens S7-
200 PLC family, but due to its modular design, Petri.NET provides a very simple
method for insertion of additional parsers. Nevertheless, due to the large variety of
PLCs some other options should be investigated. The OPC standard is one of the

246 Manufacturing Systems Control Design

solutions, since almost all PLC manufacturers provide programming tools that
allow PLC to connect to an OPC server as a client. Then, Petri.NET as another
OPC client, would be able to exchange information with a PLC through the OPC

SCrver.

Figure 6.30. Main frame of the automatic PLC code generator in Petri. NET

Let us now return to the automatic PLC code generation. Transformation of an
ordinary PN graph in a ladder logic diagram is based on several rules as stated

below:

each place is associated with one PLC variable; a Boolean is assigned to
the place with K(p)=1, a counter is assigned to the place with K(p)>1,

each transition is associated with a Boolean variable and PLC outputs
connected with tasks that should be started when a transition fires,

a Boolean variable, associated with a place that represents a task
(operation, resource release), is “set” on a positive edge of PLC input,
connected with a corresponding task-completion sensor,

a Boolean variable, associated with a control place is “set” on a positive
edge of the variable that represents its input transition, or upon fulfillment
of its control function,

a counter, associated with a place that represents a task (operation, resource
release), is increased on a positive edge of PLC input, connected with a
corresponding task-completion sensor,

a counter, associated with a control place is increased on a positive edge of
the variable that represents its input transition, or upon fulfillment of its
control function,

a Boolean variable representing a transition is “true” when all conditions
for firing the corresponding transition are met,

a Boolean variable, associated with a place that represents a task
(operation, resource release) or control place, is “reset” on a positive edge
of the variable associated with its output transition,

a counter, associated with a place that represents a task (operation, resource
release) or control place is decreased on a positive edge of the variable that
represents its output transition,

Petri Nets 247

A slight change of these rules should be made in order to provide code
generation for a general type of a PN graph. We assumed that tasks-completion
sensors and tasks-start drivers are connected with PLC digital I/Os. Usually this is
not the case (see Section 5.4). However, there should not be a problem to follow
given rules even if places and transitions are associated with variables that are
changed by some communication protocol. An example of automatic PLC code
generation is given in the section that follows.

6.5 Validation of Implemented Petri Nets

For the last three decades PLCs have had a leading role in industrial automation.
From process industry to assembly lines they serve as a main part of various
control loops. Having a modular hardware concept and user-friendly programming
software, PLCs were, and still are, used for implementation of simple logic tasks as
well as for very complicated control schemes that includes thousands of signals
and requires a whole network of controllers.

As the requirements for control quality and safety increase, implementation of
complex control algorithms becomes a problem. Methods used by engineers who
transfer complex algorithms into a PLC program are not able to cope with the
complexity problem. Furthermore, most of the information related to the control
problem has an informal character, thus making PLC programming even harder.
This is why in recent years a lot of work has been done in the field of applying
formal methods in PLC programming. As stated in [15], three steps in the control
design process may be identified: a) formalization and reinterpretation, b) synthesis
and ¢) implementation. In the case study, given in Chapter 5, all three steps have
been demonstrated and, as a result, a matrix-based controller was successfully
implemented in PLC by using an automatic code generator.

Even though large efforts have been made in this direction there is still no
unique solution for transformation of a general PN in PLC code. One of the
reasons is, as we already mentioned, the large variety of PLCs. Although almost all
PLCs are programmed with standard programming languages, each of them has
some exclusive feature or particular programming syntax, which makes a general
solution very difficult to achieve. In the previous section we presented a PN
simulation tool with the ability to generate program code for PLC S7-216. In [16] —
[18] and [27] methods for implementation of PN in PLC by using structured text
(ST), an instruction list (IL) and a ladder diagram (LD) have been proposed. In
[19] SIMULINK®, high-level timed Petri nets and functional block diagram (FBD)
are used for design and analysis of control systems. All these methods offer more
or less straightforward and convenient procedures for PN transformation into
generic PLC code, but when it comes to target PLC code generation they lack
suitable solutions. It should be mentioned that in 1975 GRAFCET appeared as a
“missing link” between PN and PLC code [25], [26]. In 1988. IEC announced
“Sequential Function Chart” as an international standard for PLC programming
based on GRAFCET.

The other two problems encountered by PLC programmers are verification and
validation (V&V) of implemented algorithms. As today’s engineers apply many

248 Manufacturing Systems Control Design

various strategies in PLC programming, V&V procedures differ one from another
depending on approach, formalism and the method used in software development.
A V&V based on coupling of so-called interpreted Petri nets of the controller
(SIPN) and the process (PIPN) is described in [20]. In [21] it is shown how PLC
code, written in IL, can be translated into a Petri net. Then, by using standard PN
analysis (reachability tree, boundness check, etc.), the PLC program is checked for
possible errors. The other approach, which also deals with IL, is described in [22].
In [23] the condition/event (C/E) model of a process is connected with sequential
function chart (SFC) control software, thus making a closed-loop system. The set
of reachable states is then compared with the set of forbidden states providing
insight into system behavior under various conditions. Another model checker,
which is developed for LD control logic, is presented in [24].

In this section we present a method for verification and validation of PLC
control algorithms developed from PN models. Due to the existence of a direct
relation between PN and the system matrices, a matrix-based MS controller can be
tested as well. Based on super blocks, designed in SIMULINK®, and by using
MATLAB" Real Time Workshop (RTW), the method provides an efficient tool for
real-time investigation of various dispatching policies as well as the influence of
manufacturing system parameters on the behavior of the control system. This
approach is convenient for small-size PLCs, since their programming software
usually does not include online simulators.

The main components of the testbed are shown in Figure 6.31. Since the model
of the uncontrolled system is built in SIMULINK®, the PC should have installed
MATLAB® with RTW. Furthermore, a board with digital I/Os has to be included in
the PC hardware configuration. Inputs and outputs of a SIMULINK® model of an
uncontrolled process are connected to modules, which communicate with the 1/0
board.

PC N

MATLAB®

SIMULINK®

Digital /0
Board

Ve
PLC Interface
K——1/ Board
FBD and/or LD
-

Figure 6.31. Main components of the V&V testbed

Petri Nets 249

Since the levels of signals on the I/O board and PLC are different (TTL versus
24 V) the board sends/receives signals to/from PLC through an interface. A PLC
configuration mainly depends on the system to be controlled and the control
algorithms to be implemented. Complex systems with numerous states require
PLCs with high computational power and a large number of 1/O units.

The SIMULINK® model used for verification and validation of the control
algorithm is made of basic PN components (prototypes), which have the form of
predefined super blocks. There are four different prototypes: Input Place,
Nonshared Resource, Shared Resource and Output Place. Every super block is
determined by its inputs, outputs and parameters. Inputs of a super block are
associated with the PC I/O card and connected with the PLC controller outputs. On
rising edge of the PLC output signal an operation that corresponds with that signal
is started. Outputs of super blocks can be separated into two groups. The first
group comprises outputs that illustrate the state of the prototype, such as number of
parts that are currently processed and/or the number of idle resources. These
signals are used for online MS analysis. The second group includes logical outputs
(0 or 1), which are used by the PLC controller. These signals can be associated
with sensors planned to be installed in real MS. There are three types of signals:

e error — signal is set to “1” if an error occurs (machine failure, number of
WIP is negative, efc.),
resource available — signal is set to “1” if corresponding resource is idle,

e operation completed — signal is set to “1” if corresponding operation is
finished.

Super blocks that represent Input Place and Output Place are shown in Figure
6.32.

PIp
In1 eror p In1 POp
Part 2o

FO
Fl

Figure 6.32. Input Place and Output Place super blocks

As its name implies, Input Place super block describes the input of the system.
The superblock has one input and three outputs. Input “Inl” is a trigger signal;
transition from 0 to 1 decreases the number of parts in Input Place. Output “PI” is
an integer that represents the current number of parts in Input Place, while output
“error” is set to 1 if the number of parts becomes less than zero or larger than
maximum number of parts allowed. Output “PartAv” is set to 1 if the number of
parts in Input Place is positive, otherwise is set to 0. Input Place and Output Place
configuration masks are shown in Figure 6.33. The Input Place mask comprises
four parameters: “Initial condition” — initial number of parts in input place, “Limit”
— maximum number of parts allowed, “Period” — time delay (in seconds) between
parts arrival, “Range” - if “Random” is checked, then the time delay is a random

250 Manufacturing Systems Control Design

variable in the range between 0 and Range. In this case the value entered in
“Period” is ignored.

Output Place super block describes the system output. It has one input and one
output. Input “Inl” is a trigger signal connected with the PLC controller. Output
“PO” is an integer that represents the number of parts in Output Place. The initial
number of parts in Output Place can be defined in the configuration mask.

The super blocks that represent typical MS resources are shown in Figure 6.34.
The Shared Resource prototype is used to model the resource that performs more
than one operation, while Nonshared Resource represents a resource with one task
only.

Block Parameters:Pl |
P [mask]
’V'Suuce of parts in M5

Parameters

Initial condition
I] 1]
Lirnit
J20
Period
Jo
Range
|20
¥ Randam

0K | Camcel | Heb | epb |

Figure 6.33. Input Place and Output Place configuration masks

yi=a N SR1p
win Int (S1R star) ool

In1 QiR start) MAR
In2 (2R stat) AP
ermor p emor p
In3 (S1R release)POE 1 p
In2 QIR release) POEP poezk
RAP In4 ($2R release) . S

Nonshared resource

Shared resource

Figure 6.34. Nonshared Resource and Shared Resource super blocks

The super block that represents Shared Resource has four inputs, all of them
connected with a PLC controller:

Inl — input that starts operation 1,
In2 — input that starts operation 2,
In3 — input that starts resource release after operation 1,
In4 — input that starts resource release after operation 2.

Shared Resource super block has three outputs, generally used for MS analysis:

Petri Nets 251

e SRI —number of parts processed by operation 1,
SR2 — number of parts processed by operation 2,
e SA —number of available slots.

Besides these outputs, the super block has logical outputs connected to and used by
aPLC:

error — error signal,

POE1 —is set to “1” if operation 1 is completed,
POE2 —is set to “1” if operation 2 is completed,
RA —is set to “1” if resource is idle.

The Shared Resource configuration mask is shown in Figure 6.35. The
configuration mask has fields for definition of all parameters required for
simulation of the shared resource dynamics (p-timed PN, Figure 6.9). The duration
of operations and the duration of resource-release tasks can be set by the designer.
The initial number of parts processed in operations and the initial number of idle
slots are defined in a form of SIMULINK® vector. When a shared resource with
more than two operations is required, a new prototype may be designed by
following a simple procedure implemented a for two-operations shared resource.

Nonshared Resource super block has two inputs:

e Inl — input that starts operation,
e In2 — input that starts resource release,

and three logical outputs:

e error — error signal,
e POE -is set to “1” if operation on part is completed,
o RA —issetto “l1” if resource is idle,

Figure 6.35. Shared Resource configuration mask

252 Manufacturing Systems Control Design

all connected with a PLC. Two outputs used for MS analysis are:

e MR — number of currently processed parts,
e MA — number of available slots.

Nonshared Resources are configured through a configuration mask similar to
the one shown in Figure 6.35. Since Nonshared Resource has only one operation to
perform, the difference between two masks is only in the number of parameters
required for resource definition.

Example 6.5.1 (validation of PN implemeted in PLC)

We consider the workcell depicted in Figure 6.36. The workcell, comprised of
three machines and two robots, processes two part-types. Its PN graph with control
places is shown in Figure 6.37. The implemented control policy restricts the
number of parts in path a (control place ug;), and path b (control place ug) (we
leave thorough analysis of the system to the reader). Conflicts are resolved by
sequential execution of ladder diagram networks; when robot R1 part @ has priority
over part b, whilst robot R2 gives priority to part .

Since the PN is ordinary and pure, and all places, except control place ug,
initially have only one token, places are associated with markers in PLC memory.
Place uq; is associated with a counter. The symbol table is depicted in Figure 6.38.
As may be seen, markers M1-M3 are used for places, M4 is used for a control
signal ugp, M5 and M6 are assigned to transitions, while control signal ug; is
assigned to counter CO. We assume that each place corresponds with one PLC
input and one PLC output, i.e. the input and output interface functions are of the
form one-to-one (see the case study in Section 5.4).

Part A
input Part A

T EB e e
= (T

machine 1

bot 1
robo robot 2

machine 3

5 atrtli B]
i B

input

Figure 6.36. The workcell from Example 6.5.1

Petri Nets 253

Figure 6.37. Controlled PN of the workcell shown in Figure 6.36

Figure 6.38. The symbol table of S7-216 PLC for controlled PN in Figure 6.37

254 Manufacturing Systems Control Design

Metwork 1 part a amival

l 101
171

Metwork 2 RAF1 completed

— —+|

R1P1

MNetbwoork 3 MAP completed

(<)
1

[Tl

— "]

Mehwork 4 M2P completed

(s)
1

2P

Figure 6.39. First four networks of the ladder diagram subroutine for reading inputs

The PLC code for S7-216 is obtained by a Petri. NET code generator. Part of
the ladder diagram subroutine for digital inputs acquisition is shown in Figure 6.39.
As may be seen, a particular PN place is set to “true” on the positive edge of the
corresponding digital input. This action matches up with a token entering the place.

Upon completion of the input subroutine, the PLC starts to execute a subroutine
that calculates the (et) part of PN. A fraction of that subroutine is depicted in
Figure 6.40. By comparing this subroutine with the PN graph shown in Figure
6.37, conditions for firing the first four transitions can be clearly recognized from

the ladder networks.

()
1

Hetwork 1 transition #1 in

Metwork 3 tansition 30

M1FP b2
| |

Metwork 4 transition ¥4 in

Figure 6.40. First four networks of the ladder diagram subroutine for PN execution (et)

At the end of the PLC cycle, a subroutine that sets PLC outputs and resets
markers associated with PN places is executed (Figure 6.41). This action

corresponds with token withdrawal in the PN.

Fla Ri udi

1] L |
—1 | 1T 1
+0

Natwork 2 transifion 12 in

F1P1 bl tr2

1 | L 4

— | 1T \

Petri Nets

255

Metwork 1 transition t1 out
tr1 Fla
—)
1
Rl
R
1
Qo0
)
Metwork 2 transition £2 out
tr2 R1P1
— ()
1
hd1
—(r)
1
@01
—)
@02
—)

Figure 6.41. First two networks of the ladder diagram subroutine for PN execution (te)

As we mentioned, implementation of the proposed dispatching strategy requires
one counter for tracking the number of tokens in control place ug;. This counter is
realized in ladder network 5 (Figure 6.42). The positive edge of variable tr4
increases, while the positive edge of variable trl decreases the counter value,
which corresponds with activities in the PN graph.

The SIMULINK® model of the workeell is given in Figure 6.43. Super blocks
that represent resources are connected with the PLC’s inputs and outputs by using
MATLAB’s® RTW and Advantech PC I/O card.

Metwiark 5 control place ud1
trd

| | T

ud1
CTUD

+24py

Figure 6.42. Ladder network with counter for control place uy;

256 Manufacturing Systems Control Design

_..
<

04

-+

[FET]
a mamEsy

_.—E 1uig—

At} -
e > o
CpE vy -
(asraqn
L 2304 4 ruif-
. + 30diesea yes) gl
— seis
hrys yza) o)l
- vs
L) <
G o P TP cueas wasd o
74 fle— « i rus
Ld P
A,|_ =W
< Wi
@ os 4 304 m_zu_u.__L e
- zod |+ * 4
0d puneID 1o e sl
a1doL 374 51 Wi RS WD b =
- n_l|_W_
OTLdOTER : s
AEN 0d
2zd T | ml
_ﬂ.“mu 10T -
AN TH .
avsied Tid -+ 204 [CEECTRTEATE |
OI _.mpm.llw H mus L b
o-ﬁmuwu - WA CHE e b e
—{z304
Trdo v}
B oo |+ 30dteseom yus) gu) -
> ol >
agsped L 1B ws prys wzs) zui|-
e i TS queys wisd
- 304 (EeEmns und zul - I ug
ELETN B
a0 s N
__.Mwuwww__ - LRV IRTE S
B ey
caow ||| »
L0 1 1d

I Wy

Figure 6.43. SIMULINK® model of the workcell shown in Figure 6.37

Petri Nets 257

References

Petri CA. Kommunikation mit Automaten, Bonn: Institut fiir Instrumentelle
Mathematik, Schriften des IIM Nr. 2, 1962, 2nd edn:, New York: Griffiss Air Force
Base, Technical Report RADC-TR-65—377 1966;1.

Proth JM, Xie X. Petri Nets: A Tool for Design and Management of Manufacturing
Systems. Chichester: Wiley, 1996.

Zhou MC, Venkatesh K. Modeling, Simulation and Control of Flexible
Manufacturing Systems: A Petri Net Approach. Singapore: World Scientific, 1998.
Murata T. Petri nets: properties, analysis and applications, Proc. IEEE 1989;77;4:541—
580.

Kumar PR, Meyn SP. Stability of queuing networks and scheduling polices, IEEE
Trans. Aut. Contr. 1995;40:251-260.

Amer-Yahia C, Zerhouni N, El Moundi A, Ferney M. On finding deadlocks and traps
in Petri nets, System Analysis, Modeling and Simulation 1999;34:495-507.

Wang J. Timed Petri Nets. Boston: Kluwer, 1998.

Jensen K. Colored Petri Nets: Basic Concepts, Analysis Methods and Practical Use.
Berlin: Springer., 1992.

Pedrycz W, Camargo H. Fuzzy timed Petri Nets, Fuzzy Sets and Systems
2003;140:301-330.

Tacconi DA, Lewis FL. A New Matrix Model for DES: Application to Simulation,
IEEE Contr. Sys. Mag. 1997;0ctober: 62—71.

Desrochers AA, Deal TJ, Fanti MP, Complex-Valued Token Petri Nets, IEEE Trans.
Aut. Sci. Eng. 2005;2;4:309-318.

Alla H, David R. A modeling and analysis tool for discrete event systems: Continuous
Petri net, An Int. J. on Performance Evaluation 1998;33:175-199.

Moody JO, Antsaklis PJ. Supervisory Control of Discrete Event Systems Using Petri
Nets. Boston: Kluwer Academic Publishers, 1998.

Iordache MV, Moody JO, Antsaklis PJ. Automated Synthesis of Deadlock Prevention
Supervisors Using Petri Nets, Technical report of the ISIS Group at the University of
Notre Dame 2000, ISIS-2000-003.

Frey G, Litz L. Formal methods in PLC programming, Proc. of the IEEE SMCO00
2000;2431-2436.

Cutts G, Rattugan S. Using Petri nets to develop programs for PLC systems, Proc. of
Application and Theory of Petri Nets - Springer 1992;368-372.

Stanton MJ, Arnold WF, Busk AA. Modelling and control of manufacturing systems
using Petri nets, Proc. of 13th IFAC World Congress 1996;329-334.

Uzam M, Jones AH, Khan AH, Karimzadgan D, Kenway SB, A general methodology
for converting Petri nets into ladder logic: the TPLL methodology, Proceedings of the
Sth International Conference on Computer Integrated Manufacturing and Automation
Technology - CIMAT96 1996;357-362.

Baresi L, Mauri M, Monti A, Pezzé M. PLCTOOLS: Design, Formal Validation, and
Code Generation for Programmable Controllers, Proc. of the IEEE SMC’00; 2000.
Frey G, Litz L. Verification and validation of control algorithms by coupling of
interpreted Petri nets, Proc. of the IEEE SM(C98;1998:7-12.

Mertke T, Menzel T. Methods and tools to the verification of safety-related control
software, Proc. of the IEEE SMC’00;2000.

Canet G, Couffin S, Lesage JJ, Petit A, Schnoebelen Ph. Towards the automatic
verification of PLC programs written in Instruction List, Proc. of the IEEE SMC’00;
2000.

Kowalewski S, Preusig J. Verification of sequential controllers with timing functions
for chemical processes, Proc. of 13th IFAC World Congress 1996; 419-424.

258

[24]

[25]
[26]

Manufacturing Systems Control Design

Moon 1. Modelling programmable logic controllers for logic verification, IEEE
Control Systems;1994:14:6:53-59.

Baracos P. GRAFCET Step by Step, Famic Inc.,1992.

David R, Alla H. Petri nets and GRAFCET: Tools for Modeling Discrete Event
Systems. New York London: Prentice-Hall, 1992.

Lee GB, Zandong H, Lee JS. Automatic generation of ladder diagram with control
Petri net, Journal of Intelligent Manufacturing 2004;15:245-252.

Chiola G, Ferscha A. Distributed simulation of Petri nets, IEEE Parallel & Distributed
Technology 1993;1:3:33-50.

http://www.informatik.hu-berlin.de/top/pnk
http://parsys.informatik.uni-oldenburg.de/~pep
http://www.informatik.uni-hamburg.de/TGI/PetriNets

7

Virtual Factory Modeling and Simulation

Manufacturing systems (MSs) are assembled from elements such as robots,
machine tools, fixtures, buffers, rotary tables, belt conveyers, pallets, efc. that are
connected and supervised through a local area network. Using today’s
classification of systems, MSs can be treated as hybrid systems that contain a
mixture of various dynamic behaviors—continuous and discrete control loops,
Boolean variables related to process states, and discrete events, all embraced by a
usually hierarchical decision-making overhead. This means that an MS structure
contains both hard and soft technology, first focused on the product fabrication,
assembly and distribution, while later the focus is on the support and coordination
of manufacturing operations.

The MS’s hard technology is split into several levels — from the factory level
via the operating center, workcell and robotic station levels to a particular
manufacturing process level. The accompanying soft technology is also split into
several levels — from the highest strategy level, via lower planning, supervisory,
and manipulating levels to the basic manufacturing task level.

Today, virtual models provide a very inexpensive and convenient way for
complete factory design. Instead of building real systems, a designer first builds
new factory layouts and defines resource configurations in the virtual environment
and refines them without actual production of physical prototypes. Allowing clear
visualization of all potential problems caused by the layout, virtual modeling and
dynamic simulation of manufacturing processes has traced a completely new route
to analysis and design of MSs [1-3].

A factory layout design, physical modeling, control synthesis, performance
analysis, dynamic simulation and visualization of robotized manufacturing systems
have become much easier and more effective with specialized programs for virtual-
factory modeling and simulation. Some virtual-factory simulators originated from
the academia [4—8], but most of them are sophisticated products of leading robot
manufacturers and independent companies [9—11]. In this chapter we briefly
portray several tools such as Grasp2000 from BYG Systems Ltd., eM-Plant from
Tecnomatix, RobotStudio from ABB, CimStation Robotics from Silma, and
Cosimir from FESTO. Then we describe FlexMan — a virtual-factory simulator
with an integrated matrix-based MS controller [12].

260 Manufacturing Systems Control Design

A typical structure of a virtual factory simulator is shown in Figure 7.1. The
aim of virtual modeling is to create an experimental MS by combining a tentative
factory layout with existing or newly created virtual models of constituent MS
objects. Usually, MS objects and layouts can be loaded from the corresponding
libraries of objects and layouts, but they can also be imported from other CAD
software or created as new entities within the simulator itself.

Technical drawings
in CAD software

1
v v

Virtual modeling of Factory - lavout
objects and ry - ay
designer
resources
Library of virtual .
objects and Library of factory
layouts
resources

A 4 A 4

PHYSICAL MODELING: FUNCTIONAL TESTING:

- trajectory generation

- job-flow setup

GuI - collision detection - setting MS parameters
- trajectory inspection and - conflict and deadlock MS
modification analysis a control logic data

Resource
data (NC, —»
robots)

- generation and testing of
resource programs (jobs)
- factory - layout verification

- scheduling strategies
- simulation and visualization
- performance evaluation

l

Resource programs

MS controller program, sensor

- layout optimization, general

(uploadable) design guidelines

Figure 7.1. A typical structure of a virtual-factory simulator

MS simulation consists of multiple tasks that are highly interdependent. As
shown in Figure 7.1, there are two main groups of tasks related to physical
modeling and functional testing of the simulated MS. Physical modeling is mainly
concerned with resources that play an active role in the manufacturing process,
especially with robots and numerically controlled (NC) machine tools. The
trajectory generation for these resources is closely related to circumventing the
inverse kinematics problems (e.g. joint limits, singularity points), working-space
constraints, and particularly to prevention of collisions with surrounding MS
objects. In order to achieve reliable and precise collision detection, exact physical
measures of all virtual models and their postures are needed. Positive collision tests
lead to consecutive trajectory or factory-layout modifications. Physical modeling
allows the designer to generate and test single manufacturing jobs performed by a
corresponding MS resource, but the main goal of physical modeling is verification

Virtual Factory Modeling and Simulation 261

of the simulated factory layout. After successful validation of the simulated virtual
MS setup, most commercial MS simulators generate programs executable in
controllers of particular active resources.

Functional testing has a goal to connect a physical setup with the plan of the
simulated MS. As shown in Figure 7.1, functional testing is concerned with a job-
sequence definition, setting of MS parameters, conflict and deadlock analysis at the
local and global level (at the robot workcell or robot station, and at the whole MS
level), synthesis of control logic, study of different job-scheduling strategies,
simulation and visualization of dynamic phenomena during MS operation. Having
a plan of a manufacturing process and all necessary MS data, functional testing
should help the MS designer to reach a reliable and objective MS performance
evaluation.

In most cases, MS control depends on the states of sensors installed in the
system. Therefore, a successful functional testing generates two outputs: the
executable MS controller program, and the optimized sensor layout. Based on the
acquired designer’s experience, virtual simulators may serve as efficient design
accelerators and trustworthy sources of implementation guidelines.

7.1 3D Modeling of Manufacturing Systems

A factory-layout design is primarily a hard-technology-related task, whose goal is
to establish an optimal arrangement of individual MS elements, viewed from the
spatial and operational point of view. In the very recent past, factory-layout design
was a job that had to be done before the onsite MS construction could start. Today,
three-dimensional (3D) modeling serves to define the physical shape information
of a particular MS object prior to its physical creation. One more complex 3D
model, like the model of a palletization robot work cell shown in Figure 7.2,
actually represents a combination of primitive 3D shapes — cuboids, cylinders,
prisms, polygons, and lines, combined together in a hierarchical (so called parent—
child) order and characterized by different material properties, textures, colors,
shininess etc. In most cases, a parent—child relationship means that a group of
subordinate objects (“children”) is translated, rotated and scaled with respect to the
superimposed (“parent”) coordinate frame. Initially, all 3D objects on the scene are
positioned at the origin of the virtual environment, and then by using suitable
commands, are put in spatial relations. Such a 3D model is further used for display
on the computer screen and for calculations carried out as defined by the
simulation context.

The model with more details is computationally more demanding. The
complexity of the 3D model is usually dictated by the required precision of the
model. For example, when collision avoidance is explored then a more detailed 3D
model is preferred. On the other hand, logical testing of operations in the simulated
factory layout can be achieved by using models with fewer details.

A proper 3D model requires precise physical dimensions — e.g. height, width
and depth of the primitive shapes. This information is usually obtained by
measuring the object, or it is taken from the original technical drawings. 3D
models can be created using ISO standards 3D file formats such as X3D

262 Manufacturing Systems Control Design

(Extensible 3D), its predecessor VRML (Virtual Reality Modeling Language) or
by using CAD programs (e.g. AutoCAD™, Catia™ or 3D-Studio™). CAD
programs generate different file formats (e.g. DXF, 3DS, IGES, STEP, VRML),
and support conversion from one format to another.

Figure 7.2. The 3D model of a palletization work cell (Courtesy of Euroimpianti s.p.a)

7.2 Modeling FESTO FMS in VRML (X3D) Format

As mentioned above, 3D models of solid objects can be created in many ways and
many tools are at the designer’s disposal for this purpose. One way is modeling in
VRML format (or in X3D, which is the successor to the VRML), which has
become an international standard established in 1994 for description of 3D shapes
and environments suitable for World Wide Web program applications. Besides the
creation of virtual environments, VRML enables introduction of 3D motion, sound
and other dynamic features [13]. Virtual objects modeled in VRML can be
visualized in independent VRML viewers or in popular web browsers providing
that some VRML viewer plug-in has been previously installed. X3D improves
upon VRML with new features, advanced application programmer interfaces,
additional data-encoding formats, stricter conformance and a componentized
architecture that allows for a modular approach to supporting the standard [14].

Virtual Factory Modeling and Simulation 263

7.2.1 Basic VRML Features

Basic programming elements in VRML are nodes and fields that together with the
header and comments form a VRML file (extension *.wrl). Nodes may be
interpreted as “commands” that designate different geometric shapes, materials,
light, spatial transformations, efc. Fields describe node features that can change.
Dimensions in VRML are normalized. For example, the shape box with
dimensions {10, 10, and 10} may have a 10 mm, 10 m or 10 km long edge,
depending on the metric measure defined by the user.

Basic geometric shapes (primitives) are Box, Cone, Cylinder, and Sphere. The
group of geometric primitives is extended with the two-dimensional VRML object
Text representing a particular text. Geometric shapes are created with the node
Shape, which has two fields — appearance and geometry:

Shape {
appearance ... — defines color and object texture
geometry — defines form or structure
}

All VRML objects are initially positioned in the origin of the VRML
environment. In order to place the objects at different positions, a node Transform
is used. This node is a grouping node, which enables simultaneous translation,
rotation and scaling of a group of subordinate objects, so-called children. In fact,
all children objects tied to this new coordinate frame are translated, rotated and
scaled with respect to the superimposed or so-called parent coordinate frame.

The syntax of the Transform node is defined in the following way:

Transform {

translation dx dy dz # position

rotation rx ry rz delta # orientation (in radians)
scale sx sy sz # scaling

children [.......] # subordinate objects

}

Variables dx, dy and dz denote displacements of all children objects with
respect to the global coordinate frame. In terms of homogeneous coordinates
regularly used in robotics, translation is represented with the following
homogeneous transformation matrix:

dx

dy

dz
1

(=l - = =]
S O o O
S O o O

264 Manufacturing Systems Control Design

Variables rx, ry and rz assume values 0 or 1, depending on about which axis
rotation is going to occur (the other two variables get the value 0). The
counterclockwise rotation is assumed positive. Assuming that rotation is defined
around one of the axes, the homogeneous coordinate transformation attains the
form:

o hy hy 0
v, 1, I, O
21 22 23
R =

By hy By 0
0 0 0 1

In order to achieve different scaling factors for each axis, in calculations one
must take into account a multiplication with a scaling matrix:

sx 0 O
S, ={0 sy O
0 0 sz

The orientation in the VRML environment is defined as shown in Figure 7.3.
One can see that the orientation of the x—y—z coordinate frame in the VRML
environment does not coincide with the usual orientation representation in the
Cartesian space, also shown in Figure 7.3. The difference between two orientation
representations must be taken into account in all coordinate transformations and
related calculations.

-
-

VRML Real - world (Cartesian)
environment environment

N X>\

Figure 7.3. Orientation representation in the VRML and Cartesian worlds

y

It should be noted that transformations of children objects at every parent-
children level are always relative to the involved parent coordinate frame.

Having in mind, for example, that robots move and work thanks to coordinated
motion of their prismatic and revolute joints, a so-defined hierarchical structure in

Virtual Factory Modeling and Simulation 265

VRML simplifies virtual modeling of robotic manipulators and other similar
complex solid objects very much. By branching and nesting of Transform nodes,
attachment of new coordinate frames to each robot joint or any other robot part
(e.g. working tool) becomes easy and straightforward. Since transformations
defined by Tramsform nodes are relative, the change in the outermost Transform
node (e.g. in rotation) will affect all subordinate coordinate frames and objects.
The coincidence with the way how robots move, viewed from the robot base to the
working tool, is more than obvious.

7.2.2 FESTO FMS VRML Model

Let us describe VRML-based modeling of the FESTO FMS laboratory setup at the
Faculty of Electrical Engineering and Computing, University of Zagreb. The aim
of the FMS is to produce several types of cylinders assembled from the bodies,
pistons, springs, and caps varying in shape and color. FESTO FMS is composed of
four PLC-controlled work stations connected via the Profibus network: the
distribution station, testing station, processing station, and assembly station. The
flexibility in the assembly line is increased by using the five degrees of freedom
rotational robot Mitsubishi Movemaster EX RV-M1 (see Figure 7.4).

Figure 7.4. FESTO FMS: Laboratory set-up (above), virtual model (below)

The aim of virtual modeling is to prepare the modeled FMS for the functional
testing. The richness of the model details is determined by the function of the
particular FMS components. Virtual models of work stations contain system

266 Manufacturing Systems Control Design

modules that have an active role in the manufacturing process. Besides the stack
magazine module, the separating module, the testing module, the changer module,
the spring magazine module, and the drilling module shown in Figure 7.5,
important FESTO FMS parts are also the rotary indexing table module, the lifting
module, the measuring module, the air-cushioned slide module (5 objects
capacity), two slide modules (4 and 6 objects capacity), the cap magazine module
(10 objects capacity), the place of assembly, and the robot arm.

The FESTO FMS VRML model is shown in Figure 7.4 together with the real
system [15]. One can see that the outlook and layout of the virtual FMS fully
resemble the outlook and layout of the real FMS. All insignificant details from the
functional point of view are omitted (e.g. models of pipes, wires, connectors,
gauges, some construction details, efc.).

a) b) c)

d) e) f)

Figure 7.5. Virtual models of FESTO FMS components: (a) stack magazine module, (b)
separating module (pistons), (¢) testing module, (d) changer module, () spring magazine
module, and (f) drilling module

The next step in FMS modeling and simulation is the generation of a functional
model. This model, which describes operations and operating rules, is used for the
creation of system matrices that are later used for the matrix-based FMS controller
design. The reader can find more about functional modeling and simulation of

Virtual Factory Modeling and Simulation 267

FESTO FMS in Section 7.9, which describes the usage of the Internet-based
modeling and simulation tool FlexMan [12].

7.3 Modeling in LISA

Let us illustrate the use of virtual models in another simulator called LISA — a C++
and OpenGL™-based software for simulation and 3D modeling of complex
kinematic configurations [16]. Models used in LISA are first created in the CAD
software, then described in the XML (eXtensive Markup Language) and thereafter
imported as an xm/ file into LISA. Applying this procedure, the palletization
workcell from Figure 7.2 is displayed in LISA in the way shown in Figure 7.6. One
can see from this example that 3D models can be used in different program
applications without loss of model quality.

3D models in LISA are polygonal structured, i.e. polygons form a closed
manifold, hierarchical nonconvex models. Polygons are made entirely of triangles
because hardware accelerated rendering of the triangles is commonly available in
the graphic hardware. Triangle meshes can be used for extraction of all geometric
parameters including, for example, robot joint positions, link lengths, efc. Every
virtual object is composed of an arbitrary number of links that form a parent—child
hierarchy. There is no limit on the number of child links for a parent, so complex
kinematics configurations can be formed, like the articulated robot arm shown in
Figure 7.7.

Figure 7.6. The 3D model of a palletization work cell displayed in LISA

268 Manufacturing Systems Control Design

Frames (coordinate systems) are assigned to the links sequentially and may be
either static or dynamic (see Figures 7.8 and 7.9). Namely, a 3D object can have an
active or passive role on the scene. Active objects consist of static and dynamic
frames, while passive objects are built only from the static ones. Dynamic link
frames undergo rigid-body transformations during a simulation in a virtual
environment [17].

8 8 @

Figure 7.7. The creation of the 3D robot model

Virtual Factory Modeling and Simulation 269

Figure 7.8. The 3D model of a KUKA robot (Courtesy of Kuka Roboter) — static and
dynamic frames

Figure 7.9. The 3D model of a KUKA robot — dynamic frames

270 Manufacturing Systems Control Design

7.4 GRASP2000 (BYG Systems Ltd, UK)

GRASP2000 is a program tool that integrates a time-based simulation system with
advanced 3D graphics capabilities. The user is able to create virtual models of
arbitrary complexity including all types of manufacturing systems, robotic and
kinematic structures, production systems and AGV routing systems. The software
allows up to 24 revolute or prismatic joints for each individual mechanism.

Figure 7.10 taken from [18] shows the example of the GRASP2000 3D model
of a brick-handling application using three Fanuc M410iHW robots.

Figure 7.10. Example of the GRASP2000 model of a brick-handling application using three
Fanuc M410iHW robots

The user can use a set of instructions and create simulation programs that
permit “what-if” type of analysis using 3D animation and exact time-based
performance calculations. The result of simulation depends on the order of
instructions and the way they are used within one simulation track, so preparation
of every simulation scenario requires considerable planning. In other words,
meaningful results can be obtained only with a clear understanding of simulation
requirements and the model on which simulation is based. This means that a
detailed knowledge of the process involved for the modeled system (existing or
proposed) is required [18].

In manufacturing systems many processes run in parallel. GRASP2000 uses
“background tracks” to simulate such parallel processes. Background tracks run at
the same time as the “current” or so-called “foreground” track. For simulation of a
complex environment containing parallel processes separate tracks for the
individual processes must be created and then “invoked” as background tracks. The
aim of a foreground track is to control the simulation. When the foreground track is

Virtual Factory Modeling and Simulation 271

running, any tracks that have been invoked as background tracks run as well,
starting at the same time. Synchronization of parallel processes (tracks) can be
achieved in two ways; by inserting delay (PAUSE) instructions, and by waiting for
an event. As described in [18], an event may be that the simulation clock has
reached a certain time, it may be the arrival of an object, or it may be a variable
being set to a particular value. Waiting for an event can be achieved using the
WAIT command. The foreground and background tracks execute in the same
manner, using the simulation clock to control the synchronization between all the
tracks.

Regarding generation of robot tracks, GRASP2000 generates tracks for all
robot models contained in the BYG robot library. The tracks are supplied with a
complete set of configuration rules for the robot, with meaningful names that are
understood by the target robot controller conversion program.

Among different commands, GRASP2000 also includes functionality to allow
factory and process simulation using discrete event systems (DES) tools.

7.5 Robot Studio (ABB, Sweden)

ABB’s RobotStudio is a simulation and “true” offline programming software due
to the ABB VirtualRobot™ Technology, whose main characteristic is that the
actual robot system software controls the robot simulation. In this way the
successfully tested robot program can be downloaded as a whole to the real system
without any further translation.

As for other concurrent simulation programs, RobotStudio can import data in
major CAD formats including IGES, STEP, VRML, VDAFS, ACIS and CATIA.
Having a CAD model of the part to be processed, RobotStudio allows the user to
automatically generate the robot positions needed to follow the path curve,
significantly shortening the time usually spent for manual programming of such a
task. Standard robot programming in RobotStudio is done with a program editor
ProgramMaker shown in Figure 7.11. The basis for programming in RobotStudio
is ABB’s robot programming language RAPID.

The software is characterized by several optimization features, such as path
optimization and AutoReach™ computation. RobotStudio can automatically detect
and warn about programs that include motions in close vicinity to singularities, so
that measures can be taken to avoid such conditions. Simulation Monitor is a visual
tool for optimizing robot movement. Red lines indicate what targets can be
improved to make the robot move in the most effective way.

As shown in Figure 7.12, tool-center position (TCP) speed, acceleration,
singularity or axes can be optimized to gain cycle time [19]. AutoReach
automatically analyzes reachability while moving the robot or the work piece
around until all positions become reachable. This allows quick verification and
optimization of the workcell layout. Also, integrated collision detection helps to
identify possible collisions among concerned objects and modify critical paths.

Event Tables is a tool used in RobotStudio for debugging and verifying the
program structure and logic. As the program executes, the user can observe the I/O

272 Manufacturing Systems Control Design

states of the analyzed workcell. The I/O lines can be wired to simulation events
allowing simulation of the robot and all equipment in the robot station.

RobotStudio provides the possibility of using Visual Basic to adapt and expand
RobotStudio’s functionality for various applications. This enables the user to create
different add-on modules, macros or customized user interfaces.

Figure 7.11. RobotStudio programming editor ProgramMaker

Figure 7.12. Path optimization by tracing the TCP position, speed and acceleration

Virtual Factory Modeling and Simulation 273

Based on the use of Visual Basic for Applications (VBA) RobotStudio offers
optimized solutions for applications such as arc-welding, press break tending, spot-
welding, CalibWare (absolute accuracy), blade grinding, and BendWizard (press
brake tending). Figure 7.13 shows the 3D model of one such application - the spot-
welding robot work cell of the Volvo Cars “body-in-white” manufacturing line
[20].

Figure 7.13. The example of the ABB’s RobotStudio model of a Volvo body-in-white
manufacturing line using ABB industrial robots (Courtesy of ABB)

7.6 Tecnomatix eM-Plant (UGS, USA)

Tecnomatix is a suite of software applications intended to support so-called digital
manufacturing (also known as manufacturing process management). As discussed
n [21], digital manufacturing is a combination of software and manufacturing
methods that transforms manufacturing processes and manufacturing-related
business initiatives. Besides process planning, digital manufacturing has a goal to
optimize production operations by allowing the production planner to compare the
process plan to how well that plan is actually executing.

Tecnomatix provides a broad range of applications for manufacturing
management of both parts and assemblies. These solutions enable the designer to

274 Manufacturing Systems Control Design

define and verify product-assembly sequences, create assembly-line layouts,
simulate specific operations and material flows to optimize the process, allocate the
required time for each operation, verify line performance and perform line
balancing, analyze product and production costs, virtually commission and
program production lines using digital planning data, execute and continually
manage a production process, track and trace specific customer orders according to
the materials included and the processes they undergo, and feed back real-time
process changes, as executed, into manufacturing process plans [21].

eM-Plant is a Tecnomatix application that enables the simulation and
optimization of production systems and processes [22]. Like other concurrent
products, eM-Plant enables the designer to explore the production systems’
characteristics and to optimize its performance.

Basic features of eM-Plant enable the user to simulate complex production
systems and control strategies; use object-oriented, hierarchical models of plants,
encompassing business, logistic and production processes; use dedicated
application object libraries for fast and efficient modeling of typical scenarios;
generate graphs and charts for analysis of throughput, resources and bottlenecks;
use comprehensive analysis tools, including Automatic Bottleneck Analyzer,
Sankey diagrams and Gantt charts. Software provides 3D online visualization and
animation, which allow the user to see all system phenomena in a genuine way.

eM-Plant also has some advanced features, such as integrated neural networks
and experiment handling, genetic algorithms for automated optimization of system
parameters, open system architecture supporting multiple interfaces and integration
capacities (ActiveX, CAD, Oracle SQL, ODBC, XML, Socket, etc.).

Using the eM-Plant virtual (digital) model of the manufacturing system, the
user can run experiments and what-if scenarios to note critical situations and
determine optimal solutions that work best. Tecnomatix software can be used for
various industrial applications, and Figure 7.14 shows one such creation of the
virtual expansion of the existing manufacturing facility [21].

Figure 7.14. The virtual expansion of the factory created in Tecnomatix eM-Plant

Virtual Factory Modeling and Simulation 275

7.7 CIMStation Robotics (AC&E, UK)

CimStation Robotics is a 3D graphics program tool that enables designers to
quickly and easily design, simulate and offline program robotic workcells (Figure
7.15). The software allows engineers to visualize and evaluate automation concepts
to determine the cost, feasibility and performance of a proposed robotic system,
long before the equipment is purchased or a part prototype is available.

Based on close collaboration with industrial users, CIMStation Robotics offers
specialized application solutions tailored to the requirements of a particular robotic
task. Thus the software provides advanced functionality and ease of use for
painting, spot welding, arc welding, polishing, assembly and press operations.

Figure 7.15. The virtual model of the flexible manufacturing system created in CIMStation
Robotics [23]

7.8 COSIMIR (FESTO, Germany)

COSIMIR is the 3D-simulation program that can be used to plan robotized
workcells before they are actually built. The program allows the designer to check
the reachability of all positions, develop programs for robots and controllers, and to
optimize the workcell layout.

Virtual models of robots, machinery, tools, conveyer belts, part feeders, etc.,
taken from the library of virtual models, just-created new models, or models
imported from other CAD programs, can be combined to create arbitrarily complex
robot-based workcells. COSIMIR allows the designer to check the developed robot

276 Manufacturing Systems Control Design

programs against possible collisions and to optimize cycle times. Sensor simulation
is a very useful COSIMIR’s feature that extends the program’s capability to
simulate complete work cells. Since the program solutions for each robot in the
workcell is written in the robot-compatible programming language, the direct
download of tested programs and positions into the robot controller is supported.
COSIMIR provides an automatic face-oriented trajectory generation suitable for
applications like coating and ablation processes [24]. An industrial PLC simulation
is an additional feature that makes the program adjusted for simulation of real
system conditions.

Figure 7.16 shows the COSIMIR user interface for a selected robot workcell
layout.

Figure 7.16. The user interface for programming and testing a virtual model of the robot
work cell created in COSIMIR (Courtesy of FESTO)

7.9 FlexMan (LARICS, University of Zagreb, Croatia)

In general, all 3D simulation programs have many advanced features, including
true “offline” robot programming and direct download of developed controller
programs, but the problem arises when the results of analysis and (re)design
performed in the virtual environment must be converted into actual real-time
algorithms that should control the real system as a whole. Most of the
aforementioned design and simulation programs do not offer such an elegant way

Virtual Factory Modeling and Simulation 277

that would allow transfer of system supervisory control algorithms from the virtual
to the physical world.

The aim of the MS design tool FlexMan presented in this chapter is to make
this step forward and show how effective the analysis of MS dynamic behavior can
be, with the usage of virtual models and accompanying matrix-based dynamic
models, and how straightforward it is from a matrix-based supervisory controller
used in the simulator to the program for supervisory PLC in the real MS. FlexMan
is a web-based virtual modeling and simulation tool using virtual models in the
VRML 3D file format (see Section 7.2). The interested reader can use FlexMan
and so learn more about it by visiting the FlexMan web address [25].

The usage of virtual-reality models in conjunction with the Internet-related
technologies has made a significant advance in visualization of complex physical
systems such as robotic systems and FMS [26].

FlexMan fulfills some basic requirements: it provides the user with a GUI for
easy creation of FMS simulation prototypes including FMS layout, description of
operations and operation rules, generates automatically a matrix model of the FMS
as a basis for running a dynamic simulation, integrates a tool with a suitable user
interface for web-based task/robot-dependent trajectory planning with embedded
algorithms for solving direct and inverse kinematics problems for a user-defined
type of manipulator, displays virtual FMS elements by using advanced 3D graphics
and animation routines, and finally, provides status information for the job-
schedule evaluation criteria.

7.9.1 FlexMan Structure

The FlexMan structure is shown in Figure 7.17. It is based on the client — server
architecture. Communication between server and client(s) uses TCP/IP protocol,
while all transferred and stored data is in the standard XML format [27].

Any work in FlexMan starts first with a user authorization. For different types
of users, different program functions are enabled, and the work of every user is
tracked and stored on the server for easier supervising and administration. This can
be very convenient for training purposes, as trainees can do their work from any
remote location (home, computer lab, Internet caf¢), and the tutor can easily review
the data about the trainee’s work being stored on the server.

As shown in Figure 7.17, FlexMan’s client side contains three major parts:
Scene Builder, Web Trajectory Planner (WTP) and Visualization Client (VC).
These three components are implemented as a single Java applet inserted in an
HTML page together with a VRML plug-in that provides visualization of a 3D
scene. VRML 2.0 standard defined external authoring interface (EAI) as an
interface between the virtual world and the external environment. EAI defines the
functionality of the VRML browser that the external environment can access, and
it enables a Java applet to fully control and modify a VRML scene [13]. A new
ISO standard X3D file format, which is the improved VRML format, opens new
possibilities for tools like FlexMan to become more efficient and reliable.

At the server side, FlexMan has three major parts: the trajectory planner tool
LEONARDO, FMS Controller, and Database.

278 Manufacturing Systems Control Design

uoneoydde

Jasmolq jsulsju|

(eifo)
TNEA 310 eaer
Jap|ing 2us0g
uonealjdde Jasmouq Jauisiy|
(i)
TNEA 310 eaer

Jual|d uoHeZI|BNSIA

UBJAIXQ[] JO 9IMonns oy, *L]"L dInS1g

9seqelep TOS
/ 9seqelep $$800Y

(uonewaoyul
|eonsiiels ‘salo)oslely
‘89U30s" s|00})

aseqeyeq

(s)10elgo
1sanbay >

uopeaydde zg uim

uopeaydde zg uim

(1onios)

& 8nanb uonnoaxg

19490S BIA B)Ep WX sayredsiq

/To ‘snjejs ‘sulee >

LINYALNI

% souueld siy4

19]j013u05 SN

-/

& Aiojosfen; pauueld

woo{a

Aiojoelenyued >

BN

(1onies
usifo)

Bujuueld Liojoslen
s)03[go xa|dwod
By3 104
100} pajeibajul ue
OayvNO3a1

~~

Virtual Factory Modeling and Simulation 279

7.9.2 Database

Database contains information such as libraries of VRML prototypes, user
information, saved work, statistical information, planned trajectories, and
simulation logs. It allows new virtual FMS elements to be easily imported. Once a
VRML prototype of a new resource is made, there is no need for any programming
intervention in the application itself. A new element is simply added to the
database and linked to the appropriate library that determines its scope of use.

7.9.3 Virtual FMS Modeling

The Scene Builder is the component that serves for modeling of the FMS layout in
the virtual 3D environment and for definition of FMS functional properties.

A virtual FMS is modeled using predefined models (prototypes) of objects like
robots, machines, conveyers, buffers, efc. Libraries of these prototypes are stored
in a database on the server. Depending on the user’s status and permissions,
different libraries of FMS elements are available. A desired element is selected
from the list of available objects (shown in the main layout of the Scene Builder
(Figure 7.18)), and after setting its designation, position, orientation and scaling
factor, an appropriate 3D model appears in the virtual scene. With this pick-and-
place approach, even the creation of the most complex layouts is very easy, and
straightforward. Figure 7.18 shows the layout of the two-robot FMS described in
detail in the matrix-based controller design example in Chapter 5.

7.9.4 Functional Modeling of FMS

After the visual layout of the FMS is set, the functions and behavior of these
elements are described by defining a list of operations for each element, the nature
and duration of each operation, and initial system conditions. This is done with the
operations editor (Figure 7.19). In order to visualize FMS operations in the virtual
world as if they were real, we need an active algorithm in the background [12, 28]
whose input and output must be connected to the elements of the virtual model.
Providing that the resources and operations they perform are defined, the final step
in FMS modeling by using FlexMan is definition of FMS operation sequencing and
behavior. The part of Scene Builder named Rule Editor (Figure 7.20) serves that
purpose. From the previously defined objects and their tasks the user builds a set of
IF-THEN rules (see Section 3.2) that describe the sequencing of operations in the
FMS.

280 Manufacturing Systems Control Design

Figure 7.18. FlexMan client in a Microsoft Internet Explorer browser (the layout of the
virtual model of the two-robot FMS from a case study in Section 5.4)

Based on these rules and object properties, the FMS model matrices needed for
dynamic simulation are calculated automatically. The output from the Rule Editor
is a set of matrices S,, S, Sy, Sy, F;, Fy, F,, and F, that are explained in Section 3.1.
Matrices Fy, F,, F, and F, are created from the antecedent (IF) part of the rule, and
matrices Sy, S;, S, and S, are created from the consequent (THEN) part of the rule.

7.9.5 Generating Trajectories in FlexMan
In FlexMan, trajectories for resources with one degree of freedom are generated

online, but trajectories for resources with two or more degrees of freedom (e.g.
robots) are planned with a FlexMan component — Web Trajectory Planner (WTP).

Virtual Factory Modeling and Simulation 281

Figure 7.19. Operations Editor Window

Figure 7.20. Rule Editor Window

282 Manufacturing Systems Control Design

Figure 7.21. Web Trajectory Planner

In WTP (Figure 7.21), the user moves the robot from one position to another,
adds key tool-tip coordinates to a list, assigns wait times and movement types
(point-to-point (PTP) or continuous-path (CP)) for desired trajectory segments, and
finally sends a request to the server to plan the resulting trajectory.

At the server side the trajectory planner tool LEONARDO accepts requests
from FlexMan’s WTP and plans combined CP/PTP motions with a given error
tolerance [29]. It returns the planned trajectory points to the client and stores the
trajectory for future use by FMS Controller during dynamic simulation. The
planned trajectory is drawn in the virtual scene at the client side, and the user can
then view animated movement of the robot along the planned trajectory (Figure
7.21).

When this phase of modeling is completed, the FMS is defined both structurally
(via the VRML formatted virtual scene) and functionally (via the matrix model and
the planned trajectories), and simulation of its work can proceed.

7.9.6 Simulation and Visualization of FMS operation

VC visualizes the FMS during simulation. Upon the start of simulation (Figure
7.22), VC sends to the server a complete description of the FMS generated by
Scene Builder — visual layout, matrix model, and references for planned
trajectories. After processing of information and necessary calculations, the server
returns to VC data representing states of every element on the virtual scene in a
given time frame. Through EAI, VC constantly updates the virtual scene, and thus
a realistic 3D simulation of the FMS behavior is achieved, clearly depicting what is
going on during the simulated manufacturing process.

Virtual Factory Modeling and Simulation 283

Figure 7.22. Visualization Client — enables 3D simulation of FMS operation

7.9.7 Internet-based Multiuser FMS Control with FlexMan

FMS Controller is the core of FlexMan. It is a server application that handles
complete server-client communication in FlexMan, database access, client requests
towards LEONARDO, user and file management, and on top of that, it executes
FMS simulation. FMS Controller uses different protocols to communicate with
other components: TCP/IP socket for client connections, ODBC for database, and
COM/DCOM for LEONARDO access (Figure 7.17).

When a new client connects, a new communication thread is instantiated.
Within this thread, a separate thread is started in which simulation is performed.
After client authorization is made, FMS Controller gives the client the access to
appropriate VRML prototype libraries and previously stored user files like saved
models and planned trajectories. All data transferred between the server and clients
is in XML format. FlexMan’s XML document for scene description is used both
for saving defined scenes and as input data for FMS simulation, because it contains
all the necessary information for both purposes. The file size of these documents is
minimal, a vital demand in any Internet-based application. This feature is a
consequence of prototyped virtual scenes building, which enables full description
of a VRML scene only by defining references to the required VRML prototypes
and their parameters, instead of saving the data about the complete 3D model.

It must be noted that the increasing number of equal objects in the scene will
only slightly increase the size of the XML file and will not affect the size of the
VRML file at all. Matrix model FMS description is also very convenient for XML
formatting and provides a complete functional description of the modeled FMS. It

284 Manufacturing Systems Control Design

all adds up to a very compact XML document, which is very clear and
understandable and can be read and modified easily.

Upon a request for simulation sent by the client, FMS Controller processes the
scene description document received from the client, loads LEONARDO’s robot
trajectories referenced in that document, calculates trajectories for the one-degree-
of-freedom resources, and starts the dynamic simulation by using a timed matrix-
based model of FMS [30].

7.9.8 A Selection of an FMS Control Method

Shared resources in FMS may cause conflict situations when conditions for starting
more than one concurrent job are satisfied. In that case, FMS Controller uses
system matrices, finds the rules that lead to the conflict situations, and solves the
problem by generating suitable control signals according to a desired dispatching
policy that must be added into the model. Control signals are automatically added
as prerequisites in the critical rules.

Users may choose, for example, from LBFS, FBFS, and MAXWIP dispatching
policies. As described in Section 5.3, MAXWIP dispatching policy resolves
conflict situations and keeps the number of work in progress (WIP), in particular
FMS subsystems, at the maximum allowed level in order to avoid deadlock.

In every sampling interval, the current state of each resource is sent to the VC
that updates the virtual scene. If the state of one resource has not been changed,
updating for that resource is omitted to reduce the data flow and prevent
communication lags.

Any problems caused by the FMS layout or by the manufacturing plan (MS
data) can be easily observed, critical operations or production rules can be
modified and simulations can be rerun until a suitable FMS behavior is achieved.

Example 7.9.1 (the FESTO FMS modeling and simulation with FlexMan)

Let us use the FESTO FMS laboratory setup described in Section 7.2.2 (Figure 7.4)
as the target system for the matrix-based controller design. As depicted in Figure
7.23, the manufacturing task of the FMS is to assemble a cylinder by putting
together four components: a body, a piston, a spring, and a cap [31]. The body
colors of a cylinder can be red, silver or black. There are also two types of pistons
that vary in color (black and gray) and shape (see Figure 7.23). The assembly
process is organized according to the assembly specifications from Table 7.1.

Virtual Factory Modeling and Simulation 285

' .1 .

Figure 7.23. Assembly of the cylinder: a body, a piston, a spring, and a cap

Table 7.1. Assembly specifications for a cylinder

Cylinder color red black silver
Cylinder material plastic plastic metal
Cylinder height, [mm] 25 22.5 25
Piston color black gray black
Piston radius, [mm] 20 16 20

As described in Section 7.2.2, four work stations participate in the assembly
process [31]. The distribution station separates cylinder bodies from the stack
magazine module, whose capacity is limited to 8 bodies. The number of bodies in
the magazine is detected with a through-beam sensor. A pneumatic cylinder pushes
out the bodies, one by one, and the changer module grips the body using a suction
cup. Another sensor, a vacuum switch, checks whether the cylinder body has been
picked up. The transfer unit, driven by a rotary drive, conveys the body to the
testing station, which is next in the line.

The testing station determines the characteristics of inserted cylinder bodies.
Different sensors serve that purpose: the sensing module identifies the color of a
body and a capacitive sensor detects the body irrespective of its color. A diffuse
sensor identifies silver (metallic) and red (plastic) bodies, but not the black
(plastic) ones. The analog sensor of the measuring module determines the height of
the body. The output signal is either digitalized (via a comparator with adjustable
threshold value) and connected to the digital I/O of a PLC, or fed directly to the
PLC analog I/O. A retro reflective sensor checks whether the working area above
the body retainer is free before the body is lifted by the lifting module. A linear
cylinder guides the correct cylinder body to the processing station by means of the
air cushioned slide module. Other nonfitting bodies are sorted on the lower slide
module.

In the processing station, cylinder bodies are positioned, processed (drilled),
and then tested on a DC motor-driven rofary indexing table. The table has a
capacity of four body places that are positioned 90° apart from each other. A
solenoid actuator with an inductive sensor checks that the bodies are inserted in the

286 Manufacturing Systems Control Design

correct position. After each drilling the table rotates 90° CW and the processed
bodies undergo the drilling quality test. After each test, the table rotates 90° CW
and the body waits for the transfer to the assembly station.

As we already mentioned in Section 7.2.2, the assembly station is equipped
with the five DOF robot arm Mitsubishi Movemaster EX RV-M1 (see Figure 7.4),
which fetches the body from the transfer position at the rotary indexing table and
moves the body to the assembly position of the assembly retainer module.

Depending on the color of the body the robot takes an appropriate type of
piston from the pallet and inserts it into the body. According to the assembly plan
shown in Table 7.1, black (plastic) pistons are used for red and silver bodies, while
gray (metallic) pistons are used for black bodies. Then the piston spring is taken
from the spring magazine module and inserted. Finally, the robot picks up a cap at
the cap magazine module, establishes the orientation of the cap and places it in the
correct orientation on the body. The finished cylinder is placed on a slide, which is
the end of the assembly cycle.

Having clearly defined task sequencing and ready-to-use virtual models of all
the physical components of the FESTO FMS, we can use FlexMan to create a
complete virtual and functional model, which together with an automatically
generated matrix model will enable simulation and 3D visualization of the system.

A virtual model shown in Figure 7.4 is built of the following elements —
resources (a symbolic notation for each resource is given in the parentheses): stack
magazine module (SM), pneumatic pusher (PP), the transfer unit (TU), the
measuring module (MM), the lifting module (LM), the rotary indexing table
module (RT), the drilling module (DM), the testing module (TM), the pistons
separating module (PSM), the cap magazine module (CMM), the spring magazine
module (SMM), the robot arm (RA), the air-cushioned slide module (ASM), two
gravitational (slide) modules (GM1 and GM2), and the place of assembly (A). In
order to preserve the characteristics of the MRF line, during each new assembly
job the place of assembly is treated as a new resource (that is, A converts to places
Al, A2, A3 and A4). The list of jobs and releases of the above-mentioned
resources, along with their symbolic notation and duration, is displayed in Table
7.2. This list can be entered using FlexMan’s Operation editor. The durations of
each job and release are initially determined by the actual duration of jobs and
resource releases in the real FESTO FMS. These parameters can be varied during
simulations in order to examine different dispatching techniques that would satisfy
different manufacturing quality criteria (maximal product throughput, optimal
resource utilization, minimum energy consumption, efc.).

All resources except the robot and the rotary table have only one job to do. The
rotary table has three jobs that are done simultaneously. The only shared resource
in the FMS is the robot, whose tasks are to transfer cylinder bodies from the testing
station to the assembly station and fetch parts needed for assembly.

The next step is the definition of IF-THEN rules that explain the sequence of
jobs and conditions, which must be fulfilled to start or finish a particular job
according to a selected control strategy. Control places (CP1-CPS5) have an
important role in the creation of operational rules, as the state of control places
dictates, in conflict situations, which job of the shared resource (that is, the robot)
will be done first. This job is done with FlexMan’s Rule editor.

Virtual Factory Modeling and Simulation 287

Table 7.2. The list of jobs and releases of the FESTO FMS resources [15]

Job/ Resource action (movement) Symbol ¢

Release [s]
J A pneumatic cylinder pushes out the body PPw 0.7
R A pneumatic cylinder retracts PPr 0.7
J Transfer unit conveys the body to the testing TUw 2.1

station

R Transfer unit retracts TUr 1.4
J The body is lifted by the lifting module, and a LMw 2.8

linear cylinder guides the body to the processing
station via the air cushioned slide module

R The lifting module retracts LMr 2.8

J The rotary indexing table module rotates to the RTwl 1.2
drilling position

J The rotary indexing table module rotates to the RTw2 1.2

drilling testing position

J The rotary indexing table module rotates to the RTw3 1.2
transfer position

J The drilling module is going down DMw 0.9

R The drilling module is going up DMr 0.9

J The testing module is going down TMw 0.9

R The testing module is going up TMr 0.9

J The piston separating module pushes out the PSMw 1.2
piston

R The pistons separating module retracts PSMr 1.2

J The cap magazine module pushes out the cap CMMw 0.7

R The cap magazine module retracts CMMr 0.7

J The spring magazine module pushes out the cap SMMw 0.7

R The spring magazine module retracts SMMr 0.7

J The robot fetches the body and moves it to the RAwl 4.3
assembly place and the assembly place is occupied & Alw

R The place of assembly is “virtually” released Alr 0

J The robot picks up the piston and inserts it into the RAw2 3.8
body and assembly place is occupied & A2w

R The place of assembly is “virtually” released A2r 0

J The robot picks up the spring and inserts it into the RAw3 6.2
body and the assembly place is occupied & A3w

R The place of assembly is “virtually” released Alr 0

J The robot picks up the cap, puts it onto the body, RAw4 4.7
and twists it on and the assembly place is occupied & Adw

R The place of assembly is “virtually” released Adr 0

J The robot grasps the cylinder and moves it to the RAwS5 4.1
slide module

R The robot parks in home position RAr 2.4

J The body is sliding down the air-cushioned slide ASMw 1.3

module to the rotary indexing table module
J The assembled cylinder is sliding down the slide GM2w 1.2

288 Manufacturing Systems Control Design

The jobs and releases of resources shown in Table 7.2 represent the foundation
for the creation of rules. Table 7.3 shows the list of 32 rules created in the Rule
editor. In order to provide a realistic 3D visualization of FMS dynamics, some
auxiliary resource releases are used, such as the release of the air-cushioned slide
that feeds the rotary indexing table module, and the release of the rotary table
itself. These releases are instant (r = 0 s), as they only serve to free the resource
once they have delivered the work piece to the downstream resource. Symbols
PI1-PI4 and PO, which are used in the rules, denote inputs and output for the
system work pieces (PI — Part In and PO — Part Out).

XN WN—
=
9

[N I O R O R e i e
N— OO INN DWW —O

23
24

25
26
27
28
29

30
31
32

Table 7.3. The list of operation rules of the FESTO FMS [15]

Rule definition

IF (PP AND PI1) THEN (PPw)

IF (TU AND PPw) THEN (TUw AND PPr)

IF (LM AND TUw) THEN (LMw AND TUr)

IF (ASM AND LMw) THEN (ASMw AND LMr)

IF (RT AND ASMw) THEN (RTw1l AND ASMr)

IF (DM AND RTw1) THEN (DMw AND RTrl)

IF (RT AND DMw) THEN (RTw2 AND DMr)

IF (TP AND RTw2) THEN (TPw AND RTr2)

IF (RT AND TPw) THEN (RTw3 AND TPr)

IF (PSM AND PI2) THEN (PSMw)

IF (SMM AND PI3) THEN (SMMw)

IF (CMM AND PI4) THEN (CMMw)

IF (RTw3=0) THEN (CP1)

IF (PSMw=0) THEN (CP2)

IF (SMMw=0) THEN (CP3)

IF (CMMw=0) THEN (CP4)

IF (Aw+Alw+A2w+A3w+A4w=0) THEN (CP5)

IF (RA AND RTw3 AND CP5) THEN (RAw1 AND RTr3)
IF(A1 AND RAwl) THEN (Alw AND RArl)

IF (RA AND PSMw AND CP1) THEN (RAw2 AND PSMr)
IF(A2 AND RAw2) THEN (A2w AND RAr2)

IF (RA AND SMMw AND CP1 AND CP2) THEN (RAw3 AND
SMMr)

IF(A3 AND RAw3) THEN (A3w AND RAr3)

IF (RA AND CMMw AND CP1 AND CP2 AND CP3) THEN (RAw4
AND CMMr)

IF(A4 AND RAw4) THEN (A4w AND RAr4)

IF (Alw > 0) THEN (CP1)

IF (A2w > 0) THEN (CP2)

IF (A3w > 0) THEN (CP3)

IF (A AND Alw AND A2w AND A3w AND A4w) THEN (Aw AND
Alr AND A2r AND A3r AND Ad4r)

IF (RA AND Aw) THEN (RAw5 AND Ar)

IF (GM2 AND RAw5) THEN (GM2w AND RATr5)

IF (GM2w) THEN (GM2r AND PO)

Virtual Factory Modeling and Simulation 289

System resources with more than one degree of freedom, the robot and the
lifting module, require planning of trajectories. This is done by using FlexMan’s
Web Trajectory Planner, which invokes a trajectory planning tool Leonardo on the
server side. Having all trajectories planned, simulation can start and the process of
cylinder assembly can be examined. Figure 7.24 shows several instants of the
assembly process captured during animated 3D visualization in FlexMan’s VC.

All cylinder components are present
and assembly can start

The body of a cylinder is inspected by
the measuring module

The drilling module is drilling the
body.

The robot fetches the body from the
transfer position of the rotary table.

The robot picks up the piston before
inserting it into the body.

The robot puts the fully assembled
cylinder on the output slide module.

Figure 7.24. The phases of the simulated assembly process visualized in the FlexMan

Visualisation Client

290 Manufacturing Systems Control Design

7.10 Exercise

Figure 7.25 shows a layout of the laboratory workcell that contains an educational
robot Rhino XR-3, two belt conveyers, one transporter and two pistons [32]. A
processed part visits several resources on its way through the system. The system
has a shared resource, i.e. a conflict-resolution algorithm by using a matrix-model
approach should be implemented.

For the given system layout, define operational times and specify the number of
sensors and their positions. The part that is processed is put into the system by
piston 1. When the part gets to the end of the conveyer 1 the robot transfers it to
the conveyer 2. At the end of the conveyer the robot picks the part and places it on
the transporter. Once the part is close to the piston 2, it is moved out of the system.

By using FlexMan [25], create a virtual model of the FMS and describe the
functions and behavior of the system elements by defining a list of operations for
each element. Define the nature and duration of each operation and initial system
conditions. For this purpose use FlexMan’s Operations Editor (Figure 7.26). Create
operation rules for a selected job-scheduling strategy with Rule editor, plan the
robot trajectories with Web Trajectory Planner (Figure 7.26). Start the simulation
and watch the FMS dynamic behavior while 3D animation of the FMS operation is
displayed in the Visualization Client (Figure 7.27).

conveyer 1
T conveyer 2
l robot T
l a
I] [T
INPUT
T
piston 2 \
d] N ourPUT piston 1
I S -
transporter

Figure 7.25. Example of the laboratory FMS layout

Virtual Factory Modeling and Simulation 291

Figure 7.26. Steps of FMS control design in FlexMan for the example of the FMS layout

Figure 7.27. 3D visualization as a final result of the FMS control design in FlexMan

292

Manufacturing Systems Control Design

References

[11]
[12]

Viswanadham N, Narahari Y. Performance Modeling of Automated Manufacturing
Systems. New Jersey: Prentice Hall, 1992.

Vince J. Virtual Reality Systems. Reading, MA: Addison-Wesley, 1995.

Mayr H. Virtual Automation Environments — Design, Modeling, Visualisation,
Simulation. New York Basel: Marcel Dekker, 2002.

Gertz M W, Khosla P K. Onika: A Multilevel Human-Machine Interface for Real-
Time Sensor-Based Robotics Systems, Proc. of SPACE 94: The 4th International
Conference and Exposition on Engineering and Construction, 1994.

Nethery J, Spong M W. Robotica: A Mathematica Package for Robot Analysis, IEEE
Rob. Aut. Mag. 1994; 1: 1: 13-20.

Ge S S,Lee T H, Gu D L, Woon L C. A One Stop Solution in Robotic Control
System Design, IEEE Rob. Aut. Mag. 2000;7:3:42—54.

Corke P. Robotic Toolbox for Matlab, CSIRO Manufacturing Science and
Technology, http://www.cat.csiro.au/cmst/, visited 2005.

Choi B, Park B, Ryu H Y. Virtual Factory Simulator Framework For Line
Prototyping, J. of Advanced Man. Sys., World Scientific Publishing Company
2004;3:1:5-20.

Sly D. Object-oriented factory layout in AutoCAD, Proceedings of the 1998 Winter
Simulation Conference, 1998, 275-277.

Heinicke M U, Hickman A. Eliminate bottlenecks with integrated analysis tools in
eM-Plant, Proceedings of the 2000 Winter Simulation Conference, 2000, 229-231.

Li Y F, Ho J, Li N. Development of a physically behaved robot work cell in virtual
reality for task teaching, Rob. and Comp-Integr. Manuf. 2000;16: 91-101.

Bogdan S, Kovaci¢ Z, Smoli¢-Rocak N, Birgmajer B. A Matrix Approach to an FMS
Control Design — From Virtual Modeling to a Practical Implementation, IEEE Rob.
Aut. Mag. 2004;11:4:92-109.

Jacobs K, Lemay L (eds.), Murdock K, Couch J. Laura Lemay’s Web Workshop: 3D
Graphics and VRML 2, Sams Publishing, 1996.

Web3D Consortium web page: http://www.web3d.org/x3d/, visited 2005.

Tomi¢ M. Modeling, Simulation and Control of FESTO FMS, Diploma Thesis,
University of Zagreb, 2005.

Reichenbach T. Collision Avoidance in Virtual Robotized Plants, Masters Thesis,
University of Zagreb, 2005.

Lin M C, Gottschalk S. Collision detection between geometric models: a survey,
Proceedings of the 8th IMA Conference on the Mathematics of Surfaces (IMA-98),
ser. Mathematics of Surfaces (R. Cripps, ed.) 1998;VIII:37-56.

GRASP 2000 User Manual, BYG Systems Ltd., 2nd edn, 2002.

RobotStudio Features, ABB Information for System Partners CD-ROM, ABB, 2001.
RobotStudio™ — Industrial IT Software, Datasheet, ABB, 2002.

CXOs: Meet your new core competency — digital manufacturing, White paper, UGS,
2005.

Tecnomatix eM-Plant — eMPower for manufacturing process management, Fact sheet,
UGS, 2005.

CIMStation Robotics News Update 5, Applied Computing & Engineering Limited
web page: http://www.acel.co.uk/, visited 2005.

Karras U. COSIMIR Educational User Guide, FESTO Didactic Gmbh, 2000.

LARICS FlexMan web page: http:/flrcg.rasip.fer.hr/flexman, University of Zagreb,
updated 2005.

Hirukawa H, Hara 1. Web-Top Robotics: Using the World Wide Web as a Platform
for Building Robotic Systems, IEEE Rob. Aut. Mag. 2000;7:2: 40-45.

[27]
(28]

[29]

(30]

(31]

(32]

Virtual Factory Modeling and Simulation 293

Paradi W J. XML in action, Microsoft Press, 1999.

Bogdan S, Lewis F L, Kovaci¢ Z, Gurel A. New Matrix Formulation for Supervisory
Controller Design in Practical Flexible Manufacturing System, Proceedings of the
IEEE International Symposium on Intelligent Control ISIC 1999; 144—-149.

Kovaci¢ Z, Bogdan S, Petrinec K, Reichenbach T, Punéec M. LEONARDO - The
Off-line Programming Tool for Robotized Plants, CD-ROM Proceedings of the 9th
Mediterranean Conference on Control and Automation 2001; WM2-C.

Mireles J Jr, Lewis F L. Intelligent Material Handling: Development and
Implementation of a Matrix-Based Discrete Event Controller, IEEE Trans. Ind. Electr.
2001; 48:6:1087-1097.

FESTO Modular Production System - Distribution station, Testing station, Processing
Station, Assembly station, User manuals, FESTO Didactic Gmbh, 2000.

Kova¢i¢ Z, Bogdan S, Smoli¢-Rocak N, Birgmajer B, Teaching Flexible
Manufacturing Systems by Using Design and Simulation Program Tools, Proceedings
of the IEEE Region 8 EUROCON 2003 International Conference on COMPUTER AS
A TOOL 2003;47-51.

Index

active event function, 36
activity-completion matrix, 64
activity-start matrix, 64
adjacency matrix, 104, 108, 112, 125,
151, 185

and/or algebra, 16, 58, 151
arc, 37, 98, 103

arc adjacency matrix, 185
assembly line, 4, 17, 247, 265
assembly tree, 6, 55, 230
asynchronous events, 34
automaton, 36

bill of materials (BOM), 6, 53
binary loop, 156

circle (cycle), 101, 116

circular blocking, 2, 73, 150, 168, 178
circular (cyclic) path, 129, 150, 241
circular wait relation, 15, 150

circular waits (CWs), 113, 150

clock, 70, 225

conflict, 12, 54, 73, 172, 180, 193, 220,
232

conflict resolution, 80, 94, 141
conflict-resolution matrix, 79
conflicting-rules vector, 80

content of CW, 159, 169

control function, 26, 48, 78, 90, 202, 232,
244

controllability, 26, 46, 237
coordination level, 91

critical CCW, 170

critical circuit, 101

critical resources, 169

critical siphon, 158, 165, 201, 236
critical subsystem, 164, 175, 241
critical traps, 158

CW adding rules, 159, 174

CW clearing rules, 159, 174
cycle mean, 101, 129

cyclic circular wait, 152, 169, 177
cyclic posterior rules, 170

cyclic precedent rules, 170

deadlock, 9, 13, 41, 47, 73, 83, 148,, 159,
178, 184, 195, 216, 236

deadlock avoidance, 9, 91, 150, 178, 184,
195

deadlock detection, 9

deadlock prevention, 9, 41, 87, 216, 232
delay matrices, 68, 141

deterministic automata, 37

digraph (directed graph), 10, 37, 99, 106
discrete event controller (DEC), 4, 15
dispatching, 2, 8, 16, 89, 147, 178, 248,
255,284

dispatching-control input, 16, 78
dispatching matrix, 79, 201

dispatching problem, 5, 54, 86, 156
dispatching vector, 78, 90, 141
dispatching vector release matrix, 83, 141
dispatching, first-buffer-first-serve
(FBFS), 8, 12,77, 180

dispatching, last-buffer-first-serve
(LBFS), 9, 12, 48, 180

downstream node, 100, 150

edges, 98
empty string, 47, 112

296 Index

event-driven state, 30
event-driven system, 10, 34, 45, 132
event graphs, 121, 133, 141

feedback, 16, 26, 45, 59, 70, 79, 127
final node, 101

flexible manufacturing systems (FMS),
simulation tools, 17, 242, 259
free-choice multiple re-entrant flowlines
(FMREF), 147, 170, 184, 226

graph, 3, 14, 37, 47, 98, 107, 123, 151,
212

hold while waiting, 53, 149
hybrid matrix model, 64
hybrid systems, 30

idle-resource vector, 59
implementation level, 92

incidence matrix, 105, 215, 223, 233
input matrix, 57, 238

irregular system, 169

job-completed vector, 59, 168
job-sequencing matrix, 6, 54
job-start equation, 60, 77
job-start matrix, 56, 71
job-start vector, 59, 204

job vector, 16, 58, 156

kanban, 162, 180
key resource, 148, 169, 183

language, 45

lifetime, 67, 79, 141

livelock, 41, 186

logical state vector, 54, 59, 77, 90, 141,
148, 181, 238

marked language, 47

marked states, 36, 47

material handling buffer (routing
resources), 171

mathematical programming, 3, 16
matrix-based DE controller (supervisor),
15, 52,77, 86,91, 178, 202, 247, 277
maximization, 121, 132

maximum cycle mean, 101, 129, 140
max-plus, 120, 132, 225

mean weight of a path, 101

multipart re-entrant flowline (MRF), 86,
148, 169, 178, 217, 229
mutual exclusion, 10, 53, 149

neutral job set, 163, 179

neutral rules, 164, 174

nodes, 14, 98, 111, 150, 185, 212
nonshared resources, 54, 68, 156, 227,
249
NP-(nonpolynomial)-completeness, 16

observability, 27, 46, 132, 237
one-step look-ahead, 147, 178
origin, 99, 116, 185

output matrix, 57, 238
overlap, 184, 192

parallel composition, 42, 111, 122
parallel sharing, 54, 227

part path, 4, 60, 157, 184, 229

path length, 101

Petri nets, colored, 225

Petri nets, input incidence matrix, 214,
238

Petri nets, output incidence matrix, 214,
238

posterior rules, 164, 241

postset, 100, 148, 159, 174, 220
precedent rules, 164, 241

predecessor, 100, 111, 131
pre-emption, 53

prefix, 47

prefix-closed, 47

preset, 100, 148, 159, 174, 220
Programmable logic controller (PLC), 10,
48, 68, 199, 245

reachable, 102, 217, 248

re-entrant flowline, 4, 150

resource cycle, 130

resource job set, 54

resource loop, 54, 156, 178, 220, 241
resource-release equation, 15, 61, 77
resource-release matrix, 56, 71, 238
resource-release vector, 59, 204
resource requirements matrix, 2, 8, 54, 78,
238

resource utilization, 65, 130, 181, 208
resource vector, 16, 58, 156

second-level deadlock, 148, 169, 182
self-loop, 98, 105, 212, 229

sequential sharing, 54, 227

series composition, 111, 122

shared resources, 5, 54, 61, 81, 133, 149,
171,227, 249

shift (delay) operator, 68, 141
siphon, 158, 179, 201, 221, 236
siphon job set, 161, 175

siphon job vector, 161

siphon vector, 159

siphon-trap job set, 162, 175

sorted vector, 187

state transition diagram, 37

strictly adding rules, 174

strictly neutral job set, 163

strictly siphon job set, 163

strictly trap job set, 163

string, 46, 110, 123, 130

string matrix, 112

strongly connected graph, 102, 129
substring, 47, 111

successor, 100, 199

suffix, 47

supervisory controller, 1, 15, 45, 52, 77,
120, 180, 199, 216, 236, 277
support, 58

system

system state, 23, 32, 45, 98, 108, 137
system vector, 63, 79

system, inputs, 22, 57, 129, 143
system, outputs, 22, 27, 134, 143, 250
system, time-driven, 22, 34, 125
system, time invariant, 22

system, time-variant, 22

task-sequencing matrix, see also job
sequencing matrix, 2, 16

temporary system vector, 90, 159, 204
3D Modeling, 261

time driven system, see system, time-
driven

Index 297

time vectors, 186, 194

time windows, 178, 189
time-windows overlap, 184, 193
timed sequence, 35

token game, 11, 243

tokens , 11, 14, 212, 224, 232
transition function, 36

trap, 158, 221

trap job set, 162, 175

uncontrollable events, 31, 46, 237
unique production cycle, 129
unreachable, 31

upstream node, 100, 150

vector negation, 58

vertices, 98

virtual-factory simulators , 259
virtual-factory simulators, CimStation
Robotics, 275

virtual-factory simulators, Cosimir, 275
virtual-factory simulators, eM-Plant, 273
virtual-factory simulators, FlexMan, 267,
276

virtual-factory simulators, Grasp2000,
270

virtual-factory simulators, RobotStudio,
271

virtual node, 114

VRML, 262

VRML, basic features, 263

wait relation graph, 14, 151, 241

weight, 99, 106, 129

weight of path, 101

weighted adjacency matrix, 106, 121, 129

X3D, 262

Other titles published in this Series (continued):

Analysis and Control Techniques for
Distribution Shaping in Stochastic
Processes

Michael G. Forbes, J. Fraser Forbes,
Martin Guay and Thomas J. Harris
Publication due August 2006

Process Control Performance Assessment
Andrzej Ordys, Damien Uduehi and
Michael A. Johnson (Eds.)

Publication due August 2006

Adaptive Voltage Control in Power Systems
Giuseppe Fusco and Mario Russo
Publication due September 2006

Advanced Fuzzy Logic Technologies in
Industrial Applications

Ying Bai, Hanqi Zhuang and Dali Wang
(Eds.)

Publication due September 2006

Distributed Embedded Control Systems
Matjaz Colnaric, Domen Verber and
Wolfgang A. Halang

Publication due October 2006

Modelling and Analysis of Hybrid
Supervisory Systems

Emilia Villani, Paulo E. Miyagi and
Robert Valette

Publication due November 2006

Model-based Process Supervision
Belkacem Ould Bouamama and
Arun K. Samantaray
Publication due February 2007

Continuous-time Model Identification
from Sampled Data

Hugues Garnier and Liuping Wang (Eds.)
Publication due May 2007

Process Control
Jie Bao, and Peter L. Lee
Publication due June 2007

Optimal Control of Wind Energy Systems
Iulian Munteanu, Antoneta Iuliana Bratcu,
Nicolas-Antonio Cutululis and

Emil Ceanga

Publication due November 2007

