

Advances in Industrial Control

Other titles published in this Series:

Digital Controller Implementation
and Fragility
Robert S.H. Istepanian and
James F. Whidborne (Eds.)

Optimisation of Industrial Processes
at Supervisory Level
Doris Sáez, Aldo Cipriano and
Andrzej W. Ordys

Robust Control of Diesel Ship Propulsion
Nikolaos Xiros

Hydraulic Servo-systems
Mohieddine Jelali and Andreas Kroll

Strategies for Feedback Linearisation
Freddy Garces, Victor M. Becerra,
Chandrasekhar Kambhampati and
Kevin Warwick

Robust Autonomous Guidance
Alberto Isidori, Lorenzo Marconi and
Andrea Serrani

Dynamic Modelling of Gas Turbines
Gennady G. Kulikov and Haydn A.
Thompson (Eds.)

Control of Fuel Cell Power Systems
Jay T. Pukrushpan, Anna G. Stefanopoulou
and Huei Peng

Fuzzy Logic, Identification and Predictive
Control
Jairo Espinosa, Joos Vandewalle and
Vincent Wertz

Optimal Real-time Control of Sewer
Networks
Magdalene Marinaki and Markos
Papageorgiou

Process Modelling for Control
Benoît Codrons

Computational Intelligence in Time Series
Forecasting
Ajoy K. Palit and Dobrivoje Popovic

Modelling and Control of mini-Flying
Machines
Pedro Castillo, Rogelio Lozano and
Alejandro Dzul

Rudder and Fin Ship Roll Stabilization
Tristan Perez

Hard Disk Drive Servo Systems (2nd
Edition)
Ben M. Chen, Tong H. Lee, Kemao Peng
and Venkatakrishnan Venkataramanan

Measurement, Control, and
Communication Using IEEE 1588
John Eidson

Piezoelectric Transducers for Vibration
Control and Damping
S.O. Reza Moheimani and Andrew J.
Fleming

Windup in Control
Peter Hippe

Nonlinear H2/H∞ Constrained Feedback
Control
Murad Abu-Khalaf, Jie Huang and
Frank L. Lewis

Practical Grey-box Process Identification
Torsten Bohlin
Publication due May 2006

Modern Supervisory and Optimal Control
Sandor A. Markon, Hajime Kita, Hiroshi
Kise and Thomas Bartz-Beielstein
Publication due July 2006

Wind Turbine Control Systems
Fernando D. Bianchi, Hernán De Battista
and Ricardo J. Mantz
Publication due August 2006

Soft Sensors for Monitoring and Control of
Industrial Processes
Luigi Fortuna, Salvatore Graziani,
Alessandro Rizzo and Maria Gabriella
Xibilia
Publication due August 2006

Practical PID Control
Antonio Visioli
Publication due November 2006

Magnetic Control of Tokamak Plasmas
Marco Ariola and Alfredo Pironti
Publication due May 2007

Stjepan Bogdan, Frank L. Lewis, Zdenko Kovačić
and José Mireles Jr.

Manufacturing Systems
Control Design
A Matrix-based Approach

With 152 Figures

123

Stjepan Bogdan, PhD
Laboratory for Robotics and Intelligent

Control Systems
Department of Control and

Computer Engineering
Faculty of Electrical Engineering

and Computing
University of Zagreb
Zagreb
Croatia

Frank L. Lewis, PhD
Automation and Robotics Research

Institute
University of Texas (Arlington)
Fort Worth, Texas
USA

Zdenko Kovačić, PhD
Laboratory for Robotics and Intelligent

Control Systems
Department of Control and

Computer Engineering
Faculty of Electrical Engineering

and Computing
University of Zagreb
Zagreb
Croatia

José Mireles Jr., PhD
Instituto de Ingeniería y Tecnología
Universidad Autónoma de Ciudad Juárez
Cd. Juárez
Chihuahua
México

British Library Cataloguing in Publication Data
Manufacturing systems control design : a matrix-based

approach. - (Advances in industrial control)
1.Industrial engineering - Automatic control 2.Process
control 3.Matrices
I.Bogdan, Stjepan
629.8

ISBN-13: 9781852339821
ISBN-10: 1852339829

Library of Congress Control Number: 2006924637

Advances in Industrial Control series ISSN 1430-9491
ISBN-10: 1-85233-982-9 e-ISBN 1-84628-334-5 Printed on acid-free paper
ISBN-13: 978-1-85233-982-1

© Springer-Verlag London Limited 2006

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive, Natick,
MA 01760-2098, USA. http://www.mathworks.com

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed in Germany

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Advances in Industrial Control

Series Editors

Professor Michael J. Grimble, Professor of Industrial Systems and Director
Professor Michael A. Johnson, Professor (Emeritus) of Control Systems
and Deputy Director

Industrial Control Centre
Department of Electronic and Electrical Engineering
University of Strathclyde
Graham Hills Building
50 George Street
Glasgow G1 1QE
United Kingdom

Series Advisory Board

Professor E.F. Camacho
Escuela Superior de Ingenieros
Universidad de Sevilla
Camino de los Descobrimientos s/n
41092 Sevilla
Spain

Professor S. Engell
Lehrstuhl für Anlagensteuerungstechnik
Fachbereich Chemietechnik
Universität Dortmund
44221 Dortmund
Germany

Professor G. Goodwin
Department of Electrical and Computer Engineering
The University of Newcastle
Callaghan
NSW 2308
Australia

Professor T.J. Harris
Department of Chemical Engineering
Queen’s University
Kingston, Ontario
K7L 3N6
Canada

Professor T.H. Lee
Department of Electrical Engineering
National University of Singapore
4 Engineering Drive 3
Singapore 117576

Professor Emeritus O.P. Malik
Department of Electrical and Computer Engineering
University of Calgary
2500, University Drive, NW
Calgary
Alberta
T2N 1N4
Canada

Professor K.-F. Man
Electronic Engineering Department
City University of Hong Kong
Tat Chee Avenue
Kowloon
Hong Kong

Professor G. Olsson
Department of Industrial Electrical Engineering and Automation
Lund Institute of Technology
Box 118
S-221 00 Lund
Sweden

Professor A. Ray
Pennsylvania State University
Department of Mechanical Engineering
0329 Reber Building
University Park
PA 16802
USA

Professor D.E. Seborg
Chemical Engineering
3335 Engineering II
University of California Santa Barbara
Santa Barbara
CA 93106
USA

Doctor K.K. Tan
Department of Electrical Engineering
National University of Singapore
4 Engineering Drive 3
Singapore 117576

Doctor I. Yamamoto
Technical Headquarters
Nagasaki Research & Development Center
Mitsubishi Heavy Industries Ltd
5-717-1, Fukahori-Machi
Nagasaki 851-0392
Japan

 To Jasenka

 S.B.

To Chris, my son

 F.L.L.

To Dubravka

 Z.K.

To Josue, Joel, Alena, and Aaron, my loved kids

 J.M.

Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has
an impact on all areas of the control discipline. New theory, new controllers,
actuators, sensors, new industrial processes, computer methods, new applications,
new philosophies , new challenges. Much of this development work resides in
industrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended
exposition of such new work in all aspects of industrial control for wider and rapid
dissemination.

In some areas of manufacturing, the elements of a flexible manufacturing
system form the key components of the process line. These key components are
four-fold: a set of programmable robots and machines, an automated materials-
handling system that allows parts to be freely routed and re-routed, a buffer storage
system where parts and partly-assembled components can wait until required for
further processing and assembly and finally, a supervisory control system. The
technology employed to coordinate and control all these components as a working
system is usually based on programmable logic controllers. The use of this
automation hardware and software in manufacturing is designed to yield significant
cost reductions and to enhance quality. Economic gains are achieved through the
ability of these systems to work continuously (24/7, all year round) and flexibly so
that rapid on-line supervisory reprogramming can be performed for the
modification and improvement of product parts or the assembly of different
products. Unlike human operators, robots and machines do not suffer from
biological fatigue so that enhanced product quality can be attained through better
repetitive accuracies and consistent mechanical performance.

To achieve the economic and quality goals of flexible manufacturing requires
the use of some sophisticated supervisory control algorithms to direct the process
scheduling and despatching tasks and to handle any on-line dynamic conflicts that
might emerge. In general, these decisions for sequencing operations are
constrained by limited resources and shared resources. The other very distinctive
characteristic of these supervisory control problems is that the system under
supervision is a discrete-event system. In this case, the state-space for the system

x Series Editors’ Foreword

attains discrete values and the transition from one state to another is caused by an
event taking place. This adds to the difficulty in analysing the properties of these
systems because the system description is often linguistic unlike the continuous-
time equation-based descriptions with which most control engineers are familiar;
however, many of these scheduling problems are central issues in manufacturing
studies per se and as such have already been extensively investigated. For example,
many of the methods of operational research were originally driven by the
supervisory control problems of manufacturing processes. From this simple
background perspective, Professor Stjepan Bogdan and his colleagues present a
nicely self-contained treatment of the supervisory control problems of flexible
manufacturing systems using recently developed approaches and tools. This new
entry to the Advances in Industrial Control series has four components. Firstly, the
introductory chapters 1 and 2 create the framework for understanding flexible-
manufacturing-system concepts and discrete-event system descriptions.
Particularly interesting is the discussion of system types – continuous-time, hybrid
and discrete – given in Chapter 2 which uses in-depth examples to help the control
engineer appreciate the similarities and differences between the three types.

A substantial part of the book, Chapters 3 to 5, pursues matrix models for
manufacturing systems; however, it should be noted that because the underlying
systems are discrete-event systems, these are matrices defined over an and or
(,) algebra. In these chapters, it is fascinating to learn how rule-based systems
can be given matrix representation and how there are links to other tools like
directed graphs for the analysis of the control of these systems.

Quite often in this text the discussion of manufacturing system properties uses
the tools of Petri nets. Petri nets have evolved and developed considerably since
their original introduction in the early 1960s. In Chapter 6, the authors present a
full introduction to their use in the studies of manufacturing system problems, for
example, links between Petri nets and the matrix methods of earlier chapters are
established. The authors also usefully describe and demonstrate their own
graphical Petri-net-simulation software tool that is available for download for use
by the interested reader.

To complete the monograph, Chapter 7 reports on other mainstream simulation
tools for virtual factory modelling. The potentially disastrous economic effects of a
poorly defined factory layout or an inefficient manufacturing control strategy has
ensured the development of a substantial set of factory simulation tools often with
advanced graphics for visualisation of operational dynamics and with various
analysis tools to assess and compute performance metrics. The thorough survey
presented by Professor Bogdan and his colleagues provides a very fitting
concluding chapter for this stimulating monograph on flexible manufacturing
systems.

M.J. Grimble and M.A. Johnson
Industrial Control Centre
Glasgow, Scotland, U.K.

Foreword

In the late 1980s, the strong needs for modeling, analysis, control, and simulation
of complex systems especially computer-integrated manufacturing systems
demanded the academic researchers and industrial engineers to seek and
investigate better methodologies and tools. Such tools must be able to deal with
such system characteristics as asynchronous events, sequences, concurrency,
synchronization, mutual exclusion, deadlocks, and choices. While state machines
or automata were popular in many applications, they were soon proved to be
inadequate since the state explosion problems would be met at the very beginning
of system design. Any design flaws or incompleteness may invalidate the entire
system design and frequently require rather cumbersome recovery. On the other
hand, Petri nets, invented by C. A. Petri in his 1962’s doctoral dissertation, are well
equipped with the required capabilities to handle the above-mentioned
characteristics. They thus gained their popularity among the researchers of discrete
event systems and industrial applications in manufacturing automation.

The research group at Rensselaer Polytechnic Institute (RPI) was established
and led by Professors Frank DiCesare and Alan Desrochers. It was supported by
many leading industrial companies such as IBM, GM, Johnson and Johnson, Sun
Microsystems, and Digital Equipment Corporation via an eight-year long
Computer Integrated Manufacturing Research Program of the Center for
Manufacturing Productivity and Technology Transfer at RPI. They obtained many
significant research and application results. Notably, as the first Ph.D. graduate of
this group in this area, Dr. Robert Al-Jaar proposed to use generalized stochastic
Petri nets for modeling and analysis of production lines. Their work led to their
1994 book Applications of Petri Nets in Manufacturing Systems: Modeling,
Control, and Performance Analysis by IEEE Press. As the second Ph.D. graduate
of the group, I developed the concepts of parallel and sequential mutual exclusion
structures, top-down, bottom-up and hybrid synthesis methods, Petri net-based
discrete event controller design and implementation procedures for flexible
manufacturing systems (FMS). The results were summarized into the first
monograph of its kind, Petri Net Synthesis for Discrete Event Control of
Manufacturing Systems, co-authored with Frank DiCesare, Kluwer Academic
Publisher in 1993. Dr. Fei-Yue Wang, presently Professor of the University of

xii Foreword

Arizona and the Institute of Automation, Chinese Academy of Sciences, pioneered
in applying Petri nets to designing intelligent machines and building intelligent
control foundation together with his advisor, Dr. George Saridis. He also
developed a Petri net method for communication protocol design and performance
analysis for manufacturing message specification. From the same group, Dr.
Inseon Koh, presently Professor of Hong-Ik University, Korea, perfected a bottom-
up method to synthesize Petri nets with desired properties. Dr. Jagdish S. Joshi
conducted performance analysis of network and database transactions in a CIM
system. Dr. MuDer Jeng, presently Professor of National Taiwan Ocean
University, invented a new class of Petri nets suitable for modeling automated
manufacturing systems. Dr. Doo Yong Lee, presently Professor of Korea
Advanced Institute of Technology, pioneered in using various heuristics to guide
optimal or sub-optimal schedule search in timed Petri net models of flexible
manufacturing systems. Dr. Alessandro Giua, presently a professor of University
of Cagliari, Italy, developed a supervisory control theory in the framework of Petri
nets. Dr. Tiehua Cao and Professor Arthur C. Sanderson combined fuzzy logic
theory and Petri nets and developed fuzzy Petri nets for intelligent task planning in
a robotic system. The research led to the publication of Intelligent Task Planning
Using Fuzzy Petri Nets in the Series in Intelligent Control and Intelligent
Automation of World Scientific Publisher in 1996. Dr. Hauke Jungnitz developed
approximation methods for stochastic timed Petri nets. Dr. James F. Watson
formulated a method for performance analysis of discrete event systems with non-
exponential random time distributions and state space estimation of a given Petri
net model.

The above-mentioned work addressed various issues from model synthesis,
performance analysis, simulation, deadlock avoidance, and supervisory control
design and made significant contributions to the field of Petri nets and their
applications to manufacturing automation. Yet one significant problem remains
unsolved: given manufacturing system specifications expressed in Bill of
Materials, Assembly Tree, Task Sequencing matrix, and Resource Requirement
Matrix, how can one automatically generate a Petri net model and related design
for analysis, control, and simulation of a flexible manufacturing system (FMS).
This book written by a group of outstanding researchers under the leadership of Dr.
Frank Lewis indeed presents an elegant solution to the above long-lasting problem.
Their proposed matrix-based approach represents one of the most significant
innovations to the area of Petri nets and related discrete-event modeling
approaches for manufacturing system control design. The authors are able to

 Foreword xiii

identify a unique mapping between the Petri net elements and system
specifications and reveal the underlying relations for a number of design and
analysis tools used in industrial engineering. More importantly, the research group
is able to link what they do to the generation of control code required by
Programmable Logic Controllers (PLC). PLC have been the industrial horse in
almost every sector of automated manufacturing and packaging industry for three
decades.

This present book contributes to the area of manufacturing automation in a
number of ways. First, it comprehensively presents a matrix-based modeling and
controller design framework. It uses an intelligent material handling workcell to
illustrate clearly various steps in matrix-based controller design. Second, the book
addresses how to utilize matrices for analyzing structural properties of
manufacturing systems. It reveals the underlying relationship among graph
descriptions, max-plus algebra, and the proposed matrix models. Third, the book
investigates a very important yet difficult class of manufacturing systems, namely,
multiple re-entrant flowlines. It answers how deadlocks can be avoided in such
systems. PLC-controlled flexible manufacturing systems are used to illustrate
various deadlock avoidance strategies. Fourth, the book presents Petri nets and
their complementary character with the matrix models. A computer-aided design
tool called Petri.NET is developed and presented, allowing researchers and
engineers to model and simulate FMS using either Petri nets or matrix models.
Finally, the book presents the basics of virtual factory modeling and simulation and
a number of CAD tools used in industry. Its contribution includes a web tool called
FlexMan that can be used to design and simulate of FMS based on virtual factory
models and matrix-based methodologies. Such examples as palletization workcell,
FESTO FMS, robotic brick-handling system, Volvo body-manufacturing line, and
assembly station are used to demonstrate these tools.

In conclusion, the authors have well presented their innovative manufacturing
control design methods based on matrices, Petri nets and other related discrete-
event modeling tools. The book clearly advances the state-of-the-art in the area of
flexible manufacturing automation and its impact to the area will last long, not only
methodologically but also practically.

MengChu Zhou, Ph. D. and Professor
New Jersey Institute of Technology
Newark, NJ
http://web.njit.edu/~zhou

Preface

Being aware that our planet is inhabited with more than six billion human beings

having their needs for food, cloths, shelter, medical care, education, transportation,

entertainment and many more, efficacious manufacturing of various goods

becomes extremely important for the global society.

Even in these days, manufacturing is performed by individuals, and such

products, in low volumes, may have a lot of success on the market. Let us just

mention exclusive cars, jewellery or some pieces of finest art. High volume

production would not be possible without carefully planned production technology,

highly automated production processes and engagement of specially designed

automation equipment.

The success of one product on the market depends on many factors, how the

product looks like, what kind of usefulness it has, how many versions of product

exist etc. Investigations of the car market have found long time ago that customers

make their decisions based on overall assessment of car manufacturer (e.g.,

reliability of the vehicle, quality of the service, experience in manufacturing), but

they are also judging the individual qualities of the vehicle they want to buy. In this

context, sometimes only colour becomes the reason why the customer will pick

that car instead of another. What we say about cars holds for any other product.

Many products have very similar constituent parts or the same parts arranged in

the slightly different way. The production strategy which has a goal to

accommodate to different customers' demands leads naturally to a flexible

manufacturing concept. For example, contemporary car industry cannot be

imagined without robots, machine tools, belt conveyers, part feeders and other

elements. The strength of all single components lies in their integration into a

flexible manufacturing system (FMS).

FMS control triggers many parallel worlds - continuous and discrete control

loops, as well as many discrete events occurring synchronously or stochastically.

In order to be able to control the FMS, sensors, actuators, and controllers, viewing

from the lowest to the highest control level, constitute a network. This means that

dealing with FMS control actually means dealing with the distributed network-

based control. Usually, programmable logic controllers or PC-based solutions are

used for implementation of such controllers. Therefore, it is very important that

xvi Preface

methods and algorithms concerned with analysis and synthesis of FMS control

have a form and features which would make them suitable for implementation in a

dedicated hardware.

Flexible manufacturing systems are "live" systems composed of a group of

allocated resources and tasks being assigned. They can assume different structures

and undergo different control strategies depending on the consequences of issued

commands (e.g. a new robot has been added to the system) or the states of

particular FMS components (e.g. one of the robots is out of order). Under such

conditions, sequencing of tasks, parallelism of missions, collision of concurrent

decisions, and negligence of planned actions are problems an FMS control designer

must confront with.

The authors of this book have been actively involved in the FMS control area

more than a decade trying to find such FMS control design methods which would

guarantee the stability and the functionality of the control system at one hand, and

which would be simple enough, easily implemental and effective in practical

engineering applications on the other.

The purpose of this book is to describe the use of matrical approach to the FMS

control design. First we introduce the reader with different techniques of FMS

control design and then we elaborate the advantages of matrix-based FMS control

design, mentioning just one, an ability to convert the matrix-based controller into

an effective PLC executable code.

The topics are divided into seven chapters. Chapter 1 is a descriptive

introduction into a world of FMS classification, modeling, simulation and design

of their controllers. The Chapter 2 gives a brief review of discrete event systems

with an emphasis on the time-driven and event-driven systems. Chapter 3 describes

the theory and methodology of creating a matrix model and a matrix controller.

The reader will also find the example of matrix controller design for an intelligent

material handling workcell. Chapter 4 is concerned with an analysis of matrix

methods for manufacturing systems. The description of graphs, principles of string

composition, and max-plus algebra is given as well as their relations to the matrix

model. Manufacturing system structural properties given in the matrix form are the

subject of Chapter 5. The focus has been set on the properties of so called multiple

re-entrant flowlines (MRF) that are important for the control synthesis, such as

circular waits, siphons and traps, and critical subsystems. The discussion is

extended also to the free choice multiple re-entrant flowlines (FMRF), whose

control properties are even more demanding. Deadlock avoidance strategies are

presented and illustrated on the example of a PLC-controlled FMS. Chapter 6 deals

with Petri nets that are a widely used tool for MS modeling and control design. The

relations between Petri nets and the matrix form are given in order to show their

complementary character. A program tool Petri.NET developed at the Laboratory

for Robotics and Intelligent Control Systems that utilizes both Petri nets and matrix

forms for modeling and simulation of FMS is described. Chapter 7 describes basic

principles of virtual factory modeling and simulation as a powerful means of FMS

performance visualization. Several commercial program packages for virtual

modeling are shortly presented. In addition, a web tool FlexMan developed by the

authors and implemented to serve for off-line design and simulation of flexible

 Preface xvii

manufacturing systems using a matrix model and a virtual model of the FMS is

described.

 Many individuals have contributed to this book. Special credits go to our

colleagues Ayla Gurel and Octavian Pastravanu. We are also indebted to the

students who contributed by implementing aforementioned program tools and by

performing some of the simulation and practical experiments while working on

their diploma and masters theses. This list includes, in particular, Bruno Birgmajer,

Goran Genter, Krešimir Petrinec, Tomislav Reichenbach, and Nenad Smoli -

Ro ak.

Zagreb, 10.03.2006.

Stjepan Bogdan

Frank L. Lewis

Zdenko Kova i

Jose Mireles

Contents

1 Introduction... 1

 1.1 Background.. 2

 1.1.1 Flexible Manufacturing Systems and Their Controllers 2

 1.1.2 Summary of Approaches to Manufacturing System Control.......... 2

 1.2 Flexible Manufacturing Systems ... 3

 1.2.1 Types of Manufacturing Systems ... 3

 1.2.2 FMS Design Tools.. 5

 1.3 Dispatching Rules and Blocking Phenomena .. 8

 1.4 Models of Discrete Event Manufacturing Systems.................................... 9

 1.4.1 Rule-based Expert Systems .. 9

 1.4.2 Petri Nets .. 10

 1.4.3 Graphs .. 14

 1.5 A Matrix-based Discrete Event Controller .. 15

 1.5.1 Matrix-based Discrete Event Controller Equations 15

 1.6 Simulation of FMS Control Systems ... 16

 References.. 17

2 Discrete Event Systems... 21

 2.1 Time-driven Systems ... 22

 2.2 Event-driven Systems .. 34

 2.2.1 Automaton .. 36

 2.2.2 Languages and Supervisory Control of DES................................ 45

 References.. 48

3 Matrix Model and Control of Manufacturing Systems 51

 3.1 System Matrices... 53

 3.2 System Equations... 58

 3.2.1 Logical State-vector Equation .. 59

 3.2.2 Job-start Equation... 60

 3.2.3 Resource-release and Product-output Equations 61

 3.2.4 Recursive Matrix Model... 62

 3.3 Modeling System Dynamics .. 67

xx Contents

 3.4 Matrix Controller .. 77

 3.5 A Case Study: Implemetation of the Matrix Controller........................... 86

 3.5.1 Intelligent Material Handling (IMH) Workcell Description......... 86

 3.5.2 IMH Workcell Dispatching Strategy ... 89

 3.5.3 Implementation of the Matrix Controller on the IMH Workcell .. 91

 3.5.4 The Matrix Controller in LabVIEW Graphical Environment....... 93

3.6 Excersises .. 95

 References.. 95

4 Matrix Methods for Manufacturing Systems Analysis................................ 97

 4.1 Basic Definitions of Graphs... 98

 4.1.1 Matrix Representation of the Graph ... 103

 4.2 String Composition .. 110

 4.3 Max-plus Algebra .. 120

 4.3.1 DEDS Model in Max-plus Algebra .. 124

 4.3.2 Periodic Behavior of DEDS in Max-plus 127

 4.3.3 Buffers in Max-plus Algebra .. 130

 4.3.4 Deriving Max-plus System Equation from Matrix Model.......... 140

 4.4 Exercises .. 143

 References.. 144

5 Manufacturing System Structural Properties in Matrix Form 147

 5.1 Multiple Re-entrant Flowlines – MRF... 148

 5.1.1 Circular Waits in MRF Systems ... 150

 5.1.2 Resource Loops in MRF Systems... 156

 5.1.3 Siphons and Traps in MRF Systems... 158

 5.1.4 Critical Subsystems in MRF Systems... 164

 5.1.5 Key Resources and Irregular Systems in MRF........................... 169

 5.2 Free Choice Multiple Re-entrant Flowlines – FMRF 170

 5.2.1 Structural Properties of FMRF ... 173

 5.3 Matrix Controller Design in MRF Systems ... 178

 5.3.1 Deadlock Avoidance in MRF Systems....................................... 178

 5.3.2 Deadlock Avoidance in Irregular Systems 181

 5.3.3 Deadlock Avoidance in FMRF Systems..................................... 184

 5.4 A Case Study: Deadlock Avoidance in PLC-controlled FMS 199

 References.. 208

6 Petri Nets ... 211

 6.1 Basic Definitions ... 212

 6.2 Manufacturing Systems Modeling... 226

 6.2.1 Petri-net Controller ... 231

 6.3 Relation Between Petri Nets and Matrix Form...................................... 238

 6.4 Petri Nets Simulation and Implementation .. 242

 6.5 Validation of Implemented Petri Nets ... 247

 References.. 257

 Contents xxi

7 Virtual Factory Modeling and Simulation.. 259

 7.1 3D Modeling of Manufacturing Systems... 261

 7.2 Modeling FESTO FMS in VRML (X3D) Format 262

 7.2.1 Basic VRML Features .. 263

 7.2.2 FESTO FMS VRML Model ... 265

 7.3 Modeling in LISA.. 267

 7.4 GRASP2000 (BYG Systems Ltd, UK) .. 270

 7.5 Robot Studio (ABB, Sweden).. 271

 7.6 Tecnomatix eM-Plant (UGS, USA)... 273

 7.7 CIMStation Robotics (AC&E, UK)... 275

 7.8 COSIMIR (FESTO, Germany) .. 275

 7.9 FlexMan (LARICS, University of Zagreb, Croatia) 276

 7.9.1 FlexMan Structure .. 277

 7.9.2 Database ... 279

 7.9.3 Virtual FMS Modeling ... 279

 7.9.4 Functional Modeling of FMS ... 279

 7.9.5 Generating Trajectories in FlexMan... 280

 7.9.6 Simulation and Visualization of FMS operation 282

 7.9.7 Internet-based Multiuser FMS Control with FlexMan 283

 7.9.8 A Selection of an FMS Control Method..................................... 284

 7.10 Exercise ... 290

 References.. 292

Index .. 295

1

Introduction

In this book a modern systems theory point of view is offered for the design of

supervisory controllers for flexible manufacturing systems (FMS). The supervisory

controller is installed on a PLC or on a computer, and sensors situated in the FMS

are used to provide information to the controller about the status of the FMS,

including job performance information and resource-availability information.

Then, the controller performs calculations to determine which jobs should be

performed next to achieve the specified performance requirements, such as

meeting the product due dates, avoiding blocking phenomena, maximizing

machine usage, minimizing time of transit of the product through the FMS, etc.

Finally, commands are sent back to the FMS to select which jobs should be

performed next and which resources should be used. Such a manufacturing

controller is called a discrete event (DE) controller since it depends on the events

that occur in the FMS.

The DE controller design techniques in this book are based on a matrix-based
formulation for discrete event systems that streamlines modeling, analysis,

simulation, and controller implementation for FMS. The matrices used in the DE

controller formulation come from standard industrial engineering data structure

techniques including the bill of materials, assembly tree, and resource requirements

matrix; they are straightforward to write down for large-scale interconnected

manufacturing systems using notions of block matrices.

In this chapter we give a preview of the philosophy behind supervisory control

design. We outline some well-known tools in manufacturing industrial

engineering, including the bill of materials, assembly tree, and job-sequencing

matrix. We outline Petri nets and rule-based systems for DE controller design. We

introduce a DE controller that has a very special and convenient form based on

matrices and has close connections with all these background tools. Finally, we

summarize methods for computer simulation of supervisory FMS controllers, and

then techniques for their actual implementation on installed FMS.

Although this book focuses on manufacturing systems, this DE controller

formulation is also applicable for other DE systems including autonomous guided

vehicles (AGV), communication networks, wireless sensor networks, and

computer operating systems.

2 Manufacturing Systems Control Design

1.1 Background

Some background is given here on FMS and their control techniques. This lays the

foundation for the controller-design philosophy presented in this book.

1.1.1 Flexible Manufacturing Systems and Their Controllers

New developments in FMS, telecommunications systems, wireless networks,

multiagent battlefield scenarios, computer operating systems, intelligent

highway/vehicle systems, and elsewhere place severe demands on the design of

decision-making supervisory control systems. The Internet and wireless

communication mechanisms hold out the possibility of large-scale distributed

systems spanning physically remote sites. The large-scale interconnected nature of

such discrete event systems requires controllers/supervisors with increased

capabilities for scheduling with optimality and capacity constraints, shared-

resource dispatching, conflict resolution and deadlock avoidance, routing, failure

handling, and other decisions. Many such DE systems are known to suffer from

problems of computational complexity [1], where adding increased computer

power will not significantly improve system performance, though performance can

be improved through judicious choice of flow and command protocols, as well as

improvements in system structure. Therefore, there are heightened demands for

advanced supervisory controllers that include efficient organizational schemes,

task protocols, and communications network protocols that impose increased

structure on the system without detriment to strategic system objectives.

The concept of FMS emerged with the Ingersoll-Rand factory in Roanoke in

the 1960s. An FMS consists of (1) programmable machines and robots, (2) an

automated material handling system, and (3) a supervisory control system [2]. With

the advent of FMS, the importance of the supervisory controller increases. The

controller must be capable of quickly reprogramming the FMS to handle different

parts and produce different products, and of dynamically handling contention and

conflict decisions.

1.1.2 Summary of Approaches to Manufacturing System Control

Standard manufacturing engineering tools for heuristic analysis of decision-making

supervisory controllers for flow shops and job shops include the bill of materials

(BOM), Steward’s task-sequencing matrix, the assembly tree, and the resource

requirements matrix [3-5]. A body of work exists for shared-resource conflict

resolution in industrial engineering, namely, the work on dispatching and

scheduling (e.g. [6]). Standard dispatching rules show how to operate

manufacturing cells in the presence of limited resources such as pallets, transport

robots, machines. Results on kanban, CONWIP [7], and other pull techniques show

how to avoid blocking phenomena by limiting the numbers of jobs in certain

subsystems. Deadlock avoidance methods appear in [8-10], where the circular wait

relations and circular blockings of an FMS are studied. A thorough treatment is

given in [11].

 Introduction 3

Operations Research approaches to manufacturing modeling, analysis and

control include mathematical optimization [4, 38], queuing network analysis [12,

13], and discrete event simulation [14, 15]. Mathematical programming models

have been extensively studied and are suitable for open-loop planning and

scheduling, though rarely for closed-loop controller design. Techniques include

linear programming (LP), integer programming (IP), and quadratic programming

(QP). Many algorithms exist to solve problems including simplex, and dual

simplex. Algorithms that afford complexity reduction include Karmarkar (LP),

branch and bound (IP), cut algorithms (IP), Hungarian algorithm (IP), and

Fibonacci Search (QP). Dynamic programming [16] has been used to solve various

controller design problems. Mathematical programming algorithms have been

developed with emphasis on a hierarchical approach to modeling and control [17,

18].

Graphs and Petri nets (PN) [19, 20] afford a popular approach for analysis of

FMS and computer operating systems [21]. PN are important as they provide

insight into task sequencing and resource assignment, with analytical results on

reachability, liveness, conservativeness, and other important system properties. If

the PN is a (decision-free) event graph, it can equivalently be written as a linear

system over the max/plus or dioid algebra [22], which affords even more analysis

tools. Several researchers (e.g. [23, 24]) extended PN by using colored PN,

stochastic PN, hierarchical PN, etc. “Top-down” and “bottom-up” design

algorithms were proposed [25] along with improved techniques for the shared-

resource allocation problem. Formal techniques for the design of PN supervisors or

controllers are developed in [26, 27].

In perturbation analysis (PA) of discrete event systems [28] a dynamic system

point of view is employed to study DE system behavior and analyze its

performance. Many DE systems suffer from problems of computational complexity

[1]. Therefore, the objective of PA is to obtain performance sensitivities with

respect to system parameters by analyzing a single sample path of a discrete event

system. Other work such as [29, 30-32] brings a system theory flavor into

manufacturing dispatching, with the desired performance and bounded buffers

being guaranteed via mathematical proofs including Lagrangian relaxation and

Lyapunov stability techniques. Some work on fuzzy logic dispatching is available

[33]. Supervisory control theory techniques for analyzing DE systems involve

language-based approaches [27, 32], which offer effective analysis and design

results for DE systems. Other work [34] has by now studied properties of hybrid

and DE systems including stability, reachability, and so on.

1.2 Flexible Manufacturing Systems

1.2.1 Types of Manufacturing Systems

To meet competition in a global marketplace and provide flexible manufacturing in

today’s high-mix low-volume manufacturing environment, manufacturing systems

have moved away from old-style fixed-hardware sequential processing lines with

4 Manufacturing Systems Control Design

dedicated workstations. The trend for years has been towards flexible manu-

facturing. An FMS has four major components [35]:

• a set of machines, robots, fixtures, or work stations,

• an automated material handling system that allows flexible part routing,

• distributed buffer storage sites where the parts may be temporarily placed

during processing,

• a computer-based supervisory controller for monitoring the status of jobs

and directing part routing and machine-job selections.

In order to allow fast setup of the FMS for new parts and product types, an

advanced decision-making controller should be used. Proper design of the

controller can allow one to program the FMS as easily as one does a personal

computer. Such controllers are described in this book. The controllers are called

discrete event controllers (DEC) since they make decisions based on the current

events occurring in the FMS.

The controller should be distinguished from the physical portion of the FMS.

The physical portion of an FMS is the manufacturing facility, comprised of its

resources: the set of machines or work stations (including also robots, fixtures,

tools, etc.), the automated material handling system, and the distributed buffers.

Each resource type has a distinct function, though resource pools of more than one

machine of a type may perform the same function (e.g. drill, press fit, paint, etc.).

The resources serve the parts, and parts of the same class or type are grouped

together, flowing through the facility on distinct part paths. The job sequence for

each part type is the sequence of jobs required to produce a finished product.

There are several standard structures of manufacturing systems, including the

re-entrant flowline, the assembly line, and the job shop. In the general job shop the

sequencing of jobs is not fixed, or the assignment of resources to the jobs is not

fixed. Parts of the same type may visit different machines in different orders to

produce the same final product. The effect is that part routing decisions must be

made during processing. This significantly complicates decision making and

control in a manufacturing system and leads to problems with complexity issues.

In the flowline greater organization is imposed, and the sequence of jobs for

each part type is fixed and the assignment of resource pools to the jobs is fixed.

This results in a streamlined protocol that is easier to manage to provide

guaranteed performance in the FMS. The result is that parts of each type visit the

resources in the same sequence, though different part types may have different

sequences. A flowline is said to be re-entrant if any part type revisits the same

resource pool more than once in its job sequence [32, 30]. This occurs if the same

resource is assigned to different jobs in the part’s sequence. For instance, the same

drilling operation may need to be performed twice at different stages in the part’s

processing.

An FMS at The University of Texas at Arlington (UTA) Automation &

Robotics Research Institute (ARRI) is shown in Figure 1.1. This facility has three

robots, an IBM, a PUMA, and an Adept. These robots have been connected

through serial ports to allow central coordinated control from a single PC using a

LabVIEW© user interface developed at UTA. A matrix-based discrete event con-

 Introduction 5

Figure 1.1. An FMS at UTA’s Automation & Robotics Research Institute, showing three

robots and three conveyor belts

troller such as those discussed in this book has been implemented, allowing for

very fast and easy reprogramming of the FMS for new part types and products.

Figure 1.2 shows the re-entrant flowline structure of this FMS. Part type A is

processed by the Puma robot twice, part type B is processed by the Adept twice,

and both part types visit the IBM twice. Moreover, all three robots are used to

process both part types. Thus, the three robots are all shared resources, which are

visited several times by different parts. The flowline is re-entrant since parts of

each type revisit the same resource more than once.

Since in the re-entrant flowline certain resources may be shared, either by parts

of the same type at different stages of their processing, or across parts of different

types, one is faced with a decision at each shared resource involving which part to

process next. For instance, robot 2 has three queues where the parts enter - part A

for the first time, part A for the second time, and part B for the first time. Parts may

arrive at all these points simultaneously. Deciding which part to select next for

processing at each shared resource is known as the dispatching problem [6]. The

dispatching decision is a crucial one that can cause severe problems in a

manufacturing system if not properly made.

1.2.2 FMS Design Tools

There are numerous tools available in industrial engineering usage for the design

and analysis of manufacturing systems. We shall discuss here the bill of materials

(BOM), the assembly tree, the task-sequencing matrix, and the resource-

requirements matrix. In this book, these tools are combined into an overall design

and analysis technique that results in rigorous algorithms, computer simulation

techniques, and supervisory controllers with guaranteed performance. These tools

are unified through a matrix-based DEC formulation presented in this book.

6 Manufacturing Systems Control Design

 PART B OUT PART A OUT

PART A

PART B

IBM

ROBOT 1

ROBOT 2

ROBOT 3

Machine 1

Machine 2

A(1)R1

A(2)R1

B(1)R1

B(2)R1

A(1)R2

A(2)R2

B(1)R2

B(1)R3

B(2)R3 A(1)R3

PUMA

ADEPT

Figure 1.2. Re-entrant flowline structure of the FMS

b

a

d

e

f

c

drill

ass’y

move

drill

PO

b

a

d

e

f

c

drill

ass’y

move

drill

PO

Figure 1.3. An assembly tree

The bill of materials (BOM) is a document containing the assembly -

subassembly relationships for a specified product line [36]. It may be considered as

a lookup table or a matrix in which the (i,j) entry is equal to the number of

subassemblies/parts of type j needed to produce one subassembly/part of type i.
Thus, row i contains the materials required to form the ith subassembly. The BOM

is known for a given product line or part path. BOM information is an integral part

of the specifications for all manufactured products.

The information in the BOM may be depicted in graphical form for easy

visualization in the assembly tree [37], which shows the task decomposition of jobs

needed to manufacture a product. A sample assembly tree is given in Figure 1.3.

This tree shows that part a enters the workcell, where it is drilled. Then, part a and

part c are assembled, moved, drilled again, and finally put out as the finished

product, part out (PO).

The sequence of events in an assembly tree can be captured in matrix form by

defining the job or task-sequencing matrix, which for this example is

 Introduction 7

v

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 1 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

a b c d e f

a

b

c

d

e

f

PO

=F

Each row i indicates which jobs are required as immediate precursors for job i.
For instance, row 4 shows that jobs b and c are needed to perform the assembly job

d. This matrix is effectively the BOM, and it was studied by Steward and others [5,

39, 40]. In this matrix, the columns and rows correspond to jobs, and an (i,j) entry

of 1 indicates that job j is an immediate prerequisite for job i. The task-sequencing

matrix is very useful for representing the partial orderings needed for sequencing

manufacturing jobs. In fact, note that the causal sequencing of jobs d, e, f is seen in

the diagonal 1s, showing that each job is an immediate prerequisite for the next

job. It has been shown that a lower triangular job-sequencing matrix corresponds to

a causal ordering of jobs, and that information on the hierarchical subsystem

structure of a process can be extracted by raising this matrix to various powers.

The resource-requirements matrix (RRM) shows which resources are needed to

perform which tasks or jobs, as reflected graphically, for instance, in the

subassembly tree, which is an assembly tree annotated to indicate the resources

assigned to the jobs [37]. The subassembly tree for this example is shown in Figure

1.4, where information has been added to show which resources are assigned to

perform which jobs. Note that first the task sequence is prescribed, and then after

that the resources are added. The task-sequencing information may come from the

BOM or from computer science planning programs. On the other hand, the

resource information might be assigned by a factory floor manager.

b

a

d

e

f

c

drill

move

drill

B1

M1

R1

F1

B2

M1
PO

PIa

PIc

b

a

d

e

f

c

drill

move

drill

B1

M1

R1

F1

B2

M1
PO

PIa

PIc

Figure 1.4. A subassembly tree

8 Manufacturing Systems Control Design

This subassembly tree shows that part a enters the FSM and is stored in buffer

B1 then drilled in machine M1. Part c enters and is sent to fixture F1, where robot

R1 assembles part a to it and puts the resulting subassembly in buffer B2. The

subassembly is drilled again by machine M1, and finally sent out as the finished

product PO. The resource requirements matrix for this example is given by

In the resource-requirements matrix, the columns correspond to resources

(tools, fixtures, machines, robots) and rows correspond to jobs; an (i,j) entry of 1

indicates that resource j is needed for job i. Row 4, for instance, shows that robot

R1 is needed to perform job d. In this example, note that the last column contains

two 1s. This indicates that resource M1 is needed for two jobs, and hence it is a

shared resource. Kusiak [3] has shown that RRM provides the basis for decision

making while assigning or dispatching shared resources.

1.3 Dispatching Rules and Blocking Phenomena

If there is a shared resource, it is important to assign the correct jobs next to

accomplish the performance requirements that are prescribed for the workcell.

Performance requirements might include meeting product-due dates, keeping

machine per cent utilization high, guaranteeing that all parts are processed through

the FSM within a maximum allowed time, etc. The issues involve problems of

assignment of shared resources when the same resources are simultaneously

requested by more than one job. Similar issues occur in computer systems,

communication systems, highway/vehicle systems, and elsewhere.

In Figure 1.2, for instance, robot 2 has three queues where the parts enter - part

A for the first time A(1), part A for the second time A(2), and part B for the first

time B(1). The dispatching strategy, executed by the supervisor, assigns which jobs

to process next. There are many dispatching rules such as first-in-first-out (FIFO),

where the parts arriving first are processed first, and earliest due date, where the

part with the earliest due date is served first. In first-buffer-first-serve (FBFS)

dispatching, the resource serves first the buffer corresponding to the first passage

of a given part through the resource. For instance, robot 2 in Figure 1.2 would

serve A(1), part type 1 entering for the first time, before serving A(2), the part type

r

1 1 1 2 1

0 0 1 0 0

0 0 0 0 1

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

R F B B M

a

b

c

d

e

f

PO

=F

 Introduction 9

1 entering for the second time. Correspondingly, another dispatching rule is last-

buffer-first-serve (LBFS), wherein A(2) is given preference over A(1).

Failure to dispatch shared resources properly can result in blocking phenomena

including deadlock, where all the resources in the FMS are busy, each waiting for

the others to release a part before it can proceed. In this case, all activity in the

FMS seizes up and no jobs can proceed. It has been shown that LBFS dispatching

avoids deadlock in re-entrant flowlines with only one part type, while with FBFS

deadlock may occur. In fact, LBFS is a pull technique thatattempts to clear jobs out

of a FMS, while FBFS is a push technique that tries to load jobs into the workcell.

Deadlock research in computer systems has focused on four main areas [41].

Deadlock prevention is involved with removing any possibility of system

deadlocks; the result is often overconservative policies resulting in poor utilization

of resources. Deadlock detection focuses on detecting imminent or current

deadlocks, and is required for deadlock recovery and avoidance strategies.

Deadlock recovery methods are used to clear deadlocks once they occur, often by

placing jobs in buffers, by manually removing some parts from machines, or by

completely flushing one or more of the deadlocked processes, resulting in lost

work. In deadlock avoidance the possibility of system deadlock is not totally

removed, but whenever deadlock is imminent, it is sidestepped by a real-time

decision-making procedure. Later in this book we shall be interested in online

intelligent deadlock avoidance.

1.4 Models of Discrete Event Manufacturing Systems

There are several mathematical models for discrete event manufacturing systems.

In manufacturing system control, one should discriminate between the workcell

with its resources, and the supervisory controller that sequences the jobs and

dispatches those resources. We shall now discuss the methods that are close to the

matrix-based controller we will introduce in this book, and that also relate closely

to the FMS design tools just discussed. These include rule-based expert systems

and Petri nets.

1.4.1 Rule-based Expert Systems

One may describe the task-sequencing conditions and the resource assignments

using a rule-based system. The task-sequencing rules may be derived from the bill

of materials or assembly tree, and the resource assignment rules from the shop-

floor supervisor, exactly as detailed above. The term expert system refers to the

fact that the rules in the rule base are derived from advice and consultation with

experts in the domain of interest. The product specialist specifies the task

sequencing, while the factory manager specifies the resource assignments.

By examining the assembly tree in Figure 1.3, the partial assembly tree in

Figure 1.4, and their associated task-sequencing matrix Fv and resource assignment

matrix Fr, one may directly write down the following rules for implementation of

the assembly tree on an FSM. Each rule corresponds to one row in Fv and Fr.

10 Manufacturing Systems Control Design

IF (buffer B1 is available) THEN (input part a)

IF (part a is input) AND (machine M1 is available) THEN (drill part a)

IF (fixture F1 is available) THEN (input part c)

IF (job b and job c have just been done) AND (robot R1 is available) THEN

(assemble to form d)

IF (d has just been formed) AND (buffer B2 is available) THEN (move d to

B2)

IF (part e is available in buffer B2) AND (machine M1 is available) THEN

(drill the part)

IF (part has been drilled by M1) THEN (send final product PO out)

Note that this rule base implements the controller that generates products based

on the given assembly tree. In each rule, the phrases to the left of the “THEN” are

termed the rule antecedent (prerequisites), and those following the “THEN” are

termed the consequent. The antecedent has two parts, one coming from the task-

sequencing matrix Fv and one from the resource-assignment matrix Fr.

Rule-based systems are very useful for programming programmable logic

controllers (PLC) to implement the controllers for FSM, as we shall see. However,

it is difficult to see the structure of a rule-based system, which means it is difficult

to ensure that the rules are not conflicting and that they yield a causal job

sequencing. It is difficult to use expert systems for computer simulation of FMS

since they are difficult to interface with any description of the jobs and resources in

the workcell. If some jobs change or some resources change, it is not easy to

modify the corresponding rules in a large rule-based system. Finally, it is almost

impossible to perform mathematical analysis of FMS performance or blocking

phenomena in terms of rule-based systems.

1.4.2 Petri Nets

Event-driven systems are growing in popularity and complexity, and can be used to

describe systems in manufacturing, vehicle-traffic systems, communication

systems, computers, and wireless-sensor networks. This is motivating the use of

well-organized design methodologies to avoid failures and to optimize perfor-

mance. These systems usually have characteristics such as concurrence, conflicts,

priorities, mutual exclusions, shared resources, and many others. These properties

are difficult to handle, however, the analysis and design of these systems can be

carried out using Petri nets (PN) [19, 20]. There are many varieties of Petri nets

from binary PN, which are simple to analyze, to colored nets, which allow the

modeling of more complex systems but have fewer analytic results.

Petri nets and their relations with matrix-based modeling and analysis are

described in detail in Chapter 6. Here we give just a brief introduction to the topic

without formal definitions of terms. A Petri net (PN) is simply a bipartite (e.g.,

having two sorts of nodes) digraph (e.g. directed graph, which has arrows as arcs)

described by (P, T, I, O), where P is a set of places and T is a set of transitions
(later in the book we show the very important property that in fact each PN

transition corresponds to a rule). These are both nodes in the graph. There are two

types of arcs, namely I and O, where I is a set of (input) arcs from places to transi-

 Introduction 11

Figure 1.5. Flexible manufacturing system example

tions, and O is a set of (output) arcs from transitions to places. In our application,

the PN places represent manufacturing resources and jobs, and the transitions

represent decisions or rules for resource assignment/release and starting jobs.

An example of FMS is given in Figure 1.5. This shows one flowline for one

part type, the required job sequence, and the required resources for each job.

Robot R1 is a shared resource since it is responsible for performing two part moves

- RU1 and RU2. Pallets have been added to carry the parts through the workcell;

each pallet carries one part. Endings in A denote resource “available”, and endings

in P or S denote jobs in progress with those resources (buffer storage (S) or job in

process (P)). The associated PN is given in Figure 1.6. In this figure, circles

represent places, which correspond to jobs or resources, while vertical bars

represent transitions, which fire under certain conditions.

The places along the part path denote jobs, while the places off the part path

denote resources available. Along the part path, places and transitions alternate.

To denote the numbers of resources available and the numbers of jobs in

process, one uses tokens, which are represented with black circle inside PN places,

as shown in Figure 1.6. This PN shows that initially one has available 4 pallets

(e.g. 4 parts can be in the workcell simultaneously), 2 machines M1, one robot R1,

and so on.

Petri net dynamics is represented by the so-called token game. When a

transition fires, a particular number of tokens is removed from each input place,

M1A BA

PI M1P RU1 BP M2P RU2 PO

PA R1A

M2A

x1 x2 x3 x4 x5 x6

M1A BA

PI M1P RU1 BP M2P RU2 PO

PA R1A

M2A

x1 x2 x3 x4 x5 x6

M1A BA

PI M1P RU1 BP M2P RU2 PO

PA R1A

M2A

x1 x2 x3 x4 x5 x6

Figure 1.6. Petri net for the FMS example

12 Manufacturing Systems Control Design

and added to each output place. By keeping track of tokens one is able to simulate

and analyze the behavior of the system described by the PN. The job sequencing,

the resources needed to perform the jobs, the resource availability and utilization,

jobs currently in progress and many other properties can be easily studied by

following the tokens routes. Two already-mentioned phenomena, conflict and

deadlock, which are particularly important in FMS supervisor design and most of

the book is dedicated to their analysis, also can be allocated by tracking PN tokens.

Using the FMS example, we can illustrate the meaning of conflict and

deadlock. In Figure 1.7 we see a setup of the current situation in the FMS. There

are two jobs waiting for the pick & place robot resource R1, namely the token in

M1P shows that there is a job waiting for robot R1 to clear it from machine M1 in

move RU1, while the token in M2P shows that there is a job waiting for R1 to

remove it in move RU2. Unfortunately, there is only one robot in the resource

pool R1A, and it must select only one of these two jobs to perform, hence, R1A is

in a conflict.

Suppose R1 is dispatched to perform move RU1. Then, transition x2 fires and

the situation now moves to that shown in Figure 1.8. This is quite a bad situation.

Clearly, there is no way that any transition can now fire in this figure. The problem

is that each of the resources is waiting for another resource to become available.

However, this will never happen. Therefore, all activity along the part path ceases

and can never resume. Some thought can reveal that if the shared-resource robot

R1 had elected to perform the downstream move RU2 instead of RU1, that would

not have resulted in deadlock. This example illustrates the notions in Section 1.3,

namely, dispatching using first-buffer-first-serve (FBFS) results in deadlock, but

last-buffer-first-serve (LBFS) avoids deadlock. Pull policies generally are safer

than push policies.

This short depiction demonstrated that PNs are a powerful graphical tool for

discrete event systems modeling. However, in order to be able to provide thorough

analysis one needs an appropriate mathematical framework. Since the PN is a

graph with two types of nodes, the arcs in the PN are described by two matrices,

the PN input incidence matrix I and the output incidence matrix O.

M1A BA

PI M1P RU1 BP M2P RU2 PO

PA R1A

M2A

x1 x2 x3 x4 x5 x6

M1A BA

PI M1P RU1 BP M2P RU2 PO

PA R1A

M2A

x1 x2 x3 x4 x5 x6

M1A BA

PI M1P RU1 BP M2P RU2 PO

PA R1A

M2A

x1 x2 x3 x4 x5 x6

Figure 1.7. Predeadlock situation in the FMS example

 Introduction 13

M1A BA

PI M1P RU1 BP M2P RU2 PO

PA R1A

M2A

x1 x2 x3 x4 x5 x6

M1A BA

PI M1P RU1 BP M2P RU2 PO

PA R1A

M2A

x1 x2 x3 x4 x5 x6

M1A BA

PI M1P RU1 BP M2P RU2 PO

PA R1A

M2A

x1 x2 x3 x4 x5 x6

Figure 1.8. Deadlock situation in the FMS example

The PN input incidence matrix I has element (i,j) equal to 1 if place j is an

input to transition i. The PN output incidence matrix O has element (i,j) equal to 1

if place j is an output from transition i. The input incidence matrix for the assembly

PN in Figure 1.9 is given by

1 1 1 2 1

1

2

3

4

5

6

7

0 0 0 0 0 0 1 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0

0 1 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0

a b c d e f PA R A F A B A B A M A

x

x

x

x

x

x

x

=I

It is highly interesting to note that the first block of this matrix is simply Fv, the

task-sequencing matrix, and the second block simply Fr, the resource-requirements

matrix, from Section 1.2.2 (pallets PA have been added). This will be a central

theme later in the book. Likewise, the output incidence matrix O can be written for

this PN very easily.

B1A R1A

PIa a b d e f PO

PA M1A

B2A

x1 x2 x4
x5 x6 x7

F1A

PIc c

x3

B1A R1A

PIa a b d e f PO

PA M1A

B2A

x1 x2 x4
x5 x6 x7

F1A

PIc c

x3

Figure 1.9. PN for the subassembly tree example

14 Manufacturing Systems Control Design

In terms of the PN incidence matrices, one can describe the update of the

tokens when transitions fire. In fact, if m(t1) is a vector whose components

correspond with the number of tokens in PN places at a prescribed time t1, then the

updated token placement is described by the vector m at the next time t2 as

2 1
() ()

Tt t= +m m W

where W = O – I, and τ is a vector comprised of integers that correspond to the

number of firings of transitions in PN in the time interval t2 – t1. We shall return to

this equation and its relation with matrix-based formalism in Chapter 6.

Unfortunately, this equation is not a complete description of a PN since it does

not take into account the order of firing of the transitions, nor whether a given

transition can actually fire at any point in time. That is, there is no way known in

PN theory to compute the transition firing vector τ.

1.4.3 Graphs

As we see in the previous section, graphs are quite important in manufacturing

system analysis and control; not only in PN theory but also, as we shall present

through the chapters that follow, in other modeling and design tools. They indeed

provide some rigorous techniques for the analysis of discrete event control

systems. A graph is a set of nodes and the arcs connecting them. A directed graph,

or digraph, associates directions with the arcs so that they effectively become

arrows.

For example, a special graph can be constructed from a Petri Net by

considering only the resource places. Refer to Figure 1.6, and start at any resource.

Proceed backwards along the arcs until you come to another resource, then

backwards from that resource to the next resource, and so on until you have

traversed all the arcs. Draw arrows through the resources traversed. The result is

the digraph shown in Figure 1.10.

This graph is known as the wait relation graph [8]. Note from the PN that

resource R1 cannot become available until BA is available and performs job BP.

That is, R1 waits for the buffer BA to become available before it can become

available.

R1A
M1A

M2ABA

PA
R1A

M1A

M2ABA

PA

Figure 1.10. Wait relation graph

 Introduction 15

In the wait relation graph depicted, there is a looming potential problem.

Namely, there is a circular wait relation (R1A, BA, M2A), wherein each resource

waits for another. Unless extreme care is taken in dispatching the jobs within this

circular wait, one will arrive at deadlock, exactly as has occurred in Figure 1.8,

where all the resources in the circular wait are busy and waiting for each other.

Methods for avoiding deadlock, as well as dispatching to achieve performance

specifications in FMS, thus hinge on understanding the structure of FMS, namely

the circular wait relations and other important structural elements.

1.5 A Matrix-based Discrete Event Controller

A rule-based discrete event supervisory controller that is based on matrices is now

briefly described. This matrix-based DE controller plays a central theme in this

book, and it allows fast programming of FMS for assembly/job sequencing,

resource dispatching, and blocking and performance analysis, and facilitates

dispatching and routing design. The controller provides a framework for rigorous

analysis of the structure and performance capabilities of an FMS. Furthermore, the

controller also allows a very convenient method for computer simulation and

implementation on actual FMS.

1.5.1 Matrix-based Discrete Event Controller Equations

The DE controller is based on a matrix formulation where each matrix has a well-

defined function for job sequencing, resource assignment, and resource release.

The matrix-based model of a discrete event system is described by the set of

equations. Since each equation is thoroughly described in separate sections later in

the book, they are introduced herein with no further explanations:

Logical state-vector equation

v c r c u d d∆ ∇ ∆ ∇ ∆ ∇ ∆=x v r u uF F F F

Job-start equation

s v∆=v xS

Resource-release equation

s r∆=r xS

Product-output equation

y∆=y xS

In these equations, Fv is exactly the job sequencing matrix, and Fr the resource-

requirements matrix discussed above. Each of the other matrices also has a specific

function and meaning, which is explained in the chapter that follows.

The four equations given above are the central part of the matrix-based

controller. They are not computed using standard matrix operations of

16 Manufacturing Systems Control Design

multiplication and addition. In fact, all the matrices and vectors are logical
variables that have entries of either “0” or “1”, exactly as for the job sequencing

and resource assignment matrices. Therefore, all matrix operations are defined to

be in so-called and/or algebra (see section 3.2), denoted and where standard

addition is replaced with logical or and standard multiplication with logical and.
The overbar denotes logical negation.

Input u represents raw parts entering the cell and y completed tasks, or

products, leaving the cell. The controller, implemented on a PLC or a computer,

dynamically observes, in real time, the workcell status by looking at the status
outputs of the DE system or workcell using installed sensors, represented by a job

vector vc, and a resource vector rc. Hence, the matrix-based supervisor has a

dynamic feedback control structure. On top of it, higher-level dispatching and/or

routing decisions are needed to determine vector ud that selects which jobs to

initiate. This dispatching input is selected in higher-level control loops using

priority assignment techniques (e.g. [6]) in accordance with prescribed

performance objectives such as minimum resource idle time, task priority

orderings, task due dates, minimum time of task accomplishment, and so on as

prescribed by the user. Then, the controller sends commands to the FMS workcell,

namely, vector vs for jobs to be started, and vector rs for resources to be released.

Since the matrix DE controller is a rule base, it can be directly used to program
a programmable logic controller. This means that PLC can easily be programmed

to control actual industrial processes directly and simply from the matrix DE

controller. Two case studies related to the implementation of the matrix controller

in FMS are presented in the book with references to other applications of matrix-

based approaches.

The matrix-based DE controller unifies tools from different aspects of

manufacturing, computer science, and discrete event systems. It uses the BOM,

task-sequencing matrix, and resource-requirements matrix. Moreover, it can be

shown that the complete task plan (Fv, Sv, Fr, Sr) generates a Petri net. In fact, as

one might surmise from the discussion at the end of Section 1.4.2, Fv and Fr

generate the PN input incidence matrix, while Sv and Sr generate the PN output

incidence matrix. As we shall show, this means that for any speciation of the

matrices in equations one can draw a PN.

1.6 Simulation of FMS Control Systems

A comprehensive approach for analysis of computational complexity in FMS (and

elsewhere) is the theory of NP- (nonpolynomial)-completeness [1]. Mathematical

programming approaches to scheduling were mainly based on combinatorial

optimization methods until the development of the theory of NP-completeness in

the 1970s. Many traditional scheduling and sequencing problems have been found

to be in the NP class, however there is no formal theory describing how to impose

structured flow and command protocols on an FMS to simplify the complexity.

Since analytical results are often difficult to obtain for DE systems, particularly

for transient analysis, the performance of FMS, including scheduling and

dispatching rules and other algorithms, has often been studied using simulation [14,

 Introduction 17

15]. There are available many packages for simulation of manufacturing systems

(WITNESS, SIMFACTORY, Gert [42], etc.), Petri nets (Design/CPN, Grafcet [43],

TORA, etc.), and general DE systems (SIMAN, Simscript, Simula, Smalltalk-80,

GPSS, Extend). In these packages various programming methods are used; object-

oriented techniques, knowledge-based approaches, Lotus 1-2-3, Prolog and many

others. Various efficient simulation techniques may be based on perturbation

analysis or system theory approaches. Many of these tools use brute force

approaches that do not take advantage of the protocol structures of manufacturing

flowlines, assembly lines, and job-shop systems. The large number of techniques

available show the complications arising from simulation of DE systems.

The use of virtual models has become a standard characteristic of modern

program tools for virtual modeling and simulation of FMS (e.g. Grasp 2000, eM-

Plant [44], RobotStudio, Cimstation Robotics, Cosimir, etc.). Virtual models

provide a very convenient and inexpensive way for the complete factory design,

allowing a clear visualization of all potential problems in an FMS caused by a

factory layout, job sequencing or resource requirements.

Besides physical modeling that relies on the virtual models of all constituent

FMS objects, an important task is functional testing that connects a physical setup

with the organization of the simulated FMS. Functional testing comprises several

tasks including a definition of a job sequence, setting of FMS parameters, local (at

the robot workcell or robot station level), and global (at the whole FMS level)

conflict and deadlock analysis, synthesis of control logic, investigation of different

job-scheduling strategies, simulation and visualization of dynamic phenomena that

occur during FMS operation. Although most of the above-mentioned program tools

contain some types of DE simulation tools and DE controller design techniques,

and automatically generate downloadable programs for particular FMS elements

(e.g. robots) and accompanying programmable logic controllers, they do not allow
for ease of computer simulation and do not support direct generation of code
needed for FMS controller implementation on actual industrial systems.

A matrix-based approach to the FMS controller design can be easily integrated

in the virtual-reality environment, and the result of simulation with a selected

dispatching policy can be effectively visualized and analyzed by observing an

animated performance of the FMS. In the book, we describe FlexMan [45], an

Internet-based virtual-factory simulator with an integrated matrix-based FMS

controller and automatic FMS controller code generator for an industrial PLC

(Siemens PLC S 216).

References

[1] Garey MR, Johnson DS. Computers and Intractability: a Guide to the Theory of NP-

completeness, W.H. Freeman, 1979.

[2] Groover MP. Automation, Production Systems, and Computer-Integrated

Manufacturing, 2nd edn, Prentice Hall, 2001.

[3] Kusiak A. Intelligent scheduling of automated machining systems, in Intelligent

Design and Manufacturing, ed. A. Kusiak. New York: John Wiley & Sons, 1992.

[4] Baker KK. Introduction to Sequencing and Scheduling. New York: John Wiley &

Sons, 1974.

18 Manufacturing Systems Control Design

[5] Steward DV. The design structure system: a method for managing the design of

complex systems, IEEE Trans. Eng. Manag. 1981;71–74.

[6] Panwalker SS, Iskander W. A survey of scheduling rules, Operations Research

1977;26;1:45–61.

[7] Spearman ML, Woodruff DL, Hopp WJ. CONWIP: a pull alternative to kanban,

Int. J. Prod. Res. 1990;28;5:879–894.

[8] Wysk RA, Yang NS, Joshi S. Detection of deadlocks in flexible manufacturing

systems, IEEE Trans. Rob. Automat. 1991;7:853–859.

[9] Ezpeleta J, Colom JM, Martinez J. A Petri net based deadlock prevention policy for

flexible manufacturing systems, IEEE Trans. Rob. Automat. 1995;11;2:173–184.

[10] Lewis FL, Gurel A, Bogdan S, Doganalp A, Pastravanu O. Analysis of deadlock and

circular waits using a matrix model for flexible manufacturing systems, Automatica

1998;34;9:1083–1100.

[11] Zhou M. Deadlock Resolution in Computer–Integrated Systems. New York: Marcel

Dekker/CRC Press, 2004.

[12] Gross D, Harris CM. Fundamentals of Queuing Theory. New York: John Wiley &

Sons, 1985.

[13] Jackson JR. Networks of waiting lines, Operations Research 1957;5:518–521.

[14] Banks J, Carson JS. Discrete Event System Simulation, Prentice Hall, 1984.

[15] Law AM, and Kelton WD. Simulation Modeling and Analysis. New York: McGraw

Hill, 1991.

[16] Lewis FL, Syrmos VL. Optimal Control, 2nd edn. NewYork: John Wiley and Sons,

1995.

[17] Bitran GR, Haas EA, Hax AC. Hierarchical production planning: a two stage

system, Operations Research 1982;30;2:232–251.

[18] Silver EA, Peterson R. Decision Systems for Inventory Management and Production

Planning. New York: John Wiley & Sons, 1985.

[19] Desrochers AA. Modeling and Control of Automated Manufacturing Systems, IEEE

Comp. Soc. Press, 1990.

[20] Murata T. Petri nets: properties, analysis and applications, Proc. IEEE

1989;77;4:541–580.

[21] Balbo G, Bruell SC, Ghanta S. Combining queueing network and generalized Petri

net models for the analysis of some software blocking phenomena, IEEE Trans.

Soft. Eng. 1986;12;4:561–576.

[22] Cohen G, Dubois D, Quadrat JP, Viot M. A linear-system-theoretic view of discrete-

event processes and its use for performance evaluation in manufacturing, IEEE

Trans. Aut. Contr. 1985;AC-30;3:210–220.

[23] Kasturia E, DiCesare F, Desrochers A. Real time control of multilevel

manufacturing systems using colored Petri nets, Proc. IEEE Conf. Rob. Automat.

1988:1114–1119.

[24] Murata T, Komoda N, Matsumoto K, Haruna K. A Petri net-based controller for

flexible and maintanable sequence control and its applications in factory automation,

IEEE Trans. Ind. Electr. 1986;IE-33;1:1–8.

[25] Zhou MC, DiCesare F. Petri Net Synthesis for Discrete Event Control of

Manufacturing Systems. Boston: Kluwer, 1993.

[26] Krogh BH, Holloway LE. Synthesis of feedback control logic for discrete

manufacturing systems, Automatica 1991;27;4:641–651.

[27] Ramadge PJ, Wonham WM. The control of discrete event systems, Proc. IEEE

1989;77:81–98.

[28] Ho YC, Cao XR. Perturbation analysis and optimization of queueing networks, J.

Optim. Th. and Appl. 1983;40;4:559–582.

 Introduction 19

[29] Burgess KL, Passino KM. Stability analysis of load balancing systems, Proc. Amer.

Contr. Conf. 1993:2415–2419.

[30] Lu SH, Kumar PR. Distributed scheduling based on due dates and buffer priorities,

IEEE Trans. Aut. Contr. 1991;36;12:1406–1416.

[31] Luh PB, Hoitomt DJ. Scheduling of manufacturing systems using the Lagrangian

relaxation technique, IEEE Trans. Aut. Contr. 1993;38;7:

[32] Kumar PR, Meyn SP. Stability of queueing networks and scheduling policies, Proc.

IEEE Conf. Dec. and Contr. 1993:2730–2735.

[33] Angsana A, Passino KM. Distributed fuzzy control of flexible manufacturing

systems, IEEE Trans. Contr. Syst. Tech. 1994;2;4:423–435.

[34] Antsaklis P, Kohn W, Nerode A, Sastry S. Hybrid Systems II, Springer-Verlag,

1995.

[35] Buzacott JA, Yao DD. Flexible manufacturing systems: a review of analytical

models, Management Sci. 1986;32;7:890–905.

[36] Elsayed EA, Boucher TO. Analysis and Control of Production Systems, 2nd edn,

Prentice Hall, 1994.

[37] Wolter J, Chakrabarty S, Tsao J. Methods of knowledge representation for assembly

planning, Proc. NSF Design and Manuf. Sys. Conf. 1992:463–468.

[38] Graves SC. A review of production scheduling, Operations Research 1981;29:646–

675.

[39] Warfield JN. Binary matrices in system modeling, IEEE Trans. Sys., Man, Cyb.

1973;SMC-3:441–449.

[40] Eppinger SD, Whitney DE, Smith RP. Organizing the tasks in complex design

projects, Proc. ASME Int. Conf. Design Theory and Methodology 1990:39–46.

[41] Deitel HM. An Introduction to Operating Systems, Addison-Wesley, 1984.

[42] Cash CR, Wilhelm WE. Simulation modeling approach for analyzing robotic

assembly cells, Proc. 18th Conference on Winter Simulation 1986:594–596.

[43] David R, Alla H. Petri Nets and Grafcet: Tools for Modeling Discrete Event

Systems. New York: Prentice Hall, 1992.

[44] Heinicke M. U. and Hickman A., Eliminate bottlenecks with integrated analysis

tools in eM-Plant, Proc. 2000 Winter Simulation Conference, pp. 229–231, 2000.

[45] Bogdan S., Kova i Z., Smoli -Ro ak N. and Birgmajer B. A Matrix Approach to

an FMS Control Design – From Virtual Modeling to a Practical Implementation,

IEEE Rob. Aut. Mag., Vol. 11, No. 4, pp. 92–109, December 2004.

2

Discrete Event Systems

From the moment when a human being became aware of its existence, until the

present, one question has dominated through a long history of ups and downs: how

to predict the future? This question attained many forms; how to predict winds on

high seas? How to predict the floods of Nile? How to find the probability that an

electron would appear at a particular place in an atom? How to predict the way the

Universe ends? Step by step we have found some methods and piece by piece the

future revealed its secrets. In the foundations of all of these techniques, whose

purpose was to foresee future events, appeared a model. Based on the experience

gained from observations, people build models and then, by setting these models

into various conditions, they are able to predict future events. When these

particular conditions, already tested on the model, occur in real life, we can know

more or less accurately, what will be the outcome.

Establishing an appropriate model for some general problem might be very

demanding. To help ourselves, we separate particular entities from the

surroundings. These isolated entities should have the property that they operate

together in a way not possible by any one of them individually, i.e. they should

form a system. Where the boundary line between the system and the surroundings

is set depends on the problem we want to analyze. The boundary of the system

defines inputs and outputs of the system – its connections to the environment and

to the other systems. If an airplane’s attitude is a subject of our study, then we treat

the whole plane as a system and investigate the influence that airplane parameters
(mass, wing span), variables (speed, elevation) and environment properties (air

pressure, wind) have on the attitude. Although an airplane is a very complex

system, built of many subsystems, we can intentionally ignore the influence of

some observable facts (jet engine r.p.m.) in order to make the model feasible. On

the other hand, if we focus our intention on the jet engine, which is a subsystem of

the plane, then the boundary line is set in such a way that the plane becomes the

environment and the jet engine becomes the system under investigation.

Once the boundary line is drawn and the system is determined, its behavior can

be described with a model. The above definition of the system, as a set of entities

that form a whole and act together, is the broadest one and as such it requires

various types of models. It is clear that a political system cannot be described with

22 Manufacturing Systems Control Design

the same type of model as an airplane. Whilst the latter belongs to the class of

technical systems and can be modeled by mathematical equations, a model of the

former is represented by a set of words, sentences and paragraphs. In the text that

follows we are concerned with technical systems, i.e. systems that encompass

physical devices built by a human.

In the control-engineering literature technical systems are usually divided into

two major groups: time-driven systems and event-driven systems. In this chapter we

describe the basic concepts of these two groups. First, we give a brief description

of the basic properties of time-driven systems. The well-known facts associated

with these systems are given in order to be able to compare their activities with the

behavior of the second group, event-driven systems, which are the major topic of

the chapter. A reader acquainted with the time-driven systems may proceed

directly to Section 2.2.

The notions of an event, a system state, a clock and others are presented and

described herein. A brief presentation of automata, as the modeling tool that is

most frequently used in the analysis of the event-driven system, is given.

2.1 Time-driven Systems

In a mathematical description (a mathematical model) of a dynamic system,

quantities that change with time are associated with variables, while quantities that

describe system properties and generally remain constant are called parameters
(systems with constant parameters are called time invariant; if parameters are

changing with time we talk about a time-variant system). The role of time in

system modeling is interesting and important. Due to its unique property – no

matter where the boundary between the system and the environment is drawn and

no matter how the variables of the system model are chosen, the time remains

independent (we do not consider systems that include theory of relativity

phenomenon) – each system variable can be represented as a function of time, i.e.

time is the argument of all functions that describe the system. In this way any

change in time causes a change of the system variables. We say that the system is

time driven and write a system model as

[]() ()Gt t=y u (2.1)

where u(t) is a system input vector, y(t) is a system output vector and G is an

operator that describes how the system transforms (maps) the input vector into the

output vector. It is common in the literature that relation (2.1) (the same holds for

other forms of mathematical descriptions) is referred to as “a system” although it

actually represents more or less accurately a “model of the system” (in very few

situations the complete model of the system is known).

When that operator G changes with time, a system model is written as

 Discrete Event Systems 23

[]() (),Gt t t=y u (2.2)

For a system described with the model (2.1), input u(t), applied at the moment t
= t0, would have the same effect on the system as if it were applied at any other

moment t = t0 + . This is not the case for a system described with Equation (2.2);

as operator G changes with time, the output of that system depends not only on the

form of the input vector u(t) but also on the moment in which the input is applied

to the system.

Further classification of time-driven systems is closely related to the principle

of proportionality, i.e. an increase of the system input value by factor b will

increase the system output value by factor b. Systems with this property are called

linear systems. We say that operator G is linear if and only if

[] []() ()G Gb u t b u t⋅ = ⋅ (2.3)

Although most technical systems do not behave in accordance with the

principal of proportionality (they are nonlinear), linear models are usually used for

their description since the mathematical tools for the analysis and design of linear

models are much easier to understand and implement than these methods used in

the nonlinear systems theory [1–3]. Furthermore, in most cases the linear models

describe the real systems to the extent that is considered satisfactory from the

practical point of view.

So far we were concerned with the so-called input-output representation of the

system. This representation can be expanded by the notion of system state. The

output of a dynamic system depends not only on the current input value but also on

the past values of the input, i.e. dynamic systems have a “memory”. The memory is

in the form of conservation of energy and/or information. This means that some

kind of internal properties that are not explicitly seen from the model (2.1) are

present in the system. Thus, in order to obtain the model that would demonstrate

the internal phenomenon of the system, the modeling process should take into

account not only the system input and output vectors and their relationships, but

the system states should be incorporated into the model also. In the systems theory

this kind of model is usually represented in the form of set of differential equations

[4]:

[]
[]

0 0
() f (), (), , ()

() g (), (),

t t t t t

t t t t

= =

=

x x u x x

y x u
(2.4)

where x(t) is the state vector containing system states and f and g are functions.

Equations (2.4) are called state equations and they uniquely describe the system

state at any time instant t t0.

As an example, let us consider the system shown in Figure 2.1. The system

represents a DC motor drive with mechanical load. Differential equations that des-

24 Manufacturing Systems Control Design

L

Figure 2.1. A DC motor drive with mechanical load

cribe the electrical and mechanical dynamics of the system have a well-known

form:

d ()
, () ()

d

d ()
() () () () ()

M L Md

() () ()

,

i t
e t K t

t
t

b t t t t K i t
t

R i t L e t v t

J

ω

ω
ω τ τ τ

= ⋅

+ ⋅ − = ⋅

⋅ + + =

=

where K is a motor constant, τL is a load torque and τM is a motor torque. Which

physical variable will be defined as an input and which one as an output depends

on the purpose of the model. When one is investigating the influence of voltage

v(t) on the motor torque τM(t), then the voltage should be considered as the system

input and motor torque as the output. On the other hand, if one is concerned with

the influence that the voltage has on the rotor position ϕ(t) then this physical

variable should be treated as the system output.

For the latter case the state equations obtain the following form:

L

d () 1
() () ()

d

d () 1
() () ()

d

d ()
()

d

() ()

i t R i t K t v tt L
t K i t b t tt J
t tt

y t t

ω

ω ω

ϕ ω

ϕ

τ

− ⋅ − ⋅ +

⋅ − ⋅ −

=

=

=

=
(2.5)

where the system input u(t) = v(t).
The solutions of state Equations (2.4) are functions that describe evaluation in

time of each system state. These functions are called the state trajectories. State

trajectories for Equations (2.5) together with input u(t) are shown in Figure 2.2. We

can see that the system state ϕ changed after the input (in the form of a short pulse)

has been applied. Initial value ϕ(t0) = ϕ0 changed to ϕ(t→∞) = ϕf, while in the

same time the system states i and ω returned to their initial values after the

transition period has finished.

 Discrete Event Systems 25

Figure 2.2. Trajectories of the state Equations (2.5)

A very interesting presentation of the state trajectories can be attained if time as

a variable is eliminated from functions that correspond with the state trajectories. A

new function q(x)=0, obtained in this way, represents movement of the state vector

x in the state space. The state space of a system is the set of all possible values that

the system state vector may attain. For systems with up to 3 states, state-vector

trajectories can be presented graphically as in Figure 2.3. Points on the state-vector

trajectory correspond to the points on trajectories of system states. As time changes

from t1 to t2 the system states are changing, thus causing the state vector to travel

through the state space from point x(t1) to point x(t2), which is shown in Figures

2.2 and 2.3.

The state-vector trajectories are very important in system analysis and design.

Many interesting system properties, such as stability, can be examined directly

from the state-vector trajectories. This is particularly important in the case of

nonlinear systems, since, as already mentioned, mathematical tools for this type of

systems are complicated and demanding.

As we said earlier, the main purpose of the model is its ability to more or less

accurately predict the future states of the system once the current state and the

system inputs are known. If we define the system states that have to be reached

from the current state and when we are able to manage the system inputs, then we

can define these inputs in a way that they guide the state vector directly to the

desired state. We say that the system is controlled. The question is how to

determine the system inputs? Usually there exist at least two control objectives; a)

the system should be conducted to the desired state and b) this state should be

26 Manufacturing Systems Control Design

reached in a particular way, i.e. the state vector should follow a predefined

trajectory.

Based on the objectives and the system model we can determine an input vector

u(t) that would fulfill both requirements:

[]() ()t h t= ru u (2.6)

where ur(t) is a reference input and h is a control function that maps the desired

system behavior, described by the reference input ur(t), to the system input u(t).
One concept is especially important when the definition of the control function is

concerned. This is the concept of controllability. In order to determine a control

law and apply it to the system, the structure of the system input vector should be

known in advance. As a first step in the controller design one must identify system

states that can be influenced by the input vector components. Such states are called

controllable states and outside signals can be supplied into the system only through

these states.

A problem with the control law (2.6) lies in the fact that the control function

does not take into account possible changes that may happen in the system during

implementation of the control law. In our example with a DC motor drive, a

change in the load torque, τL, would modify the second state equation in Equations

(2.5), thus causing different state-vector trajectory and, as a consequence, the

desired system state will not be reached. A solution to that problem is one of the

fundamental principles in nature; the principle of feedback. In biological systems,

as well as in social systems, most actions are based on feedback; if we get a fever

our body starts to sweat in order to enhance heat exchange with the surroundings,

an insecure political situation lowers prices on the stock markets, and so on. In

many cases the feedback is an inherent property of the system (our body), while on

the other hand it can be artificially added in order to enable the system to cope with

various disturbances that influence its behavior.

Figure 2.3. The state-vector trajectory q(i,ω, ϕ)=0 of the state Equations (2.5)

 Discrete Event Systems 27

In technical systems, the information regarding the current state of the system

(feedback) is usually acquired by measurement of the system output (or the system

states) and then fed back into the system by the control law,

[]() (), ()t h t t= ru u x (2.7)

The primary constraint that is related to determination of Equation (2.7) is

associated with the notion of observability. Specifically, some parts of the system

(system states) might be inaccessible for measurement. Such unobservable states

cannot be used as feedback for the controller (2.7).

Let us demonstrate the feedback principal on our DC motor drive example. A

feedback, which will compensate the influence of load torque, is introduced by

measuring the position ϕ(t). In that case the system input, v(t), may be calculated as

[]r() () ()v t K t tϕ ϕ⋅ϕ= − (2.8)

where K is the proportionality factor (or gain) and ϕr(t) is the reference position.

The proportional control law (2.8) is the simplest form of control function h.

Inclusion of Equation (2.8) in the first equation of Equations (2.5) gives

[]d () 1
() () () ()rd

i t
R i t K t K t t

t L
ω ϕ ϕ− ⋅ − ⋅ + ⋅ −ϕ=

It can be seen that, as long as there is a difference between the reference and

current positions, the motor current i(t) will change. As a result, the state vector

moves around the state space until the final (reference) state is reached. Although

the applied control law leads the system to the desired state despite the changes in

load torque, it can not accomplish the second control objective – the way in which

the system gets into the desired state (the state-vector trajectory) is changed

(certainly, a more complex control law could handle both objectives, but that

analysis is beyond the scope of this book).

Now we introduce the other form of time-driven systems. As a start we can

consider our everyday experience – parking a car (Figure 2.4).

Figure 2.4. A parallel parking example

28 Manufacturing Systems Control Design

It is well known that parallel parking is a challenging task (not only for new

drivers). Two actions have to be taken simultaneously and very carefully - steering

the wheel and balancing the clutch and the break. These actions are generally based

on the feedback that is in the form of two variables - a distance from the front car,

df, and a distance from the rear car, dr. Since we have only one distance

measurement sensor (eyes) that has to deal with two variables, we have to

concentrate our attention into two directions. This can be done only if we are

toggling our view from one feedback variable (front car distance) to the other (the

rear car distance) during the parking. Instead of getting the whole information

regarding distances df and dr (Figure 2.5), only a sequence of partial data, taken in

discrete-time intervals as shown in Figure 2.6, is processed during the parking (it

should be noted that as we are getting closer to the front and rear cars we have to

acquire data more often). This partial information, collection of samples of

continuous variables, is sufficient for more or less successful completion of the

car-parking maneuver.

The question is how to fit sampled variables into the system model (2.4)? First,

to make things easier from the mathematical point of view, instead of

stochastically samples would be taken in equal time intervals, t1, t2, t3, …, tk, …,

with Td = tk – tk-1. As a second modification, the sampled value taken in tk would be

“frozen” during the sample interval tk + Td. Given these modifications, continuous

variables shown in Figure 2.5, attain the form presented in Figure 2.7.

Figure 2.5. The continuous-time variables representing distances from the front and rear

cars

Figure 2.6. Samples taken by the driver

 Discrete Event Systems 29

Now, we can rewrite the continuous-time model (2.4) in the discrete-time form:

1 0 0
() (), (), , ()

() (), (),

k k k k

k k k k

t t t t t

t t t t

+ = Φ =

= Γ

x x u x x

y x u
(2.9)

As tk = k⋅Td, k = 0, 1, 2, …, sometimes Equation (2.9) is written as [5]:

[]
[]

0
(1) (), (), , (0)

() (), (),

k k k k

k k k k

+ = Φ =

= Γ

x x u x x

y x u

The evaluation of system states and system output in a discrete-time model is

obtained recursively by the difference equations (2.9) [6]. Since the value of

variable k increases as time evolves, the system-state changes are synchronized

with time, hence the discrete-time systems are time driven. When Φ and Γ are

linear functions, the discrete-time model becomes the system of nonhomogeneous

linear equations.

Although in the parking example the nature of the system (one sensor that

should monitor two feedback states) was the reason for the sampling of continuous

variables, usually the implementation of the control law is why the system has to

be represented in the discrete-time form. Nowadays, advances in computer

technology provide low-cost solutions for very sophisticated and computationally

demanding control algorithms. As the execution of the control laws in the form of

a computer program is performed in discrete-time intervals, discrete-time models

are needed for appropriate design and investigation of control algorithms. In every

sampling interval continuous system variables are sampled and converted by

analog-to-digital (A/D) conversion into the numerical values in order to be

processed by the computer. Upon execution of the control law, results, in

numerical form, are returned into the system by digital-to-analog (D/A)

conversion. During the execution cycle (which takes some time), the computer is

Figure 2.7. Discrete-time form of continuous-time variables

30 Manufacturing Systems Control Design

 “not aware” of the system development; only at particular moments in time are the

system conditions sampled and conveyed into the computer.

Even though this issue is not a subject of the book, it should be mentioned that

data exchange between the system and the digital computer requires not only

sampling in time but also sampling of state space, as the numerical resolution of

the computer is finite. Actually, this requirement is related to the limited resolution

of A/D and D/A converters (usually 10 to 16 bits). For example, the continuous

system variable that takes values from the set of real numbers, when processed by

a 12-bit A/D converter, is mapped into 4096 integers. Usually, the range of the

converters is considered sufficient so that discretization of the state space is

ignored in the process of discrete-time modeling.

So far we were concerned with the models of systems that change their states in

synchronization with time. As an introduction to the concept of an event and an

event-driven state we start with an example of the system that belongs to the class

of so-called hybrid systems - a broad class of technical systems that integrate both

time-driven and event-driven states [7]. Hence, some of the hybrid system states

change in synchronization with time, while the change of others is caused by

events that occur asynchronously (here we do not elaborate what an event is; it is a

primitive concept intuitively understandable). Although very complex and difficult

to analyze, during the last decade hybrid systems have become an important topic

for researchers and engineers, which is expected, since most of the industrial

control and automation solutions fit into this class of systems. However, the hybrid

system design is still done mostly by a heuristic approach as current theory is

complicated and requires time-consuming methods [8, 9].

The concept of an event-driven state becomes apparent if we bear in mind that

in many cases (especially in practical control implementations) the status of an

actuator or a sensor is described with only two categories, i.e. valve opened-valve

closed, motor is running-motor is idle, sensor is active-sensor is idle, etc. If the

status of a motor is considered as a state, then the event “switch on the motor”

changes the system state. Furthermore, in order to make a control algorithm

synthesis simple, continuous states of hybrid systems are partitioned in regions that

are treated separately during the system design. Then, the goal of the hybrid system

controller synthesis is to find an algorithm intended to fulfill the desired

requirements for a particular region. The switching between regions and controllers

and the binary nature of actuators and sensors make some of the system states

event driven.

Example 2.1.1 (event-driven states in hybrid system)

The system under consideration is the longitudinal tunnel ventilation. Vehicles

passing through a tunnel produce various types of poisonous gases as well as soot,

especially in the case of heavy vehicles with diesel engines. High standards for air

quality and the need for good visibility require an advanced ventilation system for

management and control of pollution. Two objectives, opposite in nature, have to

be fulfilled simultaneously by the ventilation system: a) the system should keep

visibility (opacity) at a required level and make certain that pollutants (mainly

 Discrete Event Systems 31

carbon monoxide - CO) remain within admissible margins and b) energy (costs)

used for objective a) should be minimal.

Here we are not concerned with the design of control algorithms that use

continuous system states and meet both objectives concurrently (that might be a

very complex and demanding issue). Our aim is to design a controller based on

event-driven system states. The controller should utilize the carbon monoxide

concentration as a feedback signal and the number of vehicles per hour per

kilometer as a feedforward signal (variations of this type of controller are used in

many practical implementations of the tunnel ventilation). As a first step in

achieving our goal both continuous time signals are divided into three regions –

low (L), moderate (M) and high (H) (three regions are chosen for simplicity –

typical tunnel ventilation controllers use more than 7). Transitions over predefined

threshold values between two neighboring regions are considered as events. These

events will be the driving force of the system model. We assume that low traffic

produces a low level of CO, a moderate number of vehicles a moderate level of

CO, and a high number of vehicles a high level of CO.

In the tunnel ventilation systems jet fans are usually used as actuators. It is

presumed that actuators can be described as active (1) and idle (0). The system is

designed in the way that active jet fans reduce carbon monoxide concentration so

that it moves down into the neighboring region. The actuator’s state is changed by

two actions, switching on (ON) and switching off (OFF). These actions, treated as

events, can be triggered by an operator or by the controller.

At this point it is important to note that some events, such as jet-fan breakdown

or sensor failure for example, are uncontrollable. Since this type of event cannot be

influenced by the supervisor, modeling and design of the systems regularly starts

by neglecting potential effects that uncontrollable events might have on the system

performance. Then, as the second step in the system synthesis, the states forced by

uncontrollable events are analyzed and additional features (fault tolerance) are

incorporated into the supervisor. In our example, we disregard jet-fan failure and

concentrate only on events that are necessary for the description of the event-

driven state concept.

 Having defined the system in that way, we can express the set of events as

{ }inc dec inc decV ,V ,CO ON,OFF,CO ,E =

where Vinc and Vdec are events related to transitions of thresholds defined for the

number of vehicles and COinc and COdec are events related to transitions of

thresholds defined for the carbon monoxide.

Given that the supervisor has two discrete inputs, a number of vehicles, Nv, and

a carbon monoxide concentration, CO, and one output, actuators status, A, the

system state x can be represented with triples (Nv, CO, A). For given values, there

exist 18 discrete states (for example, state (M, L, 1) stands for “moderate number

of vehicles”, “low CO concentration” and “actuators running”). It is evident that

due to the system nature some states are unreachable. Such a state, for example, is

(L, H, 1), i.e. low number of vehicles cannot produce a high level of CO with jet

fans running (actually, such situation can happen in the case of fire in the tunnel,

32 Manufacturing Systems Control Design

but our model does not consider this catastrophic incident). In a vector form the

system state is represented with the system state vector x = [Nv CO A]T.

The occurrence of an event from E changes the system state, thus causing a

movement of the system state vector in the system state space X, as shown in

Figure 2.8. Upon event OFF, the system that resided in x1 = [M L 1]T goes to the

new state x2 = [M L 0]T. Since jet fans have been turned off, the concentration of

CO increases, i.e. COinc occurs, and the system state vector becomes x3 = [M M

0]T. Then, a new event Vinc forces the system into x4 = [H M 0]T. As the number of

vehicles increases the level of carbon monoxide starts to rise, thus causing

occurrence of event COinc, which forces the system into state x5 = [H H 0]T. High

concentration of CO can be reduced by switching on the jet fans (event “ON”), that

leads the system into state x
6 = [H H 1]T. When the jet fans start to dilute CO,

COdec takes place and the system state vector attains its final value x7 = [H M 1]T.

Continuous system variables with corresponding events, are shown in Figure 2.9.

For a given event-driven model of the system one is able to determine the

event-driven controller. Depending on the control goal and the system

characteristics the discrete state space can be partitioned into several regions. For

example, one of the regions has already been mentioned, i.e. a region of

unreachable states. From the control point of view particularly interesting is a

forbidden region, i.e. the region that localizes the states that must be avoided. Once

defined, these states are a basis for the system-controller design. For example, if in

the tunnel ventilation system all states with a high level of CO are not allowed

(states of the form x = [⋅ H ⋅]T), then the supervisory control actions might be

defined as follows: switch on jet fans each time system arrives at states x = [H ⋅ 0]T

and switch off jet fans when the system leaves states x = [H ⋅ 1]T. Continuous

system variables of a so-controlled system, together with corresponding events, are

shown in Figure 2.10.

Figure 2.8. Movement of the system state vector in discrete state space

 Discrete Event Systems 33

Figure 2.9. Continuous system variables with corresponding events

Figure 2.10. Continuous variables of the controlled system (with corresponding events)

It can be seen that event Vinc drives the system into state x = [H M 0]T. As a

reaction, the supervisor triggers the event ON and the system reaches state x = [H

M 1]T. Without control the system will settle into x = [H H 0]T (see Figure 2.9). As

the number of vehicles decreases, event Vdec causes a change of the system state to

x = [M M 1]T. Hence, the supervisor generates the event OFF forcing the system

into state x = [M M 0]T.

♦

34 Manufacturing Systems Control Design

2.2 Event-driven Systems

In the previous example event-driven states were created from time-driven states,

and then used for the supervisor design. A simple control objective was

accomplished by triggering events that kept the system out of the undesired states.

Now we move further and introduce the systems that encompass only event-driven

phenomena, i.e. event-driven states are an inherent property of the systems.

Let us now consider a game in which two persons are placed at the table. There

is a panel between them so that they are not able to see each other, although, there

is an open space below the panel. Person A has in his/her hands a set of 10 cards,

each card marked with different letter: a, b, c, d, f, g, h, m, n, p. Person B has a

pen, a paper and a watch. The watch has an alarm that is set to be active every 10

seconds. The game is as follows. Person B has closed eyes and on the alarm signal

he/she should open eyes and write down the letter displayed on the card placed on

the table. If there is no card on the table, a letter x should be written on the paper.

Once the letter is marked, person B closes his/her eyes and waits for the next

alarm. Person A has headphones and can not hear the alarm. He/she randomly, in

various time instants, picks the card, writes down the displayed letter and leaves

the card on the table below the panel for a few moments for it to be visible to the

other person. Then the card is put aside. A possible outcome of the game is shown

in Table 2.1. The table contains the letters written by the players.

Table 2.1. A possible outcome of the card game

Player A a h d f n b c g m p

Player B x x f x c x x

From Table 2.1 it can be seen that person B “caught” only 2 cards out of 10 that

have been placed on the table by person A; 80% of the information has been lost.

After the third alarm person B saw a card on the table for the first time. From

his/her perspective person A still had 9 cards in hand while actually only 6 cards

remained. Obviously, actions performed by person A can not be accurately

measured by the technique used by person B. One can argue that much better

results could be achieved if the alarm was set to 1 second, but this is not the point,

that is, the observation method has been synchronized by the watch alarms, while

the process of placing the cards on the table was random and asynchronous. From

the person A’s point of view the system state (cards remaining in hand) changed 10

times, while from person B’s perspective the system state changed only 2 times.

Clearly, this system can not be described with a model in which the system state

evolves in synchronization with time, since the evolution of the system state is

caused by asynchronous events (placement the cards on the table).

The second aspect that has to be taken into account, when one considers

modeling the systems like the one described above, is the system state space. In our

example the set of cards remaining in hand was regarded as the system state. Since

the status of a particular card may take only two values, “in hand” or “put aside”, it

is apparent that the system state can attain only discrete values, thus the state space

 Discrete Event Systems 35

is discrete, in contrast to time-driven systems where the state space is continuous

(compare Figures 2.3 and 2.8).

Asynchronous events that cause the change of system state vector in discrete

state space characterize event-driven systems, also called discrete event systems
(DES) [10, 11].

Let us define a set E as the set that comprises all events ei that can occur in the

system. In the card game example we have

{ }, , , , , , , , ,E a b c d f g h m n p=

i.e. event b corresponds with placing the card marked with the letter b on the table,

event c corresponds with placing the card marked with the letter c on the table, and

so on.

In our example, each time an event takes place the system state changes (it

should be noted that in some discrete event systems there exist events that do not

change the system state). In most systems a simultaneous occurrence of two (or

more) events is not allowed (this can be enforced by the system design or it can be

its inherent property), thus events arise in some order or sequence. From Table 2.1

we see that the sequence of events in the game was s = (a, h, d, f, n, b, c, g, m, p)

(in Example 2.1.1, Figure 2.9, the sequence was (OFF, COinc, Vinc, COinc, ON,

COdec)). If we associate vector x with the system state in the way that each

component of the vector corresponds to the card in hand, 1 if the card is in hand, 0

if the card is put aside, then, at the beginning of the game, we shall have

[]
0

1 1 1 1 1 1 1 1 1 1
T=x

where the first component of the vector stands for the card marked with the letter a,

the second component for the card marked with b, and so on.

Given the system state vector x, and the system initial condition x0, we can

express the state of the system after a sequence of events s1 = (b, d, f, p) as

[]
[]
[]
[]

T1

T2

T3

T4

1 0 1 1 1 1 1 1 1 1

1 0 1 0 1 1 1 1 1 1

1 0 1 0 0 1 1 1 1 1

1 0 1 0 0 1 1 1 1 0

=

=

=

=

x

x

x

x

It should be noted that sequence s1 holds only partial information regarding the

system state change; we know the ordering of events that forced the system from x0

to x
4, but we are not able to tell the time instances in which the events actually took

place. Adding the time in the sequence gives s1 =((b,tb), (d,td), (f,tf), (p, tp)), where

tb represents the time instance of the occurrence of event b, td represents the time

instance of the occurrence of event d, and so forth. Having the timed sequence

36 Manufacturing Systems Control Design

defined in this way we can calculate how much time the system spends in a

particular state. This kind of information is essential in investigation of system

properties that are related to utilization and throughput of the system, due time of

events, system transient time, etc. An untimed sequence describes only the logical

(we might say IF-THEN) behavior of the system.

2.2.1 Automaton

So far we have introduced the basic concept of event-driven systems in an informal

way. The tunnel ventilation and the card game examples encompassed a set of

events that forced changes of the system states, thus forming a set of sequences.

The problem with informal representation is that it is usually difficult to determine

all possible sequences that could be generated by the system without some kind the

of the system model. One of the most popular modeling tools for DES

representation is automaton [12–14]. In the following text we give a concise

description of the basic notations in automata theory.

Definition 2.2.1 (automaton): An automaton, denoted by A, is defined as a five-

tuple

{ }
m0

, , , ,A E X f x X=

where E is the set of events, X is the set of states, :f X E X× → is the transition
function, x0 is the initial state and Xm is the set of marked states.

In many cases (particularly when one deals with practical implementation of

DES) sets E and X have a finite number of elements. The transition function f
describes mapping between these two sets in the following way: if there exists an

event e that generates transition from state x to state y, then f(x,e) = y. If upon the

occurrence of event e the system state x does not change we write f(x,e) = x. When

f(x,a) = y and f(y,b) = z we have

(,) ((,),) (,)f y b f f x a b f x ab z= = = (2.10)

i.e. the definition of the transition function is generally extended to the set of
sequences, denoted E*. An additional property of the transition function should

also be mentioned. Given that the set of events that cause transitions from state x is

usually a subset of E, ()x EΓ ⊂ , it is apparent that the automaton transient function

f exists only on the part of its domain (usually in the literature (x) is it called the

active event function and it is a part of the automaton definition). Hence, f(x,e)

should not be defined for each event e at each state x.

The set of marked states, Xm, is a subset of X. In general, by using marked

states one is able to point out that some states have a special meaning. For

example, a marked state could be connected with the notion of an ending or a final

 Discrete Event Systems 37

state; the state in which the system resides most of the time (from that point of

view a marked state can be related to the steady state in time-driven systems).

It should be noted that Definition 2.2.1 covers only the so-called deterministic
automata, i.e. automata in which the occurrence of one particular event (or a

sequence of events) forces the system into a strictly defined state. On the contrary,

in nondeterministic automata one event may cause transitions from one state to

several states, i.e. the value of the transient function is expressed as a subset of X,

f(x,e) = {y, z, w}.

Having Definition 2.2.1 we can determine an automaton that models the status

of jet fans in the tunnel ventilation system from Example 2.1.1, as

{ }
F0 FmF F F F, , , ,A E X f x X=

where

{ } { } { }F F Fm

F F F F F0

ON,OFF 0,1 1, ,

(0, ON) 1, (0, OFF) 0 , (1, OFF) 0 , (1, ON) 1, 0

E X X

f f f f x

= = =

= = = = =

Observation of automaton AF exemplifies Definition 2.2.1. Foremost, we see

that the transient function fF is defined on the whole domain since each event from

EF is related with each state from XF. Secondly, the state x = 1 is marked. Its

particular importance lies in the fact that it asserts the situation when the jet fans

exploit energy, thus, the energy-usage calculation is active as long as the system

stays in this state.

For simple automata, as the one describing jet fans, with just a few states and

several events, a written form of presentation is suitable. On the other hand, for

complex discrete event systems the more convenient way of automaton

representation is in graphical form or in the form of a so-called state transition
diagram, shown in Figure 2.11.

0 1
ON

OFF

ONOFF

Figure 2.11. State transition diagram of automaton AF

In mathematical formalism, structures such as a state transition diagram in

Figure 2.11, are known as directed graphs. The basics of graph theory are covered

in later chapters of the book so at this point we shall skip definitions and properties

of graphs. For our purpose it is sufficient to note that in the state transition diagram

labeled circles represent states and labeled arcs represent events. The initial state is

shown as a circle marked with an arrow while a marked state is represented by a

38 Manufacturing Systems Control Design

double circle. In the literature the state transition diagram is usually referred to as

an automaton. We will use the same principle in this book.

The following example demonstrates robotized workcell modeling by using an

automaton.

Example 2.2.1 (state transition diagram of a robotized workcell)

We examine the robotized workcell shown in Figure 2.12. Our goal is to design an

automaton that models this cell. The machines and the robot are considered failure

free, i.e. our model does not include breakdowns, malfunctions and other

uncontrollable incidents. We assume that both parts have a stochastic arrival time.

robot

machine A

part b
machine B

part a

Figure 2.12. Workcell from Example 2.2.1

The cell consists of two machines and one robot. Two types of parts, a and b,

are processed in the following way. Both parts are brought into the cell by input

conveyers. Entering the cell, part a is picked up by the robot and transported to the

machine A. When processing is finished the robot removes the part from the

machine and leaves it on the output conveyer. Upon arrival, part b is processed in

the machine B and then taken by the robot to its output conveyer.

From the workcell description we are able to determine the states and events

that are important from the modeling point of view. While the status of machine A

(the same is valid for machine B) can be “idle” - I or “work in progress” – W, the

situation with the robot is different since it executes three tasks. Hence, its status

can be described as “available” – A, “moving part a in machine A” – M,

“removing part a from machine A” – 1 and “removing part b from machine B” – 2.

For the given specifications the automaton state can be described with three

characters, where the first character is related to the robot status, the second

character stands for machine A status and the third character for machine B status.

Following this notation, the overall cell status “placing part a in machine A” while

“machine A is idle” and “machine B is working” is written as a state MIW.

 Discrete Event Systems 39

Events of interest are those associated with the transitions of the above-defined

automaton states. Their notations and descriptions are given in Table 2.2.

Table 2.2. Events in workcell from Example 2.2.1

Event Description

arrival of part a

arrival of part b in machine B (processing started)

m processing of part a in machine A started

f replacement of part b from machine B started

replacement of part b from machine B completed r

replacement of part a from machine A completed

c replacement of part a from machine A started

Having defined states and events we can start with the determination of the

automaton. In a complex DES, automatons for each component of the system are

built first and then their integration gives a model of the entire system. Here we are

using an informal approach – two part paths are modeled separately and then put

together. First we model only part a path. It is assumed that at the beginning the

machines are idle and the robot is available, thus the initial state is AII. Now we

should check how events, defined in Table 2.2, influence the given initial state.

Upon arrival of part a, event triggers the transition from state AII into state MII,

that is, robot carries the part into machine A while the machines remain idle. Other

events, except , are not related with the initial state (how event is related with

state AII will be discussed later), i.e. processing of part a in machine A cannot start

(event m) since the part is not placed in the machine, replacement of part a from

machine A cannot start (event c) as the part has not been processed yet, and finally,

the robot cannot complete replacement (event r) since this task has not started

(event f is not considered since it is attached to the part b path). Clearly, the only

accessible state from AII, on the part a path, is MII.

Following the same reasoning we can build an automaton state by state. When

the part is placed into the machine A, event m generates the transition to the next

state, AWI, i.e. the robot becomes available, and machine A is processing the part

while machine B is still idle. The operational sequence is finished when part

processing in machine A is completed (event c, state 1II) and the robot removed

the part from the cell that corresponds to event r that releases the robot and returns

the automaton in its initial state AII. The model of part a path is shown in Figure

2.13.

40 Manufacturing Systems Control Design

Figure 2.13. An automaton of part a path in the workcell from Example 2.2.1

It should be noted that the occurrence of does not influence states MII and 1II

since in both cases the robot is already occupied (the way event affects state AWI

will be discussed at the end of the example).

 The automaton that models part b path is depicted in Figure 2.14. The initial

state of this automaton is the same as for the automaton describing part a path.

Arrival of part b triggers processing in machine B, event forces the system in

AIW. Then, the part is removed from the machine (event f, state 2II) and the robot

is released (event r), which leads the system into the initial state. When that new

part b arrives while the previous part is still being carried by the robot, state 2II

changes into 2IW. Then, the robot is released and the system returns to state AIW.

As for the automaton shown in Figure 2.13, some events have no influence on

particular states.

Figure 2.14. An automaton of part b path in the workcell from Example 2.2.1

It is evident that the automata in Figures 2.13 and 2.14 do not provide a full

description of the workcell. First, some states that are particularly important are

missing, and second, events that connect two automata should be added in order to

obtain the correct model. By using the same reasoning that has been used for

already-determined automata, we can construct the third automaton shown in

Figure 2.15.

 Discrete Event Systems 41

MIW AWW 1IW

MWW

2WI2WW

MWI

Figure 2.15. Partial automaton of the workcell from Example 2.2.1

Finally, a complete model of the workcell, depicted in Figure 2.16, is obtained

by “merging” three automata. Since these automata were determined by an

informal approach here we purposely omit formal notions of parallel composition
and the product of two automata, and use the term merge instead. However, in

order to verify the final result, the automata of the robot and machines are

presented later on, together with a definition of parallel composition. For

convenience, a complete model, depicted in Figure 2.16, does not encompass arcs

corresponding to events that have no affect on the automaton states.

A survey of the automaton model reveals some interesting properties of the

workcell. It can be seen that there exists a state (MWW) with no events that lead

the system out of it. This state corresponds to a situation when both machines are

processing parts while the robot carries part a. In order to place the part in machine

A, the robot should remove the part that has been processed, but this task cannot be

done since the robot already holds a part. At the same time machine B is not able to

receive new parts since replacement of the part that has been processed requires the

robot, which is occupied with an another task. Hence, once the workcell gets in

MWW it remains in that state indefinitely; no further events are possible. This

means that the automaton blocks without termination of the planned task. This

situation is known as a deadlock [15] (it should be noted that there exists another

form of blocking, called a livelock). Deadlock prevention, which is the key concern

in the discrete event systems supervisory design, will be discussed and analyzed

throughout the book.

42 Manufacturing Systems Control Design

Figure 2.16. Complete automaton of the workcell from Example 2.2.1

In our case, the deadlock situation is in close relation with states AWI and

AWW. That is, when the system comes into one of these two states the event has

to be forbidden otherwise the system will be blocked. In the next section we will

discuss how we can keep the system described by an automaton out of illegal

states.

Before we conclude the example it is worth saying a few words about marked

states in the automaton in Figure 2.16. The main task of the workcell is a cyclic

repetition of parts processing, hence, no state can be treated as final. However, four

states, 2II, 2WI, 2IW, 2WW, 1IW and 1II have been marked. These states are

chosen because each time the system gets into one of them, part a or part b
eventually leaves the system (recall that robot statuses “1” and “2” stand for tasks

related to removal of parts from the machines).

♦

As mentioned in the previous example, a formal description of a joint behavior

of a set of automata can be obtained by two operations, a product and a parallel

composition. The latter, defined hereafter, is more interesting for our purpose.

Definition 2.2.2 (parallel composition of automata): Given automata A1 and A2,

their parallel composition is defined as

()1 2 1 2 1 2 1 2 01 02 m1 m2|| , , ((),), ,A A Ac X X E E f x x e x x X X= × ∪ × , (2.11)

where Ac is the so-called accessible operation, i.e. an operation that deletes all

states that are not accessible from the initial state.

 Discrete Event Systems 43

A set of states attained by the parallel composition contains all combinations

made by states in A1 and A2 (the same holds for marked states). This points to the

main drawback of automata – each state is represented explicitly. By combining

components of real-world systems the number of states can easily explode.

A new set of events, obtained by the parallel composition, is calculated as a

union of events in A1 and A2. A transient function of the joint automaton is defined

as follows:

1 1 2 2 1 1 2 2

1 2 1 1 2 1 1 2

1 2 2 2 2 1

(,) (,) if () ()

((),) (,) if () \

(,) if () \

()

()

()

f x e f x e e x x

f x x e f x e x e x E

x f x e e x E

=

∈Γ ∩Γ

∈Γ

∈Γ

.

In other words, an event e that belongs to both automata can be executed only

when the joint automaton arrives in the state that is formed by states that initiate

event e in the original automata. Other events can be executed with no restriction.

Automata representations of the robotized workcell components from Example

2.2.1 are shown in Figure 2.17. As may be seen, in accordance with the discussion

from the beginning of the example, each machine has two states, I and W, while

the automaton representing the robot has four states, A, M, 1 and 2. A set of events

in the automata corresponds to those defined in Table 2.2. We demonstrate a

parallel composition of automata representing machine A, denoted AA, and the

robot, denoted AR.

According to the definition a new automaton will have 8 states (4x2): AI, MI,

1I, 2I, AW, MW, 1W and 2W. A set of common events is determined as EA ER =

{c, m}. The new states and corresponding events are shown in Figure 2.18.

I W

A M

I W

a)

b)

1

2 c)

Figure 2.17. Automata representation of the workcell components from Example 2.2.1; (a)

machine A, (b) machine B, and (c) robot

44 Manufacturing Systems Control Design

AI 2I

1I AI

MI

MI AW

2I AI

AW 2W

1W AW

MW

MW

2W AW

1I

Figure 2.18. States and transitions attained by the parallel composition of the automata (a)

and (c) in Figure 2.17

Let us take a closer look at Figure 2.18. A new state AI is formed from the

robot state “available” – A and machine state “idle” – I. Both states represent

initial states in the original automata, thus, state AI represents the initial state of the

joint automaton. From Figure 2.17 we see that (A) = {c, f, } and (I) = {m}.

Since common events c and m do not belong to both (I) and (A), their execution

is forbidden. The remaining events, f and , are allowed; the occurrence of f
enforces a new state 2I, while event leads the system into state MI, as shown in

the figure. State 1I is composed of states 1 and I, with (1) = {r} and (I) = {m}.

As for the previous state, event m is not allowed, while event r causes a transition

to state AI. State 1I is marked because states 1 and I are marked. The next state,

MI, illustrates the situation when both automata involved in parallel composition,

perform a common event. As (M) = {m} and (I) = {m}, the condition for

execution is satisfied and state MI changes to AW. Further analysis gives the

remaining transitions as shown in Figure 2.18. State MW cannot trigger any event

since (M) = {m} and (W) = {c}.

Given new states and corresponding transitions we are able to form an

automaton obtained by the parallel composition, represented in Figure 2.19.

Similarity with the automaton that models part a path (Figure 2.13) is evident.

The parallel composition of the automaton describing machine B (Figure 2.17

(b)) and the automaton that models joint behavior of the robot and machine A will

give a complete model of the workcell. We leave this step to the reader.

 Discrete Event Systems 45

Figure 2.19. Automaton as result of the parallel composition of the automata (a) and (c) in

Figure 2.17

2.2.2 Languages and Supervisory Control of DES

When we introduced the notion of feedback control in time-driven systems we

mentioned that usually there exist at least two control objectives; a) the system

should be conducted to the desired state and b) this state should be reached in a

particular way, i.e. the state vector should follow a predefined trajectory. These

two objectives are applicable to event-driven systems too. Generally, the goal of

supervisory control of DES is to force the system i) to avoid undesirable states and

ii) to maintain selected specifications (control policy).

The prospective design of such a supervisor requires two issues to be resolved.

First, we have to identify illegal states. This might be difficult, especially if the

system is large and has hundreds of states. In the workcell example deadlock states

were caused by a structural property of the system and they were recognized when

the automaton model of the system was built. On the other hand, in the tunnel

ventilation example the forbidden states were imposed by the designer. One way or

the other, undesirable states need a formal description in order to be incorporated

in the supervisor design and avoided by the controlled system. The second issue,

associated with the supervisor design, is specification of system activities once the

problem of forbidden states is solved. The question is how to arrange the system

states in order to execute the specified tasks? In the workcell example the robot

provided services for two machines by handling parts processed by the machines.

One possible scenario for the robot is to remove three parts from machine B, then

put one part in machine A and then again remove three parts from machine B

before it returns to machine A and takes out the part. This job sequence is repeated.

Integration of such (cyclic) behavior into the supervisor design needs to be done

formally in order to enable analysis of the controlled system.

Let us now recall the ventilation system example. In this example the “control

rules” were associated with the system states: switch on the jet fans each time the

system arrives at states x = [H ⋅ 0]T and switch off the jet fans when the system

leaves states x = [H ⋅ 1]T. Also, in the robotized workcell example we pointed out

46 Manufacturing Systems Control Design

that deadlock was linked with two states, AWI and AWW. The automata theory

approaches the supervisory control design from a different perspective. Instead of

defining actions (events) that have to be taken when the system gets in a particular

state, in the automata theory sequences of events are analyzed. Then, the

supervisor’s responsibility is to limit the system behavior to those sequences that

are admissible or specified by a given control policy. To achieve this, the

supervisor i) must “know” the current state of the system, and ii) should be able to

prevent the occurrence of specific events. The first requirement is associated with

system observability [16, 17] while the second one is related to the system

controllability. Although fulfilment of both requests is rarely achieved,

observability is easier to handle. Indeed, there are numerous DES observer design

techniques that provide the supervisor with information regarding events that

cannot be measured directly [18]. The situation with controllability is different.

Due to the presence of breakdowns, malfunctions and other irregular incidents,

some events are uncontrollable and their occurrence cannot be disabled by the

supervisor [19] (it should be noted that there are events that are not related to

failures but still cannot be controlled). Usually, a theoretical analysis of systems

with uncontrollable events is concerned with determination of the probability that

an uncontrollable event will take place. In practice, the best we can do is to employ

redundancy in the parts of the system with the highest probability of having a

failure.

At this point we return to the notion of the events sequence. As we mentioned

earlier in the chapter, events occur asynchronously, one after the other, changing

the system state and forming the sequences. In order to be able to trace all

sequences that are generated by the system, we introduced the DES modeling tool

called an automaton. An automaton, comprised of system events and system states,

describes in which way the occurrence of a particular event changes the system

state. Starting from the initial state, an automaton A creates a set of untimed

sequences
*

1 2
, , ...s s E⊂ , written in the form of strings. This set of strings, called

the language of automaton A, is denoted L(A) and defined as

{ }*

0
() : (,)L A s E f x s exists= ∈ (2.12)

It can be seen that
*

()L A E⊆ . The concept of languages, generated by an

automaton, has a central place in DES supervisory control design and analysis. In

the remainder of the section this concept is presented briefly only to provide the

reader with a concise insight into the potential that languages offer in DES theory.

For further readings one may wish to consult [20–22]

Let us denote the automaton depicted in Figure 2.16 as AW. Then

{ }W() , , , , , , , , , , , ...L A m f mc m m m fα β α αβ β βα α α α α β αβ β β=

It is apparent that strings, belonging to the language generated by automaton

AW, correspond to directed paths in the state transition diagram of AW (paths are

 Discrete Event Systems 47

fundamental structural properties of graphs and will be discussed in more details

later in the book).

The other language, which is closely related to the notion of deadlock, is

associated with marked states. When that last event in a sequence s corresponds to

an event that leads the system to the marked state, 0 m(),f x s X∈ , we talk about a

marked language of automaton A, denoted Lm(A) and defined as

{ }*

0m m() : (,)L A s E f x s X= ∈ ∈ (2.13)

From Figure 2.16 we have

{ }m W() , , , , , , , ...L A f mc mc m f m c mc mfβ α α β α β α β βα βα=

For a given string s = abc, a is called a prefix of s, b is called a substring of s
and c is called a suffix of s. String s = is called an empty string. A language L(A)

is said to be prefix-closed if () ()L A L A= , where

{ }* *
() : , ()L A s E c E sc L A= ∈ ∃ ∈ ∈ , (2.14)

i.e. ()L A contains all prefixes of strings in ()L A .

A blocking (deadlock) is related to the prefix-closer. Specifically, an automaton

contains a blocking condition if

m () ()L A L A⊂ . (2.15)

According to the usual interpretation, marked states appoint the final stage of

the process modeled by the automaton. If blocking occurs, the automaton is not

able to get into the marked state; hence, any generated string that ends in a

deadlock state cannot be a prefix of a string that ends in the marked state.

To verify relation (2.15) we choose a few strings that belong to W()L A and

lead automaton AW in deadlock; s1 = m , s2 = m , s3 = m . From Figure

2.16 we can see that none of these strings is a prefix of strings that end in marked

states of AW, therefore, m W W() ()L A L A⊂ .

In the automata theory supervisory control is implemented in the form of a

function, usually denoted S, which dynamically enables or disables events in a

controlled automaton A. Thus, S(s) is a set of all events that are allowed by S after

the automaton A has generated string s. As an example, we examine strings s1 = m
and s2 = m generated by AW. If supervisor S is to prevent a deadlock, then S(s1) =

{c, } and S(s2) = {c, f}. Further, let us study two more strings, also generated by

AW, s3 = mcr m and s4 = mcr m. In order to prevent deadlock we must have

48 Manufacturing Systems Control Design

S(s3) = {c, } and S(s4) = {c, f}. Note that for a given control policy function S
could have the same value for different strings, S(s1) = S(s3) and S(s2) = S(s4).

Before we return to the question posted at the end of Example 2.2.1, that was,

how to design a supervisor that prevents a deadlock, we should see in which way

the design specifications, which are usually given in a heuristic manner, can be

formally specified. The problem is how to represent statements such as “prevent

deadlock”, “apply last-buffer-first-serve dispatching policy”, “task a has a higher

priority than task b”, and so on, and relate them to the supervisor S.

It is apparent from the earlier discussion that a language generated by an

automaton could have a large or even infinite number of strings, hence, making a

list of all sequences (strings) that satisfy (or not) required specifications will be not

only impractical but in many cases impossible. Since the domain of the control

function S is language L(A), it is natural to realize the control function in the form

of an automaton, let us denote it as AS. Once defined, automaton AS should execute

events in parallel with an uncontrolled automaton that is allowed to trigger only

events announced by AS. The issue here is that the determination of supervisor

automaton AS is usually a demanding task that requires practice. For that reason, AS

is not designed directly from the design specification. As a solution, the automata

theory offers a choice of standard methods for modeling specifications in the form

of an automaton, hereafter denoted AD. Upon determination of AD the supervisory

automaton is computed as a parallel composition or product of AD and the

automaton that describes the system.

In some cases AS can be obtained directly from the model of the system;

inadmissible states and all events related to them should be simply removed. For

example, in the workcell automaton AW (Figure 2.16) illegal states MWW and

MWI that embrace events and , can be erased, thus creating supervisor AS. In

this way, each time the system arrives in state AWI or AWW the occurrence of

event will be restricted by AS.

Discrete event systems are often required to perform some tasks alternately.

This specification can be presented in the form of a two-state automaton AD having

transitions that correspond with events that trigger the requested tasks. In our

workcell example we can build such an automaton with events and c, thus

preventing a deadlock. The arrival of a new part a will be ignored as long as the

previous part is not removed from the workcell (this dispatching policy is known

as last-buffer-first-served). Even though part a arrives in the system stochastically

and this process cannot be controlled, from the technical point of view that should

not be a problem. As the supervisor is implemented in the form of a computer or

PLC program, it is not difficult to ignore a signal from the sensor that triggers

event as long as part a is being processed by machine A.

References

[1] Isidori A. Nonlinear Control Systems. London: Springer, 1995.

[2] Slotine JJE, Li W. Applied Nonlinear Control. Englewood Cliffs: Prentice Hall, 1990.

[3] Vidyasagar M. Nonlinear Systems Aalysis, SIAM, 2003.

 Discrete Event Systems 49

[4] Bay JS. Fundamentals of Linear State Space Systems. New York: WCB/McGraw-Hill,

1998.

[5] Kuo BC. Digital Control Systems. New York: Holt, Rinehart, Winston, 1980.

[6] Astrom KJ, Wittenmark B. Computer Controlled Systems. Englewood Cliffs: Prentice

Hall, 1990.

[7] Henzinger T, Sastry S. Hybrid systems: Computation and Control. Berlin: Springer-

Verlag, 1998.

[8] Special Issue on Hybrid Systems, Automatica 1999;35;3

[9] Special Issue on Hybrid Systems, IEEE Trans. Aut. Contr. 1998;43;4

[10] Tornambe A. Discrete-Event Systems Theory. Singapore: World Scientific, 1995.

[11] Kumar R, Garg VK. Modeling and Control of Logical Discrete Event Systems.

Boston: Kluwer Academic Publishers, 1995.

[12] Carroll J, Long D. Theory of Finite Automata. Englewood Cliffs: Prentice Hall, 1989.

[13] Hopcroft JE, Ullman JD. Introduction to Automata Theory, Languages and

Computation. Reading: Addison-Wesley, 1979.

[14] Wonham WM. Supervisory Control of Discrete Event Systems, Lecture notes, 2005.

[15] Che E, Lafortune S. Dealing with blocking in supervisory control of discrete event

systems, IEEE Trans. Aut. Contr. 1991;36;6:724–735.

[16] Lin F, Wonham WM. On observability of discrete event systems, Information sciences

1988;44:173–198.

[17] Cieslak R, Desclaux C, Fawaz A, Varaiya P. Supervisory control of discrete event

processes with partial observations, IEEE Trans. Aut. Contr. 1988;33;3:249–260.

[18] Wong KC, Wonham WM. On the computation of observers in discrete event systems,

Discrete Event Dynamic Systems 2004;14;1:55–107.

[19] Wonham WM, Ramadge PJ. On the supremal controllable sublanguage of a given

language, SIAM J. of Contr. and Optim. 1987;25;3:637–659.

[20] Ito M. Algebraic Theory of Automata & Languages. Singapore: World Scientific,

2004.

[21] Kelly D. Automata and Formal Languages: An Introduction. Englewood Cliffs:

Prentice Hall, 1998.

[22] Kozen DC. Automata and Computability. New York: Springer, 1999.

3

Matrix Model and Control of Manufacturing Systems

The widest definition of a manufacturing system (MS) incorporates all the people,

facilities and services needed to produce a product or a range of products. From

this point of view, the MS design problem is extended beyond the traditional

boundaries of machine tool and process selection, together with plant layout and

job design. Tasks related to organizational issues and the design of information and

control systems represent an increase in the variety of skills required of the MS

design experts. The comprehensive nature of the approach (skills required and the

amount of work involved) calls for a group of people drawn from related technical

and operational functions in the business, which, together with design engineers,

provides the set up of a project team.

The manufacturing systems design may be separated into four major steps –

analysis, conceptual design, detail design and finally, implementation. Usually, the

first step, analysis, deals with issues related to business, i.e. market-data collection,

analysis of products and processes, analysis of manufacturing strategies, etc. The

conceptual design is concerned with decisions related to the manufacturing

architecture, i.e. flowlines, flexible lines, job shops or combinations of these. The

architecture mainly depends on the product volume and the product variety. To be

competitive in the global market and provide flexible manufacturing in today’s

high-mix-low-volume manufacturing environment, manufacturing systems have

moved away from the old style fixed hardware sequential assembly lines with

dedicated workstations. The trend has been toward flexible manufacturing systems

(FMS). The flexibility of an FMS can be achieved in several ways:

• machine flexibility – ease of making changes required to produce a

given set of part types,

• process flexibility – ability to produce a given set of part types in

different ways,

• product flexibility – ability to change over to produce new products

economically and quickly,

• routing flexibility – ability to handle breakdowns and continue

producing a given set of part types,

• volume flexibility – ability to operate profitably at different production

volumes,

52 Manufacturing Systems Control Design

• expansion flexibility – ability to expand the system easily and in a

modular fashion,

• operation flexibility – ability to interchange ordering of several

operations for each part type,

• production flexibility – universe of part types that the manufacturing

system can produce.

Once the basic structure of the system is defined, detailed design provides

answers to queries regarding the system performance under the initial design. In

this stage, for example, calculations indicating where the performance bottlenecks

are likely to lie in the system lead to a redesign that will eventually improve the

system performance. Then, dynamic simulations of the system under various

conditions give information regarding the system robustness, uncertainties,

adaptability and sensitivity, to end with the system model. Given the model and the

manufacturing policy, the last stage in the detailed design, the control system
determination, can be carried out.

The control in MSs spreads over all levels of abstraction. The top-level

controllers are concerned with decision making on the global market, hence, they

have long prediction horizons and large sampling intervals (weekly, monthly,

quarterly, etc.). Their outputs are usually used as set points for lower-level control

loops that manage production lines (workcells) on a shop floor. Design and

analysis of these intermediary control loops is the main scope of the book. At the

bottom of the MS control structure we have controllers that work in real time and

handle machines and tools. These bottom level controllers accept working points

from the intermediate level.

Sometimes it is difficult to make a distinction between the three mentioned

levels. Furthermore, in some applications there are more than three levels of

control [18, 19], especially in the case of decentralized structures [20–23]. Anyway,

interaction between various control levels, in a feedback form, is required in order

to provide a proper study of the entire system. For example, some events from the

bottom level, such as machine malfunctions or completions of tasks, should be

supplied to the upper levels to provide an appropriate response of the overall

control system.

The agility provided by the capacity of an FMS to be quickly reconfigured to

produce new products relies mainly on the extent to which it is possible to

efficiently and rapidly reprogram the FMS control system. One of the major

components of an FMS control system is a computer-based supervisory controller

for monitoring the status of jobs and directing part routing and machine job

selection. This supervisor can be seen as an intermediate level of control.

There are many approaches to modeling, simulation and control design for

manufacturing systems, including the already-presented automata, Petri nets which

will be described in more detail in later chapters, alphabet-based approaches,

perturbation methods, control theoretic techniques, expert systems design, and so

on. In this chapter we present a matrix-based model of FMS that is a part of a

detail design of manufacturing systems [1]. This matrix framework is very

convenient for computer simulation [2], as well as for a supervisory controller

design [3]. It is straightforward to write down the matrix description for a specific

 Matrix Model and Control of Manufacturing Systems 53

manufacturing system since the matrices are given by the bill of material (BOM)

[4], Steward’s sequencing matrix [5], the resource-requirements matrix, assembly

trees, and existing dispatching algorithms. In addition, the matrix-based

formulation can be easily modified if there are changes in product requirements or

resources available, making the control of the workcell more flexible and re-

configurable. We make the following three assumptions that define the sort of

discrete-part manufacturing systems:

No pre-emption – once assigned, a resource cannot be removed from a job until

it is completed,

Mutual exclusion – a single resource can be used for only one job at a time,

Hold while waiting – a process holds the resources already allocated to it until

it has all the resources required to perform a job.

In addition to these assumptions, we assume that there are no machine failures.

This chapter is organized in the following way: first we introduce the system

matrices that fully describe an MS; then we use these matrices to determine the

system equations that are calculated in and/or algebra. The system equations form

recursive matrix model used for simulation and system analysis. In order to be able

to investigate dynamic phenomena in an MS, we introduce time into the matrix

model. At the end of the chapter, a supervisory controller based on the matrix

model is described and a case study is presented.

3.1 System Matrices

Before defining system matrices we introduce basic terms that will be used

throughout the chapter and later in the book. Let Π be the set of distinct types of

parts produced (or customers served) by an MS. Then each part type k∈ΠΠ is

characterized by a predetermined sequence of job operations

{ }1 2 3, , , ...,
k

k k k k k
LJ J J J J= with each operation employing at least one resource. (Note

that some of these job operations may be similar, e.g. i
kJ and j

kJ with i ≠ j may

both be drilling operations.) We uniquely associate with each job sequence kJ the

operations of raw part-in, in
kJ , and finished product-out, out

kJ . It is assumed,

without loss of generality, that each part is fixed on a pallet throughout its

processing sequence. Let { }0 0
k

k
R r

∈Π
= represent the set of pallets, where 0

kr

denotes the pool of multiple pallets devoted to part-type k. Note that the

multiplicity of pallets in pool 0
kr gives an upper bound for the number of parts of

type k that can be processed concurrently.

Denote the other system resources in addition to the pallets with { }
1

n
i iR r == ,

where ri∈R can represent a pool of multiple resources each capable of performing

the same type of job operation. In this notation, kR R⊂ represents the set of

resources utilized by job sequence kJ . Note that k
k

R R
∈Π

= ∪ and k
k

J J
∈Π

= ∪

54 Manufacturing Systems Control Design

represent all resources and jobs in a particular FMS. Since the system could be re-

entrant, a given resource kr R∈ may be utilized for more than one operation
k k
iJ J∈ (sequential sharing). Also, certain resources may be used in the

processing of more than one part-type so that for some {l, k}∈ ΠΠ, l ≠ k,
l kR R∩ ≠ ∅ (parallel sharing). Resources that are utilized by more than one

operation in either of these two ways are called shared resources, while the

remaining are called nonshared resources. Thus, one can partition the set of system

resources as s nsR R R= ∪ , with Rs and Rns indicating the sets of shared and

nonshared resources, respectively, where s sR n= and ns nsR n= , ns + nns = n. For

any r∈R we define the resource job set J(r). Obviously, () 1J r = (> 1) if r∈Rns

(r∈Rs).

Definition 3.1.1 (resource loop): For each r∈R, a set L(r) defined as

() ()L r r J r= ∪ (3.1)

is called a resource loop.

Given a set of jobs and a set of resources that compose a manufacturing system,

we can present the system activities in the form of IF-THEN rules. Each rule

corresponds to a component of the logical state vector, denoted x. A job is said to

be activated (started) when all the preconditions (IF part) for its execution are

satisfied. When a multitude of jobs requesting the same shared resource are

simultaneously activated, a conflict is said to have occurred and a decision is

needed as to which job the resource should be allocated to. This type of priority

assignment in resource allocation constitutes the problem of dispatching, which we

shall revisit and analyze in Chapter 6.

Now, the formal definitions of system matrices follow.

Definition 3.1.2 (job-sequencing matrix): The job-sequencing matrix, Fv, is a

matrix that relates the job set and the logical state vector: Fv(i,j) = 1 if job j
contributes to construction of the ith component of the logical state vector.

Otherwise Fv(i,j) = 0.

Definition 3.1.3 (resource-requirements matrix): The resource-requirements
matrix, Fr, is a matrix that relates the resource set and the logical state vector:

Fr(i,j) = 1 if resource j contributes to construction of the ith component of the

logical state vector. Otherwise Fr(i,j) = 0.

These matrices are easy to write down, Fv is the job-sequencing matrix of

Steward (1962) – it is determined from the BOM or assembly tree [6]. Element Fv

(i,j) is equal to 1 if job j is required as an immediate precursor to job i (equivalent

in the BOM, if subassembly j is required to produce subassembly i). Fr is the

resource-requirements matrix of Kusiak (1992), which is assigned by the shop

 Matrix Model and Control of Manufacturing Systems 55

floor engineer. It has an element Fr (i,j) equal to 1 if resource j is required for job i.
Steward’s sequencing matrix Fv and the resource-requirements matrix Fr have

long been used as heuristic design aids by industrial engineers, with some

possibility for limited analysis (as described e.g. by Warfield (1973) in the case of

Fv and Kusiak (1992) in the case of Fr). The matrix model elevates these design

tools to formal computation elements.

In order to demonstrate development of the matrix model, let us consider the

assembly tree depicted in Figure 3.1, which shows the required sequence of actions

(jobs) to produce a product. Though the example is a relatively simple one, the

technique extends directly to more complicated systems.

MAP

RP1

BP

MBP

RP2

drill

move

grind

move

parts in

parts out

buffer

R

MA

B MB

R

Figure 3.1. Product information for example of the system matrices determination

The job-sequencing matrix can be written directly from Figure 3.1:

MAP RP1 BP MBP RP2

v

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

=F

Resource-requirements information may be given in the form of table or

included directly in the product information, as shown in Figure 3.1. From this

information one can write down the resource-requirements matrix:

56 Manufacturing Systems Control Design

MA MB B R

MAP

RP1

BP

MBP

RP2

r

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

0 0 0 1

0 0 0 0

=F

Since the first operation of the job sequence does not have any prerequisites

among the tasks, all components of the first row of Fv are equal to 0. The same

analogy is applicable to the last row of Fr, that is, the last row corresponds to the

parts leaving the system, hence all its components are 0 as no resource is involved

in this operation. We shall return to the issue of system inputs and outputs when we

define the corresponding matrices.

One of the possible layouts of the workcell that performs a job sequence

described by matrices Fv and Fr, is shown in Figure 3.2.

 In the matrix model, matrices Fv and Fr belong to the IF part of the rules

describing the system. As we mentioned earlier, when all the preconditions for

execution of a particular job are satisfied, the job will be started. These consequent

parts of the rules are structured by the matrices defined below.

Definition 3.1.4 (job-start matrix): The job-start matrix, Sv, is a matrix that relates

the logical state vector and the job set: Sv(i,j) = 1 if the jth component of the logical

state vector is a prerequisite to start job i. Otherwise Sv(i,j) = 0.

Definition 3.1.5 (resource-release matrix): The resource-release matrix, Sr, is a

matrix that relates the logical state vector and the resource set: Sr(i,j) = 1 if the jth

component of the logical state vector is a prerequisite to start the release of

resource i. Otherwise Sr(i,j) = 0.

robotmachine A

machine B

buffer

parts in

parts out

Figure 3.2. The workcell layout for the assembly tree in Figure 3.1

 Matrix Model and Control of Manufacturing Systems 57

The job-start matrix Sv and the resource-release matrix Sr are new matrices that

must be introduced to obtain a complete matrix description of manufacturing

systems. In the flowline, matrix Sv has diagonal 1s, while in the job shop, it has

multiple ones in the same column corresponding to job-routing decisions.

For the job sequence, depicted in Figure 3.1, matrices Sv and Sr have the

following form:

MAP

MA

RP1

MB

BP

B

MBP

R

RP2

v r

1 0 0 0 0 0
0 1 0 0 0 0

0 1 0 0 0 0
0 0 0 0 1 0

,0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 1 0 0
0 0 1 0 0 1

0 0 0 0 1 0

= =S S

As in the case of matrices Fv and Fr, columns of Sv and Sr, corresponding with

inputs and outputs, have all components equal to 0. It is interesting to note that Fv

and Sv depend only on job-sequencing information, while all the resource

information is contained in Fr and Sr. Furthermore, it is important to keep in mind

that the column of matrix Fr corresponding to the robot R, which is a shared

resource, has more than one “1”. Also, the row of matrix Sr, corresponding to the

shared resource, has multiple “1s”. We shall return to this issue later when

discussing a supervisor design. When an operation requires more than one

resource, the corresponding row of Fr has “1” for each resource that participates in

the operation.

Raw parts entering and finished products leaving the manufacturing system are

described with the following matrices.

Definition 3.1.6 (input matrix): The input matrix, Fu, is a matrix that relates the

inputs of the system (raw parts entering the system) and the logical state vector:

Fu(i,j) = 1 if an input j contributes to construction of the ith component of the

logical state vector. Otherwise Fu(i,j) = 0.

Definition 3.1.7 (output matrix): The output matrix, Sy, is a matrix that relates the

logical state vector and the outputs of the system (finished products leaving the

system): Sy(i,j) = 1 if the jth component of the logical state vector is a prerequisite

for output i. Otherwise Sy(i,j) = 0.

Since the job sequence, shown in Figure 3.1, is a single part processing, input

and output matrices have a vector-like form:

58 Manufacturing Systems Control Design

[]u y

1

0

0
, 0 0 0 0 0 1

0

0

0

= =F S

So far we introduced the system matrices that assemble a set of rules describing

the behavior of a manufacturing system. In the next section we present equations

that utilize these matrices and provide a mechanism for calculation of the logical

state vector in a recursive manner.

3.2 System Equations

As we already pointed out, the matrix model represents a set of rules, so that it is

formally a rule base. The previously defined job set J and resource set R are

associated with the system matrices and incorporated into the matrix model in the

form of vectors. We define a job vector v : J→ℵℵ and a resource vector r : R →ℵℵ
that represent the set of jobs and the set of resources corresponding to their nonzero

elements. The set of jobs (resources) represented by v (r) is called the support of v

(r), denoted sup(v) (sup(r)); i.e. given v = [v1 v2 … vq]
T, vector element vi >0 if and

only if job vi∈ sup(v). In the same manner, given r = [r1 r2 … rp]
T, vector element

ri >0 if and only if resource ri∈ sup(r). Usually, index i is replaced with job

(resource) notation, hence, rMA stands for the component of resource vector r that

corresponds to resource MA.

For example, the workcell shown in Figure 3.2 has a job set J = {MAP, RP1,

BP, RP2, MBP} and the resource set R = {MA, MB, B, R}. Then, the vector

representation of jobs performed by the robot is vR = [0 1 0 1 0]T and

sup(vR)={RP1, RP2}. A vector that represents shared resources is rs = [0 0 0 1]T

with sup(rs)={R}. The definitions of job and resource vectors imply that the job

and resource sets should be ordered.

We proceed further with the determination of system equations by defining a

vector negation. Given a natural number vector a = [a1 a2 … an]
T, its negation

[]1 2 ...
T

na a a=a is such that ia = 0 if ai > 0, and 1otherwise. A vector negation is

required since state equations and system matrices are Boolean, while job and

resource vectors have positive integer components. Consequently, all matrix

operations are defined to be in and/or algebra, denoted and , where

multiplication is replaced by AND, and addition is replaced by OR. Hence, for

given matrices and vectors

[] []T T

a b c

0 1 1 1 1
, , , 3 0

0 1 0 1 0
v v v= = = =A B a b

 Matrix Model and Control of Manufacturing Systems 59

we have

a
a b c b c

b
a b c b

c

b c

b

(0) (1) (1)0 1 1

(0) (1) (0)0 1 0

v
v v v v v

v
v v v v

v

v v
v

∆ ∆=
∧ ∨ ∧ ∨ ∧ ∨

= = =
∧ ∨ ∧ ∨ ∧

∧
=

c A a

c

a
b c

b
b

c

b c

b

0 1 1 1 1 0 1

0 1 0 1 0 1 0

1

0

v
v v

v
v

v

v v
v

∆ ∇ ∆ ∆ ∇ ∆ ∇
∨

= = =

∨ ∨
=

∨

d A a B b

where ∧ and ∨ are standard symbols for logical AND and OR, respectively. It

should be noted that the final step in vector c calculation is obtained by

DeMorgan’s rule.

Having defined all the necessary components, the system equations that outline

the matrix model are formalized in the following section.

 3.2.1 Logical State-vector Equation

The job vector v has two interpretations. As a status output of the workcell, vector

v denotes a job-completed vector; in this role it is denoted as vc. Hence, sup(vc)

comprises all operations of the given system that are completed. On the other hand,

as an input to the workcell, vector v represents a job-start vector, denoted as vs,

thus, sup(vs) includes all operations of the given system that should be started. The

same holds for the resource vector r, i.e. sup(rc) contains all resources that are idle

(rc is called an idle-resource vector) and sup(rs) is a set of all resources that should

be released (rs is called a resource-release vector). Then, for given vectors vc and

rc, and for specified system matrices, the logical state vector x is calculated

according to the following equation:

v c r c u∆ ∇ ∆ ∇ ∆=x v r uF F F (3.2)

Input vector u represents raw parts entering the cell, i.e. sup(u) is a set of inputs

that have parts ready to be processed. A computed entry of xi=1 in x indicates that

all conditions required for the rule i have been met. As we shall see later, in a

closed-loop system controlled by a supervisor, the components of vc and rc are

calculated from the signals measured by sensors and used as a feedback.

60 Manufacturing Systems Control Design

It is important to order the jobs correctly in order to obtain lower triangular

matrices Fv and Sv, for then the sequencing of the jobs is causal. A causal ordering

is also important as the particular system structure helps to overcome NP-hard

complexity problems. When the logical state-vector equation is constructed using

the causal ordering of jobs, the system matrix Fv consists of diagonal blocks, one

per part path, having a subdiagonal of 1s. If there is an assembly there will be some

1s in Fv below the diagonal blocks, where 1 in element (i,j) means that job j is the

last job in a partial part path and joins rule i in another part path.

Matrices Fr and Sr are related as follows: if the ith rule is not the last rule in a

partial part path, and there is an entry “1” in position (i,j) of Fr, meaning resource j
participates in rule i, then there is an entry “1” in position (i+1,j) of Sr

T, meaning

that the resource is released by the next rule. If the ith rule is the last rule on a

partial part path, and there is an entry “1” in position (i,j) of Fr, then there is an

entry “1” in position (k,j) of Sr
T, meaning that the resource is released by the

assembly rule k.

The logical-state vector components should be numbered corresponding to the

jobs in rules consequent parts. From the example shown in Figure 3.1, one can read

a rule corresponding to the component x1:

IF part is ready AND machine A is ready THEN rule 1 is TRUE

In a symbolic form we write

IF PI∈ sup(u) AND MA ∈ sup(rc) THEN x1=1

or shorter x1 = u ∧ MA.

A complete logical state-vector equation for the considered system has the form

c c

0 0 0 0 0 1 0 0 0 1

1 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0

∆ ∇ ∆ ∇ ∆=x v r u

 3.2.2 Job-start Equation

The logical state-vector equation may be seen as a transformation of status of jobs

and resources into the system state vector. As such, it represents only the

prerequisite parts of the rules. The consequent parts of the rules that describe

actions taken when a particular component of the state vector attains a logical “1”

are described with other three equations. The first one is a job-start equation that

relates the state vector x and the job-start vector vs:

 Matrix Model and Control of Manufacturing Systems 61

s v∆=v xS (3.3)

When the system is controlled the components of vs stand for requests issued

by the supervisor to the system. When all the prerequisites for starting a particular

job are satisfied, the corresponding component of the job-start vector is set to “1”.

For the workcell shown in Figure 3.2 the consequent part of rule 1 is

IF rule 1 is TRUE THEN start job in machine A

In a symbolic form we have

IF x1=1 THEN MAP ∈ sup(vs)

3.2.3 Resource-release and Product-output Equations

A resource-release equation relates the logical state vector x and the resource-

release vector rs. A resource is released from the task it has been allocated for

when the task is completed:

s r∆=r xS (3.4)

From Figure 3.1 one can read that

IF rule 2 is TRUE THEN release machine A

or

IF x2=1 THEN MA ∈ sup(rs)

For a shared resource there exist at least two rules that release it. In the case of

the robot in our example, these rules are

IF rule 3 is TRUE THEN release robot R

IF rule 6 is TRUE THEN release robot R

A product-output equation

y∆=y xS (3.5)

describes how the processed products depart from the system. Once the last job on

the part path is finished, the corresponding rule is satisfied and the part leaves the

system.

62 Manufacturing Systems Control Design

3.2.4 Recursive Matrix Model

Generally, the complete task plan could be given by the system matrices Fv, Sv, Fr,

Sr, defined above, which are specified by higher-level planners, or, as we show,

may be written down in manufacturing systems given the BOM or the assembly

tree plus resource-availability information. Additionally, these matrices can easily

be extracted from plans generated by typical planning software, including

hierarchical planners. Since each matrix has a well-defined function for job

sequencing, resource assignment, and resource release, they are straightforward to

construct as well as easy to modify in the event of goal changes, resource changes,

or failures; that is, they accommodate task planning as well as task replanning. The

matrix-design technique extends directly to complicated interconnected systems

using notions of block matrix (e.g. subsystem) design.
In this section we discuss the usage of matrix formulation for computer

simulation of manufacturing systems (and other DES). The formal notation of

logical rules contains matrices that express the structure of a manufacturing

system. As such, these matrices are extremely useful in system analysis and

supervisor design. Additionally, when included into system equations (3.2) – (3.5)

they provide an apparatus for simulation analysis of the system.

Denoting the discrete event iteration number with k, we can calculate the

logical state vector each time an event takes place, i.e. a job is completed, resource

becomes idle or part enters the system:

v c r c u() (1) (1) (1)k k k k∆ ∇ ∆ ∇ ∆= − − −x v r uF F F (3.6)

The equations describing the consequent parts of rules can be rewritten in the

same way:

s v

s r

y

() ()

() ()

() ()

k k

k k

k k

∆

∆

∆

=

=

=

v x

r x

y x

S

S

S

(3.7)

In order to be able to link recursive equations (3.6) and (3.7) we have to relate a

job-completed vector vc with a job-start vector vs, and an idle-resource vector rc

with a resource-release vector rs. According to its definition, the components of

vector vc correspond to completed operations, hence, each time a job is completed,

the number of parts held by this particular job is increased. At the same time, if a

job contributes to a rule(s) that is fulfilled, an already processed part(s) leaves the

job and proceeds through the system. In other words

T

c c s v() (1) () ()k k k k= − + −v v v F x (3.8)

 Matrix Model and Control of Manufacturing Systems 63

The term
T

v ()kF x in Equation (3.8) corresponds to parts that have been

processed and advance to the next operation. Inclusion of Equation (3.7) in

Equation (3.8) gives

T T

c c v v c v v() (1) () () (1) ()k k k k k k= − + − = − + −v v S x F x v S F x (3.9)

where multiplications and additions are carried out in the standard way.

By following the same reasoning one can find the number of idle resources and

the number of finished products in step k as

T T

c c r r c r r

y

() (1) () () (1) ()

() (1) ()

k k k k k k

k k k

=

=

− + − = − + −

− +y

r r S x F x r S F x

y S x
(3.10)

Let us now introduce the system vector m(k) as

c

c

()

()
()

()

()

k

k
k

k

k

=

u

v
m

r

y

(3.11)

Then, Equations (3.6) – (3.10) can be written in the following form

0() (1) , (0)

() (1) ()
T

k k

k k k

∆= − =

= − + −

x m m m

m m S F x

F

(3.12)

with

T
u u

T
v vT

T
r r

T
y y

,= =

S F

S F
S F

S F

S F

where [] []u y,= =S 0 F 0 are null-matrices required for keeping matrix dimensions

consistent. If []u ≠S 0 , then the arrival of parts depends on the system status, i.e.

factor u () 0k ≠xS will increase the corresponding component of u(k), which is in

64 Manufacturing Systems Control Design

disagreement with the definition of input vector u that should be independent and

should represent raw parts entering the cell. When []y ≠F 0 , the part that was

considered to have left the system returns to be processed by one of the system

operations, which is not allowed. Usually, matrix S is called the activity-start
matrix, and matrix F is called the activity-completion matrix.

The first equation in Equation (3.12) encompasses logical AND/OR operations,

while the second one is calculated by using the standard multiplication and

addition, hence Equation (3.12) represents a hybrid matrix model of an MS. Even

though the hybrid matrix model (3.12) is recursive, it does not capture the system

dynamics. The term ()kSx , representing the start of activities, contributes to the

vector m components in the same iteration step k, which means that the durations

of all tasks in the system are assumed to be equal to 0, i.e. activities are completed

at the same time as they are started. By tracking sup[m(k)] we can reconstruct an

untimed sequence that describes only logical activities of the system.

The matrix model is very convenient for computer simulation. In the following

example we use MATLAB
® to simulate the system shown in Figure 3.2 (any other

simulation tool could be used as well).

Example 3.2.1 (DES simulation by using the matrix model)

In this example we present results obtained by the simulation of the system shown

in Figure 3.2, by using the hybrid matrix model. For convenience, the previously

determined system matrices are shown again

MAP RP1 BP MBP RP2 MA MB B R IN OUT

v r u y

0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0

= = = =F F F F

[]

[]

y

v r

u

1 0 0 0 0 0
0 1 0 0 0 0

0 0 0 0 0 10 1 0 0 0 0
0 0 0 0 1 0

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 0 00 0 0 1 0 0
0 0 1 0 0 1

0 0 0 0 1 0

=

= =
=

S

S S

S

Let us define the system input vector u as

 Matrix Model and Control of Manufacturing Systems 65

1 0
()

0 0

for k
k

for k

=
=

>
u

that is, only one part enters the system at the initial step. If we assume that all

resources are idle at the beginning of the simulation, then the initial value of vector

m is m(0) = m0 = [1 0 0 0 0 0 1 1 2 1 0]T. The first component of m stands for the

system input – it is equal to 1 as defined for k = 0. The component that attains the

value 2 corresponds to the buffer that has two empty slots at start. Other entries of

“1” stand for idle resources. Inclusion of m0 in Equation (3.12) for k = 1, gives the

logical state vector x(1) = [1 0 0 0 0 0]T, i.e. only the first rule, which requires idle

machine MA and a part at the input, is satisfied. For given x(1) we calculate m(1)

= [0 1 0 0 0 0 1 2 1 0]T. The set sup[m(1)] = {MAP, MB, B, R} indicates that task

MAP, executed by MA, is finished, while other resources remain idle. Iteratively,

for k = 2, we get x(2) = [0 1 0 0 0 0]T and m(2) = [0 0 1 0 0 1 0 2 1 0]T, that is, the

robot carries the part to the buffer (job RP1) and machine MA is released.

Simulation results are graphically presented in Figure 3.3. The value of vector

m can be directly read from graphs. Propagation of the part through the system is

clearly seen (left side of Figure 3.3). The task sequence is executed as defined in

the assembly tree shown in Figure 3.1. Resource utilization demonstrates that robot

R is used twice, exactly as specified in the resource requirements. Since only one

part was processed by the system, we can see that only one slot in buffer B has

been used. From the graphical representation of the system output (OUT) we

conclude that the part leaves the system after 6 iterations.

Figure 3.3. Graphical representation of results from Example 3.2.1

66 Manufacturing Systems Control Design

Let us now analyze the same system with a different input vector,

() 1 0k for k= >u

Defining u(k) in this way we imply that a new part is available for processing in

each iteration.

The results obtained by simulation are graphically presented in Figure 3.4. As

in the previous case we can see that parts are processed according to the predefined

sequence. However, an interesting situation occurs for k = 5. At that instant both

machines hold parts ready to be transferred further down the line, i.e. MAP = 1 and

MBP = 1. Since both tasks require robot R, which is idle for k = 5, two rules

having the robot as a prerequisite are satisfied. This situation is described in the

chapter beginning as a conflict. The consequence of a conflict is seen on the graph

representing robot R. The value 1 for k = 5 becomes – 1 for k = 6 clearly indicating

that two operations simultaneously requested the same resource (since there exists

only one resource and two operations, value – 1 indicates the lack of resource).

From this result it is obvious, as we have already mentioned, that the decision-

making supervisor is required in order to provide acceptable system performance.

We conclude this example with the MATLAB
® code that has been used for DES

simulation based on the matrix model.

Figure 3.4. Graphical representation of results from Example 3.2.1 for u(k)=1 for k>0

M
A
P

1

0
0 1 2 3 4 5 6 7 8 9 10

R
P
1

1

0
0 1 2 3 4 5 6 7 8 9 10

B
P

1

0
0 1 2 3 4 5 6 7 8 9 10

M
B
P

1

0
0 1 2 3 4 5 6 7 8 9 10

R
P
2

1

0
0 1 2 3 4 5 6 7 8 9 10

 Matrix Model and Control of Manufacturing Systems 67

Figure 3.5. MATLAB
® code for DES simulation by using the matrix model

♦

3.3 Modeling System Dynamics

It has been shown in the previous example that the model (3.12) describes only

logical (static) properties of an MS. Although the prerequisites that are required for

an event to start are given by Equation (3.12), we are not able to tell at which

particular moment these prerequisites are met, i.e. we do not know when the event

actually starts. In real applications on actual manufacturing processes, we will be

sensing the completion of prerequisite jobs by either using sensors (e.g., proximity,

tactile, etc.) or via notification from the machines or resources. On the other hand,

for the purpose of computer simulation, we must find a way to keep track of the

time lapsed in the processing of jobs. To keep track of job time durations, we

incorporated the system dynamics into the matrix model in the form of a lifetime
[7, 16]. That is, a real number di, called a lifetime, is associated with each task in an

MS. Under the assumption that there are no machine failures, every task that starts

will actually finish in a finite time, hence:

() ()

() ()

ci si vi

ci si rir

v t v t d

r t t d

=

=

−

−
(3.13)

68 Manufacturing Systems Control Design

where dvi and dri are lifetimes of operation vi and resource release ri, respectively.

Although we consider the lifetime to be deterministic and known, matrix modeling

of the system dynamics allows simulation of MS with stochastic lifetimes as well.

The final goal of an MS modeling and analysis is to prepare the ground for

design of an appropriate dispatching supervisor. The nature of this supervisor is

determined by its computer-based implementation, usually in the form of a PLC.

Since the execution of an algorithm on a PLC is cyclic, the moment at which the

supervisor detects completion of an operation does not necessarily coincide with

the actual moment in which an operation is finished. Therefore, from the

supervisor point of view, the operation lifetime is not di but di + εi (Figure 3.6). We

can rewrite Equation (3.13) as

s

s s s

s

s s s

(T) (T) ()T

(T) (T) ()T

()

()

ci si vi vi si vi

ci si ri ri si ri

v k v k d v k n

r k r k d r k n

ε

ε

=

=

− − = −

− − = −
(3.14)

where s sT (1)Ti i in d n≥ > − , Ts is the supervisor sampling (cycle) interval, and ni is

an integer representation of the lifetime expressed in number of sampling intervals.

It is apparent that the sampling interval should be small enough to provide an

accurate dynamic model.

Introduction of a shift (delay) operator q in Equation (3.14) gives

s

s

() ()

() ()

vi

ri

n
ci si

n
ci si

v q q v q

r q q r q

−

−

=

=
(3.15)

where y(q) = q–nx(q) corresponds with y(k) = x(k–n), i.e. y is delayed n sampling

intervals after x. For convenience purpose in the remainder of the book we omit

superscript s from
s

()civ q and
s
()cir q .

By recalling Equation (3.7), Equations (3.15) can be written in the vector form

as

c v

c r

() () ()

() () ()

q q q

q q q

=

=

v T x

r T x
(3.16)

where Tv and Tr are operations and resources release delay matrices with elements

representing operations lifetimes. Delay matrices are obtained by replacing each

entry “1” in Sv and Sr with a shift operand representation of the corresponding

lifetime.

Due to the existence of shared resources, transformation of the second equation

in Equations (3.15) requires additional explanation. Namely, each nonshared

resource in r has its corresponding operation in v that is responsible for its release.

At the same time, a shared resource that is represented by one component in vector

r, has several operations in v it could be released from. As release lifetimes

 Matrix Model and Control of Manufacturing Systems 69

associated with these operations generally differ, the row in Tr that corresponds to

a shared resource could have two or more different entries.

Conversion of Equations (3.16) into recursive form, suitable for simulation, can

be done in the same way as in the case of the static recursive model (3.12).

1 T

c c v v() () () () ()qq q q q q−= + −v v T x F x (3.17)

1 T

c c r r() () () () ()qq q q q q−= + −r r T x F x (3.18)

Finally, the dynamic matrix model of an MS is obtained by including the shift

operator q in the logical state-vector equation:

1

0

1 T

() () , (0)

() () () ()

q q q

q q q q q

−
∆

−

= =

= + −

x m m m

m m T F x

F

(3.19)

where

u

v

r

y

()
()

()

q
q

q
=

S

T
T

T

S

Figure 3.6. Extension of the operation lifetime for the system dynamics modeling

70 Manufacturing Systems Control Design

By comparing Equation (3.12) with Equation (3.19) one can notice that the

main difference between the two models is in matrix S that is replaced with delay

matrix T(q). The other difference is in vector m that comprises the status of jobs

and resources. Even though vectors in Equations (3.12) and (3.19) have the same

form, m(q) represents the state of the system as “seen” by the supervisor. For

practical implementations the difference between the actual status of jobs and

resources and status expressed in m(q) can be ignored in the case of a very small

sampling interval.

Before we give an example of system dynamics modeling based on Equation

(3.19), there are two issues that have to be further discussed. The simulation of a

dynamic model is done such that each element T(q)(i,j) of the delay matrix that is

not equal to 0 is associated with a clock, denoted C(i,j), containing the time passed

after the job has been started. All clocks are initially set to zero. When the rule for

starting a particular task is satisfied, the corresponding clock is activated. Then, in

each sampling interval all active clocks are checked. If some clock is found to be

equal to or greater than the corresponding task lifetime, defined as an entry of the

delay matrix, the particular task is considered completed. In that case the entry of

vector m matching this task is incremented. Such realization of model (3.19) is

valid as long as there are no resources that can process more than one part at a

time. If there exists such a resource, then the simulation algorithm must be

modified in a straightforward manner, by expanding the number of clocks for each

additional part processed simultaneously by the resource. For example, if T(q)(i,j)
= q–5 stands for some task that lasts 5 sampling intervals and can process 3 parts in

the same time, then it is associated with a so-called multipart clock, that is, C(i,j,1),

C(i,j,2) and C(i,j,3). The first part entering the task activates C(i,j,1), the second

one C(i,j,2) and the third part C(i,j,3). Having its own clock, each part can be

tracked separately.

The second issue that needs additional clarification when one considers

realization of the dynamic matrix model is related to so-called “hidden” parts. Let

us assume that rule xi, which has job vi in its prerequisite part and job vj in its

consequent part, is satisfied in the sampling interval k. Further, let processing of

the part in vj follow immediately after processing in vi. Then, according to Equation

(3.19), term F
T
x(k) removes the part from vi, i.e. corresponding component of

vector m is decreased. Processing of the part in vj starts in the same sampling

interval k, but due to the operation lifetime, the part will be completed nvj sampling

intervals later, i.e. the component of vector m that corresponds with operation vj
will be increased with delay. Therefore, one is not able to tell where the part is if

only vector m(k) is tracked. For example, it may happen that several parts already

entered the system but sup[m(k)] = {∅} since all parts are being processed at that

particular sampling interval. However, the results of system performance analysis

in the sense of system throughput, resources utilization, etc., are not influenced by

the existence of hidden parts. On the other hand, the outcome of the supervisor

design that is based on vector m(k) as a feedback could be inadequate and could

finally generate unacceptable system behavior. This is to be detailed in the next

section.

 Matrix Model and Control of Manufacturing Systems 71

Example 3.3.1 (DES simulation by using the dynamic matrix model)

Let us consider the system shown in Figure 3.2. The lifetimes of workcell

operations are given in Table 3.1. Release of buffer BA, which lasts 2.75 seconds,

is the shortest task in the workcell, thus, we choose the simulation sampling

interval to be Ts = 1 [s]. Extended lifetimes for this sampling interval are specified

in the third column of Table 3.1. We see that machine B is the slowest one. For a

given job-start matrix Sv and resource-release matrix Sr (see Example 3.2.1) we can

determine delay matrices Tv and Tr:

76

15

10

10

4
v r 3

113

6 5

8

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 0 0 0 0

q
q

q
q

q
q

q
q q

q

−
−

−
−

−
−

−
− −

−

= =T T

Table 3.1. Lifetimes of the workcell tasks

Operation Lifetime di [s] Extended lifetime ni

MAP (drill) 76 76

RP1 (move 1) 10 10

BP (buffer) 3.5 4

MBP (grind) 113 113

RP2 (move 2) 7.5 8

release of MA 15 15

release of B 2.75 3

release of MB 10 10

release of R (after RP1) 5.75 6

release of R (after RP2) 4.25 5

There are ten different tasks in the system, and two of them can hold two parts

simultaneously, buffer operation BP and buffer release B. Accordingly, the

simulation requires eight standard and two multipart clocks. As in the case of the

static simulation, we assume that only one part enters the system at the initial step

and all resources are idle at the beginning, consequently, m(0) = m0 = [1 0 0 0 0 0 1

1 2 1 0]T.

The results obtained by simulation are shown in Figure 3.7. Upon entering the

system, the part has been processed in machine A. After 76 sampling intervals

(graph MAP) the part is removed from the machine into the buffer, which can be

72 Manufacturing Systems Control Design

clearly seen on graph R – the robot is idle while the part is processed in machine A,

then it moves the part (10 sampling intervals) and finally it is released (6 sampling

intervals). The part advances through the system and after 211 samples (see graph

RP2 that represents the last operation of the system) it leaves the workcell.

In order to get a complete insight into the system dynamic properties we have

to simulate a situation with several parts being processed simultaneously. This

situation is closer to the real conditions in which the system is fed by parts with

predetermined frequency (or stochastically). Given that manufacturing systems are

generally designed to work periodically, this kind of simulation provides results

that can be used for calculations of production cycles, resources utilizations,

bottleneck machines, etc. For the moment we shall skip formal definitions of these

terms as they are elaborated in more detail in the max-plus algebra section.

Graphical representation of results obtained when a new part is available each

time robot R is idle, is given in Figure 3.8.

1

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

1

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

1

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

1

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

1

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

1

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

1

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

2

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

1

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

Figure 3.7. Graphical representation of results obtained by the dynamic simulation (one

part processed)

 Matrix Model and Control of Manufacturing Systems 73

Several observations regarding system performance can be made from the

attained results. We see that the first part leaves the system after 211 samples, as in

the previous simulation when only one part has been passed through the workcell.

After that, the time period between departures of two consecutive parts from the

system is equal to 123 sampling intervals, which corresponds to the sum of the

processing and release lifetimes of machine B (see Table 3.1). Hence, the

simulation confirmed, as we expected, that this machine is the system bottleneck

since it is the slowest one according to Table 3.1.

The second remark regarding the system behavior is related to the conflict that

appeared during the simulation of the static model in Example 3.2.1. From the

graph in Figure 3.8 it can be seen that R attains values of 0 and 1, but never –1.

This clearly shows that simultaneous requests for the robot R never appeared, i.e.

there was no conflict. Such a difference between results obtained by simulations of

static and dynamic models is common. Even though the structural properties of the

system and the static model confirm the existence of conflict, when the system

dynamics is included in the matrix model simultaneous requests for shared

resource may not occur due to the particular lifetime arrangement.

We conclude this discussion with a note on another interesting phenomenon

that is revealed from the results of the dynamic model simulation. From the

graphical representation of the first operation in the system, MAP, it is evident that

10 parts have entered the workcell. On the other hand, only 5 parts have arrived at

the output. The other 5 parts got trapped in the system; all resources are occupied

and none of them can be released since they are all waiting for each other. This

condition is known as circular blocking and it is equivalent to the already-

mentioned deadlock. Analysis of the graphs in Figure 3.8 can clearly show how the

system came into deadlock. In sampling interval k = 806 machine A just finished

processing of the 9th part. At the same time sample buffer B is full (BP = 2 for k =

806), machine B is processing the 6th part and robot R is idle. The prerequisites of

rule x2 MAP is completed and robot R is idle, are met, thus, the task in the

consequent part, RP1, is started. Since buffer is full, the robot cannot complete

RP1. A part that is supposed to leave the buffer and make room for a new one is

blocked by the part in machine B that waits to be cleared by robot R that is already

holding a part. Resources wait for each other, the system is deadlocked and parts

cannot proceed through the line. A similar situation happened with the workcell

shown in Figure 2.12.

At the end of the example, let us reorder the job sequence in the workcell by

exchanging positions of machines A and B, i.e. instead of drill, the first operation

in the sequence is grind. The dynamic matrix model is changed correspondingly

and the simulation results are shown in Figure 3.9. It can be noticed that deadlock

is avoided and the system has cyclic activities. Parts are leaving the workcell with

a period of 123 sampling intervals. The operational time of a particular resource

can be easily determined from the graphs corresponding to its idleness and activity.

For example, graph B clearly shows that the buffer is underutilized as it never

accommodates more than 1 part, i.e. the system could work correctly with a 1-slot

buffer. As expected, the slowest machine is operational 100% of the time (graphs

MBP and MB), while the activity periods of the other two resources are

approximately 24 % for robot (graphs RP1, RP2 and R) and 74 % for machine A

74 Manufacturing Systems Control Design

Figure 3.8. Results obtained by simulation based on dynamic matrix model (several parts

processed)

(graphs MAP and MA). Comparing these results with the lifetimes in Table 3.1

one can observe that operational times attained from graphs are equal to

(Σdoi+Σdri)/(system cycle)×100%, where doi are resource operations lifetimes and

dri resource releases lifetimes.

 Matrix Model and Control of Manufacturing Systems 75

Figure 3.9. Results obtained by simulation based on dynamic matrix model (reordered job

sequence)

We conclude this example with the MATLAB
® code that has been used for DES

simulation based on the dynamic matrix model.

76 Manufacturing Systems Control Design

Figure 3.10. MATLAB
® code for DES simulation by using the dynamic matrix model

♦

 Matrix Model and Control of Manufacturing Systems 77

3.4. Matrix Controller

In the preceding example a simple case demonstrated how modification of the job

sequence could entirely change the system behavior. In many cases reordering of

jobs is not allowed since product shape and quality depend on production sequence

that is firmly defined and should be strictly followed. The problem is that when

described as a BOM, or in some other engineering form, the job sequence does not

disclose potential difficulties that might develop when the structure of an MS,

which executes this particular sequence, is determined. In the previous section we

showed how two of these potential difficulties, conflict and deadlock, can be

exposed by using static and dynamic simulations of an MS. Based on the matrix

model, these simulations provided a complete insight into the system performance.

The other advantage of the matrix model is its convenience when it comes to

the integration of the supervisory controller into the already-defined system model.

In this section we describe a matrix controller as a part of a closed-loop

manufacturing control system, whose foundation is set on already-defined system

matrices and system equations. At the beginning, let us recall the main objective of

the supervisory control of DES. As we stated in Chapter 2, the controller should

force the system to a) avoid undesirable states and b) maintain selected

specifications (control policy). In many cases, a) and b) are achieved

simultaneously, that is, implementation of a particular control policy at the same

time prevents the system from getting into adverse states. For example, such a

control policy is “last-buffer-first-served” that is known to avoid deadlock in most

cases. On the other hand, “first-buffer-first-served” dispatching usually ends in

system deadlock. As a result, its realization requires additional consideration to

provide an algorithm that concurrently prevents deadlock.

1
() ()q q q−

∆=x mF

s v() ()q q∆=v xS

s r() ()q q∆=r xS

a) b)

Figure 3.11. A closed-loop manufacturing control system (a), and internal structure of the

supervisor (b)

A supervisor based on the matrix model basically checks the conditions

required for performing the next jobs in the MS by utilizing the logical state-vector

equation (3.2). This equation is in some ways similar to the differential equation

(2.4) in linear system theory. Based on these conditions, stored in the logical state

vector x, the job-start equation (3.3) computes which jobs are activated and may be

started, and the resource-release equation (3.4) computes which resources should

be released (due to completed jobs). These equations are analogous to the output

equation in (2.4). Then, as already mentioned, the controller sends commands to

the MS, namely, vector vs, whose “1” entries denote which jobs are to be started,

and vector rs, whose “1” entries denote which resources are to be released.

78 Manufacturing Systems Control Design

Completed tasks, which outline feedback vector m, are given by the system

sensors. Structured in this way, a supervisor and a corresponding manufacturing

cell represent a closed loop discrete event control system shown in Figure 3.11a.

However, this controller still does not implement any dispatching policy. It

only executes rules that describe the required job sequence, as shown in Figure

3.11b. For systems that do not encompass shared resources this structure suffices.

Nevertheless, in the case of systems with shared resources simultaneous requests

for two or more concurrent tasks could be issued. To resolve this situation a

supervisor has to select which jobs to initiate, i.e. it has to make a decision

regarding the priority. This is needed since the resource-requirements matrix Fr has

several 1s in the same column. In this situation, as has been shown in Example

3.2.1, the component of vector m corresponding to a shared resource attains a

value of –1, which is not allowed. In order to solve a potential conflict and turn the

controlled system to a “decision-free” structure (cf. Cofer and Garg 1992), it is

therefore necessary to add an extra dispatching control input. The high entry

selects which of the jobs will be preferred.

The easiest way to prevent conflicts and uniquely define the system activities is

to employ this new input into the logical state-vector equation. Given that all

prerequisites of a particular rule are met, additional conditions in the form of a

vector, denoted ud, can attain the value 0 and block the rule. In this way the

supervisor is able to forbid execution of any controllable task in the system. Vector

ud is called a dispatching vector (or conflict-resolution vector) and is generally

determined as a function of feedback signals comprised in vector m,

()d d d0() () (0),q h q= =u m u u (3.20)

where h is a control function. Depending on the way one selects the control

function to generate ud, different dispatching strategies can be selected. These

strategies fall mainly into two categories: Buffer and Part/Machine [8, 9].

Examples of the buffer category are: first-buffer-first-serve, last-buffer-first-serve,

shortest nonfull queue, shortest remaining capacity, and shortest queue next.

Examples of the part/machine category are: shortest imminent operation time,

largest imminent operation time, shortest remaining processing time, largest

remaining processing time, machine with least work and least slack time, etc.

Although determination of an appropriate h is important, the objective of this

section is not an elaboration on how the control function depends on a particular

dispatching policy or how to prove the existence of a control function for a

particular strategy. For our purpose it is sufficient to say that in some cases the

control function attains a simple form of matrix multiplication, while in the case of

large manufacturing systems with demanding policies it could be very complex or

its implementation might even be questionable.

As far as the resolution of shared-resource conflict in an MS is concerned

Equation (3.20) can provide suitable results. On the other hand, if the dispatching

policy requires information regarding the exact arrangement of processed parts in

the system, control based only on vector m may cause improper system

performance due to the existence of hidden parts (as previously explained). An

 Matrix Model and Control of Manufacturing Systems 79

elegant way to overcome this problem is to introduce an additional vector, ms(q)

that is calculated by the supervisor according to the following relation

s 1 s T s s

0() () () , (0)q q q q−= + − =m m S F x m m (3.21)

One can notice that Equation (3.21) has the same structure as the second

equation in Equation (3.12), which describes the evaluation of the system vector in

the static matrix model. For this reason, vector m
s can be seen as prediction of

feedback vector m. Components of ms are increased by the term Sx(q) immediately

upon fulfillment of corresponding rules, while data obtained from the system,

contained in m, are delayed due to operations lifetimes. Having both vectors

available, the supervisor design is not restricted only to signals gathered from

sensors, thus,

()s

d () (), ()q h q q=u m m (3.22)

Once defined, the dispatching vector is integrated in the logical state-vector

equation by a dispatching matrix (or conflict-resolution matrix) Fd in the following

way:

1

d d() () ()q q q q−
∆ ∇ ∆=x m uF F (3.23)

Equations (3.21) – (3.23) outline a new internal structure of the supervisor,

depicted in Figure 3.12.

1

d d() () ()q q q q−
∆ ∇ ∆=x m uF F

s v() ()q q∆=v xS

s r() ()q q∆=r xS

()s

d () (), ()q h q q=u m m

s 1 s T
() () ()q q q q−= + −m m S F x

Figure 3.12. An internal structure of the supervisor based on the matrix controller

80 Manufacturing Systems Control Design

In each sampling interval recursive equations are executed as shown in Figure

3.12, from the top to the bottom. First, the matrix controller calculates a

dispatching vector based on current data from the system and internal system

vector m
s. Then, the logical state vector is determined, a new value of m

s is

evaluated and task assignments are issued.

A newly introduced component of the supervisor, dispatching matrix, needs

further explanation. As for the system matrices, Fd has logical elements 0 and 1. Its

structure and components depend on the applied dispatching policy. Given that the

system comprises shared resources, the primary concern in the supervisory design

is conflict resolution. Hence, the first step in determination of Fd is allocation of

conflicting rules, which are related to columns of the resource-allocation matrix Fr

containing more than one entry “1” (as we already stated, resources corresponding

to those columns are shared resources). As a first thought we could say that for

each “1” on these columns, a new column is constructed in Fd having only one

entry “1” in the corresponding position for each “1” in Fr. Established in this way,

Fd would provide that each shared resource column in Fr is associated with as

many components of the dispatching vector as it has entries of “1”. In Example

3.2.1 the last column of Fr that corresponds to shared resource R, has two 1s. As a

result, matrix Fd would have two columns, the first column with “1” in the 2nd

position and the second column with “1” in the 5th position, while all other

elements should be equal to 0:

d

0 0

1 0

0 0

0 0

0 1

0 0

=F

Consequently, vector ud = [ud1 ud2]
T. Since conflicting rules are concurrent, only

one component of ud of those associated with conflicting rules that belong to the

same resource is allowed to have its value equal to 1 in the case of conflict.

Let us define a conflicting-rules vector xd, such that sup(xd)={xi, xj, xk, …},

where xi, xj, xk are conflicting rules. Binary vector xd can be determined from Fr as

d r s
ˆ ˆ ∆=x rF (3.24)

where rF̂ is a reduced resource-requirements matrix, i.e. all rows corresponding

with rules that have an output operation in the consequent part are erased from the

matrix. In order to get xd from dx̂ one has to enter 0 for each component of the

conflicting rules vector that matches a row removed from the resource-

requirements matrix. Recalling Fr from Example 3.2.1, Equation (3.24) gives

 Matrix Model and Control of Manufacturing Systems 81

MA MB B R

r s d d

1 0 0 0 0
1

0 0 0 1 1 1
0

0 0 1 0 1 0
ˆ ˆ1

0 1 0 0 1 0
1

0 0 0 1 0 1
0

0 0 0 0 0

∆ ∆= = = =rF x x

Calculation of sup(xd)={x2, x5} confirms the already-determined conflicting rules

that correspond with shared resource R.

For a given xd, one can determine the (i,j)th component of the dispatching

matrix by using the following relation:

d d
d 1

1 () 1 ()

0

(,)

i

k
if x i and j x k

otherwise

f i j =
= =

= (3.25)

There is an observation regarding determination of the dispatching matrix as

described above. If two (or more) shared resources contribute to one rule, then two

(or more) columns in Fr would have “1” at the row that corresponds to this

particular rule. In that case, according to our discussion, two (or more) components

of the dispatching vector should be associated with this rule. Therefore, matrix Fd

is supposed to obtain the form as shown below (it is assumed that the system has

two shared resources R1 and R2),

R1 R2

r d

0 0 0 0 0 0 0

1 0 1 1 0 1 0

... 0 1 0 ... 0 0 0 0

... 1 0 0 ... 0 1 0 0

0 0 1 0 0 0 1

0 0 0 0 0 0 0

= =F F

However, Equation (3.24) gives xd = [0 1 0 1 1 0]T and then by applying Equation

(3.25), one obtains

82 Manufacturing Systems Control Design

d

0 0 0

1 0 0

0 0 0

0 1 0

0 0 1

0 0 0

=F

i.e., a conflicting rule that involves two shared resources is linked to only one

component of the dispatching vector. Determination of that component involves

coordination of conflict-resolution strategies of all resources that participate in the

considered rule.

Example 3.4.1 (DES simulation with conflict resolution – closed-loop dynamic

matrix model)

In Example 3.3.1 simulation of the dynamic model of the workcell depicted in

Figure 3.2 showed that an uncontrolled system gets in deadlock. Herein we are

concerned with determination of the control function that would prevent conflict

and avoid deadlock. As our intention is to illustrate a closed loop-manufacturing

system with a simple dispatching strategy, no formal methods will be used in the

example.

Conflicting rules vector xd and dispatching matrix Fd are already determined

and have the form

d d

0 0 0

1 1 0

0 0 0
,

0 0 0

1 0 1

0 0 0

= =x F

Components of the dispatching vector ud = [ud1 ud2]
T will be calculated in two

steps. First, we analyze situations that could cause conflict. As previously

elaborated, this condition is met when the robot is idle and both machines have

parts to be removed, which can be clearly seen from the matrix model. We define

the control function in the form of a rule:

 IF sup(vc) ∩{MAP, MBP}={ MAP, MBP }

THEN ud = [0 1]T

 ELSE ud = [1 1]T

Since the operation MBP is the last operation in the sequence, this strategy prefers

pulling the parts from the system.

 Matrix Model and Control of Manufacturing Systems 83

The second step in the design is related to evaluation of circumstances that

could lead to the deadlock. As we already discussed, in an uncontrolled system a

deadlock occurred because parts have been pushed into the workcell by the robot.

From the graphs shown in Figure 3.8 it can be seen that once the buffer is full and

machine MB is processing the part, additional entry of parts should be blocked.

This can be employed by extending the above control rule:

IF sup(vc)∩{MAP, MBP}={MAP, MBP} OR B ∈ sup(mc)

THEN ud = [0 1]T

 ELSE ud = [1 1]T

The results obtained by simulation of the workcell controlled by the supervisor

are graphically shown in Figure 3.13. System is stable with no conflict. It is

evident from the graphs that control signal ud1 is equal to 0 as long as the buffer is

full, which blocks operation RP1 and prevents incoming of new parts into the

workcell.

♦

As we mentioned earlier, in many cases the control function may be realized by

simple matrix operations. This is especially suitable when MS is represented by the

matrix model. The simplest form of the dispatching policy is defined as

d d∆=u xS (3.26)

where Sd is a dispatching vector release matrix. In Equation (3.26) vector ud is

directly related to the logical state vector x. Execution of a particular rule and entry

“1“ in the corresponding element of Sd will increase the value of the associated

component of vector ud. In general, the structure of Sd depends on matrix Fd, the

job ordering and dispatching strategy.

One convenient method to determine the dispatching vector release matrix is

the reordering of rows of matrix Fd
T. Usage of Fd is intuitively understandable

since the dispatching matrix defines the way conflict-resolution vector ud is

connected to the system, therefore, its transpose implies that rules that are already

known as conflicting and that encompass the dispatching vector in their

prerequisite parts, also have vector ud components in their consequent parts.

Hence, no additional calculation of rules that release the dispatching vector is

required. However, the process of reordering of rows must be made with care,

otherwise the method could end up in system deadlock.

The main idea behind row rearrangement is related to the job sequencing

performed by the shared resource. Let us consider the robotized workcell shown in

Figure 2.13. This system, having the robot as a shared resource, can be described

with seven IF-THEN rules. Three of them related to operations performed by the

robot are involved in the conflict. Given that xd = [1 0 1 0 0 1 0]T, the

corresponding transposes of dispatching matrix and dispatching vector are defined

as

84 Manufacturing Systems Control Design

d1
T
d d d2

d3

1 0 0 0 0 0 0

0 0 1 0 0 0 0 ,

0 0 0 0 0 1 0

u
u
u

= =F u

If we denote operations executed by the robot as RP1 (placing part a in

machine A), RP2 (removing part a from machine A) and RP3 (removing part b
from machine B), then, for example, a possible repeatable sequence could be s1 =

(RP1, RP3, RP2). From Fd and ud, defined above, we see that rule x1 is controlled

by ud1, rule x3 is controlled by ud2 and rule x6 is controlled by ud3. Let execution of

operation RP1 be related to fulfillment of x1, RP2 to x3 and RP3 to x6. Then, in

order to realize sequence s1, matrix Sd and the initial value of the dispatching

vector should be

d d0

0 0 0 0 0 1 0 1

1 0 0 0 0 0 0 , 0

0 0 1 0 0 0 0 0

= =S u

For a given matrix Sd and according to Equation (3.26), execution of rule x1

releases ud2, rule x3 releases ud3, while execution of x6 releases ud1. Implemented in

this way, the control strategy prevents conflict and accomplishes the required

sequence.

Rearrangement of rows can be easily done by matrix operation:

T

d d∆=S F (3.27)

where Φ is a transformation matrix defined in the following way: when dispatching

vector component udi is released by the rule that is controlled by the component udj,

then Φ(i,j) = 1, otherwise it is 0. In our case

d1 d2 d3

d1

d2

d3

0 0 1

1 0 0

0 1 0

u u u
u

u

u

=

Due to its simplicity, the dispatching strategy (3.26), with matrix Sd determined

according to Equation (3.27), is very restrictive. In general, it allows only one part

to enter the part path, which leads to poor resources utilization and low system

throughput. This situation can be demonstrated if we return to the system shown in

Figure 2.12. Assuming that processing and setup times of machine A are much

shorter than those of machine B, the dispatching strategy determined above will

force the robot and machine A to remain inactive, although they might have

enough time to process several parts while waiting for machine B.

 Matrix Model and Control of Manufacturing Systems 85

1

0
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500

1

0
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500

2

0
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500

1

0
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500

1

0
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500

1

0
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500

1

0
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500

2

0
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500

1

0
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500

11

0
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500

1

0
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500

1

0
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050112512001275135014251500

Figure 3.13. Graphical representation of results for the closed-loop system (Example 3.4.1)

86 Manufacturing Systems Control Design

The other remark that should be made is the set up of the dispatching vector

initial value. Incorrect assignment of ud0 can block components of the logical state

vector so that the system cannot start with activities. In our example, this condition

happens when ud0 = [0 1 0]T. In this case the first rule that corresponds to

placement of a part in machine A and the sixth rule that executes replacement of a

part from machine B are blocked. Therefore, no other activities can start after the

processing of a part in machine B is finished.

3.5. A Case Study: Implemetation of the Matrix Controller

This section presents the implementation of the matrix controller for supervision of

an intelligent material handling (IMH) cell [17]. Then, we show that the actual

implementation and the simulated system give commensurate results. The IMH

cell belongs to the class of so-called multipart re-entrant flowline (MRF) systems,

which are described in Chapter 5. The objective of this section is to show the

versatility of the system developed with this matrix formulation. The supervisor

based on the matrix framework permits implementation of different methodologies

for conflict resolution, as well as optimization of the resource assignment and part

throughput. The given technical information includes the matrix controller

development in LabVIEW®.

3.5.1 Intelligent Material Handling (IMH) Workcell Description

The IMH cell is composed of three robots, three conveyors, ten sensors and two

simulated machines. Different configuration of re-entrant flowline problems can be

accomplished with this structure. The image and the part flowline for a specific

layout of the IMH cell are depicted in Figures 1.1 and 3.14.

For this specific layout the robot defined as R1 (a CRS robot) can perform four

different tasks, J(R1) =4. Two tasks (R1u1 and R1u2) are related to picking up

part-types A and B from the input-parts area, which are to be placed on the

conveyor denoted B1. The other two tasks (R1u3 and R1u4) are associated with

picking up final products A and B from conveyor B3 and placing them in the

output-parts area. A PUMA robot, R2, performs three different tasks, J(R2) =3:

pick up parts A from conveyor B1 to place them in machine M1 (R2u1), pick up

parts B from conveyor B1 to place them on conveyor B2 (R2u2), and pick up parts

A from M1 to be placed on conveyor B2 (R2u3). The Adept robot, R3, also

performs three different tasks, J(R3) =3: pick up parts A from conveyor B2, to

place them on conveyor B3 (R3u1), pick up parts B from conveyor B2 to place

them in machine M2 (R3u2), and pick up parts B from M2 to be placed on

conveyor B3 (R3u3).

For the considered layout, three robots manipulate two different parts, while

two of them manipulate re-entrant flow of parts. Machines M1 and M2 are

simulated by activating valve-air cylinders controlled from a PC.

Due to the existence of shared resources this configuration of the IMH cell

presents a dispatching problem. Both phenomena, conflict and deadlock, may

 Matrix Model and Control of Manufacturing Systems 87

occur in the case of an inappropriate dispatching strategy. Since up to now

deadlock prevention and avoidance have not been discussed, we concentrate on

determination of the control policy that provides a conflict resolution. It is shown,

without additional elaboration and formal proof that the obtained strategy is

deadlock free (we return to this issue in Chapter 6).

The matrix model can be directly written down from Figure 3.14, which shows

both job sequencing and resource assignment. From Figure 3.14 one can find that

the system is described with 20 rules. The job sets that correspond with job

sequences for two part paths and the set of resources are defined as follows:

- part A path

J1={R1u1,B1AS,R2u1,M1P,R2u3,B2AS,R3u1,B3AS,R1u3}

- part B path

J2={R1u2,B1BS,R2u2,B2BS,R3u2,M2P,R3u3,B3BS,R1u4}

- set of resources

R={B1AA,B1BA,M1A,B2BA,B2AA,M2A,B3AA,B3BA,R1A,R2A,R3A}

with a set of shared resources Rs={R1A, R2A, R3A}.

The description of jobs performed by nonshared resources is given in Table 3.2.

Table 3.2. Description of jobs in IMH cell

Notation Description

B1AS transporting part A on conveyor B1

M1P processing part A in machine M1

B2AS transporting part A on conveyor B2

B3AS transporting part A on conveyor B3

B1BS transporting part B on conveyor B1

B2BS transporting part B on conveyor B1

M2P processing part B in machine M2

B3BS transporting part B on conveyor B1

88 Manufacturing Systems Control Design

x1
R1

R3
R2M2 M1

CRS

PUMA

ADEPT

Conveyor

B3

Conveyor

B1

machine machine

InOut

 A B

 A

 B

 A B

Conveyor B2

 A B

 A

 A

B
x2

x11

x12

x3

x4

x5

x13

x6

x14

x7

x15

x16

x17

x18

x8

x9

Bx19

x10

x20

Figure 3.14. A layout with the parts paths of the IMH-cell used in a case study

The nomenclature used in the IMH is as follows: “RXuY” means job “Y” is

executed by robot “X”, “BxyS” means that product type “y” is transported by

conveyor “x”, “MxP” stands for machine “x” is busy, “BxyA” means that

conveyor “x” is available for product type “y”, “MxA” denotes machine “x” is

available, “RxA” stands for robot “x” is idle. Note that instead of having three

different resources for conveyors B1, B2 and B3, six different resources are used.

This is because of the two different materials paths on each conveyor. For

example, conveyor B1 has paths B1A and B1B, which are denoted as B1AA and

B1BA when they are available, and denoted as B1AS and B1BS when they are

carrying material.

Given the system layout and the system description, one can determine the

system matrices, herein shown “graphicaly” with black and white rectangles,

indicating “1” and “0”, respectively.

 Matrix Model and Control of Manufacturing Systems 89

3.5.2 IMH Workcell Dispatching Strategy

The last three columns of Fr correspond to the shared resources R1A, R2A and

R3A. From the number of 1s in those columns we see that R1A is involved in four

conflicting rules, while each of the remaining robots, R2A and R3A, contribute in

three, which finally gives ten conflicting rules. According to the definition, Fd is

constructed by creating a new column for each “1” appearing in Fr for the shared

resources, hence, the dispatching matrix will have 10 columns. By using Equations

(3.24) and (3.25) we obtain:

It should be noted that columns of Fd have been rearranged in order to group

components of the dispatching vector that belong to the same shared resource.

Specifically, R1 is controlled with ud1, ud2, ud3 and ud4, R2 with ud5, ud6 and ud7, and

R3 with ud8, ud9 and ud10.

90 Manufacturing Systems Control Design

The conflict resolution used in the IMH cell for the layout shown in Figure 3.14

is an augmented version of the last-buffer-first-serve dispatching strategy, we call

it ALBFS, modified for multipath systems. Herein we demonstrate an additional

way of realization of the control function h by using a so-called temporary system
vector, m

t. At the beginning of each sampling interval all components of the

dispatching vector attain the value “1”. Then, the logical state vector x is calculated

according to Equation (3.23) and the obtained value is included in

t 1 T
() () ()q q q q−= + −m m S F x

i.e. temporary system vector is attained by allowing execution of all conflicting

rules (udi=1, for i=1,10) for current data from sensors comprised in the system

vector m. When some of the shared resources (robots in our system) are requested

by more than one operation, the corresponding component of m
t would have a

negative value, thus pointing out the occurrence of conflict. If that happens, the

ALBFS dispatching strategy blocks some of the conflicting rules and the logical

state vector is recalculated, this time with no conflict. This new vector is used by

the supervisor for determination of task assignments (calculation of vectors vs and

rs). The procedure repeats in each sampling interval.

ALBFS policy, implemented upon calculation of vector mt, is given as the set

of rules (recall that component of vector y corresponding with job (resource) Z is

denoted yZ):

IF mt
R1A <0 (resource R1A requested more than once) THEN

IF mt
R1U4>0 (job R1U4 requested R1A) THEN

udR1U1 = 0 AND udR1U2 = 0 AND udR1U3 = 0 AND udR1U4 = 1

ELSE IF mt
R1U3>0 THEN

udR1U1 = 0 AND udR1U2 = 0 AND udR1U3 = 1 AND udR1U4 = 0

ELSE IF mt
R1U1>0 THEN

udR1U1 = 1 AND udR1U2 = 0 AND udR1U3 = 0 AND udR1U4 = 0

ELSE

udR1U1 = 0 AND udR1U2 = 1 AND udR1U3 = 0 AND udR1U4 = 0

IF mt
R2A <0 THEN

IF mt
R2U3>0 THEN

udR2U1 = 0 AND udR2U2 = 0 AND udR2U3 = 1

ELSE IF mt
R2U1>0 THEN

udR2U1 = 1 AND udR2U2 = 0 AND udR2U3 = 0

ELSE

udR2U1 = 0 AND udR2U2 = 1 AND udR2U3 = 0

IF mt
R3A <0 THEN

IF mt
R3U3>0 THEN

udR3U1 = 0 AND udR3U2 = 0 AND udR3U3 = 1

ELSE IF mt
R3U2>0 THEN

udR3U1 = 0 AND udR3U2 = 1 AND udR3U3 = 0

 Matrix Model and Control of Manufacturing Systems 91

ELSE

udR3U1 = 1 AND udR3U2 = 0 AND udR3U3 = 0

As we already mentioned, deadlock avoidance is an inherent property of

pulling strategies such as ALBFS. Therefore, in the determination of the rules

stated above only conflict was considered. If we analyze the rules then we can see

that between the two final jobs needed to manufacture products A and B, R1U3

and R1U4, the supervisor is designed to prefer products B.

3.5.3 Implementation of the Matrix Controller on the IMH Workcell

The matrix controller is implemented on a PC in a LabVIEW® graphical

programming environment. In LabVIEW®, one can sequence and control different

processes at the same time. The processes we are interested in are operations

implemented in manufacturing process, like execution of a robots’ trajectories,

machining jobs and transferring parts using conveyors. The matrix controller runs

on the PC that has three serial ports for communication with three robots. It also

has a digital acquisition card that receives digital signals from capacitive proximity

sensors. The same card is used for sending digital signals to activate machine jobs.

In Figure 3.15 one can find three levels of intelligent control depicted in [10,

11]. The first level is organization, which is the highest level of intelligence and in

our case it is presented as the matrix-based controller structure. The main purpose

of our implementation is to present the advantages and great potential of the

organization level realized in the form of the matrix-based controller shown in

Figure 3.12. The second level is the coordination level. This level contains a set of

independent modules that are composed by robot programming sentences

encrypted in VAL-like commands [12, 13]. These program modules define the jobs

to be done by the robots (i.e. the sequence of VAL commands needed to command

robots to perform pick and place tasks). Then, once the task or job is selected by

the organization level, the coordination level sequences the steps needed for each

of these jobs. In our case, the IMH cell’s coordination level sends commands

sequentially to the appropriate robot to accomplish the desired task (Figure 3.16).

Figure 3.15. Three levels of intelligent control

92 Manufacturing Systems Control Design

task

assignments

Coordination Level Controller

RS232 RS232 RS232

R1A R2A R3A Workcell data
integration

u vc rc y

DAQ- card
Analog & digital I/0

R1U2

R1U3

R1U4

R1U1

R2U1

R2U2

R2U3

R3U1

R3U2

R3U3

ROBOTS (implementation level)

MATRIX CONTROLLER (organization level)

SENSORS

(implementation level)

MACHINES

(implementation level)

vs rs

Figure 3.16. Coordination level of the IMH workcell

The last level of the system is the implementation level (Figure 3.17), which is

accomplished by the robot drivers and controllers. When the robot controller

receives a VAL command via the serial port, it performs low-level control

calculations and strategies such as interpolation, proportional derivative (PD)

control, proportional integrate derivative (PID) control, fuzzy logic control, neural-

network control or any other low-level control strategy to manipulate the robotic

arms.

Figure 3.17. Implementation level of the IMH workcell

 Matrix Model and Control of Manufacturing Systems 93

3.5.4 The Matrix Controller in LabVIEW Graphical Environment

The purpose of this section is to explain the development of the matrix controller

by using LabVIEW® [14, 15]. The key equations of the matrix formulation,

described in previous sections, are graphically represented in LabVIEW® (Figure

3.18).

Figure 3.18. The matrix controller in LabVIEW
®

 graphical environment

94 Manufacturing Systems Control Design

 The entire diagram is used as a single LabVIEW® block (or function)

representing the WHILE “Main loop” that is executed in each sampling interval.

Inputs in the block are system matrices (shown on the top) and sensors signals.

LabVIEW® block “Fix Uds” is positioned inside the Main loop. This block sets all

the components of conflict-resolution vector to 1 at the beginning of the cycle, as

we described in the previous paragraph. If conflict is detected on any of the robots,

the “Conflict Resolution” block deactivates rules according to ALBFS strategy.

Inside the main loop, an internal loop is used to calculate the logical state vector x

by applying Equation (3.23). Function MULTOA(X,Y), already implemented for

MATLAB
® simulation, is used for that purpose.

The performance of the IMH workcell is shown in Figure 3.19. The results

have been obtained in real time directly from the matrix controller implemented in

LabVIEW®.

Figure 3.19. Results of implementation of the real IMH workcell using ALBFS conflict

resolution

Each graph (line) represents one robotic job. As in the case of graphs obtained

by simulation, there are only two states, high and low, meaning that a job is being

executed or not, respectively. It can be noticed that only one robotic job goes high

at any time, hence, the implemented conflict-resolution policy achieved the

requested objective. Five type-A and five type-B parts entered the workcell. As we

can see from graphs R1u1 and R1u2, robot R1A loads parts according to the A-B-

A-B… sequence. When the third part-type A enters the system, robot R1A

executes task R1u4, i.e. both parts are waiting to be removed from the system and

part B is preferred due to the conflict-resolution strategy.

 Matrix Model and Control of Manufacturing Systems 95

3.6. Excersises

1. For the system described in Example 4.3.1 do the following:

a) determine the matrix model,

b) simulate the matrix model by using MATLAB
® code given in Figure 3.5,

c) determine the dispatching matrix Fd, the dispatching vector release matrix

Sd and dispatching vector ud that will execute the task sequence a) loading

M1 unloading M2 loading M3,

d) simulate the matrix model with obtained supervisor by using MATLAB
®

code given in Figure 3.5 (extend vectors and matrices used in the code in

order to include Fd, Sd and ud),

e) determine the dynamic matrix model of the system,

f) simulate the dynamic matrix model by using MATLAB® code given in

Figure 3.10.

References

[1] Pastravanu OC, Gürel A, Lewis FL, Huang HH. Rule-Based Controller Design

Algorithm For Discrete Event Manufacturing Systems, Proceedings of the American

Control Conference 1994;1:299-305.

[2] Tacconi DA, Lewis FL. A New Matrix Model for Discrete Event Systems:

Application to Simulation, IEEE Contr. Sys. Mag. 1997;17;5:62-71.

[3] Lewis FL, Huang HH. Control System Design for Flexible Manufacturing Systems,

in Flexible Manufacturing Systems: Recent Developments, Elsevier, 1994.

[4] Noori H, Radford R. Production and Operations Management. New York: McGraw-

Hill, 1995.

[5] Steward DV. Systems Analysis and Management: Structure, Strategy, and Design.

New York: Petrocelli Books, 1981.

[6] Elsayed EA, Boucher TO. Analysis and Control of Production Systems (2nd Ed.).

Englewood Cliffs: Prentice-Hall, 1994.

[7] Smolic-Rocak N, Bogdan S, Kovacic Z, Reichenbach T, Birgmajer B. Dynamic

modeling and Simulation of FMS by using VRML, CD Proceedings of 15th IFAC

World Congress 2002.

[8] Panwalker SS, Iskander W. A survey of scheduling rules, Operations Research

1977;26;1:45-61.

[9] Lewis FL, Huang HH, Jagannathan S. A Systems Approach to Discrete Event

Controller Design for Manufacturing Systems Control, Proceedings of the American

Control Conference 1993;2:1525-1531.

[10] Saridis G.N. Architectures of Intelligent Controls, in Intelligent Control Systems.

New York: IEEE Press, 1995.

[11] Antsaklis PJ, Passino KM. An Introduction to Intelligent and Autonomous Control

Systems. Norwell: Kluwer, 1992.

[12] Shimano B. VAL: A Versatile Robot Programming and Control System,

Proceedings of the IEEE Computer Society’s Third International Computer Software

& Applications Conference 1979;3:878-883.

[13] Larson TM. Robotic Control Language, Advances in Instrumentation

1983;38;1:665-675.

96 Manufacturing Systems Control Design

[14] Mireles J, Lewis FL. Intelligent Material Handling: Development and

Implementation of a Matrix-Based Discrete Event Controller, IEEE Trans. Ind.

Electr. 2001;48;6.

[15] Mireles J, Lewis FL, Gurel A. Deadlock Avoidance for Manufacturing Multipart

Reentrant Flow Lines Using a Matrix-Based Discrete Event Controller, Int. J.

Production Research 2002;40;13:3139-3166.

[16] Bogdan S, Lewis FL, Gurel A, Kovacic Z. Timed matrix-based model of flexible

manufacturing systems, Proceedings of the IEEE International Symposium on

Industrial Electronics 1999;3:1373-1378.

[17] Mireles J, Lewis FL, Gurel A, Bogdan S. Deadlock Avoidance Algorithms and

Implementation , a Matrix Based Approach, in Deadlock Resolution in Computer-

Integrated Systems, Marcel Dekker, 2005.

[18] Bauer A, Bowden R, Browne J, Duggan J, Lyons G. Shop Floor Control Systems -

From Design to Implementation. London: Chapman & Hall, 1991.

[19] Gullander P. On Reference Architectures forDevelopment of Flexible Cell Control

Systems, PhD thesis, Gotenborg University, 1999.

[20] Leitão P, Quintas A. A Manufacturing Cell Controller Architecture, Proceedings of

Flexible Automation and Intelligent Manufacturing Conference 1997:483-493.

[21] Maturana F, Norrie DH. Multi-Agent Mediator Architecture for Distributed

Manufacturing, J. Intell. Manufact. 1996;7:257-270.

[22] Heikkilä T, Kollingbaum M, Valckenaers P, Bluemink GJ. manAge: An agent

architecture for manufacturing control, Proceedings of the 2nd International

Workshop on Intelligent Manufacturing Systems 1999:127-136.

[23] Tönshoff HK, Seilonen I, Teunis G, Leitão P. A Mediator-based approach for

decentralised production planning, scheduling and monitoring, Proceedings of CIRP

International Seminar on Intelligent Computation in Manufacturing Engineering

2000: 89-95.

4

Matrix Methods for Manufacturing Systems Analysis

Since its first practical implementation in the 18th century [1], when Euler proved

that it is impossible to visit all the bridges in Köingsberg and then to return to a

starting point by passing each bridge only once, graph theory has been successfully

applied for solving various problems. From computer networks, today’s world

information highways - to transportation systems, whose rapid growth requires

increased safety and reliability, methods developed by graph theory offer a

convenient way to analyze data associated with planning, organization and other

related phenomena. Graph theory can easily answer questions such as: what is the

communication lines bandwidth required for successful transmission of a particular

amount of information between two places on the network, how many trains are

needed in order to make a particular timetable feasible, which is the optimal way

between two cities where required energy is concerned.

When we talk about manufacturing systems, the first thing that comes to mind

is a set of machines processing raw materials in order to make a product. Located

on the factory floor according to a specified layout, machines can be understood as

points that exchange both materials (parts) and information following a certain

plan. One of the most suitable ways to represent this scheme of material or

information flow is by using graphs.

In this chapter we describe the basic concepts of graphs. First, we introduce

basic graph definitions followed by matrix representations of the graphs. At the

end of the section an illustrative example of a manufacturing system modeled by a

graph is given. The second section of the chapter is concerned with string

composition. String composition is a method for analysis of graph properties based

on a particular string-manipulation algorithm. In that section we present string

operators and their properties, concluding with an example of the shortest-path

determination in an AGV system. The last part of the chapter is devoted to max-

plus algebra, which is an extremely useful tool for analysis of a special class of

manufacturing systems. We give only the basics of max-plus since deeper insight

into its theory would require much more space and time. Furthermore, max-plus

theory covers only a particular group of discrete event systems while the DES class

we are interested in has a wider application. We show how the max-plus equation

is derived from the matrix description of the system. Since the theory is still being

98 Manufacturing Systems Control Design

developed we hope that a way to extend it to a broader class of manufacturing

systems will soon appear. However, it is important to understand the max-plus

concept in order to comprehend problems related to the inclusion of operational

times in the system analysis. We close the max-plus section with an example. At

the end of the chapter problems for exercise are given.

4.1 Basic Definitions of Graphs

First we need to define a graph [2].

Definition 4.1.1 (graph): A graph is a structure formed by a set of nodes V and a

set of arcs E. Arcs in E represent pairs of nodes in V, G = (V, E).

In the mathematical literature nodes are called vertices, while arcs are called

edges. These two names are the origins of symbols V and E. In a graph, nodes

represent places or locations while arcs represent connections between these

places. The word place should be taken conditionally when manufacturing systems

are considered as there are two ways of representing it. Specifically, in graph

representation of the system, a node may represent the occurrence of some event,
while arcs may be used to show relations between events – which event(s) are

prerequisite(s) for the occurrence of a particular event. On the other hand, a node

may represent the system state while in that case arcs represent events that lead to

this particular state.

As shown in Figure 4.1, the node is graphically represented by a circle and the

symbol for an arc is a line drawn between two nodes. In the graph shown in the

figure a set of nodes is V = {a, b, c, d} while a set of arcs is E = {(a,b), (b,c), (b,d),

(c,c), (c,d)}. It should be noted that set E can also be defined as E = {(b,a), (c,b),

(c,c), (d,b), (d,c)}.

 Arc (c,c), which is different from all the other arcs shown in Figure 4.1 begins

and ends in the same node. This type of arc is called a loop (or a self-loop).

Figure 4.1. A graph

 Matrix Methods for Manufacturing Systems Analysis 99

We say that two nodes, n1 and n2, are adjacent if there is an arc between them.

In that case we call the arc incident to both nodes n1 and n2. The degree of node n1

is equal to the number of arcs incident to it. A graph is called regular of degree r if

all nodes in the graph have the same degree equal to r.

A graph is called a multigraph if it contains more than one arc between two

nodes or if there are self-loops.

Let us now consider the nodes of the graph shown in Figure 4.1 as street

intersections and arcs as streets between these intersections. The question is: can

we drive a car from node a to node d? From Figure 4.1 we know only that a is

connected with d but we are not able to tell if we can actually get from a to d since

streets connecting these two intersections may be one-way streets. To answer to

this question we have to add one more property to arcs: direction. We showed that

set E for the graph in Figure 4.1 can be defined in two different ways, which means

that in an undirected graph set E is a not ordered set of pairs of nodes. Now, we

can go on and define a directed graph.

Definition 4.1.2 (directed graph): A directed graph G = (V, E) is a graph with

ordered set E, i.e. pairs of nodes in a directed graph are ordered.

A directed graph is shown in Figure 4.2. The first node, n1, in the ordered pair

(n1,n2) is called the origin and node n2 is called the destination. In the graphical

representation the direction from n1 to n2 is shown as an arrow.

We describe the graph in Figure 4.2 as V = {a, b, c, d}, E = {(a,b), (b,a), (b,c),

(c,c), (c,d), (d,b)}. Continuing our analogy of Figure 4.2, the street connecting a
and b may be driven on in both directions while the street that links intersections b
and c is a one-way street, i.e. it can be passed only from b to c.

Figure 4.2. A directed graph

Now, having defined directions in the graph, we may answer the question:

traveling from a to d is possible by passing through intersections b and c.

The answer to the first question raises another: how far is a from d or how

much time do we need to pass along the established route if we drive with a

predetermined speed? The answer requires the inclusion of a weight property to the

notion of arc, i.e. a numerical value is associated with each arc in a graph

specifying length, time or cost of the arc (weights can be associated with nodes as

well). Graphs with weighted arcs (nodes) are called weighted graphs (Figure 4.3).

100 Manufacturing Systems Control Design

Figure 4.3. A weighted directed graph

The weights shown in Figure 4.3 may represent the average time needed to

travel along the corresponding arc. According to the figure, going from c to d
requires 8 time units, while a trip from c to c would require 6 time units. It should

be noted that weights of arcs connecting the same nodes are not necessarily equal.

In our example, arcs (a,b) and (b,a) have different weights. The difference in times

required for passing these arcs could be caused by a different number of street

lanes for example. The direction from a to b may have more lanes thus providing

conditions for faster traffic, which makes the traveling time shorter than for the trip

from b to a.

Our question, related to the distance between a and d, may now be answered.

From Figure 4.3 we find that traveling from a to d would take 16 time units.

The ordering of the set E, i.e. the introduction of directions in a graph, as well

as setting weights to arcs (nodes) has many consequences. As we throughout this

book deal with directed graphs, in the text that follows we define terms and

structures that are needed for the investigation of basic directed graph-properties.

Definition 4.1.3 (upstream, downstream node): In a directed graph, G = (V, E), a

node n1 is called the upstream node to node n2 if there exists an arc (n1,n2) E. In

that case, node n2 is called the downstream node to node n1.

An upstream node is sometimes called a predecessor and a downstream node is

called a successor. When there is more than one node upstream of node n, we

define a set called a preset of n that contains all such nodes. Downstream nodes of

node n belong to the set referred to as the postset of n. The importance of preset

and postset concepts will be shown later in the chapter related to Petri nets.

In the graph from Figure 4.3 the preset of node b is {a, d} while the postset of b
is {a, c}.

Definition 4.1.4 (path): Having a directed graph G = (V, E), a path is a sequence of

nodes (n1, n2, n3, …, nj) such that ni is upstream of ni+1 for i = 1, 2, … j–1.

We may also speak of a path as a sequence of arcs that connects a sequence of

nodes belonging to the path.

 Matrix Methods for Manufacturing Systems Analysis 101

Definition 4.1.5 (path weight): Having a directed weighted graph, G = (V, E), and

a path, = (n1, n2, n3, …, nj), we define the weight of path as a sum of the

weights of arcs of which it is composed

=
=

j

i iww
1

σ

There is, however, a difference between path weight and path length.

Sometimes these two terms are confused in the literature, especially when it comes

to transportation systems. In graphs that represent these systems, weights

associated with arcs usually stand for distances between nodes showing kilometers

or miles. Summing weights of arcs along a path gives the path weight that actually

represents length. Because of this, path weight can be misinterpreted as path

length. The reason why these two expressions have to be distinguished will be

given later. Now, let us define the concept of path length.

Definition 4.1.6 (path length): Having a directed weighted graph G = (V, E), and a

path = (n1, n2, n3, …, nj), we define the length of path as the number of arcs of

which the path is composed. We denote path length as .

We can recognize several paths from the graph in Figure 4.3; 1=(a, b, c),

2=(a, b, c, d), 3=(b, c, d, b). The lengths and weights of these paths are as

follows: 1 = 2, 2 = 3, 3 = 3, 1w = 8, 2w = 16, 3w = 17.

Path 3 has an interesting property; the initial and the final node of this path are

the same. This kind of path is called a circle (cycle). As will be seen later in the

book, circles are very important structures in the analysis of discrete event dynamic

systems. At this point, without further explanation, we define the notion of a

maximum cycle mean. First, the mean weight of a path is characterized.

Definition 4.1.7 (mean weight of a path): The mean weight of a path in a

directed weighted graph G = (V, E), is defined as

σ

σ
σ w

w =

When this path is a cycle, the mean weight of the path is called the cycle
mean.

Definition 4.1.8 (maximum cycle mean and critical circuit): The maximum cycle
mean of directed weighted graph G = (V, E), is defined as

)(max wc
σλ =

102 Manufacturing Systems Control Design

where c ranges over the set of circuits of G. The circuit that corresponds with is

called a critical circuit.

The concept of reachability is closely related with a notion of a path.

Definition 4.1.9 (reachability): Having a directed graph, G = (V, E), and nodes ni,
nf V, we say that node nf is reachable from node ni if there exists a path such that

 = (ni, ni+1, ni+2, …, nf), i.e. ni is the initial node and nf is the final node of the path.

In our example, node b is reachable from node c and node c is reachable from

node b. Actually, each node in the graph shown in Figure 4.3 is reachable from any

other node. This type of graph is called a strongly connected graph.

In order to be able to manipulate with graphs, to analyze their properties and to

make conclusions regarding the systems modeled by graphs, we need to introduce

some kind of graph representation. Pure graphical interpretation of a graph is easy

to handle and can provide valuable information when the number of nodes is small.

As the number of nodes increases, the graphical interpretation becomes impossible

to comprehend.

A graph representation is a very important issue especially when it comes to

computer memory and computational times. In the following text we show several

possible graph representations suitable for programming, with a special emphasis

on matrices that can be related to graphs in one way or another. Later, we use these

matrices to find graph properties that are of special interest for manufacturing

systems analysis and design.

Generally, when we want to prepare a graph representation structured in a way

suitable for computer programming, we may choose one of two basic concepts:

arc-structured or node-structured data [3]. Each of them has its own benefits and

drawbacks.

In node-structured data we use an array of length N, where N is the number of

nodes. An entry i, corresponding with node ni, is a set (a list) of nodes that are

destination nodes of arcs starting in node i, together with weights of arcs. Table 4.1

shows the node-structured data representation of the graph shown in Figure 4.3.

Table 4.1. Node-structured data representation of the graph

Entry i (node) Destination Weight

1 (a) b 5

a 7 2 (b)

c 3

c 6 3 (c)

d 8

4 (d) b 4

This structure offers several benefits – finding nodes adjacent to a particular

node is simple and fast and so is adding a node (or an arc) to the structure. A

 Matrix Methods for Manufacturing Systems Analysis 103

problem arises if a node (or an arc) has to be deleted from the structure.

Furthermore, testing whether two nodes are adjacent may be time consuming.

The other approach to graph representation is arc-structured data. In this

approach we keep a list of arcs by maintaining the origin and destination nodes of

the corresponding arc together with arc weight. Table 4.2 shows the arc-structured

data representation of the graph shown in Figure 4.3.

Table 4.2. Arc-structured data representation of the graph

Entry i
(arc)

Origin Destination Weight

1 a b 5

2 b a 7

3 b c 3

4 c c 6

5 c d 8

6 d b 4

Arc-structured data is space efficient. As in the previous case, including a new

node or an arc in the structure is easy. The only drawbacks are the time-consuming

search for arcs incident to a particular node and determining which two nodes are

adjacent.

The structures representing graphs can be more complicated than the one we

described, depending on the data that have to be included in the graph description.

Getting a structure suitable for graph analysis is not always straightforward. In an

example concerning AGV path planning, which is presented in Section 4.2, the

structures that describe the graph contain details such as circular and straight path

segment points, the vehicle orientation with respect to segment direction and even

the vehicle actions upon arrival in a particular node. By combining the given facts

and by extracting information from these structures, bottom-up design finally ends

with data suitable for computer graph analysis so we can, for example, predict

node reachability or plan the shortest path.

4.1.1 Matrix Representation of the Graph

Even though arc-structured and node-structured representations of the graph meet

computer programming requirements such as space efficiency due to memory

constraints and fast computation of iterative algorithms, they lack the rigorous

mathematical characterization that makes them inappropriate for theoretical

analysis of graphs. The most convenient way to investigate the composition of

graphs or to treat a graph as a structure that presents the dynamical behavior of a

system, is by using the matrix representation of the graph [4]. By representing a

graph as a matrix we can define mathematical operators that can be used for

studying various properties of systems modeled by graphs.

104 Manufacturing Systems Control Design

One of the matrices that describe the structure of a graph is the adjacency
matrix. This matrix shows relations between nodes.

Definition 4.1.10 (adjacency matrix): Having a directed graph, G = (V,E), an

adjacency matrix G is defined as a matrix with the number of rows and columns

equal to the number of nodes in G, with element gij equal to1 if node nj is upstream

of node ni and to 0 otherwise.

According to the definition, an entry (i, j) corresponds with an arc from node nj
to node ni. Although this notation may seem strange at first, it is very convenient

for manipulations with matrices and vectors. By maintaining this form we can

write matrix equations in the standard way.

For undirected graphs matrix G is symmetrical, as by definition element gij = gji
= 1 when nodes ni and nj are adjacent and gij = gji = 0 otherwise. This difference

between adjacent matrices of undirected (Figure 4.1) and directed (Figure 4.2)

graphs is shown below; Gud represents an undirected graph and Gd represents a

directed graph. The fact that the diagonal element is equal to 1 is evidence for a

loop in a graph.

=

0110

1110

1101

0010

dcba

d
c
b
a

udG =

0100

0110

1001

0010

dcba

d
c
b
a

dG

The adjacency matrix of a directed graph can be used to identify more than

connections between nearby nodes: it can also show links between nodes that are

far from each other. Let us assume that gij=1, i.e. there is an arc from j to i, and

gjk=1, i.e. there is an arc from k to j. Then, it is obvious that there is a path from k
to i containing two arcs. Now, let us assume that all other entries of the ith row and

kth column in the adjacency matrix are equal to 0. Then, the multiplication of the

row and the column will give gik=gij·gjk=1. When we have more entries of 1, for

example, gim=1 and gmk=1, then multiplication will give gik= gij·gjk + gim·gmk=2, i.e.

the result shows that there are two paths from k to i, each containing two arcs. We

see that by multiplying adjacency matrix G one can tell whether two nodes are

connected and, when they are, how many possible paths lie between them. Powers

of adjacency matrix are calculated by standard matrix multiplication:

1r r−= ⋅G G G (4.1)

i.e. an entry of Gr is found as:

 Matrix Methods for Manufacturing Systems Analysis 105

1
, , , 1, 2,...,

r r
ij ik kjk

g g g i j k n−= ⋅ = (4.2)

where n is the number of nodes of the corresponding graph. If gij
r = m > 0 then

there are m different ways to get from node nj to ni by passing r arcs.

If we calculate G2 for the graph shown in Figure 4.2 we obtain

2

0 1 0 0 0 1 0 0 1 0 0 1

1 0 0 1 1 0 0 1 0 1 1 0

0 1 1 0 0 1 1 0 1 1 1 0

0 0 1 0 0 0 1 0 0 1 1 0

= ⋅ =G

The result demonstrates that, for example, there is one path from c to b (g23
2 =

1) that passes over two (r = 2) arcs (see Figure 4.2), while there is no way to get

from d to b by passing two arcs. Diagonal elements g11
2, g22

2 and g33
2 equal to 1

show second-order (r = 2) circles. Further multiplication will give paths passing 3,

4, …, etc. arcs. For example, computation of G4 gives g23
4 = 2: there are two paths

from c to b that pass over 4 arcs – path1={c,d,b,a,b}, path2={c,c,c,d,b}.

Although results obtained from adjacency matrix multiplication show not only

the existence of the route from one node to the other but also how many routes

there are in the graph and how many arcs have to be taken for a particular route,

these results do not tell us how we can “travel” between nodes or what would be

the cost of the “trip”. Later in this section we show how the adjacency matrix must

be broadened in order to comprise more detailed graph representation. In Section

4.2 we also present a procedure for the determination of paths between nodes in a

graph.

Now, let us define a matrix that associates nodes with arcs. This matrix is

called the incidence matrix.

Definition 4.1.11 (incidence matrix): Having a directed graph, G = (V, E), an

incidence matrix W is defined as a matrix with the number of rows equal to the

number of nodes and the number of columns equal to the number of arcs, with

elements defined as follows: if there exists an arc (ni,nj), i j, represented in W

with column l, then wil = 1, wjl = –1 and the other elements of column l are equal

to 0. For an arc (ni,ni) represented in W with column l, wil = 0.

According to the definition, an incidence matrix has elements –1, 1, and 0.

Entry of –1 (1) indicates that the corresponding node is the destination (origin) of

an arc represented by the consequent column. Since both the destination and origin

of a self-loop is the same node, in a column representing a self-loop arc all entries

are 0. The incidence matrix Wg of the graph shown in Figure 4.2 is given below.

106 Manufacturing Systems Control Design

g

1 1 0 0 0 0

1 1 1 0 0 1

0 0 1 0 1 0

0 0 0 0 1 1

a
b
c
d

−
− −=

−
−

W

Note that we can infer the existence of loops in a graph from the incidence

matrix (there are columns with all elements equal to 0), but it is not apparent which

node contains a loop. Although column 4 has all entries equal to 0, we are not able

to tell which node is involved in the loop. If we draw a graph represented by the

incidence matrix Wg, the loop may close around any of the four nodes (Figure 4.4).

Figure 4.4. Directed graphs with the same incidence matrices and different loops

Even though both matrices, adjacent and incident, represent a graph structure

that can be exploited for a survey of a variety of graph properties, they need to be

further extended in order to provide adequate information essential in analysis of

system dynamics (in the case of manufacturing systems) or of some other features

(determination of distances in the case of transportation systems). In an unweighted

multigraph, for example, each entry of the adjacency matrix may represent the

number of arcs between nodes. On the other hand, as the adjacency matrix of the

weighted directed graph has entry 1 for each arc in the graph, we can get a more

detailed picture of the graph if we just replace these 1s with weights of

corresponding arcs. Concurrently, each 0 from the adjacency matrix has to be

replaced by an element, denoted , that would stand for a nonexisting arc. In this

new matrix, symbol e is used for zero-weight arcs.

Definition 4.1.12 (weighted adjacency matrix): Having a weighted directed graph,

G = (V, E), a weighted adjacency matrix A is defined as a matrix with the number

of rows and columns equal to the number of nodes in G, with elements defined as

follows: if there exists an arc (ni,nj) then aji is equal to its weight, otherwise aji = .

For a zero-weight arc (ni,nj) entry aji = e.

The elements and e will be discussed in more detail in the section dedicated to

max-plus algebra.

For the graph shown in Figure 4.3 the weighted adjacency matrix A is given as:

 Matrix Methods for Manufacturing Systems Analysis 107

=

εεε
εε

εε
εεε

8

63

45

7

dcba

d
c
b
a

A

So far we have used analogies from transportation systems to explain basic graph

concepts. In the following example we show how graphs can be used for modeling

manufacturing systems, which is our main interest. We conclude this section with

this example.

Example 4.1.1 (a graph representation of a manufacturing line)

Let us consider a manufacturing line with two machines, M1 and M2, shown in

Figure 4.5. Our objective is to model this system by a graph. For that purpose, we

have to first identify the operations in the system and their order. Next, we need to

specify which observation would be represented by nodes – as we stated earlier, we

may use nodes to represent events or system states. In this example, nodes

represent events.

The figure illustrates that parts visit both machines: after being processed in

machine M1 they proceed to machine M2 and then leave the system. Therefore, two

operations may be identified; operation MP1 on machine M1 and operation MP2 on

machine M2. Each machine can process only one part at a time.

Events that can be characterized as interesting for system analysis are:

• e1 = part is present at the beginning of the line,

• e2 = start of operation MP1,

• e3 = end of operation MP1,

• e4 = start of operation MP2,

• e5 = end of operation MP2,

• e6 = part leaves the system.

Figure 4.5. A manufacturing line containing two machines

108 Manufacturing Systems Control Design

The type of analysis performed and the system properties will determine which

events to model or which physical phenomena will be taken as system states. In

our example we could have also selected other events (e = tool in machine M1

breaks), but these events are not interesting for our study or we may consider that

the probability of occurrence of these events is zero (machine tool is believed to be

unbreakable).

Since nodes represent events in the example, a graph model of this system

would have 6 nodes. Now, let us see how events influence one another (which

corresponds with the determination of arcs). It is clear that operation MP1 cannot

start (event e2) if there is no part at the beginning of the line (event e1).

Furthermore, if machine M1 is already executing operation MP1, event e1 cannot

take place since the machine cannot process two parts at a time. These two facts

define arcs (e1, e2) and (e3, e2). The existence of arc (e2, e3) is obvious – operation

MP1 cannot end if it had not been started. Similarly, we can define arcs (e3, e4), (e5,

e4) and (e4, e5). The final step in the line is the departure of the part, which is

represented by arc (e5, e6). Thus, having defined relations between nodes, we can

go on to write down the adjacency matrix of the system and draw its graph.

1

51 2 3 4 6

2

3

4

5

6

0 0 0 0 0 0

1 0 1 0 0 0

0 1 0 0 0 0

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0 1 0

e e e e e e

e
e
e
e
e
e

=G - adjacency matrix

Figure 4.6. Graph representation of the system shown in Figure 4.5

As we know, an adjacency matrix and a directed graph give only limited

information about system properties. From the graph in Figure 4.6 we can

understand that, for example, event e3 has an impact on events e4 and e2, i.e. the

occurrence of e3 triggers events e4 and e2, but we cannot say when, after e3 takes

place, event e2 or event e4 will happen.

We have shown earlier that an adjacency matrix and the corresponding graph

can be extended by the introduction of arc weights. Let us broaden our discussion

by assigning an operational time to each task within the system. Operation MP1 is a

task, the machine setup after the processing of the part is also a task and so is

traveling of the part from M1 to M2. Tasks “consume” the time between events, and

can therefore be associated with arcs. For events and arcs defined in our example,

we can identify the following tasks (operational times are given in parentheses):

 Matrix Methods for Manufacturing Systems Analysis 109

• (e1, e2) – part enters the machine M1, (tU),

• (e2, e3) – operation MP1, (tMP1),

• (e3, e2) – setup of machine M1, (tM1),

• (e3, e4) – part travels from machine M1 to machine M2, (tT),

• (e4, e5) – operation MP2, (tMP2),

• (e5, e4) – setup of machine M2, (tM2),

• (e5, e6) – part departs the system, (tY).

The weighted adjacency matrix obtains the following form:

51 2 3 4 6

1

2 U M1

3 MP1

4 M2

5 MP2

6 Y

T

e e e e e e

e

t te
e t
e t t
e t
e t

ε ε ε ε ε ε
ε ε ε ε

ε ε ε ε ε
ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

=A

Figure 4.7 shows the weighted graph representation of the system shown in

Figure 4.5.

Figure 4.7. Weighted graph representation of the system shown in Figure 4.5

From matrix A, or the graph, among other things, we find that event e3 occurs

tMP1 time units after event e2. Also, we know that the part leaves the system (event

e6) tMP2 + tY time units after machine M2 starts its processing (event e4). Therefore,

having defined the weighted adjacency matrix that incorporates operational times,

we can study the dynamic properties of the system: machine cycles, machine

utilization, system throughput, etc. In Chapter 3 we showed how these data can be

revealed from the system model by using matrix operations.

How the system is modeled will depend on the designer's priorities – the

designer will highlight events relevant to his/her requirements. Therefore, in the

text that follows we show a different model of the same system.

Let us assume that information relevant to model building are events related to

the start of operations, parts incoming and parts leaving the system. Thus we

identify events e1, e2, e4 and e6. The occurrence of e1 activates e2 after tU time units

(assuming M1 is ready). Since e3 and e5 are not considered, the operational times of

tasks connecting these events with other events have to be somehow incorporated

110 Manufacturing Systems Control Design

in the model. From the graph shown in Figure 4.7 we see that machine M1 starts

processing the next part tMP1+ tM1 time units after the previous part entered the

machine. The same holds for machine M2 (operational times tMP2+ tM2). Moreover,

the part processed in M1 enters M2 after tMP1+ tT time units.

The graph model of the system is shown in Figure 4.8. Operational times are: t1

= tMP1+tM1, t2 = tMP2+tM2, t3 = tMP1+tT and t4 = tMP2+tY. The new weighted adjacency

matrix has the form:

1 2 4 6

1

2 U 1

4 3 2

6
4

e e e e

e
e t t
e t t
e t

ε ε ε ε
ε ε

ε ε
ε ε ε

=A

1 2 4 6

U 4

1

3

2

Figure 4.8. Alternative weighted graph of the system shown in Figure 4.5

There are obvious differences between the two models. The second model is

reduced and has two loops (diagonal elements t1 and t2 in the new matrix A). While

in the first model we know exactly when the processing of parts in both machines

is finished, in the second model these events cannot be tracked directly (actually,

we intentionally removed them from consideration).

4.2 String Composition

In the previous section we showed how an adjacency matrix can be used to

ascertain whether there exists a path between two particular nodes. It was

mentioned that information regarding the existence of a path between nodes does

not give any additional data that would answer how one can travel from one node

to the other. In order to solve the problem of path finding in a graph, some other

form of matrix should be used for graph description.

In this section we describe in detail the string-composition algorithm

introduced in [5]. We also extend the notation proposed in [6], where

implementation of the string composition to manufacturing systems analysis and

design was explored. At the end of the section we give an example of string

 Matrix Methods for Manufacturing Systems Analysis 111

composition implemented to the problem related to path planning in an AGV

system.

String composition is only one of many methods concerned with the shortest

path problem. The most popular and well known method is Dijkstra’s algorithm [7,

11]. It finds the shortest path from a single origin to all destinations by examining

the length of each outgoing arc of a selected node. Every node in a graph is visited

only once. As a result, the algorithm gives the distances but actual paths are not

known directly. Only the predecessor of the corresponding node is given. Another

popular method is the Bellman–Ford (B–F) algorithm. In this algorithm, nodes can

be visited more than once and all arcs are checked in each iteration. A more

efficient variation of the B–F algorithm, called shortest label first (SLF), is

proposed by Bertsekas in [8]. The results of these algorithms are the same as for

Dijkstra’s: distances and predecessors.

A very popular algorithm that gives all-nodes shortest paths is the Floyd–

Warshall algorithm proposed in [9, 10]. The input to the algorithm is an n×n
weighted adjacency matrix A, with weights associated with distances. The final

result is a matrix whose (i,j) element represents the shortest distance between

nodes i and j. To get the actual path from i to j, the algorithm should be changed in

order to track calculations in each iteration. The Floyd–Warshall algorithm is

similar to the shortest-path computation in the use of max-plus algebra, which we

shall describe in the following section.

Two definitions, required for the rest of the section, follow.

Definition 4.2.1 (word): A word is a sequence of alphabetical and/or numerical

characters. A single character is a word.

Definition 4.2.2 (string): A string is a sequence of words having the symbol “-”

between two consecutive words.

A few examples of words and strings are:

- words: w; abcd; e4T68u; resource12,

- strings: abcd-e4T68u; resource12-w-r4568-w-abcd

We introduce the following string operations; multiplication (series
composition) denoted with the multiplication symbol “•”, and addition (parallel
composition) denoted with the standard addition symbol “+”.

A string S ending with word A is denoted as SS–A, where SS is a substring of S,

i.e. SS is a sequence of words in S followed by word A.

A string S beginning with word A is denoted as A–SS, where SS is a substring of

S, i.e. SS is a sequence of words in S that follows word A.

Let S1= SS1–A and S2= A–SS2 be two strings. Then, multiplications of S1 with S2

from the right and the left are defined as follows:

1 2 1 2 1 2S S S SS S S A A S S A S• = − • − = − − (4.3)

112 Manufacturing Systems Control Design

2 1 2 1 0S SS S A S S A• = − • − = (4.4)

where “0” stands for an empty string.

From Equations (4.3) and (4.4) we see that the multiplication of two strings

forms a nonempty string if the string that is multiplied from the right ends with the

word that is the beginning of the right multiplicand. The result of the multiplication

is a string that is composed of two substrings connected with a common word.

When the left multiplicand does not end with the word that is the first one of the

right multiplicand, the result is an empty string. As the results of left and right

multiplications are different, string multiplication is not commutative.

Having strings S1, S2, and S3, the following holds:

1 2 2 1 1 2 3 1 2 3, () ()S S S S S S S S S S+ = + + + = + +

1 2 3 1 3 2 3

3 1 2 3 1 3 2

() () ()

() () ()

S S S S S S S
S S S S S S S
+ • = • + •
• + = • + •

1 0 0S • =

1 10S S+ =

String addition is commutative and associative with an empty string as a zero

element. Now we extend the given operations to a particular type of matrix called a

string matrix. Each string matrix is associated with a graph and may be obtained

from its adjacency matrix.

Definition 4.2.3 (string matrix): A string matrix S, associated with graph G = (V,
E) and its adjacency matrix G, is an n×n matrix with string entry sij obtained as

follows: for each gij that has entry 1, sij=Ai-Aj, where Ai is a word-identifying node

ni and Aj is a word-identifying node nj. If gij = 0, sij= 0, i.e. if there are no arcs

between nodes, the entry is an empty string.

It is clear that a string matrix can also be determined directly from the graph.

For the directed graph shown in Figure 4.2, the adjacency matrix has this form:

 Matrix Methods for Manufacturing Systems Analysis 113

d

0 1 0 0

1 0 0 1

0 1 1 0

0 0 1 0

a b c d
a
b
c
d

=G

According to Definition 4.2.3, a string matrix S associated with adjacency

matrix Gd is given below:

−
−−

−−
−

=

000

00

00

000

cd
ccbc

dbab
ba

S

From matrix S we may read that there is, for example, a connection between

nodes b and c (string element s32 = c–b).

Even though the string matrix determined as described in Definition 4.2.3 may

seem a little confusing (the connection between nodes i and j is represented as

string j–i), for manufacturing systems analysis this form of the matrix is very

convenient. We shall see later that string composition is mainly used for

determination of circular waits among resources. The form described in Definition

4.2.3 gives us wait relations directly, thus providing the conditions for a

straightforward determination of circular waits. If one imagines that arcs represent

part flow in an MS and that nodes represent resources, then in order to proceed

from node i to node j, a part should be first processed in i, which means that j waits

for i to finish its task. In other words, the connection between i and j is represented

with the string j–i.
A more intuitive form of the string matrix may be obtained if the adjacency

matrix is first transposed and then Definition 4.2.3 is used. The other way is to

determine the string matrix directly from the graph. If there is an arc from node i to

node j then the entry that corresponds with the row representing node i and the

column representing node j is equal to i–j. This method can be used if one deals

with problems related to path determination (the shortest, the fastest, the cheapest,

etc.).

Transposition of Gd from our example gives:

T

d

0 1 0 0

1 0 1 0

0 0 1 1

0 1 0 0

a b c d
a
b
c
d

=G

114 Manufacturing Systems Control Design

The string matrix for Gd
T has the form:

−
−−

−−
−

=

000

00

00

000

bd
dccc

cbab
ba

S

From the string matrix S we may find that there is a connection between nodes

b and c (string element s23 = b–c), only this time we may read this information

directly, in a more natural way.

Determined one way or the other, the string matrix gives information regarding

connections between nodes. We only have to make sure to follow the conventions,

chosen at the beginning throughout the entire procedure of string composition.

A problem may arise if there is more than one arc between two nodes

(multigraph). This situation is common in AGV systems as layout designers

usually plan alternative routes that should be used when the main route is occupied

by another vehicle or if taking the main route is forbidden for some reason. Figure

4.9a shows a graph that has two arcs between nodes c and d. By adding a virtual
node e, as shown in Figure 4.9b, the alternative route is split into two arcs; c–e and

e–d. Even though the inclusion of virtual nodes increases the dimension of the

string matrix, this way of solving the alterative-route problem is quite simple and

straightforward.

We have shown in the previous section how the multiplication of the adjacency

matrix gives the number of paths between two nodes. We also found how many

nodes should be visited to get from node to node, but we were not able to tell how

to travel from one node to another. We will now use string composition to find a

solution to this problem.

a) b)

Figure 4.9. Splitting of alternative route by virtual-node inclusion

Let us extend string composition to matrices. Powers of string matrix S are

calculated as follows:

1r r−= •S S S (4.5)

i.e. an entry of Sr is found as:

 Matrix Methods for Manufacturing Systems Analysis 115

1
, , , 1, 2, ...,

r r
ij ik kj

k
s s s i j k n−= ⋅ = (4.6)

where n is the number of nodes in the corresponding graph. In Equation (4.6)

standard multiplication should be replaced with series string composition, while

standard addition should be replaced with parallel string composition.

For the graph shown in Figure 4.2 we have:

2

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0

0

0

0 0

a b a b
b a b c b a b c

c c c d c c c d
d b d b

a b a a b c
b a b b c c b c d
c d b c c c c c d

d b a d b c

− −
− − − −

= • = •
− − − −

− −

− − − −
− − − − − −

=
− − − − − −

− − − −

S S S

We see that there are three diagonal elements that are not null string: diagonal

strings a–b–a, b–a–b and c–c–c. This result shows that there are two second-order

circles in the graph. Also, all existing second-order paths (containing two arcs, i.e.

all paths with l = 2) are represented with corresponding strings. Third-order paths

(l = 3) can be found as:

3 2

0

0

a b a b a b c c a b c d
b a b a b c d b b a b c b c c c b c c d
c d b a c c d b c d b c c c c c c c c d

d b a b d b c c d b c d

= •

− − − − − − − − −
− − − − − − − − − + − − − − − −

=
− − − − − − − − − + − − − − − −

− − − − − − − − −

S S S

The string s23
3 = b–a–b–c + b–c–c–c demonstrates that there are two third-order

paths between nodes b and c, while s33
3 = c–d–b–c + c–c–c–c shows that there are

two third order circles that start and end with node c.

How far one may go with string matrix composition depends on the specific

problem. After n multiplications of the string matrix all paths in the graph will be

revealed. Graphs with a large number of nodes require many multiplications, thus,

finding all paths can be a time-consuming task that may need huge computational

power. There are many ways to solve this problem, depending on the final

objective of string composition.

 For example, the given results show that the circle exposed by composition

repeats in several string matrix elements (b–c–d–b, c–d–b–c and d–b–c–d in S
3

116 Manufacturing Systems Control Design

represent the same circle). As our aim is only to find circles in the graph, equation

(4.5) can be redefined. Duplicate values use computation time needlessly and do

not give any new information. As proposed in [6], the matrix composition can be

changed in the following way:

1
, , 1, 2,..., , 1

r r
ij ik kjk

s s s i j n k i−= ⋅ = ≥ + (4.7)

thus eliminating duplicated circles and restricting the required calculations. A

closer look at Equation (4.7) makes it clear that by forcing k to be greater than i we

do not check if already passed nodes belong to currently calculated circles. If a

node that corresponds with the current row (i) belongs to some circle that includes

a passed node (< i), then this circle is already determined and there is no need to

check previously passed nodes – only nodes above the current row (> i) should be

checked.

We can even further exploit the fact that the string composition objective is the

determination of circles. If a graph has n nodes then the nth composition should

give the circle that includes all nodes in the graph (if one exists), i.e. when

performing the nth composition we have to calculate only the first diagonal term.

As the (n–1)th composition exposes circle(s) that comprise(s) n–1 nodes, only the

first two diagonal terms should be calculated. We may proceed in the same

manner. Finally, we conclude that only (n–r+1) diagonal terms must be calculated

and checked for possible circles. By keeping the original string matrix S

unchanged we need to determine (n–r) rows and (n–r+1) diagonal terms of Sr (the

rth composition) in order to calculate the r ordered circles in the corresponding

graph.

When matrix composition is used for some other purpose, a string matrix can

be structured so that the calculation of string composition will not require large

computational capacity. In practice, problems of path determination usually have

some restrictions that can help in rearrangement of the corresponding string matrix.

For example, in many situations nodes are divided into three groups: origins,

destinations and bypasses. Only traveling from origin to destination and vice versa
is allowed. Nodes that lie on the paths between origins and destinations belong to a

bypass group. Having groups of nodes we may structure a string matrix so that the

first k rows represent origins, followed by l rows that correspond to bypasses, and

the final m rows that should stand for destinations. Assumptions regarding allowed

travel routes reduce the number of required calculations since we can skip

compositions of a row and a column that stand for an origin (destination) as trips

from origin to origin (destination to destination) are forbidden. Moreover, prior to

the rth composition, all diagonal elements of S
r-1 can be set to 0 since they

represent circles. In the following example we show how the given system

restrictions define the string matrix structure and restrict string composition.

 Matrix Methods for Manufacturing Systems Analysis 117

Example 4.2.1 (an AGV shortest-path determination by using the string

composition)

An AGV system layout is shown in Figure 4.10. Since formation of the string

matrix is based on data that are structured in a particular way, prior to

determination of the system string matrix we have to describe these structures.

The layout is composed of segments and nodes. A segment is an object defined

by its properties. It can be circular or straight: circular segments are defined by

three and straight segments by two Cartesian points (in world, i.e. shop floor,

coordinates). We differentiate two types of segments based on traveling direction:

unidirectional and bidirectional. Each segment has a weight factor that can be

associated with some physical property (maximum allowed speed, segment length,

etc.). Segments form paths.

A node is an object defined as the point on a segment. Each node has a set of

parameters related to a vehicle – actions that should be performed by the vehicle

and positions of forks (approach speed, fork orientation, fork pick-up elevation,

departure speed, etc.). Nodes are grouped as origins, destinations and bypasses.

Figure 4.10. An AGV system layout composed of nodes and segments

The layout has 7 nodes and 15 segments:

• set of nodes

N = No U Nb U Nd = {a} U {b, c, d, e} U {f, g}

• set of segments

C = Cs U Cc = {c1, c3, c5, c7, c10, c13} U {c2, c4, c6, c8, c9, c11, c12, c14, c15}

a

b

c

d

f

c1

c2

c3 c4

c5

c8

c9c6

c7

e

c10

g

c11

c12

c13

c14

c15

118 Manufacturing Systems Control Design

where No, Nb and Nd are sets of origin, bypass and destination nodes, respectively,

while Cs and Cc are sets of straight and circular segments, respectively. All

segments, except c4, c5 and c10, are bidirectional. We denoted segments as ci since

the letter s is used for string-matrix elements.

As may be seen from Figure 4.10 that some paths are formed of only one

segment, while others comprise two and more segments:

(a, b) {c1} - bidirectional,

(b, c) {c2, c3} - bidirectional,

(b, f) {c2, c4, c5} - unidirectional,

(c, d) {c6} - bidirectional,

(c, e) {c11, c12} - bidirectional,

(c, g) {c10} - unidirectional,

(d, f) {c7, c8, c9} - bidirectional,

(e, g) {c13, c14, c15} - bidirectional.

Based on the layout data we can form the system string matrix:

−
−

−−
−−

−−−−
−−−

−

=

000000

000000

00000

00000

000

0000

000000

eg
df

gece
fdcd

gcecdcbc
fbcbab

ba

S

Calculation of S2 gives:

−−
−−

−−−−−−
−−−−−−

−−
−−

+−−
−−−−

−−−−
−−

+−−
−−−−

=

000000

000000

0000

0000

000

0000

00000

ceg
cdf

gcedcebce
fcdecdbcd

gec
fdc

fbc
egcabc

gcbecb
dfb

dcb
fbacba

2
S

Note that all diagonal elements are set to 0 as circular paths are not of interest

when it comes to shortest-path determination. From S2 we may see that there are

two second-order paths from b to d and from c to f. Further string compositions

 Matrix Methods for Manufacturing Systems Analysis 119

give paths of 3rd, 4th, etc. order. The calculation of these paths we leave to the

reader for exercise.

Our goal is to find the shortest paths from all origins to all destinations and vice
versa. In our example these paths are between node a and nodes f and g. In other

words, we have to check string elements s16, s61, s17, and s71 after each composition.

The results are:

s16
2 = a–b–f

s16
4 = a–b–c–d–f

s17
3 = a–b–c–g

s17
4 = a–b–c–e–g

s17
5 = a–b–f–d–c–g

s17
6 = a–b–f–d–c–e–

s61
4 = f–d–c–b–a

s71
4 = g–e–c–b–a.

There are two alternative paths from a to f and four possible paths from a to g.

As there are segments that are not bidirectional, there is only one path from f to a
and from g to a. If we suppose that segment weight w(ci) stands for length, which

can be determined easily from input data structure (points that define segments),

then it is easy to find the shortest path among the given alternatives:

{ }2 4

16 16(,) min (), ()a f s sw w wσ σ σ=

{ }3 4 5 6

17 17 17 17(,) min (), (), (), ()a g s s s sw w w w wσ σ σ σ σ=

where
2

16 1 2 4 5() () () () ()s c c c cw w w w wσ σ σ σ σ= + + +
4

16 1 2 3 6 7 8

9

() () () () () () ()

()

s c c c c c cw w w w w w w
cw

σ σ σ σ σ σ σ

σ

= + + + + +

+
3

17 1 2 3 10() () () () ()s c c c cw w w w wσ σ σ σ σ= + + +
4

17 1 2 3 11 12

13 14 15

() () () () () ()

() () ()

s c c c c cw w w w w w
c c cw w w

σ σ σ σ σ σ

σ σ σ

= + + + +

+ +
5

17 1 2 4 5

9 8 7 6 10

() () () () ()

() () () () ()

s c c c cw w w w w
c c c c cw w w w w

σ σ σ σ σ

σ σ σ σ σ

= + + +

+ + + + +

120 Manufacturing Systems Control Design

6

17 1 2 4 5 9

8 7 6 11 12

13 14 15

() () () () () ()

() () () () ()

() () ()

s c c c c cw w w w w w
c c c c cw w w w w
c c cw w w

σ σ σ σ σ σ

σ σ σ σ σ

σ σ σ

= + + + +

+ + + + +

+ + +

Using the described procedure, one may find not only the shortest path between

nodes but also the optimal one (the shortest path is optimal if distance is

considered). If segment weight is associated with some criterion, then the

determined path will be optimal for that particular criterion.

The result of origin–destination path finding is a set of all possible routes in a

system that an AGV can pass through. This provides an option for the calculation

of shortest paths between all the nodes in the system. It is very important to have

this possibility since there are situations when a vehicle moves out of a segment it

is currently passing. That may happen if there is a loss of communication between

the vehicle and the supervisor or if some problems with navigation occur (loss of

visual contact between laser source and mirrors). In addition, if a vehicle is

manually controlled it can be switched to autonomous mode at any position on the

shop floor. In this case, a navigation system provides information regarding current

vehicle position and then the vehicle autonomously moves towards the closest

segment. Once the vehicle is on the segment, the supervisor, having all possible

routes, sends the vehicle information regarding the path it should take to get to the

desired node.

The other reason why all system paths should be at the supervisor’s disposition

is AGV dispatching. When a vehicle approaches the bypass node it sends a request

to the supervisor for the next segment allocation. When the requested segment is

occupied, the supervisor allocates an alternative segment (if there is one) to the

vehicle. Without knowing all the possible routes beforehand the supervisor would

not be able to dispatch the vehicles according to a desired strategy.

4.3 Max-plus Algebra

In general, there are two main approaches to analysis and modeling of discrete

event dynamic systems (DEDS). When the designer is investigating only the

ordering of events that may occur in DEDS, his/her main concern will be the

system logical behavior. On the other hand, if the system is studied in order to

examine time instants at which a particular event took place, then the temporal
behavior of DEDS should be analyzed and modeled.

The algebra, called max-plus, is one of the mathematical frameworks suitable

for the latter case. Although max-plus theory is very convenient when

synchronization phenomenon in DEDS is considered, it is not able to handle

“nonlinear” problems such as concurrency (in recent years there have been some

results that extend the theory to nonlinear cases [15, 16] and systems with so-called

switching functions [12]). The limitation directed by concurrency constricts the use

 Matrix Methods for Manufacturing Systems Analysis 121

of max-plus algebra to a special class of DEDS. This class of systems is called

event graphs.

In this section we give only the basic definitions and properties of max-plus

algebra. For those who want to learn more about the topic, very good resources are

[13, 14, 17]. At the end of the section an illustrative example for the manufacturing

system modeled as a marked graph (the order of operations is known beforehand)

is given.

The maximization and addition in max-plus theory are defined over the

extended set of real numbers.

Definition 4.3.1 (extended set of real numbers): A set εℜ is a set of real numbers

that includes element , { }εε ∪ℜ=ℜ , where the numerical value of = – .

Definition 4.3.2 (maximization in max-plus): Maximization over εℜ , represented

by ⊕ , is defined as

),max(yxyx =⊕ (4.8)

Definition 4.3.3 (addition in max-plus): Addition over εℜ , represented by ⊗ , is

defined as

yxyx +=⊗ (4.9)

Having defined the basic operations in max-plus, we can identify neutral

elements of the algebra. Element is the neutral element with respect to

maximization,

max(,) max(,)x x x x xε ε ε ε⊕ = ⊕ = = =

while e is the neutral element with respect to addition,

x e e x x⊗ = ⊗ =

The numerical value of e equals 0. It should be noted that is an absorbing element

of ⊗ ,

The operations ⊕ and ⊗ can be extended to matrices. This is very important

since there is a unique relation between a graph and its weighted adjacency matrix.

Implementation of max-plus algebra to matrices allows detailed analysis of graphs,

thus providing thorough insight into systems modeled with graphs.

If we calculate C = A⊕ B, then

x xε ε ε⊗ = ⊗ =

122 Manufacturing Systems Control Design

max(,)ij ij ij ij ijc a b a b= ⊕ = (4.10)

It is clear that maximization is defined only for matrices of the same size as it is

performed element-by-element.

Entries of matrix C, obtained by max-plus matrix addition, C = A⊗ B, are

calculated as

max()ij ik kj ik kjk k
c a b a b= ⊕ ⊗ = + (4.11)

Matrix addition in max-plus theory is defined only if the number of columns of

A is equal to the number of rows of B. It should be noted that when A and B are

square matrices of the same order, then A⊗ B B ⊗ A. The identity matrix E in

max-plus algebra has diagonal elements equal to e and other entries equal to .

Maximization and addition of matrices in max-plus represents a parallel and a

series composition, respectively. Matrix compositions can be comprehended if one

imagines a set of nodes that symbolize cities [18]. As cities are connected by roads

and rails, two graphs may be used to separately describe two possible ways of

traveling (Figure 4.11). Let A and B be weighted adjacency matrices of these two

graphs; aij and bij representing road and rail distances between cities j and i. The

parallel composition (maximization) of A and B gives matrix C with element cij
equal either to aij or bij depending on which distance, road or rail, is longer. In

other words, matrix C has entries that match one of the two alternative routes

between cities j and i. Even though the original graphs offered the possibility of

traveling from j to i either by road or by rail, in the graph attained by their parallel

composition only one route remains feasible. According to Figure 4.11, node b can

be approached from node a by road C2 or by rail T1. Since C2⊕ T1 = 5⊕ 6 = 6 =

T1, on the graph shown in Figure 4.12, only rail T1 is left.

On the other hand, the series composition of A and B tells us whether it is

possible to travel from j to i using both means of transport, starting with train and

then switching to a car. If this trip is feasible, then cij receives a value that is equal

to the maximum distance of all possible routes obtained by adding road distance aik
to rail distance bkj, where k is an intermediate node (the node where the passenger

changes a train for a car). From Figure 4.12 we see that this kind of trip is possible

if one wants to get from node d to node b. First rail T5 should be taken followed by

road C2. The distance traveled is C2 + T5 = 5 + 3 = 8.

In the previous section the shortest-path problem was solved by using string

composition. Max-plus also offers a solution to that problem by changing the

maximum operation with the minimum operation. In this case should attain the

value of + , while all other properties of max-plus, defined above, still hold.

Within this new framework we can find the shortest distances that consist of r arcs

from the following expression:

 Matrix Methods for Manufacturing Systems Analysis 123

1r r−= ⊗A A A (4.12)

where A is an n×n weighted adjacency matrix and r < n. Entries in A
r are

calculated as

1 1
min()

r r r
ij ik kj ik kjkk

a a a a a− −= ⊕ ⊗ = + (4.13)

Just as in the case of string composition, diagonal elements of Ar correspond to

circles, i.e. ar
ii stands for the shortest path, containing r arcs, from node i to itself.

As the shortest path between two nodes may contain more than one arc, in

order to get the correct result we have to compare matrix A with all matrices Ar

calculated for r = 2, 3, …, n–1:

2 1min min(, ,...,) .n
ij ij ij ija a a a −= (4.14)

Applying Equation (4.10) to Equation (4.14) it follows that

min 2 1... n−= ⊕ ⊕ ⊕A A A A (4.15)

a

b

c

d

T2=2

T1=6

T3=10

T4=3

T5=3

rails

a

b

c

d

C2=5

C1=7 C3=3

C4=6

C5=8

C6=4

roads

Figure 4.11. Two weighted graphs representing road and rail connections

Figure 4.12. Parallel and series compositions of graphs shown in Figure 4.11

Equations (4.12)–(4.15) are applicable to the max operation also by substituting

min with max and + with – .

124 Manufacturing Systems Control Design

4.3.1 DEDS Model in Max-plus Algebra

Let us now return to our main objective that is the determination of dynamical

properties of discrete event systems. In order to focus on the subject and to show

why max-plus is suitable for DEDS analysis, let us consider the discrete event

system analyzed in Example 4.1.1. Remember, Figure 4.13 shows the graph

representation of the manufacturing system we examined. Note that notations have

been changed in order to be consistent with max-plus nomenclature – a time instant

at which event i occurs for the kth time is denoted as xi(k). To simplify the problem

we will concentrate on event x1 – the start of processing of the part in machine M1.

We have to find time instants at which event x1 occurs.

From the graph we see that the processing of the part cannot start if the part has

not entered the system and machine M1 has not finished the processing of the

previous part. Additionally, x1 is shifted tU time units after event u and t1 time units

after the occasion of x1. If we assume that u and x1 occur simultaneously at time

instant t then the next occasion of x1 will take place after both tasks that start with

events u and x1 are finished, i.e. x1 will occur at time instant max(t+tU, t+t1).

Figure 4.13. Graph representation of the system in Example 4.1.1

The manufacturing system example reveals that two operations, maximization
and addition, play an essential role in the investigation of dynamic properties of

discrete event systems. This makes max-plus algebra the first choice for the study

of the dynamics of event graphs.

From our discussion we can define the equation for the time instant in which

machine M1 starts the processing of the kth part;

()U1 1 1() max (1) , ()x k x k t u k t= − + +

Following the same reasoning, the processing of the kth part in machine M2 can

start t3 time units after the kth part leaves machine M1 and t2 time units following

the completion of the processing of the (k–1)th part in machine M2:

()
()

2 1 3 2 2

U1 1 3 3 2 2

() max () , (1)

max (1) , () , (1)

x k x k t x k t

x k t t u k t t x k t

= + − +

= − + + + + − +

For the output we can write

 Matrix Methods for Manufacturing Systems Analysis 125

2 4() ()y k x k t= +

By using Equation (4.8) and (4.9) these expressions become:

U1 1 1() (1) ()x k x k t u k t= − ⊗ ⊕ ⊗

U2 1 1 3 2 2 3() (1) () (1) () ()x k x k t t x k t u k t t= − ⊗ + ⊕ − ⊗ ⊕ ⊗ +

2 4() ()y k x k t= ⊗

where ⊗ has priority over ⊕ . The upper equations can be affirmed in max-plus

matrix formulation:

[]

U1

U1 3 2 3

4

() (1) ()

() ()

t t
k k k

t t t t t

k t k

ε

ε

= ⊗ − ⊕ ⊗
+ +

= ⊗

x x u

y x

The obtained model completely describes the system dynamics. It has a well-

known linear state space form:

() (1) () , (0) 0

() ()

k k k

k k

= ⊗ − ⊕ ⊗ =

= ⊗

x A x B u x x

y C x
(4.16)

Note that matrix A in Equation (4.16) is not necessarily an adjacency matrix of the

graph that represents the system described by this equation.

Once a discrete event dynamic system is modeled by Equation (4.16), a whole

range of various phenomena may be investigated [19]. For example, in the case of

manufacturing systems, it is now possible to determine the slowest (bottleneck)

part of the system. Furthermore, by studying the influence of operational times, the

designer is able to decide in which part of the system an extra resource should be

integrated in order to maximize the system throughput and/or improve resources

utilization. Additionally, the propagation of disturbances through the system can be

explored, in order to answer how much time the system needs to return to the

steady state.

Questions concerning the cyclic activity of the system are especially

interesting. As we mentioned, cyclic behavior of a discrete event system is treated

as a stable state, whereas in time-driven systems this manifestation is considered as

marginally stable. In fact, many discrete event systems, particularly manufacturing

systems, are designed to start working periodically after a short transient time. In

the text that follows we are concerned with the properties of the model (4.16) that

lead to periodic activities.

Let us again think of the manufacturing system shown in Figure 4.5 and

represented by the graph in Figure 4.13. Suppose that the first processing part is

deposited into the system at a time instant 0, i.e. u(1) = 0. From the max-plus

126 Manufacturing Systems Control Design

model of the system we calculate that x1(1) = tU, x2(1) = tU + t3 and y(1) = tU + t3 +

t4. The part has propagated through the system and left it at time instant tU + t3 + t4.

Now suppose that parts arrive into the system each Tin time units starting at t = 0,

i.e. u(k) =(k-1)·Tin. Immediately a question arises: how often do the parts leave the

system or, in other words how fast do the parts spread through the system? We

have just calculated that the first part needed tU + t3 + t4 time units to get from the

input to the output. But what about the second, the third and the following parts?

We understand from the model that machine M1 needs t1 time units after it begins

the processing of the first part to become ready for processing the second one. If Tin

< t1 then the second part should wait some time to be processed by the machine. As

parts are arriving with period Tin, after some time the machine will get swamped

with parts. At this point we may conclude that t1 should be less than Tin in order to

allow continuous part flow through the system, but further discussion shows that

this is not necessarily true. Even if the condition for regular work of the first

machine is satisfied, the same overflow effect will happen with machine M2 if Tin <

t2. Since Tin > t1, parts arrive at machine M2 with period Tin. Following the same

reasoning as for M1 we realize that t2 should be less than Tin.

This simple example highlights the importance of system analysis when it

comes to DES design. How can the max-plus model be used to determine system

properties that would reveal conditions that should be satisfied in order to make the

system react according to the desired criteria? Let us suppose that each time one

part leaves the system, described with Equation (4.16), another part enters the

system. As a consequence we have

)1()(−= kyku

Including this into Equaiton (4.16) and having in mind that the model holds for any

k, we can write

() (1) (1)

(1) (1)

k k k
k k
= ⊗ − ⊕ ⊗ −
− = ⊗ −

x A x B y

y C x

Further, we can include y(k–1) in the equation for x(k), thus obtaining

() (1) (1)k k k= ⊗ − ⊕ ⊗ ⊗ −x A x B C x

The manipulation gives

0() (1) , (0)

() ()

k k
k k
= ⊗ − =
= ⊗

x A x x x

y C x
(4.17)

where

= ⊕ ⊗A A B C

What we get as the result of assumption that u(k)=y(k–1) is an autonomous

system (4.17). In fact, system (4.17) is a closed-loop form of Equation (4.16) with

 Matrix Methods for Manufacturing Systems Analysis 127

unity feedback [23]. This feedback can be visualized if one imagines a pallet that

moves through the system together with a part. As soon as the part leaves the

system the pallet is released and immediately fed to the input. This representation

can be further exploited if we delay the trip of the pallet, which in max-plus

corresponds to

() (1)k k= ⊗ −u C y (4.18)

It is apparent that matrix A can be determined as

= ⊕ ⊗ ⊗A A B G C

Releasing the pallet when the part departs from the system is a very restrictive

strategy in the sense of resources utilization. The number of parts that can be

simultaneously processed within the system is equal to the number of available

pallets. If there is only one pallet at disposition then the entire system will work

with only one part. The opposite is the case when tens of pallets are prepared while

the system can handle only a few parts at a time, which means that many pallets

will remain unused.

An alternative strategy is to release the pallet when some event in the system is

started. This strategy does not wait for the part to come to the output in order to

allow the next part to be fed into the system. In max-plus form this can be

described as

() (1)k k= ⊗ −u K x (4.19)

The problem of finding the number of pallets that provide the desired

performance of the system is similar to the problem of parts arrival rate

determination. One way or the other we have to ascertain some inherent property

of the system that would give us an indication of how to feed the parts into the

system, i.e. how often the parts leave the system.

4.3.2 Periodic Behavior of DEDS in Max-plus

We consider an autonomous system of the form

0() (1) , (0)

() ()

k k
k k
= ⊗ − =
= ⊗

x A x x x

y C x
(4.20)

Usually, the symbol ⊗ is omitted, i.e. Equation (4.20) is written as

0() (1) , (0)

() ()

k k
k k
= − =
=

x Ax x x

y Cx

Periodic activities of the system presume that the difference between two

consecutive occasions of event xi is constant. If we denote this constant difference

with symbol , then

128 Manufacturing Systems Control Design

(1) ()

(2) (1)

...

() ((1))

...

i i

i i

i i

x k x k

x k x k

x k r x k r

+ − =

+ − + =

+ − + − =

From this set of equations it is easy to show that

(1) ()

(2) 2 ()

(3) 3 ()

...

i

i i

i i

ix k x k

x k x k

x k x k

+ = +

+ = +

+ = +

Since all events in the system have cyclic behavior, a general form of the

equations above is

0() () , 1,2,..., ,i ix k r r x k i n k k+ = + = ≥ (4.21)

where k0 is the number of the part that is processed when the system starts periodic

activity (after the transient state has finished). Equation (4.21) demonstrates that

the inherent property of the system is determined by parameter , i.e. the time

period between departures of two consecutive parts from the system (production

cycle) is equal to . We may set arrival rate(s) of parts to be as small as possible

but the system cannot process the parts faster than what is determined by the

production cycle.

At this point, two issues have to be addressed: a) how to calculate and b) is

unique or are there several values that satisfy Equation(4.21)? In other words is it

possible for a system to have events whose cycle periods differ? When one

considers the former question it appears that it is natural to have more than one

cycle period in the system. We saw that two machines, which have been used

throughout this chapter as an example, have different cycles (t1 and t2). This

demonstrates that the manufacturing system designer is the one who actually

enforces the operational cycles to the system resources in order to get the final

product. As we shall see later, depending on the system structure and desired

performance, in some systems this cycle is unique for all resources, while in others

there can be more than one.

From (4.21) it seems that can be calculated very easily,

0

() ()
, 1, 2, ..., ,i ix k r x k

i n k k
r

+ −
= = ≥ (4.22)

 Matrix Methods for Manufacturing Systems Analysis 129

The problem with this equation is that in order to get , values of xi(1), xi(2),

xi(3), … have to be determined. The second difficulty is that since k0 is not known

in advance we have to execute the max-plus model until cyclic activity is reached,

which might be a tedious job. Furthermore, some of the events can start to cycle at

k = k0 while others remain in a transition phase (when the system has more than

one), which means that one should proceed until all events demonstrate

periodicity. All these facts show that, although can be calculated from Equation

(4.21) we should try to find another method.

By definition, the cycle represents the difference between two consecutive

occasions of an event in the system that has periodic activities. Hence, its value is

related to time. If we recall the procedure for obtaining an autonomous system

Equation (4.17), we remember the assumption that each time a part leaves the

system a pallet is relocated to the system input. As a consequence, the pallet

holding the part travels along some circular path and periodically visits resources,

every time with a new part to be processed. The circular path has the

corresponding weight w and length . In our case, weight represents the time

needed for the pallet to pass the path. If we assume that there are enough pallets,

and that the system capacity cannot be influenced by their number, it can be shown

that the average time between two successive processings on the resource that

belongs to the circular path is equal to the mean weight of the path, wσ , as

defined in Definition 4.1.7. Since the pallets may travel along several paths on their

way from the input to the output, if we want to find the production cycle, we have

to find the “slowest” path (the path that has the largest mean weight). This value is

exactly equal to the maximum cycle mean as defined in Definition 4.1.8.

The previous discussion has shown how to determine the production cycle

from the adjacency matrix of the graph that represents the system. The weights of

circular paths of length = r can be found as diagonal elements of matrix A
r,

calculated according to Equation (4.12). In order to find the maximum cycle mean

of the system, all diagonal entries of matrices A, A
2, A

3, …, A
n need to be

compared, which yields

1

()in

i

trace
i=

= ⊕ A
(4.23)

where division is performed in the standard way and

1
()

n

jjj
trace a

=
= ⊕A (4.24)

Relation (4.23) gives the correct value for only when the weighted adjacency

matrix A corresponds to a strongly connected graph. The obtained value represents

the unique production cycle of the system. However, one should use Equation

(4.23) with caution since this equation assumes that each arc on the circular path

can hold a part that is not necessarily a truth as we show in Example 4.3.1.

The strong connectivity of the graph may be tested in several ways. By using

powers of adjacency matrix G, obtained by Equation (4.2), we can repeat the

multiplication n–1 times and then check if

130 Manufacturing Systems Control Design

2 3 1... 0 , ,n
ij ij ij ijg g g g i j−+ + + + ≠ ∀ (4.25)

When Equation (4.25) is true, the corresponding graph is strongly connected. The

max-plus version of the previous relation has the form

2 3 1(...) , ,n
ij i jε−⊕ ⊕ ⊕ ⊕ ≠ ∀A A A A (4.26)

where powers of A are calculated according to Equation (4.12). If string

composition is used for the test, then it should be

2 3 1... 0 , ,n
ij ij ij ijs s s s i j−+ + + + ≠ ∀ (4.27)

for the corresponding graph to be strongly connected. In Equation (4.27) 0 is a null

string and powers of sij are obtained from Equation (4.6), while additions are

carried out as series string compositions.

By knowing the production cycle we can find not only the system throughput,

which is defined as 1/ , but also the utilization of each resource in the system. If

we define the resource cycle, denoted TMi, as a time required for a part to be

processed by the resource (resource operation) plus the time required for the

resource to prepare for work on the part (resource setup(s)), then resource
utilization is calculated as

Mi

i

T
η = (4.28)

A discrete event dynamic system characterized with a graph that is not strongly

connected may have more than one cycle mean. This fact is evidence that the

system is composed of subsystems that can achieve cyclic activities with different

periods. Working out these periods might be difficult, depending on the system

structure. However, Equation (4.22) can be a good start. Those who are interested

in this subject may wish to consult [20–22].

4.3.3. Buffers in Max-plus Algebra

Although it appears that the determination of the model (4.16) is straightforward

once the manufacturing system is designed and its tasks are defined, there are

several issues in max-plus DEDS modeling that have to be elaborated further. Let

us mention a few of them. For instance, what would happen with the model if there

exist bounded buffers between the machines, or how do the initial conditions of

machines (idle or work-in-process) influence the model? Moreover, as the

elements of matrices in Equation (4.16) can vary with time (in a deterministic or

stochastic manner), the question is how does max-plus algebra handle systems that

are not time invariant and/or deterministic? It is beyond the scope of this text to

 Matrix Methods for Manufacturing Systems Analysis 131

elaborate on these topics. Here we just briefly explain a case when a finite-capacity

buffer is positioned between two machines. The problem of initial conditions will

be addressed in the example that follows at the end of the chapter.

The model derived in the previous example shows that event x1 does not

depend on event x2 (a12 = in matrix A): the processing of parts in M1 continues no

matter what the status of machine M2 is. It is obvious that when the processing

time of M2 is longer than the processing time of M1 added to the time needed for

the part to get from M1 to M2, the second machine in line will be flooded with

parts. Hence, the obtained model is valid only if there is a buffer with infinite depth

between machines. In order to cover a realistic situation we have to incorporate

finite-capacity buffers in the max-plus model of the system.

Let us place a buffer with a finite capacity N between two machines, Mi and

Mi+1, connected in series (Mi is the predecessor of Mi+1). After being processed in

Mi a part enters the buffer. When Mi+1 is idle it takes the part from the buffer.

Machine Mi cannot proceed with the processing of parts once the buffer is full.

Now, let us assume that the processing time of Mi+1 is greater than the processing

time of Mi. In this situation the buffer becomes occupied sooner or later. If the

buffer is full (containing N parts), machine Mi can start processing one more part

and then it needs to wait until Mi+1 becomes ready to free one place in the buffer.

We can write:

()1() max (1) , ((1))i i i ix k x k t x k N+= − + − + (4.29)

where ti is the processing time of Mi.

Usually, equations that describe the dynamic behavior of systems by using

max-plus operations cannot be directly transferred to the form of Equation (4.16).

A more general max-plus form should be used:

0 1

0

() () (1) ...

... () () , (0)

() ().

p

k k k
k p k

k k

= ⊗ ⊕ ⊗ − ⊕
⊕ ⊗ − ⊕ ⊗ =

= ⊗

x A x A x

A x B u x x

y C x

(4.30)

As Equation (4.30) is implicit in x(k), in order to get form (4.16), the following

substitution should be made:

[]

0 0

1

2
0 0

1

() () ... () ()

(1) ... () ()

()

(1) ... () ()

p

p

p

k k k p k

k k p u k

k

k k p k

= ⊗ ⊗ ⊕ ⊕ ⊗ − ⊕ ⊗

⊕ ⊗ − ⊕ ⊕ ⊗ − ⊕ ⊗

= ⊗ ⊕ ⊕

⊗ ⊗ − ⊕ ⊕ ⊗ − ⊕ ⊗

x A A x A x B u

A x A x B

A x A E

A x A x B u

(4.31)

132 Manufacturing Systems Control Design

where E is a max-plus identity matrix and A0
2 is obtained according to Equation

(4.12). The elimination of x(k) from the right requires n substitutions to be carried

out. Finally, we get

[]

1 1
0 0 0 0

1

() () ...

(1) ... () ()

n n n

m

k k

k k m u k

+ −= ⊗ ⊕ ⊕ ⊕ ⊕ ⊕ ⊗

⊗ − ⊕ ⊕ ⊗ − ⊕ ⊗

x A x A A A E

A x A x B
(4.32)

As A0
n+1 = [], the first component of Equation (4.32) can be removed, which

yields

[]*
0 1() (1) ... () ()mk k k m u k= ⊗ ⊗ − ⊕ ⊕ ⊗ − ⊕ ⊗x A A x A x B (4.33)

where

* 1
0 0 0 0...n n−= ⊕ ⊕ ⊕ ⊕A A A A E (4.34)

In Equation (4.33), which is obtained by substitutions, state space vector x(k)

should be redefined to integrate components x(k–2), x(k–3), …, x(k–m).

Thereafter, Equation (4.33) takes the form of Equation (4.16) and max-plus

analysis, described in the previous subsection, can be applied.

In conclusion, we need to stress that we have here presented only a small part

of max-plus theory concerned with DEDS. Our intention was to provide the reader

with a basic knowledge of the subject and to touch upon the potentials of max-plus

in DEDS system analysis and design. Because a max-plus linear model has many

similarities with the state space linear model of time-driven systems, it is possible

to reproduce procedures and methods used in linear system analysis by replacing

standard operations with maximization and addition (of course, symbols need to be

replaced carefully as their replacement is not straightforward). In this way, the

properties of time-driven systems, such as observability, controllability, transfer

function, impulse response, etc., can be transposed to event-driven systems.

Example 4.3.1 (DEDS modeling and analysis by max-plus algebra)

Our goal in this example is to determine a max-plus model of the manufacturing

system shown in Figure 4.14. The system has three machines and one AGV. Two

types of parts are processed, A and B. Part A is transported by the AGV from an

input position to machine M1. When the processing in M1 is finished the part

moves to the second machine, M2, to be removed from the system by the AGV and

put on the part A output place. Part B is fed directly to the machine M3. Once the

processing in M3 is finished the AGV takes part B and transports it to the part B

output place. The operations that can be identified based on the system description

are listed in Tables 4.3 and 4.4, accompanied by operational times and machine

setup times.

 Matrix Methods for Manufacturing Systems Analysis 133

Figure 4.14. Layout of the manufacturing system studied in Example 4.3.1

Table 4.3. Operational times and setup times of machines

Machine M1 M2 M3

operational time 8 13 15

setup time 2 3 3

Table 4.4. Operational times and set-up times of the AGV

Operation Transport A to

M1

Transport A from

M2

Transport B from

M3

operational time 5 6 3

setup time 4 6 5

Events of interest (i.e. events that should be modeled), shown in Table 4.5,

correspond with the beginnings and endings of operations identified in the system.

From the system description and Table 4.4 we see that the AGV is a shared

resource since it has to perform three different tasks: loading M1 and unloading M2

and M3. As a consequence, two (or even three) events may simultaneously request

the AGV. Clearly, the manufacturing system can involve concurrent events and it

does not fall in the class of systems that can be described as event graphs, thus it

cannot be modeled with max-plus algebra.

Even though the sequence of operations should be strictly defined in order to

make the system suitable for max-plus description, in particular circumstances a

manufacturing system that employs shared resources does not require beforehand

sequencing. This may occur when operational times in the system are structured so

that simultaneous requests for a shared resource cannot take place (see Example

134 Manufacturing Systems Control Design

3.3.1). This means that because of the natural properties (operational times) of the

system, the system works according to a sequence that is its inherent property.

However, it is very difficult to establish whether a system has this property,

especially if one is dealing with systems that contain many shared resources and

part paths. Up to date, time-consuming simulation is the only way to resolve this

dilemma.

Table 4.5. Events identified in the system shown in Figure 4.14

Event Description

x1 AGV starts to move part A in machine M1

x2 transportation of part A to M1 is finished; release of AGV and start of

processing of the part in M1

x3 processing in M1 is finished; release of M1 and start of part A processing

in M2

x4 AGV starts with M2 unload; M2 is released

x5 transportation of part A to the output place is finished; AGV is released

x6 start of part B processing in M3

x7 AGV starts with M3 unload; M3 is released

x8 transportation of part B to the output place is finished; AGV is released

Although the system in the example is simple, we would not investigate if

machine operational times provide sequence(s) without concurrency. We define the

sequence of operations since further assumptions regarding parts entering the line

would lead to a simultaneous request for shared resource. As the AGV is

responsible for three tasks, two sequences are possible: a) loading M1 – unloading

M2 – unloading M3, and b) loading M1 – unloading M3 – unloading M2. System

layout and operational times suggest it would be reasonable to give priority to

sequence b) (we shall leave the investigation of the system with sequence a) to the

reader).

Further, we assume that parts A and B are available at any time. This means

that immediately after the AGV takes part A from its input place, another part is

ready. Also, part B is available for machine M3 as soon as the processing of the

previous part is finished and the machine is ready. As far as system outputs are

concerned we assume that as soon as the transportation of a part to its output place

is finished, the part leaves the system. These assumptions, related to inputs and

outputs, are necessary if we want to model the system according to Equation (4.20)

(an autonomous system).

Once we have defined the system and obtained all the necessary data we can

create a weighted graph representation of the system, as shown in Figure 4.15.

 Matrix Methods for Manufacturing Systems Analysis 135

1 2 3 4 5

6 7 8

Figure 4.15. A weighted graph of the system studied in Example 4.3.1

The corresponding weighted adjacency matrix has the following form:

6

5 2

8 3

13 5

6

3

4 15

3

ε ε ε ε ε ε ε
ε ε ε ε ε ε

ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε ε

=A

Although the property of strong connections of the graph in Figure 4.15 may be

checked by hand, formal verification can be done by using Equation (4.26). Here

we give only the final result:

()2 3 7

54 49 57 50 44 53 38 49

47 54 50 49 49 46 43 42

51 56 54 51 51 48 47 46

58 59 61 54 48 59 46 53
... , ,

48 59 57 54 54 47 50 49

48 45 45 42 36 54 57 35

47 58 52 45 51 69 54 44

48 45 45 42 36 54 57 35

i jε⊕ ⊕ ⊕ ⊕ = ≠ ∀A A A A

136 Manufacturing Systems Control Design

Since all entries of the obtained matrix differ from , the weighted graph

representing the system is strongly connected, i.e. the system has a unique

production cycle.

A set of max-plus equations that describe the system dynamics has the

following form (see graph in Figure 4.15; we presume that the system starts its

activity with all the machines ready and with the AGV set for loading M1):

51

2 1 3

3 2 4

4 3 8

5 4

76

7 2 6

78

() 6 (1)

() 5 () 2 (1)

() 8 () 3 (1)

() 13 () 5 ()

() 6 ()

() 3 (1)

() 4 () 15 ()

() 3 ()

x k x k

x k x k x k

x k x k x k

x k x k x k

x k x k

x k x k

x k x k x k

x k x k

= −

= ⊕ −

= ⊕ −

= ⊕

=

= −

= ⊕

=

(4.35)

As we can see, the system description is implicit in x(k), so we should use

substitution (4.31) in order to get form (4.20). Matrices A0 and A1 can be easily

determined from the system equations:

By using Equation (4.34) we can find A0
* that gives matrix A,

6

2

3

1

3

ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε

=A

5

8

13 5

0 6

4 15

3

ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε

ε ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε ε

=A

 Matrix Methods for Manufacturing Systems Analysis 137

The insertion of given initial conditions, x(0) = [e e]T, into Equation

(4.20) results in the following evaluation of system states (for easier reading,

values of vector x(k) are represented in matrix form):

(1) (2) (3) (4)

6 44 82 120

11 49 87 125

19 57 95 133

32 70 108 146 ...

38 76 114 152

3 21 56 94

18 53 91 129

21 56 94 132

=

x x x x

x

From the result we find that, for example, the first four time instants in which event

x5 occurs are 38, 76, 114 and 152.

Once the system states are evaluated, the production cycle can be determined

according to Equation (4.22). As we have already stated, the problem is that value

k0, for which the system enters periodic behavior, is unknown, thus we start with

the first two values of vector x. The difference between x(2) and x(1) gives 21 =

[38 38 38 38 38 18 35 35]T. It may be seen that the components of 21 vary, which

clearly indicates that the system is still in transition. Further calculations provide

32 = x(3) – x(2) = [38 38 38 38 38 35 38 38]T and 43 = x(4) – x(3) = [38 38 38 38

38 38 38 38]T. All components of 43 are the same and we conclude that the system

starts with cyclic activities at k = k0 = 3 with a unique production cycle = 38 and

throughput 1/ = 0.0263. The reader can check the correctness of the obtained

production cycle by using Equation (4.23).

We proceed with the next step in system analysis - the calculation of resources

utilization. From Tables 4.3 and 4.4 we find that TM1 = 10, TM2 = 16, TM3 = 18 and

TAGV = 29, thus

6

2 11

10 3 19

23 16 32 26*
0 1 29 22 38 32

3

6 15 18

9 18 21

ε ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε
ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

= ⊗ =A A A

138 Manufacturing Systems Control Design

M1
M1 M2

M3 AGV

T 10 16
0.263 , 0.421

38 38

18 29
0.474 , 0.763

38 38

η η
λ

η η

= = = = =

= = = =

The most exploited resource in the system is the AGV (76.3%), which was

expected since it is a shared resource. Still, none of the resources is utilized 100%.

Obviously, we must ask: what can be done in order to improve the use of resources

and increase the system throughput?

If we look at the system graph representation (Figure 4.15), we will find that

path A = (x1, x2, x3, x4, x5, x1) has the weight of Aw =38. When the part moves

along this path on the pallet and if there is only one pallet, then the pallet needs 38

time intervals to return to the initial position. That is exactly the value of the

production cycle. Now, if we set two pallets on the path, then 38/2 = 19, i.e. the

mean production cycle is reduced by factor 2. So, by inserting 5 pallets since there

are 5 arcs on path A (see Definition 4.1.7), we get 38/5 = 7.6 as the mean

production cycle. On the other hand, pallets are physical entities and if our only

means of system representation is a graph, it would not be clear whether each arc

corresponds to an empty place that can hold a pallet. Moreover, there is another

path (besides others) AGV = (x1, x2, x7, x8, x4, x5, x1) that has weight AGVw = 29.

What influence does the number of pallets have on that path? This brings us back

to the question related to the number of pallets, raised in Section 4.3.1. It is

obvious that it is impossible to resolve the problem without taking into account the

physical limitations of the system hidden in graph representation.

Path A does have 5 arcs but these 5 arcs represent only 3 physical places where

the pallets might be positioned: machine M1, machine M2 and the AGV. Further, if

we put three pallets for part A into the system, two scenarios are possible: a) two

pallets are in the machines and the third is on the vehicle on its way to part A

output place, and b) two pallets are in the machines and the third is on the vehicle

on the way to machine M1. For scenario a), once the vehicle leaves the part at the

output place, it returns to the beginning of the line (according to a predefined

sequence) and gets the next part A to be loaded into machine M1, which leads to

scenario b). Analysis of scenario b) reveals that it will end in blocking since

machine M1 already has the pallet so there is no room for the pallet that is

transported by the vehicle. Therefore, we can conclude that path A can have at

most two pallets.

It is clear that path AGV actually represents the route traveled by the vehicle,

i.e. one can think of the vehicle as a “pallet”. Since there is only one vehicle in the

system, the path has only one physical entity where parts can be placed.

Keeping in mind the above discussion, let us write down a max-plus model of

the system that encompasses the assumptions that i) one part A is already in

machine M2 waiting to be processed and ii) one part is on the vehicle, ready to be

transported to machine M1. The equation that describes the dynamics of event x2

(start of processing of the part in M1) takes this form:

 Matrix Methods for Manufacturing Systems Analysis 139

2 1 3() 5 (1) 2 (1)x k x k x k= − ⊕ −

The consequence of the supposition that the vehicle holds a part, can be clearly

seen by comparing this equation with Equation (4.35) (where we assumed that the

vehicle was empty). The equation states that machine M1 starts processing the first

part, x2(1), even though the part actually did not enter the system, x1(0), which is

possible since the part was on the vehicle. The same holds for event x4, i.e.

machine M2 finishes processing the first part, x4(1), although the part did not enter

the machine, x3(0). This is feasible since according to assumption i) the part was in

the machine.

A set of max-plus equations becomes:

51

2 1 3

3 2 4

4 3 8

5 4

76

7 2 6

78

() 6 ()

() 5 (1) 2 (1)

() 8 () 3 ()

() 13 (1) 5 ()

() 6 ()

() 3 ()

() 4 () 15 (1)

() 3 ()

x k x k

x k x k x k

x k x k x k

x k x k x k

x k x k

x k x k

x k x k x k

x k x k

=

= − ⊕ −

= ⊕

= − ⊕

=

=

= ⊕ −

=

(4.36)

A closer look at the graph in Figure 4.15 and Equations (4.35) and (4.36) can

affirm a general rule for the holding of parts in the system for max-plus model

determination. Namely, if event n1 is the predecessor of event n2 and if the task that

starts with n1 and ends with n2, represented by the arc with weight a, is holding a

part, then their dynamics is described as n2(k) = a⊗ n1(k–1).

The calculation of matrix A from Equation (4.36) obtains:

29 26 35

5 2

20 17 26

17 14 23

23 20 29

12 9 18

9 6 15

12 9 18

ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

=A

It may be seen that, even though both matrices describe the same system, matrix A,

which we have just acquired, differs completely from the matrix A that

140 Manufacturing Systems Control Design

corresponds with the system equations (4.35). It may be concluded that the initial

conditions, together with the system structure, dictate the form of the system

matrix (note that the weighted adjacency matrix remains the same in both cases – it

is determined by the system structure).

Let us now see if these changes in matrix A influence system behavior.

Evaluation of the system states with initial conditions x(0) = [e e e]T, gives:

(1) (2) (3) (4)

35 64 93 122

5 40 69 98

26 55 84 113

23 52 81 110 ...

29 58 87 116

18 47 76 105

15 44 73 102

18 47 76 105

=

x x x x

x

The calculation of the production cycle yields 21 = x(2) – x(1) = [29 35 29 29 29

29 29 29]T and 32 = x(3) – x(2) = [29 29 29 29 29 29 29 29]T. The system starts

with periodic activities for k0 = 2 with the production cycle = 29. This result,

when compared to the result obtained from the set of equations (4.35), shows that

the transition period of the system has been reduced while the throughput has

increased. Although we had set two pallets in path A, the new production cycle

was not reduced by a factor of 2 since the other path, AGV, became dominant (a

new maximum cycle mean).

Utilizations of resources are given below:

M1
M1 M2

M3 AGV

T 10 16
0.345 , 0.552

29 29

18 29
0.621 , 1.0

29 29

η η
λ

η η

= = = = =

= = = =

 Because the production cycle was reduced, utilization of each resource in

the system was increased while utilization of AGV attained 100%. By obtaining

this result we have reached the physical limitations of the system. Further

improvements can be made by including one or more additional vehicle(s).

4.3.4 Deriving Max-plus System Equation from Matrix Model

In this section we draw the connection between the dynamic matrix model of an

MS, presented in Section 3.3, and the max-plus system equation. Since the max-

 Matrix Methods for Manufacturing Systems Analysis 141

plus representation is feasible only for decision-free discrete event systems (event

graphs), we consider the dynamic matrix model with no shared resources. For

systems with shared resources, a control strategy that provides conflict-free

dispatching should be determined prior to transformation of the matrix model to

max-plus. As a result, max-plus formulation is a description of the closed-loop

system including both the workcell and the controller.

Let us now recall the logical state equation (3.2)

v c r c u∆ ∇ ∆ ∇ ∆=x v r uF F F

In development of the dynamic matrix model we assumed that parts input and

parts output are timeless operations. In order to obtain the max-plus model for the

general system, here we define delay matrices Tu and Ty that can be attained in the

same way as matrices Tu and Ty, i.e. each entry “1” in Fu and Sy should be replaced

with the shift operand representation of the corresponding lifetime. Using these

new matrices and by including Equation (3.16) in the logical state equation we

obtain

v v r r u

y

() () () () () () ()

() () ()

q q q q q q q

q q q

∆ ∇ ∆ ∇=

=

x T x T x T u

y T x

F F

We proceed with the following redefinitions of mathematical operations:

logical ∆ should be replaced with standard multiplication, standard multiplication

with⊗ , and logical ∇ with ⊕ . Then we get

v v r r u

y

() () () () () () ()

() () ()

q q q q q q q

q q q

= ⊗ ⊕ ⊗ ⊕ ⊗

= ⊗

x x x u

y x

F T F T T

T

A final form of max-plus is obtained by multiplication of matrices Fx with

corresponding matrices Tx, and then by substituting q-n with n, and replacing all

occurrences of 0 by ε,

v r u

y

() () () ()

() ()

k k k k

k k

= ⊗ ⊕ ⊗ ⊕ ⊗

= ⊗

x x x u

y x

D D D

D
(4.37)

where x(k) gives the time of the kth execution of rules corresponding to the

components of the logical state vector, y(k) gives the time of the kth output of

finished products.

The max-plus model (4.37) is valid only for systems with no shared resources.

As we mentioned, when that system encompasses conflicting rules the dispatching

vector should be included into the model. Given that d d∆=u xS adding conflict

resolution vector in Equation (4.37) gives

142 Manufacturing Systems Control Design

v r u d

y

() () () () ()

() ()

k k k k k

k k

= ⊗ ⊕ ⊗ ⊕ ⊗ ⊕ ⊗

= ⊗

x x x u x

y x

D D D D

D
(4.38)

where Dd is obtained from FdTd(q) in the same way as matrices Dv and Dr. A

conflict-resolution delay matrix Td(q) is determined from the dispatching vector

release matrix Sd as for the delay matrices Tv and Tr.

It should be noticed that the attained model is implicit in x(k), i.e. it does not

account for the available resources or the parts held by operations. As we pointed

out earlier, the number of slots in buffers (machines) or number of resources in the

resource pool should be incorporated into the model. For Equation (4.38) this can

be done in the following way: if resource r, released by the rule xj, participates in

the rule xi, and if it is able to process N parts simultaneously, then xi(k) = dr ⊗ xj(k–

N). The same is true for an operation: if operation v, released by the rule xj,

participates in the rule xi, and if it holds N parts, then xi(k) = dv⊗ xj(k–N).

Example 4.3.2 (Deriving max-plus system equation from the matrix model)

We consider the system shown in Figure 3.2 that is studied in Examples 3.2.1,

3.3.1 and 3.4.1. For a given system matrices and delay matrices we find that

v r

15

76 6 5

10 3
,

4 10

113 6 5

8

ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε

= =D D

Let us assume that the dispatching vector release matrix Sd is determined from

Fd according to Equation (3.26), as shown below:

d d d

0 0 0

1 1 0

0 0 0 0 0 0 0 1 0
,

0 0 0 0 1 0 0 0 0

1 0 1

0 0 0

= = =x F S

When there are no delays between components of the conflict-resolution vector,

matrix Dd becomes

 Matrix Methods for Manufacturing Systems Analysis 143

d

e

e

ε ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε ε

=D

If we assume that the input and output operations are timeless, then according to

the rules, the system input and the system output are calculated by using

[]
[]

T
u

y

e

e

ε ε ε ε ε
ε ε ε ε ε

=

=

D

D

Given that all resources are idle at the beginning, u(0)=e and ud0 = [e ε]T, the

initial condition is defined as x(0) = [ε ε ε ε ε ε]T, while the system is described

with the following set of max-plus equations:

1 2

2 1 3 5 6

3 2 4

4 3 5

5 2 3 4 6

6 5

() 15 (1) ()

() 76 () 6 (1) (1) 5 (1)

() 10 () 3 (1)

() 4 () 10 (1)

() () 6 (1) 113 () 5 (1)

() 8 ()

x k x k u k
x k x k x k x k x k
x k x k x k
x k x k x k
x k x k x k x k x k
x k x k

= − ⊕
= ⊕ − ⊕ − ⊕ −
= ⊕ −
= ⊕ −
= ⊕ − ⊕ ⊕ −
=

4.4 Exercises

1. Find the incidence matrices for the graphs shown in Figure 4.12.

2. Find the critical circuits in the graphs shown in Figure 4.12 by using

Definitions 4.1.7 and 4.1.8.

3. Determine the circuits in the graph shown in Figure 4.15 by using string

composition. What is the length of the critical circuit?

4. For the given values of cs determine a path (which is not a circuit) with

the maximum weight in the graph shown in Figure 4.10 by using max-

plus algebra.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

10 4 4 6 5 3 6 2 2 8 2 2 4 2 2

144 Manufacturing Systems Control Design

5. Determine a max-plus model of the system represented by the graph

shown in Figure 4.7. Consider event e1 as an input u and event e6 as an

output y. Find the maximum allowed arrival rate of parts for given

operational and setup times.

tU tMP1 tM1 tT tMP2 tM2 tY

2 12 3 4 17 4 3

 References

[1] Biggs NL, Lloyd KE, Wilson RJ. Graph Theory 1736 1936. Clarendon: Oxford

University Press, 1976.

[2] Diestel R. Graph theory. Heidelberg New York: Springer, 2000.

[3] Gibbons A. Algorithmic Graph Theory. Cambrifge: Cambridge University Press,

1985.

[4] Godsil CD, Royle G. Algebraic Graph Theory. New York: Springer Verlag, 2001.

[5] Boffey TB. Graph Theory in Operational Research. London: MacMillan, 1982.

[6] Wysk RA, Yang NS, Joshi S. Detection of Deadlocks in Flexible Manufacturing Cells,

IEEE Trans. Rob. Autom. 1991;Vol. 7;No. 6:853 859.

[7] Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms, 2nd edn.

Cambridge: MIT Press, 2001.

[8] Bertsekas DP. An Auction Algorithm for Shortest Paths, SIAM J. on Optimization

1991;Vol. 1: 425 447.

[9] Floyd RW. Algorithm 97: Shortest path, Comm. ACM 1962;Vol. 5;No. 6:345.

[10] Warshall S. A theorem on boolean matrices, Journal of the ACM 1962;Vol. 9;No.

1:11 12.

[11] Dijkstra E. Note on Two Problems in Connection with Graphs, Numerische

Mathematik 1959;Vol. 1:269 271.

[12] Wang L. Performance evaluation of switched discrete event systems, IMA preprints

2002:1835.

[13] Baccelli F, Cohen G, Olsder GJ, Quadrat JP. Synchronization and Linearity: An

Algebra for Discrete Event Systems. New York: Wiley, 1992.

[14] De Schutter B. Max-Algebraic System Theory for Discrete Event Systems, PhD

thesis, Faculty of Applied Sciences, K.U. Leuven, Leuven, Belgium, ISBN 90-5682-

016-8, 1996.

[15] Gaubert S, Gunawardena J. A Non-linear Hierarchy for Discrete Event Dynamical

Systems, IEE Proc. of the 4th WODES, Cagliary, Italy, 1998.

[16] Gunawardena J. From max-plus algebra to nonexpansive mappings: a nonlinear theory

for discrete event systems, Theoretical Computer Science 2003;293:141 167.

[17] Cohen G, Gaubert S, Quadrat JP. Max-plus Algebra and Systems Theory: Where we

are and where to go now, Annual Reviews in Control 1999;23:207 219.

[18] de Vries R, De Schutter B, De Moor B. On Max-algebraic Models for Transportation

Networks, IEE Proc. of the 4th WODES, Cagliary, Italy, 1998, 457 462.

[19] Gaubert S. Performance Evaluation of (max,+) Automata, IEEE Trans. Aut. Cont.

1995;40;12; 2014 2025.

[20] Terrasson JC, Cohen G, Gaubert S, Mc Gettrick M, Quadrat JP. Numerical

computation of spectral elements in max-plus algebra, Proceedings of the IFAC

Conference on System Structure and Control (SSC’98), Nantes, France, 1998.

 Matrix Methods for Manufacturing Systems Analysis 145

[21] Olsder GJ, Roos C, Van Egmond RJ. An efficient algorithm for critical circuits and

finite eigenvectors in the max-plus algebra, Linear Algebra Appl.

1999;295;1 3:231 240.

[22] Dasdan A; Gupta RK. Faster maximum and minimum mean cycle algorithms for

system performance analysis, IEEE Trans. CAD of Integr. Circ. Sys.

1998;17;10:889 899.

[23] Cottenceau B, Hardouin L, Boimond JL, Ferrier JL. Model reference control for timed

event graphs in dioids, Automatica 2001;37:1451 1458.

5

Manufacturing System Structural Properties in Matrix

Form

One fundamental question that needs to be addressed in connection with any FMS

dispatching policy is whether or not it is stable. Studies of stability for FMS often

focus on stability in the sense of bounded buffers lengths [1]. In [2], the FBFS

policy has been shown to be stable for single-part flowlines with no buffer limits.

However, in practice, the buffer lengths are finite, and such stability results are

inapplicable, since it is not obvious how to keep the buffer lengths below some

fixed finite value. For finite-buffer multiple re-entrant flowline (MRF) systems [1],

which constitute a large class of FMSs, the issue is stability, not in the sense of

bounded buffer lengths, but in the sense of absence of deadlock. As we pointed out

in previous chapters, a flowline for a given part-class is said to be deadlocked if it

holds a part that cannot complete its processing sequence. Many popular

dispatching rules can result in deadlock if care is not taken, as has been

demonstrated in the examples in Chapter 3. In a finite-buffer system, any

dispatching policy for uninterrupted part flow has to essentially take into account

the structure of the interaction between jobs and resources. Several results based

on such a structural approach may be discovered in [3]–[8]. In all of these but [5],

Petri-net formalism is used for system modeling.

In this chapter we develop equations to compute structural properties that are

essential in stability analysis of the aforementioned MRF class of systems. These

equations are based on the matrix model introduced in Chapter 3. First we give the

properties that characterize MRF systems, followed by relations that determine

circular waits among resources (mentioned in string composition Section 4.2).

Then we show the correlation between circular waits and certain corresponding

structures referred to as critical siphons, critical traps, and critical subsystems.

This allows one to obtain computational equations so that NP-hard complexity

issues can be avoided. In a separate section we consider and extend matrix

formalism to the free-choice multiple re-entrant flowline (FMRF) systems, i.e.

systems with nondeterministic job routing,

In terms of given constructions, at the end of the chapter we present a

minimally restrictive one-step look-ahead resource dispatching policy that

guarantees the absence of deadlock for MRFs. Deadlock has generally not been a

148 Manufacturing Systems Control Design

significant problem in traditional manual shop-floor environments because the

production operators are often able to recognize deadlock and take corrective

measures, such as removing parts from the system or swapping the locations of two

or more parts simultaneously. However, as the trend moves toward automation,

these seemingly trivial resource-assignment problems have become increasingly

important in ensuring a smooth operation of the manufacturing facilities.

 We consider the case where the system is regular, that is, it cannot contain key
resources [9] [10] existing in second-level deadlock structures [11]. A

mathematical test is given to verify that the MRF system is regular. If this is not

the case, we can still use matrix formulation, but with a different dispatching

policy designed for systems containing second-level deadlock structures.

The chapter is closed with a case study where all the methods and the

algorithms presented herein are implemented and realized on the laboratory

system.

5.1 Multiple Re-entrant Flowlines – MRF

Notations used in the rest of the chapter are given before formal definition of

multiple re-entrant flowlines considered herein. We widen the notions of preset and

postset, defined in Definition 4.1.3, to resources in R and jobs in J as follows: for a

given logical state vector component xi we define a preset of xi, denoted •xi, as a set

of resources and jobs that participate in the prerequisite part of rule xi; a postset of

xi, denoted xi•, is a set of resources and jobs that participate in the consequent part

of rule xi. One can obtain the preset of xi as () ()
i i

d d
i x xx sup sup• = ∪r v , where

i

d
xr and

i

d
xv are binary vector equivalents of resources and jobs that contribute in the

prerequisite part of rule xi. Likewise, () ()
i i

d d
i x xx sup sup• = ∪r v . The above

definitions of pre and postsets are extended to the set of rules Ω ={x1, x2,…, xk},

where •Ω = •x1∪•x2∪…∪•xk, and Ω• = x1•∪x2•∪…∪xk•.
A preset of resource ri, denoted •ri, is defined as a set of all rules that release ri,

while a postset ri• is defined as a set of all rules in which ri contributes as a

prerequisite. Hence, ()
i

d
i rr sup• = x and ()

i

d
i rr sup• = x . Equivalently,

()k
i

k d
i JJ sup• = x and ()k

i

k d
i JJ sup• = x . Given a set Ψ that consists of both

resources and jobs, we have ()dsup ΨΨ• = x and ()dsup ΨΨ • = x .

For the system studied in Example 3.2.1 one can find that •x2 = {R, MAP} with

[]
2

T
0 0 0 1d

x =r and []
2

T
1 0 0 0 0d

x =v , while x2• = {MA, RP1} with

[]
2

T
1 0 0 0d

x =r and []
2

T
0 1 0 0 0d

x =v . If resource R is considered,

then •R = {x3, x6}, R• = {x2, x5}, []T0 0 1 0 0 1d
R =x ,

 Manufacturing Systems Structural Properties in Matrix Form 149

[]T0 1 0 0 1 0d
R =x . For Ψ = {BP, MB} one has •Ψ = {x3, x5} and Ψ• =

{x4}.

The concept of pre and postsets is essential in the analysis of system structural

properties and the design of stable dispatching strategies. A formal definition of the

MRF class of multiple re-entrant flowlines follows (recall that P = R ∪ J is a set of

all resource and jobs in the system).

Definition 5.1.1 (multiple re-entrant flowlines – class MRF): MRF is the class of

multipart re-entrant flowline systems with the following properties [10]:

i) ∀p∈P, •p ∩ p• ≠ {∅}

ii) ∀xin, xin• ∩ R = {∅} and ∀xout, •xout ∩ R = {∅}

iii) ∀ k
iJ ∈J, R(k

iJ) =1 and R(k
iJ) ≠ R(1

k
iJ +)

iv) ∀ k
iJ ∈J, k

iJ • =1

v) ∀xi, • xi ∩ J 1

vi) ∃ r∈R, J(r) >1

In other words, in MRF it is not allowed for an operation or resource to

participate in the prerequisite and consequent part of the same rule (i). A rule,

denoted xin, that has an input operation in the IF part cannot have resource release

in the THEN part, and a rule, denoted xout, that has output operation in the THEN

part cannot have resource in the IF part (ii). Statement (iii) in Definition 5.1.1

points out that each operation in the system requires one and only one resource

with no two consecutive jobs using the same resource. Furthermore, there are no

choice jobs (iv) and no assembly jobs (v). Item (vi) asserts that there are shared

resources in the system. Obviously in MRF systems, for any r∈R, J(r) = r•• ∩ J =

••r ∩ J and R(k
iJ) = •• k

iJ ∩ R = k
iJ •• ∩ R.

Subsequent sections of this chapter are dedicated to the analysis of structural

properties of MRF systems. Before we proceed, let us repeat the assumptions

already stated in Chapter 3:

No pre-emption – once assigned, a resource cannot be removed from a job until

it is completed.

Mutual exclusion – a single resource can be used for only one job at a time.

Hold while waiting – a process holds the resources already allocated to it until

it has all the resources required to perform a job.

No machine failures.

150 Manufacturing Systems Control Design

5.1.1 Circular Waits in MRF Systems

For a class of MRF systems, having in mind the above definition and assumptions,

deadlock can occur only if there is a circular wait relation (CW) among the

resources [12]. Circular wait relations are ubiquitous in re-entrant flowlines and in

themselves do not present a problem. However, if a CW develops into circular
blocking, then one has a deadlock. CWs are key structures in MRF and

determination of deadlock avoidance strategies starts with their allocation within

the system. In this section we present a digraph matrix procedure to identify all

CWs present in an MRF. The following are the formal definitions.

Definition 5.1.1 (wait relation): Given a set of resources R, for any two resources

ri, rj ∈R, ri is said to wait for rj, denoted ri→rj, if the availability of rj is an

immediate requirement to release ri, or equivalently, if there exists at least one rule

xk ∈ •ri∩ rj•.

The wait relation is similar to the notion of upstream and downstream nodes

defined in Definition 4.1.3.

Definition 5.1.2 (circular wait): Circular wait among resources is a set of resources

ra, rb,…rw, with wait relations among them such that ra→ rb→…→rw, and rw→ ra.

Evidently, a circular wait corresponds to the cyclic path in the graph theory. For

MRF systems circular waits are associated with shared resources, which is

affirmed in the following lemma.

Lemma 5.1.1 (circular wait contains shared resource): In the MRF system a

circular wait C contains at least one shared resource.

Proof:
Let C={r1, r2 …, rq}, with r1 = rq, a circular wait in MRF. Assume there is no

shared resource. Then J(ri) =1, ∀ i. Let the timing sequence of jobs performed by
resources in C be sC =((J(r1),t1), (J(r2),t2),…, (J(rq),tq)). Then job J(r1) occurs prior
to job J(rq) which is impossible as J(r1)= J(rq) because r1 is a nonshared resource.

♦

It should be noted that Lemma 5.1.1 is unidirectional, i.e. having a shared

resource in MRF does not imply the existence of circular wait.

Definition 5.1.3 (simple circular wait): Simple circular wait (sCW), is such that,

for some appropriate relabeling, one has r1→ r2→...→ rq, with ri≠ rj for i≠j.

The above definition states that only one occurrence of a particular resource is

allowed in simple circular wait. The importance of sCW will become clear when

we introduce key resources and irregular systems.

 Manufacturing Systems Structural Properties in Matrix Form 151

According to definition, the release of resource involved in a wait relation is

stipulated with the availability of other resources. Since releases and requirements

of resources are described with system matrices, as a first step in the determination

of simple CWs we use these matrices to identify wait relations among resources,

which are given as

()TW r r= ∆G S F (5.1)

Operations in Equation (5.1) are carried out in and/or algebra. As both Sr and Fr

are binary matrices, the wait relation matrix GW actually corresponds to the

adjacency matrix of a graph that is composed of nodes representing resources

connected with arcs that represent wait relations. We call this graph the wait
relation graph. An element of GW is given by

jiw ik kjk
g s f∇= ∧ . As defined, matrix

Sr has element sik = 1 if and only if rule xk∈ •ri. Matrix Fr has element fkj = 1 if and

only if rule xk ∈ rj•. Thus 1
jiwg = if and only if there exists a rule xk ∈ •ri∩ rj•,

which is equivalent to ri→rj, i.e. an entry “1” in position
jiwg corresponds with an

arc from resource ri to resource rj.

For the system studied in Example 3.2.1 the wait relation matrix is calculated as

()

MA MB B R

MA

MBT

W r r
B

R

1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 0 0 1

0 0 1 0 0 1 0 0 0 1 1 1 0 0

0 0 0 0

T

∆= = =G S F

From this result we can read four wait relations: MA → R, MB → R, B → MB,

and R → B. A corresponding wait relation graph is shown in Figure 5.1.

Figure 5.1. A wait relation graph of the system in Example 3.2.1

152 Manufacturing Systems Control Design

Having determined the wait relation matrix, the procedure we follow in

identification of sCW is the string composition, defined and analyzed in Section

4.2. First, a wait relation matrix G is transformed into string matrix S. Then, for

each power of S diagonal elements are identified, representing simple CWs. The

question is how far we should go with powers of S? We showed in Section 4.2. that

when the graph has n nodes, the nth composition gives a cycle that includes all

nodes (if one exists). Hence, the string composition should be completed when the

power of S is equal to the number of resources in the system. However, that might

give an incorrect result, since the system could have a so-called cyclic CW (CCW),

i.e. a CW that is composed of two or more CWs.

This situation is demonstrated in Figure 5.2. A wait relation graph consists of 4

resources, thus one should calculate S2, S
3 and S4 in order to get CWs. A string

composition reveals two CWs: MA → R and MB → R→ B. Nevertheless, there

exists a third CW composed of these two: MB → R→ MA → R → B that remains

hidden.

Figure 5.2. A wait relation graph with cyclic circular wait

Cyclic CWs are important because common shared resources among CWs might

compose particular structures that must be considered in deadlock-free dispatching

strategy design. Thus, the entire set of the system CWs should include the simple

CWs plus cyclic CWs composed of unions of nondisjoint simple CWs.

Let us assume that the set of resources Ci = {ra, rb, … rm}, Ci ⊂ R, is a CW.

Then, a binary vector ci corresponding to circular wait Ci is defined as sup(ci) = Ci.

In addition, the binary vector csi that corresponds to shared resources in Ci is

determined as sup(csi) = Ci ∩ Rs. For the wait relation graph depicted in Figure 5.1

one has C = {MB, B, R}, c = [0 1 1 1]T, and cs = [0 0 0 1]T. Given an MS, its

circular wait matrix C is composed of columns that represent circular waits

vectors, that is, an entry of “1” on the (i,j) position means that resource i is

included in CW j. Equivalently, matrix Cs is composed of binary vectors csi.

In Figure 5.3, we show the MATLAB
® code that calculates all CWs from the sets

of simple CWs; it uses a Gurel algorithm from [13]. An input into the algorithm is

matrix C obtained by string composition, containing simple CWs. As an output

from the algorithm, we attain the new matrix C containing all CWs in the system,

and matrix ζ that provides the set of composed CWs from unions of simple CWs

 Manufacturing Systems Structural Properties in Matrix Form 153

comprised in columns of the input matrix C. An entry “1” on ζij means that a

simple CW i is included in the composed CW j.

Example 5.1.1 (circular waits in MRF)

We consider the manufacturing system depicted in Figure 5.4. Two part types, A

and B, are processed in the workcell that consists of four machines and an

automated guided vehicle. Part A visits resources in the following order: AGV,

M4, M1, AGV, while part B path is: AGV, M2, AGV, M3, M2. Clearly, AGV and

M2 are shared resources. The resource set and job set are defined as R = {M1, M2,

M3, M4, R} and J = {AP1, M4P, M1P, AP2, AP3, M2P1, AP4, M3P, M2P2}.

Figure 5.3. MATLAB
® code for calculation of circular waits

154 Manufacturing Systems Control Design

part A in

part A out

M4

M1

AGV

M2
part B in

part B out

M3

Figure 5.4. A manufacturing system from Example 5.1.1

The workcell can be described with 11 rules (since our purpose is to

demonstrate circular waits calculation, herein we do not elaborate on the evaluation

of the matrix model). From the system layout and parts paths we determine

matrices Sr and Fr, which have the following form

M1

M2

,M3r r

M4

AGV

0 0 0 0 1

0 0 0 1 0

1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

= =S F

 Manufacturing Systems Structural Properties in Matrix Form 155

According to Equation (5.1), a wait relation matrix is given as

M1

M2

M3W

M4

AGV

0 0 0 1 0

0 0 1 0 1

0 0 0 0 1

0 0 0 0 1

1 1 0 0 0

=G

with the corresponding wait relation graph shown in Figure 5.5.

Figure 5.5. A wait relation graph of the workcell shown in Figure 5.4

Three simple CWs can be recognized from the graph: M2 → AGV, M4 → M1

→ AGV, M3 → M2 → AGV. As a result of string composition we get the circular

wait matrix

1 2 3

0 1 0

1 0 1

0 0 1

0 1 0

1 1 1

=

c c c

C

Execution of the algorithm given in Figure 5.3 reveals all CWs in the system

1

2

3

1 2 3 4 5

1 2 3 4 5
0 1 0 1 1

1 0 0 1 01 0 1 1 1

, 0 1 0 1 10 0 1 0 1

0 0 1 0 10 1 0 1 1

1 1 1 1 1

= =

c c c c c

c c c c c

c

c

c

C

156 Manufacturing Systems Control Design

From the newly obtained matrix C one can find that the system has five CWs,

three simple and two cyclic. According to matrix ζ, C4={M1, M2, M4, AGV} is

composed of C1 and C2, while C5={M1, M2, M3, M4, AGV} is composed of C2

and C3. Projections of circular waits onto the set of shared resources are cs1 = cs3 =

cs4 = cs5 = [0 1 0 0 1]T, and cs2 = [0 0 0 0 1]T.

♦

5.1.2 Resource Loops in MRF Systems

In our previous discussions it has been pointed out that inappropriate assignment of

jobs could lead an MS into irregular states. A first step toward solution of the

dispatching problem is determination of circular waits. In this section we analyze

these structures in more detail and relate them with job set J.

 If we consider nonshared resource rns, then it can be in one of two states, “idle”

or “operational”. The supervisor’s task is to set the resource in one of these two

states, i.e. from the controller point of view resource rns is a binary loop. The same

is true for shared resource rs, with one difference only; rs can be in one of three or

more states, as it has more than one job to perform. Again, the supervisor selects

one of several shared resource states that swap inside the loop. Therefore, resource

loop L(r), defined in Definition 3.1.1, is an important MS structure, especially

when it belongs to the resource involved in CW.

In order to find a binary vector p, which is the projection of the resource loop

onto resource and job sets, let us recall the recursive matrix model described in

Section 3.2.4, particularly Equations (3.9) and (3.10). Fulfillment of a rules change

state of job vector according to
T

v v ()k− ⋅S F x , whereas the state of the resource

vector is changed by term
T

r r ()k− ⋅S F x . Since MRF systems are composed of

resource loops, any variation in job vector should be balanced by a corresponding

change in resource vector [13], that is

[]T T

v v r r v r 0− + − = = ⋅ =⋅ ⋅ ⋅
v

S F v S F r W W W p
r

(5.2)

or equivalently

v r= −⋅ ⋅W v W r (5.3)

 In order to construct a special left inverse of Wv, required for solving this

equation for v, we should modify the system matrices in the following way: delete

rows of Fv and Fr and delete columns of Sv and Sr that correspond to the rules with

output operations in the consequent part. Let us denote these new matrices as

v r v
ˆˆ ˆ, ,F F S and rŜ . Then

 Manufacturing Systems Structural Properties in Matrix Form 157

1

v r
ˆ ˆ−= − ⋅ ⋅v W W r (5.4)

where
T

v v v
ˆˆ ˆ= −W S F and ˆˆ ˆT

r r r= −W S F .

Deleting rows of Fv and Sv makes matrix vŴ square. This is allowed, as the

deleted rows of Wv are linear combinations of the remaining rows. One can see

from the structure of vŴ that its inverse exists: according to our discussion on the

special structure of the system matrices (causal ordering of jobs), vŴ is a block

diagonal matrix, with each diagonal block corresponding to one part path and

having a lower triangular form. Binary vectors pi, representing resource loops, can

be obtained from Equation (5.4) for r = ei, i = 1, 2, …, n, where ei is the the ith

column of n×n identity matrix I, and n is the number of resources. Finally, a

resource-loops matrix P, with columns formed of resource-loop vectors pi, is

calculated as

T 1 T

v v r r
ˆ ˆˆ ˆ() ()−− −

=
− ⋅S F S F

P
I

(5.5)

To confirm the described procedure we consider the system shown in Figure

3.2. Its modified system matrices and corresponding vŴ and rŴ are given below

MAP RP1 BP MBP RP2 MA MB B R

v r

v r

0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 1

ˆ ˆ,0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1

1 0 0 0 0
0 1 0 0 0

0 1 0 0 0
0 0 0 0 1

ˆ ˆ,0 0 1 0 0
0 0 0 1 0

0 0 0 1 0
0 0 1 0 0

0 0 0 0 1

= =

= =

F F

S S

v

r

1 0 0 0 0

1 1 0 0 0

ˆ 0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0

1 0 0 1

ˆ 0 0 1 1

0 1 1 0

0 1 0 1

−
= −

−
−

−
−

= −
−

−

W

W

By applying Equations (5.4) and (5.5) we can calculate the resource-loops

matrix

158 Manufacturing Systems Control Design

MAP RP1 BP MBP RP2 MA MB B R

1

2

3

4

1 0 0 0
1 0 0 0 0 1 0 0 0

0 0 0 1
0 0 0 1 0 0 1 0 0

0 0 1 0
0 0 1 0 0 0 0 1 0

0 1 0 0
0 1 0 0 1 0 0 0 1

0 0 0 1

T

= =

p

p

p

p

v r P

According to Figure 3.2 and the system description, the system jobs J = {MAP,

RP1, BP, RP2, MBP} and resources R = {MA, MB, B, R} outline four resource

loops; L(MA)={MA, MAP}, L(MB)={MB, MBP}, L(B)={B, BP} and L(R)={R,

RP1, RP2}, which is confirmed by the obtained matrix P.

5.1.3 Siphons and Traps in MRF Systems

Circular wait is a structural property of the system. As such it is the result of a

system layout design. On the other hand circular blocking is a phenomenon caused

by unsuitable assignment of tasks performed by resources involved in circular wait.

Now we introduce MS structures that connect circular wait and circular blocking.

Definition 5.1.4 (a siphon): A siphon is a set S ⊂ P such that

•S ⊂ S•

The notion of siphon is well known in the Petri-net theory, in particular its

relation with a deadlock analysis. We shall use a siphon for the same purpose, but

in the context of matrix-based MS supervisory design. Having in mind that P = R
∪ J the above definition of a siphon emphasizes that a set of resources and/or jobs

is a siphon if the set of rules in which they participate in the subsequent part is a

subset of rules in which they appear in the prerequisite part.

Generally, a siphon is defined as •S ⊆ S•. This definition permits a resource

loop to be a part of a siphon. In the analysis of deadlock we are concerned with a

siphon in which •S is a strict subset of S• as defined in Definition 5.1.4. From now

on this type of siphon is called a critical siphon.

A trap characterizes the MS structural property that is in some way the inverse

of a siphon.

Definition 5.1.5 (a trap): A trap is a set Q ⊂ P such that

Q• ⊂ •Q

In other words, a set of resources and/or jobs is a trap if the set of rules in

which they participate in the prerequisite part is a subset of rules in which they

appear in the consequent part. Definition 5.1.5 stands for a so-called critical trap
(as in the case of a siphon, a trap is generally defined as Q• ⊆ •Q).

 Manufacturing Systems Structural Properties in Matrix Form 159

The importance of a critical siphon in MS analysis becomes clear when we

closely look at its definition through the matrix-based formalism. First, we define a

siphon vector s as sup(s) = S, where S is assumed to be a critical siphon. Then, let

us suppose that for given s one has T
S () () 0m k k == ⋅s m , that is, all components of

system vector m, that correspond to resources and/or jobs belonging to critical

siphon S, attain the value 0 at some instant k (it should be noted that in structural

analysis the system vector represents an autonomous system, i.e. m = [vc rc]
T). In

that case rules that have those components in the prerequisite part (S•) cannot be

executed. On the other hand, since S is a critical siphon, rules that release resources

and start jobs in S (•S), according to definition, are a subset of those that have not

been activated. Therefore, once all components of system vector m that correspond
to resources and/or jobs belonging to critical siphon S, attain the value 0 (we say
that S is empty) they will remain 0 indefinitely. This is an essential property of a

critical siphon. Namely, an empty critical siphon remains empty for ever.

The question is in what way the fact that part of the system resources is not

available for an indefinite period could influence other resources and jobs in the

system? A deadlock situation, demonstrated in Example 3.3.1, together with the

above discussion on the critical siphon, suggest that a circular wait is somehow

related to the critical siphon. Their connection is additionally confirmed with the

graphs shown in Figure 3.8 where the components of the system vector

corresponding to resources involved in circular wait attained the value 0 once

circular blocking occurred. To maintain the correlation between a CW and a

critical siphon straightforwardly we shall extend some already-used notations.

These refinements are needed later for the definition and development of MS

structures in matrix form.

The number of idle resources in CW, Ci in sample k, is calculated as
T

c() ()
iC im k k= ⋅c r , i.e. by multiplication of a circular wait vector and an idle

resource vector. The value of ()
iCm k , called the content of CW, is changing in

accordance with rc(k), which is driven by Equation (3.12), i.e. by the set of rules.

We identify two sets of rules related with each CW C.

Definition 5.1.6 (CW adding rules): For a given CW C a set of CW adding rules is

defined as \CX C C+ = • • .

Definition 5.1.7 (CW clearing rules): For a given CW C a set of CW clearing rules
is defined as \CX C C− = • • .

The rules that belong to
iCX + increase, while rules in

iCX − decrease ()
iCm k

each time they are executed. According to the notation introduced at the beginning

of Section 5.1, the preset and postset of CW C can be written in vector form as

160 Manufacturing Systems Control Design

T T

r

T T T

r

() ()

() ()

d
C

d
C

C sup sup

C sup sup

∆

∆

• = =

• = =

x c S

x c F
(5.6)

By using Equation (5.6) one is able to determine a vector representation of CW

adding and CW clearing rules,

(()

(()

)

)

d d d
C C C C C

d d d
C C C C C

X sup sup

X sup sup

+ +

− −

= =

= =

− ∧

− ∧

x x x x

x x x x
(5.7)

where operation a∧b represents an element-by-element logical AND operation

between vectors a and b. Note that for two binary vectors a and b with support sets

A and B one has A \ B ()∧ = ∧ − = − ∧a b a 1 b a a b . When there is more than

one CW in the system, one has matrices C
+

X and C
−

X formed by vectors C
+

x and C
−

x

as their rows.

Having defined circular wait adding and clearing rules, we continue our

investigation of the correlation between a CW and a critical siphon. Let us first

check if CW in MRF is a critical siphon. We have to show that •C ⊂ C•. It is

known that for every ri∈C, there exists rj∈C, i ≠ j, such that •ri∩ rj• ≠ ∅. So, if ri
∈C∩Rns, then •ri =1, and there exists some rj ∈C, i ≠ j, such that •ri ∈{rj•}. If,

on the other hand ri ∈C∩Rs (in Lemma 5.1.1 we proved that each CW in MRF

contains a shared resource), then •ri >1. Hence, there exists some rule(s) xk ∈ •ri
such that xk ∉{rj•} for any rj ∈C, i ≠ j. In other words, there are rules that release

resources in C and do not have any resource from C in prerequisite part. Therefore,

•C ⊄ C•, i.e. circular wait is not a critical siphon. The other way to this conclusion

follows directly from Equation (5.6). Due to the specific structure of matrices Sr

and Fr, imposed by the MRF system definition, some components of vector
d d
C C−x x are positive, which means that •C ⊄ C•.

Evidently, some additional elements are needed in order to create a critical

siphon around CW. That is, Z ∪ C = S, where Z is a set of the system components

in the subsequent part of rules C• that at the same time belong to the prerequisite

part of rules that release resources in C and do not have any resource from C in the

prerequisite part. Again, the specific characteristics of MRF systems help in

identification of set Z elements. First, we show that set Z does not comprise any

resource. Let rule xk ∈ •ri be such that xk ∉{rj•} for any rj ∈C. If we assume that

there exists resource rk ∈ Z such that •ri ∩ rk• ≠ ∅, then according to the CW

definition this resource should belong to C that contradicts the assumption that rk ∈
Z. Therefore, set Z contains only system jobs.

Secondly, let us determine which jobs should be included in a set Z to form

siphon S. For each rule xk ∈ •ri such that xk ∉{rj•} for any rj∈C we have to find a

job Jk such that xk ∈ Jk•. A set of jobs that satisfies this requirement is defined

below.

 Manufacturing Systems Structural Properties in Matrix Form 161

Definition 5.1.8 (siphon job set): For a given CW C a siphon job set is defined as

S () () CJ C J C X += ∩• .

It is worth noting that all the jobs in JS(C) are performed by the shared

resources contained in C. In a matrix form a siphon job set is found as a support of

a siphon job vector vSC, obtained by the following relation

T T

S SC v() () ()CJ C sup sup +
∆= =v x F (5.8)

A siphon job vector can be determined directly from the system matrices by

including Equations (5.6) and (5.7) in Equation (5.8)

T T T

SC v r s v r∆ ∆ ∆ ∆= ∧v F S c F F c (5.9)

Let us take a closer look at the structure of vsc. Matrix element Sr(i,k) = 1 if and

only if rule xk∈•ri. Fv(k,j) = 1 if and only if xk∈vj•. Therefore,
T T

v r (,)i j∆F S = 1 if

and only if there exists some rule x∈•ri∩vj•. Postmultiplication by cs selects only

the shared resources in C. Hence,
T T

v r s∆ ∆F S c corresponds to the set

() (),
i

i
r C R

J C J r
∈ ∩

= i.e. the set of all jobs performed by the shared resources in C.

Matrix element
T

v r (,)i j∆F F = 1 if and only if there exists some rule x∈ri•∩vj•.

Post-multiplication by c selects only resources in C. Therefore
T

v r∆ ∆F F c computes

jobs that participate in the prerequisite part of rules that also have resources in C as

prerequisites. The element-by-element matrix “and” operation between
T T

v r s∆ ∆F S c

and negated
T

v r∆ ∆F F c then selects jobs of shared resources in C that participate in

the prerequisite part of rules that have no resources in C as prerequisites, namely

set JS(C).

Therefore, a critical siphon of CW C is defined as

S ()CS C J C= ∪ (5.10)

or in vector form

SC

C =
v

s
c

(5.11)

As a result, we see that each CW in the MRF system is associated with its

critical siphon through the siphon job set. It is important to note from Equation

162 Manufacturing Systems Control Design

(5.11) that occupation of all resources in CW C, i.e. mC(k) = 0, does not necessarily

mean that the critical siphon is empty since it might happen that T
SC c () 0k⋅ ≠v v .

On the contrary, an increase of the work-in-progress, which is the main purpose of

most dispatching strategies, requires to keep mC(k) close to 0 most of the time. A

problem arises when jobs performed by the resources in CW are dispatched so that
T

SC c () 0k⋅ =v v when mC(k) becomes 0. In that case the critical siphon becomes

empty. Therefore, execution of the afore-mentioned CW adding and CW clearing

rules should be further studied since it changes ()
CSm k not only by changing mC(k)

but also by assigning jobs in J(C). In keeping track of the ()
CSm k it is useful to

regard each CW C as a distribution center, with mC(k) defined as its kanban
content, and jobs in J(C) as receivers of services provided by the distribution

center.

To provide a deeper insight into the structure of jobs associated with CW, in

forthcoming definitions a job set J(C) is additionally partitioned into subsets. Each

definition is followed by the corresponding relation in a vector form.

Definition 5.1.9 (trap job set): For a given CW C a trap job set is defined as

Q () () CJ C J C X −= ∩ • .

T T T

Q QC v

T T T

QC v r s v r

() () ()CJ C sup sup −
∆

∆ ∆ ∆ ∆

= =

= ∧

v x S

v F F c F S c

(5.12)

Hence, a critical trap of CW C is given as

Q ()CQ C J C= ∪ (5.13)

or in vector form

QC

C =
v

q
c

(5.14)

Opposite to the siphon, the main property of a trap is that once any of the
components of system vector m that correspond to resources and/or jobs belonging
to critical trap Q attain a value >0, a trap content will remain >0 indefinitely. In

other words, the trap content cannot be cleared.

Generally in MRF systems a job could belong to both a siphon job set and a

trap job set. Their differentiation is made in the next three definitions.

Definition 5.1.10 (siphon-trap job set): For a given CW C a siphon-trap job set is
defined as SQ S Q() () ()J C J C J C= ∩ .

 Manufacturing Systems Structural Properties in Matrix Form 163

SQ SQC SC QC() () ()J C sup sup= = ∧v v v (5.15)

Definition 5.1.11 (strictly siphon job set): For a given CW C a strictly siphon job
set is defined as 0S S SQ() () \ ()J C J C J C= .

0S 0SC SC SC SQC() () ()J C sup sup= = ∧−v v v v (5.16)

Definition 5.1.12 (strictly trap job set): For a given CW C a strictly trap job set is

defined as 0Q Q SQ() () \ ()J C J C J C= .

0Q 0QC QC QC SQC() () ()J C sup sup= = ∧−v v v v (5.17)

A particularly important job set, as far as a siphon is concerned, is one that

comprises all jobs whose assignment does not change ()
CSm k .

Definition 5.1.13 (neutral job set): For a given CW C a neutral job set is defined

as N 0S 0Q() () \ () ()J C J C J C J C= ∪ .

N NC C C 0QC 0SC() () ()J C sup sup= = ∧− +v v v v v (5.18)

Definition 5.1.14 (strictly neutral job set): For a given CW C a strictly neutral job
set is defined as 0N N SQ() () \ ()J C J C J C= .

0N 0NC NC NC SQC() () ()J C sup sup= = ∧−v v v v (5.19)

Having partitioned jobs performed by resources in CW, one is able to

determine in which way execution of CW adding and CW clearing rules change

their content. However, as we showed, CW is not a siphon, hence, rules that

increase or decrease the CW content do not necessarily increase or decrease the

content of the associated siphon. Therefore, the other set of rules, we call them

precedent rules and posterior rules, are those that need to be controlled in order to

maintain the siphon content on the desired level.

164 Manufacturing Systems Control Design

Definition 5.1.15 (precedent rules): For a given CW C and associated siphon SC a

set of precedent rules is defined as \
CS C CX S S− = • • .

Definition 5.1.16 (posterior rules): For a given CW C and associated siphon SC a

set of posterior rules is defined as \
CS C CX S S+ = • • .

Execution of any rule that belongs to
CSX + increases, while execution of

CSx X −∈

decreases the siphon content. Rules that do not change ()
CSm k are fed into a so-

called set of neutral rules 0

CSX . In the next section we make an observation that is

significant in devising deadlock-free job-dispatching policies.

5.1.4 Critical Subsystems in MRF Systems

Manipulation with the sets defined previously gives the following relation

SQ 0N 0S 0Q() () () () ()J C J C J C J C J C= ∪ ∪ ∪ (5.20)

It should be noted that sets on the right-hand side of Equation (5.20) are disjoint.

By using Definition 5.1.11 the above equation attains the following form

S 0() () ()J C J C J C= ∪ (5.21)

where 0 0N 0Q() () ()J C J C J C= ∪ is a so-called critical subsystem, represented in

vector form as

0 0C 0NC 0QC() ())J C sup sup= = +v v v (5.22)

As a critical subsystem and a siphon job set are disjoint sets, Equation (5.21)

actually means that the CW content, once distributed, is held by jobs in either JS(C)

or J0(C). Since

() ()
r C

C J C L r
∈

∪ = ∪ (5.23)

by including Equations (5.10) and (5.21) in Equation (5.23) one obtains

0 () ()C r C
S J C L r

∈
∪ = ∪ (5.24)

 Manufacturing Systems Structural Properties in Matrix Form 165

As we show later, the above equation is essential in the siphon content

calculation. Also, it allows us to determine the critical subsystem directly from the

critical siphon,

0C

.C
n

∆= ∧
v

P c s
0

(5.25)

Operation ∆P c computes resource loops covering the critical siphon SC. The

element-by-element “and” of this with negated critical siphon vector sC translates

as subtracting out from set sup(∆P c) elements of the critical siphon SC, yielding

the set J0(C). Vector 0n is a null vector with the number of elements equal to the

number of resources.

In order to implement efficient real-time control of an MS, we need to arrange

the attained vectors in matrices. This can be done easily by positioning vectors in

columns of the corresponding matrix. For example, such a critical siphon matrix SC

is obtained as SC = [sc1 sc2 … scw], where sci, i=1,w, are vectors corresponding to

critical siphons in the system.

Also, it should be noted that the structural properties do not depend on the input

and output matrices Fu and Sy. Furthermore, due to the specific construction of

MRF systems, all MS structures defined so far in this chapter can be determined in

a different way, by using different relations.

Example 5.1.2 (critical siphons and critical subsystems in MRF)

As an example of critical siphons and critical subsystems calculation we use the

system shown in Figure 5.4. Matrices Fr and Sr are already given in Example 5.1.1,

here we provide Fv and Sv

v v

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

,0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

= =F S

0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

166 Manufacturing Systems Control Design

Let us recall circular waits vectors c and cs, calculated in Example 5.1.1,

1 2 3 4 5 1 2 3 4 5

0 1 0 1 1 0 0 0 0 0

1 0 1 1 1 1 0 1 1 1

,0 0 1 0 1 0 0 0 0 0

0 1 0 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

s s s s s

s= =

c c c c c c c c c c

C C

At the beginning we determine the siphon job vectors from Equation (5.9). For

C1 we have

[]

[]

TT T

v r 1

TT

v r 1

1 0 0 1 1 1 1 0 1

1 1 0 1 0 0 1 0 1

s∆ ∆

∆ ∆

=

=

F S c

F F c

which yields

[]TSC1 1 0 0 1 0 0 1 0 1=v

i.e. a critical siphon is SC1={AP1, AP2, AP4, M2P2, M2, R}.

For other CWs in the system the siphon job vector can be calculated as well,

[]
[]
[]
[]

T

SC2

T

SC3

T

SC4

T

SC5

0 0 0 1 1 0 1 0 0

1 0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0 1

0 0 0 1 0 0 0 0 1

=

=

=

=

v

v

v

v

As a result, the critical siphon matrix SC is given below

T

C

1 0 0 1 0 0 1 0 1 0 1 0 0 1

0 0 0 1 1 0 1 0 0 1 0 0 1 1

1 0 0 1 0 0 0 0 1 0 1 1 0 1

0 0 0 1 0 0 1 0 1 1 1 0 1 1

0 0 0 1 0 0 0 0 1 1 1 1 1 1

=S

 Manufacturing Systems Structural Properties in Matrix Form 167

Physical interpretation of matrix SC can be done if one recalls a set of resources

and a set of jobs defined in Example 5.1.1; R = {M1, M2, M3, M4, R} and J =

{AP1, M4P, M1P, AP2, AP3, M2P1, AP4, M3P, M2P2}. Let us check what

happens if the content of SC5, which is T
C5 ()k⋅s m , becomes zero. This would mean

that all resources, machines and AGV, perform some operations. Since AP2 is the

siphon element, AGV is occupied with either AP1 or AP3. Also, M2P2 is the

siphon element, therefore, M2 performs M2P1. If we assume that AGV is occupied

with AP1 (carrying part A in M4), then resources are in circular blocking since all

machines are occupied and cannot be released because AGV tries to push a new

part into an already full system. The assumption that AGV is occupied with AP3

(carrying part B in M2), results in the same conclusion. Other critical siphons can

be checked in a similar way.

Next, we calculate critical subsystems by using Equation (5.25) (the

determination of other job sets we leave to the reader for exercise). First, resource-

loop matrix P has to be determined from Equation (5.5),

T
0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 1 1 0 1 0 0 0 0 0 0 1

=P

For C1 one has

[]

[]
[]

T0C1

1 C1

T

T

1 0 0 1 1 1 1 0 1 0 1 0 0 1

0 1 1 0 1 1 0 1 0 1 0 1 1 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0

n

∆= ∧ =

∧

=

v
P c s

0

which gives

[]T0C1 0 0 0 0 1 1 0 0 0=v

Hence, a critical subsystem of CW C1 is J0(C1)={AP3, M2P1}. Now, if we

make a union of this result with SC1, then

{ }1 0 1() AP1, AP2, AP4, M2P2, M2, R, AP3, M2P1CS J C∪ =

which confirms the result specified in relation (5.24) since,

168 Manufacturing Systems Control Design

{ } { }() (M2) (R) M2P1, M2P2, M2 AP1, AP2, AP3, AP4, R
r C

L r L L
∈
∪ = ∪ = ∪

For other CWs, critical subsystems have the following form,

[]
[]
[]
[]

T

0C2

T

0C3

T

0C4

T

0C5

1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0

1 1 1 0 1 1 0 0 0

1 1 1 0 1 1 1 1 0

=

=

=

=

v

v

v

v

♦

Given Equation (5.24), the precedent and posterior rules can be redefined as

0 0

0 0

\ () \ ()

\ () \ ()

C

C

S C C

S C C

X S S J C J C

X S S J C J C

−

+

= • • = • •

= • • = • •
(5.26)

Clearly, an increase of a siphon content decreases the J0(C) content, and vice versa,

a decrease of a siphon content increases the J0(C) content. The precedent and

posterior rules are calculated from the system matrices as

T T T T T

0C v 0C v 0C v

T T T T T T

0C v 0C v 0C v

() ()

() ()

C C

C C

S S

S S

X sup sup

X sup sup

− −

+ +

∆ ∆ ∆

∆ ∆ ∆

= =

= =

− ∧

− ∧

x v S v S v F

x v F v S v F
(5.27)

Now, let us formalize our discussion by definition of circular blocking in MRF

systems.

Definition 5.1.17 (circular blocking): A CW C is said to be in circular blocking if

a) mC(k) = 0, and b) for each r ∈C if there exists J(r) such that vJ(r)(k) ≠ 0 (the

component of the job-completed vector corresponding to J(r) is not 0) then J(r)• ∈
C•.

The next theorem summarizes the results of analysis related to a circular

blocking and its relation with an empty siphon. It is one of the main results

presented herein.

Theorem 5.1.1 (circular blocking and empty siphon): Given a system of class

MRF, a circular wait C is in a circular blocking if and only if the critical siphon SC

is empty.

 Manufacturing Systems Structural Properties in Matrix Form 169

Proof:
Necessity:
Let C={r1, r2 …, rq}, with r1 = rq, be a circular wait in circular blocking, i.e.

mC(k) = 0, and for each r ∈ C, ∀J(r) if vJ(r)(k) ≠ 0 then J(r)• ∈ C•. Now suppose
that critical siphon SC is not empty. Then there exists J(r)∈ JS(C) such that vJ(r)(k)
≠ 0. By construction of SC, JS(C)• ∉ C•, i.e. J(r)• ∉ C• and therefore C is not in
circular blocking, which is a contradiction.

Sufficiency:
Let SC be empty. Since SC is a siphon, it will remain empty and therefore mC(k)

= 0 for any k. Obviously for any J(r) with vJ(r)(k) ≠ 0, it holds that J(r) ∉ JS(C).
Therefore J(r)∈ J0(C) and hence C is in a circular blocking.

♦

This result shows the way out of the quandary noted in MS analysis, where it

was realized that an empty content of CW was not necessarily a circular blocking:

as we already pointed out, in addition to checking that the CW content is empty, it

is necessary to check that the content of certain special jobs is also empty.

5.1.5 Key Resources and Irregular Systems in MRF

There is a specific structural condition in MRF systems that requires extreme care

in deadlock-avoidance dispatching. This condition is related to the so-called

second-level deadlock [11]. A basis for the existence of SLD is the presence of

critical resources, also known as bottlenecks [10] and key resources [9]. It should

be noted that bottleneck resources are referred to as the structural bottleneck

resources, not the well-known timed bottleneck resources.

Since later in this chapter we introduce a dispatching policy based on the one-

step-ahead prediction, it is important to note that in irregular systems a situation

may arise, which, though not a circular blocking in an immediate sense is

unavoidably going to end up as one within the next few sampling intervals. Even in

this situation the results presented so far hold, though a one-step-ahead deadlock-

avoidance policy cannot be implemented. Therefore, before a particular

dispatching policy is applied, one has to check if a given MRF system is irregular.

Key resources can be identified by analyzing interconnections of CWs and their

siphons, which is demonstrated in the text that follows where we use the system

matrices.

To confirm the existence of key resources in the system, we must determine the

presence of cyclic circular wait (CCW) loops. These structures specify a particular

sharing among circular waits, and are a requisite for the existence of key resources.

Specific structures are defined next in terms of precedent and posterior rules. In

order to identify whether the system has CCW loops, let Ci and Cj be two circular

waits with

and
Ci Cj Ci CjS S S SX X X X+ − − +≠ ∅ ≠ ∅∩ ∩ (5.28)

170 Manufacturing Systems Control Design

If this is the case, then there exists CCW={Ci, Cj}. The matrix test to find CCW

among all CWs in the system is

() ()CW

T
T T

C C C CS S S S
− + − +

∆ ∆= ∧X X X XC (5.29)

where
CS
+

X and
CS
−

X are matrices formed of vectors
CS
+

x and
CS
−

x , respectively.

When CCW = [0] the system is regular, otherwise an element CCW(i,j)=1

indicates that Ci and Cj form a CCW. Obviously, CCW is a symmetric matrix. The

rules that interconnect such CCWs are needed to determine key resources. We can

use matrix CCW and the precedent and posterior matrices
CS
−

X and
CS
+

X to identify

such rules,

()
()

CW

CW

C C

C C

CCW S S

CCW S S

− + −
∆

+ − +
∆

=

=

∧

∧

X X X

X X X

C

C
(5.30)

We call them cyclic precedent and cyclic posterior rules, respectively. The set

of key resources is determined as follows: let {Ci, Cj} be a CCW such that Ci ∩ Cj

= {rCCW}. If and
Ci Cj Ci CjS S CCW S S CCWX X r X X r+ − − +⊂ ⊂∩ • ∩ • , then {Ci, Cj} is

said to be a critical CCW and if rCCW is a single resource (not a resource pool), then

it is called a key resource (structural bottleneck resource [10]). We can proceed to

identify the critical resources using the following straightforward matrix formula

() ()r r

T T

CCW CCW CCW

+ −
∆ ∆= ∧R X XF F (5.31)

where matrix RCCW provides, for each CW, the corresponding vector of key

resources shared with other CWs in one or more CCW. If this matrix is zero, there

are no key resources in the system.

5.2 Free Choice Multiple Re-entrant Flowlines – FMRF

In this section we extend multiple re-entrant flowlines structural analysis on the

systems with jobs that do not have predetermined resources assigned. That is,

several resources might be capable and available to perform a specific job (or

operation from the set of operations needed to build a product). We call these

systems free-choice multiple re-entrant flowlines (FMRF). As in MRF systems,

dispatching policies should provide conflict- and deadlock-free activities of the

system. However, systems without predeterministic routing paths are much more

challenging than MRF systems and little work has been done, specifically in the

 Manufacturing Systems Structural Properties in Matrix Form 171

study of blocking phenomena. With the exception of [14] – [16] few other

deadlock-avoidance approaches for FMRF systems had been suggested.

In addition to the assumptions made at the beginning of Chapter 3, a general

class of FMRF systems has the following nonrestrictive capabilities:

• Some jobs have the option of being machined in a resource from a set of

resources (routing of jobs), and each resource might be used to machine

different jobs (i.e. shared resources),

• Job/part routings are NOT deterministic (statement iv) in Definition 5.1.1).

For each job that can be performed by more than one resource, there exists a
material handling buffer (routing resources) that routes parts. Its role in the FMRF

systems is very important, and it is explained in the next example.

A system that satisfies the FMRF assumptions is shown in Figure 5.6. The

system consists of 5 machining centers that are capable of performing tasks

required to make a final product, and 12 conveyers where semiproducts are placed

and then carried from machines to material handling buffers or vice versa. A job

sequence is defined as J = {J1, J2, J3}. Assignments of resources are given in Table

5.1.

As we can see, machine M1 is assigned to job J1, while machine M3 is capable

of performing two jobs J1 and J3, hence, this machine is a shared resource. What

differentiates this workcell from the systems discussed so far is the fact that a

particular job can be carried out by more than one resource. For example, three

resources, M1, M3 and M4 are able to perform job J1. Therefore, there are many

part routes that complete the required job sequence. We mention just a few of

them; M1→ M2→ M3, M1→ M2→ M5, M3→ M2→ M5, M4→ M4→ M5, and so on.

It is apparent that the description of all possible routes in the form of IF-THEN

rules would cause rules explosion. For example, the beginning of part processing

can be described with three rules:

IF B1 holds part AND M1 is ready THEN rule 1 is TRUE,

 IF rule 1 is TRUE THEN start job J1 in M1 AND release B1

IF B1 holds part AND M3 is ready THEN rule 2 is TRUE,

 IF rule 2 is TRUE THEN start job J1 in M3 AND release B1

IF B1 holds part AND M4 is ready THEN rule 3 is TRUE,

 IF rule 3 is TRUE THEN start job J1 in M4 AND release B1

Table 5.1. Resources assignmets in the system shown in Figure 5.6

M1 M2 M3 M4 M5

J1 ♦ ♦ ♦

J2 ♦ ♦

J3 ♦ ♦

172 Manufacturing Systems Control Design

M4

M1

M3

part in

M5

part out

B2

B1

M2

B3

part out

Figure 5.6. An example of a free-choice multiple re-entrant flowline

In order to prevent rule explosion material-handling buffers are included in

FMRF systems as some kind of crossroads where decisions regarding part routes

are made. Each job that can be performed by more than one resource has a

corresponding buffer. In our example B1, B2 and B3 execute the following tasks; B1

receives row parts upon their entrance into the system and directs them to the first

available machine that is able to complete job J1 (M1, M3, M4), B2 holds parts upon

completion of job J1 and routes them to the first vacant machine for job J2 (M2, M4)

to be finished, and B3 receives parts to be sent in one of the machines performing

J3 (M3, M5). Processed parts then leave the system.

Nondeterministic part routing has a serious impact on IF-THEN rules.

Specifically, each job that can be completed by more than one resource can be

started by more than one rule. For example, for J2 there exist two such rules,

IF B2 holds part AND M2 is ready THEN rule 1 is TRUE,

IF rule 1 is TRUE THEN start job J2 in M2 AND release B2

IF B2 holds part AND M4 is ready THEN rule 2 is TRUE,

IF rule 2 is TRUE THEN start job J2 in M4 AND release B2

What is important to note is that these two rules (as well as the three rules stated

previously) are in conflict, although a shared resource does not participate in their

prerequisite parts. A conflict is caused by free-choice, i.e. when both machines, M2

 Manufacturing Systems Structural Properties in Matrix Form 173

and M4, are ready, a part that is held by B2 “can choose” in which machine to be

processed. That is why Equation (3.24) cannot be used for determination of all

conflicting rules. Generally, if we denote a set of material handling buffers as B,

then conflicting rules can be obtained as B•∪Xd, where Xd is a set of rules

determined by Equation (3.24). Given that buffer B2 holds more than one part, the

above rules are not in conflict.

5.2.1 Structural Properties of FMRF

To be able to analyze properly FMRF systems, we needed to identify not only the

resources that compose each CW, but also the rules that link them. This will give

us specific information needed to locate critical siphons and critical subsystems

required for the construction of the deadlock policy for FMRF systems. For

instance, and related to connectivity between resources and rules, if we define (by

duality of GW)

()TWX r r= ∆G F S (5.32)

we will get a digraph of rules. Given GWX one can identify loops among rules by

using string algebra. However, by running independently the algorithm for GW and

GWX from the resulting rules CWs and resources CWs we might not be able to

identify which set of rules CWs correspond to which set of resources CWs. This is

why we need a general digraph wait relation matrix

r

W

r

=
S

G
F

0

0
(5.33)

which couples rules and resources. Then, if we use this digraph matrix with a string

algebra algorithm to find CWs, we will get both results by obtaining circular waits

of resources, denoted Cr , and circular waits of rules, denoted Cx, by obtaining the

coupled matrix

r

x

=
C

C
C

(5.34)

Each ith column from C contains resources from the ith CW (vector cri), which

accordingly corresponds to the ith CW of rules (vector cxi – although vector cxi is a

rule vector, we are not changing notation to x since CWs are denoted with the letter

c throughout the text). The dimensions of C are (n+m)×c, where c is the total

number of CWs, n is the number of resources, and m is the number of rules.

Execution of the algorithm given in Figure 5.3 calculates the final matrix C with

the corresponding matrix ζ, thus revealing all the CWs in the system.

174 Manufacturing Systems Control Design

It should be noted that for an FMRF system having a simple circular wait Cr,

which contains at least one resource b∈B, only one rule from •Jb and one rule

from Jb• participates in its corresponding Cx, where Jb is a buffer job.

For a given matrix C, we can find CW Cr (resources CW) adding and clearing

rules that have a slightly different form from those defined in Definitions 5.1.6. and

5.1.7,

r x

r x

\

\

C

C

X C C

X C C

+

−

= •

= •
(5.35)

The preset and postset of CW Cr are determined by the following equations

r

r

T T

r r r

T T T

r r r

() ()

() ()

d
C

d
C

C sup sup

C sup sup

∆

∆

• = =

• = =

x c S

x c F
(5.36)

Now we can write a vector representation of CW adding and clearing rules,

x

x

(()

(()

)

)

d d
C C C C

d d
C C C C

X sup sup

X sup sup

+ +

− −

= =

= =

− ∧

− ∧

x x x c

x x x c
(5.37)

In MRF analysis we used only these two categories for computation of CW jobs

and other structures. For FMRF systems adding and clearing rules are additionally

partitioned in neutral rules, N
C C CX X X+ −= ∩ , strictly adding rules,

0 \ N
C C CX X X+ += , and strictly clearing rules 0 \ N

C C CX X X− −= . In vector form they

can be calculated as;

0 0

0 0

(()

(()

(()

)

)

)

N N
C C C C

N
C C C C

N
C C C C

X sup sup

X sup sup

X sup sup

+ −

+ + +

− − −

= =

= =

= =

∧

−

−

x x x

x x x

x x x

(5.38)

As in the standard MRF, jobs performed by resources in CW play an essential

role in supervision of an FMRF system. Since the properties of all structures

related to the CW (siphons, traps, critical subsystems, etc.) were described in

previous subsections, here we skip explanations and give only final results.

A set of jobs performed by resources in CW C is defined as

r r

T T T T

v v() () () ()
d d

C C CJ C sup sup sup∆ ∆= = =v x S x F (5.39)

 Manufacturing Systems Structural Properties in Matrix Form 175

Having defined J(C) one is able to determine a siphon job set as

T T T

SC C x v() ()SJ C sup sup ∆= = ∧v v c F (5.40)

The key approach in siphon job set determination in FMRF systems is the same

as in the case of MRF. That is, one needs to calculate all the jobs satisfying the

existence of postset rules as adding rules of CW. However, the problem in FMRF

systems is that not all jobs contain unique postset rules, due to the incorporation of

the material-handling buffer set B into the system. Now, we can make two

remarks: first, all rules from Cx, corresponding to resource CW Cr, are not adding

rules. Secondly, all clearing rules from CW Cr have postset jobs from set J(C).

Therefore, by eliminating all preset jobs from Cx, and considering only those

intersecting set J(C), preset jobs from the adding rules set will be selected.

A trap job set in FMRF is defined as () ()0
Q x x() () \CJ C J C X C C−= ∩ • •∩• .

Comparing this equation with the one in Definition 5.1.9, one can notice similarity.

Specifically, the trap job set, JQ(C), in FMRF contains the same elements as in

MRF systems, excluding jobs Jbi for the case of routing resources bi are included in

C. In matrix form a trap job set is

() ()()
T

Q QC

T T
0 T 0 T T T T

v v x v x v

() ()

C C

J C sup

sup − −
∆ ∆ ∆ ∆

=

= − ∧ ∧

v

x S x S F Sc c
(5.41)

The rest of the job sets, siphon-trap job set, strictly siphon job set, etc., are

defined equally for MRF and FMRF systems. Hence, Equations (5.15)–(5.19) can

be used for their determination. Furthermore, calculation of CCWs and the

regularity test remain the same as for MRF systems.

A matrix relation for a critical subsystem follows from Equations (5.21) and

(5.40):

T T

0 0C x v() () ()J C sup sup ∆= =v c F (5.42)

176 Manufacturing Systems Control Design

Example 5.2.1 (critical siphons and critical subsystems in FMRF)

We consider an MS system described with the following matrices:

Resources assignments for a job sequence J = {J1, J2, J3, J4, J5} are given in Table

5.2. The system has 5 machines and 4 material handling buffers. A set of resources

and a set of jobs is defined as R = {M1, M2, M3, M4, M5, B1, B2, B3, B4} and J =

{M1J1, M1J5, M2J2, M2J4, M3J2, M3J3, M4J3, M4J4, M5J3, B1P, B2P, B3P,

B4P}. The circular wait matrix (5.34) is given as

From the rows in matrix CT, we can observe the resources and rules that compose

sixteen simple circular waits in considered FMRF system. For example, from the

Table 5.2. Resources assignments for the system in Example 5.2.1

M1 M2 M3 M4 M5

J1 ♦

J2 ♦ ♦

J3 ♦ ♦ ♦

J4 ♦ ♦

J5 ♦

C
T
=

M1 M2 M3 M4 M5 B1 B2 B3 B4 x1 x2 x3 x17 x18

 Manufacturing Systems Structural Properties in Matrix Form 177

first row, we can see that CW Cr1 is composed of resources M3 and B2, with

corresponding rules CW Cx1 comprising rules x6 and x7.

The cyclic circular waits are given by matrix ζ,

A total of twenty seven CWs is identified, consisting of sixteen simple CWs, and

eleven cyclic CWs. For example, the 17th column from ζ stands for a CCW

composed of the first and fifth CW from matrix C. It is composed of resources M3,

B2, M2, M4, and B3 (resource B2 is common to both CWs).

Next, we calculate siphon job sets and critical subsystems by using Equations

(5.40) and (5.42), respectively,

Matrices VSC and V0C are composed of rows corresponding with siphon job vectors

and critical subsystem vectors. At the end of the example we give results attained

by the regularity test presented in Section 5.1.5.

Since CCW is not a zero matrix, we can conclude that our system is an irregular

system with key resources M2, M3, and M4 (see matrix RCCW).

♦

178 Manufacturing Systems Control Design

5.3 Matrix Controller Design in MRF Systems

According to Theorem 5.1.1, resources in CW get into circular blocking when the

corresponding critical siphon becomes empty. Since in MRF systems circular

blocking is equivalent to a deadlock, our main concern in deriving a deadlock free

dispatching policy is to keep all critical siphons in the system full. However, as we

mentioned in Section 5.1.3, an increase of the work-in-progress requires that

system resources are busy most of the time. Balancing between these two marginal

conditions, () 0
CSm k > and mC(k) 0, is what makes a particular dispatching

policy efficient. In this section we use the results of MRF structural analysis in

order to devise a maximally permissive one-step look-ahead dispatching strategy

that avoids deadlock in regular MRF systems. We also show how circular waits in

irregular systems can be kept away from circular blocking. At the end of the

section we describe a scheduling strategy for FMRF systems that is based on

matrix formalism and so-called time windows.

5.3.1 Deadlock Avoidance in MRF Systems

At the beginning of the determination of a dynamic deadlock-free dispatching

policy, let us remember that

[]v r 0= ⋅ =⋅
v

W W W p
r

From this equation, explained in detail in Section 5.1.2, the following relation can

be attained,

T
() () .pk m k const= =⋅p m (5.43)

i.e. content of resource loop is constant. Implementation of this result on Equation

(5.23) gives

T
() .r

r C
k const

∈
=⋅p m

(5.44)

where pr are resource loop vectors that correspond to resources in CW C. Since

Equation (5.44) holds for any k and if we assume that all resources in C are idle for

k = 0, then

T T

c(0) (0) (0)r C
r C

m
∈

= ⋅ =⋅p m c r
(5.45)

which finally yields,

 Manufacturing Systems Structural Properties in Matrix Form 179

T
() (0)r C

r C
k m

∈
=⋅p m

(5.46)

This result is important since it states that the content of resource loops that belong

to the resources involved in CW is equal to the number of resources involved in the

circular wait, which is a design parameter and it is known in advance.

Further combination of the above equation and Equation (5.24) has an even

more significant outcome,

T T T

C 0C c() () () (0)r C
r C

k k k m
∈

+ = =⋅ ⋅ ⋅s m v v p m
(5.47)

or in a different form,

T

0C c() (0) ()
CS Cm k m k= − ⋅v v (5.48)

Hence, as long as

0
(0) ()

CC Jm v k> (5.49)

where
0

T

0C c() ()
CJv k k= ⋅v v , a critical siphon will not be empty, i.e. () 0

CSm k > .

According to Equation (5.22) the content of critical subsystem,
0

()
CJv k , is

increased by 1 each time a job that belongs to J0N(C) or J0Q(C) is dispatched. On

the other hand, execution of Ji∈ J0N(C) does not influence ()
CSm k . In summary,

the effect that jobs dispatching has on critical siphon content is such that; i)

()
CSm k is decreased by 1 for Ji∈ J0Q(C), ii) ()

CSm k is increased by 1 for Ji∈

J0S(C), and iii) ()
CSm k remains unchanged for Ji∈ J0N(C).

The other point that should be noted is that for a given part path in the MRF

system with sequential shared resources, jobs that belong to trap and neutral job

sets are visited by parts before jobs from the siphon job set. As a consequence,

when trap or neutral jobs are dispatched parts are pushed into the system, while

execution of siphon jobs pulls parts out from the system (Figure 5.7).

Figure 5.7. Job sets in MRF systems

180 Manufacturing Systems Control Design

The above-mentioned property of MRF systems is a basis for multipart

scheduling rules that replicate two well-known strategies – FBFS and LBFS.

Although both of them could lead a system into a deadlock, the next two theorems

ensure stability.

Theorem 5.3.1 (stable LBFS dispatching): Given a regular MRF system, deadlock

will not occur if and only if a dispatching policy is used such that:

i) whenever a multitude of jobs { }k
iJ are activated simultaneously

(conflict), they are dispatched according to the following: for every

CW C such that { } ()k
iJ J C∩ ≠ ∅ priority is given to jobs

0 0() ()k
i S NJ J C J C∈ ∪ , and

ii) does not dispatch any 0 ()k
i QJ J C∈ if

0
() (0) 1

CJ Cv k m= − .

The first part of the theorem handles conflict situations in the way that jobs that

pull parts out from the system are preferred. This corresponds to the LBFS

strategy. The second part of the theorem ensures a deadlock-free behavior of the

system by disallowing execution of jobs that decrease ()
CSm k when the critical

subsystem content is on the lower limit. A practical implementation of this part of

the theorem requires slight modification due to the existence of the hidden parts

(see Section 3.4). According to the theorem, the supervisor has to track the

contents of all critical subsystems, but information obtained from sensors in

sampling interval k (vector vc(k)) could come too late for appropriate actions. This

is why, as described in Chapter 3, instead of vc(k), vector
s

c ()kv , obtained from

Equation (3.21), should be used in the determination of
0

()
CJv k .

The deadlock-free dispatching policy stated next defines the generalized

kanban strategy.

Theorem 5.3.2 (stable FBFS dispatching): Given a regular MRF system, deadlock

will not occur if and only if a dispatching policy is used such that:

i) whenever a multitude of jobs { }k
iJ are activated simultaneously

(conflict), they are dispatched according to the following: for every

CW C such that { } ()k
iJ J C∩ ≠ ∅ priority is given to jobs

0Q 0N() ()k
iJ J C J C∈ ∪ , and

ii) does not dispatch any 0Q ()k
iJ J C∈ if

0
() (0) 1

CJ Cv k m= − .

This control strategy is maximally permissive. Moreover, by keeping the

kanban content mC(k) as low as possible (including zero), the work-in-process in

the critical subsystem is maximized, thus maximizing the per cent utilization of

resources. The difference between the standard FBFS and the one introduced in

 Manufacturing Systems Structural Properties in Matrix Form 181

Theorem 5.3.2 is that exploitation of the standard policy forces parts into the

system all the time, while the stable FBFS drives parts forward as long as a

particular part of the system is full, and then starts to pull parts out from the

system.

The supervisor, which dispatches jobs according to strategies given in the

above theorems, can be realized in the form of the control vector, whose

components are incorporated in the logical state vector equation through matrix Fd,

introduced in Section 3.4 and calculated from the conflict-rules vector according to

Equation (3.25). It can be shown that 0QC d• ⊂v x and 0SC d• ⊂v x . However,

depending on the system structure, 0NC d• ⊂v x is not necessarily true, thus,

0NC•v should be added to the conflict-rules vector. Regarding the control vector, it

follows from the theorems that for the online deadlock-avoidance implementation

only particular parts of the system, namely jobs, are important. Hence, the control

vector (3.22) can be determined from

()s

d c() (), ()k h k k=u m v

It is evident that both strategies, stable LBFS and stable FBFS, give the same

result when no conflict occurs in the system. In that case only a situation described

with the second rule, common to both theorems, could happen, which is presented

in Figure 3.12 (Example 3.4.1), where the results obtained with the dispatching that

is equivalent to the stable LBFS policy, are shown. Specifically, the critical

subsystem from this example is J0(C)={RP1, BP, MBP}, with mC(0) = 4. The

dispatching proposed in the example takes actions exactly according to Theorem

5.3.2.

Results attained with stable FBFS and stable LBFS policies are depicted in

Figures 5.8 and 5.9, respectively. As may be seen, the throughput of the system

remained unchanged but resource utilization is improved in the case of FBFS

dispatching. When LBFS is used the buffer never reaches its full capacity (2 parts).

The system is stable in both cases.

5.3.2 Deadlock Avoidance in Irregular Systems

The dispatching strategies given in Theorems 5.3.1 and 5.3.2 can be implemented

in irregular systems as well, with an additional verification that is stated in the next

theorem.

Theorem 5.3.3 (stable dispatching in irregular system): Given an irregular MRF

system, with C1 and C2 forming a CCW with a key resource, then a deadlock will

not occur if and only if the last idle resource in CCW is not a key resource.

Evidently, one-step look-ahead control strategies, exemplified in the previous

section, cannot cope with the condition illustrated in the theorem. There are two

reasons for this. First, the supervisor that implements dispatching according to

Theorem 5.3.3 should track the number of available resources in CCW, and

182 Manufacturing Systems Control Design

secondly, if two resources in CCW are idle then in the worst case

0 CCW() (0) 2
CCWJv k m= − , hence, activation of any J(CCW) is allowed.

M
A
P

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

R
P
1

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

B
P

2

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

M
B
P

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

R
P
2

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

M
A

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

M
B

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

B

2

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

R

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

O
U
T

17

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

Figure 5.8. Response of the system from Example 3.4.1 with stable FBFS dispatching

We illustrate the occurrence of the second-level deadlock in the following

example. Let us consider a CCW that is composed of two CWs, C1 = { ra, rk, rc, …

} and C2 = { rd, rk, rb, … }, as shown in Figure 5.10. Further, assume that resources

in the CCW are related by the following equations,

k a 1 k d 2 b k 3 c k 4, , ,r r x r r x r r x r r x•∩• = •∩• = •∩• = •∩• = . Now, let us

suppose that the two remaining idle resources are rc and rk, and the prerequisites

for rules x1, x2 and xm∈rc• are met. This is a situation in which not only conditions

related to the content of critical subsystems of all three CWs should be checked,

but also the condition regarding the number of idle resource should be taken into

consideration.

 Manufacturing Systems Structural Properties in Matrix Form 183

M
A
P

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

R
P
1

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

B
P

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

M
B
P

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

R
P
2

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

M
A

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

M
B

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

B

2

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

R

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

O
U
T

18

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050110011501200125013001350140014501500

Figure 5.9. Response of the system from Example 3.4.1 with stable LBFS dispatching

Three decisions could be made; i) execution of rule x1 – in this case the key

resource becomes occupied but resource ra is released. Although two resources in

CCW, ra and rc, remain idle, the critical siphon SC2 is empty, thus, x1 should not be

executed due to the condition
0 2 2

() (0)
CJ Cv k m< , ii) execution of rule x2 – in this

case the key resource becomes occupied and resource rd is released. Now, C1 has

idle resource rc and C2 has available resource rd. Since both of them belong to

CCW, it has idle resources too. Therefore, conditions
0

() (0)
Ci iJ Cv k m< are not

violated. Furthermore, the key resource is not the last available resource in CCW,

iii) execution of rule xm – in this case the key resource remains the last idle

resource in CCW while preconditions for both rules, x1 and x2, are still satisfied.

However, execution of any of them would make both critical siphons, SC1 and SC2

empty. This is known as the second-level deadlock, that is, the consequences of a

decision regarding job activation (rule xm) are becoming evident two sampling

intervals later, when it is too late to correct an already-completed action.

184 Manufacturing Systems Control Design

Figure 5.10. Two CWs in a CCW

Then, an obvious solution, suggested in Theorem 5.3.3, is to deny having the

key resource as the last available resource for any critical CW (and any CW). We

should always give priority to usage of the key resource (in our demonstration that

corresponds to execution of rule x2) over all other resources available in the critical

CW (in our case execution of rule xm), while at the same time the conditions stated

in Theorems 5.3.1 and 5.3.2 should be checked.

5.3.3 Deadlock Avoidance in FMRF Systems

The dispatching strategies based on the content of critical subsystems and the

number of available resources in CCW could be used in FMRF as well. In Section

5.2.1 it has been shown how to determine the structural properties of a free-choice

MRF system that are required for successful deadlock avoidance. However, the

existence of alternative part paths, we call them resource sequences, that execute

the same job sequence, opens space for implementation of more sophisticated

routing and dispatching strategies. The supervisory control techniques proposed so

far in the book suggested solutions that were static. That is, once proposed a

resource sequence (RS) remained unchanged until the part has left the system. A

method described in the text that follows offers a possibility for dynamic change of

the resource sequence [17], i.e. depending on the priority, the resource sequence

can be changed before the part reaches the output of the system.

Based on the string composition the proposed method finds the candidate

resource sequence by matrix composition and then time windows are used for

checking if the determined resource sequence is feasible. The viability of a

particular RS is evaluated by time-windows insertion that is followed by a time-
windows overlap (conflict) test. In the case of an overlap, the algorithm iteratively

reinserts time windows until there are no overlaps or the overlap is present on the

first resource visited by the part, which means that the candidate RS is not feasible.

The procedure is repeated for all candidate RSs. As a result, the set of executable

sequences is formed and the final task of the algorithm is to choose the optimal one

in terms of the time required for the part to get from the input to the output of the

system.

Introduction of dynamic scheduling into the FMRF systems has many

advantages: increase of system throughput, reduction of operational costs,

 Manufacturing Systems Structural Properties in Matrix Form 185

consistent execution of predetermined tasks, etc. However, this requires superior

control strategies that are able to solve problems such as a conflict and a deadlock.

Usually, routing and scheduling algorithms should be executed online in a very

short time, which is challenging since the problem is NP-hard.

Various methods for dynamic routing and scheduling, especially in autonomous

guided vehicle (AGV) systems, are currently in use [18] [22], and still

researchers are working on new methods in their quest for faster and

computationally efficient algorithms. Generally, two approaches can be recognized

in the literature: static routing and dynamic routing. While the first approach is

concerned only with the spatial dimension of the routing problem (determination of

resource sequences in the space domain), the second approach perceives routing as

a time-space problem (determination of part paths feasible in space and time). In

some cases the time-space approach could be seen as static routing. Since the goal

of routing is to find the optimal sequence, many algorithms are based on Dijkstra’s

shortest-path algorithm [23].

Since the number of processed parts changes with time, by elongation of the

time windows the proposed method assures that the shortest RS becomes feasible,

thus providing collision-free and deadlock-free paths for all processed parts.

Usually, when it comes to the mathematical analysis and control algorithm

design, a manufacturing shop-floor layout is represented by a graph. In the

approach described herein, the start and stop of a particular operation are

represented by nodes ni, while part processing is represented by a weighted arc, ai.

Since we are concerned with dynamic scheduling based on time windows, it is

natural to choose the processing time as a variable that represents the arc (resource)

weight. A nominal weight (minimal processing time) of resource rj for part pi is

denoted ˆ ijw .

A graph adjacency matrix is typically defined with respect to nodes. Herein we

define an arc adjacency matrix since time windows are associated with arcs.

Having a directed graph, G = (N, A), an arc adjacency matrix G is defined as a

matrix with the number of rows and columns equal to the number of arcs in G,

with element gij equal to 1 if arc ai is upstream of arc aj, otherwise it is 0.

In FMRF systems a required job sequence J can be executed by several

resource sequences. Such resource sequences, for example, {M1, M2, M3, M2, M1}

and {M1, M2, M3, M4, M1} complete the required job sequence J = {J1, J2, J3, J4,

J5} in Example 5.2.1. A set of active resource sequences is defined as

{ }:a i iπ πΠ = ∈Π , where Π is a set of all possible resource sequences that

execute the required job sequence.

An RS πi is defined in the following way: ()0
ˆ, , , ,

i
i i i i io d P pπ σ= , where oi is

the first resource (an origin arc) and di is the last resource (a destination arc) visited

by the part on the sequence πi, ˆ
iσ is the shortest RS (in the sense of processing

time) between the first and the last resource, 0iP is the initial priority of the

sequence (a sequence with the highest priority has the lowest value of 0iP), and pi

is a part processed by the sequence πi. On its route from the origin to the

186 Manufacturing Systems Control Design

destination, a part visits a set of resources represented by arcs, { }:j jr r Rσ = ∈ .

The weight of the path is equal to the release time of the last resource of the

sequence, i.e. W() =
out

dt σ
. A set of all RSs that connect origin arc and destination

arc of sequence πi is { }1 2, ...
i i i

i qσ σ σΣ = .

Given that in the case of dynamic routing the path ˆ
iσ , as well as the RS

priority, can be changed during mission execution, a mission is defined in the

following way:

()ˆ() , , (), (),
i

i i i i it o d t P t pπ σ= (5.50)

The mission priority Pi(t) is calculated according to the relation:

() 0
min ˆ, ()

ˆ()

ˆ()

i
i

i

di
i

i

for
P t

for

t t
P W

W t
W

σ
σ

σ
=

−
≠ ∞

−

−∞ = ∞
(5.51)

where tdi is due time of mission πi.

Determined in this way, the priority of the RS with the part that is far from its

destination is higher than the priority of the RS that has the part already close to its

goal. In addition, the RS whose due time is close to expiration has a higher priority

than the RS that has enough time to meet its due time. Initial RS’ priorities,

assigned by the dispatching controller, are recalculated each time the request for a

new part processing arrives or current sequences become unviable. In this way the

influence of livelock is reduced as a sequence with low initial priorities would not

wait in a queue indefinitely. Care should be taken since more than one RS might

have priority – . In that case, the priorities of the sequences could be arranged

according to FIFO.

We assume that a part can reside only in resources (arcs). A part occupies a

particular resource for some time (we suppose that only one part at a time is

allowed to be processed by the resource). This time is called a time window,

defined as

ˆ,out in
ij ij ij ij ijw t t w w= − ≥ (5.52)

where ijw is a time window of part pi in resource rj,
out

ijt is the release time of

resource rj from part pi, and
in

ijt is an entry time of pi in resource rj. Time windows,

as well as release times and entry times of resource rj , can be represented in the

form of time vectors:

 Manufacturing Systems Structural Properties in Matrix Form 187

, ,
in out

ij ij ijw t t= = =in out

j j j
w t t (5.53)

where the 1st component corresponds with the highest priority RS, the nth

component with the lowest priority RS and n = Πa , i.e. the dimension of all three

vectors is equal to the number of active RSs. Dimension n varies with time, since

the number of active resource sequences is changing dynamically. Also, it should

be noted that a part may visit a particular resource two or more times, hence, more

than one component of a time vector would correspond to the same sequence, i.e.

n Πa . In that case index i j corresponds to the th time window of sequence πi
on resource rj. The components of vector wj, that correspond to active sequences

that do not use resource j, are set to zero, while the components of vectors
in

j
t and

out

j
t that correspond to those sequences are set to .

From time vectors defined as in Equation (5.52) we know which RS visit which

resources but we are not able to tell, directly, in which order. For the purpose of the

time-window insertion, which is elaborated in more detail later in the text, we have

to position components of time vectors in chronological order. Vector x = [xi] can

be converted into sorted vector x = [xi], where
11i ii ix x x x ++= ≤ = .

The concept of time windows is shown in Figure 5.11. In the example,

sequences π1 and π2 have the highest and the lowest priorities, respectively. Time

vectors of a given resource a are

[]T1 7 3 2

T

1 7 3 2

T

1 7 3 2

0 0 0a a a a

in in in in
a a a a

out out out out
a a a a

w w w w

t t t t

t t t t

=

= ∞ ∞ ∞

= ∞ ∞ ∞

a

in

a

out

a

w

t

t

3

in
at

3

out
at

1

in
at

1

out
at

7

in
at

7

out
at

2

in
at

2

out
at

Figure 5.11. The concept of time windows

It should be noted that, although 7 sequences are active, only four of them are

using resource a. Sorted time vectors for resource a are written as

[]T3 1 7 2

T

3 1 7 2

T

3 1 7 2

0 0 0a a a a

in in in in
a a a a

out out out out
a a a a

w w w w

t t t t

t t t t

=

= ∞ ∞ ∞

= ∞ ∞ ∞

a

in

a

out

a

w

t

t

188 Manufacturing Systems Control Design

When a new part arrives into the system at moment tm, a supervisor assigns an

idle resource, om, as the origin of a new resource sequence πm, which has initial

priority m0P . Then, the shortest path for sequence πm is determined by calculation

of powers of vector
m

– the row of string matrix S that corresponds with the

origin resource om,

1

m m

ρ ρ−= •S (5.54)

 The string matrix S is formed as described in Chapter 4. Having vector
m

ρ
, the

weight of each sequence i
ρσ , represented by a string in

m

ρ
, has to be determined

and then vector
m

ρ
is formed in the following way: if there exists a th order

sequence that connects om and dm, then

m m
ˆ() min ()ii

W Wρ ρσ σ= (5.55)

Furthermore, if W(
m

ˆ
ρσ) < W(

mσ̂) then the string that stood for
mσ̂ is replaced

by the string representing
m

ˆ
ρσ . When W(i

ρσ) W(
mσ̂), sequence i

ρσ in vector

m

ρ
is replaced by a null string, otherwise the sequence remains the component of

the vector. Initially, when a new resource sequence πm is requested, { }mσ̂ = ∅ and

W(
mσ̂) = . Since the weight of the sequence is equal to the release time of the

sequence’s destination resource, in the following text we describe in detail how the

feasibility of sequences and their release times are determined.

A. Initialization of time vectors (Step 1)

The first step in the iterative procedure for a feasibility test and a release time

determination of sequences in
m

ρ
, is an initialization of time vectors. Let us choose

a candidate sequence i
ρσ ∈sup(

m

ρ
). For each resource rj ∈ i

ρσ its time vectors

are initialized as

T

1 2 m

T

1 2 m

T

1 2 m

ˆ... 0 0

...

...

j j j

in in in
j j j

out out out
j j j

w w w

t t t

t t t

=

= ∞ ∞

= ∞ ∞

j

in

j

out

j

w

t

t

 Manufacturing Systems Structural Properties in Matrix Form 189

During the process of initialization, components of
out

j
t whose values are less than

tm, are set to (as well as their counterparts in
in

j
t), since they correspond to

sequences that occupied resource rj prior to the moment a new sequence was

requested, hence they do not influence the time-windows settings. When
m

in
ijt t≤

and
m

out
ijt t> a part pi occupies resource rj at the moment of request tm and these

components of time vectors remain unchanged. Components of vector wj, which

belong to the sequences with lower priorities than sequence πm, are set to 0. At the

same time all components of vectors
in

j
t and

out

j
t that correspond to these

sequences are set to . In this way the time windows of RSs with lower priorities

are excluded from consideration, which means that resource is freed for a new

mission. Components that belong to RS πm,
m

in
jt and

m

out
jt , are unknown values

that have to be determined by dynamic routing.

It is assumed that the part pm, which is processed by the new RS, occupies om at

the moment of entrance. Therefore the entry time of om is set to be equal to the

part-arrival time tm. A release time of resource om depends on the average

processing time
mmow . Accordingly, for the origin resource we set

m m

m m m

T

1 2 m

T

1 2 m m

...

...

in in
o o o

out out
o o o o

t t t

t t t w

= ∞ ∞

= + ∞ ∞

m

m

in

out

t

t

B. Insertion of time windows (Step 2)

Having time windows of all resources that belong to the candidate sequence

initialized, starting from the second resource of the sequence, we are looking on

each resource rj ∈sup(i
ρσ) for the first available time window that fulfils two

requirements: a) it is wide enough to accommodate part pm for a predetermined

period, and b) its entry time
m

in
jt is set after the release time of the upstream

resource
m

out
it , i j.

When

m m m1
ˆ

in
j j jt t w ε− > + and

m m m1
ˆ()

in out
j j j it w tε− + > for i j (5.56)

then

190 Manufacturing Systems Control Design

m m

m m m
ˆ

in out
j i

out in
j j j

t t

t t w

=

= +
(5.57)

otherwise the index of the first available time window is determined by

{
() }m m m1

arg min

ˆmax , 2 , , 1, 1

in
j

in out out
j j i j j

p t

t t t w i j nε
+
− > + → = −

= :

(5.58)

where n is the number of time-vector components that are and mj is a safety
processing time of part pm in resource rj. The safety time depends on the processing

time uncertainty. Its value is usually 1–5% of
m

ˆ
jw .

Once p is determined, the entry and release times of part pm on resource rj are

calculated as

()m m m1

m m m

max

ˆ

,
in out out

j j j ip

out in
j j j

t t t

t t w

ε
−

= +

= +
(5.59)

It may happen that the time-windows distribution on resource rj is so dense

that m

in
jt cannot be determined, i.e. none of the relations in Equations (5.57) and

(5.59) give an answer as to where to insert a time window for a new mission. In

that case a new time window is set after the last time window on resource rj, i.e.

m m

m m m
ˆ

in out
j j jn

out in
j j j

t t

t t w

ε= +

= +
(5.60)

An example of time-windows insertion is shown in Figure 5.12. At the moment tm

a new sequence is requested. The first resource to process a part is resource c, i.e.

resource c becomes an origin resource of sequence πm. Let one of the candidate

sequences, obtained by the string composition, be
2

1
{ , , }c b aσ = .

First, the initial values of the sorted time vectors are determined according to

the initialization procedure (Step 1):

 Manufacturing Systems Structural Properties in Matrix Form 191

[]T7 2

T

7 2

T

7 2

0 0 0 0 0a a

in in
a a

out out
a a

w w

t t

t t

=

= ∞ ∞ ∞ ∞ ∞

= ∞ ∞ ∞ ∞ ∞

a

in

a

out

a

w

t

t

[]T2 4

T

2 4

T

2 4

0 0 0 0 0b b

in in
b b

out out
b b

w w

t t

t t

=

= ∞ ∞ ∞ ∞ ∞

= ∞ ∞ ∞ ∞ ∞

b

in

b

out

b

w

t

t

[]T7

T

7

T

7

0 0 0 0 0 0c

in
c

out
c

w

t

t

=

= ∞ ∞ ∞ ∞ ∞ ∞

= ∞ ∞ ∞ ∞ ∞ ∞

c

in

c

out

c

w

t

t

7

in
bt

7

out
bt

2

in
bt

2

out
bt

3

in
at

3

out
at

1

in
at

1

out
at

7

in
at

7

out
at

2

in
at

2

out
at

1

in
ct

1

out
ct

7

in
ct

7

out
ct

m

in
ct m

out
ct

m

in
bt

m

out
bt

m

in
at

m

out
at

4

in
bt

4

out
bt

mbε

Figure 5.12. Time-windows insertion

We can see that the components of vectors
in

a
t and

out

a
t that correspond to

RSs π1 and π3 are set to since the part processed by those two sequences have

occupied resource a prior to the request for πm. In the same way, missions π7 and

π1 are removed from the time vectors of resources b and c, respectively. The

components of RS π7, that occupied resource a at the moment of request, remain

unchanged.

Having initialized vectors, we can start with time-windows insertion. First we

set
m m

in
ct t= and

m m m

out
c ct t w= + for the origin resource. The next resource of

the sequence is resource b. According to Equation (5.56) we check if

192 Manufacturing Systems Control Design

21
ˆ

in in
b m b m mb mbt t t t w ε− = − > + and

21
ˆ ˆ() ()

in in out
b mb mj b mb mj mct w t w tε ε− + = − + >

 From Figure 5.12 we can see that both conditions are satisfied which yields

m m

in out
b ct t= and

m m m
ˆ

out in
b b bt t w= + . We proceed to the next resource of the

sequence, resource a;

m 7 m1
0

in in
a at t t t− = − <

hence, one of the conditions in Equation (5.56) is not satisfied so we have to find

the first free time window by using Equation (5.58). The number of components of

the sorted time vector
in

at that are is 2, i.e. n = 2. For = 1 we obtain

{ }
{ }

m2 1

2 7 m

2 m m m

max

max

ˆ 2

,

,

in out out
a a b

in out out
a a b

in out
a b a a

t t t

t t t

t t w ε

− =

− =

− < +

thus a new time window cannot be placed before
2

in
at . Since w2a is the last time

window on resource a, wma is set after it, which gives

m m 2 m m m m2
ˆ,

in out out out in
a a a a a a a at t t t t wε ε= + = + = +

By this action all time windows of sequence
2

1
, ,{ }c b aσ = have been inserted

with no overlaps.

C. Time-windows elongation and overlaps (Step 3)

As assumed earlier, a part can reside only in a resource, therefore, immediately

upon leaving one resource it enters the next one, i.e. the following equation should

be fulfilled for all resources of the sequence:

m m
,

in out
j it t i j→= (5.61)

 Manufacturing Systems Structural Properties in Matrix Form 193

It may be seen from the previous example (Figure 5.12) that the inserted time

windows do not satisfy Equation (5.61). Although
m m

,
in out

b ct t= this is not the case

for resources b and a,
m m

in out
a bt t≠ . In order to check if sequence, i

ρσ , is feasible,

first we have to expand the inserted time windows to meet requirement (5.61). The

time-window elongation on resource rj yields:

m m m m
ˆ ,

in out
j j i jw w t t j i=>= + − (5.62)

A time window can be widened in two ways, by changing the duration of the

processing time of a particular resource or by holding a part in a resource before

processing and/or after processing. As a consequence, a resource release time is

changed,

m m m

out in
j j jt w t= + (5.63)

thus changing the time vectors of resource rj
T

1 2 3 m

T

1 2 3 m

T

1 2 3 m

... 0 0

...

...

j j j j

in in in in
j j j j

out out out out
j j j j

w w w w

t t t t

t t t t

=

= ∞ ∞

= ∞ ∞

j

in

j

out

j

w

t

t

The time-window elongation can cause an overlap, which is equivalent to a

conflict; a situation when two (or more) parts request a resource over the same time

period. The situation when an overlap takes place after applying time-window

elongation is shown in Figure 5.13. Since
m m

in out
a bt t≠ , a newly inserted time

window on resource b, which belongs to sequence πm, has been widened. This

action caused an overlap with the time window of mission π2, which indicates that

if the processing of part pm on resource b is prolonged in order to be finished just at

the moment when resource a is ready to receive the part, then it will collide with

part p2.

7

in
bt

7

out
bt

2

in
bt

2

out
bt

3

in
at

3

out
at

1

in
at

1

out
at

7

in
at

7

out
at

2

in
at

2

out
at

1

in
ct

1

out
ct

7

in
ct

7

out
ct

m

in
ct m

out
ct

in
mbt

m

out
bt

m

in
at

m

out
at

4

in
bt

4

out
bt

Figure 5.13. Time-windows overlap

194 Manufacturing Systems Control Design

Having in mind this situation, once all time windows that belong to a particular

sequence are extended according to Equation (5.62), new time vectors should be

checked for overlaps, starting from the origin resource of the sequence. If

{ }
1

0, 1, 1in in out
j j jt t t n

+
< ∅− == −: (5.64)

then there are no overlaps on resource rj.

When Equation (5.64) is not satisfied, the first resource with an overlap should

be detected and the time windows should be reinserted, starting from the resource

with an overlap all the way to the last resource of the sequence. A new time

window is inserted on the resource with an overlap by using Equation (5.59), only

this time index p is calculated according to the following relation

{
() }m m m1

arg min

ˆmax 2 1, , , ,

in
j

in out out
j j i j j

p t

t t t w i j q nε
+

→ = −− > +

= :

(5.65)

where q corresponds with the last time window involved in the overlap, i.e.

{ }
1

arg max : 0, 1, 1
in in out

j j jq t t t n
+

= − < = − (5.66)

Since a new time window cannot be placed upstream of the time window q, in

Equation (5.65) only those time windows that follow after q are checked. When

time windows are reinserted on all resources they should be checked for overlaps

and the procedure repeats until a) there are no overlaps or b) overlap occurs on the

origin resource. In case a) the sequence i
ρσ is feasible and its weight is equal to the

destination resource-release time. In case b) the sequence i
ρσ is not feasible and its

weight is set to , hence, the sequence is removed from
m

ρ
.

The described procedure gives a final form of time windows for the sequence
2

1
, ,{ }c b aσ = , as shown in Figure 5.14. It can be seen that this RS is feasible since

there are no overlaps and its weight is W(
2

1
σ) =

m

out
at . As such, it proceeds to the

next iteration of string composition only when its weight is lower than the weight

of
m σ̂ .

 Manufacturing Systems Structural Properties in Matrix Form 195

7

in
bt

7

out
bt

2

in
bt

2

out
bt

3

in
at

3

out
at

1

in
at

1

out
at

7

in
at

7

out
at

2

in
at

2

out
at

1

in
ct

1

out
ct

7

in
ct

7

out
ct

m

in
ct

m

out
ct

m

in
bt

m

out
bt
m

in
at

m

out
at

4

in
bt

4

out
bt

Figure 5.14. Reinserted time windows with no overlaps

Example 5.3.1 (deadlock avoidance in FMRF – multi-AGV routing)

As an example of the dynamic deadlock avoidance we consider routing and

scheduling in a multi-AGV system shown in Figure 5.15. Implementation of the

time-windows approach for a dynamic multi-AGV routing problem is done in a

way that arcs are considered as resources that are used by the vehicles, which are

seen as parts passing through the system. The layout depicted in Figure 5.15

comprises 3 vehicles that have to execute sequences (pass particular arcs) in order

to move from one point to the other. The highest-priority sequence 1 is executed

by vehicle 5 (V5) that carries pallets from an unloading station to a packing station,

vehicle 2 (V2) executes the medium-priority sequence 2 and vehicle 3 (V3) is

assigned to the lowest-priority sequence 3.

Figure 5.15. A multi-AGV system layout

196 Manufacturing Systems Control Design

The shortest paths for all three sequences for a of single-vehicle system are shown

in Figures 5.16, 5.17. and 5.18. It can be seen that sequence 1 and sequence 3
have the same shortest path, only arcs are visited in reverse order. Figure 5.19

shows the final result of a dynamic deadlock-avoidance algorithm. It can be seen

that only the highest-priority sequence is routed through its shortest

path,
1 10σ̂ ={35, 13, 12, 11, 10, 9, 8, 7, 2, 1, 0}.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

time [s]

arc

sequence 1

Figure 5.16. The shortest path for sequence 1

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

time [s]

arc

sequence 2

Figure 5.17. The shortest path for sequence 2.

 Manufacturing Systems Structural Properties in Matrix Form 197

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

time [s]

arc

sequence 3

Figure 5.18. The shortest path for sequence 3

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

time [s]

arc

sequence 1

sequence 2

sequence 3

Figure 5.19. The final result of routing algorithm – all three sequences with no deadlocks

Other sequences are detoured to avoid head-on and deadlocks. Sequence 2 is

changed so that vehicle V2 takes arc 24 (instead of arc 9) after arc 8, and the final

result is
2 9σ̂ ={40, 38, 36, 8, 24, 17, 16, 15, 14, 35}. As we already mentioned

sequence 3 corresponds to reverse sequence 1. In order to avoid vehicles head-on,

original sequence 3 is changed to
3 8σ̂ ={0, 21, 19, 18, 17, 16, 15, 14, 35}.

The presented method for dynamic deadlock avoidance is the core of the multi-

AGV industrial environment supervisor [24]. The supervisor enables real-time

control and simulation of shop-floor layouts that may contain a number of

manufacturing cells and a number of AGVs that commutate between dynamically

198 Manufacturing Systems Control Design

determined starting and end nodes. Figure 5.20 shows simulation screenshots of

the system presented in Figure 5.15. Vehicles execute the sequences depicted in

Figure 5.19.

a b c d

e f g h

i j k l

Figure 5.20. Simulation screenshots of the system presented in Figure 5.15

The dynamic deadlock avoidance described herein may be seen as a variation

of a well-known label-setting algorithm. The difference lies in the fact that

standard label-setting algorithms proceed in the next iteration only with a dominant

(optimal) label while in our case all feasible sequences (labels) are carried to the

next step. In this way, a sequence that seemed to be the best choice in one iteration,

could be replaced by another sequence during the steps that follow, because of

 Manufacturing Systems Structural Properties in Matrix Form 199

time-windows overlaps that may happen on its successors. Although this variation

increases the worst-case computational complexity, implementation of a multi-

AGV industrial environment supervisor showed that for real shop-floor layouts the

computational time has the same order as standard label-setting algorithms (most

of the alternative sequences are eliminated at early stages of the calculation).

5.4. A Case Study: Deadlock Avoidance in PLC-controlled FMS

In this section we demonstrate the MS supervisor design based on the matrix

controller and realized on the industrial PLC Simatic S7-216. The laboratory setup

is shown in Figure 5.21.

The setup contains two educational robots, Rhino XR-3 and Rhino XR-4 (XR3,

XR4), three belt conveyers (T1, T2, T3), one x-y transporter (XY), one carousel

(CR) and one gravitational buffer (GS). Two part types, A and B, are handled by

the system. Processed part types visit several resources on their way through the

system. A part A enters the system when it is put on the conveyer T1 (Figure 5.22).

When the part gets to the end of the conveyer, XR3 transfers it to the XY. Upon

the arrival at the opposite side of the transporter, the part is picked by XR4 and

placed on the conveyer T2, which carries the part to the output.

Figure 5.21. The setup of the laboratory MS (a two-robot material-handling cell)

200 Manufacturing Systems Control Design

Figure 5.22. A top-view layout of the laboratory FMS with designated parts paths

Likewise, a part B enters the system (Figure 5.22) when it is put on the

conveyer T3, which brings the part to its end point. Once the part is at the right

position, it is lifted by XR4 to the GS. When the part reaches the bottom of the

buffer it is removed by XR3 and placed on the CR. The CR rotates the part, which

is finally removed from the system by XR3. In our experiments, the capacity of the

buffer GS is 1, while the capacity of the carousel is 3.

We start the supervisor design with the matrix-model determination. From the

system layout and description, we may distinguish 11 operations, five on the part A
and six on the part B. These operations are carried out by eight resources. Robots

XR3 and XR4 are shared resources - XR3 has to perform three tasks; XR31 –

moving the part A from T1 to XY, XR32 – moving the part B from GS to CR,

XR33 – moving the part B from CR to the system output, while XR4 has two

operations; XR41 – moving the part A from XY to T3, XR42 – moving the part B
from T3 to GS. A set of jobs and set of resources are defined as J = {T1P, XR31,

XYP, XR41, T2P, T3P, XR42, GSP, XR32, CRP, XR33} and R = {XR3, XR4, T1,

XY, T2, T3, GS, CR}.

By identifying the relations among operations and resources, and the sequence

of operations, we can define the system matrices that describe the FMS behavior.

 Manufacturing Systems Structural Properties in Matrix Form 201

 First we find CWs by using Equation (5.1) and Gurel’s algorithm shown in Figure

5.3,

W

0 0 0 1 0 0 0 1 1 1 1

0 0 0 0 1 0 1 0 0 1 1

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 1
,

0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 1 0 1

= =G C

There exist three CWs, two simple, C1 = {XR3, CR} and C2 = {XR3, XR4,

XY, GS} and one that is a union of these two, C3 = {XR3, XR4, XY, GS, CR}.

The corresponding critical siphons and critical subsystems are given in a matrix

form;

T
0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0

0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1

C =S

T

0

0 0 0 0 0 0 0 0 1 1 0

0 1 1 0 0 0 1 1 0 0 0

0 1 1 0 0 0 1 1 1 1 0

=J

From matrix Fr we can determine the conflicting-rules vector xd and the

dispatching matrix Fd,

202 Manufacturing Systems Control Design

[]T
T

0 1 0 1 0 0 0 1 0 1 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

d

d

=

=

x

F

A control vector has five components that participate in the prerequisite parts of

rules x2, x4, x8, x10 and x12. A control function h is represented by a set of rules such

that the controlled system is free of conflicts and deadlocks. Since the critical

subsystem that corresponds to C3 is the union of J0(C1) and J0(C2), only the content

of those two subsystems is checked,
0 1 1() (0) 4

CJ Cv k m< = and

0 2 2() (0) 4
CJ Cv k m< = . In the case of parallel conflicts of shared resources, a

priority is given to jobs on part path A.

As described previously, in order to get the model that describes the system

dynamics, we have to determine the duration of each operation performed on the

parts. Measurements of the system-resources performances yield the durations of

operations and resource-release times that are expressed in Table 5.3 as the number

of sampling intervals required for the particular operation (in our case, the

sampling interval is Td = 0.5 s).

Table 5.3. Operation times and resource-release times (# of sampling intervals)

resource T1 T2 T3 XY GS CR

operation T1P T2P T3P XYP GSP CRP

duration 70 42 32 16 2 24

release 2 2 2 22 2 2

resource XR3 XR4

operation XR31 XR32 XR33 XR41 XR42

duration 24 18 26 30 36

release 10 10 10 10 10

The next step in the system-controller design is virtual modeling and simulation

of the system with FlexMan, which is described in detail in Chapter 7. The results

of dynamic simulation are given in Figure 5.23. As one can see, conflicts are

successfully handled and the system is deadlock free.

When the required system behavior is confirmed by FlexMan, the PLC code of

the tested matrix controller can be generated and downloaded into the PLC. The

other possibility is execution of the control algorithm on a PC and communication

with the PLC through the OPC server [25]. One way or the other, the main benefit

 Manufacturing Systems Structural Properties in Matrix Form 203

R
3A

1

0
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650

R
4A

1

0
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650

X
Y
A

1

0
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650

C
R
A

3

0
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650

T1A

1

0
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650

T2A
1

0
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650

T3A

1

0
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650

G
SA

1

0
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650

Figure 5.23. Utilization of resources attained by simulation of the system shown in Figure

5.21

of the matrix controller is its straightforward realization on standard industrial

programmable logic controllers (PLCs) or on specialized software, such as

FlexMan or Petri.NET, a software tool that is described in the next Chapter.

However, due to various types of physical interaction of a PLC and the

controlled system, which can result in the form of digital and/or analog signals,

serial communication links (RS232, RS485, …) and local area networks

(PROFIBUS, MODBUS…), implementation of the controller requires not only

204 Manufacturing Systems Control Design

transformation of matrix model into the PLC code, but also data acquisition and
interpretation. Signals acquired from the PLC interface should be converted into

vectors u, y, vc and rc.

The simplest case is the situation when each component of the system vector

corresponds to one physical (digital) input. This allows direct mapping of the

PLC’s memory and the system vector. On the other hand, when several physical

inputs take part in the creation of the system vector component, then a special

interface function is necessary to map those inputs with the system vector. The

same holds for the PLC’s outputs. The components of vectors vs and rs should be

mapped with digital outputs or the PLC’s communication modules. Again, there is

no general method for this step in the supervisor design. Relation one-to-one is the

easiest case and it permits direct connection of the job-start vector and the

resource-release vector with the physical outputs of the PLC.

In our case, information regarding the system status is acquired from the

sensors (Figure 5.24)connected to the PLC’s digital inputs shown in Table 5.4.

Table 5.4. Digital inputs of the PLC supervisor

Name Address Description

IR1 I2.0 IR sensor – part at the beginning of T1

IR2 I2.1 IR sensor – part at the end of T1

IR3 I2.2 IR sensor – part in GS

IR4 I2.3 IR sensor – part at the end of T2

IR5 I2.4 IR sensor – part at the end of T3

IR6 I2.5 IR sensor – part at the beginning of T3

IR7 I0.2 IR sensor – part on XY

mark3_O_1 I1.0 XR 3 ctrl output 1 (status of XR3)

mark3_O_2 I1.1 XR 3 ctrl output 2 (status of XR3)

mark3_O_3 I1.2 XR 3 ctrl output 3 (status of XR3)

mark4_O_1 I0.0 XR 4 ctrl output 1 (status of XR4)

mark4_O_2 I0.1 XR 4 ctrl output 2 (status of XR4)

SW_1 I2.6 switch 1 – part on CR

SW_2 I0.5 switch 2 – XY at XR4

SW_3 I0.6 switch 3 – XY at XR3

In order to form vectors u, y, vc and rc, these inputs are combined and

interpreted in an interface function. A part of this function, written in a S7-216

function block diagram, is shown in Figure 5.25 (we assume that the reader has a

basic knowledge of PLC programming, for more information see [26]). It can be

seen, for example, that vc components XR3_1_c, XR3_2_c and XR3_3_c, which

 Manufacturing Systems Structural Properties in Matrix Form 205

correspond to completion of operations (trajectories) XR31, XR32 and XR33 are

comprised of signals from three digital inputs, I1.0, I1.1 and I1.2. The other

example is component XYP_c, calculated in Network 12, which is obtained as the

logical AND of signals from switch 2 and infrared sensor 7.

Figure 5.24. Sensor positions in the laboratory FMS

A similar function exists for interpretation of the matrix controller requests for

tasks, which are determined as components of vectors vs and rs. The PLC outputs

are described in Table 5.5 and part of the interpretation function is shown in Figure

5.26.

Figure 5.25. A part of the digital inputs interface function realized in FBD

206 Manufacturing Systems Control Design

Table 5.5. Digital outputs of the PLC supervisor

Name Address Description

mark4_I_1 Q0.0 XR 4 ctrl input 1 – trajectory coding

mark4_I_2 Q0.1 XR 4 ctrl input 2 – trajectory coding

mark3_I_1 Q1.0 XR 3 ctrl input 1 – trajectory coding

mark3_I_2 Q1.1 XR 3 ctrl input 2 – trajectory coding

mark3_I_3 Q1.2 XR 3 ctrl input 3 – trajectory coding

The start of operation (robot trajectory) XR31 is executed by Network 10 that

sets (S) and resets (R) the PLC’s digital outputs connected with the robot

controller. On the other hand, Network 5, which is responsible for the start of

operation T1P (transport of a part by conveyer T1), executes a serial

communication protocol (function cmd_def in our example) that sends a

command to the conveyer controller via RS232. It should be noted that Network 5

resets the component that corresponds to the availability of conveyer T1 (T1_A),

while Network 10 resets the component corresponding to robot XR3 (XR3_A).

Sometimes interface functions include not only logical operations but also

timers for signals delays and counters for calculation of critical subsystems

contents. These utilities can be included in the main control algorithm as well,

however, in that case each rule of the matrix controller cannot be directly

Figure 5.26. A part of the digital outputs interface

function realized in FBD

 Manufacturing Systems Structural Properties in Matrix Form 207

transferred in the ladder diagram (LD) or the statement list (STL) network.

Realization of the matrix controller in STL on PLC S7-216 is given in Figures

5.27.

At each sampling interval Network 1 sets all the components of the control

vector to 1. Then in Networks 2 and 3 the controller checks if the critical

subsystems are full and resets the corresponding components of the control vector.

The following two Networks, 4 and 5, resolve conflicts so that priority is given to

the part A path and to the jobs according to Theorem 5.3.2. Once the control vector

is determined, PLC executes matrix-controller rules, which is done in Networks 6

Figure 5.27. The matrix controller realized in STL

NETWORK 6 //rules

//

LD always_on

LPS

A PIA

A T1_A

= T1P_s

LRD

A XR4_1_c

A T2_A

= T2P_s

LRD

A PIB

A T3_A

= T3P_s

LRD

A XR3_rel

A IR7

= XYP_s

LRD

A T1P_c

A XR3_A

A ud1

= XR3_1_s

LRD

A GSP_c

A XR3_A

A ud4

= XR3_2_s

LPP

A XR3_A

A CRP_c

A ud5

= XR3_3_s

NETWORK 7 //rules

//

LD always_on

LPS

A XYP_c

A XR4_A

A ud2

= XR4_1_s

LRD

A T3P_c

A XR4_A

A ud3

= XR4_2_s

LRD

A XYP_c

A XR4_A

= XY_r

LRD

A XR4_1_c

A T2_A

LD XR4_2_c

A GS_A

OLD

= XR4_r

LPP

A XR3_2_c

A CR_A

LD XR3_1_c

A XY_A

OLD

O XR3_3_c

= XR3_r

NETWORK 8 //number of parts in the critical subsystem

//

LD XR3_1_s

O XR4_2_s

LD XR3_2_s

O XR4_1_s

LD rst_cnt

CTUD C200, +3

NETWORK 9 //number of parts in the critical subsystem

//

LD XR3_2_s

LD XR3_3_s

LD rst_cnt

CTUD C201, +3

//

//SUBROUTINE COMMENTS

//Press F1 for help and example program

//

NETWORK 1 //all control signals = TRUE

//

LD always_on

S ud1, 1

S ud2, 1

S ud3, 1

S ud4, 1

S ud5, 1

NETWORK 2 //critical subsystem control

//

LDW= C200, +3

R ud1, 1

R ud3, 1

NETWORK 3 //critical subsystem control

//

LDW= C201, +3

R ud4, 1

NETWORK 4 //XR3 conflict resolution

//

LD always_on

LPS

A T1P_c

A GSP_c

A ud1

R ud4, 1

LRD

A T1P_c

A CRP_c

A ud1

R ud5, 1

LRD

A CRP_c

A GSP_c

R ud4, 1

LPP

A T1P_c

A CRP_c

A GSP_c

A ud1

R ud4, 1

R ud5, 1

NETWORK 5 //XR4 conflict resolution

//

LD XYP_c

A T3P_c

R ud3, 1

208 Manufacturing Systems Control Design

and 7. The rules can be read directly from the STL. For example, part of the code,

which is marked in Figure 5.27, corresponds to rule x5 that states that if operation

XR41 is completed (XR4_1_c) and resource T2 is available (T2_A) then operation

T2P should be started (T2P_s). Finally, the contents of critical subsystems are

determined in counters C200 and C201.

A graphical presentation of resources utilizations in a real system is shown in

Figure 5.28. The robots’ trajectories and idle periods are all shown in one graph,

while “1” on other graphs stands for a busy resource.

0 50 100 150 200 250
0

0.5

1

X
R

3

0 50 100 150 200 250
0

0.5

1

X
R

4

50 100 150 200 250
0

0.5

1

T
1

0 50 100 150 200 250
0

0.5

1

T
2

0 50 100 150 200 250
0

0.5

1

T
3

0 50 100 150 200 250
0

0.5

1

X
Y

0 50 100 150 200 250
0

0.5

1

C
R

0 50 100 150 200 250
0

0.5

1

G
S

t [s]

Figure 5.28. Resource utilizations in the real system

References

[1] Kumar PR, Meyn SP. Stability of queuing networks and scheduling polices, IEEE

Trans. Aut. Contr. 1995;40:251–260.

[2] Lu SH, Kumar PR. Distributed scheduling based on due dated and buffer priorities,

IEEE Trans. Aut.Contr.1991;36:1406–1416.

[3] Gray WS, Mesko JP. Observability functions for linear and nonlinear systems,

Systems Control Letters 1999;38:99–113.

 Manufacturing Systems Structural Properties in Matrix Form 209

[4] Byrnes CI, Martin CF. An integral-invariance principle for non-linear systems, IEEE

Trans. Aut. Contr. 1995;40:983–994.

[5] Kato T. Short Introduction to Perturbation Theory for Linear Operators. Berlin:

Springer-Verlag, 1982.

[6] Milnor J. Morse Theory. New Jersey: Princeton University Press, 1963.

[7] Moore BC. Principal component analysis in linear systems: Controlability,

observability and model reduction, IEEE Trans. Aut. Contr. 1981; AC-26:17–32.

[8] Scherpen JMA. Balancing for nonlinear systems, Proceedings of European Control

Conference 1993;4:1838–1843.

[9] Xing KY, Xing KL, Li JM, and Hu BS. Deadlock Avoidance Controller for a class of

Manufacturing Systems, Proceedings of the 1996 IEEE International Conference on

Robotics and Automation 1996:220–224.

[10] Gurel A, Bogdan S, Lewis FL. Matrix Approach to Deadlock-Free Dispatching in

Multi-Class Finite Buffer Flowlines, IEEE Trans. Aut. Cont. 2000;45;11:2086–2090.

[11] Fanti MP, Maione B, Mascolo S, Turchiano B. Event-Based Feedback Control for

Deadlock Avoidance in Flexible Production Systems, IEEE Trans. Rob. Autom.

1997;13;3:.

[12] Jeng MD, DiCesare F. Synthesis Using Resource Control Nets for Modeling Shared-

Resource Systems, IEEE Trans. Rob. Autom. 1995; RA-11:317–327.

[13] Lewis FL, Gurel A, Bogdan S, Docanalp A, Pastravanu OC. Analysis of Deadlock

and Circular Waits using a Matrix Model for Flexible Manufacturing Systems,

Automatica 1998;34:9:1083–1100.

[14] Xing KY, Hu BS, Chen HX. Deadlock Avoidance Policy for Petri-Net Modeling of

Flexible Manufacturing Systems with Shared Resources, IEEE Trans. Aut. Contr.

1996;41:2:289–295.

[15] Lawley M. Deadlock Avoidance in Manufacturing Systems with Flexible Routing and

Mixed Capacity, IEEE International Conference on Systems, Man, and Cybernetics

1998;1:594–599.

[16] Lawley M. Flexible Routing and Deadlock Avoidance in Automated Manufacturing

Systems, Proceedings of the 1998 IEEE International Conference on Robotics and

Automation 1998:591–596.

[17] Smolic-Rocak N, Bogdan S, Kovacic Z, Petrinec K. Multi AGV control system,

Report on research and development assisted in 2004/2005 by SITEK S.p.a., 2005.

[18] Broadbent AJ, Besant CB, Premi SK, Walker SP. Free ranging AGV Systems:

Promises, Problems and Pathways, Proc. of the 2nd Int’l Conf. on Automated

Materials Handling 1985;221–237.

[19] Daniels SC, Real-time Conflict Resolution in Automated Guided Vehicle Scheduling,

Ph.D. thesis 1988, Dept. of Industrial Eng., Penn. State University, USA.

[20] Desaulniers G, Langevin A, Riopel D. Dispatching and conflict-free routing of

automated guided vehicles: an exact approach, Int’l J. of Flex. Manuf. Sys.

2003;15:309–331.

[21] Möhring RH, Köhler E, Gawrilow E, Stenzel B, Conflict-free Real-time AGV

Routing, Proc. of the of 3rd Int’l C. on Applied Infrastructure Res. 2004;661–675.

[22] Taghaboni-Dutta F, Tanchoco JMA, Comparison of Dynamic Routing Techniques for

Automated Guided Vehicle Systems, Int’l J. Product. Res. 1995;33:2653–2669.

[23] Qiu L, Hsu WJ, Huang SY, Wang H, Scheduling and routing algorithms for AGVs: a

survey, Int’l J. Produc. Res. 2002;40:745–760.

[24] Petrinec K, Kovacic Z, Marozin A. Simulator of Multi-AGV Robotic Industrial

Environments, CD-ROM Proceedings of ICIT03 2003.

[25] OPC Foundation at http://www.opcfoundation.org

[26] Siemens AG, Simatic S7-200 Electronic manuals, 2000.

6

Petri Nets

In 1962 Carl Adam Petri from TU Darmstadt developed one of the most popular

DES modeling tools – Petri nets (PN) [1]. They provide a mathematical framework

for DES analysis, DES supervisory design and DES performance evaluation (static

and dynamic). More general than automata (any automaton can be represented as a

Petri net, while the opposite is not always true), Petri nets allow description of very

complex DES. However, in the case of large DES, PN models tend to become

immense and complicated for analysis. The main benefit of PNs is their graphical

nature that allows visualization of the modeled system. Namely, a Petri-net graph
directly embodies many structural properties of the system, which is not the case

when an automaton is used for DES modeling. As such, Petri nets are used in a

wide variety of applications, from communications to fault-tolerant systems. We

shall see later in the text that in the case of an MS modeled by PN, system

resources and part paths can both be recognized straight from a corresponding PN

graph. However, PN are very difficult to design for specific FMS of reasonable

complexity, and to modify if objectives, products, or resources change. A major

problem is that PN properties such as reachability must be verified for each given

system by using simulation. Moreover, to accommodate manufacturing design

algorithms in the PN framework, it is necessary to introduce colored PN,

hierarchical PN, generalized PN, multiple types of places, or other esoteric notions

that quickly go beyond the experience of the manufacturing engineer and

invalidate most PN analysis techniques.

We start this chapter with basic definitions and properties of PNs, followed by

a description of MS modeling by Petri nets [2], [3]. Introduction of control places

in an uncontrolled PN model of the system is presented next, together with a linear

PN controller based on p-invariants. In Section 6.3 we describe the relation

between PN- and matrix-based modeling of MSs. At the end of this section a PN

simulation tool used throughout the chapter is presented (the tool is available for

download).

212 Manufacturing Systems Control Design

6.1 Basic Definitions

A short preamble to PNs and some of their properties have already been given in

Chapter 1. In this section we give formal definitions of terms used in the remainder

of the book.

A PN is represented by a directed bipartite multigraph containing two types of

nodes, places (drawn as circles) and transitions (drawn as bars or rectangles)

connected with directed arcs. Arcs, labeled with their weights, can join only

certain types of nodes. In some applications an arc with weight w is replaced with

w parallel arcs with weight 1 (Figure 6.1). We say that the PN is ordinary if all its

arcs have weight equal to 1. Usually, for convenience, arcs with weight 1 are not

labeled.

A particular property that differentiates a PN from an ordinary graph is a

marking m, which assigns a non-negative integer to each PN place. A marking

m(pi) = l is characterized by l black dots (tokens) inside a circle representing place

pi. We say that pi is marked with l tokens. A marking vector m = [m(p1) m(p2) …

m(pn)]
T represents a PN state, which means that a state space of PN with n places is

described with all n-dimensional marking vectors.

The other property associated with place pi is its capacity K(pi), which refers to

the number of tokens that can be held by the place. Apparently, for practical

applications K(pi) should be bounded by an upper limit. When K(pi) < ∞ for each

place in a PN, we say that the PN has a finite capacity, as opposed to an infinite-
capacity PN in which at least one place has K(pi) = ∞. The PN is said to be safe if

∀pi, K(pi) = 1.

The PN graph shown in Figure 6.1 has two transitions and 5 places with

marking m(p1) = 1, m(p2) = 1, m(p3) = 0, m(p4) = 2, m(p5) = 0. There are 6 arcs

connecting these places with transitions. Their weights are w(p1,t1)=1, w(p2,t1)=1,

w(t1,p3)=3, w(p3,t2)=1, w(p4,t2)=2 and w(t2,p5)=1. Place p is called an input (output)
place of transition t if w(p,t)≠0 (w(t, p)≠0). The same holds for the input (output)

transition t of place p, i.e. w(t, p)≠0 (w(p,t)≠0). A place (transition) that has no

input transitions (places) is called a source, and a place (transition) without output

transitions (places) is called a sink. In the PN shown in Figure 6.1 source places are

p1, p2 and p4, while the sink place is p5. We say that a place pi and transition tj are

involved in a self-loop if w(pi,tj)≠0 and w(tj,pi)≠0. A PN with no self-loops is called

pure.

Figure 6.1. An example of a PN graph

 Petri Nets 213

Interpretation of places and transitions depends on the application, but in

general, places represent conditions required for the occurrence of a particular

event, for example, resource availability, parts or data readiness, etc. Transitions,

on the other hand, represent the occurrence of an event, such as the start of a

task/operation, release of a resource, step in a computation algorithm, etc. In this

concept the existence of a token in a place is understood as a fulfillment of the

condition represented by the place. Since a place can hold more than 1 token, their

presence in the place can be taken as the number of processed parts, the number of

customers in a queue, the number of available resources, etc.

A mechanism that changes a PN state (marking) is described with two simple

firing rules given in the following definitions.

Definition 6.1.1 (enabled transition): We say that transition t is enabled if each

input place p of t is marked with at least w(p,t) tokens.

Definition 6.1.2 (firing of transition): An enabled transition t will fire if the event

that it represents occurs. In that case i) w(p,t) tokens are removed from each input

place p of t, and ii) w(t, p) tokens are added in each output place p of t.

Here we should make an important remark regarding the last definition. In the

text that follows we assume that as soon as a transition is enabled it fires, meaning

that all conditions for the occurrence of an event represented by a particular

transition are modeled and included in a PN graph.

Firing of transitions in PN graph is shown in Figure 6.2. Initially, (a) transition

t1 is enabled since w(p1,t1)=m(p1)=1 and w(p2,t1)=m(p2)=1. On the other hand,

w(p3,t2)>m(p3)=0 and w(p4,t2)=m(p4)=2, hence, transition t2 is not enabled. When t1

fires (b) one token is removed from each input place, p1 and p2, and 3 tokens are

added to output place p3 as w(t1,p3)=3. Now w(p1,t1)>m(p1)=0 and

w(p2,t1)>m(p2)=0, thus t1 is no longer enabled, while t2 becomes enabled since

w(p3,t2)<m(p3)=3 and w(p4,t2)=m(p4)=2. Firing of t2 (c) removes one token from p3

and two tokens from p4, and adds one token to p5.

b)

c)

a)

2

1

2

1

2

3

4

5

2

1

2

1

2

3

4

5

2

1

2

1

2

3

4

5

3

3

3

Figure 6.2. Firing of transitions in a PN graph

214 Manufacturing Systems Control Design

In order to be able to analyze the evolution of tokens in PN as well as PN

structural properties, we have to define a mathematical framework behind the PN

graph. A formal definition of a PN is given next.

Definition 6.1.3 (Petri net): A Petri net is a 6-tuple, PN = {P, T, I, O, M, m0},

where,

P = {p1, p2, p3, …, pm} – a finite set of places,

T = {t1, t2, t3, …, tm} – a finite set of transitions,

I: P× T → {0,1} – an input incidence matrix – relates places to transitions,

O: T × P → {0,1} – an output incidence matrix – relates transitions to

places,

M: I, O→ {1, 2, 3, … } – is a weight function,

m0 – initial value of the marking vector m: P →ℵℵ.

According to the definition, for the PN graph given in Figure 6.2, one has

[]1 2 3 4 5 1 2 0{ , , , , }, { , }, 1 1 0 2 0

1 1 0 0 0 0 0 1 0 0
,

0 0 1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 3 0 0

0 0 1 2 0 0 0 0 0 1

TP p p p p p T t t= = =

= =

=

m

I O

M

Now, let us see if we can write a PN driving mechanism, described by

Definition 6.1.2, in the form of algebraic equations. As already explained, firing of

t1 in the PN shown in Figure 6.2, changes the marking of places p1, p2 and p3, while

firing of t2 changes p3, p4 and p5. For place p3 we can write

3 1 3 1 3 1, 3 2 2,() () (,) (,)k k k km p m p w t p t w p t t−= + ⋅ − ⋅

where k is a firing step. When tj fires in step k, then tjk=1, otherwise tjk=0. For k=1

(firing of t1) the above equation becomes

1 3 0 3 1 3 1,1 3 2 2,1() () (,) (,)

0 3 1 0 0 3

m p m p w t p t w p t t= + ⋅ − ⋅

= + ⋅ − ⋅ =

which corresponds with case b) in Figure 6.2. Generally, a PN place could have

several input and output transitions, thus,

1 , ,() () (,) (,)

j j

k i k i j i j k i j j k
t T t T

m p m p w t p t w p t t−
∈ ∈

= + ⋅ − ⋅
(6.1)

 or in vector form

 Petri Nets 215

T
1k k−= +m m W t (6.2)

where W is an incidence matrix with wij = w(tj,pi) – w(pi,tj), and t is a transition
vector. It should be noted that W = O – I for an ordinary PN. A transition vector t

is composed of non-negative integers that correspond with the number of times a

particular transition has been fired between markings mk and mk–1.

Relation (6.2) is called a PN state equation or PN marking transition equation.

Its similarity with recursive matrix model (3.12) is apparent. We shall discuss this

issue in more detail in section 6.3. By using a PN state equation we can

mathematically formalize the firing of transitions in the PN graph shown in Figure

6.2,

T
1 0 0

T
2 1 1

1 1 0 0

1 1 0 0
1

0 3 1 3
0

2 0 2 2

0 0 1 0

0 1 0 0

0 1 0 0
0

3 3 1 2
1

2 0 2 0

0 0 1 1

−
−

= + = + =−
−

−
−

= + = + =−
−

m m W t

m m W t

We say that the marking (state) m2 is reached from m0 by firing sequence 1 2t tσ = ,

denoted 0 2[σ >m m . The concept of reachability in PN is very important and we

return to this issue later on. It should be noted that the firing sequence σ is only

the sequence that can be fired in the PN depicted in Figure 6.2. If we change the

initial marking of that PN as shown in Figure 6.3, then both transitions, t1 and t2,

are enabled and the question is which one fires first? A PN cannot give an answer

to that question, that is, definitions of the PN and the PN graph do not specify firing
sequences, and thorough analysis of the PN requires examination of all possible

sequences.

216 Manufacturing Systems Control Design

2

1

2

1

2

3

4

5

2

1

2

1

2

3

4

5

2

1

2

1

2

3

4

5

3

3

3

2

1

2

1

2

3

4

5

3

1

1

2

2

Figure 6.3. Firing of different sequences in a PN graph

In our case, if t1 fires prior to t2 one has a sequence 1 1 2t tσ = with m1=[0 0 4 2

0]T and m2=[0 0 3 0 1]T. On the other hand, if t2 fires first, then the sequence is

2 2 1t tσ = with m1=[1 1 0 0 1]T and m2=[0 0 3 0 1]T. Although in both cases the

initial and final markings are the same, the movement of the marking vector in

state space depends on the firing sequence. This example shows that a supervisory

mechanism should be added in a PN model in order to obtain the required behavior

of the controlled system. Let us examine some properties of a PN before

proceeding in that direction.

Generally, PN properties are divided into two classes; those dependent on the

initial marking, called behavioral properties, and those independent of the initial

marking, known as structural properties. Since our main concern in supervisory

design is deadlock prevention, we start with the definition of liveness property.

Definition 6.1.4 (liveness): Petri net PN with initial marking m0 is live if there

exists a firing sequence such that any transition in the PN can be fired from any

marking reached from m0.

The notion of liveness is closely related with deadlock and circular blocking,

i.e. live PN is deadlock free. As liveness guarantees that there always exists a

sequence that fires all transitions in the PN, a system whose model is live PN

cannot get into deadlock. The PN shown in Figure 6.4 is live, while those depicted

in Figures 6.2 and 6.3 are not.

 Petri Nets 217

Figure 6.4. An example of a live PN

A liveness is a strong requirement, but in most cases very difficult to test. For

this reason liveness is categorized with respect to transitions, so instead of

checking if PN is live we consider each transition independently and say that the

transition is a live or a dead one. There exist 4 classes of live transitions: L1-live –

transition can fire at least once, L2-live – transition can fire at least k times, L3-live

– transition can fire an infinite number of times, and L4-live – transition is L1-live

for every m reached from m0. A situation in which all transitions in PN are L4-live

corresponds with liveness as defined in Definition 6.1.4. It has been shown in

Chapter 5 that in MRF systems one dead transition is source of the system

deadlock. Therefore, the PN of the controlled MRF system should be L4-live, i.e.

we require PN liveness according to Definition 6.1.4.

The other property that is essential in PN analysis has already been mentioned

reachability.

Definition 6.1.5 (reachability): A marking mj is reachable from marking mi if there

exists a firing sequence ...ij m r pt t tσ = such that it leads a marking vector from mi

to mj. We write [i ij jσ >m m .

A set of all markings reachable from mi is denoted by ℜ(mi). Reachability is

determined by a listing of all markings (states) that can be reached from a

particular, usually initial, marking. Firing of enabled transition(s) produces new

markings and each new marking generates even more markings. Evidently, this

kind of analysis could lead to enormous number of states and it is limited to a PN

with a relatively small number of places.

Reachability analysis of a PN results in a graphical structure called a

coverability tree. For bounded PN, which we consider herein, a coverability tree

becomes a reachability tree and it contains all reachable states of the

corresponding PN. A reachability tree for the PN given in Figure 6.3 is shown in

Figure 6.5.

218 Manufacturing Systems Control Design

Figure 6.5. A reachability tree of the PN from Figure 6.3

The tree is constructed starting from the initial PN marking by drawing an arc

for each transition that is enabled. As both transitions are enabled, two arcs

(branches) should be created; firing t1 produces marking [0 0 4 2 0], while firing t2

leads to marking [1 1 0 0 1]. We proceed further by drawing arcs for transitions

that are enabled under newly obtained markings. The process continues until all

reachable markings are counted. If we treat markings as nodes then the obtained

reachability tree is actually an automaton representation of the considered PN and a

set of all firing sequences, L(m0), corresponds with the language generated by this

automaton. For the PN shown in Figure 6.4, an automaton equivalent to its

reachability tree is depicted in Figure 6.6. Represented in this way, the analysis

techniques used for automata can be used for bounded PNs as well. For example, a

reachability tree node with no output branches may indicate deadlock, hence, firing

of transition(s) that force undesired PN marking, corresponding to that node,

should be forbidden.

 It is evident from the above brief introduction that reachability analysis offers

a solution to many questions posed for PNs. However, algebraic analysis, based on

state equation (6.2), is proven to be more convenient for PNs. Furthermore, matrix-

based modeling of manufacturing systems, presented in Chapter 3, has much in

common with the state representation of Petri nets. For these reasons here we close

our discussion on reachability analysis from the automata point of view and

proceed with a description of a reachability test based on the algebraic equation

(6.2).

Figure 6.6. An automaton equivalent of PN from Figure 6.4

From Equation (6.2) we see that marking md could be reachable from mk if

there exists a transition vector t such that

 Petri Nets 219

T
d k= −W t m m (6.3)

This equation is a necessary condition for reachability, that is, the existence of

solution t does not guarantee that md is reachable from mk. What we know for sure

is that when Equation (6.3) has no solution in t then there is no firing sequence that

enforces mk into md.

An interesting result is obtained as a solution of the homogenous equation

T 0=W t (6.4)

Since md–mk=0 transition vector t that satisfies Equation (6.4) comprises a firing

sequence that returns marking mk back to itself. Such a transition vector is called t-
invariant. In close relation with t-invariant is the notion of reversibility.

Definition 6.1.6 (reversibility): A Petri net is said to be reversible if for any

marking mi there exists a firing sequence σi such that [i i iσ >m m .

In practice, it is required for most manufacturing systems to exhibit cyclic

behavior. Petri-net models of such systems should be reversible, hence, checking

reversibility is an important issue for the systems we encounter in practice.

Another interesting PN structure, which plays a key role in the investigation of

deadlock, is the so-called p-invariant, a non-negative integer place vector p that is

a solution of

0=Wp (6.5)

As an example of PN invariants we use the net shown in Figure 6.4. Its incidence

matrix is

1 0 1 1 0

1 1 0 1 1

0 1 1 0 1

− −
= − −

−
W

The t-invariant is t = [1 1 1]T, and the p-invariants are p1=[1 0 0 1 0]T, p2=[0 1 0 0

1]T and p3=[0 0 1 1 1]T. Of course, tq=[q q q]T is also an invariant of this PN,

however, when structural properties are investigated then minimal invariants are of

primary interest. An invariant p (t) is minimal if there is no such invariant pq (tq)

that pqi ≤ pi (tqi ≤ ti) for any vector component.

It is easy to show that the number of tokens in places that belong to p-invariant

is constant. Multiplying Equation (6.2) with pT from the left gives

T T T T
1k k−= +p m p m p W t (6.6)

220 Manufacturing Systems Control Design

By including Equation (6.5) in Equation (6.6), and having in mind that Equation

(6.2) holds for any k, we obtain

T T
0 .k const= =p m p m (6.7)

This equation is very important and actually confirms what we shall show later; in

a PN model of an MRF system p-invariants correspond with the resource loops

described in Section 5.1.2.

Let us now examine the PN shown in Figure 6.7. According to Definition 6.1.1

transitions t1 and t3 are enabled. However, place p3, which has two output arcs, is

marked with only one token. Hence, firing one of these two transitions will disable

the other one. This situation is known as a conflict and it was thoroughly discussed

in previous chapters. Since we assumed that the transition fires as soon as it is

enabled, marking m(p3) becomes negative upon firing of t1 and t3, which is not

allowed. Therefore, our prime concern in PN analysis is to prevent conflict.

Figure 6.7. An example of a PN with conflict

An occurrence of conflict is related to Petri-net persistency.

Definition 6.1.6 (persistency): A Petri net is persistent if for any two enabled

transitions firing of one does not disable the other.

This definition concludes the description of the basic behavioral properties of

PN. We continue with the presentation of properties that are determined by the PN

structure and do not depend on PN marking. First, let us extend the notions of

preset and postset to Petri nets:

{ | (,) 0}p t w t p• = > – a set of input transitions of place p,

{ | (,) 0}p t w p t• = > – a set of output transitions of place p,

{ | (,) 0}t p w p t• = > – a set of input places of transition t,
{ | (,) 0}t p w t p• = > – a set of output places of transition t.

 Petri Nets 221

This notation can be extended to sets so that, for example, for S⊂P one

has
p S

S p
∈

• = ∪ • . A vector representation of a set of PN nodes remains the same as

in previous chapters. To recall; a set of places (transitions) that correspond with

nonzero entries in vector s is called the support of s, S = sup(s). In the Petri-net

literature support is usually denoted as s . Next, we define special classes of Petri

nets, called marked graphs and state machines.

Definition 6.1.7 (a marked graph): An ordinary Petri net is called a marked graph
if ∀p∈P, | | | | 1p p• = • = , i.e. each place has one input transition and one output

transition.

The Petri net shown in Figure 6.7 does not belong to that class since 3| | 2 1p • = > ,

while the one depicted in Figure 6.4 is a marked graph. It has been proved that a

marked graph is live if and only if each directed circuit in PN has at least one token

under initial marking m0. This important result can be checked on the PN from

Figure 6.4. Three directed circuits exist in this PN, {p1, p4}, {p2, p5} and {p3, p4,

p5}, with initial marking m0=[1 1 1 0 0]T. Therefore, m(p1)=1, m(p2)=1 and

m(p3)=1, i.e. exactly one token is provided for each directed circuit. From Figure

6.6 we see that firing sequence 1 2 3t t tσ = , which returns PN in its initial marking,

can be repeated an infinite number of times, thus, according to Definition 6.1.4, the

PN is live.

Definition 6.1.8 (a state machine): An ordinary Petri net is called a state machine
if ∀t∈T, | | | | 1t t• = • = , i.e. each transition has one input place and one output place.

It is easy to check the liveness property of a strongly connected state machine.

Specifically, if initial marking m0 of a strongly connected state machine has at least

one token then the state machine is live. This is a necessary and sufficient

condition for state machine liveness.

In the previous chapter we have studied in detail the importance that siphons

and traps have in MS analysis. The relation between an empty siphon and deadlock

was explained and analytical methods for siphon determination and deadlock

avoidance in MRF systems have been proposed. The definitions of siphon and trap

given in Section 5.1.3 can be directly applied in Petri nets. Explicitly, in a Petri net

a siphon is a set of places S such that every transition having an output place in S
has an input place in S. For a set of places in trap Q every transition having an

input place in Q has an output place in Q. Furthermore, the properties of these two

structures hold for Petri nets as well; once a siphon becomes empty, m(S)=0, it

remains empty for all successive markings. On the other hand, if a trap is marked

under some marking it remains marked under all successive markings.

There are numerous papers published in journals and presented at conferences

related to algorithms for siphon determination in PNs. Some algorithms are based

on linear inequalities, while others use logical rules or algebraic equations.

222 Manufacturing Systems Control Design

However, none of these methods can be directly applied to all classes of Petri nets.

Here we demonstrate a simple approach that checks each place in a PN and forms a

set of inequalities [4]. As an example, let us use the PN shown in Figure 6.8. We

start with the assumption that place p1 is an element of siphon S. Then, according

to the siphon definition, every transition having p1 as an output place should have

an input place in S. Hence, if p1∈S then p5∈S. For place p2 one has that when p2∈S
then p1∈S or p4∈S since { }2 1 4 2p p p t• = • = • = . Checking of p3, p4 and p5 gives

the following rules; if p3∈S then p2∈S or p5∈S, if p4∈S then p2∈S or p5∈S, if p5∈S
then p3∈S and (p1∈S or p4∈S). This set of logical rules can be transformed into a

set of inequalities written as

1 5

2 1 4

3 2 5

4 2 5

5 3

5 1 4

0

0

0

0

0

0

p p
p p p
p p p
p p p
p p
p p p

− + ≥
− + + ≥
− + + ≥
− + + ≥
− + ≥
− + + ≥

(6.8)

A solution of this system is a binary vector s = sup(S). For example, s1 = [0 0 1

1 1]T satisfies a set of inequalities, thus, S1={p3, p4, p5} is a siphon. Another

solution, s2 = [1 0 1 0 1]T is also a siphon, however, this siphon contains p-

invariant and, as we mentioned in the previous chapter, it is not interesting for a

deadlock-avoidance supervisory design in MRF systems. It is interesting to note

that s3 = [1 1 1 1 1]T satisfies the above inequalities, i.e. the PN itself is a siphon

since it is comprised of two p-invariants.

The second method we present here follows the same reasoning as the approach

described above; all possible sets (combinations) of places in a PN should be

checked to see if they satisfy the siphon condition. This can be done in various

ways and herein we demonstrate a procedure based on a PN incidence matrix in an

ordinary PN [6].

Figure 6.8. An example of a siphon in a PN

 Petri Nets 223

For an ordinary PN incidence matrix W = O – I. Hence, an element of W

obtains value from a set {–1, 0, 1}, with wij = 1 for pj∈ti•, wij = –1 for pj∈•ti and wij

= 0 for pj∉{•ti ∪ti•}. If we assume that pj belong to siphon S, then for each wij = 1

there must exist wik = –1 with pk∈S. However, when | t•|>1 for some transition in

the PN, incidence matrix should be modified. From the PN shown in Figure 6.8 we

see that, although it has 4 transitions, we needed 6 logical rules to obtain

inequalities (6.7). This is due to the fact that each of transitions t2 and t3, has two

output places. To cope with this situation we modify the incidence matrix as

follows: each wij = –1 should be replaced with ij iw r∗ = − , where ri = | ti•|. Then, for

an ordinary PN with m transitions and n places, set S = {pj | pj∈P} is a siphon if

and only if

0 for all 1,ij
j

w i m∗ ≤ =
(6.9)

For the PN depicted in Figure 6.8 the incidence matrix W and the modified

incidence matrix W* are defined as

1 0 0 0 1 1 0 0 0 1

1 1 0 1 1 2 1 0 2 1
,

0 1 1 1 1 0 2 1 1 2

0 0 1 0 1 0 0 1 0 1

∗

− −
− − − −

= =
− − − −

− −

W W

As we have to check all combinations of places in PN we start with S={p1, p2}.

According to Equation (6.9)

11 12

21 22

31 32

41 42

1 0 0

2 1 0

0 (2) 0

0 0 0

w w

w w

w w

w w

∗ ∗

∗ ∗

∗ ∗

∗ ∗

+ = + >

+ = − + <

+ = + − <

+ = + =

Since the 1st row is greater than 0, set S={p1, p2} is not a siphon. We proceed with

S={p1, p3}, S={p1, p4}, and so on. For S={p2, p4} one has

12 14

22 24

32 34

42 44

0 0 0

1 (2) 0

2 1 0

0 0 0

w w

w w

w w

w w

∗ ∗

∗ ∗

∗ ∗

∗ ∗

+ = + =

+ = + − <

+ = − + <

+ = + =

224 Manufacturing Systems Control Design

thus S is a siphon. When all sets containing two places are checked, the procedure

continues with S={p1, p2, p3} and other three-element sets. Applying Equation (6.9)

on S={p3, p4, p5} gives

13 14 15

23 24 25

33 34 35

43 44 45

0 0 (1) 0

0 (2) 1 0

1 1 (2) 0

1 0 1 0

w w w

w w w

w w w

w w w

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

+ + = + + − <

+ + = + − + <

+ + = + + − =

+ + = − + + =

i.e. S is a siphon, which confirms the result obtained from the set of logical rules

(6.8). Finally, the last set to be checked is S={p1, p2, p3, p4, p5}. Since the sum of

elements of each row in W* is ≤ 0 this set is a siphon.

The presented method can be easily converted into an algorithm. However,

direct realization is time consuming since the procedure is based on the so-called

“brute force” approach. On the other hand, for some classes of PNs, the method

can be modified in order to reduce computation complexity. We do not elaborate

on this issue in more detail since in MRF systems siphons can be determined by

implementation of the results discussed in Section 5.1.3, which we illustrate later

in this chapter.

There exist many interesting concepts in PN theory, such as complex-valued

tokens [11] or continuous Petri nets [12], which widen the usage of PNs in fields

that are beyond the scope of this book. However, two types of PNs, namely timed

[7] and colored [8] PNs, are commonly used in MS analysis and design, hence, we

conclude the basic definitions and properties of Petri nets with brief remarks on

these two groups of PNs.

Although the PN state equation (6.2) describes movement of marking vector m

in the state space, it does not cover the system dynamics. As we showed in Chapter

3, the concept of time is essential in performance evaluation of an MS. Therefore,

the time durations of the system tasks should be included in a PN model. This can

be done in two ways; we can associate time delays with PN places (p-timed PN) or

PN transitions (t-timed PN). Herein we present p-timed PNs.

In principal, we follow the ideas presented in Section 3.3. An additional

parameter, p-delay, denoted d(pi), is assigned to each place in PN. In general, d(pi)

is a real number (for a fuzzy timed PN see [9]), deterministic or stochastic, which

depends on the character of the modeled system. A p-delay is introduced in a PN in

the form of a diagonal matrix D[dii]n×n, which requires splitting of marking vector

m into two vectors, one representing all tokens that are available for further

propagation through the PN, the available marking vector ma, and the other

showing all tokens that are delayed, the pending marking vector mp [10].

Consequently, a place in a PN graph is split into two parts as shown in Figure 6.9a,

while a PN state equation obtains the following form

 Petri Nets 225

T
p, p, 1

a, a, 1 p,

a,()

k k

k k k

kf

−

−

= +

= + ⋅

=

m m W t

m m D m

t m

(6.10)

It should be noted that only the available marking vector ma is used for

calculation of enabled transitions. When the transition fires, the tokens are moved

into the pending vector mp,k, where they stay until the delay time of a particular

place expires. Then, the tokens propagate into ma,k where they may be used to fire

subsequent transitions. For marked graphs, model (6.10) can be transformed into

the max-plus form.

The dynamic PN state equation (6.10) gives the correct results only when each

place in PN has exactly one input transition. The reason is the same as the one

described in Section 3.3. That is, each input transition requires an additional delay

parameters, as shown in Figure 6.9b. In this case D is not a diagonal matrix and the

dimensions of vectors mp and ma are different. Model (6.10) becomes even more

complex when place p is not bounded and receives tokens with an input rate that is

faster than its delay time. As we already explained in the section related to the

modeling of the system dynamics, such a situation involves multiple clocks, i.e.

each token that enters a place is associated with its own clock. When the clock

expires a token is moved from mp into ma. In fact, when an MS is modeled by a

PN, pending marking vector mp corresponds with vector m
s in Equation (3.21).

Therefore, for deadlock avoidance in a p-timed PN both vectors, ma and mp, should

be considered.

Figure 6.9. Splitting a place in a p-timed PN

Although this is not a topic of the book, it is interesting to mention the

application of timed PNs in data processing. If a token is considered as data

received from a sensor or some other device, then the time associated with a place

could be considered as temporal-information degradation. In other words, after

some time the information “value“ is decreased and confidence in firing of a

particular transition is reduced; if time expires, a token is removed from the place

and the transition is no longer enabled.

Colored PNs are generally used for modeling of DESs in which tokens

represent a particular property or type of processed part (customer) or an offered

service. Various properties (or types) are characterized by different colors or differ-

226 Manufacturing Systems Control Design

Figure 6.10. Example of colored PNs

ent shapes of tokens. Figure 6.10a shows the PN model of a customer service

entry. Customers with different requests arrive into the system and each of them is

routed depending on the nature of the request. There are three types of requests,

marked with a circle, a triangle and a rectangle. Transition t1 is a source transition

and represents arrival of the customer. Firing of transitions t2, t3 and t4 depends on

the marking of place p1 (input buffer); transition t2 is enabled with a circle, t3 is

enabled with a triangle, and t4 is enabled with a rectangle.

A variation of the same system is depicted in Figure 6.10b. In this PN,

transition t2 is enabled with all three types of tokens, while each place accepts only

tokens of a specific type; place p2 can receive only circular, p3 only triangular, and

p4 only rectangular tokens. A propagation of different tokens through a PN could

be associated with arcs as well. One way or the other colored PNs offer a powerful

tool for modeling and analysis of complex and demanding systems. However, the

final PN graph and the underlying PN state equation can be very difficult to

understand.

6.2 Manufacturing Systems Modeling

In a PN model of an MS, described herein, places are associated with operations

and resources, while transitions represent starting and ending of operations and

tasks. Therefore, recalling the definitions given in Section 3.1, a set of places P =

P* ∪ PI ∪ PO, P* = R ∪ J ∪ P0, where k
k

R R
∈Π

= ∪ is a set of

resources, k
k

J J
∈Π

= ∪ is a set of operations, 0 0
k

k
P P

∈Π
= ∪ is a set of pallets, and Π

is the set of distinct types of parts produced (or customers served) by an MS. As

we stated in Section 3.1, each part type has a predetermined sequence of operations

(except for FMRF) that starts with a raw part-in operation, in
kJ ∈ PI, represented by

a source place, and a finished product-out operation, out
kJ ∈ PO, represented by a

sink place. We consider a source place as a token generator. That is, tokens appear

in a source place according to a specified function or stochastically. On the other

 Petri Nets 227

hand, a sink place is considered as a drain, i.e. a token is removed from the sink

place immediately upon arrival. Pallets are used for carrying parts through the

system.

PN models of non-shared and shared resources are depicted in Figure 6.11. A

nonshared resource a) is represented with two places, R and Ja
R. A token in place R

marks the availability of a resource, while a token in place Ja
R denotes that the

resource executes the corresponding operation. The initial number of tokens is

equal to the number of parts that can be simultaneously processed by the resource.

A sequential shared resource b) performs more than one operation on the same part
type; each operation is represented by one place, while resource availability is

characterized with a token in place RS. A parallel shared resource c) performs more

than one operation on different part types. Obviously, a shared resource that

executes some operations on the same part type and others on different part types

can be represented as a combination of models b) and c).

Figure 6.11. PN models of nonshared (a), sequentially shared (b) and parallel shared (c)

resources

It is assumed that the resources shown in Figure 6.11 are released immediately

upon completion of an operation. Generally, this is not the case. A resource could

perform two or more operations, one after the other, as shown in Figure 6.12. In

this case the last operation to be performed is the one that releases the resource (in

our case resource R executes Ja
1 and then Ja

2R). Furthermore, it may happen that

one operation requires more than one resource. In the PN depicted in Figure 6.12

operation Ja
1 requires resources R and RA in order to be performed.

In Chapter 5 we analyzed some properties of free-choice multiple re-entrant

flowlines. In the example that belongs to this class of systems and is shown in

Figure 5.6 some resources cannot be described with the PN models presented so

far. It can be seen that buffer B2, for example, receives parts from three machines

and distributes these parts to two machines. If one considers each input

individually, then the place representing the occupied buffer requires three input

228 Manufacturing Systems Control Design

transitions. Additionally, each output from the buffer is represented by one

transition. Thus, buffer B2 is modeled as shown in Figure 6.13. Each token in place

B2A stands for an unoccupied slot, while tokens in B2P represent parts held by the

buffer. This PN model is obtained by combination of the free-choice and merge

prototypes shown in Figure 6.14. An assembly operation, which is commonly used

in MS, could be modeled as a combination of several resource prototypes. Figure

6.15 depicts one of the possible configurations that describes the assembly of two

parts, a and b, in resource R.

Figure 6.12. A PN model of a nonshared resource with two operations in sequence and an

operation that requires two resources

Figure 6.13. A PN model of buffer B2 in the system shown in Figure 5.6

Figure 6.14. A PN model of a free choice (a) and merge (b)

 Petri Nets 229

Figure 6.15. A PN model of an assembly

When the last operation on part a, Ja
R1, is finished and part b is ready (operation

Jb
R2 is completed), resource R takes both parts and creates a new part type c by

execution of assembly operation Jc
R.

Based on the presented PN models one can conclude that, in general, physical

entities of an MS, machines, robots, conveyer belts, etc., could be identified

directly from the PN model. Still, there are examples where some parts of the

system, which in fact do not belong to the class of resources, are represented with

models shown in Figure 6.11. Such an example is the multi-AGV system depicted

in Figure 6.16. In this example, paths and crossing areas (sometimes called

blocking areas) used by vehicles are considered as resources. Figure 6.16 shows a

crossing area and its PN model that corresponds with a model of a shared resource.

Figure 6.16. A PN model of a crossing area in a multi-AGV system

Having described resource prototypes, we can define the properties of a PN for

MRF systems:

• *,p P p p∀ ∈ • ∩ • = ∅ ; there are no self-loops,

• * *
1, \ and \k k

Lk t P J t P J∀ ∈Π •∩ = ∅ • ∩ = ∅ ; each part path has a well-

defined beginning and an end,

230 Manufacturing Systems Control Design

• 1, () 1 and () ()k k k k
i i i iJ J R J R J R J +∀ ∈ = ≠ ; each operation requires one and

only one resource and the same resource cannot execute two successive

operations,

• , 1p J p∀ ∈ • = ; there are no free-choice operations,

• , 1t t J∀ • ∩ ≤ ; there are no assembly operations,

• there exists at least one shared resource.

For MRF systems, for any r∈R, ()J r r J r J= ••∩ =•• ∩ and

()k k k
i i iR J J R J R= ••∩ =•• ∩ .

Let us now consider the assembly tree depicted in Figure 3.1. We start

construction of a PN model by assigning one place with each operation in the job

sequence, as shown in Figure 6.17a. Then, an extra place, representing an idle

nonshared resource, is joined with a place that represents an operation performed

by that particular nonshared resource (Figure 6.17b). Three places are added in the

PN model; MA, B and MB, representing drilling machine, buffer and grinding

machine, respectively. Next, shared resource(s), together with source (an input, PI)

place for parts entering the system, and sink (an output, PO) place for parts leaving

the system are added, as shown in Figure 6.17c, (the considered system has only

one shared resource, thus, one place, denoted R, is added). Finally, initial marking

is assigned to the PN model and transitions are denoted. As can be seen, it is

assumed that resources are idle. Each machine can process one part at a time, with

a buffer having two empty slots, and an input place with three parts waiting to

enter the system.

Figure 6.17. A PN model of a job sequence from Figure 3.1; (a) operations, inclusion of (b)

nonshared resources, and (c) shared resource together with input and output places

 Petri Nets 231

The attained PN is pure and ordinary, with P = {PI, MAP, RP1, BP, MBP, RP2,

MA, MB, B, R, PO}, T = {t1, t2, t3, t4, t5, t6}, initial marking m0=[3 0 0 0 0 0 1 1 2 1

0]T, M=[O | I], W=O–I, and

1 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0

=I

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1

=O

6.2.1 Petri-Net Controller

From the discussions in previous chapters it is clear that the notion of state is one

of the central points in the system theory. By using various modeling techniques

one is able to characterize the system behavior as movement of the state vector in

the state space. Then, specifications regarding system performance may be given in

the form of regions in the state space; some of these regions are preferred, while

the others are forbidden. Due to its ability to capture the structural properties of the

modeled system, the PN formalism is particularly convenient for implementation

of this approach in the DES analysis and design. By controlling firing of transitions

one can keep the system in the desired region of the state space, thus avoiding

illegal states. This can be done with insertion of control places in an uncontrolled

PN model of the system.

In this section we demonstrate how to add control places in a given PN, and

how to determine their initial marking, which depends on the structure of the

system and its initial state. Although many techniques for PN controller design

have been proposed in the literature, we limit our discussion to a relatively simple

approach based on p-invariants. Our main concern in PN controller design is the

same as in the previous chapters, that is, prevention of conflict and deadlock (the

232 Manufacturing Systems Control Design

PN controller should guarantee liveness). We assume that all transitions (or at least

those connected with control places) are controllable and observable.

First, let us study a conflict. We know that conflict in MS is related to the

shared resources. The occurrence of simultaneous requests from two (or more)

tasks that use the same resource must be handled by the supervisor, i.e. the

decision should be made regarding a priority. One way to prevent conflict in the

PN model of a shared resource Rs, is to add a control place as an input to each

transition that belongs to set Rs•, as depicted in Figure 6.18. Such a control place

does not have input transitions. In other words each place is a source that generates

tokens according to some control function, m(udi) = hi(m). Evidently, each function

hi(m) should be defined so that markings of control places are mutually exclusive,

as for the matrix controller described in Section 3.4. Hence, the relation

() 1di
i

m u =
(6.11)

must be fulfilled each time conflict occurs.

Figure 6.18. A conflict resolution in a PN, m(udi) = hi(m)

When control places are responsible only for conflict resolution, requirement

(6.11) can be satisfied directly by synchronization of two (or more) transitions

involved in a conflict, as shown in Figure 6.19. This solution is very restrictive

from the resource-utilization point of view since only one token is allowed to enter

the part of the PN within conflicting transitions (usage of only one control place,

ud1, will have the same effect). It should also be noted that initial marking of

control places may be a reason for a dead PN.

Once conflict is resolved we can concentrate on the deadlock avoidance.

Control of the number of tokens in a particular part of the PN is the main

mechanism in the deadlock prevention [5]. This is expected since analysis of the

relation between a deadlock and an empty siphon showed that the control strategy

should assure that at least one place belonging to the siphon is marked at any time.

 Petri Nets 233

RS

 Ja
Rs1 Ja

Rs2

… ……

ud1 ud2

Figure 6.19. A conflict resolution in a PN by synchronization of conflicting transitions

Here we present a method that is proposed in [14]. The basic idea is to restrain

the number of tokens in subsets of PN places by using linear inequalities

⋅ ≤L m b (6.12)

where L is an l×n integer matrix, l is the number of inequalities, n is the number of

places in PN, m is a marking vector of an uncontrolled PN, and b is an integer

column vector. Constraints (6.12) can be transformed into the set of linear

equations in matrix form

d⋅ + =L m u b (6.13)

where ud is the marking of control places added to an uncontrolled PN.

Implementation of Equation (6.13) requires determination of a) the incidence

matrix of closed-loop (controlled) PN, and b) initial marking of control places,

ud(0)= ud0. First, we extend marking vector m in order to incorporate control

places, md=[m ud]
T. This extension requires a change in the closed-loop PN

incidence matrix W, which becomes Wc=[W Wd], where Wd is an unknown

incidence matrix that comprises information regarding connections of control

places with transitions of uncontrolled PN. Then, from Equation (6.5) it follows

c d[] 0⋅ = ⋅ =W P W W P (6.14)

where P is a p-invariant matrix formed of p-invariant vectors.

Matrix equation (6.13) should be satisfied at any time, hence

d
d

[] .
k

k k
k

const⋅ + = ⋅ = =
m

L m u L I b
u

(6.15)

By comparing this equation with Equation (6.7) we see that each row of matrix [L

I] in fact represents the p-invariant of a closed loop PN, i.e.

234 Manufacturing Systems Control Design

T

=L
P

I
(6.16)

Including Equation (6.16) in Equation (6.14) yields

T

d[] 0⋅ =L
W W

I
(6.17)

which provides the relation for calculation of Wd,

T
d = − ⋅W W L (6.18)

Initial marking of control places can be directly obtained from Equation (6.13),

0 d0 d0 0⋅ + = = − ⋅L m u b u b L m (6.19)

This result shows that a supervisor will impose constraints (6.12) only for those

initial markings that give ud0>0, since fulfillment of Equation (6.19) implies L⋅m0

≤ b.

Example 6.2.1 (p-invariant-based PN controller)

We demonstrate p-invariant controller design on the workcell shown in Figure

2.12. A PN model should be developed based on a description of the system given

in Example 2.2.1. First we identify the set of operations required for production of

parts a and b. The PN model of both sequences is depicted in Figure 6.20.

Figure 6.20. Operations sequences for the workcell shown in Figure 2.12

The next step in PN modeling is allocation of resources. The PN graph shown

in Figure 6.21 is obtained by using resources prototypes described in the previous

section. It is worth noting that the obtained PN model replicates a structure of the

system, which is not the case with automaton representation of the same workcell

(Figure 2.17). The shared resource in the system is robot R, which executes three

tasks; two on part a path and one on part b path. It is assumed that both machines

have the same capacity of one part at a time.

 Petri Nets 235

Figure 6.21. A PN model of the workcell shown in Figure 2.12

The attained PN belongs to the MRF class. It is pure and ordinary, with P =

{PIa, PIb, RP1, MAP, RP2, MBP, RP3, MA, MB, R, POa, POb}, T = {t1, t2, t3, t4,

t5, t6, t7}, initial marking m0=[4 3 0 0 0 0 0 1 1 1 0 0]T, M=[O | I], W=O-I, and

1 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0

=I

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1

=O

236 Manufacturing Systems Control Design

The system analysis, given in example 2.2.1, confirmed the existence of

operation sequences that can lead the system to deadlock, which corresponds to the

situation when both machines are processing parts while the robot carries part a.

Inspection of the PN shown in Figure 6.21 reveals the existence of critical siphon

SC={RP2, RP3, MA, R} (one of the previously described methods for the siphon

detection could be used for this purpose). A constraint that should be enforced by

the supervisor must provide that m(SC) ≥ 1 at any time. Relation (6.12) attains the

form

⋅ ≥L m b

where L = [0 0 0 0 1 0 1 1 0 1 0 0] and b = [1] (note that L = sC with sup(sC) = SC).

One control place is required since there is only one constraint. Its initial

marking is obtained from

0 d0 d0 d02 1 1u b u u⋅ − = − = =L m

 Matrix Wd is calculated from

T

d

0

0

0
1 0 1 0 0 0 0 0 0 1 0 0 1

0
0 0 1 1 0 0 0 1 0 1 0 0 0

1
0 0 0 1 1 0 0 1 0 1 0 0 1

0
0 0 0 0 1 0 0 0 0 1 1 0 0

1
0 1 0 0 0 1 0 0 1 0 0 0 0

1
0 0 0 0 0 1 1 0 1 1 0 0 0

0
0 0 0 0 0 0 1 0 0 1 0 1 0

1

0

0

= ⋅

− − −

− −

− −

=−

− −

− −

−

=

= ⋅

W W L

As a result, the control place has transition t1 as an output, and transition t3 as

an input. The controlled PN is depicted in Figure 6.22. It can be seen that the

control place is blocking transition t1 when one token is remaining in siphon SC.

Since t1 draws tokens from the siphon, this mechanism prevents the siphon from

becoming empty. Actually, control place ud limits the number of tokens in places

RP1 and MAP since these two places, together with ud, form p invariant {RP1,

 Petri Nets 237

Figure 6.22. Controlled PN model of the workcell shown in Figure 2.12

 MAP, ud}. This detail is important for deadlock prevention and resources

utilizations in MRF systems.

♦

Two issues, concerning siphon control and inclusion of control places in an

uncontrolled PN, have to be addressed. The first one is related to observability and

controllability of transitions. Each constraint stated in Equation (6.12) requires one

control place that receives tokens from and dispatches tokens to transitions of the

uncontrolled PN. This mechanism is feasible only when transitions that belong to

•ud are observable, and those belonging to ud• are controllable. Constraints that

generate such control places are called admissible. The admissibility of constraints

can be tested by the following relations

T
uc

T
uo

0

0

⋅ ≥

⋅ =

W L

W L
(6.20)

where Wuc is an incidence matrix containing rows corresponding to uncontrollable

transitions, and Wuo is an incidence matrix containing rows corresponding to

unobservable transitions.

The second problem related to inclusion of control places in an uncontrolled

PN lies in the fact that new places could generate new siphons. Therefore, the

above method for siphon control, as well as many others, is based on an iterative

procedure, i.e. realization of one constraint from Equation (6.12) could generate

new constraint(s). More details regarding an iterative algorithm and requirements

for its completion can be found in [13].

238 Manufacturing Systems Control Design

6.3 Relation Between Petri Nets and Matrix Form

In Chapter 1 it was mentioned that system matrices are closely related with Petri

nets. Actually, as we shall demonstrate in this section, there is a direct relation

between these two mathematical formalisms. This is expected since both tools are

used for DES analysis and controller design.

The logical state vector x in the matrix-based approach associates logical

conditions, in the form of availability of resources and parts, with consequences in

the form of actions taken upon fulfillment of conditions. According to Definitions

3.1.2 and 3.1.3 matrices Fv and Fr capture conditions, while matrices Sv and Sr are

responsible for actions. If we correlate components of the logical state vector with

transitions in an ordinary and pure PN, then the system matrices can be directly

associated with the arcs connecting transitions and places, as shown in Figure 6.23.

Figure 6.23. Relations between PN arcs and the system matrices

Each entry “1” in the resource-requirements matrix Fr is associated with an arc

connecting a place, representing resource availability, with the corresponding

transition; 1s in the resource-release matrix Sr express the connections between PN

transitions and places that hold tokens when resources are idle. Correspondingly,

1s in matrices Fv and Sv represent arcs connecting transitions and places associated

with operations executed by MS resources. The input matrix Fu portrays output

arcs from input places, while output matrix Sy depicts input arcs to output places.

Since we assume that input places are sources and output places are sinks, matrices

Fy and Su are null matrices, Fy = Su = [0].

As a result, PN input and output incidence matrices can be obtained directly

from the system matrices,

u v r y

T T T T
u v r y

[]

[] T

= =

= =

I F F F F F

O S S S S S
(6.21)

Even though I and O matrices define the form of a PN, they do not provide

consistent and straightforward information regarding the structure of the modeled

MS. By partitioning these matrices in accordance with Figure 6.23 and Equation

 Petri Nets 239

(6.21), one is capable of distinguishing between places that represent MS tasks and

places indicating resources that perform these tasks. Moreover, the system inputs

and outputs can be clearly distinguished. Now, if we include Equation (6.21) in the

marking transition equation (6.2), then

T
1 ()k k−= + −m m S F t (6.22)

which coincides with Equation (3.12).

It is evident that the PN model, consisting of resources prototypes described in

the previous section, can be constructed directly from the system matrices, which

we demonstrate in the example that follows.

Example 6.3.1 (determination of PN from the system matrices)

We use matrices that describe the system analyzed in the case study in Section 5.4.

The structural properties of the PN can be read from the system matrices. A

number of rows of F-matrices, as well as a number of columns of S-matrices,

defines a number of transitions, which in our case is 13. Matrix Fu has two

columns, each of them corresponding to one input place, while the rows of matrix

Sy match two output places. This information, together with the fact that Fv (Sv)

has no “1s” in rows (columns) in which Fu (Sy) has an element equal to 1, points

out that PN will have two part paths.

Let us denote part paths inputs as pi1 and pi2, and part paths outputs as po1 and

po2. Furthermore, we denote places that stand for operations as pv1, pv2, …, pv11

(there are 11 columns in Fv), and places that represent resources availability as pr1,

pr2, …, pr8 (8 columns in Fr). Then, matrix element fu(1,1)=1 corresponds to

w(pi1,t1)=1, fv(2,1)=1 corresponds to w(pv1,t2)=1, fr(1,3)=1 corresponds to

w(pr3,t1)=1, and so on. On the other hand, matrix element sv(1,1)=1 corresponds to

w(t1,pv1)=1, sr(1,3)=1 corresponds to w(t3,pr1,)=1, sy(1,6)=1 corresponds to

w(t6,po1)=1. Following the same reasoning one is able to determine all PN arcs.

240 Manufacturing Systems Control Design

The PN graph of the system described with given matrices is shown in Figure

6.24. The model has two part paths with one parallel and one combined shared

resource. Notations used in the case study are placed in parentheses.

Figure 6.24. PN model of the system described in the case study in Section 5.4

♦

 Petri Nets 241

It is apparent that the system analysis provided in Chapter 5 can be directly

applied to a PN, given that the attained PN belongs to the MRF class. In addition,

string composition presented in Chapter 4, can be used for calculation of circular

paths connecting PN resource places, resulting in circular waits (as we know,

critical siphons in MRF systems comprise circular waits). Alternatively, CWs can

be determined directly from a PN graph. Since each circular wait includes at least

one shared resource, one can move along PN arcs that connect resource places,

starting with a shared resource. When a tour completes in the starting place, the

executed path represents a circular wait. This can be illustrated in the PN in Figure

6.17c. The shared resource R has two output arcs, one connecting t2 and the other

one connecting t5. Arriving in t2 from R we can proceed along arc t2→MA, and

then further along arc MA→ t1. As there are no arcs that connect resource places

with t1, the path is completed. Evidently, the executed path is not circular. On the

other hand, moving along arc R→ t5 we can move further to MB and then to B.

From transition t3 we are returning to place R, which closes up a circular wait. Both

paths are shown in Figure 6.25 (note the similarity with the wait relation graph in

Figure 5.1).

Figure 6.25. Wait relations in PN model of the workcell shown in Figure 3.2

Determined by the string composition or directly from PN graph, circular waits

are starting points in the implementation of a PN controller, which could be based

on the analysis given in the previous chapter. All definitions and conclusions

developed therein can be applied to a PN by simple substitution of the logical state

vector x with the transition vector t. Such, for example, precedent rules become

precedent transitions, posterior rules becomes posterior transitions, and so on.

Additionally, PN marking vector m is equivalent to the state vector, purposely

denoted m, in the matrix model. Hence, most of the MS structures presented in

vector form and involved in matrix equations can be recognized in the PN. Let us

mention just two of them. The first one is a resource loop; Equations (5.2) and

(5.43) directly associate resource loops in an MRF system with p-invariants in its

PN model. The second structure is a critical subsystem; when rows of matrix L in

Equation (6.12) are built from critical subsystem vectors [v0C 0n] determined by

Equation (5.25) and b=m0(C), then the p-invariant controller, Equation (6.18), with

initial conditions, Equation (6.19), provides deadlock-free behavior of the system

(compare Equation (6.13) with Equation (5.48)).

242 Manufacturing Systems Control Design

6.4 Petri Nets Simulation and Implementation

There are two main groups of solution methods used in the system analysis.

Methods in the first group rely on the analytical approach, while methods in the

second group use simulation. Which method is used depends mainly on the

character of the system and the designer’s affinity. Although analytical methods

offer not only accurate results but also a deep insight in the system itself, usually

they suffer from complexity and may even become inapplicable in the case of large

systems. Very often instead of an original method its approximation is used. This is

particularly widespread in the case of analytical methods that find their

applications in industry. Engineers that work onsite with real-world problems are

enforced to apply approximations due to time restrictions posed on the system

commissioning.

With the rapid growth of the computational power and in an industry that is

cost competitive, simulation methods have become more and more popular. Their

progress can be tracked in two directions; one that is related to development of

faster methods that can adopt parallelism in the execution of mathematical

algorithms [28], and the other that deals with the presentation of the attained

results. In the previous chapters we introduced the matrix-based approach to the

DES analysis that is convenient for simulation, while the last chapter of the book is

devoted to the presentation of simulation results. In this section we give an insight

into PN simulation together with a description of the DES simulation tool

Petri.NET, which was developed in the Laboratory of Robotics and Intelligent

Systems at the Department of Control and Computer Engineering, Faculty of

Electrotechnics and Computation, University of Zagreb.

Petri nets, as a mathematical and graphical tool, are especially suitable for

simulation. Driven by a very simple mechanism, reduced to two basic rules, from

the algorithmic point of view they suggest a large diversity of solutions. This is

why an extensive number of PN simulation packages is currently offered on the

market [31]. Some of them are very sophisticated (and expensive) with features

that allow simulation and analysis of a whole corporation on the highest, corporate,

level, while others are intended to be used for small-scale systems (usually offered

free of charge).

Even though all of these tools have the same purpose their differences are

mainly in the operating system (OS), programming language, graphical user

interface (GUI), simulation capabilities and analytical capabilities.

Today, most of the tools work on a Windows platform, but only ten years ago

Unix systems were predominant together with DOS. Most of the early applications

were programmed in C and C++, but with development of Java, an interpreted,

object-oriented, portable, and multithreaded programming language, applications

became independent of OS. Some of them even evolve in a way that provides

writing of new features that can be incorporated in existing code [29]. At the same

time extensive use of XML speeds up data transfer. A further step ahead is the

appearance of open-source applications [30].

One of the benefits of PN is their graphical capability, which is extensively

used in GUI design and presentation of results. Almost all PN simulation tools are

more or less attractive and user friendly, GUI with drag-and-drop ability. Some

 Petri Nets 243

kind of graphical editor is used for model definition with a token game as a result

of simulation. Generally, features such as backward simulation, step-by-step

simulation and pause, are integral parts of applications.

The main differences between PN simulation tools are their analytical

capabilities. Many of them do not provide any analysis of the PN model. Some of

them do provide analysis of the reachability tree (its construction and

representation) together with determination of liveness and boundedness.

Additionally, some of the simulation tools have statistics analysis, such as the

number of times a transition fires, the average number of tokens in a place, etc.

Investigation of structural properties, such as p and t invariants is rarely included in

applications.

In the rest of the section we describe the PN simulation tool Petri.NET. This

tool, written in .NET for a Windows platform, incorporates features that are typical

of most of PN simulators. Additionally, it comprises some specific properties

required for analysis MRF systems and implementation of MS supervisory

controller.

The main window of the Petri.NET GUI is shown in Figure 6.26. It comprises

three tabs (central part of the screen): PetriNet Editor, Description and Response,

and four dockable frames: Toolbox, Document Explorer, Properties and Rules

Editor.

Figure 6.26. The main window of Petri.NET

244 Manufacturing Systems Control Design

Toolbox is a special TreeView control containing all objects that can be

dragged to the editor: simple objects like places and transitions and more complex

resource prototypes. Document Explorer shows the objects tree of the currently

active PN model. It helps in navigation of the objects hierarchy. The properties

window is used to display and edit all properties of objects (places and transitions)

that are part of the Petri-net model. The properties of other objects (labels,

subsystem blocks,…) used in the application, can be displayed and edited as well.

The Rules Editor is used to add/edit/remove rules that are applied to the currently

active PN model. It contains a collection of rules that define the activities of the

control places included in the PN model.

A PN model is built with PetriNet Editor by a simple drag-and-drop principle.

Since Petri.NET is primarily designed for simulation and analysis of MS, the

Toolbox window contains five types of places: Input, Operation, Resource, Control

and Output. Some properties are common to all types (NameID), while others are

specific and depend on the type of the place. An input, for example, as a source

place can receive tokens with predefined, fixed or stochastic, frequency. A

resource on the other hand, has a unique property related to release times (Figure

6.27).

Figure 6.27. Release Times Editor in Petri.NET

As we described in Section 6.2.1 there are two basic ways in which to control

how places are related with other places in the PN graph; they can receive tokens

according to some control function, or they can have input transitions. In

Petri.NET the control function has the form of rules and it is defined in Rules

Editor, depicted in Figure 6.28.

Figure 6.28. Rules Editor in Petri.NET

 Petri Nets 245

A rule has the following syntax:

IF (Expr1 AND Expr2 AND … AND ExprN) THEN (Assign1 AND Assign2

AND … AND AssignN)

where:

Expr: NameID1/const1 op NameID2/const2 op … op NameIDN/constN

RELOP NameID1/const1 op NameID2/const2 op … op

NameIDN/constN

Assign: NameID = const

op – arithmetic operators: '+' or '-'

RELOP – relational operators: ==, !=, <, <=, >, >=

Upon definition of the model, Petri.NET can simulate time-invariant and p-

timed PN. Simulation can be tracked by the selection of a token game, while in the

case of p-timed PN a pie object that indicates the remaining time, appears inside a

place (Figure 6.29).

Figure 6.29. Pie objects in Petri.NET (indication of remaining time in a p-timed PN)

Once simulation is finished, by using the Response tab the user selects a type of

presentation of simulation results. Two types of presentations are available,

Spreadsheet and Oscilogram. When the PN model belongs to the MRF class,

Petri.NET provides basic system analysis; determination of circular waits,

transitions in conflict, the system matrices and the wait relation matrix, and

calculation of resources utilizations. All these options are available in Description

tab.

We conclude this section with a description of another Petri.NET feature, an

automatic PLC code generator (Figure 6.30), which makes this application

different from most PN simulation tools.

The PLC code generator executes two functions; first the PN model is

transformed in generic PLC code, and then a parser is used to create a file that is

readable by the target PLC. Currently, the code generator supports the Siemens S7-

200 PLC family, but due to its modular design, Petri.NET provides a very simple

method for insertion of additional parsers. Nevertheless, due to the large variety of

PLCs some other options should be investigated. The OPC standard is one of the

246 Manufacturing Systems Control Design

solutions, since almost all PLC manufacturers provide programming tools that

allow PLC to connect to an OPC server as a client. Then, Petri.NET as another

OPC client, would be able to exchange information with a PLC through the OPC

server.

Figure 6.30. Main frame of the automatic PLC code generator in Petri.NET

Let us now return to the automatic PLC code generation. Transformation of an

ordinary PN graph in a ladder logic diagram is based on several rules as stated

below:

• each place is associated with one PLC variable; a Boolean is assigned to

the place with K(p)=1, a counter is assigned to the place with K(p)>1,

• each transition is associated with a Boolean variable and PLC outputs

connected with tasks that should be started when a transition fires,

• a Boolean variable, associated with a place that represents a task

(operation, resource release), is “set” on a positive edge of PLC input,

connected with a corresponding task-completion sensor,

• a Boolean variable, associated with a control place is “set” on a positive

edge of the variable that represents its input transition, or upon fulfillment

of its control function,

• a counter, associated with a place that represents a task (operation, resource

release), is increased on a positive edge of PLC input, connected with a

corresponding task-completion sensor,

• a counter, associated with a control place is increased on a positive edge of

the variable that represents its input transition, or upon fulfillment of its

control function,

• a Boolean variable representing a transition is “true” when all conditions

for firing the corresponding transition are met,

• a Boolean variable, associated with a place that represents a task

(operation, resource release) or control place, is “reset” on a positive edge

of the variable associated with its output transition,

• a counter, associated with a place that represents a task (operation, resource

release) or control place is decreased on a positive edge of the variable that

represents its output transition,

 Petri Nets 247

A slight change of these rules should be made in order to provide code

generation for a general type of a PN graph. We assumed that tasks-completion

sensors and tasks-start drivers are connected with PLC digital I/Os. Usually this is

not the case (see Section 5.4). However, there should not be a problem to follow

given rules even if places and transitions are associated with variables that are

changed by some communication protocol. An example of automatic PLC code

generation is given in the section that follows.

6.5 Validation of Implemented Petri Nets

For the last three decades PLCs have had a leading role in industrial automation.

From process industry to assembly lines they serve as a main part of various

control loops. Having a modular hardware concept and user-friendly programming

software, PLCs were, and still are, used for implementation of simple logic tasks as

well as for very complicated control schemes that includes thousands of signals

and requires a whole network of controllers.

As the requirements for control quality and safety increase, implementation of

complex control algorithms becomes a problem. Methods used by engineers who

transfer complex algorithms into a PLC program are not able to cope with the

complexity problem. Furthermore, most of the information related to the control

problem has an informal character, thus making PLC programming even harder.

This is why in recent years a lot of work has been done in the field of applying

formal methods in PLC programming. As stated in [15], three steps in the control

design process may be identified: a) formalization and reinterpretation, b) synthesis

and c) implementation. In the case study, given in Chapter 5, all three steps have

been demonstrated and, as a result, a matrix-based controller was successfully

implemented in PLC by using an automatic code generator.

Even though large efforts have been made in this direction there is still no

unique solution for transformation of a general PN in PLC code. One of the

reasons is, as we already mentioned, the large variety of PLCs. Although almost all

PLCs are programmed with standard programming languages, each of them has

some exclusive feature or particular programming syntax, which makes a general

solution very difficult to achieve. In the previous section we presented a PN

simulation tool with the ability to generate program code for PLC S7-216. In [16] –

[18] and [27] methods for implementation of PN in PLC by using structured text

(ST), an instruction list (IL) and a ladder diagram (LD) have been proposed. In

[19] SIMULINK
®, high-level timed Petri nets and functional block diagram (FBD)

are used for design and analysis of control systems. All these methods offer more

or less straightforward and convenient procedures for PN transformation into

generic PLC code, but when it comes to target PLC code generation they lack

suitable solutions. It should be mentioned that in 1975 GRAFCET appeared as a

“missing link” between PN and PLC code [25], [26]. In 1988. IEC announced

“Sequential Function Chart” as an international standard for PLC programming

based on GRAFCET.

The other two problems encountered by PLC programmers are verification and

validation (V&V) of implemented algorithms. As today’s engineers apply many

248 Manufacturing Systems Control Design

various strategies in PLC programming, V&V procedures differ one from another

depending on approach, formalism and the method used in software development.

A V&V based on coupling of so-called interpreted Petri nets of the controller

(SIPN) and the process (PIPN) is described in [20]. In [21] it is shown how PLC

code, written in IL, can be translated into a Petri net. Then, by using standard PN

analysis (reachability tree, boundness check, etc.), the PLC program is checked for

possible errors. The other approach, which also deals with IL, is described in [22].

In [23] the condition/event (C/E) model of a process is connected with sequential

function chart (SFC) control software, thus making a closed-loop system. The set

of reachable states is then compared with the set of forbidden states providing

insight into system behavior under various conditions. Another model checker,

which is developed for LD control logic, is presented in [24].

In this section we present a method for verification and validation of PLC

control algorithms developed from PN models. Due to the existence of a direct

relation between PN and the system matrices, a matrix-based MS controller can be

tested as well. Based on super blocks, designed in SIMULINK
®, and by using

MATLAB
® Real Time Workshop (RTW), the method provides an efficient tool for

real-time investigation of various dispatching policies as well as the influence of

manufacturing system parameters on the behavior of the control system. This

approach is convenient for small-size PLCs, since their programming software

usually does not include online simulators.

The main components of the testbed are shown in Figure 6.31. Since the model

of the uncontrolled system is built in SIMULINK
®, the PC should have installed

MATLAB
® with RTW. Furthermore, a board with digital I/Os has to be included in

the PC hardware configuration. Inputs and outputs of a SIMULINK
® model of an

uncontrolled process are connected to modules, which communicate with the I/O

board.

Figure 6.31. Main components of the V&V testbed

 Petri Nets 249

Since the levels of signals on the I/O board and PLC are different (TTL versus

24 V) the board sends/receives signals to/from PLC through an interface. A PLC

configuration mainly depends on the system to be controlled and the control

algorithms to be implemented. Complex systems with numerous states require

PLCs with high computational power and a large number of I/O units.

The SIMULINK
® model used for verification and validation of the control

algorithm is made of basic PN components (prototypes), which have the form of

predefined super blocks. There are four different prototypes: Input Place,

Nonshared Resource, Shared Resource and Output Place. Every super block is

determined by its inputs, outputs and parameters. Inputs of a super block are

associated with the PC I/O card and connected with the PLC controller outputs. On

rising edge of the PLC output signal an operation that corresponds with that signal

is started. Outputs of super blocks can be separated into two groups. The first

group comprises outputs that illustrate the state of the prototype, such as number of

parts that are currently processed and/or the number of idle resources. These

signals are used for online MS analysis. The second group includes logical outputs

(0 or 1), which are used by the PLC controller. These signals can be associated

with sensors planned to be installed in real MS. There are three types of signals:

• error – signal is set to “1” if an error occurs (machine failure, number of

WIP is negative, etc.),

• resource available – signal is set to “1” if corresponding resource is idle,

• operation completed – signal is set to “1” if corresponding operation is

finished.

Super blocks that represent Input Place and Output Place are shown in Figure

6.32.

Figure 6.32. Input Place and Output Place super blocks

As its name implies, Input Place super block describes the input of the system.

The superblock has one input and three outputs. Input “In1” is a trigger signal;

transition from 0 to 1 decreases the number of parts in Input Place. Output “PI” is

an integer that represents the current number of parts in Input Place, while output

“error” is set to 1 if the number of parts becomes less than zero or larger than

maximum number of parts allowed. Output “PartAv” is set to 1 if the number of

parts in Input Place is positive, otherwise is set to 0. Input Place and Output Place

configuration masks are shown in Figure 6.33. The Input Place mask comprises

four parameters: “Initial condition” – initial number of parts in input place, “Limit”

– maximum number of parts allowed, “Period” – time delay (in seconds) between

parts arrival, “Range” - if “Random” is checked, then the time delay is a random

250 Manufacturing Systems Control Design

variable in the range between 0 and Range. In this case the value entered in

“Period” is ignored.

Output Place super block describes the system output. It has one input and one

output. Input “In1” is a trigger signal connected with the PLC controller. Output

“PO” is an integer that represents the number of parts in Output Place. The initial

number of parts in Output Place can be defined in the configuration mask.

The super blocks that represent typical MS resources are shown in Figure 6.34.

The Shared Resource prototype is used to model the resource that performs more

than one operation, while Nonshared Resource represents a resource with one task

only.

Figure 6.33. Input Place and Output Place configuration masks

Figure 6.34. Nonshared Resource and Shared Resource super blocks

The super block that represents Shared Resource has four inputs, all of them

connected with a PLC controller:

• In1 – input that starts operation 1,

• In2 – input that starts operation 2,

• In3 – input that starts resource release after operation 1,

• In4 – input that starts resource release after operation 2.

Shared Resource super block has three outputs, generally used for MS analysis:

 Petri Nets 251

• SR1 – number of parts processed by operation 1,

• SR2 – number of parts processed by operation 2,

• SA – number of available slots.

Besides these outputs, the super block has logical outputs connected to and used by

a PLC:

• error – error signal,

• POE1 – is set to “1” if operation 1 is completed,

• POE2 – is set to “1” if operation 2 is completed,

• RA – is set to “1” if resource is idle.

The Shared Resource configuration mask is shown in Figure 6.35. The

configuration mask has fields for definition of all parameters required for

simulation of the shared resource dynamics (p-timed PN, Figure 6.9). The duration

of operations and the duration of resource-release tasks can be set by the designer.

The initial number of parts processed in operations and the initial number of idle

slots are defined in a form of SIMULINK
® vector. When a shared resource with

more than two operations is required, a new prototype may be designed by

following a simple procedure implemented a for two-operations shared resource.

Nonshared Resource super block has two inputs:

• In1 – input that starts operation,

• In2 – input that starts resource release,

and three logical outputs:

• error – error signal,

• POE – is set to “1” if operation on part is completed,

• RA – is set to “1” if resource is idle,

Figure 6.35. Shared Resource configuration mask

252 Manufacturing Systems Control Design

all connected with a PLC. Two outputs used for MS analysis are:

• MR – number of currently processed parts,

• MA – number of available slots.

Nonshared Resources are configured through a configuration mask similar to

the one shown in Figure 6.35. Since Nonshared Resource has only one operation to

perform, the difference between two masks is only in the number of parameters

required for resource definition.

Example 6.5.1 (validation of PN implemeted in PLC)

We consider the workcell depicted in Figure 6.36. The workcell, comprised of

three machines and two robots, processes two part-types. Its PN graph with control

places is shown in Figure 6.37. The implemented control policy restricts the

number of parts in path a (control place ud1), and path b (control place ud2) (we

leave thorough analysis of the system to the reader). Conflicts are resolved by

sequential execution of ladder diagram networks; when robot R1 part a has priority

over part b, whilst robot R2 gives priority to part b.

Since the PN is ordinary and pure, and all places, except control place ud1,

initially have only one token, places are associated with markers in PLC memory.

Place ud1 is associated with a counter. The symbol table is depicted in Figure 6.38.

As may be seen, markers M1–M3 are used for places, M4 is used for a control

signal ud2, M5 and M6 are assigned to transitions, while control signal ud1 is

assigned to counter C0. We assume that each place corresponds with one PLC

input and one PLC output, i.e. the input and output interface functions are of the

form one-to-one (see the case study in Section 5.4).

Figure 6.36. The workcell from Example 6.5.1

 Petri Nets 253

Figure 6.37. Controlled PN of the workcell shown in Figure 6.36

Figure 6.38. The symbol table of S7-216 PLC for controlled PN in Figure 6.37

254 Manufacturing Systems Control Design

Figure 6.39. First four networks of the ladder diagram subroutine for reading inputs

The PLC code for S7-216 is obtained by a Petri.NET code generator. Part of

the ladder diagram subroutine for digital inputs acquisition is shown in Figure 6.39.

As may be seen, a particular PN place is set to “true” on the positive edge of the

corresponding digital input. This action matches up with a token entering the place.

Upon completion of the input subroutine, the PLC starts to execute a subroutine

that calculates the (•t) part of PN. A fraction of that subroutine is depicted in

Figure 6.40. By comparing this subroutine with the PN graph shown in Figure

6.37, conditions for firing the first four transitions can be clearly recognized from

the ladder networks.

Figure 6.40. First four networks of the ladder diagram subroutine for PN execution (•t)

At the end of the PLC cycle, a subroutine that sets PLC outputs and resets

markers associated with PN places is executed (Figure 6.41). This action

corresponds with token withdrawal in the PN.

 Petri Nets 255

Figure 6.41. First two networks of the ladder diagram subroutine for PN execution (t•)

As we mentioned, implementation of the proposed dispatching strategy requires

one counter for tracking the number of tokens in control place ud1. This counter is

realized in ladder network 5 (Figure 6.42). The positive edge of variable tr4

increases, while the positive edge of variable tr1 decreases the counter value,

which corresponds with activities in the PN graph.

The SIMULINK
® model of the workcell is given in Figure 6.43. Super blocks

that represent resources are connected with the PLC’s inputs and outputs by using

MATLAB’s® RTW and Advantech PC I/O card.

Figure 6.42. Ladder network with counter for control place ud1

256 Manufacturing Systems Control Design

Figure 6.43. SIMULINK
® model of the workcell shown in Figure 6.37

 Petri Nets 257

 References

[1] Petri CA. Kommunikation mit Automaten, Bonn: Institut für Instrumentelle

Mathematik, Schriften des IIM Nr. 2, 1962, 2nd edn:, New York: Griffiss Air Force

Base, Technical Report RADC-TR-65—377 1966;1.

[2] Proth JM, Xie X. Petri Nets: A Tool for Design and Management of Manufacturing

Systems. Chichester: Wiley, 1996.

[3] Zhou MC, Venkatesh K. Modeling, Simulation and Control of Flexible

Manufacturing Systems: A Petri Net Approach. Singapore: World Scientific, 1998.

[4] Murata T. Petri nets: properties, analysis and applications, Proc. IEEE 1989;77;4:541–

580.

[5] Kumar PR, Meyn SP. Stability of queuing networks and scheduling polices, IEEE

Trans. Aut. Contr. 1995;40:251–260.

[6] Amer-Yahia C, Zerhouni N, El Moundi A, Ferney M. On finding deadlocks and traps

in Petri nets, System Analysis, Modeling and Simulation 1999;34:495–507.

[7] Wang J. Timed Petri Nets. Boston: Kluwer, 1998.

[8] Jensen K. Colored Petri Nets: Basic Concepts, Analysis Methods and Practical Use.

Berlin: Springer., 1992.

[9] Pedrycz W, Camargo H. Fuzzy timed Petri Nets, Fuzzy Sets and Systems

2003;140:301–330.

[10] Tacconi DA, Lewis FL. A New Matrix Model for DES: Application to Simulation,

IEEE Contr. Sys. Mag. 1997;October: 62–71.

[11] Desrochers AA, Deal TJ, Fanti MP, Complex-Valued Token Petri Nets, IEEE Trans.

Aut. Sci. Eng. 2005;2;4:309–318.

[12] Alla H, David R. A modeling and analysis tool for discrete event systems: Continuous

Petri net, An Int. J. on Performance Evaluation 1998;33:175–199.

[13] Moody JO, Antsaklis PJ. Supervisory Control of Discrete Event Systems Using Petri

Nets. Boston: Kluwer Academic Publishers, 1998.

[14] Iordache MV, Moody JO, Antsaklis PJ. Automated Synthesis of Deadlock Prevention

Supervisors Using Petri Nets, Technical report of the ISIS Group at the University of

Notre Dame 2000, ISIS-2000-003.

[15] Frey G, Litz L. Formal methods in PLC programming, Proc. of the IEEE SMC00

2000;2431–2436.

[16] Cutts G, Rattugan S. Using Petri nets to develop programs for PLC systems, Proc. of

Application and Theory of Petri Nets - Springer 1992;368–372.

[17] Stanton MJ, Arnold WF, Busk AA. Modelling and control of manufacturing systems

using Petri nets, Proc. of 13th IFAC World Congress 1996;329–334.

[18] Uzam M, Jones AH, Khan AH, Karimzadgan D, Kenway SB, A general methodology

for converting Petri nets into ladder logic: the TPLL methodology, Proceedings of the

5th International Conference on Computer Integrated Manufacturing and Automation

Technology - CIMAT96 1996;357–362.

[19] Baresi L, Mauri M, Monti A, Pezzè M. PLCTOOLS: Design, Formal Validation, and

Code Generation for Programmable Controllers, Proc. of the IEEE SMC’00; 2000.

[20] Frey G, Litz L. Verification and validation of control algorithms by coupling of

interpreted Petri nets, Proc. of the IEEE SMC98;1998:7–12.

[21] Mertke T, Menzel T. Methods and tools to the verification of safety-related control

software, Proc. of the IEEE SMC’00;2000.

[22] Canet G, Couffin S, Lesage JJ, Petit A, Schnoebelen Ph. Towards the automatic

verification of PLC programs written in Instruction List, Proc. of the IEEE SMC’00;

2000.

[23] Kowalewski S, Preusig J. Verification of sequential controllers with timing functions

for chemical processes, Proc. of 13th IFAC World Congress 1996; 419–424.

258 Manufacturing Systems Control Design

[24] Moon I. Modelling programmable logic controllers for logic verification, IEEE

Control Systems;1994:14:6:53–59.

[25] Baracos P. GRAFCET Step by Step, Famic Inc.,1992.

[26] David R, Alla H. Petri nets and GRAFCET: Tools for Modeling Discrete Event

Systems. New York London: Prentice-Hall, 1992.

[27] Lee GB, Zandong H, Lee JS. Automatic generation of ladder diagram with control

Petri net, Journal of Intelligent Manufacturing 2004;15:245–252.

[28] Chiola G, Ferscha A. Distributed simulation of Petri nets, IEEE Parallel & Distributed

Technology 1993;1:3:33–50.

[29] http://www.informatik.hu-berlin.de/top/pnk

[30] http://parsys.informatik.uni-oldenburg.de/∼pep

[31] http://www.informatik.uni-hamburg.de/TGI/PetriNets

7

Virtual Factory Modeling and Simulation

Manufacturing systems (MSs) are assembled from elements such as robots,

machine tools, fixtures, buffers, rotary tables, belt conveyers, pallets, etc. that are

connected and supervised through a local area network. Using today’s

classification of systems, MSs can be treated as hybrid systems that contain a

mixture of various dynamic behaviors—continuous and discrete control loops,

Boolean variables related to process states, and discrete events, all embraced by a

usually hierarchical decision-making overhead. This means that an MS structure

contains both hard and soft technology, first focused on the product fabrication,

assembly and distribution, while later the focus is on the support and coordination

of manufacturing operations.

The MS’s hard technology is split into several levels – from the factory level

via the operating center, workcell and robotic station levels to a particular

manufacturing process level. The accompanying soft technology is also split into

several levels – from the highest strategy level, via lower planning, supervisory,

and manipulating levels to the basic manufacturing task level.

Today, virtual models provide a very inexpensive and convenient way for

complete factory design. Instead of building real systems, a designer first builds

new factory layouts and defines resource configurations in the virtual environment

and refines them without actual production of physical prototypes. Allowing clear

visualization of all potential problems caused by the layout, virtual modeling and

dynamic simulation of manufacturing processes has traced a completely new route

to analysis and design of MSs [1–3].

A factory layout design, physical modeling, control synthesis, performance

analysis, dynamic simulation and visualization of robotized manufacturing systems

have become much easier and more effective with specialized programs for virtual-

factory modeling and simulation. Some virtual-factory simulators originated from

the academia [4–8], but most of them are sophisticated products of leading robot

manufacturers and independent companies [9–11]. In this chapter we briefly

portray several tools such as Grasp2000 from BYG Systems Ltd., eM-Plant from

Tecnomatix, RobotStudio from ABB, CimStation Robotics from Silma, and

Cosimir from FESTO. Then we describe FlexMan – a virtual-factory simulator

with an integrated matrix-based MS controller [12].

260 Manufacturing Systems Control Design

A typical structure of a virtual factory simulator is shown in Figure 7.1. The

aim of virtual modeling is to create an experimental MS by combining a tentative

factory layout with existing or newly created virtual models of constituent MS

objects. Usually, MS objects and layouts can be loaded from the corresponding

libraries of objects and layouts, but they can also be imported from other CAD

software or created as new entities within the simulator itself.

Figure 7.1. A typical structure of a virtual-factory simulator

MS simulation consists of multiple tasks that are highly interdependent. As

shown in Figure 7.1, there are two main groups of tasks related to physical

modeling and functional testing of the simulated MS. Physical modeling is mainly

concerned with resources that play an active role in the manufacturing process,

especially with robots and numerically controlled (NC) machine tools. The

trajectory generation for these resources is closely related to circumventing the

inverse kinematics problems (e.g. joint limits, singularity points), working-space

constraints, and particularly to prevention of collisions with surrounding MS

objects. In order to achieve reliable and precise collision detection, exact physical

measures of all virtual models and their postures are needed. Positive collision tests

lead to consecutive trajectory or factory-layout modifications. Physical modeling

allows the designer to generate and test single manufacturing jobs performed by a

corresponding MS resource, but the main goal of physical modeling is verification

 Virtual Factory Modeling and Simulation 261

of the simulated factory layout. After successful validation of the simulated virtual

MS setup, most commercial MS simulators generate programs executable in

controllers of particular active resources.

Functional testing has a goal to connect a physical setup with the plan of the

simulated MS. As shown in Figure 7.1, functional testing is concerned with a job-

sequence definition, setting of MS parameters, conflict and deadlock analysis at the

local and global level (at the robot workcell or robot station, and at the whole MS

level), synthesis of control logic, study of different job-scheduling strategies,

simulation and visualization of dynamic phenomena during MS operation. Having

a plan of a manufacturing process and all necessary MS data, functional testing

should help the MS designer to reach a reliable and objective MS performance

evaluation.

In most cases, MS control depends on the states of sensors installed in the

system. Therefore, a successful functional testing generates two outputs: the

executable MS controller program, and the optimized sensor layout. Based on the

acquired designer’s experience, virtual simulators may serve as efficient design

accelerators and trustworthy sources of implementation guidelines.

7.1 3D Modeling of Manufacturing Systems

A factory-layout design is primarily a hard-technology-related task, whose goal is

to establish an optimal arrangement of individual MS elements, viewed from the

spatial and operational point of view. In the very recent past, factory-layout design

was a job that had to be done before the onsite MS construction could start. Today,

three-dimensional (3D) modeling serves to define the physical shape information

of a particular MS object prior to its physical creation. One more complex 3D

model, like the model of a palletization robot work cell shown in Figure 7.2,

actually represents a combination of primitive 3D shapes – cuboids, cylinders,

prisms, polygons, and lines, combined together in a hierarchical (so called parent–

child) order and characterized by different material properties, textures, colors,

shininess etc. In most cases, a parent–child relationship means that a group of

subordinate objects (“children”) is translated, rotated and scaled with respect to the

superimposed (“parent”) coordinate frame. Initially, all 3D objects on the scene are

positioned at the origin of the virtual environment, and then by using suitable

commands, are put in spatial relations. Such a 3D model is further used for display

on the computer screen and for calculations carried out as defined by the

simulation context.

The model with more details is computationally more demanding. The

complexity of the 3D model is usually dictated by the required precision of the

model. For example, when collision avoidance is explored then a more detailed 3D

model is preferred. On the other hand, logical testing of operations in the simulated

factory layout can be achieved by using models with fewer details.

A proper 3D model requires precise physical dimensions – e.g. height, width

and depth of the primitive shapes. This information is usually obtained by

measuring the object, or it is taken from the original technical drawings. 3D

models can be created using ISO standards 3D file formats such as X3D

262 Manufacturing Systems Control Design

(Extensible 3D), its predecessor VRML (Virtual Reality Modeling Language) or

by using CAD programs (e.g. AutoCADTM, CatiaTM or 3D-StudioTM). CAD

programs generate different file formats (e.g. DXF, 3DS, IGES, STEP, VRML),

and support conversion from one format to another.

Figure 7.2. The 3D model of a palletization work cell (Courtesy of Euroimpianti s.p.a)

7.2 Modeling FESTO FMS in VRML (X3D) Format

As mentioned above, 3D models of solid objects can be created in many ways and

many tools are at the designer’s disposal for this purpose. One way is modeling in

VRML format (or in X3D, which is the successor to the VRML), which has

become an international standard established in 1994 for description of 3D shapes

and environments suitable for World Wide Web program applications. Besides the

creation of virtual environments, VRML enables introduction of 3D motion, sound

and other dynamic features [13]. Virtual objects modeled in VRML can be

visualized in independent VRML viewers or in popular web browsers providing

that some VRML viewer plug-in has been previously installed. X3D improves

upon VRML with new features, advanced application programmer interfaces,

additional data-encoding formats, stricter conformance and a componentized

architecture that allows for a modular approach to supporting the standard [14].

 Virtual Factory Modeling and Simulation 263

7.2.1 Basic VRML Features

Basic programming elements in VRML are nodes and fields that together with the

header and comments form a VRML file (extension *.wrl). Nodes may be

interpreted as “commands” that designate different geometric shapes, materials,

light, spatial transformations, etc. Fields describe node features that can change.

Dimensions in VRML are normalized. For example, the shape box with

dimensions {10, 10, and 10} may have a 10 mm, 10 m or 10 km long edge,

depending on the metric measure defined by the user.

Basic geometric shapes (primitives) are Box, Cone, Cylinder, and Sphere. The

group of geometric primitives is extended with the two-dimensional VRML object

Text representing a particular text. Geometric shapes are created with the node

Shape, which has two fields – appearance and geometry:

Shape {

 appearance ... – defines color and object texture

 geometry – defines form or structure

 }

All VRML objects are initially positioned in the origin of the VRML

environment. In order to place the objects at different positions, a node Transform
is used. This node is a grouping node, which enables simultaneous translation,

rotation and scaling of a group of subordinate objects, so-called children. In fact,

all children objects tied to this new coordinate frame are translated, rotated and

scaled with respect to the superimposed or so-called parent coordinate frame.

The syntax of the Transform node is defined in the following way:

Transform {

 translation dx dy dz # position

 rotation rx ry rz delta # orientation (in radians)

 scale sx sy sz # scaling

 children [.......] # subordinate objects

 }

Variables dx, dy and dz denote displacements of all children objects with

respect to the global coordinate frame. In terms of homogeneous coordinates

regularly used in robotics, translation is represented with the following

homogeneous transformation matrix:

0 0 0

0 0 0

0 0 0

0 0 0 1

dx
dy
dz

=T

264 Manufacturing Systems Control Design

Variables rx, ry and rz assume values 0 or 1, depending on about which axis

rotation is going to occur (the other two variables get the value 0). The

counterclockwise rotation is assumed positive. Assuming that rotation is defined

around one of the axes, the homogeneous coordinate transformation attains the

form:

11 12 13

21 22 23

31 32 33

0

0

0

0 0 0 1

r r r
r r r
r r r

=R

In order to achieve different scaling factors for each axis, in calculations one

must take into account a multiplication with a scaling matrix:

0 0

0 0

0 0

v

sx
sy

sz
=S

The orientation in the VRML environment is defined as shown in Figure 7.3.

One can see that the orientation of the x–y–z coordinate frame in the VRML

environment does not coincide with the usual orientation representation in the

Cartesian space, also shown in Figure 7.3. The difference between two orientation

representations must be taken into account in all coordinate transformations and

related calculations.

y

z x y

z

x

VRML
environment

Real - world (Cartesian)
environment

Figure 7.3. Orientation representation in the VRML and Cartesian worlds

It should be noted that transformations of children objects at every parent-

children level are always relative to the involved parent coordinate frame.

Having in mind, for example, that robots move and work thanks to coordinated

motion of their prismatic and revolute joints, a so-defined hierarchical structure in

 Virtual Factory Modeling and Simulation 265

VRML simplifies virtual modeling of robotic manipulators and other similar

complex solid objects very much. By branching and nesting of Transform nodes,

attachment of new coordinate frames to each robot joint or any other robot part

(e.g. working tool) becomes easy and straightforward. Since transformations

defined by Transform nodes are relative, the change in the outermost Transform
node (e.g. in rotation) will affect all subordinate coordinate frames and objects.

The coincidence with the way how robots move, viewed from the robot base to the

working tool, is more than obvious.

7.2.2 FESTO FMS VRML Model

Let us describe VRML-based modeling of the FESTO FMS laboratory setup at the

Faculty of Electrical Engineering and Computing, University of Zagreb. The aim

of the FMS is to produce several types of cylinders assembled from the bodies,

pistons, springs, and caps varying in shape and color. FESTO FMS is composed of

four PLC-controlled work stations connected via the Profibus network: the

distribution station, testing station, processing station, and assembly station. The

flexibility in the assembly line is increased by using the five degrees of freedom

rotational robot Mitsubishi Movemaster EX RV-M1 (see Figure 7.4).

Figure 7.4. FESTO FMS: Laboratory set-up (above), virtual model (below)

The aim of virtual modeling is to prepare the modeled FMS for the functional

testing. The richness of the model details is determined by the function of the

particular FMS components. Virtual models of work stations contain system

266 Manufacturing Systems Control Design

modules that have an active role in the manufacturing process. Besides the stack

magazine module, the separating module, the testing module, the changer module,

the spring magazine module, and the drilling module shown in Figure 7.5,

important FESTO FMS parts are also the rotary indexing table module, the lifting

module, the measuring module, the air-cushioned slide module (5 objects

capacity), two slide modules (4 and 6 objects capacity), the cap magazine module

(10 objects capacity), the place of assembly, and the robot arm.

The FESTO FMS VRML model is shown in Figure 7.4 together with the real

system [15]. One can see that the outlook and layout of the virtual FMS fully

resemble the outlook and layout of the real FMS. All insignificant details from the

functional point of view are omitted (e.g. models of pipes, wires, connectors,

gauges, some construction details, etc.).

Figure 7.5. Virtual models of FESTO FMS components: (a) stack magazine module, (b)

separating module (pistons), (c) testing module, (d) changer module, (e) spring magazine

module, and (f) drilling module

The next step in FMS modeling and simulation is the generation of a functional

model. This model, which describes operations and operating rules, is used for the

creation of system matrices that are later used for the matrix-based FMS controller

design. The reader can find more about functional modeling and simulation of

a) b) c)

d) e) f)

 Virtual Factory Modeling and Simulation 267

FESTO FMS in Section 7.9, which describes the usage of the Internet-based

modeling and simulation tool FlexMan [12].

7.3 Modeling in LISA

Let us illustrate the use of virtual models in another simulator called LISA – a C++

and OpenGLTM-based software for simulation and 3D modeling of complex

kinematic configurations [16]. Models used in LISA are first created in the CAD

software, then described in the XML (eXtensive Markup Language) and thereafter

imported as an xml file into LISA. Applying this procedure, the palletization

workcell from Figure 7.2 is displayed in LISA in the way shown in Figure 7.6. One

can see from this example that 3D models can be used in different program

applications without loss of model quality.

3D models in LISA are polygonal structured, i.e. polygons form a closed

manifold, hierarchical nonconvex models. Polygons are made entirely of triangles

because hardware accelerated rendering of the triangles is commonly available in

the graphic hardware. Triangle meshes can be used for extraction of all geometric

parameters including, for example, robot joint positions, link lengths, etc. Every

virtual object is composed of an arbitrary number of links that form a parent–child

hierarchy. There is no limit on the number of child links for a parent, so complex

kinematics configurations can be formed, like the articulated robot arm shown in

Figure 7.7.

Figure 7.6. The 3D model of a palletization work cell displayed in LISA

268 Manufacturing Systems Control Design

Frames (coordinate systems) are assigned to the links sequentially and may be

either static or dynamic (see Figures 7.8 and 7.9). Namely, a 3D object can have an

active or passive role on the scene. Active objects consist of static and dynamic

frames, while passive objects are built only from the static ones. Dynamic link

frames undergo rigid-body transformations during a simulation in a virtual

environment [17].

Figure 7.7. The creation of the 3D robot model

 Virtual Factory Modeling and Simulation 269

Figure 7.8. The 3D model of a KUKA robot (Courtesy of Kuka Roboter) – static and

dynamic frames

Figure 7.9. The 3D model of a KUKA robot – dynamic frames

270 Manufacturing Systems Control Design

7.4 GRASP2000 (BYG Systems Ltd, UK)

GRASP2000 is a program tool that integrates a time-based simulation system with

advanced 3D graphics capabilities. The user is able to create virtual models of

arbitrary complexity including all types of manufacturing systems, robotic and

kinematic structures, production systems and AGV routing systems. The software

allows up to 24 revolute or prismatic joints for each individual mechanism.

Figure 7.10 taken from [18] shows the example of the GRASP2000 3D model

of a brick-handling application using three Fanuc M410iHW robots.

Figure 7.10. Example of the GRASP2000 model of a brick-handling application using three

Fanuc M410iHW robots

The user can use a set of instructions and create simulation programs that

permit “what-if” type of analysis using 3D animation and exact time-based

performance calculations. The result of simulation depends on the order of

instructions and the way they are used within one simulation track, so preparation

of every simulation scenario requires considerable planning. In other words,

meaningful results can be obtained only with a clear understanding of simulation

requirements and the model on which simulation is based. This means that a

detailed knowledge of the process involved for the modeled system (existing or

proposed) is required [18].

In manufacturing systems many processes run in parallel. GRASP2000 uses

“background tracks” to simulate such parallel processes. Background tracks run at

the same time as the “current” or so-called “foreground” track. For simulation of a

complex environment containing parallel processes separate tracks for the

individual processes must be created and then “invoked” as background tracks. The

aim of a foreground track is to control the simulation. When the foreground track is

 Virtual Factory Modeling and Simulation 271

running, any tracks that have been invoked as background tracks run as well,

starting at the same time. Synchronization of parallel processes (tracks) can be

achieved in two ways; by inserting delay (PAUSE) instructions, and by waiting for

an event. As described in [18], an event may be that the simulation clock has

reached a certain time, it may be the arrival of an object, or it may be a variable

being set to a particular value. Waiting for an event can be achieved using the

WAIT command. The foreground and background tracks execute in the same

manner, using the simulation clock to control the synchronization between all the

tracks.

Regarding generation of robot tracks, GRASP2000 generates tracks for all

robot models contained in the BYG robot library. The tracks are supplied with a

complete set of configuration rules for the robot, with meaningful names that are

understood by the target robot controller conversion program.

Among different commands, GRASP2000 also includes functionality to allow

factory and process simulation using discrete event systems (DES) tools.

7.5 Robot Studio (ABB, Sweden)

ABB’s RobotStudio is a simulation and “true” offline programming software due

to the ABB VirtualRobot™ Technology, whose main characteristic is that the

actual robot system software controls the robot simulation. In this way the

successfully tested robot program can be downloaded as a whole to the real system

without any further translation.

As for other concurrent simulation programs, RobotStudio can import data in

major CAD formats including IGES, STEP, VRML, VDAFS, ACIS and CATIA.

Having a CAD model of the part to be processed, RobotStudio allows the user to

automatically generate the robot positions needed to follow the path curve,

significantly shortening the time usually spent for manual programming of such a

task. Standard robot programming in RobotStudio is done with a program editor

ProgramMaker shown in Figure 7.11. The basis for programming in RobotStudio

is ABB’s robot programming language RAPID.

The software is characterized by several optimization features, such as path

optimization and AutoReachTM computation. RobotStudio can automatically detect

and warn about programs that include motions in close vicinity to singularities, so

that measures can be taken to avoid such conditions. Simulation Monitor is a visual

tool for optimizing robot movement. Red lines indicate what targets can be

improved to make the robot move in the most effective way.

As shown in Figure 7.12, tool-center position (TCP) speed, acceleration,

singularity or axes can be optimized to gain cycle time [19]. AutoReach

automatically analyzes reachability while moving the robot or the work piece

around until all positions become reachable. This allows quick verification and

optimization of the workcell layout. Also, integrated collision detection helps to

identify possible collisions among concerned objects and modify critical paths.

Event Tables is a tool used in RobotStudio for debugging and verifying the

program structure and logic. As the program executes, the user can observe the I/O

272 Manufacturing Systems Control Design

states of the analyzed workcell. The I/O lines can be wired to simulation events

allowing simulation of the robot and all equipment in the robot station.

RobotStudio provides the possibility of using Visual Basic to adapt and expand

RobotStudio’s functionality for various applications. This enables the user to create

different add-on modules, macros or customized user interfaces.

Figure 7.11. RobotStudio programming editor ProgramMaker

Figure 7.12. Path optimization by tracing the TCP position, speed and acceleration

 Virtual Factory Modeling and Simulation 273

Based on the use of Visual Basic for Applications (VBA) RobotStudio offers

optimized solutions for applications such as arc-welding, press break tending, spot-

welding, CalibWare (absolute accuracy), blade grinding, and BendWizard (press

brake tending). Figure 7.13 shows the 3D model of one such application - the spot-

welding robot work cell of the Volvo Cars “body-in-white” manufacturing line

[20].

Figure 7.13. The example of the ABB’s RobotStudio model of a Volvo body-in-white

manufacturing line using ABB industrial robots (Courtesy of ABB)

7.6 Tecnomatix eM-Plant (UGS, USA)

Tecnomatix is a suite of software applications intended to support so-called digital

manufacturing (also known as manufacturing process management). As discussed

in [21], digital manufacturing is a combination of software and manufacturing

methods that transforms manufacturing processes and manufacturing-related

business initiatives. Besides process planning, digital manufacturing has a goal to

optimize production operations by allowing the production planner to compare the

process plan to how well that plan is actually executing.

Tecnomatix provides a broad range of applications for manufacturing

management of both parts and assemblies. These solutions enable the designer to

274 Manufacturing Systems Control Design

define and verify product-assembly sequences, create assembly-line layouts,

simulate specific operations and material flows to optimize the process, allocate the

required time for each operation, verify line performance and perform line

balancing, analyze product and production costs, virtually commission and

program production lines using digital planning data, execute and continually

manage a production process, track and trace specific customer orders according to

the materials included and the processes they undergo, and feed back real-time

process changes, as executed, into manufacturing process plans [21].

eM-Plant is a Tecnomatix application that enables the simulation and

optimization of production systems and processes [22]. Like other concurrent

products, eM-Plant enables the designer to explore the production systems’

characteristics and to optimize its performance.

Basic features of eM-Plant enable the user to simulate complex production

systems and control strategies; use object-oriented, hierarchical models of plants,

encompassing business, logistic and production processes; use dedicated

application object libraries for fast and efficient modeling of typical scenarios;

generate graphs and charts for analysis of throughput, resources and bottlenecks;

use comprehensive analysis tools, including Automatic Bottleneck Analyzer,

Sankey diagrams and Gantt charts. Software provides 3D online visualization and

animation, which allow the user to see all system phenomena in a genuine way.

eM-Plant also has some advanced features, such as integrated neural networks

and experiment handling, genetic algorithms for automated optimization of system

parameters, open system architecture supporting multiple interfaces and integration

capacities (ActiveX, CAD, Oracle SQL, ODBC, XML, Socket, etc.).

Using the eM-Plant virtual (digital) model of the manufacturing system, the

user can run experiments and what-if scenarios to note critical situations and

determine optimal solutions that work best. Tecnomatix software can be used for

various industrial applications, and Figure 7.14 shows one such creation of the

virtual expansion of the existing manufacturing facility [21].

Figure 7.14. The virtual expansion of the factory created in Tecnomatix eM-Plant

 Virtual Factory Modeling and Simulation 275

7.7 CIMStation Robotics (AC&E, UK)

CimStation Robotics is a 3D graphics program tool that enables designers to

quickly and easily design, simulate and offline program robotic workcells (Figure

7.15). The software allows engineers to visualize and evaluate automation concepts

to determine the cost, feasibility and performance of a proposed robotic system,

long before the equipment is purchased or a part prototype is available.

Based on close collaboration with industrial users, CIMStation Robotics offers

specialized application solutions tailored to the requirements of a particular robotic

task. Thus the software provides advanced functionality and ease of use for

painting, spot welding, arc welding, polishing, assembly and press operations.

Figure 7.15. The virtual model of the flexible manufacturing system created in CIMStation

Robotics [23]

7.8 COSIMIR (FESTO, Germany)

COSIMIR is the 3D-simulation program that can be used to plan robotized

workcells before they are actually built. The program allows the designer to check

the reachability of all positions, develop programs for robots and controllers, and to

optimize the workcell layout.

Virtual models of robots, machinery, tools, conveyer belts, part feeders, etc.,

taken from the library of virtual models, just-created new models, or models

imported from other CAD programs, can be combined to create arbitrarily complex

robot-based workcells. COSIMIR allows the designer to check the developed robot

276 Manufacturing Systems Control Design

programs against possible collisions and to optimize cycle times. Sensor simulation

is a very useful COSIMIR’s feature that extends the program’s capability to

simulate complete work cells. Since the program solutions for each robot in the

workcell is written in the robot-compatible programming language, the direct

download of tested programs and positions into the robot controller is supported.

COSIMIR provides an automatic face-oriented trajectory generation suitable for

applications like coating and ablation processes [24]. An industrial PLC simulation

is an additional feature that makes the program adjusted for simulation of real

system conditions.

Figure 7.16 shows the COSIMIR user interface for a selected robot workcell

layout.

Figure 7.16. The user interface for programming and testing a virtual model of the robot

work cell created in COSIMIR (Courtesy of FESTO)

7.9 FlexMan (LARICS, University of Zagreb, Croatia)

In general, all 3D simulation programs have many advanced features, including

true “offline” robot programming and direct download of developed controller

programs, but the problem arises when the results of analysis and (re)design

performed in the virtual environment must be converted into actual real-time

algorithms that should control the real system as a whole. Most of the

aforementioned design and simulation programs do not offer such an elegant way

 Virtual Factory Modeling and Simulation 277

that would allow transfer of system supervisory control algorithms from the virtual

to the physical world.

The aim of the MS design tool FlexMan presented in this chapter is to make

this step forward and show how effective the analysis of MS dynamic behavior can

be, with the usage of virtual models and accompanying matrix-based dynamic

models, and how straightforward it is from a matrix-based supervisory controller

used in the simulator to the program for supervisory PLC in the real MS. FlexMan

is a web-based virtual modeling and simulation tool using virtual models in the

VRML 3D file format (see Section 7.2). The interested reader can use FlexMan

and so learn more about it by visiting the FlexMan web address [25].

The usage of virtual-reality models in conjunction with the Internet-related

technologies has made a significant advance in visualization of complex physical

systems such as robotic systems and FMS [26].

FlexMan fulfills some basic requirements: it provides the user with a GUI for

easy creation of FMS simulation prototypes including FMS layout, description of

operations and operation rules, generates automatically a matrix model of the FMS

as a basis for running a dynamic simulation, integrates a tool with a suitable user

interface for web-based task/robot-dependent trajectory planning with embedded

algorithms for solving direct and inverse kinematics problems for a user-defined

type of manipulator, displays virtual FMS elements by using advanced 3D graphics

and animation routines, and finally, provides status information for the job-

schedule evaluation criteria.

7.9.1 FlexMan Structure

The FlexMan structure is shown in Figure 7.17. It is based on the client – server

architecture. Communication between server and client(s) uses TCP/IP protocol,

while all transferred and stored data is in the standard XML format [27].

Any work in FlexMan starts first with a user authorization. For different types

of users, different program functions are enabled, and the work of every user is

tracked and stored on the server for easier supervising and administration. This can

be very convenient for training purposes, as trainees can do their work from any

remote location (home, computer lab, Internet cafè), and the tutor can easily review

the data about the trainee’s work being stored on the server.

As shown in Figure 7.17, FlexMan’s client side contains three major parts:

Scene Builder, Web Trajectory Planner (WTP) and Visualization Client (VC).

These three components are implemented as a single Java applet inserted in an

HTML page together with a VRML plug-in that provides visualization of a 3D

scene. VRML 2.0 standard defined external authoring interface (EAI) as an

interface between the virtual world and the external environment. EAI defines the

functionality of the VRML browser that the external environment can access, and

it enables a Java applet to fully control and modify a VRML scene [13]. A new

ISO standard X3D file format, which is the improved VRML format, opens new

possibilities for tools like FlexMan to become more efficient and reliable.

At the server side, FlexMan has three major parts: the trajectory planner tool

LEONARDO, FMS Controller, and Database.

278 Manufacturing Systems Control Design

F
ig

u
re

 7
.1

7
.
T

h
e

st
ru

ct
u
re

 o
f

F
le

x
M

an

 Virtual Factory Modeling and Simulation 279

7.9.2 Database

Database contains information such as libraries of VRML prototypes, user

information, saved work, statistical information, planned trajectories, and

simulation logs. It allows new virtual FMS elements to be easily imported. Once a

VRML prototype of a new resource is made, there is no need for any programming

intervention in the application itself. A new element is simply added to the

database and linked to the appropriate library that determines its scope of use.

7.9.3 Virtual FMS Modeling

The Scene Builder is the component that serves for modeling of the FMS layout in

the virtual 3D environment and for definition of FMS functional properties.

A virtual FMS is modeled using predefined models (prototypes) of objects like

robots, machines, conveyers, buffers, etc. Libraries of these prototypes are stored

in a database on the server. Depending on the user’s status and permissions,

different libraries of FMS elements are available. A desired element is selected

from the list of available objects (shown in the main layout of the Scene Builder

(Figure 7.18)), and after setting its designation, position, orientation and scaling

factor, an appropriate 3D model appears in the virtual scene. With this pick-and-

place approach, even the creation of the most complex layouts is very easy, and

straightforward. Figure 7.18 shows the layout of the two-robot FMS described in

detail in the matrix-based controller design example in Chapter 5.

7.9.4 Functional Modeling of FMS

After the visual layout of the FMS is set, the functions and behavior of these

elements are described by defining a list of operations for each element, the nature

and duration of each operation, and initial system conditions. This is done with the

operations editor (Figure 7.19). In order to visualize FMS operations in the virtual

world as if they were real, we need an active algorithm in the background [12, 28]

whose input and output must be connected to the elements of the virtual model.

Providing that the resources and operations they perform are defined, the final step

in FMS modeling by using FlexMan is definition of FMS operation sequencing and

behavior. The part of Scene Builder named Rule Editor (Figure 7.20) serves that

purpose. From the previously defined objects and their tasks the user builds a set of

IF-THEN rules (see Section 3.2) that describe the sequencing of operations in the

FMS.

280 Manufacturing Systems Control Design

Figure 7.18. FlexMan client in a Microsoft Internet Explorer browser (the layout of the

virtual model of the two-robot FMS from a case study in Section 5.4)

Based on these rules and object properties, the FMS model matrices needed for

dynamic simulation are calculated automatically. The output from the Rule Editor

is a set of matrices Sr, Sv, Sy, Su, Fr, Fv, Fu, and Fy that are explained in Section 3.1.

Matrices Fy, Fr, Fu and Fv are created from the antecedent (IF) part of the rule, and

matrices Sy, Sr, Su and Sv are created from the consequent (THEN) part of the rule.

7.9.5 Generating Trajectories in FlexMan

In FlexMan, trajectories for resources with one degree of freedom are generated

online, but trajectories for resources with two or more degrees of freedom (e.g.

robots) are planned with a FlexMan component – Web Trajectory Planner (WTP).

 Virtual Factory Modeling and Simulation 281

Figure 7.19. Operations Editor Window

Figure 7.20. Rule Editor Window

282 Manufacturing Systems Control Design

Figure 7.21. Web Trajectory Planner

In WTP (Figure 7.21), the user moves the robot from one position to another,

adds key tool-tip coordinates to a list, assigns wait times and movement types

(point-to-point (PTP) or continuous-path (CP)) for desired trajectory segments, and

finally sends a request to the server to plan the resulting trajectory.

At the server side the trajectory planner tool LEONARDO accepts requests

from FlexMan’s WTP and plans combined CP/PTP motions with a given error

tolerance [29]. It returns the planned trajectory points to the client and stores the

trajectory for future use by FMS Controller during dynamic simulation. The

planned trajectory is drawn in the virtual scene at the client side, and the user can

then view animated movement of the robot along the planned trajectory (Figure

7.21).

When this phase of modeling is completed, the FMS is defined both structurally

(via the VRML formatted virtual scene) and functionally (via the matrix model and

the planned trajectories), and simulation of its work can proceed.

7.9.6 Simulation and Visualization of FMS operation

VC visualizes the FMS during simulation. Upon the start of simulation (Figure

7.22), VC sends to the server a complete description of the FMS generated by

Scene Builder – visual layout, matrix model, and references for planned

trajectories. After processing of information and necessary calculations, the server

returns to VC data representing states of every element on the virtual scene in a

given time frame. Through EAI, VC constantly updates the virtual scene, and thus

a realistic 3D simulation of the FMS behavior is achieved, clearly depicting what is

going on during the simulated manufacturing process.

 Virtual Factory Modeling and Simulation 283

Figure 7.22. Visualization Client – enables 3D simulation of FMS operation

7.9.7 Internet-based Multiuser FMS Control with FlexMan

FMS Controller is the core of FlexMan. It is a server application that handles

complete server-client communication in FlexMan, database access, client requests

towards LEONARDO, user and file management, and on top of that, it executes

FMS simulation. FMS Controller uses different protocols to communicate with

other components: TCP/IP socket for client connections, ODBC for database, and

COM/DCOM for LEONARDO access (Figure 7.17).

When a new client connects, a new communication thread is instantiated.

Within this thread, a separate thread is started in which simulation is performed.

After client authorization is made, FMS Controller gives the client the access to

appropriate VRML prototype libraries and previously stored user files like saved

models and planned trajectories. All data transferred between the server and clients

is in XML format. FlexMan’s XML document for scene description is used both

for saving defined scenes and as input data for FMS simulation, because it contains

all the necessary information for both purposes. The file size of these documents is

minimal, a vital demand in any Internet-based application. This feature is a

consequence of prototyped virtual scenes building, which enables full description

of a VRML scene only by defining references to the required VRML prototypes

and their parameters, instead of saving the data about the complete 3D model.

It must be noted that the increasing number of equal objects in the scene will

only slightly increase the size of the XML file and will not affect the size of the

VRML file at all. Matrix model FMS description is also very convenient for XML

formatting and provides a complete functional description of the modeled FMS. It

284 Manufacturing Systems Control Design

all adds up to a very compact XML document, which is very clear and

understandable and can be read and modified easily.

Upon a request for simulation sent by the client, FMS Controller processes the

scene description document received from the client, loads LEONARDO’s robot

trajectories referenced in that document, calculates trajectories for the one-degree-

of-freedom resources, and starts the dynamic simulation by using a timed matrix-

based model of FMS [30].

7.9.8 A Selection of an FMS Control Method

Shared resources in FMS may cause conflict situations when conditions for starting

more than one concurrent job are satisfied. In that case, FMS Controller uses

system matrices, finds the rules that lead to the conflict situations, and solves the

problem by generating suitable control signals according to a desired dispatching

policy that must be added into the model. Control signals are automatically added

as prerequisites in the critical rules.

Users may choose, for example, from LBFS, FBFS, and MAXWIP dispatching

policies. As described in Section 5.3, MAXWIP dispatching policy resolves

conflict situations and keeps the number of work in progress (WIP), in particular

FMS subsystems, at the maximum allowed level in order to avoid deadlock.

In every sampling interval, the current state of each resource is sent to the VC

that updates the virtual scene. If the state of one resource has not been changed,

updating for that resource is omitted to reduce the data flow and prevent

communication lags.

Any problems caused by the FMS layout or by the manufacturing plan (MS

data) can be easily observed, critical operations or production rules can be

modified and simulations can be rerun until a suitable FMS behavior is achieved.

Example 7.9.1 (the FESTO FMS modeling and simulation with FlexMan)

Let us use the FESTO FMS laboratory setup described in Section 7.2.2 (Figure 7.4)

as the target system for the matrix-based controller design. As depicted in Figure

7.23, the manufacturing task of the FMS is to assemble a cylinder by putting

together four components: a body, a piston, a spring, and a cap [31]. The body

colors of a cylinder can be red, silver or black. There are also two types of pistons

that vary in color (black and gray) and shape (see Figure 7.23). The assembly

process is organized according to the assembly specifications from Table 7.1.

 Virtual Factory Modeling and Simulation 285

Figure 7.23. Assembly of the cylinder: a body, a piston, a spring, and a cap

Table 7.1. Assembly specifications for a cylinder

Cylinder color red black silver

Cylinder material plastic plastic metal

Cylinder height, [mm] 25 22.5 25

Piston color black gray black

Piston radius, [mm] 20 16 20

As described in Section 7.2.2, four work stations participate in the assembly

process [31]. The distribution station separates cylinder bodies from the stack
magazine module, whose capacity is limited to 8 bodies. The number of bodies in

the magazine is detected with a through-beam sensor. A pneumatic cylinder pushes

out the bodies, one by one, and the changer module grips the body using a suction

cup. Another sensor, a vacuum switch, checks whether the cylinder body has been

picked up. The transfer unit, driven by a rotary drive, conveys the body to the

testing station, which is next in the line.

The testing station determines the characteristics of inserted cylinder bodies.

Different sensors serve that purpose: the sensing module identifies the color of a

body and a capacitive sensor detects the body irrespective of its color. A diffuse

sensor identifies silver (metallic) and red (plastic) bodies, but not the black

(plastic) ones. The analog sensor of the measuring module determines the height of

the body. The output signal is either digitalized (via a comparator with adjustable

threshold value) and connected to the digital I/O of a PLC, or fed directly to the

PLC analog I/O. A retro reflective sensor checks whether the working area above

the body retainer is free before the body is lifted by the lifting module. A linear

cylinder guides the correct cylinder body to the processing station by means of the

air cushioned slide module. Other nonfitting bodies are sorted on the lower slide
module.

In the processing station, cylinder bodies are positioned, processed (drilled),

and then tested on a DC motor-driven rotary indexing table. The table has a

capacity of four body places that are positioned 90o apart from each other. A

solenoid actuator with an inductive sensor checks that the bodies are inserted in the

286 Manufacturing Systems Control Design

correct position. After each drilling the table rotates 90o CW and the processed

bodies undergo the drilling quality test. After each test, the table rotates 90o CW

and the body waits for the transfer to the assembly station.

As we already mentioned in Section 7.2.2, the assembly station is equipped

with the five DOF robot arm Mitsubishi Movemaster EX RV-M1 (see Figure 7.4),

which fetches the body from the transfer position at the rotary indexing table and

moves the body to the assembly position of the assembly retainer module.

Depending on the color of the body the robot takes an appropriate type of

piston from the pallet and inserts it into the body. According to the assembly plan

shown in Table 7.1, black (plastic) pistons are used for red and silver bodies, while

gray (metallic) pistons are used for black bodies. Then the piston spring is taken

from the spring magazine module and inserted. Finally, the robot picks up a cap at

the cap magazine module, establishes the orientation of the cap and places it in the

correct orientation on the body. The finished cylinder is placed on a slide, which is

the end of the assembly cycle.

Having clearly defined task sequencing and ready-to-use virtual models of all

the physical components of the FESTO FMS, we can use FlexMan to create a

complete virtual and functional model, which together with an automatically

generated matrix model will enable simulation and 3D visualization of the system.

A virtual model shown in Figure 7.4 is built of the following elements –

resources (a symbolic notation for each resource is given in the parentheses): stack

magazine module (SM), pneumatic pusher (PP), the transfer unit (TU), the

measuring module (MM), the lifting module (LM), the rotary indexing table

module (RT), the drilling module (DM), the testing module (TM), the pistons

separating module (PSM), the cap magazine module (CMM), the spring magazine

module (SMM), the robot arm (RA), the air-cushioned slide module (ASM), two

gravitational (slide) modules (GM1 and GM2), and the place of assembly (A). In

order to preserve the characteristics of the MRF line, during each new assembly

job the place of assembly is treated as a new resource (that is, A converts to places

A1, A2, A3 and A4). The list of jobs and releases of the above-mentioned

resources, along with their symbolic notation and duration, is displayed in Table

7.2. This list can be entered using FlexMan’s Operation editor. The durations of

each job and release are initially determined by the actual duration of jobs and

resource releases in the real FESTO FMS. These parameters can be varied during

simulations in order to examine different dispatching techniques that would satisfy

different manufacturing quality criteria (maximal product throughput, optimal

resource utilization, minimum energy consumption, etc.).

All resources except the robot and the rotary table have only one job to do. The

rotary table has three jobs that are done simultaneously. The only shared resource

in the FMS is the robot, whose tasks are to transfer cylinder bodies from the testing

station to the assembly station and fetch parts needed for assembly.

The next step is the definition of IF-THEN rules that explain the sequence of

jobs and conditions, which must be fulfilled to start or finish a particular job

according to a selected control strategy. Control places (CP1–CP5) have an

important role in the creation of operational rules, as the state of control places

dictates, in conflict situations, which job of the shared resource (that is, the robot)

will be done first. This job is done with FlexMan’s Rule editor.

 Virtual Factory Modeling and Simulation 287

Table 7.2. The list of jobs and releases of the FESTO FMS resources [15]

Job/

Release

Resource action (movement) Symbol t
[s]

J A pneumatic cylinder pushes out the body PPw 0.7

R A pneumatic cylinder retracts PPr 0.7

J Transfer unit conveys the body to the testing

station

TUw 2.1

R Transfer unit retracts TUr 1.4

J The body is lifted by the lifting module, and a

linear cylinder guides the body to the processing

station via the air cushioned slide module

LMw 2.8

R The lifting module retracts LMr 2.8

J The rotary indexing table module rotates to the

drilling position

RTw1 1.2

J The rotary indexing table module rotates to the

drilling testing position

RTw2 1.2

J The rotary indexing table module rotates to the

transfer position

RTw3 1.2

J The drilling module is going down DMw 0.9

R The drilling module is going up DMr 0.9

J The testing module is going down TMw 0.9

R The testing module is going up TMr 0.9

J The piston separating module pushes out the

piston

PSMw 1.2

R The pistons separating module retracts PSMr 1.2

J The cap magazine module pushes out the cap CMMw 0.7

R The cap magazine module retracts CMMr 0.7

J The spring magazine module pushes out the cap SMMw 0.7

R The spring magazine module retracts SMMr 0.7

J The robot fetches the body and moves it to the

assembly place and the assembly place is occupied

RAw1

& A1w

4.3

R The place of assembly is “virtually” released A1r 0

J The robot picks up the piston and inserts it into the

body and assembly place is occupied

RAw2

& A2w

3.8

R The place of assembly is “virtually” released A2r 0

J The robot picks up the spring and inserts it into the

body and the assembly place is occupied

RAw3

& A3w

6.2

R The place of assembly is “virtually” released A3r 0

J The robot picks up the cap, puts it onto the body,

and twists it on and the assembly place is occupied

RAw4

& A4w

4.7

R The place of assembly is “virtually” released A4r 0

J The robot grasps the cylinder and moves it to the

slide module

RAw5 4.1

R The robot parks in home position RAr 2.4

J The body is sliding down the air-cushioned slide

module to the rotary indexing table module

ASMw 1.3

J The assembled cylinder is sliding down the slide GM2w 1.2

288 Manufacturing Systems Control Design

The jobs and releases of resources shown in Table 7.2 represent the foundation

for the creation of rules. Table 7.3 shows the list of 32 rules created in the Rule

editor. In order to provide a realistic 3D visualization of FMS dynamics, some

auxiliary resource releases are used, such as the release of the air-cushioned slide

that feeds the rotary indexing table module, and the release of the rotary table

itself. These releases are instant (t = 0 s), as they only serve to free the resource

once they have delivered the work piece to the downstream resource. Symbols

PI1–PI4 and PO, which are used in the rules, denote inputs and output for the

system work pieces (PI – Part In and PO – Part Out).

Table 7.3. The list of operation rules of the FESTO FMS [15]

Rule Rule definition

1 IF (PP AND PI1) THEN (PPw)

2 IF (TU AND PPw) THEN (TUw AND PPr)

3 IF (LM AND TUw) THEN (LMw AND TUr)

4 IF (ASM AND LMw) THEN (ASMw AND LMr)

5 IF (RT AND ASMw) THEN (RTw1 AND ASMr)

6 IF (DM AND RTw1) THEN (DMw AND RTr1)

7 IF (RT AND DMw) THEN (RTw2 AND DMr)

8 IF (TP AND RTw2) THEN (TPw AND RTr2)

9 IF (RT AND TPw) THEN (RTw3 AND TPr)

10 IF (PSM AND PI2) THEN (PSMw)

11 IF (SMM AND PI3) THEN (SMMw)

12 IF (CMM AND PI4) THEN (CMMw)

13 IF (RTw3=0) THEN (CP1)

14 IF (PSMw=0) THEN (CP2)

15 IF (SMMw=0) THEN (CP3)

16 IF (CMMw=0) THEN (CP4)

17 IF (Aw+A1w+A2w+A3w+A4w=0) THEN (CP5)

18 IF (RA AND RTw3 AND CP5) THEN (RAw1 AND RTr3)

19 IF(A1 AND RAw1) THEN (A1w AND RAr1)

20 IF (RA AND PSMw AND CP1) THEN (RAw2 AND PSMr)

21 IF(A2 AND RAw2) THEN (A2w AND RAr2)

22 IF (RA AND SMMw AND CP1 AND CP2) THEN (RAw3 AND

SMMr)

23 IF(A3 AND RAw3) THEN (A3w AND RAr3)

24 IF (RA AND CMMw AND CP1 AND CP2 AND CP3) THEN (RAw4

AND CMMr)

25 IF(A4 AND RAw4) THEN (A4w AND RAr4)

26 IF (A1w > 0) THEN (CP1)

27 IF (A2w > 0) THEN (CP2)

28 IF (A3w > 0) THEN (CP3)

29 IF (A AND A1w AND A2w AND A3w AND A4w) THEN (Aw AND

A1r AND A2r AND A3r AND A4r)

30 IF (RA AND Aw) THEN (RAw5 AND Ar)

31 IF (GM2 AND RAw5) THEN (GM2w AND RAr5)

32 IF (GM2w) THEN (GM2r AND PO)

 Virtual Factory Modeling and Simulation 289

System resources with more than one degree of freedom, the robot and the

lifting module, require planning of trajectories. This is done by using FlexMan’s

Web Trajectory Planner, which invokes a trajectory planning tool Leonardo on the

server side. Having all trajectories planned, simulation can start and the process of

cylinder assembly can be examined. Figure 7.24 shows several instants of the

assembly process captured during animated 3D visualization in FlexMan’s VC.

All cylinder components are present

and assembly can start

The body of a cylinder is inspected by

the measuring module

The drilling module is drilling the

body.

The robot fetches the body from the

transfer position of the rotary table.

The robot picks up the piston before

inserting it into the body.

The robot puts the fully assembled

cylinder on the output slide module.

Figure 7.24. The phases of the simulated assembly process visualized in the FlexMan

Visualisation Client

290 Manufacturing Systems Control Design

7.10 Exercise

Figure 7.25 shows a layout of the laboratory workcell that contains an educational

robot Rhino XR-3, two belt conveyers, one transporter and two pistons [32]. A

processed part visits several resources on its way through the system. The system

has a shared resource, i.e. a conflict-resolution algorithm by using a matrix-model

approach should be implemented.

For the given system layout, define operational times and specify the number of

sensors and their positions. The part that is processed is put into the system by

piston 1. When the part gets to the end of the conveyer 1 the robot transfers it to

the conveyer 2. At the end of the conveyer the robot picks the part and places it on

the transporter. Once the part is close to the piston 2, it is moved out of the system.

By using FlexMan [25], create a virtual model of the FMS and describe the

functions and behavior of the system elements by defining a list of operations for

each element. Define the nature and duration of each operation and initial system

conditions. For this purpose use FlexMan’s Operations Editor (Figure 7.26). Create

operation rules for a selected job-scheduling strategy with Rule editor, plan the

robot trajectories with Web Trajectory Planner (Figure 7.26). Start the simulation

and watch the FMS dynamic behavior while 3D animation of the FMS operation is

displayed in the Visualization Client (Figure 7.27).

OUTPUT

conveyer 1

conveyer 2

robot

transporter

INPUT

piston 1

piston 2

Figure 7.25. Example of the laboratory FMS layout

 Virtual Factory Modeling and Simulation 291

Figure 7.26. Steps of FMS control design in FlexMan for the example of the FMS layout

Figure 7.27. 3D visualization as a final result of the FMS control design in FlexMan

292 Manufacturing Systems Control Design

References

[1] Viswanadham N, Narahari Y. Performance Modeling of Automated Manufacturing

Systems. New Jersey: Prentice Hall, 1992.

[2] Vince J. Virtual Reality Systems. Reading, MA: Addison-Wesley, 1995.

[3] Mayr H. Virtual Automation Environments – Design, Modeling, Visualisation,

Simulation. New York Basel: Marcel Dekker, 2002.

[4] Gertz M W, Khosla P K. Onika: A Multilevel Human-Machine Interface for Real-

Time Sensor-Based Robotics Systems, Proc. of SPACE 94: The 4th International

Conference and Exposition on Engineering and Construction, 1994.

[5] Nethery J, Spong M W. Robotica: A Mathematica Package for Robot Analysis, IEEE

Rob. Aut. Mag. 1994; 1: 1: 13–20.

[6] Ge S S, Lee T H, Gu D L, Woon L C. A One Stop Solution in Robotic Control

System Design, IEEE Rob. Aut. Mag. 2000;7:3:42–54.

[7] Corke P. Robotic Toolbox for Matlab, CSIRO Manufacturing Science and

Technology, http://www.cat.csiro.au/cmst/, visited 2005.

[8] Choi B, Park B, Ryu H Y. Virtual Factory Simulator Framework For Line

Prototyping, J. of Advanced Man. Sys., World Scientific Publishing Company

2004;3:1:5–20.

[9] Sly D. Object-oriented factory layout in AutoCAD, Proceedings of the 1998 Winter

Simulation Conference, 1998, 275–277.

[10] Heinicke M U, Hickman A. Eliminate bottlenecks with integrated analysis tools in

eM-Plant, Proceedings of the 2000 Winter Simulation Conference, 2000, 229–231.

[11] Li Y F, Ho J, Li N. Development of a physically behaved robot work cell in virtual

reality for task teaching, Rob. and Comp-Integr. Manuf. 2000;16: 91–101.

[12] Bogdan S, Kova i Z, Smoli -Ro ak N, Birgmajer B. A Matrix Approach to an FMS

Control Design – From Virtual Modeling to a Practical Implementation, IEEE Rob.

Aut. Mag. 2004;11:4:92–109.

[13] Jacobs K, Lemay L (eds.), Murdock K, Couch J. Laura Lemay’s Web Workshop: 3D

Graphics and VRML 2, Sams Publishing, 1996.

[14] Web3D Consortium web page: http://www.web3d.org/x3d/, visited 2005.

[15] Tomi M. Modeling, Simulation and Control of FESTO FMS, Diploma Thesis,

University of Zagreb, 2005.

[16] Reichenbach T. Collision Avoidance in Virtual Robotized Plants, Masters Thesis,

University of Zagreb, 2005.

[17] Lin M C, Gottschalk S. Collision detection between geometric models: a survey,

Proceedings of the 8th IMA Conference on the Mathematics of Surfaces (IMA-98),

ser. Mathematics of Surfaces (R. Cripps, ed.) 1998;VIII:37–56.

[18] GRASP 2000 User Manual, BYG Systems Ltd., 2nd edn, 2002.

[19] RobotStudio Features, ABB Information for System Partners CD-ROM, ABB, 2001.

[20] RobotStudioTM – Industrial IT Software, Datasheet, ABB, 2002.

[21] CXOs: Meet your new core competency – digital manufacturing, White paper, UGS,

2005.

[22] Tecnomatix eM-Plant – eMPower for manufacturing process management, Fact sheet,

UGS, 2005.

[23] CIMStation Robotics News Update 5, Applied Computing & Engineering Limited

web page: http://www.acel.co.uk/, visited 2005.

[24] Karras U. COSIMIR Educational User Guide, FESTO Didactic Gmbh, 2000.

[25] LARICS FlexMan web page: http://flrcg.rasip.fer.hr/flexman, University of Zagreb,

updated 2005.

[26] Hirukawa H, Hara I. Web-Top Robotics: Using the World Wide Web as a Platform

for Building Robotic Systems, IEEE Rob. Aut. Mag. 2000;7:2: 40–45.

 Virtual Factory Modeling and Simulation 293

[27] Paradi W J. XML in action, Microsoft Press, 1999.

[28] Bogdan S, Lewis F L, Kova i Z, Gurel A. New Matrix Formulation for Supervisory

Controller Design in Practical Flexible Manufacturing System, Proceedings of the

IEEE International Symposium on Intelligent Control ISIC 1999; 144–149.

[29] Kova i Z, Bogdan S, Petrinec K, Reichenbach T, Pun ec M. LEONARDO - The

Off-line Programming Tool for Robotized Plants, CD-ROM Proceedings of the 9th

Mediterranean Conference on Control and Automation 2001;WM2-C.

[30] Mireles J Jr, Lewis F L. Intelligent Material Handling: Development and

Implementation of a Matrix-Based Discrete Event Controller, IEEE Trans. Ind. Electr.

2001; 48:6:1087–1097.

[31] FESTO Modular Production System - Distribution station, Testing station, Processing

Station, Assembly station, User manuals, FESTO Didactic Gmbh, 2000.

[32] Kova i Z, Bogdan S, Smoli -Ro ak N, Birgmajer B, Teaching Flexible

Manufacturing Systems by Using Design and Simulation Program Tools, Proceedings

of the IEEE Region 8 EUROCON 2003 International Conference on COMPUTER AS

A TOOL 2003;47–51.

Index

active event function, 36

activity-completion matrix, 64

activity-start matrix, 64

adjacency matrix, 104, 108, 112, 125,

151, 185

and/or algebra, 16, 58, 151

arc, 37, 98, 103

arc adjacency matrix, 185

assembly line, 4, 17, 247, 265

assembly tree, 6, 55, 230

asynchronous events, 34

automaton, 36

bill of materials (BOM), 6, 53

binary loop, 156

circle (cycle), 101, 116

circular blocking, 2, 73, 150, 168, 178

circular (cyclic) path, 129, 150, 241

circular wait relation, 15, 150

circular waits (CWs), 113, 150

clock, 70, 225

conflict, 12, 54, 73, 172, 180, 193, 220,

232

conflict resolution, 80, 94, 141

conflict-resolution matrix, 79

conflicting-rules vector, 80

content of CW, 159, 169

control function, 26, 48, 78, 90, 202, 232,

244

controllability, 26, 46, 237

coordination level, 91

critical CCW, 170

critical circuit, 101

critical resources, 169

critical siphon, 158, 165, 201, 236

critical subsystem, 164, 175, 241

critical traps, 158

CW adding rules, 159, 174

CW clearing rules, 159, 174

cycle mean, 101, 129

cyclic circular wait, 152, 169, 177

cyclic posterior rules, 170

cyclic precedent rules, 170

deadlock, 9, 13, 41, 47, 73, 83, 148,, 159,

178, 184, 195, 216, 236

deadlock avoidance, 9, 91, 150, 178, 184,

195

deadlock detection, 9

deadlock prevention, 9, 41, 87, 216, 232

delay matrices, 68, 141

deterministic automata, 37

digraph (directed graph), 10, 37, 99, 106

discrete event controller (DEC), 4, 15

dispatching, 2, 8, 16, 89, 147, 178, 248,

255, 284

dispatching-control input, 16, 78

dispatching matrix, 79, 201

dispatching problem, 5, 54, 86, 156

dispatching vector, 78, 90, 141

dispatching vector release matrix, 83, 141

dispatching, first-buffer-first-serve

(FBFS), 8, 12, 77, 180

dispatching, last-buffer-first-serve

(LBFS), 9, 12, 48, 180

downstream node, 100, 150

edges, 98

empty string, 47, 112

296 Index

event-driven state, 30

event-driven system, 10, 34, 45, 132

event graphs, 121, 133, 141

feedback, 16, 26, 45, 59, 70, 79, 127

final node, 101

flexible manufacturing systems (FMS),

simulation tools, 17, 242, 259

free-choice multiple re-entrant flowlines

(FMRF), 147, 170, 184, 226

graph, 3, 14, 37, 47, 98, 107, 123, 151,

212

hold while waiting, 53, 149

hybrid matrix model, 64

hybrid systems, 30

idle-resource vector, 59

implementation level, 92

incidence matrix, 105, 215, 223, 233

input matrix, 57, 238

irregular system, 169

job-completed vector, 59, 168

job-sequencing matrix, 6, 54

job-start equation, 60, 77

job-start matrix, 56, 71

job-start vector, 59, 204

job vector, 16, 58, 156

kanban, 162, 180

key resource, 148, 169, 183

language, 45

lifetime, 67, 79, 141

livelock, 41, 186

logical state vector, 54, 59, 77, 90, 141,

148, 181, 238

marked language, 47

marked states, 36, 47

material handling buffer (routing

resources), 171

mathematical programming, 3, 16

matrix-based DE controller (supervisor),

15, 52, 77, 86, 91, 178, 202, 247, 277

maximization, 121, 132

maximum cycle mean, 101, 129, 140

max-plus, 120, 132, 225

mean weight of a path, 101

multipart re-entrant flowline (MRF), 86,

148, 169, 178, 217, 229

mutual exclusion, 10, 53, 149

neutral job set, 163, 179

neutral rules, 164, 174

nodes, 14, 98, 111, 150, 185, 212

nonshared resources, 54, 68, 156, 227,

249

NP-(nonpolynomial)-completeness, 16

observability, 27, 46, 132, 237

one-step look-ahead, 147, 178

origin, 99, 116, 185

output matrix, 57, 238

overlap, 184, 192

parallel composition, 42, 111, 122

parallel sharing, 54, 227

part path, 4, 60, 157, 184, 229

path length, 101

Petri nets, colored, 225

Petri nets, input incidence matrix, 214,

238

Petri nets, output incidence matrix, 214,

238

posterior rules, 164, 241

postset, 100, 148, 159, 174, 220

precedent rules, 164, 241

predecessor, 100, 111, 131

pre-emption, 53

prefix, 47

prefix-closed, 47

preset, 100, 148, 159, 174, 220

Programmable logic controller (PLC), 10,

48, 68, 199, 245

reachable, 102, 217, 248

re-entrant flowline, 4, 150

resource cycle, 130

resource job set, 54

resource loop, 54, 156, 178, 220, 241

resource-release equation, 15, 61, 77

resource-release matrix, 56, 71, 238

resource-release vector, 59, 204

resource requirements matrix, 2, 8, 54, 78,

238

resource utilization, 65, 130, 181, 208

resource vector, 16, 58, 156

second-level deadlock, 148, 169, 182

self-loop, 98, 105, 212, 229

Index 297

sequential sharing, 54, 227

series composition, 111, 122

shared resources, 5, 54, 61, 81, 133, 149,

171, 227, 249

shift (delay) operator, 68, 141

siphon, 158, 179, 201, 221, 236

siphon job set, 161, 175

siphon job vector, 161

siphon vector, 159

siphon-trap job set, 162, 175

sorted vector, 187

state transition diagram, 37

strictly adding rules, 174

strictly neutral job set, 163

strictly siphon job set, 163

strictly trap job set, 163

string, 46, 110, 123, 130

string matrix, 112

strongly connected graph, 102, 129

substring, 47, 111

successor, 100, 199

suffix, 47

supervisory controller, 1, 15, 45, 52, 77,

120, 180, 199, 216, 236, 277

support, 58

system

system state, 23, 32, 45, 98, 108, 137

system vector, 63, 79

system, inputs, 22, 57, 129, 143

system, outputs, 22, 27, 134, 143, 250

system, time-driven, 22, 34, 125

system, time invariant, 22

system, time-variant, 22

task-sequencing matrix, see also job

sequencing matrix, 2, 16

temporary system vector, 90, 159, 204

3D Modeling, 261

time driven system, see system, time-

driven

time vectors, 186, 194

time windows, 178, 189

time-windows overlap, 184, 193

timed sequence, 35

token game, 11, 243

tokens , 11, 14, 212, 224, 232

transition function, 36

trap, 158, 221

trap job set, 162, 175

uncontrollable events, 31, 46, 237

unique production cycle, 129

unreachable, 31

upstream node, 100, 150

vector negation, 58

vertices, 98

virtual-factory simulators , 259

virtual-factory simulators, CimStation

Robotics, 275

virtual-factory simulators, Cosimir, 275

virtual-factory simulators, eM-Plant, 273

virtual-factory simulators, FlexMan, 267,

276

virtual-factory simulators, Grasp2000,

270

virtual-factory simulators, RobotStudio,

271

virtual node, 114

VRML, 262

VRML, basic features, 263

wait relation graph, 14, 151, 241

weight, 99, 106, 129

weight of path, 101

weighted adjacency matrix, 106, 121, 129

X3D, 262

Other titles published in this Series (continued):

Analysis and Control Techniques for
Distribution Shaping in Stochastic
Processes
Michael G. Forbes, J. Fraser Forbes,
Martin Guay and Thomas J. Harris
Publication due August 2006

Process Control Performance Assessment
Andrzej Ordys, Damien Uduehi and
Michael A. Johnson (Eds.)
Publication due August 2006

Adaptive Voltage Control in Power Systems
Giuseppe Fusco and Mario Russo
Publication due September 2006

Advanced Fuzzy Logic Technologies in
Industrial Applications
Ying Bai, Hanqi Zhuang and Dali Wang
(Eds.)
Publication due September 2006

Distributed Embedded Control Systems
Matjaž Colnarǐc, Domen Verber and
Wolfgang A. Halang
Publication due October 2006

Modelling and Analysis of Hybrid
Supervisory Systems
Emilia Villani, Paulo E. Miyagi and
Robert Valette
Publication due November 2006

Model-based Process Supervision
Belkacem Ould Bouamama and
Arun K. Samantaray
Publication due February 2007

Continuous-time Model Identification
from Sampled Data
Hugues Garnier and Liuping Wang (Eds.)
Publication due May 2007

Process Control
Jie Bao, and Peter L. Lee
Publication due June 2007

Optimal Control of Wind Energy Systems
Iulian Munteanu, Antoneta Iuliana Bratcu,
Nicolas-Antonio Cutululis and
Emil Ceanga
Publication due November 2007

