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Series Editors’ Foreword 

The series Advances in Industrial Control aims to report and encourage technology 
transfer in control engineering. The rapid development of control technology has 
an impact on all areas of the control discipline. New theory, new controllers, 
actuators, sensors, new industrial processes, computer methods, new applications, 
new philosophies , new challenges. Much of this development work resides in 
industrial reports, feasibility study papers and the reports of advanced collaborative 
projects. The series offers an opportunity for researchers to present an extended 
exposition of such new work in all aspects of industrial control for wider and rapid 
dissemination. 

In some areas of manufacturing, the elements of a flexible manufacturing 
system form the key components of the process line. These key components are 
four-fold: a set of programmable robots and machines, an automated materials-
handling system that allows parts to be freely routed and re-routed, a buffer storage 
system where parts and partly-assembled components can wait until required for 
further processing and assembly and finally, a supervisory control system. The 
technology employed to coordinate and control all these components as a working 
system is usually based on programmable logic controllers. The use of this 
automation hardware and software in manufacturing is designed to yield significant 
cost reductions and to enhance quality. Economic gains are achieved through the 
ability of these systems to work continuously (24/7, all year round) and flexibly so 
that rapid on-line supervisory reprogramming can be performed for the 
modification and improvement of product parts or the assembly of different 
products. Unlike human operators, robots and machines do not suffer from 
biological fatigue so that enhanced product quality can be attained through better 
repetitive accuracies and consistent mechanical performance. 

To achieve the economic and quality goals of flexible manufacturing requires 
the use of some sophisticated supervisory control algorithms to direct the process 
scheduling and despatching tasks and to handle any on-line dynamic conflicts that 
might emerge. In general, these decisions for sequencing operations are 
constrained by limited resources and shared resources. The other very distinctive 
characteristic of these supervisory control problems is that the system under 
supervision is a discrete-event system. In this case, the state-space for the system 
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attains discrete values and the transition from one state to another is caused by an 
event taking place. This adds to the difficulty in analysing the properties of these 
systems because the system description is often linguistic unlike the continuous-
time equation-based descriptions with which most control engineers are familiar; 
however, many of these scheduling problems are central issues in manufacturing 
studies per se and as such have already been extensively investigated. For example, 
many of the methods of operational research were originally driven by the 
supervisory control problems of manufacturing processes. From this simple 
background perspective, Professor Stjepan Bogdan and his colleagues present a 
nicely self-contained treatment of the supervisory control problems of flexible 
manufacturing systems using recently developed approaches and tools. This new 
entry to the Advances in Industrial Control series has four components. Firstly, the 
introductory chapters 1 and 2 create the framework for understanding flexible-
manufacturing-system concepts and discrete-event system descriptions. 
Particularly interesting is the discussion of system types – continuous-time, hybrid 
and discrete – given in Chapter 2 which uses in-depth examples to help the control 
engineer appreciate the similarities and differences between the three types. 

A substantial part of the book, Chapters 3 to 5, pursues matrix models for 
manufacturing systems; however, it should be noted that because the underlying 
systems are discrete-event systems, these are matrices defined over an and or 
( , ) algebra. In these chapters, it is fascinating to learn how rule-based systems 
can be given matrix representation and how there are links to other tools like 
directed graphs for the analysis of the control of these systems. 

Quite often in this text the discussion of manufacturing system properties uses 
the tools of Petri nets. Petri nets have evolved and developed considerably since 
their original introduction in the early 1960s. In Chapter 6, the authors present a 
full introduction to their use in the studies of manufacturing system problems, for 
example, links between Petri nets and the matrix methods of earlier chapters are 
established. The authors also usefully describe and demonstrate their own 
graphical Petri-net-simulation software tool that is available for download for use 
by the interested reader. 

To complete the monograph, Chapter 7 reports on other mainstream simulation 
tools for virtual factory modelling. The potentially disastrous economic effects of a 
poorly defined factory layout or an inefficient manufacturing control strategy has 
ensured the development of a substantial set of factory simulation tools often with 
advanced graphics for visualisation of operational dynamics and with various 
analysis tools to assess and compute performance metrics. The thorough survey 
presented by Professor Bogdan and his colleagues provides a very fitting 
concluding chapter for this stimulating monograph on flexible manufacturing 
systems. 

M.J. Grimble and M.A. Johnson 
Industrial Control Centre 
Glasgow, Scotland, U.K. 



Foreword

In the late 1980s, the strong needs for modeling, analysis, control, and simulation 
of complex systems especially computer-integrated manufacturing systems 
demanded the academic researchers and industrial engineers to seek and 
investigate better methodologies and tools. Such tools must be able to deal with 
such system characteristics as asynchronous events, sequences, concurrency, 
synchronization, mutual exclusion, deadlocks, and choices. While state machines 
or automata were popular in many applications, they were soon proved to be 
inadequate since the state explosion problems would be met at the very beginning 
of system design. Any design flaws or incompleteness may invalidate the entire 
system design and frequently require rather cumbersome recovery. On the other 
hand, Petri nets, invented by C. A. Petri in his 1962’s doctoral dissertation, are well 
equipped with the required capabilities to handle the above-mentioned 
characteristics. They thus gained their popularity among the researchers of discrete 
event systems and industrial applications in manufacturing automation.  

The research group at Rensselaer Polytechnic Institute (RPI) was established 
and led by Professors Frank DiCesare and Alan Desrochers. It was supported by 
many leading industrial companies such as IBM, GM, Johnson and Johnson, Sun 
Microsystems, and Digital Equipment Corporation via an eight-year long 
Computer Integrated Manufacturing Research Program of the Center for 
Manufacturing Productivity and Technology Transfer at RPI. They obtained many 
significant research and application results. Notably, as the first Ph.D. graduate of 
this group in this area, Dr. Robert Al-Jaar proposed to use generalized stochastic 
Petri nets for modeling and analysis of production lines. Their work led to their 
1994 book Applications of Petri Nets in Manufacturing Systems: Modeling, 
Control, and Performance Analysis by IEEE Press. As the second Ph.D. graduate 
of the group, I developed the concepts of parallel and sequential mutual exclusion 
structures, top-down, bottom-up and hybrid synthesis methods, Petri net-based 
discrete event controller design and implementation procedures for flexible 
manufacturing systems (FMS). The results were summarized into the first 
monograph of its kind, Petri Net Synthesis for Discrete Event Control of 
Manufacturing Systems, co-authored with Frank DiCesare, Kluwer Academic 
Publisher in 1993.  Dr. Fei-Yue Wang, presently Professor of the University of 
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Arizona and the Institute of Automation, Chinese Academy of Sciences, pioneered 
in applying Petri nets to designing intelligent machines and building intelligent 
control foundation together with his advisor, Dr. George Saridis. He also 
developed a Petri net method for communication protocol design and performance 
analysis for manufacturing message specification. From the same group, Dr. 
Inseon Koh, presently Professor of Hong-Ik University, Korea, perfected a bottom-
up method to synthesize Petri nets with desired properties. Dr. Jagdish S. Joshi 
conducted performance analysis of network and database transactions in a CIM 
system. Dr. MuDer Jeng, presently Professor of National Taiwan Ocean 
University, invented a new class of Petri nets suitable for modeling automated 
manufacturing systems. Dr. Doo Yong Lee, presently Professor of Korea 
Advanced Institute of Technology, pioneered in using various heuristics to guide 
optimal or sub-optimal schedule search in timed Petri net models of flexible 
manufacturing systems. Dr. Alessandro Giua, presently a professor of University 
of Cagliari, Italy, developed a supervisory control theory in the framework of Petri 
nets. Dr. Tiehua Cao and Professor Arthur C. Sanderson combined fuzzy logic 
theory and Petri nets and developed fuzzy Petri nets for intelligent task planning in 
a robotic system. The research led to the publication of Intelligent Task Planning 
Using Fuzzy Petri Nets in the Series in Intelligent Control and Intelligent 
Automation of World Scientific Publisher in 1996. Dr. Hauke Jungnitz developed 
approximation methods for stochastic timed Petri nets. Dr. James F. Watson 
formulated a method for performance analysis of discrete event systems with non-
exponential random time distributions and state space estimation of a given Petri 
net model.  

The above-mentioned work addressed various issues from model synthesis, 
performance analysis, simulation, deadlock avoidance, and supervisory control 
design and made significant contributions to the field of Petri nets and their 
applications to manufacturing automation. Yet one significant problem remains 
unsolved: given manufacturing system specifications expressed in Bill of 
Materials, Assembly Tree, Task Sequencing matrix, and Resource Requirement 
Matrix, how can one automatically generate a Petri net model and related design 
for analysis, control, and simulation of a flexible manufacturing system (FMS). 
This book written by a group of outstanding researchers under the leadership of Dr. 
Frank Lewis indeed presents an elegant solution to the above long-lasting problem. 
Their proposed matrix-based approach represents one of the most significant 
innovations to the area of Petri nets and related discrete-event modeling 
approaches for manufacturing system control design. The authors are able to 
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identify a unique mapping between the Petri net elements and system 
specifications and reveal the underlying relations for a number of design and 
analysis tools used in industrial engineering. More importantly, the research group 
is able to link what they do to the generation of control code required by 
Programmable Logic Controllers (PLC). PLC have been the industrial horse in 
almost every sector of automated manufacturing and packaging industry for three 
decades.  

This present book contributes to the area of manufacturing automation in a 
number of ways. First, it comprehensively presents a matrix-based modeling and 
controller design framework. It uses an intelligent material handling workcell to 
illustrate clearly various steps in matrix-based controller design. Second, the book 
addresses how to utilize matrices for analyzing structural properties of 
manufacturing systems. It reveals the underlying relationship among graph 
descriptions, max-plus algebra, and the proposed matrix models. Third, the book 
investigates a very important yet difficult class of manufacturing systems, namely, 
multiple re-entrant flowlines. It answers how deadlocks can be avoided in such 
systems. PLC-controlled flexible manufacturing systems are used to illustrate 
various deadlock avoidance strategies. Fourth, the book presents Petri nets and 
their complementary character with the matrix models. A computer-aided design 
tool called Petri.NET is developed and presented, allowing researchers and 
engineers to model and simulate FMS using either Petri nets or matrix models. 
Finally, the book presents the basics of virtual factory modeling and simulation and 
a number of CAD tools used in industry. Its contribution includes a web tool called 
FlexMan that can be used to design and simulate of FMS based on virtual factory 
models and matrix-based methodologies. Such examples as palletization workcell, 
FESTO FMS, robotic brick-handling system, Volvo body-manufacturing line, and 
assembly station are used to demonstrate these tools. 

In conclusion, the authors have well presented their innovative manufacturing 
control design methods based on matrices, Petri nets and other related discrete-
event modeling tools. The book clearly advances the state-of-the-art in the area of 
flexible manufacturing automation and its impact to the area will last long, not only 
methodologically but also practically. 

MengChu Zhou, Ph. D. and Professor 
New Jersey Institute of Technology 
Newark, NJ 
http://web.njit.edu/~zhou 



Preface

Being aware that our planet is inhabited with more than six billion human beings 

having their needs for food, cloths, shelter, medical care, education, transportation, 

entertainment and many more, efficacious manufacturing of various goods 

becomes extremely important for the global society. 

Even in these days, manufacturing is performed by individuals, and such 

products, in low volumes, may have a lot of success on the market. Let us just 

mention exclusive cars, jewellery or some pieces of finest art. High volume 

production would not be possible without carefully planned production technology, 

highly automated production processes and engagement of specially designed 

automation equipment. 

The success of one product on the market depends on many factors, how the 

product looks like, what kind of usefulness it has, how many versions of product 

exist etc. Investigations of the car market have found long time ago that customers 

make their decisions based on overall assessment of car manufacturer (e.g., 

reliability of the vehicle, quality of the service, experience in manufacturing), but 

they are also judging the individual qualities of the vehicle they want to buy. In this 

context, sometimes only colour becomes the reason why the customer will pick 

that car instead of another. What we say about cars holds for any other product. 

Many products have very similar constituent parts or the same parts arranged in 

the slightly different way. The production strategy which has a goal to 

accommodate to different customers' demands leads naturally to a flexible 

manufacturing concept. For example, contemporary car industry cannot be 

imagined without robots, machine tools, belt conveyers, part feeders and other 

elements. The strength of all single components lies in their integration into a 

flexible manufacturing system (FMS). 

FMS control triggers many parallel worlds - continuous and discrete control 

loops, as well as many discrete events occurring synchronously or stochastically. 

In order to be able to control the FMS, sensors, actuators, and controllers, viewing 

from the lowest to the highest control level, constitute a network. This means that 

dealing with FMS control actually means dealing with the distributed network-

based control. Usually, programmable logic controllers or PC-based solutions are 

used for implementation of such controllers. Therefore, it is very important that 
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methods and algorithms concerned with analysis and synthesis of FMS control 

have a form and features which would make them suitable for implementation in a 

dedicated hardware. 

Flexible manufacturing systems are "live" systems composed of a group of 

allocated resources and tasks being assigned. They can assume different structures 

and undergo different control strategies depending on the consequences of issued 

commands (e.g. a new robot has been added to the system) or the states of 

particular FMS components (e.g. one of the robots is out of order). Under such 

conditions, sequencing of tasks, parallelism of missions, collision of concurrent 

decisions, and negligence of planned actions are problems an FMS control designer 

must confront with. 

The authors of this book have been actively involved in the FMS control area 

more than a decade trying to find such FMS control design methods which would 

guarantee the stability and the functionality of the control system at one hand, and 

which would be simple enough, easily implemental and effective in practical 

engineering applications on the other.  

The purpose of this book is to describe the use of matrical approach to the FMS 

control design. First we introduce the reader with different techniques of FMS 

control design and then we elaborate the advantages of matrix-based FMS control 

design, mentioning just one, an ability to convert the matrix-based controller into 

an effective PLC executable code.  

The topics are divided into seven chapters. Chapter 1 is a descriptive 

introduction into a world of FMS classification, modeling, simulation and design 

of their controllers. The Chapter 2 gives a brief review of discrete event systems 

with an emphasis on the time-driven and event-driven systems. Chapter 3 describes 

the theory and methodology of creating a matrix model and a matrix controller. 

The reader will also find the example of matrix controller design for an intelligent 

material handling workcell. Chapter 4 is concerned with an analysis of matrix 

methods for manufacturing systems. The description of graphs, principles of string 

composition, and max-plus algebra is given as well as their relations to the matrix 

model. Manufacturing system structural properties given in the matrix form are the 

subject of Chapter 5. The focus has been set on the properties of so called multiple 

re-entrant flowlines (MRF) that are important for the control synthesis, such as 

circular waits, siphons and traps, and critical subsystems. The discussion is 

extended also to the free choice multiple re-entrant flowlines (FMRF), whose 

control properties are even more demanding. Deadlock avoidance strategies are 

presented and illustrated on the example of a PLC-controlled FMS. Chapter 6 deals 

with Petri nets that are a widely used tool for MS modeling and control design. The 

relations between Petri nets and the matrix form are given in order to show their 

complementary character. A program tool Petri.NET developed at the Laboratory 

for Robotics and Intelligent Control Systems that utilizes both Petri nets and matrix 

forms for modeling and simulation of FMS is described. Chapter 7 describes basic 

principles of virtual factory modeling and simulation as a powerful means of FMS 

performance visualization. Several commercial program packages for virtual 

modeling are shortly presented. In addition, a web tool FlexMan developed by the 

authors and implemented to serve for off-line design and simulation of flexible 
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manufacturing systems using a matrix model and a virtual model of the FMS is 

described.  

 Many individuals have contributed to this book. Special credits go to our 

colleagues Ayla Gurel and Octavian Pastravanu. We are also indebted to the 

students who contributed by implementing aforementioned program tools and by 

performing some of the simulation and practical experiments while working on 

their diploma and masters theses. This list includes, in particular, Bruno Birgmajer, 

Goran Genter, Krešimir Petrinec, Tomislav Reichenbach, and Nenad Smoli -

Ro ak.

Zagreb, 10.03.2006. 

Stjepan Bogdan 

Frank L. Lewis 

Zdenko Kova i

Jose Mireles  
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1

Introduction

In this book a modern systems theory point of view is offered for the design of 

supervisory controllers for flexible manufacturing systems (FMS). The supervisory 

controller is installed on a PLC or on a computer, and sensors situated in the FMS 

are used to provide information to the controller about the status of the FMS, 

including job performance information and resource-availability information.  

Then, the controller performs calculations to determine which jobs should be 

performed next to achieve the specified performance requirements, such as 

meeting the product due dates, avoiding blocking phenomena, maximizing 

machine usage, minimizing time of transit of the product through the FMS, etc.

Finally, commands are sent back to the FMS to select which jobs should be 

performed next and which resources should be used. Such a manufacturing 

controller is called a discrete event (DE) controller since it depends on the events 

that occur in the FMS.   

The DE controller design techniques in this book are based on a matrix-based
formulation for discrete event systems that streamlines modeling, analysis, 

simulation, and controller implementation for FMS. The matrices used in the DE 

controller formulation come from standard industrial engineering data structure 

techniques including the bill of materials, assembly tree, and resource requirements 

matrix; they are straightforward to write down for large-scale interconnected 

manufacturing systems using notions of block matrices. 

In this chapter we give a preview of the philosophy behind supervisory control 

design. We outline some well-known tools in manufacturing industrial 

engineering, including the bill of materials, assembly tree, and job-sequencing 

matrix. We outline Petri nets and rule-based systems for DE controller design.  We 

introduce a DE controller that has a very special and convenient form based on 

matrices and has close connections with all these background tools. Finally, we 

summarize methods for computer simulation of supervisory FMS controllers, and 

then techniques for their actual implementation on installed FMS. 

Although this book focuses on manufacturing systems, this DE controller 

formulation is also applicable for other DE systems including autonomous guided 

vehicles (AGV), communication networks, wireless sensor networks, and 

computer operating systems. 
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1.1 Background 

Some background is given here on FMS and their control techniques. This lays the 

foundation for the controller-design philosophy presented in this book. 

1.1.1 Flexible Manufacturing Systems and Their Controllers 

New developments in FMS, telecommunications systems, wireless networks, 

multiagent battlefield scenarios, computer operating systems, intelligent 

highway/vehicle systems, and elsewhere place severe demands on the design of 

decision-making supervisory control systems. The Internet and wireless 

communication mechanisms hold out the possibility of large-scale distributed 

systems spanning physically remote sites. The large-scale interconnected nature of 

such discrete event systems requires controllers/supervisors with increased 

capabilities for scheduling with optimality and capacity constraints, shared-

resource dispatching, conflict resolution and deadlock avoidance, routing, failure 

handling, and other decisions. Many such DE systems are known to suffer from 

problems of computational complexity [1], where adding increased computer 

power will not significantly improve system performance, though performance can 

be improved through judicious choice of flow and command protocols, as well as 

improvements in system structure. Therefore, there are heightened demands for 

advanced supervisory controllers that include efficient organizational schemes, 

task protocols, and communications network protocols that impose increased 

structure on the system without detriment to strategic system objectives. 

The concept of FMS emerged with the Ingersoll-Rand factory in Roanoke in 

the 1960s. An FMS consists of (1) programmable machines and robots, (2) an 

automated material handling system, and (3) a supervisory control system [2]. With 

the advent of FMS, the importance of the supervisory controller increases. The 

controller must be capable of quickly reprogramming the FMS to handle different 

parts and produce different products, and of dynamically handling contention and 

conflict decisions.  

1.1.2 Summary of Approaches to Manufacturing System Control 

Standard manufacturing engineering tools for heuristic analysis of decision-making 

supervisory controllers for flow shops and job shops include the bill of materials 

(BOM), Steward’s task-sequencing matrix, the assembly tree, and the resource 

requirements matrix [3-5]. A body of work exists for shared-resource conflict 

resolution in industrial engineering, namely, the work on dispatching and 

scheduling (e.g. [6]). Standard dispatching rules show how to operate 

manufacturing cells in the presence of limited resources such as pallets, transport 

robots, machines. Results on kanban, CONWIP [7], and other pull techniques show 

how to avoid blocking phenomena by limiting the numbers of jobs in certain 

subsystems. Deadlock avoidance methods appear in [8-10], where the circular wait 

relations and circular blockings of an FMS are studied. A thorough treatment is 

given in [11]. 
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Operations Research approaches to manufacturing modeling, analysis and 

control include mathematical optimization [4, 38], queuing network analysis [12,

13], and discrete event simulation [14, 15]. Mathematical programming models 

have been extensively studied and are suitable for open-loop planning and 

scheduling, though rarely for closed-loop controller design. Techniques include 

linear programming (LP), integer programming (IP), and quadratic programming 

(QP). Many algorithms exist to solve problems including simplex, and dual 

simplex. Algorithms that afford complexity reduction include Karmarkar (LP), 

branch and bound (IP), cut algorithms (IP), Hungarian algorithm (IP), and 

Fibonacci Search (QP).  Dynamic programming [16] has been used to solve various 

controller design problems. Mathematical programming algorithms have been 

developed with emphasis on a hierarchical approach to modeling and control [17,

18]. 

Graphs and Petri nets (PN) [19, 20] afford a popular approach for analysis of 

FMS and computer operating systems [21]. PN are important as they provide 

insight into task sequencing and resource assignment, with analytical results on 

reachability, liveness, conservativeness, and other important system properties. If 

the PN is a (decision-free) event graph, it can equivalently be written as a linear 

system over the max/plus or dioid algebra [22], which affords even more analysis 

tools. Several researchers (e.g. [23, 24]) extended PN by using colored PN, 

stochastic PN, hierarchical PN, etc. “Top-down” and “bottom-up” design 

algorithms were proposed [25] along with improved techniques for the shared-

resource allocation problem. Formal techniques for the design of PN supervisors or 

controllers are developed in [26, 27]. 

In perturbation analysis (PA) of discrete event systems [28] a dynamic system 

point of view is employed to study DE system behavior and analyze its 

performance. Many DE systems suffer from problems of computational complexity 

[1]. Therefore, the objective of PA is to obtain performance sensitivities with 

respect to system parameters by analyzing a single sample path of a discrete event 

system. Other work such as [29, 30-32] brings a system theory flavor into 

manufacturing dispatching, with the desired performance and bounded buffers 

being guaranteed via mathematical proofs including Lagrangian relaxation and 

Lyapunov stability techniques. Some work on fuzzy logic dispatching is available 

[33].  Supervisory control theory techniques for analyzing DE systems involve 

language-based approaches [27, 32], which offer effective analysis and design 

results for DE systems. Other work [34] has by now studied properties of hybrid 

and DE systems including stability, reachability, and so on.  

1.2 Flexible Manufacturing Systems 

1.2.1 Types of Manufacturing Systems 

To meet competition in a global marketplace and provide flexible manufacturing in 

today’s high-mix low-volume manufacturing environment, manufacturing systems 

have moved away from old-style fixed-hardware sequential processing lines with 



4 Manufacturing Systems Control Design 

dedicated workstations. The trend for years has been towards flexible manu-

facturing. An FMS has four major components [35]:

• a set of machines, robots, fixtures, or work stations, 

• an automated material handling system that allows flexible part routing, 

• distributed buffer storage sites where the parts may be temporarily placed 

during processing, 

• a computer-based supervisory controller for monitoring the status of jobs 

and directing part routing and machine-job selections. 

In order to allow fast setup of the FMS for new parts and product types, an 

advanced decision-making controller should be used. Proper design of the 

controller can allow one to program the FMS as easily as one does a personal 

computer. Such controllers are described in this book.  The controllers are called 

discrete event controllers (DEC) since they make decisions based on the current 

events occurring in the FMS. 

The controller should be distinguished from the physical portion of the FMS.  

The physical portion of an FMS is the manufacturing facility, comprised of its 

resources:  the set of machines or work stations (including also robots, fixtures, 

tools, etc.), the automated material handling system, and the distributed buffers.  

Each resource type has a distinct function, though resource pools of more than one 

machine of a type may perform the same function (e.g. drill, press fit, paint, etc.).  

The resources serve the parts, and parts of the same class or type are grouped 

together, flowing through the facility on distinct part paths. The job sequence for 

each part type is the sequence of jobs required to produce a finished product. 

There are several standard structures of manufacturing systems, including the 

re-entrant flowline, the assembly line, and the job shop.  In the general job shop the 

sequencing of jobs is not fixed, or the assignment of resources to the jobs is not 

fixed. Parts of the same type may visit different machines in different orders to 

produce the same final product. The effect is that part routing decisions must be 

made during processing. This significantly complicates decision making and 

control in a manufacturing system and leads to problems with complexity issues. 

In the flowline greater organization is imposed, and the sequence of jobs for 

each part type is fixed and the assignment of resource pools to the jobs is fixed.  

This results in a streamlined protocol that is easier to manage to provide 

guaranteed performance in the FMS.  The result is that parts of each type visit the 

resources in the same sequence, though different part types may have different 

sequences. A flowline is said to be re-entrant if any part type revisits the same 

resource pool more than once in its job sequence [32, 30]. This occurs if the same 

resource is assigned to different jobs in the part’s sequence. For instance, the same 

drilling operation may need to be performed twice at different stages in the part’s 

processing. 

An FMS at The University of Texas at Arlington (UTA) Automation & 

Robotics Research Institute (ARRI) is shown in Figure 1.1. This facility has three 

robots, an IBM, a PUMA, and an Adept. These robots have been connected 

through serial ports to allow central coordinated control from a single PC using a 

LabVIEW© user interface developed at UTA. A matrix-based discrete event con-  
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Figure 1.1.  An FMS at UTA’s Automation & Robotics Research Institute, showing three 

robots and three conveyor belts

troller such as those discussed in this book has been implemented, allowing for 

very fast and easy reprogramming of the FMS for new part types and products. 

Figure 1.2 shows the re-entrant flowline structure of this FMS.  Part type A is 

processed by the Puma robot twice, part type B is processed by the Adept twice, 

and both part types visit the IBM twice. Moreover, all three robots are used to 

process both part types. Thus, the three robots are all shared resources, which are 

visited several times by different parts. The flowline is re-entrant since parts of 

each type revisit the same resource more than once. 

Since in the re-entrant flowline certain resources may be shared, either by parts 

of the same type at different stages of their processing, or across parts of different 

types, one is faced with a decision at each shared resource involving which part to 

process next. For instance, robot 2 has three queues where the parts enter - part A 

for the first time, part A for the second time, and part B for the first time. Parts may 

arrive at all these points simultaneously. Deciding which part to select next for 

processing at each shared resource is known as the dispatching problem [6]. The 

dispatching decision is a crucial one that can cause severe problems in a 

manufacturing system if not properly made. 

1.2.2 FMS Design Tools 

There are numerous tools available in industrial engineering usage for the design 

and analysis of manufacturing systems. We shall discuss here the bill of materials 

(BOM), the assembly tree, the task-sequencing matrix, and the resource- 

requirements matrix.  In this book, these tools are combined into an overall design 

and analysis technique that results in rigorous algorithms, computer simulation 

techniques, and supervisory controllers with guaranteed performance. These tools 

are unified through a matrix-based DEC formulation presented in this book. 
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Figure 1.2. Re-entrant flowline structure of the FMS 
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Figure 1.3.  An assembly tree 

The bill of materials (BOM) is a document containing the assembly -

subassembly relationships for a specified product line [36]. It may be considered as 

a lookup table or a matrix in which the (i,j) entry is equal to the number of 

subassemblies/parts of type j needed to produce one subassembly/part of type i.
Thus, row i contains the materials required to form the ith subassembly. The BOM 

is known for a given product line or part path.  BOM information is an integral part 

of the specifications for all manufactured products. 

The information in the BOM may be depicted in graphical form for easy 

visualization in the assembly tree [37], which shows the task decomposition of jobs 

needed to manufacture a product.  A sample assembly tree is given in Figure 1.3. 

This tree shows that part a enters the workcell, where it is drilled. Then, part a and 

part c are assembled, moved, drilled again, and finally put out as the finished 

product, part out (PO).

The sequence of events in an assembly tree can be captured in matrix form by 

defining the job or task-sequencing matrix, which for this example is 
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Each row i indicates which jobs are required as immediate precursors for job i.
For instance, row 4 shows that jobs b and c are needed to perform the assembly job 

d. This matrix is effectively the BOM, and it was studied by Steward and others [5,

39, 40].  In this matrix, the columns and rows correspond to jobs, and an (i,j) entry 

of 1 indicates that job j is an immediate prerequisite for job i. The task-sequencing 

matrix is very useful for representing the partial orderings needed for sequencing 

manufacturing jobs. In fact, note that the causal sequencing of jobs d, e, f is seen in 

the diagonal 1s, showing that each job is an immediate prerequisite for the next 

job. It has been shown that a lower triangular job-sequencing matrix corresponds to 

a causal ordering of jobs, and that information on the hierarchical subsystem 

structure of a process can be extracted by raising this matrix to various powers.  

The resource-requirements matrix (RRM) shows which resources are needed to 

perform which tasks or jobs, as reflected graphically, for instance, in the 

subassembly tree, which is an assembly tree annotated to indicate the resources 

assigned to the jobs [37]. The subassembly tree for this example is shown in Figure 

1.4, where information has been added to show which resources are assigned to 

perform which jobs. Note that first the task sequence is prescribed, and then after 

that the resources are added.  The task-sequencing information may come from the 

BOM or from computer science planning programs. On the other hand, the 

resource information might be assigned by a factory floor manager. 
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Figure 1.4.  A subassembly tree 
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This subassembly tree shows that part a enters the FSM and is stored in buffer 

B1 then drilled in machine M1.  Part c enters and is sent to fixture F1, where robot 

R1 assembles part a to it and puts the resulting subassembly in buffer B2. The 

subassembly is drilled again by machine M1, and finally sent out as the finished 

product PO.  The resource requirements matrix for this example is given by 

In the resource-requirements matrix, the columns correspond to resources 

(tools, fixtures, machines, robots) and rows correspond to jobs; an (i,j) entry of 1 

indicates that resource j is needed for job i.  Row 4, for instance, shows that robot 

R1 is needed to perform job d.  In this example, note that the last column contains 

two 1s. This indicates that resource M1 is needed for two jobs, and hence it is a 

shared resource. Kusiak [3] has shown that RRM provides the basis for decision 

making while assigning or dispatching shared resources. 

1.3 Dispatching Rules and Blocking Phenomena 

If there is a shared resource, it is important to assign the correct jobs next to 

accomplish the performance requirements that are prescribed for the workcell.  

Performance requirements might include meeting product-due dates, keeping 

machine per cent utilization high, guaranteeing that all parts are processed through 

the FSM within a maximum allowed time, etc. The issues involve problems of 

assignment of shared resources when the same resources are simultaneously 

requested by more than one job. Similar issues occur in computer systems, 

communication systems, highway/vehicle systems, and elsewhere. 

In Figure 1.2, for instance, robot 2 has three queues where the parts enter - part 

A for the first time A(1), part A for the second time A(2), and part B for the first 

time B(1). The dispatching strategy, executed by the supervisor, assigns which jobs 

to process next. There are many dispatching rules such as first-in-first-out (FIFO), 

where the parts arriving first are processed first, and earliest due date, where the 

part with the earliest due date is served first. In first-buffer-first-serve (FBFS) 

dispatching, the resource serves first the buffer corresponding to the first passage 

of a given part through the resource. For instance, robot 2 in Figure 1.2 would 

serve A(1), part type 1 entering for the first time, before serving A(2), the part type 

r

1 1 1 2 1

0 0 1 0 0

0 0 0 0 1

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

R F B B M
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e
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1 entering for the second time.  Correspondingly, another dispatching rule is last-

buffer-first-serve (LBFS), wherein A(2) is given preference over A(1). 

Failure to dispatch shared resources properly can result in blocking phenomena 

including deadlock, where all the resources in the FMS are busy, each waiting for 

the others to release a part before it can proceed. In this case, all activity in the 

FMS seizes up and no jobs can proceed. It has been shown that LBFS dispatching 

avoids deadlock in re-entrant flowlines with only one part type, while with FBFS 

deadlock may occur. In fact, LBFS is a pull technique thatattempts to clear jobs out 

of a FMS, while FBFS is a push technique that tries to load jobs into the workcell. 

Deadlock research in computer systems has focused on four main areas [41]. 

Deadlock prevention is involved with removing any possibility of system 

deadlocks; the result is often overconservative policies resulting in poor utilization 

of resources. Deadlock detection focuses on detecting imminent or current 

deadlocks, and is required for deadlock recovery and avoidance strategies.  

Deadlock recovery methods are used to clear deadlocks once they occur, often by 

placing jobs in buffers, by manually removing some parts from machines, or by 

completely flushing one or more of the deadlocked processes, resulting in lost 

work. In deadlock avoidance the possibility of system deadlock is not totally 

removed, but whenever deadlock is imminent, it is sidestepped by a real-time 

decision-making procedure. Later in this book we shall be interested in online 

intelligent deadlock avoidance. 

1.4 Models of Discrete Event Manufacturing Systems 

There are several mathematical models for discrete event manufacturing systems. 

In manufacturing system control, one should discriminate between the workcell 

with its resources, and the supervisory controller that sequences the jobs and 

dispatches those resources. We shall now discuss the methods that are close to the 

matrix-based controller we will introduce in this book, and that also relate closely 

to the FMS design tools just discussed. These include rule-based expert systems 

and Petri nets. 

1.4.1 Rule-based Expert Systems 

One may describe the task-sequencing conditions and the resource assignments 

using a rule-based system. The task-sequencing rules may be derived from the bill 

of materials or assembly tree, and the resource assignment rules from the shop-

floor supervisor, exactly as detailed above. The term expert system refers to the 

fact that the rules in the rule base are derived from advice and consultation with 

experts in the domain of interest. The product specialist specifies the task 

sequencing, while the factory manager specifies the resource assignments. 

By examining the assembly tree in Figure 1.3, the partial assembly tree in 

Figure 1.4, and their associated task-sequencing matrix Fv and resource assignment 

matrix Fr, one may directly write down the following rules for implementation of 

the assembly tree on an FSM.  Each rule corresponds to one row in Fv and Fr.
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IF (buffer B1 is available) THEN (input part a) 

IF (part a is input) AND (machine M1 is available) THEN (drill part a) 

IF (fixture F1 is available) THEN (input part c) 

IF (job b and job c have just been done) AND (robot R1 is available) THEN

(assemble to form d) 

IF (d has just been formed) AND (buffer B2 is available) THEN (move d to 

B2) 

IF (part e is available in buffer B2) AND (machine M1 is available) THEN

(drill the part) 

IF (part has been drilled by M1) THEN (send final product PO out) 

Note that this rule base implements the controller that generates products based 

on the given assembly tree. In each rule, the phrases to the left of the “THEN” are 

termed the rule antecedent (prerequisites), and those following the “THEN” are 

termed the consequent. The antecedent has two parts, one coming from the task- 

sequencing matrix Fv and one from the resource-assignment matrix Fr.

Rule-based systems are very useful for programming programmable logic 

controllers (PLC) to implement the controllers for FSM, as we shall see. However, 

it is difficult to see the structure of a rule-based system, which means it is difficult 

to ensure that the rules are not conflicting and that they yield a causal job 

sequencing. It is difficult to use expert systems for computer simulation of FMS 

since they are difficult to interface with any description of the jobs and resources in 

the workcell. If some jobs change or some resources change, it is not easy to 

modify the corresponding rules in a large rule-based system. Finally, it is almost 

impossible to perform mathematical analysis of FMS performance or blocking 

phenomena in terms of rule-based systems. 

1.4.2 Petri Nets 

Event-driven systems are growing in popularity and complexity, and can be used to 

describe systems in manufacturing, vehicle-traffic systems, communication 

systems, computers, and wireless-sensor networks. This is motivating the use of 

well-organized design methodologies to avoid failures and to optimize perfor-

mance. These systems usually have characteristics such as concurrence, conflicts, 

priorities, mutual exclusions, shared resources, and many others. These properties 

are difficult to handle, however, the analysis and design of these systems can be 

carried out using Petri nets (PN) [19, 20]. There are many varieties of Petri nets 

from binary PN, which are simple to analyze, to colored nets, which allow the 

modeling of more complex systems but have fewer analytic results. 

Petri nets and their relations with matrix-based modeling and analysis are 

described in detail in Chapter 6. Here we give just a brief introduction to the topic 

without formal definitions of terms. A Petri net (PN) is simply a bipartite (e.g., 

having two sorts of nodes) digraph (e.g. directed graph, which has arrows as arcs) 

described by (P, T, I, O), where P is a set of places and T is a set of transitions
(later in the book we show the very important property that in fact each PN 

transition corresponds to a rule). These are both nodes in the graph. There are two 

types of arcs, namely I and O, where I is a set of (input) arcs from places to transi- 
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Figure 1.5.  Flexible manufacturing system example 

tions, and O is a set of (output) arcs from transitions to places. In our application, 

the PN places represent manufacturing resources and jobs, and the transitions 

represent decisions or rules for resource assignment/release and starting jobs. 

An example of FMS is given in Figure 1.5. This shows one flowline for one 

part type, the required job sequence, and the required resources for each job.  

Robot R1 is a shared resource since it is responsible for performing two part moves 

- RU1 and RU2. Pallets have been added to carry the parts through the workcell; 

each pallet carries one part. Endings in A denote resource “available”, and endings 

in P or S denote jobs in progress with those resources (buffer storage (S) or job in 

process (P)). The associated PN is given in Figure 1.6.  In this figure, circles 

represent places, which correspond to jobs or resources, while vertical bars 

represent transitions, which fire under certain conditions. 

The places along the part path denote jobs, while the places off the part path 

denote resources available. Along the part path, places and transitions alternate. 

To denote the numbers of resources available and the numbers of jobs in 

process, one uses tokens, which are represented with black circle inside PN places, 

as shown in Figure 1.6. This PN shows that initially one has available 4 pallets 

(e.g. 4 parts can be in the workcell simultaneously), 2 machines M1, one robot R1, 

and so on. 

Petri net dynamics is represented by the so-called token game. When a 

transition fires, a particular number of tokens is removed from each input place, 

M1A BA

PI M1P RU1 BP M2P RU2 PO

PA R1A

M2A

x1 x2 x3 x4 x5 x6

M1A BA

PI M1P RU1 BP M2P RU2 PO

PA R1A

M2A

x1 x2 x3 x4 x5 x6

M1A BA

PI M1P RU1 BP M2P RU2 PO

PA R1A

M2A

x1 x2 x3 x4 x5 x6

Figure 1.6.  Petri net for the FMS example 
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and added to each output place. By keeping track of tokens one is able to simulate 

and analyze the behavior of the system described by the PN. The job sequencing, 

the resources needed to perform the jobs, the resource availability and utilization, 

jobs currently in progress and many other properties can be easily studied by 

following the tokens routes. Two already-mentioned phenomena, conflict and 

deadlock, which are particularly important in FMS supervisor design and most of 

the book is dedicated to their analysis, also can be allocated by tracking PN tokens. 

Using the FMS example, we can illustrate the meaning of conflict and 

deadlock. In Figure 1.7 we see a setup of the current situation in the FMS. There 

are two jobs waiting for the pick & place robot resource R1, namely the token in 

M1P shows that there is a job waiting for robot R1 to clear it from machine M1 in 

move RU1, while the token in M2P shows that there is a job waiting for R1 to 

remove it in move RU2.  Unfortunately, there is only one robot in the resource 

pool R1A, and it must select only one of these two jobs to perform, hence, R1A is 

in a conflict.   

Suppose R1 is dispatched to perform move RU1. Then, transition x2 fires and 

the situation now moves to that shown in Figure 1.8.  This is quite a bad situation. 

Clearly, there is no way that any transition can now fire in this figure. The problem 

is that each of the resources is waiting for another resource to become available. 

However, this will never happen. Therefore, all activity along the part path ceases 

and can never resume. Some thought can reveal that if the shared-resource robot 

R1 had elected to perform the downstream move RU2 instead of RU1, that would 

not have resulted in deadlock. This example illustrates the notions in Section 1.3, 

namely, dispatching using first-buffer-first-serve (FBFS) results in deadlock, but 

last-buffer-first-serve (LBFS) avoids deadlock. Pull policies generally are safer 

than push policies. 

This short depiction demonstrated that PNs are a powerful graphical tool for 

discrete event systems modeling. However, in order to be able to provide thorough 

analysis one needs an appropriate mathematical framework. Since the PN is a 

graph with two types of nodes, the arcs in the PN are described by two matrices, 

the PN input incidence matrix I and the output incidence matrix O.
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PI M1P RU1 BP M2P RU2 PO

PA R1A

M2A

x1 x2 x3 x4 x5 x6

M1A BA

PI M1P RU1 BP M2P RU2 PO

PA R1A

M2A

x1 x2 x3 x4 x5 x6
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PI M1P RU1 BP M2P RU2 PO

PA R1A

M2A

x1 x2 x3 x4 x5 x6

Figure 1.7.  Predeadlock situation in the FMS example  
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Figure 1.8.  Deadlock situation in the FMS example 

The PN input incidence matrix I has element (i,j) equal to 1 if place j is an 

input to transition i. The PN output incidence matrix O has element (i,j) equal to 1 

if place j is an output from transition i. The input incidence matrix for the assembly 

PN in Figure 1.9 is given by 
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0 0 0 0 0 0 0 0 1 0 0 0

0 1 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0

a b c d e f PA R A F A B A B A M A

x

x

x

x

x

x

x

=I

It is highly interesting to note that the first block of this matrix is simply Fv, the 

task-sequencing matrix, and the second block simply Fr, the resource-requirements 

matrix, from Section 1.2.2 (pallets PA have been added). This will be a central 

theme later in the book. Likewise, the output incidence matrix O can be written for 

this PN very easily. 

B1A R1A

PIa a b d e f PO

PA M1A

B2A

x1 x2 x4
x5 x6 x7

F1A

PIc c

x3

B1A R1A

PIa a b d e f PO

PA M1A

B2A

x1 x2 x4
x5 x6 x7

F1A

PIc c

x3

Figure 1.9.  PN for the subassembly tree example 
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In terms of the PN incidence matrices, one can describe the update of the 

tokens when transitions fire. In fact, if m(t1) is a vector whose components 

correspond with the number of tokens in PN places at a prescribed time t1, then the 

updated token placement is described by the vector m at the next time t2 as

2 1
( ) ( )

Tt t= +m m W

where W = O – I, and τ is a vector comprised of integers that correspond to the 

number of firings of transitions in PN in the time interval t2 – t1. We shall return to 

this equation and its relation with matrix-based formalism in Chapter 6. 

Unfortunately, this equation is not a complete description of a PN since it does 

not take into account the order of firing of the transitions, nor whether a given 

transition can actually fire at any point in time. That is, there is no way known in 

PN theory to compute the transition firing vector τ.

1.4.3 Graphs 

As we see in the previous section, graphs are quite important in manufacturing 

system analysis and control; not only in PN theory but also, as we shall present 

through the chapters that follow, in other modeling and design tools. They indeed 

provide some rigorous techniques for the analysis of discrete event control 

systems. A graph is a set of nodes and the arcs connecting them. A directed graph, 

or digraph, associates directions with the arcs so that they effectively become 

arrows. 

For example, a special graph can be constructed from a Petri Net by 

considering only the resource places.  Refer to Figure 1.6, and start at any resource. 

Proceed backwards along the arcs until you come to another resource, then 

backwards from that resource to the next resource, and so on until you have 

traversed all the arcs. Draw arrows through the resources traversed. The result is 

the digraph shown in Figure 1.10. 

This graph is known as the wait relation graph [8].  Note from the PN that 

resource R1 cannot become available until BA is available and performs job BP.  

That is, R1 waits for the buffer BA to become available before it can become 

available.

R1A
M1A

M2ABA

PA
R1A

M1A

M2ABA

PA

Figure 1.10.  Wait relation graph 
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In the wait relation graph depicted, there is a looming potential problem.  

Namely, there is a circular wait relation (R1A, BA, M2A), wherein each resource 

waits for another. Unless extreme care is taken in dispatching the jobs within this 

circular wait, one will arrive at deadlock, exactly as has occurred in Figure 1.8, 

where all the resources in the circular wait are busy and waiting for each other. 

Methods for avoiding deadlock, as well as dispatching to achieve performance 

specifications in FMS, thus hinge on understanding the structure of FMS, namely 

the circular wait relations and other important structural elements. 

1.5 A Matrix-based Discrete Event Controller 

A rule-based discrete event supervisory controller that is based on matrices is now 

briefly described. This matrix-based DE controller plays a central theme in this 

book, and it allows fast programming of FMS for assembly/job sequencing, 

resource dispatching, and blocking and performance analysis, and facilitates 

dispatching and routing design. The controller provides a framework for rigorous 

analysis of the structure and performance capabilities of an FMS. Furthermore, the 

controller also allows a very convenient method for computer simulation and 

implementation on actual FMS. 

1.5.1 Matrix-based Discrete Event Controller Equations 

The DE controller is based on a matrix formulation where each matrix has a well-

defined function for job sequencing, resource assignment, and resource release. 

The matrix-based model of a discrete event system is described by the set of 

equations. Since each equation is thoroughly described in separate sections later in 

the book, they are introduced herein with no further explanations: 

Logical state-vector equation 

v c r c u d d∆ ∇ ∆ ∇ ∆ ∇ ∆=x v r u uF F F F

Job-start equation 

s v∆=v xS

Resource-release equation 

s r∆=r xS

Product-output equation 

y∆=y xS

In these equations, Fv is exactly the job sequencing matrix, and Fr the resource- 

requirements matrix discussed above. Each of the other matrices also has a specific 

function and meaning, which is explained in the chapter that follows. 

The four equations given above are the central part of the matrix-based 

controller. They are not computed using standard matrix operations of 
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multiplication and addition. In fact, all the matrices and vectors are logical 
variables that have entries of either “0” or “1”, exactly as for the job sequencing 

and resource assignment matrices. Therefore, all matrix operations are defined to 

be in so-called and/or algebra (see section 3.2), denoted  and where standard 

addition is replaced with logical or and standard multiplication with logical and.
The overbar denotes logical negation.

Input u represents raw parts entering the cell and y completed tasks, or 

products, leaving the cell. The controller, implemented on a PLC or a computer, 

dynamically observes, in real time, the workcell status by looking at the status 
outputs of the DE system or workcell using installed sensors, represented by a job 

vector vc, and a resource vector rc. Hence, the matrix-based supervisor has a 

dynamic feedback control structure. On top of it, higher-level dispatching and/or 

routing decisions are needed to determine vector ud that selects which jobs to 

initiate. This dispatching input is selected in higher-level control loops using 

priority assignment techniques (e.g. [6]) in accordance with prescribed 

performance objectives such as minimum resource idle time, task priority 

orderings, task due dates, minimum time of task accomplishment, and so on as 

prescribed by the user. Then, the controller sends commands to the FMS workcell, 

namely, vector vs for jobs to be started, and vector rs for resources to be released. 

Since the matrix DE controller is a rule base, it can be directly used to program 
a programmable logic controller. This means that PLC can easily be programmed 

to control actual industrial processes directly and simply from the matrix DE 

controller. Two case studies related to the implementation of the matrix controller 

in FMS are presented in the book with references to other applications of matrix-

based approaches. 

The matrix-based DE controller unifies tools from different aspects of 

manufacturing, computer science, and discrete event systems.  It uses the BOM, 

task-sequencing matrix, and resource-requirements matrix. Moreover, it can be 

shown that the complete task plan (Fv, Sv, Fr, Sr) generates a Petri net.  In fact, as 

one might surmise from the discussion at the end of Section 1.4.2, Fv and Fr

generate the PN input incidence matrix, while Sv and Sr generate the PN output 

incidence matrix. As we shall show, this means that for any speciation of the 

matrices in equations one can draw a PN. 

1.6 Simulation of FMS Control Systems 

A comprehensive approach for analysis of computational complexity in FMS (and 

elsewhere) is the theory of NP- (nonpolynomial)-completeness [1]. Mathematical 

programming approaches to scheduling were mainly based on combinatorial 

optimization methods until the development of the theory of NP-completeness in 

the 1970s. Many traditional scheduling and sequencing problems have been found 

to be in the NP class, however there is no formal theory describing how to impose 

structured flow and command protocols on an FMS to simplify the complexity. 

Since analytical results are often difficult to obtain for DE systems, particularly 

for transient analysis, the performance of FMS, including scheduling and 

dispatching rules and other algorithms, has often been studied using simulation [14,
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15].  There are available many packages for simulation of manufacturing systems 

(WITNESS, SIMFACTORY, Gert [42], etc.), Petri nets (Design/CPN, Grafcet [43], 

TORA, etc.), and general DE systems (SIMAN, Simscript, Simula, Smalltalk-80, 

GPSS, Extend). In these packages various programming methods are used; object-

oriented techniques, knowledge-based approaches, Lotus 1-2-3, Prolog and many 

others. Various efficient simulation techniques may be based on perturbation 

analysis or system theory approaches. Many of these tools use brute force 

approaches that do not take advantage of the protocol structures of manufacturing 

flowlines, assembly lines, and job-shop systems. The large number of techniques 

available show the complications arising from simulation of DE systems. 

The use of virtual models has become a standard characteristic of modern 

program tools for virtual modeling and simulation of FMS (e.g. Grasp 2000, eM-

Plant [44], RobotStudio, Cimstation Robotics, Cosimir, etc.). Virtual models 

provide a very convenient and inexpensive way for the complete factory design, 

allowing a clear visualization of all potential problems in an FMS caused by a 

factory layout, job sequencing or resource requirements. 

Besides physical modeling that relies on the virtual models of all constituent 

FMS objects, an important task is functional testing that connects a physical setup 

with the organization of the simulated FMS. Functional testing comprises several 

tasks including a definition of a job sequence, setting of FMS parameters, local (at 

the robot workcell or robot station level), and global (at the whole FMS level) 

conflict and deadlock analysis, synthesis of control logic, investigation of different 

job-scheduling strategies, simulation and visualization of dynamic phenomena that 

occur during FMS operation. Although most of the above-mentioned program tools 

contain some types of DE simulation tools and DE controller design techniques, 

and automatically generate downloadable programs for particular FMS elements 

(e.g. robots) and accompanying programmable logic controllers, they do not allow 
for ease of computer simulation and do not support direct generation of code 
needed for FMS controller implementation on actual industrial systems.

A matrix-based approach to the FMS controller design can be easily integrated 

in the virtual-reality environment, and the result of simulation with a selected 

dispatching policy can be effectively visualized and analyzed by observing an 

animated performance of the FMS. In the book, we describe FlexMan [45], an 

Internet-based virtual-factory simulator with an integrated matrix-based FMS 

controller and automatic FMS controller code generator for an industrial PLC 

(Siemens PLC S 216). 
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2

Discrete Event Systems 

From the moment when a human being became aware of its existence, until the 

present, one question has dominated through a long history of ups and downs: how 

to predict the future? This question attained many forms; how to predict winds on 

high seas? How to predict the floods of Nile? How to find the probability that an 

electron would appear at a particular place in an atom? How to predict the way the 

Universe ends? Step by step we have found some methods and piece by piece the 

future revealed its secrets.  In the foundations of all of these techniques, whose 

purpose was to foresee future events, appeared a model. Based on the experience 

gained from observations, people build models and then, by setting these models 

into various conditions, they are able to predict future events. When these 

particular conditions, already tested on the model, occur in real life, we can know 

more or less accurately, what will be the outcome. 

Establishing an appropriate model for some general problem might be very 

demanding. To help ourselves, we separate particular entities from the 

surroundings. These isolated entities should have the property that they operate 

together in a way not possible by any one of them individually, i.e. they should 

form a system. Where the boundary line between the system and the surroundings 

is set depends on the problem we want to analyze. The boundary of the system 

defines inputs and outputs of the system – its connections to the environment and 

to the other systems. If an airplane’s attitude is a subject of our study, then we treat 

the whole plane as a system and investigate the influence that airplane parameters
(mass, wing span), variables (speed, elevation) and environment properties (air 

pressure, wind) have on the attitude. Although an airplane is a very complex 

system, built of many subsystems, we can intentionally ignore the influence of 

some observable facts (jet engine r.p.m.) in order to make the model feasible. On 

the other hand, if we focus our intention on the jet engine, which is a subsystem of 

the plane, then the boundary line is set in such a way that the plane becomes the 

environment and the jet engine becomes the system under investigation. 

Once the boundary line is drawn and the system is determined, its behavior can 

be described with a model. The above definition of the system, as a set of entities 

that form a whole and act together, is the broadest one and as such it requires 

various types of models. It is clear that a political system cannot be described with 
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the same type of model as an airplane. Whilst the latter belongs to the class of 

technical systems and can be modeled by mathematical equations, a model of the 

former is represented by a set of words, sentences and paragraphs. In the text that 

follows we are concerned with technical systems, i.e. systems that encompass 

physical devices built by a human. 

In the control-engineering literature technical systems are usually divided into 

two major groups: time-driven systems and event-driven systems. In this chapter we 

describe the basic concepts of these two groups. First, we give a brief description 

of the basic properties of time-driven systems. The well-known facts associated 

with these systems are given in order to be able to compare their activities with the 

behavior of the second group, event-driven systems, which are the major topic of 

the chapter. A reader acquainted with the time-driven systems may proceed 

directly to Section 2.2. 

The notions of an event, a system state, a clock and others are presented and 

described herein. A brief presentation of automata, as the modeling tool that is 

most frequently used in the analysis of the event-driven system, is given.  

2.1 Time-driven Systems 

In a mathematical description (a mathematical model) of a dynamic system, 

quantities that change with time are associated with variables, while quantities that 

describe system properties and generally remain constant are called parameters 
(systems with constant parameters are called time invariant; if parameters are 

changing with time we talk about a time-variant system). The role of time in 

system modeling is interesting and important. Due to its unique property – no 

matter where the boundary between the system and the environment is drawn and 

no matter how the variables of the system model are chosen, the time remains 

independent (we do not consider systems that include theory of relativity 

phenomenon) – each system variable can be represented as a function of time, i.e.

time is the argument of all functions that describe the system. In this way any 

change in time causes a change of the system variables. We say that the system is 

time driven and write a system model as 

[ ]( ) ( )Gt t=y u (2.1)

where u(t) is a system input vector, y(t) is a system output vector and G is an 

operator that describes how the system transforms (maps) the input vector into the 

output vector. It is common in the literature that relation (2.1) (the same holds for 

other forms of mathematical descriptions) is referred to as “a system” although it 

actually represents more or less accurately a “model of the system” (in very few 

situations the complete model of the system is known). 

When that operator G changes with time, a system model is written as 
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[ ]( ) ( ),Gt t t=y u (2.2)

For a system described with the model (2.1), input u(t), applied at the moment t
= t0, would have the same effect on the system as if it were applied at any other 

moment t = t0 + . This is not the case for a system described with Equation (2.2); 

as operator G changes with time, the output of that system depends not only on the 

form of the input vector u(t) but also on the moment in which the input is applied 

to the system. 

Further classification of time-driven systems is closely related to the principle 

of proportionality, i.e. an increase of the system input value by factor b will 

increase the system output value by factor b. Systems with this property are called 

linear systems. We say that operator G is linear if and only if 

[ ] [ ]( ) ( )G Gb u t b u t⋅ = ⋅ (2.3)

Although most technical systems do not behave in accordance with the 

principal of proportionality (they are nonlinear), linear models are usually used for 

their description since the mathematical tools for the analysis and design of linear 

models are much easier to understand and implement than these methods used in 

the nonlinear systems theory [1–3]. Furthermore, in most cases the linear models 

describe the real systems to the extent that is considered satisfactory from the 

practical point of view. 

So far we were concerned with the so-called input-output representation of the 

system. This representation can be expanded by the notion of system state. The 

output of a dynamic system depends not only on the current input value but also on 

the past values of the input, i.e. dynamic systems have a “memory”. The memory is 

in the form of conservation of energy and/or information. This means that some 

kind of internal properties that are not explicitly seen from the model (2.1) are 

present in the system. Thus, in order to obtain the model that would demonstrate 

the internal phenomenon of the system, the modeling process should take into 

account not only the system input and output vectors and their relationships, but 

the system states should be incorporated into the model also. In the systems theory 

this kind of model is usually represented in the form of set of differential equations 

[4]: 

[ ]
[ ]

0 0
( ) f ( ), ( ), , ( )

( ) g ( ), ( ),

t t t t t

t t t t

= =

=

x x u x x

y x u
(2.4)

where x(t) is the state vector containing system states and f and g are functions. 

Equations (2.4) are called state equations and they uniquely describe the system 

state at any time instant t t0.

As an example, let us consider the system shown in Figure 2.1. The system 

represents a DC motor drive with mechanical load. Differential equations that des- 
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L

Figure 2.1.  A DC motor drive with mechanical load 

cribe the electrical and mechanical dynamics of the system have a well-known 

form: 
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=

where K is a motor constant, τL is a load torque and τM is a motor torque. Which 

physical variable will be defined as an input and which one as an output depends 

on the purpose of the model. When one is investigating the influence of voltage 

v(t) on the motor torque τM(t), then the voltage should be considered as the system 

input and motor torque as the output. On the other hand, if one is concerned with 

the influence that the voltage has on the rotor position ϕ(t) then this physical 

variable should be treated as the system output. 

For the latter case the state equations obtain the following form: 

L

d ( ) 1
( ) ( ) ( )

d

d ( ) 1
( ) ( ) ( )

d

d ( )
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d
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y t t
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ϕ ω

ϕ

τ
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⋅ − ⋅ −

=

=

=

=
(2.5) 

where the system input u(t) = v(t).
The solutions of state Equations (2.4) are functions that describe evaluation in 

time of each system state. These functions are called the state trajectories. State 

trajectories for Equations (2.5) together with input u(t) are shown in Figure 2.2. We 

can see that the system state ϕ changed after the input (in the form of a short pulse) 

has been applied. Initial value ϕ(t0) = ϕ0 changed to ϕ(t→∞) = ϕf, while in the 

same time the system states i and ω  returned to their initial values after the 

transition period has finished. 
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Figure 2.2.  Trajectories of the state Equations (2.5) 

A very interesting presentation of the state trajectories can be attained if time as 

a variable is eliminated from functions that correspond with the state trajectories. A 

new function q(x)=0, obtained in this way, represents movement of the state vector 

x in the state space. The state space of a system is the set of all possible values that 

the system state vector may attain. For systems with up to 3 states, state-vector 

trajectories can be presented graphically as in Figure 2.3. Points on the state-vector 

trajectory correspond to the points on trajectories of system states. As time changes 

from t1 to t2 the system states are changing, thus causing the state vector to travel 

through the state space from point x(t1) to point x(t2), which is shown in Figures 

2.2 and 2.3. 

The state-vector trajectories are very important in system analysis and design. 

Many interesting system properties, such as stability, can be examined directly 

from the state-vector trajectories. This is particularly important in the case of 

nonlinear systems, since, as already mentioned, mathematical tools for this type of 

systems are complicated and demanding. 

As we said earlier, the main purpose of the model is its ability to more or less 

accurately predict the future states of the system once the current state and the 

system inputs are known. If we define the system states that have to be reached 

from the current state and when we are able to manage the system inputs, then we 

can define these inputs in a way that they guide the state vector directly to the 

desired state. We say that the system is controlled. The question is how to 

determine the system inputs? Usually there exist at least two control objectives; a) 

the system should be conducted to the desired state and b) this state should be 
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reached in a particular way, i.e. the state vector should follow a predefined 

trajectory.

Based on the objectives and the system model we can determine an input vector 

u(t) that would fulfill both requirements: 

[ ]( ) ( )t h t= ru u (2.6)

where ur(t) is a reference input and h is a control function that maps the desired 

system behavior, described by the reference input ur(t), to the system input u(t). 
One concept is especially important when the definition of the control function is 

concerned. This is the concept of controllability. In order to determine a control 

law and apply it to the system, the structure of the system input vector should be 

known in advance. As a first step in the controller design one must identify system 

states that can be influenced by the input vector components. Such states are called 

controllable states and outside signals can be supplied into the system only through 

these states.

A problem with the control law (2.6) lies in the fact that the control function 

does not take into account possible changes that may happen in the system during 

implementation of the control law. In our example with a DC motor drive, a 

change in the load torque, τL, would modify the second state equation in Equations 

(2.5), thus causing different state-vector trajectory and, as a consequence, the 

desired system state will not be reached. A solution to that problem is one of the 

fundamental principles in nature; the principle of feedback. In biological systems, 

as well as in social systems, most actions are based on feedback; if we get a fever 

our body starts to sweat in order to enhance heat exchange with the surroundings, 

an insecure political situation lowers prices on the stock markets, and so on. In 

many cases the feedback is an inherent property of the system (our body), while on 

the other hand it can be artificially added in order to enable the system to cope with 

various disturbances that influence its behavior. 

Figure 2.3.  The state-vector trajectory q(i,ω, ϕ)=0 of the state Equations (2.5) 
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In technical systems, the information regarding the current state of the system 

(feedback) is usually acquired by measurement of the system output (or the system 

states) and then fed back into the system by the control law, 

[ ]( ) ( ), ( )t h t t= ru u x (2.7)

The primary constraint that is related to determination of Equation (2.7) is 

associated with the notion of observability. Specifically, some parts of the system 

(system states) might be inaccessible for measurement. Such unobservable states 

cannot be used as feedback for the controller (2.7). 

Let us demonstrate the feedback principal on our DC motor drive example. A 

feedback, which will compensate the influence of load torque, is introduced by 

measuring the position ϕ(t). In that case the system input, v(t), may be calculated as 

[ ]r( ) ( ) ( )v t K t tϕ ϕ⋅ϕ= − (2.8)

where K  is the proportionality factor (or gain) and ϕr(t) is the reference position. 

The proportional control law (2.8) is the simplest form of control function h.

Inclusion of Equation (2.8) in the first equation of Equations (2.5) gives 

[ ]d ( ) 1
( ) ( ) ( ) ( )rd

i t
R i t K t K t t

t L
ω ϕ ϕ− ⋅ − ⋅ + ⋅ −ϕ=

It can be seen that, as long as there is a difference between the reference and 

current positions, the motor current i(t) will change. As a result, the state vector 

moves around the state space until the final (reference) state is reached. Although 

the applied control law leads the system to the desired state despite the changes in 

load torque, it can not accomplish the second control objective – the way in which 

the system gets into the desired state (the state-vector trajectory) is changed 

(certainly, a more complex control law could handle both objectives, but that 

analysis is beyond the scope of this book). 

Now we introduce the other form of time-driven systems. As a start we can 

consider our everyday experience – parking a car (Figure 2.4). 

Figure 2.4.  A parallel parking example 
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It is well known that parallel parking is a challenging task (not only for new 

drivers). Two actions have to be taken simultaneously and very carefully - steering 

the wheel and balancing the clutch and the break. These actions are generally based 

on the feedback that is in the form of two variables - a distance from the front car, 

df, and a distance from the rear car, dr. Since we have only one distance 

measurement sensor (eyes) that has to deal with two variables, we have to 

concentrate our attention into two directions. This can be done only if we are 

toggling our view from one feedback variable (front car distance) to the other (the 

rear car distance) during the parking. Instead of getting the whole information 

regarding distances df and dr (Figure 2.5), only a sequence of partial data, taken in 

discrete-time intervals as shown in Figure 2.6, is processed during the parking (it 

should be noted that as we are getting closer to the front and rear cars we have to 

acquire data more often). This partial information, collection of samples of 

continuous variables, is sufficient for more or less successful completion of the 

car-parking maneuver. 

The question is how to fit sampled variables into the system model (2.4)? First, 

to make things easier from the mathematical point of view, instead of 

stochastically samples would be taken in equal time intervals, t1, t2, t3, …, tk, …,   

with Td = tk – tk-1. As a second modification, the sampled value taken in tk would be 

“frozen” during the sample interval tk + Td. Given these modifications, continuous 

variables shown in Figure 2.5, attain the form presented in Figure 2.7. 

Figure 2.5.  The continuous-time variables representing distances from the front and rear 

cars 

Figure 2.6.  Samples taken by the driver 
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Now, we can rewrite the continuous-time model (2.4) in the discrete-time form: 

1 0 0
( ) ( ), ( ), , ( )

( ) ( ), ( ),

k k k k

k k k k

t t t t t

t t t t

+ = Φ =

= Γ

x x u x x

y x u
(2.9)

As tk = k⋅Td, k = 0, 1, 2, …, sometimes Equation (2.9) is written as [5]: 

[ ]
[ ]

0
( 1) ( ), ( ), , (0)

( ) ( ), ( ),

k k k k

k k k k

+ = Φ =

= Γ

x x u x x

y x u

The evaluation of system states and system output in a discrete-time model is 

obtained recursively by the difference equations (2.9) [6]. Since the value of 

variable k increases as time evolves, the system-state changes are synchronized 

with time, hence the discrete-time systems are time driven. When Φ and Γ are 

linear functions, the discrete-time model becomes the system of nonhomogeneous 

linear equations. 

Although in the parking example the nature of the system (one sensor that 

should monitor two feedback states) was the reason for the sampling of continuous 

variables, usually the implementation of the control law is why the system has to 

be represented in the discrete-time form. Nowadays, advances in computer 

technology provide low-cost solutions for very sophisticated and computationally 

demanding control algorithms. As the execution of the control laws in the form of 

a computer program is performed in discrete-time intervals, discrete-time models 

are needed for appropriate design and investigation of control algorithms. In every 

sampling interval continuous system variables are sampled and converted by 

analog-to-digital (A/D) conversion into the numerical values in order to be 

processed by the computer. Upon execution of the control law, results, in 

numerical form, are returned into the system by digital-to-analog (D/A) 

conversion. During the execution cycle (which takes some time), the computer is 

Figure 2.7.  Discrete-time form of continuous-time variables 
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 “not aware” of the system development; only at particular moments in time are the 

system conditions sampled and conveyed into the computer. 

Even though this issue is not a subject of the book, it should be mentioned that 

data exchange between the system and the digital computer requires not only 

sampling in time but also sampling of state space, as the numerical resolution of 

the computer is finite. Actually, this requirement is related to the limited resolution 

of A/D and D/A converters (usually 10 to 16 bits). For example, the continuous 

system variable that takes values from the set of real numbers, when processed by 

a 12-bit A/D converter, is mapped into 4096 integers. Usually, the range of the 

converters is considered sufficient so that discretization of the state space is 

ignored in the process of discrete-time modeling.  

So far we were concerned with the models of systems that change their states in 

synchronization with time. As an introduction to the concept of an event and an 

event-driven state we start with an example of the system that belongs to the class 

of so-called hybrid systems - a broad class of technical systems that integrate both 

time-driven and event-driven states [7]. Hence, some of the hybrid system states 

change in synchronization with time, while the change of others is caused by 

events that occur asynchronously (here we do not elaborate what an event is; it is a 

primitive concept intuitively understandable). Although very complex and difficult 

to analyze, during the last decade hybrid systems have become an important topic 

for researchers and engineers, which is expected, since most of the industrial 

control and automation solutions fit into this class of systems. However, the hybrid 

system design is still done mostly by a heuristic approach as current theory is 

complicated and requires time-consuming methods [8, 9]. 

The concept of an event-driven state becomes apparent if we bear in mind that 

in many cases (especially in practical control implementations) the status of an 

actuator or a sensor is described with only two categories, i.e. valve opened-valve 

closed, motor is running-motor is idle, sensor is active-sensor is idle, etc. If the 

status of a motor is considered as a state, then the event “switch on the motor” 

changes the system state. Furthermore, in order to make a control algorithm 

synthesis simple, continuous states of hybrid systems are partitioned in regions that 

are treated separately during the system design. Then, the goal of the hybrid system 

controller synthesis is to find an algorithm intended to fulfill the desired 

requirements for a particular region. The switching between regions and controllers 

and the binary nature of actuators and sensors make some of the system states 

event driven. 

Example 2.1.1 (event-driven states in hybrid system) 

The system under consideration is the longitudinal tunnel ventilation. Vehicles 

passing through a tunnel produce various types of poisonous gases as well as soot, 

especially in the case of heavy vehicles with diesel engines. High standards for air 

quality and the need for good visibility require an advanced ventilation system for 

management and control of pollution. Two objectives, opposite in nature, have to 

be fulfilled simultaneously by the ventilation system: a) the system should keep 

visibility (opacity) at a required level and make certain that pollutants (mainly 
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carbon monoxide - CO) remain within admissible margins and b) energy (costs) 

used for objective a) should be minimal. 

Here we are not concerned with the design of control algorithms that use 

continuous system states and meet both objectives concurrently (that might be a 

very complex and demanding issue). Our aim is to design a controller based on 

event-driven system states. The controller should utilize the carbon monoxide 

concentration as a feedback signal and the number of vehicles per hour per 

kilometer as a feedforward signal (variations of this type of controller are used in 

many practical implementations of the tunnel ventilation). As a first step in 

achieving our goal both continuous time signals are divided into three regions – 

low (L), moderate (M) and high (H) (three regions are chosen for simplicity – 

typical tunnel ventilation controllers use more than 7). Transitions over predefined 

threshold values between two neighboring regions are considered as events. These 

events will be the driving force of the system model. We assume that low traffic 

produces a low level of CO, a moderate number of vehicles a moderate level of 

CO, and a high number of vehicles a high level of CO.  

In the tunnel ventilation systems jet fans are usually used as actuators. It is 

presumed that actuators can be described as active (1) and idle (0). The system is 

designed in the way that active jet fans reduce carbon monoxide concentration so 

that it moves down into the neighboring region. The actuator’s state is changed by 

two actions, switching on (ON) and switching off (OFF). These actions, treated as 

events, can be triggered by an operator or by the controller. 

At this point it is important to note that some events, such as jet-fan breakdown 

or sensor failure for example, are uncontrollable. Since this type of event cannot be 

influenced by the supervisor, modeling and design of the systems regularly starts 

by neglecting potential effects that uncontrollable events might have on the system 

performance. Then, as the second step in the system synthesis, the states forced by 

uncontrollable events are analyzed and additional features (fault tolerance) are 

incorporated into the supervisor. In our example, we disregard jet-fan failure and 

concentrate only on events that are necessary for the description of the event-

driven state concept.  

 Having defined the system in that way, we can express the set of events as  

{ }inc dec inc decV ,V ,CO ON,OFF,CO ,E =

where Vinc and Vdec are events related to transitions of thresholds defined for the 

number of vehicles and COinc and COdec are events related to transitions of 

thresholds defined for the carbon monoxide. 

Given that the supervisor has two discrete inputs, a number of vehicles, Nv, and 

a carbon monoxide concentration, CO, and one output, actuators status, A, the 

system state x can be represented with triples (Nv, CO, A). For given values, there 

exist 18 discrete states (for example, state (M, L, 1) stands for “moderate number 

of vehicles”, “low CO concentration” and “actuators running”). It is evident that 

due to the system nature some states are unreachable. Such a state, for example, is 

(L, H, 1), i.e. low number of vehicles cannot produce a high level of CO with jet 

fans running (actually, such situation can happen in the case of fire in the tunnel, 
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but our model does not consider this catastrophic incident). In a vector form the 

system state is represented with the system state vector x = [Nv  CO  A]T.

The occurrence of an event from E changes the system state, thus causing a 

movement of the system state vector in the system state space X, as shown in 

Figure 2.8. Upon event OFF, the system that resided in x1 = [M L 1]T goes to the 

new state x2 = [M L 0]T. Since jet fans have been turned off, the concentration of 

CO increases, i.e. COinc occurs, and the system state vector becomes x3 = [M M 

0]T. Then, a new event Vinc forces the system into x4 = [H M 0]T. As the number of 

vehicles increases the level of carbon monoxide starts to rise, thus causing 

occurrence of event COinc, which forces the system into state x5 = [H H 0]T. High 

concentration of CO can be reduced by switching on the jet fans (event “ON”), that 

leads the system into state x
6 = [H H 1]T. When the jet fans start to dilute CO,  

COdec takes place and the system state vector attains its final value x7 = [H M 1]T.

Continuous system variables with corresponding events, are shown in Figure 2.9. 

For a given event-driven model of the system one is able to determine the 

event-driven controller. Depending on the control goal and the system 

characteristics the discrete state space can be partitioned into several regions. For 

example, one of the regions has already been mentioned, i.e. a region of 

unreachable states. From the control point of view particularly interesting is a 

forbidden region, i.e. the region that localizes the states that must be avoided. Once 

defined, these states are a basis for the system-controller design. For example, if in 

the tunnel ventilation system all states with a high level of CO are not allowed 

(states of the form x = [⋅ H ⋅]T), then the supervisory control actions might be 

defined as follows: switch on jet fans each time system arrives at states x = [H ⋅ 0]T

and switch off jet fans when the system leaves states x = [H ⋅ 1]T. Continuous 

system variables of a so-controlled system, together with corresponding events, are 

shown in Figure 2.10. 

Figure 2.8.  Movement of the system state vector in discrete state space 
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Figure 2.9.  Continuous system variables with corresponding events 

Figure 2.10.  Continuous variables of the controlled system (with corresponding events) 

It can be seen that event Vinc drives the system into state x = [H M 0]T. As a 

reaction, the supervisor triggers the event ON and the system reaches state x = [H 

M 1]T. Without control the system will settle into x = [H H 0]T (see Figure 2.9). As 

the number of vehicles decreases, event Vdec causes a change of the system state to 

x = [M M 1]T. Hence, the supervisor generates the event OFF forcing the system 

into state x = [M M 0]T.

♦
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2.2 Event-driven Systems 

In the previous example event-driven states were created from time-driven states, 

and then used for the supervisor design. A simple control objective was 

accomplished by triggering events that kept the system out of the undesired states. 

Now we move further and introduce the systems that encompass only event-driven 

phenomena, i.e. event-driven states are an inherent property of the systems. 

Let us now consider a game in which two persons are placed at the table. There 

is a panel between them so that they are not able to see each other, although, there 

is an open space below the panel. Person A has in his/her hands a set of 10 cards, 

each card marked with different letter: a, b, c, d, f, g, h, m, n, p. Person B has a 

pen, a paper and a watch. The watch has an alarm that is set to be active every 10 

seconds. The game is as follows. Person B has closed eyes and on the alarm signal 

he/she should open eyes and write down the letter displayed on the card placed on 

the table. If there is no card on the table, a letter x should be written on the paper. 

Once the letter is marked, person B closes his/her eyes and waits for the next 

alarm. Person A has headphones and can not hear the alarm. He/she randomly, in 

various time instants, picks the card, writes down the displayed letter and leaves 

the card on the table below the panel for a few moments for it to be visible to the 

other person. Then the card is put aside. A possible outcome of the game is shown 

in Table 2.1. The table contains the letters written by the players.  

Table 2.1. A possible outcome of the card game 

Player A a h d f n b c g m p 

Player B x x f x c x x 

From Table 2.1 it can be seen that person B “caught” only 2 cards out of 10 that 

have been placed on the table by person A; 80% of the information has been lost. 

After the third alarm person B saw a card on the table for the first time. From 

his/her perspective person A still had 9 cards in hand while actually only 6 cards 

remained. Obviously, actions performed by person A can not be accurately 

measured by the technique used by person B. One can argue that much better 

results could be achieved if the alarm was set to 1 second, but this is not the point, 

that is, the observation method has been synchronized by the watch alarms, while 

the process of placing the cards on the table was random and asynchronous. From 

the person A’s point of view the system state (cards remaining in hand) changed 10 

times, while from person B’s perspective the system state changed only 2 times. 

Clearly, this system can not be described with a model in which the system state 

evolves in synchronization with time, since the evolution of the system state is 

caused by asynchronous events (placement the cards on the table). 

The second aspect that has to be taken into account, when one considers 

modeling the systems like the one described above, is the system state space. In our 

example the set of cards remaining in hand was regarded as the system state. Since 

the status of a particular card may take only two values, “in hand” or “put aside”, it 

is apparent that the system state can attain only discrete values, thus the state space 
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is discrete, in contrast to time-driven systems where the state space is continuous 

(compare Figures 2.3 and 2.8). 

Asynchronous events that cause the change of system state vector in discrete 

state space characterize event-driven systems, also called discrete event systems
(DES) [10, 11]. 

Let us define a set E as the set that comprises all events ei that can occur in the 

system. In the card game example we have 

{ }, , , , , , , , ,E a b c d f g h m n p=

i.e. event b corresponds with placing the card marked with the letter b on the table, 

event c corresponds with placing the card marked with the letter c on the table, and 

so on. 

In our example, each time an event takes place the system state changes (it 

should be noted that in some discrete event systems there exist events that do not 

change the system state). In most systems a simultaneous occurrence of two (or 

more) events is not allowed (this can be enforced by the system design or it can be 

its inherent property), thus events arise in some order or sequence. From Table 2.1 

we see that the sequence of events in the game was s = (a, h, d, f, n, b, c, g, m, p)

(in Example 2.1.1, Figure 2.9, the sequence was (OFF, COinc, Vinc, COinc, ON, 

COdec)). If we associate vector x with the system state in the way that each 

component of the vector corresponds to the card in hand, 1 if the card is in hand, 0 

if the card is put aside, then, at the beginning of the game, we shall have 

[ ]
0

1 1 1 1 1 1 1 1 1 1
T=x

where the first component of the vector stands for the card marked with the letter a, 

the second component for the card marked with b, and so on. 

Given the system state vector x, and the system initial condition x0, we can 

express the state of the system after a sequence of events s1 = (b, d, f, p) as 

[ ]
[ ]
[ ]
[ ]

T1

T2

T3

T4

1 0 1 1 1 1 1 1 1 1

1 0 1 0 1 1 1 1 1 1

1 0 1 0 0 1 1 1 1 1

1 0 1 0 0 1 1 1 1 0

=

=

=

=

x

x

x

x

It should be noted that sequence s1 holds only partial information regarding the 

system state change; we know the ordering of events that forced the system from x0

to x
4, but we are not able to tell the time instances in which the events actually took 

place. Adding the time in the sequence gives s1 =((b,tb), (d,td), (f,tf), (p, tp)), where 

tb represents the time instance of the occurrence of event b, td represents the time 

instance of the occurrence of event d, and so forth. Having the timed sequence
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defined in this way we can calculate how much time the system spends in a 

particular state. This kind of information is essential in investigation of system 

properties that are related to utilization and throughput of the system, due time of 

events, system transient time, etc. An untimed sequence describes only the logical 

(we might say IF-THEN) behavior of the system. 

2.2.1 Automaton 

So far we have introduced the basic concept of event-driven systems in an informal 

way. The tunnel ventilation and the card game examples encompassed a set of 

events that forced changes of the system states, thus forming a set of sequences. 

The problem with informal representation is that it is usually difficult to determine 

all possible sequences that could be generated by the system without some kind the 

of the system model. One of the most popular modeling tools for DES 

representation is automaton [12–14]. In the following text we give a concise 

description of the basic notations in automata theory. 

Definition 2.2.1 (automaton): An automaton, denoted by A, is defined as a five-

tuple

{ }
m0

, , , ,A E X f x X=

where E is the set of events, X is the set of states, :f X E X× → is the transition
function, x0 is the initial state and Xm is the set of marked states.

In many cases (particularly when one deals with practical implementation of 

DES) sets E and X have a finite number of elements. The transition function f
describes mapping between these two sets in the following way: if there exists an 

event e that generates transition from state x to state y, then f(x,e) = y. If upon the 

occurrence of event e the system state x does not change we write f(x,e) = x. When 

f(x,a) = y and f(y,b) = z we have 

( , ) ( ( , ), ) ( , )f y b f f x a b f x ab z= = = (2.10)

i.e. the definition of the transition function is generally extended to the set of 
sequences, denoted E*. An additional property of the transition function should 

also be mentioned. Given that the set of events that cause transitions from state x is 

usually a subset of E, ( )x EΓ ⊂ , it is apparent that the automaton transient function 

f exists only on the part of its domain (usually in the literature (x) is it called the 

active event function and it is a part of the automaton definition). Hence, f(x,e)

should not be defined for each event e at each state x.

The set of marked states, Xm, is a subset of X. In general, by using marked 

states one is able to point out that some states have a special meaning. For 

example, a marked state could be connected with the notion of an ending or a final 
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state; the state in which the system resides most of the time (from that point of 

view a marked state can be related to the steady state in time-driven systems). 

It should be noted that Definition 2.2.1 covers only the so-called deterministic
automata, i.e. automata in which the occurrence of one particular event (or a 

sequence of events) forces the system into a strictly defined state. On the contrary, 

in nondeterministic automata one event may cause transitions from one state to 

several states, i.e. the value of the transient function is expressed as a subset of X,

f(x,e) = {y, z, w}.

Having Definition 2.2.1 we can determine an automaton that models the status 

of jet fans in the tunnel ventilation system from Example 2.1.1, as 

{ }
F0 FmF F F F, , , ,A E X f x X=

where 

{ } { } { }F F Fm

F F F F F0

ON,OFF 0,1 1, ,

(0, ON) 1, (0, OFF) 0 , (1, OFF) 0 , (1, ON) 1, 0

E X X

f f f f x

= = =

= = = = =

Observation of automaton AF exemplifies Definition 2.2.1. Foremost, we see 

that the transient function fF is defined on the whole domain since each event from 

EF is related with each state from XF. Secondly, the state x = 1 is marked. Its 

particular importance lies in the fact that it asserts the situation when the jet fans 

exploit energy, thus, the energy-usage calculation is active as long as the system 

stays in this state. 

For simple automata, as the one describing jet fans, with just a few states and 

several events, a written form of presentation is suitable. On the other hand, for 

complex discrete event systems the more convenient way of automaton 

representation is in graphical form or in the form of a so-called state transition 
diagram, shown in Figure 2.11. 

0 1
ON

OFF

ONOFF

Figure 2.11.  State transition diagram of automaton AF

In mathematical formalism, structures such as a state transition diagram in 

Figure 2.11, are known as directed graphs. The basics of graph theory are covered 

in later chapters of the book so at this point we shall skip definitions and properties 

of graphs. For our purpose it is sufficient to note that in the state transition diagram 

labeled circles represent states and labeled arcs represent events. The initial state is 

shown as a circle marked with an arrow while a marked state is represented by a 
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double circle. In the literature the state transition diagram is usually referred to as 

an automaton. We will use the same principle in this book.   

The following example demonstrates robotized workcell modeling by using an 

automaton. 

Example 2.2.1 (state transition diagram of a robotized workcell) 

We examine the robotized workcell shown in Figure 2.12. Our goal is to design an 

automaton that models this cell. The machines and the robot are considered failure 

free, i.e. our model does not include breakdowns, malfunctions and other 

uncontrollable incidents. We assume that both parts have a stochastic arrival time.  

robot

machine A

part b
machine B

part a

Figure 2.12.  Workcell from Example 2.2.1 

The cell consists of two machines and one robot. Two types of parts, a and b,

are processed in the following way. Both parts are brought into the cell by input 

conveyers. Entering the cell, part a is picked up by the robot and transported to the 

machine A. When processing is finished the robot removes the part from the 

machine and leaves it on the output conveyer. Upon arrival, part b is processed in 

the machine B and then taken by the robot to its output conveyer. 

From the workcell description we are able to determine the states and events 

that are important from the modeling point of view. While the status of machine A 

(the same is valid for machine B) can be “idle” - I or “work in progress” – W, the 

situation with the robot is different since it executes three tasks. Hence, its status 

can be described as “available” – A, “moving part a in machine A” – M, 

“removing part a from machine A” – 1 and “removing part b from machine B” – 2. 

For the given specifications the automaton state can be described with three 

characters, where the first character is related to the robot status, the second 

character stands for machine A status and the third character for machine B status. 

Following this notation, the overall cell status “placing part a in machine A” while 

“machine A is idle” and “machine B is working” is written as a state MIW. 
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Events of interest are those associated with the transitions of the above-defined 

automaton states. Their notations and descriptions are given in Table 2.2. 

Table 2.2. Events in workcell from Example 2.2.1 

Event Description 

arrival of part a

arrival of part b in machine B (processing started) 

m processing of part a in machine A started 

f replacement of part b from machine B started 

replacement of part b from machine B completed r

replacement of part a from machine A completed 

c replacement of part a from machine A started 

Having defined states and events we can start with the determination of the 

automaton. In a complex DES, automatons for each component of the system are 

built first and then their integration gives a model of the entire system. Here we are 

using an informal approach – two part paths are modeled separately and then put 

together. First we model only part a path. It is assumed that at the beginning the 

machines are idle and the robot is available, thus the initial state is AII. Now we 

should check how events, defined in Table 2.2, influence the given initial state. 

Upon arrival of part a, event  triggers the transition from state AII into state MII, 

that is, robot carries the part into machine A while the machines remain idle. Other 

events, except , are not related with the initial state (how event  is related with 

state AII will be discussed later), i.e. processing of part a in machine A cannot start

(event m) since the part is not placed in the machine, replacement of part a from 

machine A cannot start (event c) as the part has not been processed yet, and finally, 

the robot cannot complete replacement (event r) since this task has not started 

(event f is not considered since it is attached to the part b path). Clearly, the only 

accessible state from AII, on the part a path, is MII. 

Following the same reasoning we can build an automaton state by state. When 

the part is placed into the machine A, event m generates the transition to the next 

state, AWI, i.e. the robot becomes available, and machine A is processing the part 

while machine B is still idle. The operational sequence is finished when part 

processing in machine A is completed (event c, state 1II) and the robot removed 

the part from the cell that corresponds to event r that releases the robot and returns 

the automaton in its initial state AII. The model of part a path is shown in Figure 

2.13. 
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Figure 2.13.  An automaton of part a path in the workcell from Example 2.2.1 

It should be noted that the occurrence of  does not influence states MII and 1II 

since in both cases the robot is already occupied (the way event  affects state AWI 

will be discussed at the end of the example). 

 The automaton that models part b path is depicted in Figure 2.14. The initial 

state of this automaton is the same as for the automaton describing part a path. 

Arrival of part b triggers processing in machine B, event forces the system in 

AIW. Then, the part is removed from the machine (event f, state 2II) and the robot 

is released (event r), which leads the system into the initial state. When that new 

part b arrives while the previous part is still being carried by the robot, state 2II 

changes into 2IW. Then, the robot is released and the system returns to state AIW. 

As for the automaton shown in Figure 2.13, some events have no influence on 

particular states. 

Figure 2.14.  An automaton of part b path in the workcell from Example 2.2.1 

It is evident that the automata in Figures 2.13 and 2.14 do not provide a full 

description of the workcell. First, some states that are particularly important are 

missing, and second, events that connect two automata should be added in order to 

obtain the correct model. By using the same reasoning that has been used for 

already-determined automata, we can construct the third automaton shown in 

Figure 2.15.    
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MIW AWW 1IW

MWW

2WI2WW

MWI

Figure 2.15.  Partial automaton of the workcell from Example 2.2.1 

Finally, a complete model of the workcell, depicted in Figure 2.16, is obtained 

by “merging” three automata. Since these automata were determined by an 

informal approach here we purposely omit formal notions of parallel composition 
and the product of two automata, and use the term merge instead. However, in 

order to verify the final result, the automata of the robot and machines are 

presented later on, together with a definition of parallel composition. For 

convenience, a complete model, depicted in Figure 2.16, does not encompass arcs 

corresponding to events that have no affect on the automaton states. 

A survey of the automaton model reveals some interesting properties of the 

workcell. It can be seen that there exists a state (MWW) with no events that lead 

the system out of it. This state corresponds to a situation when both machines are 

processing parts while the robot carries part a. In order to place the part in machine 

A, the robot should remove the part that has been processed, but this task cannot be 

done since the robot already holds a part. At the same time machine B is not able to 

receive new parts since replacement of the part that has been processed requires the 

robot, which is occupied with an another task. Hence, once the workcell gets in 

MWW it remains in that state indefinitely; no further events are possible. This 

means that the automaton blocks without termination of the planned task. This 

situation is known as a deadlock [15] (it should be noted that there exists another 

form of blocking, called a livelock). Deadlock prevention, which is the key concern 

in the discrete event systems supervisory design, will be discussed and analyzed 

throughout the book. 
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Figure 2.16.  Complete automaton of the workcell from Example 2.2.1 

In our case, the deadlock situation is in close relation with states AWI and 

AWW. That is, when the system comes into one of these two states the event  has 

to be forbidden otherwise the system will be blocked. In the next section we will 

discuss how we can keep the system described by an automaton out of illegal 

states.

Before we conclude the example it is worth saying a few words about marked 

states in the automaton in Figure 2.16. The main task of the workcell is a cyclic 

repetition of parts processing, hence, no state can be treated as final. However, four 

states, 2II, 2WI, 2IW, 2WW, 1IW and 1II have been marked. These states are 

chosen because each time the system gets into one of them, part a or part b
eventually leaves the system (recall that robot statuses “1” and “2” stand for tasks 

related to removal of parts from the machines). 

♦

As mentioned in the previous example, a formal description of a joint behavior 

of a set of automata can be obtained by two operations, a product and a parallel 

composition. The latter, defined hereafter, is more interesting for our purpose. 

Definition 2.2.2 (parallel composition of automata): Given automata A1 and A2,

their parallel composition is defined as 

( )1 2 1 2 1 2 1 2 01 02 m1 m2|| , , (( ), ), ,A A Ac X X E E f x x e x x X X= × ∪ × , (2.11)

where Ac is the so-called accessible operation, i.e. an operation that deletes all 

states that are not accessible from the initial state.  
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A set of states attained by the parallel composition contains all combinations 

made by states in A1 and A2 (the same holds for marked states). This points to the 

main drawback of automata – each state is represented explicitly. By combining 

components of real-world systems the number of states can easily explode. 

A new set of events, obtained by the parallel composition, is calculated as a 

union of events in A1 and A2. A transient function of the joint automaton is defined 

as follows: 

1 1 2 2 1 1 2 2

1 2 1 1 2 1 1 2

1 2 2 2 2 1

( , ) ( , ) if ( ) ( )

(( ), ) ( , ) if ( ) \

( , ) if ( ) \

( )

( )

( )

f x e f x e e x x

f x x e f x e x e x E

x f x e e x E

=

∈Γ ∩Γ

∈Γ

∈Γ

.

In other words, an event e that belongs to both automata can be executed only 

when the joint automaton arrives in the state that is formed by states that initiate 

event e in the original automata. Other events can be executed with no restriction. 

Automata representations of the robotized workcell components from Example 

2.2.1 are shown in Figure 2.17. As may be seen, in accordance with the discussion 

from the beginning of the example, each machine has two states, I and W, while 

the automaton representing the robot has four states, A, M, 1 and 2. A set of events 

in the automata corresponds to those defined in Table 2.2. We demonstrate a 

parallel composition of automata representing machine A, denoted AA, and the 

robot, denoted AR.

According to the definition a new automaton will have 8 states (4x2): AI, MI, 

1I, 2I, AW, MW, 1W and 2W. A set of common events is determined as EA  ER = 

{c, m}. The new states and corresponding events are shown in Figure 2.18.  

I W

A M

I W

a)

b)

1

2 c)

Figure 2.17.  Automata representation of the workcell components from Example 2.2.1; (a)

machine A, (b) machine B, and (c) robot 
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AI 2I

1I AI

MI

MI AW

2I AI

AW 2W

1W AW

MW

MW

2W AW

1I

Figure 2.18.  States and transitions attained by the parallel composition of the automata (a) 

and (c) in Figure 2.17 

Let us take a closer look at Figure 2.18. A new state AI is formed from the 

robot state “available” – A and machine state “idle” – I. Both states represent 

initial states in the original automata, thus, state AI represents the initial state of the 

joint automaton. From Figure 2.17 we see that (A) = {c, f, } and (I) = {m}.

Since common events c and m do not belong to both (I) and (A), their execution 

is forbidden. The remaining events, f and , are allowed; the occurrence of f
enforces a new state 2I, while event  leads the system into state MI, as shown in 

the figure. State 1I is composed of states 1 and I, with (1) = {r} and (I) = {m}.

As for the previous state, event m is not allowed, while event r causes a transition 

to state AI. State 1I is marked because states 1 and I are marked. The next state, 

MI, illustrates the situation when both automata involved in parallel composition, 

perform a common event. As (M) = {m} and (I) = {m}, the condition for 

execution is satisfied and state MI changes to AW. Further analysis gives the 

remaining transitions as shown in Figure 2.18. State MW cannot trigger any event 

since (M) = {m} and (W) = {c}.

Given new states and corresponding transitions we are able to form an 

automaton obtained by the parallel composition, represented in Figure 2.19. 

Similarity with the automaton that models part a path (Figure 2.13) is evident. 

The parallel composition of the automaton describing machine B (Figure 2.17 

(b)) and the automaton that models joint behavior of the robot and machine A will 

give a complete model of the workcell. We leave this step to the reader.   
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Figure 2.19.  Automaton as result of the parallel composition of the automata (a) and (c) in 

Figure 2.17 

2.2.2 Languages and Supervisory Control of DES 

When we introduced the notion of feedback control in time-driven systems we 

mentioned that usually there exist at least two control objectives; a) the system 

should be conducted to the desired state and b) this state should be reached in a 

particular way, i.e. the state vector should follow a predefined trajectory. These 

two objectives are applicable to event-driven systems too. Generally, the goal of 

supervisory control of DES is to force the system i) to avoid undesirable states and 

ii) to maintain selected specifications (control policy). 

The prospective design of such a supervisor requires two issues to be resolved. 

First, we have to identify illegal states. This might be difficult, especially if the 

system is large and has hundreds of states. In the workcell example deadlock states 

were caused by a structural property of the system and they were recognized when 

the automaton model of the system was built. On the other hand, in the tunnel 

ventilation example the forbidden states were imposed by the designer. One way or 

the other, undesirable states need a formal description in order to be incorporated 

in the supervisor design and avoided by the controlled system. The second issue, 

associated with the supervisor design, is specification of system activities once the 

problem of forbidden states is solved. The question is how to arrange the system 

states in order to execute the specified tasks? In the workcell example the robot 

provided services for two machines by handling parts processed by the machines. 

One possible scenario for the robot is to remove three parts from machine B, then 

put one part in machine A and then again remove three parts from machine B 

before it returns to machine A and takes out the part. This job sequence is repeated. 

Integration of such (cyclic) behavior into the supervisor design needs to be done 

formally in order to enable analysis of the controlled system. 

Let us now recall the ventilation system example. In this example the “control 

rules” were associated with the system states: switch on the jet fans each time the 

system arrives at states x = [H ⋅ 0]T and switch off the jet fans when the system 

leaves states x = [H ⋅ 1]T. Also, in the robotized workcell example we pointed out 
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that deadlock was linked with two states, AWI and AWW. The automata theory 

approaches the supervisory control design from a different perspective. Instead of 

defining actions (events) that have to be taken when the system gets in a particular 

state, in the automata theory sequences of events are analyzed. Then, the 

supervisor’s responsibility is to limit the system behavior to those sequences that 

are admissible or specified by a given control policy. To achieve this, the 

supervisor i) must “know” the current state of the system, and ii) should be able to 

prevent the occurrence of specific events. The first requirement is associated with 

system observability [16, 17] while the second one is related to the system 

controllability. Although fulfilment of both requests is rarely achieved, 

observability is easier to handle. Indeed, there are numerous DES observer design 

techniques that provide the supervisor with information regarding events that 

cannot be measured directly [18]. The situation with controllability is different. 

Due to the presence of breakdowns, malfunctions and other irregular incidents, 

some events are uncontrollable and their occurrence cannot be disabled by the 

supervisor [19] (it should be noted that there are events that are not related to 

failures but still cannot be controlled). Usually, a theoretical analysis of systems 

with uncontrollable events is concerned with determination of the probability that 

an uncontrollable event will take place. In practice, the best we can do is to employ 

redundancy in the parts of the system with the highest probability of having a 

failure.  

At this point we return to the notion of the events sequence. As we mentioned 

earlier in the chapter, events occur asynchronously, one after the other, changing 

the system state and forming the sequences. In order to be able to trace all 

sequences that are generated by the system, we introduced the DES modeling tool 

called an automaton. An automaton, comprised of system events and system states, 

describes in which way the occurrence of a particular event changes the system 

state. Starting from the initial state, an automaton A creates a set of untimed 

sequences 
*

1 2
, , ...s s E⊂ , written in the form of strings. This set of strings, called 

the language of automaton A, is denoted L(A) and defined as 

{ }*

0
( ) : ( , )L A s E f x s exists= ∈ (2.12)

It can be seen that 
*

( )L A E⊆ . The concept of languages, generated by an 

automaton, has a central place in DES supervisory control design and analysis. In 

the remainder of the section this concept is presented briefly only to provide the 

reader with a concise insight into the potential that languages offer in DES theory. 

For further readings one may wish to consult [20–22] 

Let us denote the automaton depicted in Figure 2.16 as AW. Then 

{ }W( ) , , , , , , , , , , , ...L A m f mc m m m fα β α αβ β βα α α α α β αβ β β=

It is apparent that strings, belonging to the language generated by automaton 

AW, correspond to directed paths in the state transition diagram of AW (paths are 
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fundamental structural properties of graphs and will be discussed in more details 

later in the book). 

The other language, which is closely related to the notion of deadlock, is 

associated with marked states. When that last event in a sequence s corresponds to 

an event that leads the system to the marked state, 0 m( ),f x s X∈ , we talk about a 

marked language of automaton A, denoted Lm(A) and defined as 

{ }*

0m m( ) : ( , )L A s E f x s X= ∈ ∈ (2.13)

From Figure 2.16 we have 

{ }m W( ) , , , , , , , ...L A f mc mc m f m c mc mfβ α α β α β α β βα βα=

For a given string s = abc, a is called a prefix of s, b is called a substring of s
and c is called a suffix of s. String s =  is called an empty string.  A language L(A)

is said to be prefix-closed if ( ) ( )L A L A= , where 

{ }* *
( ) : , ( )L A s E c E sc L A= ∈ ∃ ∈ ∈ , (2.14)

i.e. ( )L A contains all prefixes of strings in ( )L A .

A blocking (deadlock) is related to the prefix-closer. Specifically, an automaton 

contains a blocking condition if 

m ( ) ( )L A L A⊂ . (2.15)

According to the usual interpretation, marked states appoint the final stage of 

the process modeled by the automaton. If blocking occurs, the automaton is not 

able to get into the marked state; hence, any generated string that ends in a 

deadlock state cannot be a prefix of a string that ends in the marked state. 

To verify relation (2.15) we choose a few strings that belong to W( )L A  and 

lead automaton AW in deadlock; s1 = m , s2 = m , s3 = m . From Figure 

2.16 we can see that none of these strings is a prefix of strings that end in marked 

states of AW, therefore, m W W( ) ( )L A L A⊂ .

In the automata theory supervisory control is implemented in the form of a 

function, usually denoted S, which dynamically enables or disables events in a 

controlled automaton A. Thus, S(s) is a set of all events that are allowed by S after 

the automaton A has generated string s. As an example, we examine strings s1 = m
and s2 = m generated by AW. If supervisor S is to prevent a deadlock, then S(s1) = 

{c, } and S(s2) = {c, f}. Further, let us study two more strings, also generated by 

AW, s3 = mcr m and s4 = mcr m. In order to prevent deadlock we must have 
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S(s3) = {c, } and S(s4) = {c, f}. Note that for a given control policy function S
could have the same value for different strings, S(s1) = S(s3) and S(s2) = S(s4).

Before we return to the question posted at the end of Example 2.2.1, that was, 

how to design a supervisor that prevents a deadlock, we should see in which way 

the design specifications, which are usually given in a heuristic manner, can be 

formally specified. The problem is how to represent statements such as “prevent 

deadlock”, “apply last-buffer-first-serve dispatching policy”, “task a has a higher 

priority than task b”, and so on, and relate them to the supervisor S.

It is apparent from the earlier discussion that a language generated by an 

automaton could have a large or even infinite number of strings, hence, making a 

list of all sequences (strings) that satisfy (or not) required specifications will be not 

only impractical but in many cases impossible. Since the domain of the control 

function S is language L(A), it is natural to realize the control function in the form 

of an automaton, let us denote it as AS. Once defined, automaton AS should execute 

events in parallel with an uncontrolled automaton that is allowed to trigger only 

events announced by AS. The issue here is that the determination of supervisor 

automaton AS is usually a demanding task that requires practice. For that reason, AS

is not designed directly from the design specification. As a solution, the automata 

theory offers a choice of standard methods for modeling specifications in the form 

of an automaton, hereafter denoted AD. Upon determination of AD the supervisory 

automaton is computed as a parallel composition or product of AD and the 

automaton that describes the system. 

In some cases AS can be obtained directly from the model of the system; 

inadmissible states and all events related to them should be simply removed. For 

example, in the workcell automaton AW (Figure 2.16) illegal states MWW and 

MWI that embrace events  and , can be erased, thus creating supervisor AS. In 

this way, each time the system arrives in state AWI or AWW the occurrence of 

event  will be restricted by AS.

Discrete event systems are often required to perform some tasks alternately. 

This specification can be presented in the form of a two-state automaton AD having 

transitions that correspond with events that trigger the requested tasks. In our 

workcell example we can build such an automaton with events  and c, thus 

preventing a deadlock. The arrival of a new part a will be ignored as long as the 

previous part is not removed from the workcell (this dispatching policy is known 

as last-buffer-first-served). Even though part a arrives in the system stochastically 

and this process cannot be controlled, from the technical point of view that should 

not be a problem. As the supervisor is implemented in the form of a computer or 

PLC program, it is not difficult to ignore a signal from the sensor that triggers 

event  as long as part a is being processed by machine A. 
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3

Matrix Model and Control of Manufacturing Systems 

The widest definition of a manufacturing system (MS) incorporates all the people, 

facilities and services needed to produce a product or a range of products. From 

this point of view, the MS design problem is extended beyond the traditional 

boundaries of machine tool and process selection, together with plant layout and 

job design. Tasks related to organizational issues and the design of information and 

control systems represent an increase in the variety of skills required of the MS 

design experts. The comprehensive nature of the approach (skills required and the 

amount of work involved) calls for a group of people drawn from related technical 

and operational functions in the business, which, together with design engineers, 

provides the set up of a project team. 

The manufacturing systems design may be separated into four major steps – 

analysis, conceptual design, detail design and finally, implementation. Usually, the 

first step, analysis, deals with issues related to business, i.e. market-data collection, 

analysis of products and processes, analysis of manufacturing strategies, etc. The 

conceptual design is concerned with decisions related to the manufacturing 

architecture, i.e. flowlines, flexible lines, job shops or combinations of these. The 

architecture mainly depends on the product volume and the product variety. To be 

competitive in the global market and provide flexible manufacturing in today’s 

high-mix-low-volume manufacturing environment, manufacturing systems have 

moved away from the old style fixed hardware sequential assembly lines with 

dedicated workstations. The trend has been toward flexible manufacturing systems 

(FMS). The flexibility of an FMS can be achieved in several ways: 

• machine flexibility – ease of making changes required to produce a 

given set of part types, 

• process flexibility – ability to produce a given set of part types in 

different ways, 

• product flexibility – ability to change over to produce new products 

economically and quickly, 

• routing flexibility – ability to handle breakdowns and continue 

producing a given set of part types, 

• volume flexibility – ability to operate profitably at different production 

volumes, 
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• expansion flexibility – ability to expand the system easily and in a 

modular fashion, 

• operation flexibility – ability to interchange ordering of several 

operations for each part type, 

• production flexibility – universe of part types that the manufacturing 

system can produce. 

Once the basic structure of the system is defined, detailed design provides 

answers to queries regarding the system performance under the initial design. In 

this stage, for example, calculations indicating where the performance bottlenecks 

are likely to lie in the system lead to a redesign that will eventually improve the 

system performance. Then, dynamic simulations of the system under various 

conditions give information regarding the system robustness, uncertainties, 

adaptability and sensitivity, to end with the system model. Given the model and the 

manufacturing policy, the last stage in the detailed design, the control system
determination, can be carried out. 

The control in MSs spreads over all levels of abstraction. The top-level 

controllers are concerned with decision making on the global market, hence, they 

have long prediction horizons and large sampling intervals (weekly, monthly, 

quarterly, etc.). Their outputs are usually used as set points for lower-level control 

loops that manage production lines (workcells) on a shop floor. Design and 

analysis of these intermediary control loops is the main scope of the book. At the 

bottom of the MS control structure we have controllers that work in real time and 

handle machines and tools. These bottom level controllers accept working points 

from the intermediate level.  

Sometimes it is difficult to make a distinction between the three mentioned 

levels. Furthermore, in some applications there are more than three levels of 

control [18, 19], especially in the case of decentralized structures [20–23]. Anyway, 

interaction between various control levels, in a feedback form, is required in order 

to provide a proper study of the entire system. For example, some events from the 

bottom level, such as machine malfunctions or completions of tasks, should be 

supplied to the upper levels to provide an appropriate response of the overall 

control system. 

The agility provided by the capacity of an FMS to be quickly reconfigured to 

produce new products relies mainly on the extent to which it is possible to 

efficiently and rapidly reprogram the FMS control system. One of the major 

components of an FMS control system is a computer-based supervisory controller 

for monitoring the status of jobs and directing part routing and machine job 

selection. This supervisor can be seen as an intermediate level of control. 

There are many approaches to modeling, simulation and control design for 

manufacturing systems, including the already-presented automata, Petri nets which 

will be described in more detail in later chapters, alphabet-based approaches, 

perturbation methods, control theoretic techniques, expert systems design, and so 

on. In this chapter we present a matrix-based model of FMS that is a part of a 

detail design of manufacturing systems [1]. This matrix framework is very 

convenient for computer simulation [2], as well as for a supervisory controller 

design [3]. It is straightforward to write down the matrix description for a specific 
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manufacturing system since the matrices are given by the bill of material (BOM) 

[4], Steward’s sequencing matrix [5], the resource-requirements matrix, assembly 

trees, and existing dispatching algorithms. In addition, the matrix-based 

formulation can be easily modified if there are changes in product requirements or 

resources available, making the control of the workcell more flexible and re-

configurable. We make the following three assumptions that define the sort of 

discrete-part manufacturing systems:  

No pre-emption – once assigned, a resource cannot be removed from a job until 

it is completed, 

Mutual exclusion – a single resource can be used for only one job at a time,  

Hold while waiting – a process holds the resources already allocated to it until 

it has all the resources required to perform a job.  

In addition to these assumptions, we assume that there are no machine failures. 

This chapter is organized in the following way: first we introduce the system 

matrices that fully describe an MS; then we use these matrices to determine the 

system equations that are calculated in and/or algebra. The system equations form 

recursive matrix model used for simulation and system analysis. In order to be able 

to investigate dynamic phenomena in an MS, we introduce time into the matrix 

model. At the end of the chapter, a supervisory controller based on the matrix 

model is described and a case study is presented. 

3.1 System Matrices 

Before defining system matrices we introduce basic terms that will be used 

throughout the chapter and later in the book. Let Π be the set of distinct types of 

parts produced (or customers served) by an MS. Then each part type k∈ΠΠ is 

characterized by a predetermined sequence of job operations 

{ }1 2 3, , , ...,
k

k k k k k
LJ J J J J=  with each operation employing at least one resource. (Note 

that some of these job operations may be similar, e.g. i
kJ and j

kJ  with i ≠ j may 

both be drilling operations.) We uniquely associate with each job sequence kJ the 

operations of raw part-in, in
kJ , and finished product-out, out

kJ . It is assumed, 

without loss of generality, that each part is fixed on a pallet throughout its 

processing sequence. Let { }0 0
k

k
R r

∈Π
=  represent the set of pallets, where 0

kr

denotes the pool of multiple pallets devoted to part-type k. Note that the 

multiplicity of pallets in pool 0
kr  gives an upper bound for the number of parts of 

type k that can be processed concurrently. 

Denote the other system resources in addition to the pallets with { }
1

n
i iR r == ,

where ri∈R can represent a pool of multiple resources each capable of performing 

the same type of job operation. In this notation, kR R⊂ represents the set of 

resources utilized by job sequence kJ . Note that k
k

R R
∈Π

= ∪ and k
k

J J
∈Π

= ∪
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represent all resources and jobs in a particular FMS. Since the system could be re-

entrant, a given resource kr R∈ may be utilized for more than one operation 
k k
iJ J∈  (sequential sharing). Also, certain resources may be used in the 

processing of more than one part-type so that for some {l, k}∈ ΠΠ, l ≠ k,
l kR R∩ ≠ ∅ (parallel sharing). Resources that are utilized by more than one 

operation in either of these two ways are called shared resources, while the 

remaining are called nonshared resources. Thus, one can partition the set of system 

resources as s nsR R R= ∪ , with Rs and Rns indicating the sets of shared and 

nonshared resources, respectively, where s sR n= and ns nsR n= , ns + nns = n. For 

any r∈R we define the resource job set J(r). Obviously, ( ) 1J r = (> 1) if r∈Rns

(r∈Rs).  

Definition 3.1.1 (resource loop): For each r∈R, a set L(r) defined as 

( ) ( )L r r J r= ∪ (3.1)

is called a resource loop.

Given a set of jobs and a set of resources that compose a manufacturing system, 

we can present the system activities in the form of IF-THEN rules. Each rule 

corresponds to a component of the logical state vector, denoted x. A job is said to 

be activated (started) when all the preconditions (IF part) for its execution are 

satisfied. When a multitude of jobs requesting the same shared resource are 

simultaneously activated, a conflict is said to have occurred and a decision is 

needed as to which job the resource should be allocated to. This type of priority 

assignment in resource allocation constitutes the problem of dispatching, which we 

shall revisit and analyze in Chapter 6. 

Now, the formal definitions of system matrices follow. 

Definition 3.1.2 (job-sequencing matrix): The job-sequencing matrix, Fv, is a 

matrix that relates the job set and the logical state vector: Fv(i,j) = 1 if job j
contributes to construction of the ith component of the logical state vector. 

Otherwise Fv(i,j) = 0. 

Definition 3.1.3 (resource-requirements matrix): The resource-requirements 
matrix, Fr, is a matrix that relates the resource set and the logical state vector: 

Fr(i,j) = 1 if resource j contributes to construction of the ith component of the 

logical state vector. Otherwise Fr(i,j) = 0. 

These matrices are easy to write down, Fv is the job-sequencing matrix of 

Steward (1962) – it is determined from the BOM or assembly tree [6].  Element Fv

(i,j) is equal to 1 if job j is required as an immediate precursor to job i (equivalent 

in the BOM, if subassembly j is required to produce subassembly i). Fr is the 

resource-requirements matrix of Kusiak (1992), which is assigned by the shop 
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floor engineer. It has an element Fr (i,j) equal to 1 if resource j is required for job i.
Steward’s sequencing matrix Fv  and the resource-requirements matrix Fr  have 

long been used as heuristic design aids by industrial engineers, with some 

possibility for limited analysis (as described e.g. by Warfield (1973) in the case of 

Fv  and Kusiak (1992) in the case of  Fr ).  The matrix model elevates these design 

tools to formal computation elements. 

In order to demonstrate development of the matrix model, let us consider the 

assembly tree depicted in Figure 3.1, which shows the required sequence of actions 

(jobs) to produce a product. Though the example is a relatively simple one, the 

technique extends directly to more complicated systems. 

MAP

RP1

BP

MBP

RP2

drill

move

grind

move

parts in

parts out

buffer

R

MA

B MB

R

Figure 3.1.  Product information for example of the system matrices determination  

The job-sequencing matrix can be written directly from Figure 3.1: 

MAP RP1 BP MBP RP2

v

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

=F

Resource-requirements information may be given in the form of table or 

included directly in the product information, as shown in Figure 3.1. From this 

information one can write down the resource-requirements matrix: 
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MA MB B R

MAP

RP1

BP

MBP

RP2

r

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

0 0 0 1

0 0 0 0

=F

Since the first operation of the job sequence does not have any prerequisites 

among the tasks, all components of the first row of Fv are equal to 0. The same 

analogy is applicable to the last row of Fr, that is, the last row corresponds to the 

parts leaving the system, hence all its components are 0 as no resource is involved 

in this operation. We shall return to the issue of system inputs and outputs when we 

define the corresponding matrices. 

One of the possible layouts of the workcell that performs a job sequence 

described by matrices Fv and Fr, is shown in Figure 3.2. 

 In the matrix model, matrices Fv and Fr belong to the IF part of the rules 

describing the system. As we mentioned earlier, when all the preconditions for 

execution of a particular job are satisfied, the job will be started. These consequent 

parts of the rules are structured by the matrices defined below. 

Definition 3.1.4 (job-start matrix): The job-start matrix, Sv, is a matrix that relates 

the logical state vector and the job set: Sv(i,j) = 1 if the jth component of the logical 

state vector is a prerequisite to start job i. Otherwise Sv(i,j) = 0. 

Definition 3.1.5 (resource-release matrix): The resource-release matrix, Sr, is a 

matrix that relates the logical state vector and the resource set: Sr(i,j) = 1 if the jth 

component of the logical state vector is a prerequisite to start the release of 

resource i. Otherwise Sr(i,j) = 0. 

robotmachine A

machine B

buffer

parts in

parts out

Figure 3.2.  The workcell layout for the assembly tree in Figure 3.1 
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The job-start matrix Sv and the resource-release matrix Sr are new matrices that 

must be introduced to obtain a complete matrix description of manufacturing 

systems. In the flowline, matrix Sv has diagonal 1s, while in the job shop, it has 

multiple ones in the same column corresponding to job-routing decisions. 

For the job sequence, depicted in Figure 3.1, matrices Sv and Sr have the 

following form: 

MAP

MA

RP1

MB

BP

B

MBP

R

RP2

v r

1 0 0 0 0 0
0 1 0 0 0 0

0 1 0 0 0 0
0 0 0 0 1 0

,0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 1 0 0
0 0 1 0 0 1

0 0 0 0 1 0

= =S S

As in the case of matrices Fv and Fr, columns of Sv and Sr, corresponding with 

inputs and outputs, have all components equal to 0. It is interesting to note that Fv

and Sv depend only on job-sequencing information, while all the resource 

information is contained in Fr and Sr. Furthermore, it is important to keep in mind 

that the column of matrix Fr corresponding to the robot R, which is a shared 

resource, has more than one “1”. Also, the row of matrix Sr, corresponding to the 

shared resource, has multiple “1s”. We shall return to this issue later when 

discussing a supervisor design. When an operation requires more than one 

resource, the corresponding row of Fr has “1” for each resource that participates in 

the operation.    

Raw parts entering and finished products leaving the manufacturing system are 

described with the following matrices. 

Definition 3.1.6 (input matrix): The input matrix, Fu, is a matrix that relates the 

inputs of the system (raw parts entering the system) and the logical state vector: 

Fu(i,j) = 1 if an input j contributes to construction of the ith component of the 

logical state vector. Otherwise Fu(i,j) = 0. 

Definition 3.1.7 (output matrix): The output matrix, Sy, is a matrix that relates the 

logical state vector and the outputs of the system (finished products leaving the 

system): Sy(i,j) = 1 if the jth component of the logical state vector is a prerequisite 

for output i. Otherwise Sy(i,j) = 0. 

Since the job sequence, shown in Figure 3.1, is a single part processing, input 

and output matrices have a vector-like form: 
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[ ]u y

1

0

0
, 0 0 0 0 0 1

0

0

0

= =F S

So far we introduced the system matrices that assemble a set of rules describing 

the behavior of a manufacturing system. In the next section we present equations 

that utilize these matrices and provide a mechanism for calculation of the logical 

state vector in a recursive manner.  

3.2 System Equations 

As we already pointed out, the matrix model represents a set of rules, so that it is 

formally a rule base. The previously defined job set J and resource set R are 

associated with the system matrices and incorporated into the matrix model in the 

form of vectors. We define a job vector v : J→ℵℵ and a resource vector r : R →ℵℵ
that represent the set of jobs and the set of resources corresponding to their nonzero 

elements. The set of jobs (resources) represented by v (r) is called the support of v

(r), denoted sup(v) (sup(r)); i.e. given v = [v1 v2 … vq]
T, vector element vi >0 if and 

only if job vi∈ sup(v). In the same manner, given r = [r1 r2 … rp]
T, vector element 

ri >0 if and only if resource ri∈ sup(r). Usually, index i is replaced with job 

(resource) notation, hence, rMA stands for the component of resource vector r that 

corresponds to resource MA. 

For example, the workcell shown in Figure 3.2 has a job set J = {MAP, RP1, 

BP, RP2, MBP} and the resource set R = {MA, MB, B, R}. Then, the vector 

representation of jobs performed by the robot is vR = [0 1 0 1 0]T and 

sup(vR)={RP1, RP2}. A vector that represents shared resources is rs = [0 0 0 1]T

with sup(rs)={R}. The definitions of job and resource vectors imply that the job 

and resource sets should be ordered. 

We proceed further with the determination of system equations by defining a 

vector negation. Given a natural number vector a = [a1 a2 … an]
T, its negation 

[ ]1 2 ...
T

na a a=a is such that ia = 0 if ai > 0, and 1otherwise. A vector negation is 

required since state equations and system matrices are Boolean, while job and 

resource vectors have positive integer components. Consequently, all matrix 

operations are defined to be in and/or algebra, denoted  and , where 

multiplication is replaced by AND, and addition is replaced by OR. Hence, for 

given matrices and vectors 

[ ] [ ]T T

a b c

0 1 1 1 1
, , , 3 0

0 1 0 1 0
v v v= = = =A B a b
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we have 

a
a b c b c

b
a b c b

c

b c

b

(0 ) (1 ) (1 )0 1 1

(0 ) (1 ) (0 )0 1 0

v
v v v v v

v
v v v v

v

v v
v

∆ ∆=
∧ ∨ ∧ ∨ ∧ ∨

= = =
∧ ∨ ∧ ∨ ∧

∧
=

c A a

c

a
b c

b
b

c

b c

b

0 1 1 1 1 0 1

0 1 0 1 0 1 0

1

0

v
v v

v
v

v

v v
v

∆ ∇ ∆ ∆ ∇ ∆ ∇
∨

= = =

∨ ∨
=

∨

d A a B b

where ∧ and ∨ are standard symbols for logical AND and OR, respectively. It 

should be noted that the final step in vector c calculation is obtained by 

DeMorgan’s rule.

Having defined all the necessary components, the system equations that outline 

the matrix model are formalized in the following section.   

 3.2.1 Logical State-vector Equation 

The job vector v has two interpretations. As a status output of the workcell, vector 

v denotes a job-completed vector; in this role it is denoted as vc. Hence, sup(vc)

comprises all operations of the given system that are completed. On the other hand, 

as an input to the workcell, vector v represents a job-start vector, denoted as vs,

thus, sup(vs) includes all operations of the given system that should be started. The 

same holds for the resource vector r, i.e. sup(rc) contains all resources that are idle 

(rc is called an idle-resource vector) and sup(rs) is a set of all resources that should 

be released (rs is called a resource-release vector). Then, for given vectors vc and 

rc, and for specified system matrices, the logical state vector x is calculated 

according to the following equation: 

v c r c u∆ ∇ ∆ ∇ ∆=x v r uF F F (3.2)

Input vector u represents raw parts entering the cell, i.e. sup(u) is a set of inputs 

that have parts ready to be processed. A computed entry of xi=1 in x indicates that 

all conditions required for the rule i have been met. As we shall see later, in a 

closed-loop system controlled by a supervisor, the components of vc and rc are 

calculated from the signals measured by sensors and used as a feedback. 
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It is important to order the jobs correctly in order to obtain lower triangular 

matrices Fv and Sv, for then the sequencing of the jobs is causal. A causal ordering 

is also important as the particular system structure helps to overcome NP-hard 

complexity problems. When the logical state-vector equation is constructed using 

the causal ordering of jobs, the system matrix Fv consists of diagonal blocks, one 

per part path, having a subdiagonal of 1s. If there is an assembly there will be some 

1s in Fv below the diagonal blocks, where 1 in element (i,j) means that job j is the 

last job in a partial part path and joins rule i in another part path. 

Matrices Fr and Sr are related as follows: if the ith rule is not the last rule in a 

partial part path, and there is an entry “1” in position (i,j) of Fr, meaning resource j
participates in rule i, then there is an entry “1” in position (i+1,j) of Sr

T, meaning 

that the resource is released by the next rule. If the ith rule is the last rule on a 

partial part path, and there is an entry “1” in position (i,j) of Fr, then there is an 

entry “1” in position (k,j) of Sr
T, meaning that the resource is released by the 

assembly rule k.

The logical-state vector components should be numbered corresponding to the 

jobs in rules consequent parts. From the example shown in Figure 3.1, one can read 

a rule corresponding to the component x1:

IF part is ready AND machine A is ready THEN rule 1 is TRUE

In a symbolic form we write 

IF  PI∈ sup(u) AND  MA ∈ sup(rc) THEN x1=1

or shorter x1 = u ∧ MA. 

A complete logical state-vector equation for the considered system has the form 

c c

0 0 0 0 0 1 0 0 0 1

1 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0

∆ ∇ ∆ ∇ ∆=x v r u

 3.2.2 Job-start Equation 

The logical state-vector equation may be seen as a transformation of status of jobs 

and resources into the system state vector. As such, it represents only the 

prerequisite parts of the rules. The consequent parts of the rules that describe 

actions taken when a particular component of the state vector attains a logical “1” 

are described with other three equations. The first one is a job-start equation that 

relates the state vector x and the job-start vector vs:
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s v∆=v xS (3.3)

When the system is controlled the components of vs stand for requests issued 

by the supervisor to the system. When all the prerequisites for starting a particular 

job are satisfied, the corresponding component of the job-start vector is set to “1”. 

For the workcell shown in Figure 3.2 the consequent part of rule 1 is 

IF rule 1 is TRUE THEN start job in machine A

In a symbolic form we have 

IF x1=1 THEN MAP ∈ sup(vs)

3.2.3 Resource-release and Product-output Equations 

A resource-release equation relates the logical state vector x and the resource-

release vector rs. A resource is released from the task it has been allocated for 

when the task is completed: 

s r∆=r xS (3.4)

From Figure 3.1 one can read that 

IF rule 2 is TRUE THEN release machine A 

or

IF x2=1 THEN MA ∈ sup(rs)

For a shared resource there exist at least two rules that release it. In the case of 

the robot in our example, these rules are 

IF rule 3 is TRUE THEN release robot R 

IF rule 6 is TRUE THEN release robot R

A product-output equation 

y∆=y xS (3.5)

describes how the processed products depart from the system. Once the last job on 

the part path is finished, the corresponding rule is satisfied and the part leaves the 

system. 
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3.2.4 Recursive Matrix Model 

Generally, the complete task plan could be given by the system matrices Fv, Sv, Fr,

Sr, defined above, which are specified by higher-level planners, or, as we show, 

may be written down in manufacturing systems given the BOM or the assembly 

tree plus resource-availability information. Additionally, these matrices can easily 

be extracted from plans generated by typical planning software, including 

hierarchical planners. Since each matrix has a well-defined function for job 

sequencing, resource assignment, and resource release, they are straightforward to 

construct as well as easy to modify in the event of goal changes, resource changes, 

or failures; that is, they accommodate task planning as well as task replanning. The 

matrix-design technique extends directly to complicated interconnected systems 

using notions of block matrix (e.g. subsystem) design.
In this section we discuss the usage of matrix formulation for computer 

simulation of manufacturing systems (and other DES). The formal notation of 

logical rules contains matrices that express the structure of a manufacturing 

system. As such, these matrices are extremely useful in system analysis and 

supervisor design. Additionally, when included into system equations (3.2) – (3.5) 

they provide an apparatus for simulation analysis of the system. 

Denoting the discrete event iteration number with k, we can calculate the 

logical state vector each time an event takes place, i.e. a job is completed, resource 

becomes idle or part enters the system: 

v c r c u( ) ( 1) ( 1) ( 1)k k k k∆ ∇ ∆ ∇ ∆= − − −x v r uF F F (3.6)

The equations describing the consequent parts of rules can be rewritten in the 

same way: 

s v

s r

y

( ) ( )

( ) ( )

( ) ( )

k k

k k

k k

∆

∆

∆

=

=

=

v x

r x

y x

S

S

S

(3.7)

In order to be able to link recursive equations (3.6) and (3.7) we have to relate a 

job-completed vector vc with a job-start vector vs, and an idle-resource vector rc

with a resource-release vector rs. According to its definition, the components of 

vector vc correspond to completed operations, hence, each time a job is completed, 

the number of parts held by this particular job is increased. At the same time, if a 

job contributes to a rule(s) that is fulfilled, an already processed part(s) leaves the 

job and proceeds through the system. In other words 

T

c c s v( ) ( 1) ( ) ( )k k k k= − + −v v v F x (3.8)
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The term 
T

v ( )kF x in Equation (3.8) corresponds to parts that have been 

processed and advance to the next operation. Inclusion of Equation (3.7) in 

Equation (3.8) gives 

T T

c c v v c v v( ) ( 1) ( ) ( ) ( 1) ( )k k k k k k= − + − = − + −v v S x F x v S F x (3.9)

where multiplications and additions are carried out in the standard way. 

By following the same reasoning one can find the number of idle resources and 

the number of finished products in step k as 

T T

c c r r c r r

y

( ) ( 1) ( ) ( ) ( 1) ( )

( ) ( 1) ( )

k k k k k k

k k k

=

=

− + − = − + −

− +y

r r S x F x r S F x

y S x
(3.10)

Let us now introduce the system vector m(k) as 

c

c

( )

( )
( )

( )

( )

k

k
k

k

k

=

u

v
m

r

y

(3.11)

Then, Equations (3.6) – (3.10) can be written in the following form 

0( ) ( 1) , (0)

( ) ( 1) ( )
T

k k

k k k

∆= − =

= − + −

x m m m

m m S F x

F

(3.12)

with

T
u u

T
v vT

T
r r

T
y y

,= =

S F

S F
S F

S F

S F

where [ ] [ ]u y,= =S 0 F 0  are null-matrices required for keeping matrix dimensions 

consistent. If [ ]u ≠S 0 , then the arrival of parts depends on the system status, i.e.

factor u ( ) 0k ≠xS will increase the corresponding component of u(k), which is in 
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disagreement with the definition of input vector u that should be independent and 

should represent raw parts entering the cell. When [ ]y ≠F 0 , the part that was 

considered to have left the system returns to be processed by one of the system 

operations, which is not allowed. Usually, matrix S is called the activity-start
matrix, and matrix F is called the activity-completion matrix.

The first equation in Equation (3.12) encompasses logical AND/OR operations, 

while the second one is calculated by using the standard multiplication and 

addition, hence Equation (3.12) represents a hybrid matrix model of an MS. Even 

though the hybrid matrix model (3.12) is recursive, it does not capture the system 

dynamics. The term ( )kSx , representing the start of activities, contributes to the 

vector m components in the same iteration step k, which means that the durations 

of all tasks in the system are assumed to be equal to 0, i.e. activities are completed 

at the same time as they are started. By tracking sup[m(k)] we can reconstruct an 

untimed sequence that describes only logical activities of the system. 

The matrix model is very convenient for computer simulation. In the following 

example we use MATLAB
® to simulate the system shown in Figure 3.2 (any other 

simulation tool could be used as well). 

Example 3.2.1 (DES simulation by using the matrix model) 

In this example we present results obtained by the simulation of the system shown 

in Figure 3.2, by using the hybrid matrix model. For convenience, the previously 

determined system matrices are shown again 

MAP RP1 BP MBP RP2 MA MB B R IN OUT

v r u y

0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0

= = = =F F F F

[ ]

[ ]

y

v r

u

1 0 0 0 0 0
0 1 0 0 0 0

0 0 0 0 0 10 1 0 0 0 0
0 0 0 0 1 0

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 0 00 0 0 1 0 0
0 0 1 0 0 1

0 0 0 0 1 0

=

= =
=

S

S S

S

Let us define the system input vector u as 
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1 0
( )

0 0

for k
k

for k

=
=

>
u

that is, only one part enters the system at the initial step. If we assume that all 

resources are idle at the beginning of the simulation, then the initial value of vector 

m is m(0) = m0 = [1 0 0 0 0 0 1 1 2 1 0]T. The first component of m stands for the 

system input – it is equal to 1 as defined for k = 0. The component that attains the 

value 2 corresponds to the buffer that has two empty slots at start. Other entries of 

“1” stand for idle resources. Inclusion of m0 in Equation (3.12) for k = 1, gives the 

logical state vector x(1) = [1 0 0 0 0 0]T, i.e. only the first rule, which requires idle 

machine MA and a part at the input, is satisfied. For given x(1) we calculate m(1) 

= [0 1 0 0 0 0 1 2 1 0]T. The set sup[m(1)] = {MAP, MB, B, R} indicates that task 

MAP, executed by MA, is finished, while other resources remain idle. Iteratively, 

for k = 2, we get x(2) = [0 1 0 0 0 0]T and m(2) = [0 0 1 0 0 1 0 2 1 0]T, that is, the 

robot carries the part to the buffer (job RP1) and machine MA is released. 

Simulation results are graphically presented in Figure 3.3. The value of vector 

m can be directly read from graphs. Propagation of the part through the system is 

clearly seen (left side of Figure 3.3). The task sequence is executed as defined in 

the assembly tree shown in Figure 3.1. Resource utilization demonstrates that robot 

R is used twice, exactly as specified in the resource requirements. Since only one 

part was processed by the system, we can see that only one slot in buffer B has 

been used. From the graphical representation of the system output (OUT) we 

conclude that the part leaves the system after 6 iterations. 

Figure 3.3.  Graphical representation of results from Example 3.2.1 
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Let us now analyze the same system with a different input vector, 

( ) 1 0k for k= >u

Defining u(k) in this way we imply that a new part is available for processing in 

each iteration. 

The results obtained by simulation are graphically presented in Figure 3.4. As 

in the previous case we can see that parts are processed according to the predefined 

sequence. However, an interesting situation occurs for k = 5. At that instant both 

machines hold parts ready to be transferred further down the line, i.e. MAP = 1 and 

MBP = 1. Since both tasks require robot R, which is idle for k = 5, two rules 

having the robot as a prerequisite are satisfied. This situation is described in the 

chapter beginning as a conflict. The consequence of a conflict is seen on the graph 

representing robot R. The value 1 for k = 5 becomes – 1 for k = 6 clearly indicating 

that two operations simultaneously requested the same resource (since there exists 

only one resource and two operations, value – 1 indicates the lack of resource). 

From this result it is obvious, as we have already mentioned, that the decision-

making supervisor is required in order to provide acceptable system performance. 

We conclude this example with the MATLAB
® code that has been used for DES 

simulation based on the matrix model.  

Figure 3.4.  Graphical representation of results from Example 3.2.1 for u(k)=1 for k>0
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Figure 3.5.  MATLAB
® code for DES simulation by using the matrix model 

♦

3.3 Modeling System Dynamics 

It has been shown in the previous example that the model (3.12) describes only 

logical (static) properties of an MS. Although the prerequisites that are required for 

an event to start are given by Equation (3.12), we are not able to tell at which 

particular moment these prerequisites are met, i.e. we do not know when the event 

actually starts. In real applications on actual manufacturing processes, we will be 

sensing the completion of prerequisite jobs by either using sensors (e.g., proximity, 

tactile, etc.) or via notification from the machines or resources. On the other hand, 

for the purpose of computer simulation, we must find a way to keep track of the 

time lapsed in the processing of jobs. To keep track of job time durations, we 

incorporated the system dynamics into the matrix model in the form of a lifetime
[7, 16]. That is, a real number di, called a lifetime, is associated with each task in an 

MS. Under the assumption that there are no machine failures, every task that starts 

will actually finish in a finite time, hence: 

( ) ( )

( ) ( )

ci si vi

ci si rir

v t v t d

r t t d

=

=

−

−
(3.13)
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where dvi and dri are lifetimes of operation vi and resource release ri, respectively. 

Although we consider the lifetime to be deterministic and known, matrix modeling 

of the system dynamics allows simulation of MS with stochastic lifetimes as well.   

The final goal of an MS modeling and analysis is to prepare the ground for 

design of an appropriate dispatching supervisor. The nature of this supervisor is 

determined by its computer-based implementation, usually in the form of a PLC. 

Since the execution of an algorithm on a PLC is cyclic, the moment at which the 

supervisor detects completion of an operation does not necessarily coincide with 

the actual moment in which an operation is finished. Therefore, from the 

supervisor point of view, the operation lifetime is not di but di + εi (Figure 3.6). We 

can rewrite Equation (3.13) as 

s

s s s

s

s s s

( T ) ( T ) ( )T

( T ) ( T ) ( )T

( )

( )

ci si vi vi si vi

ci si ri ri si ri

v k v k d v k n

r k r k d r k n

ε

ε

=

=

− − = −

− − = −
(3.14)

where s sT ( 1)Ti i in d n≥ > − , Ts is the supervisor sampling (cycle) interval, and ni is 

an integer representation of the lifetime expressed in number of sampling intervals. 

It is apparent that the sampling interval should be small enough to provide an 

accurate dynamic model. 

Introduction of a shift (delay) operator q in Equation (3.14) gives 

s

s

( ) ( )

( ) ( )

vi

ri

n
ci si

n
ci si

v q q v q

r q q r q

−

−

=

=
(3.15)

where y(q) = q–nx(q) corresponds with y(k) = x(k–n), i.e. y is delayed n sampling 

intervals after x. For convenience purpose in the remainder of the book we omit 

superscript s from 
s

( )civ q  and 
s
( )cir q .

By recalling Equation (3.7), Equations (3.15) can be written in the vector form 

as

c v

c r

( ) ( ) ( )

( ) ( ) ( )

q q q

q q q

=

=

v T x

r T x
(3.16)

where Tv and Tr are operations and resources release delay matrices with elements 

representing operations lifetimes. Delay matrices are obtained by replacing each 

entry “1” in Sv and Sr with a shift operand representation of the corresponding 

lifetime. 

Due to the existence of shared resources, transformation of the second equation 

in Equations (3.15) requires additional explanation. Namely, each nonshared 

resource in r has its corresponding operation in v that is responsible for its release. 

At the same time, a shared resource that is represented by one component in vector 

r, has several operations in v it could be released from. As release lifetimes 
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associated with these operations generally differ, the row in Tr that corresponds to 

a shared resource could have two or more different entries. 

Conversion of Equations (3.16) into recursive form, suitable for simulation, can 

be done in the same way as in the case of the static recursive model (3.12). 

1 T

c c v v( ) ( ) ( ) ( ) ( )qq q q q q−= + −v v T x F x (3.17)

1 T

c c r r( ) ( ) ( ) ( ) ( )qq q q q q−= + −r r T x F x (3.18)

Finally, the dynamic matrix model of an MS is obtained by including the shift 

operator q in the logical state-vector equation: 

1

0

1 T

( ) ( ) , (0)

( ) ( ) ( ) ( )

q q q

q q q q q

−
∆

−

= =

= + −

x m m m

m m T F x

F

(3.19) 

where 

u

v

r

y

( )
( )

( )

q
q

q
=

S

T
T

T

S

Figure 3.6.  Extension of the operation lifetime for the system dynamics modeling 
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By comparing Equation (3.12) with Equation (3.19) one can notice that the 

main difference between the two models is in matrix S that is replaced with delay 

matrix T(q). The other difference is in vector m that comprises the status of jobs 

and resources. Even though vectors in Equations (3.12) and (3.19) have the same 

form, m(q) represents the state of the system as “seen” by the supervisor. For 

practical implementations the difference between the actual status of jobs and 

resources and status expressed in m(q) can be ignored in the case of a very small 

sampling interval. 

Before we give an example of system dynamics modeling based on Equation 

(3.19), there are two issues that have to be further discussed. The simulation of a 

dynamic model is done such that each element T(q)(i,j) of the delay matrix that is 

not equal to 0 is associated with a clock, denoted C(i,j), containing the time passed 

after the job has been started. All clocks are initially set to zero. When the rule for 

starting a particular task is satisfied, the corresponding clock is activated. Then, in 

each sampling interval all active clocks are checked. If some clock is found to be 

equal to or greater than the corresponding task lifetime, defined as an entry of the 

delay matrix, the particular task is considered completed. In that case the entry of 

vector m matching this task is incremented. Such realization of model (3.19) is 

valid as long as there are no resources that can process more than one part at a 

time. If there exists such a resource, then the simulation algorithm must be 

modified in a straightforward manner, by expanding the number of clocks for each 

additional part processed simultaneously by the resource. For example, if T(q)(i,j)
= q–5 stands for some task that lasts 5 sampling intervals and can process 3 parts in 

the same time, then it is associated with a so-called multipart clock, that is, C(i,j,1), 

C(i,j,2) and C(i,j,3). The first part entering the task activates C(i,j,1), the second 

one C(i,j,2) and the third part C(i,j,3). Having its own clock, each part can be 

tracked separately. 

The second issue that needs additional clarification when one considers 

realization of the dynamic matrix model is related to so-called “hidden” parts. Let 

us assume that rule xi, which has job vi in its prerequisite part and job vj in its 

consequent part, is satisfied in the sampling interval k. Further, let processing of 

the part in vj follow immediately after processing in vi. Then, according to Equation 

(3.19), term F
T
x(k) removes the part from vi, i.e. corresponding component of 

vector m is decreased. Processing of the part in vj starts in the same sampling 

interval k, but due to the operation lifetime, the part will be completed nvj sampling 

intervals later, i.e. the component of vector m that corresponds with operation vj
will be increased with delay. Therefore, one is not able to tell where the part is if 

only vector m(k) is tracked. For example, it may happen that several parts already 

entered the system but sup[m(k)] = {∅} since all parts are being processed at that 

particular sampling interval. However, the results of system performance analysis 

in the sense of system throughput, resources utilization, etc., are not influenced by 

the existence of hidden parts. On the other hand, the outcome of the supervisor 

design that is based on vector m(k) as a feedback could be inadequate and could 

finally generate unacceptable system behavior. This is to be detailed in the next 

section.
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Example 3.3.1 (DES simulation by using the dynamic matrix model) 

Let us consider the system shown in Figure 3.2. The lifetimes of workcell 

operations are given in Table 3.1. Release of buffer BA, which lasts 2.75 seconds, 

is the shortest task in the workcell, thus, we choose the simulation sampling 

interval to be  Ts = 1 [s]. Extended lifetimes for this sampling interval are specified 

in the third column of Table 3.1. We see that machine B is the slowest one. For a 

given job-start matrix Sv and resource-release matrix Sr (see Example 3.2.1) we can 

determine delay matrices Tv and Tr:

76
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113

6 5
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0 0 0 0 0
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0 0 0 0 0
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q
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−
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−
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Table 3.1.  Lifetimes of the workcell tasks 

Operation Lifetime di [s] Extended lifetime ni

MAP (drill) 76 76 

RP1 (move 1) 10 10 

BP (buffer) 3.5 4 

MBP (grind) 113 113 

RP2 (move 2) 7.5 8 

release of MA 15 15 

release of B 2.75 3 

release of MB 10 10 

release of R (after RP1) 5.75 6 

release of R (after RP2) 4.25 5 

There are ten different tasks in the system, and two of them can hold two parts 

simultaneously, buffer operation BP and buffer release B. Accordingly, the 

simulation requires eight standard and two multipart clocks. As in the case of the 

static simulation, we assume that only one part enters the system at the initial step 

and all resources are idle at the beginning, consequently, m(0) = m0 = [1 0 0 0 0 0 1 

1 2 1 0]T.

The results obtained by simulation are shown in Figure 3.7. Upon entering the 

system, the part has been processed in machine A. After 76 sampling intervals 

(graph MAP) the part is removed from the machine into the buffer, which can be 
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clearly seen on graph R – the robot is idle while the part is processed in machine A, 

then it moves the part (10 sampling intervals) and finally it is released (6 sampling 

intervals). The part advances through the system and after 211 samples (see graph 

RP2 that represents the last operation of the system) it leaves the workcell. 

In order to get a complete insight into the system dynamic properties we have 

to simulate a situation with several parts being processed simultaneously. This 

situation is closer to the real conditions in which the system is fed by parts with 

predetermined frequency (or stochastically). Given that manufacturing systems are 

generally designed to work periodically, this kind of simulation provides results 

that can be used for calculations of production cycles, resources utilizations, 

bottleneck machines, etc. For the moment we shall skip formal definitions of these 

terms as they are elaborated in more detail in the max-plus algebra section. 

Graphical representation of results obtained when a new part is available each 

time robot R is idle, is given in Figure 3.8. 
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Figure 3.7.  Graphical representation of results obtained by the dynamic simulation (one 

part processed) 
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Several observations regarding system performance can be made from the 

attained results. We see that the first part leaves the system after 211 samples, as in 

the previous simulation when only one part has been passed through the workcell. 

After that, the time period between departures of two consecutive parts from the 

system is equal to 123 sampling intervals, which corresponds to the sum of the 

processing and release lifetimes of machine B (see Table 3.1). Hence, the 

simulation confirmed, as we expected, that this machine is the system bottleneck 

since it is the slowest one according to Table 3.1. 

The second remark regarding the system behavior is related to the conflict that 

appeared during the simulation of the static model in Example 3.2.1. From the 

graph in Figure 3.8 it can be seen that R attains values of 0 and 1, but never –1. 

This clearly shows that simultaneous requests for the robot R never appeared, i.e.

there was no conflict. Such a difference between results obtained by simulations of 

static and dynamic models is common. Even though the structural properties of the 

system and the static model confirm the existence of conflict, when the system 

dynamics is included in the matrix model simultaneous requests for shared 

resource may not occur due to the particular lifetime arrangement. 

We conclude this discussion with a note on another interesting phenomenon 

that is revealed from the results of the dynamic model simulation. From the 

graphical representation of the first operation in the system, MAP, it is evident that 

10 parts have entered the workcell. On the other hand, only 5 parts have arrived at 

the output. The other 5 parts got trapped in the system; all resources are occupied 

and none of them can be released since they are all waiting for each other. This 

condition is known as circular blocking and it is equivalent to the already-

mentioned deadlock. Analysis of the graphs in Figure 3.8 can clearly show how the 

system came into deadlock. In sampling interval k = 806 machine A just finished 

processing of the 9th part. At the same time sample buffer B is full (BP = 2 for k = 

806), machine B is processing the 6th part and robot R is idle. The prerequisites of 

rule x2 MAP is completed and robot R is idle, are met, thus, the task in the 

consequent part, RP1, is started. Since buffer is full, the robot cannot complete 

RP1. A part that is supposed to leave the buffer and make room for a new one is 

blocked by the part in machine B that waits to be cleared by robot R that is already 

holding a part. Resources wait for each other, the system is deadlocked and parts 

cannot proceed through the line. A similar situation happened with the workcell  

shown in Figure 2.12. 

At the end of the example, let us reorder the job sequence in the workcell by 

exchanging positions of machines A and B, i.e. instead of drill, the first operation 

in the sequence is grind. The dynamic matrix model is changed correspondingly 

and the simulation results are shown in Figure 3.9. It can be noticed that deadlock 

is avoided and the system has cyclic activities. Parts are leaving the workcell with 

a period of 123 sampling intervals. The operational time of a particular resource 

can be easily determined from the graphs corresponding to its idleness and activity. 

For example, graph B clearly shows that the buffer is underutilized as it never 

accommodates more than 1 part, i.e. the system could work correctly with a 1-slot 

buffer. As expected, the slowest machine is operational 100% of the time (graphs 

MBP and MB), while the activity periods of the other two resources are 

approximately 24 %  for  robot (graphs RP1, RP2 and R) and 74 % for  machine A 
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Figure 3.8.  Results obtained by simulation based on dynamic matrix model (several parts 

processed)

(graphs MAP and MA). Comparing these results with the lifetimes in Table 3.1 

one can observe that operational times attained from graphs are equal to 

(Σdoi+Σdri)/(system cycle)×100%, where doi are resource operations lifetimes and 

dri resource releases lifetimes. 
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Figure 3.9.  Results obtained by simulation based on dynamic matrix model (reordered job 

sequence)

We conclude this example with the MATLAB
® code that has been used for DES 

simulation based on the dynamic matrix model.   
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Figure 3.10.  MATLAB
® code for DES simulation by using the dynamic matrix model 

♦
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3.4. Matrix Controller 

In the preceding example a simple case demonstrated how modification of the job 

sequence could entirely change the system behavior. In many cases reordering of 

jobs is not allowed since product shape and quality depend on production sequence 

that is firmly defined and should be strictly followed. The problem is that when 

described as a BOM, or in some other engineering form, the job sequence does not 

disclose potential difficulties that might develop when the structure of an MS, 

which executes this particular sequence, is determined. In the previous section we 

showed how two of these potential difficulties, conflict and deadlock, can be 

exposed by using static and dynamic simulations of an MS. Based on the matrix 

model, these simulations provided a complete insight into the system performance. 

The other advantage of the matrix model is its convenience when it comes to 

the integration of the supervisory controller into the already-defined system model. 

In this section we describe a matrix controller as a part of a closed-loop 

manufacturing control system, whose foundation is set on already-defined system 

matrices and system equations. At the beginning, let us recall the main objective of 

the supervisory control of DES. As we stated in Chapter 2, the controller should 

force the system to a) avoid undesirable states and b) maintain selected 

specifications (control policy). In many cases, a) and b) are achieved 

simultaneously, that is, implementation of a particular control policy at the same 

time prevents the system from getting into adverse states. For example, such a 

control policy is “last-buffer-first-served” that is known to avoid deadlock in most 

cases. On the other hand, “first-buffer-first-served” dispatching usually ends in 

system deadlock. As a result, its realization requires additional consideration to 

provide an algorithm that concurrently prevents deadlock. 

1
( ) ( )q q q−

∆=x mF

s v( ) ( )q q∆=v xS

s r( ) ( )q q∆=r xS

a)     b) 

Figure 3.11. A closed-loop manufacturing control system (a), and internal structure of the 

supervisor (b)

A supervisor based on the matrix model basically checks the conditions 

required for performing the next jobs in the MS by utilizing the logical state-vector 

equation (3.2). This equation is in some ways similar to the differential equation 

(2.4) in linear system theory. Based on these conditions, stored in the logical state 

vector x, the job-start equation (3.3) computes which jobs are activated and may be 

started, and the resource-release equation (3.4) computes which resources should 

be released (due to completed jobs). These equations are analogous to the output 

equation in (2.4). Then, as already mentioned, the controller sends commands to 

the MS, namely, vector vs, whose “1” entries denote which jobs are to be started, 

and vector rs, whose “1” entries denote which resources are to be released. 
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Completed tasks, which outline feedback vector m, are given by the system 

sensors. Structured in this way, a supervisor and a corresponding manufacturing 

cell represent a closed loop discrete event control system shown in Figure 3.11a. 

However, this controller still does not implement any dispatching policy. It 

only executes rules that describe the required job sequence, as shown in Figure 

3.11b. For systems that do not encompass shared resources this structure suffices. 

Nevertheless, in the case of systems with shared resources simultaneous requests 

for two or more concurrent tasks could be issued. To resolve this situation a 

supervisor has to select which jobs to initiate, i.e. it has to make a decision 

regarding the priority. This is needed since the resource-requirements matrix Fr has 

several 1s in the same column. In this situation, as has been shown in Example 

3.2.1, the component of vector m corresponding to a shared resource attains a 

value of –1, which is not allowed. In order to solve a potential conflict and turn the 

controlled system to a “decision-free” structure (cf. Cofer and Garg 1992), it is 

therefore necessary to add an extra dispatching control input. The high entry 

selects which of the jobs will be preferred. 

The easiest way to prevent conflicts and uniquely define the system activities is 

to employ this new input into the logical state-vector equation. Given that all 

prerequisites of a particular rule are met, additional conditions in the form of a 

vector, denoted ud, can attain the value 0 and block the rule. In this way the 

supervisor is able to forbid execution of any controllable task in the system. Vector 

ud is called a dispatching vector (or conflict-resolution vector) and is generally 

determined as a function of feedback signals comprised in vector m,

( )d d d0( ) ( ) (0),q h q= =u m u u (3.20)

where h is a control function. Depending on the way one selects the control 

function to generate ud, different dispatching strategies can be selected. These 

strategies fall mainly into two categories: Buffer and Part/Machine [8, 9]. 

Examples of the buffer category are: first-buffer-first-serve, last-buffer-first-serve, 

shortest nonfull queue, shortest remaining capacity, and shortest queue next. 

Examples of the part/machine category are: shortest imminent operation time, 

largest imminent operation time, shortest remaining processing time, largest 

remaining processing time, machine with least work and least slack time, etc.

Although determination of an appropriate h is important, the objective of this 

section is not an elaboration on how the control function depends on a particular 

dispatching policy or how to prove the existence of a control function for a 

particular strategy. For our purpose it is sufficient to say that in some cases the 

control function attains a simple form of matrix multiplication, while in the case of 

large manufacturing systems with demanding policies it could be very complex or 

its implementation might even be questionable. 

As far as the resolution of shared-resource conflict in an MS is concerned 

Equation (3.20) can provide suitable results. On the other hand, if the dispatching 

policy requires information regarding the exact arrangement of processed parts in 

the system, control based only on vector m may cause improper system 

performance due to the existence of hidden parts (as previously explained). An 
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elegant way to overcome this problem is to introduce an additional vector, ms(q)

that is calculated by the supervisor according to the following relation  

s 1 s T s s

0( ) ( ) ( ) , (0)q q q q−= + − =m m S F x m m (3.21)

One can notice that Equation (3.21) has the same structure as the second 

equation in Equation (3.12), which describes the evaluation of the system vector in 

the static matrix model. For this reason, vector m
s can be seen as prediction of 

feedback vector m. Components of ms are increased by the term Sx(q) immediately 

upon fulfillment of corresponding rules, while data obtained from the system, 

contained in m, are delayed due to operations lifetimes. Having both vectors 

available, the supervisor design is not restricted only to signals gathered from 

sensors, thus, 

( )s

d ( ) ( ), ( )q h q q=u m m (3.22)

Once defined, the dispatching vector is integrated in the logical state-vector 

equation by a dispatching matrix (or conflict-resolution matrix) Fd in the following 

way:

1

d d( ) ( ) ( )q q q q−
∆ ∇ ∆=x m uF F (3.23)

Equations (3.21) – (3.23) outline a new internal structure of the supervisor, 

depicted in Figure 3.12. 
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Figure 3.12. An internal structure of the supervisor based on the matrix controller 
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In each sampling interval recursive equations are executed as shown in Figure 

3.12, from the top to the bottom. First, the matrix controller calculates a 

dispatching vector based on current data from the system and internal system 

vector m
s. Then, the logical state vector is determined, a new value of m

s is 

evaluated and task assignments are issued. 

A newly introduced component of the supervisor, dispatching matrix, needs 

further explanation. As for the system matrices, Fd has logical elements 0 and 1. Its 

structure and components depend on the applied dispatching policy. Given that the 

system comprises shared resources, the primary concern in the supervisory design 

is conflict resolution. Hence, the first step in determination of Fd is allocation of 

conflicting rules, which are related to columns of the resource-allocation matrix Fr

containing more than one entry “1” (as we already stated, resources corresponding 

to those columns are shared resources). As a first thought we could say that for 

each “1” on these columns, a new column is constructed in Fd having only one 

entry “1” in the corresponding position for each “1” in Fr. Established in this way, 

Fd would provide that each shared resource column in Fr is associated with as 

many components of the dispatching vector as it has entries of “1”. In Example 

3.2.1 the last column of Fr that corresponds to shared resource R, has two 1s. As a 

result, matrix Fd would have two columns, the first column with “1” in the 2nd 

position and the second column with “1” in the 5th position, while all other 

elements should be equal to 0: 

d

0 0

1 0

0 0

0 0

0 1

0 0

=F

Consequently, vector ud = [ud1 ud2]
T. Since conflicting rules are concurrent, only 

one component of ud of those associated with conflicting rules that belong to the 

same resource is allowed to have its value equal to 1 in the case of conflict. 

Let us define a conflicting-rules vector xd, such that sup(xd)={xi, xj, xk, …}, 

where xi, xj, xk are conflicting rules. Binary vector xd can be determined from Fr as 

d r s
ˆ ˆ ∆=x rF (3.24)

where rF̂ is a reduced resource-requirements matrix, i.e. all rows corresponding 

with rules that have an output operation in the consequent part are erased from the 

matrix. In order to get xd from dx̂ one has to enter 0 for each component of the 

conflicting rules vector that matches a row removed from the resource-

requirements matrix. Recalling Fr from Example 3.2.1, Equation (3.24) gives 
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MA MB B R

r s d d

1 0 0 0 0
1

0 0 0 1 1 1
0

0 0 1 0 1 0
ˆ ˆ1

0 1 0 0 1 0
1

0 0 0 1 0 1
0

0 0 0 0 0

∆ ∆= = = =rF x x

Calculation of sup(xd)={x2, x5} confirms the already-determined conflicting rules 

that correspond with shared resource R. 

For a given xd, one can determine the (i,j)th component of the dispatching 

matrix by using the following relation: 

d d
d 1

1 ( ) 1 ( )

0

( , )

i

k
if x i and j x k

otherwise

f i j =
= =

= (3.25)

There is an observation regarding determination of the dispatching matrix as 

described above. If two (or more) shared resources contribute to one rule, then two 

(or more) columns in Fr would have “1” at the row that corresponds to this 

particular rule. In that case, according to our discussion, two (or more) components 

of the dispatching vector should be associated with this rule. Therefore, matrix Fd

is supposed to obtain the form as shown below (it is assumed that the system has 

two shared resources R1 and R2),  

R1 R2

r d

0 0 0 0 0 0 0

1 0 1 1 0 1 0

... 0 1 0 ... 0 0 0 0

... 1 0 0 ... 0 1 0 0

0 0 1 0 0 0 1

0 0 0 0 0 0 0

= =F F

However, Equation (3.24) gives xd = [0 1 0 1 1 0]T and then by applying Equation 

(3.25), one obtains 
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d

0 0 0

1 0 0

0 0 0

0 1 0

0 0 1

0 0 0

=F

i.e., a conflicting rule that involves two shared resources is linked to only one 

component of the dispatching vector. Determination of that component involves 

coordination of conflict-resolution strategies of all resources that participate in the 

considered rule. 

Example 3.4.1 (DES simulation with conflict resolution – closed-loop dynamic 

matrix model) 

In Example 3.3.1 simulation of the dynamic model of the workcell depicted in 

Figure 3.2 showed that an uncontrolled system gets in deadlock. Herein we are 

concerned with determination of the control function that would prevent conflict 

and avoid deadlock. As our intention is to illustrate a closed loop-manufacturing 

system with a simple dispatching strategy, no formal methods will be used in the 

example. 

Conflicting rules vector xd and dispatching matrix Fd are already determined 

and have the form 

d d

0 0 0

1 1 0

0 0 0
,

0 0 0

1 0 1

0 0 0

= =x F

Components of the dispatching vector ud = [ud1 ud2]
T will be calculated in two 

steps. First, we analyze situations that could cause conflict. As previously 

elaborated, this condition is met when the robot is idle and both machines have 

parts to be removed, which can be clearly seen from the matrix model. We define 

the control function in the  form of a rule: 

  IF sup(vc) ∩{MAP, MBP}={ MAP, MBP } 

THEN ud = [0 1]T

  ELSE ud = [1 1]T

Since the operation MBP is the last operation in the sequence, this strategy prefers 

pulling the parts from the system. 
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The second step in the design is related to evaluation of circumstances that 

could lead to the deadlock. As we already discussed, in an uncontrolled system a 

deadlock occurred because parts have been pushed into the workcell by the robot. 

From the graphs shown in Figure 3.8 it can be seen that once the buffer is full and 

machine MB is processing the part, additional entry of parts should be blocked. 

This can be employed by extending the above control rule: 

IF sup(vc)∩{MAP, MBP}={MAP, MBP} OR B ∈ sup(mc)

THEN ud = [0 1]T

 ELSE ud = [1 1]T

The results obtained by simulation of the workcell controlled by the supervisor 

are graphically shown in Figure 3.13. System is stable with no conflict. It is 

evident from the graphs that control signal ud1 is equal to 0 as long as the buffer is 

full, which blocks operation RP1 and prevents incoming of new parts into the 

workcell.

♦

As we mentioned earlier, in many cases the control function may be realized by 

simple matrix operations. This is especially suitable when MS is represented by the 

matrix model. The simplest form of the dispatching policy is defined as 

d d∆=u xS (3.26)

where Sd is a dispatching vector release matrix. In Equation (3.26) vector ud is 

directly related to the logical state vector x. Execution of a particular rule and entry 

“1“ in the corresponding element of Sd will increase the value of the associated 

component of vector ud. In general, the structure of Sd depends on matrix Fd, the 

job ordering and dispatching strategy. 

One convenient method to determine the dispatching vector release matrix is 

the reordering of rows of matrix Fd
T. Usage of Fd is intuitively understandable 

since the dispatching matrix defines the way conflict-resolution vector ud is 

connected to the system, therefore, its transpose implies that rules that are already 

known as conflicting and that encompass the dispatching vector in their 

prerequisite parts, also have vector ud components in their consequent parts. 

Hence, no additional calculation of rules that release the dispatching vector is 

required. However, the process of reordering of rows must be made with care, 

otherwise the method could end up in system deadlock. 

The main idea behind row rearrangement is related to the job sequencing 

performed by the shared resource. Let us consider the robotized workcell shown in 

Figure 2.13. This system, having the robot as a shared resource, can be described 

with seven IF-THEN rules. Three of them related to operations performed by the 

robot are involved in the conflict. Given that xd = [1 0 1 0 0 1 0]T, the 

corresponding transposes of dispatching matrix and dispatching vector are defined 

as
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d1
T
d d d2

d3

1 0 0 0 0 0 0

0 0 1 0 0 0 0 ,

0 0 0 0 0 1 0

u
u
u

= =F u

If we denote operations executed by the robot as RP1 (placing part a in 

machine A), RP2 (removing part a from machine A) and RP3 (removing part b
from machine B), then, for example, a possible repeatable sequence could be s1 =

(RP1, RP3, RP2). From Fd and ud, defined above, we see that rule x1 is controlled 

by ud1, rule x3 is controlled by ud2 and rule x6 is controlled by ud3. Let execution of 

operation RP1 be related to fulfillment of x1, RP2 to x3 and RP3 to x6. Then, in 

order to realize sequence s1, matrix Sd and the initial value of the dispatching 

vector should be 

d d0

0 0 0 0 0 1 0 1

1 0 0 0 0 0 0 , 0

0 0 1 0 0 0 0 0

= =S u

For a given matrix Sd and according to Equation (3.26), execution of rule x1

releases ud2, rule x3 releases ud3, while execution of x6 releases ud1. Implemented in 

this way, the control strategy prevents conflict and accomplishes the required 

sequence. 

Rearrangement of rows can be easily done by matrix operation: 

T

d d∆=S F (3.27)

where Φ is a transformation matrix defined in the following way: when dispatching 

vector component udi is released by the rule that is controlled by the component udj,

then Φ(i,j) = 1, otherwise it is 0. In our case 

d1 d2 d3

d1

d2

d3

0 0 1

1 0 0

0 1 0

u u u
u

u

u

=

Due to its simplicity, the dispatching strategy (3.26), with matrix Sd determined 

according to Equation (3.27), is very restrictive. In general, it allows only one part 

to enter the part path, which leads to poor resources utilization and low system 

throughput. This situation can be demonstrated if we return to the system shown in 

Figure 2.12. Assuming that processing and setup times of machine A are much 

shorter than those of machine B, the dispatching strategy determined above will 

force the robot and machine A to remain inactive, although they might have 

enough time to process several parts while waiting for machine B. 
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Figure 3.13.  Graphical representation of results for the closed-loop system (Example 3.4.1) 
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The other remark that should be made is the set up of the dispatching vector 

initial value. Incorrect assignment of ud0 can block components of the logical state 

vector so that the system cannot start with activities. In our example, this condition 

happens when ud0 = [0 1 0]T. In this case the first rule that corresponds to 

placement of a part in machine A and the sixth rule that executes replacement of a 

part from machine B are blocked. Therefore, no other activities can start after the 

processing of a part in machine B is finished. 

3.5. A Case Study: Implemetation of the Matrix Controller 

This section presents the implementation of the matrix controller for supervision of 

an intelligent material handling (IMH) cell [17]. Then, we show that the actual 

implementation and the simulated system give commensurate results. The IMH 

cell belongs to the class of so-called multipart re-entrant flowline (MRF) systems, 

which are described in Chapter 5. The objective of this section is to show the 

versatility of the system developed with this matrix formulation. The supervisor 

based on the matrix framework permits implementation of different methodologies 

for conflict resolution, as well as optimization of the resource assignment and part 

throughput. The given technical information includes the matrix controller 

development in LabVIEW®.

3.5.1 Intelligent Material Handling (IMH) Workcell Description 

The IMH cell is composed of three robots, three conveyors, ten sensors and two 

simulated machines. Different configuration of re-entrant flowline problems can be 

accomplished with this structure. The image and the part flowline for a specific 

layout of the IMH cell are depicted in Figures 1.1 and 3.14. 

For this specific layout the robot defined as R1 (a CRS robot) can perform four 

different tasks, J(R1) =4. Two tasks (R1u1 and R1u2) are related to picking up 

part-types A and B from the input-parts area, which are to be placed on the 

conveyor denoted B1. The other two tasks (R1u3 and R1u4) are associated with 

picking up final products A and B from conveyor B3 and placing them in the 

output-parts area. A PUMA robot, R2, performs three different tasks, J(R2) =3: 

pick up parts A from conveyor B1 to place them in machine M1 (R2u1), pick up 

parts B from conveyor B1 to place them on conveyor B2 (R2u2), and pick up parts 

A from M1 to be placed on conveyor B2 (R2u3). The Adept robot, R3, also 

performs three different tasks, J(R3) =3: pick up parts A from conveyor B2, to 

place them on conveyor B3 (R3u1), pick up parts B from conveyor B2 to place 

them in machine M2 (R3u2), and pick up parts B from M2 to be placed on 

conveyor B3 (R3u3). 

For the considered layout, three robots manipulate two different parts, while 

two of them manipulate re-entrant flow of parts. Machines M1 and M2 are 

simulated by activating valve-air cylinders controlled from a PC. 

Due to the existence of shared resources this configuration of the IMH cell 

presents a dispatching problem. Both phenomena, conflict and deadlock, may 
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occur in the case of an inappropriate dispatching strategy. Since up to now 

deadlock prevention and avoidance have not been discussed, we concentrate on 

determination of the control policy that provides a conflict resolution. It is shown, 

without additional elaboration and formal proof that the obtained strategy is 

deadlock free (we return to this issue in Chapter 6). 

The matrix model can be directly written down from Figure 3.14, which shows 

both job sequencing and resource assignment. From Figure 3.14 one can find that 

the system is described with 20 rules. The job sets that correspond with job 

sequences for two part paths and the set of resources are defined as follows: 

- part A path 

J1={R1u1,B1AS,R2u1,M1P,R2u3,B2AS,R3u1,B3AS,R1u3} 

- part B path 

J2={R1u2,B1BS,R2u2,B2BS,R3u2,M2P,R3u3,B3BS,R1u4} 

- set of resources 

R={B1AA,B1BA,M1A,B2BA,B2AA,M2A,B3AA,B3BA,R1A,R2A,R3A} 

with a set of shared resources Rs={R1A, R2A, R3A}. 

The description of jobs performed by nonshared resources is given in Table 3.2. 

Table 3.2. Description of jobs in IMH cell 

Notation Description 

B1AS  transporting part A on conveyor B1 

M1P processing part A in machine M1 

B2AS transporting part A on conveyor B2 

B3AS transporting part A on conveyor B3 

B1BS  transporting part B on conveyor B1 

B2BS transporting part B on conveyor B1 

M2P processing part B in machine M2 

B3BS transporting part B on conveyor B1 
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Figure 3.14. A layout with the parts paths of the IMH-cell used in a case study 

The nomenclature used in the IMH is as follows: “RXuY” means job “Y” is 

executed by robot “X”, “BxyS” means that product type “y” is transported by 

conveyor “x”, “MxP” stands for machine “x” is busy, “BxyA” means that 

conveyor “x” is available for product type “y”, “MxA” denotes machine “x” is 

available, “RxA” stands for robot “x” is idle. Note that instead of having three 

different resources for conveyors B1, B2 and B3, six different resources are used. 

This is because of the two different materials paths on each conveyor. For 

example, conveyor B1 has paths B1A and B1B, which are denoted as B1AA and 

B1BA when they are available, and denoted as B1AS and B1BS when they are 

carrying material. 

Given the system layout and the system description, one can determine the 

system matrices, herein shown “graphicaly” with black and white rectangles, 

indicating “1” and “0”, respectively. 
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3.5.2  IMH Workcell Dispatching Strategy 

The last three columns of Fr correspond to the shared resources R1A, R2A and 

R3A. From the number of 1s in those columns we see that R1A is involved in four 

conflicting rules, while each of the remaining robots, R2A and R3A, contribute in 

three, which finally gives ten conflicting rules. According to the definition, Fd is 

constructed by creating a new column for each “1” appearing in Fr for the shared 

resources, hence, the dispatching matrix will have 10 columns. By using Equations 

(3.24) and (3.25) we obtain: 

        

It should be noted that columns of Fd have been rearranged in order to group 

components of the dispatching vector that belong to the same shared resource. 

Specifically, R1 is controlled with ud1, ud2, ud3 and ud4, R2 with ud5, ud6 and ud7, and 

R3 with ud8, ud9 and ud10.
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The conflict resolution used in the IMH cell for the layout shown in Figure 3.14 

is an augmented version of the last-buffer-first-serve dispatching strategy, we call 

it ALBFS, modified for multipath systems. Herein we demonstrate an additional 

way of realization of the control function h by using a so-called temporary system 
vector, m

t. At the beginning of each sampling interval all components of the 

dispatching vector attain the value “1”. Then, the logical state vector x is calculated 

according to Equation (3.23) and the obtained value is included in 

t 1 T
( ) ( ) ( )q q q q−= + −m m S F x

i.e. temporary system vector is attained by allowing execution of all conflicting 

rules (udi=1, for i=1,10) for current data from sensors comprised in the system 

vector m. When some of the shared resources (robots in our system) are requested 

by more than one operation, the corresponding component of m
t would have a 

negative value, thus pointing out the occurrence of conflict. If that happens, the 

ALBFS dispatching strategy blocks some of the conflicting rules and the logical 

state vector is recalculated, this time with no conflict. This new vector is used by 

the supervisor for determination of task assignments (calculation of vectors vs and 

rs). The procedure repeats in each sampling interval. 

ALBFS policy, implemented upon calculation of vector mt, is given as the set 

of rules (recall that component of vector y corresponding with job (resource) Z is 

denoted yZ):

IF mt
R1A <0 (resource R1A requested more than once) THEN 

IF mt
R1U4>0 (job R1U4 requested R1A ) THEN 

udR1U1 = 0 AND udR1U2 = 0 AND udR1U3 = 0 AND udR1U4 = 1 

ELSE IF mt
R1U3>0 THEN 

udR1U1 = 0 AND udR1U2 = 0 AND udR1U3 = 1 AND udR1U4 = 0 

ELSE IF mt
R1U1>0 THEN 

udR1U1 = 1 AND udR1U2 = 0 AND udR1U3 = 0 AND udR1U4 = 0 

ELSE

udR1U1 = 0 AND udR1U2 = 1 AND udR1U3 = 0 AND udR1U4 = 0 

IF mt
R2A <0 THEN 

IF mt
R2U3>0 THEN 

udR2U1 = 0 AND udR2U2 = 0 AND udR2U3 = 1 

ELSE IF mt
R2U1>0 THEN 

udR2U1 = 1 AND udR2U2 = 0 AND udR2U3 = 0 

ELSE

udR2U1 = 0 AND udR2U2 = 1 AND udR2U3 = 0 

IF mt
R3A <0 THEN 

IF mt
R3U3>0 THEN 

udR3U1 = 0 AND udR3U2 = 0 AND udR3U3 = 1 

ELSE IF mt
R3U2>0 THEN 

udR3U1 = 0 AND udR3U2 = 1 AND udR3U3 = 0 
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ELSE

udR3U1 = 1 AND udR3U2 = 0 AND udR3U3 = 0 

As we already mentioned, deadlock avoidance is an inherent property of 

pulling strategies such as ALBFS. Therefore, in the determination of the rules 

stated above only conflict was considered. If we analyze the rules then we can see 

that between the two final jobs needed to manufacture products A and B, R1U3 

and R1U4, the supervisor is designed to prefer products B. 

3.5.3 Implementation of the Matrix Controller on the IMH Workcell 

The matrix controller is implemented on a PC in a LabVIEW® graphical 

programming environment. In LabVIEW®, one can sequence and control different 

processes at the same time. The processes we are interested in are operations 

implemented in manufacturing process, like execution of a robots’ trajectories, 

machining jobs and transferring parts using conveyors. The matrix controller runs 

on the PC that has three serial ports for communication with three robots. It also 

has a digital acquisition card that receives digital signals from capacitive proximity 

sensors. The same card is used for sending digital signals to activate machine jobs. 

In Figure 3.15 one can find three levels of intelligent control depicted in [10,

11]. The first level is organization, which is the highest level of intelligence and in 

our case it is presented as the matrix-based controller structure. The main purpose 

of our implementation is to present the advantages and great potential of the 

organization level realized in the form of the matrix-based controller shown in 

Figure 3.12. The second level is the coordination level. This level contains a set of 

independent modules that are composed by robot programming sentences 

encrypted in VAL-like commands [12, 13]. These program modules define the jobs 

to be done by the robots (i.e. the sequence of VAL commands needed to command 

robots to perform pick and place tasks). Then, once the task or job is selected by 

the organization level, the coordination level sequences the steps needed for each 

of these jobs. In our case, the IMH cell’s coordination level sends commands 

sequentially to the appropriate robot to accomplish the desired task (Figure 3.16). 

Figure 3.15. Three levels of intelligent control 
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Figure 3.16. Coordination level of the IMH workcell 

The last level of the system is the implementation level (Figure 3.17), which is 

accomplished by the robot drivers and controllers. When the robot controller 

receives a VAL command via the serial port, it performs low-level control 

calculations and strategies such as interpolation, proportional derivative (PD) 

control, proportional integrate derivative (PID) control, fuzzy logic control, neural-

network control or any other low-level control strategy to manipulate the robotic 

arms. 

Figure 3.17. Implementation level of the IMH workcell 
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3.5.4 The Matrix Controller in LabVIEW Graphical Environment 

The purpose of this section is to explain the development of the matrix controller 

by using LabVIEW® [14, 15]. The key equations of the matrix formulation, 

described in previous sections, are graphically represented in LabVIEW® (Figure 

3.18). 

Figure 3.18. The matrix controller in LabVIEW
®

 graphical environment 
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 The entire diagram is used as a single LabVIEW® block (or function) 

representing the WHILE “Main loop” that is executed in each sampling interval. 

Inputs in the block are system matrices (shown on the top) and sensors signals. 

LabVIEW® block “Fix Uds” is positioned inside the Main loop. This block sets all 

the components of conflict-resolution vector to 1 at the beginning of the cycle, as 

we described in the previous paragraph. If conflict is detected on any of the robots, 

the “Conflict Resolution” block deactivates rules according to ALBFS strategy. 

Inside the main loop, an internal loop is used to calculate the logical state vector x

by applying Equation (3.23). Function MULTOA(X,Y), already implemented for 

MATLAB
® simulation, is used for that purpose. 

The performance of the IMH workcell is shown in Figure 3.19. The results 

have been obtained in real time directly from the matrix controller implemented in 

LabVIEW®.

Figure 3.19. Results of implementation of the real IMH workcell using ALBFS conflict 

resolution

Each graph (line) represents one robotic job. As in the case of graphs obtained 

by simulation, there are only two states, high and low, meaning that a job is being 

executed or not, respectively. It can be noticed that only one robotic job goes high 

at any time, hence, the implemented conflict-resolution policy achieved the 

requested objective. Five type-A and five type-B parts entered the workcell. As we 

can see from graphs R1u1 and R1u2, robot R1A loads parts according to the A-B-

A-B… sequence. When the third part-type A enters the system, robot R1A 

executes task R1u4, i.e. both parts are waiting to be removed from the system and 

part B is preferred due to the conflict-resolution strategy.  
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3.6. Excersises 

1. For the system described in Example 4.3.1 do the following: 

a) determine the matrix model, 

b) simulate the matrix model by using MATLAB
® code given in Figure 3.5, 

c) determine the dispatching matrix Fd, the dispatching vector release matrix 

Sd and dispatching vector ud that will execute the task sequence a) loading 

M1  unloading M2  loading M3,

d) simulate the matrix model with obtained supervisor by using MATLAB
®

code given in Figure 3.5 (extend vectors and matrices used in the code in 

order to include Fd, Sd and ud),

e) determine the dynamic matrix model of the system, 

f) simulate the dynamic matrix model by using MATLAB® code given in 

Figure 3.10. 
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4

Matrix Methods for Manufacturing Systems Analysis 

Since its first practical implementation in the 18th century [1], when Euler proved 

that it is impossible to visit all the bridges in Köingsberg and then to return to a 

starting point by passing each bridge only once, graph theory has been successfully 

applied for solving various problems. From computer networks, today’s world 

information highways - to transportation systems, whose rapid growth requires 

increased safety and reliability, methods developed by graph theory offer a 

convenient way to analyze data associated with planning, organization and other 

related phenomena. Graph theory can easily answer questions such as: what is the 

communication lines bandwidth required for successful transmission of a particular 

amount of information between two places on the network, how many trains are 

needed in order to make a particular timetable feasible, which is the optimal way 

between two cities where required energy is concerned. 

When we talk about manufacturing systems, the first thing that comes to mind 

is a set of machines processing raw materials in order to make a product. Located 

on the factory floor according to a specified layout, machines can be understood as 

points that exchange both materials (parts) and information following a certain 

plan. One of the most suitable ways to represent this scheme of material or 

information flow is by using graphs. 

In this chapter we describe the basic concepts of graphs. First, we introduce 

basic graph definitions followed by matrix representations of the graphs. At the 

end of the section an illustrative example of a manufacturing system modeled by a 

graph is given. The second section of the chapter is concerned with string 

composition. String composition is a method for analysis of graph properties based 

on a particular string-manipulation algorithm. In that section we present string 

operators and their properties, concluding with an example of the shortest-path 

determination in an AGV system. The last part of the chapter is devoted to max-

plus algebra, which is an extremely useful tool for analysis of a special class of 

manufacturing systems. We give only the basics of max-plus since deeper insight 

into its theory would require much more space and time. Furthermore, max-plus 

theory covers only a particular group of discrete event systems while the DES class 

we are interested in has a wider application. We show how the max-plus equation 

is derived from the matrix description of the system. Since the theory is still being 
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developed we hope that a way to extend it to a broader class of manufacturing 

systems will soon appear.  However, it is important to understand the max-plus 

concept in order to comprehend problems related to the inclusion of operational 

times in the system analysis. We close the max-plus section with an example. At 

the end of the chapter problems for exercise are given. 

4.1 Basic Definitions of Graphs 

First we need to define a graph [2]. 

Definition 4.1.1 (graph): A graph is a structure formed by a set of nodes V and a 

set of arcs E. Arcs in E represent pairs of nodes in V, G = (V, E).

In the mathematical literature nodes are called vertices, while arcs are called 

edges. These two names are the origins of symbols V and E. In a graph, nodes 

represent places or locations while arcs represent connections between these 

places. The word place should be taken conditionally when manufacturing systems 

are considered as there are two ways of representing it. Specifically, in graph 

representation of the system, a node may represent the occurrence of some event,
while arcs may be used to show relations between events – which event(s) are 

prerequisite(s) for the occurrence of a particular event. On the other hand, a node 

may represent the system state while in that case arcs represent events that lead to 

this particular state.  

As shown in Figure 4.1, the node is graphically represented by a circle and the 

symbol for an arc is a line drawn between two nodes. In the graph shown in the 

figure a set of nodes is V = {a, b, c, d} while a set of arcs is E = {(a,b), (b,c), (b,d),

(c,c), (c,d)}. It should be noted that set E can also be defined as E = {(b,a), (c,b),

(c,c), (d,b), (d,c)}.

 Arc (c,c), which is different from all the other arcs shown in Figure 4.1 begins 

and ends in the same node. This type of arc is called a loop (or a self-loop). 

Figure 4.1. A graph
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We say that two nodes, n1 and n2, are adjacent if there is an arc between them. 

In that case we call the arc incident to both nodes n1 and n2. The degree of node n1

is equal to the number of arcs incident to it. A graph is called regular of degree r if 

all nodes in the graph have the same degree equal to r.

A graph is called a multigraph if it contains more than one arc between two 

nodes or if there are self-loops. 

Let us now consider the nodes of the graph shown in Figure 4.1 as street 

intersections and arcs as streets between these intersections. The question is: can 

we drive a car from node a to node d? From Figure 4.1 we know only that a is 

connected with d but we are not able to tell if we can actually get from a to d since 

streets connecting these two intersections may be one-way streets. To answer to 

this question we have to add one more property to arcs: direction. We showed that 

set E for the graph in Figure 4.1 can be defined in two different ways, which means 

that in an undirected graph set E is a not ordered set of pairs of nodes. Now, we 

can go on and define a directed graph.

Definition 4.1.2 (directed graph): A directed graph G = (V, E) is a graph with 

ordered set E, i.e. pairs of nodes in a directed graph are ordered.  

A directed graph is shown in Figure 4.2. The first node, n1, in the ordered pair 

(n1,n2) is called the origin and node n2 is called the destination. In the graphical 

representation the direction from n1 to n2 is shown as an arrow. 

We describe the graph in Figure 4.2 as V = {a, b, c, d},  E = {(a,b), (b,a), (b,c), 

(c,c), (c,d), (d,b)}. Continuing our analogy of Figure 4.2, the street connecting a
and b may be driven on in both directions while the street that links intersections b
and c is a one-way street, i.e. it can be passed only from b to c.

Figure 4.2. A directed graph

Now, having defined directions in the graph, we may answer the question: 

traveling from a to d is possible by passing through intersections b and c.

The answer to the first question raises another: how far is a from d or how 

much time do we need to pass along the established route if we drive with a 

predetermined speed? The answer requires the inclusion of a weight property to the 

notion of arc, i.e. a numerical value is associated with each arc in a graph 

specifying length, time or cost of the arc (weights can be associated with nodes as 

well). Graphs with weighted arcs (nodes) are called weighted graphs (Figure 4.3).
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Figure 4.3. A weighted directed graph 

The weights shown in Figure 4.3 may represent the average time needed to 

travel along the corresponding arc. According to the figure, going from c to d
requires 8 time units, while a trip from c to c would require 6 time units. It should 

be noted that weights of arcs connecting the same nodes are not necessarily equal. 

In our example, arcs (a,b) and (b,a) have different weights. The difference in times 

required for passing these arcs could be caused by a different number of street 

lanes for example. The direction from a to b may have more lanes thus providing 

conditions for faster traffic, which makes the traveling time shorter than for the trip 

from b to a.

Our question, related to the distance between a and d, may now be answered. 

From Figure 4.3 we find that traveling from a to d would take 16 time units. 

The ordering of the set E, i.e. the introduction of directions in a graph, as well 

as setting weights to arcs (nodes) has many consequences. As we throughout this 

book deal with directed graphs, in the text that follows we define terms and 

structures that are needed for the investigation of basic directed graph-properties. 

Definition 4.1.3 (upstream, downstream node): In a directed graph, G = (V, E), a 

node n1 is called the upstream node to node n2 if there exists an arc (n1,n2)  E. In 

that case, node n2 is called the downstream node to node n1.

An upstream node is sometimes called a predecessor and a downstream node is 

called a successor. When there is more than one node upstream of node n, we 

define a set called a preset of n that contains all such nodes. Downstream nodes of 

node n belong to the set referred to as the postset of n. The importance of preset 

and postset concepts will be shown later in the chapter related to Petri nets. 

In the graph from Figure 4.3 the preset of node b is {a, d} while the postset of b
is {a, c}.

Definition 4.1.4 (path): Having a directed graph G = (V, E), a path is a sequence of 

nodes (n1, n2, n3, …, nj) such that ni is upstream of ni+1 for i = 1, 2, … j–1. 

We may also speak of a path as a sequence of arcs that connects a sequence of 

nodes belonging to the path. 
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Definition 4.1.5 (path weight): Having a directed weighted graph, G = (V, E), and 

a path,  = (n1, n2, n3, …, nj), we define the weight of path  as a sum of the 

weights of arcs of which it is composed 

=
=

j

i iww
1

σ

There is, however, a difference between path weight and path length.

Sometimes these two terms are confused in the literature, especially when it comes 

to transportation systems. In graphs that represent these systems, weights 

associated with arcs usually stand for distances between nodes showing kilometers 

or miles. Summing weights of arcs along a path gives the path weight that actually 

represents length. Because of this, path weight can be misinterpreted as path 

length. The reason why these two expressions have to be distinguished will be 

given later. Now, let us define the concept of path length. 

Definition 4.1.6 (path length): Having a directed weighted graph G = (V, E), and a 

path  = (n1, n2, n3, …, nj), we define the length of path  as the number of arcs of 

which the path is composed. We denote path length as .

We can recognize several paths from the graph in Figure 4.3;  1=(a, b, c), 

2=(a, b, c, d), 3=(b, c, d, b). The lengths and weights of these paths are as 

follows: 1  = 2, 2  = 3, 3  = 3, 1w = 8, 2w = 16, 3w = 17. 

Path 3 has an interesting property; the initial and the final node of this path are 

the same. This kind of path is called a circle (cycle). As will be seen later in the 

book, circles are very important structures in the analysis of discrete event dynamic 

systems. At this point, without further explanation, we define the notion of a 

maximum cycle mean. First, the mean weight of a path is characterized.  

Definition 4.1.7 (mean weight of a path): The mean weight of a path  in a 

directed weighted graph G = (V, E), is defined as 

σ

σ
σ w

w =

When this path  is a cycle, the mean weight of the path is called the cycle
mean.

Definition 4.1.8 (maximum cycle mean and critical circuit): The maximum cycle 
mean of directed weighted graph G = (V, E), is defined as 

)(max wc
σλ =
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where c ranges over the set of circuits of G. The circuit that corresponds with  is 

called a critical circuit. 

The concept of reachability is closely related with a notion of a path. 

Definition 4.1.9 (reachability):  Having a directed graph, G = (V, E), and nodes ni,
nf  V, we say that node nf is reachable from node ni if there exists a path such that 

 = (ni, ni+1, ni+2, …, nf), i.e. ni is the initial node and nf is the final node of the path. 

In our example, node b is reachable from node c and node c is reachable from 

node b. Actually, each node in the graph shown in Figure 4.3 is reachable from any 

other node. This type of graph is called a strongly connected graph.

In order to be able to manipulate with graphs, to analyze their properties and to 

make conclusions regarding the systems modeled by graphs, we need to introduce 

some kind of graph representation. Pure graphical interpretation of a graph is easy 

to handle and can provide valuable information when the number of nodes is small. 

As the number of nodes increases, the graphical interpretation becomes impossible 

to comprehend. 

A graph representation is a very important issue especially when it comes to 

computer memory and computational times. In the following text we show several 

possible graph representations suitable for programming, with a special emphasis 

on matrices that can be related to graphs in one way or another. Later, we use these 

matrices to find graph properties that are of special interest for manufacturing 

systems analysis and design.  

Generally, when we want to prepare a graph representation structured in a way 

suitable for computer programming, we may choose one of two basic concepts: 

arc-structured or node-structured data [3]. Each of them has its own benefits and 

drawbacks. 

In node-structured data we use an array of length N, where N is the number of 

nodes. An entry i, corresponding with node ni, is a set (a list) of nodes that are 

destination nodes of arcs starting in node i, together with weights of arcs. Table 4.1 

shows the node-structured data representation of the graph shown in Figure 4.3. 

Table 4.1.  Node-structured data representation of the graph 

Entry i (node) Destination Weight 

1 (a) b 5 

a 7 2 (b) 

c 3 

c 6 3 (c) 

d 8 

4 (d) b 4 

This structure offers several benefits – finding nodes adjacent to a particular 

node is simple and fast and so is adding a node (or an arc) to the structure. A 
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problem arises if a node (or an arc) has to be deleted from the structure. 

Furthermore, testing whether two nodes are adjacent may be time consuming. 

The other approach to graph representation is arc-structured data. In this 

approach we keep a list of arcs by maintaining the origin and destination nodes of 

the corresponding arc together with arc weight. Table 4.2 shows the arc-structured 

data representation of the graph shown in Figure 4.3. 

Table 4.2.  Arc-structured data representation of the graph  

Entry i
(arc)

Origin Destination Weight 

1 a b 5 

2 b a 7 

3 b c 3 

4 c c 6 

5 c d 8 

6 d b 4 

Arc-structured data is space efficient. As in the previous case, including a new 

node or an arc in the structure is easy. The only drawbacks are the time-consuming 

search for arcs incident to a particular node and determining which two nodes are 

adjacent. 

The structures representing graphs can be more complicated than the one we 

described, depending on the data that have to be included in the graph description. 

Getting a structure suitable for graph analysis is not always straightforward. In an 

example concerning AGV path planning, which is presented in Section 4.2, the 

structures that describe the graph contain details such as circular and straight path 

segment points, the vehicle orientation with respect to segment direction and even 

the vehicle actions upon arrival in a particular node. By combining the given facts 

and by extracting information from these structures, bottom-up design finally ends 

with data suitable for computer graph analysis so we can, for example, predict 

node reachability or plan the shortest path. 

4.1.1 Matrix Representation of the Graph 

Even though arc-structured and node-structured representations of the graph meet 

computer programming requirements such as space efficiency due to memory 

constraints and fast computation of iterative algorithms, they lack the rigorous 

mathematical characterization that makes them inappropriate for theoretical 

analysis of graphs. The most convenient way to investigate the composition of 

graphs or to treat a graph as a structure that presents the dynamical behavior of a 

system, is by using the matrix representation of the graph [4]. By representing a 

graph as a matrix we can define mathematical operators that can be used for 

studying various properties of systems modeled by graphs. 
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One of the matrices that describe the structure of a graph is the adjacency 
matrix. This matrix shows relations between nodes. 

Definition 4.1.10 (adjacency matrix): Having a directed graph, G = (V,E), an 

adjacency matrix G  is defined as a matrix with the number of rows and columns 

equal to the number of nodes in G, with element gij equal to1 if node nj is upstream 

of node ni and to 0 otherwise. 

According to the definition, an entry (i, j) corresponds with an arc from node nj
to node ni. Although this notation may seem strange at first, it is very convenient 

for manipulations with matrices and vectors. By maintaining this form we can 

write matrix equations in the standard way. 

For undirected graphs matrix G is symmetrical, as by definition element gij = gji
= 1 when nodes ni and nj are adjacent and gij = gji = 0 otherwise. This difference 

between adjacent matrices of undirected (Figure 4.1) and directed (Figure 4.2) 

graphs is shown below; Gud represents an undirected graph and Gd represents a 

directed graph. The fact that the diagonal element is equal to 1 is evidence for a 

loop in a graph. 

=

0110

1110

1101

0010

dcba

d
c
b
a

udG      =

0100

0110

1001

0010

dcba

d
c
b
a

dG

The adjacency matrix of a directed graph can be used to identify more than 

connections between nearby nodes: it can also show links between nodes that are 

far from each other. Let us assume that gij=1, i.e. there is an arc from j to i, and 

gjk=1, i.e. there is an arc from k to j. Then, it is obvious that there is a path from k
to i containing two arcs. Now, let us assume that all other entries of the ith row and 

kth column in the adjacency matrix are equal to 0. Then, the multiplication of the 

row and the column will give gik=gij·gjk=1. When we have more entries of 1, for 

example, gim=1 and gmk=1, then multiplication will give gik= gij·gjk + gim·gmk=2, i.e.

the result shows that there are two paths from k to i, each containing two arcs. We 

see that by multiplying adjacency matrix G one can tell whether two nodes are 

connected and, when they are, how many possible paths lie between them. Powers 

of adjacency matrix are calculated by standard matrix multiplication: 

1r r−= ⋅G G G (4.1)

i.e. an entry of Gr is found as: 
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1
, , , 1, 2,...,

r r
ij ik kjk

g g g i j k n−= ⋅ = (4.2)

where n is the number of nodes of the corresponding graph. If gij
r = m > 0 then 

there are m different ways to get from node nj to ni by passing r arcs. 

If we calculate G2 for the graph shown in Figure 4.2 we obtain 

2

0 1 0 0 0 1 0 0 1 0 0 1

1 0 0 1 1 0 0 1 0 1 1 0

0 1 1 0 0 1 1 0 1 1 1 0

0 0 1 0 0 0 1 0 0 1 1 0

= ⋅ =G

The result demonstrates that, for example, there is one path from c to b (g23
2 = 

1) that passes over two (r = 2) arcs (see Figure 4.2), while there is no way to get 

from d to b by passing two arcs. Diagonal elements g11
2, g22

2 and g33
2 equal to 1 

show second-order (r = 2) circles. Further multiplication will give paths passing 3, 

4, …, etc. arcs. For example, computation of G4 gives g23
4 = 2: there are two paths 

from c to b that pass over 4 arcs – path1={c,d,b,a,b}, path2={c,c,c,d,b}.

Although results obtained from adjacency matrix multiplication show not only 

the existence of the route from one node to the other but also how many routes 

there are in the graph and how many arcs have to be taken for a particular route, 

these results do not tell us how we can “travel” between nodes or what would be 

the cost of the “trip”. Later in this section we show how the adjacency matrix must 

be broadened in order to comprise more detailed graph representation. In Section 

4.2 we also present a procedure for the determination of paths between nodes in a 

graph.    

Now, let us define a matrix that associates nodes with arcs. This matrix is 

called the incidence matrix.

Definition 4.1.11 (incidence matrix): Having a directed graph, G = (V, E), an 

incidence matrix W is defined as a matrix with the number of rows equal to the 

number of nodes and the number of columns equal to the number of arcs, with 

elements defined as follows: if there exists an arc (ni,nj), i  j, represented in W

with column l, then wil = 1, wjl = –1 and the other elements of column l  are equal 

to 0. For an arc (ni,ni) represented in W with column l, wil = 0. 

According to the definition, an incidence matrix has elements –1, 1, and 0. 

Entry of –1 (1) indicates that the corresponding node is the destination (origin) of 

an arc represented by the consequent column. Since both the destination and origin 

of a self-loop is the same node, in a column representing a self-loop arc all entries 

are 0. The incidence matrix Wg of the graph shown in Figure 4.2 is given below. 
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g

1 1 0 0 0 0

1 1 1 0 0 1

0 0 1 0 1 0

0 0 0 0 1 1

a
b
c
d

−
− −=

−
−

W

Note that we can infer the existence of loops in a graph from the incidence 

matrix (there are columns with all elements equal to 0), but it is not apparent which 

node contains a loop. Although column 4 has all entries equal to 0, we are not able 

to tell which node is involved in the loop. If we draw a graph represented by the 

incidence matrix Wg, the loop may close around any of the four nodes (Figure 4.4). 

Figure 4.4. Directed graphs with the same incidence matrices and different loops 

Even though both matrices, adjacent and incident, represent a graph structure 

that can be exploited for a survey of a variety of graph properties, they need to be 

further extended in order to provide adequate information essential in analysis of 

system dynamics (in the case of manufacturing systems) or of some other features 

(determination of distances in the case of transportation systems). In an unweighted 

multigraph, for example, each entry of the adjacency matrix may represent the 

number of arcs between nodes. On the other hand, as the adjacency matrix of the 

weighted directed graph has entry 1 for each arc in the graph, we can get a more 

detailed picture of the graph if we just replace these 1s with weights of 

corresponding arcs. Concurrently, each 0 from the adjacency matrix has to be 

replaced by an element, denoted , that would stand for a nonexisting arc. In this 

new matrix, symbol e is used for zero-weight arcs. 

Definition 4.1.12 (weighted adjacency matrix): Having a weighted directed graph,

G = (V, E), a weighted adjacency matrix A is defined as a matrix with the number 

of rows and columns equal to the number of nodes in G, with elements defined as 

follows: if there exists an arc (ni,nj) then aji is equal to its weight, otherwise aji = .

For a zero-weight arc (ni,nj) entry aji = e.

The elements  and e will be discussed in more detail in the section dedicated to 

max-plus algebra. 

For the graph shown in Figure 4.3 the weighted adjacency matrix A is given as: 
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So far we have used analogies from transportation systems to explain basic graph 

concepts. In the following example we show how graphs can be used for modeling 

manufacturing systems, which is our main interest. We conclude this section with 

this example. 

Example 4.1.1 (a graph representation of a manufacturing line) 

Let us consider a manufacturing line with two machines, M1 and M2, shown in 

Figure 4.5. Our objective is to model this system by a graph. For that purpose, we 

have to first identify the operations in the system and their order. Next, we need to 

specify which observation would be represented by nodes – as we stated earlier, we 

may use nodes to represent events or system states. In this example, nodes 

represent events. 

The figure illustrates that parts visit both machines: after being processed in 

machine M1 they proceed to machine M2 and then leave the system. Therefore, two 

operations may be identified; operation MP1 on machine M1 and operation MP2 on

machine M2. Each machine can process only one part at a time. 

Events that can be characterized as interesting for system analysis are: 

• e1 = part is present at the beginning of the line, 

• e2 = start of operation MP1,

• e3 = end of operation MP1,

• e4 = start of operation MP2,

• e5 = end of operation MP2,

• e6 = part leaves the system. 

Figure 4.5. A manufacturing line containing two machines 
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The type of analysis performed and the system properties will determine which 

events to model or which physical phenomena will be taken as system states. In 

our example we could have also selected other events (e = tool in machine M1

breaks), but these events are not interesting for our study or we may consider that 

the probability of occurrence of these events is zero (machine tool is believed to be 

unbreakable). 

Since nodes represent events in the example, a graph model of this system 

would have 6 nodes. Now, let us see how events influence one another (which 

corresponds with the determination of arcs). It is clear that operation MP1 cannot 

start (event e2) if there is no part at the beginning of the line (event e1).

Furthermore, if machine M1 is already executing operation MP1, event e1 cannot 

take place since the machine cannot process two parts at a time.  These two facts 

define arcs (e1, e2) and (e3, e2). The existence of arc (e2, e3) is obvious – operation 

MP1 cannot end if it had not been started. Similarly, we can define arcs (e3, e4), (e5,

e4) and (e4, e5). The final step in the line is the departure of the part, which is 

represented by arc (e5, e6). Thus, having defined relations between nodes, we can 

go on to write down the adjacency matrix of the system and draw its graph. 

1

51 2 3 4 6

2

3

4

5

6

0 0 0 0 0 0

1 0 1 0 0 0

0 1 0 0 0 0

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0 1 0

e e e e e e

e
e
e
e
e
e

=G  - adjacency matrix 

Figure 4.6. Graph representation of the system shown in Figure 4.5 

As we know, an adjacency matrix and a directed graph give only limited 

information about system properties. From the graph in Figure 4.6 we can 

understand that, for example, event e3 has an impact on events e4 and e2, i.e. the 

occurrence of e3 triggers events e4 and e2, but we cannot say when, after e3 takes 

place, event e2 or event e4 will happen. 

We have shown earlier that an adjacency matrix and the corresponding graph 

can be extended by the introduction of arc weights. Let us broaden our discussion 

by assigning an operational time to each task within the system. Operation MP1 is a 

task, the machine setup after the processing of the part is also a task and so is 

traveling of the part from M1 to M2. Tasks “consume” the time between events, and 

can therefore be associated with arcs. For events and arcs defined in our example, 

we can identify the following tasks (operational times are given in parentheses): 
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• (e1, e2) – part enters the machine M1, (tU),

• (e2, e3) – operation MP1, (tMP1),

• (e3, e2) – setup of machine M1, (tM1),

• (e3, e4) – part travels from machine M1 to machine M2, (tT),

• (e4, e5) – operation MP2, (tMP2),

• (e5, e4) – setup of machine M2, (tM2),

• (e5, e6) – part departs the system, (tY).

The weighted adjacency matrix obtains the following form: 

51 2 3 4 6

1

2 U M1

3 MP1

4 M2

5 MP2

6 Y

T

e e e e e e

e

t te
e t
e t t
e t
e t

ε ε ε ε ε ε
ε ε ε ε

ε ε ε ε ε
ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

=A

Figure 4.7 shows the weighted graph representation of the system shown in 

Figure 4.5. 

Figure 4.7. Weighted graph representation of the system shown in Figure 4.5 

From matrix A, or the graph, among other things, we find that event e3 occurs 

tMP1 time units after event e2. Also, we know that the part leaves the system (event 

e6) tMP2 + tY time units after machine M2 starts its processing (event e4). Therefore, 

having defined the weighted adjacency matrix that incorporates operational times, 

we can study the dynamic properties of the system: machine cycles, machine 

utilization, system throughput, etc. In Chapter 3 we showed how these data can be 

revealed from the system model by using matrix operations. 

How the system is modeled will depend on the designer's priorities – the 

designer will highlight events relevant to his/her requirements. Therefore, in the 

text that follows we show a different model of the same system. 

Let us assume that information relevant to model building are events related to 

the start of operations, parts incoming and parts leaving the system. Thus we 

identify events e1, e2, e4 and e6. The occurrence of e1 activates e2 after tU time units 

(assuming M1 is ready). Since e3 and e5 are not considered, the operational times of 

tasks connecting these events with other events have to be somehow incorporated 
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in the model. From the graph shown in Figure 4.7 we see that machine M1 starts 

processing the next part tMP1+ tM1 time units after the previous part entered the 

machine. The same holds for machine M2 (operational times tMP2+ tM2). Moreover, 

the part processed in M1 enters M2 after tMP1+ tT time units. 

The graph model of the system is shown in Figure 4.8. Operational times are: t1

= tMP1+tM1, t2 = tMP2+tM2, t3 = tMP1+tT and t4 = tMP2+tY. The new weighted adjacency 

matrix has the form: 

1 2 4 6

1

2 U 1

4 3 2

6
4

e e e e

e
e t t
e t t
e t

ε ε ε ε
ε ε

ε ε
ε ε ε
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2

Figure 4.8. Alternative weighted graph of the system shown in Figure 4.5 

There are obvious differences between the two models. The second model is 

reduced and has two loops (diagonal elements t1 and t2 in the new matrix A). While 

in the first model we know exactly when the processing of parts in both machines 

is finished, in the second model these events cannot be tracked directly (actually, 

we intentionally removed them from consideration). 

4.2 String Composition 

In the previous section we showed how an adjacency matrix can be used to 

ascertain whether there exists a path between two particular nodes. It was 

mentioned that information regarding the existence of a path between nodes does 

not give any additional data that would answer how one can travel from one node 

to the other. In order to solve the problem of path finding in a graph, some other 

form of matrix should be used for graph description.  

In this section we describe in detail the string-composition algorithm 

introduced in [5]. We also extend the notation proposed in [6], where 

implementation of the string composition to manufacturing systems analysis and 

design was explored. At the end of the section we give an example of string 
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composition implemented to the problem related to path planning in an AGV 

system. 

String composition is only one of many methods concerned with the shortest 

path problem. The most popular and well known method is Dijkstra’s algorithm [7, 

11]. It finds the shortest path from a single origin to all destinations by examining 

the length of each outgoing arc of a selected node. Every node in a graph is visited 

only once. As a result, the algorithm gives the distances but actual paths are not 

known directly. Only the predecessor of the corresponding node is given. Another 

popular method is the Bellman–Ford (B–F) algorithm. In this algorithm, nodes can 

be visited more than once and all arcs are checked in each iteration. A more 

efficient variation of the B–F algorithm, called shortest label first (SLF), is 

proposed by Bertsekas in [8]. The results of these algorithms are the same as for 

Dijkstra’s: distances and predecessors. 

A very popular algorithm that gives all-nodes shortest paths is the Floyd–

Warshall algorithm proposed in [9, 10]. The input to the algorithm is an n×n
weighted adjacency matrix A, with weights associated with distances. The final 

result is a matrix whose (i,j) element represents the shortest distance between 

nodes i and j. To get the actual path from i to j, the algorithm should be changed in 

order to track calculations in each iteration. The Floyd–Warshall algorithm is 

similar to the shortest-path computation in the use of max-plus algebra, which we 

shall describe in the following section. 

Two definitions, required for the rest of the section, follow. 

Definition 4.2.1 (word): A word is a sequence of alphabetical and/or numerical 

characters. A single character is a word. 

Definition 4.2.2 (string): A string is a sequence of words having the symbol “-” 

between two consecutive words. 

A few examples of words and strings are: 

- words:  w;  abcd;  e4T68u;  resource12, 

- strings: abcd-e4T68u; resource12-w-r4568-w-abcd 

We introduce the following string operations; multiplication (series
composition) denoted with the multiplication symbol “•”, and addition (parallel 
composition) denoted with the standard addition symbol “+”.  

A string S ending with word A is denoted as SS–A, where SS is a substring of S,

i.e. SS is a sequence of words in S followed by word A.

A string S beginning with word A is denoted as A–SS, where SS is a substring of 

S, i.e. SS is a sequence of words in S that follows word A.

Let S1= SS1–A and S2= A–SS2 be two strings. Then, multiplications of S1 with S2

from the right and the left are defined as follows: 

1 2 1 2 1 2S S S SS S S A A S S A S• = − • − = − − (4.3)
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2 1 2 1 0S SS S A S S A• = − • − = (4.4)

where “0” stands for an empty string. 

From Equations (4.3) and (4.4) we see that the multiplication of two strings 

forms a nonempty string if the string that is multiplied from the right ends with the 

word that is the beginning of the right multiplicand. The result of the multiplication 

is a string that is composed of two substrings connected with a common word. 

When the left multiplicand does not end with the word that is the first one of the 

right multiplicand, the result is an empty string. As the results of left and right 

multiplications are different, string multiplication is not commutative. 

Having strings S1, S2, and S3, the following holds: 

1 2 2 1 1 2 3 1 2 3, ( ) ( )S S S S S S S S S S+ = + + + = + +

1 2 3 1 3 2 3

3 1 2 3 1 3 2

( ) ( ) ( )

( ) ( ) ( )

S S S S S S S
S S S S S S S
+ • = • + •
• + = • + •

1 0 0S • =

1 10S S+ =

String addition is commutative and associative with an empty string as a zero 

element. Now we extend the given operations to a particular type of matrix called a 

string matrix. Each string matrix is associated with a graph and may be obtained 

from its adjacency matrix. 

Definition 4.2.3 (string matrix): A string matrix S, associated with graph G = (V, 
E) and its adjacency matrix G, is an n×n matrix with string entry sij obtained as 

follows: for each gij that has entry 1, sij=Ai-Aj, where Ai is a word-identifying node 

ni and Aj is a word-identifying node nj. If gij = 0, sij= 0, i.e. if there are no arcs 

between nodes, the entry is an empty string. 

It is clear that a string matrix can also be determined directly from the graph. 

For the directed graph shown in Figure 4.2, the adjacency matrix has this form: 
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d

0 1 0 0

1 0 0 1

0 1 1 0

0 0 1 0

a b c d
a
b
c
d

=G

According to Definition 4.2.3, a string matrix S associated with adjacency 

matrix Gd is given below: 

−
−−

−−
−

=

000

00

00

000

cd
ccbc

dbab
ba

S

From matrix S we may read that there is, for example, a connection between 

nodes b and c (string element s32 = c–b).  

Even though the string matrix determined as described in Definition 4.2.3 may 

seem a little confusing (the connection between nodes i and j is represented as 

string j–i), for manufacturing systems analysis this form of the matrix is very 

convenient. We shall see later that string composition is mainly used for 

determination of circular waits among resources. The form described in Definition 

4.2.3 gives us wait relations directly, thus providing the conditions for a 

straightforward determination of circular waits. If one imagines that arcs represent 

part flow in an MS and that nodes represent resources, then in order to proceed 

from node i to node j, a part should be first processed in i, which means that j waits 

for i to finish its task. In other words, the connection between i and j is represented 

with the string  j–i.
A more intuitive form of the string matrix may be obtained if the adjacency 

matrix is first transposed and then Definition 4.2.3 is used. The other way is to 

determine the string matrix directly from the graph. If there is an arc from node i to 

node j then the entry that corresponds with the row representing node i and the 

column representing node j is equal to i–j. This method can be used if one deals 

with problems related to path determination (the shortest, the fastest, the cheapest, 

etc.).

Transposition of Gd from our example gives: 

T

d

0 1 0 0

1 0 1 0

0 0 1 1

0 1 0 0

a b c d
a
b
c
d

=G
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The string matrix for Gd
T has the form: 

−
−−

−−
−

=

000

00

00

000

bd
dccc

cbab
ba

S

From the string matrix S we may find that there is a connection between nodes 

b and c (string element s23 = b–c), only this time we may read this information 

directly, in a more natural way. 

Determined one way or the other, the string matrix gives information regarding 

connections between nodes. We only have to make sure to follow the conventions, 

chosen at the beginning throughout the entire procedure of string composition. 

A problem may arise if there is more than one arc between two nodes 

(multigraph). This situation is common in AGV systems as layout designers 

usually plan alternative routes that should be used when the main route is occupied 

by another vehicle or if taking the main route is forbidden for some reason. Figure 

4.9a shows a graph that has two arcs between nodes c and d. By adding a virtual 
node e, as shown in Figure 4.9b, the alternative route is split into two arcs; c–e and

e–d. Even though the inclusion of virtual nodes increases the dimension of the 

string matrix, this way of solving the alterative-route problem is quite simple and 

straightforward. 

We have shown in the previous section how the multiplication of the adjacency 

matrix gives the number of paths between two nodes. We also found how many 

nodes should be visited to get from node to node, but we were not able to tell how 

to travel from one node to another. We will now use string composition to find a 

solution to this problem. 

a)     b) 

Figure 4.9. Splitting of alternative route by virtual-node inclusion 

Let us extend string composition to matrices. Powers of string matrix S are 

calculated as follows: 

1r r−= •S S S (4.5)

i.e. an entry of Sr is found as: 



 Matrix Methods for Manufacturing Systems Analysis 115 

1
, , , 1, 2, ...,

r r
ij ik kj

k
s s s i j k n−= ⋅ = (4.6)

where n is the number of nodes in the corresponding graph. In Equation (4.6) 

standard multiplication should be replaced with series string composition, while 

standard addition should be replaced with parallel string composition. 

For the graph shown in Figure 4.2 we have: 

2

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0

0

0

0 0

a b a b
b a b c b a b c

c c c d c c c d
d b d b

a b a a b c
b a b b c c b c d
c d b c c c c c d

d b a d b c

− −
− − − −

= • = •
− − − −

− −

− − − −
− − − − − −

=
− − − − − −

− − − −

S S S

We see that there are three diagonal elements that are not null string: diagonal 

strings a–b–a, b–a–b and c–c–c. This result shows that there are two second-order 

circles in the graph. Also, all existing second-order paths (containing two arcs, i.e.

all paths with l = 2) are represented with corresponding strings. Third-order paths 

( l = 3) can be found as: 

3 2

0

0

a b a b a b c c a b c d
b a b a b c d b b a b c b c c c b c c d
c d b a c c d b c d b c c c c c c c c d

d b a b d b c c d b c d

= •

− − − − − − − − −
− − − − − − − − − + − − − − − −

=
− − − − − − − − − + − − − − − −

− − − − − − − − −

S S S

The string s23
3 = b–a–b–c + b–c–c–c demonstrates that there are two third-order 

paths between nodes b and c, while s33
3 = c–d–b–c + c–c–c–c shows that there are 

two third order circles that start and end with node c. 

How far one may go with string matrix composition depends on the specific 

problem. After n multiplications of the string matrix all paths in the graph will be 

revealed. Graphs with a large number of nodes require many multiplications, thus, 

finding all paths can be a time-consuming task that may need huge computational 

power. There are many ways to solve this problem, depending on the final 

objective of string composition. 

 For example, the given results show that the circle exposed by composition 

repeats in several string matrix elements (b–c–d–b, c–d–b–c and d–b–c–d in S
3
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represent the same circle). As our aim is only to find circles in the graph, equation 

(4.5) can be redefined. Duplicate values use computation time needlessly and do 

not give any new information. As proposed in [6], the matrix composition can be 

changed in the following way: 

1
, , 1, 2,..., , 1

r r
ij ik kjk

s s s i j n k i−= ⋅ = ≥ + (4.7)

thus eliminating duplicated circles and restricting the required calculations. A 

closer look at Equation (4.7) makes it clear that by forcing k to be greater than i we 

do not check if already passed nodes belong to currently calculated circles. If a 

node that corresponds with the current row (i) belongs to some circle that includes 

a passed node (< i), then this circle is already determined and there is no need to 

check previously passed nodes – only nodes above the current row (> i) should be 

checked. 

We can even further exploit the fact that the string composition objective is the 

determination of circles. If a graph has n nodes then the nth composition should 

give the circle that includes all nodes in the graph (if one exists), i.e. when 

performing the nth composition we have to calculate only the first diagonal term. 

As the (n–1)th composition exposes circle(s) that comprise(s) n–1 nodes, only the 

first two diagonal terms should be calculated. We may proceed in the same 

manner. Finally, we conclude that only (n–r+1) diagonal terms must be calculated 

and checked for possible circles. By keeping the original string matrix S

unchanged we need to determine (n–r) rows and (n–r+1) diagonal terms of Sr (the 

rth composition) in order to calculate the r ordered circles in the corresponding 

graph. 

When matrix composition is used for some other purpose, a string matrix can 

be structured so that the calculation of string composition will not require large 

computational capacity. In practice, problems of path determination usually have 

some restrictions that can help in rearrangement of the corresponding string matrix. 

For example, in many situations nodes are divided into three groups: origins, 

destinations and bypasses. Only traveling from origin to destination and vice versa
is allowed. Nodes that lie on the paths between origins and destinations belong to a 

bypass group. Having groups of nodes we may structure a string matrix so that the 

first k rows represent origins, followed by l rows that correspond to bypasses, and 

the final m rows that should stand for destinations. Assumptions regarding allowed 

travel routes reduce the number of required calculations since we can skip 

compositions of a row and a column that stand for an origin (destination) as trips 

from origin to origin (destination to destination) are forbidden. Moreover, prior to 

the rth composition, all diagonal elements of S
r-1 can be set to 0 since they 

represent circles. In the following example we show how the given system 

restrictions define the string matrix structure and restrict string composition. 
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Example 4.2.1 (an AGV shortest-path determination by using the string 

composition) 

An AGV system layout is shown in Figure 4.10. Since formation of the string 

matrix is based on data that are structured in a particular way, prior to 

determination of the system string matrix we have to describe these structures. 

The layout is composed of segments and nodes. A segment is an object defined 

by its properties. It can be circular or straight: circular segments are defined by 

three and straight segments by two Cartesian points (in world, i.e. shop floor, 

coordinates). We differentiate two types of segments based on traveling direction: 

unidirectional and bidirectional. Each segment has a weight factor that can be 

associated with some physical property (maximum allowed speed, segment length, 

etc.).  Segments form paths. 

A node is an object defined as the point on a segment. Each node has a set of 

parameters related to a vehicle – actions that should be performed by the vehicle 

and positions of forks (approach speed, fork orientation, fork pick-up elevation, 

departure speed, etc.). Nodes are grouped as origins, destinations and bypasses. 

Figure 4.10. An AGV system layout composed of nodes and segments 

The layout has 7 nodes and 15 segments: 

• set of nodes 

N = No U Nb U Nd = {a} U {b, c, d, e} U {f, g}

• set of segments 

C = Cs U Cc = {c1, c3, c5, c7, c10, c13} U {c2, c4, c6, c8, c9, c11, c12, c14, c15}

a

b

c

d

f

c1

c2

c3 c4

c5

c8

c9c6

c7

e

c10

g

c11

c12

c13

c14

c15
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where No, Nb and Nd are sets of origin, bypass and destination nodes, respectively, 

while Cs and Cc are sets of straight and circular segments, respectively. All 

segments, except c4, c5 and c10, are bidirectional. We denoted segments as ci since 

the letter s is used for string-matrix elements. 

As may be seen from Figure 4.10 that some paths are formed of only one 

segment, while others comprise two and more segments: 

(a, b)  {c1} - bidirectional, 

(b, c)  {c2, c3} - bidirectional, 

(b, f)  {c2, c4, c5} - unidirectional, 

(c, d)  {c6} - bidirectional, 

(c, e)  {c11, c12} - bidirectional, 

(c, g)  {c10} - unidirectional, 

(d, f)  {c7, c8, c9} - bidirectional, 

(e, g)  {c13, c14, c15} - bidirectional. 

Based on the layout data we can form the system string matrix: 

−
−

−−
−−

−−−−
−−−

−

=

000000

000000

00000

00000

000

0000

000000

eg
df

gece
fdcd

gcecdcbc
fbcbab

ba

S

Calculation of S2 gives: 

−−
−−

−−−−−−
−−−−−−

−−
−−

+−−
−−−−

−−−−
−−

+−−
−−−−

=

000000

000000

0000

0000

000

0000

00000

ceg
cdf

gcedcebce
fcdecdbcd

gec
fdc

fbc
egcabc

gcbecb
dfb

dcb
fbacba

2
S

Note that all diagonal elements are set to 0 as circular paths are not of interest 

when it comes to shortest-path determination. From S2 we may see that there are 

two second-order paths from b to d and from c to f. Further string compositions 
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give paths of 3rd, 4th, etc. order. The calculation of these paths we leave to the 

reader for exercise.  

Our goal is to find the shortest paths from all origins to all destinations and vice
versa. In our example these paths are between node a and nodes f and g. In other 

words, we have to check string elements s16, s61, s17, and s71 after each composition. 

The results are: 

s16
2 = a–b–f

s16
4 = a–b–c–d–f

s17
3 = a–b–c–g

s17
4 = a–b–c–e–g

s17
5 = a–b–f–d–c–g

s17
6 = a–b–f–d–c–e–

s61
4 = f–d–c–b–a

s71
4 = g–e–c–b–a.

There are two alternative paths from a to f and four possible paths from a to g.

As there are segments that are not bidirectional, there is only one path from f to a
and from g to a. If we suppose that segment weight w(ci) stands for length, which 

can be determined easily from input data structure (points that define segments), 

then it is easy to find the shortest path among the given alternatives: 

{ }2 4

16 16( , ) min ( ), ( )a f s sw w wσ σ σ=

{ }3 4 5 6

17 17 17 17( , ) min ( ), ( ), ( ), ( )a g s s s sw w w w wσ σ σ σ σ=

where 
2

16 1 2 4 5( ) ( ) ( ) ( ) ( )s c c c cw w w w wσ σ σ σ σ= + + +
4

16 1 2 3 6 7 8

9

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

s c c c c c cw w w w w w w
cw

σ σ σ σ σ σ σ

σ

= + + + + +

+
3

17 1 2 3 10( ) ( ) ( ) ( ) ( )s c c c cw w w w wσ σ σ σ σ= + + +
4

17 1 2 3 11 12

13 14 15

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

s c c c c cw w w w w w
c c cw w w

σ σ σ σ σ σ

σ σ σ

= + + + +

+ +
5

17 1 2 4 5

9 8 7 6 10

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

s c c c cw w w w w
c c c c cw w w w w

σ σ σ σ σ

σ σ σ σ σ

= + + +

+ + + + +
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6

17 1 2 4 5 9

8 7 6 11 12

13 14 15

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

s c c c c cw w w w w w
c c c c cw w w w w
c c cw w w

σ σ σ σ σ σ

σ σ σ σ σ

σ σ σ

= + + + +

+ + + + +

+ + +

Using the described procedure, one may find not only the shortest path between 

nodes but also the optimal one (the shortest path is optimal if distance is 

considered). If segment weight is associated with some criterion, then the 

determined path will be optimal for that particular criterion. 

The result of origin–destination path finding is a set of all possible routes in a 

system that an AGV can pass through. This provides an option for the calculation 

of shortest paths between all the nodes in the system. It is very important to have 

this possibility since there are situations when a vehicle moves out of a segment it 

is currently passing. That may happen if there is a loss of communication between 

the vehicle and the supervisor or if some problems with navigation occur (loss of 

visual contact between laser source and mirrors). In addition, if a vehicle is 

manually controlled it can be switched to autonomous mode at any position on the 

shop floor. In this case, a navigation system provides information regarding current 

vehicle position and then the vehicle autonomously moves towards the closest 

segment. Once the vehicle is on the segment, the supervisor, having all possible 

routes, sends the vehicle information regarding the path it should take to get to the 

desired node. 

The other reason why all system paths should be at the supervisor’s disposition 

is AGV dispatching.  When a vehicle approaches the bypass node it sends a request 

to the supervisor for the next segment allocation. When the requested segment is 

occupied, the supervisor allocates an alternative segment (if there is one) to the 

vehicle. Without knowing all the possible routes beforehand the supervisor would 

not be able to dispatch the vehicles according to a desired strategy. 

4.3 Max-plus Algebra 

In general, there are two main approaches to analysis and modeling of discrete 

event dynamic systems (DEDS). When the designer is investigating only the 

ordering of events that may occur in DEDS, his/her main concern will be the 

system logical behavior. On the other hand, if the system is studied in order to 

examine time instants at which a particular event took place, then the temporal 
behavior of DEDS should be analyzed and modeled. 

The algebra, called max-plus, is one of the mathematical frameworks suitable 

for the latter case. Although max-plus theory is very convenient when 

synchronization phenomenon in DEDS is considered, it is not able to handle 

“nonlinear” problems such as concurrency (in recent years there have been some 

results that extend the theory to nonlinear cases [15, 16] and systems with so-called 

switching functions [12]). The limitation directed by concurrency constricts the use 
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of max-plus algebra to a special class of DEDS. This class of systems is called 

event graphs.

In this section we give only the basic definitions and properties of max-plus 

algebra. For those who want to learn more about the topic, very good resources are 

[13, 14, 17]. At the end of the section an illustrative example for the manufacturing 

system modeled as a marked graph (the order of operations is known beforehand) 

is given. 

The maximization and addition in max-plus theory are defined over the 

extended set of real numbers. 

Definition 4.3.1 (extended set of real numbers): A set εℜ is a set of real numbers 

that includes element , { }εε ∪ℜ=ℜ , where the numerical value of  = – .

Definition 4.3.2 (maximization in max-plus): Maximization over εℜ , represented 

by ⊕ , is defined as 

),max( yxyx =⊕ (4.8)

Definition 4.3.3 (addition in max-plus): Addition over εℜ , represented by ⊗ , is 

defined as 

yxyx +=⊗ (4.9)

Having defined the basic operations in max-plus, we can identify neutral 

elements of the algebra. Element  is the neutral element with respect to 

maximization,  

max( , ) max( , )x x x x xε ε ε ε⊕ = ⊕ = = =

while e is the neutral element with respect to addition, 

x e e x x⊗ = ⊗ =

The numerical value of e equals 0. It should be noted that  is an absorbing element 

of ⊗ ,

The operations ⊕  and ⊗  can be extended to matrices. This is very important 

since there is a unique relation between a graph and its weighted adjacency matrix. 

Implementation of max-plus algebra to matrices allows detailed analysis of graphs, 

thus providing thorough insight into systems modeled with graphs. 

If we calculate C = A⊕ B, then 

x xε ε ε⊗ = ⊗ =
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max( , )ij ij ij ij ijc a b a b= ⊕ = (4.10)

It is clear that maximization is defined only for matrices of the same size as it is 

performed element-by-element. 

Entries of matrix C, obtained by max-plus matrix addition, C = A⊗ B, are 

calculated as 

max( )ij ik kj ik kjk k
c a b a b= ⊕ ⊗ = + (4.11)

Matrix addition in max-plus theory is defined only if the number of columns of 

A is equal to the number of rows of B. It should be noted that when A and B are 

square matrices of the same order, then A⊗ B  B ⊗ A. The identity matrix E in 

max-plus algebra has diagonal elements equal to e and other entries equal to .

Maximization and addition of matrices in max-plus represents a parallel and a 

series composition, respectively. Matrix compositions can be comprehended if one 

imagines a set of nodes that symbolize cities [18]. As cities are connected by roads 

and rails, two graphs may be used to separately describe two possible ways of 

traveling (Figure 4.11). Let A and B be weighted adjacency matrices of these two 

graphs; aij and bij representing road and rail distances between cities j and i. The 

parallel composition (maximization) of A and B gives matrix C with element cij
equal either to aij or bij depending on which distance, road or rail, is longer. In 

other words, matrix C has entries that match one of the two alternative routes 

between cities j and i. Even though the original graphs offered the possibility of 

traveling from j to i either by road or by rail, in the graph attained by their parallel 

composition only one route remains feasible. According to Figure 4.11, node b can 

be approached from node a by road C2 or by rail T1. Since C2⊕ T1 = 5⊕ 6 = 6 = 

T1, on the graph shown in Figure 4.12, only rail T1 is left. 

On the other hand, the series composition of A and B tells us whether it is 

possible to travel from j to i using both means of transport, starting with train and 

then switching to a car. If this trip is feasible, then cij receives a value that is equal 

to the maximum distance of all possible routes obtained by adding road distance aik
to rail distance bkj, where k is an intermediate node (the node where the passenger 

changes a train for a car). From Figure 4.12 we see that this kind of trip is possible 

if one wants to get from node d to node b. First rail T5 should be taken followed by 

road C2. The distance traveled is C2 + T5 = 5 + 3 = 8. 

In the previous section the shortest-path problem was solved by using string 

composition. Max-plus also offers a solution to that problem by changing the 

maximum operation with the minimum operation. In this case  should attain the 

value of + , while all other properties of max-plus, defined above, still hold. 

Within this new framework we can find the shortest distances that consist of r arcs 

from the following expression: 
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1r r−= ⊗A A A (4.12)

where A is an n×n weighted adjacency matrix and r < n. Entries in A
r are 

calculated as 

1 1
min( )

r r r
ij ik kj ik kjkk

a a a a a− −= ⊕ ⊗ = + (4.13)

Just as in the case of string composition, diagonal elements of Ar correspond to 

circles, i.e. ar
ii stands for the shortest path, containing r arcs, from node i to itself. 

As the shortest path between two nodes may contain more than one arc, in 

order to get the correct result we have to compare matrix A with all matrices Ar

calculated for r = 2, 3, …, n–1: 

2 1min min( , ,..., ) .n
ij ij ij ija a a a −= (4.14)

Applying Equation (4.10) to Equation (4.14) it follows that 

min 2 1... n−= ⊕ ⊕ ⊕A A A A (4.15)

a

b

c

d

T2=2

T1=6

T3=10

T4=3

T5=3

rails

a

b

c

d

C2=5

C1=7 C3=3

C4=6

C5=8

C6=4

roads

Figure 4.11. Two weighted graphs representing road and rail connections 

Figure 4.12. Parallel and series compositions of graphs shown in Figure 4.11 

Equations (4.12)–(4.15) are applicable to the max operation also by substituting 

min with max and +  with – .
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4.3.1 DEDS Model in Max-plus Algebra 

Let us now return to our main objective that is the determination of dynamical 

properties of discrete event systems. In order to focus on the subject and to show 

why max-plus is suitable for DEDS analysis, let us consider the discrete event 

system analyzed in Example 4.1.1. Remember, Figure 4.13 shows the graph 

representation of the manufacturing system we examined. Note that notations have 

been changed in order to be consistent with max-plus nomenclature – a time instant 

at which event i occurs for the kth time is denoted as xi(k). To simplify the problem 

we will concentrate on event x1 – the start of processing of the part in machine M1.

We have to find time instants at which event x1 occurs.

From the graph we see that the processing of the part cannot start if the part has 

not entered the system and machine M1 has not finished the processing of the 

previous part. Additionally, x1 is shifted tU time units after event u and t1 time units 

after the occasion of x1. If we assume that u and x1 occur simultaneously at time 

instant t then the next occasion of x1 will take place after both tasks that start with 

events u and x1 are finished, i.e. x1 will occur at time instant max(t+tU, t+t1).

Figure 4.13. Graph representation of the system in Example 4.1.1 

The manufacturing system example reveals that two operations, maximization 
and addition, play an essential role in the investigation of dynamic properties of 

discrete event systems. This makes max-plus algebra the first choice for the study 

of the dynamics of event graphs. 

From our discussion we can define the equation for the time instant in which 

machine M1 starts the processing of the kth part; 

( )U1 1 1( ) max ( 1) , ( )x k x k t u k t= − + +

Following the same reasoning, the processing of the kth part in machine M2 can 

start t3 time units after the kth part leaves machine M1 and t2 time units following 

the completion of the processing of the (k–1)th part in machine M2:

( )
( )

2 1 3 2 2

U1 1 3 3 2 2

( ) max ( ) , ( 1)

max ( 1) , ( ) , ( 1)

x k x k t x k t

x k t t u k t t x k t

= + − +

= − + + + + − +

For the output we can write 



 Matrix Methods for Manufacturing Systems Analysis 125 

2 4( ) ( )y k x k t= +

By using Equation (4.8) and (4.9) these expressions become: 

U1 1 1( ) ( 1) ( )x k x k t u k t= − ⊗ ⊕ ⊗

U2 1 1 3 2 2 3( ) ( 1) ( ) ( 1) ( ) ( )x k x k t t x k t u k t t= − ⊗ + ⊕ − ⊗ ⊕ ⊗ +

2 4( ) ( )y k x k t= ⊗

where ⊗  has priority over ⊕ . The upper equations can be affirmed in max-plus 

matrix formulation: 

[ ]

U1

U1 3 2 3

4

( ) ( 1) ( )

( ) ( )

t t
k k k

t t t t t

k t k

ε

ε

= ⊗ − ⊕ ⊗
+ +

= ⊗

x x u

y x

The obtained model completely describes the system dynamics. It has a well-

known linear state space form: 

( ) ( 1) ( ) , (0) 0

( ) ( )

k k k

k k

= ⊗ − ⊕ ⊗ =

= ⊗

x A x B u x x

y C x
(4.16)

Note that matrix A in Equation (4.16) is not necessarily an adjacency matrix of the 

graph that represents the system described by this equation. 

Once a discrete event dynamic system is modeled by Equation (4.16), a whole 

range of various phenomena may be investigated [19]. For example, in the case of 

manufacturing systems, it is now possible to determine the slowest (bottleneck) 

part of the system. Furthermore, by studying the influence of operational times, the 

designer is able to decide in which part of the system an extra resource should be 

integrated in order to maximize the system throughput and/or improve resources 

utilization. Additionally, the propagation of disturbances through the system can be 

explored, in order to answer how much time the system needs to return to the 

steady state. 

Questions concerning the cyclic activity of the system are especially 

interesting. As we mentioned, cyclic behavior of a discrete event system is treated 

as a stable state, whereas in time-driven systems this manifestation is considered as 

marginally stable. In fact, many discrete event systems, particularly manufacturing 

systems, are designed to start working periodically after a short transient time. In 

the text that follows we are concerned with the properties of the model (4.16) that 

lead to periodic activities. 

Let us again think of the manufacturing system shown in Figure 4.5 and 

represented by the graph in Figure 4.13. Suppose that the first processing part is 

deposited into the system at a time instant 0, i.e. u(1) = 0. From the max-plus 
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model of the system we calculate that x1(1) = tU, x2(1) = tU + t3 and y(1) = tU + t3 + 

t4. The part has propagated through the system and left it at time instant tU + t3 + t4.

Now suppose that parts arrive into the system each Tin time units starting at t = 0, 

i.e. u(k) =(k-1)·Tin. Immediately a question arises: how often do the parts leave the 

system or, in other words how fast do the parts spread through the system? We 

have just calculated that the first part needed tU + t3 + t4 time units to get from the 

input to the output. But what about the second, the third and the following parts? 

We understand from the model that machine M1 needs t1 time units after it begins 

the processing of the first part to become ready for processing the second one. If Tin

< t1 then the second part should wait some time to be processed by the machine. As 

parts are arriving with period Tin, after some time the machine will get swamped 

with parts. At this point we may conclude that t1 should be less than Tin in order to 

allow continuous part flow through the system, but further discussion shows that 

this is not necessarily true. Even if the condition for regular work of the first 

machine is satisfied, the same overflow effect will happen with machine M2 if Tin < 

t2. Since Tin > t1, parts arrive at machine M2 with period Tin. Following the same 

reasoning as for M1 we realize that t2 should be less than Tin.

This simple example highlights the importance of system analysis when it 

comes to DES design. How can the max-plus model be used to determine system 

properties that would reveal conditions that should be satisfied in order to make the 

system react according to the desired criteria? Let us suppose that each time one 

part leaves the system, described with Equation (4.16), another part enters the 

system. As a     consequence we have 

)1()( −= kyku

Including this into Equaiton (4.16) and having in mind that the model holds for any 

k, we can write 

( ) ( 1) ( 1)

( 1) ( 1)

k k k
k k
= ⊗ − ⊕ ⊗ −
− = ⊗ −

x A x B y

y C x

Further, we can include y(k–1) in the equation for x(k), thus obtaining 

( ) ( 1) ( 1)k k k= ⊗ − ⊕ ⊗ ⊗ −x A x B C x

The manipulation gives 

0( ) ( 1) , (0)

( ) ( )

k k
k k
= ⊗ − =
= ⊗

x A x x x

y C x
(4.17)

where 

= ⊕ ⊗A A B C

What we get as the result of assumption that u(k)=y(k–1) is an autonomous 

system (4.17). In fact, system (4.17) is a closed-loop form of Equation (4.16) with 
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unity feedback [23]. This feedback can be visualized if one imagines a pallet that 

moves through the system together with a part. As soon as the part leaves the 

system the pallet is released and immediately fed to the input. This representation 

can be further exploited if we delay the trip of the pallet, which in max-plus 

corresponds to 

( ) ( 1)k k= ⊗ −u C y (4.18)

It is apparent that matrix A  can be determined as 

= ⊕ ⊗ ⊗A A B G C

Releasing the pallet when the part departs from the system is a very restrictive 

strategy in the sense of resources utilization. The number of parts that can be 

simultaneously processed within the system is equal to the number of available 

pallets. If there is only one pallet at disposition then the entire system will work 

with only one part. The opposite is the case when tens of pallets are prepared while 

the system can handle only a few parts at a time, which means that many pallets 

will remain unused. 

An alternative strategy is to release the pallet when some event in the system is 

started. This strategy does not wait for the part to come to the output in order to 

allow the next part to be fed into the system. In max-plus form this can be 

described as 

( ) ( 1)k k= ⊗ −u K x (4.19)

The problem of finding the number of pallets that provide the desired 

performance of the system is similar to the problem of parts arrival rate 

determination. One way or the other we have to ascertain some inherent property 

of the system that would give us an indication of how to feed the parts into the 

system, i.e. how often the parts leave the system.  

4.3.2 Periodic Behavior of DEDS in Max-plus 

We consider an autonomous system of the form 

0( ) ( 1) , (0)

( ) ( )

k k
k k
= ⊗ − =
= ⊗

x A x x x

y C x
(4.20)

Usually, the symbol ⊗  is omitted, i.e. Equation (4.20) is written as 

0( ) ( 1) , (0)

( ) ( )

k k
k k
= − =
=

x Ax x x

y Cx

Periodic activities of the system presume that the difference between two 

consecutive occasions of event xi is constant. If we denote this constant difference 

with symbol , then 
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( 1) ( )

( 2) ( 1)

...

( ) ( ( 1))

...

i i

i i

i i

x k x k

x k x k

x k r x k r

+ − =

+ − + =

+ − + − =

From this set of equations it is easy to show that 

( 1) ( )

( 2) 2 ( )

( 3) 3 ( )

...

i

i i

i i

ix k x k

x k x k

x k x k

+ = +

+ = +

+ = +

Since all events in the system have cyclic behavior, a general form of the 

equations above is 

0( ) ( ) , 1,2,..., ,i ix k r r x k i n k k+ = + = ≥ (4.21)

where k0 is the number of the part that is processed when the system starts periodic 

activity (after the transient state has finished). Equation (4.21) demonstrates that 

the inherent property of the system is determined by parameter , i.e. the time 

period between departures of two consecutive parts from the system (production 

cycle) is equal to . We may set arrival rate(s) of parts to be as small as possible 

but the system cannot process the parts faster than what is determined by the 

production cycle. 

At this point, two issues have to be addressed: a) how to calculate  and b) is 

unique or are there several values that satisfy Equation(4.21)? In other words is it 

possible for a system to have events whose cycle periods differ? When one 

considers the former question it appears that it is natural to have more than one 

cycle period in the system. We saw that two machines, which have been used 

throughout this chapter as an example, have different cycles (t1 and t2). This 

demonstrates that the manufacturing system designer is the one who actually 

enforces the operational cycles to the system resources in order to get the final 

product. As we shall see later, depending on the system structure and desired 

performance, in some systems this cycle is unique for all resources, while in others 

there can be more than one. 

From (4.21) it seems that  can be calculated very easily, 

0

( ) ( )
, 1, 2, ..., ,i ix k r x k

i n k k
r

+ −
= = ≥ (4.22)
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The problem with this equation is that in order to get , values of xi(1), xi(2),

xi(3), … have to be determined. The second difficulty is that since k0 is not known 

in advance we have to execute the max-plus model until cyclic activity is reached, 

which might be a tedious job. Furthermore, some of the events can start to cycle at 

k = k0 while others remain in a transition phase (when the system has more than 

one ), which means that one should proceed until all events demonstrate 

periodicity. All these facts show that, although  can be calculated from Equation 

(4.21) we should try to find another method. 

By definition, the cycle  represents the difference between two consecutive 

occasions of an event in the system that has periodic activities. Hence, its value is 

related to time. If we recall the procedure for obtaining an autonomous system 

Equation (4.17), we remember the assumption that each time a part leaves the 

system a pallet is relocated to the system input. As a consequence, the pallet 

holding the part travels along some circular path and periodically visits resources, 

every time with a new part to be processed. The circular path  has the 

corresponding weight w and length . In our case, weight represents the time 

needed for the pallet to pass the path. If we assume that there are enough pallets, 

and that the system capacity cannot be influenced by their number, it can be shown 

that the average time between two successive processings on the resource that 

belongs to the circular path is equal to the mean weight of the path, wσ , as 

defined in Definition 4.1.7. Since the pallets may travel along several paths on their 

way from the input to the output, if we want to find the production cycle, we have 

to find the “slowest” path (the path that has the largest mean weight). This value is 

exactly equal to the maximum cycle mean as defined in Definition 4.1.8. 

The previous discussion has shown how to determine the production cycle 

from the adjacency matrix of the graph that represents the system. The weights of 

circular paths of length = r can be found as diagonal elements of matrix A
r,

calculated according to Equation (4.12). In order to find the maximum cycle mean 

of the system, all diagonal entries of matrices A, A
2, A

3, …, A
n need to be 

compared, which yields 

1

( )in

i

trace
i=

= ⊕ A
(4.23)

where division is performed in the standard way and 

1
( )

n

jjj
trace a

=
= ⊕A (4.24)

Relation (4.23) gives the correct value for  only when the weighted adjacency 

matrix A corresponds to a strongly connected graph. The obtained value represents 

the unique production cycle of the system. However, one should use Equation 

(4.23) with caution since this equation assumes that each arc on the circular path 

can hold a part that is not necessarily a truth as we show in Example 4.3.1.   

The strong connectivity of the graph may be tested in several ways. By using 

powers of adjacency matrix G, obtained by Equation (4.2), we can repeat the 

multiplication n–1 times and then check if 
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2 3 1... 0 , ,n
ij ij ij ijg g g g i j−+ + + + ≠ ∀ (4.25)

When Equation (4.25) is true, the corresponding graph is strongly connected. The 

max-plus version of the previous relation has the form 

2 3 1( ... ) , ,n
ij i jε−⊕ ⊕ ⊕ ⊕ ≠ ∀A A A A (4.26)

where powers of A are calculated according to Equation (4.12). If string 

composition is used for the test, then it should be 

2 3 1... 0 , ,n
ij ij ij ijs s s s i j−+ + + + ≠ ∀ (4.27)

for the corresponding graph to be strongly connected. In Equation (4.27) 0 is a null 

string and powers of sij are obtained from Equation (4.6), while additions are 

carried out as series string compositions. 

By knowing the production cycle  we can find not only the system throughput, 

which is defined as 1/ , but also the utilization of each resource in the system. If 

we define the resource cycle, denoted TMi, as a time required for a part to be 

processed by the resource (resource operation) plus the time required for the 

resource to prepare for work on the part (resource setup(s)), then resource
utilization is calculated as 

Mi

i

T
η = (4.28)

A discrete event dynamic system characterized with a graph that is not strongly 

connected may have more than one cycle mean. This fact is evidence that the 

system is composed of subsystems that can achieve cyclic activities with different 

periods. Working out these periods might be difficult, depending on the system 

structure. However, Equation (4.22) can be a good start. Those who are interested 

in this subject may wish to consult [20–22]. 

4.3.3. Buffers in Max-plus Algebra 

Although it appears that the determination of the model (4.16) is straightforward 

once the manufacturing system is designed and its tasks are defined, there are 

several issues in max-plus DEDS modeling that have to be elaborated further. Let 

us mention a few of them. For instance, what would happen with the model if there 

exist bounded buffers between the machines, or how do the initial conditions of 

machines (idle or work-in-process) influence the model? Moreover, as the 

elements of matrices in Equation (4.16) can vary with time (in a deterministic or 

stochastic manner), the question is how does max-plus algebra handle systems that 

are not time invariant and/or deterministic? It is beyond the scope of this text to 
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elaborate on these topics. Here we just briefly explain a case when a finite-capacity 

buffer is positioned between two machines. The problem of initial conditions will 

be addressed in the example that follows at the end of the chapter. 

The model derived in the previous example shows that event x1 does not 

depend on event x2 (a12 =  in matrix A): the processing of parts in M1 continues no 

matter what the status of machine M2 is. It is obvious that when the processing 

time of M2 is longer than the processing time of M1 added to the time needed for 

the part to get from M1 to M2, the second machine in line will be flooded with 

parts. Hence, the obtained model is valid only if there is a buffer with infinite depth 

between machines. In order to cover a realistic situation we have to incorporate 

finite-capacity buffers in the max-plus model of the system.  

Let us place a buffer with a finite capacity N between two machines, Mi and 

Mi+1, connected in series (Mi is the predecessor of Mi+1). After being processed in 

Mi a part enters the buffer. When Mi+1 is idle it takes the part from the buffer. 

Machine Mi cannot proceed with the processing of parts once the buffer is full. 

Now, let us assume that the processing time of Mi+1 is greater than the processing 

time of Mi. In this situation the buffer becomes occupied sooner or later. If the 

buffer is full (containing N parts), machine Mi can start processing one more part 

and then it needs to wait until Mi+1 becomes ready to free one place in the buffer. 

We can write: 

( )1( ) max ( 1) , ( ( 1))i i i ix k x k t x k N+= − + − + (4.29)

where ti is the processing time of  Mi.

Usually, equations that describe the dynamic behavior of systems by using 

max-plus operations cannot be directly transferred to the form of Equation (4.16). 

A more general max-plus form should be used: 

0 1

0

( ) ( ) ( 1) ...

... ( ) ( ) , (0)

( ) ( ).

p

k k k
k p k

k k

= ⊗ ⊕ ⊗ − ⊕
⊕ ⊗ − ⊕ ⊗ =

= ⊗

x A x A x

A x B u x x

y C x

(4.30)

As Equation (4.30) is implicit in x(k), in order to get form (4.16), the following 

substitution should be made: 

[ ]

0 0

1

2
0 0

1

( ) ( ) ... ( ) ( )

( 1) ... ( ) ( )

( )

( 1) ... ( ) ( )

p

p

p

k k k p k

k k p u k

k

k k p k

= ⊗ ⊗ ⊕ ⊕ ⊗ − ⊕ ⊗

⊕ ⊗ − ⊕ ⊕ ⊗ − ⊕ ⊗

= ⊗ ⊕ ⊕

⊗ ⊗ − ⊕ ⊕ ⊗ − ⊕ ⊗

x A A x A x B u

A x A x B

A x A E

A x A x B u

(4.31)
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where E is a max-plus identity matrix and A0
2 is obtained according to Equation 

(4.12). The elimination of x(k) from the right requires n substitutions to be carried 

out. Finally, we get 

[ ]

1 1
0 0 0 0

1

( ) ( ) ...

( 1) ... ( ) ( )

n n n

m

k k

k k m u k

+ −= ⊗ ⊕ ⊕ ⊕ ⊕ ⊕ ⊗

⊗ − ⊕ ⊕ ⊗ − ⊕ ⊗

x A x A A A E

A x A x B
(4.32)

As A0
n+1 = [ ], the first component of Equation (4.32) can be removed, which 

yields 

[ ]*
0 1( ) ( 1) ... ( ) ( )mk k k m u k= ⊗ ⊗ − ⊕ ⊕ ⊗ − ⊕ ⊗x A A x A x B (4.33)

where 

* 1
0 0 0 0...n n−= ⊕ ⊕ ⊕ ⊕A A A A E (4.34)

In Equation (4.33), which is obtained by substitutions, state space vector x(k)

should be redefined to integrate components x(k–2), x(k–3), …, x(k–m). 

Thereafter, Equation (4.33) takes the form of Equation (4.16) and max-plus 

analysis, described in the previous subsection, can be applied. 

In conclusion, we need to stress that we have here presented only a small part 

of max-plus theory concerned with DEDS. Our intention was to provide the reader 

with a basic knowledge of the subject and to touch upon the potentials of max-plus 

in DEDS system analysis and design. Because a max-plus linear model has many 

similarities with the state space linear model of time-driven systems, it is possible 

to reproduce procedures and methods used in linear system analysis by replacing 

standard operations with maximization and addition (of course, symbols need to be 

replaced carefully as their replacement is not straightforward). In this way, the 

properties of time-driven systems, such as observability, controllability, transfer 

function, impulse response, etc., can be transposed to event-driven systems. 

Example 4.3.1 (DEDS modeling and analysis by max-plus algebra) 

Our goal in this example is to determine a max-plus model of the manufacturing 

system shown in Figure 4.14. The system has three machines and one AGV. Two 

types of parts are processed, A and B. Part A is transported by the AGV from an 

input position to machine M1. When the processing in M1 is finished the part 

moves to the second machine, M2, to be removed from the system by the AGV and 

put on the part A output place. Part B is fed directly to the machine M3. Once the 

processing in M3 is  finished the AGV takes part B and transports it to the part B 

output place. The operations that can be identified based on the system description 

are listed in Tables 4.3 and 4.4, accompanied by operational times and machine 

setup times. 
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Figure 4.14. Layout of the manufacturing system studied in Example 4.3.1 

Table 4.3. Operational times and setup times of machines 

Machine M1 M2 M3

operational time 8 13 15 

setup time 2 3 3 

Table 4.4. Operational times and set-up times of the AGV 

Operation Transport A to 

M1

Transport A from 

M2

Transport B from 

M3

operational time 5 6 3 

setup time 4 6 5 

Events of interest (i.e. events that should be modeled), shown in Table 4.5, 

correspond with the beginnings and endings of operations identified in the system. 

From the system description and Table 4.4 we see that the AGV is a shared 

resource since it has to perform three different tasks: loading M1 and unloading M2

and M3. As a consequence, two (or even three) events may simultaneously request 

the AGV. Clearly, the manufacturing system can involve concurrent events and it 

does not fall in the class of systems that can be described as event graphs, thus it 

cannot be modeled with max-plus algebra. 

Even though the sequence of operations should be strictly defined in order to 

make the system suitable for max-plus description, in particular circumstances a 

manufacturing system that employs shared resources does not require beforehand 

sequencing. This may occur when operational times in the system are structured so 

that simultaneous requests for a shared resource cannot take place (see Example 
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3.3.1). This means that because of the natural properties (operational times) of the 

system, the system works according to a sequence that is its inherent property. 

However, it is very difficult to establish whether a system has this property, 

especially if one is dealing with systems that contain many shared resources and 

part paths. Up to date, time-consuming simulation is the only way to resolve this 

dilemma. 

Table 4.5. Events identified in the system shown in Figure 4.14 

Event Description 

x1 AGV starts to move part A in machine M1

x2 transportation of part A to M1 is finished; release of AGV and start of 

processing of the part in M1 

x3 processing in M1 is finished; release of M1 and start of part A processing 

in M2

x4 AGV starts with M2 unload; M2 is released 

x5 transportation of part A to the output place is finished; AGV is released 

x6 start of part B processing in M3

x7 AGV starts with M3 unload; M3 is released 

x8 transportation  of part B to the output place is finished; AGV is released 

Although the system in the example is simple, we would not investigate if 

machine operational times provide sequence(s) without concurrency. We define the 

sequence of operations since further assumptions regarding parts entering the line 

would lead to a simultaneous request for shared resource. As the AGV is 

responsible for three tasks, two sequences are possible: a) loading M1 – unloading 

M2 – unloading M3, and b) loading M1 – unloading M3 – unloading M2. System 

layout and operational times suggest it would be reasonable to give priority to 

sequence b) (we shall leave the investigation of the system with sequence a) to the 

reader). 

Further, we assume that parts A and B are available at any time. This means 

that immediately after the AGV takes part A from its input place, another part is 

ready. Also, part B is available for machine M3 as soon as the processing of the 

previous part is finished and the machine is ready. As far as system outputs are 

concerned we assume that as soon as the transportation of a part to its output place 

is finished, the part leaves the system. These assumptions, related to inputs and 

outputs, are necessary if we want to model the system according to Equation (4.20) 

(an autonomous system). 

Once we have defined the system and obtained all the necessary data we can 

create a weighted graph representation of the system, as shown in Figure 4.15. 
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1 2 3 4 5

6 7 8

Figure 4.15. A weighted graph of the system studied in Example 4.3.1 

The corresponding weighted adjacency matrix has the following form: 

6

5 2

8 3

13 5

6

3

4 15

3

ε ε ε ε ε ε ε
ε ε ε ε ε ε

ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε ε

=A

Although the property of strong connections of the graph in Figure 4.15 may be 

checked by hand, formal verification can be done by using Equation (4.26). Here 

we give only the final result: 

( )2 3 7

54 49 57 50 44 53 38 49

47 54 50 49 49 46 43 42

51 56 54 51 51 48 47 46

58 59 61 54 48 59 46 53
... , ,

48 59 57 54 54 47 50 49

48 45 45 42 36 54 57 35

47 58 52 45 51 69 54 44

48 45 45 42 36 54 57 35

i jε⊕ ⊕ ⊕ ⊕ = ≠ ∀A A A A
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Since all entries of the obtained matrix differ from , the weighted graph 

representing the system is strongly connected, i.e. the system has a unique 

production cycle. 

A set of max-plus equations that describe the system dynamics has the 

following form (see graph in Figure 4.15; we presume that the system starts its 

activity with all the machines ready and with the AGV set for loading M1):

51

2 1 3

3 2 4

4 3 8

5 4

76

7 2 6

78

( ) 6 ( 1)

( ) 5 ( ) 2 ( 1)

( ) 8 ( ) 3 ( 1)

( ) 13 ( ) 5 ( )

( ) 6 ( )

( ) 3 ( 1)

( ) 4 ( ) 15 ( )

( ) 3 ( )

x k x k

x k x k x k

x k x k x k

x k x k x k

x k x k

x k x k

x k x k x k

x k x k

= −

= ⊕ −

= ⊕ −

= ⊕

=

= −

= ⊕

=

(4.35)

As we can see, the system description is implicit in x(k), so we should use 

substitution (4.31) in order to get form (4.20). Matrices A0 and A1 can be easily 

determined from the system equations: 

By using Equation (4.34) we can find A0
* that gives matrix A,

6

2

3

1

3

ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε

=A

5

8

13 5

0 6

4 15

3

ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε

ε ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε ε

=A
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The insertion of given initial conditions, x(0) = [  e  e ]T, into Equation 

(4.20) results in the following evaluation of system states (for easier reading, 

values of vector x(k) are represented in matrix form): 

(1) (2) (3) (4)

6 44 82 120

11 49 87 125

19 57 95 133

32 70 108 146 ...

38 76 114 152

3 21 56 94

18 53 91 129

21 56 94 132

=

x x x x

x

From the result we find that, for example, the first four time instants in which event 

x5 occurs are 38, 76, 114 and 152. 

Once the system states are evaluated, the production cycle  can be determined 

according to Equation (4.22). As we have already stated, the problem is that value 

k0, for which the system enters periodic behavior, is unknown, thus we start with 

the first two values of vector x. The difference between x(2) and x(1) gives 21 =

[38 38 38 38 38 18 35 35]T. It may be seen that the components of 21 vary, which 

clearly indicates that the system is still in transition. Further calculations provide 

32 = x(3) – x(2) = [38 38 38 38 38 35 38 38]T and 43 = x(4) – x(3) = [38 38 38 38 

38 38 38 38]T. All components of 43 are the same and we conclude that the system 

starts with cyclic activities at k = k0 = 3 with a unique production cycle = 38 and 

throughput 1/  = 0.0263. The reader can check the correctness of the obtained 

production cycle by using Equation (4.23). 

We proceed with the next step in system analysis -  the calculation of resources 

utilization. From Tables 4.3 and 4.4 we find that TM1 = 10, TM2 = 16, TM3 = 18 and 

TAGV = 29, thus 

6

2 11

10 3 19

23 16 32 26*
0 1 29 22 38 32

3

6 15 18

9 18 21

ε ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε
ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

= ⊗ =A A A
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M1
M1 M2

M3 AGV

T 10 16
0.263 , 0.421

38 38

18 29
0.474 , 0.763

38 38

η η
λ

η η

= = = = =

= = = =

The most exploited resource in the system is the AGV (76.3%), which was 

expected since it is a shared resource. Still, none of the resources is utilized 100%. 

Obviously, we must ask: what can be done in order to improve the use of resources 

and increase the system throughput? 

If we look at the system graph representation (Figure 4.15), we will find that 

path A = (x1, x2, x3, x4, x5, x1) has the weight of Aw =38. When the part moves 

along this path on the pallet and if there is only one pallet, then the pallet needs 38 

time intervals to return to the initial position. That is exactly the value of the 

production cycle. Now, if we set two pallets on the path, then 38/2 = 19, i.e. the 

mean production cycle is reduced by factor 2. So, by inserting 5 pallets since there 

are 5 arcs on path A (see Definition 4.1.7), we get 38/5 = 7.6 as the mean 

production cycle. On the other hand, pallets are physical entities and if our only 

means of system representation is a graph, it would not be clear whether each arc 

corresponds to an empty place that can hold a pallet. Moreover, there is another 

path (besides others) AGV = (x1, x2, x7, x8, x4, x5, x1) that has weight AGVw = 29. 

What influence does the number of pallets have on that path? This brings us back 

to the question related to the number of pallets, raised in Section 4.3.1. It is 

obvious that it is impossible to resolve the problem without taking into account the 

physical limitations of the system hidden in graph representation. 

Path A does have 5 arcs but these 5 arcs represent only 3 physical places where 

the pallets might be positioned: machine M1, machine M2 and the AGV. Further, if 

we put three pallets for part A into the system, two scenarios are possible: a) two 

pallets are in the machines and the third is on the vehicle on its way to part A 

output place, and b) two pallets are in the machines and the third is on the vehicle 

on the way to machine M1. For scenario a), once the vehicle leaves the part at the 

output place, it returns to the beginning of the line (according to a predefined 

sequence) and gets the next part A to be loaded into machine M1, which leads to 

scenario b). Analysis of scenario b) reveals that it will end in blocking since 

machine M1 already has the pallet so there is no room for the pallet that is 

transported by the vehicle. Therefore, we can conclude that path A can have at 

most two pallets. 

It is clear that path AGV actually represents the route traveled by the vehicle, 

i.e. one can think of the vehicle as a “pallet”. Since there is only one vehicle in the 

system, the path has only one physical entity where parts can be placed. 

Keeping in mind the above discussion, let us write down a max-plus model of 

the system that encompasses the assumptions that i) one part A is already in 

machine M2 waiting to be processed and ii) one part is on the vehicle, ready to be 

transported to machine M1. The equation that describes the dynamics of event x2

(start of processing of the part in M1) takes this form: 
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2 1 3( ) 5 ( 1) 2 ( 1)x k x k x k= − ⊕ −

The consequence of the supposition that the vehicle holds a part, can be clearly 

seen by comparing this equation with Equation (4.35) (where we assumed that the 

vehicle was empty). The equation states that machine M1 starts processing the first 

part, x2(1), even though the part actually did not enter the system, x1(0), which is 

possible since the part was on the vehicle. The same holds for event x4, i.e.

machine M2 finishes processing the first part, x4(1), although the part did not enter 

the machine, x3(0). This is feasible since according to assumption i) the part was in 

the machine.  

A set of max-plus equations becomes: 

51

2 1 3

3 2 4

4 3 8

5 4

76

7 2 6

78

( ) 6 ( )

( ) 5 ( 1) 2 ( 1)

( ) 8 ( ) 3 ( )

( ) 13 ( 1) 5 ( )

( ) 6 ( )

( ) 3 ( )

( ) 4 ( ) 15 ( 1)

( ) 3 ( )

x k x k

x k x k x k

x k x k x k

x k x k x k

x k x k

x k x k

x k x k x k

x k x k

=

= − ⊕ −

= ⊕

= − ⊕

=

=

= ⊕ −

=

(4.36)

A closer look at the graph in Figure 4.15 and Equations (4.35) and (4.36) can 

affirm a general rule for the holding of parts in the system for max-plus model 

determination. Namely, if event n1 is the predecessor of event n2 and if the task that 

starts with n1 and ends with n2, represented by the arc with weight a, is holding a 

part, then their dynamics is described as n2(k) = a⊗ n1(k–1).   

The calculation of matrix A from Equation (4.36) obtains: 

29 26 35

5 2

20 17 26

17 14 23

23 20 29

12 9 18

9 6 15

12 9 18

ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

=A

It may be seen that, even though both matrices describe the same system, matrix A,

which we have just acquired, differs completely from the matrix A that 
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corresponds with the system equations (4.35). It may be concluded that the initial 

conditions, together with the system structure, dictate the form of the system 

matrix (note that the weighted adjacency matrix remains the same in both cases – it 

is determined by the system structure). 

Let us now see if these changes in matrix A influence system behavior. 

Evaluation of the system states with initial conditions x(0) = [e  e  e ]T, gives: 

(1) (2) (3) (4)

35 64 93 122

5 40 69 98

26 55 84 113

23 52 81 110 ...

29 58 87 116

18 47 76 105

15 44 73 102

18 47 76 105

=

x x x x

x

The calculation of the production cycle yields 21 = x(2) – x(1) = [29 35 29 29 29 

29 29 29]T and 32 = x(3) – x(2) = [29 29 29 29 29 29 29 29]T. The system starts 

with periodic activities for k0 = 2 with the production cycle = 29. This result, 

when compared to the result obtained from the set of equations (4.35), shows that 

the transition period of the system has been reduced while the throughput has 

increased. Although we had set two pallets in path A, the new production cycle 

was not reduced by a factor of 2 since the other path, AGV, became dominant (a 

new maximum cycle mean). 

Utilizations of resources are given below: 

M1
M1 M2

M3 AGV

T 10 16
0.345 , 0.552

29 29

18 29
0.621 , 1.0

29 29

η η
λ

η η

= = = = =

= = = =

 Because the production cycle was reduced, utilization of each resource in 

the system was increased while utilization of AGV attained 100%. By obtaining 

this result we have reached the physical limitations of the system. Further 

improvements can be made by including one or more additional vehicle(s). 

4.3.4 Deriving Max-plus System Equation from Matrix Model 

In this section we draw the connection between the dynamic matrix model of an 

MS, presented in Section 3.3, and the max-plus system equation. Since the max-
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plus representation is feasible only for decision-free discrete event systems (event 

graphs), we consider the dynamic matrix model with no shared resources. For 

systems with shared resources, a control strategy that provides conflict-free 

dispatching should be determined prior to transformation of the matrix model to 

max-plus. As a result, max-plus formulation is a description of the closed-loop 

system including both the workcell and the controller. 

Let us now recall the logical state equation (3.2) 

v c r c u∆ ∇ ∆ ∇ ∆=x v r uF F F

In development of the dynamic matrix model we assumed that parts input and 

parts output are timeless operations. In order to obtain the max-plus model for the 

general system, here we define delay matrices Tu and Ty that can be attained in the 

same way as matrices Tu and Ty, i.e. each entry “1” in Fu and Sy should be replaced 

with the shift operand representation of the corresponding lifetime. Using these 

new matrices and by including Equation (3.16) in the logical state equation we 

obtain

v v r r u

y

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

q q q q q q q

q q q

∆ ∇ ∆ ∇=

=

x T x T x T u

y T x

F F

We proceed with the following redefinitions of mathematical operations: 

logical ∆ should be replaced with standard multiplication, standard multiplication 

with⊗ , and logical ∇ with ⊕ . Then we get  

v v r r u

y

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

q q q q q q q

q q q

= ⊗ ⊕ ⊗ ⊕ ⊗

= ⊗

x x x u

y x

F T F T T

T

A final form of max-plus is obtained by multiplication of matrices Fx with 

corresponding matrices Tx, and then by substituting q-n with n, and replacing all 

occurrences of 0 by ε,

v r u

y

( ) ( ) ( ) ( )

( ) ( )

k k k k

k k

= ⊗ ⊕ ⊗ ⊕ ⊗

= ⊗

x x x u

y x

D D D

D
(4.37) 

where x(k) gives the time of the kth execution of rules corresponding to the 

components of the logical state vector, y(k) gives the time of the kth output of 

finished products. 

The max-plus model (4.37) is valid only for systems with no shared resources. 

As we mentioned, when that system encompasses conflicting rules the dispatching 

vector should be included into the model. Given that d d∆=u xS adding conflict 

resolution vector in Equation (4.37) gives 
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v r u d

y

( ) ( ) ( ) ( ) ( )

( ) ( )

k k k k k

k k

= ⊗ ⊕ ⊗ ⊕ ⊗ ⊕ ⊗

= ⊗

x x x u x

y x

D D D D

D
(4.38)

where Dd is obtained from FdTd(q) in the same way as matrices Dv and Dr. A 

conflict-resolution delay matrix Td(q) is determined from the dispatching vector 

release matrix Sd as for the delay matrices Tv and Tr.

It should be noticed that the attained model is implicit in x(k), i.e. it does not 

account for the available resources or the parts held by operations. As we pointed 

out earlier, the number of slots in buffers (machines) or number of resources in the 

resource pool should be incorporated into the model. For Equation (4.38) this can 

be done in the following way: if resource r, released by the rule xj, participates in 

the rule xi, and if it is able to process N parts simultaneously, then xi(k) = dr ⊗ xj(k–

N). The same is true for an operation: if operation v, released by the rule xj,

participates in the rule xi, and if it holds N parts, then xi(k) = dv⊗ xj(k–N). 

Example 4.3.2 (Deriving max-plus system equation from the matrix model) 

We consider the system shown in Figure 3.2 that is studied in Examples 3.2.1, 

3.3.1 and 3.4.1. For a given system matrices and delay matrices we find that 

v r

15

76 6 5

10 3
,

4 10

113 6 5

8

ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε

= =D D

Let us assume that the dispatching vector release matrix Sd is determined from 

Fd according to Equation (3.26), as shown below: 

d d d

0 0 0

1 1 0

0 0 0 0 0 0 0 1 0
,

0 0 0 0 1 0 0 0 0

1 0 1

0 0 0

= = =x F S

When there are no delays between components of the conflict-resolution vector, 

matrix Dd becomes 
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d

e

e

ε ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε ε

=D

If we assume that the input and output operations are timeless, then according to 

the rules, the system input and the system output are calculated by using 

[ ]
[ ]

T
u

y

e

e

ε ε ε ε ε
ε ε ε ε ε

=

=

D

D

Given that all resources are idle at the beginning, u(0)=e and ud0 = [e ε]T, the 

initial condition is defined as x(0) = [ε ε ε ε ε ε]T, while the system is described 

with the following set of max-plus equations: 

1 2

2 1 3 5 6

3 2 4

4 3 5

5 2 3 4 6

6 5

( ) 15 ( 1) ( )

( ) 76 ( ) 6 ( 1) ( 1) 5 ( 1)

( ) 10 ( ) 3 ( 1)

( ) 4 ( ) 10 ( 1)

( ) ( ) 6 ( 1) 113 ( ) 5 ( 1)

( ) 8 ( )

x k x k u k
x k x k x k x k x k
x k x k x k
x k x k x k
x k x k x k x k x k
x k x k

= − ⊕
= ⊕ − ⊕ − ⊕ −
= ⊕ −
= ⊕ −
= ⊕ − ⊕ ⊕ −
=

4.4 Exercises 

1. Find the incidence matrices for the graphs shown in Figure 4.12. 

2. Find the critical circuits in the graphs shown in Figure 4.12 by using 

Definitions 4.1.7 and 4.1.8. 

3. Determine the circuits in the graph shown in Figure 4.15 by using string 

composition. What is the length of the critical circuit? 

4. For the given values of cs determine a path (which is not a circuit) with 

the maximum weight in the graph shown in Figure 4.10 by using max-

plus algebra. 

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

10 4 4 6 5 3 6 2 2 8 2 2 4 2 2 
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5. Determine a max-plus model of the system represented by the graph 

shown in Figure 4.7. Consider event e1 as an input u and event e6 as an 

output y. Find the maximum allowed arrival rate of parts for given 

operational and setup times. 

tU tMP1 tM1 tT tMP2 tM2 tY

2 12 3 4 17 4 3 
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5

Manufacturing System Structural Properties in Matrix 

Form

One fundamental question that needs to be addressed in connection with any FMS 

dispatching policy is whether or not it is stable. Studies of stability for FMS often 

focus on stability in the sense of bounded buffers lengths [1]. In [2], the FBFS 

policy has been shown to be stable for single-part flowlines with no buffer limits. 

However, in practice, the buffer lengths are finite, and such stability results are 

inapplicable, since it is not obvious how to keep the buffer lengths below some 

fixed finite value. For finite-buffer multiple re-entrant flowline (MRF) systems [1], 

which constitute a large class of FMSs, the issue is stability, not in the sense of 

bounded buffer lengths, but in the sense of absence of deadlock. As we pointed out 

in previous chapters, a flowline for a given part-class is said to be deadlocked if it 

holds a part that cannot complete its processing sequence. Many popular 

dispatching rules can result in deadlock if care is not taken, as has been 

demonstrated in the examples in Chapter 3. In a finite-buffer system, any 

dispatching policy for uninterrupted part flow has to essentially take into account 

the structure of the interaction between jobs and resources. Several results based 

on such a structural approach may be discovered in [3]–[8]. In all of these but [5], 

Petri-net formalism is used for system modeling. 

In this chapter we develop equations to compute structural properties that are 

essential in stability analysis of the aforementioned MRF class of systems. These 

equations are based on the matrix model introduced in Chapter 3. First we give the 

properties that characterize MRF systems, followed by relations that determine 

circular waits among resources (mentioned in string composition Section 4.2). 

Then we show the correlation between circular waits and certain corresponding 

structures referred to as critical siphons, critical traps, and critical subsystems.

This allows one to obtain computational equations so that NP-hard complexity 

issues can be avoided. In a separate section we consider and extend matrix 

formalism to the free-choice multiple re-entrant flowline (FMRF) systems, i.e.

systems with nondeterministic job routing,  

In terms of given constructions, at the end of the chapter we present a 

minimally restrictive one-step look-ahead resource dispatching policy that 

guarantees the absence of deadlock for MRFs. Deadlock has generally not been a 
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significant problem in traditional manual shop-floor environments because the 

production operators are often able to recognize deadlock and take corrective 

measures, such as removing parts from the system or swapping the locations of two 

or more parts simultaneously. However, as the trend moves toward automation, 

these seemingly trivial resource-assignment problems have become increasingly 

important in ensuring a smooth operation of the manufacturing facilities. 

 We consider the case where the system is regular, that is, it cannot contain key
resources [9] [10] existing in second-level deadlock structures [11]. A 

mathematical test is given to verify that the MRF system is regular. If this is not 

the case, we can still use matrix formulation, but with a different dispatching 

policy designed for systems containing second-level deadlock structures. 

The chapter is closed with a case study where all the methods and the 

algorithms presented herein are implemented and realized on the laboratory 

system. 

5.1 Multiple Re-entrant Flowlines – MRF 

Notations used in the rest of the chapter are given before formal definition of 

multiple re-entrant flowlines considered herein. We widen the notions of preset and 

postset, defined in Definition 4.1.3, to resources in R and jobs in J as follows: for a 

given logical state vector component xi we define a preset of xi, denoted •xi, as a set 

of resources and jobs that participate in the prerequisite part of rule xi; a postset of 

xi, denoted xi•, is a set of resources and jobs that participate in the consequent part 

of rule xi. One can obtain the preset of xi as ( ) ( )
i i

d d
i x xx sup sup• = ∪r v , where 

i

d
xr and

i

d
xv  are binary vector equivalents of resources and jobs that contribute in the 

prerequisite part of rule xi. Likewise, ( ) ( )
i i

d d
i x xx sup sup• = ∪r v . The above 

definitions of pre and postsets are extended to the set of rules Ω ={x1, x2,…, xk},

where •Ω = •x1∪•x2∪…∪•xk, and Ω• = x1•∪x2•∪…∪xk•.
A preset of resource ri, denoted •ri, is defined as a set of all rules that release ri,

while a postset ri• is defined as a set of all rules in which ri contributes as a 

prerequisite. Hence, ( )
i

d
i rr sup• = x  and ( )

i

d
i rr sup• = x . Equivalently, 

( )k
i

k d
i JJ sup• = x  and ( )k

i

k d
i JJ sup• = x . Given a set Ψ that consists of both  

resources and jobs, we have ( )dsup ΨΨ• = x and ( )dsup ΨΨ • = x .

For the system studied in Example 3.2.1 one can find that •x2 = {R, MAP} with 

[ ]
2

T
0 0 0 1d

x =r and [ ]
2

T
1 0 0 0 0d

x =v , while x2• = {MA, RP1} with 

[ ]
2

T
1 0 0 0d

x =r and [ ]
2

T
0 1 0 0 0d

x =v . If resource R is considered, 

then •R = {x3, x6}, R• = {x2, x5}, [ ]T0 0 1 0 0 1d
R =x ,
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[ ]T0 1 0 0 1 0d
R =x . For Ψ = {BP, MB} one has •Ψ = {x3, x5} and Ψ• = 

{x4}.

The concept of pre and postsets is essential in the analysis of system structural 

properties and the design of stable dispatching strategies. A formal definition of the 

MRF class of multiple re-entrant flowlines follows (recall that P = R ∪ J is a set of 

all resource and jobs in the system). 

Definition 5.1.1 (multiple re-entrant flowlines – class MRF): MRF is the class of 

multipart re-entrant flowline systems with the following properties [10]: 

i) ∀p∈P, •p ∩ p• ≠ {∅}

ii) ∀xin, xin• ∩ R = {∅} and ∀xout, •xout ∩ R = {∅}

iii) ∀ k
iJ ∈J, R( k

iJ ) =1 and R( k
iJ ) ≠ R( 1

k
iJ + )

iv) ∀ k
iJ ∈J, k

iJ • =1

v) ∀xi, • xi ∩ J 1

vi) ∃ r∈R, J(r) >1

In other words, in MRF it is not allowed for an operation or resource to 

participate in the prerequisite and consequent part of the same rule (i). A rule, 

denoted xin, that has an input operation in the IF part cannot have resource release 

in the THEN part, and a rule, denoted xout, that has output operation in the THEN 

part cannot have resource in the IF part (ii). Statement (iii) in Definition 5.1.1 

points out that each operation in the system requires one and only one resource 

with no two consecutive jobs using the same resource. Furthermore, there are no 

choice jobs (iv) and no assembly jobs (v). Item (vi) asserts that there are shared 

resources in the system. Obviously in MRF systems, for any r∈R, J(r) = r•• ∩ J = 

••r ∩ J and R( k
iJ ) = •• k

iJ ∩ R = k
iJ •• ∩ R.

Subsequent sections of this chapter are dedicated to the analysis of structural 

properties of MRF systems. Before we proceed, let us repeat the assumptions 

already stated in Chapter 3:  

No pre-emption – once assigned, a resource cannot be removed from a job until 

it is completed. 

Mutual exclusion – a single resource can be used for only one job at a time.  

Hold while waiting – a process holds the resources already allocated to it until 

it has all the resources required to perform a job.  

No machine failures.



150 Manufacturing Systems Control Design 

5.1.1 Circular Waits in MRF Systems 

For a class of MRF systems, having in mind the above definition and assumptions, 

deadlock can occur only if there is a circular wait relation (CW) among the 

resources [12]. Circular wait relations are ubiquitous in re-entrant flowlines and in 

themselves do not present a problem. However, if a CW develops into circular 
blocking, then one has a deadlock. CWs are key structures in MRF and 

determination of deadlock avoidance strategies starts with their allocation within 

the system. In this section we present a digraph matrix procedure to identify all 

CWs present in an MRF. The following are the formal definitions. 

Definition 5.1.1 (wait relation): Given a set of resources R, for any two resources 

ri, rj ∈R, ri is said to wait for rj, denoted ri→rj, if the availability of rj is an 

immediate requirement to release ri, or equivalently, if there exists at least one rule 

xk ∈ •ri∩ rj•.

The wait relation is similar to the notion of upstream and downstream nodes 

defined in Definition 4.1.3. 

Definition 5.1.2 (circular wait): Circular wait among resources is a set of resources 

ra, rb,…rw, with wait relations among them such that ra→ rb→…→rw, and rw→ ra.

Evidently, a circular wait corresponds to the cyclic path in the graph theory. For 

MRF systems circular waits are associated with shared resources, which is 

affirmed in the following lemma. 

Lemma 5.1.1 (circular wait contains shared resource): In the MRF system a 

circular wait C contains at least one shared resource. 

Proof:
Let C={r1, r2 …, rq}, with r1 = rq, a circular wait in MRF. Assume there is no 

shared resource. Then J(ri) =1, ∀ i. Let the timing sequence of jobs performed by 
resources in C be sC =(( J(r1),t1), (J(r2),t2),…, (J(rq),tq)). Then job J(r1) occurs prior 
to job J(rq) which is impossible as J(r1)= J(rq) because r1 is a nonshared resource.

♦

It should be noted that Lemma 5.1.1 is unidirectional, i.e. having a shared 

resource in MRF does not imply the existence of circular wait. 

Definition 5.1.3 (simple circular wait): Simple circular wait (sCW), is such that, 

for some appropriate relabeling, one has r1→ r2→...→ rq, with ri≠ rj for i≠j.

The above definition states that only one occurrence of a particular resource is 

allowed in simple circular wait. The importance of sCW will become clear when 

we introduce key resources and irregular systems. 
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According to definition, the release of resource involved in a wait relation is 

stipulated with the availability of other resources. Since releases and requirements 

of resources are described with system matrices, as a first step in the determination 

of simple CWs we use these matrices to identify wait relations among resources, 

which are given as 

( )TW r r= ∆G S F (5.1)

Operations in Equation (5.1) are carried out in and/or algebra. As both Sr and Fr

are binary matrices, the wait relation matrix GW actually corresponds to the 

adjacency matrix of a graph that is composed of nodes representing resources 

connected with arcs that represent wait relations. We call this graph the wait 
relation graph. An element of GW is given by 

jiw ik kjk
g s f∇= ∧ . As defined, matrix 

Sr has element sik = 1 if and only if rule xk∈ •ri. Matrix Fr has element fkj = 1 if and 

only if rule xk ∈ rj•. Thus 1
jiwg = if and only if there exists a rule xk ∈ •ri∩ rj•,

which is equivalent to ri→rj, i.e. an entry “1” in position 
jiwg corresponds with an 

arc from resource ri to resource rj.

For the system studied in Example 3.2.1 the wait relation matrix is calculated as 

( )

MA MB B R

MA

MBT

W r r
B

R

1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 0 0 1

0 0 1 0 0 1 0 0 0 1 1 1 0 0

0 0 0 0

T

∆= = =G S F

From this result we can read four wait relations: MA → R,  MB → R, B → MB, 

and R → B. A corresponding wait relation graph is shown in Figure 5.1. 

Figure 5.1.  A wait relation graph of the system in Example 3.2.1 
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Having determined the wait relation matrix, the procedure we follow in 

identification of sCW is the string composition, defined and analyzed in Section 

4.2. First, a wait relation matrix G is transformed into string matrix S. Then, for 

each power of S diagonal elements are identified, representing simple CWs. The 

question is how far we should go with powers of S? We showed in Section 4.2. that 

when the graph has n nodes, the nth composition gives a cycle that includes all 

nodes (if one exists). Hence, the string composition should be completed when the 

power of S is equal to the number of resources in the system. However, that might 

give an incorrect result, since the system could have a so-called cyclic CW (CCW), 

i.e. a CW that is composed of two or more CWs. 

This situation is demonstrated in Figure 5.2. A wait relation graph consists of 4 

resources, thus one should calculate S2, S
3 and S4 in order to get CWs. A string 

composition reveals two CWs: MA → R and MB → R→ B. Nevertheless, there 

exists a third CW composed of these two: MB → R→ MA → R → B that remains 

hidden.  

Figure 5.2.  A wait relation graph with cyclic circular wait 

Cyclic CWs are important because common shared resources among CWs might 

compose particular structures that must be considered in deadlock-free dispatching 

strategy design. Thus, the entire set of the system CWs should include the simple 

CWs plus cyclic CWs composed of unions of nondisjoint simple CWs. 

Let us assume that the set of resources Ci = {ra, rb, … rm}, Ci ⊂ R, is a CW. 

Then, a binary vector ci corresponding to circular wait Ci is defined as sup(ci) = Ci.

In addition, the binary vector csi that corresponds to shared resources in Ci is 

determined as sup(csi) = Ci ∩ Rs. For the wait relation graph depicted in Figure 5.1 

one has C = {MB, B, R}, c = [0 1 1 1]T, and cs = [0 0 0 1]T. Given an MS, its 

circular wait matrix C is composed of columns that represent circular waits 

vectors, that is, an entry of “1” on the (i,j) position means that resource i is

included in CW j. Equivalently, matrix Cs is composed of binary vectors csi.

In Figure 5.3, we show the MATLAB
® code that calculates all CWs from the sets 

of simple CWs; it uses a Gurel algorithm from [13]. An input into the algorithm is 

matrix C obtained by string composition, containing simple CWs. As an output 

from the algorithm, we attain the new matrix C containing all CWs in the system, 

and matrix ζ that provides the set of composed CWs from unions of simple CWs 
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comprised in columns of the input matrix C. An entry “1” on ζij means that a 

simple CW i is included in the composed CW j.

Example 5.1.1 (circular waits in MRF) 

We consider the manufacturing system depicted in Figure 5.4. Two part types, A 

and B, are processed in the workcell that consists of four machines and an 

automated guided vehicle. Part A visits resources in the following order: AGV, 

M4, M1, AGV, while part B path is: AGV, M2, AGV, M3, M2. Clearly, AGV and 

M2 are shared resources. The resource set and job set are defined as R = {M1, M2, 

M3, M4, R} and J = {AP1, M4P, M1P, AP2, AP3, M2P1, AP4, M3P, M2P2}. 

Figure 5.3.  MATLAB
® code for calculation of circular waits  
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part A in

part A out

M4

M1

AGV

M2
part B in

part B out

M3

Figure 5.4.  A manufacturing system from Example 5.1.1 

The workcell can be described with 11 rules (since our purpose is to 

demonstrate circular waits calculation, herein we do not elaborate on the evaluation 

of the matrix model). From the system layout and parts paths we determine 

matrices Sr and Fr, which have the following form 

M1

M2

,M3r r

M4

AGV

0 0 0 0 1

0 0 0 1 0

1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

= =S F
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According to Equation (5.1), a wait relation matrix is given as 

M1

M2

M3W

M4

AGV

0 0 0 1 0

0 0 1 0 1

0 0 0 0 1

0 0 0 0 1

1 1 0 0 0

=G

with the corresponding wait relation graph shown in Figure 5.5. 

Figure 5.5.  A wait relation graph of the workcell shown in Figure 5.4 

Three simple CWs can be recognized from the graph: M2 → AGV, M4 → M1 

→ AGV, M3 → M2 → AGV. As a result of string composition we get the circular 

wait matrix

1 2 3

0 1 0

1 0 1

0 0 1

0 1 0

1 1 1

=

c c c

C

Execution of the algorithm given in Figure 5.3 reveals all CWs in the system 

1

2

3

1 2 3 4 5

1 2 3 4 5
0 1 0 1 1

1 0 0 1 01 0 1 1 1

, 0 1 0 1 10 0 1 0 1

0 0 1 0 10 1 0 1 1

1 1 1 1 1

= =

c c c c c

c c c c c

c

c

c

C
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From the newly obtained matrix C one can find that the system has five CWs, 

three simple and two cyclic. According to matrix ζ, C4={M1, M2, M4, AGV} is 

composed of C1 and C2, while C5={M1, M2, M3, M4, AGV} is composed of C2

and C3. Projections of circular waits onto the set of shared resources are cs1 = cs3 = 

cs4 = cs5 = [0 1 0 0 1]T, and cs2 = [0 0 0 0 1]T.

♦

5.1.2 Resource Loops in MRF Systems 

In our previous discussions it has been pointed out that inappropriate assignment of 

jobs could lead an MS into irregular states. A first step toward solution of the 

dispatching problem is determination of circular waits. In this section we analyze 

these structures in more detail and relate them with job set J.

 If we consider nonshared resource rns, then it can be in one of two states, “idle” 

or “operational”. The supervisor’s task is to set the resource in one of these two 

states, i.e. from the controller point of view resource rns is a binary loop. The same 

is true for shared resource rs, with one difference only; rs can be in one of three or 

more states, as it has more than one job to perform. Again, the supervisor selects 

one of several shared resource states that swap inside the loop. Therefore, resource 

loop L(r), defined in Definition 3.1.1, is an important MS structure, especially 

when it belongs to the resource involved in CW. 

In order to find a binary vector p, which is the projection of the resource loop 

onto resource and job sets, let us recall the recursive matrix model described in 

Section 3.2.4, particularly Equations (3.9) and (3.10). Fulfillment of a rules change 

state of job vector according to 
T

v v ( )k− ⋅S F x , whereas the state of the resource 

vector is changed by term 
T

r r ( )k− ⋅S F x . Since MRF systems are composed of 

resource loops, any variation in job vector should be balanced by a corresponding 

change in resource vector [13], that is 

[ ]T T

v v r r v r 0− + − = = ⋅ =⋅ ⋅ ⋅
v

S F v S F r W W W p
r

(5.2)

or equivalently 

v r= −⋅ ⋅W v W r (5.3)

 In order to construct a special left inverse of Wv, required for solving this 

equation for v, we should modify the system matrices in the following way: delete 

rows of Fv and Fr and delete columns of Sv and Sr that correspond to the rules with 

output operations in the consequent part. Let us denote these new matrices as 

v r v
ˆˆ ˆ, ,F F S and rŜ . Then 
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1

v r
ˆ ˆ−= − ⋅ ⋅v W W r (5.4)

where 
T

v v v
ˆˆ ˆ= −W S F and ˆˆ ˆT

r r r= −W S F .

Deleting rows of Fv and Sv makes matrix vŴ square. This is allowed, as the 

deleted rows of Wv are linear combinations of the remaining rows. One can see 

from the structure of vŴ that its inverse exists: according to our discussion on the 

special structure of the system matrices (causal ordering of jobs), vŴ is a block 

diagonal matrix, with each diagonal block corresponding to one part path and 

having a lower triangular form. Binary vectors pi, representing resource loops, can 

be obtained from Equation (5.4) for r = ei, i = 1, 2, …, n, where ei is the the ith 

column of n×n identity matrix I, and n is the number of resources. Finally, a 

resource-loops matrix P, with columns formed of resource-loop vectors pi, is 

calculated as 

T 1 T

v v r r
ˆ ˆˆ ˆ( ) ( )−− −

=
− ⋅S F S F

P
I

(5.5)

To confirm the described procedure we consider the system shown in Figure 

3.2. Its modified system matrices and corresponding vŴ and rŴ are given below 

MAP RP1 BP MBP RP2 MA MB B R

v r

v r

0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 1

ˆ ˆ,0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1

1 0 0 0 0
0 1 0 0 0

0 1 0 0 0
0 0 0 0 1

ˆ ˆ,0 0 1 0 0
0 0 0 1 0

0 0 0 1 0
0 0 1 0 0

0 0 0 0 1

= =

= =

F F

S S

v

r

1 0 0 0 0

1 1 0 0 0

ˆ 0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0

1 0 0 1

ˆ 0 0 1 1

0 1 1 0

0 1 0 1

−
= −

−
−

−
−

= −
−

−

W

W

By applying Equations (5.4) and (5.5) we can calculate the resource-loops 

matrix
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MAP RP1 BP MBP RP2 MA  MB   B   R

1

2

3

4

1 0 0 0
1 0 0 0 0 1 0 0 0

0 0 0 1
0 0 0 1 0 0 1 0 0

0 0 1 0
0 0 1 0 0 0 0 1 0

0 1 0 0
0 1 0 0 1 0 0 0 1

0 0 0 1

T

= =

p

p

p

p

v r P

According to Figure 3.2 and the system description, the system jobs J = {MAP, 

RP1, BP, RP2, MBP} and resources R = {MA, MB, B, R} outline four resource 

loops; L(MA)={MA, MAP}, L(MB)={MB, MBP}, L(B)={B, BP} and L(R)={R, 

RP1, RP2},  which is confirmed by the obtained matrix P.

5.1.3 Siphons and Traps in MRF Systems 

Circular wait is a structural property of the system. As such it is the result of a 

system layout design. On the other hand circular blocking is a phenomenon caused 

by unsuitable assignment of tasks performed by resources involved in circular wait. 

Now we introduce MS structures that connect circular wait and circular blocking. 

Definition 5.1.4 (a siphon): A siphon is a set S ⊂ P such that 

•S ⊂ S•    

The notion of siphon is well known in the Petri-net theory, in particular its 

relation with a deadlock analysis. We shall use a siphon for the same purpose, but 

in the context of matrix-based MS supervisory design. Having in mind that P = R
∪ J the above definition of a siphon emphasizes that a set of resources and/or jobs 

is a siphon if the set of rules in which they participate in the subsequent part is a 

subset of rules in which they appear in the prerequisite part. 

Generally, a siphon is defined as •S ⊆ S•. This definition permits a resource 

loop to be a part of a siphon. In the analysis of deadlock we are concerned with a 

siphon in which •S is a strict subset of S• as defined in Definition 5.1.4. From now 

on this type of siphon is called a critical siphon.

A trap characterizes the MS structural property that is in some way the inverse 

of a siphon.   

Definition 5.1.5 (a trap): A trap is a set Q ⊂ P such that 

Q• ⊂ •Q

In other words, a set of resources and/or jobs is a trap if the set of rules in 

which they participate in the prerequisite part is a subset of rules in which they 

appear in the consequent part. Definition 5.1.5 stands for a so-called critical trap
(as in the case of a siphon, a trap is generally defined as Q• ⊆ •Q).
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The importance of a critical siphon in MS analysis becomes clear when we 

closely look at its definition through the matrix-based formalism. First, we define a 

siphon vector s as sup(s) = S, where S is assumed to be a critical siphon. Then, let 

us suppose that for given s one has T
S ( ) ( ) 0m k k == ⋅s m , that is, all components of 

system vector m, that correspond to resources and/or jobs belonging to critical 

siphon S, attain the value 0 at some instant k (it should be noted that in structural 

analysis the system vector represents an autonomous system, i.e. m = [vc rc]
T). In 

that case rules that have those components in the prerequisite part (S•) cannot be 

executed. On the other hand, since S is a critical siphon, rules that release resources 

and start jobs in S (•S), according to definition, are a subset of those that have not 

been activated. Therefore, once all components of system vector m that correspond 
to resources and/or jobs belonging to critical siphon S, attain the value 0 (we say 
that S is empty) they will remain 0 indefinitely. This is an essential property of a 

critical siphon. Namely, an empty critical siphon remains empty for ever.  

The question is in what way the fact that part of the system resources is not 

available for an indefinite period could influence other resources and jobs in the 

system? A deadlock situation, demonstrated in Example 3.3.1, together with the 

above discussion on the critical siphon, suggest that a circular wait is somehow 

related to the critical siphon. Their connection is additionally confirmed with the 

graphs shown in Figure 3.8 where the components of the system vector 

corresponding to resources involved in circular wait attained the value 0 once 

circular blocking occurred. To maintain the correlation between a CW and a 

critical siphon straightforwardly we shall extend some already-used notations. 

These refinements are needed later for the definition and development of MS 

structures in matrix form. 

The number of idle resources in CW, Ci in sample k, is calculated as 
T

c( ) ( )
iC im k k= ⋅c r , i.e. by multiplication of a circular wait vector and an idle 

resource vector. The value of ( )
iCm k , called the content of CW, is changing in 

accordance with rc(k), which is driven by Equation (3.12), i.e. by the set of rules. 

We identify two sets of rules related with each CW C.

Definition 5.1.6 (CW adding rules): For a given CW C a set of CW adding rules is 

defined as \CX C C+ = • • .

Definition 5.1.7 (CW clearing rules): For a given CW C a set of CW clearing rules
is defined as \CX C C− = • • .

The rules that belong to
iCX +  increase, while rules in 

iCX −  decrease ( )
iCm k

each time they are executed. According to the notation introduced at the beginning 

of Section 5.1, the preset and postset of CW C can be written in vector form as 
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T T

r

T T T

r

( ) ( )

( ) ( )

d
C

d
C

C sup sup

C sup sup

∆

∆

• = =

• = =

x c S

x c F
(5.6) 

By using Equation (5.6) one is able to determine a vector representation of CW 

adding and CW clearing rules, 

( ( )

( ( )

)

)

d d d
C C C C C

d d d
C C C C C

X sup sup

X sup sup

+ +

− −

= =

= =

− ∧

− ∧

x x x x

x x x x
(5.7)

where operation a∧b represents an element-by-element logical AND operation 

between vectors a and b. Note that for two binary vectors a and b with support sets 

A and B one has A \ B ( )∧ = ∧ − = − ∧a b a 1 b a a b . When there is more than 

one CW in the system, one has matrices C
+

X and C
−

X formed by vectors C
+

x and C
−

x

as their rows. 

Having defined circular wait adding and clearing rules, we continue our 

investigation of the correlation between a CW and a critical siphon. Let us first 

check if CW in MRF is a critical siphon. We have to show that •C ⊂ C•. It is 

known that for every ri∈C, there exists rj∈C, i ≠ j, such that •ri∩ rj• ≠ ∅. So, if ri
∈C∩Rns, then •ri =1, and there exists some rj ∈C, i ≠ j, such that •ri ∈{rj•}. If, 

on the other hand ri ∈C∩Rs (in Lemma 5.1.1 we proved that each CW in MRF 

contains a shared resource), then •ri >1. Hence, there exists some rule(s) xk ∈ •ri
such that xk ∉{rj•} for any rj ∈C, i ≠ j. In other words, there are rules that release 

resources in C and do not have any resource from C in prerequisite part. Therefore, 

•C ⊄ C•, i.e. circular wait is not a critical siphon. The other way to this conclusion 

follows directly from Equation (5.6). Due to the specific structure of matrices Sr

and Fr, imposed by the MRF system definition, some components of vector 
d d
C C−x x  are positive, which means that •C ⊄ C•.

Evidently, some additional elements are needed in order to create a critical 

siphon around CW. That is,  Z ∪ C = S, where Z is a set of the system components 

in the subsequent part of rules C• that at the same time belong to the prerequisite 

part of rules that release resources in C and do not have any resource from C in the 

prerequisite part. Again, the specific characteristics of MRF systems help in 

identification of set Z elements. First, we show that set Z does not comprise any 

resource. Let rule xk ∈ •ri be such that xk ∉{rj•} for any rj ∈C. If we assume that 

there exists resource rk ∈ Z such that •ri ∩ rk• ≠ ∅, then according to the CW 

definition this resource should belong to C that contradicts the assumption that rk ∈
Z. Therefore, set Z contains only system jobs. 

Secondly, let us determine which jobs should be included in a set Z to form 

siphon S. For each rule xk ∈ •ri such that xk ∉{rj•} for any rj∈C we have to find a 

job Jk such that xk ∈ Jk•. A set of jobs that satisfies this requirement is defined 

below. 
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Definition 5.1.8 (siphon job set): For a given CW C a siphon job set is defined as 

S ( ) ( ) CJ C J C X += ∩• .

It is worth noting that all the jobs in JS(C) are performed by the shared 

resources contained in C. In a matrix form a siphon job set is found as a support of 

a siphon job vector vSC, obtained by the following relation 

T T

S SC v( ) ( ) ( )CJ C sup sup +
∆= =v x F (5.8)

A siphon job vector can be determined directly from the system matrices by 

including Equations (5.6) and (5.7) in Equation (5.8) 

____________
T T T

SC v r s v r∆ ∆ ∆ ∆= ∧v F S c F F c (5.9)

Let us take a closer look at the structure of vsc. Matrix element Sr(i,k) = 1 if and 

only if rule xk∈•ri. Fv(k,j) = 1 if and only if xk∈vj•. Therefore, 
T T

v r ( , )i j∆F S = 1 if 

and only if there exists some rule x∈•ri∩vj•. Postmultiplication by cs selects only 

the shared resources in C. Hence, 
T T

v r s∆ ∆F S c  corresponds to the set 

( ) ( ),
i

i
r C R

J C J r
∈ ∩

= i.e. the set of all jobs performed by the shared resources in C.

Matrix element 
T

v r ( , )i j∆F F = 1 if and only if there exists some rule x∈ri•∩vj•.

Post-multiplication by c selects only resources in C. Therefore 
T

v r∆ ∆F F c  computes 

jobs that participate in the prerequisite part of rules that also have resources in C as 

prerequisites. The element-by-element matrix “and” operation between 
T T

v r s∆ ∆F S c

and negated 
T

v r∆ ∆F F c  then selects jobs of shared resources in C that participate in 

the prerequisite part of rules that have no resources in C as prerequisites, namely 

set JS(C).

Therefore, a critical siphon of CW C is defined as  

S ( )CS C J C= ∪ (5.10)

or in vector form 

SC

C =
v

s
c

(5.11)

As a result, we see that each CW in the MRF system is associated with its 

critical siphon through the siphon job set. It is important to note from Equation 
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(5.11) that occupation of all resources in CW C, i.e. mC(k) = 0, does not necessarily 

mean that the critical siphon is empty since it might happen that T
SC c ( ) 0k⋅ ≠v v .

On the contrary, an increase of the work-in-progress, which is the main purpose of 

most dispatching strategies, requires to keep mC(k) close to 0 most of the time. A 

problem arises when jobs performed by the resources in CW are dispatched so that 
T

SC c ( ) 0k⋅ =v v when mC(k) becomes 0. In that case the critical siphon becomes 

empty. Therefore, execution of the afore-mentioned CW adding and CW clearing 

rules should be further studied since it changes ( )
CSm k  not only by changing mC(k)

but also by assigning jobs in J(C). In keeping track of the ( )
CSm k it is useful to 

regard each CW C as a distribution center, with mC(k) defined as its kanban
content, and jobs in J(C) as receivers of services provided by the distribution 

center.

To provide a deeper insight into the structure of jobs associated with CW, in 

forthcoming definitions a job set J(C) is additionally partitioned into subsets. Each 

definition is followed by the corresponding relation in a vector form. 

Definition 5.1.9 (trap job set): For a given CW C a trap job set is defined as 

Q ( ) ( ) CJ C J C X −= ∩ • .

T T T

Q QC v

____________
T T T

QC v r s v r

( ) ( ) ( )CJ C sup sup −
∆

∆ ∆ ∆ ∆

= =

= ∧

v x S

v F F c F S c

(5.12)

Hence, a critical trap of CW C is given as  

Q ( )CQ C J C= ∪ (5.13)

or in vector form 

QC

C =
v

q
c

(5.14)

Opposite to the siphon, the main property of a trap is that once any of the 
components of system vector m that correspond to resources and/or jobs belonging 
to critical trap Q attain a value >0, a trap content will remain >0 indefinitely. In 

other words, the trap content cannot be cleared. 

Generally in MRF systems a job could belong to both a siphon job set and a 

trap job set. Their differentiation is made in the next three definitions.  

Definition 5.1.10 (siphon-trap job set): For a given CW C a siphon-trap job set is
defined as SQ S Q( ) ( ) ( )J C J C J C= ∩ .
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SQ SQC SC QC( ) ( ) ( )J C sup sup= = ∧v v v (5.15)

Definition 5.1.11 (strictly siphon job set): For a given CW C a strictly siphon job 
set is defined as 0S S SQ( ) ( ) \ ( )J C J C J C= .

0S 0SC SC SC SQC( ) ( ) ( )J C sup sup= = ∧−v v v v (5.16)

Definition 5.1.12 (strictly trap job set): For a given CW C a strictly trap job set is 

defined as 0Q Q SQ( ) ( ) \ ( )J C J C J C= .

0Q 0QC QC QC SQC( ) ( ) ( )J C sup sup= = ∧−v v v v (5.17)

A particularly important job set, as far as a siphon is concerned, is one that 

comprises all jobs whose assignment does not change ( )
CSm k .

Definition 5.1.13 (neutral job set): For a given CW C a neutral job set is defined 

as N 0S 0Q( ) ( ) \ ( ) ( )J C J C J C J C= ∪ .

N NC C C 0QC 0SC( ) ( ) ( )J C sup sup= = ∧− +v v v v v (5.18)

Definition 5.1.14 (strictly neutral job set): For a given CW C a strictly neutral job
set is defined as 0N N SQ( ) ( ) \ ( )J C J C J C= .

0N 0NC NC NC SQC( ) ( ) ( )J C sup sup= = ∧−v v v v (5.19)

Having partitioned jobs performed by resources in CW, one is able to 

determine in which way execution of CW adding and CW clearing rules change 

their content. However, as we showed, CW is not a siphon, hence, rules that 

increase or decrease the CW content do not necessarily increase or decrease the 

content of the associated siphon. Therefore, the other set of rules, we call them 

precedent rules and posterior rules, are those that need to be controlled in order to 

maintain the siphon content on the desired level. 
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Definition 5.1.15 (precedent rules): For a given CW C and associated siphon SC a 

set of precedent rules is defined as \
CS C CX S S− = • • .

Definition 5.1.16 (posterior rules): For a given CW C and associated siphon SC a 

set of posterior rules is defined as \
CS C CX S S+ = • • .

Execution of any rule that belongs to
CSX +  increases, while execution of 

CSx X −∈

decreases the siphon content. Rules that do not change ( )
CSm k  are fed into a so-

called set of neutral rules 0

CSX . In the next section we make an observation that is 

significant in devising deadlock-free job-dispatching policies.  

5.1.4 Critical Subsystems in MRF Systems 

Manipulation with the sets defined previously gives the following relation 

SQ 0N 0S 0Q( ) ( ) ( ) ( ) ( )J C J C J C J C J C= ∪ ∪ ∪ (5.20)

It should be noted that sets on the right-hand side of Equation (5.20) are disjoint. 

By using Definition 5.1.11 the above equation attains the following form 

S 0( ) ( ) ( )J C J C J C= ∪ (5.21)

where 0 0N 0Q( ) ( ) ( )J C J C J C= ∪ is a so-called critical subsystem, represented in 

vector form as 

0 0C 0NC 0QC( ) ( ) )J C sup sup= = +v v v (5.22)

As a critical subsystem and a siphon job set are disjoint sets, Equation (5.21) 

actually means that the CW content, once distributed, is held by jobs in either JS(C)

or J0(C). Since 

( ) ( )
r C

C J C L r
∈

∪ = ∪ (5.23)

by including Equations (5.10) and (5.21) in Equation (5.23) one obtains 

0 ( ) ( )C r C
S J C L r

∈
∪ = ∪ (5.24)
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As we show later, the above equation is essential in the siphon content 

calculation. Also, it allows us to determine the critical subsystem directly from the 

critical siphon, 

_____
0C

.C
n

∆= ∧
v

P c s
0

(5.25)

Operation ∆P c computes resource loops covering the critical siphon SC. The 

element-by-element “and” of this with negated critical siphon vector sC translates 

as subtracting out from set sup( ∆P c ) elements of the critical siphon SC, yielding 

the set J0(C). Vector 0n is a null vector with the number of elements equal to the 

number of resources. 

In order to implement efficient real-time control of an MS, we need to arrange 

the attained vectors in matrices. This can be done easily by positioning vectors in 

columns of the corresponding matrix. For example, such a critical siphon matrix SC

is obtained as SC = [sc1 sc2 … scw], where sci, i=1,w, are vectors corresponding to 

critical siphons in the system. 

Also, it should be noted that the structural properties do not depend on the input 

and output matrices Fu and Sy. Furthermore, due to the specific construction of 

MRF systems, all MS structures defined so far in this chapter can be determined in 

a different way, by using different relations. 

Example 5.1.2 (critical siphons and critical subsystems in MRF) 

As an example of critical siphons and critical subsystems calculation we use the 

system shown in Figure 5.4. Matrices Fr and Sr are already given in Example 5.1.1, 

here we provide Fv and Sv

v v

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

,0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

= =F S

0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0
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Let us recall circular waits vectors c and cs, calculated in Example 5.1.1, 

1 2 3 4 5 1 2 3 4 5

0 1 0 1 1 0 0 0 0 0

1 0 1 1 1 1 0 1 1 1

,0 0 1 0 1 0 0 0 0 0

0 1 0 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

s s s s s

s= =

c c c c c c c c c c

C C

At the beginning we determine the siphon job vectors from Equation (5.9). For 

C1 we have 

[ ]

[ ]

TT T

v r 1

____________
TT

v r 1

1 0 0 1 1 1 1 0 1

1 1 0 1 0 0 1 0 1

s∆ ∆

∆ ∆

=

=

F S c

F F c

which yields 

[ ]TSC1 1 0 0 1 0 0 1 0 1=v

i.e. a critical siphon is SC1={AP1, AP2, AP4, M2P2, M2, R}. 

For other CWs in the system the siphon job vector can be calculated as well, 

[ ]
[ ]
[ ]
[ ]

T

SC2

T

SC3

T

SC4

T

SC5

0 0 0 1 1 0 1 0 0

1 0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0 1

0 0 0 1 0 0 0 0 1

=

=

=

=

v

v

v

v

As a result, the critical siphon matrix SC is given below 

T

C

1 0 0 1 0 0 1 0 1 0 1 0 0 1

0 0 0 1 1 0 1 0 0 1 0 0 1 1

1 0 0 1 0 0 0 0 1 0 1 1 0 1

0 0 0 1 0 0 1 0 1 1 1 0 1 1

0 0 0 1 0 0 0 0 1 1 1 1 1 1

=S
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Physical interpretation of matrix SC can be done if one recalls a set of resources 

and a set of jobs defined in Example 5.1.1; R = {M1, M2, M3, M4, R} and J = 

{AP1, M4P, M1P, AP2, AP3, M2P1, AP4, M3P, M2P2}. Let us check what 

happens if the content of SC5, which is T
C5 ( )k⋅s m , becomes zero. This would mean 

that all resources, machines and AGV, perform some operations. Since AP2 is the 

siphon element, AGV is occupied with either AP1 or AP3. Also, M2P2 is the 

siphon element, therefore, M2 performs M2P1. If we assume that AGV is occupied 

with AP1 (carrying part A in M4), then resources are in circular blocking since all 

machines are occupied and cannot be released because AGV tries to push a new 

part into an already full system. The assumption that AGV is occupied with AP3 

(carrying part B in M2), results in the same conclusion. Other critical siphons can 

be checked in a similar way. 

Next, we calculate critical subsystems by using Equation (5.25) (the 

determination of other job sets we leave to the reader for exercise). First, resource-

loop matrix P has to be determined from Equation (5.5), 

T
0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 1 1 0 1 0 0 0 0 0 0 1

=P

For C1 one has 

[ ]

[ ]
[ ]

_____
T0C1

1 C1

T

T

1 0 0 1 1 1 1 0 1 0 1 0 0 1

0 1 1 0 1 1 0 1 0 1 0 1 1 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0

n

∆= ∧ =

∧

=

v
P c s

0

which gives 

[ ]T0C1 0 0 0 0 1 1 0 0 0=v

Hence, a critical subsystem of CW C1 is J0(C1)={AP3, M2P1}. Now, if we 

make a union of this result with SC1, then 

{ }1 0 1( ) AP1, AP2, AP4, M2P2, M2, R, AP3, M2P1CS J C∪ =

which confirms the result specified in relation (5.24) since, 



168 Manufacturing Systems Control Design 

{ } { }( ) (M2) (R) M2P1, M2P2, M2 AP1, AP2, AP3, AP4, R
r C

L r L L
∈
∪ = ∪ = ∪

For other CWs, critical subsystems have the following form, 

[ ]
[ ]
[ ]
[ ]

T

0C2

T

0C3

T

0C4

T

0C5

1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0

1 1 1 0 1 1 0 0 0

1 1 1 0 1 1 1 1 0

=

=

=

=

v

v

v

v

♦

Given Equation (5.24), the precedent and posterior rules can be redefined as 

0 0

0 0

\ ( ) \ ( )

\ ( ) \ ( )

C

C

S C C

S C C

X S S J C J C

X S S J C J C

−

+

= • • = • •

= • • = • •
(5.26)

Clearly, an increase of a siphon content decreases the J0(C) content, and vice versa,

a decrease of a siphon content increases the J0(C) content. The precedent and 

posterior rules are calculated from the system matrices as 

T T T T T

0C v 0C v 0C v

T T T T T T

0C v 0C v 0C v

( ) ( )

( ) ( )

C C

C C

S S

S S

X sup sup

X sup sup

− −

+ +

∆ ∆ ∆

∆ ∆ ∆

= =

= =

− ∧

− ∧

x v S v S v F

x v F v S v F
(5.27)

Now, let us formalize our discussion by definition of circular blocking in MRF 

systems. 

Definition 5.1.17 (circular blocking): A CW C is said to be in circular blocking if 

a) mC(k) = 0, and b) for each r ∈C if there exists J(r) such that vJ(r)(k) ≠ 0 (the 

component of the job-completed vector corresponding to J(r) is not 0) then J(r)• ∈
C•.

The next theorem summarizes the results of analysis related to a circular 

blocking and its relation with an empty siphon. It is one of the main results 

presented herein. 

Theorem 5.1.1 (circular blocking and empty siphon): Given a system of class 

MRF, a circular wait C is in a circular blocking if and only if the critical siphon SC

is empty. 
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Proof:
Necessity:
Let C={r1, r2 …, rq}, with r1 = rq, be a circular wait in circular blocking, i.e. 

mC(k) = 0, and for each r ∈ C, ∀J(r) if vJ(r)(k) ≠ 0 then J(r)• ∈ C•. Now suppose 
that critical siphon SC is not empty. Then there exists J(r)∈ JS(C) such that vJ(r)(k) 
≠ 0. By construction of SC, JS(C)• ∉ C•, i.e. J(r)• ∉ C• and therefore C is not in 
circular blocking, which is a contradiction. 

Sufficiency:
Let SC be empty. Since SC is a siphon, it will remain empty and therefore mC(k)

= 0 for any k. Obviously for any J(r) with vJ(r)(k) ≠ 0, it holds that J(r) ∉ JS(C). 
Therefore J(r)∈ J0(C) and hence C is in a circular blocking.   

♦

This result shows the way out of the quandary noted in MS analysis, where it 

was realized that an empty content of CW was not necessarily a circular blocking: 

as we already pointed out, in addition to checking that the CW content is empty, it 

is necessary to check that the content of certain special jobs is also empty. 

5.1.5 Key Resources and Irregular Systems in MRF 

There is a specific structural condition in MRF systems that requires extreme care 

in deadlock-avoidance dispatching. This condition is related to the so-called 

second-level deadlock [11]. A basis for the existence of SLD is the presence of 

critical resources, also known as bottlenecks [10] and key resources [9]. It should 

be noted that bottleneck resources are referred to as the structural bottleneck 

resources, not the well-known timed bottleneck resources. 

Since later in this chapter we introduce a dispatching policy based on the one-

step-ahead prediction, it is important to note that in irregular systems a situation 

may arise, which, though not a circular blocking in an immediate sense is 

unavoidably going to end up as one within the next few sampling intervals. Even in 

this situation the results presented so far hold, though a one-step-ahead deadlock-

avoidance policy cannot be implemented. Therefore, before a particular 

dispatching policy is applied, one has to check if a given MRF system is irregular. 

Key resources can be identified by analyzing interconnections of CWs and their 

siphons, which is demonstrated in the text that follows where we use the system 

matrices.

To confirm the existence of key resources in the system, we must determine the 

presence of cyclic circular wait (CCW) loops. These structures specify a particular 

sharing among circular waits, and are a requisite for the existence of key resources. 

Specific structures are defined next in terms of precedent and posterior rules. In 

order to identify whether the system has CCW loops, let Ci and Cj be two circular 

waits with 

and
Ci Cj Ci CjS S S SX X X X+ − − +≠ ∅ ≠ ∅∩ ∩ (5.28)
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If this is the case, then there exists CCW={Ci, Cj}. The matrix test to find CCW 

among all CWs in the system is 

( ) ( )CW

T
T T

C C C CS S S S
− + − +

∆ ∆= ∧X X X XC (5.29)

where 
CS
+

X and
CS
−

X are matrices formed of vectors 
CS
+

x and
CS
−

x , respectively. 

When CCW = [0] the system is regular, otherwise an element CCW(i,j)=1 

indicates that Ci and Cj form a CCW. Obviously, CCW is a symmetric matrix. The 

rules that interconnect such CCWs are needed to determine key resources. We can 

use matrix CCW and the precedent and posterior matrices 
CS
−

X  and 
CS
+

X  to identify 

such rules, 

( )
( )

CW

CW

C C

C C

CCW S S

CCW S S

− + −
∆

+ − +
∆

=

=

∧

∧

X X X

X X X

C

C
(5.30)

We call them cyclic precedent and cyclic posterior rules, respectively. The set 

of key resources is determined as follows: let {Ci, Cj} be a CCW such that Ci ∩ Cj

= {rCCW}. If and
Ci Cj Ci CjS S CCW S S CCWX X r X X r+ − − +⊂ ⊂∩ • ∩ • , then {Ci, Cj} is 

said to be a critical CCW and if rCCW is a single resource (not a resource pool), then 

it is called a key resource (structural bottleneck resource [10]). We can proceed to 

identify the critical resources using the following straightforward matrix formula 

( ) ( )r r

T T

CCW CCW CCW

+ −
∆ ∆= ∧R X XF F (5.31)

where matrix RCCW provides, for each CW, the corresponding vector of key 

resources shared with other CWs in one or more CCW. If this matrix is zero, there 

are no key resources in the system. 

5.2 Free Choice Multiple Re-entrant Flowlines – FMRF 

In this section we extend multiple re-entrant flowlines structural analysis on the 

systems with jobs that do not have predetermined resources assigned. That is, 

several resources might be capable and available to perform a specific job (or 

operation from the set of operations needed to build a product). We call these 

systems free-choice multiple re-entrant flowlines (FMRF). As in MRF systems, 

dispatching policies should provide conflict- and deadlock-free activities of the 

system. However, systems without predeterministic routing paths are much more 

challenging than MRF systems and little work has been done, specifically in the 
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study of blocking phenomena. With the exception of [14] – [16] few other 

deadlock-avoidance approaches for FMRF systems had been suggested. 

In addition to the assumptions made at the beginning of Chapter 3, a general 

class of FMRF systems has the following nonrestrictive capabilities: 

• Some jobs have the option of being machined in a resource from a set of 

resources (routing of jobs), and each resource might be used to machine 

different jobs (i.e. shared resources), 

• Job/part routings are NOT deterministic (statement iv) in Definition 5.1.1). 

For each job that can be performed by more than one resource, there exists a
material handling buffer (routing resources) that routes parts. Its role in the FMRF 

systems is very important, and it is explained in the next example. 

A system that satisfies the FMRF assumptions is shown in Figure 5.6. The 

system consists of 5 machining centers that are capable of performing tasks 

required to make a final product, and 12 conveyers where semiproducts are placed 

and then carried from machines to material handling buffers or vice versa. A job 

sequence is defined as J = {J1, J2, J3}. Assignments of resources are given in Table 

5.1. 

As we can see, machine M1 is assigned to job J1, while machine M3 is capable 

of performing two jobs J1 and J3, hence, this machine is a shared resource. What 

differentiates this workcell from the systems discussed so far is the fact that a 

particular job can be carried out by more than one resource. For example, three 

resources, M1, M3 and M4 are able to perform job J1. Therefore, there are many 

part routes that complete the required job sequence. We mention just a few of 

them; M1→ M2→ M3, M1→ M2→ M5, M3→ M2→ M5, M4→ M4→ M5, and so on. 

It is apparent that the description of all possible routes in the form of IF-THEN 

rules would cause rules explosion. For example, the beginning of part processing 

can be described with three rules: 

IF B1 holds part AND M1 is ready THEN rule 1 is TRUE,

 IF rule 1 is TRUE THEN start job J1 in M1 AND release B1

IF B1 holds part AND M3 is ready THEN rule 2 is TRUE,

 IF rule 2 is TRUE THEN start job J1 in M3 AND release B1

IF B1 holds part AND M4 is ready THEN rule 3 is TRUE,

 IF rule 3 is TRUE THEN start job J1 in M4 AND release B1

Table 5.1. Resources assignmets in the system shown in Figure 5.6

M1 M2 M3 M4 M5

J1 ♦ ♦ ♦

J2 ♦ ♦

J3   ♦ ♦
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M4

M1

M3

part in

M5

part out

B2

B1

M2

B3

part out

Figure 5.6. An example of a free-choice multiple re-entrant flowline 

In order to prevent rule explosion material-handling buffers are included in 

FMRF systems as some kind of crossroads where decisions regarding part routes 

are made. Each job that can be performed by more than one resource has a 

corresponding buffer. In our example B1, B2 and B3 execute the following tasks; B1

receives row parts upon their entrance into the system and directs them to the first 

available machine that is able to complete job J1 (M1, M3, M4), B2 holds parts upon 

completion of job J1 and routes them to the first vacant machine for job J2 (M2, M4)

to be finished, and B3 receives parts to be sent in one of the machines performing 

J3 (M3, M5). Processed parts then leave the system. 

Nondeterministic part routing has a serious impact on IF-THEN rules. 

Specifically, each job that can be completed by more than one resource can be 

started by more than one rule. For example, for J2 there exist two such rules, 

IF B2 holds part AND M2 is ready THEN rule 1 is TRUE,

IF rule 1 is TRUE THEN start job J2 in M2 AND release B2

IF B2 holds part AND M4 is ready THEN rule 2 is TRUE,

IF rule 2 is TRUE THEN start job J2 in M4 AND release B2

What is important to note is that these two rules (as well as the three rules stated 

previously) are in conflict, although a shared resource does not participate in their 

prerequisite parts. A conflict is caused by free-choice, i.e. when both machines, M2
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and M4, are ready, a part that is held by B2 “can choose” in which machine to be 

processed. That is why Equation (3.24) cannot be used for determination of all 

conflicting rules. Generally, if we denote a set of material handling buffers as B,

then conflicting rules can be obtained as B•∪Xd, where Xd is a set of rules 

determined by Equation (3.24). Given that buffer B2 holds more than one part, the 

above rules are not in conflict.

5.2.1 Structural Properties of FMRF 

To be able to analyze properly FMRF systems, we needed to identify not only the 

resources that compose each CW, but also the rules that link them. This will give 

us specific information needed to locate critical siphons and critical subsystems 

required for the construction of the deadlock policy for FMRF systems. For 

instance, and related to connectivity between resources and rules, if we define (by 

duality of GW)

( )TWX r r= ∆G F S (5.32)

we will get a digraph of rules. Given GWX one can identify loops among rules by 

using string algebra. However, by running independently the algorithm for GW and 

GWX from the resulting rules CWs and resources CWs we might not be able to 

identify which set of rules CWs correspond to which set of resources CWs. This is 

why we need a general digraph wait relation matrix 

r

W

r

=
S

G
F

0

0
(5.33)

which couples rules and resources. Then, if we use this digraph matrix with a string 

algebra algorithm to find CWs, we will get both results by obtaining circular waits 

of resources, denoted Cr , and circular waits of rules, denoted Cx, by obtaining the 

coupled matrix 

r

x

=
C

C
C

(5.34)

Each ith column from C contains resources from the ith CW (vector cri), which 

accordingly corresponds to the ith CW of rules (vector cxi – although vector cxi is a 

rule vector, we are not changing notation to x since CWs are denoted with the letter 

c throughout the text). The dimensions of C are (n+m)×c, where c is the total 

number of CWs, n is the number of resources, and m is the number of rules. 

Execution of the algorithm given in Figure 5.3 calculates the final matrix C with 

the corresponding matrix ζ, thus revealing all the CWs in the system. 
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It should be noted that for an FMRF system having a simple circular wait Cr,

which contains at least one resource b∈B, only one rule from •Jb  and one rule 

from Jb• participates in its corresponding Cx, where Jb is a buffer job. 

For a given matrix C, we can find CW Cr (resources CW) adding and clearing 

rules that have a slightly different form from those defined in Definitions 5.1.6. and 

5.1.7, 

r x

r x

\

\

C

C

X C C

X C C

+

−

= •

= •
(5.35)

The preset and postset of CW Cr are determined by the following equations 

r

r

T T

r r r

T T T

r r r

( ) ( )

( ) ( )

d
C

d
C

C sup sup

C sup sup

∆

∆

• = =

• = =

x c S

x c F
(5.36)

Now we can write a vector representation of CW adding and clearing rules, 

x

x

( ( )

( ( )

)

)

d d
C C C C

d d
C C C C

X sup sup

X sup sup

+ +

− −

= =

= =

− ∧

− ∧

x x x c

x x x c
(5.37)

In MRF analysis we used only these two categories for computation of CW jobs 

and other structures. For FMRF systems adding and clearing rules are additionally 

partitioned in neutral rules, N
C C CX X X+ −= ∩ , strictly adding rules,

0 \ N
C C CX X X+ += , and strictly clearing rules 0 \ N

C C CX X X− −= . In vector form they 

can be calculated as; 

0 0

0 0

( ( )

( ( )

( ( )

)

)

)

N N
C C C C

N
C C C C

N
C C C C

X sup sup

X sup sup

X sup sup

+ −

+ + +

− − −

= =

= =

= =

∧

−

−

x x x

x x x

x x x

(5.38)

As in the standard MRF, jobs performed by resources in CW play an essential 

role in supervision of an FMRF system. Since the properties of all structures 

related to the CW (siphons, traps, critical subsystems, etc.) were described in 

previous subsections, here we skip explanations and give only final results. 

A set of jobs performed by resources in CW C is defined as 

r r

T T T T

v v( ) ( ) ( ) ( )
d d

C C CJ C sup sup sup∆ ∆= = =v x S x F (5.39)
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Having defined J(C) one is able to determine a siphon job set as 

_________
T T T

SC C x v( ) ( )SJ C sup sup ∆= = ∧v v c F (5.40)

The key approach in siphon job set determination in FMRF systems is the same 

as in the case of MRF. That is, one needs to calculate all the jobs satisfying the 

existence of postset rules as adding rules of CW. However, the problem in FMRF 

systems is that not all jobs contain unique postset rules, due to the incorporation of 

the material-handling buffer set B into the system. Now, we can make two 

remarks: first, all rules from Cx, corresponding to resource CW Cr, are not adding 

rules. Secondly, all clearing rules from CW Cr have postset jobs from set J(C).

Therefore, by eliminating all preset jobs from Cx, and considering only those 

intersecting set J(C), preset jobs from the adding rules set will be selected. 

A trap job set in FMRF is defined as ( ) ( )0
Q x x( ) ( ) \CJ C J C X C C−= ∩ • •∩• .

Comparing this equation with the one in Definition 5.1.9, one can notice similarity. 

Specifically, the trap job set, JQ(C), in FMRF contains the same elements as in 

MRF systems, excluding jobs Jbi for the case of routing resources bi are included in 

C. In matrix form a trap job set is 

( ) ( )( )
T

Q QC

T T
0 T 0 T T T T

v v x v x v

( ) ( )

C C

J C sup

sup − −
∆ ∆ ∆ ∆

=

= − ∧ ∧

v

x S x S F Sc c
(5.41) 

The rest of the job sets, siphon-trap job set, strictly siphon job set, etc., are 

defined equally for MRF and FMRF systems. Hence, Equations (5.15)–(5.19) can 

be used for their determination. Furthermore, calculation of CCWs and the 

regularity test remain the same as for MRF systems. 

A matrix relation for a critical subsystem follows from Equations (5.21) and 

(5.40): 

T T

0 0C x v( ) ( ) ( )J C sup sup ∆= =v c F (5.42)
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Example 5.2.1 (critical siphons and critical subsystems in FMRF) 

We consider an MS system described with the following matrices: 

Resources assignments for a job sequence J = {J1, J2, J3, J4, J5} are given in Table 

5.2. The system has 5 machines and 4 material handling buffers. A set of resources 

and a set of jobs is defined as R = {M1, M2, M3, M4, M5, B1, B2, B3, B4} and J =

{M1J1, M1J5, M2J2, M2J4, M3J2, M3J3, M4J3, M4J4, M5J3, B1P, B2P, B3P, 

B4P}. The circular wait matrix (5.34) is given as 

From the rows in matrix CT, we can observe the resources and rules that compose 

sixteen simple circular waits in considered FMRF system. For example, from the 

Table 5.2. Resources assignments for the system in Example 5.2.1

M1 M2 M3 M4 M5

J1 ♦     

J2 ♦ ♦

J3 ♦ ♦ ♦

J4 ♦ ♦

J5 ♦     

C
T
=

M1 M2 M3 M4 M5 B1 B2 B3 B4 x1 x2 x3 ...  ...   x17 x18
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first row, we can see that CW Cr1 is composed of resources M3 and B2, with 

corresponding rules CW Cx1 comprising rules x6 and x7.

The cyclic circular waits are given by matrix ζ,

A total of twenty seven CWs is identified, consisting of sixteen simple CWs, and 

eleven cyclic CWs. For example, the 17th column from ζ stands for a CCW 

composed of the first and fifth CW from matrix C. It is composed of resources M3, 

B2, M2, M4, and B3 (resource B2 is common to both CWs). 

Next, we calculate siphon job sets and critical subsystems by using Equations 

(5.40) and (5.42), respectively, 

Matrices VSC and V0C are composed of rows corresponding with siphon job vectors 

and critical subsystem vectors. At the end of the example we give results attained 

by the regularity test presented in Section 5.1.5. 

Since CCW is not a zero matrix, we can conclude that our system is an irregular 

system with key resources M2, M3, and M4 (see matrix RCCW).

♦
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5.3 Matrix Controller Design in MRF Systems 

According to Theorem 5.1.1, resources in CW get into circular blocking when the 

corresponding critical siphon becomes empty. Since in MRF systems circular 

blocking is equivalent to a deadlock, our main concern in deriving a deadlock free 

dispatching policy is to keep all critical siphons in the system full. However, as we 

mentioned in Section 5.1.3, an increase of the work-in-progress requires that 

system resources are busy most of the time. Balancing between these two marginal 

conditions, ( ) 0
CSm k > and mC(k)  0, is what makes a particular dispatching 

policy efficient. In this section we use the results of MRF structural analysis in 

order to devise a maximally permissive one-step look-ahead dispatching strategy 

that avoids deadlock in regular MRF systems. We also show how circular waits in 

irregular systems can be kept away from circular blocking. At the end of the 

section we describe a scheduling strategy for FMRF systems that is based on 

matrix formalism and so-called time windows.

5.3.1 Deadlock Avoidance in MRF Systems 

At the beginning of the determination of a dynamic deadlock-free dispatching 

policy, let us remember that  

[ ]v r 0= ⋅ =⋅
v

W W W p
r

From this equation, explained in detail in Section 5.1.2, the following relation can 

be attained,

T
( ) ( ) .pk m k const= =⋅p m (5.43)

i.e. content of resource loop is constant. Implementation of this result on Equation 

(5.23) gives 

T
( ) .r

r C
k const

∈
=⋅p m

(5.44)

where pr are resource loop vectors that correspond to resources in CW C. Since 

Equation (5.44) holds for any k and if we assume that all resources in C are idle for 

k = 0, then 

T T

c(0) (0) (0)r C
r C

m
∈

= ⋅ =⋅p m c r
(5.45)

which finally yields,  
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T
( ) (0)r C

r C
k m

∈
=⋅p m

(5.46)

This result is important since it states that the content of resource loops that belong 

to the resources involved in CW is equal to the number of resources involved in the 

circular wait, which is a design parameter and it is known in advance. 

Further combination of the above equation and Equation (5.24) has an even 

more significant outcome, 

T T T

C 0C c( ) ( ) ( ) (0)r C
r C

k k k m
∈

+ = =⋅ ⋅ ⋅s m v v p m
(5.47)

or in a different form, 

T

0C c( ) (0) ( )
CS Cm k m k= − ⋅v v (5.48)

Hence, as long as 

0
(0) ( )

CC Jm v k> (5.49)

where
0

T

0C c( ) ( )
CJv k k= ⋅v v , a critical siphon will not be empty, i.e. ( ) 0

CSm k > .

According to Equation (5.22) the content of critical subsystem,
0

( )
CJv k , is 

increased by 1 each time a job that belongs to J0N(C) or J0Q(C) is dispatched. On 

the other hand, execution of Ji∈ J0N(C) does not influence ( )
CSm k . In summary, 

the effect that jobs dispatching has on critical siphon content is such that; i) 

( )
CSm k is decreased by 1 for Ji∈ J0Q(C), ii) ( )

CSm k is increased by 1 for Ji∈

J0S(C), and iii) ( )
CSm k remains  unchanged for Ji∈ J0N(C).

The other point that should be noted is that for a given part path in the MRF 

system with sequential shared resources, jobs that belong to trap and neutral job 

sets are visited by parts before jobs from the siphon job set. As a consequence, 

when trap or neutral jobs are dispatched parts are pushed into the system, while 

execution of siphon jobs pulls parts out from the system (Figure 5.7).  

Figure 5.7. Job sets in MRF systems 
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The above-mentioned property of MRF systems is a basis for multipart 

scheduling rules that replicate two well-known strategies – FBFS and LBFS. 

Although both of them could lead a system into a deadlock, the next two theorems 

ensure stability. 

Theorem 5.3.1 (stable LBFS dispatching): Given a regular MRF system, deadlock 

will not occur if and only if a dispatching policy is used such that: 

i) whenever a multitude of jobs { }k
iJ  are activated simultaneously 

(conflict), they are dispatched according to the following: for every 

CW C such that { } ( )k
iJ J C∩ ≠ ∅  priority is given to jobs 

0 0( ) ( )k
i S NJ J C J C∈ ∪ , and 

ii) does not dispatch any 0 ( )k
i QJ J C∈  if 

0
( ) (0) 1

CJ Cv k m= − .

The first part of the theorem handles conflict situations in the way that jobs that 

pull parts out from the system are preferred. This corresponds to the LBFS 

strategy. The second part of the theorem ensures a deadlock-free behavior of the 

system by disallowing execution of jobs that decrease ( )
CSm k when the critical 

subsystem content is on the lower limit. A practical implementation of this part of 

the theorem requires slight modification due to the existence of the hidden parts 

(see Section 3.4). According to the theorem, the supervisor has to track the 

contents of all critical subsystems, but information obtained from sensors in 

sampling interval k (vector vc(k)) could come too late for appropriate actions. This 

is why, as described in Chapter 3, instead of vc(k), vector 
s

c ( )kv , obtained from 

Equation (3.21), should be used in the determination of 
0

( )
CJv k .

The deadlock-free dispatching policy stated next defines the generalized 

kanban strategy. 

Theorem 5.3.2 (stable FBFS dispatching): Given a regular MRF system, deadlock 

will not occur if and only if a dispatching policy is used such that: 

i) whenever a multitude of jobs { }k
iJ  are activated simultaneously 

(conflict), they are dispatched according to the following: for every 

CW C such that { } ( )k
iJ J C∩ ≠ ∅  priority is given to jobs 

0Q 0N( ) ( )k
iJ J C J C∈ ∪ , and 

ii) does not dispatch any 0Q ( )k
iJ J C∈  if 

0
( ) (0) 1

CJ Cv k m= − .

This control strategy is maximally permissive. Moreover, by keeping the 

kanban content mC(k) as low as possible (including zero), the work-in-process in 

the critical subsystem is maximized, thus maximizing the per cent utilization of 

resources. The difference between the standard FBFS and the one introduced in 
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Theorem 5.3.2 is that exploitation of the standard policy forces parts into the 

system all the time, while the stable FBFS drives parts forward as long as a 

particular part of the system is full, and then starts to pull parts out from the 

system.  

The supervisor, which dispatches jobs according to strategies given in the 

above theorems, can be realized in the form of the control vector, whose 

components are incorporated in the logical state vector equation through matrix Fd,

introduced in Section 3.4 and calculated from the conflict-rules vector according to 

Equation (3.25). It can be shown that 0QC d• ⊂v x and 0SC d• ⊂v x . However, 

depending on the system structure, 0NC d• ⊂v x is not necessarily true, thus, 

0NC•v should be added to the conflict-rules vector. Regarding the control vector, it 

follows from the theorems that for the online deadlock-avoidance implementation 

only particular parts of the system, namely jobs, are important. Hence, the control 

vector (3.22) can be determined from  

( )s

d c( ) ( ), ( )k h k k=u m v

It is evident that both strategies, stable LBFS and stable FBFS, give the same 

result when no conflict occurs in the system. In that case only a situation described 

with the second rule, common to both theorems, could happen, which is presented 

in Figure 3.12 (Example 3.4.1), where the results obtained with the dispatching that 

is equivalent to the stable LBFS policy, are shown. Specifically, the critical 

subsystem from this example is J0(C)={RP1, BP, MBP}, with mC(0) = 4. The 

dispatching proposed in the example takes actions exactly according to Theorem 

5.3.2. 

Results attained with stable FBFS and stable LBFS policies are depicted in 

Figures 5.8 and 5.9, respectively. As may be seen, the throughput of the system 

remained unchanged but resource utilization is improved in the case of FBFS 

dispatching. When LBFS is used the buffer never reaches its full capacity (2 parts). 

The system is stable in both cases. 

5.3.2 Deadlock Avoidance in Irregular Systems 

The dispatching strategies given in Theorems 5.3.1 and 5.3.2 can be implemented 

in irregular systems as well, with an additional verification that is stated in the next 

theorem. 

Theorem 5.3.3 (stable dispatching in irregular system): Given an irregular MRF 

system, with C1 and C2 forming a CCW with a key resource, then a deadlock will 

not occur if and only if the last idle resource in CCW is not a key resource.  

Evidently, one-step look-ahead control strategies, exemplified in the previous 

section, cannot cope with the condition illustrated in the theorem. There are two 

reasons for this. First, the supervisor that implements dispatching according to 

Theorem 5.3.3 should track the number of available resources in CCW, and 
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secondly, if two resources in CCW are idle then in the worst case 

0 CCW( ) (0) 2
CCWJv k m= − , hence, activation of any J(CCW) is allowed. 
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Figure 5.8.  Response of the system from Example 3.4.1 with stable FBFS dispatching 

We illustrate the occurrence of the second-level deadlock in the following 

example. Let us consider a CCW that is composed of two CWs, C1 = { ra, rk, rc, … 

} and C2 = { rd, rk, rb, … }, as shown in Figure 5.10. Further, assume that resources 

in the CCW are related by the following equations,  

k a 1 k d 2 b k 3 c k 4, , ,r r x r r x r r x r r x•∩• = •∩• = •∩• = •∩• = . Now, let us 

suppose that the two remaining idle resources are rc and rk, and the prerequisites 

for rules x1, x2 and xm∈rc• are met. This is a situation in which not only conditions 

related to the content of critical subsystems of all three CWs should be checked, 

but also the condition regarding the number of idle resource should be taken into 

consideration.
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Figure 5.9.  Response of the system from Example 3.4.1 with stable LBFS dispatching 

Three decisions could be made; i) execution of rule x1 – in this case the key 

resource becomes occupied but resource ra is released. Although two resources in 

CCW, ra and rc, remain idle, the critical siphon SC2 is empty, thus, x1 should not be 

executed due to the condition 
0 2 2

( ) (0)
CJ Cv k m< , ii) execution of rule x2 – in this 

case the key resource becomes occupied and resource rd is released. Now, C1 has 

idle resource rc and C2 has available resource rd. Since both of them belong to 

CCW, it has idle resources too. Therefore, conditions 
0

( ) (0)
Ci iJ Cv k m<  are not 

violated. Furthermore, the key resource is not the last available resource in CCW, 

iii) execution of rule xm – in this case the key resource remains the last idle 

resource in CCW while preconditions for both rules, x1 and x2, are still satisfied. 

However, execution of any of them would make both critical siphons, SC1 and SC2

empty. This is known as the second-level deadlock, that is, the consequences of a 

decision regarding job activation (rule xm) are becoming evident two sampling 

intervals later, when it is too late to correct an already-completed action. 
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Figure 5.10.  Two CWs in a CCW 

Then, an obvious solution, suggested in Theorem 5.3.3, is to deny having the 

key resource as the last available resource for any critical CW (and any CW). We 

should always give priority to usage of the key resource (in our demonstration that 

corresponds to execution of rule x2) over all other resources available in the critical 

CW (in our case execution of rule xm), while at the same time the conditions stated 

in Theorems 5.3.1 and 5.3.2 should be checked. 

5.3.3 Deadlock Avoidance in FMRF Systems 

The dispatching strategies based on the content of critical subsystems and the 

number of available resources in CCW could be used in FMRF as well. In Section 

5.2.1 it has been shown how to determine the structural properties of a free-choice 

MRF system that are required for successful deadlock avoidance. However, the 

existence of alternative part paths, we call them resource sequences, that execute 

the same job sequence, opens space for implementation of more sophisticated 

routing and dispatching strategies. The supervisory control techniques proposed so 

far in the book suggested solutions that were static. That is, once proposed a 

resource sequence (RS) remained unchanged until the part has left the system. A 

method described in the text that follows offers a possibility for dynamic change of 

the resource sequence [17], i.e. depending on the priority, the resource sequence 

can be changed before the part reaches the output of the system. 

Based on the string composition the proposed method finds the candidate 

resource sequence by matrix composition and then time windows are used for 

checking if the determined resource sequence is feasible. The viability of a 

particular RS is evaluated by time-windows insertion that is followed by a time-
windows overlap (conflict) test. In the case of an overlap, the algorithm iteratively 

reinserts time windows until there are no overlaps or the overlap is present on the 

first resource visited by the part, which means that the candidate RS is not feasible. 

The procedure is repeated for all candidate RSs. As a result, the set of executable 

sequences is formed and the final task of the algorithm is to choose the optimal one 

in terms of the time required for the part to get from the input to the output of the 

system. 

Introduction of dynamic scheduling into the FMRF systems has many 

advantages: increase of system throughput, reduction of operational costs, 
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consistent execution of predetermined tasks, etc. However, this requires superior 

control strategies that are able to solve problems such as a conflict and a deadlock. 

Usually, routing and scheduling algorithms should be executed online in a very 

short time, which is challenging since the problem is NP-hard. 

Various methods for dynamic routing and scheduling, especially in autonomous 

guided vehicle (AGV) systems, are currently in use [18]  [22], and still 

researchers are working on new methods in their quest for faster and 

computationally efficient algorithms. Generally, two approaches can be recognized 

in the literature: static routing and dynamic routing. While the first approach is 

concerned only with the spatial dimension of the routing problem (determination of 

resource sequences in the space domain), the second approach perceives routing as 

a time-space problem (determination of part paths feasible in space and time). In 

some cases the time-space approach could be seen as static routing. Since the goal 

of routing is to find the optimal sequence, many algorithms are based on Dijkstra’s 

shortest-path algorithm [23]. 

Since the number of processed parts changes with time, by elongation of the 

time windows the proposed method assures that the shortest RS becomes feasible, 

thus providing collision-free and deadlock-free paths for all processed parts. 

Usually, when it comes to the mathematical analysis and control algorithm 

design, a manufacturing shop-floor layout is represented by a graph. In the 

approach described herein, the start and stop of a particular operation are 

represented by nodes ni, while part processing is represented by a weighted arc, ai.

Since we are concerned with dynamic scheduling based on time windows, it is 

natural to choose the processing time as a variable that represents the arc (resource) 

weight. A nominal weight (minimal processing time) of resource rj for part pi is 

denoted ˆ ijw .

A graph adjacency matrix is typically defined with respect to nodes. Herein we 

define an arc adjacency matrix since time windows are associated with arcs. 

Having a directed graph, G = (N, A), an arc adjacency matrix G  is defined as a 

matrix with the number of rows and columns equal to the number of arcs in G,

with element gij equal to 1 if arc ai is upstream of arc aj, otherwise it is 0. 

In FMRF systems a required job sequence J can be executed by several 

resource sequences. Such resource sequences, for example, {M1, M2, M3, M2, M1}

and {M1, M2, M3, M4, M1} complete the required job sequence J = {J1, J2, J3, J4,

J5} in Example 5.2.1. A set of active resource sequences is defined as 

{ }:a i iπ πΠ = ∈Π , where Π is a set of all possible resource sequences that 

execute the required job sequence. 

An RS πi is defined in the following way: ( )0
ˆ, , , ,

i
i i i i io d P pπ σ= , where oi is 

the first resource (an origin arc) and di is the last resource (a destination arc) visited 

by the part on the sequence πi, ˆ
iσ is the shortest RS (in the sense of processing 

time) between the first and the last resource, 0iP is the initial priority of the 

sequence (a sequence with the highest priority has the lowest value of 0iP ), and pi

is a part processed by the sequence πi. On its route from the origin to the 
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destination, a part visits a set of resources represented by arcs, { }:j jr r Rσ = ∈ .

The weight of the path  is equal to the release time of the last resource of the 

sequence, i.e. W( ) = 
out

dt σ
. A set of all RSs that connect origin arc and destination 

arc of sequence πi is { }1 2, ...
i i i

i qσ σ σΣ = .

Given that in the case of dynamic routing the path ˆ
iσ , as well as the RS 

priority, can be changed during mission execution, a mission is defined in the 

following way: 

( )ˆ( ) , , ( ), ( ),
i

i i i i it o d t P t pπ σ= (5.50)

The mission priority Pi(t) is calculated according to the relation: 

( ) 0
min ˆ, ( )

ˆ( )

ˆ( )

i
i

i

di
i

i

for
P t

for

t t
P W

W t
W

σ
σ

σ
=

−
≠ ∞

−

−∞ = ∞
(5.51)

where tdi is due time of mission πi.

Determined in this way, the priority of the RS with the part that is far from its 

destination is higher than the priority of the RS that has the part already close to its 

goal. In addition, the RS whose due time is close to expiration has a higher priority 

than the RS that has enough time to meet its due time. Initial RS’ priorities, 

assigned by the dispatching controller, are recalculated each time the request for a 

new part processing arrives or current sequences become unviable. In this way the 

influence of livelock is reduced as a sequence with low initial priorities would not 

wait in a queue indefinitely. Care should be taken since more than one RS might 

have priority – . In that case, the priorities of the sequences could be arranged 

according to FIFO. 

We assume that a part can reside only in resources (arcs). A part occupies a 

particular resource for some time (we suppose that only one part at a time is 

allowed to be processed by the resource). This time is called a time window,

defined as 

ˆ,out in
ij ij ij ij ijw t t w w= − ≥ (5.52)

where ijw is a time window of part pi in resource rj,
out

ijt is the release time of 

resource rj from part pi, and
in

ijt is an entry time of pi in resource rj. Time windows, 

as well as release times and entry times of resource rj , can be represented in the 

form of time vectors:



 Manufacturing Systems Structural Properties in Matrix Form 187 

, ,
in out

ij ij ijw t t= = =in out

j j j
w t t (5.53)

where the 1st component corresponds with the highest priority RS, the nth

component with the lowest priority RS and n = Πa , i.e. the dimension of all three 

vectors is equal to the number of active RSs. Dimension n varies with time, since 

the number of active resource sequences is changing dynamically. Also, it should 

be noted that a part may visit a particular resource two or more times, hence, more 

than one component of a time vector would correspond to the same sequence, i.e.

n Πa . In that case index i j corresponds to the th time window of sequence πi
on resource rj. The components of vector wj, that correspond to active sequences 

that do not use resource j, are set to zero, while the components of vectors 
in

j
t and

out

j
t  that correspond to those sequences are set to .

From time vectors defined as in Equation (5.52) we know which RS visit which 

resources but we are not able to tell, directly, in which order. For the purpose of the 

time-window insertion, which is elaborated in more detail later in the text, we have 

to position components of time vectors in chronological order. Vector x = [xi] can 

be converted into sorted vector x  = [xi], where
11i ii ix x x x ++= ≤ = .

The concept of time windows is shown in Figure 5.11. In the example, 

sequences π1 and π2 have the highest and the lowest priorities, respectively. Time 

vectors of a given resource a are
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Figure 5.11. The concept of time windows 

It should be noted that, although 7 sequences are active, only four of them are 

using resource a. Sorted time vectors for resource a are written as
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When a new part arrives into the system at moment tm, a supervisor assigns an 

idle resource, om, as the origin of a new resource sequence πm, which has initial 

priority m0P . Then, the shortest path for sequence πm is determined by calculation 

of powers of vector 
m

– the row of string matrix S that corresponds with the 

origin resource om,

1

m m

ρ ρ−= •S (5.54)

 The string matrix S is formed as described in Chapter 4. Having vector
m

ρ
, the 

weight of each sequence i
ρσ , represented by a string in

m

ρ
, has to be determined 

and then vector 
m

ρ
is formed in the following way: if there exists a th order 

sequence that connects om and dm, then 

m m
ˆ( ) min ( )ii

W Wρ ρσ σ= (5.55)

Furthermore, if W(
m

ˆ
ρσ ) < W(

mσ̂ ) then the string that stood for 
mσ̂  is replaced 

by the string representing
m

ˆ
ρσ . When W( i

ρσ )  W(
mσ̂ ), sequence i

ρσ  in vector 

m

ρ
is replaced by a null string, otherwise the sequence remains the component of 

the vector. Initially, when a new resource sequence πm is requested, { }mσ̂ = ∅ and

W(
mσ̂ ) = . Since the weight of the sequence is equal to the release time of the 

sequence’s destination resource, in the following text we describe in detail how the 

feasibility of sequences and their release times are determined. 

A. Initialization of time vectors (Step 1)

The first step in the iterative procedure for a feasibility test and a release time 

determination of sequences in
m

ρ
, is an initialization of time vectors. Let us choose 

a candidate sequence i
ρσ ∈sup(

m

ρ
). For each resource rj ∈ i

ρσ its time vectors 

are initialized as 

T

1 2 m

T

1 2 m

T

1 2 m

ˆ... 0 0

...

...

j j j

in in in
j j j

out out out
j j j
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During the process of initialization, components of 
out

j
t whose values are less than 

tm, are set to  (as well as their counterparts in
in

j
t ), since they correspond to 

sequences that occupied resource rj prior to the moment a new sequence was 

requested, hence they do not influence the time-windows settings. When 
m

in
ijt t≤

and
m

out
ijt t> a part pi occupies resource rj at the moment of request tm and these 

components of time vectors remain unchanged. Components of vector wj, which 

belong to the sequences with lower priorities than sequence πm, are set to 0. At the 

same time all components of vectors 
in

j
t and

out

j
t  that correspond to these 

sequences are set to . In this way the time windows of RSs with lower priorities 

are excluded from consideration, which means that resource is freed for a new 

mission. Components that belong to RS πm,
m

in
jt and

m

out
jt , are unknown values 

that have to be determined by dynamic routing.  

It is assumed that the part pm, which is processed by the new RS, occupies om at 

the moment of entrance. Therefore the entry time of om is set to be equal to the 

part-arrival time tm. A release time of resource om depends on the average 

processing time
mmow . Accordingly, for the origin resource we set 

m m

m m m

T

1 2 m

T

1 2 m m

...

...

in in
o o o

out out
o o o o

t t t

t t t w

= ∞ ∞

= + ∞ ∞

m

m

in

out

t

t

B. Insertion of time windows (Step 2)

Having time windows of all resources that belong to the candidate sequence 

initialized, starting from the second resource of the sequence, we are looking on 

each resource rj ∈sup( i
ρσ ) for the first available time window that fulfils two 

requirements: a) it is wide enough to accommodate part pm for a predetermined 

period, and b) its entry time 
m

in
jt  is set after the release time of the upstream 

resource
m

out
it , i j.

When 

m m m1
ˆ

in
j j jt t w ε− > + and

m m m1
ˆ( )

in out
j j j it w tε− + >  for i j (5.56)

then
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m m

m m m
ˆ

in out
j i

out in
j j j

t t

t t w

=

= +
(5.57)

otherwise the index of the first available time window is determined by 

{
( ) }m m m1

arg min

ˆmax , 2 , , 1, 1

in
j

in out out
j j i j j

p t

t t t w i j nε
+
− > + → = −

= :

(5.58)

where n is the number of time-vector components that are  and mj is a safety
processing time of part pm in resource rj. The safety time depends on the processing 

time uncertainty. Its value is usually 1–5% of 
m

ˆ
jw .

Once p is determined, the entry and release times of part pm on resource rj are 

calculated as 

( )m m m1

m m m

max

ˆ

,
in out out

j j j ip

out in
j j j

t t t

t t w

ε
−

= +

= +
(5.59)

It may happen that the time-windows distribution on resource rj is so dense 

that m

in
jt cannot be determined, i.e. none of the relations in Equations (5.57) and 

(5.59) give an answer as to where to insert a time window for a new mission. In 

that case a new time window is set after the last time window on resource rj, i.e.

m m

m m m
ˆ

in out
j j jn

out in
j j j

t t

t t w

ε= +

= +
(5.60)

An example of time-windows insertion is shown in Figure 5.12. At the moment tm

a new sequence is requested. The first resource to process a part is resource c, i.e.

resource c becomes an origin resource of sequence πm. Let one of the candidate 

sequences, obtained by the string composition, be
2

1
{ , , }c b aσ = .

First, the initial values of the sorted time vectors are determined according to 

the initialization procedure (Step 1): 
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Figure 5.12. Time-windows insertion 

We can see that the components of vectors 
in

a
t and

out

a
t  that correspond to 

RSs π1 and π3 are set to  since the part processed by those two sequences have 

occupied resource a prior to the request for πm. In the same way, missions π7 and 

π1 are removed from the time vectors of resources b and c, respectively. The 

components of RS π7, that occupied resource a at the moment of request, remain 

unchanged. 

Having initialized vectors, we can start with time-windows insertion. First we 

set
m m

in
ct t=  and 

m m m

out
c ct t w= +  for the origin resource. The next resource of 

the sequence is resource b. According to Equation (5.56) we check if 
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21
ˆ

in in
b m b m mb mbt t t t w ε− = − > +  and 

21
ˆ ˆ( ) ( )

in in out
b mb mj b mb mj mct w t w tε ε− + = − + >

 From Figure 5.12  we  can  see that  both  conditions  are satisfied which yields  

m m

in out
b ct t=  and 

m m m
ˆ

out in
b b bt t w= + . We proceed to the next resource of the 

sequence, resource a;

m 7 m1
0

in in
a at t t t− = − <

hence, one of the conditions in Equation (5.56) is not satisfied so we have to find 

the first free time window by using Equation (5.58). The number of components of 

the sorted time vector 
in

at  that are  is 2, i.e. n = 2. For  = 1 we obtain 

{ }
{ }

m2 1

2 7 m

2 m m m

max

max

ˆ 2

,

,

in out out
a a b

in out out
a a b

in out
a b a a

t t t

t t t

t t w ε

− =

− =

− < +

thus a new time window cannot be placed before 
2

in
at . Since w2a is the last time 

window on resource a, wma is set after it, which gives 

m m 2 m m m m2
ˆ,

in out out out in
a a a a a a a at t t t t wε ε= + = + = +

By this action all time windows of sequence 
2

1
, ,{ }c b aσ =  have been inserted 

with no overlaps. 

C. Time-windows elongation and overlaps (Step 3)

As assumed earlier, a part can reside only in a resource, therefore, immediately 

upon leaving one resource it enters the next one, i.e. the following equation should 

be fulfilled for all resources of the sequence: 

m m
,

in out
j it t i j→= (5.61)
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It may be seen from the previous example (Figure 5.12) that the inserted time 

windows do not satisfy Equation (5.61). Although 
m m

,
in out

b ct t= this is not the case 

for resources b and a,
m m

in out
a bt t≠ . In order to check if sequence, i

ρσ , is feasible, 

first we have to expand the inserted time windows to meet requirement (5.61). The 

time-window elongation on resource rj yields: 

m m m m
ˆ ,

in out
j j i jw w t t j i=>= + − (5.62)

A time window can be widened in two ways, by changing the duration of the 

processing time of a particular resource or by holding a part in a resource before 

processing and/or after processing. As a consequence, a resource release time is 

changed, 

m m m

out in
j j jt w t= + (5.63)

thus changing the time vectors of resource rj
T

1 2 3 m

T

1 2 3 m

T

1 2 3 m

... 0 0

...
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j j j j

in in in in
j j j j

out out out out
j j j j

w w w w

t t t t

t t t t

=

= ∞ ∞

= ∞ ∞

j

in

j

out

j

w

t

t

The time-window elongation can cause an overlap, which is equivalent to a 

conflict; a situation when two (or more) parts request a resource over the same time 

period. The situation when an overlap takes place after applying time-window 

elongation is shown in Figure 5.13. Since
m m

in out
a bt t≠ , a newly inserted time 

window on resource b, which belongs to sequence πm, has been widened. This 

action caused an overlap with the time window of mission π2, which indicates that 

if the processing of part pm on resource b is prolonged in order to be finished just at 

the moment when resource a is ready to receive the part, then it will collide with 

part p2.
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Figure 5.13. Time-windows overlap 
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Having in mind this situation, once all time windows that belong to a particular 

sequence are extended according to Equation (5.62), new time vectors should be 

checked for overlaps, starting from the origin resource of the sequence. If 

{ }
1

0, 1, 1in in out
j j jt t t n

+
< ∅− == −: (5.64)

then there are no overlaps on resource rj.   

When Equation (5.64) is not satisfied, the first resource with an overlap should 

be detected and the time windows should be reinserted, starting from the resource 

with an overlap all the way to the last resource of the sequence. A new time 

window is inserted on the resource with an overlap by using Equation (5.59), only 

this time index p is calculated according to the following relation 

{
( ) }m m m1

arg min

ˆmax 2 1, , , ,

in
j

in out out
j j i j j

p t

t t t w i j q nε
+

→ = −− > +

= :

(5.65)

where q corresponds with the last time window involved in the overlap, i.e.

{ }
1

arg max : 0, 1, 1
in in out

j j jq t t t n
+

= − < = − (5.66)

Since a new time window cannot be placed upstream of the time window q, in 

Equation (5.65) only those time windows that follow after q are checked. When 

time windows are reinserted on all resources they should be checked for overlaps 

and the procedure repeats until a) there are no overlaps or b) overlap occurs on the 

origin resource. In case a) the sequence i
ρσ  is feasible and its weight is equal to the 

destination resource-release time. In case b) the sequence i
ρσ is not feasible and its 

weight is set to , hence, the sequence is removed from
m

ρ
.

The described procedure gives a final form of time windows for the sequence 
2

1
, ,{ }c b aσ = , as shown in Figure 5.14. It can be seen that this RS is feasible since 

there are no overlaps and its weight is W(
2

1
σ ) = 

m

out
at . As such, it proceeds to the 

next iteration of string composition only when its weight is lower than the weight 

of 
m σ̂ .
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Figure 5.14. Reinserted time windows with no overlaps 

Example 5.3.1 (deadlock avoidance in FMRF – multi-AGV routing) 

As an example of the dynamic deadlock avoidance we consider routing and 

scheduling in a multi-AGV system shown in Figure 5.15. Implementation of the 

time-windows approach for a dynamic multi-AGV routing problem is done in a 

way that arcs are considered as resources that are used by the vehicles, which are 

seen as parts passing through the system. The layout depicted in Figure 5.15 

comprises 3 vehicles that have to execute sequences (pass particular arcs) in order 

to move from one point to the other. The highest-priority sequence 1 is executed 

by vehicle 5 (V5) that carries pallets from an unloading station to a packing station, 

vehicle 2 (V2) executes the medium-priority sequence 2 and vehicle 3 (V3) is 

assigned to the lowest-priority sequence 3.

Figure 5.15. A multi-AGV system layout 
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The shortest paths for all three sequences for a of single-vehicle system are shown 

in Figures 5.16, 5.17. and 5.18. It can be seen that sequence 1 and sequence 3
have the same shortest path, only arcs are visited in reverse order. Figure 5.19 

shows the final result of a dynamic deadlock-avoidance algorithm. It can be seen 

that only the highest-priority sequence is routed through its shortest 

path,
1 10σ̂ ={35, 13, 12, 11, 10, 9, 8, 7, 2, 1, 0}. 
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Figure 5.16. The shortest path for sequence 1
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Figure 5.17. The shortest path for sequence 2.
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Figure 5.18. The shortest path for sequence 3
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Figure 5.19. The final result of routing algorithm – all three sequences with no deadlocks 

Other sequences are detoured to avoid head-on and deadlocks. Sequence 2 is 

changed so that vehicle V2 takes arc 24 (instead of arc 9) after arc 8, and the final 

result is 
2 9σ̂ ={40, 38, 36, 8, 24, 17, 16, 15, 14, 35}. As we already mentioned 

sequence 3 corresponds to reverse sequence 1. In order to avoid vehicles head-on, 

original sequence 3 is changed to  
3 8σ̂ ={0, 21, 19, 18, 17, 16, 15, 14, 35}.

The presented method for dynamic deadlock avoidance is the core of the multi-

AGV industrial environment supervisor [24]. The supervisor enables real-time 

control and simulation of shop-floor layouts that may contain a number of 

manufacturing cells and a number of AGVs that commutate between dynamically 
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determined starting and end nodes. Figure 5.20 shows simulation screenshots of 

the system presented in Figure 5.15. Vehicles execute the sequences depicted in 

Figure 5.19. 

a b c d

e f g h

i j k l

Figure 5.20. Simulation screenshots of the system presented in Figure 5.15 

The dynamic deadlock avoidance described herein may be seen as a variation 

of a well-known label-setting algorithm. The difference lies in the fact that 

standard label-setting algorithms proceed in the next iteration only with a dominant 

(optimal) label while in our case all feasible sequences (labels) are carried to the 

next step. In this way, a sequence that seemed to be the best choice in one iteration, 

could be replaced by another sequence during the steps that follow, because of 
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time-windows overlaps that may happen on its successors. Although this variation 

increases the worst-case computational complexity, implementation of a multi-

AGV industrial environment supervisor showed that for real shop-floor layouts the 

computational time has the same order as standard label-setting algorithms (most 

of the alternative sequences are eliminated at early stages of the calculation). 

5.4. A Case Study: Deadlock Avoidance in PLC-controlled FMS

In this section we demonstrate the MS supervisor design based on the matrix 

controller and realized on the industrial PLC Simatic S7-216. The laboratory setup 

is shown in Figure 5.21. 

The setup contains two educational robots, Rhino XR-3 and Rhino XR-4 (XR3, 

XR4), three belt conveyers (T1, T2, T3), one x-y transporter (XY), one carousel 

(CR) and one gravitational buffer (GS). Two part types, A and B, are handled by 

the system. Processed part types visit several resources on their way through the 

system. A part A enters the system when it is put on the conveyer T1 (Figure 5.22). 

When the part gets to the end of the conveyer, XR3 transfers it to the XY. Upon 

the arrival at the opposite side of the transporter, the part is picked by XR4 and 

placed on the conveyer T2, which carries the part to the output. 

Figure 5.21. The setup of the laboratory MS (a two-robot material-handling cell) 
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Figure 5.22. A top-view layout of the laboratory FMS with designated parts paths 

Likewise, a part B enters the system (Figure 5.22) when it is put on the 

conveyer T3, which brings the part to its end point. Once the part is at the right 

position, it is lifted by XR4 to the GS. When the part reaches the bottom of the 

buffer it is removed by XR3 and placed on the CR. The CR rotates the part, which 

is finally removed from the system by XR3. In our experiments, the capacity of the 

buffer GS is 1, while the capacity of the carousel is 3. 

We start the supervisor design with the matrix-model determination. From the 

system layout and description, we may distinguish 11 operations, five on the part A
and six on the part B. These operations are carried out by eight resources. Robots 

XR3 and XR4 are shared resources - XR3 has to perform three tasks; XR31 – 

moving the part A from T1 to XY, XR32 – moving the part B from GS to CR, 

XR33 – moving the part B from CR to the system output, while XR4 has two 

operations; XR41 – moving the part A from XY to T3, XR42 – moving the part B
from T3 to GS. A set of jobs and set of resources are defined as J = {T1P, XR31, 

XYP, XR41, T2P, T3P, XR42, GSP, XR32, CRP, XR33} and R = {XR3, XR4, T1, 

XY, T2, T3, GS, CR}.

By identifying the relations among operations and resources, and the sequence 

of operations, we can define the system matrices that describe the FMS behavior. 
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 First we find CWs by using Equation (5.1) and Gurel’s algorithm shown in Figure 

5.3, 

W

0 0 0 1 0 0 0 1 1 1 1

0 0 0 0 1 0 1 0 0 1 1

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 1
,

0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 1 0 1

= =G C

There exist three CWs, two simple, C1 = {XR3, CR} and C2 = {XR3, XR4, 

XY, GS} and one that is a union of these two, C3 = {XR3, XR4, XY, GS, CR}. 

The corresponding critical siphons and critical subsystems are given in a matrix 

form; 

T
0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0

0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1

C =S

T

0

0 0 0 0 0 0 0 0 1 1 0

0 1 1 0 0 0 1 1 0 0 0

0 1 1 0 0 0 1 1 1 1 0

=J

From matrix Fr we can determine the conflicting-rules vector xd and the 

dispatching matrix Fd,
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[ ]T
T

0 1 0 1 0 0 0 1 0 1 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

d

d

=

=

x

F

A control vector has five components that participate in the prerequisite parts of 

rules x2, x4, x8, x10 and x12. A control function h is represented by a set of rules such 

that the controlled system is free of conflicts and deadlocks. Since the critical 

subsystem that corresponds to C3 is the union of J0(C1) and J0(C2), only the content 

of those two subsystems is checked, 
0 1 1( ) (0) 4

CJ Cv k m< =  and 

0 2 2( ) (0) 4
CJ Cv k m< = . In the case of parallel conflicts of shared resources, a 

priority is given to jobs on part path A.

As described previously, in order to get the model that describes the system 

dynamics, we have to determine the duration of each operation performed on the 

parts. Measurements of the system-resources performances yield the durations of 

operations and resource-release times that are expressed in Table 5.3 as the number 

of sampling intervals required for the particular operation (in our case, the 

sampling interval is Td = 0.5 s). 

Table 5.3.  Operation times and resource-release times (# of sampling intervals) 

resource T1 T2 T3 XY GS CR 

operation T1P T2P T3P XYP GSP CRP 

duration 70 42 32 16 2 24 

release 2 2 2 22 2 2 

resource XR3 XR4 

operation XR31 XR32 XR33 XR41 XR42 

duration 24 18 26 30 36 

release 10 10 10 10 10 

The next step in the system-controller design is virtual modeling and simulation 

of the system with FlexMan, which is described in detail in Chapter 7. The results 

of dynamic simulation are given in Figure 5.23. As one can see, conflicts are 

successfully handled and the system is deadlock free. 

When the required system behavior is confirmed by FlexMan, the PLC code of 

the tested matrix controller can be generated and downloaded into the PLC. The 

other possibility is execution of the control algorithm on a PC and communication 

with the PLC through the OPC server [25]. One way or the other, the main benefit 
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Figure 5.23. Utilization of resources attained by simulation of the system shown in Figure 

5.21

of the matrix controller is its straightforward realization on standard industrial 

programmable logic controllers (PLCs) or on specialized software, such as 

FlexMan or Petri.NET, a software tool that is described in the next Chapter. 

However, due to various types of physical interaction of a PLC and the 

controlled system, which can result in the form of digital and/or analog signals, 

serial communication links (RS232, RS485, …) and local area networks 

(PROFIBUS, MODBUS…), implementation of the controller requires not only 
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transformation of matrix model into the PLC code, but also data acquisition and 
interpretation. Signals acquired from the PLC interface should be converted into 

vectors u, y, vc and rc.

The simplest case is the situation when each component of the system vector 

corresponds to one physical (digital) input. This allows direct mapping of the 

PLC’s memory and the system vector. On the other hand, when several physical 

inputs take part in the creation of the system vector component, then a special 

interface function is necessary to map those inputs with the system vector. The 

same holds for the PLC’s outputs. The components of vectors vs and rs should be

mapped with digital outputs or the PLC’s communication modules. Again, there is 

no general method for this step in the supervisor design. Relation one-to-one is the 

easiest case and it permits direct connection of the job-start vector and the 

resource-release vector with the physical outputs of the PLC. 

In our case, information regarding the system status is acquired from the 

sensors  (Figure 5.24)connected to the PLC’s digital inputs shown in Table 5.4.  

Table 5.4. Digital inputs of the PLC supervisor 

Name Address Description 

IR1 I2.0 IR sensor – part at the beginning of T1 

IR2 I2.1 IR sensor – part at the end of T1 

IR3 I2.2 IR sensor – part in GS 

IR4 I2.3 IR sensor – part at the end of T2 

IR5 I2.4 IR sensor – part at the end of T3 

IR6 I2.5 IR sensor – part at the beginning of T3 

IR7 I0.2 IR sensor – part on XY 

mark3_O_1 I1.0 XR 3 ctrl output 1 (status of XR3) 

mark3_O_2 I1.1 XR 3 ctrl output 2 (status of XR3) 

mark3_O_3 I1.2 XR 3 ctrl output 3 (status of XR3) 

mark4_O_1 I0.0 XR 4 ctrl output 1 (status of XR4) 

mark4_O_2 I0.1 XR 4 ctrl output 2 (status of XR4) 

SW_1 I2.6 switch 1 – part on CR 

SW_2 I0.5 switch 2 – XY at XR4 

SW_3 I0.6 switch 3 – XY at XR3 

In order to form vectors u, y, vc and rc, these inputs are combined and 

interpreted in an interface function. A part of this function, written in a S7-216 

function block diagram, is shown in Figure 5.25 (we assume that the reader has a 

basic knowledge of PLC programming, for more information see [26]). It can be 

seen, for example, that vc components XR3_1_c, XR3_2_c and XR3_3_c, which 
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correspond to completion of operations (trajectories) XR31, XR32 and XR33 are 

comprised of signals from three digital inputs, I1.0, I1.1 and I1.2. The other 

example is component XYP_c, calculated in Network 12, which is obtained as the 

logical AND of signals from switch 2 and infrared sensor 7. 

Figure 5.24. Sensor positions in the laboratory FMS 

A similar function exists for interpretation of the matrix controller requests for 

tasks, which are determined as components of vectors vs and rs. The PLC outputs 

are described in Table 5.5 and part of the interpretation function is shown in Figure 

5.26. 

Figure 5.25. A part of the digital inputs interface function realized in FBD 
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Table 5.5. Digital outputs of the PLC supervisor 

Name Address Description 

mark4_I_1 Q0.0 XR 4 ctrl input 1 – trajectory coding 

mark4_I_2 Q0.1 XR 4 ctrl input 2 – trajectory coding 

mark3_I_1 Q1.0 XR 3 ctrl input 1 – trajectory coding 

mark3_I_2 Q1.1 XR 3 ctrl input 2 – trajectory coding 

mark3_I_3 Q1.2 XR 3 ctrl input 3 – trajectory coding 

The start of operation (robot trajectory) XR31 is executed by Network 10 that 

sets (S) and resets (R) the PLC’s digital outputs connected with the robot 

controller. On the other hand, Network 5, which is responsible for the start of 

operation T1P (transport of a part by conveyer T1), executes a serial 

communication protocol (function cmd_def in our example) that sends a 

command to the conveyer controller via RS232. It should be noted that Network 5 

resets the component that corresponds to the availability of conveyer T1 (T1_A), 

while Network 10 resets the component corresponding to robot XR3 (XR3_A). 

Sometimes interface functions include not only logical operations but also 

timers for signals delays and counters for calculation of critical subsystems 

contents. These utilities can be included in the main control algorithm as well, 

however, in that case each rule of the matrix controller cannot be directly 

Figure 5.26. A part of the digital outputs interface 

function realized in FBD 
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transferred in the ladder diagram (LD) or the statement list (STL) network. 

Realization of the matrix controller in STL on PLC S7-216 is given in Figures 

5.27. 

At each sampling interval Network 1 sets all the components of the control 

vector to 1. Then in Networks 2 and 3 the controller checks if the critical 

subsystems are full and resets the corresponding components of the control vector. 

The following two Networks, 4 and 5, resolve conflicts so that priority is given to 

the part A path and to the jobs according to Theorem 5.3.2. Once the control vector 

is determined, PLC executes matrix-controller rules, which is done in Networks 6 

Figure 5.27. The matrix controller realized in STL 

NETWORK 6       //rules

//

LD     always_on

LPS

A      PIA

A      T1_A

=      T1P_s

LRD

A      XR4_1_c

A      T2_A

=      T2P_s

LRD

A      PIB

A      T3_A

=      T3P_s

LRD

A      XR3_rel

A      IR7

=      XYP_s

LRD

A      T1P_c

A      XR3_A

A      ud1

=      XR3_1_s

LRD

A      GSP_c

A      XR3_A

A      ud4

=      XR3_2_s

LPP

A      XR3_A

A      CRP_c

A      ud5

=      XR3_3_s

NETWORK 7       //rules

//

LD     always_on

LPS

A      XYP_c

A      XR4_A

A      ud2

=      XR4_1_s

LRD

A      T3P_c

A      XR4_A

A      ud3

=      XR4_2_s

LRD

A      XYP_c

A      XR4_A

=      XY_r

LRD

A      XR4_1_c

A      T2_A

LD     XR4_2_c

A      GS_A

OLD

=      XR4_r

LPP

A      XR3_2_c

A      CR_A

LD     XR3_1_c

A      XY_A

OLD

O      XR3_3_c

=      XR3_r

NETWORK 8       //number of parts in the critical subsystem

//

LD     XR3_1_s

O      XR4_2_s

LD     XR3_2_s

O      XR4_1_s

LD     rst_cnt

CTUD   C200, +3

NETWORK 9       //number of parts in the critical subsystem

//

LD     XR3_2_s

LD     XR3_3_s

LD     rst_cnt

CTUD   C201, +3

//

//SUBROUTINE COMMENTS

//Press F1 for help and example program

//

NETWORK 1       //all control signals = TRUE

//

LD     always_on

S      ud1, 1

S      ud2, 1

S      ud3, 1

S      ud4, 1

S      ud5, 1

NETWORK 2       //critical subsystem control

//

LDW=   C200, +3

R      ud1, 1

R      ud3, 1

NETWORK 3       //critical subsystem control

//

LDW=   C201, +3

R      ud4, 1

NETWORK 4       //XR3  conflict resolution

//

LD     always_on

LPS

A      T1P_c

A      GSP_c

A      ud1

R      ud4, 1

LRD

A      T1P_c

A      CRP_c

A      ud1

R      ud5, 1

LRD

A      CRP_c

A      GSP_c

R      ud4, 1

LPP

A      T1P_c

A      CRP_c

A      GSP_c

A      ud1

R      ud4, 1

R      ud5, 1

NETWORK 5       //XR4  conflict resolution

//

LD     XYP_c

A      T3P_c

R      ud3, 1
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and 7. The rules can be read directly from the STL. For example, part of the code, 

which is marked in Figure 5.27, corresponds to rule x5 that states that if operation 

XR41 is completed (XR4_1_c) and resource T2 is available (T2_A) then operation 

T2P should be started (T2P_s). Finally, the contents of critical subsystems are 

determined in counters C200 and C201. 

A graphical presentation of resources utilizations in a real system is shown in 

Figure 5.28. The robots’ trajectories and idle periods are all shown in one graph, 

while “1” on other graphs stands for a busy resource.   
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Figure 5.28. Resource utilizations in the real system 
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Petri Nets 

In 1962 Carl Adam Petri from TU Darmstadt developed one of the most popular 

DES modeling tools – Petri nets (PN) [1]. They provide a mathematical framework 

for DES analysis, DES supervisory design and DES performance evaluation (static 

and dynamic). More general than automata (any automaton can be represented as a 

Petri net, while the opposite is not always true), Petri nets allow description of very 

complex DES. However, in the case of large DES, PN models tend to become 

immense and complicated for analysis. The main benefit of PNs is their graphical 

nature that allows visualization of the modeled system. Namely, a Petri-net graph
directly embodies many structural properties of the system, which is not the case 

when an automaton is used for DES modeling. As such, Petri nets are used in a 

wide variety of applications, from communications to fault-tolerant systems. We 

shall see later in the text that in the case of an MS modeled by PN, system 

resources and part paths can both be recognized straight from a corresponding PN 

graph. However, PN are very difficult to design for specific FMS of reasonable 

complexity, and to modify if objectives, products, or resources change. A major 

problem is that PN properties such as reachability must be verified for each given 

system by using simulation. Moreover, to accommodate manufacturing design 

algorithms in the PN framework, it is necessary to introduce colored PN, 

hierarchical PN, generalized PN, multiple types of places, or other esoteric notions 

that quickly go beyond the experience of the manufacturing engineer and 

invalidate most PN analysis techniques.   

We start this chapter with basic definitions and properties of PNs, followed by 

a description of MS modeling by Petri nets [2], [3]. Introduction of control places 

in an uncontrolled PN model of the system is presented next, together with a linear 

PN controller based on p-invariants. In Section 6.3 we describe the relation 

between PN- and matrix-based modeling of MSs. At the end of this section a PN 

simulation tool used throughout the chapter is presented (the tool is available for 

download).  
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6.1 Basic Definitions 

A short preamble to PNs and some of their properties have already been given in 

Chapter 1. In this section we give formal definitions of terms used in the remainder 

of the book. 

A PN is represented by a directed bipartite multigraph containing two types of 

nodes, places (drawn as circles) and transitions (drawn as bars or rectangles) 

connected with directed arcs. Arcs, labeled with their weights, can join only 

certain types of nodes. In some applications an arc with weight w is replaced with 

w parallel arcs with weight 1 (Figure 6.1). We say that the PN is ordinary if all its 

arcs have weight equal to 1. Usually, for convenience, arcs with weight 1 are not 

labeled. 

A particular property that differentiates a PN from an ordinary graph is a 

marking m, which assigns a non-negative integer to each PN place. A marking 

m(pi) = l is characterized by l black dots (tokens) inside a circle representing place 

pi. We say that pi is marked with l tokens. A marking vector m = [m(p1) m(p2) … 

m(pn)]
T represents a PN state, which means that a state space of PN with n places is 

described with all n-dimensional marking vectors. 

The other property associated with place pi is its capacity K(pi), which refers to 

the number of tokens that can be held by the place. Apparently, for practical 

applications K(pi) should be bounded by an upper limit. When K(pi) < ∞ for each 

place in a PN, we say that the PN has a finite capacity, as opposed to an infinite-
capacity PN in which at least one place has K(pi) = ∞. The PN is said to be safe if 

∀pi, K(pi) = 1. 

The PN graph shown in Figure 6.1 has two transitions and 5 places with 

marking m(p1) = 1, m(p2) = 1, m(p3) = 0, m(p4) = 2, m(p5) = 0. There are 6 arcs 

connecting these places with transitions. Their weights are w(p1,t1)=1, w(p2,t1)=1, 

w(t1,p3)=3, w(p3,t2)=1, w(p4,t2)=2 and w(t2,p5)=1. Place p is called an input (output)
place of transition t if w(p,t)≠0 (w(t, p)≠0). The same holds for the input (output) 

transition t of place p, i.e. w(t, p)≠0 (w(p,t)≠0). A place (transition) that has no 

input transitions (places) is called a source, and a place (transition) without output 

transitions (places) is called a sink. In the PN shown in Figure 6.1 source places are 

p1, p2 and p4, while the sink place is p5. We say that a place pi and transition tj are 

involved in a self-loop if w(pi,tj)≠0 and w(tj,pi)≠0. A PN with no self-loops is called 

pure.

Figure 6.1. An example of a PN graph 
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Interpretation of places and transitions depends on the application, but in 

general, places represent conditions required for the occurrence of a particular 

event, for example, resource availability, parts or data readiness, etc. Transitions, 

on the other hand, represent the occurrence of an event, such as the start of a 

task/operation, release of a resource, step in a computation algorithm, etc. In this 

concept the existence of a token in a place is understood as a fulfillment of the 

condition represented by the place. Since a place can hold more than 1 token, their 

presence in the place can be taken as the number of processed parts, the number of 

customers in a queue, the number of available resources, etc. 

A mechanism that changes a PN state (marking) is described with two simple 

firing rules given in the following definitions. 

Definition 6.1.1 (enabled transition): We say that transition t is enabled if each 

input place p of t is marked with at least w(p,t) tokens. 

Definition 6.1.2 (firing of transition): An enabled transition t will fire if the event 

that it represents occurs. In that case i) w(p,t) tokens are removed from each input 

place p of t, and ii) w(t, p) tokens are added in each output place p of t.

Here we should make an important remark regarding the last definition. In the 

text that follows we assume that as soon as a transition is enabled it fires, meaning 

that all conditions for the occurrence of an event represented by a particular 

transition are modeled and included in a PN graph. 

Firing of transitions in PN graph is shown in Figure 6.2. Initially, (a) transition 

t1 is enabled since w(p1,t1)=m(p1)=1 and w(p2,t1)=m(p2)=1. On the other hand, 

w(p3,t2)>m(p3)=0 and w(p4,t2)=m(p4)=2, hence, transition t2 is not enabled. When t1

fires (b) one token is removed from each input place, p1 and p2, and 3 tokens are 

added to output place p3 as w(t1,p3)=3. Now w(p1,t1)>m(p1)=0 and 

w(p2,t1)>m(p2)=0, thus t1 is no longer enabled, while t2 becomes enabled since 

w(p3,t2)<m(p3)=3 and w(p4,t2)=m(p4)=2. Firing of t2 (c) removes one token from p3

and two tokens from p4, and adds one token to p5.
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Figure 6.2. Firing of transitions in a PN graph 
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In order to be able to analyze the evolution of tokens in PN as well as PN 

structural properties, we have to define a mathematical framework behind the PN 

graph. A formal definition of a PN is given next. 

Definition 6.1.3 (Petri net): A Petri net is a 6-tuple, PN = {P, T, I, O, M, m0},

where, 

P = {p1, p2, p3, …, pm} – a finite set of places, 

T = {t1, t2, t3, …, tm} – a finite set of transitions, 

I: P× T → {0,1} – an input incidence matrix – relates places to transitions, 

O: T × P → {0,1} – an output incidence matrix – relates transitions to 

places,

M: I, O→ {1, 2, 3, … } – is a weight function, 

m0 – initial value of the marking vector m: P →ℵℵ.

According to the definition, for the PN graph given in Figure 6.2, one has 

[ ]1 2 3 4 5 1 2 0{ ,  ,  ,  ,  },  { ,  }, 1 1 0 2 0

1 1 0 0 0 0 0 1 0 0
,

0 0 1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 3 0 0

0 0 1 2 0 0 0 0 0 1

TP p p p p p T t t= = =

= =

=

m

I O

M

Now, let us see if we can write a PN driving mechanism, described by 

Definition 6.1.2, in the form of algebraic equations. As already explained, firing of 

t1 in the PN shown in Figure 6.2, changes the marking of places p1, p2 and p3, while 

firing of t2 changes p3, p4 and p5. For place p3 we can write 

3 1 3 1 3 1, 3 2 2,( ) ( ) ( , ) ( , )k k k km p m p w t p t w p t t−= + ⋅ − ⋅

where k is a firing step. When tj fires in step k, then tjk=1, otherwise tjk=0. For k=1

(firing of t1) the above equation becomes 

1 3 0 3 1 3 1,1 3 2 2,1( ) ( ) ( , ) ( , )

0 3 1 0 0 3

m p m p w t p t w p t t= + ⋅ − ⋅

= + ⋅ − ⋅ =

which corresponds with case b) in Figure 6.2. Generally, a PN place could have 

several input and output transitions, thus, 

1 , ,( ) ( ) ( , ) ( , )

j j

k i k i j i j k i j j k
t T t T

m p m p w t p t w p t t−
∈ ∈

= + ⋅ − ⋅
(6.1)

 or in vector form 
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T
1k k−= +m m W t (6.2)

where W is an incidence matrix with wij = w(tj,pi) – w(pi,tj), and t is a transition 
vector. It should be noted that W = O – I for an ordinary PN. A transition vector t

is composed of non-negative integers that correspond with the number of times a 

particular transition has been fired between markings mk and mk–1.

Relation (6.2) is called a PN state equation or PN marking transition equation.

Its similarity with recursive matrix model (3.12) is apparent. We shall discuss this 

issue in more detail in section 6.3. By using a PN state equation we can 

mathematically formalize the firing of transitions in the PN graph shown in Figure 

6.2, 

T
1 0 0

T
2 1 1

1 1 0 0

1 1 0 0
1

0 3 1 3
0

2 0 2 2

0 0 1 0

0 1 0 0

0 1 0 0
0

3 3 1 2
1

2 0 2 0

0 0 1 1

−
−

= + = + =−
−

−
−

= + = + =−
−

m m W t

m m W t

We say that the marking (state) m2 is reached from m0 by firing sequence 1 2t tσ = ,

denoted 0 2[σ >m m . The concept of reachability in PN is very important and we 

return to this issue later on. It should be noted that the firing sequence σ  is only 

the sequence that can be fired in the PN depicted in Figure 6.2. If we change the 

initial marking of that PN as shown in Figure 6.3, then both transitions, t1 and t2,

are enabled and the question is which one fires first? A PN cannot give an answer 

to that question, that is, definitions of the PN and the PN graph do not specify firing 
sequences, and thorough analysis of the PN requires examination of all possible 

sequences. 
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Figure 6.3. Firing of different sequences in a PN graph 

In our case, if t1 fires prior to t2 one has a sequence 1 1 2t tσ =  with m1=[0 0 4 2 

0]T and m2=[0 0 3 0 1]T. On the other hand, if t2 fires first, then the sequence is 

2 2 1t tσ =  with m1=[1 1 0 0 1]T and m2=[0 0 3 0 1]T. Although in both cases the 

initial and final markings are the same, the movement of the marking vector in 

state space depends on the firing sequence. This example shows that a supervisory 

mechanism should be added in a PN model in order to obtain the required behavior 

of the controlled system. Let us examine some properties of a PN before 

proceeding in that direction.  

Generally, PN properties are divided into two classes; those dependent on the 

initial marking, called behavioral properties, and those independent of the initial 

marking, known as structural properties. Since our main concern in supervisory 

design is deadlock prevention, we start with the definition of liveness property. 

Definition 6.1.4 (liveness): Petri net PN with initial marking m0 is live if there 

exists a firing sequence such that any transition in the PN can be fired from any 

marking reached from m0.

The notion of liveness is closely related with deadlock and circular blocking, 

i.e. live PN is deadlock free. As liveness guarantees that there always exists a 

sequence that fires all transitions in the PN, a system whose model is live PN 

cannot get into deadlock. The PN shown in Figure 6.4 is live, while those depicted 

in Figures 6.2 and 6.3 are not. 
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Figure 6.4. An example of a live PN  

A liveness is a strong requirement, but in most cases very difficult to test. For 

this reason liveness is categorized with respect to transitions, so instead of 

checking if PN is live we consider each transition independently and say that the 

transition is a live or a dead one. There exist 4 classes of live transitions: L1-live – 

transition can fire at least once, L2-live – transition can fire at least k times, L3-live 

– transition can fire an infinite number of times, and L4-live – transition is L1-live 

for every m reached from m0. A situation in which all transitions in PN are L4-live 

corresponds with liveness as defined in Definition 6.1.4. It has been shown in 

Chapter 5 that in MRF systems one dead transition is source of the system 

deadlock. Therefore, the PN of the controlled MRF system should be L4-live, i.e.

we require PN liveness according to Definition 6.1.4. 

The other property that is essential in PN analysis has already been mentioned 

reachability.

Definition 6.1.5 (reachability): A marking mj is reachable from marking mi if there 

exists a firing sequence ...ij m r pt t tσ =  such that it leads a marking vector from mi

to mj. We write [i ij jσ >m m .

A set of all markings reachable from mi is denoted by ℜ(mi). Reachability is 

determined by a listing of all markings (states) that can be reached from a 

particular, usually initial, marking. Firing of enabled transition(s) produces new 

markings and each new marking generates even more markings. Evidently, this 

kind of analysis could lead to enormous number of states and it is limited to a PN 

with a relatively small number of places. 

Reachability analysis of a PN results in a graphical structure called a 

coverability tree. For bounded PN, which we consider herein, a coverability tree 

becomes a reachability tree and it contains all reachable states of the 

corresponding PN. A reachability tree for the PN given in Figure 6.3 is shown in 

Figure 6.5. 
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Figure 6.5. A reachability tree of the PN from Figure 6.3 

The tree is constructed starting from the initial PN marking by drawing an arc 

for each transition that is enabled. As both transitions are enabled, two arcs 

(branches) should be created; firing t1 produces marking [0 0 4 2 0], while firing t2

leads to marking [1 1 0 0 1]. We proceed further by drawing arcs for transitions 

that are enabled under newly obtained markings. The process continues until all 

reachable markings are counted. If we treat markings as nodes then the obtained 

reachability tree is actually an automaton representation of the considered PN and a 

set of all firing sequences, L(m0), corresponds with the language generated by this 

automaton. For the PN shown in Figure 6.4, an automaton equivalent to its 

reachability tree is depicted in Figure 6.6. Represented in this way, the analysis 

techniques used for automata can be used for bounded PNs as well. For example, a 

reachability tree node with no output branches may indicate deadlock, hence, firing 

of transition(s) that force undesired PN marking, corresponding to that node, 

should be forbidden. 

  It is evident from the above brief introduction that reachability analysis offers 

a solution to many questions posed for PNs. However, algebraic analysis, based on 

state equation (6.2), is proven to be more convenient for PNs. Furthermore, matrix-

based modeling of manufacturing systems, presented in Chapter 3, has much in 

common with the state representation of Petri nets. For these reasons here we close 

our discussion on reachability analysis from the automata point of view and 

proceed with a description of a reachability test based on the algebraic equation 

(6.2).      

Figure 6.6. An automaton equivalent of PN from Figure 6.4 

From Equation (6.2) we see that marking md could be reachable from mk if 

there exists a transition vector t such that 
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T
d k= −W t m m (6.3)

This equation is a necessary condition for reachability, that is, the existence of 

solution t does not guarantee that md is reachable from mk. What we know for sure 

is that when Equation (6.3) has no solution in t then there is no firing sequence that 

enforces mk into md.

An interesting result is obtained as a solution of the homogenous equation 

T 0=W t (6.4)

Since md–mk=0 transition vector t that satisfies Equation (6.4) comprises a firing 

sequence that returns marking mk back to itself. Such a transition vector is called t-
invariant. In close relation with t-invariant is the notion of reversibility. 

Definition 6.1.6 (reversibility): A Petri net is said to be reversible if for any 

marking mi there exists a firing sequence σi such that [i i iσ >m m .

In practice, it is required for most manufacturing systems to exhibit cyclic 

behavior. Petri-net models of such systems should be reversible, hence, checking 

reversibility is an important issue for the systems we encounter in practice. 

Another interesting PN structure, which plays a key role in the investigation of 

deadlock, is the so-called p-invariant, a non-negative integer place vector p that is 

a solution of 

0=Wp (6.5)

As an example of PN invariants we use the net shown in Figure 6.4. Its incidence 

matrix is 

1 0 1 1 0

1 1 0 1 1

0 1 1 0 1

− −
= − −

−
W

The t-invariant is t = [1 1 1]T, and the p-invariants are p1=[1 0 0 1 0]T, p2=[0 1 0 0 

1]T and p3=[0 0 1 1 1]T. Of course, tq=[q q q]T is also an invariant of this PN, 

however, when structural properties are investigated then minimal invariants are of 

primary interest. An invariant p (t) is minimal if there is no such invariant pq (tq)

that pqi ≤ pi (tqi ≤ ti) for any vector component. 

It is easy to show that the number of tokens in places that belong to p-invariant 

is constant. Multiplying Equation (6.2) with pT from the left gives 

T T T T
1k k−= +p m p m p W t (6.6)
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By including Equation (6.5) in Equation (6.6), and having in mind that Equation 

(6.2) holds for any k, we obtain 

T T
0 .k const= =p m p m (6.7)

This equation is very important and actually confirms what we shall show later; in 

a PN model of an MRF system p-invariants correspond with the resource loops 

described in Section 5.1.2. 

Let us now examine the PN shown in Figure 6.7. According to Definition 6.1.1 

transitions t1 and t3 are enabled. However, place p3, which has two output arcs, is 

marked with only one token. Hence, firing one of these two transitions will disable 

the other one. This situation is known as a conflict and it was thoroughly discussed 

in previous chapters. Since we assumed that the transition fires as soon as it is 

enabled, marking m(p3) becomes negative upon firing of t1 and t3, which is not 

allowed. Therefore, our prime concern in PN analysis is to prevent conflict. 

Figure 6.7. An example of a PN with conflict 

An occurrence of conflict is related to Petri-net persistency.   

Definition 6.1.6 (persistency): A Petri net is persistent if for any two enabled 

transitions firing of one does not disable the other. 

This definition concludes the description of the basic behavioral properties of 

PN. We continue with the presentation of properties that are determined by the PN 

structure and do not depend on PN marking. First, let us extend the notions of 

preset and postset to Petri nets: 

{ | ( , ) 0}p t w t p• = > – a set of input transitions of place p,

{ | ( , ) 0}p t w p t• = > – a set of output transitions of place p,     

{ | ( , ) 0}t p w p t• = > – a set of input places of transition t,
{ | ( , ) 0}t p w t p• = > – a set of output places of transition t.
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This notation can be extended to sets so that, for example, for S⊂P one 

has
p S

S p
∈

• = ∪ • . A vector representation of a set of PN nodes remains the same as 

in previous chapters. To recall; a set of places (transitions) that correspond with 

nonzero entries in vector s is called the support of s, S = sup(s). In the Petri-net 

literature support is usually denoted as s . Next, we define special classes of Petri 

nets, called marked graphs and state machines.

Definition 6.1.7 (a marked graph): An ordinary Petri net is called a marked graph
if ∀p∈P, | | | | 1p p• = • = , i.e. each place has one input transition and one output 

transition. 

The Petri net shown in Figure 6.7 does not belong to that class since 3| | 2 1p • = > ,

while the one depicted in Figure 6.4 is a marked graph. It has been proved that a 

marked graph is live if and only if each directed circuit in PN has at least one token 

under initial marking m0. This important result can be checked on the PN from 

Figure 6.4. Three directed circuits exist in this PN, {p1, p4}, {p2, p5} and {p3, p4,

p5}, with initial marking m0=[1 1 1 0 0]T. Therefore, m(p1)=1, m(p2)=1 and 

m(p3)=1, i.e. exactly one token is provided for each directed circuit. From Figure 

6.6 we see that firing sequence 1 2 3t t tσ = , which returns PN in its initial marking, 

can be repeated an infinite number of times, thus, according to Definition 6.1.4, the 

PN is live. 

Definition 6.1.8 (a state machine): An ordinary Petri net is called a state machine
if ∀t∈T, | | | | 1t t• = • = , i.e. each transition has one input place and one output place. 

It is easy to check the liveness property of a strongly connected state machine. 

Specifically, if initial marking m0 of a strongly connected state machine has at least 

one token then the state machine is live. This is a necessary and sufficient 

condition for state machine liveness. 

In the previous chapter we have studied in detail the importance that siphons 

and traps have in MS analysis. The relation between an empty siphon and deadlock 

was explained and analytical methods for siphon determination and deadlock 

avoidance in MRF systems have been proposed. The definitions of siphon and trap 

given in Section 5.1.3 can be directly applied in Petri nets. Explicitly, in a Petri net 

a siphon is a set of places S such that every transition having an output place in S
has an input place in S. For a set of places in trap Q every transition having an 

input place in Q has an output place in Q. Furthermore, the properties of these two 

structures hold for Petri nets as well; once a siphon becomes empty, m(S)=0, it 

remains empty for all successive markings. On the other hand, if a trap is marked 

under some marking it remains marked under all successive markings. 

There are numerous papers published in journals and presented at conferences 

related to algorithms for siphon determination in PNs. Some algorithms are based 

on linear inequalities, while others use logical rules or algebraic equations. 
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However, none of these methods can be directly applied to all classes of Petri nets. 

Here we demonstrate a simple approach that checks each place in a PN and forms a 

set of inequalities [4]. As an example, let us use the PN shown in Figure 6.8. We 

start with the assumption that place p1 is an element of siphon S. Then, according 

to the siphon definition, every transition having p1 as an output place should have 

an input place in S. Hence, if p1∈S then p5∈S. For place p2 one has that when p2∈S
then p1∈S or p4∈S since { }2 1 4 2p p p t• = • = • = . Checking of p3, p4 and p5 gives 

the following rules; if p3∈S then p2∈S or p5∈S, if p4∈S then p2∈S or p5∈S, if p5∈S
then p3∈S and (p1∈S or p4∈S). This set of logical rules can be transformed into a 

set of inequalities written as 

1 5

2 1 4

3 2 5

4 2 5

5 3

5 1 4

0

0

0

0

0

0

p p
p p p
p p p
p p p
p p
p p p

− + ≥
− + + ≥
− + + ≥
− + + ≥
− + ≥
− + + ≥

(6.8)

A solution of this system is a binary vector s = sup(S). For example, s1 = [0 0 1 

1 1]T satisfies a set of inequalities, thus, S1={p3, p4, p5} is a siphon. Another 

solution, s2 = [1 0 1 0 1]T is also a siphon, however, this siphon contains p-

invariant and, as we mentioned in the previous chapter, it is not interesting for a 

deadlock-avoidance supervisory design in MRF systems. It is interesting to note 

that s3 = [1 1 1 1 1]T satisfies the above inequalities, i.e. the PN itself is a siphon 

since it is comprised of two p-invariants. 

The second method we present here follows the same reasoning as the approach 

described above; all possible sets (combinations) of places in a PN should be 

checked to see if they satisfy the siphon condition. This can be done in various 

ways and herein we demonstrate a procedure based on a PN incidence matrix in an 

ordinary PN [6]. 

Figure 6.8. An example of a siphon in a PN 
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For an ordinary PN incidence matrix W = O – I. Hence, an element of W

obtains value from a set {–1, 0, 1}, with wij = 1 for pj∈ti•, wij = –1 for pj∈•ti and wij

= 0 for pj∉{•ti ∪ti•}. If we assume that pj belong to siphon S, then for each wij = 1 

there must exist wik = –1 with pk∈S. However, when | t•|>1 for some transition in 

the PN, incidence matrix should be modified. From the PN shown in Figure 6.8 we 

see that, although it has 4 transitions, we needed 6 logical rules to obtain 

inequalities (6.7). This is due to the fact that each of transitions t2 and t3, has two 

output places. To cope with this situation we modify the incidence matrix as 

follows: each wij = –1 should be replaced with ij iw r∗ = − , where ri = | ti•|. Then, for 

an ordinary PN with m transitions and n places, set S = {pj | pj∈P} is a siphon if 

and only if 

0 for all 1,ij
j

w i m∗ ≤ =
(6.9)

For the PN depicted in Figure 6.8 the incidence matrix W and the modified 

incidence matrix W* are defined as 

1 0 0 0 1 1 0 0 0 1

1 1 0 1 1 2 1 0 2 1
,

0 1 1 1 1 0 2 1 1 2

0 0 1 0 1 0 0 1 0 1

∗

− −
− − − −

= =
− − − −

− −

W W

As we have to check all combinations of places in PN we start with S={p1, p2}. 

According to Equation (6.9) 

11 12

21 22

31 32

41 42

1 0 0

2 1 0

0 ( 2) 0

0 0 0

w w

w w

w w

w w

∗ ∗

∗ ∗

∗ ∗

∗ ∗

+ = + >

+ = − + <

+ = + − <

+ = + =

Since the 1st row is greater than 0, set S={p1, p2} is not a siphon. We proceed with 

S={p1, p3}, S={p1, p4}, and so on. For S={p2, p4} one has 

12 14

22 24

32 34

42 44

0 0 0

1 ( 2) 0

2 1 0

0 0 0

w w

w w

w w

w w

∗ ∗

∗ ∗

∗ ∗

∗ ∗

+ = + =

+ = + − <

+ = − + <

+ = + =
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thus S is a siphon. When all sets containing two places are checked, the procedure 

continues with S={p1, p2, p3} and other three-element sets. Applying Equation (6.9) 

on S={p3, p4, p5} gives 

13 14 15

23 24 25

33 34 35

43 44 45

0 0 ( 1) 0

0 ( 2) 1 0

1 1 ( 2) 0

1 0 1 0

w w w

w w w

w w w

w w w

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

+ + = + + − <

+ + = + − + <

+ + = + + − =

+ + = − + + =

i.e. S is a siphon, which confirms the result obtained from the set of logical rules 

(6.8). Finally, the last set to be checked is S={p1, p2, p3, p4, p5}. Since the sum of 

elements of each row in W* is ≤ 0 this set is a siphon. 

The presented method can be easily converted into an algorithm. However, 

direct realization is time consuming since the procedure is based on the so-called 

“brute force” approach. On the other hand, for some classes of PNs, the method 

can be modified in order to reduce computation complexity. We do not elaborate 

on this issue in more detail since in MRF systems siphons can be determined by 

implementation of the results discussed in Section 5.1.3, which we illustrate later 

in this chapter. 

There exist many interesting concepts in PN theory, such as complex-valued 

tokens [11] or continuous Petri nets [12], which widen the usage of PNs in fields 

that are beyond the scope of this book. However, two types of PNs, namely timed 

[7] and colored [8] PNs, are commonly used in MS analysis and design, hence, we 

conclude the basic definitions and properties of Petri nets with brief remarks on 

these two groups of PNs.  

Although the PN state equation (6.2) describes movement of marking vector m

in the state space, it does not cover the system dynamics. As we showed in Chapter 

3, the concept of time is essential in performance evaluation of an MS. Therefore, 

the time durations of the system tasks should be included in a PN model. This can 

be done in two ways; we can associate time delays with PN places (p-timed PN) or 

PN transitions (t-timed PN). Herein we present p-timed PNs. 

In principal, we follow the ideas presented in Section 3.3. An additional 

parameter, p-delay, denoted d(pi), is assigned to each place in PN. In general, d(pi)

is a real number (for a fuzzy timed PN see [9]), deterministic or stochastic, which 

depends on the character of the modeled system. A p-delay is introduced in a PN in 

the form of a diagonal matrix D[dii]n×n, which requires splitting of marking vector 

m into two vectors, one representing all tokens that are available for further 

propagation through the PN, the available marking vector ma, and the other 

showing all tokens that are delayed, the pending marking vector mp [10]. 

Consequently, a place in a PN graph is split into two parts as shown in Figure 6.9a, 

while a PN state equation obtains the following form 
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T
p, p, 1

a, a, 1 p,

a,( )

k k

k k k

kf

−

−

= +

= + ⋅

=

m m W t

m m D m

t m

(6.10) 

It should be noted that only the available marking vector ma is used for 

calculation of enabled transitions. When the transition fires, the tokens are moved 

into the pending vector mp,k, where they stay until the delay time of a particular 

place expires. Then, the tokens propagate into ma,k where they may be used to fire 

subsequent transitions. For marked graphs, model (6.10) can be transformed into 

the max-plus form. 

The dynamic PN state equation (6.10) gives the correct results only when each 

place in PN has exactly one input transition. The reason is the same as the one 

described in Section 3.3. That is, each input transition requires an additional delay 

parameters, as shown in Figure 6.9b. In this case D is not a diagonal matrix and the 

dimensions of vectors mp and ma are different. Model (6.10) becomes even more 

complex when place p is not bounded and receives tokens with an input rate that is 

faster than its delay time. As we already explained in the section related to the 

modeling of the system dynamics, such a situation involves multiple clocks, i.e.

each token that enters a place is associated with its own clock. When the clock 

expires a token is moved from mp into ma. In fact, when an MS is modeled by a 

PN, pending marking vector mp corresponds with vector m
s in Equation (3.21). 

Therefore, for deadlock avoidance in a p-timed PN both vectors, ma and mp, should 

be considered. 

Figure 6.9. Splitting a place in a p-timed PN 

Although this is not a topic of the book, it is interesting to mention the 

application of timed PNs in data processing. If a token is considered as data 

received from a sensor or some other device, then the time associated with a place 

could be considered as temporal-information degradation. In other words, after 

some time the information “value“ is decreased and confidence in firing of a 

particular transition is reduced; if time expires, a token is removed from the place 

and the transition is no longer enabled. 

Colored PNs are generally used for modeling of DESs in which tokens 

represent a particular property or type of processed part (customer) or an offered 

service. Various properties (or types) are characterized by different colors or differ- 
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Figure 6.10. Example of colored PNs 

ent shapes of tokens. Figure 6.10a shows the PN model of a customer service 

entry. Customers with different requests arrive into the system and each of them is 

routed depending on the nature of the request. There are three types of requests, 

marked with a circle, a triangle and a rectangle. Transition t1 is a source transition 

and represents arrival of the customer. Firing of transitions t2, t3 and t4 depends on 

the marking of place p1 (input buffer); transition t2 is enabled with a circle, t3 is 

enabled with a triangle, and t4 is enabled with a rectangle. 

A variation of the same system is depicted in Figure 6.10b. In this PN, 

transition t2 is enabled with all three types of tokens, while each place accepts only 

tokens of a specific type; place p2 can receive only circular, p3 only triangular, and 

p4 only rectangular tokens. A propagation of different tokens through a PN could 

be associated with arcs as well. One way or the other colored PNs offer a powerful 

tool for modeling and analysis of complex and demanding systems. However, the 

final PN graph and the underlying PN state equation can be very difficult to 

understand. 

6.2 Manufacturing Systems Modeling 

In a PN model of an MS, described herein, places are associated with operations 

and resources, while transitions represent starting and ending of operations and 

tasks. Therefore, recalling the definitions given in Section 3.1, a set of places P =

P* ∪ PI ∪ PO, P* = R ∪ J ∪ P0, where k
k

R R
∈Π

= ∪ is a set of 

resources, k
k

J J
∈Π

= ∪ is a set of operations, 0 0
k

k
P P

∈Π
= ∪   is a set of pallets, and Π

is the set of distinct types of parts produced (or customers served) by an MS. As 

we stated in Section 3.1, each part type has a predetermined sequence of operations 

(except for FMRF) that starts with a raw part-in operation, in
kJ ∈ PI, represented by 

a source place, and a finished product-out operation, out
kJ ∈ PO, represented by a 

sink place. We consider a source place as a token generator. That is, tokens appear 

in a source place according to a specified function or stochastically. On the other 
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hand, a sink place is considered as a drain, i.e. a token is removed from the sink 

place immediately upon arrival. Pallets are used for carrying parts through the 

system. 

PN models of non-shared and shared resources are depicted in Figure 6.11. A 

nonshared resource a) is represented with two places, R and Ja
R. A token in place R 

marks the availability of a resource, while a token in place Ja
R denotes that the 

resource executes the corresponding operation. The initial number of tokens is 

equal to the number of parts that can be simultaneously processed by the resource. 

A sequential shared resource b) performs more than one operation on the same part 
type; each operation is represented by one place, while resource availability is 

characterized with a token in place RS. A parallel shared resource c) performs more 

than one operation on different part types. Obviously, a shared resource that 

executes some operations on the same part type and others on different part types 

can be represented as a combination of models b) and c). 

Figure 6.11. PN models of nonshared (a), sequentially shared (b) and parallel shared (c)

resources

It is assumed that the resources shown in Figure 6.11 are released immediately 

upon completion of an operation. Generally, this is not the case. A resource could 

perform two or more operations, one after the other, as shown in Figure 6.12. In 

this case the last operation to be performed is the one that releases the resource (in 

our case resource R executes Ja
1 and then Ja

2R). Furthermore, it may happen that 

one operation requires more than one resource. In the PN depicted in Figure 6.12 

operation Ja
1 requires resources R and RA in order to be performed. 

In Chapter 5 we analyzed some properties of free-choice multiple re-entrant 

flowlines. In the example that belongs to this class of systems and is shown in 

Figure 5.6 some resources cannot be described with the PN models presented so 

far. It can be seen that buffer B2, for example, receives parts from three machines 

and distributes these parts to two machines. If one considers each input 

individually, then the place representing the occupied buffer requires three input 
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transitions. Additionally, each output from the buffer is represented by one 

transition. Thus, buffer B2 is modeled as shown in Figure 6.13. Each token in place 

B2A stands for an unoccupied slot, while tokens in B2P represent parts held by the 

buffer. This PN model is obtained by combination of the free-choice and merge 

prototypes shown in Figure 6.14. An assembly operation, which is commonly used 

in MS, could be modeled as a combination of several resource prototypes. Figure 

6.15 depicts one of the possible configurations that describes the assembly of two 

parts, a and b, in resource R. 

Figure 6.12. A PN model of a nonshared resource with two operations in sequence and an 

operation that requires two resources 

Figure 6.13. A PN model of buffer B2 in the system shown in Figure 5.6 

Figure 6.14. A PN model of a free choice (a) and merge (b)
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Figure 6.15. A PN model of an assembly 

When the last operation on part a, Ja
R1, is finished and part b is ready (operation 

Jb
R2 is completed), resource R takes both parts and creates a new part type c by 

execution of assembly operation Jc
R.

Based on the presented PN models one can conclude that, in general, physical 

entities of an MS, machines, robots, conveyer belts, etc., could be identified 

directly from the PN model. Still, there are examples where some parts of the 

system, which in fact do not belong to the class of resources, are represented with 

models shown in Figure 6.11.  Such an example is the multi-AGV system depicted 

in Figure 6.16. In this example, paths and crossing areas (sometimes called 

blocking areas) used by vehicles are considered as resources. Figure 6.16 shows a 

crossing area and its PN model that corresponds with a model of a shared resource. 

Figure 6.16. A PN model of a crossing area in a multi-AGV system 

Having described resource prototypes, we can define the properties of a PN for 

MRF systems: 

• *,p P p p∀ ∈ • ∩ • = ∅ ; there are no self-loops, 

• * *
1, \ and \k k

Lk t P J t P J∀ ∈Π •∩ = ∅ • ∩ = ∅ ; each part path has a well-

defined beginning and an end, 
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• 1, ( ) 1 and ( ) ( )k k k k
i i i iJ J R J R J R J +∀ ∈ = ≠ ; each operation requires one and 

only one resource and the same resource cannot execute two successive 

operations, 

• , 1p J p∀ ∈ • = ; there are no free-choice operations, 

• , 1t t J∀ • ∩ ≤ ; there are no assembly operations, 

• there exists at least one shared resource. 

For MRF systems, for any r∈R, ( )J r r J r J= ••∩ =•• ∩  and 

( )k k k
i i iR J J R J R= ••∩ =•• ∩ .

Let us now consider the assembly tree depicted in Figure 3.1. We start 

construction of a PN model by assigning one place with each operation in the job 

sequence, as shown in Figure 6.17a. Then, an extra place, representing an idle 

nonshared resource, is joined with a place that represents an operation performed 

by that particular nonshared resource (Figure 6.17b). Three places are added in the 

PN model; MA, B and MB, representing drilling machine, buffer and grinding 

machine, respectively. Next, shared resource(s), together with source (an input, PI) 

place for parts entering the system, and sink (an output, PO) place for parts leaving 

the system are added, as shown in Figure 6.17c, (the considered system has only 

one shared resource, thus, one place, denoted R, is added). Finally, initial marking 

is assigned to the PN model and transitions are denoted. As can be seen, it is 

assumed that resources are idle. Each machine can process one part at a time, with 

a buffer having two empty slots, and an input place with three parts waiting to 

enter the system. 

Figure 6.17. A PN model of a job sequence from Figure 3.1; (a) operations, inclusion of (b)

nonshared resources, and (c) shared resource together with input and output places 
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The attained PN is pure and ordinary, with P = {PI, MAP, RP1, BP, MBP, RP2, 

MA, MB, B, R, PO}, T = {t1, t2, t3, t4, t5, t6}, initial marking m0=[3 0 0 0 0 0 1 1 2 1 

0]T, M=[O | I], W=O–I, and 

1 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0

=I

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1

=O

6.2.1 Petri-Net Controller 

From the discussions in previous chapters it is clear that the notion of state is one 

of the central points in the system theory. By using various modeling techniques 

one is able to characterize the system behavior as movement of the state vector in 

the state space. Then, specifications regarding system performance may be given in 

the form of regions in the state space; some of these regions are preferred, while 

the others are forbidden. Due to its ability to capture the structural properties of the 

modeled system, the PN formalism is particularly convenient for implementation 

of this approach in the DES analysis and design. By controlling firing of transitions 

one can keep the system in the desired region of the state space, thus avoiding 

illegal states. This can be done with insertion of control places in an uncontrolled 

PN model of the system. 

In this section we demonstrate how to add control places in a given PN, and 

how to determine their initial marking, which depends on the structure of the 

system and its initial state. Although many techniques for PN controller design 

have been proposed in the literature, we limit our discussion to a relatively simple 

approach based on p-invariants. Our main concern in PN controller design is the 

same as in the previous chapters, that is, prevention of conflict and deadlock (the 
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PN controller should guarantee liveness). We assume that all transitions (or at least 

those connected with control places) are controllable and observable. 

First, let us study a conflict. We know that conflict in MS is related to the 

shared resources. The occurrence of simultaneous requests from two (or more) 

tasks that use the same resource must be handled by the supervisor, i.e. the 

decision should be made regarding a priority. One way to prevent conflict in the 

PN model of a shared resource Rs, is to add a control place as an input to each 

transition that belongs to set Rs•, as depicted in Figure 6.18. Such a control place 

does not have input transitions. In other words each place is a source that generates 

tokens according to some control function, m(udi) = hi(m). Evidently, each function 

hi(m) should be defined so that markings of control places are mutually exclusive, 

as for the matrix controller described in Section 3.4. Hence, the relation 

( ) 1di
i

m u =
(6.11)

must be fulfilled each time conflict occurs. 

Figure 6.18. A conflict resolution in a PN, m(udi) = hi(m)

When control places are responsible only for conflict resolution, requirement 

(6.11) can be satisfied directly by synchronization of two (or more) transitions 

involved in a conflict, as shown in Figure 6.19. This solution is very restrictive 

from the resource-utilization point of view since only one token is allowed to enter 

the part of the PN within conflicting transitions (usage of only one control place, 

ud1, will have the same effect). It should also be noted that initial marking of 

control places may be a reason for a dead PN. 

Once conflict is resolved we can concentrate on the deadlock avoidance. 

Control of the number of tokens in a particular part of the PN is the main 

mechanism in the deadlock prevention [5]. This is expected since analysis of the 

relation between a deadlock and an empty siphon showed that the control strategy 

should assure that at least one place belonging to the siphon is marked at any time. 
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Rs1  Ja

Rs2

… ……

ud1 ud2

Figure 6.19. A conflict resolution in a PN by synchronization of conflicting transitions 

Here we present a method that is proposed in [14]. The basic idea is to restrain 

the number of tokens in subsets of PN places by using linear inequalities 

⋅ ≤L m b (6.12)

where L is an l×n integer matrix, l is the number of inequalities, n is the number of 

places in PN, m is a marking vector of an uncontrolled PN, and b is an integer 

column vector. Constraints (6.12) can be transformed into the set of linear 

equations in matrix form 

d⋅ + =L m u b (6.13)

where ud is the marking of control places added to an uncontrolled PN. 

Implementation of Equation (6.13) requires determination of a) the incidence 

matrix of closed-loop (controlled) PN, and b) initial marking of control places, 

ud(0)= ud0. First, we extend marking vector m in order to incorporate control 

places, md=[m ud]
T. This extension requires a change in the closed-loop PN 

incidence matrix W, which becomes Wc=[W Wd], where Wd is an unknown 

incidence matrix that comprises information regarding connections of control 

places with transitions of uncontrolled PN.  Then, from Equation (6.5) it follows 

c d[ ] 0⋅ = ⋅ =W P W W P (6.14)

where P is a p-invariant matrix formed of p-invariant vectors. 

Matrix equation (6.13) should be satisfied at any time, hence 

d
d

[ ] .
k

k k
k

const⋅ + = ⋅ = =
m

L m u L I b
u

(6.15)

By comparing this equation with Equation (6.7) we see that each row of matrix [L

I] in fact represents the p-invariant of a closed loop PN, i.e.
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T

=L
P

I
(6.16)

Including Equation (6.16) in Equation (6.14) yields 

T

d[ ] 0⋅ =L
W W

I
(6.17)

which provides the relation for calculation of Wd,

T
d = − ⋅W W L (6.18)

Initial marking of control places can be directly obtained from Equation (6.13), 

0 d0 d0 0⋅ + = = − ⋅L m u b u b L m (6.19)

This result shows that a supervisor will impose constraints (6.12) only for those 

initial markings that give ud0>0, since fulfillment of Equation (6.19) implies L⋅m0

≤ b.

Example 6.2.1 (p-invariant-based PN controller) 

We demonstrate p-invariant controller design on the workcell shown in Figure 

2.12. A PN model should be developed based on a description of the system given 

in Example 2.2.1. First we identify the set of operations required for production of 

parts a and b. The PN model of both sequences is depicted in Figure 6.20. 

Figure 6.20. Operations sequences for the workcell shown in Figure 2.12 

The next step in PN modeling is allocation of resources. The PN graph shown 

in Figure 6.21 is obtained by using resources prototypes described in the previous 

section. It is worth noting that the obtained PN model replicates a structure of the 

system, which is not the case with automaton representation of the same workcell 

(Figure 2.17). The shared resource in the system is robot R, which executes three 

tasks; two on part a path and one on part b path. It is assumed that both machines 

have the same capacity of one part at a time. 
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Figure 6.21. A PN model of the workcell shown in Figure 2.12 

The attained PN belongs to the MRF class. It is pure and ordinary, with P =

{PIa, PIb, RP1, MAP, RP2, MBP, RP3, MA, MB, R, POa, POb}, T = {t1, t2, t3, t4,

t5, t6, t7}, initial marking m0=[4 3 0 0 0 0 0 1 1 1 0 0]T, M=[O | I], W=O-I, and 

1 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0

=I

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1

=O
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The system analysis, given in example 2.2.1, confirmed the existence of 

operation sequences that can lead the system to deadlock, which corresponds to the 

situation when both machines are processing parts while the robot carries part a.

Inspection of the PN shown in Figure 6.21 reveals the existence of critical siphon 

SC={RP2, RP3, MA, R} (one of the previously described methods for the siphon 

detection could be used for this purpose). A constraint that should be enforced by 

the supervisor must provide that m(SC) ≥ 1 at any time. Relation (6.12) attains the 

form 

⋅ ≥L m b

where L = [0 0 0 0 1 0 1 1 0 1 0 0] and b = [1] (note that L = sC with sup(sC) = SC).

One control place is required since there is only one constraint. Its initial 

marking is obtained from 

0 d0 d0 d02 1 1u b u u⋅ − = − = =L m

  Matrix Wd is calculated from 

T

d

0

0

0
1 0 1 0 0 0 0 0 0 1 0 0 1

0
0 0 1 1 0 0 0 1 0 1 0 0 0

1
0 0 0 1 1 0 0 1 0 1 0 0 1

0
0 0 0 0 1 0 0 0 0 1 1 0 0

1
0 1 0 0 0 1 0 0 1 0 0 0 0

1
0 0 0 0 0 1 1 0 1 1 0 0 0

0
0 0 0 0 0 0 1 0 0 1 0 1 0

1

0

0

= ⋅

− − −

− −

− −

=−

− −

− −

−

=

= ⋅

W W L

As a result, the control place has transition t1 as an output, and transition t3 as 

an input. The controlled PN is depicted in Figure 6.22. It can be seen that the 

control place is blocking transition t1 when one token is remaining in siphon SC.

Since t1 draws tokens from the siphon, this mechanism prevents the siphon from 

becoming empty. Actually, control place ud limits the number of tokens in places 

RP1 and MAP since  these  two  places,  together with ud, form p  invariant {RP1, 
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Figure 6.22. Controlled PN model of the workcell shown in Figure 2.12 

 MAP, ud}. This detail is important for deadlock prevention and resources 

utilizations in MRF systems. 

♦

Two issues, concerning siphon control and inclusion of control places in an 

uncontrolled PN, have to be addressed. The first one is related to observability and 

controllability of transitions. Each constraint stated in Equation (6.12) requires one 

control place that receives tokens from and dispatches tokens to transitions of the 

uncontrolled PN. This mechanism is feasible only when transitions that belong to 

•ud are observable, and those belonging to ud• are controllable. Constraints that 

generate such control places are called admissible. The admissibility of constraints 

can be tested by the following relations 

T
uc

T
uo

0

0

⋅ ≥

⋅ =

W L

W L
(6.20)

where Wuc is an incidence matrix containing rows corresponding to uncontrollable 

transitions, and Wuo is an incidence matrix containing rows corresponding to 

unobservable transitions. 

The second problem related to inclusion of control places in an uncontrolled 

PN lies in the fact that new places could generate new siphons. Therefore, the 

above method for siphon control, as well as many others, is based on an iterative 

procedure, i.e. realization of one constraint from Equation (6.12) could generate 

new constraint(s). More details regarding an iterative algorithm and requirements 

for its completion can be found in [13]. 
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6.3 Relation Between Petri Nets and Matrix Form 

In Chapter 1 it was mentioned that system matrices are closely related with Petri 

nets. Actually, as we shall demonstrate in this section, there is a direct relation 

between these two mathematical formalisms. This is expected since both tools are 

used for DES analysis and controller design. 

The logical state vector x in the matrix-based approach associates logical 

conditions, in the form of availability of resources and parts, with consequences in 

the form of actions taken upon fulfillment of conditions. According to Definitions 

3.1.2 and 3.1.3 matrices Fv and Fr capture conditions, while matrices Sv and Sr are 

responsible for actions. If we correlate components of the logical state vector with 

transitions in an ordinary and pure PN, then the system matrices can be directly 

associated with the arcs connecting transitions and places, as shown in Figure 6.23. 

Figure 6.23. Relations between PN arcs and the system matrices 

Each entry “1” in the resource-requirements matrix Fr is associated with an arc 

connecting a place, representing resource availability, with the corresponding 

transition; 1s in the resource-release matrix Sr express the connections between PN 

transitions and places that hold tokens when resources are idle. Correspondingly, 

1s in matrices Fv and Sv represent arcs connecting transitions and places associated 

with operations executed by MS resources. The input matrix Fu portrays output 

arcs from input places, while output matrix Sy depicts input arcs to output places. 

Since we assume that input places are sources and output places are sinks, matrices 

Fy and Su are null matrices, Fy = Su = [0]. 

As a result, PN input and output incidence matrices can be obtained directly 

from the system matrices, 

u v r y

T T T T
u v r y

[ ]

[ ] T

= =

= =

I F F F F F

O S S S S S
(6.21)

Even though I and O matrices define the form of a PN, they do not provide 

consistent and straightforward information regarding the structure of the modeled 

MS. By partitioning these matrices in accordance with Figure 6.23 and Equation 
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(6.21), one is capable of distinguishing between places that represent MS tasks and 

places indicating resources that perform these tasks. Moreover, the system inputs 

and outputs can be clearly distinguished. Now, if we include Equation (6.21) in the 

marking transition equation (6.2), then 

T
1 ( )k k−= + −m m S F t (6.22)

which coincides with Equation (3.12). 

It is evident that the PN model, consisting of resources prototypes described in 

the previous section, can be constructed directly from the system matrices, which 

we demonstrate in the example that follows. 

Example 6.3.1 (determination of PN from the system matrices) 

We use matrices that describe the system analyzed in the case study in Section 5.4. 

The structural properties of the PN can be read from the system matrices. A 

number of rows of F-matrices, as well as a number of columns of S-matrices, 

defines a number of transitions, which in our case is 13. Matrix Fu has two 

columns, each of them corresponding to one input place, while the rows of matrix 

Sy match two output places. This information, together with the fact that Fv (Sv)

has no “1s” in rows (columns) in which Fu (Sy) has an element equal to 1, points 

out that PN will have two part paths. 

Let us denote part paths inputs as pi1 and pi2, and part paths outputs as po1 and 

po2. Furthermore, we denote places that stand for operations as pv1, pv2, …, pv11

(there are 11 columns in Fv), and places that represent resources availability as pr1,

pr2, …, pr8 (8 columns in Fr). Then, matrix element fu(1,1)=1 corresponds to 

w(pi1,t1)=1, fv(2,1)=1 corresponds to w(pv1,t2)=1, fr(1,3)=1 corresponds to 

w(pr3,t1)=1, and so on. On the other hand, matrix element sv(1,1)=1 corresponds to 

w(t1,pv1)=1, sr(1,3)=1 corresponds to w(t3,pr1,)=1, sy(1,6)=1 corresponds to 

w(t6,po1)=1. Following the same reasoning one is able to determine all PN arcs. 
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The PN graph of the system described with given matrices is shown in Figure 

6.24. The model has two part paths with one parallel and one combined shared 

resource. Notations used in the case study are placed in parentheses.  

Figure 6.24. PN model of the system described in the case study in Section 5.4 

♦
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It is apparent that the system analysis provided in Chapter 5 can be directly 

applied to a PN, given that the attained PN belongs to the MRF class. In addition, 

string composition presented in Chapter 4, can be used for calculation of circular 

paths connecting PN resource places, resulting in circular waits (as we know, 

critical siphons in MRF systems comprise circular waits). Alternatively, CWs can 

be determined directly from a PN graph. Since each circular wait includes at least 

one shared resource, one can move along PN arcs that connect resource places, 

starting with a shared resource. When a tour completes in the starting place, the 

executed path represents a circular wait. This can be illustrated in the PN in Figure 

6.17c. The shared resource R has two output arcs, one connecting t2 and the other 

one connecting t5. Arriving in t2 from R we can proceed along arc t2→MA, and 

then further along arc MA→ t1. As there are no arcs that connect resource places 

with t1, the path is completed. Evidently, the executed path is not circular. On the 

other hand, moving along arc R→ t5 we can move further to MB and then to B. 

From transition t3 we are returning to place R, which closes up a circular wait. Both 

paths are shown in Figure 6.25 (note the similarity with the wait relation graph in 

Figure 5.1).   

Figure 6.25. Wait relations in PN model of the workcell shown in Figure 3.2 

Determined by the string composition or directly from PN graph, circular waits 

are starting points in the implementation of a PN controller, which could be based 

on the analysis given in the previous chapter. All definitions and conclusions 

developed therein can be applied to a PN by simple substitution of the logical state 

vector x with the transition vector t. Such, for example, precedent rules become 

precedent transitions, posterior rules becomes posterior transitions, and so on. 

Additionally, PN marking vector m is equivalent to the state vector, purposely 

denoted m, in the matrix model. Hence, most of the MS structures presented in 

vector form and involved in matrix equations can be recognized in the PN. Let us 

mention just two of them. The first one is a resource loop; Equations (5.2) and 

(5.43) directly associate resource loops in an MRF system with p-invariants in its 

PN model. The second structure is a critical subsystem; when rows of matrix L in 

Equation (6.12) are built from critical subsystem vectors [v0C 0n] determined by 

Equation (5.25) and b=m0(C), then the p-invariant controller, Equation (6.18), with 

initial conditions, Equation (6.19), provides deadlock-free behavior of the system 

(compare Equation (6.13) with Equation (5.48)). 
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6.4 Petri Nets Simulation and Implementation 

There are two main groups of solution methods used in the system analysis. 

Methods in the first group rely on the analytical approach, while methods in the 

second group use simulation. Which method is used depends mainly on the 

character of the system and the designer’s affinity. Although analytical methods 

offer not only accurate results but also a deep insight in the system itself, usually 

they suffer from complexity and may even become inapplicable in the case of large 

systems. Very often instead of an original method its approximation is used. This is 

particularly widespread in the case of analytical methods that find their 

applications in industry. Engineers that work onsite with real-world problems are 

enforced to apply approximations due to time restrictions posed on the system 

commissioning. 

With the rapid growth of the computational power and in an industry that is 

cost competitive, simulation methods have become more and more popular. Their 

progress can be tracked in two directions; one that is related to development of 

faster methods that can adopt parallelism in the execution of mathematical 

algorithms [28], and the other that deals with the presentation of the attained 

results. In the previous chapters we introduced the matrix-based approach to the 

DES analysis that is convenient for simulation, while the last chapter of the book is 

devoted to the presentation of simulation results. In this section we give an insight 

into PN simulation together with a description of the DES simulation tool 

Petri.NET, which was developed in the Laboratory of Robotics and Intelligent 

Systems at the Department of Control and Computer Engineering, Faculty of 

Electrotechnics and Computation, University of Zagreb. 

Petri nets, as a mathematical and graphical tool, are especially suitable for 

simulation. Driven by a very simple mechanism, reduced to two basic rules, from 

the algorithmic point of view they suggest a large diversity of solutions. This is 

why an extensive number of PN simulation packages is currently offered on the 

market [31]. Some of them are very sophisticated (and expensive) with features 

that allow simulation and analysis of a whole corporation on the highest, corporate, 

level, while others are intended to be used for small-scale systems (usually offered 

free of charge). 

Even though all of these tools have the same purpose their differences are 

mainly in the operating system (OS), programming language, graphical user 

interface (GUI), simulation capabilities and analytical capabilities. 

Today, most of the tools work on a Windows platform, but only ten years ago 

Unix systems were predominant together with DOS. Most of the early applications 

were programmed in C and C++, but with development of Java, an interpreted, 

object-oriented, portable, and multithreaded programming language, applications 

became independent of OS. Some of them even evolve in a way that provides 

writing of new features that can be incorporated in existing code [29]. At the same 

time extensive use of XML speeds up data transfer. A further step ahead is the 

appearance of open-source applications [30]. 

One of the benefits of PN is their graphical capability, which is extensively 

used in GUI design and presentation of results. Almost all PN simulation tools are 

more or less attractive and user friendly, GUI with drag-and-drop ability. Some 
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kind of graphical editor is used for model definition with a token game as a result 

of simulation. Generally, features such as backward simulation, step-by-step 

simulation and pause, are integral parts of applications. 

The main differences between PN simulation tools are their analytical 

capabilities. Many of them do not provide any analysis of the PN model. Some of 

them do provide analysis of the reachability tree (its construction and 

representation) together with determination of liveness and boundedness. 

Additionally, some of the simulation tools have statistics analysis, such as the 

number of times a transition fires, the average number of tokens in a place, etc.

Investigation of structural properties, such as p and t invariants is rarely included in 

applications. 

In the rest of the section we describe the PN simulation tool Petri.NET. This 

tool, written in .NET for a Windows platform, incorporates features that are typical 

of most of PN simulators. Additionally, it comprises some specific properties 

required for analysis MRF systems and implementation of MS supervisory 

controller. 

The main window of the Petri.NET GUI is shown in Figure 6.26. It comprises 

three tabs (central part of the screen): PetriNet Editor, Description and Response, 

and four dockable frames: Toolbox, Document Explorer, Properties and Rules 

Editor.  

Figure 6.26. The main window of Petri.NET
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Toolbox is a special TreeView control containing all objects that can be 

dragged to the editor: simple objects like places and transitions and more complex 

resource prototypes. Document Explorer shows the objects tree of the currently 

active PN model. It helps in navigation of the objects hierarchy. The properties

window is used to display and edit all properties of objects (places and transitions) 

that are part of the Petri-net model. The properties of other objects (labels, 

subsystem blocks,…) used in the application, can be displayed and edited as well. 

The Rules Editor is used to add/edit/remove rules that are applied to the currently 

active PN model. It contains a collection of rules that define the activities of the 

control places included in the PN model. 

A PN model is built with PetriNet Editor by a simple drag-and-drop principle. 

Since Petri.NET is primarily designed for simulation and analysis of MS, the 

Toolbox window contains five types of places: Input, Operation, Resource, Control 

and Output. Some properties are common to all types (NameID), while others are 

specific and depend on the type of the place. An input, for example, as a source 

place can receive tokens with predefined, fixed or stochastic, frequency. A 

resource on the other hand, has a unique property related to release times (Figure 

6.27). 

Figure 6.27. Release Times Editor in Petri.NET

As we described in Section 6.2.1 there are two basic ways in which to control 

how places are related with other places in the PN graph; they can receive tokens 

according to some control function, or they can have input transitions. In 

Petri.NET the control function has the form of rules and it is defined in Rules 

Editor, depicted in Figure 6.28. 

Figure 6.28. Rules Editor in Petri.NET
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A rule has the following syntax:  

IF (Expr1 AND Expr2 AND … AND ExprN) THEN (Assign1 AND Assign2 

AND … AND AssignN)  

where:  

Expr:  NameID1/const1 op NameID2/const2 op … op NameIDN/constN 

RELOP NameID1/const1 op NameID2/const2 op … op

NameIDN/constN 

Assign:  NameID = const

op – arithmetic operators: '+' or '-'  

RELOP – relational operators: ==, !=, <, <=, >, >=  

Upon definition of the model, Petri.NET can simulate time-invariant and p-

timed PN. Simulation can be tracked by the selection of a token game, while in the 

case of p-timed PN a pie object that indicates the remaining time, appears inside a 

place (Figure 6.29). 

Figure 6.29. Pie objects in Petri.NET (indication of remaining time in a p-timed PN) 

Once simulation is finished, by using the Response tab the user selects a type of 

presentation of simulation results. Two types of presentations are available, 

Spreadsheet and Oscilogram. When the PN model belongs to the MRF class, 

Petri.NET provides basic system analysis; determination of circular waits, 

transitions in conflict, the system matrices and the wait relation matrix, and 

calculation of resources utilizations. All these options are available in Description 

tab. 

We conclude this section with a description of another Petri.NET feature, an 

automatic PLC code generator (Figure 6.30), which makes this application 

different from most PN simulation tools. 

The PLC code generator executes two functions; first the PN model is 

transformed in generic PLC code, and then a parser is used to create a file that is 

readable by the target PLC. Currently, the code generator supports the Siemens S7-

200 PLC family, but due to its modular design, Petri.NET provides a very simple 

method for insertion of additional parsers. Nevertheless, due to the large variety of 

PLCs some other options should be investigated. The OPC standard is one of the 
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solutions, since almost all PLC manufacturers provide programming tools that 

allow PLC to connect to an OPC server as a client. Then, Petri.NET as another 

OPC client, would be able to exchange information with a PLC through the OPC 

server. 

Figure 6.30. Main frame of the automatic PLC code generator in Petri.NET

Let us now return to the automatic PLC code generation. Transformation of an 

ordinary PN graph in a ladder logic diagram is based on several rules as stated 

below: 

• each place is associated with one PLC variable; a Boolean is assigned to 

the place with K(p)=1, a counter is assigned to the place with K(p)>1, 

• each transition is associated with a Boolean variable and PLC outputs 

connected with tasks that should be started when a transition fires, 

• a Boolean variable, associated with a place that represents a task 

(operation, resource release), is “set” on a positive edge of PLC input, 

connected with a corresponding task-completion sensor, 

• a Boolean variable, associated with a control place is “set” on a positive 

edge of the variable that represents its input transition, or upon fulfillment 

of its control function, 

• a counter, associated with a place that represents a task (operation, resource 

release), is increased on a positive edge of PLC input, connected with a 

corresponding task-completion sensor, 

• a counter, associated with a control place is increased on a positive edge of 

the variable that represents its input transition, or upon fulfillment of its 

control function, 

• a Boolean variable representing a transition is “true” when all conditions 

for firing the corresponding transition are met, 

• a Boolean variable, associated with a place that represents a task 

(operation, resource release) or control place, is “reset” on a positive edge 

of the variable associated with its output transition, 

• a counter, associated with a place that represents a task (operation, resource 

release) or control place is decreased on a positive edge of the variable that 

represents its output transition, 
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A slight change of these rules should be made in order to provide code 

generation for a general type of a PN graph. We assumed that tasks-completion 

sensors and tasks-start drivers are connected with PLC digital I/Os. Usually this is 

not the case (see Section 5.4). However, there should not be a problem to follow 

given rules even if places and transitions are associated with variables that are 

changed by some communication protocol. An example of automatic PLC code 

generation is given in the section that follows.  

6.5 Validation of Implemented Petri Nets 

For the last three decades PLCs have had a leading role in industrial automation. 

From process industry to assembly lines they serve as a main part of various 

control loops. Having a modular hardware concept and user-friendly programming 

software, PLCs were, and still are, used for implementation of simple logic tasks as 

well as for very complicated control schemes that includes thousands of signals 

and requires a whole network of controllers. 

As the requirements for control quality and safety increase, implementation of 

complex control algorithms becomes a problem. Methods used by engineers who 

transfer complex algorithms into a PLC program are not able to cope with the 

complexity problem. Furthermore, most of the information related to the control 

problem has an informal character, thus making PLC programming even harder. 

This is why in recent years a lot of work has been done in the field of applying 

formal methods in PLC programming. As stated in [15], three steps in the control 

design process may be identified: a) formalization and reinterpretation, b) synthesis 

and c) implementation. In the case study, given in Chapter 5, all three steps have 

been demonstrated and, as a result, a matrix-based controller was successfully 

implemented in PLC by using an automatic code generator. 

Even though large efforts have been made in this direction there is still no 

unique solution for transformation of a general PN in PLC code. One of the 

reasons is, as we already mentioned, the large variety of PLCs. Although almost all 

PLCs are programmed with standard programming languages, each of them has 

some exclusive feature or particular programming syntax, which makes a general 

solution very difficult to achieve. In the previous section we presented a PN 

simulation tool with the ability to generate program code for PLC S7-216. In [16] –

[18] and [27] methods for implementation of PN in PLC by using structured text 

(ST), an instruction list (IL) and a ladder diagram (LD) have been proposed. In 

[19] SIMULINK
®, high-level timed Petri nets and functional block diagram (FBD) 

are used for design and analysis of control systems. All these methods offer more 

or less straightforward and convenient procedures for PN transformation into 

generic PLC code, but when it comes to target PLC code generation they lack 

suitable solutions. It should be mentioned that in 1975 GRAFCET appeared as a 

“missing link” between PN and PLC code [25], [26]. In 1988. IEC announced 

“Sequential Function Chart” as an international standard for PLC programming 

based on GRAFCET.  

The other two problems encountered by PLC programmers are verification and 

validation (V&V) of implemented algorithms. As today’s engineers apply many 
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various strategies in PLC programming, V&V procedures differ one from another 

depending on approach, formalism and the method used in software development. 

A V&V based on coupling of so-called interpreted Petri nets of the controller 

(SIPN) and the process (PIPN) is described in [20]. In [21] it is shown how PLC 

code, written in IL, can be translated into a Petri net. Then, by using standard PN 

analysis (reachability tree, boundness check, etc.), the PLC program is checked for 

possible errors. The other approach, which also deals with IL, is described in [22]. 

In [23] the condition/event (C/E) model of a process is connected with sequential 

function chart (SFC) control software, thus making a closed-loop system. The set 

of reachable states is then compared with the set of forbidden states providing 

insight into system behavior under various conditions. Another model checker, 

which is developed for LD control logic, is presented in [24]. 

In this section we present a method for verification and validation of PLC 

control algorithms developed from PN models. Due to the existence of a direct 

relation between PN and the system matrices, a matrix-based MS controller can be 

tested as well. Based on super blocks, designed in SIMULINK
®, and by using 

MATLAB
® Real Time Workshop (RTW), the method provides an efficient tool for 

real-time investigation of various dispatching policies as well as the influence of 

manufacturing system parameters on the behavior of the control system. This 

approach is convenient for small-size PLCs, since their programming software 

usually does not include online simulators. 

The main components of the testbed are shown in Figure 6.31. Since the model 

of the uncontrolled system is built in SIMULINK
®, the PC should have installed 

MATLAB
® with RTW. Furthermore, a board with digital I/Os has to be included in 

the PC hardware configuration. Inputs and outputs of a SIMULINK
® model of an 

uncontrolled process are connected to modules, which communicate with the I/O 

board. 

Figure 6.31. Main components of the V&V testbed 
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Since the levels of signals on the I/O board and PLC are different (TTL versus 

24 V) the board sends/receives signals to/from PLC through an interface. A PLC 

configuration mainly depends on the system to be controlled and the control 

algorithms to be implemented. Complex systems with numerous states require 

PLCs with high computational power and a large number of I/O units. 

The SIMULINK
® model used for verification and validation of the control 

algorithm is made of basic PN components (prototypes), which have the form of 

predefined super blocks. There are four different prototypes: Input Place, 

Nonshared Resource, Shared Resource and Output Place. Every super block is 

determined by its inputs, outputs and parameters. Inputs of a super block are 

associated with the PC I/O card and connected with the PLC controller outputs. On 

rising edge of the PLC output signal an operation that corresponds with that signal 

is started. Outputs of super blocks can be separated into two groups. The first 

group comprises outputs that illustrate the state of the prototype, such as number of 

parts that are currently processed and/or the number of idle resources. These 

signals are used for online MS analysis. The second group includes logical outputs 

(0 or 1), which are used by the PLC controller. These signals can be associated 

with sensors planned to be installed in real MS. There are three types of signals: 

• error – signal is set to “1” if an error occurs (machine failure, number of 

WIP is negative, etc.), 

• resource available – signal is set to “1” if corresponding resource is idle, 

• operation completed – signal is set to “1” if corresponding operation is 

finished. 

Super blocks that represent Input Place and Output Place are shown in Figure 

6.32. 

Figure 6.32. Input Place and Output Place super blocks 

As its name implies, Input Place super block describes the input of the system. 

The superblock has one input and three outputs. Input “In1” is a trigger signal; 

transition from 0 to 1 decreases the number of parts in Input Place. Output “PI” is 

an integer that represents the current number of parts in Input Place, while output 

“error” is set to 1 if the number of parts becomes less than zero or larger than 

maximum number of parts allowed. Output “PartAv” is set to 1 if the number of 

parts in Input Place is positive, otherwise is set to 0. Input Place and Output Place 

configuration masks are shown in Figure 6.33. The Input Place mask comprises 

four parameters: “Initial condition” – initial number of parts in input place, “Limit” 

– maximum number of parts allowed, “Period” – time delay (in seconds) between 

parts arrival, “Range” - if “Random” is checked, then the time delay is a random 
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variable in the range between 0 and Range. In this case the value entered in 

“Period” is ignored. 

Output Place super block describes the system output. It has one input and one 

output. Input “In1” is a trigger signal connected with the PLC controller. Output 

“PO” is an integer that represents the number of parts in Output Place. The initial 

number of parts in Output Place can be defined in the configuration mask. 

The super blocks that represent typical MS resources are shown in Figure 6.34. 

The Shared Resource prototype is used to model the resource that performs more 

than one operation, while Nonshared Resource represents a resource with one task 

only. 

Figure 6.33. Input Place and Output Place configuration masks 

Figure 6.34. Nonshared Resource and Shared Resource super blocks 

The super block that represents Shared Resource has four inputs, all of them 

connected with a PLC controller: 

• In1 – input that starts operation 1, 

• In2 – input that starts operation 2, 

• In3 – input that starts resource release after operation 1, 

• In4 – input that starts resource release after operation 2. 

Shared Resource super block has three outputs, generally used for MS analysis: 
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• SR1 – number of parts processed by operation 1, 

• SR2 – number of parts processed by operation 2, 

• SA – number of available slots. 

Besides these outputs, the super block has logical outputs connected to and used by 

a PLC: 

• error – error signal, 

• POE1 – is set to “1” if operation 1 is completed, 

• POE2 – is set to “1” if operation 2 is completed, 

• RA – is set to “1” if resource is idle. 

The Shared Resource configuration mask is shown in Figure 6.35. The 

configuration mask has fields for definition of all parameters required for 

simulation of the shared resource dynamics (p-timed PN, Figure 6.9). The duration 

of operations and the duration of resource-release tasks can be set by the designer. 

The initial number of parts processed in operations and the initial number of idle 

slots are defined in a form of SIMULINK
® vector. When a shared resource with 

more than two operations is required, a new prototype may be designed by 

following a simple procedure implemented a for two-operations shared resource. 

Nonshared Resource super block has two inputs: 

• In1 – input that starts operation, 

• In2 – input that starts resource release, 

and three logical outputs: 

• error – error signal, 

• POE – is set to “1” if operation on part is completed, 

• RA – is set to “1” if resource is idle, 

Figure 6.35. Shared Resource configuration mask 
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all connected with a PLC. Two outputs used for MS analysis are: 

• MR – number of currently processed parts, 

• MA – number of available slots.

Nonshared Resources are configured through a configuration mask similar to 

the one shown in Figure 6.35. Since Nonshared Resource has only one operation to 

perform, the difference between two masks is only in the number of parameters 

required for resource definition. 

Example 6.5.1 (validation of PN implemeted in PLC) 

We consider the workcell depicted in Figure 6.36. The workcell, comprised of 

three machines and two robots, processes two part-types. Its PN graph with control 

places is shown in Figure 6.37. The implemented control policy restricts the 

number of parts in path a (control place ud1), and path b (control place ud2) (we 

leave thorough analysis of the system to the reader). Conflicts are resolved by 

sequential execution of ladder diagram networks; when robot R1 part a has priority 

over part b, whilst robot R2 gives priority to part b.   

Since the PN is ordinary and pure, and all places, except control place ud1,

initially have only one token, places are associated with markers in PLC memory. 

Place ud1 is associated with a counter. The symbol table is depicted in Figure 6.38. 

As may be seen, markers M1–M3 are used for places, M4 is used for a control 

signal ud2, M5 and M6 are assigned to transitions, while control signal ud1 is 

assigned to counter C0. We assume that each place corresponds with one PLC 

input and one PLC output, i.e. the input and output interface functions are of the 

form one-to-one (see the case study in Section 5.4). 

Figure 6.36. The workcell from Example 6.5.1 
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Figure 6.37. Controlled PN of the workcell shown in Figure 6.36 

Figure 6.38. The symbol table of S7-216 PLC for controlled PN in Figure 6.37 
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Figure 6.39. First four networks of the ladder diagram subroutine for reading inputs 

The PLC code for S7-216 is obtained by a Petri.NET code generator. Part of 

the ladder diagram subroutine for digital inputs acquisition is shown in Figure 6.39. 

As may be seen, a particular PN place is set to “true” on the positive edge of the 

corresponding digital input. This action matches up with a token entering the place.  

Upon completion of the input subroutine, the PLC starts to execute a subroutine 

that calculates the (•t) part of PN. A fraction of that subroutine is depicted in 

Figure 6.40. By comparing this subroutine with the PN graph shown in Figure 

6.37, conditions for firing the first four transitions can be clearly recognized from 

the ladder networks. 

Figure 6.40. First four networks of the ladder diagram subroutine for PN execution (•t)

At the end of the PLC cycle, a subroutine that sets PLC outputs and resets 

markers associated with PN places is executed (Figure 6.41). This action 

corresponds with token withdrawal in the PN. 
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Figure 6.41. First two networks of the ladder diagram subroutine for PN execution (t•)

As we mentioned, implementation of the proposed dispatching strategy requires 

one counter for tracking the number of tokens in control place ud1. This counter is 

realized in ladder network 5 (Figure 6.42). The positive edge of variable tr4 

increases, while the positive edge of variable tr1 decreases the counter value, 

which corresponds with activities in the PN graph.  

The SIMULINK
® model of the workcell is given in Figure 6.43. Super blocks 

that represent resources are connected with the PLC’s inputs and outputs by using 

MATLAB’s® RTW and Advantech PC I/O card. 

Figure 6.42. Ladder network with counter for control place ud1



256 Manufacturing Systems Control Design 

Figure 6.43. SIMULINK
® model of the workcell shown in Figure 6.37 
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7

Virtual Factory Modeling and Simulation 

Manufacturing systems (MSs) are assembled from elements such as robots, 

machine tools, fixtures, buffers, rotary tables, belt conveyers, pallets, etc. that are 

connected and supervised through a local area network. Using today’s 

classification of systems, MSs can be treated as hybrid systems that contain a 

mixture of various dynamic behaviors—continuous and discrete control loops, 

Boolean variables related to process states, and discrete events, all embraced by a 

usually hierarchical decision-making overhead. This means that an MS structure 

contains both hard and soft technology, first focused on the product fabrication, 

assembly and distribution, while later the focus is on the support and coordination 

of manufacturing operations. 

The MS’s hard technology is split into several levels – from the factory level 

via the operating center, workcell and robotic station levels to a particular 

manufacturing process level. The accompanying soft technology is also split into 

several levels – from the highest strategy level, via lower planning, supervisory, 

and manipulating levels to the basic manufacturing task level. 

Today, virtual models provide a very inexpensive and convenient way for 

complete factory design. Instead of building real systems, a designer first builds 

new factory layouts and defines resource configurations in the virtual environment 

and refines them without actual production of physical prototypes. Allowing clear 

visualization of all potential problems caused by the layout, virtual modeling and 

dynamic simulation of manufacturing processes has traced a completely new route 

to analysis and design of MSs [1–3].  

A factory layout design, physical modeling, control synthesis, performance 

analysis, dynamic simulation and visualization of robotized manufacturing systems 

have become much easier and more effective with specialized programs for virtual-

factory modeling and simulation. Some virtual-factory simulators originated from 

the academia [4–8], but most of them are sophisticated products of leading robot 

manufacturers and independent companies [9–11]. In this chapter we briefly 

portray several tools such as Grasp2000 from BYG Systems Ltd., eM-Plant from 

Tecnomatix, RobotStudio from ABB, CimStation Robotics from Silma, and 

Cosimir from FESTO. Then we describe FlexMan – a virtual-factory simulator 

with an integrated matrix-based MS controller [12]. 
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A typical structure of a virtual factory simulator is shown in Figure 7.1. The 

aim of virtual modeling is to create an experimental MS by combining a tentative 

factory layout with existing or newly created virtual models of constituent MS 

objects. Usually, MS objects and layouts can be loaded from the corresponding 

libraries of objects and layouts, but they can also be imported from other CAD 

software or created as new entities within the simulator itself. 

Figure 7.1. A typical structure of a virtual-factory simulator

MS simulation consists of multiple tasks that are highly interdependent. As 

shown in Figure 7.1, there are two main groups of tasks related to physical 

modeling and functional testing of the simulated MS. Physical modeling is mainly 

concerned with resources that play an active role in the manufacturing process, 

especially with robots and numerically controlled (NC) machine tools. The 

trajectory generation for these resources is closely related to circumventing the 

inverse kinematics problems (e.g. joint limits, singularity points), working-space 

constraints, and particularly to prevention of collisions with surrounding MS 

objects. In order to achieve reliable and precise collision detection, exact physical 

measures of all virtual models and their postures are needed. Positive collision tests 

lead to consecutive trajectory or factory-layout modifications. Physical modeling 

allows the designer to generate and test single manufacturing jobs performed by a 

corresponding MS resource, but the main goal of physical modeling is verification 
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of the simulated factory layout. After successful validation of the simulated virtual 

MS setup, most commercial MS simulators generate programs executable in 

controllers of particular active resources. 

Functional testing has a goal to connect a physical setup with the plan of the 

simulated MS. As shown in Figure 7.1, functional testing is concerned with a job-

sequence definition, setting of MS parameters, conflict and deadlock analysis at the 

local and global level (at the robot workcell or robot station, and at the whole MS 

level), synthesis of control logic, study of different job-scheduling strategies, 

simulation and visualization of dynamic phenomena during MS operation. Having 

a plan of a manufacturing process and all necessary MS data, functional testing 

should help the MS designer to reach a reliable and objective MS performance 

evaluation.

In most cases, MS control depends on the states of sensors installed in the 

system. Therefore, a successful functional testing generates two outputs: the 

executable MS controller program, and the optimized sensor layout. Based on the 

acquired designer’s experience, virtual simulators may serve as efficient design 

accelerators and trustworthy sources of implementation guidelines. 

7.1 3D Modeling of Manufacturing Systems 

A factory-layout design is primarily a hard-technology-related task, whose goal is 

to establish an optimal arrangement of individual MS elements, viewed from the 

spatial and operational point of view. In the very recent past, factory-layout design 

was a job that had to be done before the onsite MS construction could start. Today, 

three-dimensional (3D) modeling serves to define the physical shape information 

of a particular MS object prior to its physical creation. One more complex 3D 

model, like the model of a palletization robot work cell shown in Figure 7.2, 

actually represents a combination of primitive 3D shapes – cuboids, cylinders, 

prisms, polygons, and lines, combined together in a hierarchical (so called parent–

child) order and characterized by different material properties, textures, colors, 

shininess etc. In most cases, a parent–child relationship means that a group of 

subordinate objects (“children”) is translated, rotated and scaled with respect to the 

superimposed (“parent”) coordinate frame. Initially, all 3D objects on the scene are 

positioned at the origin of the virtual environment, and then by using suitable 

commands, are put in spatial relations. Such a 3D model is further used for display 

on the computer screen and for calculations carried out as defined by the 

simulation context. 

The model with more details is computationally more demanding. The 

complexity of the 3D model is usually dictated by the required precision of the 

model. For example, when collision avoidance is explored then a more detailed 3D 

model is preferred. On the other hand, logical testing of operations in the simulated 

factory layout can be achieved by using models with fewer details. 

A proper 3D model requires precise physical dimensions – e.g. height, width 

and depth of the primitive shapes. This information is usually obtained by 

measuring the object, or it is taken from the original technical drawings. 3D 

models can be created using ISO standards 3D file formats such as X3D 
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(Extensible 3D), its predecessor VRML (Virtual Reality Modeling Language) or 

by using CAD programs (e.g. AutoCADTM, CatiaTM or 3D-StudioTM). CAD 

programs generate different file formats (e.g. DXF, 3DS, IGES, STEP, VRML), 

and support conversion from one format to another. 

Figure 7.2. The 3D model of a palletization work cell (Courtesy of Euroimpianti s.p.a)

7.2 Modeling FESTO FMS in VRML (X3D) Format 

As mentioned above, 3D models of solid objects can be created in many ways and 

many tools are at the designer’s disposal for this purpose. One way is modeling in 

VRML format (or in X3D, which is the successor to the VRML), which has 

become an international standard established in 1994 for description of 3D shapes 

and environments suitable for World Wide Web program applications. Besides the 

creation of virtual environments, VRML enables introduction of 3D motion, sound 

and other dynamic features [13]. Virtual objects modeled in VRML can be 

visualized in independent VRML viewers or in popular web browsers providing 

that some VRML viewer plug-in has been previously installed. X3D improves 

upon VRML with new features, advanced application programmer interfaces, 

additional data-encoding formats, stricter conformance and a componentized 

architecture that allows for a modular approach to supporting the standard [14].  
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7.2.1 Basic VRML Features 

Basic programming elements in VRML are nodes and fields that together with the 

header and comments form a VRML file (extension *.wrl). Nodes may be 

interpreted as “commands” that designate different geometric shapes, materials, 

light, spatial transformations, etc. Fields describe node features that can change. 

Dimensions in VRML are normalized. For example, the shape box with 

dimensions {10, 10, and 10} may have a 10 mm, 10 m or 10 km long edge, 

depending on the metric measure defined by the user.  

Basic geometric shapes (primitives) are Box, Cone, Cylinder, and Sphere. The 

group of geometric primitives is extended with the two-dimensional VRML object 

Text representing a particular text. Geometric shapes are created with the node 

Shape, which has two fields – appearance and geometry: 

Shape { 

 appearance ...    – defines color and object texture 

 geometry ......    – defines form or structure 

 } 

All VRML objects are initially positioned in the origin of the VRML 

environment. In order to place the objects at different positions, a node Transform
is used. This node is a grouping node, which enables simultaneous translation, 

rotation and scaling of a group of subordinate objects, so-called children. In fact, 

all children objects tied to this new coordinate frame are translated, rotated and 

scaled with respect to the superimposed or so-called parent coordinate frame. 

The syntax of the Transform node is defined in the following way: 

Transform { 

  translation  dx dy dz  # position 

  rotation rx ry rz delta  # orientation (in radians) 

  scale   sx sy sz   # scaling 

  children  [ ....... ]  # subordinate objects 

       } 

Variables dx, dy and dz denote displacements of all children objects with 

respect to the global coordinate frame. In terms of homogeneous coordinates 

regularly used in robotics, translation is represented with the following 

homogeneous transformation matrix: 

0 0 0

0 0 0

0 0 0

0 0 0 1

dx
dy
dz

=T
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Variables rx, ry and rz assume values 0 or 1, depending on about which axis 

rotation is going to occur (the other two variables get the value 0). The 

counterclockwise rotation is assumed positive. Assuming that rotation is defined 

around one of the axes, the homogeneous coordinate transformation attains the 

form: 

11 12 13

21 22 23

31 32 33

0

0

0

0 0 0 1

r r r
r r r
r r r

=R

In order to achieve different scaling factors for each axis, in calculations one 

must take into account a multiplication with a scaling matrix: 

0 0

0 0

0 0

v

sx
sy

sz
=S

The orientation in the VRML environment is defined as shown in Figure 7.3. 

One can see that the orientation of the x–y–z coordinate frame in the VRML 

environment does not coincide with the usual orientation representation in the 

Cartesian space, also shown in Figure 7.3. The difference between two orientation 

representations must be taken into account in all coordinate transformations and 

related calculations.  

y

z x y

z

x

VRML
environment

Real - world (Cartesian)
environment

Figure 7.3. Orientation representation in the VRML and Cartesian worlds

It should be noted that transformations of children objects at every parent-

children level are always relative to the involved parent coordinate frame.  

Having in mind, for example, that robots move and work thanks to coordinated 

motion of their prismatic and revolute joints, a so-defined hierarchical structure in 
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VRML simplifies virtual modeling of robotic manipulators and other similar 

complex solid objects very much. By branching and nesting of Transform nodes, 

attachment of new coordinate frames to each robot joint or any other robot part 

(e.g. working tool) becomes easy and straightforward. Since transformations 

defined by Transform nodes are relative, the change in the outermost Transform
node (e.g. in rotation) will affect all subordinate coordinate frames and objects. 

The coincidence with the way how robots move, viewed from the robot base to the 

working tool, is more than obvious.  

7.2.2 FESTO FMS VRML Model 

Let us describe VRML-based modeling of the FESTO FMS laboratory setup at the 

Faculty of Electrical Engineering and Computing, University of Zagreb. The aim 

of the FMS is to produce several types of cylinders assembled from the bodies, 

pistons, springs, and caps varying in shape and color. FESTO FMS is composed of 

four PLC-controlled work stations connected via the Profibus network: the 

distribution station, testing station, processing station, and assembly station. The 

flexibility in the assembly line is increased by using the five degrees of freedom 

rotational robot Mitsubishi Movemaster EX RV-M1 (see Figure 7.4). 

Figure 7.4. FESTO FMS: Laboratory set-up (above), virtual model (below) 

The aim of virtual modeling is to prepare the modeled FMS for the functional 

testing. The richness of the model details is determined by the function of the 

particular FMS components. Virtual models of work stations contain system 
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modules that have an active role in the manufacturing process. Besides the stack 

magazine module, the separating module, the testing module, the changer module, 

the spring magazine module, and the drilling module shown in Figure 7.5, 

important FESTO FMS parts are also the rotary indexing table module, the lifting 

module, the measuring module, the air-cushioned slide module (5 objects 

capacity), two slide modules (4 and 6 objects capacity), the cap magazine module 

(10 objects capacity), the place of assembly, and the robot arm. 

The FESTO FMS VRML model is shown in Figure 7.4 together with the real 

system [15]. One can see that the outlook and layout of the virtual FMS fully 

resemble the outlook and layout of the real FMS. All insignificant details from the 

functional point of view are omitted (e.g. models of pipes, wires, connectors, 

gauges, some construction details, etc.).

Figure 7.5. Virtual models of FESTO FMS components: (a) stack magazine module, (b)

separating module (pistons), (c) testing module, (d) changer module, (e) spring magazine 

module, and (f) drilling module

The next step in FMS modeling and simulation is the generation of a functional 

model. This model, which describes operations and operating rules, is used for the 

creation of system matrices that are later used for the matrix-based FMS controller 

design. The reader can find more about functional modeling and simulation of 

a) b) c)

d) e) f) 
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FESTO FMS in Section 7.9, which describes the usage of the Internet-based 

modeling and simulation tool FlexMan [12]. 

7.3 Modeling in LISA 

Let us illustrate the use of virtual models in another simulator called LISA – a C++ 

and OpenGLTM-based software for simulation and 3D modeling of complex 

kinematic configurations [16]. Models used in LISA are first created in the CAD 

software, then described in the XML (eXtensive Markup Language) and thereafter 

imported as an xml file into LISA. Applying this procedure, the palletization 

workcell from Figure 7.2 is displayed in LISA in the way shown in Figure 7.6. One 

can see from this example that 3D models can be used in different program 

applications without loss of model quality. 

3D models in LISA are polygonal structured, i.e. polygons form a closed 

manifold, hierarchical nonconvex models. Polygons are made entirely of triangles 

because hardware accelerated rendering of the triangles is commonly available in 

the graphic hardware. Triangle meshes can be used for extraction of all geometric 

parameters including, for example, robot joint positions, link lengths, etc. Every 

virtual object is composed of an arbitrary number of links that form a parent–child 

hierarchy. There is no limit on the number of child links for a parent, so complex 

kinematics configurations can be formed, like the articulated robot arm shown in 

Figure 7.7. 

Figure 7.6. The 3D model of a palletization work cell displayed in LISA 
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Frames (coordinate systems) are assigned to the links sequentially and may be 

either static or dynamic (see Figures 7.8 and 7.9). Namely, a 3D object can have an 

active or passive role on the scene. Active objects consist of static and dynamic 

frames, while passive objects are built only from the static ones. Dynamic link 

frames undergo rigid-body transformations during a simulation in a virtual 

environment [17].  

Figure 7.7. The creation of the 3D robot model
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Figure 7.8. The 3D model of a KUKA robot (Courtesy of Kuka Roboter) – static and 

dynamic frames

Figure 7.9. The 3D model of a KUKA robot  – dynamic frames
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7.4 GRASP2000 (BYG Systems Ltd, UK) 

GRASP2000 is a program tool that integrates a time-based simulation system with 

advanced 3D graphics capabilities. The user is able to create virtual models of 

arbitrary complexity including all types of manufacturing systems, robotic and 

kinematic structures, production systems and AGV routing systems. The software 

allows up to 24 revolute or prismatic joints for each individual mechanism.  

Figure 7.10 taken from [18] shows the example of the GRASP2000 3D model 

of a brick-handling application using three Fanuc M410iHW robots. 

Figure 7.10. Example of the GRASP2000 model of a brick-handling application using three 

Fanuc M410iHW robots 

The user can use a set of instructions and create simulation programs that 

permit “what-if” type of analysis using 3D animation and exact time-based 

performance calculations. The result of simulation depends on the order of 

instructions and the way they are used within one simulation track, so preparation 

of every simulation scenario requires considerable planning. In other words, 

meaningful results can be obtained only with a clear understanding of simulation 

requirements and the model on which simulation is based. This means that a 

detailed knowledge of the process involved for the modeled system (existing or 

proposed) is required [18]. 

In manufacturing systems many processes run in parallel. GRASP2000 uses 

“background tracks” to simulate such parallel processes. Background tracks run at 

the same time as the “current” or so-called “foreground” track. For simulation of a 

complex environment containing parallel processes separate tracks for the 

individual processes must be created and then “invoked” as background tracks. The 

aim of a foreground track is to control the simulation. When the foreground track is 
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running, any tracks that have been invoked as background tracks run as well, 

starting at the same time. Synchronization of parallel processes (tracks) can be 

achieved in two ways; by inserting delay (PAUSE) instructions, and by waiting for 

an event. As described in [18], an event may be that the simulation clock has 

reached a certain time, it may be the arrival of an object, or it may be a variable 

being set to a particular value. Waiting for an event can be achieved using the 

WAIT command. The foreground and background tracks execute in the same 

manner, using the simulation clock to control the synchronization between all the 

tracks.

Regarding generation of robot tracks, GRASP2000 generates tracks for all 

robot models contained in the BYG robot library. The tracks are supplied with a 

complete set of configuration rules for the robot, with meaningful names that are 

understood by the target robot controller conversion program. 

Among different commands, GRASP2000 also includes functionality to allow 

factory and process simulation using discrete event systems (DES) tools. 

7.5 Robot Studio (ABB, Sweden) 

ABB’s RobotStudio is a simulation and “true” offline programming software due 

to the ABB VirtualRobot™ Technology, whose main characteristic is that the 

actual robot system software controls the robot simulation. In this way the 

successfully tested robot program can be downloaded as a whole to the real system 

without any further translation. 

As for other concurrent simulation programs, RobotStudio can import data in 

major CAD formats including IGES, STEP, VRML, VDAFS, ACIS and CATIA. 

Having a CAD model of the part to be processed, RobotStudio allows the user to 

automatically generate the robot positions needed to follow the path curve, 

significantly shortening the time usually spent for manual programming of such a 

task. Standard robot programming in RobotStudio is done with a program editor 

ProgramMaker shown in Figure 7.11. The basis for programming in RobotStudio 

is ABB’s robot programming language RAPID.  

The software is characterized by several optimization features, such as path 

optimization and AutoReachTM computation. RobotStudio can automatically detect 

and warn about programs that include motions in close vicinity to singularities, so 

that measures can be taken to avoid such conditions. Simulation Monitor is a visual 

tool for optimizing robot movement. Red lines indicate what targets can be 

improved to make the robot move in the most effective way. 

As shown in Figure 7.12, tool-center position (TCP) speed, acceleration, 

singularity or axes can be optimized to gain cycle time [19]. AutoReach 

automatically analyzes reachability while moving the robot or the work piece 

around until all positions become reachable. This allows quick verification and 

optimization of the workcell layout. Also, integrated collision detection helps to 

identify possible collisions among concerned objects and modify critical paths. 

Event Tables is a tool used in RobotStudio for debugging and verifying the 

program structure and logic. As the program executes, the user can observe the I/O 
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states of the analyzed workcell. The I/O lines can be wired to simulation events 

allowing simulation of the robot and all equipment in the robot station. 

RobotStudio provides the possibility of using Visual Basic to adapt and expand 

RobotStudio’s functionality for various applications. This enables the user to create 

different add-on modules, macros or customized user interfaces. 

Figure 7.11. RobotStudio programming editor ProgramMaker

Figure 7.12. Path optimization by tracing the TCP position, speed and acceleration
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Based on the use of Visual Basic for Applications (VBA) RobotStudio offers  

optimized solutions for applications such as arc-welding, press break tending, spot-

welding, CalibWare (absolute accuracy), blade grinding, and BendWizard (press 

brake tending). Figure 7.13 shows the 3D model of one such application - the spot-

welding robot work cell of the Volvo Cars “body-in-white” manufacturing line 

[20]. 

Figure 7.13. The example of the ABB’s RobotStudio model of a Volvo body-in-white 

manufacturing line using ABB industrial robots (Courtesy of ABB) 

7.6 Tecnomatix eM-Plant (UGS, USA) 

Tecnomatix is a suite of software applications intended to support so-called digital 

manufacturing (also known as manufacturing process management). As discussed 

in [21], digital manufacturing is a combination of software and manufacturing 

methods that transforms manufacturing processes and manufacturing-related 

business initiatives. Besides process planning, digital manufacturing has a goal to 

optimize production operations by allowing the production planner to compare the 

process plan to how well that plan is actually executing.  

Tecnomatix provides a broad range of applications for manufacturing 

management of both parts and assemblies. These solutions enable the designer to 
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define and verify product-assembly sequences, create assembly-line layouts, 

simulate specific operations and material flows to optimize the process, allocate the 

required time for each operation, verify line performance and perform line 

balancing, analyze product and production costs, virtually commission and 

program production lines using digital planning data, execute and continually 

manage a production process, track and trace specific customer orders according to 

the materials included and the processes they undergo, and feed back real-time 

process changes, as executed, into manufacturing process plans [21]. 

eM-Plant is a Tecnomatix application that enables the simulation and 

optimization of production systems and processes [22]. Like other concurrent 

products, eM-Plant enables the designer to explore the production systems’ 

characteristics and to optimize its performance.  

Basic features of eM-Plant enable the user to simulate complex production 

systems and control strategies; use object-oriented, hierarchical models of plants, 

encompassing business, logistic and production processes; use dedicated 

application object libraries for fast and efficient modeling of typical scenarios; 

generate graphs and charts for analysis of throughput, resources and bottlenecks; 

use comprehensive analysis tools, including Automatic Bottleneck Analyzer, 

Sankey diagrams and Gantt charts. Software provides 3D online visualization and 

animation, which allow the user to see all system phenomena in a genuine way. 

eM-Plant also has some advanced features, such as integrated neural networks 

and experiment handling, genetic algorithms for automated optimization of system 

parameters, open system architecture supporting multiple interfaces and integration 

capacities (ActiveX, CAD, Oracle SQL, ODBC, XML, Socket, etc.). 

Using the eM-Plant virtual (digital) model of the manufacturing system, the 

user can run experiments and what-if scenarios to note critical situations and 

determine optimal solutions that work best. Tecnomatix software can be used for 

various industrial applications, and Figure 7.14 shows one such creation of the 

virtual expansion of the existing manufacturing facility [21]. 

Figure 7.14. The virtual expansion of the factory created in Tecnomatix eM-Plant 
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7.7 CIMStation Robotics (AC&E, UK) 

CimStation Robotics is a 3D graphics program tool that enables designers to 

quickly and easily design, simulate and offline program robotic workcells (Figure 

7.15). The software allows engineers to visualize and evaluate automation concepts 

to determine the cost, feasibility and performance of a proposed robotic system, 

long before the equipment is purchased or a part prototype is available. 

Based on close collaboration with industrial users, CIMStation Robotics offers 

specialized application solutions tailored to the requirements of a particular robotic 

task. Thus the software provides advanced functionality and ease of use for 

painting, spot welding, arc welding, polishing, assembly and press operations. 

Figure 7.15. The virtual model of the flexible manufacturing system created in CIMStation 

Robotics [23] 

7.8 COSIMIR (FESTO, Germany) 

COSIMIR is the 3D-simulation program that can be used to plan robotized 

workcells before they are actually built. The program allows the designer to check 

the reachability of all positions, develop programs for robots and controllers, and to 

optimize the workcell layout. 

Virtual models of robots, machinery, tools, conveyer belts, part feeders, etc., 

taken from the library of virtual models, just-created new models, or models 

imported from other CAD programs, can be combined to create arbitrarily complex 

robot-based workcells. COSIMIR allows the designer to check the developed robot 
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programs against possible collisions and to optimize cycle times. Sensor simulation 

is a very useful COSIMIR’s feature that extends the program’s capability to 

simulate complete work cells. Since the program solutions for each robot in the 

workcell is written in the robot-compatible programming language, the direct 

download of tested programs and positions into the robot controller is supported. 

COSIMIR provides an automatic face-oriented trajectory generation suitable for 

applications like coating and ablation processes [24]. An industrial PLC simulation 

is an additional feature that makes the program adjusted for simulation of real 

system conditions. 

Figure 7.16 shows the COSIMIR user interface for a selected robot workcell 

layout. 

Figure 7.16. The user interface for programming and testing a virtual model of the robot 

work cell created in COSIMIR (Courtesy of FESTO) 

7.9 FlexMan (LARICS, University of Zagreb, Croatia) 

In general, all 3D simulation programs have many advanced features, including 

true “offline” robot programming and direct download of developed controller 

programs, but the problem arises when the results of analysis and (re)design 

performed in the virtual environment must be converted into actual real-time 

algorithms that should control the real system as a whole. Most of the 

aforementioned design and simulation programs do not offer such an elegant way 
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that would allow transfer of system supervisory control algorithms from the virtual 

to the physical world.  

The aim of the MS design tool FlexMan presented in this chapter is to make 

this step forward and show how effective the analysis of MS dynamic behavior can 

be, with the usage of virtual models and accompanying matrix-based dynamic 

models, and how straightforward it is from a matrix-based supervisory controller 

used in the simulator to the program for supervisory PLC in the real MS. FlexMan 

is a web-based virtual modeling and simulation tool using virtual models in the 

VRML 3D file format (see Section 7.2). The interested reader can use FlexMan 

and so learn more about it by visiting the FlexMan web address [25]. 

The usage of virtual-reality models in conjunction with the Internet-related 

technologies has made a significant advance in visualization of complex physical 

systems such as robotic systems and FMS [26]. 

FlexMan fulfills some basic requirements: it provides the user with a GUI for 

easy creation of FMS simulation prototypes including FMS layout, description of 

operations and operation rules, generates automatically a matrix model of the FMS 

as a basis for running a dynamic simulation, integrates a tool with a suitable user 

interface for web-based task/robot-dependent trajectory planning with embedded 

algorithms for solving direct and inverse kinematics problems for a user-defined 

type of manipulator, displays virtual FMS elements by using advanced 3D graphics 

and animation routines, and finally, provides status information for the job-

schedule evaluation criteria.  

7.9.1 FlexMan Structure 

The FlexMan structure is shown in Figure 7.17. It is based on the client – server 

architecture. Communication between server and client(s) uses TCP/IP protocol, 

while all transferred and stored data is in the standard XML format [27].  

Any work in FlexMan starts first with a user authorization. For different types 

of users, different program functions are enabled, and the work of every user is 

tracked and stored on the server for easier supervising and administration. This can 

be very convenient for training purposes, as trainees can do their work from any 

remote location (home, computer lab, Internet cafè), and the tutor can easily review 

the data about the trainee’s work being stored on the server.  

As shown in Figure 7.17, FlexMan’s client side contains three major parts: 

Scene Builder, Web Trajectory Planner (WTP) and Visualization Client (VC). 

These three components are implemented as a single Java applet inserted in an 

HTML page together with a VRML plug-in that provides visualization of a 3D 

scene. VRML 2.0 standard defined external authoring interface (EAI) as an 

interface between the virtual world and the external environment. EAI defines the 

functionality of the VRML browser that the external environment can access, and 

it enables a Java applet to fully control and modify a VRML scene [13]. A new 

ISO standard X3D file format, which is the improved VRML format, opens new 

possibilities for tools like FlexMan to become more efficient and reliable. 

At the server side, FlexMan has three major parts: the trajectory planner tool 

LEONARDO, FMS Controller, and Database. 
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7.9.2 Database 

Database contains information such as libraries of VRML prototypes, user 

information, saved work, statistical information, planned trajectories, and 

simulation logs. It allows new virtual FMS elements to be easily imported. Once a 

VRML prototype of a new resource is made, there is no need for any programming 

intervention in the application itself. A new element is simply added to the 

database and linked to the appropriate library that determines its scope of use. 

7.9.3 Virtual FMS Modeling 

The Scene Builder is the component that serves for modeling of the FMS layout in 

the virtual 3D environment and for definition of FMS functional properties. 

A virtual FMS is modeled using predefined models (prototypes) of objects like 

robots, machines, conveyers, buffers, etc. Libraries of these prototypes are stored 

in a database on the server. Depending on the user’s status and permissions, 

different libraries of FMS elements are available. A desired element is selected 

from the list of available objects (shown in the main layout of the Scene Builder 

(Figure 7.18)), and after setting its designation, position, orientation and scaling 

factor, an appropriate 3D model appears in the virtual scene. With this pick-and-

place approach, even the creation of the most complex layouts is very easy, and 

straightforward. Figure 7.18 shows the layout of the two-robot FMS described in 

detail in the matrix-based controller design example in Chapter 5. 

7.9.4 Functional Modeling of FMS 

After the visual layout of the FMS is set, the functions and behavior of these 

elements are described by defining a list of operations for each element, the nature 

and duration of each operation, and initial system conditions. This is done with the 

operations editor (Figure 7.19). In order to visualize FMS operations in the virtual 

world as if they were real, we need an active algorithm in the background [12, 28] 

whose input and output must be connected to the elements of the virtual model. 

Providing that the resources and operations they perform are defined, the final step 

in FMS modeling by using FlexMan is definition of FMS operation sequencing and 

behavior. The part of Scene Builder named Rule Editor (Figure 7.20) serves that 

purpose. From the previously defined objects and their tasks the user builds a set of 

IF-THEN rules (see Section 3.2) that describe the sequencing of operations in the 

FMS.
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Figure 7.18. FlexMan client in a Microsoft Internet Explorer browser (the layout of the 

virtual model of the two-robot FMS from a case study in Section 5.4) 

Based on these rules and object properties, the FMS model matrices needed for 

dynamic simulation are calculated automatically. The output from the Rule Editor 

is a set of matrices Sr, Sv, Sy, Su, Fr, Fv, Fu, and Fy that are explained in Section 3.1. 

Matrices Fy, Fr, Fu and Fv are created from the antecedent (IF) part of the rule, and 

matrices Sy, Sr, Su and Sv are created from the consequent (THEN) part of the rule. 

7.9.5 Generating Trajectories in FlexMan 

In FlexMan, trajectories for resources with one degree of freedom are generated 

online, but trajectories for resources with two or more degrees of freedom (e.g.

robots) are planned with a FlexMan component – Web Trajectory Planner (WTP). 
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Figure 7.19. Operations Editor Window 

Figure 7.20. Rule Editor Window  
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Figure 7.21. Web Trajectory Planner  

In WTP (Figure 7.21), the user moves the robot from one position to another, 

adds key tool-tip coordinates to a list, assigns wait times and movement types 

(point-to-point (PTP) or continuous-path (CP)) for desired trajectory segments, and 

finally sends a request to the server to plan the resulting trajectory. 

At the server side the trajectory planner tool LEONARDO accepts requests 

from FlexMan’s WTP and plans combined CP/PTP motions with a given error 

tolerance [29]. It returns the planned trajectory points to the client and stores the 

trajectory for future use by FMS Controller during dynamic simulation. The 

planned trajectory is drawn in the virtual scene at the client side, and the user can 

then view animated movement of the robot along the planned trajectory (Figure 

7.21). 

When this phase of modeling is completed, the FMS is defined both structurally 

(via the VRML formatted virtual scene) and functionally (via the matrix model and 

the planned trajectories), and simulation of its work can proceed. 

7.9.6 Simulation and Visualization of FMS operation 

VC visualizes the FMS during simulation. Upon the start of simulation (Figure 

7.22), VC sends to the server a complete description of the FMS generated by 

Scene Builder – visual layout, matrix model, and references for planned 

trajectories. After processing of information and necessary calculations, the server 

returns to VC data representing states of every element on the virtual scene in a 

given time frame. Through EAI, VC constantly updates the virtual scene, and thus 

a realistic 3D simulation of the FMS behavior is achieved, clearly depicting what is 

going on during the simulated manufacturing process.  
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Figure 7.22. Visualization Client – enables 3D simulation of FMS operation 

7.9.7 Internet-based Multiuser FMS Control with FlexMan 

FMS Controller is the core of FlexMan. It is a server application that handles 

complete server-client communication in FlexMan, database access, client requests 

towards LEONARDO, user and file management, and on top of that, it executes 

FMS simulation. FMS Controller uses different protocols to communicate with 

other components: TCP/IP socket for client connections, ODBC for database, and 

COM/DCOM for LEONARDO access (Figure 7.17). 

When a new client connects, a new communication thread is instantiated. 

Within this thread, a separate thread is started in which simulation is performed. 

After client authorization is made, FMS Controller gives the client the access to 

appropriate VRML prototype libraries and previously stored user files like saved 

models and planned trajectories. All data transferred between the server and clients 

is in XML format. FlexMan’s XML document for scene description is used both 

for saving defined scenes and as input data for FMS simulation, because it contains 

all the necessary information for both purposes. The file size of these documents is 

minimal, a vital demand in any Internet-based application. This feature is a 

consequence of prototyped virtual scenes building, which enables full description 

of a VRML scene only by defining references to the required VRML prototypes 

and their parameters, instead of saving the data about the complete 3D model.  

It must be noted that the increasing number of equal objects in the scene will 

only slightly increase the size of the XML file and will not affect the size of the 

VRML file at all. Matrix model FMS description is also very convenient for XML 

formatting and provides a complete functional description of the modeled FMS. It 
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all adds up to a very compact XML document, which is very clear and 

understandable and can be read and modified easily. 

Upon a request for simulation sent by the client, FMS Controller processes the 

scene description document received from the client, loads LEONARDO’s robot 

trajectories referenced in that document, calculates trajectories for the one-degree-

of-freedom resources, and starts the dynamic simulation by using a timed matrix-

based model of FMS [30]. 

7.9.8 A Selection of an FMS Control Method 

Shared resources in FMS may cause conflict situations when conditions for starting 

more than one concurrent job are satisfied. In that case, FMS Controller uses 

system matrices, finds the rules that lead to the conflict situations, and solves the 

problem by generating suitable control signals according to a desired dispatching 

policy that must be added into the model. Control signals are automatically added 

as prerequisites in the critical rules.  

Users may choose, for example, from LBFS, FBFS, and MAXWIP dispatching 

policies. As described in Section 5.3, MAXWIP dispatching policy resolves 

conflict situations and keeps the number of work in progress (WIP), in particular 

FMS subsystems, at the maximum allowed level in order to avoid deadlock. 

In every sampling interval, the current state of each resource is sent to the VC 

that updates the virtual scene. If the state of one resource has not been changed, 

updating for that resource is omitted to reduce the data flow and prevent 

communication lags. 

Any problems caused by the FMS layout or by the manufacturing plan (MS 

data) can be easily observed, critical operations or production rules can be 

modified and simulations can be rerun until a suitable FMS behavior is achieved. 

Example 7.9.1 (the FESTO FMS modeling and simulation with FlexMan)

Let us use the FESTO FMS laboratory setup described in Section 7.2.2 (Figure 7.4) 

as the target system for the matrix-based controller design. As depicted in Figure 

7.23, the manufacturing task of the FMS is to assemble a cylinder by putting 

together four components: a body, a piston, a spring, and a cap [31]. The body 

colors of a cylinder can be red, silver or black. There are also two types of pistons 

that vary in color (black and gray) and shape (see Figure 7.23). The assembly 

process is organized according to the assembly specifications from Table 7.1. 
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Figure 7.23. Assembly of the cylinder: a body, a piston, a spring, and a cap

Table 7.1. Assembly specifications for a cylinder  

Cylinder color red black silver 

Cylinder material plastic plastic metal 

Cylinder height, [mm] 25  22.5 25 

Piston color black gray black 

Piston radius, [mm]  20  16 20 

As described in Section 7.2.2, four work stations participate in the assembly 

process [31]. The distribution station separates cylinder bodies from the stack
magazine module, whose capacity is limited to 8 bodies. The number of bodies in 

the magazine is detected with a through-beam sensor. A pneumatic cylinder pushes 

out the bodies, one by one, and the changer module grips the body using a suction 

cup. Another sensor, a vacuum switch, checks whether the cylinder body has been 

picked up. The transfer unit, driven by a rotary drive, conveys the body to the 

testing station, which is next in the line. 

The testing station determines the characteristics of inserted cylinder bodies. 

Different sensors serve that purpose: the sensing module identifies the color of a 

body and a capacitive sensor detects the body irrespective of its color. A diffuse 

sensor identifies silver (metallic) and red (plastic) bodies, but not the black 

(plastic) ones. The analog sensor of the measuring module determines the height of 

the body. The output signal is either digitalized (via a comparator with adjustable 

threshold value) and connected to the digital I/O of a PLC, or fed directly to the 

PLC analog I/O. A retro reflective sensor checks whether the working area above 

the body retainer is free before the body is lifted by the lifting module. A linear 

cylinder guides the correct cylinder body to the processing station by means of the 

air cushioned slide module. Other nonfitting bodies are sorted on the lower slide
module.

In the processing station, cylinder bodies are positioned, processed (drilled), 

and then tested on a DC motor-driven rotary indexing table. The table has a 

capacity of four body places that are positioned 90o apart from each other. A 

solenoid actuator with an inductive sensor checks that the bodies are inserted in the 
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correct position. After each drilling the table rotates 90o CW and the processed 

bodies undergo the drilling quality test. After each test, the table rotates 90o CW 

and the body waits for the transfer to the assembly station.

As we already mentioned in Section 7.2.2, the assembly station is equipped 

with the five DOF robot arm Mitsubishi Movemaster EX RV-M1 (see Figure 7.4), 

which fetches the body from the transfer position at the rotary indexing table and 

moves the body to the assembly position of the assembly retainer module.

Depending on the color of the body the robot takes an appropriate type of 

piston from the pallet and inserts it into the body. According to the assembly plan 

shown in Table 7.1, black (plastic) pistons are used for red and silver bodies, while 

gray (metallic) pistons are used for black bodies. Then the piston spring is taken 

from the spring magazine module and inserted. Finally, the robot picks up a cap at 

the cap magazine module, establishes the orientation of the cap and places it in the 

correct orientation on the body. The finished cylinder is placed on a slide, which is 

the end of the assembly cycle. 

Having clearly defined task sequencing and ready-to-use virtual models of all 

the physical components of the FESTO FMS, we can use FlexMan to create a 

complete virtual and functional model, which together with an automatically 

generated matrix model will enable simulation and 3D visualization of the system. 

A virtual model shown in Figure 7.4 is built of the following elements – 

resources (a symbolic notation for each resource is given in the parentheses): stack 

magazine module (SM), pneumatic pusher (PP), the transfer unit (TU), the 

measuring module (MM), the lifting module (LM), the rotary indexing table 

module (RT), the drilling module (DM), the testing module (TM), the pistons 

separating module (PSM), the cap magazine module (CMM), the spring magazine 

module (SMM), the robot arm (RA), the air-cushioned slide module (ASM), two 

gravitational (slide) modules (GM1 and GM2), and the place of assembly (A). In 

order to preserve the characteristics of the MRF line, during each new assembly 

job the place of assembly is treated as a new resource (that is, A converts to places 

A1, A2, A3 and A4). The list of jobs and releases of the above-mentioned 

resources, along with their symbolic notation and duration, is displayed in Table 

7.2. This list can be entered using FlexMan’s Operation editor. The durations of 

each job and release are initially determined by the actual duration of jobs and 

resource releases in the real FESTO FMS. These parameters can be varied during 

simulations in order to examine different dispatching techniques that would satisfy 

different manufacturing quality criteria (maximal product throughput, optimal 

resource utilization, minimum energy consumption, etc.).

All resources except the robot and the rotary table have only one job to do. The 

rotary table has three jobs that are done simultaneously. The only shared resource 

in the FMS is the robot, whose tasks are to transfer cylinder bodies from the testing 

station to the assembly station and fetch parts needed for assembly. 

The next step is the definition of IF-THEN rules that explain the sequence of 

jobs and conditions, which must be fulfilled to start or finish a particular job 

according to a selected control strategy. Control places (CP1–CP5) have an 

important role in the creation of operational rules, as the state of control places 

dictates, in conflict situations, which job of the shared resource (that is, the robot) 

will be done first. This job is done with FlexMan’s Rule editor. 
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Table 7.2. The list of jobs and releases of the FESTO FMS resources [15] 

Job/ 

Release

Resource action (movement) Symbol t
[s] 

J A pneumatic cylinder pushes out the body PPw 0.7 

R A pneumatic cylinder retracts PPr 0.7 

J Transfer unit conveys the body to the testing 

station 

TUw 2.1 

R Transfer unit retracts TUr 1.4 

J The body is lifted by the lifting module, and a 

linear cylinder guides the body to the processing 

station via the air cushioned slide module 

LMw 2.8 

R The lifting module retracts LMr 2.8 

J The rotary indexing table module rotates to the 

drilling position 

RTw1 1.2 

J The rotary indexing table module rotates to the 

drilling testing position 

RTw2 1.2 

J The rotary indexing table module rotates to the 

transfer position 

RTw3 1.2 

J The drilling module is going down DMw 0.9 

R The drilling module is going up DMr 0.9 

J The testing module is going down TMw 0.9 

R The testing module is going up TMr 0.9 

J The piston separating module pushes out the 

piston 

PSMw 1.2 

R The pistons separating module retracts PSMr 1.2 

J The cap magazine module pushes out the cap CMMw 0.7 

R The cap magazine module retracts CMMr 0.7 

J The spring magazine module pushes out the cap SMMw 0.7 

R The spring magazine module retracts SMMr 0.7 

J The robot fetches the body and moves it to the 

assembly place and the assembly place is occupied 

RAw1 

& A1w 

4.3 

R The place of assembly is “virtually” released A1r 0 

J The robot picks up the piston and inserts it into the 

body and assembly place is occupied 

RAw2 

& A2w 

3.8 

R The place of assembly is “virtually” released A2r 0 

J The robot picks up the spring and inserts it into the 

body and the assembly place is occupied 

RAw3 

& A3w 

6.2 

R The place of assembly is “virtually” released A3r 0 

J The robot picks up the cap, puts it onto the body, 

and twists it on and the assembly place is occupied 

RAw4 

& A4w 

4.7 

R The place of assembly is “virtually” released A4r 0 

J The robot grasps the cylinder and moves it to the 

slide module 

RAw5 4.1 

R The robot parks in home position RAr 2.4 

J The body is sliding down the air-cushioned slide 

module to the rotary indexing table module 

ASMw 1.3 

J The assembled cylinder is sliding down the slide GM2w 1.2 
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The jobs and releases of resources shown in Table 7.2 represent the foundation 

for the creation of rules. Table 7.3 shows the list of 32 rules created in the Rule 

editor. In order to provide a realistic 3D visualization of FMS dynamics, some 

auxiliary resource releases are used, such as the release of the air-cushioned slide 

that feeds the rotary indexing table module, and the release of the rotary table 

itself. These releases are instant (t = 0 s), as they only serve to free the resource 

once they have delivered the work piece to the downstream resource. Symbols 

PI1–PI4 and PO, which are used in the rules, denote inputs and output for the 

system work pieces (PI – Part In and PO – Part Out). 

Table 7.3. The list of operation rules of the FESTO FMS [15] 

Rule  Rule definition 

1 IF (PP AND PI1) THEN (PPw) 

2 IF (TU AND PPw) THEN (TUw AND PPr) 

3 IF (LM AND TUw) THEN (LMw AND TUr) 

4 IF (ASM AND LMw) THEN (ASMw AND LMr) 

5 IF (RT AND ASMw) THEN (RTw1 AND ASMr) 

6 IF (DM AND RTw1) THEN (DMw AND RTr1) 

7 IF (RT AND DMw) THEN (RTw2 AND DMr) 

8 IF (TP AND RTw2) THEN (TPw AND RTr2) 

9 IF (RT AND TPw) THEN (RTw3 AND TPr) 

10 IF (PSM AND PI2) THEN (PSMw) 

11 IF (SMM AND PI3) THEN (SMMw) 

12 IF (CMM AND PI4) THEN (CMMw) 

13 IF (RTw3=0) THEN (CP1) 

14 IF (PSMw=0) THEN (CP2) 

15 IF (SMMw=0) THEN (CP3) 

16 IF (CMMw=0) THEN (CP4) 

17 IF (Aw+A1w+A2w+A3w+A4w=0) THEN (CP5) 

18 IF (RA AND RTw3 AND CP5) THEN (RAw1 AND RTr3) 

19 IF(A1 AND RAw1) THEN (A1w AND RAr1) 

20 IF (RA AND PSMw AND CP1) THEN (RAw2 AND PSMr) 

21 IF(A2 AND RAw2) THEN (A2w AND RAr2) 

22 IF (RA AND SMMw AND CP1 AND CP2) THEN (RAw3 AND 

SMMr) 

23 IF(A3 AND RAw3) THEN (A3w AND RAr3) 

24 IF (RA AND CMMw AND CP1 AND CP2 AND CP3) THEN (RAw4 

AND CMMr) 

25 IF(A4 AND RAw4) THEN (A4w AND RAr4) 

26 IF (A1w > 0) THEN (CP1) 

27 IF (A2w > 0) THEN (CP2) 

28 IF (A3w > 0) THEN (CP3) 

29 IF (A AND A1w AND A2w AND A3w AND A4w) THEN (Aw AND 

A1r AND A2r AND A3r AND A4r) 

30 IF (RA AND Aw) THEN (RAw5 AND Ar) 

31 IF (GM2 AND RAw5) THEN (GM2w AND RAr5) 

32 IF (GM2w) THEN (GM2r AND PO) 
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System resources with more than one degree of freedom, the robot and the 

lifting module, require planning of trajectories. This is done by using FlexMan’s 

Web Trajectory Planner, which invokes a trajectory planning tool Leonardo on the 

server side. Having all trajectories planned, simulation can start and the process of 

cylinder assembly can be examined. Figure 7.24 shows several instants of the 

assembly process captured during animated 3D visualization in FlexMan’s VC.  

All cylinder components are present 

and assembly can start 

The body of a cylinder is inspected by 

the measuring module 

The drilling module is drilling the 

body. 

The robot fetches the body from the 

transfer position of the rotary table. 

The robot picks up the piston before 

inserting it into the body. 

The robot puts the fully assembled 

cylinder on the output slide module. 

Figure 7.24. The phases of the simulated assembly process visualized in the FlexMan 

Visualisation Client 
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7.10 Exercise 

Figure 7.25 shows a layout of the laboratory workcell that contains an educational 

robot Rhino XR-3, two belt conveyers, one transporter and two pistons [32]. A 

processed part visits several resources on its way through the system. The system 

has a shared resource, i.e. a conflict-resolution algorithm by using a matrix-model 

approach should be implemented.  

For the given system layout, define operational times and specify the number of 

sensors and their positions. The part that is processed is put into the system by 

piston 1. When the part gets to the end of the conveyer 1 the robot transfers it to 

the conveyer 2. At the end of the conveyer the robot picks the part and places it on 

the transporter. Once the part is close to the piston 2, it is moved out of the system. 

By using FlexMan [25], create a virtual model of the FMS and describe the 

functions and behavior of the system elements by defining a list of operations for 

each element. Define the nature and duration of each operation and initial system 

conditions. For this purpose use FlexMan’s Operations Editor (Figure 7.26). Create 

operation rules for a selected job-scheduling strategy with Rule editor, plan the 

robot trajectories with Web Trajectory Planner (Figure 7.26). Start the simulation 

and watch the FMS dynamic behavior while 3D animation of the FMS operation is 

displayed in the Visualization Client (Figure 7.27).  

OUTPUT

conveyer 1

conveyer 2

robot

transporter

INPUT

piston 1

piston 2

Figure 7.25. Example of the laboratory FMS layout 
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Figure 7.26. Steps of FMS control design in FlexMan for the example of the FMS layout 

Figure 7.27. 3D visualization as a final result of the FMS control design in FlexMan 
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