Robert L Wood

f\

N

N\
C Prog@ ming
for Scientists
& Engineers

=

PENTON PRESS

C Programming
for Scientists
& €ngineers

This page intentionally left blank

Manufacturing €ngineering
Modular Series

C Programming
for Scientists
& €ngineers

Raobert L Wood

Penton
Press

Publisher’s note

Every possible effort has been made to ensure that the information contained in
this book is accurate at the time of going to press, and the publishers cannot
accept responsibility for any errors or omissions, however caused. All liability for
loss, disappointment, negligence or other damage caused by the reliance of the
information contained in this handbook, of in the event of bankruptcy or
liquidation or cessation of trade of any company, individual; or firm mentioned, is
hereby excluded.

Apart from any fair dealing for the purposes of research or private study, or
criticism or review, as permitted under the Copyright, Designs and Patents Act,
1988, this publication may only be reproduced, stored or transmitted, in any form,
or by any means, with the prior permission in writing of the publisher, or in the
case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside
those terms should be sent to the publishers at the undermentioned address.

First published in 2002 by

Penton Press

an imprint of Kogan Page Ltd
120 Pentonville Road
London N1 9JN
www.kogan-page.co.uk

© Robert 1. Wood, 2002

British Library Cataloguing in Publication Data

A CIP record for this book is available from the British Library
ISBN 1 8571 8030 5

Typeset by Saxon Graphics Ltd, Derby

Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn
www.biddles.co.uk

Contents

Introduction

1.

Variables, Data Types and Declaration Statements
1.1 Introduction

1.2 The character data type
1.3 The integer data type

1.4 The real data type

1.5 The pointer data type

1.6 Arrays

1.7 Character strings

1.8 Data structures

1.9 Pointers to data structures
Chapter review

Introduction to Executable Statements
2.1 Introduction

2.2 Arithmetic operators

2.3 Relational and logical operators
2.4 Identifying operators

2.5 Miscellaneous operators

2.6 Operator precedence

Chapter review

Introduction to Functions

3.1 Introduction

3.2 Essential statements in any function

3.3 The interface between calling and called functions
3.4 Non-empty argument lists and return statements

S

10

15
19
22
24
28
30

31
31
32
36
39
42
45
47

49
49
51
52
54

vi C programming for scientists and engineers

3.5 Using functions to read and write data
3.6 A program to calculate the area of a triangle
Chapter review

4. Decisions and Loops
4.1 Introduction
4.2 The if-else construct
4.3 Compound statements
4.4 Nested if-else statements
4.5 The switch construct
4.6 The for loop
4.7 The while loop
4.8 The do-while loop
Chapter review

5. Files and Formatting
5.1 Introduction
5.2 Reading and writing
5.3 Formatted output
5.4 Line output
5.5 Line input
Chapter review

6. Dynamic Memory Management and Linked Lists

6.1 Introduction

6.2 Essential facilities for dynamic memory
management

6.3 Simple applications of dynamic memory
management

6.4 Linked lists

Chapter review

Appendix: Typical Examination Questions
Background and Rationale of the Series

Index

62
67
71

73
73
74
75
76
78
81
86
90
91

92
92
92
100
102
104
112

114
114

115

117
125
131
132
140

142

Introduction

The aim of this book is to provide a rapid introduction to the C
programming language. C is a procedural language and should not
be confused with C+ +, which requires a significantly different way
of thinking about problems and their solutions. With the explosion
of texts on C++ and other object-oriented languages in recent
years, along with the perception that C++ is somehow a
progression beyond C, it may seem a little strange to consider a
programming book that is not object oriented. I feel that there are
two good reasons for producing this book. Firstly, object-oriented
analysis, design and programming techniques have evolved to
provide interactive software that is extremely good at supporting
complex tasks performed by its users. However, supporting
computer users in this way is just one aspect of software devel-
opment. Another significant aspect is the support of numerical
analysis and computer-based modelling in a wide range of engi-
neering and other scientific disciplines, where the priority is to solve
equations as quickly as possible. Examples of this are numerous -
the modelling of stress and temperature distributions in the design
of aircraft and automobiles, the modelling of fluid flow in weather
and climate prediction, the modelling of interactions between
molecules and atoms in the engineering of therapeutic drugs and
new materials.

Using computers to perform the calculations in these and many
other technical applications is a very different problem from
enabling a computer user to do almost anything they want in any
sequence. Both problems are very important, but they need
different tools for their solution. Procedural languages, such as C,
are typically more appropriate than object-oriented languages, such

2 Cprogramming for scientists and engineers

as C++, for engineering and scientific calculations because the
resulting programs can make more efficient use of the relevant
hardware resources.

Having said that, the second reason for learning C is that C++ is
C with added functionality and that around 90% of any C++
program is actually C. The big difference between C and C+ + is not
so much in the languages, but in how we think about problems and
their solutions. Having thought in an object-oriented way, C++ has
the additional functionality over C that allows us to build software
that is consistent with our object-oriented thinking. Knowledge of C
provides around 90% of the programming knowledge needed to
implement object-oriented software.

The approach adopted throughout this book is biased towards
generality, rather than comprehensive detail. To this end, this book
does not cover every feature that C provides. The decision over what
to include and exclude in an introductory text such as this can only
be subjective. I apologize to anyone who feels that I have done
programming, and C in particular, a disservice by excluding some-
thing that they feel strongly about. My main consideration in
creating and using these notes has always been to provide a firm
foundation on which more specialized knowledge and expertise can
be built.

The book is divided into the following chapters:

variables, data types and declaration statements;
executable statements;

functions;

decisions and loops;

files and formatting;

dynamic memory management and linked lists.

Each chapter is further divided into sections that involve the reader
in various programming activities guided by tutorial questions.
There are further tutorial problems at the end of the book that aim
to integrate each chapter topic into the wider framework of C
programming. By adopting this approach, it is intended that the
reader can learn C through a series of small programming tasks that
become incrementally more sophisticated. This incremental devel-
opment is also used to instill the ideas of writing and using re-usable
functions so that, whilst the tutorial questions become more sophis-
ticated, they do not necessarily become more complex or time
consuming in their solution.

Introduction 3

From this, it should be clear in the reader’s mind that this book’s
main philosophy is that the only way to learn a programming
language is to use it. If the reader does not carry out the
programming tasks, at best they will only gain a limited under-
standing of what is possible in C. To understand and use C to write
programs that work, it is very important that these tutorial exercises
are carried out. In support of these exercises, it is worth noting that
this book is independent of any specific programming envi-
ronment, although all of the tutorial questions have been imple-
mented in both the Borland and Microsoft C/C+ + environments.

A further point concerns text style. All examples of C are shown
in ilalics, whereas all descriptive text looks like what you are
reading now.

For almost a decade, the material in this book has been the basis
of both first and second year undergraduate modules, a block-
taught (1 week) postgraduate module and a 2-week industrial
course. It may seem unusual that a single text should be useful in
such a broad range of delivery, but this has been possible due to the
way in which the material has been structured. The short, but
adequately detailed descriptions of how various C features work,
together with frequent opportunities to test new knowledge through
practical programming exercises, makes the material attractive to
block and short course teaching beyond undergraduate level.
Under these regimes, all parts of these notes have been mandatory
and assessment has involved the design and programming of
software to solve significant technical problems, such as the thermo-
dynamic modelling of a whole engine cycle. In contrast, at the
undergraduate level, knowledge of Chapter 6 concerning dynamic
memory management is not expected and there is less emphasis on
the integrating nature of the tutorial questions at the end of the
book. Also, assessment problems are relatively small, but still of a
technically applied nature.

Now it is time to get a little more focused on the subject at hand.
The following comments are intended to introduce a few important
C words and make clear the relationships between them.

All C programs contain statements. The programmer assembles
these by combining various operators, such as ‘add’, ‘divide’ etc., and
variables, such as X or Y. There are two general types of statements
in C — declaration statements that are used to create variables, and
executable statements used to combine operators and variables in
ways that make the computer do something useful. In all but the

4 C programming for scientists and engineers

smallest of programs, the programmer should package or group
statements related to a particular task into functions. For example, a
program that must read a collection of input data, perform calcula-
tions and output the results could contain a function for each of
these tasks. Every C program has a function called main, which is
always the first part of the program to run. Very small programs,
including many of the examples in this book, may contain so few
statements that they can all reasonably be contained in main. In
larger programs, main typically calls or uses other functions to carry
out particular tasks. The C language provides many standard func-
tions that perform specific tasks, such as reading a value from the
keyboard, calculating a square root, etc. These standard functions
are grouped into libraries and, to use them, it is necessary to have a
#include statement that refers to the relevant library at the start of
the program.

Where C does not provide a suitable function for the
programmer’s need, the programmer must create one. This is what
C programming is about — understanding how to combine C oper-
ators with variables to form statements, and to group the statements
into appropriate functions. Looking back at the list of chapters, the
first three chapters are intended to support this by concentrating on
the terms mentioned above. All of the programs in these chapters
are limited to reading data from the keyboard, sometimes carrying
out a simple sequence of instructions, and displaying results on the
screen. Subsequent chapters build on this basic functionality by
introducing some of the more sophisticated facilities that C
provides. For example, Chapter 4 takes an important step forward
by looking at how C programs can make decisions, such as ‘..., or
repeat sets of statements within while and for loops. Another step
forward is to look at how a C program can work with files, in
addition to the keyboard and screen. The final step taken in this
book is concerned with how C programs can create their own vari-
ables in the form of linked lists.

One final comment for readers who have never programmed
before. In C (and all other programming languages) there are
quite a lot of rules that dictate how statements and functions can
be constructed. For example, all C statements must end with a
semicolon ‘;’. Also, when a variable is created it must be given a
name. Wherever a variable is used in a program, its name must be
spelled in exactly the same way as it is in its declaration statement.
C allows both upper and lower case symbols to be used in the

Introduction 5

names of variables but, again, their use must be the same wherever
the variable is used. A good knowledge of these (and a few more)
rules is an important element of successful programming and,
perhaps, the main difference between just reading a programming
book and working through the exercises that it contains. In the
early stages of learning any programming language, you need to
recognize that you will make some mistakes and have to deal with
error and warning messages issued by your programming envi-
ronment. The light at the end of the tunnel, however, is that the
more attention you pay to detail, the quicker the error messages
will go away.

Variables, Data Types and
Declaration Statements

1.1 Introduction

All programs work with data stored in memory. To make it easier for
us to design and understand programs, we give each data item a
unique name. By doing this we do not need to know where the data
item is stored in memory, we just use its name wherever it is needed
in the program. This is very similar to what we do when we write a
mathematical equation, for example x = y + z, where x, y and z are
the names of three variables. In a C program, x, y and z would also
be the names of three variables, each stored at a different location or
address in memory. The program needs to know where but,
generally, we as programmers do not. Thus, a variable is an item of
data that has a name and whose value can be changed within a
program. Before a variable can be used, it must be given a name
and declared to be of some specific data type. This is done in a
declaration statement. In C there are four basic data types:

m Character, e.g. ‘@’, ‘b’, °‘C’, etc.
® Integer, e.g. 1, 2, 3, etc.

B Real, e.g. 1.0, 2.0, 3.0, etc.

® Pointer.

Whilst the meaning of the first three types of data is hopefully clear
from these examples, the Pointer data type is rather unusual and
will be considered later.

The amount of space (the number of bytes) needed in memory
to hold a variable depends on its data type. Thus, two bytes may

Variables, data types and declaration statements 7

be needed to store an integer type variable and four bytes may be
needed to store a variable of type real. In addition to variables of
the basic data types shown above, the programmer can also define
any group, set or aggregate of these variables. An array is used to
hold a collection of variables where all of the variables are of the
same data type. The programmer can also create data structures,
built up from various combinations of the basic data types, arrays
and other data structures. Data structures have another special
significance in C because C treats them as programmer-defined
data types.

Sections in this chapter consider variables of each data type,
above, showing how they are created using declaration statements
and how they are used to store data that is read from the keyboard
and then displayed on the screen.

1.2 The character data type

C stores characters in memory as integer numbers using the ASCII
code.! Every number in the ASCII code is small enough to be stored
in a single byte. Hence, a variable of type character uses one byte.
Variables of the character data type are declared using statements
such as:

char A; declares a variable called A to hold one character
char symbol, letter; declares variables symbol and letterto each hold
one character

In a declaration statement char defines the character data type and
is followed by the name(s) of the required variable(s) separated by
commas. Remember from the Introduction that C requires a semi-
colon, ;, at the end of each statement. Variables of type char can be
given a value, or initialized in a declaration statement using single
quotes, as follows:

charA=a’, B="d’;
charC ="M’

Variables of type char can only hold a single character. To hold a
character string, such as a person’s name, an array of type char is

'ASCII = American Standard Code for Information Interchange.

8 C programming for scientists and engineers

required. Arrays and character strings are introduced in Sections
1.6 and 1.7, respectively.

Character data can be read from the keyboard using the fscanf
function and written to the screen using the fprintf function. For
example, Program 1.1 reads a single character from the keyboard
and displays it on the screen.

/* Program 1.1 - Reading and writing a character */
#include <stdio.h>

int main(void)

{

char A;

forintf(stdout, " Enter a single character:”);
fscanf(stdin, " %c", &A);

forintf(stdout, " The character is %c\n", A);
return(0);

}

The listing for Program 1.1 starts with a comment, giving some
indication of what the program does. The #include <stdio.h>
statement will appear in the first group of statements in every
complete program in these notes. This statement is needed in a
program if it uses the fprinif or fscanf functions. More of the detail
behind this will be revealed in Chapter 3. Inside the program char A;
declares a variable, 4, which can hold a single character. To make
sure that the user knows that they must type a character, the
program sends a message, ‘Enter a single character:’, to the screen
using the fprintf function. The first argument (item of information),
stdout, supplied to fprintf is a stream that connects the program to
the screen. When we use this stream, we are telling fprintf to send the
message to the screen, rather than to some other part of the
computer, such as a file on disc. Streams are discussed further in
Chapter 5. For now, however, simply remember that the stdout
stream always connects a program to the screen.

When the above program has displayed the message on the
screen, it then calls the fscanf function to read data from the
keyboard. The fscanf function uses three arguments. The first is a
stream, stdin, which always connects a program to the keyboard. The
second argument is the control string, ‘%c’. The %c part of the

Variables, data types and declaration statements 9

control string in this example is a formatting code that instructs
fscanf to interpret the data that it reads from the keyboard as a char-
acter. The third argument, &4, instructs fscanf to store the character
that it has read in a variable called A. It is very important to note
that the & symbol has been used in front of the name of the
variable. The & symbol is called the ‘address of operator. When it
is put in front of a variable it gets the location in memory where the
variable is stored. Hence, &4 should be read as ‘the address (in
memory) of the variable called 4". The & operator is needed when
we use fscanf because fscanf can only put the data that it reads into
specific places in memory. More importantly, fscanf needs to be told
where to put the data that it reads. The easiest way to do this is to
declare a variable beforehand and to say ‘put the data at the address
of that variable’. The overall effect of this is to store the character
supplied from the keyboard in the variable 4.

When fscanf has done its job, the program then calls the fprintf
function again. This time, fprintf has to display a message on the
screen that contains the contents or value of variable A. The
message to be displayed is inside the control string, which is the
second argument. Inside the control string, the formatting code,
%c, indicates where the value of A will be inserted into the message
and that the value to be inserted is of type char. The control string
also contains the symbols ‘\»’, which together are a control code
that forces the cursor to go to the start of the next line on the screen.
The third argument specifies the variable, 4, whose value is to
replace %c in the message.

Tutorial 1.1
Implement Program 1.1. Write brief notes on the action ol
cach statement in the program.

Tutorial 1.2
Modify Program 1.1 to store the character data in a variable
called character_data.

10 C programming for scientists and engineers
1.3 The integer data type

Integer type variables are used to store whole numbers and are
declared using statements such as:

int A, B; declares two variables called A and Bto each hold one integer
value

In a declaration statement int specifies the integer data type and is
followed by the name(s) of the required variable(s), separated by
commas. By default, C allocates a fixed number of bytes in which to
store an integer value. This places a default upper limit on the
magnitude of the values that can be stored. If a value greater than
this default is required, int can be preceded by long in a declaration
statement. This tells C to use more bytes for the variable.
Conversely, if the maximum value to be stored is smaller than the
default maximum, it may be possible to save memory by using short
int. Another feature of the integer data type is that variables may
hold either positive (unsigned) values only or either positive or
negative values (signed). To restrict an integer variable to storing
only positive values, int is preceded by unsigned. The ANSI? standard
data types for these different options are shown in Table 1.1, along
with the amount of memory used and the minimum range of values
that can be stored:

Table 1.1 Integer data types

Data type Memory (bytes) Value range

short int 2 -32,768 to 32,767

unsigned short int 2 0 to 65,535

nt 2 -32,768 10 32,767

unsigned ini 2 0 to 65,535

long int 4 -2,147,483,648 10 2,147,483,647
unsigned long int 4 0 to 4,294,967,295

In contrast to the above minimum values, some compilers and
processors allocate greater amounts of memory to the int and long
int data types, allowing a correspondingly greater range of values to

2ANSI = American National Standards Institute.

Variables, data types and declaration statements 11

be stored. In addition to storing integer values in inf type variables,
char variables can also be used. However, since char variables occupy
just one byte, the following restrictions apply, depending on
whether the variable is signed or unsigned:

char integer character code, range O to 127
signed char signed integer values within the range —128 to 127
unsigned char integer values within the range 0 to 255

‘Typical forms of declaration statements for integers are:

intA; declares an int variable called A
int counter, limit = 100; dseclares two int variables, initializing the second
shortint B=-32000; declares and initializes a short int variable

Since there are several types of integer variables, different
formatting codes are required by fscanf to read data into them from
the keyboard, and by fprintfto display their value on the screen. The
formatting codes that are required for integer data often consist of
two symbols after the % sign. When two symbols are required, the
first is a modifier and the second is the basic formatting code.
There are two basic formatting codes: d for integer values that may
be positive or negative and » for values that are positive (unsigned)
only. In addition, there are two modifiers, & meaning short and [
meaning long. Table 1.2 summarizes these options.

Table 1.2 Formatting codes required for different integer data types

Basic formatting Required formatting

Data type code Modifier code

short tnt %d h %hd

unsigned short int You h Yohu

nt %d %d

unsigned it You You

lomg int %od { %old

unsigned long int You l Polu

Program 1.2 shows how different formatting codes are used when
the various integer data types are read from the keyboard using
fscanf and displayed on the screen using fprintf.

12 Cprogramming for scientists and engineers
/* Program 1.2 - Reading and writing different types of integer data */
#include <stdio.h>

int main(void)

{

shortint A;
unsigned short int B;
intC;

unsigned int D;

long int E;

unsigned long int F;

/* reading and writing a short int */

forintf(stdout, "Enter an integer value between -32768 and 32767:");
fscanf(stdin, " %hd", &A);

forintf(stdout, " The integer value is %hd\n”, A);

/* reading and writing an unsigned short int %/

forintf(stdout, " Enter an integer value between 0 and 65535:");
fscanf{(stdin, "%hu", &B);

forintf(stdout, " The integer value is %hu\n", B);

/* reading and writing an int */

fprintf(stdout, " Enter an integer value between -32768 and 32767:");
fscanf(stdin, "%d", &C);

forintf(stdout, " The integer value is %d\n", C);

/* reading and writing an unsigned int %/

forintf(stdout, " Enter an integer value between 0 and 65535:");
fscanf(stdin, " %u", &D);

forintf(stdout, " The integer value is %u\n", D);

/” reading and writing a long int %/
.forintf(stdout, " Enter an integer value between -2147483648 and 2147483647:");
fscanf(stdin, " %Id", &E);

forintf(stdout, " The integer value is %Id\n", E);

/* reading and writing an unsigned long int */
forintf(stdout, " Enter an integer value between 0 and 4294967295:");
fscanf(stdin, " %lu", &F);

Variables, data types and declaration statements 13

forintf(stdout, " The integer value is %lu\n”, F);

return(0);

}

Tutorial 1.3
Implement Program 1.2, Write briel notes on the action ol
cach statement in the program.

Tutorial 1.4

Modify Program 1.2 so that the values that arc read in arc
displayed in reverse order. Ensure that the program contains
appropriate comments and that appropriate messages appear
on the screen with cach displayed value.

1.4 The real data type

Real numbers are often written in decimal form, e.g. 102.7, or in
exponential form, e.g. 1.027 X 10 In C the decimal notation is the
same, but the exponential notation looks like 1.027¢2. As shown in
Table 1.3, values of this type can be held in any of three data types in
the real category, depending on the required precision (decimal
places, d.p.) and the range (the maximum and minimum values) of
the variable.

Table 1.3 Data types in the real category

Memory Precision
Data type bytes Range of values d.p.
float 4 1.175494351¢-38 to 7
3.402823466e+38
double 8 2.22507385850720¢-308 to 15
1.79769313486231¢+308
long double 10 3.36210314311209¢-4932 to 19

1.18973149535723e+4932

14 C programming for scientists and engineers

The float and double data types are available in all C programming
environments, but long double is limited to the use of very high
precision floating point hardware. Also, variables of type float and
double are often referred to as single precision and double precision
variables, respectively. Typical forms of declaration statement are:

float A; declares a single precision variable, called A
double A=19.2, B=1.7e-6; declares and initializes two double precision
variables

Data of types float and double can be transferred into and out of
programs either in decimal or exponential formats, depending on
the formatting codes that are used with fscanf and fprintf. For the
float data type the formatting code required for decimal format is %f
and for the double data type the %if formatting code is used, where [
is a modifier. The formatting code %e is used for float type variables
when the data is to be displayed in exponential format. To display
the value of a double type variable in exponential format %le is used.
Program 1.3 demonstrates these formatting codes in the input and
output of float and double type variables using fscanf and fprintf.

/* Program 1.3 - Reading and writing floats and doubles */
#include <stdio.h>

int main(void)
{

float A;
double B;

/* reading and writing a float */

forintf(stdout, " Enter a value between 1.175e-38 and 3.402e+38 as a decimal.");
fscanf(stdin, " %f", &A);

forintf(stdout, " The value as a decimal is %An", A);

forintf(stdout, " The value as an exponential is %e\n", A);

forintf(stdout, " Enter a value between 1.175¢-38 and 3.402e+38 as an "
"exponential:");

fscanf(stdin, "%e", &A);

forintf(stdout, " The value as a decimal is %An", A);

fprintf(stdout, " The value as an exponential is %e\n", A);

Variables, data types and declaration statements 15

/* reading and writing a double */

forintf(stdoutt, " Enter a value between 2.225e-308 and 1.797e+308 as a decimal”);
fscanf(stdin, " %If", &B);

forintf(stdout, " The value as a decimal is %Ifin", B);

forintf(stdout, " The value as an exponential is %e\n", B},

/* reading and writing a double */

forintf(stdout, " Enter a value between 2.225e-308 and 1.797e+308 as an’'
"exponential:");

fscanf(stdin, "%le”, &B);

forintf(stdout, " The value as a decimal is %ifin", B);

fprintf(stdout, " The value as an exponential is %le\n", B);

return(0);

}

‘Tlutorial 1.5
Implement Program 1.3. Write brief notes on the action of
cach statement in the program.

Tutorial 1.6

In Program 1.3, the rules for entering data in either decimal or
exponential format are not strict. Enter data in different {formats
and notc the resulting output.

1.5 The pointer data type

To understand what pointer variables are it is necessary to recon-
sider the difference between the value of any variable and the
location or address of that variable in memory, outlined in Section
1.1. Remember that, by giving a name to a variable, we are allo-
cating one or more bytes of memory in which we can store an item
of data. Also, by working with named variables, we don’t need to
worry about exactly where the variable (meaning item of data) is
located in memory. There are, however, several situations in which
we need to work with variables via their locations, rather than using

16 C programming for scientists and engineers

their names. For example, when fscanf reads an item of data, it
needs to be told where to put that item in memory. In all of the
programs that you have seen in this chapter, this has been done by
putting ‘@ in front of the variable name. As mentioned previously,
& is called the ‘address of’ operator. This operator should be
thought of as a tool that finds the location of the variable whose
name follows it. For example, &4 finds where 4 is located in
memory. In other words, & gets the address of 4. When used with
fscanf, you need to imagine that the ‘@A’ symbols are replaced by
the address of 4 which is then given to fscanf. Suppose, instead of
passing the address to fscanf, we wanted to store it in another
variable using a statement such as Z = &A;. To do this, Z would
have to be a variable of type pointer. So, the pointer data type
allows us to create variables that are used to store the address of
other variables. We generally say that pointer variables (or simply
‘pointers’) hold the address of, or ‘point to’, other variables.

To understand how programs in later chapters carry out their
tasks, it is useful to have a mental picture of how the ‘address of”
operator gets the address of a variable and how this address can be
stored in a pointer variable. Suppose, when an integer variable is
declared (e.g. in a statement such as int A;) that two consecutive
bytes are reserved in memory. This group of bytes is then given the
name of the variable, A. Information about this variable is stored in
a table that the program creates, called a look-up table. Essentially,
for any declared variable, the information stored in a look-up table
consists of the name of the variable, its data type and the location in
memory of the first byte that it uses. The location of the first byte of
a variable is called its address. To give another example, a decla-
ration statement such as double B = 1.75e¢10; reserves 8 consecutive
bytes in memory and then stores the value 1.75¢10 in these bytes.
Again, the look-up table will store the name of the variable, B, its
data type, double, and the location in memory of the first byte that
has been used (the address of B). It is very important to remember
that the contents of a variable (its value) and the location where it is
stored in memory (its address) are quite different. When the
‘address of’ operator, &, is used, for example &B, the operator is
given the name B which it searches for in the look-up table. Having
found B, & then uses the look-up table to retrieve the location in
memory of the first byte used to store B. It is this location that would
be stored in a pointer using a statement such as Z = &B;, where Z
needs to have been previously declared as a pointer variable.

Variables, data types and declaration statements 17

Pointer variables must be declared using the same data type as the
variables they will hold the addresses of. In other words, the address
of an it type variable can only be stored in a pointer of type int.
Similarly, the address of a float type variable can only be stored in a
pointer of type float, etc. The declaration statement for a pointer is
very similar to that for other variables, except that an asterisk, *, is
used in front of the variable name. For example:

int *A; declares a variable, A, to be a pointer to variables of type int
float *B; declares a variable, B, to be a pointer to variables of type float
char *C; declares a variable, C, to be a pointer to variables of type char
double *Z; declares a variable, Z, to be a pointer to variables of type double

Having declared a pointer variable, the address of another variable
can be stored in it by using the ‘address of” operator, &, as in the
following example:

double B; declares a variable of type double, called B
double *Z; declares a pointer of type double, called Z
Z=&B; stores the address of Bin pointer Z

When a statement such as Z = &B; is executed, what actually
happens is that the address in memory of the first byte of the
variable, B, is returned by & and stored in Z.

The * operator is very important because it can have three
meanings, depending on whether it is used in a declaration
statement or an executable statement. In a declaration statement, *
means that the variable named after it is a pointer. In an executable
statement, * can be the multiply operator or the ‘contents of’
operator. To use * as the ‘contents of’ operator, it is put in front of a
pointer. This gives the value of the variable whose address is stored
in the pointer. For example:

intA=4, C, declares two integer variables, initializing the first

int *B; declares Bto be a pointer of type int

B=&A; stores the address of A in pointer B

C="B; the value of A, pointed to by B, is copied to C (Cis given the
value 4)

In this example, the first two statements are declaration state-
ments and the last two are executable statements. Using * in the
second declaration statement says that B is a pointer of type int.
Using * as the ‘contents of’ operator in the second executable

18 C programming for scientists and engineers

statement enables the value of A to be retrieved because B holds
the address of 4.

Looking back over the example programs in this chapter, you
should again note that when fscanf is used to read values from the
keyboard, the values are stored at the addresses of the variables in
the fscanf argument list. This has been done by prefixing the name
of each variable with the ‘address of’ operator, &. As shown in
Program 1.4, this can also be achieved using pointers.

/* Program 1.4 - The use of pointer variables in reading and writing */
#include <stdio.h>

int main{void)
{

float A;

float *A_ptr;
int B;

int *B_ptr;

A _ptr=&A;

B_ptr=4&B;

forintf(stdout, " Enter a decimal value:");
fscanf(stdin, " %f", A_ptr);

forintf(stdout, " The value entered is %f\n", A);
forintf(stdout, " The value entered is %f\n", *A_ptr);

fprintf(stdout, " Enter an integer value:");
fscanf(stdin, " %d", B_pir);

forintf(stdout, " The value entered is %d\n", B);
fprintf(stdout, " The value entered is %d\n", *B_ptr);
return(0);

}

Program 1.4 reads a real number and an integer from the keyboard
and displays them on the screen. The real value is stored in a float
type variable, 4, and the integer value is stored in an int type
variable B. Having declared 4 and B, two pointers are also declared,
called A_ptr and B_ptr. A_ptr is of type float and is used to store the
address of variable A. Similarly, B_ptr is of type int and used to store
the address of B. When fscanf is called to read the data from the

Variables, data types and declaration statements 19

keyboard, it needs to be given the address of the variables that will
be used to store each item of data. In this example, the addresses of
A and B are already stored in A_ptr and B_pir, respectively. This
means that the addresses needed by fscanf can be specified using
A_ptr and B_ptr, rather than &4 and &B. Following each call to
fscanf there are two calls to fprintf, each of which displays the same
message on the screen. However, the two calls do this in different
ways. The first involves specifying the name of the variable to be
displayed. In the second call, the ‘contents of’ operator prefixes
each pointer variable. This means that the contents of the variable
pointed to by the pointer will be displayed. More specifically, *4_ptr
will give the value of A because A_ptr holds the address of 4.
Likewise, *B_ptr will give the value of B because B_pir holds the
address of B.

Tutorial 1.7
Implement Program 1.4. Write brief notes on the action of
each statement in the program.

Tutorial 1.8

Using Program 1.4 as a guide, implement a program that
reads values from the keyboard into variables of type short int,
long unsigned int and double and then displays them on the
screen. Use pointer variables of the correct type 1o specify
where fscanf should store the data and use the ‘contents of’
operator with fprintf to display the data.

1.6 Arrays

The preceding paragraphs have introduced the basic data types,
typical declaration statements for variables of these types and a
general approach to getting individual items of information into and
out of programs. However, it is more often the case that a program is
required to work with collections of data, ranging from a ‘handful’ of
numbers to thousands or millions of values. To help do this effi-
ciently, C provides facilities to group items of data together and to
treat these groups as entities or variables in their own right. This

20 C programming for scientists and engineers

section introduces two alternative and complementary methods for
storing such composite data items. One of these methods is based on
the use of arrays for storing groups of data, where each item in the
group is of the same data type. Character strings, such as the name of
a person, are a particular type of array and are considered in the
next section. The second method of grouping data items, considered
in Section 1.8, uses data structures, in which variables of different
data types can be grouped together. The C language is very flexible
in that it also allows the programmer to create arrays of arrays,
arrays of data structures and data structures that contain arrays.
Typical examples of array declaration statements are:

int A[10; an array of 10 integers
double B[5]; an array of 5 real numbers of type double
float C[20]; an array of 20 real numbers of type float

Each of the above arrays are one-dimensional; hence they are some-
times also called vectors. Within an array an individual item of data
is called an element. Hence a declaration statement such as double
B[5]; declares an array having the five elements Bf0], Bf1], B/2],
B/3] and Bf4], where each element is a variable of type double. Since
the elements of an array are stored sequentially in memory, decla-
ration statements such as double B{5]; use blocks of memory that are
divided into array elements. The number of bytes used is given by
the number of elements in the array multiplied by the number of
bytes for the relevant data type. The previous list of elements in B
highlights a very important point concerning arrays, in that the
numbering of array elements always starts at zero and goes up to the
number used in the declaration statement minus one. This
numbering convention is ALWAYS used for arrays in C.

In addition to one-dimensional arrays, C also allows the use of
arrays having two or more dimensions, for example int A/3](3];
declares a two-dimensional array having the nine elements:

Afojlo] Afojf1] Aloj[2]
AfTjjo] - Aff1] Al1)2]
A2jlo; Af2jf1] Al2)2]

If needed, arrays can be initialized when they are declared. For
example, to store the integer values 1 to 9 in 4 at the time that it is
created, we would use:

int A[3J[3]={{1, 2, 3}, {4, 5, 6}, {7, 8 9}};

Variables, data types and declaration statements 21

resulting in:

Alojlo]=1 A[oJf1]=2 A[0jj2]=3
Al1]o]=4 Al1][1]=5 Al1]2]=6
AJfoj=7 APJ1]=8 Al2J2]=9

Program 1.5 demonstrates the reading and writing of information
using a one-dimensional array.

/* Program 1.5 - Reading and writing an array of numbers */
#include <stdio.h>

int main(void)
{
float A[3];

forintf(stdout, " Enter three numbers:");

fscanf(stdin, " %f %f %f", &A[0], &A[1], &A[2]);

forintf(stdout, ” The numbers entered are\n”);

forintf(stdout, "A[0] = %f A[1] = %f Af2] = %f\n", A[O], Al1], A[2]);

return(0);

}

In Program 1.5 an array, 4, is declared to hold three values of type
float. After fprintf is used to prompt the user for input, fscanf reads
three values from the keyboard. Note that a formatting code is
required for each value that is to be read and that the address of
each required array element must also be separately specified. After
the numbers have been stored in the array, two calls to fprintf display
them on the screen. Two points to note about the final call to fprintf
are, firstly, that a formatting code is required for each value to be
displayed and, secondly, that the array elements are specified as the
31, 4* and 5" arguments, in the correct order for their insertion into
the displayed message.

The most useful feature of arrays is that they allow potentially
large quantities of data, of the same data type, to be stored, accessed
and processed efficiently. However, arrays have three limitations.
Firstly, a single array can only hold data values of the same type. In
many situations we would like to have the convenience of arrays, but
for mixed data types. Secondly, arrays must be specified to have a

22 C programming for scientists and engineers

fixed size (number of elements and dimensions) when they are
declared. This often leads to inefficient use of memory and arbi-
trary limitations on the volume of data that can be stored or
processed. The third problem is that arrays occupy contiguous
blocks of memory. For example, the array in Program 1.5 occupies
only 12 consecutive bytes of memory. However, if the array were
declared as float A[3000]; then it would occupy 12,000 consecutive
bytes. Depending on the compiler and operating system that are
used, there is always an upper limit on the sizes of individual blocks
of memory that can be used. These limits may be smaller than the
amount of data that needs to be processed. Although these limita-
tions do not usually present a significant problem in relatively ‘small
scale’ software, they can be very important in large engineering and
scientific programs. In such cases, alternative methods of grouping
data are to be preferred. The central concepts of these methods will
be investigated in Chapter 6.

Tuatorial 1.9
Implement Program 1.5. Write brief notes on the action of
cach statement in |hL‘. prograin.

Tworial 1.10

Modify Program 1.5 so that it rcads and writes two arrays. ‘The
first array contains three values of type wnsigned int and the
second array contains five values of type dowble.

1.7 Character strings

Character strings are a special type of array. For example:

char A[10]; declares a character string, called A, which can hold a maximum
of nine characters.

The reason why only nine characters can be stored in 4 is that char-
acter strings can consist of any number of bytes, one per character, and
it is necessary to indicate where the string finishes in memory. For
example, if 4, above, is used to store the string ‘abc’ the program needs
to know that only the first three bytes of A contain useful data. This is

Variables, data types and declaration statements 23

done by storing a ‘null’ character, 0, after the last useful byte in the
string. C automatically inserts the null character in the first byte that
does not contain a useful character. However, the programmer must
declare the string to be large enough to hold the maximum required
data AND the null character. Thus, when a character string is
declared, the number in the brackets must be at least one bigger than
the maximum number of characters to be stored in the string. Typical
forms of the declaration statement for character strings are:

char A[11]; declares a string, A, to hold 10 characters
char A[12] = “Hello World”; declares a string, A, to hold 11 characters,
initializing it

char A[4]= “abc”, B[81]; declares two character strings, initializing the first

In addition to these single character strings, arrays of character
strings can also be declared. For example:

charf2J{11]; declares a vector of two character strings, each holding
up to 10 characters

char words[5][5][21]; declares a two-dimensional array of 25 character
strings, where each string can hold up to 20 characters

Program 1.6 demonstrates the reading and writing of a character
string.

/* Program 1.6 - Reading and writing a character string */
#include <stdio.h>

int main{void)
{
char A[101];

forintf(stdout, " Enter your name:");
fscanf(stdin, "%s", A);
forintf(stdout, " Your name is %s\n", A);

return(0);

}

In Program 1.6 a character string that can store up to 100 characters
is declared. The first executable statement is a call to fprintf, which
prompts the user to supply their name. The fscanf function is then

24 C programming for scientists and engineers

used to read the name from the keyboard. Note that the control
string for fscanf contains a new formatting code, %s. This tells fscanf
to interpret the input as a character string. This should be
compared with the formatting code %, introduced in Section 1.2,
required for single characters. A further point to note in the call to
fscanf in Program 1.6, is that the name of the character string, 4, is
not preceded by &. This only works for character strings and is
allowed because the name of an array is actually a pointer to the first
byte in the array. As an alternative to this we could use the approach
demonstrated in Program 1.5, where the address of each array
element is specified explicitly. However, this is inefficient for char-
acter strings. REMEMBER that C treats character strings differently
to variables of other data types in that fscanf does not need & in
front of the name of the character string. Hence, as shown in
Program 1.6, both fscanf and fprintf just need the name of the char-
acter string as an argument.

A further point to note when reading data into character strings is
that a character string is defined as a continuous sequence of
symbols. Thus, ‘John’ is a single character string, but ‘John Smith’
consists of two character strings. The result of typing either of these
as input to Program 1.6 would be the same, the output on the screen
would be ‘Your name is John'.

Tutorial 1.11
Implement Program 1.6. Write brief notes on the action of
each statement in the program.

Tutorial 1.12
Using Program 1.6 as a guide, implement a program that
reads and writes an array of five words, each containing up to
10 characters.

1.8 Data structures

Suppose that we need a program that reads collections of data from
the user and displays their values on the screen. For example, each
collection could refer to an employee in a company, consisting of

Variables, data types and declaration statements 25

their employee number, family name and salary. The most appro-
priate data types for storing these items are int for employee
number, char for family name and float for salary. If this information
is to be processed for many employees, we could declare three
arrays, one for employee numbers, another for family names and a
third for salaries. By doing this, however, the original collection of
data for each employee has been split up and stored in different
parts of the program. This can give rise to various difficulties,
depending on what we intend to do with the data. It is generally
better to keep the items of data within a group together and to do
this, we need to use data structures. The following is an example of
a data structure definition that suits the requirements for
employee’s data.

struct employee
{
int number;
char family_name([101];
float salary;

k

Every data structure must have a name, for example struct employee,
above. Whenever a structure is defined, it is treated by the compiler
as a new data type, in the same way as int, float, char, etc. Hence, the
name of the above structure is also the name of a new data type. It is
important to be very clear about this. The above statements do not
declare or create a variable. They define a new data type that can be
used in other declaration statements, just like int, float, char, etc., are
defined by C to be used in declaration statements. For example, int
P: declares a variable, P, to be type int, and struct employee K; declares
variable, K, to be of type struct employee. The difference between P
and K is that P is a single item of data stored in two bytes, whereas K
is a collection of three variables that occupies 107 bytes. Program
1.7 uses the employee example to show how data structures are
defined and used within a program.

/* Program 1.7 - Reading and writing a data structure */
#include <stdio.h>

int main(void)

26 Cprogramming for scientists and engineers

{

struct employee
{
int number;
char family_name[101];
float salary;

¥
struct employee employee_1;

forintf(stdout, " Enter employee number:");
fscanf(stdin, " %d", &employee_1.number);
forintf(stdout, " Enter employee family name:");
fscanf(stdin, " %s", &employee_1.family_name);
forintf(stdout, " Enter employee salary:");
fscanf(stdin, " %f", &employee_1.salary);

forintf(stdout,” Employee: name is %s number is %d salary is %fin”,
employee_1.family_name,
employee_ 1.number,
employee_1.salary);

return(0);

}

In Program 1.7, the first declaration statement defines the struct
employee data type. The second declaration statement creates a
variable, called employee_1, of type struct employee. This variable is
an actual data structure, located somewhere in memory. The
memory used is partitioned into three member variables, as
specified in the definition of struct employee. The six executable
statements that follow these declarations simply prompt the user
to supply each item of data to be stored in employee_I and store
the data that is supplied. Note that each member of employee_1 is
accessed by specifying the structure name and the member
name, separated by a full stop or period. This is the ‘dot’
operator which allows access to each member of a structure by
fully qualifying it. Note also that fscanf needs to know the
address of each member and this is done by prefixing the fully
qualified member names with the & operator (including the
name of the character string because it is a member of a
structure). Having read the necessary data, main then calls fprintf,

Variables, data types and declaration statements 27

to display the data values, again accessing each member of the
data structure by fully qualifying it.

If the above data has to be stored for a number of employees, we
could use an array of data structures. For example, the statement:

struct employee employees[10];

creates an array containing 10 elements, each of which is a
variable of type struct employee. In other words, this statement
creates 10 data structures and groups them together in a single
array, called employees. To access the data for any individual
employee, it is necessary to combine the ways of accessing
elements of arrays and members of data structures. Thus, the
data for the first employee in the array is accessed using the
following statements:

employees{0].number
employees(0].family_name
employees(0].salary

and data for the third employee is accessed using:

employees[2].number
employees(2].family_name
employees[2].salary

It should be noted, however, that arrays of data structures are
subject to the limitations discussed in Section 1.6 concerning their
fixed size. Alternative methods of storing multiple groups of data
that overcome these limitations will be introduced in Chapter 6.

‘Tutorial 1.13
Implement Program 1.7. Write brief notes on the action of
each statement in the program.

Tutorial 1.14

Using an array of structures, modify Program 1.7 so that it will
read, store and display data for three employees, reading all of
the data before displaying it.

28 C programming for scientists and engineers
1.9 Pointers to data structures

In addition to using the dot operator to access members of a data
structure by fully qualifying them, indirect access is also possible
through the use of a pointer and the ‘indirection’ operator, ‘->’. To
do this it is necessary to declare a pointer of the correct data type, as
shown below.

struct employee
{
int number;
char family_name[101];
float salary;

¥

struct employee employee_1, “employee_1_ptr;
employee_1_pir = &employee_1;

employee_1_ptr->number
employee_1_ptr->family_name
employee_1_ptr->salary

In the above example, having defined struct employee as a new data
type, employee_1 is declared to be a variable of type struct employee.
The same declaration statement also declares a pointer,
employee_1_ptr, which is subsequently assigned the address of
employee_1. This means that the location in memory of the first byte
of employee_1 is stored in employee_I_ptr. Each of the remaining
statements accesses a member of the data structure indirectly. In
each case, note how the indirection operator shows the pointer to be
pointing at each member. By comparing this with previous
examples, it should be clear that ‘employee_1_ptr—>’ is doing exactly
the same job as ‘employee_I’. To emphasize this, Program 1.8 is a
modification of Program 1.7, in which data structure members are
accessed indirectly using a pointer rather than being fully qualified.

Variables, data types and declaration statements 29
/* Program 1.8 - Reading and writing a data structure using pointers */
#include <stdio.h>

int main(void}

{

struct employee
{
int number;
char family_name[101];
float salary;

¥
struct employee employee_1, “employee_1_ptr;
employee_1_ptr = &employee_1;

forintf(stdout, " Enter employee number:");
fscanf(stdin, " %d", &employee_1_ptr->number);
forintf(stdout, " Enter employee family name:");
fscanf{stdin, " %s", &employee_1_ptr->family_name);
forintf(stdout, " Enter employee salary:");
fscanf(stdin, " %f", &employee_1.salary);

forintf(stdout,” Employee: name is %s number is %d salary is %fin",
employee._1_ptr->family_name,
empioyee_1_ptr->number,
employee_1_ptr->salary);
return(0);

}

The differences between Programs 1.7 and 1.8 are, firstly, that the
latter contains a pointer, employee_1_ptr, of type struct employee, which
is used to store the address of employee_I; and, secondly, that the
member variables within employee_1I are accessed indirectly (pointed
to) using employee _I_ptr—>.

"Tutorial 1.15
Implement Program 1.8. Write brief notes on the action of
each statement in the program.

30 C programming for scientists and engineers

Tutorial 1.16

Modify Program 1.8 to allow it to read, store and display data
for three emplovees. The data should be stored in three struc-
tures called employee 1, employev_2 and employer 3. Declare
and usc an array of three pointers of type struct employee 10
store the addresses of these structures and to access their
members indirectly.

Chapter review

This chapter has concentrated on the different types of data that
can be processed in C programs. C specifies a small set of funda-
mental data types that can be used in declaration statements to
create variables. Variables are names that the programmer gives to
individual items of data. By using such names, data can be manipu-
lated in a program without the programmer needing to know
exactly where they are stored in memory. Various sections in this
chapter have demonstrated the rules that need to be followed when
creating variables in declaration statements. Other sections have
concentrated on forming and using collections of data through the
creation and use of arrays and data structures. Arrays are useful but
have limitations. To partially overcome these limitations, C allows
data structures to be created as programmer-defined data types.
Using these, the programmer can design and name variables in
ways that reflect the collections of data that need to be processed.

2

ntroduction to Executable
Statements

2.1 Introduction

Executable statements are those that either process information in
some way, for example performing calculations, or use information
to control and co-ordinate such processing. Thus, executable state-
ments can be divided into processing statements and control state-
ments. This chapter will concentrate on the essential features of
processing statements. Control statements, such as function calls,
decisions and loops will be considered in later chapters.

All executable statements involve the use of operators and
operands. Operands are items of data — variables, constants and
values returned from functions. The latter will be discussed in more
detail in Chapter 3. Until then, however, simply consider that
operands can be variables and constants of types int, char, float,
double, pointer, elements of arrays and members of data structures.
Operators are symbols that define the actions that a computer can
perform using various operands. This chapter provides an intro-
duction to those operators that are generally useful in a broad range
of programming activities, categorizing them as follows:

B Arithmetic operators (Section 2.2).

B Relational and logical operators (Section 2.3).
Identifying operators (Section 2.4).

B Miscellaneous (Section 2.5).

Typically, executable statements contain various combinations of
the above operator types. Also, executable statements often contain

32 Cprogramming for scientists and engineers

variables and constants of different data types. In such situations, C
uses two sets of rules to carry out the required operations. The first,
known as type conversions, specify how the data types of variables
can change temporarily within calculations to prevent loss of
accuracy. These are considered in Section 2.5. The second set of
rules specifies the precedence of operators. In other words, these
rules specify the order in which operators are used within a
statement. Each operator has a default precedence, which will be
considered in Section 2.6.

2.2 Arithmetic operators

The arithmetic operators are:

= Assignment
Addition
Subtraction
Multiplication
Division

% Modulus

+=Add, then assign

—= Subtract, then assign
*= Multiply, then assign
/= Divide, then assign
++ Increment

- Decrement

+

L

The assignment operator copies or assigns the value of the operand
on its right to the operand on its left, for example:

intA,B=7;

A=B;
The previous declaration statement specifies that A and B are vari-
ables of type int and initializes B. The executable statement then

assigns (copies) the value held in B to A. Note that the ‘=" operator
in C is not the same as ‘equals’ in mathematics. For example,

A=A+1;

takes the value held in 4, adds 1 to it and copies (assigns) the result
back to A.

Introduction to executable statements 33

Generally, the addition, subtraction, multiplication and division
operators work in the same way in C as they do in mathematics.
However, it should be noted that the subtraction operator can also
be used with a single operand. Thus, the statement:

B=-B;

has the effect of changing the sign of variable B and then assigning
the result back to B, equivalent to multiplying B by —1.

Next, the modulus operator, %, finds the remainder of the
division of two integer values, thus:

intA=6,B=4,C;
C=A%B; the value 2 is assigned to variable C
C=B%A; the value 4 is assigned to variable C

It should be noted that the application of an operator to one or
more operands, such as A + B, gives a result without that result
being assigned to some other variable. Exactly what happens to this
result depends on the context in which the operation is performed.
For example:

A*B; the result is discarded when the next operation is executed

C=A"B; the result of this operation is stored in C

D =A "B+ C; the result of A *Bis discarded after being added to the value of
C; the overall result is then stored in D

C additionally provides several ‘short hand’ operators:

intA=10;

A+=2; adds 2 to A, storing the result in A (A now holds 12)
A—=2 subtracts 2 from A, storing the result in A (A now holds 10)
A'=S5; multiplies A by 5, storing the result in A (A now holds 50)
A5 divides A by 5, storing the result in A (A now holds 10)

Finally, C provides increment and decrement operators, ‘++’ and
‘~~’, respectively, that act on the operand that is either immediately
before or after them:

intA,B=5,C=2;

A=B+C++; Cincremented by 1 after it has been added to B (resuit: A=7)
A=B-++C; Cincremented by 1 before subtracting it from B (result: A= 1)
A=++B+C; Bincremented by 1 before being added to C (result: A= 10)
A=B-+C; Bdecremented by 1 after being added to C (result: A= 10)

34 Cprogramming for scientists and engineers

Program 2.1 demonstrates a simple calculation, using several arith-
metic operators.

/* Program 2.1 - Demonstration of arithmetic operators */
/* Calculating the volume of material in a pipe. Y

#include <stdio.h>

int main(void)

{

double pi=22.0/7.0,
outer_diameter,
outer_area,
inner_diameter,
inner_area,
pipe_length,
pipe_volume,
pipe_area;

forintf(stdout, " Enter outer diameter of pipe (m.):");
fscanf{stdin, " %If ", &outer_diameter);
forintf(stdout, " Enter inner diameter of pipe (m.):");
fscanf(stdin, " %If", &inner_diameter);
forintf(stdout, " Enter length of pipe (m.):");
fscanf(stdin, " %If", &pipe_length);

outer_area = pi * outer_diameter * outer_diameter/4.0;
inner_area = pi ® inner_diameter * inner_diameter/4.0;
pipe_area = outer_area - inner_area;

pipe_volume = pipe_area " pipe_length;

forintf(stdout,”\n\nouter_diameter: %le m.\n", outer_diameter);
forintf(stdout,” inner_diameter: %le m.\n", inner_diameler);
forintf(stdout,” pipe_length: %le m.\n", pipe_length);
forintf(stdout,” pipe_volume: %le cubic m.\n", pipe_volurme);

return(0);
}

Before looking at the detail in Program 2.1, it is useful to look at its
‘overall shape’. The executable statements have been divided into

Introduction to executable statements 35

three groups — reading required data, processing and outputting
results. This has been done to emphasize the distinction between
these major tasks that the program has to perform and is a small
step towards considering functions in Chapter 3. Prior to the
executable statements, all of the required variables have been
declared as type double. Note how the constant pi has been
initialized, by assigning to it the result of a calculation. This is a
useful trick to ensure that the value of pi will be as accurate as the
double data type will allow. Also note that the name of each variable
has a clear meaning within the problem being solved. This is
important when writing software to solve ‘real’ problems because it
goes a long way to explaining what the program actually does.

The first group of executable statements prompt for and read the
outer and inner diameters of the pipe and its length. Note how the
wording of the prompts is consistent with the names of the variables
used to store the relevant data. By including (m.) in each prompt,
the program is also helping the user to be consistent in their use of
units for each item of input. The middle group of executable state-
ments carry out the required calculation. It may be surprising, but C
does not have a ‘squared’ operator, hence the calculations for
outer_area and inner_area both involve repetition of the relevant
diameters. The final group of statements echo the user’s input and
also display the calculated result. Again note that the user is shown
the units of each displayed value.

Tuworial 2.1
Implement Program 2.1 and make brief notes on its operation.
Run the program with various input values.

‘Tutorial 2.2

Convert Program 2.1 so that all of the variables relating specif-
ically to the pipe are members of a suitably named data
structure. Where they are required, each member should be
accessed by fully qualifying it. Note that C does not allow a
member variable 1o be inidalized when a dara structure is
being defined as a new data type.

36 C programming for scientists and engineers
2.3 Relational and logical operators

The C language uses relational operators to make comparisons
between operands. The operands of relational operators can be of
any data type. The relational operators are:

> greater than

greater than or equal to
less than

less than or equal to
equal to

= notequalto

il

A AV
It

—

The result of applying each of these operators is either TRUE or
FALSE, represented in C by numerical values 1 and 0, respectively.
For example:

intA=6,8=2;

A>B; this relationship is TRUE, numerical value of 1
A<B this relationship is FALSE, numerical value of 0
A==B; this relationship is FALSE, numerical value of 0
Al=B; this relationship is TRUE, numerical value of 1

Program 2.2 displays the numerical result of each relational operator,
given two integer operands supplied by the user.

/* Program 2.2 - Demonstration of relational operators */
#include <stdio.h>

int main(void)

{
intA, B;

forintf(stdout, " Demonstration of relational operatorsi\n”);
fprintf(stdout, " Enter two integer values:");

fscanf(stdin, " %d %d", &A, &B);

forintf(stdout, "\nA = %d B = %d\n", A, B);
fprintf(stdout, "\n1 = TRUE, 0 = FALSE\n\n");
forintf(stdout, "A > B = %d\n", A>B);

forintf(stdout, "A >= B = %d\n", A >= B);

forintf(stdout, "A < B = %d\n", A < B);

forintf(stdout, "A <= B = %d\n", A <= B);

Introduction to execulable statements 37

forintf(stdout, "A == B = %d\n", A == B);
fprintf(stdout, "A I= B = %d\n", A /= B);

return(0);

}

In Program 2.2 the values of two integers are read from the
keyboard and echoed on the screen. These integers are then
compared using each relational operator. Since each comparison
appears as an argument in a call to the fprintf function, the result
obtained from each comparison is passed as an argument to fprintf.
Relational operators are mostly used in decision making and
further details of their use and effects will be put aside until
Chapter 4.

Tutorial 2.3
Implement Program 2.2 and make brief notes on its operation.
Run the program with various input values.

Tutorial 2.4
Convert Program 2.2 to read variables of type double and run
the program with various input values.

Logical operators are used to group two or more relational opera-
tions together in various ways. The logical operators are:

&& meaning logical AND
|| meaning logical OR

As with the relational operators, the AND and OR operators give
the results 1 if the relationship is TRUE or 0 if the relationship is
FALSE. The result of the AND operator is TRUE if both of its
operands are TRUE, and FALSE if either of its operands are FALSE.
The result of the OR operator is TRUE if either of its operands are
TRUE, and FALSE if both of its operands are FALSE. The use of
these operators is demonstrated in Program 2.3 where, given two
integers, the program determines if either or both of their sum and
difference are greater than zero.

38 C programming for scientists and engineers

/* Program 2.3 - Demonstration of logical operators */
#include <stdio.h>

int main{void)
{
intA, B, C;

forintf(stdout, " Demonstration of logical operators\n”);
forintf(stdout, " Enter two integer values:");
fscanf(stdin, " %d %d", &A, &B);

forintf(stdout, "\nA = %d B = %d\n", A, B);
forintf(stdout, "\n1 = TRUE, 0 = FALSE\n\n");

C=A+B>0&&A-B>0;
forintf(stdout, "sum AND difference of A and B greater than zero ?: %d\n", C);

C=A+B>01lA-B>0;
forintf(stdout, "sum OR difference of A and B greater than zero ?: %d\n", C);

return(0);

}

The above program contains two statements in which the integers
supplied are compared, both storing the comparison result in
variable C. The first of these uses the AND operator with operands
that are both results of relational comparisons. If 4 + B > 0 is
TRUE, this operand of the AND operator will be TRUE (value 1).
Similarly, if A — B > 0 is TRUE then the second AND operand will
also be TRUE (value 1). If both operands are TRUE, the result of
the AND operator will be TRUE and a value of 1 will be assigned to
C. Conversely, if either of the operands is FALSE, a value of 0 will be
stored in C.

The second comparison statement uses the OR operator with the
same operands as before. In this statement, the OR operator will be
TRUE, with a value of 1 assigned to C, if either operand is TRUE.
The OR operator will be FALSE, with a value of 0 assigned to C, only
if both of its operands are FALSE.

Introduction to executable statements 39

Tutorial 2.5

[mplement Program 2.3 and make brief notes on its operation.
Run the program with various input values to give all possible
ONLTPLLES.

Tutortal 2.6

Modify Program 2.3 so that variables A4 and B are of type
double. Run the program with various input values to give all
possible outputs.

2.4 Identifying operators

Four operators are frequently used in C programs to identify things:

[] identifies an element of an array
fully qualifies a member of a data structure

—> provides indirect access to members in a data structure whose
address is stored in a pointer

() identifies the precedence of operations (also see Section 2.6)

All of the identifying operators in the above list, except for the last,
have already been introduced in Chapter 1. However, several
examples are given below to reinforce their actions.

Firstly, the / .../ identifier could be called the ‘element operator’
which is used to identify a particular element of an array, as in:

int A, B[3];
A =B[2]; assigns the value of the third element of array Bto A

Secondly, the ‘dot operator’, . , is used with the name of a data
structure to access its member variables, as in:

struct PAIR Declares a template for a data
structure
{ (data type) called struct PAIR
intA;
double B;

k

40 C programming for scientists and engineers

struct PAIR PAIR_1, PAIR 2;

intA=2,B=9;

PAIR_1.A=5;
PAIR_1.B=5;
PAIR 2A=10;

PAIR 2B =5;

PAIR_1.B=A;

B=PAIR_1.A;
PAIR_1.B=PAIR_2.A;

PAIR 2.B=(PAIR_1.A+PAIR 2A) " A;

Dectares two structures of type
struct PAIR.

Declares and initializes A and
B.

Assigns the value 5to Ain
PAIR 1.

Assigns the value 5to Bin
PAIR_1.

Assigns the value 1010 Ain
PAIR_2.

Assigns the value 5 tc Bin
PAIR_ 2.

Assigns the value 2 to Bin
PAIR_1.

Assigns the value 5 to B.
Assigns the value 10 to Bin
PAIR_1.

Assigns the value 30 to Bin
PAIR_2.

In the above example there are three variables called 4 and another
three called B. In addition to the declaration, int A = 2, B = 9;, two
structures, PAIR_1 and PAIR_2, are declared, each containing
member variables called 4 and B. To access any of the member vari-
ables in the above example, they have been fully qualified using the

dot operator.

Thirdly, as an alternative to fully qualifying the members of a data
structure, the indirection operator ->’ can be used if the address of
the structure has been stored in a pointer. This is demonstrated

below by recoding the previous example.

struct PAIR

{

intA;
double B;
¥

Declares a template for a data
structure
(data type), called struct PAIR.

Introduction to executable statements 41

struct PAIR PAIR_1, PAIR_2; Declares two structures of type
struct PAIR.

struct PAIR *PAIR_1_ptr, "PAIR_2 ptr; Deciares two pointers of type
struct PAIR.

intA=2,B=9; Declares and initializes A and
B.

PAIR_1_ptr=&FAIR _1; Stores addresses of data struc-
tures.

PAIR_2_ptr=&PAIR_2;

PAIR_1_ptr>A=5; Assigns the value 5to Ain
PAIR_1.

PAIR_1_ptr->B = 5; Assigns the value 5to Bin
PAIR_1.

PAIR 2 pir->A = 10; Assigns the value 10to Ain
PAIR 2.

PAIR_2 ptr>B=5; Assigns the value 5to Bin
PAIR 2.

PAIR_1_ptr->B=A; Assigns the value 2 to Bin
PAIR 1.

B =PAIR_1_ptr>A; Assigns the value 5 to B.

PAIR_1_ptr->B = PAIR_2_ptr->A; Assigns the value 10 to Bin
PAIR 1.

PAIR 2 ptr->B = Assigns the value 30 to Bin

(PAIR_1_ptr->A + PAIR_2_ptr->A) * A; PAIR_2.

The final identifying operator in the above list, the precedence
operator, (...), is new and is used to fix the sequence in which other
operators are used in an executable statement. For example, given:

double A=1.0,B=3.0;

double C=5.0,D=8.0, E;

E=A+B*C+D; assigns the value 24.0 to E, whereas
E=(A+B)*(C+D); assigns the value 52.0 to £

Here, the two executable statements involve the same arithmetic
operators and operands, but give different results. In the first of the
two statements, the multiplication operator takes default precedence

42 C programming for scientists and engineers

over the addition operators. In the latter statement, the addition
operations have been placed within precedence operators, forcing
them to take precedence over multiplication.

Tutorial 2.7

Implement the dot operator example, above, as a working
program. Add a call to fprinif after cach executable statement
to display ALL of the variables and ensure that the displayed
values are consistent with those given in the example. Ensure
that members of data structures are accessed only by fully
qualifying them.

‘lutorial 2.8

Implement the indirection operator example, above, as a
working program. Add a call to fprin{f atier cach exceutable
statement to display ALL of the variables and ensure that the
displayed values are consistent with those from the previous
problem. Ensure that members ol data structures are
accessed indirectly.

2.5 Miscellaneous operators

Three operators are considered here. The first is the ‘contents of
operator, previously mentioned in Section 1.5, in the context of the
pointer data type. The second is the sizeof operator, used in Chapter
1, Question 1 of the typical examination questions at the end of the
book. The final operator is cast, which is used to convert between
different data types.

The ‘contents of’ operator uses the * symbol and care must be
taken not to confuse it with the multiplication operator. The
‘contents of” operator is used to obtain the value stored in a variable
when the address of that variable is stored in a pointer. For example:

double A, B=1.0,C=3.0;
double *B_ptr, *C_ptr;
A_ptr=&A;

Introduction to executable statements 43

B _ptr=&B;

C_ptr=&C;

A ="B ptr+ *C_ptr;
*A_ptr="B_ptr+ *C_ptr;

The last two statements, above, achieve the same result. In each
case, the ‘contents of * operator is used with pointers that hold the
addresses of B and C, to retrieve the values that B and C were
given when they were declared. In the first instance, the value 4.0
is assigned to variable A. In the second instance, *4_ptr means
‘store the value 4.0 as the contents of the variable whose address is
held in A_ptr’. Significant use will be made of this operator in the
next chapter.

The sizeof operator is most frequently used with the fgets
function, discussed in Chapter 5, and dynamic memory allo-
cation, considered in Chapter 6. When sizeof is given a data type,
it returns the number of bytes needed by that type, for example:

intA;
A = sizeof(double); A is assigned the value 8 (8 bytes needed to
store a variable of type double).
struct collection Defines a new data type.
{
double X; Uses 8 bytes.
intY; Uses 2 bytes.
float Z{3]; Uses 12 bytes.
k
struct collection B; Declares a variable, B, of type struct
collection.
int A;

A = sizeof(struct collection); Ais assigned the value 22 (22 bytes needed
to store a variable of type struct collection).

The cast operator allows the programmer to break the rules that C
normally applies to the specification of data types. When an
operator requires two or more operands or when an executable

44 C programming for scientists and engineers

statement involves several operators and operands, it is often the
case that the operands are of different data types. When this
happens, the operands currently being processed are automatically
converted to a common data type, through type conversion, before
an operator is applied. This is done to preserve the accuracy of
calculations. In general terms, the two most basic automatic
conversion rules are

When int occurs with float or double, the int operand is temporarily
converted to a float or double, as required.

For example:

float A, B;
intt;
A =B+ (lisconverted to a float before the + operator is applied)

Similarly, when operands of types double and float appear together,
the float is temporarily converted to a double:

double A, B;
float C;
A=B+C; (Cisconverted to a double before the + operator is applied)

There are, however, many situations where programming mistakes
can be made by using operands of mixed data type. For example,
the following are all valid C statements, but may not give the results
that the programmer intended:

floatA=10.7;
intB, C=5;
B=A+C;

Here, variable C is promoted to float so that the result of the +
operator is a float. However, since the target variable, B, is an
integer, the = operator discards the fractional part of 4 + C and
only copies the integer part to B. Thus, in this example B is assigned
the value 15, rather than 15.7. Also:

float D, E;
double F;
D=E+F;

This second example is more subtle, in that it involves variables of
similar data type, but different precision. Here, E is promoted to a

Introduction to executable statements 45

double so that the result of the + operator is a double. The result of
this is then stored in a variable of type float.

Two problems may arise here. Firstly, if the result of £ + F is
greater than the maximum value that can be stored in a variable of
type float this will cause the value of D to be corrupted. C handles
this in a controlled way rather than terminating the program.
However, D will contain a value that is unusable in subsequent state-
ments. Secondly, even if the result of £ + F is not too large to be
stored in a float, information will be lost because of the difference in
precision of float and double type variables (see Section 1.4). Similar
problems can occur when mixing variables of type int, unsigned nt,
short int, etc. One obvious, if inelegant, way to avoid such problems
is to always use the long int data type for integer variables and double
data type for real number variables. However, this approach may
cause its own problems by at least wasting, and possibly running out
of memory. When such problems are anticipated, the cast operator
can be used to force a change of data type as follows:

target variable = (data type)source_variable;

where (data type), is the cast operator, used to convert the data type
of source_variable to that of target_variable. For example:

float D, E;
double F;
D = (float)(E + F);

would overcome the ‘precision’ error in the previous example by
rounding up prior to assignment. Note how the + operation has
been enclosed within brackets, forcing it to take precedence over the
cast operator. It is worth noting, however, that the cast operator
cannot fix the problem of trying to store too large a value in a
variable, for example when the value of (E + F), above, is beyond
the range of values that can be stored in D.

2.6 Operator precedence

The precedence, or importance, of an operator indicates its priority
when it occurs in a statement along with other operators. An
operator having higher precedence will be carried out before an
operator of lower precedence. Table 2.1 lists all of the operators in
C (some not discussed in this book) in order of decreasing default

46 C programming for scientists and engineers

precedence. Operators on the same line have equal precedence.
Several points should be noted about Table 2.1:

® Where () occurs in function calls, next chapter, and in nested
operations within a statement, function calls take precedence.

® The highest occurrence of + and - are unary operators.

8 The highest occurrence of * is the ‘contents of’ operator.

® The highest occurrence of ‘&” is the ‘address of ’ operator.

Table 2.1 Operators in decreasing order of precedence

[1.0)->

*— + ++ — & | sizeof (data type)
% */

+ -

>> <<

> >=< <<=

,= ==

&

I

&&

I

2:

= _= +=/= *= %: >Do= <<= |= &= N =

The second example in Section 2.4, repeated below, provides a
good example of operator precedence:

double A= 1.0, B=3.0;

double C5.0,D=8.0, E;

E=A+B*C+D; assigns the value 24.0 to E, whereas
E=(A+B)*(C+D); assigns the value 52.0to E

Referring to Table 2.1, the multiply operator, *, is found in line 3
and the addition operator, +, is found in line 4 hence the latter has
lower precedence. In the first assignment of a value to E, above, the
multiplication operator is executed before either of the addition
operators. If, as in the second assignment of a value to E, we want to
perform the additions before the multiplication, we must enclose

Introduction to executable statements 47

the addition operators and their operands within brackets. From
Table 2.1, ‘()" has a higher precedence than either * or +, forcing
the result of each bracketed operation to become an operand for the
multiplication operator.

A second example of precedence occurs in Program 2.3. The
relevant program statements are repeated below:

C=A+B>0&&A-B>0;

forintf(stdout,” sum AND difference of A and B greater than zero ?: %d\rt’, C};
C=A+B>0IlA-B>0;

forintf(stdout,” sum OR difference of A and B greater than zero ?: %d\n’, C);

In each of the assignment statements, above, the addition and
subtraction operators (line 4 of Table 2.1) are used first. The ‘>’ and
‘<’ operators (line 6 of Table 2.1) are executed next. Finally the &&
and || operators (lines 11 and 12 of Table 2.1) are then applied.

Chapter review

This chapter has introduced executable statements by considering
several C operators and the various ways in which they can be
combined to perform useful tasks. The decision to exclude certain
operators from this chapter has been made on their relatively
specialized applications. It is useful to recognize that operators in C
can be divided into several classes, with operators in any particular
class providing a distinct aspect of G’s functionality. This means that
it has been quite easy in this chapter to explore the Arithmetic and
Identifying operators, but more detailed consideration of
Relational and Logical operators must wait until their more typical
use in decision making, in Chapter 4 onwards.

C provides a broad range of arithmetic operators that can be
combined in many ways within executable statements. Care should
be taken, however, over the data types of their operands and of the
results that they produce, to ensure that problems don’t arise with
truncation, loss of precision and attempts to store values that are
outside the possible range that a variable can hold. The ‘short hand’
operators are very convenient when you remember that they exist,
but they are only available to combine the elemental + - * / opera-
tions with assignment of their result. Particular caution needs to be
exercised over the increment and decrement operators and whether
they appear before or after the variable that they are operating on.

48 C programming for scientists and engineers

The typical examination questions for this chapter at the end of
the book are intended to develop some proficiency in using some of
the operators considered here in the context of several engineering
and science related problems. An additional aim in doing this is to
provide practice in writing whole (although very small) programs
that do something useful. After all, it is hard to think of other
reasons for writing software.

3

ntroduction to Functions

3.1 Introduction

Referring back to the Introduction, all C programs contain at least
one function, called main. When we design a C program whose
overall task can be divided into a collection of smaller sub-tasks, we
usually build the program by creating a function to perform each
sub-task. There are several reasons why this is a good idea:

B To design a program we often use some method of software
engineering. Each approach to software engineering divides
the required task into sub-tasks, modules, sub-systems or
processes of various types. Functions are a natural way of imple-
menting such designs in C.

B Even without software engineering, functions allow the structure
of the program to reflect the structure of its application.

® Using functions removes the need to repeat identical groups of
statements within programs when the same task must be
performed several times.

® The use of functions allows libraries of frequently used software
to be built up and re-used in different programs.

® C functions can be used as operands in executable statements,
allowing the creation of compact and efficient programs.

Functions are used by calling them from other functions. When a
function is used, it is referred to as the ‘called function’. Such func-
tions often use data that is passed to them from the calling function.
Data is passed from a calling function to a called function by speci-
fying the names of variables in an argument list. It is important to
remember that argument lists only pass data from a calling function to a

80 C programming for scientists and engineers

called function. An argument list cannot be used to pass or return
data from a called to a calling function. This is because, whenever
an argument list is used, the called function always makes a copy of
cach variable that is supplied to it by the calling function. The called
function then performs its operations using the copies.

Data can be passed to functions via an argument list in two ways,
passing by value and passing by reference:

B Passing by value: the data value stored in a variable is passed.
For example, suppose that a variable, A4, is used in a function
and has a value of 1.6. If the function calls another function and
A appears in the argument list, then 4 is being passed by value.
When this is done, the called function creates a new variable, say
B, and copies the value of 4 into it. If the called function subse-
quently changes the value of B from 1.6 to 3.2, only the value of
B is modified, variable 4 in the calling function still contains the
value 1.6.

8 Passing by reference: the address (the location in memory) of
a variable is passed. For example, again suppose that a variable,
A, is used in a function and has a value of 1.6. As discussed in
Chapter 1, the address of 4 can be found using &A. This
address can also be stored in a pointer variable, say A_ptr.
Suppose that the function calls another function. If &4, or
A_ptr, appears in the argument list for the called function, then
A is being passed by reference. The address of 4 is being given
to the called function. When this happens, the called function
creates a new pointer variable, say B_ptr, and copies the passed
address into it. Thus, both the calling function and the called
function now know the address of variable A. The called
function can now use the ‘contents of’ operator with B_ pir, e.g.
*B_ptr = 3.2; to change the value stored at the memory
location pointed to by B_ptr. This also changes the value of 4 in
the calling function, from 1.6 to 3.2.

Passing by value and passing by reference seem to be quite different
methods of giving data to a function. However, they are, in fact,
exactly the same:

B In passing by value, the called function makes a copy of a
variable that contains data.

® In passing by reference, the called function makes a copy of a
variable that contains an address.

Introduction to functions 51

When a called function is intended to simply use the data that is
passed to it, it is best practice to pass the data by value. If the called
function is intended to change the data passed to it, the data must
be passed by reference.

A called function can always pass data back to the calling function
through the return statement. In fact, if data is passed to the called
function by value, this is the only way that data can be passed back
from the calling function. In contrast, when data is passed to a
function by reference, data can also be passed back by changing the
values of the referred variables.

Individual variables having the data types mentioned in Sections
1.2 to 1.5, inclusive, can always be passed back to the calling
function through the return statement. In addition, arrays, character
strings and data structures, Sections 1.6, 1.7 and 1.8, respectively,
can be passed back via the refurn statement in certain versions of C.

After describing the essential statements needed in any function,
the remainder of this chapter is concerned with the interface
between calling and called functions and ways in which variables of
different data types can be passed between them.

3.2 Essential statements in any function

Every C function must contain statements of the following types:

returned_data_type function_name(argument_list)
{

declaration statements

executable statements

return(variable of returned_data_type)

}

Every function can pass back information of some kind to the function
that called it. Hence, in the first line, above, returned_data_type repre-
sents any of the C data types, chaz, float, double, all of the different int
types and pointers that were discussed in Chapter 1. Also,
returned_data_type can be ‘void’, meaning that no data is returned from
the called function. In the first line returned_data_type is followed by the
name of the function, which must be unique within the program. A
function may or may not have an argument list, depending on
whether the called function needs to receive data from the calling
function. Remember that, where an argument list is used, it only allows

52 C programming for scientists and engineers

data to be passed from the calling to the called function. It is not
possible to pass data back from the called to the calling function via an
argument list. If no arguments are passed to a function, the argument
list is specified as ‘(void)’. Following the argument list, the opening
bracket, {, marks the start of the statements within the function. This
bracket is matched by the closing bracket, }, after the last executable
statement in the function. The final executable statement in the
function should be a return statement. The return statement can have
an argument list that contains the name of just one variable, whose
value has been set inside the called function. If a variable is specified in
a return statement, its data type must be the same as returned_data_type
in the first line of the function.

All of the complete programs considered in Chapters 1 and 2 are
specific examples of these essential statements. The general scheme
that has been used is:

int main(void)

{

Declaration statements
Executable statements
return(0);

}

Remember that main is a C function and, consequently, must adhere
to the general rules for all C functions. The unique thing about main
is that it is always the first function to be used in a C program, hence
we can think of the operating system as the calling function and
main as the called function. Following the previously discussed rules,
the argument list for mair in previous chapters is void, meaning that
it receives no data from the operating system. However, main is
intended to pass an integer value back to the operating system
through the return statement. In all cases considered so far, this
value is zero. The intention in structuring previous examples in this
way has been to provide a skeleton function structure that should, by
now, be quite familiar, easily recognized and, hopetully, easily
changed to account for the new material in this chapter.

3.3 The interface between calling and called functions

When a function is used by another function, the calling function
must contain a function prototype statement. Essentially, a function

Introduction to functions 53

prototype is a declaration statement for a function that the calling
function will use. There must be a separate function prototype
statement in the calling function for every function that it uses. In
addition, the name of each called function must appear in an
executable statement, where it is required to perform its task.

The most simple situation occurs when the calling function passes
no data to the called function and no data is returned. This would
be typical of using a function to display a message, as shown in
Program 3.1.

/* Program 3.1 - Calling a function with no argument list and no returned */
/* data i

#include <stdio.h>

int main(void)
{

void print_message(void); /* function prototype Y

print_message(); /* call the function Y/
return(0);

}

/* Function: print_message */

void print_message(void)

{

forintf{stdout,” This message has been displayed”
"using the print_message function”
"in program 3.1\n");

return;

}

Program 3.1 consists of two functions, one is called main and the
other is called print_message. main contains a function prototype (a
function declaration statement) and two executable statements. The
function prototype indicates that main will call a function called
print_message. The argument list for print_message is (void), meaning
that no data will be passed to the function from main. Also, the
function prototype shows that print_message does not return any

54 C programming for scientists and engineers

data, because the returned_data_type, in front of the function name, is
also void.

The first executable statement in main calls the print_message
function. When this statement is executed, the print_message
function takes over from main, which waits until all of the statements
in print_message have been executed.

Looking at the print_message function, the first line after the
comments specifies the name of the function, along with its
argument list and the data type of the returned variable. Compare
this line with the function prototype and the statement that uses
print_message, in main. All of these statements are consistent: the
function to be used by main is called print_message and no data is
returned from the function and no data is passed to it. If these state-
ments are not consistent, the program will not work correctly.

Looking inside the print_message function, the first executable
statement is a call to the fprintf function, which displays a message on
the screen. fprintf is a standard C function and its function prototype
statement is stored inside a library, called stdio.h. This library is
included in any C program by using the #include <stdio.h> statement.

Tutorial 3.1
Implement Program 3.1 and make brief notes on its operation.

3.4 Non-empty argument lists and return statements

This section contains five example programs, each consisting of two
functions. The rather trivial objective of these programs is to add
two numbers together and display their sum on the screen. One of
the functions, main, specifies the values that are to be added
together and then passes them to the second function, called
add_nwmbers. The add_nwmbers function adds the values and passes
their sum back to main, which then displays the result on the screen.
The difference between the programs is that data is passed between
main and add_numbers in different ways, as follows:

B Program 3.2: Data passed by value to add_numbers, result passed
back to main through the return statement.

B Program 3.3: Data passed by reference to add_numbers, result
passed back to main through the return statement.

Introduction to functions 55

® Program 3.4: Data passed by reference to add_numbers, result
passed back by reference from add_numbers to main through a
third argument.

® Program 3.5: Data given to add_numbers stored in a data
structure, passed by value. Result passed back to main through
the return statement.

B Program 3.6: Data going to add_numbers stored in a data
structure, passed by reference. Result passed back to main
through a member of the data structure.

Program 3.2: Data passed by value to add_numbers, result passed back
to main through the return statement.

/* Program 3.2 ¥/
#include <stdio.h>

int main(void)

{

floatA=6.0, B=10.0, C;

float add_numbers (float, float); /* function protolype 4

C = add_numbers (A, B); /* call function 4

forintf(stdout,” The sum of %f and %f is %f\n", A, B, C);
return(0);

}

/* Function: add_numbers */

float add_numbers (float X, floatY)

{
float D;

D=X+Y;
return(D);

}

56 C programming for scientists and engineers

The first declaration statement in main declares three float type vari-
ables. The first two variables are initialized and will be passed to
add_numbers. The third is be used to store the value passed back
from add_nwumbers.

The function prototype statement in main specifies that it will use
a function called add_numbers. It also specifies, firstly, that the
called function expects two float values to be passed to it and,
secondly, that add_numbers will pass back a float type value via its
return statement. Note that the argument list in the function
prototype only specifies the data types to be passed to add_ numbers,
rather than the actual variables.

The first executable statement in main calls the add_numbers
function. It is useful to read this from right to left:

The values of 4 and B are passed to add_numbers, which returns a value
that is stored in C.

It is important to recognize that calling add_numbers and storing the
value that it returns are two distinct operations. In effect, when
add_numbers returns its value, the value replaces the function in the
calling statement and is then stored in C.

Looking at the add_numbers function, notice that two variables, X
and Y, are declared in its argument list. These are the variables that
the values of A and B are copied into. It is essential that the
sequence of the variables and their data types are identical in the
argument lists of the calling and called functions. To do its job,
add_numbers adds the values of X and Y together and assigns the
result to D. Since D is specified in the return statement, its value is
passed back to the calling function. Note that the data type of the
variable returned from add_numbers is exactly the same as the data
type of the variable appearing in the return statement.

Tutorial 3.2

Implement Program 3.2 and make brief notes on its operation.

Introduction to functions 57

Program 3.3: Data passed by reference to add_numbers, result passed
back to main through the return statement.

/* Program 3.3 %/
#include <stdio.h>
int main(void)

{

floatA=6.0, B=10.0, C;
float "A_ptr, *B_pir;

float add_numbers (float *, float *); /* function prototype 7
A _ptr=&A;
B ptr=4&B;
C = add_numbers (A_ptr, B_ptr); /* call the function 4

fprintf(stdout, " The sum of %fand %fis %f\n", A, B, C);
return(0);

}

/* Function: add_numbers */

float add_numbers (float *ptr1, float *ptr2)

{
float D;

D ="ptr1 + *ptr2;
return(D);
}

In Program 3.3, two pointers of type float are declared in main,
which are used to store the addresses of variables 4 and B. Also, the
argument list in the prototype statement for add_numbers indicates
that two pointers of type float must be passed to the function. This is
consistent with the first line of the add_numbers function, where the
argument list declares two pointers, ptrl and ptr2, that will store
copies of the data passed to it.

58 C programming for scientists and engineers

When main calls add_numbers, the value of A_ptr is copied to ptr]
and the value of B_ptr is copied to pir2. So, in this program, the
addresses of A and B are passed, rather than the values of the data
stored in A and B. Thus, 4 and B are passed by reference. The
add_numbers function accesses the values of A and B using the
‘contents of’ operator, *. It then adds these values together and
stores the result in D. Finally, the value of D is passed back to main,
via the return statement. This means that, in main, the returned
value replaces the call to add_numbers and is then stored in C.

‘Tutorial 3.3
Implement Program 3.3 and make briel notes on its operation.

Program 3.4: Data passed by reference to add_numbers, result passed
by reference from add_numbers to main through a third argument.

/* Program 3.4 ¥/
#include <stdio.h>
int main(void)

{

floatA=6.0,B=10.0, C;
float *A_ptr, *B_ptr, *C_ptr;

void add_numbers (float ", float *, float *); /* function prototype Y
A_ptr=&A;
B ptr=&B;
C_ptr=&C;
add_numbers (A_ptr, B_ptr, C_pir); /* call the function 4

forintf(stdout, " The sum of %f and %f is %f\n", A, B, C);
return(0);

}

Introduction to functions 59

/* Function: add_numbers */

void add_numbers (float *ptr1, float *ptr2, float *ptr3)
{

*ptr3 = *ptr1 + *ptr2;
return;

}

Looking at the function prototype statement for add_numbers in
main, no data is passed back from add_numbers to main through the
return statement. Instead, the address of a third variable, C, is passed
to the add_numbers function. When the add_numbers function is
called, the values of A_ptr, B_ptr and C_ptr are copied to pirl, ptr2
and ptr3, respectively. In the first executable statement within
add_numbers, the ‘contents of” operator, *, is used with ptrl and ptr2
to retrieve the values stored in 4 and B. The sum of these values is
then stored in C by using the ‘contents of” operator, *, with ptr3. As
a consequence of this, the value of the variable C in main has been
changed from inside add_numbers.

Tutorial 3.4
Implement Program 3.4 and make brief notes on its operation.

Program 3.5: Data given to add_numbers is stored in a data structure,
passed by value and result passed back to main through the return
statement.

/* Program 3.5 ¥/
#include <stdio.h>

struct numbers
{
float A;
float B;
%

60 C programming for scientists and engineers

int main(void)

{

struct numbers set_1;

float C;

float add_numbers (struct numbers); /* function prototype Y/

set 1.A=6.0;
set 1.B=10.0;

C = add_numbers (set_1); /* call the function Y

forintf(stdout, " The sum of %f and %fis %f\n", set_1.A, set_1.B, C),
return(0);

}

/* Function: add_numbers */

float add_numbers (struct numbers set_2)

{
float D;

D=set 2.A +set 2.B;
return(D);

}

The first point to note about Program 3.5 is that a data structure,
called struct numbers is defined outside of both functions. It is
important to understand that defining struct numbers outside of both
functions only provides a common definition of the struct numbers
data type. It does not mean that data is shared by each function.
Looking at main, the first declaration statement creates a variable,
called set_1, of data type struct numbers. In addition to this, the
add_numbers function prototype statement specifies that a variable of
type struct numbers will be passed by value to add_numbers. The function
prototype also specifies that add_numbers will return a value of type float.
After the function prototype statement, values are assigned to the
members, A and B, of set_I. The add_numbers function is then called
and set_1 is passed by value. Looking at the add_numbers function, its
argument list declares set_2 as a struct numbers type variable to hold a
copy of the data in set_I. To create this new variable, add_numbers

Introduction to functions 61

must use the correct data type. This is why the data type struct
numbers is defined outside of each function.

Inside add_numbers, in order to add the values of members 4 and
B inset_2, each must be fully qualified, as shown. Having stored the
sum of members A and B in D, the value of D is then passed back to
main through the return statement.

Tutorial 3.5
Implement Program 3.5 and make briel notes on its operation.

Program 3.6: Data going to add_nwumbers is stored in a data structure,
passed by reference and result passed back to main through a
member of the data structure.

/* Program 3.6 */
#include <stdio.h>

struct numbers
{
float A;
float B;
float C;

};

int main(void)

{

struct numbers set, *set_ptr;

void add_numbers (struct numbers *); /* function prototype 4
set_ptr = &set;

set_ptr->A = 6.0;

set ptr->B = 10.0;

add_numbers (set_ptr); /* call the function v
forintf(stdout, " The sum of %f and %f is %f \n”, sel_ptr->A,

set_ptr->B,

set ptr->C);
return(0);

}

62 C programming for scientists and engineers

/* Function: add_numbers %/

void add_numbers (struct numbers *new_set _pir)

{

new_set ptr->C = new_set_pir->A + new_set ptr->8;
return;

}

Program 3.6 is similar to Program 3.5 in that struct numbers is again
defined outside of each function so that each has a common under-
standing of this data type. In main, a variable, called set and a
pointer, set_ptr, are declared to be of data type struct numbers.
Following this, the function prototype statement specifies that a
pointer of type struct numbers will be passed to add_numbers, and that
add_numbers will not return any data via the refurn statement. Next,
the address of set is stored in set_pir and numerical values are
assigned to the members, A and B, of set. The add_numbers function
is then called, passing the value of set_ptr to it.

When add_numbers is called, it creates a pointer, called new_set_ptr,
and copies the value of set_ptr into it. Having done this, both set_ptr,
in main, and new_set_ptr, in add_numbers, hold the address of set, so its
members can be accessed and changed inside either function.
Looking at the first executable statement in add_nwmbers, new_set_ptr
is used to obtain the values of members A and B, and to store their
sum in member C. As a result of this, when the add_numbers function
has finished, the new value of member C is available inside main.

Tutorial 3.6
Implement Program 3.6 and make brief notes on its operation.

3.5 Using functions to read and write data

In general terms, the instructions in most programs can be divided
into three groups: reading data into the program (e.g. from the
keyboard or a file), processing the input data in some way to obtain
a result (e.g. performing some calculations), and transferring the
result out of the program (e.g. to the screen or a file). These actions
can be thought of as input, processing and output.

Introduction to functions 63

For all but the most simple programs it good practice to
implement separate functions that are dedicated to each of these
tasks. In such programs, main would call an input function, a
processing function and an output function. Programs 3.7 and 3.8,
in this section, aim to demonstrate this approach in a relatively
simple way, by building separate functions, called by main, for
getting data into and out of a program. An example of the more
general case, involving an additional function for the processing
step is dealt with in Section 3.6.

Program 3.7: Passing individual variables

The objective of Program 3.7 is to read an integer, a decimal and a
character string from the keyboard and to display them on the
screen. Looking at the listing of the program, note that it contains
three functions: main, read_data and write_data.

/* Program 3.7 - Use of functions for input and output of daia */
#include <stdio.h>

int main{void)

{

inta;

float b;

charc[11});

void read_data(int *, float *, char *); /* function prototype */
void write_data(int, float, char []); /* function prototype "/

read_data(&a, &b, ¢);
write_data(a, b, ¢);

return(0);
}
/* Function: read_data - reads an int, float and char string. */

void read_data(int *int_ptr, float *float_ptr, char *char_ptr)
{

64 C programming for scientists and engineers

forintf(stdout,” Supply an integer, a float and a string (max. 10 chars):");
fscanf(stdin,” %d %f %s", int_ptr, float_ptr, char_ptr);
return;

}

/* Function: write_data - displays an int, float and char string. */

void write_data(int i, float j, char k{])

{

forintf(stdout,” The supplied data is: %d %f %s\n",i, j, k);
return;

}

Considering main in Program 3.7, three variables, a, b, ¢, are
declared to hold the data that will be read and displayed. Following
these, main contains a prototype statement for each of the functions,
read_data and write_data, that it will use. Note that the argument list
for read_data specifies that three pointers will be passed to it. This is
important because read_data is intended to get values from the user
and store them somewhere. The argument list for read_data says that
three variables will be passed by reference, so that read_data can use
them to store the user’s input. The prototype statement for
write_data specifies that variables of type int, float and a character
string will be passed to it by value. Passing by value is appropriate
here because the write_data function is intended to simply use the
values passed to it, rather than change them.

Consistent with the prototype statements, main first calls
read_data, giving it the addresses of the previously declared vari-
ables, then calls write_data giving it the values of the same vari-
ables. By passing three empty variables to read_data, main is giving
it three empty ‘containers’ that read_data can put the user’s data
into. In the call to read_data it may appear that the character
string, ¢, is passed by value. However, this is a quirk of C, because
the name of an array is also a pointer to its address, so the array
name is used in passing by value and in passing by reference.
Inside the read_data function, its argument list declares three
pointers of the appropriate data types to hold its copies of the
pointers supplied by main. These copies are then given to fscanf'so
that the user’s inputs can be stored in memory. Having done this,
control then passes back to main.

Introduction to functions 65

When main calls write_data, the values of @, b and ¢ are copied into
i, and k, which have been declared in the write_data argument list.
These copies are then passed on to fprinif to be displayed.

In this example main has been used to co-ordinate the actions of
other functions. Although the overall action of the program is trivial
and rather contrived (the same task could have been done simply by
calling fscanf and fprintf directly from main) the organization of the
program into specific functions for specific tasks is very important
in building software for any size of problem.

Tutorial 3.7
Implement Program 3.7 and make brief notes on its operation.

Program 3.8: Passing a data structure by reference

Program 3.8 does the same job as Program 3.7 but, this time, the
three variables are grouped together in a data structure, called set_I.
The data type for set_I is the data structure, struct set, which is
defined outside of each function. Since read_data is intended to
change the values of members in set_I, main must pass set_I by
reference to read_data. This is done using pointer set_I_ptr. In
contrast, write_data is intended to display the values of the member
variables, so set_1 is passed by value from main to write_data.

/* Program 3.8 - Use of functions and passing a data structure by 4
/* reference K

#include <stdio.h>

struct set
{
inta;
float b;
charc[11];
k

int main(void}

{

struct set set_1;

66 C programming for scientists and engineers

struct set *set_1_ptr;
void read_data(struct set *);
void write_data(struct set);

set 1_ptr=_&set 1;
read_data(set_1_ptr);
write_data(set_1);
return{0);

}

/™ Function: read_data - reads an int, float and char string */

void read_data(struct set *set_2_ptr)

{

forintf(stdout,” Supply an int, float and character string (max. 10 chars).");
fscanf{stdin,”%d %f %s”, &set 2 _ptr->a, &set_2 ptr->b, set 2 _ptr->c);
return;

}

/* Function: write_data - writes an int, float and char */

void write_data(struct set set_3)

{

forintf(stdout,” Supplied data values are: %d %f %s\n",
sef_3.a, set_3.b, set 3.c);

return;

}

Considering main, having declared set_I and set_I_ptr, function
prototype statements specify that main will use the functions
read_data and write_data. The first function prototype statement
specifies that a variable of type struct set will be passed by reference
to read_data. The second function prototype statement, for
write_data, specifies that main will pass a variable of type struct set by
value. Both function prototypes indicate that neither function will
pass data back to main via their return statements.

After the address of set_I is stored inset_I_ptr, main calls read_data
passing set_I_ptr to it. Passing the value of set_I_ptr means that set_I
is passed by reference from main to read_data. When this happens,

Introduction io functions 67

read_data creates a pointer, called set_2_ptr and copies the value of
set_1_ptr into it. When read_data calls fscanf it uses set_2_ptr to access
the member variables in set_1. Note, however, that the & operator is
still required to get the address of each member variable. The result
of this is that fscanf stores the values supplied via the keyboard in the
members of set_1.

When read_data has completed its task, control returns to main,
which then calls write_data, passing set_I to it by value. When this
happens, write_data creates a variable called set_3, of type struct set, and
copies the contents of se¢_I into it. The write_data function then passes
the members of set_3 by value to fprintf to display them on the screen.

Tutorial 3.8
Implement Program 3.8 and make bricf notes on its operation,

3.6 A program to caiculate the area of a triangle

Program 3.9 overleaf uses the approach developed in the last
section to support the operation of a third function that performs a
calculation. The example application considered here is a devel-
opment of the area calculation program found in Chapter 2,
Question 10 in the typical examination questions at the end of the
book. In this problem, a triangle is defined by three pairs of x,y co-
ordinates, supplied via the keyboard.

In addition to main, Program 3.9 contains the following func-
tions: read_points to get the co-ordinates, calculate_area to calculate
the area of the triangle and write_area to display the area value on
the screen. Consider that each of these functions has a specific
responsibility within the program, and that main is responsible for
co-ordinating them.

A structure, struct triangle, is defined outside of each function,
allowing the struct triangle data type to be used in each. It is intended
that a variable of this type, triangle_I, will store all of the data
relating to any triangle specified by the user. The triangle structure
contains two arrays of type double, one for the x co-ordinates and
one for the y co-ordinates of the vertices. The triangle structure also
contains a variable called area, of type double, in which the calculated
area of the triangle is stored.

68 C programming for scientists and engineers
/* Program 3.9 - Calculating the area of a triangle */

#include <stdio.h>
#include <math.h>

struct triangle
{
double x{3];
double y[3];
double area;

3

int main(void)

{

struct triangle triangle_1;
struct triangle “triangle_1_ptr;

void read_points(struct triangle *);
void calculate_area(struct triangle *);
void write_area(struct triangle);

triangle_1_ptr = &triangle_1;

read_points(triangle_1_ptr);
calculate_area(triangle_1_ptr);
write_area(triangle_1);

return(0);

}

/* Function: read_points - reads x,y values for three points. */

void read_points(struct triangle *triangle_2_ptr)

{

forintf(stdout,” Co-ordinates (x,y) of first point (m.)”);

fscanf(stdin,” %If %lIf", &triangle_2_plr->x{0],
&triangle_2_ptr->y[0]);

fprintf(stdout,” Co-ordinates (x,y) of second point {(m_):");

fscanf(stdin,” %If %If", &triangle_2_ptr->x[1],
&triangle 2_ptr->y[1]);

Introduction to functions

forintf(stdout,” Co-ordinates (x,y) of third point (m.):");
fscanf(stdin,” %If %If", &triangle_2_ptr->x[2],

&triangle_2_ptr->y[2]);
return;

}

/* Function: calculate_area */

void calculate_area(struct triangle “triangle_ptr)

{

double a, /*distance between points 1 and 2 */
b, /*distance between points 2 and 3 7
c, /* distance between points 3 and 1 4
s; /*half perimeter of triangle Y/

a = sqri((triangle_ptr->x{1] - triangle_ptr->x{0]) *
(triangle_ptr->x[1] - triangle_ptr->x{0]) +
(triangle_ptr->y[1] - triangle_ptr->y[0]) *
(triangle_ptr->y[1] - triangle_ptr->y[0]));

b = sqrt((triangle_ptr->x(2] - triangle_ptr->x{1]) *
(triangle_ptr->x{2] - triangle_ptr->x{1]) +
(triangle_ptr->y[2] - triangle_ptr->y[1]) *
(triangle_ptr->y[2] - triangle_ptr->y[1]));

¢ = sqri((triangle_ptr->x{0] - triangle_ptr->x[2]) *
(triangle_ptr->x[0] - triangle_ptr->x[2]) +
(triangle_ptr->y[0] - triangle_ptr->y[2]) *
(triangle_ptr->y[0] - triangle_ptr->y(2]));

s = (a+b+¢)/2.0;

triangle_ptr->area = sqrt(s*(s-a)*(s-b)*(s-c));

return;

}

/* Function: write_area */

void write_area(struct triangle triangle_3)

{
forintf(stdout,” Calculated area is %lIf (m2)\n", triangle_3.area);

return;

}

69

70 C programming for scientists and engineers

Looking at main, a variable, triangle_1, and a pointer, triangle_1_ptr,
are both declared to be of data type struct triangle. Following this,
there is a function prototype statement for each function that main
will use. These statements specify that main will pass a pointer of
data type struct triangle to read_points and calculate_area. The
function prototype for write_area specities that main will pass a
variable, of type struct triangle, by value. All of the function prototype
statements specify that no data will be returned from any function
via their return statements.

The first executable statement in main copies the address of
triangle_1 to triangle_1_ptr. This is followed by statements that call
each function in the required sequence. When read_points is called,
main passes the value of triangle_1_ptr to it. This passes triangle_I by
reference to read_points. Note, at this stage, that no data values
have been stored in the members of triangle_I. However, when
read_points has finished, the x and y arrays inside triangle_I contain
the co-ordinates of three points defining a triangle.

In the next statement, main calls calculate_area, again passing
triangle_1 by reference. The calculate_area function uses the values in
the x and y arrays to calculate the area of the triangle, storing this in
the area member of triangle_1.

Finally, main calls write_area, this time passing triangle_1 by value.

Looking at the read_points function, when it is called it copies the
pointer that is passed to it into triangle_2_ptr. This is then used to
access the members of triangle_I and, using the & operator, pass
their addresses to fscanf. Note how individual elements of the x and
y arrays are accessed.

Looking at the calculate_area function, the pointer passed to it is
copied into triangle_ptr, which is then used to access the values in the
elements of the x and y arrays inside triangle_1. This data is used to
calculate the length of each side of the specified triangle, the
function storing the lengths in local variables a, & and ¢. These are
then used to calculate the half perimeter of the triangle, s, before
calculating the triangle area. The area value is then stored in the
area member of triangle_1.

The main function passes the variable triangle_1 to write_area by
value. This means that the values of the members inside triangle I
are copied into the members of triangle_3. Within write_area, the
value stored in the area member of triangle_3 is then passed by value
to fprintf, which displays it on the screen.

Introduction to functions 71

Tutorial 3.9
Imiplement Program 3.9, making brief notes on its operation.

Tutorial 3.10
Re-write Program 3.9 so that the struct triangle structure is
replaced by

struct triangle

‘
double point_1[2];
double point_2[2];
double point_3(2];
double area;

K

where point_1]0] and point_1[1], etc. hold the x and y co-
ordinates, respectively, for each point.

Chapter review

This chapter has introduced the detailed ‘mechanics’ of using func-
tions in C programs. All C programs contain a function called main.
Many C programs use main to co-ordinate the use of other func-
tions, each of these having been designed to perform a particular
task. When a function uses another function, the former is said to be
the calling function and the latter is the called function. A calling
function must have a function prototype statement for each
function that it will use. Function prototype statements define the
interface between the calling and called functions.

The calling function can give data to the called function through
an argument list, variables being passed by value or by reference. In
either case, the called function makes a copy of each variable passed
to it. A function receiving a variable that has been passed by
reference can change the value of that variable in the calling
function because both calling and called functions have access to the
location in memory of the variable. This cannot happen if the
variable has been passed by value.

72 Cprogramming for scientists and engineers

A called function can pass a variable back to the calling function
through the return statement. In addition to demonstrating the
mechanics of using functions, later examples in this chapter also
introduced the use of functions as a means of partitioning a
program to reflect the intended solution to a problem.

4

Decisions and Loops

4.1 Introduction

Programs are much more useful if they can make decisions about
what tasks need to be performed. Making a decision in a C
program usually involves testing the value of one or more vari-
ables, for example, ‘if X is greater than Y then carry out task 1,
else carry out task 2’. G programs can use a range of tests to satisfy
many different circumstances. The example given above uses the
if-else construct and is just about the most simple test that a G
program can perform. However, it is not too difficult to imagine
that, having made this decision, task 1 or task 2 may also be an if-
else type of test, leading to the execution of other, more
specialized, tasks (perhaps including more tests). This can be
achieved in C by using as many nested if-else constructs as
required. The switch construct is similar to the nested if-else but is
more appropriate when different tasks must be selected (switch
to) depending on the value of a variable. Another type of test is
required when a particular task has to be performed some
number of times. If the number of times required is known
beforehand then the for loop can be used. The decision that has to
be made in the for loop involves testing a counter to see if the loop
has been performed the required number of times. There are
other situations where a loop is required, but the number of times
that the task has to be carried out is not known beforehand. A
simple example of this concerns reading input from the user,
where the user can enter as many items of data as they wish. For
this and many other similar situations, C provides the while and
the do-while loops.

74 C programming for scientists and engineers
4.2 The if-else construct
The tf-else construct in C has the following form:

if (expression)
statement,

else
statement,

In this example, (expression) is a decision that uses relational and
logical operators (Section 2.3) to compare the values of variables
and constants.

If expression is TRUE then its resultant numerical value is 1 and
statement, is executed, otherwise expression is FALSE, with a
numerical value of 0, and statement, is executed. Consider the
following:

double temperature, set_point =21.0;

temperature = 32.0;
if (temperature > set_point)
forintf(stdout,” It's hot today \n");
else
forintf{stdout,” It's cold today '\n");

In this example, the if statement makes a decision by testing for
temperature greater than set_point. If this is TRUE the ‘hot’ message
is displayed. Conversely, the test is FALSE if temperature is less than
or equal to set_point, leading to the ‘cold’ message being displayed.
Comparison expressions only compare individual numerical values.
This means that collections of values (arrays, data structures and char-
acter strings) cannot be compared numerically. For example, given:

int a[2] = {3, 265}, b{2] = {302, 0);

ifla<=bh)..... is not allowed, but

if(af1]<=b[1]) is OK because individual elements of
each array are compared

Similarly:

charal 3]="cd", bf3]="tg";
ifla<=b)..... is not allowed, but

Decisions andloops 75

if(a[1] <= b[1]) is OK, since ASCI! values of individual characters are
compared

Finally, it should be noted that, if a particular decision does not
require the else part of the if-else construct, it need not be included,
for example:

intA=10,B=9;

if(A<15) changes the value of Bif A satisfies the test
B=0;

Tutorial 4.1

Implement the ‘temperature’ example as a working program
that reads temperature values from the user and displays the
appropriate message on the screen. Make notes on its operation.

4.3 Compound statements

In many cases, the outcome of a decision is that a group of state-
ments must be executed. This is achieved by grouping the required
statements within *{ ... }* brackets to form a compound statement or
block, for example:

int get_data_from_user(struct data *);

int copy_users_data_to_file(struct data *);
int get _data_from_file(struct data *);
struct data *data_ptr;

int user_data;

if (user_data != 0)
{
get_dala_from_user(data_ptr);
copy_users_dala_to_file(data_ptr);
}

else
get_data_from_file(data_ptr);

76 C programming for scientists and engineers

In this example, user_data is a flag which is used to indicate that
data must be read either from the user (if user_data is not equal to
zero) or from a file (if user_data is equal to zero). In this example, if
the test is TRUE, data read from the user is stored in a file. This
requires the use of two functions, so their calling statements are
enclosed within brackets.

In those situations where the comparison expression compares
one variable with the value zero, as above, a short hand notation can
be used where if (user_data != 0) and if (user_data) are equivalent. In
other words, both tests say ‘if user_data is not equal to zero then ...".
In contrast to this, the if (user_data == 0) test can also be written as
if (fuser_data), meaning that the comparison expression is TRUE if
the value of user_data is equal to zero.

Tutorial 4.2

Implement the example in this section as a working program,
replacing the function calls with calls to fprintf, so that
messages indicating the appropriate action are displayed on
the screen. The user should be prompted for and supply a
value for user_data prior o the if-else construct.

‘tutorial 4.3

Modify the program in the previous question so that it calls the
functions shown in the example. Move the calls 1o fprintf into
the relevant functions. Note that this involves some under-
standing of functions, discussed in Chapter 3 and that you will
need to invent a convenient delinition for struct data.

4.4 Nested if-else statements

Nested if-else statements can be used where multiple decisions must
be made. For example, consider the situation where a process
controller may perform either of three actions depending on the
temperature being above an upper set point, below a lower set point,
or in between the two. This can be programmed as follows:

Decisions and loops 77

if (temperature > upper_set_point)
{
report_process("too_hot");
activate_cooler();
}
else
{
if (temperature < lower_set_point)
{
report_process(too_cold");
activate_heater();
}
else
report_process("OK");
}

In this example, if the outcome of the first test is FALSE then a
further test must be performed to decide whether temperature is
above or below lower_set_point. Hence, the statement associated
with the else part of the first test is another if statement. If the
outcome of this test is FALSE then the final else statement is
executed. If the outcome of the first or second test is TRUE then
the associated blocks of statements are carried out. When this
happens, all of the subsequent statements in the nested ¢f-else
construct are ignored. Note that the second if-else construct is
written as a compound statement associated with else in the first
test. Whilst this is not strictly necessary in this example, nesting if-
else constructs within compound statements can be important in
more complex decision-making, especially when if-else constructs
and if statements are used together.

Computing efficiency can be a significant point when if-else, and
especially when nested if-else, constructs are used within loops. Ifit is
known that a particular outcome is more likely than any other, it is
more efficient to place it with the first .

78 C programming for scientists and engineers

Tutorial 4.4

Implement the ‘temperature’ example in this section as a
working program, replacing the function calls with calls wo fprintf,
so that messages indicating the appropriate action are displayed
on the screen. ‘The user should be prompted for and supply
values for temperature, upper_sel_point and lower_set_point prior to
the if-else construct. Make notes on the program'’s operation.

Tutorial 4.5

The program in the previous question will not be eflicient if
the controlled process is predominantly within the upper and
lower set points. Assuming this (o be the case, re-write the
program so that it is more efficient. Hint: you will need to use
the logical AND opcrator, &&, discussed in Chapter 2.

Tutorial 4.6

Implement a weather forecasting program that writes the text
shown in the rows and columns of the following table,
depending on values of temperature and pressure supplied by
the user. Define high temperatures to be above 20.0°C and
high pressures to be above 1000.0 millibar.

High pressure Low pressure
High temperature Clear skies and hot Warm with rain
Low temperature Clear skies and cold Snow!

4.5 The switch construct

The switch construct is similar to nested if-else statements.
However, it is more appropriate than nested if-else where different
actions are required depending on an integer variable or
expression having a range of values. The switch construct is
defined as follows:

Decisions and loops 79

switch(expression)
{
case constant expression:
statements
case constant expression:
statements

default:
statements

}

Typically, expression in the switch statement is the name of an integer
variable. Also, the subsequent case statements are always enclosed
within ‘{...}" brackets. Each case statement consists of the actual word
‘case’, followed by an integer constant and a colon. When the switch
construct is executed, the value of the expression in the switch
statement is compared to the value of the constant expression in the
first case statement. If the two values are equal then the statements
associated with the first case statement are executed. By default,
having executed these statements, processing continues by
comparing the switch expression with the constant expression in each of
the subsequent case statements. If only those statements associated
with a particular case statement are to be executed, then the final
statement before the next case must be break;.

The default case statement is intended to capture all of the situa-
tions that are not trapped by any of the case statements. The default
case is optional and, if omitted, the switch construct will not perform
any action if none of the case constant expressions agree with the
expression in the switch statement. The following example demon-
strates the switch construct.

int user_reply;

int function_0O(void);

int function_1(void);

int function_2(void);

int report_input_error(int);

forintf(stdout,” Select required function (0,1 or 2):");
fscanf(stdin,"%a", &user_reply);

80 C programming for scientists and engineers

switch(user_reply)
{
case 0: function_0();
break;
case 1: function_1();
break;
case 2: function_2();
break;
default; report_input_error(user_reply);

}

The code in this example is intended to call particular functions
depending on the input supplied by the user and, also, to detect
user input that does not correspond to any of the available options.
An int variable is declared which will be used to store the user’s
input. Four functions are also declared. The first three of these are
to be used depending on the user’s choice. Each returns an int type
value and, for simplicity in this example, has a void argument list.
The final function that is declared will be called if the user’s input
does not correspond to any of the valid options. The first two
executable statements prompt the user for their input and store it in
user_reply. user_reply then appears in the expression part of the switch
statement. This means that the value of user_reply will be compared
with the values appearing in the case statements, starting at the top
of the list. Assuming that a match is found, the relevant function will
be called. When a function has completed its task, program control
will return to the break statement immediately following the
function call. This will then take the program to the first statement
after the switch construct. If a match between user_reply and any of
the case statements cannot be found, the default case is activated,
calling the report_input_error function.

Tutorial 4.7

Implement the above example as a working program. Each of
the three functions, function_0, function_1 and function_2 should
simply call fprintf 1o display a message on the screen indicating
which option has been selected. The report_input_error function
should display a suitable error message.

Decisions and loops 81

Tutorial 1.8

Modify the program in Tworial 4.7 so that user_reply 1s passed
to each function and its value is displayed in the messages
generated via fprintf.

4.6 The forloop
The for loop has the general form:

for(initialization expression;
termination expression;
incrementation expression) statement

The intention of the for loop is to execute statement a fixed number
of times. When the program arrives at the loop for the first time, the
decision making within the loop is carried out in three steps:

B initializing a counter in the initialization expression;

B using the termination expression to check that the counter has or
has not exceeded a limiting value;

B after executing statement, incrementing the counter using the
incrementation expression.

The termination expression and the incrementation expression then
control second and subsequent passes around the loop. As an
example, Program 4.1 sums the elements of an array.

/* Program 4.1 - Array summation */
#include <stdio.h>

int main(void)

{

intaf10] ={1,2,3,4,5,6,7,8,9,10};

int no_numbers = 10, sum =0, i;

for(i=0; i < no_numbers; i++)
sum += afil;

82 C programming for scientists and engineers

forintf(stdout,” Sum of array elements = %d\n"", sum);

return(0);
}

Program 4.1 declares and initializes an integer array, a, containing
10 elements. Three other variables are also declared. Firstly,
no_numbers specifies the number of elements in a that contain
useful data. Secondly, sum will be used as an accumulator and is
initialized to zero. Thirdly, the variable i will be used as the counter
in the for loop. The first executable statement is the for construct.
Its use in Program 4.1 should be compared to its general form,
above. In Program 4.1, the initialization expression sets the loop
counter, £, to zero. The counter is then compared with no_numbers
in the termination expression. Since this comparison is TRUE, the
statement sum += aftf; is executed. This simply adds together the
value of the current (:*) array element and the current value of sum,
storing the result back into sum. Following this, : is incremented by
1 in the incrementation expression. This is the end of the first pass
around the for loop. At the start of the second pass, ¢ is compared to
no_numbers in the termination expression. If this decision is TRUE,
the controlled statement is repeated, and so on.

Note that the termination expression tests for i less than no_numbers.
This choice of initialization and termination expressions is guided by
the use of array, a, in the statement that the loop controls.
Remember that in C array elements are indexed from 0. So, the 10*
element of ¢ will be element 9. Hence, the loop should stop after it
has processed the last element, when ¢ is equal to no_numbers.

In Program 4.1 only one statement is executed under the control
of the for loop. In situations where several statements need be
executed, they must be enclosed within ‘{ }’ brackets to form a
compound statement, as shown in Program 4.2.

/* Program 4.2 - A fruit identification program */
#include <stdio.h>

int main{void)

{

char fruit_names{20][20];
int max_no_fruit = 20, no_fruit, i;

Decisions and loops 83

forintf(stdout,” How many fruit can you name (maximum %d):”,
max_no_fruit);
fscanf(stdin,” %d", &no_fruit);

for(i=0; i < no_fruit; i++)

{

forintf(stdout,” Name of fruit.");

fscanf(stdin,” %s", fruit_namesli]);

}
forintf(stdout,” You have named the following fruits:\n");
for(i=0; | < no_fruit; i++)

forintf(stdout,” %s\n", fruit_namesfil);

return(0);

}

Although Program 4.2 may appear a little silly in asking the user to
input the names of fruits, it conveniently demonstrates the use of
compound statements in loops and also reveals several important
features of the for loop. The program uses a for loop that controls
two statements, a call to fprintf to prompt the user, followed by a call
to fscanf to store the user’s input in the array fruit_names. Note that
the fruit_names array is declared to store a maximum of 20 names,
each containing up to 19 characters. Before executing the for loop,
the program needs to know how many times the loop will be
executed. This information is obtained from the user via the calls to
fprintf and fscanf, prior to the for statement.

Note how the message displayed by the first call to fprintf tries to
limit the maximum number of names supplied by the user, so that
they don’t enter more names than fruit_ names can store. The user
can, however, enter any integer value regardless of the displayed
message. Suppose that the user types 100. This value is stored in
no_fruit, which also appears in the termination expression of the for
loop. This means that the statements controlled by the loop will
attempt to prompt the user to supply 100 names, trying to store
them in an array having enough space for just 20. Entering the 21*
name will corrupt the program. To trap this problem it could be
argued that an additional if-else construct could be inserted before
the for loop. However, this misses two very important points. Firstly,
if the user can supply more than 20 names, the initial choice of 20 for
the size of the fruit_names array forces an arbitrary and unnecessary

84 C programming for scientists and engineers

limit on the user. Secondly, if any value greater than 20 is stored in
no_fruit, information in the for loop termination expression will not be
consistent with the statements that the loop controls, eventually
leading to an uncontrolled failure of the program.

Another problem that will occur is that the user must actually count
the number of fruit that they think they can name before actually
naming them. This is inconvenient for the user because they essen-
tially have to do the same job twice. Also, suppose that the user elects
to name 15 fruits, but can then only think of 7. The for loop will not
end until 15 character strings have been supplied by the user. Thus, for
the program to continue, the user must invent some names. From this,
it should be clear that, although for loops can be used for controlling
interaction with the user, they are not generally appropriate.

for loops are most appropriate where all of the information
required to control the loop is known completely before the loop
executes and the programmer can ensure that there will be no
conflicts between the information used to control the loop and the
information used by the statement(s) within the loop, as was the case
in Program 4.1. Another example of this is shown in Program 4.3,
which prints out a table of trigonometric function values.

/* Program 4.3 - Trigonometric function display */

#include <stdio.h>
#include <math.h>

int main(void)

{
double x, pi = 22.0/7.0;

forintf(stdout” x sin{x) cos(x) tan{(x)\n");
for(x=0.0; x <= pi/2.0; x+=0.1)
forintf(stdout,” %If %lIf %If %IAn", x, sin(x), cos(x), tan(x));

return(0);

}

In Program 4.3, a variable, x, of type double is declared and then used
as a counter in the for loop. The same declaration statement initializes
i using the result of a calculation so that its value is as accurate as the

precision of the double data type will allow. Prior to the for loop, fprintfis

Decisions and loops 85

called so that four column titles will appear on the screen. When the for
loop starts, x is initialized to zero and then compared to pi/2.0. Since
the comparison is TRUE, fprintf is called to display the trigonometric
values for the current value of x. x is then incremented by 0.1 radians
and is again compared with /2.0 in the termination expression. The
loop stops when the value of x exceeds the value of p#/2.0. Since sin(),
cos() and tan() are functions, main must contain prototype statements
for them. These are contained in the standard math.h library which is
copied into the program using the #include <math.h> statement.

Tutorial 4.9
Implement Program 4.1 and make brief notes on its operation.,

Tutorial 4.10
Change the value of no_numbers from 10 to 5 in Program 4.1
and explain how and why the output has changed.

Tutorial 4.11

Implement Program 4.2, making briel notes on its operation.
Supply various inputs to the program to make it fail in cach of
the ways discussed.

Jutorial 4.12

Inscrt an if-else construct just before the for loop in Program 4.2
that will stop the user from entering more than 20 namecs.
After demonstrating that this works, run the program again
and enter -1 when prompted. Diagnose and fix this problem.

Tutorial 4.13

Implement Progran 4.3 and make brief notes on its operation,
especially concerning how the trigonometric values are eval-
uated and displayed on the screen.

86 C programming for scientists and engineers
4.7 The while loop
The while loop has the general form:

while (continuation expression)
statement

continuation expression is a decision which is first evaluated before the
while loop is entered. If continuation expression is FALSE when the
program arrives at the loop, the program jumps over the loop and
ignores it. If continuation expression is TRUE then the first iteration
around the loop is made. continuation expression is then tested again
before the start of each subsequent iteration. The loop terminates
when continuation expression is FALSE. If it is never FALSE, the while
loop never stops. An example of a while loop is given in Program
4.4, which is a simple arithmetic game.

/* Program 4.4 - The numbers game ¥/

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
int number = 10000, difference = 0;

forintf(stdout,” The NUMBERS gamein”);
forintf(stdout,” \n");
forintf(stdout,” Subtract the numbers shown from 10000\n");
while(number+difference == 10000)
{
number = rand();
forintf(stdout,” Number: %d Difference:",number);
fscanf(stdin,” %d", &difference);
}

forintf(stdout,” You either got it wrong or you wanted to stop \n");

return(0);

}

Decisions and loops 87

The objective of the game in Program 4.4 is that the program gives
the user a random integer which the user must subtract from
10,000. To stop the program the user simply supplies a wrong
answer. Having declared number and difference as integers, the
program then provides some instructions for the user. For the while
loop to start, its condition expression must be TRUE. This has been
ensured by the choice of initial values for number and difference.
Inside the while loop, C’s random number generator function,
rand, is used, storing the returned value in number. This is then
displayed on the screen. The user’s reply is read in the final
executable statement inside the loop. The continuation expression in
the while statement compares the sum of the random and user-
supplied numbers with the target value of 10,000. If the sum is
equal to the target value, the continuation expression is TRUE and
the loop is executed again. In passing, observe that the random
number generator function, rand, can only be used if the #include
<stdlib.h> statement is present to provide the necessary function
prototype statement.

It is important to note that the while loop will continue as long as
the user is willing to play the game. Hence, the program cannot
know, before the loop starts, how many times the loop will be
executed. This should be contrasted with the limitations of the for
loop, discussed in the previous section. Program 4.5, below, high-
lights the contrast by re-coding the ‘fruit’ program, Program 4.2,
from the previous section. In Program 4.5 repetitive interaction
with the user is controlled by a while loop whose continuation
expression compares the user’s reply to a character string constant,
‘end’. This comparison is carried out using a standard C function
called strnemp, which compares the first three characters stored in
reply with the string constant ‘end’. Note that, to use strnemp and
strcpy, below, the string.h library must be included at the start of the
program. In this program, the criterion for the loop to continue is
that any of the first three characters in 7eply should be different to
those in ‘end’. This must also be the case for the loop to start, so reply
is initialized to a blank or empty string when it is declared.

/* Program 4.5 - The fruit program again */

#include <stdio.h>
#include <string.h>

88 C programming for scientists and engineers

int main{void)

{

char fruit_names{20]{20];

char reply[20] ="";

int max_no_fruit = 20, no_fruit =0, i;

while(strncmp(reply,"end"”,3) I= 0)
{
forintf(stdout,” Name of fruit or ‘end’ 7");
fscanf{stdin,” %s", reply);
if (strncmp(reply,“end”,3) != 0)
strepy(fruit_namesino_fruit++], reply);
}
forintf(stdout,” You have named the following fruit:\n");
for (i=0; i < no_fruit; i++)
forintf(stdout” %s\n", fruit_namesfi]);

return(0);

}

Two other differences should be apparent between Programs 4.5
and 4.2. The first is that, in Program 4.2, the value of variable
no_fruit is used to determine how many times to go around the for
loop. In contrast, in Program 4.5 no_ fruit is initialized to zero and is
incremented by one inside the while loop every time that the user
replies to the program. Hence, no_ fruit is now used as a counter
rather than a limit. The second difference is the need for a decision
inside the while loop but not inside the for loop. This decision is
needed to work out whether the user’s latest input is simply more
data or an indication that no more data will be supplied. If the user’s
input is not ‘end’ then it is data and must eventually be stored in the
fruit_names array. If the user has typed ‘end’ then their input must
not be stored in the array.

This is a significant change from Program 4.2. In Program 4.5
input from the user is stored in reply. Since character strings are,
themselves, arrays it is not possible to copy reply to the fruit_names
array by simply using the assignment operator. Each character in
the string must be assigned individually. C provides a standard
function, strcpy, to do this. The first argument given to strcpy is the
next empty element of the fruit_names array which is identified by
the current value of no_ fruit. In passing the value of no_fruit to

Decisions and loops 89

strepy, note how no_ fruit is followed by the incrementation operator
which adds one to no_ fruit after it has been used to index the
fruit_names array.

From the user’s point of view, the major advantage of Program 4.5
over Program 4.2 is that they do not have to specify the number of
names before they supply the names themselves. This removes the
need for the user to have to ‘think ahead’ and also removes the
possible difficulty of users electing to name perhaps 15 fruits but
only being able to name seven. However, Program 4.5 still has one
major drawback. Whilst users can enter as many names as they wish,
the program can still store only 20 names in fruit_names. Entering
more than 20 names will still cause the program to fail. The easiest,
although not the most general, way to overcome this is by using a
continuation expression in the while statement that makes two deci-
sions. For example, changing

while(strncmp(reply,"end”,3) I= 0)
to

while((strnemp(reply;"end”,3) I= 0) && (no_fruit < max_no_fruit))

would allow the while loop to continue provided that both tests are
TRUE and would cause the loop to terminate either if the user
typed ‘end’ or the user tried to enter more than max_no_ fruit fruit
names.

Titorial 4.14
Implement Program 4.4 and make notes on its operation.

lutorial 4.15
Implement Program 4.5 and make notes on its operation.

‘Tutorial 4.16
Modity the program i the previous question so that it will not
allow the user to supply more than four names.

90 C programming for scientists and engineers
4.8 The do-while loop

The do-while loop differs from the while loop in that the continuation
expression is evaluated at the end of each iteration around the loop,
rather than at the beginning. This means that the statements within
a do-while loop are always executed at least once. As an example of
this, in Program 4.6 below, the while loop used in Program 4.5 has
been replaced with a do-while loop. One further change is that the
reply character string no longer needs to be initialized when it is
declared since, by the time it is used as part of a decision, it has been
given a value by the user.

/* Program 4.6 - The fruit program yet again */

#include <stdio.h>
#include <string.h>

int main(void)

{

char fruit_names[20]{20];

char reply[20];

int max_no_fruit= 20, no_fruit =0, i;

do
{
forintf(stdout,” Name of fruit or'end’ ?:");
fscanf(stdin,” %s", reply);
if {strncmp(reply,"end”,3) = 0)

strepy(fruit_namesfno._fruit++], reply);

}
while(strncmp(reply,"end”,3) != 0);

forintf(stdout,” You have named the following fruit:\n");
for (i=0; i < no_fruit; i++)
forintf(stdout,” %s\n”, fruit_namesli]);

return(0);
}

Decisions and loops 91

Tutorial 4.17
Implement Program 4.6 and make notes on its operation.

Chapter review

Facilities for decision making are vital elements of any
programming language. C provides a range of decision-making
constructs that are not only very flexible in their own right, but can
also be combined in many ways to meet the needs of any
programming task. This functionality does, however, come at the
price of the programmer needing a sound knowledge of how each
works, and which, possibly in combination, will provide the best
solution to a problem. In turn, this relies on the programmer having
a good understanding of the problem, the different possible
approaches to its solution and the way in which the user is expected
to interact with the resulting software.

This chapter has demonstrated that simple choices between alter-
natives can be achieved through the if-else construct, possibly
repeated or nested for more complex decisions. In many situations,
the switch construct provides a more structured and more easily
understood alternative to the nested use of if-else. It has also been
shown that decision making is a key element of a program repeating
a task. In using a for loop, a counter that is part of the for construct
keeps count of the number of times that the controlled task has been
carried out, deciding to terminate the loop by comparing the
counter with a limit in a termination expression. In the while and do-
while loops the program must check the continued truth of a
comparison statement in order to execute another pass around the
loop. Unlike the for loop, this often involves comparing a counter or
some other indicator that is programmed to change its value as an
integral part of the controlled task. This difference between the for
and while or do-while loops has highlighted several implications for
their appropriate use in different circumstances.

3)

Files and Formatting

5.1 Introduction

Many engineering programs read the data that they are required
to process from one or more files on disc and, having carried out
their task, write their results to other files. To do this, links must be
established between the program and the relevant files. In C these
links are called streams. Two examples of streams that you have
already used extensively are stdin and stdout, for reading input
from the keyboard and writing data to the screen, respectively. The
first part of this chapter concentrates on the basic mechanics of
transferring relatively simple collections of data between
programs and files. Subsequent sections develop more compre-
hensive approaches to input and output that are needed when
relatively large amounts of complicated data need to be either
read from or written to files. These sections will concentrate on the
use of formatting codes, together with line input and output. You
will also see that decision making and loops also have significant
roles to play.

5.2 Reading and writing

To read from and write to files we need to create streams, like stdin
and stdout, but having names that we choose. Consider the following
statements:

Files and formatting 93

FILE “input;
intA;

input = fopen("input.dat”, “r");
if (input I= NULL)
{
fscanf(input” %d", &A);.
fclose(input);

}

Here, the first statement declares a stream, naming it input. FILE is
a data type provided by C to create streams. It may seem strange to
use FILE when we mean ‘stream’ but for a program to use a stream,
it must also use several other variables that C usually keeps hidden.
These variables, along with the stream are all contained inside a
data structure of type FILE, defined in the stdio.h library. So, in the
above example, we declare input and call it a stream, but in actual
fact input is a pointer to a data structure of type FILE. In the first
executable statement a standard C function, fopen, is used to make
the link between the program and a file called ‘input.dat’.

Notice that fopen has to be given two input arguments. The first is
a character string that names the file to be linked to. The second is
a single character that describes the type of link. In the above
example, this character is 7" which means that the program is
allowed to read data from ‘nput.dat’. If the fopen function success-
fully makes the link between the program and the file, it creates a
data structure of type FILE and returns a pointer holding its
address. In this example, this address is then copied into input. If
fopen cannot make the link, it returns the NULL value, indicating
that it has failed. As shown, the success or failure of fopen is usually
tested in an if statement. If the stream has been successfully
created, the statements in the { ... } are carried out. The first of
these calls fscanf to read an integer value from the file and store it in
variable 4; having done this, the link between the program and the
file is broken by calling the fclose function to close the stream. It
should be noted that the function prototype statements needed for
fopen and felose are provided in the stdio.h file, included at the start
of the program.

For writing data to a file we could use the following example:

94 C programming for scientists and engineers

FILE “output;
intA=10;

output = fopen("output.dat”, "w");
if (output = NULL)
{
forintfloutput, "A = %d\n", A);
fclose(output);
}

Again, the first declaration statement creates a stream, this time
called output. The first executable statement uses fopen to make a
link between the program and the file, using ‘w’ to allow the
program to write to the file. By using w’ writing always starts at the
beginning of the file. If the file already contains data, this will be lost
when the new data is written. If we do not want this to happen, we
can use @’ instead of ‘w’, forcing any new data that the program
sends to the file to be appended or added to the end of any data
that is already there. In the above example, if fopen is successful in
making the link, fprintf is used to write the value of 4 to the file
before the stream is closed using fclose.
Program 5.1 shows how streams to and from files are used.

/* Program 5.1 - Reading from and writing to files 4
Wl 4
/* Reads an integer, double and a character string from the keyboard. %/
/* Opens a stream to a file called file1.dat, stores the values in it and v

/* closes the stream. *
/* Re-opens the stream to the same file, this time for reading, reads Y
/* the values from the file into new variables and displays the values 4
/* on the screen. 4
#include <stdio.h>

int main(void}

{

intA, D;

double B, E;

Files and formatting 95

char C[101], F[101];
FILE *in_stream, *out_stream;

forintf(stdout, " Enter an Integer, Real and a Character string:");
fscanf(stdin, " %d %lIf %s", &A, &B, C);

out_stream = fopen("file1.dat”, "w");

if fout_streamn I= NULL)
{
forintflout_stream, "%d %If %si\n", A, B, C);
fclose (out_stream);

}

in_stream = fopen("file1.dat", "r");
if (in_stream I= NULL)
{
fscanf(in_stream, " %d %If %s", &D, &E, F);
felose (in_stream);
}
forintf(stdout, " Values stored and then retrieved are: %d %lf %s\n”,
D E, F);

return(0);
}

Program 5.1 uses four streams, stdin, stdout, in_stream and out_stream.
In the first executable statement the user is prompted to supply
three inputs, an integer, a real and a character string. Having read
these, the program then uses fopen to create out_stream, connecting
the program to file filel.dat. Note that the ‘w’ argument opens the
file for writing. If the link has been successfully made, fprinif is used
to write the user’s input into the file using out_stream. Closing the
file using fclose then breaks the link between the program and
filel.dat. Next, filel.dat is re-opened using in_stream, this time using
‘r’ to open it for reading. If the file has been opened successfully,
fscanf is used to read the previously written data into different vari-
ables before closing the file using fclose. The program then writes
the values read from the file to the screen.

Another example is shown in Program 5.2, where file input and
output is used in a program that consists of several functions.
Program 5.2 is a development of the program in Chapter 2,

96 C programming for scientists and engineers

Question 10 in the typical examination questions at the end of the
book, whose task is to calculate the area of a triangle defined by any
three (x, y) points. The major difference between Program 5.2 and
the previous version is that the former reads the point co-ordinates
from a file and writes the calculated area to another file. To do this
in a well-structured manner, Program 5.2 contains an additional
function to read the names of the files from the user into a data
structure. Variables are passed to functions either by reference if the
function is going to change their value, or by value if a function
simply uses their value.

/* Program 5.2 - Calculating the area of a triangle Y
/* Reads the names of the input and output files from the user. Y
/* Reads (x, y) for each point from the input file. v
/* Calculates the area of the triangle. 4
/* Writes the area value to the output file. Y

#include <stdio.h>
#include <math.h>

struct triangle
{
double x[3];
double y[3];
double area;

X

struct file_names

{

char input_filename[101];
char output_filename[101];
X

int main({void)

{

struct file_names io, “io_ptr;

struct triangle example, "example_ptr;

int read_filenames(struct file_names *);
int read_points(char [], struct triangle *);

Files and formatting 97

int calculate_area(struct triangle *);
int write_area(char [], double);
io_ptr = &io;

example_ ptr = &example;

read_filenames(io_ptr);
read_points(io.input_filename, example_ptr);
calculate_area(example_ptr);
write_area(io.output_filename, example.area);

return(0);

}

/* Function: read_filenames; Used in program 5.2. 4
/* Reads two file names as char strings into a structure v4
/* passed by reference by the calling function. 4

int read_filenames(struct fite_names *filenames_ ptr)

{

forintf(stdout, " Enter name of input file:");

fscanf(stdin, " %s" ,&filenames_ptr->input_filename);
forintf(stdout, " Enter name of output file:");
fscanf(stdin, " %s", &filenames_ptr->output_filename);

return(0);

}

/* Function: read_points; Used in program 5.2. vi
/* Uses file name passed by value from calling */
/* function, along with triangle structure, passed 4
/* by reference, to read and store x & y co-ordinates Y
/* of three points. ¥

int read_points(char filename(], struct triangle *triangle_pir)

{
FILE *input;

input = fopen(filename, "r");
fscanf(input, " %If %if", &triangle_ptr->x{0], &triangle_ ptr->y[0]);
fscanf(input, " %If %If", &triangle_ptr->x{1], &triangle_ptr->y[1]);

98

C programming for scientists and engineers

fscanf(input, " %If %If", &triangle_ptr->x[2], &triangle_ptr->y{2]);

felose(input);
return(0);

}

/* Function: calculate_area; Used in program 5.2.
/* Calculates area of a triangle defined by three

/* points, coordinates supplied by reference in

/* a structure pointed to by triangle_ptr.

/* Calculated area passed back in same structure.

int calculate_area(struct triangle *triangle_pitr)

{

double a, /* distance between points 1 and 2
b, /* distance between points 2 and 3
c, /* distance between points 3 and 1
s; /* perimeter/2

a = sqrt((triangle_ptr->x[1] - triangle_ptr->x{0]) *
(triangle_ptr->x[1] - triangle_ptr->x{0]) +
(triangle_ptr->y[1] - triangle_ptr->y[0]) *
(triangle_ptr->y[1] - triangle_ptr->y[0]));

b = sqri((triangle_ptr->x{2] - triangle_ptr->x[1]) *
(triangle_ptr->x[2] - triangle_ptr->x{1]) +
(triangle_ptr->y[2] - triangle_ptr->y[1]) *
(triangle_ptr->y[2] - triangle_ptr->y[1]));

¢ = sqri((triangle_ptr->x[0] - triangle_ptr->x[2]) *
(triangle_ptr->x[0] - triangle_ptr->x{2]) +
(triangle_ptr->y[0] - triangle_ptr->y(2]) *
(triangle_ptr->y[0] - triangle_ptr->y(2]));

s=(a+b+c)2.0;

triangle_ptr->area = sqri(s*(s-a)*(s-b)*(s-c));

return(0);

}

4
4
v
4
4

Y
v
vl
4

Files and formatting 99

/* Function: write_area; Used in program 5.2. ¥
/* Writes value of area, passed from calling 4
/* function by value, to file named by filename 7
/* which is aiso passed by vailue. v

int write_area(char filename(], double area)

{
FILE *output;

output = fopen(filename, "w");

forintf(output, " Area of triangle = %If\n", area);
felose(output);

return(0);

}

Program 5.2 defines two structures, struct triangle and struct
file_names. Remember that these statements define these structures
to be new data types that can be used in declaration statements.
Also, remember that these structures are defined outside of any
function, so that they provide a common definition available to all
functions within the program. This supports the specification of
interfaces between calling and called functions via the function
prototype statements in main. Each function prototype specifies that
the relevant function will receive either the value of a member
within one of the data structures or it will receive the address of a
structure via an appropriate pointer

The first executable statements in main store the addresses of io
and example, in the relevant pointers. The remaining statements
then call each of the functions as required. In calling read_ file-
names, main passes io by reference. This allows read_ filenames to
store the names of the input and output files, supplied by the
user, in ¢6. When main calls read_ points, it passes the name of the
input file by value and example by reference. The read _points
function then uses the file name to open the input file by creating
a stream called input. Having done this, read_ points reads the co-
ordinates of three points and uses its copy of example_ ptr (called
triangle_ptr in read_ points), to store them in example. Before
leaving read_ points, the input file is closed because it is no longer
needed. Function main then calls calculate_area, which has not
needed to be modified from the program considered in Chapter
3. Finally, main calls write_area, passing both the name of the

100 C programming for scientists and engineers

output file and the calculated area by value. Passing by value is
used, rather than passing by reference, because there is no
intention that write_area will change the value of either variable
passed to it. The write_area function uses the output file name to
open the output file, storing the stream in output. It then writes
the value of area to the output file before closing the stream.

It is important to note that Program 5.2 differs from the
program considered in Chapter 3 only in the source and desti-
nation of the data passing through the program. This has required
changes to be made only to those parts of the program that are
affected by the different requirements. Both programs have to
calculate the area of a triangle, so no changes were required to the
calculate_area function.

Tworial 5.1
Implement Program 5.1 and make briel notes on its operation.

Tutorial 5.2
Implement Program 5.2 and make brief notes on its operation.

5.3 Formatted output

The C language provides a range of facilities for controlling the
style of output produced by programs. You should now be familiar
with statements such as:

intl=7
float A =9.5;
forintf(stdout, "%d %f", I, A);

where %d and %f are the default formatting codes needed for vari-
ables of type int and float, respectively. These formatting codes are
the minimum required in terms of specifying how data values are to
be formatted.

Other frequently used options are available, stated generally as

Files and formatting 101

Integer: %md, %mu, etc. See Section 1.3
float: %m.pf Decimal notation
float: %m.pe Exponential notation
double: %m.plf Decimal notation
double: %m.ple Exponential notation

where m is the minimum field width (minimum number of digits to
be displayed) and p is the precision, i.e. the number of digits after
the decimal point (default 6).

For example, given:

intA=123;
double B = 7.5847e-6;

various combinations of m and p give the following results:

forintf(stdout, "A = %d", A); gives A=123
forintf(stdout, "A = %6d", A); gives A= 123
(3 spaces before the number)

forintf(stdout, "B = %le", B); gives B = 7.458700e-06
forintf(stdout, "B = %11.2/e"”, B); gives B= 7.46e-06
(3 spaces before the number)

The formatting codes discussed here are, perhaps, the most
generally useful ones that are needed with fprintf. There are
others that control all remaining aspects of fprintf functionality.
Details of these can be found via the Help command in your
programming environment.

‘lutorial 5.3
Change Program 4.3 in Chapter 4 so that the displayed values
are accurate to two decimal places.

102 C programming for scientists and engineers

Tutorial 5.4

Given the following values, write them to a file on a single line.
Fach written value should be accurate 1o three decimal places
with two spaces between the first two values, three spaces
between the second and third, and so on.

[E5 45108 78 e TR0 2 8E eSO RS bz 387 5560

Having written the values, close the file. Re-open the file for
reading and read the values back into the program using
difterent variables. Display, on the screen, cach original
value, the corresponding value read back from the file and
the dilference between them. Use the default formatting
codes to display all values on the screen. Explain the
displayed differences.

5.4 Line output

There is another function, called sprintf, which is closely allied to
Jprintf, in that sprinif is used to write data to a character string rather
than using a stream to write to the screen or a file. There are two
primary reasons that we may want to do this. Firstly, if our software
is intended to generate lots of output, possibly in different arrange-
ments, it may be more convenient and quicker to assemble the items
to be outputted on each line into a character string before writing
each completed line to the screen or a file using fprintf. The reason
for this is that communication between the processor and disc,
screen, keyboard, printer, etc., is very slow in comparison to the
speed at which the processor and memory operate. Using sprinif to
put values into a character string is a lot faster than using fprintf to
write each value to the screen or a file.

The following example shows how sprinif can be used to assemble
the values of three variables into a single string that is then output
to a file. Note how the use of a character string, line, with sprintf
parallels the use of a stream, such as output, with fprintf.

intA=1,B=2,C=3;
FILE *output;
char line[101];

Files and formatting 103

output = fopen(" filename.dat”, "w');
sprintf(line, "A = %d B=%d C=%d", A, B, C);
forintf(output, " %s\n", line);

fclose(output);

The second major reason for sometimes using sprinif is to generate
character strings that are needed within a program. This often
concerns the dynamic creation of filenames. Note, in the above
example, that a file name, filename.dat’, has been specified as a
literal string of characters. Sometimes, especially in iterative calcu-
lations, we may want to be more flexible than this and read from or
write to collections of files, whose names form a pattern, e.g.
‘Tl.dat’, ‘T2.dal’, “T3.dat’ ... “T'n.dat’. Rather than store a list of
these names, they can be generated when required by using sprintf.
For example:

intA=1,B=2,C=3;

intl=0;

char text{3] ="out";

char name[101], line[101];

FILE "output;

sprintf(name, " %s%d.dat”, text, I);

output = fopen(name, "w');

sprintf(line, "A = %d B =%d C=%d", A, B, C);
forintf(output, " %s\n’", line);

felose(output);

In the above statements, sprintf is used to assemble the name of a
file, ‘out0.dat’, from three components — the characters ‘out’, stored
in a character string, a numerical value stored in an integer and a
group of literal characters ‘dat’. The assembled file name is then
passed to fopen by supplying name as its first argument.

Tutorial 5.5

Modily the program written for Tutorial 5.4 so that it writes the
values to a character string prior to writing the character string
to the file.

104 C programming for scientists and engineers

Tutorial 5.6

Guided by the previous example of using character strings (o
asscmble file names, write a program that uses a for loop to get
three words from the user, storing each word in a separate file,
Use the value of the counter in the for loop as part of cach file
name (o ensure that three unique files are created.

5.5 Line input

This section is primarily concerned with three functions. Firstly,
fscanf and some additional useful features of it. Secondly, fgets for
reading a whole line from a file and, thirdly, sscanf for reading values
from a character string. Statements involving fscanf, such as the one
below should now be familiar:

fscanf(input, " %d %If", &A, &B);

where an integer value is read into 4 and a decimal is read into B.

If only the second value in this example were required, i.c. we
wanted to read and discard the integer value, we could either use
the above call to fscanf and then ignore A or use a modified call to
fscanf as shown here:

fscanf(input, " % d %If", &B);

Note that the first formatting code is now %*d. This causes fscanf to
read the integer value but not store it in a variable. Since only the
second value will be stored, only the address of B has been given to
fscanf. Similarly, if we wanted to read and ignore a character string,
we would use %*s and if we wanted to read and ignore a value of
type double we would use %*Ilf. This ability to read and ignore
selected values can be very useful when we only want to input
particular parts of files. For example, if a file contains a table with
column headings, we could read and ignore each heading and then
continue to read the values listed in the table.

A feature that fscanf shares with fprintf is that it returns a value to
the calling function. This was not mentioned earlier for fprintf
because it is not a generally useful facility. However, it can be very
useful when using fscanf. For fscanf, the returned value specifies the
number of data items that have been successfully read. In the

Files and formatting 105

example below, assuming that an integer and a decimal value are
available to be read, fprintf would display the value 2:

int number_of _inputs;
number_of_inputs = fscanf(input, " %d %If", &A, &B);
forintf(stdout, " %d\n", number_of _inputs);

This can be a very useful mechanism for detecting input errors, or
conditions that may not be errors but the program needs to know
about, such as detecting the start of a particular section of input or
reaching the end of a file. However, it is important to recognize that
fscanf needs to be told precisely what to read, which may sometimes
be a problem. For example, imagine that an input file can legiti-
mately contain one, two or several tables of data. When a program is
needed to read this data, it is better to design it so that it reads
whatever combination of tables are present, rather than read all
possible tables in a fixed sequence. To do this, the program must be
able to read something that identifies that a particular table is
present and then do what is required to read that table. The fscanf
function cannot easily provide that degree of flexibility. For this type
of situation (which is actually quite common in engineering and
scientific problems) C provides the fgeis and sscanf functions. The
fgets function is used to read a whole line from a file (defined as
everything from the current position in a file up to the next end-of-
line character, ‘in’) into a character string. The sscanf function does
the reverse of sprinif, by reading values from a character string, such
as that produced by fgets. The following C statements show the
essential features of fgets.

char line[101];

char *line_ptr;

FILE “input;

input = fopen("filename.dat”, "r");
line_ptr = fgets(line, sizeof(line), input);
felose(input);

The statements in the above example open a file, called filename.dat,
and use fgets to read the first line from it before closing the file. The
feets function reads whatever is contained on the line and stores it in
a character string, here called line. To do this, line must be declared
with enough space to hold the longest line that is anticipated. In the
above example, line is big enough to hold 100 characters
(remember that we need an extra character for C to insert the ‘end

106 C programming for scientists and engineers

of string’ terminator). The fgets function needs to be given the char-
acter string where it will put the input data, along with the amount
of space that is available in that string (most easily provided using
sizeof), and the name of the stream that connects the program to the
file containing the required data.

The fgets function returns a pointer, the value of which indicates
that fgets was successful or not. If the call to fgess is successful, the
returned pointer holds the address of the line character string that is
supplied to fgets. If the call to fgets is not successful, maybe because
the file is empty or the end of the file has been reached, the
returned pointer has the value NULL.

Having used fgets to read a line of data into a character string,
such as line, in the previous example, the sscanf function can then be
used to read individual data items from line. For example, if the file
in the above example contained

1.1,abc, 7

the following statements, employing fgets and sscanf could be used to
read the data:

char line[101};

char “line_ptr;

FILE *input;

int A;

char text[4];

double B;

input = fopen(” filename.dat", "r");
line_ptr = fgets{line, sizeof(line), input);
fclose(input);

sscanfiline, " %lif %s %d", &B, text, &A);

In this example, having used fgets to read data into line, line is then
passed to sscanf which reads the individual values. Note how sscanf
uses the name of the character string in the same place that fscanf
uses the name of a stream.

This approach to reading data from files has two major advan-
tages over using fscanf, both resulting from a clearer separation of
the ‘mechanics’ of reading from the interpretation of what has been
read. The first benefit is that it becomes easy to search for ‘land-
marks’ in the data such as the start or end of tables and to skip over
lines of data that are not required. The second is that detecting the
end of a file is easy since fgets returns a NULL pointer.

Files and formatting 107

The following program aims to show how these benefits are
obtained. You will find this a rather ambitious example because it
necessarily brings together functions, decision making, loops and
input from files. It is reasonably typical of ‘industry-scale’ software.

Assume that we have a file, called ‘fe_mesh.dat’, containing the
following:

THIS FILE CONTAINS A NODES TABLE AND AN ELEMENTS TABLE

NODES

Node_id X y

1 0.0 0.0
2 0.0 1.0
3 1.0 0.0
4 1.0 1.0
5 2.0 0.0
6 2.0 1.0

THESE TABLES COULD BE VERY LONG AND THERE COULD BE OTHER
DATA BETWEEN THEM

ELEMENTS

Element_id Node_1 Node_2 Node_3 Node_4
1 1 3 4 2

2 3 5 6 4

END OF FILE

Also, suppose that only the numerical parts of the NODES table are
to be read. Program 5.3 is intended to do this. However, before
looking at the program, there are a few points that should be noted
about the above data. The NODES table does not start at the
beginning of the file and, although the NODES table contains six
lines of data, there is nothing before the table to indicate this.
Finally, the end of the data that should be read does not correspond
to the end of the file.

Considering Program 5.3, a structure, struct fe_mesh, is defined
outside of any function, so that all functions can use it as a data type.
The struct fe_mesh structure has an int type member, no_nodes, that
will be used to count the number of nodes as they are read from the
file. For convenience here, the structure also contains various

108 C programming for scientists and engineers

arrays, cach large enough to store relevant information for a
maximum of 10 nodes. Remember that using arrays is a significant
limitation in this and other programs because the size of any array
must be arbitrarily specified before compiling. main uses the struct
fe_mesh data type to declare a structure, called mesh, and a pointer,
mesh_ptr. main uses the latter to pass mesh by reference to the
get_nodes function, which reads the required data from the file.

/* Program 5.3 - Reading and writing a nodes table for a finite element %/
/* mesh Y

#include <stdio.h>
#include <string.h>
#nclude <stdlib.h>

struct fe_mesh
{
int no_nodes;
int node_ids[10};
double x{10];
double y[10];
X

int main(void)

{

int return_code = 0;

struct fe_mesh mesh;

struct fe_mesh *mesh_ptr;

int get_nodes(struct fe_mesh *);
int display_nodes(struct fe_mesh);

mesh_ptr = &mesh;
return_code = get_nodes(mesh_ptr);
if (return_code == 0}
display_nodes(mesh);
else
forintf(stdout, " Program unable to read NODES table\n");
return(0);

}

Files and formatting 109

/* Function: get_nodes; Used in program 5.3. */

int get_nodes(struct fe_mesh *fe_mesh_ptr)
{

int return_code = 0;

inti, no_items_counted;

FILE “input;

char line[101], *line_ptr;

/* open input file */
if ((input = fopen(" fe_mesh.dat”, "r")) I= NULL)
{
/* find start of NODES table %/
while (((line_ptr = fgets(line, sizeof(line), input)) I= NULL) &&
(strncmp(line, "NODES", 5) I= 0));
if (line_ptr 1= NULL)
{

fgets(line, sizeof(line), input);

/* read NODES data */
i=0;
while (((line_ptr = fgets(line, sizeof{line), input)) I= NULL) &&
((no_items_counted = sscanf(line, " %d %If %If",
&fe_mesh_ptr->node_ids{i],
&fe_mesh_ptr->x{ij,
&fe_mesh_ptr->y[i])) == 3)) i++;
if (ine_ptr == NULL)
{
forintf(stdout, " End of file while reading NODES table.\n");
return_code = 3;
}
fe_mesh_ptr->no_nodes =i;
}
else
{
fprintf(stdout, " Error finding start of NODES table.\n");
return_code = 2;
}
fclose(input);

}

else

110 C programming for scientists and engineers

{

forintf(stdout, " Error opening fe_mesh.dat\n");
return_code = 1;

}

return(return_code);

}

/* Function: display_nodes; Used in program 5.3. */

int display_nodes(struct fe_mesh mesh)
{

int return_code = 0;

inti;

forintf{stdout, * NODES table:\n");

for (i=0; i < mesh.no_nodes; i++)

forintf(stdout, " Node %d x = %le y = %le\n”,
mesh.node_ids{i], mesh.x{i], mesh.y[i]);

forintf(stdout, "\n'");

return(return_code);

}

Looking at the get_nodes function, fe_mesh_ptr is declared in the
argument list to hold the copy of mesh_ ptr that is passed from main.
The first two declaration statements specify return_code, ¢ and
no_items_counted as integers. return_code is used to provide feedback
to main, via the refurn statement, indicating success or failure of the
reading process. Variables no_items_counted and i are used, respec-
tively, to count the number of values read from each line of the file
and to count the number of nodes that have been stored. The next
declaration statement creates a stream, called input, that will
connect the program to the fe_mesh.dat file. The final declaration
statement creates a character string, line, and a pointer, line_ptr,
both of type char, which will be used with the fgets function.

The first executable statement combines opening the file with
deciding what to do if the file cannot be opened. This is achieved by
incorporating the call to fopen as an operand in the expression part of
an if-else construct (Section 4.2). If fopen can open the file the
decision is TRUE, allowing the associated block of statements to be
executed. If fopen cannot open the file, the decision is FALSE. This

Files and formatting 111

invokes the corresponding else, which displays an error message and
sets return_code to 1. Assuming that the file is opened successfully,
get_nodes then uses a while loop to search for the start of the NODES
table. This is done by combining two relational operators and a
logical operator within the continuation expression that controls
the loop. The first relational operation tests for fgels returning a
NULL pointer.

Remember that fgets attempts to read a whole line from a file. If
feets is unsuccessful, it returns a pointer having the NULL value,
in which case the relational operation is FALSE and the while loop
terminates because, to continue, both relational operations have
to be TRUE. If fgets is successful, it stores the line that it has read
in line and returns the address of line, which is then stored in
line_ptr. In this case the first relational operation is TRUE and
the second relational operation is then carried out. This opera-
tion uses the strnemp function to compare the first five characters
now stored in line with the literal string NODES, which is the
group of characters appearing at the start of the NODES table in
the file. The strnemp function counts the number of differences
between the two character strings. If there are differences, then
the line that has just been read by fgets is not the start of the
NODES table. Hence, the second relational operation is FALSE
and the while loop continues. This means that fgets is again used
to read the next line.

The while loop can stop for two reasons. Either fgets reaches the
end of the file, or strncmp identifies a line read by fgeis in which
NODES are the first five characters. The if statement that follows the
while loop detects which of these cases is relevant. Note how the
associated else displays a suitable message and sets return_code to 2 if
the end of the file is detected.

Assuming that the start of the NODES table has been found, fgets
is used to read the next (blank) line, prior to the program reading
the numerical values from the NODES table. The actual reading
process starts by initializing the nodes counter, i, to zero. get_nodes
then uses another while loop which increments ¢ each time a line
has been successfully read. The reading process involves two steps.
The first uses fgets to read a whole line, again storing it in /ine. This
allows end of file to be detected. Next, sscanf is used to read values
out of line, using the integer returned by sscanf to check that the
required three values have been read. Note that the complete
process for reading a node definition is contained in the while loop

112 C programming for scientists and engineers

continuation statement; and that the loop controls just a single
statement, that increments the nodes counter, <.

The while loop terminates either if fgets returns a NULL pointer
value, or if sscanf returns a value other than 3. If fgets returns a NULL
pointer, this means that the end of the file has been found. This is
communicated back to main by setting return_code to 3. Conversely,
if sscanf returns a value other than 3, the end of the NODES table has
been reached and get_nodes has successfully completed its task. This
is communicated back to main by return_code still having its
initialized value of zero. In either case, the number of nodes that
have been read is stored in the no_nodes member of mesh. On return
to main, the value returned by get_nodes is stored in a variable, also
called return_code, that is local to main. This is used to display an
error message if get_nodes was unsuccessful, or to call the
display_nodes function. If display_nodes is called, main passes mesh to it
by value, with display nodes making a copy, also called mesh. The
display_nodes function then uses a for loop to display the nodes data
on the screen.

Tutorial 5.7
Implement Program 5.3 and make notes on its operation.

Tutorial 5.8
Modify Program 5.3 to read and display the numerical data in
both tables contained in the input file.

Chapter review

The new material introduced in this chapter is relatively small.
However, it builds on previously discussed features of C to provide a
wide range of flexible and robust methods for working with files.
Streams are the ‘core technology’ provided by C for connecting a
program to one or more files. Unlike the standard streams, stdin and
stdout, any stream needed for working with a file must be declared
and opened using appropriate statements in the program. Streams
are actually pointers to data structures of type FILE. The fopen

Files and formatting 113

function is used to open a stream between the program and a
named file, the stream being the pointer returned by fopen. When
opening a stream, fopen also needs to know the type of connection -
read 7', write ‘w’ or append ‘a’. When no longer required, streams
should be closed (breaking the link between the program and the
file) using the fclose function. Some of the more generally useful
features of formatting codes and formatting code modifiers have
also been discussed. Specifically, methods for controlling the
precision of outputted data and use of the * modifier to ignore
chosen inputs. It should be noted, however, that C provides other
modifiers that have not been discussed here and, to investigate
these, the reader should consult HELP in their programming envi-
ronment. Functions similar to fprintf and fscanf have been intro-
duced that allow character strings to be assembled using sprintf, and
allow data to be read from character strings using sscanf. In using
both of these functions, the first argument passed to them is the
name of the relevant character string, rather than the name of a
stream. The sscanf function is frequently used in conjunction with
the fgeis function, the latter allowing whole lines, rather than
particular data items to be read from files. It has also been shown
that fgets, in combination with sscanf, string handling functions and
while loops, can provide flexible navigation within input files. In
turn, this enables potential errors to be anticipated and accommo-
dates situations where the sequence and/or volume of input data are
not known before reading commences.

6

Dynamic Memory
Management and
Linked Lists

6.1 Introduction

C provides a collection of functions that allow variables to be created
and destroyed whilst a program is running. What this means is that
sections of memory can be reserved or allocated and used to store
data when required. When the data stored in these locations is no
longer required, the allocated memory can be released or freed,
becoming available for possible re-use at some other time. This
method of memory management is called ‘dynamic’ because the C
program decides when to use it. In contrast, the use of arrays is
called ‘static’ memory management because array sizes are fixed
before the program runs.

As seen in previous chapters, using arrays in programs that may
need to process varying amounts of data always carries the risk that
the arrays are not big enough to hold all of the data. In large
programs this is a serious problem that can be overcome through
the use of dynamic memory management. In using dynamic
memory management, it is typical to design methods of storing
data by dynamically creating data structures containing several
member variables. Some of these members are used to store the
processed data and other members are pointers that can store the
addresses of other data structures. Using these pointers, as many
data structures as required can be chained together forming a
linked list.

Dynamic memory management and linked lists 115

This chapter presents the essential facilities for dynamic memory
management, demonstrating them through various examples.
Attention then moves on to linked lists and their practical use.

6.2 Essential facilities for dynamic memory management

To use any dynamic memory management facilities, a C program
must include a standard library to provide the necessary function
prototypes. This library is either stdlib.h or alloc.k, depending on the
programming environment being used.

C provides the following functions:

void *malloc(no_bytes)

void *calloc(no_blocks, no_bytes)

void *realloc(current_storage_ptr, no_bytes)
void free(current_storage_ptr}

where:

B yoid * means the function returns a pointer (an address in
memory), but the pointer does not have a data type;

B no_bytes is an integer that specifies the number of bytes to be
allocated as a single block of memory;

® no_blocks is an integer that specifies the number of blocks of
memory to be allocated;

B current_storage_ptr is a pointer to a block of memory that is
currently allocated.

The malloc function allocates a single block of memory and the
calloc function allocates a number of contiguous blocks. malloc
returns a pointer of type void that holds the address of the first
byte in the allocated block. calloc returns a pointer of type void that
holds the address of the first byte in the first allocated block. The
realloc function changes an amount of memory that has already
been allocated in a block. Thus, a pointer to the first byte of an
allocated block is passed to realloc, along with the new number of
bytes to be allocated. The free function removes or de-allocates a
block of memory that has been previously allocated using either
malloc or calloc.

The contents of a dynamically allocated block of memory can
only be accessed by reference, using the pointer that is returned

116 C programming for scientists and engineers

from malloc or calloc. I no_bytes is an explicit integer value, malloc or
calloc will structure the allocated blocks so that individual bytes can
be accessed. However, it is more usual to specify the size of a
required block in terms of a particular data type using the sizeof
operator (Section 2.5) and to then convert the returned pointer to a
pointer of the same data type using the cast operator (Section 2.5).
When this is done, the memory within a block can then be accessed
in terms of the specified data type. For example:

int “integer._ptr;
integer_ptr = (int *)malloc(sizeof(int));
‘integer_ptr=5;

Above, malloc allocates enough memory (2 bytes) to store an int,
returning its address in a pointer of type void. The returned pointer
is then cast to be a pointer of type int and the address that it holds is
assigned to integer_ptr. Finally, the value 5 is stored in the allocated
memory using the ‘contents of * operator (Section 2.5). Also consider,

double *double_ptr;
double_ptr = (double *)malloc(sizeof(double));
*double_ptr = 8.4;

Here, malloc allocates enough memory (8 bytes) to store a variable of
type double, returning its address in a pointer of type void. The
returned pointer is cast to be a pointer of type double and the address
that it holds is assigned to double_ptr. After this, the ‘contents of”’
operator is used to store the value 8.4 in the allocated memory.

A more typical example is shown below, where sufficient memory
is allocated to store a data structure.

struct triangle
{
double x[3];
double y[3];
double area;
¥
struct triangle “triangle_ptr;
triangle_plr = (struct triangle *)malloc(sizeof(struct triangle));

The first six lines, above, specify the template for a structure called
struct triangle. In line 7 the template is used as a data type to declare
a pointer called triangle_ptr. In the final line, malloc allocates

Dynamic memory management and linked lists 117

enough memory (56 bytes) to store a variable of type struct triangle,
returning its address in a pointer of type void. The returned pointer
is then cast to be a pointer of type struct triangle and the address that
it holds is copied to triangle_ ptr.

In these three examples, it is important to note that the data type
of the pointer obtained after using the cast operator and the data
type passed to the sizeof operator are the same.

Tutorial 6.1
Convert the following into working programs, correcting the
single mistake contained in cach and displaying the result on
the screen.

a) int “integer_ptr;
integer_pir = (float *)malloc(sizeof{int));
“integer_ptr=5;

b) double *double_ptr;
double_ptr = (double *)malloc;
“double_ptr = 8.4;

Tutorial 6.2

Write a program that reads, stores and displays the following
data: 125.7, 95 and ‘disc’. The data must be stored in a single
data structure using member variables of the appropriate type.
Use [l‘\'lliilﬂi(' memory '!]liillilg{.,‘lll(‘]lf o create |J'I(.‘ (l.'dl'd structure.

6.3 Simple applications of dynamic memory management

Program 6.1 shows a simple example of how memory management
functions can be used in practice. The objective of this program is to
calculate the area of a rectangle, which is defined by the x,y co-ordinates
of its lower left and upper right corners. The co-ordinates of a corner
are stored in a data structure, called corner. The malloc function is used
to allocate storage for two variables of type corner, the addresses of these
variables being stored in lower_lefi_ptr and upper_right_ptr.

118 C programming for scientists and engineers

/* Program 6.1 - Calculating the area of a rectangle */

#include <stdio.h>
#include <stdlib.h>

int main{void)
{
struct corner
{
double x;
double y;
} ;
struct corner *lower_left_ptr, *upper._right_ptr;
double area;

lower _left_ptr = (struct corner *)malloc(sizeof(struct corner));
upper_right_ptr = (struct corner *)malloc(sizeof(struct corner));

lower _left_ptr->x = 0.0;

lower_left_ptr->y = 0.0;

upper_right_ptr->x = 10.0;

upper_right_ptr->y = 10.0;

area = (upper_right_ptr->x - lower_left_ptr->x) *
(upper_right_ptr->y - lower_left_ptr->y);

forintf(stdout,” area = %If\n", area);
return(0);

}

Program 6.1 uses two calls to the malloc function, the first to
allocate the structure for the lower left corner and the second to
allocate the structure for the upper right corner. Note in these
statements that struct corner is passed to sizeof to obtain the number
of bytes needed to hold one instance of struct corner. The number of
bytes returned by sizeof is then passed as an argument to malloc,
which allocates a memory block of the correct size and then returns
a pointer to the first byte in the block. Finally, the cast operator
converts the data type of the returned pointer to struct corner before
its value is copied to lower left_ptr in the first call to malloc and to
upper_right_ptr in the second call.

Dynamic memory management and linked lists 119

Having allocated the memory required for each structure, their
member variables are then assigned co-ordinate values that define
the rectangle. Note that members of each structure are accessed by
using the relevant pointer. This is the only way to access members of
dynamically allocated structures. It is not possible to fully qualify
members of allocated data structures because such structures do not
have names. This is demonstrated again in the statement used to
calculate the area of the rectangle.

To further develop the use of dynamic memory allocation,
consider Program 6.2, which is a modified version of Program 5.2.
Program 6.2 aims to demonstrate how blocks of memory can be
dynamically allocated within functions and how those functions can
return pointers to allocated memory back to the function that called
them. This example also demonstrates that dynamically allocated
memory can be passed by reference to functions, in just the same
way as explicitly declared variables. A detailed list of the changes
that have been made to obtain Program 6.2 from Program 5.2 is
given after the program statements.

In Program 6.2 templates for the files and triangle data types are
declared external to each function, so that all of the functions share
a common understanding of these data types. main declares two
pointers, io_ptr and example_ptr, using these data types. It is
intended that the read_ filenames function will allocate memory
needed to store the filenames and that the read_ points function will
allocate memory needed to store the points that define a triangle.
Both functions will return the addresses of this allocated memory
back to main which will store them in the previously declared
pointers. The prototype statements in main for the read_filenames
and read_points functions are consistent with this.

Looking at the argument lists in the prototype statements for
read_filenames and read_points, no arguments are passed to read_ file-
names, so its argument list contains void. The single argument
passed to read_ points is a character string intended to contain the
name of the file where the data for each point are stored. Similarly,
in the prototype statement for write_area, the second variable is a
character string that will contain the name of the output file. The
first two executable statements in main call the read_ filenames and
read_ points functions, assigning their returned pointer values to
two_ptr and example_ ptr, respectively.

Now look at the read__filenames function, which declares its own
local pointer, called io_ptr, to store its copy of to_ptr passed to it

120 C programming for scientists and engineers

from main. The malloc function is used to allocate a block of memory
of the correct size to hold an instance of the struct files data structure.
'The pointer returned by malloc, containing the address of this block
of memory, is first cast to the struct files data type and then its value
is copied into i0_ptr. After reading the names of the files from the
user (note how the file name members are accessed using the
‘address of’ operator with the pointer to the allocated data
structure) the value of io_ ptr is returned to main.

Looking at the read_ points function, it can be seen that the char-
acter string passed to it is copied into the character string,
mput_filename, appearing in its argument list. Also, there are two
other declaration statements, the first creating a stream called input
and the second for a pointer of data type struct triangle. The malloc
function is used to allocate a block of memory in which to store an
instance of the struct triangle data type. The address of the block allo-
cated by malloc is stored in triangle_ ptr. Following this, fopen is used
to connect the program to the input file using the input stream.
Note, in the subsequent calls to fscanf, that members of the iriangle
data structure are identified using triangle_ptr, rather than a
structure name. After the last call to fscanf, the fclose function breaks
the link between the program and the input file and the function
returns the value of triangle_ptr to main. The remainder of the
program is the same as Program 5.2.

/* Program 6.2 - Calculating the area of a triangle 4
o v
/* Main function for program 6.4. 4
/* Calculate the area of a triangle which is defined by three pairs of x,y */
/* co-ordinates, supplied by the user. v4

/* Demonstrates the dynamic allocation of memory within functions, the ¥/
/* return of pointers to allocated memory and the passing of allocated */
/* memory to functions by reference. v4

#include <sltdio.h>
#include <math.h>
#include <stdlib.h>

Dynamic memory management and linked lists

struct triangle
{
double x[3];
double y[3];
double area;

X

struct files
{
char input_filename[101],
output_filename[101];

k

int main(void)

{

struct files *io_ptr;

struct triangle “example_ptr;

struct files *read_filenames(void);
struct triangle “read_points(charf]);
int calculate_area(struct triangle *);
int write_area(struct triangle *, charf{]);

io_ptr = read_filenames();

example_ptr = read_points(io_ptr->input_filename);
calculate_area(example_ptr);
write_area(example_ptr, io_ptr->output_filename);
return(0);

}

/* Function: read_filenames; Used in program 6.2.
/* Reads two file names as char strings into an allocated structure.
/* The function returns a pointer to the allocated structure.

struct files "read_filenames(void)

{

struct files *io_ptr;

121

Y
4
v

122 C programming for scientists and engineers

io_ptr = (struct files *)malloc(sizeof(struct files));
forintf(stdout,” Input file name:");
fscanf(stdin,” %s" ,io_ptr->input_filename);

forintf(stdout,” Output file name:");
fscanf(stdin,” %" ,io_ptr->output_filename);
return(io_ptr);

}

/* Function: read_points; Used in program 6.2. Y
/* Reads x,y co-ordinates of triangle vertices into an allocated structure. */
/* A pointer to the allocated structure is returned to the calling function. */

struct triangle *read_points(char input_filename(])
{

FILE “input _file;

struct triangle *friangle_ptr;

triangle_ptr = (struct triangle *)malloc(sizeof(struct triangle));
input_file = fopen(input_filename, “r’);

fscanf(input_file,” %If %If", &triangle_ptr->x[0], &triangle_ptr->y[0]);
fscanf(input_file,” %If %lIf", &triangle_ptr->x{1], &triangle_ptr->y(1]);
fscanf(input_file,” %If %If", &triangle_ptr->x(2], &triangle_ptr->y[2]);
felose(input_file);

return(triangle_ptr);

}

/* Function: calculate_area; Used in program 6.2. Y
/* Calculates area of triangle defined by (x,y) Y
/* co-ordinates supplied in structure pointed to by A

/* triangle_ptr. i

Dynamic memory management and linked lists

int calculate_area(struct triangle *triangle_ptr)

{

double a, /* distance between points 1 and 2 4
b, /* distance between points 2 and 3 v
c, /* distance between points 3 and 1 Y
s; /* perimeter/2 Y/

a = sqrt((triangle_ptr->x{1] - triangle_ptr->x{0]) *
(triangle_ptr->x{1] - triangle_ptr->x{0]) +
(triangle_ptr->y[1] - triangle_ptr->y[0]) *
(triangle_ptr->y[1] - triangle_ptr->y{0]));

b = sqri((triangle_ptr->x{2] - triangle_ptr->x{1]) *
(triangle_ptr->x{2] - triangle_ptr->x[1]) +
(triangle_ptr->y(2] - triangle_ptr->y[1]) *
(triangle_ptr->y(2] - triangle_ptr->y[1]));

¢ = sqri({triangle_ptr->x[0] - triangle_ptr->x{2]) *
(triangle_ptr->x{0] - triangle_ptr->x[2]) +
(triangle_ptr->y[0] - triangle_ptr->y(2]) *
(triangle_ptr->y[0] - triangle_ptr->y[2]));

s=(a+b+c)2.0;
triangle_ptr->area = sqri(s*(s-a)*(s-b)*(s-c));

return(0);

}

/* Function: write_area; Used in program 6.2. 4
/* Writes calculated area of a triangie to a file. v
/* Name of output file is supplied by calling function. Y4

int write_area(struct triangle *triangle_pftr, char output_filename(])

{
FILE “output _file;

output_file = fopen(output_filename,"w");

forintf(output_file,” Area of triangle = %An", triangle_ptr->area);
fclose(output_file);

return(0);

}

123

124 C programming for scientists and engineers

The following changes have been made to develop Program 6.2
from Program 5.2.

Before main

Dynamic memory allocation functions are made available to the
program by using the #include <stdlib.h> statement.

In main

Variables of the struct files and struct triangle data types are no longer
declared, but the declarations for pointers to variables of these types
are retained.

The prototype statements for the read_ files and read_ points func-
tions are both changed to specify that each function returns a
pointer of the relevant data type.

The prototype statement for read_ files also specifies that no argu-
ments are passed to the function. The implication of this and the
previous change to the prototype statement for this function is that
read_ files will use malloc to create an instance of the struct files data
type and will return a pointer to it, rather than sharing access to an
empty copy passed to it.

In the prototype statement for read_points the pointer to the
triangle data structure has been removed. Again, the implication of
this change to the read_points prototype statement is that the
function will use malloc to create an instance of the struct triangle data
type and will return a pointer to it.

Consistent with read_ files and read_points returning pointers to the
relevant data structures, the explicit assignments of structure addresses
to example_ptr and io_ptr in Program 5.2 have been removed.

In read_filenames

The function name statement now indicates that the function
returns a pointer of data type struct files and that no arguments are
passed to the function.

A declaration statement has been introduced for the pointer,
i0_plr.

A further statement is introduced that calls malloc to create a
structure of the struct files data type, storing its address in io_ ptr.

The return statement now returns zo_ pir, rather than zero.

Dynamic memory management and linked lists 125

In read_points

The function name statement now indicates that the function
returns a pointer of the struct triangle data type and that only the
name of the input file is passed to the function.

A declaration statement has been introduced for the pointer,
triangle_ptr.

A further statement is introduced that calls malloc to create a
structure of the struct triangle data type, storing its address in
triangle_ ptr.

The return statement now returns ¢riangle_ ptr, rather than zero.

Tutorial 6.3
Implement Program 6.1 and make brief notes on its operation.

‘Tutorial 6.4
Implement Program 6.2 and make brief notes on its operation.

6.4 Linked lists

A linked list is a collection of data structures that are connected
together using pointers. For this to be possible, each structure in the
list must contain a member variable that is a pointer. By storing the
address of one data structure in a pointer that is a member of
another data structure a link is made between the two structures.
The most simple data structure that can usefully form part of a
linked list is one that contains a single basic variable and a pointer
variable, as shown below.

struct integer_value
{
int value;
struct integer_value *next;
»

struct integer_value *first_ptr, *second_ptr;

126 C programming for scientists and engineers

first_ptr = (struct integer_value *)malloc(sizeof(struct integer_vaiue));
second_ptr = (struct integer._value *)malloc(sizeof(struct integer_value));

first_ptr->value = 10;
first_ptr->next = second_ptr;

second_ptr->value = 20;
second_ptr->next = NULL;

The linked list produced by the example code, above, is shown graph-
ically in Figure 6.1.

Sirst_ptr > value = 10 _l—————) value = 10
next next = NULL

Figure 6.1 A linked list containing two data structures

In this example the first task is to define a template for a data
structure called struct integer_value, along with two pointers, first_ptr
and second_ptr, of the same data type. Note that the template contains
two members, the first is an integer variable called value and the
second is a pointer, called next, whose data type is the same as the
structure in which it is a member. The code then calls malloc twice to
create two structures of type integer_value. The addresses of the struc-
tures, returned from the calls to malloc are stored in first_ptr and
second_ptr. After assigning a value of 10 to member value in the first
structure, the address of the second structure, stored in second_ptr, is
copied to the member, next, in the first structure. This makes a link
between the first and second data structures. The pointer member,
next, of the second structure is assigned the NULL value, which is used
to indicate the second structure is the last in the linked list.

Program 6.3 demonstrates how linked lists are typically used.
This program is a modified version of Program 4.6, which prompts
the user to name a range of fruit. The latter program was limited in
that a maximum of 20 names could be held in an array of character
strings. If the user supplied more than 20 names, the behaviour of
the program would be unpredictable because names after the 20*
would overwrite memory used to store other variables. There are
two possible solutions to this problem. The first involves the use of

Dynamic memory management and linked lists 127

an array that is big enough to hold a large number of names. This
is not a good solution because how big is ‘big enough’? At best, this
results in a waste of memory and, at worst, the original problem re-
occurs. A much better solution is to store the names in a linked list,
where each new name is stored in a new data structure. In addition
to the statements in Program 6.3, Figure 6.2 (page 130) provides
an overview of the steps taken within the program to build the
linked list.

/* Program 6.3 - The fruit program yet again */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{
char reply(20];
struct fruit
{
char name[20];
struct fruit *next;
x

struct fruit *first_ptr = NULL, *new_structure_ptr, “current_fruit_ptr;

do
{
fprintf(stdout,” Name of fruit or ‘end’ ?:");
fscanf{(stdin,” %s", reply);
if (strnemp(reply,"end”,3) = 0)
{
new_structure_ptr = (struct fruit *)ymalloc(sizeof(struct fruit));
if (first_ptr 1= NULL)
current_fruit_ptr->next = new_structure_ptr;
else
first_ptr = new_structure_ptr;
current_fruit_ptr = new_structure_ptr;
strepy(current_fruit_ptr->name, reply);
current_fruit_ptr->next = NULL;
}

}
while(strncmp(reply;"end”,3) I= 0);

128 C programming for scientists and engineers

forintf(stdout,” You have named the following fruit:\n");
current_fruit_ptr = first_ptr;
while(current_fruit_ptr != NULL)
{
forintf(stdout,” %s\n”, current_fruit_ptr->name);
current_fruit_ptr = current_fruit_ptr->next;
}

return(0);

}

In Program 6.3 a template data structure is defined to hold the
name of a single fruit. This structure also contains a pointer that
can store the address of another data structure of the same type.
Three other pointers of the same data type are also declared
(Figure 6.2(a)):

® first_ptr is used to store the address of the first structure in the
linked list. It is initialized to a NULL address to indicate that the
linked list is initially empty.

® new_structure_ptr is used to temporarily store the address
returned by malloc.

B current_fruit_ptr is used to access the latest structure that has
been added to the list.

As in Program 4.6, all of the statements used in Program 6.3 to
obtain data from the user and store it in the linked list is carried out
inside a do-while loop, whose continuation expression tests for the user
entering ‘end’. Having prompted for and read user input, an if
statement is used to decide whether the user has supplied a fruit
name. If they have, a fruit data structure is allocated using malloc and
its address is temporarily stored in new_structure_ptr. Following this,
a test is carried out to decide if this is the first structure that has been
allocated. Let’s assume that it is, so the else part of the test is
executed and the structure address is stored in first_ptr. Next, the
structure address is also stored in current_ fruit_ptr, so that the new
structure becomes the one currently being processed. At this point,
the user input is copied into the name member of the structure and
the pointer member, next, is set to NULL. This latter statement
ensures that if no more fruit names are supplied then the current
structure becomes the last structure in the list.

Figure 6.2(b) shows that one data structure has now been allo-
cated and that each of the previously declared pointer variables

Dynamic memory management and linked lists 129

contain its address. The continuation expression in the while
staternent is now tested, which takes the program back up to the do
at the top of the loop because the user did not enter ‘end’. The user
is again prompted for input. Assuming that they supply a second
fruit name, another data structure is allocated. Since first_ ptr now
holds the address of the first allocated data structure, the test
expression in the if statement is now TRUE causing the first part
of the if-else statement to be executed. This uses the present value
of current_ fruit_ptr, now dotted in Figure 6.2(c), to store the
address of the new data structure in the member next of the
previous structure.

Following this, current_fruit_ptr is updated to make the newly
allocated structure the current one, prior to storing the user
supplied name and setting next in the current structure to NULL.
Figure 6.2(c) shows the state of the linked list and its associated
pointers at the end of the second pass through the do-while loop.
Similarly, Figure 6.2(d) shows the situation after the user has
supplied a third name. Note, again, that current_ fruit_ ptr is used to
change the value of next in the previously allocated structure, prior
to being assigned the address of the new structure. Finally,
supposing that the user entered five names, followed by ‘end’, the
linked list and its pointers will be as shown in Figure 6.2(e) and the
program will leave the do-while loop.

In order to display the full list of fruits, the address stored in
Sfirst_ptr is now copied to current_ fruit_ptr, so that current_ fruit_ per
points to the start of the list. A while loop is then used to, firstly,
print the name stored within the current structure and, secondly,
update current_ fruit_ptr by assigning to it the value of next in the
current structure. The while loop terminates when current_ fruit_ ptr
has been assigned a NULL value, indicating that the end of the list
has been reached.

In comparison to Program 4.6, Program 6.3 has improved func-
tionality through its increased robustness, brought about by using
dynamic, rather than static, memory management. Comparing the
statements in each program, this is achieved through a small
increase in the complexity of the code, which is based on a signif-
icant difference in thinking about memory use and software relia-

bility.

130 C programming for scientists and engineers

= C————
first_ptr first_ptr first_ptr
current_fruit_ptr \
new_structure_ptr new_structure_ptr (so0 noteS)
name [
—— net [9]
[——
current_fruit_ptr current_fruit_ptr I E_
) / new_structure_ptr
name [
next ,—-—,_—E_j
- Yy
current_fruit_ptr
] —
next
(a) (b) ©
Prior to entering the At the end of the first pass At the end of the second pass
do - while loop. through the do - while loop. through the do - while loop.
Coe———>rame] [C——a——rame[__|
first_ptr next | [l first_ptr next |
Y
S SR 1 name [
current_fruit_ptr ! next |
(see notes) v v
y
name []
net [y] name []
net [¢]
new_structure_ptr name E
=] g
current_fruit_ptr v new_structure_ptr L \
name [name]
next e
current_fruit_ptr
d) (e)
At the end of the third pass After the do - while loop when a total
through the do - while loop. of five names have been supplied.

Figure 6.2 The development of a linked list to store fruit names in Program 6.3

Dynamic memory management and linked lists 131

Tutorial 6.5
Implement Program 6.3 and make notes on its operation.

Tutorial 6.6

Modily Program 6.3 to read any number of fruit names from a
user specified file and write the list of names to another user
specilied file.

Chapter review

Dynamic memory management is a very powerful technique for
producing robust software that is efficient in its use of system
resources. This chapter has introduced the essential elements of
dynamic memory management through the use of small example
programs. It could be argued that the use of dynamic memory
management in such small programs may not be appropriate.
However, this chapter is also intended as a bridge between such
programs and their much larger counterparts that are built to solve
complex technical problems. Such software, possibly consisting of
hundreds of functions and hundreds of thousands of statements
typically depends on the use of dynamic memory management
introduced here.

Dynamic memory management is generally perceived as a fairly
advanced technique, mainly for the following reasons. Firstly, its use
relies on a good understanding of other C facilities, such as data
structures, pointers, functions, loops and decision making.
Secondly, to design software that will use dynamic memory
management, it is necessary to develop a good mental picture of
relationships between individual items of data and between the data
and the instructions needed to process it.

Appendix: Typical
Examination Questions

Chapter 1

1.

Implement the following program that will display the
default size (in bytes) of each basic C data type on your
system. Invent a bar chart using the results to show the
relative amounts of memory needed for each data type. Note
that sizeof(...) is an operator provided by C that works out
how many bytes are needed to store a variable of any data
tvpe. Imagine, below, that in sizeof(short int) etc., the number
of bytes worked out by sizeof replaces sizeof(short int) etc. in the
fprintf argument list.

#include <stdio.h>

int main(void)

{

forintf(stdout,” short int needs: %d bytes\n", sizeof(short int));
forintf(stdout,” int needs: %d bytesin”, sizeof(int));
forintf(stdout,” long int needs: %d bytes\n”, sizeof(long int));
forintf(stdout,” float needs: %d bytes\n", sizeof(float));
fprintf(stdout,” double needs: %d bytes\n”, sizeof(double));
forintf(stdout” char needs: %d bytes\n", sizeof(char));
forintf(stdout,” int pointer needs: %d bytes\n”, sizeof(int *));
forintf(stdout,” double pointer needs: %d bytes\n", sizeof(double *));
return(0);

}

Appendix 133

2. Why are the following statements false?

a) A character string, declared as char string[7], is long enough
to store the word ‘halibut’.

b) char word[7] = ‘reggae’; is a correct initialization of the char-
acter string, word.

c) The value 1.768 can be stored in a variable of type int.

d) A variable of type short int can be used to store the value
48927.

e) A variable of type unsigned int can be used to store the
value -1.

3. Implement a program that uses variables of the most appro-
priate data type to store the values shown below. The program
must initialize the variables with the given values and then use
one or more calls to fprintf to display the values on the screen.
The values are:

21.6,-32769, 120, -120, 9.8475432877¢+9, chair,
chair_number_26, A

4. Use the HELP facility in your programming environment to
investigate the following:

stdio.h, forintf, fscanf

5. Implement a program that reads data from the keyboard into
the following data structure and displays it on the screen:

struct component
{
int identity;
int order_no;
double weight;
char colour{11};

}’.

6. The following program contains five errors. Fix the errors and
demonstrate that the program works correctly.

include <stdio.h>
int main(void)

{

intx=19.7;

char a[1];

134 C programming for scientists and engineers

forintf(stdout, A variable, x, has been declared\n’");

forintf(stdin, Enter a character string (max. 9 symbols):");

fscanf(stdout, %s", a);

forintf(stdout, The string and the variable are %s and %d, respectively\n’’,
a, x);

return(0);

}

Chapter 2

7. Linear steady-state heat conduction in a bar is described by:
7,-7)

1= —x)

where
¢ = Heat flux (W/m?)
& = Thermal conductivity (W/mK)
A = Cross sectional area (m?)
T, T, = Temperatures at each end of the bar (deg.K)
x,, x, = Locations of the ends of the bar (m)

Write a program that implements the given equation. The
program should prompt for and read values ofk, 4,x, T, x,, T,
from the user, indicating the required units. The calculated
value of ¢ should be displayed on the screen as part of an
appropriate message to the user. Choosing values for the
inputs, calculate ¢ by hand and demonstrate that your program
works correctly.

8. Gross margin, net profit and their percentage values are
important measures of financial performance, and can be
defined as:

gross_margin = sales — variable_costs (£)

gross_margin

percentage_gross margin = = ——=0

net_profit = gross_margin - overhead_costs (£)

net_profit

percentage_net_proﬁt = m

Appendix 135

Write a program that implements the given equations. The
program should prompt for and read values of sales,
variable_costs and overhead_costs from the user, indicating the
required units. The calculated values should be displayed on
the screen as parts of appropriate messages to the user.
Choosing values for the inputs, calculate the financial
measures by hand and demonstrate that your program works
correctly.

According to the simple bending equation, when a beam of
rectangular cross section is bent the maximum and minimum
tensile stresses on its lower and upper surfaces, respectively, are
given by:

where
o = Maximum and minimum tensile stress (N/m?)
d = Depth of beam (m)
M = Applied bending moment (Nm)
I = Second moment of area (m*)

For a beam having a rectangular cross section, / is given by

3

A
=79 ™)

where
& = Breadth of beam (m)

Write a program that implements the given equations. The
program should prompt for and read values of M, b and d
from the user, indicating the required units. The calculated
maximum and minimum stresses should be displayed on the
screen as parts of appropriate messages to the user.
Choosing values for the inputs, calculate the maximum and
minimum stresses by hand and demonstrate that your
program works correctly.

136

10.

C programming for scientists and engineers

The area of a triangle enclosed by three points P (x,, y,), P,(x,,
y,) and P,(x,, y,) is given by:

Area = Vs(s —a)(s — b)(s — ¢) (m?)

where
a = Straight line distance between P, and P, (m)
b = Straight line distance between P, and P, (m)
¢ = Straight line distance between P, and P, (m)
and
a+b+c
=T @

Write a program that implements the given equations. The
program should prompt for and read the x and y values of
three points from the user, indicating the required units. The
calculated area should be displayed on the screen as part of an
appropriate message to the user. Choosing values for the
inputs, calculate the area by hand and demonstrate that your
program works correctly. Hint: use Pythagoras’s Theorem to
calculate a, b and c.

Chapter 3

11.

12.

13.

14.

Write and implement a program that reads two integers from
the user, adds them together and displays the answer on the
screen. The program must consist of functions for each major
activity (reading, processing and writing).

Re-implement the program in Chapter 2, Question 7 so that it
uses separate functions for the reading, calculating and
writing tasks.

Re-implement the program in Chapter 2, Question 8 so that it
uses separate functions for the reading, calculating and
writing tasks.

Re-implement the program in Chapter 2, Question 9 so that it
uses separate functions for the reading, calculating and
writing tasks.

Appendix 137

Chapter 4

15.

16.

17.

18.

19.

Write a program that displays the alternative text strings
shown at the end of the question and prompts the user to enter
any one of them. The program should use nested if-else state-
ments to compare the user’s input against the list of valid
strings and print a message indicating which string the user
has supplied. The program must also print an error message if
the user enters a string that does not appear in the list. The
valid strings are:

‘ABC’ ‘DEF’ ‘GHT JKL ‘MNO’ ‘PQR’ ‘STU’ VWX’ ‘YZ’

Repeat Question 15, replacing the if-else construct by a switch
construct.

Re-write Program 2.2 from Chapter 2 so that the text “TRUE’
and ‘FALSE’ appear in the output, rather than the numerical
values 1 and 0, respectively.

Write a program that can repeatedly prompt the user to enter
the name of any of the data types considered in Sections 1.2,
1.3 and 1.4, e.g. int, float, etc. For any valid data type supplied
by the user, the program should display the following:

B The name of the data type.

® The number of bytes that it uses.

B The upper and lower limits of values that can be stored in
variables of that type.

® Where appropriate, the precision of the values that can be
stored.

Your program should store the relevant values, found from the
notes in Chapter 1, in suitable arrays rather than ‘hard coding’
them into calls to fprintf. The program should display a
suitable error message if the user enters invalid input, and
should allow the user to stop the program by entering a
suitable command, such as ‘end’.

Write a program that initializes an array with several alpha-
betical characters. The program should then use a while loop
to display characters randomly selected from the array and,
for each character, prompt the user to enter a word beginning
with that character. The program should check that the user
has supplied a correct input and display an appropriate
message if their input is not correct. The user should be able

138

20.

C programming for scientists and engineers

to end the program by entering ‘end’. Hint: it may be better to
work out how to change Program 4.5 than to write a
completely new program. Another hint: think carefully about
the user being able to enter ‘end’ as a valid word beginning
with ‘¢’

Modify the program for either Tutorial 4.7 or 4.8 so that the
switch construct operates inside a while loop. This should allow
the user to select options 0, 1 and 2 in any sequence. Introduce
a third option that enables the user to stop the program.

Chapter 5

21.

22,

Modify the program in Chapter 3, Question 14 (derived
from Chapter 2, Question 9) so that it can read M, b and a
range of d values from a file. The function used to perform
the calculation should now use a loop to carry out the calcu-
lation for each d value. The program should also write a table
containing the d values and associated maximum and
minimum stresses, accurate to three decimal places, to an
output file. The program should read the names of the input
and output files from the user.

Modify the program written for Chapter 4, Question 19 so that
words beginning with different characters are written to
different files. If the user is prompted to supply more than one
word beginning with the same letter, each word after the first
should be appended to the relevant output file. File names
should be constructed by the program when they are needed.

Chapter 6

23.

24.

Modify the program in Tutorial 6.6 so that the list of fruit
names is written to a file in reverse order. Hint: use two
pointers in each data structure, one ‘pointing’ forwards and
the other ‘pointing’ backwards.

Using the relevant parts of Programs 6.1 and 6.3 as a starting
point, write a program that uses a linked list to store the
vertices of a two-dimensional polygon having any number of
sides. The vertex data is to be supplied via the keyboard and
the user must not need to specify how many sides make up the

25.

26.

Appendix 139

polygon before they input the vertex data. Having read all of
the vertex data, the program should write it to a file.

Making use of the relevant parts of the program in Question
24, write a program that reads the polygon vertex data from
the file into a linked list. The program should count the
number of vertices and then prompt the user to select one of
them. Starting with the user-selected vertex, the program
should write all of the vertex data to a second file. Hint: you
will need to think about how to ‘wrap’ the end of the linked list
around to the beginning.

Compare Programs 4.6 and 6.3, concentrating on the limita-
tions of the former, discussed in Section 4.8, and the ways in
which they are overcome in Program 6.3.

Background and Rationale
of the Series

This new series has been produced to meet the new and changing
needs of students and staff in the Higher Education sector caused
by firstly, the introduction of 15 week semester modules and,
secondly, the need for students to pay fees.

With the introduction of semesters, the ‘focus’ has shifted to
module examinations rather than end of year examinations.
Typically, within each semester a student takes six modules. Each
module is self-contained and is examined/assessed such that on
completion a student is awarded 10 credits. This results in 60 credits
per semester, 120 credits per year (or level to use the new parlance)
and 360 credits per honours degree. Each module is timetabled for
three hours per week. Each semester module consists of 12 teaching
weeks, one revision week and two examination weeks. Thus,
students concentrate on the 12 weeks and adopt a compartmen-
talized approach to studying.

Students are now registered on modules and have to pay for
their degree per module. Most now work to make ends meet and
many end up with a degree and debts. They are ‘poor’ and
unwilling to pay £50 for a module textbook when only a third or
half of it is relevant.

These two things mean that the average student is no longer
willing or able to buy traditional academic text books which are
often written more for the ego of the writer than the needs of
students. This series of books addresses these issues. Each book in
the series is short, affordable and directly related to a 12 week
teaching module. So modular material will be presented in an

Background and rationale of the series 141

accessible and relevant manner. Typical examination questions will
also be included, which will assist staff and students.

However, there is another objective to this book series. Because
the material presented in each book represents the state-of-the-art
practice, it will also be of interest to professional engineers in
industry and specialist practitioners. So the books can be used by
engineers as a first source reference that can lead onto more
detailed publications.

Therefore, each book is not only the equivalent of a set of lecture
notes but is also a resource that can sit on a shelf to be referred to in
the distant future.

Index

address 6,9
appended file 94
area of a triangle, calculation

program 67
argument 8, 49, 54
list 49, 54

non-empty 54
return statements and 54
arithmetic operators 32, 34
arrays 19, 20, 21
of numbers 21

before main 124
block 75
compound statement, or, 75

called function 49, 52
interface 52
calling function 49, 52, 53
interface 52
character data type 7
string 7, 22,23
code 9,11
control 9
formatting 9,11
compound statements 75
construct 74
ifelse 74
swilch, the 78
‘contents of * operator
control code 9

17, 42

statements 31
string 8

data

input and output of 63
functions for 63

read 62, 93
using functions to 62

structures 7, 24, 25, 28, 65
passinga 65

pointers 28

type 6,7,10,12,13,15

character 7

integer 10, 12
pointer 15
real 13

write, using functions to, 62
decisions and loops 73 et seq
declaration statement 6 et seq
‘dot’ operator 26
double precision 14
do-while loop, the 90
dynamic memory management

114 et seq, 115, 117

facilities for 115

linked lists 114 et seq

element 20

essential statements, any function
51

executable statements 31 et seq

files 92 etseq, 94
formatting, and 92 et seq
reading 92
write 92, 94
for loop, the 81
formatting 100
code 9,11
filesand 92 etseq
output 100
functions 49
any, essential statementsin 51
called 49, 52
interface 52
calling 49, 52, 53
interface 52
input and output of data 63
trigonometric display 84
use of 65
using read and write data 62

identifying operators 39
ifelse 73,74,76
construct 74
nested 73,76
statements 76
inmain 124
inread 124, 125
_filenames 124
_points 125
indirect access 28
‘indirection’ operator 28
input of data 63
input, line 104
integer data type 10, 12
languages 1
object-oriented 1
procedural 1
line input 104
line output 102
linked list 114 et seq, 125
dynamic memory management
114 et seq
logical operators 36, 38

Index 143

loop 73 etseq
decisions and 73 et seq
do-while, the 90
for, the 81
while, the 86

member variables 26

memory management 114 et
seq
dynamic 114 etseq, 115, 117

facilities for 115
linked lists, and 114 et seq
static 114
miscellaneous operators 42
modifier 11

nested ifelse 73,76
statements 76

non-empty argument lists 54
return statements, and 54

object-oriented languages 1
operands 31
operator 28, 31, 32, 34, 36, 38,
39, 42, 45
arithmetic 32, 34
‘dot” 26
identifying 39
‘indirection’ 28
logical 36, 38
miscellaneous 42
precedence 45
relational 36
output data, of 63
formatted 100
line 102

pointer
data 15,28
structures 28
type 15
variables, use of 18
precedence 32, 45
operator 45

144 C programming for scientists and engineers

precision 14
double 14
single 14
procedural languages 1
processing statements 31
program, area of a triangle, to
calculate 67

read data 62, 93
files 92
using functions to, 62
real data type 13
reference, passing a data structure
by 65
relational operators 36
return statements, non-empty
argument lists, and 54

single precision 14
software engineering 49
statements

compound 75

block 75

control 31
declaration 6
essential 51

any function 51

executable 31 et seq
nested if-else 76
processing 31

return 54
non-empty argument lists and
54
static memory 114
stream 8

string 7, 8, 22,23
character 7, 22, 23
control 8

switch construct, the 78

trigonometric function display
84
type conversions 32

variable 6
member 26
pointer, use of 18

vectors 20

while loop, the 86
write 62, 92, 94
data 62
using functions to 62
writing files 92

	sample.pdf
	sterling.com
	Welcome to Sterling Software

	Binder5.pdf
	cover.pdf
	page_r1.pdf
	page_r2.pdf
	page_r3.pdf
	page_r4.pdf
	page_r5.pdf
	page_r6.pdf
	page_1.pdf
	page_2.pdf
	page_3.pdf
	page_4.pdf
	page_5.pdf
	page_6.pdf
	page_7.pdf
	page_8.pdf
	page_9.pdf
	page_10.pdf
	page_11.pdf
	page_12.pdf
	page_13.pdf
	page_14.pdf
	page_15.pdf
	page_16.pdf
	page_17.pdf
	page_18.pdf
	page_19.pdf
	page_20.pdf
	page_21.pdf
	page_22.pdf
	page_23.pdf
	page_24.pdf
	page_25.pdf
	page_26.pdf
	page_27.pdf
	page_28.pdf
	page_29.pdf
	page_30.pdf
	page_31.pdf
	page_32.pdf
	page_33.pdf
	page_34.pdf
	page_35.pdf
	page_36.pdf
	page_37.pdf
	page_38.pdf
	page_39.pdf
	page_40.pdf
	page_41.pdf
	page_42.pdf
	page_43.pdf
	page_44.pdf
	page_45.pdf
	page_46.pdf
	page_47.pdf
	page_48.pdf
	page_49.pdf
	page_50.pdf
	page_51.pdf
	page_52.pdf
	page_53.pdf
	page_54.pdf
	page_55.pdf
	page_56.pdf
	page_57.pdf
	page_58.pdf
	page_59.pdf
	page_60.pdf
	page_61.pdf
	page_62.pdf
	page_63.pdf
	page_64.pdf
	page_65.pdf
	page_66.pdf
	page_67.pdf
	page_68.pdf
	page_69.pdf
	page_70.pdf
	page_71.pdf
	page_72.pdf
	page_73.pdf
	page_74.pdf
	page_75.pdf
	page_76.pdf
	page_77.pdf
	page_78.pdf
	page_79.pdf
	page_80.pdf
	page_81.pdf
	page_82.pdf
	page_83.pdf
	page_84.pdf
	page_85.pdf
	page_86.pdf
	page_87.pdf
	page_88.pdf
	page_89.pdf
	page_90.pdf
	page_91.pdf
	page_92.pdf
	page_93.pdf
	page_94.pdf
	page_95.pdf
	page_96.pdf
	page_97.pdf
	page_98.pdf
	page_99.pdf
	page_100.pdf
	page_101.pdf
	page_102.pdf
	page_103.pdf
	page_104.pdf
	page_105.pdf
	page_106.pdf
	page_107.pdf
	page_108.pdf
	page_109.pdf
	page_110.pdf
	page_111.pdf
	page_112.pdf
	page_113.pdf
	page_114.pdf
	page_115.pdf
	page_116.pdf
	page_117.pdf
	page_118.pdf
	page_119.pdf
	page_120.pdf
	page_121.pdf
	page_122.pdf
	page_123.pdf
	page_124.pdf
	page_125.pdf
	page_126.pdf
	page_127.pdf
	page_128.pdf
	page_129.pdf
	page_130.pdf
	page_131.pdf
	page_132.pdf
	page_133.pdf
	page_134.pdf
	page_135.pdf
	page_136.pdf
	page_137.pdf
	page_138.pdf
	page_139.pdf
	page_140.pdf
	page_141.pdf
	page_142.pdf
	page_143.pdf
	page_144.pdf

